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Zusammenfassung

Moderne Kommunikationsnetzwerke erlauben die gleichzeitige Ausführung einer

Vielzahl von Anwendungen. So ist es nicht verwunderlich, dass Mechanismen zur
Ressourcenvergabe, seien es Übertragungsbandbreite oder Rechenkapazität, in der

Informatik seit langer Zeit erforscht werden. Jedoch gehen die klassischen Mecha-
nismen von kooperierenden Nutzern, die nicht versuchen, das System zu ihrem

Vorteil zu manipulieren, aus. Andererseits wird die informationstechnische Infra-
struktur schon aufgrund der hohen Installationskosten von Nutzern ohne gemein-

same Interessen und über Firmengrenzen hinweg genutzt. Stehen nun Ressourcen
in begrenzter Menge zur Verfügung, ist die Entstehung von Allokationskonflikten

unvermeidlich. Ein natürlicher Ansatz zur Lösung solcher Konflikte ist die Etablie-

rung eines Marktes für die Ressourcenvergabe.
Diese Arbeit schlägt Marktmechanismen für die Ressourcenvergabe in verteilten

Computersystemen vor. Wir präsentieren ein neues, budgetausgeglichenes Preis-
bildungsschema für kombinatorische Tauschmärkte, welches die Berechnung der

Akzeptanz von Geboten unabhängig agierender Handelspartner erlaubt. Ebenso
haben wir eine neue Methode zur Synchronisierung der Gebote entwickelt und

zeigen, dass sie einer periodischen oder zufälligen Marktbereinigung überlegen ist.
Die neu entwickelten Mechanismen wenden wir auf die Bandbreitenvergabe für

Punkt-zu-Punkt-Kommunikation an und zeigen mittels einer Simulationsrechnung,

dass die Auktionierung der Bandbreite für einen großen Teil des Parameterraumes
zu höherer Effizienz als ein Fixpreisverkauf führt, obwohl die Auktionierung – im

Unterschied zur Wahl eines optimalen Fixpreises – keine Informationen über die
statistische Verteilung der Gebote der Nutzer benötigt.

Die Situation für Gruppenkommunikation erweist sich als schwieriger. Kellys klas-
sischer Equlibriums-Mechanismus für die Bandbreitenvergabe verliert bei der An-

wendung auf Gruppenkommunikation seine Effizienz. Wir präsentieren eine – nicht
budgetausgeglichene – Verallgemeinerung von Feigenbaums Grenzkostenmechanis-

mus auf ein Gruppenkommunikationsszenario mit Publish/Subscribe-Struktur, und

entwickeln einen Algorithmus zur effizienten, verteilten Preisberechnung.
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Abstract

Modern communication networks handle millions of applications simultaneously,

and mechanisms of resource sharing, most prominently sharing of data transmission
bandwidth and processing power, between competing jobs have been considered

in computer science since its beginning. Classical mechanisms, however, balance
claims of cooperating users that do not try to manipulate the system to their advan-

tage. Due to their cost of installation, information technology infrastructure has to
be used by clients with no joint interest: by individual users and accross borders of

companies. With resources available only in a limited quantity, allocation conflicts
do arise. It is natural to apply the classical remedy for conflict resolution and install

a market for the system’s resources.

This thesis proposes market mechanisms for resource allocation in distributed
computer systems. We define a new budget-balanced pricing scheme for combina-

torial exchanges that allows matching of bids of autonomous buyers and sellers. We
suggets a new bid synchronization rule and prove that it performs superior to peri-

odic and random bid clearing. We give an application of a combinatorial exchange
to unicast bandwidth allocation. We demonstrate by a simulation that, for a large

part of the parameter space, auctioning bandwidth performs superior to fixed price
bandwidth sale, while not requiring prior information on the distribution of bids.

The situation for unicast cost sharing is more complicated. After proving that

the classical equilibrium mechanism of Kelly can’t looses much efficiency if applied
to group communication, we present a generalization of Feigenbaum’s adoption of

marginal cost pricing to publish/subscribe settings. We also develop an algorithm
for efficient distributed price computation.
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1 Introduction

This thesis is about resource allocation in distributed systems by applying tech-

niques from applied game theory and economic theory. While resource management

has experienced extensive treatment since distributed systems have gained popular-
ity, the economic perspective is still a non-traditional one. Traditional resource man-

agement and resource management with economic incentives have a common goal:
efficient use of the resources - typically memory, computational power and, prob-

ably most importantly, bandwidth consumption for data transfer - in a distributed
system.

But what is efficiency? Classical resource management has a simple answer to
that: given some set of tasks, efficiency means to solve them as quickly and ac-

curately as possible, preferably while consuming little resources. The tasks are

assumed to be known, sometimes deterministically, sometimes they are assumed to
be drawn from some random distribution of possible tasks. A prominent example of

resource management in that sense is task scheduling.
It is a natural approach to build this negotiation on monetary incentives, and

precisely this is what our research is about.
Microeconomic theory describes economic interactions between self-interested

individuals:

A distinctive feature of microeconomic theory is that it aims to model

economic activity as an interaction of individual economic agents pursu-
ing their private interests. [48, p.3]

Mechanism design develops market mechanisms like pricing and allocation rules
that produce optimal outcomes if market participants are self-interested and there is

incomplete information. Mechanism design has been applied to analyze traditional
auction markets, as well as to suggest new pricing and allocation rules, for instance

for auctioning frequency spectrums for mobile communication and broadcast and
for electrical power markets.

We raise the following questions:

• Computers are not humans. Economic theory is, in large parts, an empiric sci-

ence about behaviour of humans. How can one transfer results from economic
theory to a setting where only computers interact?

• Moreover, even among economists, it is not undisputed under which circum-

stances market equilibria produce an efficient outcome. Is economization of
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infrastructural resources actually desirable?

• Even if computer scientists are per se interested and involved in modern com-

munication technologies, it is nevertheless a plausible questions what they can
contribute to a theory developed by economists and mathematicians.

The purpose of this introduction is to discuss these points and to formulate theses
that we claim to be proved by the remaining chapters of this work.

1.1 Applicability of economic theory

In a modern distributed system with an open architecture, the set of tasks to be done
is to be negotiated. Similarly, there has to be an agreement about the consumable

resources. The economist Paul Samuelson1 defines economic science as follows:

Economic is the study of how men and society end up choosing, with
or without the use of money, to employ scarce productive resources that
could have alternative uses, to produce various commodities and dis-

tribute them for consumption, now or in the future, among various peo-
ple and groups in society. It analyzes the costs and benefits of improcing

patterns of resource allocation.[65, p.3]

Note that our resource management setup shows almost all characteristics Samuel-

son associates with economic science: only scarce resources need management,
and management essentially takes place by some kind of task priorization: if there

is only one unsplittable task at a time, there is no point in resource management.

Samuelson states that economy studies behaviour of “men and society”. It is
therefore an empirical science, and the truth of an economic theory is lastly mea-

sured by its consistency with observation. This is in clear contrast with computer
science which develops techniques to program a computer. A computer program

(we here understand this term in a very general sense, including for example com-
munication protocols) is not “observed” in its behaviour. Rather, computer science

aims to understand the “behaviour”, that is, the execution, of the program com-
pletely. Even if computer scientists sometimes also use simulations to analyze a pro-
gram execution in some particular context, results that solely depend on observed

behaviour in simulations are generally judged as not as satisfactory compared with
results that are proven with mathematical rigour.

This rigour does hold, however, for Microeconomics and in particular, Mechanism
design. The private interests mentioned above are understood as the maximization
of individual, real-valued utility, where the maximization is a mathematical optimiza-
tion problem with constraints and incomplete information on the side of the agents

1Nobel laureate of 1970
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as well as the control instance. The “approximation” of homo sapiens by homo oe-
conomicus is the conditio sine qua non of microeconomics which is thus embedded

in the neoclassical branch of economic theory. Neoclassics and the assumptions it

is built upon have been, and still are, fiercly disputed among economists.
Here are a couple of objections posed by the criticists2

• The theory has a lot of paradoxical results. For instance, the classical theory

predicts (Bertrand’s paradoxon, see [81, p.116]) that under perfect competi-

tion, producers will sell their commodities at marginal cost. Clearly fixed costs
are thus not covered, and consequently, all producers run losses.

• More generally, there are many situation where at equilibrium, no market par-

ticipant earns a profit. One might argue that this yields a contradiction for a
theory which is built on the very assumption that everybody should maximize

his surplus.

• What are the implications of negative results? Many theorems, like the theo-

rems of Gibbard-Satterthwaite and of Green-Laffont3, prove the non-existence
of mechanisms with desirable properties. The theory says little about what

happens if these properties are relaxed.

• The most obvious argument against utility-maximization is probably that it is

questionable how a consumer would quantify his utility, say, for watching a
movie in a certain quality. The theory relies on that input variable, not distin-

guishing between “true utility” ( the gain of the consumer in comparison with
non-purchase, measured in money), and substitutional value, that is, the value
the consumer assigns to the commodity, given the possibilities of alternative

purchases. While the monetary gain is simply non-measurable for most con-
sumer goods4 , the substitutional value is problematic since alternatives may

have a different cost structure, and long-term effects of switching commodities
may be hard to anticipate.

• In a broader sense, the assumption of human rationality has been very much
under discussion. This discussion was opened by Simon5 [72].

2M. Burchardt [13] gives a (partly a little outdated) critical review of microeconomic theory. Even if
he omits game theory and mechanism design, he discusses most of the following points.

3See the next chapter for details.
4or may be unknown in advance, as Simon [72, p.113] remarks:

The consequences that the organism experiences may change its pay-off function – it
doesn’t know how well it likes cheese until it has eaten cheese.

We may add: Similarly, a computer user may not know which quality of service is necessary prior to
using that service.

5Simon was awarded ACM’s Turing award in 1975, and the Nobel price for economics in 1978.
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Because of the psychological limits if the organism (particularly
with respect to computational and predictive ability), actual human

rationality-striving can at best be an extremely crude and simplified

approximation to the kind of global rationality that is implied, for ex-
ample, by game-theoretic models. While the approximation that the

organism employ may not be the best – even at the levels of com-
putational complexity they are able to handle – it is probable that at

great deal can be learnt about possible mechanisms from an exam-
ination of the schemes of approximation that are actually employed

by human or other organisms.[72, p.101]

In detail, Simon considers the following obstacles that prevent humans from

using a “globally rational” decision strategy:

1. Partially ordered utilities: Simon suggests that human perception of pay-

offs is represented by vector functions better than by scalars: because
preferences of different people involved in a decision may be contradic-

tive, because an individual may have more than one concern, and because
there is uncertainty about the possible consequences of a decision.

2. Limited “computing power”: Against the proposition of uncertain dynam-

ics, “classicists” may hold that this can be modelled with probabilities. Si-
mons replies are twofold: first, the humans have no knowledge about the

applicable probability functions. Second, humans are incapable6 of ac-
tually performing the required calculations for computing an optimal ex-

pected outcome. Probability theory is not a substitute for missing knowl-
edge, and the fact that the distribution of some variable is unknown does

not per se justify the claim that it is randomly distributed.7 The argument
of limited computing power has been intensively addressed by computer

science’s contributions to mechanism design. We will discuss details in

the next chapter.

6We add: or sceptical on the relevance of the computation’s output
7We do note that we are in contradiction with Laplace [44] here. For this outspoken believer in
determinism, randomness is in all cases just a consequence of lacking knowledge rather than an
objective state. Given two possible outcomes success and failure of some variable that has been
observed n times before, the Laplace principle (rule of succession) stipulates that the probability
that success occurs at the n + 1st instance is P (success at n + 1) = s+1

n+2
where s is the number

of successes observed during the first n observations. In particular, with no prior observation, the
probability of success is 1

2
. More generally, Laplace suggests that given that no other information

is available, all possible alternatives should be assumed to be of equal probability, that is, a uniform
distribution should be assumed. We raise three points challenging this principle: First, it is an a
priori assumption and can’t be proven. Second, to be applicable, there must be a unique decompo-
sition of the set of all states into elementary alternatives. Third, it does not help at all in the case
of continuous alternatives within an unknown range.
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Simon introduces a new model of human decision making which has later been
associated with the terms of bounded8 rationality or satisficing. He suggests

that rather than trying to maximize utility, humans set for themselves an as-
piration level9 which may change over time. Alternatives that meat this aspi-
ration level are considered equally valued in the corresponding category, and

other categories are used to define a preference.10

Cyert and March [17], see [70, p.469f] propose a model for the behavioural dy-

namics of managers, owners, employees, customers and creditors of firms which
is based on Simon’s satisficing. According to them, there is a complex interplay

of the interests of the different parties. In particular, while classic theory assumes
that firms follow a profit-maximizing strategies, Cyert and March suggest that the

company managers (which, after all, implement the company’s strategies) try to
satisfice goals set to them by the owners while otherwise being mainly interested

in the well-being of their organizatorial unit. Additional surplus generated in “good
times” is buffered in organisational slacks which may be used for conflict-mediation

when revenues fall.

8in [72, p.113], “limited”
9[72, p. 111]

10Interestingly, the concept of an “aspired profit” has been adopted in catholic economical ethics. John
Paul II writes in Centesimus annus [36, par.35]:

When a firm makes a profit, this means that productive factors have been properly em-
ployed and corresponding human needs have been duly satisfied. But profitability is not
the only indicator of a firm’s condition. It is possible for the financial accounts to be in
order, and yet for the people Ů who make up the firm’s most valuable asset Ů to be humil-
iated and their dignity offended. Besides being morally inadmissible, this will eventually
have negative repercussions on the firm’s economic efficiency. In fact, the purpose of a
business firm is not simply to make a profit, but is to be found in its very existence as a
community of persons who in various ways are endeavouring to satisfy their basic needs,
and who form a particular group at the service of the whole of society. Profit is a regulator
of the life of a business, but it is not the only one; other human and moral factors must
also be considered which, in the long term, are at least equally important for the life of a
business.

The pope’s argument of long term consequences closely resembles Simon’s uncertainty of the dy-
namics. However, the Pope argues normatively as opposed to Simon who suggests bounded ratio-
nality as a descriptive model of human decision-making.

Satisficing as a normative, of course, has been at all times a constant in philosophical-ethical
thinking. Aristotle (Nicomachean Ethics, ch. 6-9 [6]) defines eudaimonia (perfect and complete
happiness) as the state where a human assumes the highest virtues (most notably, contemplation),
given that material needs are met. Aristotle emphasizes (par. 1179a) that eudaimonia, being a
state of perfection, requires that these needs must be fulfilled to a degree such that additional
commodities would not increase happiness.
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1.2 Networks

The transformation of the internet that connected essentially academic, government

or public institutions, to nowadays world wide web with millions of users, many of
them private individuals, others members of companies as well as academic and

other institutions, is a challenge to the designers of the communication protocols.
Traditional protocol design tries to optimize under the assumption that all parties in-

volved faithfully honour protocol intentions. Clearly, this can’t be taken for granted
in open systems where cooperation competes with self-interested action, and the

idea of introducing monetary incentives is a compelling one from the first thought.

In this section, we will outline three approaches that analyze the interconnec-
tion of information networks and economics. First, we adopt the narrow view of

the computer scientists incorporating monetary payments into network protocols in
order to give self-interested clients incentives to coordinate their demand and use

the network efficiently. A second line of research is subsumized under the term of
network industries used by economists to describe industries with network effects.
Telecommunication companies and internet service providers are typical examples.
The “computer scientist’s” research line confines to “classical” strategyproof (or

weaker) mechanisms. However, the last decade has seen a lot of development of

game-theory based auction theory. Inspiration for most of the theory comes from
government-run spectrum auctions, and some from electronic markets like ebay or

electrical power markets. It is interesting to ask which of the “modern” results
are relevant for the protocol designer. The third subsection gives a – very biased –

overview of modern auction theory.

1.2.1 Computer networks as markets

As computer scientist looking through the economist’s glasses, we will interpret

network resources as scarce commodities and network clients as utility-maximizing
agents. We then can directly apply microeconomic theory to model the dynamics

of the system. The most prominent examples for this paradigm of thinking concern
bandwidth allocation. Nisan and Ronen [57] give a simple model of shortest path
routing that allows application of Vickrey-Grove-Clarke mechanism. In their model,
the network is modelled by a directed graph G whose nodes represent the self-

interested agents with whom their is associated a privately known cost of routing
a package. The standard Vickrey-Grove-Clarke mechanism11 yields a cost-covering,
incentive-compatible mechanism that always finds the shortest (measured in costs)

path between any two nodes in the network.
There are many refinements of that model, including ones that consider conges-

tion costs, multicast and multiple service levels.

11see next chapter for details
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The markets described in these papers are closed subsystems of the economy.
There are no external effects, no competition from outside, no dynamics of cost

structures or customer behaviour and no roles in the economy besides “consumer”

and “producers” of resources. The market rules are “axioms” that, in the best case,
are closely modelled along with “reality”; however, there is no interest in empirical

confirmation of the results. Since the markets are formally and rigorously described,
results have intrinsic value independent from empirical evidence.

Of course, the authors of these papers are well aware of the fact that their mech-
anisms are little used in practice, and do occasionally offer some speculations on

why this is so:

Our approach of using an existing network12 protocol as a substrate for

realistic distributed computations may prove useful generally in Internet-
algorithm design, not only in routing or pricing problems. Algorithm de-

sign for the internet has the extra subtlety that adoption is not a decision
by a systems manager, concerned only with performance and efficiency,

but rather a careful compromise by a web of autonomous entities, each

with its own interests and legacies.[23]

In [23], authors model the network and the cost structure as a graph. They then
prove that a certain Vickrey-Groves-Clarke pricing scheme has nice properties (most

notably, strategyproofness), and is unique with that property. They propose dis-
tributed algorithms for payment computations and analyze its complexity. They

note that having a strategyproof pricing scheme (which is useful if peers possibly

try to manipulate), and letting peers compute payments may be problematic and
formulate an open problem addressing that issue. They also note that the Vickrey

mechanism has a problem of overcharging in comparison with the actual costs, and,
for a rare example, offer an argument based on empiric observation of real internet

providers, that states that for the observed graph, Vickrey pricing would not lead to
extensive overcharging.13

Even if the model could be extended to cover these points, the question whether
it would be advisable for a service provider to adopt the mechanism wouldn’t be

answered. Allowing interdomain routing means opening a new market, and the

model can’t in principle foretell which consequences thus arise:

• Erosion of prices (if total traffic does not grow, but competition between AS
increases), or

12The authors present a pricing scheme for interdomain routing that can be embedded in the existing
Border Gateway protocol.

13We note that there are some more directions the model could be extended: the paper does not model
capacity constraints, it rather assumes that payments grow linearly with the traffic ad infinitum.
Moreover, it is assumed that all packages travelling between a fixed pair of sender and receiver,
take identical routes.
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• an increase in efficiency which could trigger a larger demand?

• Increased fixed costs or need for investing into new hardware, if traffic does

increase significantly, or

• a larger revenue with only little marginal costs?

It is obvious that these questions cannot be answered by methods of mechanism
design only. In a similar fashion, even if participation in the model is precipated, the

model offers no guidance on how to compute the utilities given as bids. Rather, to

derive statements on these points, the model needs to be embedded into a complete
model of the economy, or at least a sufficiently closed subset of it. But this means

that a discussion of the foundations of economy, as outlined above, can’t be avoided.

1.2.2 Network industries

The economist interested in information technology will find the computer scien-

tist’s perspective far to “technology-centred”. He would prefer establishing a mar-
ket for commodities that make use of resources, rather than trying to price the

resources themselves. Instead of deriving market rules from the technical system,

he would ask his “technology experts” to implement market rules of his choice. The
economist comes with his rich tradition of market analysis, and will gladly apply

what he has discovered about markets for bread or railway tickets or oil to new
“products” like internet access or mobile communication.

The economist, however, will notice that a theory that works well with markets
for bread won’t necessarily work for mobile communication. Oz Shy defines four

main characteristics that distinguish markets for network products from classical
markets [71, p.1]:

• complementarity, compatibility and standards: Network products are not used
standalone. Computer hardware and software can be purchased indepen-
dently and are produced by different manufacturers, but only together they are

useful to the consumer. Manufacturers have to meet strategic decisions about

which products they design to cooperate, be it hardware architectures, op-
erating systems and applications, or mobile phones and wireless networks. If

compatibility is chosen, firms, even competing ones, must find a modus vivendi
to develop standards that enable interoperability.

• consumption externalities: Utility of network product greatly depends on the
size of the network. Trivial examples are communication devices like fax ma-

chines that are useful only if they enjoy some degree of popularity.

• switching costs: Network products are complex. While it is easy to substitute
corn for wheat, it is not easy for a company to switch the operating system of

all their computers.
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• “Significant economies of scale in production”, that is, production costs are
highly non-linear in the production amount. Typically, marginal cost – like

“producing” one more software licence, or routing one more IP package – are

low in comparison to the “fixed” costs, say, of developing a new application, or
setting up a new telephone line.

Clearly, the picture the economist looks at is much more complex. He is deeply
involved in the disputes that concern economic behaviour of humans. Although we

are not aware of any example, we maintain that it is quit possible to develop an
economic theory of network industries that builds on individuals that are not utility-

maximizing.

Let us consider how the AS interdomain routing problem described in the previ-

ous section looks from a “network industry” point of view. Admitting interdomain
transit traffic adds complexity to the market of data routing. In addition to offering

a service to end consumers, a provider can now try to establish itself as a backbone

transit “hub” that routes traffic from other providers. From an economic point of
view, this is equivalent to outsourcing the traffic routing from the service offered to

consumers, and can be compared with a railway company renting its tracks to other
carriers. Adopting the extended business plan requires an extension of the Border

Gateway protocol (BGP). Clearly, the amount and structure of competition will de-
pend on mutual compatibility, and establishing one or multiple industry standards

needs a lot of strategic consideration. Marginal routing costs are low in comparison
with the cost of the infrastructure and the costs of changing an established protocol.

1.2.3 Auction theory

There has been extensive work in auction theory in the last fifteen years. Most
of the game-theoretic analysis was inspired by the need for efficient allocation of

spectrum licenses for broadcast and telecommunication. While auctions have tradi-
tionally been used by governments for property, eg land, sale and for procurement,

the task of distributing these licenses pose a couple of new challenges: Most no-
tably, the value of these licenses is difficult to estimate. On one hand, spectra are

clearly a scarce resource with no production costs. In that sense, they compare

with treasures of the soil. Explanation for market prices for treasures of the soil
was a challenge to economists in the 18th and 19th century and lead to a refutation

(at least partial) of the labour theory of value and the establishment of the marginal
value theory. This theory estimates the per-unit price of a commodity to equal the

additional utility generated if one more unit of the commodity is available, thus solv-
ing the “paradoxon” that while water has a higher utility than diamonds, the price

for diamonds is nevertheless much higher.
In order to apply marginal value theory to spectrum licenses, one would need to

forecast the revenue that companies can generate from the licenses. This, however,
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is difficult since governments don’t know business plans of private firms. For some
time, mobile phone licenses in the US were assigned by lottery, and it was hoped

that an efficient allocation would evolve from secondary trade. The result was a

fragmented and rather inefficient market, and US agencies became ready to adopt
other schemes. Auctions were seen as a tool to take advantage of the competition

between interested firms to extract a maximum of willingness to pay. Indeed auc-
tions have performed, in some cases, very successful, while producing disappointing

results in others.
The work of Vickrey on second price auctions [78] has served as inspiration for

a tremendous amount of papers that generalized his results to many settings. Nev-
ertheless, the few examples were pure second price auctions have been used for

spectrum license sale have ended with extremely pure results. Vickrey auctions

have a couple of disadvantages that make them unusable in some settings.
In 2004, two leading auction theorists, both involved in the design of spectrum

and other government-run auctions in various countries, have published books [43,
50] on the modern economy of auctions. According to them, the following problems

have to be addressed:

• Vickrey auctions, while stragegyproof, are not groupwise strategyproof: they

are very sensitive to colluding bidders. Sellers can submit shill bids to increase
prices. If the Vickrey mechanism is applied to combinatorial auctions, the

resulting allocation is efficient but the payments can be low even if there are
many high bids. Revenue may even shrink when more bids are submitted.

Milgrom presents the following example[50, p.57f]:

– Let there be two goods A and B, and four bidders b1, b2, b3, b4. Suppose

that b1 values the package of A and B with 10 and b2 with 9. Suppose b3

values A with 10 and b4 values B with 10. b1 and b2 have no utility from

a single item, while b3 and b4 have no additional utility from the second
item.

The efficient allocation, and thus the Vickrey-Grove-Clarke mechanism,
gives A to b3 and B to b4. However, the Vickrey mechanism lets b3 and b4

pay nothing. If only b1 and b2 were present, b1 would pay 9 for the package
of A and B.

In this example, the coalition consisting of the seller, b1 and b2 would prefer to

trade among themselves. Milgrom [50, p.303] defines the core of an auction

to be the set of all outcomes c with the property that there is no coalition
which could find another outcome by trading only among themselves, such

that all members of that coalition are better off with that outcome, than with
c. Outcomes of Vickrey-Grove-Clarke mechanisms for combinatorial auctions

are not generally in the core.
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Even without this pathology of the Vickrey auction, bidders can collude by
agreeing on some kind of “desirable” auction outcome. Klemperer [43, p.104]

presents a couple of examples where competing bidder try to send signals

through their bids to their competitors to persuade them to stop bidding on
some items in exchange for others.

• Vickrey auctions are not even efficient if there is a potential of mergers[50,
p.60]: in the above example, even if a merger between b3 and b4 would in-

crease the valuation by a certain amount, say, 25%, the merged company would
have to pay 10, thus suffering from a reduced total profit. In general, in the

presence of complementary values, Vickrey auctions discourage mergers. The
opposite is the case if goods are substitutes.

• Attracting a sufficient number of bidders is often more decisive for a success-

ful auction than pricing rules. Klemperer and Milgrom quote the results of

the New Zealand spectrum auctions as an example where, due to a large num-
ber of auctioned licenses for rather small areas, there were some licenses for

which only one or very few bidders placed a bid at all. Since Vickrey pricing
was used, some licenses went away for almost no payment, even if there was

a single bid with a proper amount. The results lead to the demission of some
of the politicians who could not advocate these results to the public, even if

the question whether more revenue could have been generated with modified
rules could not obviously be answered.

Klemperer [43, p.42] formulates the revenue equivalence theorem which states

that in auctions where every buyer wants to acquire at most one good, and
buyer’s types are independent private values, and supposed that bidders with

the lowest possible type have zero gain from the auction, the seller’s expected

revenue does only depend on the allocation rule. In particular, an efficient
auction would always make the seller either to retain the good, or to give it

to the bidder with the highest valuation. The theorem states that the revenue
is independent from the pricing rule. Consequently, in the case of a single

item auction, the only way to make an auction efficient is to set an optimal
reserve price, that is, the minimum bid that a seller would possibly accept.

