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Zusammenfassung

Moderne Kommunikationsnetzwerke erlauben die gleichzeitige Ausfuhrung einer
Vielzahl von Anwendungen. So ist es nicht verwunderlich, dass Mechanismen zur
Ressourcenvergabe, seien es Ubertragungsbandbreite oder Rechenkapazitit, in der
Informatik seit langer Zeit erforscht werden. Jedoch gehen die klassischen Mecha-
nismen von kooperierenden Nutzern, die nicht versuchen, das System zu ihrem
Vorteil zu manipulieren, aus. Andererseits wird die informationstechnische Infra-
struktur schon aufgrund der hohen Installationskosten von Nutzern ohne gemein-
same Interessen und uber Firmengrenzen hinweg genutzt. Stehen nun Ressourcen
in begrenzter Menge zur Verfugung, ist die Entstehung von Allokationskonflikten
unvermeidlich. Ein naturlicher Ansatz zur Losung solcher Konflikte ist die Etablie-
rung eines Marktes fur die Ressourcenvergabe.

Diese Arbeit schlagt Marktmechanismen fur die Ressourcenvergabe in verteilten
Computersystemen vor. Wir prasentieren ein neues, budgetausgeglichenes Preis-
bildungsschema fur kombinatorische Tauschmarkte, welches die Berechnung der
Akzeptanz von Geboten unabhangig agierender Handelspartner erlaubt. Ebenso
haben wir eine neue Methode zur Synchronisierung der Gebote entwickelt und
zeigen, dass sie einer periodischen oder zufalligen Marktbereinigung uberlegen ist.
Die neu entwickelten Mechanismen wenden wir auf die Bandbreitenvergabe fur
Punkt-zu-Punkt-Kommunikation an und zeigen mittels einer Simulationsrechnung,
dass die Auktionierung der Bandbreite fur einen grofSen Teil des Parameterraumes
zu hoherer Effizienz als ein Fixpreisverkauf fuhrt, obwohl die Auktionierung - im
Unterschied zur Wahl eines optimalen Fixpreises — keine Informationen iiber die
statistische Verteilung der Gebote der Nutzer benoétigt.

Die Situation fur Gruppenkommunikation erweist sich als schwieriger. Kellys klas-
sischer Equlibriums-Mechanismus fur die Bandbreitenvergabe verliert bei der An-
wendung auf Gruppenkommunikation seine Effizienz. Wir prasentieren eine — nicht
budgetausgeglichene - Verallgemeinerung von Feigenbaums Grenzkostenmechanis-
mus auf ein Gruppenkommunikationsszenario mit Publish/Subscribe-Struktur, und
entwickeln einen Algorithmus zur effizienten, verteilten Preisberechnung.



Abstract

Modern communication networks handle millions of applications simultaneously,
and mechanisms of resource sharing, most prominently sharing of data transmission
bandwidth and processing power, between competing jobs have been considered
in computer science since its beginning. Classical mechanisms, however, balance
claims of cooperating users that do not try to manipulate the system to their advan-
tage. Due to their cost of installation, information technology infrastructure has to
be used by clients with no joint interest: by individual users and accross borders of
companies. With resources available only in a limited quantity, allocation conflicts
do arise. It is natural to apply the classical remedy for conflict resolution and install
a market for the system’s resources.

This thesis proposes market mechanisms for resource allocation in distributed
computer systems. We define a new budget-balanced pricing scheme for combina-
torial exchanges that allows matching of bids of autonomous buyers and sellers. We
suggets a new bid synchronization rule and prove that it performs superior to peri-
odic and random bid clearing. We give an application of a combinatorial exchange
to unicast bandwidth allocation. We demonstrate by a simulation that, for a large
part of the parameter space, auctioning bandwidth performs superior to fixed price
bandwidth sale, while not requiring prior information on the distribution of bids.

The situation for unicast cost sharing is more complicated. After proving that
the classical equilibrium mechanism of Kelly can’t looses much efficiency if applied
to group communication, we present a generalization of Feigenbaum’s adoption of
marginal cost pricing to publish/subscribe settings. We also develop an algorithm
for efficient distributed price computation.
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1 Introduction

This thesis is about resource allocation in distributed systems by applying tech-
niques from applied game theory and economic theory. While resource management
has experienced extensive treatment since distributed systems have gained popular-
ity, the economic perspective is still a non-traditional one. Traditional resource man-
agement and resource management with economic incentives have a common goal:
efficient use of the resources - typically memory, computational power and, prob-
ably most importantly, bandwidth consumption for data transfer - in a distributed
system.

But what is efficiency? Classical resource management has a simple answer to
that: given some set of tasks, efficiency means to solve them as quickly and ac-
curately as possible, preferably while consuming little resources. The tasks are
assumed to be known, sometimes deterministically, sometimes they are assumed to
be drawn from some random distribution of possible tasks. A prominent example of
resource management in that sense is task scheduling.

It is a natural approach to build this negotiation on monetary incentives, and
precisely this is what our research is about.

Microeconomic theory describes economic interactions between self-interested
individuals:

A distinctive feature of microeconomic theory is that it aims to model
economic activity as an interaction of individual economic agents pursu-
ing their private interests. [48, p.3]

Mechanism design develops market mechanisms like pricing and allocation rules
that produce optimal outcomes if market participants are self-interested and there is
incomplete information. Mechanism design has been applied to analyze traditional
auction markets, as well as to suggest new pricing and allocation rules, for instance
for auctioning frequency spectrums for mobile communication and broadcast and
for electrical power markets.

We raise the following questions:

e Computers are not humans. Economic theory is, in large parts, an empiric sci-
ence about behaviour of humans. How can one transfer results from economic
theory to a setting where only computers interact?

* Moreover, even among economists, it is not undisputed under which circum-
stances market equilibria produce an efficient outcome. Is economization of
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infrastructural resources actually desirable?

* Even if computer scientists are per se interested and involved in modern com-
munication technologies, it is nevertheless a plausible questions what they can
contribute to a theory developed by economists and mathematicians.

The purpose of this introduction is to discuss these points and to formulate theses
that we claim to be proved by the remaining chapters of this work.

1.1 Applicability of economic theory

In a modern distributed system with an open architecture, the set of tasks to be done
is to be negotiated. Similarly, there has to be an agreement about the consumable
resources. The economist Paul Samuelson! defines economic science as follows:

Economic is the study of how men and society end up choosing, with
or without the use of money, to employ scarce productive resources that
could have alternative uses, to produce various commodities and dis-
tribute them for consumption, now or in the future, among various peo-
ple and groups in society. It analyzes the costs and benefits of improcing
patterns of resource allocation.[65, p.3]

Note that our resource management setup shows almost all characteristics Samuel-
son associates with economic science: only scarce resources need management,
and management essentially takes place by some kind of task priorization: if there
is only one unsplittable task at a time, there is no point in resource management.

Samuelson states that economy studies behaviour of “men and society”. It is
therefore an empirical science, and the truth of an economic theory is lastly mea-
sured by its consistency with observation. This is in clear contrast with computer
science which develops techniques to program a computer. A computer program
(we here understand this term in a very general sense, including for example com-
munication protocols) is not “observed” in its behaviour. Rather, computer science
aims to understand the “behaviour”, that is, the execution, of the program com-
pletely. Even if computer scientists sometimes also use simulations to analyze a pro-
gram execution in some particular context, results that solely depend on observed
behaviour in simulations are generally judged as not as satisfactory compared with
results that are proven with mathematical rigour.

This rigour does hold, however, for Microeconomics and in particular, Mechanism
design. The private interests mentioned above are understood as the maximization
of individual, real-valued utility, where the maximization is a mathematical optimiza-
tion problem with constraints and incomplete information on the side of the agents

Nobel laureate of 1970
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as well as the control instance. The “approximation” of homo sapiens by homo oe-
conomicus is the conditio sine qua non of microeconomics which is thus embedded
in the neoclassical branch of economic theory. Neoclassics and the assumptions it
is built upon have been, and still are, fiercly disputed among economists.

Here are a couple of objections posed by the criticists?

The theory has a lot of paradoxical results. For instance, the classical theory
predicts (Bertrand’s paradoxon, see [81, p.116]) that under perfect competi-
tion, producers will sell their commodities at marginal cost. Clearly fixed costs
are thus not covered, and consequently, all producers run losses.

More generally, there are many situation where at equilibrium, no market par-
ticipant earns a profit. One might argue that this yields a contradiction for a
theory which is built on the very assumption that everybody should maximize
his surplus.

What are the implications of negative results? Many theorems, like the theo-
rems of Gibbard-Satterthwaite and of Green-Laffont3, prove the non-existence
of mechanisms with desirable properties. The theory says little about what
happens if these properties are relaxed.