Indeed one can compute the optimal reserve price for various settings. How-
ever, Bulow and Klemperer have shown ([11], see [43, p.27]) that, under some

weak assumptions, attracting a single additional bidder increases the expected

seller’s revenue more than setting an optimal reserve price ever could.

Klemperer[43, p.113] states:

The fact that collusion and entry deterrence and, more generally, buyer

market power is the key to auction problems suggests that auction design
may not matter very much when there is a large number of potential
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bidders for whom entry to the auction is easy. For example, though much
ink has been spilt on the subject of government security sales, auction

design may not matter much for either price or efficiency in this case.

Continuing, Klemperer cautions that empirical literature on that topic, e.g. various

analysis of US treasury auctions, is inconclusive, and irrelevance of auction design
is not proven. We note that most theoretical results are proven only for single

item auctions. In particular, there is no known revenue equivalence theorem for

combinatorial auctions.

1.2.4 Characteristics of protocol design

This thesis proposes usage of monetary transfers as a tool for resource management
whose intention is an efficient usage of the available resources. Economic theory

is interesting to us as long as it says something about the behaviour of the system
clients. This is a narrow focus: for instance, we do not pursuit the question whether

it is advisable for the resource’s owner to invest into producing additional resources.

On the other hand, if a protocol would allow users to gain a better service, say, by
forming a coalition with other users, then this would be relevant for the protocol

designer.
The “market” of a communication network has a structure different from the mar-

ket for spectrum licences or electric power generation. In the following, we will
give some characteristics of the resource management market.

• Large number of users. Internet service providers typically have thousands
of users accessing their network at any given time, and similar numbers hold

for telecommunication providers. A news publishing service may easily have
hundreds of subscribers.

• Anonymity of usage. Users may know some other network users, but do not
generally know the resources they use at any given time. Due to the large

number of users, they have little chance to know a significant portion of the
usage profiles.

• Interdependence of resources. The level of service quality desired can only be
provided by a bundle of resources. In a communication network, typically a

chain of links is used. More generally, other resources besides bandwidth, like
memory or computational power, have to be combined.

• Impossibility of demand coordination. In the case of the spectrum auctions,

we had the phenomenon that some companies tried to coordinate demand in

the sense that they proposed “splits” of the market, for example, by bidding
aggressively for some bundle of licenses and leaving other bundles to competi-

tors. We hold that this type of coordination is not possible for communication
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markets. There is no price differentiation in internet data traffic based on
geographic realities, and it seems very improbable that users would accept

one.

• Large number of transactions. A typical transaction for us is sending some IP
packages along a link, or connecting to some multicast stream for a duration
of some seconds or minutes. We expect that within an hour, thousands if not

millions such transactions take place.

• Automated bidding. Bidding in this context will often be performed by au-

tomatized agents. Strategic bidding, therefore, is only feasible if it can be
automatized, too. A consequence of that is, for example, that spontaneous

“signalling” between agents is not possible.

• Complexity is important. Due to the large number of transactions, the amount

of computation and communication required for placing bids, performing and
communicating the matching is an important issue, particularly so because all

of that has to take place in real time.

1.2.5 What are good protocols?

We are now ready to formulate the main results of this introduction: the criterions

by whom we judge whether a given mechanism14 is a good one.

• Existence of dominant strategies or equilibria for single players. Equilibria al-
low forecasting how the system state will develop. If collusion between players

is not possible, it is safe to assume that players will follow dominant strategies

if they exist. In view of the negative theoretical results, often there won’t be
good mechanisms with dominant strategies, and therefore, weaker equilibria

like Bayes-Nash equilibria can be considered.

• Efficiency at the equilibrium. It would be desirable to have equilibria with
maximized efficiency with respect to the accumulated utility. Often, selfish

behaviour will lead to a suboptimal equilibrium.

• Acceptable complexity (for users and owners) in the targeted usage scenario.
Combinatorial optimization problems are often NP-hard in the worst case.
Avarage case complexity may be more encouraging, and acceptable approx-

imations (though not with constant bound) may exist. A mechanism’s com-

plexity is acceptable if for the intended usage, the required optimization can
be computed with sufficient quality.

14By mechanism, we mean here the part of a communication protocol that deals with monetary trans-
fers.
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• Infeasibility of groupwise strategizing in the targeted usage scenario. Even
mechanisms with dominant strategies are not generally groupwise strategy-

proof. The risks of collusion have to be analyzed with respect to the specific

usage scenario.

In a subsequent step, it may be of interest how the protocol interacts with the cur-
rent business model of the network owners. This, however, is not strictly a question

for computer scientists and not in the focus of this work.

1.3 Related work

We give detailed account of related work in the relevant chapters. Here we men-
tion only authors and works that opened major lines of research that we consider

important for this thesis.
Distributed network resource sharing can be seen as a cooperation problem be-

tween selfish agents. Such problems were described first by Rosenschein and
Zlotkin [86].

The paper of Nisan and Ronen [57] was the first to transfer mechanism design

theory from microeconomic theory to computer science. The paper contains appli-
cation scenarios for task scheduling and unicast end-to-end path-finding and trig-

gered a huge amount of follow-up work. Nisan and Ronen’s goal is the development
of efficient mechanisms with dominant strategies. Nisan and Ronen’s shortest-path

scenario was developed further by Feigenbaum et al. in [57] and Hershberger et
al. [32, 35]. Many settings involve the use of combinatorial auctions. In chapter 3,

related work on combinatorial auctions and exchanges is presented.
Generalizations for multicast setting are treated in [54, 26, 25, 1, 7, 8]. The

economical problem behind multicast settings is that of splitting the costs of a public
project which is extensively treated in the literature, see [48] for a start. A general
overview on applications of mechanism design with dominant strategies to computer

science is given in [24].
Kelly et al. [42, 40, 41] focus on indirect mechanisms where network users con-

trol the flow via parameters that can be interpreted as monetary payment or pay-
ment in form of service degradation like increased latency. Their mechanisms don’t

have dominant strategies but often unique Nash equilibria which are approached
in tatonnement processes. Roughgarden and Tardos [63] take a similar approach

and analyze how network usage is affected by users that are selfish and sensible to

latency.
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1.4 Our work

This thesis tackles the problems posed above from different sides. After present-

ing relevant definitions and classic results and giving some general examples for
applications in chapter 2, we motivate and develop a market type that is a spe-

cialized combinatorial exchange. We develop a new pricing scheme that satisfies
budget-balance while preserving some of the useful properties of Vickrey-Grove-

Clarke mechanisms. Furthermore we introduce a new clearing rule, the commit
window clearing, and prove - empirically and partly analytically- its superiority to

the well-known periodic and random clearing rules. In chapter 4, we give an appli-

cation of the newly developed market to some unicast network resource managing
scenarios with advanced reservations.

The following chapters consider multicast scenarios. Chapter 5 contains results
of somewhat pessimistic nature: we show that mechanisms for multicast pricing im-

plement generally quite inefficient equilibria: we show that the coordination ratio
performs poorly for quite a couple of different utility functions. Finally, chapter 6

deals with publish/subscribe systems that we understand as special multicast sys-
tems. After giving a formal treatment that implements some message completeness

guarantees, we develop a pricing mechanism with dominant strategies for these

systems.

Thesis 1. It is possible to implement a combinatorial exchange with budget-balanced
pricing that guarantees sellers additional revenue compared to non-combinatorial
markets.

Thesis 2. The efficiency of a combinatorial exchange market with autonomous
traders depends on the used clearing policy. Commit window clearing generates
a higher revenue compared with periodic and random clearing.

Thesis 3. Network bandwidth reservation with fixed reservation length can effi-
ciently be built on a combinatorial exchange market that uses commit window clear-
ing. Using a simple stochastic model that takes advantage of publicly known infor-
mation on call characteristics, one can also implement reservations with unknown
in advance length.

Thesis 4. If a network splits available (inelastic) supply in proportion with the
user’s willingness to pay, and users have linear utility, the allocation at the equi-
librium has a coordination ratio of at least 3

4 , while for users with logarithmic utility
functions, the coordination ratio is unbounded. In the corresponding multicast sce-
nario, the coordination ratio is always unbounded.

Thesis 5. Marginal cost pricing is an efficient pricing for publish/subscribe scenar-
ios if budget-balance is not required. Otherwise, the budget-balanced Shapley value
pricing guarantees a minimal efficiency loss.
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2 Background: Game theory and

mechanism design

This chapter presents definition and classical results from game theory, microeco-

nomics, mechanism design and auction theory that is used in the later chapters.
Main references are [48] for game theory, microeconomics and mechanism design,

and [43, 50] for auction theory. We don’t give proofs for well-known results, but do
give detailed references.

2.1 Mechanisms

Let I a set of players or agents i ∈ I. Let X be a set of alternatives, or outcomes.
Every i ∈ I has a utility profile ui : X 7→ R. Let Ui ⊆ XR be the set of all possible
strategy profiles for agent i.

For a vector ~u = (ui : i ∈ I), let us write ~u|uj=x for the vector (vi : i ∈ I) with

vj =

{

uj if j 6= i

x if j = i
(2.1)

For a vector ~u = (uj : j ∈ I), let ~u−i denote ~u−i = (uj : i 6= j ∈ I).

Definition 1 (Mechanism). A (direct) mechanism M is a tuple M = (oM, pM) such
that

• oM is a social choice function that maps every profile vector ~u = (ui : i ∈ I) to
some outcome oM(~u) ∈ X, and

• pM is a payment function mapping every ~u = (ui : i ∈ I) to some payment
vector pM(~u) = (pM

i : i ∈ I) with pM
i ∈ R.

M

• is deficit-free if
(∀~u)

∑

i∈I

pM

i (~u) ≥ 0, (2.2)

• is budget-balanced if
(∀~u)

∑

i∈I

pM

i (~u) = 0, (2.3)
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• satisfies voluntary participation if

(∀~u = (ui : i ∈ I)) (∀i)ui

(

oM(~u)
)

− pM

i (~u) ≥ 0, (2.4)

• satisfies consumer sovereignty if for all i ∈ I, all x ∈ X and all ~u = (ui : i ∈ I),

there is u′
i ∈ Ui such that oM

(

~u|ui=u′
i

)

= x.

Example 2. Consider the following scheduling problem:

Let there be n jobs and m processors such that tij are processor i’s cost for pro-
cessing job j. The vector (tij : 1 ≤ j ≤ n) is processor i’s type. Let X, the set of
outcomes, be the set of all possible functions x : {1, . . . , n} 7→ {1, . . . ,m} that assign
to every job j (1 ≤ j ≤ n) a processor i (1 ≤ i ≤ m).
Define M = (o, p) by

o
(

tij : 1 ≤ i ≤ m, 1 ≤ j ≤ n
)

∈ arg min
x∈X







∑

i,j:x(j)=i

tij







(2.5)

p
(

tij : 1 ≤ i ≤ m, 1 ≤ j ≤ n
)

=
∑

i,j:o(j)=i

tij (2.6)

Then M is a direct mechanism for X that is not deficit-free (since it makes only
payments but does not generate any income). It does satisfy voluntary participation
(since it compensates a processor for processing a job exactly with the amount of
the claimed costs). It does not satisfy consumer sovereignty since a processor can’t
force to get a job assigned, even if he claims that he has zero costs of processing:
there could be another processor with no costs either.

2.1.1 Strategies

Definition 3 (Strategy). A (pure) strategy of agent i for mechanism M is a mapping
s : ui 7→ s(ui) from the set of utility profiles of i to itself.

Definition 4 (Dominant strategy). A strategy s is dominant if for all profiles ~u =

(ui : i ∈ I) and for all u′
i 6= ui,

ui

(

oM(~u|ui=u′
i
)
)

− pM

i

(

~u|ui=u′
i

)

≤ ui

(

oM(~u)
)

− pM

i (~u) (2.7)

A strategy is strictly dominant, if strict inequality holds in (2.7) for at least one
profile vector ~u.

Definition 5 (Truthful mechanism). A mechanism M is (strictly) truthful if for ev-
ery agent i, the truth-telling strategy, that is, the strategy s(ui) = ui, is (strictly)
dominant.
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Definition 6 (Implementable social choice function). A social choice function o is
implementable in dominant strategies if there is a mechanism M = (oM, pM) such
that there is a strategy vector ~s of dominant strategies in M such that for all profiles
~u,

o(~u) = oM (s1(u1), . . . , sn(un)) (2.8)

In this case, we say that M implements o.

Remark 7. If M = (oM, pM) is truthful, then M implements oM.

Example 8. The mechanism in example 2 is not truthful. Agents are compensated
with an amount equal to their claim. Therefore, increasing a claim such that the
social choice function remains unchanged is more favourable to a processor than
truth-telling.
Note that this shows also that while the o minimizes total cost based on the costs

claimed by the processors, the social choice function that M implements does not
minimize social total costs (since the processors won’t reveal their true costs).

The notions of dominant strategy and truthfulness are strong ones: a dominant

strategy has optimal performance, no matter which strategies are used by other
players. The notion of Nash equilibrium is weaker: a stragegy vector is a Nash

equilibrium if no single player can gain from unilateraly changing his strategy.

Definition 9 (Nash equilibrium). Let ~S = (si : i ∈ I) be a vector of strategies and
let ~u = (s(ui) : i ∈ I). We say that ~S is a (pure) Nash equilibrium, if for all i ∈ I and
u′

i 6= s(ui),

ui

(

oM(~u|ui=u′
i
)
)

− pi

(

oM(~u|ui=s(ui))
)

≤ ui

(

oM(~u)
)

− pM

i (~u) (2.9)

We say that ~S is a strict Nash equilibrium if strict inequality holds in (2.9).

So if ~S is a Nash equilibrium, then no agent i has an incentive to divert from his

strategy provided that the others don’t divert from theirs.

2.1.2 Mixed strategies

Instead of following a deterministic strategy, an agent can randomize over his op-
tions.

Definition 10 (Mixed strategy). A mixed strategy s for agent i is a probability
distribution over the set of all possible strategies of i.
Let o be a social choice function. For a vector ~s = (si : i ∈ I) of mixed strategies

agents i ∈ I, we write ui(o(~s)) and pi(o(~s)) as a shortcut for the expected value
of the random variables ui(o(s

1, . . . , sn)) and pi(o(s
1, . . . , sn)), where si are random

variables with distribution according to si.
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The generalization of definitions 4 and 9 is straightforward:

Definition 11 (Dominant mixed strategy). A mixed strategy s is dominant if for all
profiles ~u = (ui : i ∈ I) and for all u′

i 6= ui,

ui

(

oM(~u|ui=u′
i
)
)

− pM

i

(

~u|ui=u′
i

)

≤ ui

(

oM(~u)
)

− pM

i (~u) (2.10)

with the expected value interpretation of definition 10. Similarly, a mixed strategy
is strictly dominant, if strict inequality holds in (2.7) for at least one profile vector
~u.

Definition 12 (Mixed Nash equilibrium). Let ~S = (si : i ∈ I) be a vector of strate-
gies and let ~u = (s(ui) : i ∈ I). We say that ~S is a Nash equilibrium, if for all i ∈ I

and u′
i 6= s(ui),

ui

(

oM(~u|ui=u′
i
)
)

− pi

(

oM(~u|ui=s(ui))
)

≤ ui

(

oM(~u)
)

− pM

i (~u) , (2.11)

again with the expected value interpretation of definition 10. We say that ~S is a
strict Nash equilibrium if strict inequality holds in (2.9).

The following is obvious:

Fact 13. If for i ∈ I, si is a dominant (mixed) strategy for agent i, then (si : i ∈ I) is
a (mixed) Nash equilibrium.

2.1.3 Efficiency of equilibria

A “good” mechanism will maximize total welfare. This leads to the following defini-

tions:

2.1.3.1 Dominant strategies

Definition 14 (Efficient social choice function). A social choice function o is effi-

cient, if
∑

i∈I

ui (o(~u)) ≥
∑

i∈I

ui

(

o′(~u)
)

(2.12)

for all social choice functions o′ 6= o and profile vectors ~u = (ui : i ∈ I).

Definition 15 (Efficient mechanism). A mechanism M = (oM, pM) is efficient (in
dominant strategies), if there is a strategy vector (si : i ∈ I) such that for all user
profile vectors (ui : i ∈ I),

• for every i ∈ I, si is a dominant strategy for i, and
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•
∑

i∈I

ui

(

oM(s1(u1), . . . , sn(un))
)

≥
∑

i∈I

ui

(

o′(s1(u1), . . . , sn(un))
)

(2.13)

for all o′.

M is strictly efficient if for all i ∈ I, si is strictly dominant.

Note that

• although equation (2.13) does not depend on pM, nevertheless M being effi-

cient does depend on pM, since it depends on the payment function whether a
given strategy is dominant, and

• it is neither necessary nor sufficient for M being efficient that oM is efficient.

However, the following fact is a consequence of the revelation principle (see [48],
proposition 23.C.1):

Fact 16. If M is efficient, then there is M
′ such that M

′ is equivalent to M in
the sense that for any vector ~s of dominant strategies in M, there is a vector ~s′ of
dominant strategies for M

′ such that for any profile vector ~u,

oM (s1(u1), . . . , sn(un)) = oM′ (

s′1(u1), . . . , s
′
n(un)

)

(2.14)

and

pM (s1(u1), . . . , sn(un)) = pM
′ (

s′1(u1), . . . , s
′
n(un)

)

(2.15)

2.1.3.2 Coordination ratio

It is safe to assume that “rational” (that is, utility maximizing) agents will play ac-

cording to a dominant strategy equilibrium. Thus, a strictly efficient mechanism will
yield an efficient outcome. This, however, is not generally true for Nash equilibria

since games can have multiple Nash equilibria with different social surplus. There-
fore, the definition of the coordination ratio contains a reference to a specific Nash

equilibrium that can be dropped only if it is unique.

Definition 17 (Coordination ratio). Let ~s be a Nash equilibrium for M. The coordi-

nation ratio of ~s is defined to be

rM

~s = inf
~u=(ui:i∈I)

∑

i∈I

ui

(

oM (s1(u1), . . . , sn(un))
)

max
x∈X

∑

i∈I

ui(x)
(2.16)

If ~s is the unique Nash equilibrium, we write rM for rM

~s .
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2.1.4 Existence of Nash equilibria

2.1.4.1 Existence of Nash equilibria for given mechanisms

Not every mechanism has a mixed Nash equilibrium:

Example 18. Let X = {1, 2} and let the profiles of agents 1 and 2 be given by

u1(1) = 1 u1(2) = 0 (2.17)

u2(1) = 0 u2(2) = 1 (2.18)

Now let the social choice function o be defined by

o(u1, u2) =

{

1 if u1(1) ≥ u2(1)

2 if u1(1) < u2(1)
(2.19)

and let the payment function p be the zero function. That means, “winner” in this
game is the agent who reports the higher utility. Clearly, there is no Nash equi-
librium for (o, p) (not even for a mixed strategy), since the agent that reported the
smaller utility could always have won the game by reporting a higher one.

However, mixed Nash equilibria do exist under quite general assumptions:

Theorem 19 (see [48], proposition 8.D.3). Assume that Ui are compact and convex
subspaces of some Euclidian space for i ∈ I, and the ui(u1, . . . , un) := ui(o(u1, . . . , un))

and pi(u1, . . . , un) := pi(o(u1, . . . , un)) are continuous in (u1, . . . , un) and quasi-concave1

in every ui. Then there is a mixed strategy Nash equilibrium for the mechanism
(o, p).

A mixed Nash equilibrium does also exist if there are finitely many agents with
finitely many strategies:

Theorem 20 (see [48], proposition 8.D.2). Let I be finite and suppose that for every
i ∈ I, Ui is finite. Then any mechanism has a mixed Nash equilibrium.

Example 21. Suppose that there are users 1, . . . , n of some link of capacity 1. Sup-
pose that the link’s bandwidth is split in proportion with the bid amounts b1, . . . , bn

that the users attach to their bids. Users pay an amoutn on money equal to their
bids. User i’s surplus then is

si = ui

(

bi
∑n

j=1 bj

)

− bi (2.20)

The above theorem implies that there is a Nash equilibrium for the associated game
if all ui are quasi-concave. Chapter 5 gives more results for this scenario.

1f : R ⊇ D 7→ R is quasi-concave if for all y ∈ R, {x ∈ D : f(x) ≥ y} is convex.
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Note that even in the finite case, pure Nash equilibria do not generally exist:

Example 22 (Matching pennies). Let X and the utility profiles be as in example 18
and let o be given by

o(u1, u2) =

{

1 if u1(1) = u2(1)

2 if u1(1) 6= u2(1)
(2.21)

and let p be the zero function. Then there is no pure Nash equilibrium for (o, p)

(since the “looser” of the game would win if he (and only he) changed his value of
ui(1)). There is, however, a mixed Nash equilibrium that lets every player randomly
choose between his two possible choices for ui(1). In fact, even if only one of the
agents chooses ui(1) randomly and the other agent follows any strategy, the yielded
strategy set is a mixed Nash equilibrium. This shows that Nash equilibria are not
unique in general.

2.1.4.2 Bayesian Nash equilibria and implementable choice functions

Definition 9 of Nash equilibrium required that for every i with type ui and any vector
of the “remaining” types ~u−i, agent i is better off playing according to his equilib-

rium strategy provided that the remaining agents do.

If we assume that the agent’s types ui are random variables drawn from Ui ac-
cording to some statistical distribution, we can weaken the notion of Nash equilibria

even further:

Definition 23 (Bayesian Nash equilibrium). Suppose that ~u ∈ ×i∈IUi are drawn
according to some probability distribution F . Let M = (oM, pM). A strategy vector ~s

is a Bayesian Nash equilibrium if for all i and all ui, u
′
i ∈ Ui,

E~u−i

[

ui

(

oM(u′
i, ~u−i)

)

− pi

(

oM(u′
i, ~u−i)

)]

≤ E~u−i

[

ui

(

oM(ui, ~u−i)
)

− pM

i (ui, ~u−i)
]

(2.22)

where the expected value E is taken over all possible ~u−i subject to F conditioned
on ui.

Definition 24 (Expected externality mechanism). Let o be a social choice function.
The expected externality mechanism for o is the mechanism M = (o, p), where for
~u = (ui : i ∈ I)

pi(~u) = −E~v′
−i





∑

j 6=i

vj (o(ui, ~v−i))



 +

(

1

n − 1

)

∑

j 6=i



E~v−i





∑

k 6=j

vk(o(uj , ~v−j))









(2.23)

The following is well-known (see [48, p.886f]):
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Theorem 25. If o is efficient and the agent’s types are independently from each
other, then the expected externality mechanism for o is budget balanced and imple-
ments o in Bayesian Nash equilibria.

While the expected externality mechanism is efficient and budget balanced, it

will not generally satisfy the condition of voluntary participation. The Myerson-
Satterthwaite theorem ([56], see [48], proposition 23.E.12) states that for a specific

setting, there are no budget-balanced mechanisms that implement an efficient social

choice function in Bayesian Nash equilibria with voluntary participation.

Theorem 26 (Myerson-Satterthwaite theorem). Let there be two agents 1,2 and let
X = {1, 2} and

ui(x) =

{

ui if x = i

0 otherwise
(2.24)

for i = 1, 2. Suppose that the ui are independently drawn from intervals [umin
i , umax

i ]

with strictly positive densities, and (umin
1 , umax

1 ) ∩ (umin
2 , umax

2 ) 6= ∅. Then there is no
efficient social choice function o that is implementable in Bayesian Nash equilibria
with voluntary participation and budget-balanced payment rule.

2.1.5 Existence of dominant strategies

2.1.5.1 Choice functions that are implementable in dominant strategies

While the existence of mixed Nash equilibria is assured in many cases, far less

mechanisms have dominant strategies for their participants. Roberts [61] (Theorem
3.1) has given a characterization of social choice functions that are implementable

in dominant strategies:

Theorem 27. Let o be a social choice function implemented by M in dominant
strategies. Assume that for all x ∈ X, there is ~u with o(~u) = x. Then there is a
weight vector ~k = (ki : i ∈ I) with ki ≥ 0 and some i with ki > 0, and a function
F : X 7→ R, such that for all ~u,

o(~u) ∈ arg max
x∈X

{

∑

i∈I

ki · ui(x) + F (x)

}

(2.25)

If we take F as the utility function of some “additional” agent i0, Theorem 27 can

be interpreted as saying that exactly those choice functions are implementable in
dominant strategies that maximize weighted total surplus for some weight vector ~k.

2Note that the condition of budget-balance is not explicitly mentioned there but derived from the
context.
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2.1.5.2 Vickrey Groves Clarke mechanisms

Definition 28 (Vickrey-Groves-Clarke mechanism). A mechanism M = (oM, pM) is
a Vickrey-Groves-Clarke (VGC) mechanism if

1. oM is efficient, and

2. pM has the form (pM
i : i ∈ I) with

pM

i (~u) = −





∑

j 6=i

uj

(

oM (~u)
)



+ hi (~u−i) (2.26)

for some function hi which does not depend on ui.

A classic result (see e.g. [48], proposition 23.C.4) is

Theorem 29. If M is a Vickrey-Groves-Clarke mechanism, then M is truthful and
efficient.

Green and Laffont [30] proved that

Theorem 30. If for every i ∈ I and every function f : X 7→ R, there is ui ∈ Ui

with ui(x) = f(x) for all x ∈ X, then every truthful efficient mechanism is a Vickrey-
Groves-Clarke mechanism.

2.1.5.3 Budget balance

VGC mechanism are in general not budget balanced. In fact, Green and Laffont [30]
showed that they are never, under the prerequisites of Theorem 30:

Theorem 31. If for every i ∈ I and every function f : X 7→ R, there is ui ∈ Ui

with ui(x) = f(x) for all x ∈ X, then there is no truthful efficient budget-balanced
mechanism.

2.2 Application of VGC mechanisms to allocation

problems

Definition 32 (Allocation problem). An allocation problem for agents i ∈ I and a
set of goods J is a set of social choices X ⊆ {(ki

j : i ∈ I, j ∈ J, ki
j ∈ R)} with a set of

utility profiles (Ui : i ∈ I) such that for all i and ui ∈ Ui,

(

∀~k,~k′∈X

)

[

(

(∀j∈J)
(

~k−i
j = ~k′−i

j

))

⇒
(

ui(~k) = ui(~k
′)
)

]

(2.27)

and for all agents i,
(

(∀j)k
i
j = 0

)

⇒ ui(k
i′

j : i′ ∈ I, j ∈ J) = 0 (2.28)

The set J is called set of goods.
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ki
j can be understood as the quantity of good j that is allocated to agent i. Equa-

tion (2.27) says that an agent is indifferent between two social choices if the quan-

tity of goods awarded to him is identical in both choices. Equation (2.28) says that

agents have zero utility if they don’t get any good.