The most obvious argument against utility-maximization is probably that it is
questionable how a consumer would quantify his utility, say, for watching a
movie in a certain quality. The theory relies on that input variable, not distin-
guishing between “true utility” ( the gain of the consumer in comparison with
non-purchase, measured in money), and substitutional value, that is, the value
the consumer assigns to the commodity, given the possibilities of alternative
purchases. While the monetary gain is simply non-measurable for most con-
sumer goods* , the substitutional value is problematic since alternatives may
have a different cost structure, and long-term effects of switching commodities
may be hard to anticipate.

In a broader sense, the assumption of human rationality has been very much
under discussion. This discussion was opened by Simon® [72].

2M. Burchardt [13] gives a (partly a little outdated) critical review of microeconomic theory. Even if
he omits game theory and mechanism design, he discusses most of the following points.

3See the next chapter for details.

“or may be unknown in advance, as Simon [72, p.113] remarks:

The consequences that the organism experiences may change its pay-off function - it
doesn’t know how well it likes cheese until it has eaten cheese.

We may add: Similarly, a computer user may not know which quality of service is necessary prior to
using that service.
>Simon was awarded ACM’s Turing award in 1975, and the Nobel price for economics in 1978.
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Because of the psychological limits if the organism (particularly
with respect to computational and predictive ability), actual human
rationality-striving can at best be an extremely crude and simplified
approximation to the kind of global rationality that is implied, for ex-
ample, by game-theoretic models. While the approximation that the
organism employ may not be the best — even at the levels of com-
putational complexity they are able to handle - it is probable that at
great deal can be learnt about possible mechanisms from an exam-
ination of the schemes of approximation that are actually employed
by human or other organisms.[72, p.101]

In detail, Simon considers the following obstacles that prevent humans from
using a “globally rational” decision strategy:

1. Partially ordered utilities: Simon suggests that human perception of pay-
offs is represented by vector functions better than by scalars: because
preferences of different people involved in a decision may be contradic-
tive, because an individual may have more than one concern, and because
there is uncertainty about the possible consequences of a decision.

2. Limited “computing power”: Against the proposition of uncertain dynam-
ics, “classicists” may hold that this can be modelled with probabilities. Si-
mons replies are twofold: first, the humans have no knowledge about the
applicable probability functions. Second, humans are incapable® of ac-
tually performing the required calculations for computing an optimal ex-
pected outcome. Probability theory is not a substitute for missing knowl-
edge, and the fact that the distribution of some variable is unknown does
not per se justify the claim that it is randomly distributed.” The argument
of limited computing power has been intensively addressed by computer
science’s contributions to mechanism design. We will discuss details in
the next chapter.

5We add: or sceptical on the relevance of the computation’s output

"We do note that we are in contradiction with Laplace [44] here. For this outspoken believer in
determinism, randomness is in all cases just a consequence of lacking knowledge rather than an
objective state. Given two possible outcomes success and failure of some variable that has been
observed n times before, the Laplace principle (rule of succession) stipulates that the probability
that success occurs at the n + 1st instance is P(success atn + 1) = Zié where s is the number
of successes observed during the first n observations. In particular, with no prior observation, the
probability of success is % More generally, Laplace suggests that given that no other information
is available, all possible alternatives should be assumed to be of equal probability, that is, a uniform
distribution should be assumed. We raise three points challenging this principle: First, it is an a
priori assumption and can’t be proven. Second, to be applicable, there must be a unique decompo-
sition of the set of all states into elementary alternatives. Third, it does not help at all in the case

of continuous alternatives within an unknown range.
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Simon introduces a new model of human decision making which has later been
associated with the terms of bounded?® rationality or satisficing. He suggests
that rather than trying to maximize utility, humans set for themselves an as-
piration level® which may change over time. Alternatives that meat this aspi-
ration level are considered equally valued in the corresponding category, and
other categories are used to define a preference.!®

Cyert and March [17], see [70, p.469f] propose a model for the behavioural dy-
namics of managers, owners, employees, customers and creditors of firms which
is based on Simon’s satisficing. According to them, there is a complex interplay
of the interests of the different parties. In particular, while classic theory assumes
that firms follow a profit-maximizing strategies, Cyert and March suggest that the
company managers (which, after all, implement the company’s strategies) try to
satisfice goals set to them by the owners while otherwise being mainly interested
in the well-being of their organizatorial unit. Additional surplus generated in “good
times” is buffered in organisational slacks which may be used for conflict-mediation
when revenues fall.

8in [72, p.113], “limited”

9172, p. 111]

O1nterestingly, the concept of an “aspired profit” has been adopted in catholic economical ethics. John
Paul II writes in Centesimus annus [36, par.35]:

When a firm makes a profit, this means that productive factors have been properly em-
ployed and corresponding human needs have been duly satisfied. But profitability is not
the only indicator of a firm’s condition. It is possible for the financial accounts to be in
order, and yet for the people U who make up the firm’s most valuable asset U to be humil-
iated and their dignity offended. Besides being morally inadmissible, this will eventually
have negative repercussions on the firm’s economic efficiency. In fact, the purpose of a
business firm is not simply to make a profit, but is to be found in its very existence as a
community of persons who in various ways are endeavouring to satisfy their basic needs,
and who form a particular group at the service of the whole of society. Profit is a regulator
of the life of a business, but it is not the only one; other human and moral factors must
also be considered which, in the long term, are at least equally important for the life of a
business.

The pope’s argument of long term consequences closely resembles Simon’s uncertainty of the dy-
namics. However, the Pope argues normatively as opposed to Simon who suggests bounded ratio-
nality as a descriptive model of human decision-making.

Satisficing as a normative, of course, has been at all times a constant in philosophical-ethical
thinking. Aristotle (Nicomachean Ethics, ch. 6-9 [6]) defines eudaimonia (perfect and complete
happiness) as the state where a human assumes the highest virtues (most notably, contemplation),
given that material needs are met. Aristotle emphasizes (par. 1179a) that eudaimonia, being a
state of perfection, requires that these needs must be fulfilled to a degree such that additional
commodities would not increase happiness.

14



1.2 Networks

The transformation of the internet that connected essentially academic, government
or public institutions, to nowadays world wide web with millions of users, many of
them private individuals, others members of companies as well as academic and
other institutions, is a challenge to the designers of the communication protocols.
Traditional protocol design tries to optimize under the assumption that all parties in-
volved faithfully honour protocol intentions. Clearly, this can’t be taken for granted
in open systems where cooperation competes with self-interested action, and the
idea of introducing monetary incentives is a compelling one from the first thought.

In this section, we will outline three approaches that analyze the interconnec-
tion of information networks and economics. First, we adopt the narrow view of
the computer scientists incorporating monetary payments into network protocols in
order to give self-interested clients incentives to coordinate their demand and use
the network efficiently. A second line of research is subsumized under the term of
network industries used by economists to describe industries with network effects.
Telecommunication companies and internet service providers are typical examples.

The “computer scientist’s” research line confines to “classical” strategyproof (or
weaker) mechanisms. However, the last decade has seen a lot of development of
game-theory based auction theory. Inspiration for most of the theory comes from
government-run spectrum auctions, and some from electronic markets like ebay or
electrical power markets. It is interesting to ask which of the “modern” results
are relevant for the protocol designer. The third subsection gives a - very biased -
overview of modern auction theory.

1.2.1 Computer networks as markets

As computer scientist looking through the economist’s glasses, we will interpret
network resources as scarce commodities and network clients as utility-maximizing
agents. We then can directly apply microeconomic theory to model the dynamics
of the system. The most prominent examples for this paradigm of thinking concern
bandwidth allocation. Nisan and Ronen [57] give a simple model of shortest path
routing that allows application of Vickrey-Grove-Clarke mechanism. In their model,
the network is modelled by a directed graph G whose nodes represent the self-
interested agents with whom their is associated a privately known cost of routing
a package. The standard Vickrey-Grove-Clarke mechanism'! yields a cost-covering,
incentive-compatible mechanism that always finds the shortest (measured in costs)
path between any two nodes in the network.

There are many refinements of that model, including ones that consider conges-
tion costs, multicast and multiple service levels.

1see next chapter for details
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The markets described in these papers are closed subsystems of the economy.
There are no external effects, no competition from outside, no dynamics of cost
structures or customer behaviour and no roles in the economy besides “consumer”
and “producers” of resources. The market rules are “axioms” that, in the best case,
are closely modelled along with “reality”; however, there is no interest in empirical
confirmation of the results. Since the markets are formally and rigorously described,
results have intrinsic value independent from empirical evidence.