Example 33 (Task scheduling). Let there be agents 1, . . . , n and a set of tasks each
of whome can be processed by any of the agents. Suppose that processing task j by
agent i induces cost ci,j to agent i. A function f : J 7→ I that assigns to every task j

some agent i can be interpreted as an allocation function by setting ki
j = 1 iff f(j) = i

and 0 otherwise. Agent i’s utility from function f then is ui(f) = −∑{j∈J :f(j)=i} ci,j.

Example 34 (Combinatorial auction). Fix a set I of agents and a set J of goods.
Define

X =

{

(

ki
j : i ∈ I, j ∈ J

)

, ki
j ∈ {0, 1},

∑

i∈I

ki
j ≤ 1 for all j ∈ J

}

(2.29)

This models a market where agents i compete about goods j each available in
exactly one copy. Retaining goods is allowed (it would not if we would require
∑

i k
i
j = 1 for j ∈ J).

Equation (2.27) allows us to write ui(G) as a shortcut for ui(k
i
j : i ∈ I, j ∈ J) where

G = {j ∈ J : ki
j = 1}.

Let o be a social choice function for X. For a profile vector ~u, write

oi(~u) = {j ∈ J : ki
j = 1, (ki

j : i ∈ I, j ∈ J) = o(~u)} (2.30)

and

V o(~u) =
∑

i

ui(o
i(~u)) (2.31)

So oi(~u) is the set of goods allocated to agent i by o if the utility profile is ~u.
Now let M = (oM, pM) be a VGC mechanism for X that satisfies voluntary partici-

pation and the no positive transfers condition pM ≥ 0. This implies pM
i (~u|ui≡0) = 0.

The efficiency condition (2.12) can now be written as

oM(~u) ∈ argo:×iUi 7→X max
∑

i

ui(o
i(~u)) (2.32)

For the payment rule, we get according to (2.26) (and dropping the superscript M

of oM for notational convenience)

pM

i (~u) = −





∑

i′ 6=i

ui′

(

oi′ (~u)
)



+ hi (~u−i) (2.33)

= −V o(~u) + ui(o
i(~u)) + hi (~u−i) (2.34)
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So

0 = pM

i (~u|ui≡0) = −V o(~u|ui≡0) + 0 + hi (~u−i) (2.35)

and consequently

hi (~u−i) = V o(~u|ui≡0) (2.36)

Finally we get

pM

i (~u) = V o(~u|ui≡0) − V o(~u) + ui(o
i(~u)) (2.37)

The term V o(~u) − V o(~u|ui≡0) is called Vickrey discount ∆o
vic(~u). So

pM

i (~u) = ui(o
i(~u)) − ∆o

vic(~u) (2.38)

The value of the Vickrey discount is exactly the marginal social surplus contributed
by agent i. Agent i pays his utility discounted by this contribution.

Note that M is not budget balanced. Rather, if the utilities that the agents draw
from the goods are nonnegative, the mechanism generates a surplus, the “revenue”
of the auction.

Example 35 (Combinatorial exchange). In a combinatorial auction, the seller is not
represented by an agent. It is assumed that the generated revenue is absorbed
externally. Including the sellers into the agent set yields a combinatorial exchange:
Fix a set I of agents, a set J of goods and for every good j ∈ J , an agent seller(j).

Define

X =

{

(

ki
j : i ∈ I, j ∈ J

)

, ki
j ∈ {−1, 0} for i = seller(j), ki

j ∈ {0, 1} for i 6= seller(j),

∑

i∈I

ki
j ≤ 0 for all j ∈ J

}

(2.39)

This models an exchange market with unique goods that are offered by one seller
each (with possibly one seller selling different goods), and buyers that purchase a
combination of goods. The restriction

∑

i∈I ki
j ≤ 0) says that no more goods can be

purchased than are sold, while it is allowed that goods are “left over”.

Note that the Myerson-Satterthwaite theorem (Theorem 26) implies that there
is no budget-balanced efficient mechanism with voluntary participation for X. In

particular, the VGC mechanism is not budget balanced. In chapter 3 we will develop
an adoption of VGC that is budget-balanced and satisfies voluntary participation

(but is not efficient). In chapter 4, we will apply this mechanism to a setting were
users submit competetive bids for a overlapping pathes through a network of links

with limited capacity.
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2.3 Example: A public project

Suppose there is a project that can be implemented on different levels. Given level x,

let c(x) be the cost incurred by the implementation of that level, where c : X 7→ R
+

is strictly monotonously increasing, and c(0) = 0. Now let there be agents i that

benefit from the project, day, ui(x) is the utility of agent i from project level x.
Suppose that ui(0) = 0, and the ui are monotonously increasing. Let P be the set of

user profiles, that is, of all vectors (ui : i ∈ I).
Consider first the case that X = {0, 1}, that is, either the project is implemented,

or not. A mechanism M for that problem is a tuple M = (x, p), where

• x : P 7→ X is the decision function (the project is implemented if agents submit

a profile ~u with x(~u) = 1), and

• p is a payment function with the property that if x(~u) = 0, then p(~u) = ~0.

We claim that

Theorem 36. Let M = (x, p) be individual rational mechanism with truthtelling as
dominant strategy for all players. Then there is a price vector ~p = (pi : i ∈ I) with
pi ∈ R

+ ∪ {∞} such that for all user profiles ~u = (ui),

• x(~u) = 1 if and only if for all i, ui ≥ pi, and

•

p(~u) =

{

0 if x(~u) = 0,

(pi : i ∈ I) otherwise.
(2.40)

Proof. Let us write, for any i and ~v = (vi : i ∈ I) and pi,

P+
i (~v, pi) = {(v1, . . . , vi−1, qi, vi−1, . . . , vn) : qi ≥ pi} (2.41)

P−
i (~v, pi) = {(v1, . . . , vi−1, qi, vi−1, . . . , vn) : qi < pi}. (2.42)

Let M = (x, p) be truthful and individual rational. Let X = {~v : xM(~v) = 1}.
Suppose that x(~v) = 1 and let p(~v) = ~p = (pi). Then for any i,

P+
i (~v, pi) ⊆ X (2.43)

P−
i (~v, pi) = ∅. (2.44)

Let ~u ≥ v. Then ~u ∈ X. We claim that p(~u) = ~p. Suppose not.

Case 1: for some i, (p(~u))i > pi.
But then for pi < p∗i < (p(~u))i, we have

(v1, . . . , vi−1, p
∗
i , vi+1, . . . nn) ∈ P+

i (2.45)

but this point is not in X, a contradiction.

Case 2: for all i, (p(~u))i ≤ pi, and for some i strict < holds.
Let ~p∗ = p(~u). Now on the one hand, P−

i (~v, pi) ∩ P+
i (~u, p∗i ) 6= ∅, but on the other

hand, P+
i (~v, p∗i ) ⊆ X, a contradiction. This finishes the proof.
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Let us also note that

• the mechanism that always implements the project and splits the costs by an

arbitrary rule is budget balanced but not individually rational, and

• the mechanism that always implements the project and lets no one pay any-

thing is individual rational but not budget balanced, and that

• for both these mechanisms, truth-telling is weakly dominant.

2.4 Example: Auctioning a divisible good

Suppose there is a resource of quantity 1 that can be split arbitrarily between dif-
ferent clients (agents). Let there be clients i ∈ I, then the set of possible allocations

is X = {(xi : i ∈ I) : xi ≥ 0,
∑

i∈I xi ≤ 1}. Assume that the utility functions
ui : [0, 1] 7→ R

+ of the clients are monotonously increasing. Let M = (oM, pM) be

a mechanism for X and (ui : i ∈ I) and write for a vector ~u of utility functions,
xM

i (~u) =
(

oM(~u)
)

i
and ~xM(~u) = (xM

i (~u) : i ∈ I), dropping the superscript M if no

ambiguity arises. The efficiency condition (2.12) from definition 14 then takes the
form

(∀~u)~xM(~u) ∈ arg max
(xi:i∈I)∈X

∑

i∈I

ui(xi) (2.46)

We write V M(~u) =
∑

i∈I ui(x
M
i (~u)). As in the previous section, if M satisfies volun-

tary participation and the no positive transfers condition, the payment function has
to be

pM

i (~u) = V M(~u|ui≡0) − V M(~u) + ui(x
M

i (~u)) (2.47)

which we write as

pM

i (~u) = ui(x
M

i (~u)) − ∆M

vic(~u) (2.48)
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3 A combinatorial exchange for

autonomous traders

3.1 Introduction

Part of the work presented in this chapter was published in [76] and [74].

Internet auctions are one of the success stories of electronic commerce. Retro-
spectively, this is altogether not surprising, as modern economy produces a large

turnover of goods; and a large quantity of high value goods is not allocated effi-
ciently by traditional retail commerce but rather sold for giveaway prices. Appar-

ently, there is a demand for a highly efficient secondary retail market, which spe-
cializes in transactions between partners that participate in the exchange market

spontaneously. Auctions are an elegant way to tackle the problem of pricing and,

properly used, can lead to efficient allocation of goods.
Bidding on single goods reflects utilities without interdependencies. If bundling

goods increases utility (complementary utility), or goods can substitute each other,
bidding on single goods involves a risk of incomplete or redundant purchases. Com-

binatorial auctions allow bidders to express more complex utility functions. Winner
determination and payment allocation for one-sided combinatorial auctions is pos-

sible using the Vickrey-Grove-Clarke (VGC) mechanism. There is much work about
complexity issues of VGC mechanism [21, 62, 66, 67]. While the exact problem

is computationally intractable, there are approximation algorithms [87] with good

stochastic performance and accuracy whose availability encourages us to leave com-
plexity issues aside in this chapter. VGC leads to efficient, budget-balanced, individ-

ual rational, and even incentive compatible goods and payment distributions [62].
However, revealing true utilities looses much attractivity if bids under false names

are possible. Sakurai et al. [64] and Yokoo et al. [83] show that there is no pro-
tocol with the properties stated above that is robust against false name bids. With

these results in mind, Yokoo et al. [84] present a protocol which is budget-balanced,
individual rational, and robust against false name bids, giving up on efficiency.

One-sided combinatorial auctions allocate goods from one seller to many bidders.
For Internet auctions, we need to model a market with many sellers and many bid-
ders. This is a special case of a combinatorial exchange or double auction [82]. The

Vickrey-Groves-Clarke mechanism (VGC) when applied to combinatorial exchanges
preserves all above properties except budget balance. Unfortunately, there is a

grave negative result [56, 58] about protocols for combinatorial exchanges stating
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that there is no protocol for double auctions that is efficient, budget-balanced, and
individual rational.

Internet auctions have a couple of peculiarities that are so far rarely considered

in connection with double sided auctions:

• Both sellers and buyers enter their bids continuously.

• Sellers specify auction clearing times; there is no market inherent clearing

rhythm.

• There is virtually no mean against false name bids.

• Sellers may wish to leave the pricing completely to the buyer’s side, i.e., offer

their goods without asking any specific price.

• Winner determination and payment allocation should benefit all individual

traders.

We present protocols and algorithms for clearing, winner determination, and pricing
double auctions in this setting which exhibit the following properties:

• They allow auctioneers to start auctions at any time and determine their life
span.

• Bids can be aggregated, including combinatorial ones, over some time.

• A price for every successful auction is based solely on the collected bids.

• Bidding under false names is possible only with a risk of forfeiting trade.

• Pricing is budget-balanced and individual rational.

The rest of this chapter is structured as follows: Sect. 3.2 develops a combinato-
rial exchange model tailored for our application scenario. In section 3.3 we suggest

some properties of payment allocation we consider necessary in the context of auc-
tions with autonomous traders. In section 3.4, we present a new pricing algorithm

that incorporates these properties. Section 3.5 presents a new bid clearing policy
that we then show to perform superior in comparison with the “traditional” clearing

policies.

Section 3.6 extends our pricing scheme to multiple item auctions – an extension
that we will use in chapter 4 where we apply SBNL and commit window clearing to

bandwidth reservation in networks.
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3.2 A combinatorial exchange model for an auction

platform application

We now introduce the notation used by our model which is a special type of al-

location problem as in definition 32 and example 35. More precisely, our model
describes a variant of a clearing house or periodic double auction that admits com-

binatorial bids. However, we impose a number of additional constraints that reduce
the complexity of the model to make it more feasible in practice:

• Uniqueness of goods: exactly one copy of every good is being auctioned. This
means that for every j, there is exactly one i (nameley, i = seller(j)) such that

ki
j = −1, and for all other i, ki

j = 0 for (ki
j : i ∈ I, j ∈ J) ∈ X.

• Only pure offers and pure buying bids. This implies that every agent i is either
a buyer with ki

j ≥ 0 for all j, or a seller with ki
j ≤ 0 for all j. There are no

agents that want to “exchange” one good for another.

• Only buying bids can be combinatorial, that is, for every seller i, there is ex-

actly one good j with ki
j = −1, and for all other all other j, we have ki

j = 0.

• No substitutions – no OR-connected bids. This means that the buyer’s valua-

tion functions are convex, that is, for every buyer i and sets of goods J1, J2 ⊆ J

with J1 ∩ J2 = ∅, we have

ui(J1 ∪ J2) ≥ ui(J1) + ui(J2) (3.1)

• Free disposal is possible (i.e., the seller can keep his good), as modelled in

equation 2.39.

• Price is computed only from buying bids, i.e., sellers do not specify any reser-

vation price. This means that the seller’s valuation function is identical to 0.

We do not consider OR-connected bids because it is hard to mediate between inter-

est conflicts arising between auctioneers when there are not enough bids to sell all
items.

Our market trades with n goods (so |J | = n). Convexity of the valuation function
and the assumption that free disposal is possible allows us to assume without loss of

generality that every buyer bids for exactly one bundle of goods, that is, that there is
for every buyer i a set J(i) ⊆ J such that ui(J) > 0 and for all J ′ 6= J , ui(J

′) = 0. (So

i would not appreciate “additional” goods even “for free”: we can use free disposal
to avoid such “gifts”.)

We identify now agent i with his “bid” b and write b = (kb
1, . . . , k

b
n, pb) with kb

i ∈
{−1, 0, 1} and pb ∈ R. We distinguish between auction bids (or auctions) and buying
bids, respectively:
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Auction bids represent the offered goods. For auction bids all kb
i ’s are 0 except

one, and this one has value −1. An auction bid b is offering good i if kb
i = 1. Further-

more, we impose pb = 0 for auction bids as any pricing is left to the buyers. This

means that b is auctioning the good “with no price limits”. As goods are unique, we
assume that for any good i, there is exactly one auction bid ai offering i.

Buying bids represent the demanded goods. For buying bids all kb
i ’s have ei-

ther value 0 or 1. A buying bid b is bidding for goods {i1, . . . , ix} if kb
i = 1 for all

i ∈ {i1, . . . , ix} and kb
i = 0 otherwise. Here, pb is always positive (due to the free

disposal requirement negative bids are not reasonable) and represents the amount

the buyer is willing to pay for the goods he is bidding for. For example, the buying
bid (0, 1, 1, 20) means that a buyer is willing to pay a maximum of 20 for goods 2 and

3.

Let A and B be the sets of auction and buying bids in the market, respectively.

Definition 37 (Winner determination algorithm). A winner determination algo-
rithm takes as input a set A of auction bids and a set B of buying bids. From this, it
computes an acceptance function χ : B 7→ {0, 1} with

∑

b=(kb
1,...,kb

n,pb)∈B
χ(b) · kb

i ≤ 1 (3.2)

for all i = 1, . . . , n. A bid b ∈ B is accepted by the algorithm if χ(b) = 1, and rejected

otherwise.

Informally spoken, a winner determination algorithm determines for each offered
good at most one buying bid that is accepted.

Definition 38 (Payment allocation algorithm). A payment allocation algorithm takes
as input a set A of auction bids, a set B of buying bids, and an acceptance function
χ. From this, the algorithm computes a payment allocation function p : A ∪ B 7→ R.
A payment allocation function p satisfies budget-balance if

∑

c∈A∪B
p(c) ≥ 0

It is individual rational, iff for all bids b with χ(b) = 1 we have p(b) ≤ pb, and for
all b with χ(b) = 0 we have p(b) = 0.

Hence, a payment allocation algorithm assigns to each accepted bid its corre-

sponding revenue which is positive for a buying bid and negative for an auction bid.
The following example describes the two-sided VGC mechanism from example 35 in

our simplified notation:

Example 39 (Two-sided Vickrey-Groves-Clarke). Let χ be maximizing the sum of
revenues

V ∗ =
∑

b∈B
χ(b) · pb (3.3)
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subject to condition (3.2). Let for c ∈ A ∪ B be (V−c)
∗ be the maximized sum of

revenues for auctions and bids A ∪ B \ {c}, and let

∆vick,c = V ∗ − (V−c)
∗ (3.4)

be the Vickrey discount for c. Let the payment function p be defined by

p(a) = −∆vick,a for a ∈ A (3.5)

p(b) = pb − ∆vick,b for b ∈ B. (3.6)

The resulting mechanism (χ, p) is the Two-sided Vickrey-Groves-Clarke mechanism
for combinatorial exchanges.

The last constraint implies that sellers cannot specify a minimum price as pre-

condition for selling their good. Note that while two-sided VGC does allow sellers
to specify a negative utility for the sale of a good, this is not really a minimum
price condition because specification of negative utility from a sale changes pay-
ment allocation even when more than the lost utility is given to the seller anyway,

as demonstrated by the following example:

Example 40. Let there be two auctions and one bid of 10 for both items together.
Suppose first that the auctions are without minimum price.
According to VGC, all auctions and bids would be matched, the following pay-

ments would be allocated: the auctioneers would receive a payment of 10 each,
while the bidder’s payment would be 0.
Suppose now that the first auctioneer would demand a minimum price of 7. VGC

would then allocate a payment of 10 to this auctioneer, while the other one’s pay-
ment would shrink to 7.

This contrasts with one-sided Vickrey payment or plain pay-your-bid payment for

single item auctions where specifying a minimum price does not change payment
allocation once the payment surpasses the minimum price.

In many settings, specification of minimum prices is not required by the sellers.
In particular, this holds when the market has sufficient liquidity,

or when the fixed - variable cost ratio is high. We therefore refrain from con-
sidering minimum prices. We nevertheless acknowledge the problem of respecting

minimum prices in the above sense, while preserving other desired properties of the

payment allocation algorithm, an interesting question for further research.

3.3 Pricing properties required by autonomous traders

Pricing in a combinatorial exchange is far from being trivial. Following [58] and

[39], we take individual rationality and budget-balance as hard constraints that our
payment allocation algorithm must satisfy. Besides these two constraints, we con-

sider a couple of other properties being useful which are discussed in the following.
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3.3.1 Respecting single item bids.

By accepting combinatorial bids, we expect more willingness from the bidders to

bid and therefore an increased total revenue. Thus, a reasonable constraint for the
payment allocation is that no bidder looses from combinatorial bids:

Definition 41. A payment allocation function p respects single item bids, if for all
auctions a and for all buying bids b that bid only for a, we have p(a) ≥ pb.

Proposition 42. VGC respects single item bids.

Proof. Let a be an auction bid, and ba be a bid bidding for a only. Let V−a be the

maximized revenue of all auctions except a. By accepting bid ba, the revenue in-
creased by pba. So a increases the total revenue by at least pba , and therefore a’s

Vickrey discount is at least pba .

Parkes et al. [58] present some VGC-based budget-balanced payment rules. The

rules are generated by minimizing the deviation from the Vickrey payments mea-

sured in various distance function. Practically, they divide the available revenue1

between all traders, using various division rules:

• The Equal payment rule splits the available surplus equally among all sellers
and buyers.

• The Fractional payment rule splits the available surplus according to the frac-

tional share from the total Vickrey discount of every agent

• Small starts awarding discounts to the traders with small ∆vick and proceeds

until the available discount is used up.

While VGC does respect single item bids, these variants of VGC do not as is illus-

trated in the following example:

Example 43. Let there be auctions and bids

a1 : (−1, 0, 0)

a2 : (0,−1, 0)

b1 : (1, 1, 60)

b2 : (1, 0, 50)

b3 : (1, 0, 49)

a1, a2 and b1 are accepted. The available surplus is 60. The Vickrey discounts for
the agents are:

a1 : 60

a2 : 10

b1 : 10

1Remember that we have no minimum prices in our setting
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The Equal payment rule splits the available surplus equally, so a1 and a2 receive
20 each, and b1 pay 40. However, a1 would prefer to accept bid b2 with a surplus
of 50, leaving a1 with a share of 25 under the Equal payment rule. The Fractional

payment rule leads to the following payments: a1 receives 60·60/80 = 45, a2 receives
10 · 60/80 = 7.5, b1 pays 60− 10 · 60/80 = 52.5. If however a1 accepts bid b2, a surplus
of 50 results. The Vickrey discount of a1 is 50, of b2 is only 1, and a1 receives
a payment of 50 · 49/50 = 49 under the Fractional rule. Similarly, examples for
the other payment rules (Threshold, Small, Large, and Reverse payment) can be
constructed showing that they do not respect single item bids.

We are tempted to generalize single item bid respect to “all bids respect” by
demanding that for all bids b

∑

1≤i≤n

kb
i · p(ai) ≥ pb (3.7)

where ai is the auctioning bid of the auction offering good i. Basically, this would
mean that every auction can choose its favourite bid to be accepted. However, we

can easily see that this is incompatible with budget-balance:

Example 44. Let there be three auctions, and let there be bids as follows:

b1 : (1, 1, 0, 10)

b2 : (1, 0, 1, 10)

b3 : (0, 1, 1, 10)

The maximal revenue is 10 as only one bid can be accepted. To satisfy the three
inequalities resulting from (3.7), we would need a revenue of 15, however.

3.3.2 No loss from a bid.

Next, we desire that no auctioneer ever looses from a bid for his good. Formally,
that means:

Definition 45. A payment allocation algorithm has the no loss from a bid property
if the following holds: Let A be a set of auctions and let B be a set of bids. Let a ∈ A
be an auction offering good i and let b = (kb

1, . . . , k
b
n, pb) be a bid with kb

i = 1. Let
p be the payment allocation function for (A,B) and let p′ be the payment allocation
function of (A,B ∪ {b}). Then p′(a) ≥ p(a).

Note that VGC does satisfy the no loss from a bid property. However, the Small
rule of [58] does not:
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Example 46. Let there be two auctions a1 and a2, and bids as follows:

b1 : (1, 1, 100)

b2 : (1, 1, 99)

b3 : (1, 0, 1)

Then bid b1 is accepted, V ∗ = 100, and

∆vick,a1
= 100

∆vick,a2
= 99

∆vick,b1 = 1

and the Small rule allocated discounts to b1 and a2, leaving a2 with a payment of 99

and a1 with no payment. Suppose now that there is an additional bid

b4 : (0, 1, 2)

Now the discount goes to b1 and a1, leaving a2 with no payment. So a2 suffered from
an additional bid.

3.4 A new pricing scheme

Now, we present a budget-balanced, individual rational, single item bid respecting
payment allocation algorithm with the no loss from a bid property.

Algorithm SBNL

Input: A – a set of auctions, B – a set of bids
Output: a payment allocation function p : A 7→ R.

• Step 1. Compute the item allocation that maximizes revenue. Let V be the

maximized revenue.

• Step 2. For an auction a offering good i, let ba = (0, . . . , 0, 1, . . . , 0, pba) be the

highest bid bidding for good i only. If there is no such a bid, define pba = 0. Let
Vsingle =

∑

a∈A pba .

• Step 3. Solve the linear programming problem

Minimize Y =
∑

1≤i≤n

yi

such that

(∀b∈B)
∑

1≤i≤n

kb
i · yi ≥ pb

Among all optimal (yi : 1 ≤ i ≤ n), choose the one that minimizes
∑

i(y
i)2.
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• Step 4. Let Q =
V −Vsingle

Y −Vsingle
.

• Step 5. For all auctions a ∈ A, let p(a) = pba + (yi − pba) ·Q, where a is offering
good i.

Our pricing mechanism let successful buyers pay exactly the amount of their bid.
Winner determination takes place subject to maximizing total revenue. The pricing

mechanism distributes this revenue among the sellers.

Proposition 47. Algorithm SBNL satisfies budget-balance and individual rational-
ity, respects single item bids, and has the no loss from a bid property.

Proof. Obviously the algorithm is individual rational. The sum of the payments is

∑

a

p(a) =
∑

a

pba + Q ·
(

∑

i

yi −
∑

a

pba

)

= Vsingle + Q · (Y − Vsingle) = V

and this proves budget-balance. Step 2 ensures single item bid respect. For the

no loss from a bid property, note that we always have Y ≥ V , and this implies
Q < 1. Thus an additional single item bid for a can only increase a’s payment. The

argument for an additional combinatorial bid is similar.

3.5 Bid synchronization

After developing a pricing scheme, we will now turn our attention to the clearing
policy of an auction protocol which defines at what times auction and buying bids
are being matched.

Our market model allows continuous publication of new auctions. There are vari-
ous clearing strategies in use for continuous double auction markets [19, 20]:

• Continuous clearing. The trade occurs as soon matching bids and asks arrive.

• Periodic or random clearing. The trade occurs at certain times (periodic, ran-
dom, or a combination of both), bids and asks are matched subject to certain

optimality conditions (e.g. maximizing surplus or throughput).

All three policies have serious drawbacks in our scenario. Periodic clearing of bids

that are submitted continuously results in auctions whose live span is very short
when they are entered shortly before the end of an aggregation slot. A similar

effect occurs with random clearing: some auctions will close after a short time, and
little value is generated, while others may run longer than the auctioneer desires

to wait. Continuous clearing can’t be used when sell-bids have no minimum price,
since otherwise, sell-bids would always be matched with the first bid that asks for

the offered good.
We find it desirable to allow the auctioneer to control the live span of his auction.

Therefore, we use another clearing policy that we now describe.
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3.5.1 A new clearing policy

Definition 48 (Commit window clearing). Every auction announcement

a = (aa, taearliest, t
a

latest) (3.8)

contains the following information:

• the auction bid aa, i.e. identity of the good

• the earliest commit time taearliest

• the latest commit time talatest

Every auction goes through the following sequential phases:

• Pre-commit. Bids for this auction can be submitted. The auction will not com-
mit to accepting any of them.

• Allow-commit. Bids for this auction can be submitted. The auction house can
request that the auction commits to a bid if that bid wins by the winner deter-
mination algorithm applied by the auction house. In this case, all unsuccessful
bids for this auction are uncommitted, and the auction transits into Expired
state.

• Force-commit. No bids can be submitted anymore for this auction. The winner
determination algorithm determines the winner among all bids that bid for
auctions in Allow-commit or Force-commit stage. Non-accepted bids for this
auction are uncommitted. Transit into Expired state.

• Expired. The auction is finished, the winner was determined and the payment
computed.

A bid is committable if all auctions the bid is bidding for are in Allow-commit
or Force-commit state. Pre-commit for an auction a is the time before taearliest. The
Allow-commit phase lasts from taearliest to talatest and are followed by the Force-commit
and Expired phases.

This policy lets the auctioneer control the live span of his auction. A combinatorial

bid can be accepted if the commit phases of all auctions bidden for do overlap.
The larger the Allow-commit phase, the more inviting his auction will be toward

combinatorial bids.
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3.5.2 A lower bound for the revenue

In this section, we give a lower bound of the revenue assuming that the set of auc-

tions open for bidding does not change. In this case, it is reasonable to assume that
the set of items bidden for and the amount of the bids submitted within that interval

are independently, but identically distributed.
Let us fix a set A of open auctions A = {A1, ..., An} and assume that bids are

independent random variables b(p,A,#2) for fixed p ∈ [0, 1].
Consequently, the number of items a bid b is bidding for follows binomial distribu-

tion with parameters n and p:

#items(b) ∼ Binomial(n, p)

and the amount distribution is a squared binomial distribution.
Let us compute the expected value of the revenue generated by one bid.

E[amount(b)] =

n
∑

k=0

(

n

k

)

pk(1 − p)n−kk2

= n(1 − p)np(1 − p + np)(1 +
p

1 − p
)n (3.9)

The cumulative distribution function is

P (amount(b) ≤ x) =

√
x

∑

k=0

(

n

k

)

pk(1 − p)n−k,

and thus

P (max{amount(b1), ..., amount(bg)} ≤ x)

= (P (amount(b) ≤ x))g

=





√
x

∑

k=0

(

n

k

)

pk(1 − p)n−k





g (3.10)

Now we can give a lower bound Emax(g, n, p) on the expected value Eg(n, p) of the

revenue of the auctions with g bids

Eg(n, p) = E(revenue of g bids)

≥ E(max{amount(b1), ..., amount(bg)})

=

n2
∑

x=0

(

1 −
{

∑

(

n

k

)

pk(1 − p)n−k

}g)

= Emax(g, n, p)

(3.11)
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Figure 3.1: Maximal revenue of one bid over number of bids.

Figure 3.1 is a plot of values for Emax(g, n, p) with n=10, p=0.1, 0 ≤ g ≤ 200.

Now if 0<p<1, P (amount(b) ≤ x) = 1 for x ≥ n2 and P (amount(b) ≤ x) < 1 for
x < n2 and therefore,

lim
g→∞

E(max{amount(b1), ..., amount(bg)}) = n2

On the other hand, the revenue of the nth auctions is bounded from above by n2.

Thus we conclude that lim
g→∞

Eg(n, p) = n2 for all 0<p<1.

The lower bound we gave is not tight at all. We are not aware of a closed-form
representation of the precise expected revenue Eg(n, p). Figure 3.2 shows results

of a numeric simulation of Eg(10, 0.1) with 1000 iterations per g(0 ≤ g ≤ 20), plotted
over the lower bound Emax(g, n, p).

Figure 3.2: Simulated revenue and lower bound over number of bids.
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3.5.3 Comparison between periodic and commit window clearing

3.5.3.1 Side conditions for the comparison

We wish to evaluate efficiency in connection with the surplus-maximizing good al-

location of two of the three mentioned clearing policies: the new commit window

clearing policy, and periodic clearing. We will measure efficiency in terms of the
generated revenue2 per auction, for a fixed set of auctions the timing of which we

adjust to the used clearing policy.
For periodic and random clearing, the time when bids and offers are matched is

determined by the clearing policy parameters - neither auctions nor bids have to
state anything about that time. Let ∆periodic be the length of the interval between

two clearings for the periodic clearing policy. Then the length of an auction is be-
tween 0 and ∆periodic.

For commit window clearing, the length of an auction is between tearliest and tlatest.

Its precise value will be determined during the life of the auction and will depend
on the submitted bids.

We will model behaviour of market participants as follows:

• Sellers initiate new auctions according to a Poisson process with parameter
λa. Sellers require that these auctions must terminate within a specified time

tMaxAuctionDuration which is constant for all auctions. For a given auction, let tstart
be its start time.

• Sellers have no fixed costs and therefore, wish to auction their goods without
minimum price.

• For the periodic auction, we set ∆periodic = tMaxAuctionDuration. The auction lives
from tstart to the end of the current clearing period, that is to min{n∆periodic :

n ∈ N, n∆periodic ≥ tstart}.

• For the commit window clearing, we set tlatest = tstart + tMaxAuctionDuration. The

size of the commit window swindow can vary from 0 to tMaxAuctionDuration and
therefore, tearliest varies from tstart to tstart+ tMaxAuctionDuration. For our study, we

fix the commit window size to its maximal value swindow = tMaxAuctionDuration.

• Buyers submit bids for combinations of goods. A Poisson process with param-
eter λb determines the times when a bid is submitted. A bid, submitted at time

tbid, will be a random variable b(p,A,#2 + δ) where A is the set of auctions

open for bidding at the time when the bid is submitted, and

δ ∼ N(0,#−1) (3.12)

2social surplus
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In the choice of the amount distribution, we follow [9] who suggests as an
acceptable distribution of the bid amount a normal distribution with expected

value equaling the “fair” value of the item combination bidding for.

We claim that commit window clearing generates, under the side conditions de-

scribed above and for swindow properly chosen, a higher revenue than periodic clear-
ing. We support this claim by some simulations whose parameters are derived from

mentioned side conditions.

3.5.3.2 Simulation results

Figure 3.3 shows a comparison of revenues of auctions with periodic and commit
window clearing. The parameter p varies in 100 steps between 0 and 1. The Poisson

parameters λa and λb are constants with value 0.1. The auction duration is set to
100. The average total revenue of 50 iterations for all auctions generated within a

period of 10000 was measured.

0.2 0.4 0.6 0.8 1
p

100

200

300

400

500

revenue

period

cwc

Figure 3.3: Comparison of periodic and commit window clearing

We conclude that this simulation supports our claim.

3.5.3.3 An analytic approach for offline winner determination

Bids in the stochastic model from above are generated on the fly with a target cho-

sen from all auctions that are open for bidding at the time when a bid is submitted.

In this section, we will modify bid generation slightly: the target of a bid submitted
at time tbid is chosen from all auctions a with tearliest ≤ tbid ≤ tlatest. Winner deter-

mination takes place offline, that is, among all bids that were submitted during the
total run. For this scenario, we can show analytically that commit window clearing

generates a higher surplus, then periodic clearing.

For a set B of bids bidding for subsets of the auction set A, define

c(B) =

{

1 if all bids is χ are compatible
0 otherwise.

(3.13)
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and let revenue(B) be the maximized revenue possible to generate from B, that is,

revenue(B) = max
B′⊆B

c(B′)
∑

b∈B′

amount(b). (3.14)

The following is easy:

Lemma 49. Let there be given two finite sets of bids, B = {Bi : i ∈ I}, and B′ =

{B′
i : i ∈ I}, with the property that for every i, j ∈ I,

• amount(si) = amount(s′i), and

• if si and sj are compatible, so are s′i and s′j.

Then
revenue(B) ≤ revenue(B′) (3.15)

This implies

Lemma 50. Let S = {bi : i ∈ I} be a set of independently identically distributed
variables

bi ∼ b(p,A,#2) (3.16)

and let S ′ = {b′i : i ∈ I} be a set of independently identically distributed variables

b′i ∼ b(p,Ai,#
2) (3.17)

for some Ai with |Ai| = |A|.
Then

E(revenue(S)) ≤ E(revenue(S ′)) (3.18)

Suppose auctions are started with constant rate ra during time T and bids sub-

mitted with constant rate rb (number per second). For simplicity, let rb be a multiple
of ra. Furthermore, assume tMaxAuctionDuration is constant, and the size of the commit

window swindow = tMaxAuctionDuration = ∆periodic.
Figure 3.4 illustrates the situation with commit window clearing: auctions A1 to

A11 are subsequently started. Auctions Ai and Aj overlap if |i−j| ≤ MaxAuctionDuration
ra

.

For three bids B1, B2 and B3, vertical lines show the auctions the bid target is drawn
from.

The situation for the periodic clearing is shown in figure 3.5. The target of all
bids is contained in the set of auctions started within one clearing interval.

Now let the bperi be, for 1 ≤ i ≤ rbT , independent, identically distributed random
variables with distribution b(p, {A[ i

rb∆periodic
]+1, . . . , A[ i

rb∆periodic
]+ra∆periodic

},#2), and let
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Figure 3.4: Overlapping auctions for commit window clearing
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Figure 3.5: Auctions for periodic clearing
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bcwci be, accordingly, independent, identically distributed random variables with dis-
tribution b(p, {Ai ra

rb

, . . . , Ai ra
rb

+MaxAuctionDuration·ra
,#2). We compute

E(revenue of periodic clearing)

= revenue({bperi : 1 ≤ i ≤ rbT})) (3.19)

≤ revenue({bcwci : 1 ≤ i ≤ rbT})) (3.20)

where the last inequality follows from lemma 50.
We conclude

Corollary 51. The expected revenue of a commit window auction with maximal
auction duration tMaxAuctionDuration, auction start rate ra and bid submission rate rb is
greater or equal to the expected revenue of a periodic auction with ratMaxAuctionDuration

auctions running in parallel and rbtMaxAuctionDuration bids.

3.5.3.4 Further research on the performance of commit window clearing

Here we presented a first analysis on the efficiency of a new clearing policy suit-

able for combinatorial exchanges with multiple sellers and buyers. The policy was
compared with the classical periodic clearing policy, and it was found that commit

window clearing yields a higher mean revenue when auction and bid submission
rates, bid distribution and maximal auction duration are fixed.

Some estimates on the expected revenue for periodic and commit window clearing

were presented.
Undoubtedly, further analysis of the policies in regard of their generated rev-

enue, particularly under the side conditions used for the simulation, would be quite
interesting. The same should apply to analyzing more clearing policies like random

clearing, and generalizing the results to more amount distribution functions.

3.6 Extending SBNL to multiple item auctions

Remember that bids are of the form b = (kb
1, . . . , k

b
n, pb), where we defined above that

kb
i ∈ {−1, 0, 1}. For buying bids, we have kb

i ∈ {0, 1}, while for auction bids, kb
i ≤ 0.

We now generalize the notion of auction bids by allowing kb
i ∈ Z

−, the set of non-
positive integers. We keep the assumption that auction bids are non-combinatorial,

that is, that for every bid b, there is only one i with kb
i 6= 0. Now we can generalize

definition 37.

Definition 52 (Multiple item winner determination algorithm). A multiple item win-
ner determination algorithm takes as input a set A of auction bids

A =
{

ba = (kba

1 , . . . , kba
n , pba) : ba ∈ A

}

(3.21)
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such that for every i, there is exactly one ba with kba

i 6= 0, and a set B of buying bids.
From this, it computes an acceptance function χ : B 7→ {0, 1} with

∑

b=(kb
1,...,kb

n,pb)∈B
χ(b) · kb

i ≤ −kba

i (3.22)

for all i = 1, . . . , n, where ba is the unique bid in A with kba

i 6= 0. A bid b ∈ B is
accepted by the algorithm if χ(b) = 1, and rejected otherwise.

Definition 38 remains unchanged. It is easy to see that the two-sided Vickrey-

Groves-Clarke mechanism of definition 39 can be generalized to multiple item auc-

tions:

Definition 53 (Two-sided Vickrey-Groves-Clarke for multiple item auctions). Let χ

be maximizing the sum of revenues

V ∗ =
∑

b∈B
χ(b) · pb (3.23)

subject to condition (3.22). Let for c ∈ A ∪ B be (V−c)
∗ be the maximized sum

of revenues for auctions and bids A ∪ B \ {c}, and let

∆vick,c = V ∗ − (V−c)
∗ (3.24)

be the Vickrey discount for c. Let the payment function p be defined by

p(a) = −∆vick,a for a ∈ A (3.25)

p(b) = pb − ∆vick,b for b ∈ B. (3.26)

The resulting mechanism (χ, p) is the Two-sided Vickrey-Groves-Clarke mechanism

for combinatorial exchanges with multiple items.

It follows that the mechanism SBNL generalizes to the multiple item case as well.
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4 Application to network management:

Advanced resource reservation in

networks

Nisan and Ronen define in [57, p.13] a scenario of a network that consists of a di-

rected graph G whose nodes are connected by edges that represent links with asso-

ciated costs for usage. In this setting, they define the natural shortest path problem
that now corresponds to fining the cost-minimizing path between two nodes. A Vick-

rey mechanism in which the link costs are treated as bids, gives the “owners” of the
links incentive to bid according to their true costs. Nisan and Ronen’s results are

extended by Hershberger and Suri [32] and Archer and Tardos [5]. Hershberger
and Suri proved that the Vickrey pricing can be computed in the same time as the

solution of a single-source shortest path problem, if the graph is undirected1. For
results on directed graphs, see the follow-up paper [35].

The Vickrey mechanism pays more than the actual costs to the link owners (thus

buying truthfulness). Archer and Tardos note that the additional premium can be
a multiple of the actual costs. They prove that for a large class of graphs, every

truthful mechanism has in some instances to pay a high premium even if there is a
choice between multiple paths of essentially the same cost.

We have argued above that the fact that marginal usage costs are neglectible

compared to fixed costs makes it disputable whether there is a meaningful definition

of “costs” associated with usage of a link. Similar to the application scenario for
transport logistics, it seems much more natural to leave the pricing to the network
users that compete for resources. Users, however, would bid for paths rather than
for single links. The resulting market would be precisely the combinatorial exchange

that this chapter deals with.
Are the pricing rules of SBNL suitable for such a scenario?

• The requirement of budget balance may be obsolete if payments are small

compared with fixed “basic fees” users pay to the network owners independent

from usage. A pricing structure that is split into fixed fees and per-usage fees
is appropriate if the basic fee users pay is mirrored by a basic utility users

1Beware of the conference version [33] of that paper, which erroneously claims that that holds for
directed graphs, too (see also the erratum [34] of the authors).
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have from being “connected” to the network. The amount of the fixed fee
would then be determined independently from the exchange pricing. The bids

of the users would be based on the marginal utility users have from using a

certain path. Of course, there would be then a question on the acceptance
of the fixed fee by the user. Thus, there would be no clear separation of the

analysis of the mechanism, and the analysis of the economical context.

In the absence of basic fees, however, budget balance of the exchange market
would be strictly required. This would hold true even if there is a basic fee but

per-usage fees may be of comparable size.

• Respecting single item bids and no loss from a bid are clearly desirable prop-

erties from the point of view of the link owners.

We conclude that if budget balance is required, SBNL’s pricing rules are reasonable
choice for network linkage pricing.

The definition of good synchronization rules seems more challenging. We have so

far not yet stated whether the bid amount refer to a payment per package or per

time interval. Nisan and Ronen have left that question unconsidered.

• One approach is to introduce time slots and auction them each to one bidder
exclusively. This makes sense if the link’s capacity can’t be split between bid-

ders. If this is not the case, we could divide the link’s capacity into smaller

portions and auction them either as independent goods, or as a good with
quantity more than one. But from the bidder’s point of view, the portions are

substitutes, so if they are auctioned independently, we would have to allow
bidders to submit OR-connected bids. In the second case, the auction would

be a multi-item auction.

• Alternatively, we can auction the right to send a package over the link within a
time slot. The link’s capacity will most probably allow more than one package
per time slot. This means that the uniqueness of goods condition defined above
is violated.

Table 4.1 gives a summary of the possible market types.

How do the second and third lines of the table relate to each other?

Proposition 54. AND-of-OR-connected bids have strictly greater expressive power
than selling bids for identical copies: That is, let there be a combinatorial exchange
market AND-OR with

• selling bids of the form bs = (slot, link,portion) where

– slot is a time slot,
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Unsplittable link capacity Combinatorial exchange with AND-
connected buying bids and non-

combinatorial selling bids

Link capacity portions as distinct
goods

Combinatorial exchange with AND-
of-OR-connected buying bids and

non-combinatorial selling bids

Link capacity portions as identical
copies of the same good

Combinatorial exchange with AND-
connected buying bids and selling

bids with quantity

Package in a timeslot auction Combinatorial exchange with AND-
connected buying bids and selling

bids with quantity

Table 4.1: Possible market types for network bandwidth auctions

– link is a network link, and

– portion is a capacity portion of link for slot,

• buying bids of the form by =
(

id,
∧

link

∨

portion(slot, link,portion), p
)

, where

– id is the buyer’s identity,

– slot, link and portion are as above, and

– p is the bid amount,

and a combinatorial exchange market AND-MULT with

• selling bids of the form bs = (slot, link,q) where

– slot is a time slot,

– link is a network link, and

– q is a quantity (that is, a positive integer),

• buying bids of the form by = (id,
∧

link(slot, link), p), where the variable’s in-
terpretations are as above.

Then there are mappings Tb resp. Ts that map any any buying bid by of AND-MULT
to a set of buying bids Tb(by) of AND-OR, and any selling bid bs of AND-MULT to a
set of selling bids Ts(bs) of AND-MULT, such that for any bid acceptance function
χAND-MULT for AND-MULT, there is a bid acceptance function χAND-OR for AND-OR,
such that for any given sets of buying and selling bids for AND-MULT, By and Bs, a
buying bid by ∈ By is accepted by χAND-MULT if and only if all buying bids in Tb(by) are
accepted by χAND-OR, and similarly, selling bids bs ∈ Bs are accepted by χAND-MULT if
and only if all selling bids in Ts(bs) are accepted by χAND-OR.
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Proof. Define Ts and Tb as

bs = (slot, link,q) 7→ Ts(bs) = {(slot, link,portion) : portion = 1, . . . , q}

(4.1)

by =

(

id,
∧

link

(slot, link), p

)

7→ Tb(by) =









id,
∧

link

n
∨

portion=1

(slot, link,portion), p











(4.2)

Define χAND-OR as

χAND-OR(bAND-ORy ) = 1 (4.3)

iff
bAND-ORy ∈ Tb(b

AND-MULT
y ) and χAND-MULT(b

AND-MULT
y ) = 1. (4.4)

We have to show that if χAND-MULT is a valid bid acceptance function, then so is

χAND-OR. The first means that if for all slots slot0 and links link0 and selling bids
bs = (slot, link,q),

∣

∣

∣

∣

∣

{

by =

(

(slot0, link0) ∧
∧

link

(slot0, link)

)

: χAND-MULT(by) = 1

}∣

∣

∣

∣

∣

≤ q. (4.5)

The latter means that there is an allocation function φ that allocates triples

(slot, link,portion) (4.6)

to bidders such that every triple is allocated at most once, and that if

χAND-OR







id,
∧

link

∨

portion

(slot, link,portion), p







 = 1, (4.7)

then there is a triple (slot, link,portion) with φ((slot, link,portion)) = id. But
clearly, equations (4.1) and (4.5) imply such a φ exists.

If two selling bids offer portions in the same spot and are of the same size, we

can safely assume that buyers are indifferent between the two bids. This means
that rational buyers that wish to acquire one portion for a certain slot will always

submit bids that OR-connect all selling bids for the same slot. But this means that
the additional expressive power that AND-OR provides more than AND-MULT, is

not being used by the bidders. Consequently, a market that sells link capacities
as multiple copies of identical goods will always be preferred over a market that
sells link capacity portions as individual goods. We are therefore interested in the

extension of SBNL that admits selling bids with multiple copies of the same good.
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4.1 Background: The RSVP protocol

Reservation protocols for network resources, most prominently bandwidth, have

been suggested for a long time now. While many applications, like file transfer or
email, rarely create short-term bandwidth shortages, multimedia applications like

video streaming are more demanding. If both real time transmission and high band-
width are required, even generously designed networks quickly run into temporary

capacity deficits.
One of the most popular resource reservation protocols is the Resource Reserva-

tion Setup Protocol (RSVP) ([10], see [79]) which was designed with its application

to multicast videoconferencing in mind. RSVP uses PATH messages that are sent
by the stream source to the potential receivers, and RESV messages that travel the

opposite way and carry reservation requests from the receiver to the source. Reser-
vation requests are processed hop-by-hop by the routers which are responsible for

acceptance or rejection of reservations. A rejected reservation is not propagated
further upstream, and an error messages is sent in reply to the issuer of the re-

quest. Two aspects of RSVP are of interest here:

• RSVP reservation messages can either request controlled load service, or

guaranteed service. Controlled load requests are specified by traffic specifica-
tions (TSpecs) which contain parameters that describe the anticipated traffic,

like average and peak rate, package size, etc. Guaranteed service is character-
ized by service rate (the bandwidth in bytes/second), and slack (the additional

delay that the hop may add, in microseconds).

• Reservation messages are for immediate resource usage, there is no advanced

reservation for time slots in the future.

RSVP does not specify how RESV messages are processed. Clearly, the protocol

was designed with the intention that bandwidth is reserved at a first-come first-
served base. It is, however, conceivable that monetary bids are added to RESV

messages, and that reservation requests are aggregated at intermediate hops in
order to implement an allocation based on monetary bids. Reservations in RSVP

expire unless renewed within a given time (specified in the TIME_VALUE field), but
if they are renewed, they remain valid.

If bid amounts refer to a reservation whose duration is indefinite, any bid accep-

tance mechanism obviously leads to inefficiencies of arbitrary degree. There are
only two ways out of that: either reservations are for a bounded time, or reser-

vations are unbounded but it is accepted that possibly, flows will be interrupted.
Among others, Burchard [12] uses the first approach: reservations apply to certain

time slots well-known in advance. Extensions to RSVP that support reservations
for given time slots have been suggested e.g. in [69]. While indefinite reservations

are not considered in [69], it is possible to re-negotiate the duration of reservations,
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albeit without a guarantee of success. An overview about advance resource reserva-
tion is given in [80], but in respect to reservation with unknown in advance duration,

the authors note only that they are “difficult to implement”.

4.2 An auction market for advanced reservations with

well-known duration

In this scenario, we have

• selling bids of the type bs = (slot, link,q), and

• buying bids of type

by =

(

id,
∧

slot∈slotset

∧

link∈linkset
(slot, link), p

)

, (4.8)

where slotset is the set of slots that define the time period that the reservation
request refers to2, and linkset is the set of links that flow travels through.

It is easy to see that this yields an instance of the market from definition 52; one just

needs some enumeration of {(slot, link) : slot ∈ slotset, link ∈ linkset} that maps

slot-link pairs of by to the corresponding is in (k
by

1 , . . . , k
by

i , . . . , k
by
n , p) of equation

(3.21).

Let

By =

{

by =

(

id,
∧

slot∈slotset

∧

link∈linkset
(slot, link), p

)

: by ∈ By

}

(4.9)

be a set of reservation request bids. For a slot-link-pair sl = (slot, link), let Bsl
y be

the set of all bids in By that bid for sl. Condition 3.22, applied to our market, then

says for any valid bid acceptance function χ, for any slot-link-pair sl = (slot, link),
the condition

∑

by∈Bsl
y

χ(by) ≤ 1 (4.10)

holds.

How is the matching of buying and selling bids to be timed? An advantage of
commit window clearing (see definition 48) is that auctions don’t have to be syn-

chronized exactly, it is enough if the time windows (tearliest, tlatest) where a com-

mit is possible do overlap. For a slot slot = (tslotstart, t
slot
end ), clearly we should have

tlatest ≤ tslotstart, and there is no need for a stricter condition. But what should be

the earliest time that a bid is accepted? If uniformly for all slots, the slot length is
lslot and ∆slot is such that we allow commit for a slot slot = (tslotstart, t

slot
end ) from time

2We do not formally require slotset to be a contiguous set of time slots.
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tslotstart −∆slot, for reservation request that requests resources between tresstart and tresend,
to be granted it is necessary that

tresend ≤ tresstart + ∆slot + lslot (4.11)

or

spanres ≤ ∆slot + lslot (4.12)

with spanres = tresend − tresstart is the reservation’s time span.

4.3 Unknown reservation duration: Extensions to the

admission control algorithm of Greenberg et al. for a

single link

If reservation duration is unknown (and with no known bounds) but accepted reser-

vations must be honoured, then a link that has accepted a reservation for a slot slot
can’t accept reservations for any slot after slot until the given reservation has been

released.

Greenberg et al. [31] 3 proposes the parallel use of book-ahead requests (BA)

with known duration, and instantaneous requests (IR) which are of unlimited valid-
ity. While book-ahead requests are guaranteed once accepted, it is admissible that

service based on instantaneous requests is interrupted or downgraded with a suffi-
ciently small probability. Greenberg et al. assume that BA and IR requests arrivals

are given as independent Poisson processes with rates λB, λI and that BA and IR

holding times (known in advance for BA and unknown for IR) are independent and
exponentially distributed with means 1

µB
, 1

µI
. Furthermore it is assumed that total

link capacity is s, that IR requests are for capacity 1 and BA requests are (uniformly)
for capacity b. Let rB and rI be the per time unit rates paid for completed BA and

IR requests, and let CI be the “penalty” (cost) for an interrupted IR request4. Then
there are three variables that control the total generated revenue:

• the probability PI that an incoming IR request is rejected,

• the probability PB that an incoming BA request is rejected, and

• the probability pI that an admitted IR request is interrupted while in progress.

3A similar approach was presented in [68].
4There is no penalty if the request was rejected or if the reservation was released by the user.
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Parameter Definition Known

to
net-

work

Known

to
user

Depends on

s link capacity yes no
r link capacity put aside for IR re-

quests

yes no s, b, λB,

λI , µI , µB

b capacity of BA requests yes yes

λB BA arrival rate yes no

λI IR arrival rate yes no
µI IR holding parameter yes yes

µB BA holding parameter yes yes
pemp

I empirical interruption probability yes yes s, b, λB,

λI , µI , µB

pI interruption probability with

known existing IR and BA reser-
vations

yes no existing IR and

BA reservations

pmax
I maximal interruption probability

such that IR request is accepted

yes no s, b, λB,

λI , µI , µB

µemp
int P (tint < t) = 1 − e−µ

emp
int t, where

tint is the time when a (never re-

leased) reservation is interrupted

yes yes pemp
I , µI

ra per-time utility of user a no yes

Ca interruption cost for user a no yes
rp payable rate for some reservation yes yes pI

Cp compensation for interrupting
some reservation

yes yes pI

tx time when user stops usage of re-
source reservation

no yes

t′x time when resource reservation is

released

yes yes rp, Cp, µint

Table 4.2: Parameters in the Greenberg et al. model
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With these variables, we can write the revenue rate per time unit

R = (1 − PI) (1 − pI)
rI

µ′
I

λI + (1 − PB)
rB

µB
λB − pI (1 − PI) CIλI (4.13)

Here µ′
I is the mean holding time for IR request conditioned upon that the request

is not interrupted. If pI is small, then we can approximate µ′
I by µI .