Of course, the authors of these papers are well aware of the fact that their mech-
anisms are little used in practice, and do occasionally offer some speculations on
why this is so:

Our approach of using an existing network!? protocol as a substrate for
realistic distributed computations may prove useful generally in Internet-
algorithm design, not only in routing or pricing problems. Algorithm de-
sign for the internet has the extra subtlety that adoption is not a decision
by a systems manager, concerned only with performance and efficiency,
but rather a careful compromise by a web of autonomous entities, each
with its own interests and legacies.[23]

In [23], authors model the network and the cost structure as a graph. They then
prove that a certain Vickrey-Groves-Clarke pricing scheme has nice properties (most
notably, strategyproofness), and is unique with that property. They propose dis-
tributed algorithms for payment computations and analyze its complexity. They
note that having a strategyproof pricing scheme (which is useful if peers possibly
try to manipulate), and letting peers compute payments may be problematic and
formulate an open problem addressing that issue. They also note that the Vickrey
mechanism has a problem of overcharging in comparison with the actual costs, and,
for a rare example, offer an argument based on empiric observation of real internet
providers, that states that for the observed graph, Vickrey pricing would not lead to
extensive overcharging.!3

Even if the model could be extended to cover these points, the question whether
it would be advisable for a service provider to adopt the mechanism wouldn’t be
answered. Allowing interdomain routing means opening a new market, and the
model can’t in principle foretell which consequences thus arise:

* Erosion of prices (if total traffic does not grow, but competition between AS
increases), or

12The authors present a pricing scheme for interdomain routing that can be embedded in the existing
Border Gateway protocol.

13We note that there are some more directions the model could be extended: the paper does not model
capacity constraints, it rather assumes that payments grow linearly with the traffic ad infinitum.
Moreover, it is assumed that all packages travelling between a fixed pair of sender and receiver,
take identical routes.
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e an increase in efficiency which could trigger a larger demand?

* Increased fixed costs or need for investing into new hardware, if traffic does
increase significantly, or

* a larger revenue with only little marginal costs?

It is obvious that these questions cannot be answered by methods of mechanism
design only. In a similar fashion, even if participation in the model is precipated, the
model offers no guidance on how to compute the utilities given as bids. Rather, to
derive statements on these points, the model needs to be embedded into a complete
model of the economy, or at least a sufficiently closed subset of it. But this means
that a discussion of the foundations of economy, as outlined above, can’t be avoided.

1.2.2 Network industries

The economist interested in information technology will find the computer scien-
tist’s perspective far to “technology-centred”. He would prefer establishing a mar-
ket for commodities that make use of resources, rather than trying to price the
resources themselves. Instead of deriving market rules from the technical system,
he would ask his “technology experts” to implement market rules of his choice. The
economist comes with his rich tradition of market analysis, and will gladly apply
what he has discovered about markets for bread or railway tickets or oil to new
“products” like internet access or mobile communication.

The economist, however, will notice that a theory that works well with markets
for bread won’t necessarily work for mobile communication. Oz Shy defines four
main characteristics that distinguish markets for network products from classical
markets [71, p.11]:

e complementarity, compatibility and standards: Network products are not used
standalone. Computer hardware and software can be purchased indepen-
dently and are produced by different manufacturers, but only together they are
useful to the consumer. Manufacturers have to meet strategic decisions about
which products they design to cooperate, be it hardware architectures, op-
erating systems and applications, or mobile phones and wireless networks. If
compatibility is chosen, firms, even competing ones, must find a modus vivendi
to develop standards that enable interoperability.

* consumption externalities: Utility of network product greatly depends on the
size of the network. Trivial examples are communication devices like fax ma-
chines that are useful only if they enjoy some degree of popularity.

* switching costs: Network products are complex. While it is easy to substitute
corn for wheat, it is not easy for a company to switch the operating system of
all their computers.
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» “Significant economies of scale in production”, that is, production costs are
highly non-linear in the production amount. Typically, marginal cost - like
“producing” one more software licence, or routing one more IP package - are
low in comparison to the “fixed” costs, say, of developing a new application, or
setting up a new telephone line.

Clearly, the picture the economist looks at is much more complex. He is deeply
involved in the disputes that concern economic behaviour of humans. Although we
are not aware of any example, we maintain that it is quit possible to develop an
economic theory of network industries that builds on individuals that are not utility-
maximizing.

Let us consider how the AS interdomain routing problem described in the previ-
ous section looks from a “network industry” point of view. Admitting interdomain
transit traffic adds complexity to the market of data routing. In addition to offering
a service to end consumers, a provider can now try to establish itself as a backbone
transit “hub” that routes traffic from other providers. From an economic point of
view, this is equivalent to outsourcing the traffic routing from the service offered to
consumers, and can be compared with a railway company renting its tracks to other
carriers. Adopting the extended business plan requires an extension of the Border
Gateway protocol (BGP). Clearly, the amount and structure of competition will de-
pend on mutual compatibility, and establishing one or multiple industry standards
needs a lot of strategic consideration. Marginal routing costs are low in comparison
with the cost of the infrastructure and the costs of changing an established protocol.

1.2.3 Auction theory

There has been extensive work in auction theory in the last fifteen years. Most
of the game-theoretic analysis was inspired by the need for efficient allocation of
spectrum licenses for broadcast and telecommunication. While auctions have tradi-
tionally been used by governments for property, eg land, sale and for procurement,
the task of distributing these licenses pose a couple of new challenges: Most no-
tably, the value of these licenses is difficult to estimate. On one hand, spectra are
clearly a scarce resource with no production costs. In that sense, they compare
with treasures of the soil. Explanation for market prices for treasures of the soil
was a challenge to economists in the 18th and 19th century and lead to a refutation
(at least partial) of the labour theory of value and the establishment of the marginal
value theory. This theory estimates the per-unit price of a commodity to equal the
additional utility generated if one more unit of the commodity is available, thus solv-
ing the “paradoxon” that while water has a higher utility than diamonds, the price
for diamonds is nevertheless much higher.

In order to apply marginal value theory to spectrum licenses, one would need to
forecast the revenue that companies can generate from the licenses. This, however,
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is difficult since governments don’t know business plans of private firms. For some
time, mobile phone licenses in the US were assigned by lottery, and it was hoped
that an efficient allocation would evolve from secondary trade. The result was a
fragmented and rather inefficient market, and US agencies became ready to adopt
other schemes. Auctions were seen as a tool to take advantage of the competition
between interested firms to extract a maximum of willingness to pay. Indeed auc-
tions have performed, in some cases, very successful, while producing disappointing
results in others.

The work of Vickrey on second price auctions [78] has served as inspiration for
a tremendous amount of papers that generalized his results to many settings. Nev-
ertheless, the few examples were pure second price auctions have been used for
spectrum license sale have ended with extremely pure results. Vickrey auctions
have a couple of disadvantages that make them unusable in some settings.

In 2004, two leading auction theorists, both involved in the design of spectrum
and other government-run auctions in various countries, have published books [43,
50] on the modern economy of auctions. According to them, the following problems
have to be addressed:

* Vickrey auctions, while stragegyproof, are not groupwise strategyproof: they
are very sensitive to colluding bidders. Sellers can submit shill bids to increase
prices. If the Vickrey mechanism is applied to combinatorial auctions, the
resulting allocation is efficient but the payments can be low even if there are
many high bids. Revenue may even shrink when more bids are submitted.
Milgrom presents the following example[50, p.57f]:

- Let there be two goods A and B, and four bidders by, b2, b3, bs. Suppose
that by values the package of A and B with 10 and b with 9. Suppose b3
values A with 10 and b4 values B with 10. b; and b; have no utility from
a single item, while b3 and b4 have no additional utility from the second
item.

The efficient allocation, and thus the Vickrey-Grove-Clarke mechanism,
gives A to b3 and B to bs. However, the Vickrey mechanism lets b3 and by
pay nothing. If only b; and b, were present, b; would pay 9 for the package
of A and B.

In this example, the coalition consisting of the seller, b; and by would prefer to
trade among themselves. Milgrom [50, p.303] defines the core of an auction
to be the set of all outcomes ¢ with the property that there is no coalition
which could find another outcome by trading only among themselves, such
that all members of that coalition are better off with that outcome, than with
c. Outcomes of Vickrey-Grove-Clarke mechanisms for combinatorial auctions
are not generally in the core.
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Even without this pathology of the Vickrey auction, bidders can collude by
agreeing on some kind of “desirable” auction outcome. Klemperer [43, p.104]
presents a couple of examples where competing bidder try to send signals
through their bids to their competitors to persuade them to stop bidding on
some items in exchange for others.

* Vickrey auctions are not even efficient if there is a potential of mergers[50,
p.60]: in the above example, even if a merger between b3 and b4 would in-
crease the valuation by a certain amount, say, 25%, the merged company would
have to pay 10, thus suffering from a reduced total profit. In general, in the
presence of complementary values, Vickrey auctions discourage mergers. The
opposite is the case if goods are substitutes.

» Attracting a sufficient number of bidders is often more decisive for a success-
ful auction than pricing rules. Klemperer and Milgrom quote the results of
the New Zealand spectrum auctions as an example where, due to a large num-
ber of auctioned licenses for rather small areas, there were some licenses for
which only one or very few bidders placed a bid at all. Since Vickrey pricing
was used, some licenses went away for almost no payment, even if there was
a single bid with a proper amount. The results lead to the demission of some
of the politicians who could not advocate these results to the public, even if
the question whether more revenue could have been generated with modified
rules could not obviously be answered.

Klemperer [43, p.42] formulates the revenue equivalence theorem which states
that in auctions where every buyer wants to acquire at most one good, and
buyer’s types are independent private values, and supposed that bidders with
the lowest possible type have zero gain from the auction, the seller’s expected
revenue does only depend on the allocation rule. In particular, an efficient
auction would always make the seller either to retain the good, or to give it
to the bidder with the highest valuation. The theorem states that the revenue
is independent from the pricing rule. Consequently, in the case of a single
item auction, the only way to make an auction efficient is to set an optimal
reserve price, that is, the minimum bid that a seller would possibly accept.
Indeed one can compute the optimal reserve price for various settings. How-
ever, Bulow and Klemperer have shown ([11], see [43, p.27]) that, under some
weak assumptions, attracting a single additional bidder increases the expected
seller’s revenue more than setting an optimal reserve price ever could.

Klemperer[43, p.113] states:

The fact that collusion and entry deterrence and, more generally, buyer
market power is the key to auction problems suggests that auction design
may not matter very much when there is a large number of potential
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bidders for whom entry to the auction is easy. For example, though much
ink has been spilt on the subject of government security sales, auction
design may not matter much for either price or efficiency in this case.

Continuing, Klemperer cautions that empirical literature on that topic, e.g. various
analysis of US treasury auctions, is inconclusive, and irrelevance of auction design
is not proven. We note that most theoretical results are proven only for single
item auctions. In particular, there is no known revenue equivalence theorem for
combinatorial auctions.

1.2.4 Characteristics of protocol design

This thesis proposes usage of monetary transfers as a tool for resource management
whose intention is an efficient usage of the available resources. Economic theory
is interesting to us as long as it says something about the behaviour of the system
clients. This is a narrow focus: for instance, we do not pursuit the question whether
it is advisable for the resource’s owner to invest into producing additional resources.
On the other hand, if a protocol would allow users to gain a better service, say, by
forming a coalition with other users, then this would be relevant for the protocol
designer.

The “market” of a communication network has a structure different from the mar-
ket for spectrum licences or electric power generation. In the following, we will
give some characteristics of the resource management market.

e Large number of users. Internet service providers typically have thousands
of users accessing their network at any given time, and similar numbers hold
for telecommunication providers. A news publishing service may easily have
hundreds of subscribers.

* Anonymity of usage. Users may know some other network users, but do not
generally know the resources they use at any given time. Due to the large
number of users, they have little chance to know a significant portion of the
usage profiles.

» Interdependence of resources. The level of service quality desired can only be
provided by a bundle of resources. In a communication network, typically a
chain of links is used. More generally, other resources besides bandwidth, like
memory or computational power, have to be combined.

* Impossibility of demand coordination. In the case of the spectrum auctions,
we had the phenomenon that some companies tried to coordinate demand in
the sense that they proposed “splits” of the market, for example, by bidding
aggressively for some bundle of licenses and leaving other bundles to competi-
tors. We hold that this type of coordination is not possible for communication
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markets. There is no price differentiation in internet data traffic based on
geographic realities, and it seems very improbable that users would accept
one.

e Large number of transactions. A typical transaction for us is sending some IP
packages along a link, or connecting to some multicast stream for a duration
of some seconds or minutes. We expect that within an hour, thousands if not
millions such transactions take place.

* Automated bidding. Bidding in this context will often be performed by au-
tomatized agents. Strategic bidding, therefore, is only feasible if it can be
automatized, too. A consequence of that is, for example, that spontaneous
“signalling” between agents is not possible.

* Complexity is important. Due to the large number of transactions, the amount
of computation and communication required for placing bids, performing and
communicating the matching is an important issue, particularly so because all
of that has to take place in real time.

1.2.5 What are good protocols?

We are now ready to formulate the main results of this introduction: the criterions
by whom we judge whether a given mechanism'# is a good one.

» Existence of dominant strategies or equilibria for single players. Equilibria al-
low forecasting how the system state will develop. If collusion between players
is not possible, it is safe to assume that players will follow dominant strategies
if they exist. In view of the negative theoretical results, often there won’t be
good mechanisms with dominant strategies, and therefore, weaker equilibria
like Bayes-Nash equilibria can be considered.

» Efficiency at the equilibrium. It would be desirable to have equilibria with
maximized efficiency with respect to the accumulated utility. Often, selfish
behaviour will lead to a suboptimal equilibrium.

* Acceptable complexity (for users and owners) in the targeted usage scenario.
Combinatorial optimization problems are often NP-hard in the worst case.
Avarage case complexity may be more encouraging, and acceptable approx-
imations (though not with constant bound) may exist. A mechanism’s com-
plexity is acceptable if for the intended usage, the required optimization can
be computed with sufficient quality.

4By mechanism, we mean here the part of a communication protocol that deals with monetary trans-
fers.
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» Infeasibility of groupwise strategizing in the targeted usage scenario. Even
mechanisms with dominant strategies are not generally groupwise strategy-
proof. The risks of collusion have to be analyzed with respect to the specific
usage scenario.

In a subsequent step, it may be of interest how the protocol interacts with the cur-
rent business model of the network owners. This, however, is not strictly a question
for computer scientists and not in the focus of this work.

1.3 Related work

We give detailed account of related work in the relevant chapters. Here we men-
tion only authors and works that opened major lines of research that we consider
important for this thesis.

Distributed network resource sharing can be seen as a cooperation problem be-
tween selfish agents. Such problems were described first by Rosenschein and
Zlotkin [86].

The paper of Nisan and Ronen [57] was the first to transfer mechanism design
theory from microeconomic theory to computer science. The paper contains appli-
cation scenarios for task scheduling and unicast end-to-end path-finding and trig-
gered a huge amount of follow-up work. Nisan and Ronen’s goal is the development
of efficient mechanisms with dominant strategies. Nisan and Ronen’s shortest-path
scenario was developed further by Feigenbaum et al. in [57] and Hershberger et
al. [32, 35]. Many settings involve the use of combinatorial auctions. In chapter 3,
related work on combinatorial auctions and exchanges is presented.

Generalizations for multicast setting are treated in [54, 26, 25, 1, 7, 8]. The
economical problem behind multicast settings is that of splitting the costs of a public
project which is extensively treated in the literature, see [48] for a start. A general
overview on applications of mechanism design with dominant strategies to computer
science is given in [24].

Kelly et al. [42, 40, 41] focus on indirect mechanisms where network users con-
trol the flow via parameters that can be interpreted as monetary payment or pay-
ment in form of service degradation like increased latency. Their mechanisms don’t
have dominant strategies but often unique Nash equilibria which are approached
in tatonnement processes. Roughgarden and Tardos [63] take a similar approach
and analyze how network usage is affected by users that are selfish and sensible to
latency.
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1.4 Our work

This thesis tackles the problems posed above from different sides. After present-
ing relevant definitions and classic results and giving some general examples for
applications in chapter 2, we motivate and develop a market type that is a spe-
cialized combinatorial exchange. We develop a new pricing scheme that satisfies
budget-balance while preserving some of the useful properties of Vickrey-Grove-
Clarke mechanisms. Furthermore we introduce a new clearing rule, the commit
window clearing, and prove - empirically and partly analytically- its superiority to
the well-known periodic and random clearing rules. In chapter 4, we give an appli-
cation of the newly developed market to some unicast network resource managing
scenarios with advanced reservations.

The following chapters consider multicast scenarios. Chapter 5 contains results
of somewhat pessimistic nature: we show that mechanisms for multicast pricing im-
plement generally quite inefficient equilibria: we show that the coordination ratio
performs poorly for quite a couple of different utility functions. Finally, chapter 6
deals with publish/subscribe systems that we understand as special multicast sys-
tems. After giving a formal treatment that implements some message completeness
guarantees, we develop a pricing mechanism with dominant strategies for these
systems.