• With the assumption that BA requests are far into the future, the admission

control for BA requests can take place without consideration of the IR calls
in progress. A BA request will be admitted if, including that request, at no

time more that s − r capacity is reserved by BA reservation. The parameter r

defines an amount of capacity that is “put aside” for IR calls.

• On the other hand, the admission control for IR request must take into consid-

eration the IR calls in progress as well as the pending BA reservation. From
that information, the probability pI is computed, and the IR request is granted

if and only if the interruption probability for this request is less than pmax
I , with

pmax
I being the “threshold probability” parameter.

Thus, the variables PI , PB and pI that control the revenue all depend on the param-
eters r and pmax

I . The maximization of R in (4.13) takes place by variation of r and

pmax
I .
Greenberg et al. sketch how pI can be computed and point out that the com-

putation is somewhat cumbersome. They suggest different approximations whose
precision they evaluate in simulations. Greenberg et al.’s simulations also showed

that allowing BA and IR requests can significantly increase generated revenue even

if the probability threshold for service interruption is small.

4.3.1 Bidding for paths in the admission protocol of Greenberg et al.

Greenberg et al.’s admission control mechanism can easily be extended to the case
that a reservation request asks for a combination of resources: the admission con-

trol algorithm is run separately for every link, and the request is granted if and only
if all links are available. Figure 4.1 shows a summary of the extended algorithm.

The procedures AdmitBA and AdmitIR are called when requests arrive. They use
the global variables AdmittedBA and ASdmittedIR whose keeping up-to-date we

have omitted in the pseudocode. The procedure InterruptProbability performs
the (approximate) computation of pI as in [31]. The parameters pmax

I and r are either

constants fixed in advance, or could also be dynamically adopted to maximize R in

(4.13).

4.3.2 Mechanism design for reservations with unknown duration.

Greenberg et al. assume that the pay rates rI and rB and the “penalty” for inter-

rupted IR reservations CI are constants for all requests (which than can be set to 1
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1 globals AdmittedBA(link) // set of admitted BAs per link

AdmittedIR(link) // set of IR calls in progress per link

procedure AdmitBAperLink(slotset,link)

forall (slot in slotset) do

n=0

6 forall ( (islotset,ilinkset) in AdmittedBA(link) ) do

if (slot is in islotset)

n++

endif

end

11 i f (n*b>c − r)

return false

endif

end

return true

16 end procedure

procedure AdmitIRperLink(link)

pir=InterruptProbability(AdmittedIR(link),AdmittedBA(link))

i f (pir < pmaxI )

21 return true

else

return false

endif

end procedure

26

procedure AdmitBA(slotset,linkset)

forall (link in linkset) do

if (AdmitBAperLink(slotset,link) == false)

return false

31 endif

end

return true

end procedure

36 procedure AdmitIR(linkset)

forall (link in linkset) do

if (AdmitIRperLink(link) == false)

return false

endif

41 end

return true

end procedure

Figure 4.1: Admission control for combinatorial requests.
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without loss of generality).
We now consider a market where users submit buying bids

by =



idby ,
∧

slot∈slotsetby

∧

link∈linksetby

(slot, link), rby , Cby



 (4.14)

and selling bids bs = (slot, link,q).
How would a good mechanism for this market look like?

First note that if the per-time rate is payable only for completed calls, there is
no incentive for a user ever to finish a call. Therefore, this approach is unfeasible.

We thus modify the revenue R of (4.13) such that the rate rI is payable even for

interrupted calls5. This yields

R = (1 − PI)
rI

µI
λI + (1 − PB)

rB

µB
λB − pI (1 − PI)CIλI (4.15)

A first glance may suggest a mechanism that pays a (per-time usage) price payable

if the request is accepted, and a “penalty” that is paid to the bidder in case that the

request is accepted but the service is interrupted. The problem with that approach
is that if the duration of the request is controlled by the bidder, he may manipulate

by intentionally not terminating the service to be entitled to the penalty payment.
So a user a’s type is a tuple (ra, Ca) where ra is the utility rate and Ca is the

cost of interrupt. Furthermore, we assume that the duration of a reservation is
a random variable tx with exponential distribution. The value of tx , is unknown

even to a itself at the time when he places his bid. We assume that after tx has
expired, the user has no further utility from his reservation. However, he can keep

up the reservation to speculate on the interruption penalty CI . The utility of a thus

depends on a parameter t′x that a chooses and that defines the time that a releases
his reservation, provided that it hasn’t been cancelled before. This decision has to

be made only after tx is known, so t′x can be dependent on tx. a will choose t′x in
such a way that his expected utility is maximized.

Let is compute the expected utility that a gains from the call after tx has expired,
conditioned on tx and the assumption that the call was not interrupted so far. Let tint
be the time when the reservation is interrupted. Greenberg et al. give a computation
of the interruption probability for a call, depending on the currently existing BA

reservation. While the reservation owner does indeed have this information, a does

not. Therefore, it is safe for a to assume that the interruption probability time for
any given call (of infinite duration) is also exponentially distributed with parameter

5One might argue that this is quite a realistic model anyway: the “interruption cost” CI could then
be interpreted as the cost of the inconvenience to re-build the connection, while the utility already
gained by the service before the interruption is not lost.
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µint. Then

ua(t
′
x|tx, tint > tx) =







t′x
∫

tx

µinte
−µint(t−tx) (Cp − (t − tx)rp) dt







−
(

t′x − tx
)

rpP (tint > t′x) (4.16)

=
et′xµint

(

et′xµint − etxµint

)

(Cpµint − rp)

µint
(4.17)

−→t′x→∞ C − rp

µint
(4.18)

with rp be the price rate that a has to pay and Cp is the amount of the interruption

compensation payment.
So a has an expected win from choosing t′x > tx if and only if µintCp > rp.

How can a get an estimate of µint?

Case 1. We assume that the network attempts to optimize welfare and drops least
valuable calls first. In this case, some information is required on the distribution of
utility rates and interruption costs. We don’t consider this case here.

Case 2. We follow Greenberg et al. and let the network interrupt younger calls
first. Under this assumption, a can compute µemp

int from the empirical interruption

probability pemp
I and the parameter µI of the (exponentially distributed) call duration

distribution:

pemp
I =

∞
∫

0

P (tint < tdur)f(tdur)dtdur (4.19)

=

∞
∫

0

(

1 − e−µinttdur
)

µIe
−µI tdurdtdur (4.20)

= µI

(

1

µI
− 1

µint + µI

)

(4.21)

= 1 − µI

µint + µI
(4.22)

and therefore

µint = µI

pemp
I

1 − pemp
I

. (4.23)

Note that for a given pair (rp, Cp), both a and the network can compute µint, and
therefore know whether “speculating” on Cp is profitable and also the amount of

the expected profit.
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4.3.2.1 Non-existence of efficient two-dimensional mechanisms.

Definition 55. A two-dimensional access control mechanism takes as input bids of
the form (ba = ra, Ca) and computes a decision function χ with χ(ba) ∈ {0, 1}, and a
rate-compensation vector (rp, Cp) such that rp is the rate that a pays per time unit
until the reservation is released by a or cancelled by the network, and Cp is the
compensation that a receives if the reservation is interrupted by the network.
We say that a mechanism satisfies rate-compensation voluntary participation if

always rp ≤ ra and Cp ≥ Ca.

Corollary 56. If the interruption probability pemp
I is publicly known, there is no

efficient two-dimensional access control mechanism.

Proof. Suppose there is only one bid (ra, Ca) with µintCa > pa.
If the mechanism is efficient, it must accept the single bid. Let (rm, Cm) be the

rate-compensation vector returned by the mechanism.
Case 1: rm ≤ ra and Cm ≥ Ca. Then speculating on Cm is profitable for a. But

then the mechanism can’t be efficient.
Case 2: rm > ra or Cm < Ca. Without loss of generality we can assume that a

has revealed his true type. But then it would be profitable for release the reserva-
tion right away. But this contradicts efficiency, because the request is lost even if

capacity is not used up.

4.3.2.2 Mapping two-dimensional types to one-dimensional ones.

In order to apply standard VGC mechanisms, we have to project the two-dimensional
types and bids (r, C) to one-dimensional ones. Here a one-dimensional bid is a per-

time price r, and no compensation being paid for service interrupts. The projection

π has to satisfy that a risk-neutral user a is indifferent between the choices of either
being offered rate r and a compensation C if service is interrupted, and a (“dis-

counted”) rate π(r, C) and no interrupt compensation. This is the case when the
expected profit from (r, C) and from π(r, C) are equal. The fact that the only differ-

ence between the two options is in payment implies that expected payments must
be equal.

While the empirical interrupt probability pemp
I ( and the distribution femp

int and the
parameter µemp

int of the corresponding exponential distribution) is public informa-

tion (see table 4.2), the network additionally knows at any given time the currently

present BA reservations and can use this additional information to compute the in-
terrupt distribution function. Note that even if the expected profit computation is

based on the currently present BA reservations, it is obvious that there always is
some projection π such that both expected profits are equal.
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The use of the approximated distribution function fint yields

E(payment(r, C)) =

∞
∫

0

µIe
−µI tx

[





tx
∫

0

femp
int (t′x)(−rt′x + C)dt′x





− P (tint > tx)rtx

]

dtx (4.24)

=

∞
∫

0

µIe
−µI tx

[





tx
∫

0

µemp
int e−µ

emp
int t′x(−rt′x + C)dt′x





− e−µ
emp
int txrtx

]

dtx (4.25)

=
−r + Cµemp

int

µI + µemp
int

(4.26)

and

E(payment(π(r, C))) =

∞
∫

0

µIe
−µI tx

[





tx
∫

0

−femp
int (t′x)t′xπ(r, C)dt′x





− P (tint > tx)π(r, C)tx

]

dtx (4.27)

=

∞
∫

0

µIe
−µI tx

[





tx
∫

0

−µemp
int e−µ

emp
int t′xt′xπ(r, C)dt′x





− e−µ
emp
int txπ(r, C)tx

]

dtx (4.28)

= − π(r, C)

µI + µemp
int

(4.29)

Simplifying yields

π(r, C) = r − Cµemp
int (4.30)

4.3.2.3 The empirical interrupt probability.

The above assumed that users have access to an empirical interrupt probability pemp
I .

This probability is public information, and is equal for all users. It is not necessary

that pemp
I be a constant over time, that is, it can be time-dependent. For instance, it

is conceivable that pemp
I is drawn from previous days and depending on the time of

the day.
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US SA NW

send IR request

request reservation certificate (AcceptedIR)

send reservation certificate

register reservation certificate

(a) Verified counting of reservation requests

US SA NW

request interrupt certificate (reservation id)

send interrupt certificate

send interrupt (interrupt certificate)

(b) Verified counting of service interrupts

Figure 4.2: Verified interrupt statistics

An important point is that, using standard cryptographic infrastructure, pemp
I can

be independently verified to guarantee its accuracy even if mutual trust between
users and the network is absent. The verification algorithm uses that

• it is in the interest of the network to have a low published interruption proba-
bility (because then, users will bid higher according to equation (4.30)), while

• the users want certainty that pemp
I is not to optimistic, because they incur

losses with every interruption.

The verification assumes that there is a trusted by all sides statistics authority SA

that counts admitted reservation requests and interrupts, and publishes pemp
I . The

data collection used by SA is built into the protocols for IR reservation requests and

IR interrupts. Let NW denote the network, and US the user. NW maintains a counter
AcceptedIR. If NW accepts an IR request, it increments AcceptedIR and sends its

value as a challenge to US. US replies with a reservation certificate that contains the

signed value. NW registers the reservation certificate at SA.
In case of a service interruption, NW requests from SA a interrupt certificate con-

taining some identification of the IR to be interrupted. NW sends the certificate to
the affected US. SA counts every reservation certificate as an admitted reservation

(not accepting duplicates with identical counter AcceptedIR), and every interrupt
certificate as a service interrupt. NW won’t serve IR reservations without the user is-

suing a proper reservation certificate. Users complain if service interruption occurs
without NW presenting a corresponding interrupt certificate.

Figure 4.2 shows an overview of the verified counting protocol.

4.4 Is there an advantage in auctioning bandwidth ?

We have above demonstrated how auction solutions can be used for bandwidth al-
location. So far, we have not stated how such a “market solution” performs in com-

parison with the classical first come first served allocation with a fixed rate.
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For the comparison, we assume that there is a single link of fixed capacity c which
is allocated to requests issued by users in a random (Poisson) process with fixed

parameter λ. Granted requests are served until they are terminated after an expo-

nentially with parameter d distributed time t, and users are charged rt where r is a
rate determined by the allocation mechanism. While in the fixed price scenario, the

rate is a constant at all times, the auction mechanism recomputes the rate periodi-
cally on the base of the currently issued requests.

Requests have an associated maximum rate the issuer is willing to pay, and it
is guaranteed that a request is never charged more than this maximum rate. We

assume that the maximum rate of any request is drawn from a normal distribution
with constant parameters µ and σ. The fixed price mechanism always denies all

requests with a maximum rate lower than the fixed rate. The auctioning mechanism

computes a current rate and accepts all requests with maximum rate at least the
current rate, and denies all other requests. The mechanism guarantees the current

rate for the complete time until the request is terminated by the issuer, no matter
how future current rates develop.

We simplify our scenario by assuming that there are no BA calls, and therefore,
there is no need of cancelling requests from the side of the mechanism.

In order to perform an auction, the mechanism needs to collect requests over a
certain time span which without loss of generality be of length 1.

4.4.1 Fixed price mechanism

Let us analyze the mechanism that offers a fixed rate rf . Requests are generated as
a Poisson process with parameter λ, and the associated maximum rates are normally

distributed with parameters µ and σ. As described above, requests with associated
rate less than r are discarded. Thus, the sequence of non-discarded requests is

generated by a Poisson process with parameters λ∗(rf ) = λP (r > rf ) where r ∼
N(µ, σ). Write f(r) and F (r) for the probability density function and cumulative
probability function of N(µ, σ). So

λ∗(rf ) = λ

(

1 − 1

2

(

1 + Erf

(

rf − µ√
2σ

)))

(4.31)

with Erf being the well-known error function Erf(z) = 2√
π

∫ z

0 e−z2

dz.
Since the requests of the modified process are served on first-come first-served

base, the reservation state for the fixed price scenario can be modelled as a queue
with Poisson arrival, exponential living time, c servers and no additional waiting

room. It follows (see e.g. [60, p.65]) that the state probability distribution is

pc(k) =
(λ∗

d
)k

k!

(

1 +
∑c

l=1
(λ∗

d
)l

l!

) (4.32)
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and the mean generated revenue per step can be computed by

meanrevenue(c, rf ) =

c
∑

k=1

(rfkpc(k)) (4.33)

Miller [51] considers M/M/c/c queues with a discrete set of customer classes. They
give an algorithm to compute the optimal admission policy if decision is immediate,

that is, the decision depends on the number of customers currently in the queue.

They introduce "shadow costs" ∇yi = yi+1 − yi of serving a customer if the system
is in state i that reflect the expected revenue lost from the fact that now one more

server is busy. They show that than the following holds:

λ(b −∇y0) = A

· · ·
λ(b −∇y1) + iµ∇yi−1 = A

· · ·
cµ∇yc−1 = A

(4.34)

where A is the per-time generated revenue (∇yi and A depend on the admission
policy.)

Miller and Buckman [52] compare revenues under optimal state-dependent ad-
mission policies with the ones with the optimally chosen fixed price. They assume

that customer utilities are exponentially distributed. They conclude that

in a more realistic setting where economic environment is uncertain,
calculations suggest that there is a greater incentive to use an optimal

transfer pricing policy.

Furthermore, Miller and Buckman compute the optimal value T ∗ of the fixed price
T , by maximizing A. Their theorem 2 says that for the optimal value T ∗, the follow-

ing holds:

T ∗ =
c−1
∑

i=0

qi∇yi(c, T
∗) (4.35)

with

qi =
pi(c)

∑c−1
j=0 pj(c)

(4.36)

are the steady state probabilities of the queue conditioned on not all servers being
busy.

Low [45] computes optimal service price in a M/M/s/c queue if service prices
are computed in advanced after a new service has been accepted into the queue,

or a service was completed. Low assumes that at any such instance, the price
for the next arriving customer is chosen from a set P of possible prices with P

being finite or a bounded closed subinterval of R. Low proves the existence of a
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stationary strategy maximizing average per-time revenue, and gives an algorithm
for its computation.

Ziya et al. [85] compute the revenue-maximizing rate roptf . They prove that (propo-

sition 6.1)

roptf (c) = inf{r : e(r)∇c(r) ≥ 1} (4.37)

where

e(r) = r
f(r)

1 − F (r)
is the price elasticity, and (4.38)

∇c(r) = 1 +
λ∗

d
(pc(c) − pc−1(c − 1)) (4.39)

4.4.2 Vickrey price mechanism

For a fair comparison of the revenue, we assume that the reservation requests are
generated exactly as above. However, resource allocation takes place at the end of

each time interval of length 1.6 Let tk = (k−1, k] be the kth interval. Let {rk
1 , . . . , rk

nk}
with rk

1 ≤ . . . rk
nk be the requests submitted during tk. (So nk has Poisson distribution

with parameter λ.) Let lk be the number of living requests at time k. Note that lk

is distributed according to the state distribution of a queue with Poisson(λ) arrival
and exponential(d) departure with c servers and no waiting room.

The requests rk
i are treated as bids for an auction of a good that is available in

c− lk copies. So all requests rk
i with i ≥ nk − c+ lk +1 are accepted and pay the rate

rk =

{

rnk−c+lk if nk − c + lk ≥ 1

0 otherwise.
(4.40)

The mean revenue per step then is

meanrevenue = cE(rk) (4.41)

4.4.3 Comparing the revenue

In the following, we give a comparison of the revenues of Vickrey pricing and pricing
with an optimally chosen fixed price. It will be shown that in many cases, Vickrey

pricing generates a higher revenue than optimal fixed pricing. We remark that to

compute the optimal fixed price, it is necessary to have a priori assumptions on the
distribution of requests. Vickrey pricing, however, generates a high revenue even if

there is no information on the distribution parameters of the incoming requests.

6This means that clients have to accept a delay < 1 until their reservations are accepted or rejected.
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Figure 4.3: Revenue ratio Vickrey vs. fixed pricing with λ = 100, d = 0.1, µ = 10, σ ∈
[0, 20], c ∈ [1, 150]

4.4.3.1 No global inequality.

While we intend to demonstrate that Vickrey pricing generates in some cases more
revenue than fixed rate pricing even with the optimally chosen fixed price, there is

no global inequality: Indeed, for λ
d
� c and small σ, the Vickrey price will converge

to 0 for c → ∞ (since the probability that less than c requests are in the system

converges to 1) while the number of accepted bids is bounded by the number of
submitted bids, and consequently the Vickrey revenue converges to 0 if the capacity

grows beyond all limits, but the fixed rate revenue is still significantly positive. To
be more precise, we get from (4.32) and (4.33) for any fixed rate r,

lim
c→∞

meanrevenue(c, r) = r
∞
∑

k=1

(kp∞(k))

= r

∞
∑

k=1

(

k
(λ∗

d
)k

k!e
λ∗

d

)

= r
λ∗

d
> 0 (4.42)

4.4.3.2 Simulation results.

Figure 4.3 shows the ratio of the revenues generated by Vickrey pricing and fixed

pricing with the optimally chosen fixed price. Note that in the chosen parameter
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domain, Vickrey pricing generates a slightly higher revenue compared with optimal
fixed pricing. The advantage of Vickrey pricing here grows for small capacities and

larger σ.

4.5 Summary

In this chapter, we applied the theory of double-sided combinatorial auctions to
advanced reservations in networks. In particular, we used extensions of SBNL that

allows multiple item and combinatorial auctions. After describing a mechanism that
allows fixed length reservations, we presented various results on the case where

reservations are open-ended:

• Efficient mechanisms do not exist if the mechanism pays a compensation for

service interrupts.

• We showed how to map bids with per-time rate and penalty for service inter-

rupts, to bids only with per-time rate.

With this mapping, it is possible to apply mechanisms for combinatorial exchanges,
in particular, the SBNL pricing and commit window clearing as presented in the pre-

vious sections.

Finally, we presented simulation results that support that Vickrey pricing gener-
ates, in some cases, a higher revenue than fixed pricing with an optimally chosen

price, while not requiring information on the distribution of the requests.
A general characterization of the relationship between Vickrey revenue and op-

timal fixed price revenue would be highly desirable. We, however, leave this point
open for future research.
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5 Indirect mechanisms for multicast

pricing

The previous chapter presented pricing for unicast streams based on the VGC mech-
anism. We considered direct mechanisms where users would reveal their utilities

to the network manager who would compute a resource allocation which maximizes
total utility.

Another line of research [41, 42, 40] works with indirect mechanisms, describ-
ing network flows as Walrasian tatonnement with elastic price and demand. Here,

network users adopt a control parameter that controls bandwidth allocation (in our

case, this parameter can be interpreted as payment either in monetary terms, or in
terms of an accepted delay). We adopt the interpretation that users control band-

width by monetary payment. In the tatonnement process, the auctioneer splits
bandwidth in proportion with the submitted payments. The adoption takes place

continuously.
Given a set of resources J , a route is a subset r ⊆ J . Fix set R of possible routes

and define Aj,r to be the matrix defined by Aj,r = 1 if j ∈ r, and 0 otherwise. Suppose
that every resource j has a capacity cj ≥ 0. For a route r, let xr be the flow through
r. The vector x = (xr : r ∈ R) is called the total flow. x is feasible if for all resources

j ∈ J , we have
∑

r:j∈r xr ≤ cj . Let us furthermore assume that to every route r,
there is an associated user that has utility ur(xr) from r which depends on xr.

Kelly considers three interconnected optimization problems1:

• the system tries to maximize aggregated utilities:

SYSTEM(u,A, c)

max

(

∑

r∈R

ur(xr)

)

over (xr : r ∈ R) (5.2)

1The setting described here is known as inelastic supply setting. This refers to the fact that every
link has a fixed capacity that is split among users. Elastic supply settings, see [40] assume that
supply can vary but that there is a cost associated with it. The corresponding SYSTEM problem
then has the form

max

 X
r∈R

ur(xr) − C

 X
r

xr

!!
over (xr : r ∈ R) (5.1)

where C(x) is the cost associated with a supply of capacity x.
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subject to

∑

{r∈R:Aj,r=1}
xr ≤ cj for all j ∈ J (5.3)

xr ≥ 0 for all r ∈ R (5.4)

• the users maximize their own profit (that is, utility minus costs) while varying

the size of the flow he acquires for a given per-unit price λ:

USERr(ur, λ)

max (ur(xr) − wr) over xr (5.5)

subject to

xr ≥ 0 (5.6)

wr = xrλr. (5.7)

• Finally, the network maximizes revenue by varying the flow sizes:

NETWORK(A,λ, c)

max
∑

r∈R

λrxr over (xr : r ∈ R) (5.8)

subject to

∑

{r∈R:j∈r}
xr ≤ cj for all j ∈ J (5.9)

xr ≥ 0 for all r ∈ R. (5.10)

Theorem 1 of [40] interconnects these three optimization problems: If the ur are dif-

ferentiable, strictly concave functions, then there is a price-per-unit vector λ = (λr :

r ∈ R) such that the unique solution vector (x = xr : r ∈ R) of the USERr problems

simultaneously solves NETWORK(A,λ, c), and this vector also solves SYSTEM(u,A, c).
If we see users and network as self-interested agents (users maximizing their

private surplus, while the network maximizes revenue), we are tempted understand
this theorem as the guarantee that there is an equilibrium in the associated game,

and that at this equilibrium, the social surplus as given by the SYSTEM problem
(5.2) is also maximized. Note, however, that λ depends on the user’s input. If there

is a large number of users, and none of their utility functions is dominating, we can
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assume, for approximation, that the price vector λ does not depend on the input of
a fixed user r. Only in this case, the theorem implies that there is an equilibrium

with optimal social surplus.

Note that NETWORK(A,λ, c) is the relaxation of the combinatorial auction prob-
lem

AUCTION(A,λ, c)

max
∑

r∈R

λrxr over xr (5.11)

subject to

∑

{r∈R:j∈r}
xr ≤ cj for all j ∈ J (5.12)

xr ∈ {0, 1} for all r ∈ R. (5.13)

where cj (1 ≤ j ≤ J) are goods and λ = (λr : r ∈ R) is the bid vector of the auction.

In contrast with the work of the mechanism design school, there are no costs
considered to be incurred by the transmission. Rather, the price is computed such

that

• certain fairness conditions are honoured, and

• a balance between supply (available capacity of the required resources) and

demand is achieved.

5.1 Linear utilities

In [29, par. 6.2], an example is considered that illustrates how the Nash equilibrium
is computed in the case that users are aware of the effect of their input on the price

vector λ:
Assume that n users have linear utility functions ur(xr) = αrxr with αr > 0. Fur-

thermore, assume that the network assigns rates to the users in proportion of their
willingness to pay wr. For convenience, write Wr =

∑

r′ 6=r wr′ and S =
∑

r wr =

wr + Wr for all r. Then the maximization problem presented to the user r is

USERr(ur)

max

(

ur

(

wr

wr + Wr

)

− wr

)

over wr (5.14)
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subject to

wr ≥ 0 (5.15)

Now

ur

(

wr

wr + Wr

)

− wr = αr
wr

wr + Wr
− wr (5.16)

and thus

d

dwr

(

ur

(

wr

wr + Wr

)

− wr

)

=
αr

wr + Wr

(

1 − wr

wr + Wr

)

− 1 (5.17)

Therefore, for the solutions of (5.14) we have

either wr = 0 and
d

dwr

(

ur

(

wr

wr + Wr

)

− wr

)

< 0, (5.18)

or
d

dwr

(

ur

(

wr

wr + Wr

)

− wr

)

= 0, (5.19)

or equivalently,

wr = S

(

1 − S

αr

)+

. (5.20)

Summing up (5.20) for all r, we get

S = S
∑

r

(

1 − S

αr

)+

(5.21)

and consequently,

1 =
∑

r

(

1 − S

αr

)+

. (5.22)

Fact 57. a) There is a unique vector (wr) such that equations (5.20) hold for all
r, and S =

∑

r wr.

b) For n = 2, we have wr > 0 for all r.