Thesis 1. It is possible to implement a combinatorial exchange with budget-balanced
pricing that guarantees sellers additional revenue compared to non-combinatorial
markets.

Thesis 2. The efficiency of a combinatorial exchange market with autonomous
traders depends on the used clearing policy. Commit window clearing generates
a higher revenue compared with periodic and random clearing.

Thesis 3. Network bandwidth reservation with fixed reservation length can effi-
ciently be built on a combinatorial exchange market that uses commit window clear-
ing. Using a simple stochastic model that takes advantage of publicly known infor-
mation on call characteristics, one can also implement reservations with unknown
in advance length.

Thesis 4. If a network splits available (inelastic) supply in proportion with the
user’s willingness to pay, and users have linear utility, the allocation at the equi-
librium has a coordination ratio of at least %, while for users with logarithmic utility
functions, the coordination ratio is unbounded. In the corresponding multicast sce-
nario, the coordination ratio is always unbounded.

Thesis 5. Marginal cost pricing is an efficient pricing for publish/subscribe scenar-
ios if budget-balance is not required. Otherwise, the budget-balanced Shapley value
pricing guarantees a minimal efficiency loss.
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2 Background: Game theory and
mechanism design

This chapter presents definition and classical results from game theory, microeco-
nomics, mechanism design and auction theory that is used in the later chapters.
Main references are [48] for game theory, microeconomics and mechanism design,
and [43, 50] for auction theory. We don’t give proofs for well-known results, but do
give detailed references.

2.1 Mechanisms

Let I a set of players or agents + € I. Let X be a set of alternatives, or outcomes.
Every i € I has a utility profile u; : X — R. Let U; C X® be the set of all possible
strategy profiles for agent i.

For a vector 4 = (u; : i € I), let us write l,,—, for the vector (v; : i € I) with

w; ifj#1
vy = HIF 2.1)
x ifj=1
For a vector © = (u; : j € I), let i_; denote i_; = (u; : i # j € I).
Definition 1 (Mechanism). A (direct) mechanism 91 is a tuple 9t = (0™, p™) such
that
« 0™ is a social choice function that maps every profile vector @ = (u; : i € I) to

some outcome o™ (i) € X, and

« p” is a payment function mapping every i = (u; : i € I) to some payment

vector p™(i@0) = (p : i € I) with p? € R.

m
e is deficit-free if
(Vi) Y p(if) > 0, (2.2)
icl
e is budget-balanced if
(vi) Y pi(i) =0, (2.3)
icl
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 satisfies voluntary participation if

(Vi = (u; 2 i € 1)) (V) us <ofm(ﬁ)) — (@) > 0, (2.4)

» satisfies consumer sovereignty if foralli € I, allxz € X and all @ = (u; : i € I),
there is u, € U; such that o™ (ﬁ]ui:u/,) = .

Example 2. Consider the following scheduling problem:

Let there be n jobs and m processors such that t;'» are processor i’s cost for pro-
cessing job j. The vector (t} : 1 < j < n) is processor i’s type. Let X, the set of
outcomes, be the set of all possible functions = : {1,...,n} — {1,...,m} that assign
to every job j (1 < j < n)a processori (1 <i<m).

Define M = (o,p) by

i1<i< <j< i L .

o(t] 1_@_m,1_]_n)€arg¥é1)r(1 Z tj (2.5)
i,j:x(j)=i

p(ti:1<i<m1<j<n)= Y (2.6)

i.jio(j)=i

Then 9N is a direct mechanism for X that is not deficit-free (since it makes only
payments but does not generate any income). It does satisfy voluntary participation
(since it compensates a processor for processing a job exactly with the amount of
the claimed costs). It does not satisfy consumer sovereignty since a processor can’t
force to get a job assigned, even if he claims that he has zero costs of processing:
there could be another processor with no costs either.

2.1.1 Strategies

Definition 3 (Strategy). A (pure) strategy of agent i for mechanism 91 is a mapping
s :u; — s(u;) from the set of utility profiles of i to itself.

Definition 4 (Dominant strategy). A strategy s is dominant if for all profiles i =
(u; : i € I) and for all u} # u;,

i (0™l i) ) = 2 (i) < i (™) — o™ () @.7)

A strategy is strictly dominant, if strict inequality holds in (2.7) for at least one
profile vector 1.

Definition 5 (Truthful mechanism). A mechanism 9 is (strictly) truthful if for ev-
ery agent i, the truth-telling strategy, that is, the strategy s(u;) = u;, is (strictly)
dominant.
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Definition 6 (Implementable social choice function). A social choice function o is
implementable in dominant strategies if there is a mechanism 9 = (om, pm) such
that there is a strategy vector s of dominant strategies in ) such that for all profiles

u,

o(@) = 0™ (s1(u1), . . . , 5n(un)) (2.8)

In this case, we say that 9 implements o.
Remark 7. If 9 = (0™, p™) is truthful, then M implements o™.

Example 8. The mechanism in example 2 is not truthful. Agents are compensated
with an amount equal to their claim. Therefore, increasing a claim such that the
social choice function remains unchanged is more favourable to a processor than
truth-telling.

Note that this shows also that while the o minimizes total cost based on the costs
claimed by the processors, the social choice function that 971 implements does not
minimize social total costs (since the processors won’t reveal their true costs).

The notions of dominant strategy and truthfulness are strong ones: a dominant
strategy has optimal performance, no matter which strategies are used by other
players. The notion of Nash equilibrium is weaker: a stragegy vector is a Nash
equilibrium if no single player can gain from unilateraly changing his strategy.

Definition 9 (Nash equilibrium). Let S = (s; : i € I) be a vector of strategies and
let i = (s(u;) : i € I). We say that S is a (pure) Nash equilibrium, if for all i € I and
uj # s(uq),

wi (™ (ly=ur) ) = pi (O™ (@matu) ) < i (0™(@)) — pP (@) (2.9)
We say that S is a strict Nash equilibrium if strict inequality holds in (2.9).

So if S is a Nash equilibrium, then no agent ¢ has an incentive to divert from his
strategy provided that the others don’t divert from theirs.

2.1.2 Mixed strategies

Instead of following a deterministic strategy, an agent can randomize over his op-
tions.

Definition 10 (Mixed strategy). A mixed strategy s for agent ¢ is a probability
distribution over the set of all possible strategies of i.

Let o be a social choice function. For a vector § = (s; : i € I) of mixed strategies
agents i € I, we write u;(o(5)) and p;(o(5)) as a shortcut for the expected value
of the random variables u;(o(s',...,s")) and p;(o(s,...,s")), where s’ are random

variables with distribution according to s;.
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The generalization of definitions 4 and 9 is straightforward:

Definition 11 (Dominant mixed strategy). A mixed strategy s is dominant if for all
profiles i = (u; : i € I) and for all u, # u;,

i (0™ (@) ) 27 (i) < i (0™0)) = P () (2.10)

with the expected value interpretation of definition 10. Similarly, a mixed strategy
is strictly dominant, if strict inequality holds in (2.7) for at least one profile vector

—

u.

Definition 12 (Mixed Nash equilibrium). Let S = (s; : i € I) be a vector of strate-
gies and let @ = (s(u;) : ¢ € I). We say that S is a Nash equilibrium, if for all i € I
and u, # s(u;),

i (™)) = Pi (™ (@ matun)) < i (™)) = T (). (2.11)
again with the expected value interpretation of definition 10. We say that S is a
strict Nash equilibrium if strict inequality holds in (2.9).

The following is obvious:

Fact 13. Iffori € I, s; is a dominant (mixed) strategy for agent i, then (s; : i € I) is
a (mixed) Nash equilibrium.
2.1.3 Efficiency of equilibria
A “good” mechanism will maximize total welfare. This leads to the following defini-
tions:
2.1.3.1 Dominant strategies

Definition 14 (Efficient social choice function). A social choice function o is effi-
cient, if

> wi(o(@) = > u; (o (iD)) (2.12)

iel el

for all social choice functions o' # o and profile vectors i = (u; : i € I).

Definition 15 (Efficient mechanism). A mechanism 9 = (o™, p™) is efficient (in
dominant strategies), if there is a strategy vector (s; : i € I) such that for all user
profile vectors (u; : i € I),

e foreveryi € I, s; is a dominant strategy for i, and
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S (Ofm(sl(ul), . ,sn(un))> > S wi (0 (s1(w), - salwa)))  (2.13)

i€l el

for all o'.
I is strictly efficient if for all i € I, s; is strictly dominant.
Note that

« although equation (2.13) does not depend on p™!, nevertheless 9 being effi-
cient does depend on p™, since it depends on the payment function whether a
given strategy is dominant, and

* it is neither necessary nor sufficient for 9t being efficient that o™ is efficient.

However, the following fact is a consequence of the revelation principle (see [48],
proposition 23.C.1):

Fact 16. If 9 is efficient, then there is M’ such that ' is equivalent to 9N in
the sense that for any vector 5 of dominant strategies in 9, there is a vector 5 of
dominant strategies for 9N’ such that for any profile vector i,

oM (s1(wr), .-y sn(un)) = 0™ (sh(wr), ..., 8} (un)) (2.14)

and

P (s1(u), ..y sp(un)) = p™ (s (u1), ., s (un)) (2.15)

2.1.3.2 Coordination ratio

It is safe to assume that “rational” (that is, utility maximizing) agents will play ac-
cording to a dominant strategy equilibrium. Thus, a strictly efficient mechanism will
yield an efficient outcome. This, however, is not generally true for Nash equilibria
since games can have multiple Nash equilibria with different social surplus. There-
fore, the definition of the coordination ratio contains a reference to a specific Nash
equilibrium that can be dropped only if it is unique.

Definition 17 (Coordination ratio). Let § be a Nash equilibrium for 9. The coordi-
nation ratio of 5 is defined to be

T (ofm (s1(u1),... ,sn(un)))

m . i€l
2t = f 2.16
ST i (e max Z;uz'(sv) (2.10)
i€

m

g -

If § is the unique Nash equilibrium, we write r™* for r
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2.1.4 Existence of Nash equilibria
2.1.4.1 Existence of Nash equilibria for given mechanisms
Not every mechanism has a mixed Nash equilibrium:

Example 18. Let X = {1,2} and let the profiles of agents 1 and 2 be given by

u(l) =1 u1(2) =0 (2.17)
uz(1) =0 uz(2) =1 (2.18)
Now let the social choice function o be defined by
1ifu(1) > us(1
ofur,ug) = 4 1 (D) 2 el (2.19)
2 jful(l) < UQ(I)

and let the payment function p be the zero function. That means, “winner” in this
game is the agent who reports the higher utility. Clearly, there is no Nash equi-
librium for (o,p) (not even for a mixed strategy), since the agent that reported the
smaller utility could always have won the game by reporting a higher one.

However, mixed Nash equilibria do exist under quite general assumptions:

Theorem 19 (see [48], proposition 8.D.3). Assume that U; are compact and convex
subspaces of some Euclidian space fori € I, and the u;(u1, ..., u,) = u;(o(uy, ..., uy))
and p;(u1, ..., u,) := p;(o(u1,...,u,)) are continuous in (u1, . . . , u,,) and quasi-concave!
in every u;. Then there is a mixed strategy Nash equilibrium for the mechanism
(0,p).

A mixed Nash equilibrium does also exist if there are finitely many agents with
finitely many strategies:

Theorem 20 (see [48], proposition 8.D.2). Let I be finite and suppose that for every
i € I, U; is finite. Then any mechanism has a mixed Nash equilibrium.

Example 21. Suppose that there are users 1,...,n of some link of capacity 1. Sup-
pose that the link’s bandwidth is split in proportion with the bid amounts b4,...,b,
that the users attach to their bids. Users pay an amoutn on money equal to their
bids. User i’s surplus then is

b;
si=u | = | — b (2.20)
(Zjl bj)

The above theorem implies that there is a Nash equilibrium for the associated game
if all u; are quasi-concave. Chapter 5 gives more results for this scenario.

'f:R D D Ris quasi-concave if forally € R, {x € D : f(z) > y} is convex.
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Note that even in the finite case, pure Nash equilibria do not generally exist:

Example 22 (Matching pennies). Let X and the utility profiles be as in example 18
and let o be given by

B 1 1fu1(1) ZUQ(l)
olu,uz) = {2 ifuy (1) # uz(1) (221

and let p be the zero function. Then there is no pure Nash equilibrium for (o,p)
(since the “looser” of the game would win if he (and only he) changed his value of
u;(1)). There is, however, a mixed Nash equilibrium that lets every player randomly
choose between his two possible choices for u;(1). In fact, even if only one of the
agents chooses u;(1) randomly and the other agent follows any strategy, the yielded
strategy set is a mixed Nash equilibrium. This shows that Nash equilibria are not
unique in general.

2.1.4.2 Bayesian Nash equilibria and implementable choice functions

Definition 9 of Nash equilibrium required that for every ¢ with type u; and any vector
of the “remaining” types i_;, agent i is better off playing according to his equilib-
rium strategy provided that the remaining agents do.

If we assume that the agent’s types u; are random variables drawn from U; ac-
cording to some statistical distribution, we can weaken the notion of Nash equilibria
even further:

Definition 23 (Bayesian Nash equilibrium). Suppose that @ € X;c;U; are drawn
according to some probability distribution F. Let M = (o™, p™). A strategy vector 5
is a Bayesian Nash equilibrium if for all i and all u;,u}, € U;,

Eﬁ_i [Uz (093?(“;717—1')) — Di (093?(%;717—0)] < Ea_i {Uz (Om(uivﬁ—i)> _pim(uzﬁﬁ—i)}
(2.22)
where the expected value E is taken over all possible i_; subject to F' conditioned
on u;.

Definition 24 (Expected externality mechanism). Let o be a social choice function.
The expected externality mechanism for o is the mechanism 9 = (o,p), where for
U= (U,Z 11 E I)

p(@) = B | Sslotun )| + (527) 5 | B | S alofus, 7-9)
J#i j 71

The following is well-known (see [48, p.886f]):
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Theorem 25. If o is efficient and the agent’s types are independently from each
other, then the expected externality mechanism for o is budget balanced and imple-
ments o in Bayesian Nash equilibria.

While the expected externality mechanism is efficient and budget balanced, it
will not generally satisfy the condition of voluntary participation. The Myerson-
Satterthwaite theorem ([56], see [48], proposition 23.E.12) states that for a specific
setting, there are no budget-balanced mechanisms that implement an efficient social
choice function in Bayesian Nash equilibria with voluntary participation.

Theorem 26 (Myerson-Satterthwaite theorem). Let there be two agents 1,2 and let
X ={1,2} and

ui(x) = (2.24)
0 otherwise
fori = 1,2. Suppose that the u; are independently drawn from intervals [u®, u"]

with strictly positive densities, and (u!M8 413%) (O (yJR 13%) £ (). Then there is no
efficient social choice function o that is implementable in Bayesian Nash equilibria
with voluntary participation and budget-balanced payment rule.

2.1.5 Existence of dominant strategies
2.1.5.1 Choice functions that are implementable in dominant strategies

While the existence of mixed Nash equilibria is assured in many cases, far less
mechanisms have dominant strategies for their participants. Roberts [61] (Theorem
3.1) has given a characterization of social choice functions that are implementable
in dominant strategies:

Theorem 27. Let o be a social choice function implemented by 91 in dominant
strategies. Assume that for all x € X, there is i with o() = x. Then there is a
weight vector k = (k; : i € I) with k; > 0 and some i with k; > 0, and a function
F: X — R, such that for all ,

o(t) € arg max {Z ki - ui(x) + F(w)} (2.25)
el

If we take I as the utility function of some “additional” agent 79, Theorem 27 can

be interpreted as saying that exactly those choice functions are implementable in

dominant strategies that maximize weighted total surplus for some weight vector k.

ZNote that the condition of budget-balance is not explicitly mentioned there but derived from the
context.
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2.1.5.2 Vickrey Groves Clarke mechanisms

Definition 28 (Vickrey-Groves-Clarke mechanism). A mechanism 9 = (o™, p™) is
a Vickrey-Groves-Clarke (VGC) mechanism if

1. o™ is efficient, and

2. p™ has the form (p : i € I) with

PP (@) =— [ Sy (ofm (ﬁ)) + iy (E) (2.26)
J#
for some function h; which does not depend on u;.

A classic result (see e.g. [48], proposition 23.C.4) is

Theorem 29. If 9 is a Vickrey-Groves-Clarke mechanism, then 9t is truthful and
efficient.

Green and Laffont [30] proved that

Theorem 30. If for every i € I and every function f : X — R, there is u; € U;
with u;(z) = f(x) for all = € X, then every truthful efficient mechanism is a Vickrey-
Groves-Clarke mechanism.