Proof. Note first that there is a unique S such that

1 =
∑

r

(

1 − S

αr

)

(5.23)

holds for all r, namely

S =
n − 1
∑

r
1
αr

. (5.24)
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Define

vr0
=

n − 1
(

∑

r
1
αr

)2

(

∑

r

1

αr
− n − 1

αr0

)

(5.25)

which is equivalent to

vr0
= S

(

1 − S

αr0

)

. (5.26)

Consequently, if vr ≥ 0 holds for all r, then with wr = vr, equations (5.20) and (5.22)

hold for all r. Otherwise, remove all r with vr < 0, and apply (5.24-5.25) iteratively.
Note that for the case n = 2, (5.25) implies that vr0

> 0 and thus iteration terminates.

This proves existence of S, and also part b of the claim.
To prove uniqueness, assume that there are S 6= S′ and (wr), (w

′
r) such that (5.20)

holds for all r. Clearly if wr > 0 and w′
r > 0, then wr = w′

r. Let r0 be such that without
loss of generality, wr0

< w′
r0
. Then wr0

= 0, w′
r0

> 0 and thus S′ < αr0
< S. It follows

that for all users r, we have wr ≤ w′
r. But this implies S ≤ S′, a contradiction.

Those users r with αr > S set wr = S
(

1 − S
αr

)

with S according to (5.22), the

remaining ones set wr = 0.

5.1.1 Comparison with VGC mechanisms

Note that the equilibrium bid wr depends on the bids of the other players, and
so there is no dominant strategy for any user with positive utility. Also, at the

equilibrium, the social surplus is not maximized. Maximizing social surplus in the
case of linear utility functions would mean to allocate all capacity to the user r

with the highest αr. This, however, seems absurd: the assumption of linear utility
functions is reasonable only as an approximation for small ranges. The tatonnement

works independently from the shape of the utility functions, and the results apply
when utilities are linear for bandwidth range below the equilibrium allocation.

A dominant strategy mechanism would maximize surplus in respect to all possible
allocations and would therefore need the complete utility functions (for the band-
width ranges below the total capacity). The applicable VGC mechanism would then

be the auction of a divisible good, see the background chapter at 2.4. A dominant
strategy mechanism will split resources discontinuously in respect to the input from

the clients. This, of course, could impose problems for applications.

5.1.2 Approximativity of the Nash equilibrium

As noted above, the resource allocation at the Nash equilibrium is suboptimal. In
this paragraph, we give a bound for the quotient of the utilities of the Nash and

optimal allocations.
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Note first that the optimal allocation assigns all utility to the users with the high-
est αr (being indifferent of how these users share the resource among each other).

Utility is then

uopt = max
r

αr (5.27)

For the utility at the Nash equilibrium, we get from (5.24) and (5.25) and with n =

|{r : wr > 0}|,

uNash =
∑

r:wr>0

αr
wr

S
(5.28)

=
∑

r:wr>0

αr −
n(n − 1)
∑

r:wr>0
1
αr

(5.29)

and

uNash
uopt

= max
r′

∑

r:wr>0 αr − n(n−1)P
r:wr>0

1
αr

αr′
(5.30)

Let rmax = arg maxr αr and define

f(〈αr : wr > 0〉) =

∑

r:wr>0 αr − n(n−1)P
r:wr>0

1
αr

αrmax

(5.31)

This function is symmetric in all αr except for r = rmax. Therefore, at its local

minima, αr = α holds for some α and for all r 6= rmax. Now substitute α for αr with
r 6= rmax to receive

f(〈α, . . . , α, αr , α, . . .〉) = 1 + (n − 1)α

(

1

αmax
− n

(n − 1)αmax + α

)

(5.32)

and for the derivative, we get

d

d αmax
f() = (n − 1)α

(

− 1

αmax
2

+
n(n − 1)

((n − 1)αmax + α)2

)

(5.33)

The derivative has a positive root at

α = αmax

(

1 − n +
√

n2 − n
)

(5.34)

Substituting this back into the definition of f yields that f is independent of αmax at

that location:

fn := f() = n(3 − 2n) + 2(n − 1)
√

n(n − 1) (5.35)
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Now (fn) is monotonously decreasing, and

lim
n→∞

fn =
3

4
. (5.36)

We conclude that 2

Fact 58. If users have linear utility functions, the total utility at the Nash equilib-
rium is at least three quarter of the total utility at the optimal resource allocation.

5.1.3 Multicast with linear utilities

Let us now generalize this example to a setting that considers multicast. In the
simplest model inspired by the one of Feigenbaum et al [26], we assume that there

are users sharing a transmission, and that the sharing does not imply any extra cost.

To model this, we just have to allow that xr = xr′ for distinct users r, r′. Then the
user problem (5.14) turns into

MULTICAST_USERr(ur)

max

(

αr

(
∑

r′:xr=xr′
wr′

wr + Wr

)

− wr

)

over wr (5.37)

subject to

wr ≥ 0. (5.38)

For the derivative, we get

d

dwr
(ur() − wr) =

αr

wr + Wr

(

1 −
∑

r′:xr=xr′
wr′

wr + Wr

)

− 1 (5.39)

Now

d

dwr
(ur() − wr) < 0 (5.40)

if and only if

wr > S − S2

αr
−

∑

r′ 6=r:xr′=xr

wr′ (5.41)

2Added in proof: This is a special case of Theorem 3 of [38] which is scheduled for publication. The
proof for linear utility functions is considerably simpler and since given here. For the case of elastic
supply, see [37].
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(and similarly for equality). Therefore, at the equilibrium, we must have wr ≥ S −
S2

αr
−∑r′ 6=r:xr′=xr

wr′ for all r, and equality for all r with wr > 0. However,if r and r′

are in one group, equality can hold for both only if αr = αr′. Write αg
r = maxr′∈Gr

αr′ .

Then from (5.14), we get gr = S
(

1 − S
α

g
r

)+
.

This means that the resource is split between those multicast groups for which αg

is large enough in proportion with the maximal utility gradients of each group, that

the users with maximal utility gradient in each group pay and the other users enjoy
free service on the level that their group leaders are willing to pay.

5.1.3.1 Example with 3 users in 2 groups.

Let us look at a simple example with two groups: g1 consisting of users 11 and 12
with α11 < α12, and group g2 with one user 2 with α2. With S = w12 + w2, we get

from (5.20) and claim b of fact 57 for r = 12 and r = 2

w12 =
α2

12α2

(α12 + α2)2
(5.42)

w2 =
α12α

2
2

(α12 + α2)2
(5.43)

and for the utilities

u11 =
α11α12

α12 + α2
(5.44)

u12 =
α2

12

α12 + α2
− w12 (5.45)

=
α3

12

(α12 + α2)2
(5.46)

u11 + u12 =
α12

(

α2
12 + α11(α12 + α2)

)

(α12 + α2)2
(5.47)

5.1.3.1.1 Comparison with group agent. Suppose that the first group from the
example above employs a group agent that adjust a weight w1 used jointly by users

11 and 12. This means that the multicast stream is treated exactly like a unicast

stream. We get

w1 =
(α11 + α12)

2α2

(α11 + α12 + α2)2
(5.48)

w2 =
(α11 + α12)α

2
2

α11 + α12 + α2
(5.49)

u1 = (α11 + α12)
w1

w1 + w2
− w1 (5.50)

= − (α11 + α12)
3

(α11 + α12 + α2)2
(5.51)
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Figure 5.1: Utility without (green) versus with (blue) group agent, a2=10

From straightforward calculation, we get that the group utility with group agent

is larger than group utility without group agent, if and only if

(α11, α12, α2) ∈ R
3
+ and (5.52)

α2 <
α2

11 + α11α12

2α12
+

1

2

√

α4
11 + 2α3

11α12 + 5α2
11α

2
12 + 8α11α3

12 + 4α4
12

α2
12

(5.53)

=
(α11 + α12)

(

α11 +
√

α2
11 + 4α2

12

)

2α12
(5.54)

Figure 5.1 compares u11 + u12 from (5.47) (blue surface) and u1 from (5.51)
(green surface) for the case a2 = 10. Figure 5.2 shows the bounds of the polytope

{(α11, α12, α2) ∈ R
3
+ : u11 + u12 < u1}.

5.1.3.1.2 Remark. One can easily construct an example such that the first group

is not served at all even though its total utility is larger than that of both other
groups: let the first group consist of three users with α11 = α12 = α13 = 25

3 (write

α1 = α11 + α12 + α13), let α2 = 10 and introduce a third group with one member with
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Figure 5.2: Polytope of points where utility with group agent is larger than without

α3 = 20. We get from (5.25) with a = α1α2α3

(α1α2+α1α3+α2α3)2

v11 + v12 + v13 = a(α1α2 + α1α3 − α2α3) = −200

361
(5.55)

v2 = a(α1α2 − α1α3 + α2α3) =
1800

361
(5.56)

v3 = a(−α1α2 + α1α3 + α2α3) =
2200

361
(5.57)

It follows that w11 = w12 = w13 = 0 and after another iteration, we compute w2 =
400
81 , w3 = 500

81 .

5.1.3.2 Conclusion.

From the examples above, it follows that allocation at the Nash equilibrium for
multicast with individual weighs is arbitrarily inefficient in comparison with the

optimal allocation if multicast groups grow large. This contrasts the approximativity

of the Nash equilibrium for unicast (fact 58).

5.2 Logarithmic utilities

Suppose now that, as in the original model of Kelly, users have logarithmic utilities:

ur = αr log(xr) − wr (5.58)
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If resource allocation is in proportion with the wr’s, then the user problem is

LOGUSERr(ur)

max

(

αr log

(

wr

wr + Wr

)

− wr

)

over wr (5.59)

subject to

wr ≥ 0 (5.60)

Note that limwr→0 ur = −∞ and thus at the equilibrium, the derivative of ur must be
zero for every r. In this example, voluntary participation is not satisfied in general

in the sense that if a user refuses to pay anything, his resource share will be zero

and his utility −∞.
Now with S =

∑

r wr,

d

dwr
ur =

αr

wr

(

1 − wr

S

)

− 1 (5.61)

and at the equilibrium,

wr =
αrS

αr + S
. (5.62)

Summing (5.62) up for all r and dividing by S 6= 0, we get

1 =
∑

r

αr

αr + S
(5.63)

which determines S > 0 uniquely.

Note that S is the root of a polynomial of degree n + 1, where n is the number of

users.

5.2.1 Numerical simulation for unicast

Let us assume there are 3 users a, b and c and fix αa = 1 for user a. How does a’s
optimal weight, resource share and surplus (utility minus costs) vary with b’s and

c’s weight?

Figures 5.3, 5.4 and 5.5 show a’s optimal weight , resource share and surplus for
b and c varying between 0 and 2.
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Figure 5.3: Equilibrium weight for user a depending on αb and αc
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Figure 5.4: Equilibrium resource share for user a depending on αb and αc
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Figure 5.5: Equilibrium surplus for user a depending on αb and αc
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5.2.2 Approximativity of the Nash equilibrium

Logarithmic utility functions as in (5.58) are unbounded from below. Therefore,

theorem 3 of [38] does not apply. Anyway, since user’s utility is negative, a lower
bound of the coordination ratio is of interest.

Let T =
∑

r αr. First note

Fact 59.

uopt(α1, . . . , αn) =
∑

1≤r≤n

αr log
αr

T
. (5.64)

Proof. Consider the function fα for α = (α1, . . . , αn−1) defined by

fα : {(x1, . . . , xn−1) : xr > 0,
∑

r

xr ≤ 1} 7→ R (5.65)

fα(x1, . . . , xn−1) =
∑

1≤r<n

αr log xr + αn log(1 −
∑

1≤r<n

xr). (5.66)

For the partial derivatives of f , we have for 1 ≤ r < n

∂fα

∂xr
(x1, . . . , xn−1) =

αr

xr
− αn

1 −∑1≤r<n xr
(5.67)

= 0

if

xr

1 −∑1≤r<n xr
=

αr

αn
. (5.68)

There is exactly one point x where all partial derivatives vanish, namely at

x = (x1, . . . , xn−1) (5.69)

with

xr =
αr

T
. (5.70)

Now at f ’s domain boundary

{(x1, . . . , xn−1) : xr = 0 for some r or
∑

r

xr = 1}, (5.71)

f has value −∞. It follows that x is a global maximum.

In contract to the case with linear utilities, there is no bound for the coordination

ratio depending only on n:
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Fact 60. For any B > 0 and any n ≥ 2, there are α1, . . . , αn such that if for r =

1, . . . , n, utility functions are defined by (5.58),

unash(α1, . . . , αn)

uopt(α1, . . . , αn)
> B. (5.72)

Proof. Consider first the case n = 2. Then (5.63) turns into

α1

α1 + S
+

α2

α2 + S
= 1, (5.73)

or

S =
√

α1α2. (5.74)

Then

wr =
αrS

αr + S
(5.75)

and

unash(α1, α2) = α1 log
α1

α1 + S
+ α2 log

α2

α2 + S
(5.76)

and consequently

unash
uopt

=
α1 log α1

α1+
√

α1α2
+ α2 log α2

α2+
√

α1α2

α1 log α1

α1+α2
+ α2 log α2

α1+α2

, (5.77)

and this is unbounded for α1 = 1 and α2 grows large. This concludes the case n = 2.
For the general case, simply add users r for r > 2 with αr = 0. The optimal utility

does not change by introducing these additional users, and equation (5.62) implies
that it doesn’t change the Nash utility either. This finishes the proof.

The coordination ratio can be bounded depending on L = maxr αr

T
:

Fact 61. With L = maxr αr

T
, the following holds:

unash(α1, . . . , αn)

uopt(α1, . . . , αn)
≤ 1 − 1

L log L + (1 − L) log(1 − L)
. (5.78)

Proof. Let S be satisfying (5.63). Now
∑

r

αr

αr + T
< 1 (5.79)

and consequently

S < T. (5.80)
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It follows

unash(α1, . . . , αn) =
∑

r

αr log
αr

αr + S
(5.81)

>
∑

r

αr log
αr

αr + T
(5.82)

=
∑

r

αr log αr −
∑

r

αr log(T + αr) (5.83)

>
∑

r

αr log αr −
∑

r

αr

(

log T +
αr

T

)

(5.84)

using that log(x + y) < logx + y
x
for positive x and y, and thus

unash(α1, . . . , αn) >
∑

r

αr log
αr

T
−
∑

r

αr
2

T
. (5.85)

The coordination ratio can then be bound by

unash(α1, . . . , αn)

uopt(α1, . . . , αn)
< 1 +

∑

r αr
2

T
∑

r αr log( T
αr

)
(5.86)

≤ 1 +
T

∑

r αr log
(

T
αr

) (5.87)

using that
∑

r αr
2 ≤ T 2 for the last inequality.

Now consider the function f

f(α1, . . . , αn−1) =
∑

1≤r<n

αr log αr + (T −
∑

1≤r<n

αr) log(T −
∑

1≤r<n

αr) (5.88)

defined on the polyhedron P with bounds

αr

T
≤ L

α1 ≥ α2

α2 ≥ α3

. . .

αn−2 ≥ αn−1 ≥ T −
∑

1≤r<n

αr > 0.

We have that for 1 ≤ r < n,

∂f

∂αr
(α1, . . . , αn−1, T ) = log αr − log(T −

∑

1≤r<n

αr) > 0 (5.89)
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for all points in P : f assumes its maximum at the bounds of the polyhedron

α1 = TL

α2 = T (1 − L)

α3 = α4 = . . . = αn−1 = 0

T −
∑

r

αr = 0.

It follows that

f(α1, . . . , αn−1, T ) < TL log(TL) + T (1 − L) log(T (1 − L)). (5.90)

Continuing from (5.87), we conclude

unash(α1, . . . , αn)

uopt(α1, . . . , αn)
< 1 +

T

T log T − (TL log TL + T (1 − L) log(T (1 − L)))
(5.91)

= 1 − 1

L log L + (1 − L) log(1 − L)
. (5.92)

5.2.3 Multicast with logarithmic utilities

Let us now apply our model of multicast for the case of user utilities being loga-
rithmic. Let us write Gr = {r′ : xr′ = xr} for the multicast group of user r, and

gr =
∑

r′∈Gr
wr′ for the total weight of that group, and S =

∑

r wr for the total
weight. The user problem then is

MULTICAST_LOGUSERr(ur)

max
(

αr log
(gr

S

)

− wr

)

over wr (5.93)

subject to

wr ≥ 0. (5.94)

For the derivative, we get

d

dwr
(ur() − wr) =

αrS

gr

(

1

S
− gr

S2

)

− 1 (5.95)

=
αr

gr

(

1 − gr

S

)

− 1 (5.96)
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Thus the derivative is nonnegative as long as

gr ≤ S
αr

αr + S
, (5.97)

and zero if equality holds. Similarly as in the case for linear utilities, the latter

is the case only for those users r for which αr is maximal within their group, and
consequently, for the remaining users r′, we have wr′ = 0.

Fact 62. The coordination ratio for multicast users with logarithmic utilities can
become arbitrarily bad.

Proof. Let there be two multicast groups: one with n members and one with only 1
member. Suppose for all users r we have αr = 1. According to fact 59, the optimal

utility is

uopt = n log
n

n + 1
+ log

1

n + 1
(5.98)

= n(log n − log(n + 1)) − log(n + 1). (5.99)

The nash utility is

unash = n log
1

2
+ log

1

2
(5.100)

= −(n + 1) log 2. (5.101)

This implies

lim
n→∞

unash
uopt

=
−(n + 1) log 2

n(log n − log(n + 1)) − log(n + 1)
(5.102)

= ∞.

5.3 General case for multicast

From the formulation of the multicast user problem for general utility functions
(5.14) we get

d

dwr

(

ur

(

gr

wr + Wr

)

− wr

)

= u′
r

(gr

S

) S − gr

S2
− 1 (5.103)

This is positive if and only if

u′
r

(gr

S

)

>
S2

S − gr
(5.104)

The right-hand side of (5.104) is identical for all users in a group. At the equilibrium,
only those users r for which u′

r

(

gr

S

)

is maximal among r′ ∈ Gr have positive weight

while the others prefer to benefit from free service.
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This means that if multicast users submit individual weights to the mechanism,
the resource share they are assigned does not in general increase with the total

utility of the multicast group, but rather with the maximal individual utility. Thus,
the equilibrium solution of the resource share problem is far from efficient.

5.4 Summary

In this chapter, we showed that the classical indirect bandwidth allocation mecha-

nism introduced by Kelly cannot easily be applied to multicast settings without loss
of much of its efficiency at equilibrium. If utilities are linear, Kelly’s unicast mech-

anism has coordination ratio of at most 4
3 while if applied to multicast settings, the

coordination ratio is unbounded. In the general case and even in the case of log-
arithmic utilities, neither the unicast nor the multicast mechanisms have bounded

coordination ratio, however, the multicast coordination ratio can’t be bound even in
terms of the logarithmic unicast coordination ratio.
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6 Publish/subscribe systems

6.1 Publish/Subscribe Systems

6.1.1 Introduction

Part of the work presented in this chapter were published in [77] and presented as
brief announcement at DISC 2004, and in [75].

In many applications today, conglomerates of independently created components

have to be integrated into increasingly complex information systems. It is becom-
ing more and more obvious that for large-scale distributed applications a loosely-

coupled event-based style of communication has many advantages: it facilitates the
clear separation of communication from computation and eases the integration of

autonomous, heterogeneous components into complex systems.
Publish/subscribe systems implement the event-based style: individual process-

ing entities, which we call clients, can publish information without specifying a
particular destination. Similarly, clients express their interest in certain types of

information by subscribing, so clients can be producers and consumers at the same

time. Information is encapsulated in notifications and the notification service is re-
sponsible for notifying each consumer about all occurrences of notifications which

match one of its subscriptions.

6.1.2 Importance for mobile applications

In comparison to classical client/server systems, the publish/subscribe paradigm

offers serious advantages in information-driven applications. Here, a client is not
obliged to poll a data source for updates – she just subscribes for information she

is interested in and gets informed whenever new data is available that fits his sub-
scription. In consequence, a loose coupling is achieved and lots of network traffic

can be economized. Applying pub/sub in commercial applications the bandwidth
savings can become a substantial argument, especially when clients need to get

informed in realtime about updates with bandwidth being expensive and scarce.
Consider for example a wireless network of battery-driven info-nodes with clients

connected locally to the nodes by wire. Obviously, the bandwidth between the nodes

is restricted and data transmission comes at the cost of valuable battery lifetime. In
this scenario, to decide if a client, subscribing to some information, will finally be

served, depends on its “utility” from the data. For example, a subscriber employed
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in a research institute, may have a high utility of news from the scientific community,
published by newstickers from different news agencies. Thus, his subscription may

get served by the network while another subscription for less important news about

sports would not. Obviously, for the network operator in this scenario, finding out
over which links a message should be sent is a very expensive task regarding the

message and network complexity. Additionally, for encouraging the clients not to
lie about their utility, a price for the subscription has to be calculated and charged.

This price depends on the costs for the transmission and the utility of other clients
served on the same network-path. Of course calculation has to be redone every

time some change occurs in the network (e.g. a node (un)subscribes or a publisher
(un)advertises).

6.1.3 Why formalization?

There is a considerable amount of work on notification services, and many concrete
systems have been designed and implemented (e.g., Siena [14], JEDI [16], etc.).

Unfortunately, understanding and comparing these systems is difficult because of
differing and informal semantics. Research in the area of publish/subscribe has

concentrated on informal analyses and systems offering best-effort functionality.

Eugster et al. [22] give an overview about publish/subscribe systems and their rel-
atives. With the increasing popularity of publish/subscribe, however, the need for

a formal treatment and for systems guaranteeing more stringent properties is aris-
ing. A clear and detailed formalisation allows the behaviour of the system to be

described unambiguously and provides a basis for further reasoning, e.g. about the
correctness of the system. Formalisations have been proved useful in many areas

of distributed computing. However, the specification and verification of distributed
systems is a complex task. A variety of techniques (e.g. petri nets, temporal logic,

automata) have been proposed, each having its own set of strengths and weak-

nesses.
Propositional linear temporal logic (PTL) [59, 46] has proved to be a powerful

tool to characterise and verify the behaviour of concurrent distributed systems [28].
Fiege, Mühl, and Gärtner [27, 55] introduced a formal specification of publish/sub-

scribe systems using linear temporal logic. In their work, a requirement specifi-
cation for publish/subscribe systems consisting of safety and liveness properties is

introduced. To the authors best knowledge no other formalisation for publish/sub-
scribe systems has been proposed yet. Datta et al. [18] informally state liveness

and safety conditions, however, only for static subscriptions and not paying respect

to the distributed nature of publish/subscribe systems by implicitly assuming global
time. Courtenage [15] offers a description of event types using the λ-calculus, al-

lowing a formal specification of filters. However, system states and correct system
behaviour are not addressed in this work.

In this paper, we rewrite the formalism presented in [27, 55] such that it is
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strictly propositional and extend it to provide message completeness guarantees.
In a message-complete publish/subscribe system, the system eventually acknowl-

edges every subscription and guarantees the delivery of notifications matching an

acknowledged subscription from this time on. In a system without message com-
pleteness, the delivery of all notifications matching a subscription is also eventually

guaranteed, but the consumer is not aware of the time from which on completeness
is guaranteed.

The remainder of this paper is structured as follows: Sect. 6.2 introduces a formal
specification for message-complete publish/subscribe systems. Then, we present an

implementation framework in Sect. 6.3 that realizes message completeness on top
of a system without this guarantee. The approach of separating the development of

an axiomatic formalism from the description of a possible implementation enables

precise formulation of axioms on the distributed state of publish/subscribe systems,
and provable statements on the implementation’s properties regarding these ax-

ioms.

6.2 Formal specification

6.2.1 Propositional temporal logic and traces

Propositional linear temporal logic (PTL) uses formulas recursively built from atomic

propositions, the elementary state predicates, which are predicates on the finite
set S of states, propositional logical connectors ∨,∧,¬,⇒ and temporal quantifiers

U ,�,♦ and e.

For our purpose, we are a little more precise about the structure of S: The state
s ∈ S of a system is an assignment s = s : V 3 v 7→ s(v) of the state variables v ∈ V
to some value s(v) ∈ range(v). Both domain and range of s are assumed to be finite.
The semantics of PTL is defined by the notion of traces. A trace σ is a sequence

of finitely many states
σ = sσ

0 , sσ
1 , . . . , sσ

n (6.1)

An ω-trace is an infinite sequence

σ = sσ
0 , sσ

1 , . . . (6.2)

of states.
Let Σ be the set of all traces and Σ∗ the set of all ω-traces. For σ ∈ Σ, σ′ ∈ Σ ∪ Σ∗,

we say that σ′ extends σ if σ = sσ′

0 , sσ′

1 , . . . , sσ′

n for some n ≥ 0. For σ ∈ Σ, define
σ∗ = {σ′ ∈ Σ∗ : σ′ extends σ}. The collection {σ∗ : σ ∈ Σ} of base-open sets induces

a topology for the space Σ∗.

Proposition 63. Let Σ0 ⊆ Σ. Then

Σ∗
0 = {σ∗ ∈ Σ∗ : if σ ∈ Σ such that σ∗ extends σ,then σ ∈ Σ0} (6.3)
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is a closed subspace of Σ∗.

Proof. Let σ be in the closure of Σ∗
0, that is, all initial segments of σ can be extended

so that the extension is in Σ∗
0. But then, all initial segments of these extensions are

in Σ0. Therefore all initial segments of σ are in Σ0.

Definition 64. Let Σ0 ⊆ Σ be a set of traces. We say that Σ0 is

• closed under initial segments, if sσ
0 , . . . , sσ

i , sσ
i+1, . . . , s

σ
n ∈ Σ0 implies that sσ

0 , . . . , sσ
i ∈

Σ0 for arbitrary 0 ≤ i ≤ n,

• closed under suffixes, if sσ
0 , . . . , sσ

i , sσ
i+1, . . . , s

σ
n ∈ Σ0 implies that sσ

i , sσ
i+1, . . . ∈

Σ0 for arbitrary 0 ≤ i ≤ n„

• closed under stuttering, if sσ
0 , . . . , sσ

n ∈ Σ0, implies that

sσ
0 , . . . , sσ

i , sσ
i , . . . , sσ

i , sσ
i+1, . . . , s

σ
n ∈ Σ0 (6.4)

for arbitrary 0 ≤ i ≤ n, and

• closed under skipping states, if sσ
0 , sσ

1 , . . . , sσ
n ∈ Σ0 implies that

sσ
0 , . . . , sσ

i−1, s
σ
i+1, . . . , s

σ
n ∈ Σ0 (6.5)

for arbitrary 0 ≤ i ≤ n.

By definition, an elementary state predicate applied to a trace σ = sσ
0 , sσ

1 , . . . , sσ
n

always refers to state s0. For instance, the predicate “v = v0” for some state variable
v ∈ V and some v0 ∈ range(v) is true for trace σ iff s0(v) = v0.