2.1.5.3 Budget balance

VGC mechanism are in general not budget balanced. In fact, Green and Laffont [30]
showed that they are never, under the prerequisites of Theorem 30:

Theorem 31. If for every i € I and every function f : X — R, there is u; € U;
with u;(z) = f(z) for all x € X, then there is no truthful efficient budget-balanced
mechanism.

2.2 Application of VGC mechanisms to allocation
problems

Definition 32 (Allocation problem). An allocation problem for agents i € I and a
set of goods .J is a set of social choices X C {(k} :i € I,j € J,k} € R)} with a set of
utility profiles (U, : i € I) such that for all i and u; € Uj,

() [ (0500 (5 5)) o (ot - i)

and for all agents i,

(2.27)

(VK =0) = w;(k! i’ € I,je J)=0 (2.28)
The set J is called set of goods.
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k:; can be understood as the quantity of good j that is allocated to agent i. Equa-
tion (2.27) says that an agent is indifferent between two social choices if the quan-
tity of goods awarded to him is identical in both choices. Equation (2.28) says that
agents have zero utility if they don’t get any good.

Example 33 (Task scheduling). Let there be agents 1,...,n and a set of tasks each
of whome can be processed by any of the agents. Suppose that processing task j by
agent i induces cost ¢; ; to agent i. A function f : J — I that assigns to every task j
some agent i can be interpreted as an allocation function by setting k:; =1ifff(j) =i
and 0 otherwise. Agent i’s utility from function f then is u;(f) = — Z{jeJ:f(j):i} Cij-

Example 34 (Combinatorial auction). Fix a set I of agents and a set J of goods.
Define

X = {(k;i i€l jeld), ki e{o1}, Zk;i <1foralljec J} (2.29)
el
This models a market where agents ¢ compete about goods j each available in
exactly one copy. Retaining goods is allowed (it would not if we would require
> ki =1forjeJ).
Equation (2.27) allows us to write u;(G) as a shortcut forui(k;- :1€1,j e J)where
G:{jeJ:kﬁzl}.
Let o be a social choice function for X. For a profile vector i, write

o' @) ={jeJ:ki=1(kl:ieljeJ)=o(i)} (2.30)

and

V(i) =Y ui(o' () (2.31)
i
So o'(#) is the set of goods allocated to agent i by o if the utility profile is .
Now let 9t = (0™, p™) be a VGC mechanism for X that satisfies voluntary partici-
pation and the no positive transfers condition p™ > 0. This implies p*(il],,=o) = 0.
The efficiency condition (2.12) can now be written as

o™(@0) e arg,, U, x Max Z ui (o' (1)) (2.32)
%

For the payment rule, we get according to (2.26) (and dropping the superscript 91
of o™ for notational convenience)

pPa) = | S (o (@) | +hi (@) (2.33)
il i
= —Vo(ﬁ) + ui(oi (ﬁ)) + h; (ﬁ_z) (2.34)
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So
0 = p(illu;=0) = =V °(illu;=0) + 0+ Iy (@) (2.35)
and consequently
hi (ti—;) = V°(U|u,=0) (2.36)
Finally we get
pi(d) = VO(ilu,=0) — V(@) + il o' () (2.37)

The term V(@) — V°(u|y,=0) is called Vickrey discount A9, (%). So

() = wi(0' (@) — AYie() (2.38)

The value of the Vickrey discount is exactly the marginal social surplus contributed
by agent i. Agent i pays his utility discounted by this contribution.

Note that 9 is not budget balanced. Rather, if the utilities that the agents draw
from the goods are nonnegative, the mechanism generates a surplus, the “revenue”
of the auction.

Example 35 (Combinatorial exchange). In a combinatorial auction, the seller is not
represented by an agent. It is assumed that the generated revenue is absorbed
externally. Including the sellers into the agent set yields a combinatorial exchange:

Fix a set I of agents, a set J of goods and for every good j € J, an agent seller(j).
Define

X = {(k;i i€ l,jelJ), ki€ {-1,0} fori = seller(j),k} € {0,1} fori # seller(j),

> kj<0forallje J} (2.39)
el

This models an exchange market with unique goods that are offered by one seller
each (with possibly one seller selling different goods), and buyers that purchase a
combination of goods. The restriction ), ; k; < 0) says that no more goods can be
purchased than are sold, while it is allowed that goods are “left over”.

Note that the Myerson-Satterthwaite theorem (Theorem 26) implies that there
is no budget-balanced efficient mechanism with voluntary participation for X. In
particular, the VGC mechanism is not budget balanced. In chapter 3 we will develop
an adoption of VGC that is budget-balanced and satisfies voluntary participation
(but is not efficient). In chapter 4, we will apply this mechanism to a setting were
users submit competetive bids for a overlapping pathes through a network of links
with limited capacity.
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2.3 Example: A public project

Suppose there is a project that can be implemented on different levels. Given level z,
let ¢(z) be the cost incurred by the implementation of that level, where ¢ : X — R™
is strictly monotonously increasing, and ¢(0) = 0. Now let there be agents i that
benefit from the project, day, u;(z) is the utility of agent i from project level z.
Suppose that u;(0) = 0, and the u; are monotonously increasing. Let P be the set of
user profiles, that is, of all vectors (u; : i € I).

Consider first the case that X = {0, 1}, that is, either the project is implemented,
or not. A mechanism 91 for that problem is a tuple 9t = (z, p), where

e x: P+ X is the decision function (the project is implemented if agents submit
a profile @ with z(@) = 1), and

* pis a payment function with the property that if (@) = 0, then p(u) = 0.
We claim that

Theorem 36. Let 9 = (z,p) be individual rational mechanism with truthtelling as
dominant strategy for all players. Then there is a price vector p = (p; : i € I) with
pi € RT™ U {cc} such that for all user profiles i = (u;),

e x(w) =1 if and only if for all i, u; > p;, and

. 0 ifx(d) =0,
p(d) = , , (2.40)
(pi:i€1l) otherwise.
Proof. Let us write, for any ¢ and v = (v; : i € I) and p;,
PZ+(177PZ) = {(vly sy Ui1,445 Vi1, - - - >Un) S q; 2 pz} (241)
P;(Uapz) = {(vly sy Uim1,455Vi—1, - - >Un) g < pz} (242)

Let 9 = (x, p) be truthful and individual rational. Let X = {7 : 2™(7) = 1}.
Suppose that (7)) = 1 and let p(¢) = p'= (p;). Then for any i,

P (v,p;) € X (2.43)

;) = 0. (2.44)

Let 4 > v. Then 4 € X. We claim that p(#) = p. Suppose not.

Case 1: for some i, (p(0)); > p;.
But then for p; < p < (p(%));, we have

(1)1,...,vi_l,pf,viﬂ,...nn) S Pl-+ (2.45)

but this point is not in X, a contradiction.
Case 2: for all i, (p(4)); < p;, and for some i strict < holds.
Let p* = p(@). Now on the one hand, P, (¢,p;) N P;" (i, p}) # 0, but on the other

hand, Pi+(17, pf) C X, a contradiction. This finishes the proof. O
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Let us also note that

* the mechanism that always implements the project and splits the costs by an
arbitrary rule is budget balanced but not individually rational, and

e the mechanism that always implements the project and lets no one pay any-
thing is individual rational but not budget balanced, and that

» for both these mechanisms, truth-telling is weakly dominant.

2.4 Example: Auctioning a divisible good

Suppose there is a resource of quantity 1 that can be split arbitrarily between dif-
ferent clients (agents). Let there be clients i € I, then the set of possible allocations
is X = {(w; :i€1I):x >0, ,.;z; < 1}. Assume that the utility functions
u; : [0,1] — RT of the clients are monotonously increasing. Let 9 = (0™, p™) be
a mechanism for X and (u; : ¢ € I) and write for a vector @ of utility functions,
(@) = (o™(w@)), and (@) = (2"() : i € I), dropping the superscript 90 if no

ambiguity arises. The efficiency condition (2.12) from definition 14 then takes the

form
Vi) #(d@) € arg  max u;(z;) 2.46
(Vi) & (1) (WEIEXZ i (2.46)
We write V?(@) = 3, u;(z7(@)). As in the previous section, if 91 satisfies volun-
tary participation and the no positive transfers condition, the payment function has
to be

PN (a) = V™ (ilu,z0) — V@) + ui(2(iD)) (2.47)
which we write as
P (i) = ui(2(iD)) — AR () (2.48)
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3 A combinatorial exchange for
autonomous traders

3.1 Introduction

Part of the work presented in this chapter was published in [76] and [74].