Temporal logic allows us to state properties for a trace by introduction of the
additional quantifiers U ,�,♦, and e. For some formulas φ, φ′ and σ = sσ

0 , sσ
1 , . . . , sσ

n,

1. φUφ′(σ) holds if either for all i, φ holds for the trace sσ
i , sσ

i+1, . . ., or there is k

such that φ′ holds for sσ
k , sσ

k+1, . . . and φ holds for sσ
i , sσ

i+1, . . . for i < k1,

2. ♦φ(σ) holds iff there exists i such that φ holds for the trace sσ
i , sσ

i+1, . . .,

3. �φ(σ) holds iff for all i, φ holds for the trace sσ
i , sσ

i+1, . . .,

4. eφ(σ) holds iff φ holds for the trace sσ
1 , sσ

2 , . . ..

Alpern and Schneider [3, 4] give a definition of safety and liveness conditions in

this context, and a topological characterisation of them:

Definition 65. A predicate P is a safety predicate if the following holds for σ ∈ Σ∗
0:

If for any i ≥ 0, there is σ′ ∈ Σ∗
0 such that σ′ extends sσ

0 , . . . , sσ
i and P satisfies σ′,

then P satisfies σ. A predicate Q is a liveness predicate if for any σ ∈ Σ0, there is
an extension σ′ ∈ Σ∗

0 of σ satisfying Q.

1Note that our U is written as W (waiting for) in [46].
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Definition 66. Let Σ0 be closed under final segments. Q is absolute liveness pred-
icate in Σ∗

0 if for any ω-trace σ = s0, s1, . . . ∈ Σ∗
0, if there is an i ≥ 0 such that Q

satisfies si, si+1, . . ., then Q satisfies σ.

With this definition, it is easy to see that P is a safety predicate exactly if the set
of ω-traces satisfying P is closed in Σ∗, and that Q is a liveness predicate, if and only

if the set of ω-traces satisfying Q is dense in Σ∗. [73] gives a sufficient syntactical
condition of safety predicates:

Theorem 67 (Sistla). Every elementary state predicate is a safety predicate, and if
P and Q are safety predicates, so are P ∧ Q, P ∨ Q, eP , �P and P UQ.

Sistla gives the following strengthening of safety:

Definition 68 (Sistla). P is a strong safety predicate, if P is a safety predicate and
closed under stuttering and skipping states.

Sistla also defines

Definition 69 (Sistla). P is an L-safety predicate, iff for any σ = sσ
0 , sσ

1 , . . ., P sat-
isfies σ if and only if for all i ≥ 0, the trace σ′ = sσ

0 , . . . , sσ
i , sσ

i , sσ
i , . . . is satisfied by

P .

Proposition 70 (Alpern and Schneider[2]). If P is closed under stuttering, then P

is a safety predicate if and only if P is an L-safety predicate.

6.2.2 Formalising publish/subscribe systems

In [55], a formal specification of publish/subscribe systems has been given by defin-

ing axioms about the admissible sequences (traces) of interface operations and
client states. We will present a formalism that differs from that one by

a) being strictly propositional, using only predicates on states rather than on

state transitions, and

b) giving message completeness guarantee.

6.2.2.1 State variables and Interface

We now define the state variables of message complete publish/subscribe systems.
State transitions are triggered by interface operations op : S 7→ S.

Definition 71. The state of a client c of a publish/subscribe system with message
completeness guarantee is determined by the following variables:

• the input variable for the publisher’s role Pc, the set of notifications n pub-
lished by c,
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• the variables for the subscriber’s role,

– output Dc, the set of notifications that c received,

– output Ddup
c , the set of notifications that c received at least twice,

– input Sc, the set of active subscriptions of c.

– output Sack
c , the set of acknowledged subscriptions of c.

The input state of the system is defined to be the state restricted to the input vari-
ables, and similarly, the output state is defined.

Next we define the operations that trigger state transitions. We write the oper-

ations as op : v 7→ v′, to be understood as operation op transforming state v ∈ S to
v′ ∈ S.

Definition 72. The interface of a publish/subscribe system with message complete-

ness guarantee contains the following operations:

• operations called from the environment:

– pub(c, n) : Pc 7→ Pc ∪ {n}, client c publishes notification n

– sub(c, F ) : Sc 7→ Sc ∪ {F}, client c subscribes to filter F

– unsub(c, F ) : Sc 7→ Sc \ {F}, client c unsubscribes from filter F

• operations called by the system:

– notify(c, n, p) : Ddup
c 7→ Ddup

c ∪(Dc ∩ {n}) ,Dc 7→ Dc∪{n},, client c is notified
about n coming from publisher p

– ack(c, F ) : Sack
c 7→ Sack ∪ {F}, client c is notified that from now on, notifi-

cations matching F will eventually be delivered to c

The initial state of the system is defined to be the state sinit with Pc = Dc = Ddup
c =

Sc = Sack
c = ∅ for all clients c.

Definition 73. For a trace σ = sσ
0 , sσ

1 , . . . , sσ
n, let the input-restriction of σ, denoted

by σinput, be the sequence of the input states σinput = sinput0 , sinput1 , . . . , sinputn . Similarly,
we define the notion of output-restriction.

Definition 74. Let σ = sσ
0 , sσ

1 , . . . , sσ
n be a trace. The reduction of σ is defined to be

the largest subsequence2 σ′ = sσ
k0

, sσ
k1

, sσ
k2

, . . . of σ such that for all i ≥ 0, sσ
ki+1

6= sσ
ki
.3

We say that a trace σ = sσ
0 , sσ

1 , . . . , sσ
n is input-admissible, if there is a sequence

op0,op1, . . . ,opm of interface operations such that the input-restriction of the reduc-
tion of σ is a subsequence of the input-restriction of sinit,op0(sinit),op1(op0(sinit)), . . ..
Similarly, we define the notion of output-admissibility.

2Remember that a sequence 〈si : i ∈ N〉 is a subsequence of 〈tj : j ∈ N〉 if there is a strictly
monotonous sequence 〈li : i ∈ N〉 of natural numbers such that for all i, we have si = tli .

3Note that although 〈ki : i ∈ N〉 is not uniquely determined, σ′ is.
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Note the following facts:

Fact 75.

• The operations pub, sub, and ack are idempotent for publish/subscribe systems
with message completeness guarantee.

• σ = sσ
0 , sσ

1 , . . . , sσ
n is input-admissible if and only if the sequence of sets 〈Pc(s

σ
i ) :

0 ≤ i ≤ n〉 is monotonously increasing for all clients c.

• σ = sσ
0 , sσ

1 , . . . , sσ
n is output-admissible if and only if the sequences of sets

〈Dc(s
σ
i ) : o ≤ i ≤ n〉 and 〈Ddup

c (sσ
i ) : o ≤ i ≤ n〉 are monotonously increas-

ing for all clients c.

• The set of input admissible traces is closed under initial segments, suffixes,
stuttering and skipping states, and so is the set of output admissible traces.

6.2.2.2 Axioms of liveness and safety.

We now present the axioms of message complete liveness and safety.4

Definition 76. We say that a publish/subscribe system satisfies message complete

liveness, if

�[�F ∈ SY ⇒ ♦�F ∈ Sack
Y ] (6.6)

�[(�F ∈ Sack
Y ) ∧ (n /∈ PX) ⇒ (♦(n ∈ PX ∧ n ∈ F ) ⇒ ♦n ∈ DY )] (6.7)

Condition (6.6) guarantees that subscriptions which are not subsequently can-

celled will eventually be acknowledged. Condition (6.7) says that once a subscrip-
tion was acknowledged, matching notifications published thereafter will eventually

be delivered to the subscriber.

Proposition 77. Conditions (6.6) and (6.7) are absolute liveness predicates in the
sense of definition 66.

Proof. Let σ = sσ
0 , sσ

1 , . . . be an ω-trace such that for some suffix sσ
i , sσ

i+1, . . . of σ,
condition (6.6) holds. We have to prove that � F ∈ SY ⇒ (♦�F ∈ Sack

Y ) holds for

all sσ
j , sσ

j+1, . . .. This is clear for j ≥ i, so let now j < i and suppose that sσ
j , sσ

j+1, . . .

satisfies � F ∈ SY . Then also sσ
i , sσ

i+1, . . . satisfies � F ∈ SY and consequently ♦F ∈
Sack

Y , which thus is also satisfied by sσ
j , sσ

j+1, . . .. The proof for condition (6.7) is

similar.
4Strictly spoken, these are axiom schemata, as they are supposed to hold for any clients X, Y , no-
tifications n, and filter F . Also note that we silently use operations on sets and integers in our
formulas. This does not alter expressibility since there are only finitely many states.
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Definition 78. We say that a publish/subscribe system satisfies message complete
safety, if

�
[

Ddup
Y = ∅

]

(6.8)

�

[

n ∈ DY ⇒ n ∈
⋃

Y

PY

]

(6.9)

�

[

n /∈ DY ∧ en ∈ DY ⇒ en ∈
⋃

Y

SY

]

(6.10)

Message complete safety means that clients will be only notified about notifica-

tions that were published by someone and are matching some subscription of that
client, and that there are no duplicate notifications.

As a direct consequence of Sistla’s theorem, we have

Proposition 79. The conditions of definition 78 are safety predicates in the sense
of definition 65. They also satisfy strong safety and L-safety.

Now we can define message complete correct publish/subscribe systems.

Definition 80. We say that a publish/subscribe system is message complete cor-
rect, if for all traces σ of states of the system that are input-admissible, σ is output
admissible and satisfies safety and liveness.

6.3 Implementation

In the last section, we gave an axiomatic description of the desired behaviour of a
message complete publish/subscribe system. This section, being titled implementa-
tion, has to start questioning what implementation of a system does actually mean in
this context. Practically, a system is implementable if it can be programmed on some

hardware using some programming language. From a theoretical point of view, the

implementation of some systems are described via system specification as opposed
to the requirement specification we have given above. There are many techniques

usable for system specification. However, one that is closely related with temporal
logic is based on fair transition systems [46, 47]. Fair transition systems have an

intrinsic temporal semantic and therefore can be used to derive requirements (our
axioms of liveness and safety) from the system specification.

Moreover, Manna and Pnueli introduce a simple command-style programming lan-
guage (SPL) that, additionally to the standard set of assignment, conditional and

loop statements, provides for semaphores and commands for channel-oriented, first-

in-first-out asynchronous and synchronous message passing. They give a semantic
interpretation of their language by defining an equivalent fair transition system.
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6.3.1 Specifying module interfaces

The interaction of a system with its environment is described by module specifica-
tions. The interface of a module to its environment is defined by the declaration of
in, out, and external variables. Additional, a module can declare local variables.

A module can read and write to local variables. Local variables cannot be seen
by other modules. in variables are read-only for the module, out variables write-

only. Variables declared external can be written to by other modules (if properly
declared there).

The body of a module contains its system specification, written in SPL. For details,

we refer to [46, 47].
So one approach of defining an implementation of a correct publish/subscribe

system would be to define a module with the interface specification

module

2 external in Sc for every client c

out Sack
c for every client c

external in Pc for every client c

out Dc for every client c

[ body ]

This listing reflects that the module watches the externally manipulated variables

Sc, Pc of subscriptions and notifications and computes from this the states of the
subscriptions, that is, Sack

c , and writes out notifications to Dc. Suppose that the

body of the module is such that it can be shown that correctness in the sense of
definition 80 is always satisfied, is this an implementation of a publish/subscribe

system that could be used as a model for a real-life implementation?

We suggest that the answer is no. Indeed, the module specification does not at
all reflect the fact that communication between the clients is asynchronous. If sub-

scriptions, notifications and notifications are performed synchronously, the whole
implementation gets quite trivially – in particular, there is no need for a requirement

specification using temporal logic with its ♦ modifier at all, since subscriptions and
notifications can be propagated immediately.

This is why we explicitly model the network topology of our implementation. So
let there be given finite sets of clients c ∈ C and notifications n ∈ N . For every filter

F ⊆ N , let there be a constant symbol F .

Nodes in our communication network are called brokers b ∈ B. For every client
c, we assume there is a local broker bc ∈ B that has bidirectional synchronous

communication with c. For a given broker b, let Lb be the set of b’s local client,
that is, the set of clients c for which b is the local broker. Assume that B is a finite

set, and that the set of asynchronous communication channels between the brokers
forms an acyclic undirected graph G. Let Nb the set of neighbour brokers of b, that

is, the set of brokers with whom b has a shared edge in G.
The system specification of our composed module has the form
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M=[module

// for every client c

external in subc→

4 external in pubc→

out ack→c

out notify→c;

‖b∈B Mb

]

where Mb is the module specifying the behaviour of broker b.
We assume that the client state variables of definition 71 behave as given in defi-

nition 72.
To reflect the fact that the brokers communicate per asynchronous messaging, we

specify two asynchronous channels- one for every direction of message passing- for
every edge in G. So for b′ ∈ Nb, let channel b→b′ be the asynchronous communication

channel from b to b′, and channel b′→b the channel from b′ to b. Now we can specify
the interface of the modules Mb for brokers b ∈ B:
Mb=[module

2 // for every local client c ∈ Lb

external in subc→b

external in pubc→b

out ackb→c

out notifyb→c

7

// for every neighbour broker b′ ∈ Nb

external in channelb′→b channel

external out channelb→b′ channel;

[body]]

Note that the interface of the module Mb is split into one part (the intersection

of Mb’s interface with M ’s) that is visible from outside of the composed module M ,
and another part that is used only by the other submodules Mb′ .

Our road map is to specify the bodies of the modules Mb such that for the com-

posed module M , the axioms of safety and liveness are modularly valid.
We have not yet defined the types of our variables. We will formally let them have

integer type and informally assume a bijections between the “real” ranges of our
variables (filters for the sub variables, etc) and finite subsets of the integers. This

allows us to write in our specification statements like

l0 : channelb′→b ⇒ m;

l1: i f m = sub(F )

. . .

where l1 stands for m = i for some integer i.
Informally, the variables are of the following types:

subc→b of type set of filters
2 ackb→c of type set of filters
pubc→b of type notification
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notifyb→c of type notification
channelb→b′ of type channel of messages from alphabet Σb→b′

Let us now define the message alphabets Σb→b′ for neighboured brokers b and b′.
While for the communication between clients and their local brokers the interface
operations sub , pub , unsub , ack , notify are used, brokers among themselves use

operations that are hidden from the local clients. The following message types are
used for inter-broker communication between neighboured brokers b and b′:

Definition 81. The message alphabet Σb→b′ consists of the following messages:

• forward(n, p) for notification n and client p,

• admin(S,U), and

• admin_ack(S,U) where S and U are sets of filters.

Informally, channel b→b′ ⇐ forward (n, p) means that broker b forwards to neigh-
bour broker b′ the notification n that was published by client p. channel b→b′ ⇐
admin_ack(S,U) means that broker b requests neighbour broker b′ to forward noti-
fications matching some filter in S, but not to forward notifications matching some

filter in U . channel b→b′ ⇐ admin_ack(S,U) means that broker b confirms that he is
forwarding notifications matching a filter in F but not those matching a filter in U .

6.3.2 State variables

We will now informally introduce the local state of the brokers. Since (as we will
see) the set of possible states is finite, we can add a single local integer variable v to

the module specification, assume a 1-1 mapping between states and some integers,
and thus are allowed to write statements of the form

i f (informally described state predicate) then

change state
endif

which can be translated into a statement of the form

i f (v = v1 ∨ v = v2 ∨ . . . ∨ v = vn) then

2 v = v′

endif

Brokers b maintain

• a private routing table Tb containing pairs (F, d) where F is a filter and d is a
destination, i.e. a local client or a neighbour broker. For a destination d of b,

we write T
|d
b for {F |(F, d) ∈ Tb}.

• a private pending acknowledgements table Pb containing an entry for every
admin message that the broker still needs to acknowledge, and a list of de-

pendent outstanding acknowledgements. Note that for every possible filter
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set pair (S,U), there is maximally one entry in Pb, and the number of possible
dependencies is finite. Thus, there are only finitely many possibilities for Pb.

• working copies of the externally written variables sub c→b and pub c→b, named

subwork
c→b and pubwork

c→b .

Under the assumption that there are only finitely many filters, it is guaranteed that

there are only finitely many possible states for every broker.

6.3.3 The Framework Algorithms

Now, we give a description of the bodies of the submodules Mb. We will do that in

an informal way, which is justified since there are finitely many modules and every
module can assume only finitely many states. Therefore, we can freely use loops and

iterators, and can write statements like send message m to all neighbour brokers.
Fig. 6.1 gives the framework of the body of the module Mb. The state transitions

are performed in the subprocedures processAdminMessage , processAdminAckMessage
and processNotification. Furthermore, forward and pub messages are processed by
the processNotification procedure, sub , unsub and admin messages are processed

by processAdminMessage procedure, and admin_ack messages are processed by
processAdminAck procedure. These procedures we will describe informally. Trans-

lation into the module body is straightforward.

6.3.3.1 The procedure processNotification

The procedure processNotification(d, n) takes a destination d and a notification n as
parameters and does the following:

• It sends a forward (n) message to all channelb→b′ variables with b′ 6= d for

which there is an entry (F, b′) ∈ Tb such that n ∈ F and

• adds n to all notifyb→c variables for which there is F ∈ sub c→b matching n.

6.3.3.2 The procedure processAdminMessage

This procedure takes a destination and two filter sets S and U as parameters. This

procedure is called when admin messages from neighbour brokers are received
and when subscriptions and unsubscriptions are issued by local clients: If broker

b1 receives admin(S,U) from neighbour b2, processAdminMessage(b2,S,U) is called
(line 30). If a new subscription F is issued by a local client c, administer(c, {F}, ∅)
is called (line 10), and respectively processAdminMessage(c, ∅, {F}) for an unsub-
scription (line 15). processAdminMessage calls the administer procedure with the

same parameters. administer encapsulates the applied routing algorithm and trig-
gers changes in the routing configuration. These changes are performed at b1 in

two ways:
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1. by transforming his own routing table Tb1 , and

2. sending out new admin messages to some subset of his neighbours except b2.

We say (cf.[55]) that the local transformation algorithm satisfies the restricted change
condition, if b3 6= b2 implies that (T ′

b1
)|b3 = T

|b3
b1

, that is, b1 does not change his routing

behaviour for destinations different from b2. Furthermore, we say that the algorithm
satisfies the restricted impact condition if the result of the transformation depends

only on the value T
|b2
b1

.
Let us call S the positive part of the message, and U the negative part. We require

the following condition: if administer(d,S,U) is called at broker b with S = ∅, then
⋃

(T ′
b)

|d ⊆ ⋃

T
|d
b . This condition ensures that only the positive part of an admin

message can cause
⋃

T
|d
b to increase. administer returns a pair (MS ,MU ) where

MS and MU assign filter sets MS(b3) and MU (b3) to each neighbour broker b3 of

b1. Broker b1 sends admin(MS(b3),MU (b3)) to b3 if one of these sets are nonempty.

In order to acknowledge subscriptions, brokers will reply to admin messages with
admin_ack messages by the following rule:

• If the incoming admin message triggers only admin messages with empty pos-

itive part, and there are no entries in the pending list, it is immediately replied

by admin_ack .

• Otherwise, the admin messages that are sent out are added to the pending list
and dependencies are marked. The reply will be sent as soon as b has received

admin_ack replies for all marked entries in the pending list.

The case for subscriptions and unsubscriptions of local clients is similar.

There is one point in this algorithm that we have to pay attention to: Suppose
b′ sends three admin messages to b: the first one subscribes b′ to F , the second

one unsubscribes F , and the third one subscribes F again. Now b sends out admin
messages accordingly, and waits for acknowledgements in order to acknowledge to

b′. But how can b distinguish incoming admin_ack messages referring to the first of

b′’s message, from the ones referring to the third? Note that b can do this distinction,
even if there are only finitely many states. Let us explain how this can be done:

Two nodes, front (f ) and back (b), are bidirectionally connected via asynchronous
communication. Both have the states up and down, and have to obey to the follow-
ing rules:

• never may f be up when b is down,

• if f is down, eventually b will be.

Now f receives synchronous signals go up and go down. Upon receiving go down,
f must do so immediately and signal acknowledgement. Upon receiving go up, f
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must eventually go up and then signal acknowledgement. f can assume only finitely
many states.

How to achieve this? f maintains the three Booleans is_hot, last_sent, channel_free.
Upon receiving go up or go down, f sets is_hot accordingly to true or false. In case
of go down, f changes state and acknowledges. If channel_free, it forwards the sig-
nal to b and sets last_sent accordingly. b changes state according to the messages
received from b and sends acknowledgement. When f receives acknowledgement
for go up from b, it checks is_hot and if this is true, assumes state up and signals ac-
knowledgement. Otherwise, it sends go down to b. If f receives acknowledgement
for go down, and is_hot is true, it sends go up to b. If f has sent no message upon
receiving acknowledgement from b, it sets channel_free to true.
Now b maintains the three flags for every pair (S,U) (of the finitely many pairs

that exist), thus guaranteeing that the admin_ack it sends to its predecessor b′ are
never out of date.

6.3.4 Valid routing algorithms

The routing framework described above depends on the implementation of the

administer procedures and on the initial states for Tb. [55] give classes of administer
procedures that (with proper initial values for Tb) lead to systems that satisfy the

safety and liveness axioms defined there. One can prove that these classes do in

fact yield systems which satisfy the stronger axioms given here.
The most trivial example of an implementation of the administer procedure is the

one that leads to routing by flooding: suppose in initial state, brokers forward ev-
ery notification to all neighbour brokers (except the one that sent it). Suppose the

administer procedure does nothing, that is, returns (∅, ∅) for all inputs. We claim
that then, the system is correct in the sense of definition 80. Indeed, it is obvious

that our system produces admissible output. Furthermore, since never admin mes-
sages with nonempty positive part will be triggered, any incoming subscription will

be acknowledge at once. Anyway all brokers see all messages, so the second step of

processNotification ascertains that subscribed notifications will be duly delivered.

Another example of routing is simple routing. Here, the administer procedures

work the following way: administer(b′,S,U) returns (MS ,Mu), where

MS(b′′) = S (6.11)

MU (b′′) = U (6.12)

for all neighbour brokers b′′ 6= b′ of b. Here, admin_acks will be sent first by the
leaves of the network topology, that is by the brokers that have only one neighbour

broker. A subscription is answered by an acknowledgement similar to the echo
algorithm for message broadcast.

107



Other implementations of administer yield more efficient routing algorithms which
avoid flooding notifications or filters into the broker network. Covering-based rout-

ing, for example, assumes that it can be detected whether a filter matches a super-

set of notifications of another filter. The covering test is then used to restrict the
forwarding of new and cancelled subscriptions. This effects also acknowledging of

subscriptions. In Fig. 6.2, client c1 had issued subscription F which was already
acknowledged by the system. Then, client c2 issues a subscription G which is cov-

ered by F . In this case, b3 only forwards G to broker b1 and therefore only waits
for b1 to acknowledge G. Hence, after b3 received the acknowledgement from b1 it

acknowledges G to b2 which finally, acknowledges G to c2.

6.3.4.1 Correctness proofs by decomposition

We claim that with suitable implementation of administer , safety and liveness for-
mulas are modularly valid for the composed module M . To prove such a claim for

formula φ, one has to decompose φ into φb formulas such that for every submodule
Mb, the formula φb is modularly valid for Mb and the validity of all φb’s implies that

φ is valid. Manna and Pnueli [46, Proposition 4] prove that this is a correct rule for
composing modules, and that such a decomposition does always exist for modularly

valid formulas.

Let φsafety be an instance of one of the three safety conditions from definition 78.
For a submodule b, let φts

b be the formula that expresses the temporal semantics of

our system specification. It is quite straightforward to see that the conjunction of
the φts

b ’s implies φsafety.

The decomposition of liveness properties depends on the implementation of the
administer procedure. Note that changes in the broker’s routing tables Tb depend

exclusively on the values that the administer procedures return. Mühl gives in [55,
Definition 3.4] a sufficient condition for administer procedures that lead to correct

publish/subscribe systems. The decomposition of the liveness properties are based

on Mühl’s condition. We omit the details here.
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body of Mb

2 Tb = ∅;

Pb = ∅;

subworkb′→b = ∅

pubworkb′→b = ∅

while (true) do

7 forall (c ∈ Lb) do

forall (F ∈ subc→b \ sub
work
c→b) do

// new subscription

processAdminMessage(c, {F}, ∅);

subworkc→b = subworkc→b ∪ {F}

12 endforall

forall (F ∈ subworkc→b \ subc→b) do

// new unsubscription

processAdminMessage(c, ∅, {F});
subworkc→b = subworkc→b \ {F}

17 endforall

forall (n ∈ pubc→b \ pub
work
c→b) do

// new notification

processNotification(c, n);

pubworkc→b = pubworkc→b ∪ {n}

22 endforall

forall (b′ ∈ Nb)

channelb′→b ⇒ m; // non-blocking
[ // begin of atomic block

i f m is "forward(n)" message then

27 processNotification(b′, n);

endif

i f m is "admin(S ,U)" message then

processAdminMessage(b′,S ,U);

endif

32 i f m is "admin_ack(S ,U)" message then

processAdminAckMessage(b′,S ,U);

endif

] // end of atomic block
endforall

37 endwhile

endbody

Figure 6.1: Body of module Mb

109
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b4
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b1

c1

1. sub(c1, F )

c2

Broker

Client

(G, c2)

(G, b2)
(F, b1)

(F, b3)

2. ack(c1, F )

3. sub(c2, G)

(F, c1)
(G, b3)

4. ack(c2, G)

Figure 6.2: Acknowledging a subscription with covering-based routing (F covers G).
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6.4 Pricing in publish/subscribe systems

6.4.1 Publish/Subscribe pricing as special multicast pricing

In recent years, lots of research has been conducted about pricing-mechanisms for
routing e.g. in ad hoc networks and multicast systems. The algorithms presented in

this paper are the first realizing pricing in publish/subscribe systems. We consider

scenarios with more than one publisher and a dynamic change at the publisher
and subscriber groups. When filters that clients subscribe for overlap, the saved

bandwidth is not credited to the clients. We leave this point open for future work.
Thus, for simplicity we assume a set of disjoint filters the clients may choose from.

In this scenario, publish/subscribe can be seen as a special type of multicast group
communication with two types of groups: sender groups, which publish notifications

matching certain filters, and receiver groups, which are subscribed to selected fil-
ters. Clients have “cheap” communication with their local brokers. In particular,

we assume that there are no costs for communication between a client and his lo-

cal broker. On the other hand, communication between brokers is assumed to be
“expensive”. The costs incurred by inter-broker communication can be modelled

in many ways. The simplest approach is to assume a fixed amount per link that is
charged whenever the link is used as part of the data transmission. This can be gen-

eralized to allow different service levels, or transmission rates, with distinct prices
for every level. We will go into this point when talking about extensions to multiple

rates.
The results in this chapter build on pricing mechanism for multicast groups with

one sender and many receivers. Feigenbaum et al. [26] consider marginal cost pric-

ing and Shapley value pricing for mechanisms that compute the optimal receiver
subtree of a multicast stream, and the payments of every receiver. Their results

were extended by Bläser [7, 8] and Adler and Rubinstein [1] who extended the
all-or-nothing approach of Feigenbaum et al. and considered the possibility that

receivers are served with different service levels, and that there are costs incurred
by “enabling” a node to multicast.

Naturally, in the enterprise one has to consider more costs than just the ones
caused by the technical infrastructure. For instance, the publishers may charge

for the actual contents they transmit to the subscribers. As this paper takes the

computer science perspective on business, we do not consider other costs than the
ones of data transmission. Also, we assume that the complete broker network is

under one administrative domain and payment goes to the network. We do not
provide a mechanism how to split the revenue between the network links. On the

other hand, every client is seen as an independent agent. It can play both, the role
of publisher, and the role of subscriber.

The rest of the paper is structured as follows: Section 6.4.2 introduces the used
notation and basic facts. In Section 6.4.3 we present a pricing algorithm for the case
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where the structure of the network is stable. We extend this algorithm in Section
6.4.4 to cope with changes in the utility of clients and new (un)advertisements.

Finally, Section 6.4.6 provides an extensions for multiple rates.

6.4.2 Notation and General Facts

A publish/subscribe systems consists of a set of clients which are connected by a

network of brokers. Every client c is connected to exactly one broker bc, the local
broker of c. Let C be the set of all clients, and B be the set of all brokers. For

a broker b, let Lb be the set of local clients of b. The network is assumed to be

undirected and acyclic such that for any two nodes, there is a unique path between
them. Communication between clients and their local brokers, and inter-broker

communication is based on messages. We assume that message transmission is
reliable first-in-first-out.

For communication with the broker network, clients use outbound messages of
the types publish, subscribe, unsubscribe, advertise and unadvertise and inbound

notify messages. For receiving messages, the client is interested in, she formulates
her interest as a filter which she sends in form of a subscribe message to its local

broker. In our model, a filter is some predicate on an attribute of a notification. The

filters diffuse through the broker network after a client subscription has been issued
based on the routing algorithm. They are used to build up the routing table at each

broker. A filter assigns Boolean true to a notification if this notificationsmatches the
filter (i.e. if the predicate of the filter is true for all considered attributes), or false

otherwise. Notifications are published by clients. A client announces her intention
of publishing notifications matching a filter F by sending an advertise message, and

revokes this announcement with an unadvertise message. If a client c subscribes
to a filter F , then (after possibly some delay, as formalized by Mühl and Tanner

[55, 77]), all notifications that match F , no matter who published them, must be

delivered to c via notify messages, until the client unsubscribes to this filter.
Let us now fix some filter F . Let P (F ) denote the set of clients that have ad-

vertised for F . We consider the set S(F ) of clients that are subscribed to F as a
user group that jointly uses, and shares the costs of, the tree spanned by P (F ). We

assume that for any link between two brokers, there is a fixed cost of using this link.
Rather than unconditionally subscribing to a filter, our clients send valuations

for a subscription to some filter F . Client c’s valuation for a subscription to F is
expressed via its utility, a nonnegative real.5

Costs, utility and advertisements are defined via profiles for a fixed broker topol-

ogy T and a fixed filter F . A profile for T is a triple P = (ξ, u, pub), where

• ξ is a function that assigns to every inter-broker link l a nonnegative real ξ(l),
the cost of l,

5We assume a quasilinear setting.
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Figure 6.3: Example publish/subscribe network

• u is a function that assigns to every client c a nonnegative real u(c), the utility
of c from a subscription for F ,

• pub is a function that assigns to every client c a Boolean pub(c), true exactly if
c has advertised for F .

For a given profile P = (ξ, u, pub), and a client c, define P|u(c)=0 be the profile that

results from P by changing client c’s utility to 0.

Every client c has free connection to its local broker bc. For a set of brokers B, let
T (B) be the minimal spanning tree connecting all brokers in B6, and ξ(B) be cost

of that tree, that is,
ξ(B) =

∑

l∈T (B)

ξ(l) (6.13)

For a set of clients C, define T (C) = T ({bc : c ∈ C}) the spanning tree connecting

all local brokers of clients in C.
Now assume that there is a special master broker bmaster. We view the broker

network as a tree rooted at bmaster. Let ch(b) be the children of b and let par(b)

be the parent of b in this tree. Let Suc(b) be the successor tree of b, that is, the
transitive closure of {b} under the ch operation.

6Note that since the topology is acyclic, this is well-defined.
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Figure 6.3 shows a possible network. Brokers are represented as circles, clients
as rounded boxes. The cost of an inter-broker link is printed next to the link. Inside

the boxes representing the clients, their utility (for a subscription for a fixed filter)

is printed, followed by a “P” if the client has advertised for this filter. The minimal
tree connecting all brokers with publishers as local clients is marked by a fat line.

The broker presented by the shaded circle functions as master broker.
An admissible multicast receiver tree for T is a connected subtree of T that con-

tains T ({c : pub(c) = true}).
Amechanism M for T is a function that takes a profile P as argument, and delivers

a pair (σP , πP) where σP assigns a Boolean7 σP(c) to every client c such that T (σP) =

{bc : σP (c) = true} is an admissible multicast receiver tree, and πP assigns a real

πP(c), the payment of c, to every client c.8

A mechanism M satisfies the no positive transfer condition, if π(c) ≥ 0 for all
clients c and all profiles. M satisfies voluntary participation, if always π(c) ≤
σ(c)u(c). M is budget-balanced, if always ξ(T (σ)) ≤ ∑

c π(c). M is strategyproof
if for all P, for all clients c, and for all x

σP(c)u(c) − πP(c) ≥ σPx

(c)u(c) − πPx

(c) (6.14)

where Px = P|u(c)=x is the profile used as input by M if c pretends to have utility x.
The social surplus generated by σ for the profile P = (u, ξ, pub) is

Surplus(σ,P) =
∑

c

σ(c)u(c) − ξ(T (σ)) (6.15)

Note that the social surplus has nothing to do with the payment function π of the

mechanism.
M is a marginal cost mechanism (MC )[54] if σ maximizes the social surplus, and

the payment function π is

π(c) = u(c) −
(

Surplus(σ,P) − Surplus(σ,P|u(c)=0)
)

. (6.16)

It is well-known that this mechanism belongs to the family of Vickrey-Groves-

Clarke mechanism and thus is strategyproof. On the other hand, it can easily be
seen that it is in general not budget-balanced: if there are at least two local clients

connected to every broker and the receiver tree does not change when any one local

client changes its utility to zero, then no client will pay anything for transmission.

6.4.3 Marginal Cost Mechanism for Publish/Subscribe Setting:

The Static Case

Assume that there is a master broker bmaster among whose local clients include at

least one publisher for F .

7Sometimes we will silently cast the Boolean to zero or one by the obvious mapping.
8We omit the superscriptP if there is no ambiguity.
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Then the algorithm presented in Figures 6.5 and 6.6 shows the marginal cost
algorithm for filter F . Note first that the algorithm is a generalization of the one

from Theorem 3.1 of [26]: if there is only one publisher, then this publisher plays

the role of bmaster and is the root of the tree, and the flags fα are not set for all
brokers different from bmaster. It is easy to see that in this case, the algorithm is

exactly the one presented by Feigenbaum et al.

Theorem 82. 1. The algorithm shown in Figures 6.5 and 6.6 computes a subtree
of the broker network that maximizes the social surplus, that is, the sum of the
utilities minus costs, and that is maximal among all trees with this property.

2. The payments computed in the algorithm are the ones defined by the marginal
cost mechanism.

Proof. 1. We prove this by induction on the number of nodes in the tree of all

brokers. The claim is trivial if there is only one node. So suppose the claim is
proven for trees with less than n nodes. Let T be the computed subtree of a

broker tree with less than n nodes, and T ∗ be an optimal subtree. We have to
prove that Surplus(T ) ≥ Surplus(T ∗), and that T ∗ ⊆ T .

Case T is empty, but T ∗ is not. Since T is empty, we have
∑

bβ∈ch(bmaster) W β < 0.

Now for every bβ, the induction hypothesis implies that W β ≥ Surplus(T ∗ ∩
Suc(bβ)). But then,

∑

β∈ch(bmaster) W β ≥ Surplus(T ∗) and consequently, T wouldn’t
be empty, a contradiction.

T is nonempty. This is similar: By induction hypothesis, for every child bβ of

bmaster, the computed subtree must be optimal. Therefore, the total surplus
of T must be maximal. The maximality of the tree follows from the fact that

subtrees with zero utility are included in T .

2. Now we have to prove that the computed payments are the ones from the MC

mechanism. Let bα be some broker in T , and let A be the message bα sends
to its children in Figure 6.6. Then the social surplus of T is decreased by A if

we cut from T the subtree rooted at bα. Now let c be some local client of bα.
If u(c) ≤ A, then A − u(c) ≥ 0 and bα would still be in the tree if c wouldn’t

participate. Thus c pays nothing in the MC mechanism, and neither does it in

our algorithm. Similarly, if u(c) > A, then bα would be cut from the tree (or no
multicast would take place at all, if there was a publisher behind bα), and the

marginal costs caused by c are exactly u(c) − A.

Note that the algorithm requires that the master broker has a publishing client:

otherwise, the computed multicast tree may be not optimal. To see this, assume a

broker topology as shown in Figure 6.4.3. Here, the optimal tree would contain only
b2 and b3. The algorithm fails to cut b1, since the master broker is always served if
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Figure 6.4: Master broker without publishing clients

the receiver tree is nonempty. On the other hand, it is easy to see that if all subtrees
rooted at the master broker’s children contain publishing clients, the computed tree
is correct even if the master broker itself doesn’t have publishing local clients.

Note also that there are no additional costs for the multi-publisher setting com-
pared to the multicast scenario of Feigenbaum et al.

Corollary 83. Receiver tree and payments of the marginal cost mechanism can be
computed with no more than two messages per link.

6.4.4 Dynamic Aspects: Changing Utilities and Publishers in the

Tree

We are interested in the re-computation of the multicast tree after clients change

utility, or advertise or unadvertise a filter. Let us first assume that the change does
not concern the property of the master broker being a publisher for the filter. It is

easy to see that in the worst case, utility changes or advertisements and unadver-
tisements have to be propagated through the complete tree. There is, however, an

obvious restricted-impact property of the tree:

Fact 84. Let T be a publish/subscribe network and let P = (ξ, u, pub) and P ′ =

(ξ′, u′, pub′) be two cost-utility-publisher profiles for T . Suppose that bmaster is a
broker with pub(bmaster) = pub′(bmaster) = true. Let bα be a broker such that T ({c :

pub(c) = true}) ∩ Suc(bα) = T ({c : pub′(c) = true}) ∩ Suc(bα). Further suppose that
the D sent to the children of bα is the same for both profiles. Then receiver tree and
payments, restricted to Suc(bα), are the same for both profiles.

If all publishing local clients of the master broker unadvertise and there is a sub-

tree rooted at one of its children that contains no publishers, a new master has to be
found. The algorithm in Figure 6.7 gives a distributed, self-stabilizing computation

of the marginal cost tree and payments.
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At all brokers bα

After bα has received message Aβ = (W β, fβ) from all

children β ∈ ch(bα)

/∗ The utility of bα is the sum of the utility of the ∗/
/∗ children ∗/

l1: uα ⇐∑

c∈Lbα
u(c)

l2: W α ⇐ uα +
∑

β∈ch(bα),fβ=1 or W β>0 W β − cα

/∗ Add the node to the receiver set if it has a ∗/
/∗ publishing local client or if one of the ∗/
/∗ descendants has one ∗/
fα ⇐ ∨

c∈Lbα
{c is publisher for F} ∨∨β∈ch(bα) fβ

/∗ Send an upward message with the computed ∗/
/∗ values for W α and fα to the parent-node ∗/
U = (W α, fα)

send U to par(bα)

Figure 6.5: The MC algorithm: Computing the receiver set

Every broker bα maintains the following state information:

• a variable par(bα) that contains the current parent node of bα which is null if
bα is master (any neighbour broker different from par(bα) is a child),

• for every child bβ, the values of W β and fβ last sent by them,

• the own values of σα,W α and fα.

A system state S consists of the collection of the current profile, the states of all

brokers, and the set of messages currently on the network. Let us call a system
state S correct, if

• there is exactly one master broker bmaster whose parent variable par(bmaster)

has value null,

• the network, together with the par relation, forms a tree rooted at bmaster,

• the set of brokers bα with σα = 1 is a maximal surplus-maximizing subtree of
T , and

• the prices computed based on W α are the prices defined by the MC mecha-
nism.

During initialization, an election is performed to choose a master broker. This can

be done by an election procedure. Mattern [49] gives (Theorem 2.7 on page 71) an
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Initialize

/∗ Send D downward the tree with ∗/
/∗ Dmaster = W master ∗/
send D to all children

At all brokers bα

After bα has received message D from par(α)

If (fα == false)
/∗ bα is not already in the receiver set ∗/

l3: D ⇐ min(D,W α)

Endif

If (D < 0)
/∗ The local clients are not part of the ∗/
/∗ receiver tree ∗/
send σ = 0 to all local clients

Else

For every local client c

/∗ Calculate the price for every local client ∗/
l4: If (u(c) > D)

π(c) = u(c) − D

Else

π(c) = 0

Endif

send σ = 1 and π(c) to c

Endif

For every child bβ ∈ ch(bα)

send D to bβ

Figure 6.6: The MC algorithm: Propagating receiver set and payment
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Initialize

Election of new master broker and computation of
initial tree

At every broker bα do forever

/∗ Has some requirement changed for the ∗/
/∗ master-broker? ∗/
If (par(bα) == null /∗ bα is master ∗/

/∗ and bα has no publishing local client ∗/
and {c ∈ Lbα |pub(c) = true} == ∅
/∗ and there is a subtree rooted in a the master’s ∗/
/∗ broker that has no publishing client ∗/
and there is bβ ∈ ch(bα) such that fβ == false)
/∗ Then: Find another master ∗/
If (∃bβ ∈ ch(bα) with fβ == true)

/∗ Choose a child which itself or its subtree has ∗/
/∗ a publishing local client ∗/

l1: par(bα) ⇐ bβ

send U = (W α, fα) to bβ

Else

/∗ There is no publisher in the tree anymore ∗/
go to Initialize

Endif

Endif

/∗ Has an update message arrived from the child? ∗/
If (receiving U = (W β , fβ) from child bβ ∈ ch(bα))

/∗ A state change is reported from a child ∗/
recompute fα and W α

If (par(bα) == null)
/∗ The change-information has reached the root ∗/
send D = (W α, fα) to children

Elseif (fα or W α changed)
send U = (W α, fα) to parent

Endif

Endif

/∗ Has an update message arrived from the parent? ∗/
If (receiving U = (W par, fpar) from parent par(bα))

/∗ A new master is wanted ∗/
If (bα has publishing local client)

/∗ bα becomes master ∗/
l2: par(bα) ⇐ null

W α ⇐ W α + W par

send D = (W α, fα) to children
Else

/∗ look for another master ∗/
If (∃bβ ∈ ch(bα) with fβ == true)

l3: par(bα) ⇐ bβ

send U = (W α, fα) to bβ

Else

/∗ There is no publisher in the tree anymore ∗/
go to Initialize

Endif

Endif

Endif

Figure 6.7: Self-stabilizing computation of MC
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election algorithm for tree topologies that requires no more than three messages per
link. For our purpose, we assume that brokers have a unique, positive ID. Brokers

without publishing local clients participate in the election with a zero ID so that it

is guaranteed that they won’t be elected.
Thereafter, a node changes his parent node in two cases: either the node serves

as master but ceases to be eligible, or a node receives a message A from his parent.
We claim that the algorithm has the following property of self-stabilization:

Fact 85. 1. For any publish/subscribe network T and any profile (ξ, u, pub), the
algorithm lets converge the system state to a state which is correct in the
sense defined above,

2. After initialization is completed and after a change of the profile, the system
state converges again to a correct state.

Proof. Theorem 82 implies the first claim. Now suppose that the system is in a
correct state S, and the profile changes. Let us call a broker bα a de-facto-master if
for any neighbour bβ of bα, we have par(bβ) = bα. Then in state S, the master broker
is also de-facto master, and is the only one. Now we claim that there is always

exactly one de-facto-master. To see this, note that only at l1, l2 and l3, the de-facto

master can change. At l1 and l3, the de-facto master just moves to some neighbour.
So let us look at l2. We have to prove that when l2 is executed, bα is the unique

de-facto master. Now before the execution of l2, there is a unique de-facto master.
Since bparent sent message U to bα, the de-facto master must be at or behind bα (seen

from bparent). Since par(bα) == bpar before execution of l2, the de-facto master must
be at bα. Thus, setting par(bα) to null preserves correctness of the state.

6.4.5 Shapley Value Mechanism

There are two issues about the MC mechanism:

• it is not budget-balanced, and

• although MC is strategyproof, it is not group-strategyproof, which means that

a group of colluding participants may manipulate pricing to its advantage.

It is well-known [53, 54] for sharing multicast costs with only one sender, that MC

is the only strategyproof and efficient mechanism satisfying consumer sovereignty
(CS ), no positive transfers9 (NPT ) and voluntary participation10 (VP ). Groupwise
strategyproof mechanisms satisfying budget-balance and CS, NPT and VP can be
characterized as being induced by cross-monotonic price functions. Among all

9Users will not be paid for receiving a message.
10Every user can choose between receiving a message at a cost lower than the utility and not receiving

which results in a benefit of 0.
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these, the Shapley value (SH ) mechanism is the one that minimizes worst-case wel-
fare loss.

Definition 86. A price function for client c is a function πc : B 7→ πc(C) ∈ R
+

for sets of clients C. The price function πc is cross-monotonic if C ⊆ C ′ implies
πc(C) ≥ πc(C

′). Let F = {πc : c ∈ C} be a family of cross-monotonic price functions.
The mechanism induced by F computes11 the receiver set as

C = lim
n→∞

Cn (6.17)

where
C0 = C ; Cn+1 = {c ∈ C : uc ≥ πc(Cn)}. (6.18)

The Shapley valuemechanism is the mechanism induced by the family of price func-
tions {πc : c ∈ C} defined as

πc(C) =
∑

C′⊆C\{c}

{

|C′|!(|C|−|C′|−1)!
|C|! ·

[

ξ(T (C ′ ∪ {c})) − ξ(T (C ′))
]

}

(6.19)

Note that for a fixed filter F ,

c ∈ P (F ) ∧ C 6= ∅ ⇒ ξ(T (C ∪ {c})) = ξ(T (C)) (6.20)

and thus the cost of the tree spanned by the publishers is shared between all sub-
scribers of F . The costs of the remaining links are shared by all subscribers that are

behind it (seen from T (P (F ))).
Feigenbaum et al. [26] have shown that for a certain class of mechanisms, com-

puting SH requires Θ(np) messages total and at least p messages over some links,
with p clients and n links in the network. This is essentially the complexity of the

brute-force mechanism which computes, for each n, the pc(Sn) in a separate round.

They conjecture that this is a lower bound in fact for all computations of SH.

6.4.6 Extension to Multiple Rates

Adler and Rubenstein [1] and Bläser [7, 8] generalize from the all-or-nothing sce-

nario considered so far and allow the multicast transmission to take place using
different service levels, or transmission rates. They distinguish between two tech-

niques for providing the transmission rates: the first one uses layers built on top of
each other. The more layers a transmission uses, the higher rate can be realized. If

a transmission uses a certain layer, then it uses also all layers beneath. This implies
that two transmissions sharing a link l share the costs of l for all layers that both

11Cross-monotonicity implies that the following is well-defined.
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of them jointly use, that is, the receiver of the transmission with the higher rate
participates in the costs for the lower layers caused by the transmission with the

lower rate.

On the contrary, the second technique, called split paradigm, defines a new group
for every rate. With this technique, transmissions with different rates do not share

any resources, even if there is a link used by both of them.
Adler and Rubenstein present their Max-Layered-Welfare algorithm that com-

putes, for both layered and split paradigms, the optimal transmission tree. Their
algorithm communicates a total number of bits of order O(`hK), where ` is the

number of available layers, h is the height of the network tree and K is the maximal
number of bits needed to code a bid. The additional factor h required by Adler and

Rubenstein’s algorithm is needed because they, in addition to introducing transmis-

sion with multiple rates, also introduce costs for enabling a node to transmitting an
incoming stream to various receivers. Our algorithms 6.5 and 6.6, without support-

ing layers, require only O(K) bits. We claim that we can modify our algorithm to
compute the transmission tree allowing different rates, using O(`K) bits.

So let clients submit, instead of a utility u(c), a utility vector ~u(c) where ~u(c)j is,
for 1 ≤ j ≤ `, c’s utility from a subscription to filter F served on level j. Now in

Figure 6.5, replace uα by a vector ~uα and interpret the sum on the right-hand side
of l1 as vector sum of the ~u(c). In l2, replace the computation of W α by

~W α
j = max







~W α
j−1, ~uα

j +
∑

β∈ch(bα)

~W β
j − ~cα

j







(6.21)

In Figure 6.6, a broker bα receives the multicast if the D she sends to his children
is nonnegative. We replace D by ~D. Broker bα receives the broadcast on the level jα

that is the largest among those levels l that maximize ~Dj. The min function at line

l3 is to be understood component-wise.
To compute the payment for client cα, let jα be the maximum layer cα is receiving.

Write the utility vectors ~u(c) as ~udiff(c) = (u1, u2 − u1, . . . , u` − u`−1) and compute the
payments separately for every layer j with 1 ≤ j ≤ jα, as done in Figure 6.6. Add up

all these payments. It is quite clear that this is the marginal cost payment for client
cα.

6.4.7 Summary and Outlook

We have demonstrated how to apply marginal cost mechanism to a (specialized)
publish/subscribe setting. Algorithms that were known for multicasts with a single

source where generalized to a setting with many message sources. A self-stabilizing
version of the algorithm was given.

It was shown by Feigenbaum et al. [26] that computing the Shapley value tree is
expensive even for multicasts with a single source. It would be nice to know whether

122



admitting multiple sources makes it even harder.
The publish/subscribe setting we considered in this paper is restricted in the

sense that we treat subscriptions separately for every filter F . In the case of over-

lapping filters, the costs for a new subscription may be lower if there are already
subscriptions for filters that overlap with the new one. In the current setting, these

saved costs are silently swallowed by the network provider. It would be interesting
to adopt our mechanisms to cope with overlapping filters.
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7 Conclusion and outlook

Game theory is an efficient tool to use when it is necessary to coordinate behaviour
of self-interested actors. It finds meaningful applications in network management

for autonomous clients. Often the theory will predict that there is an unavoidable
loss of efficiency due to the egoistic behaviour of the clients, compared with a net-

work where it can be assumed that (surplus-maximizing) rules will be followed.
The aim of this thesis was application, and therefore, the establishment of negative

results was not in our focus. Rather, we concentrated on the adoption of known
mechanisms to application scenarios in resource management. In the introduction,

we stated the thesis that there are four points that make out a good protocol: ex-

istence of dominant strategies or equilibria, efficiency at the equilibria, robustness
against groupwise strategizing and manageable computational complexity.

We have developed mechanisms of two kinds:

• In chapter 3, we presented pricing schemes and clearing rules for a combina-

torial exchange. Continuing the line of research of [58], our pricing scheme
resulted from a modification of VGC pricing. Unfortunately, but similarly to

the modifications of Parkes et al., the most prominent feature of VGC pric-
ing – truthfulness being a dominant strategy – was lost with that modification.

However, a couple of other useful features were preserved, in particular, our
pricing rule guarantees that there is never a loss from the acceptance of com-

binatorial bids. This is a new feature compared to Parkes’ modifications. On
a broader context, it is an example of a property that – while not directly

contributing to global efficiency – is a highly desirable property from the per-

spective of some market participants – in our case, the sellers – which by
some reasons have to be honoured because otherwise, they could move to an-

other market that is more profitable for them. Our pricing scheme increases
efficiency in comparison to non-combinatorial markets, and it makes combina-

torial bids feasible by respecting the seller’s interests.

Also, it was shown that shill bidding always involves a risk of loosing trade.
This is one of the few result “against” the possibility of groupwise strategizing.

The combinatorial exchange setting is the most general exchange setting: ar-

bitrary interdependencies like preferred bundles can be stated by the users.
It is therefore not too surprising that an efficient and budget-balanced mecha-

nism does not exist in that setting.
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• The publish/subscribe setting from chapter 6 proves that the situation is much
more hopeful if there is a narrower specification of the interdependencies that

may occur. In this setting, the bundles of goods that users may be interested

in are defined by the filters. Additionally, there is interdependency generated
by cost “savings” by multicast users due to them sharing links. It turns out

that in this setting, marginal cost pricing can be applied if budget-balance
is not required, and if it is, Shapley value pricing defines a budget-balanced

mechanisms that minimizes welfare loss. In this context, the questions of the
dominant strategy mechanisms as well as their efficiency therefore is settled.

While Shapley value mechanisms are even groupwise strategyproof, marginal

cost mechanisms are not. We do not know whether there are groupwise strat-
egyproof (of course, not budget balanced) mechanisms that are more efficient

than Shapley value.

We also showed that marginal cost prices can be computed with no more than
two messages per link (see corollary 83), and we presented a self-stabilizing

algorithm that efficiently computes marginal cost prices in dynamic networks

(see fact 85).

The issue of strategyproofness has seen a great deal of treatment in the literature
and also in this thesis. Much less has been said on the possibility of strategic

groupwise behaviour. Neither Vickrey pricing, nor marginal cost pricing are ro-
bust against groupwise speculation. The negative results on the existence of strate-

gyproof mechanisms immediately show that the situation is hopeless if even group-

wise strategizing has to be taken into account. Therefore, the theory is unable to
deliver “safe” mechanism. On the other hand, groupwise strategizing requires coor-

dination between the participants, and will often fail due to lack of communication
and mutual trust. Participants of a groupwise speculation need a mechanism that

splits the benefits they gained between them, and thus encounter the same difficul-
ties as the system they speculate against. It seems that there is a need for empiric
research on how a mechanism performs if groupwise strategizing is possible. This,
however, has completely been left out from this thesis.

While the general theory of mechanism design offers a couple of negative results

as well as a quite limited repertoire of standard mechanisms, the design of a mecha-
nism for a real-world application requires analysis of the interplay between resource

usage, user’s utility optimalization and their limited opportunities of coordination in
the situation of the specific application scenario.
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