Internet auctions are one of the success stories of electronic commerce. Retro-
spectively, this is altogether not surprising, as modern economy produces a large
turnover of goods; and a large quantity of high value goods is not allocated effi-
ciently by traditional retail commerce but rather sold for giveaway prices. Appar-
ently, there is a demand for a highly efficient secondary retail market, which spe-
cializes in transactions between partners that participate in the exchange market
spontaneously. Auctions are an elegant way to tackle the problem of pricing and,
properly used, can lead to efficient allocation of goods.

Bidding on single goods reflects utilities without interdependencies. If bundling
goods increases utility (complementary utility), or goods can substitute each other,
bidding on single goods involves a risk of incomplete or redundant purchases. Com-
binatorial auctions allow bidders to express more complex utility functions. Winner
determination and payment allocation for one-sided combinatorial auctions is pos-
sible using the Vickrey-Grove-Clarke (VGC) mechanism. There is much work about
complexity issues of VGC mechanism [21, 62, 66, 67]. While the exact problem
is computationally intractable, there are approximation algorithms [87] with good
stochastic performance and accuracy whose availability encourages us to leave com-
plexity issues aside in this chapter. VGC leads to efficient, budget-balanced, individ-
ual rational, and even incentive compatible goods and payment distributions [62].
However, revealing true utilities looses much attractivity if bids under false names
are possible. Sakurai et al. [64] and Yokoo et al. [83] show that there is no pro-
tocol with the properties stated above that is robust against false name bids. With
these results in mind, Yokoo et al. [84] present a protocol which is budget-balanced,
individual rational, and robust against false name bids, giving up on efficiency.

One-sided combinatorial auctions allocate goods from one seller to many bidders.
For Internet auctions, we need to model a market with many sellers and many bid-
ders. This is a special case of a combinatorial exchange or double auction [82]. The
Vickrey-Groves-Clarke mechanism (VGC) when applied to combinatorial exchanges
preserves all above properties except budget balance. Unfortunately, there is a
grave negative result [56, 58] about protocols for combinatorial exchanges stating
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that there is no protocol for double auctions that is efficient, budget-balanced, and
individual rational.

Internet auctions have a couple of peculiarities that are so far rarely considered
in connection with double sided auctions:

* Both sellers and buyers enter their bids continuously.

» Sellers specify auction clearing times; there is no market inherent clearing
rhythm.

e There is virtually no mean against false name bids.

* Sellers may wish to leave the pricing completely to the buyer’s side, i.e., offer
their goods without asking any specific price.

* Winner determination and payment allocation should benefit all individual
traders.

We present protocols and algorithms for clearing, winner determination, and pricing
double auctions in this setting which exhibit the following properties:

* They allow auctioneers to start auctions at any time and determine their life
span.

* Bids can be aggregated, including combinatorial ones, over some time.

* A price for every successful auction is based solely on the collected bids.
* Bidding under false names is possible only with a risk of forfeiting trade.
* Pricing is budget-balanced and individual rational.

The rest of this chapter is structured as follows: Sect. 3.2 develops a combinato-
rial exchange model tailored for our application scenario. In section 3.3 we suggest
some properties of payment allocation we consider necessary in the context of auc-
tions with autonomous traders. In section 3.4, we present a new pricing algorithm
that incorporates these properties. Section 3.5 presents a new bid clearing policy
that we then show to perform superior in comparison with the “traditional” clearing
policies.

Section 3.6 extends our pricing scheme to multiple item auctions — an extension
that we will use in chapter 4 where we apply SBNL and commit window clearing to
bandwidth reservation in networks.
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3.2 A combinatorial exchange model for an auction
platform application

We now introduce the notation used by our model which is a special type of al-
location problem as in definition 32 and example 35. More precisely, our model
describes a variant of a clearing house or periodic double auction that admits com-
binatorial bids. However, we impose a number of additional constraints that reduce
the complexity of the model to make it more feasible in practice:

e Uniqueness of goods: exactly one copy of every good is being auctioned. This
means that for every j, there is exactly one i (nameley, i = seller(j)) such that
k; = —1, and for all other 4, k; = 0 for (k‘; rieljeld)eX.

e Only pure offers and pure buying bids. This implies that every agent i is either
a buyer with k; > 0 for all j, or a seller with k:; < 0 for all j. There are no
agents that want to “exchange” one good for another.

* Only buying bids can be combinatorial, that is, for every seller ¢, there is ex-
actly one good j with k% = —1, and for all other all other j, we have & = 0.

* No substitutions - no OR-connected bids. This means that the buyer’s valua-
tion functions are convex, that is, for every buyer ¢ and sets of goods Ji, .Jo C J
with J; N Jy = (), we have

wi(J1 U J2) > ui(Jr) + ui(Jz) (3.1)

* Free disposal is possible (i.e., the seller can keep his good), as modelled in
equation 2.39.

* Price is computed only from buying bids, i.e., sellers do not specify any reser-
vation price. This means that the seller’s valuation function is identical to 0.

We do not consider OR-connected bids because it is hard to mediate between inter-
est conflicts arising between auctioneers when there are not enough bids to sell all
items.

Our market trades with n goods (so |J| = n). Convexity of the valuation function
and the assumption that free disposal is possible allows us to assume without loss of
generality that every buyer bids for exactly one bundle of goods, that is, that there is
for every buyer i a set J(i) C J such that u;(J) > 0 and for all J' # J, u;(J’) = 0. (So
1 would not appreciate “additional” goods even “for free”: we can use free disposal
to avoid such “gifts”.)

We identify now agent ¢ with his “bid” b and write b = (k},... k%, p?) with k:f €
{-1,0,1} and p® € R. We distinguish between auction bids (or auctions) and buying
bids, respectively:
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Auction bids represent the offered goods. For auction bids all k:f’s are 0 except
one, and this one has value —1. An auction bid b is offering good i if ki’ = 1. Further-
more, we impose p® = 0 for auction bids as any pricing is left to the buyers. This
means that b is auctioning the good “with no price limits”. As goods are unique, we
assume that for any good ¢, there is exactly one auction bid a; offering i.

Buying bids represent the demanded goods. For buying bids all kzb’s have ei-
ther value 0 or 1. A buying bid b is bidding for goods {i1,...,i,} if k = 1 for all
i € {i1,...,i,} and kf = 0 otherwise. Here, p’ is always positive (due to the free
disposal requirement negative bids are not reasonable) and represents the amount
the buyer is willing to pay for the goods he is bidding for. For example, the buying
bid (0, 1,1, 20) means that a buyer is willing to pay a maximum of 20 for goods 2 and
3.

Let A and B be the sets of auction and buying bids in the market, respectively.

Definition 37 (Winner determination algorithm). A winner determination algo-
rithm takes as input a set A of auction bids and a set B of buying bids. From this, it
computes an acceptance function x : B — {0, 1} with

> x(b) -k <1 (3.2)
b=(kb,....k% pb)eB

foralli=1,...,n. Abid b € B is accepted by the algorithm if x(b) = 1, and rejected
otherwise.

Informally spoken, a winner determination algorithm determines for each offered
good at most one buying bid that is accepted.

Definition 38 (Payment allocation algorithm). A payment allocation algorithm takes

as input a set A of auction bids, a set B of buying bids, and an acceptance function

x. From this, the algorithm computes a payment allocation function p: AU B — R.
A payment allocation function p satisfies budget-balance if

Y p(e) 20

ce AUB

It is individual rational, iff for all bids b with x(b) = 1 we have p(b) < p°, and for
all b with x(b) = 0 we have p(b) = 0.

Hence, a payment allocation algorithm assigns to each accepted bid its corre-
sponding revenue which is positive for a buying bid and negative for an auction bid.
The following example describes the two-sided VGC mechanism from example 35 in
our simplified notation:

Example 39 (Two-sided Vickrey-Groves-Clarke). Let x be maximizing the sum of
revenues

VE= " x(0) - p (3.3)

beB
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subject to condition (3.2). Let for c € AU B be (V_.)* be the maximized sum of
revenues for auctions and bids AU B\ {c}, and let

AViCk,C =V*— (V—c)* (3.4)
be the Vickrey discount for c. Let the payment function p be defined by

pla) = —Avicka  forae A (3.5)
p(®) =p" — Avieky ~ forb e B. (3.6)

The resulting mechanism (, p) is the Two-sided Vickrey-Groves-Clarke mechanism
for combinatorial exchanges.

The last constraint implies that sellers cannot specify a minimum price as pre-
condition for selling their good. Note that while two-sided VGC does allow sellers
to specify a negative utility for the sale of a good, this is not really a minimum
price condition because specification of negative utility from a sale changes pay-
ment allocation even when more than the lost utility is given to the seller anyway,
as demonstrated by the following example:

Example 40. Let there be two auctions and one bid of 10 for both items together.
Suppose first that the auctions are without minimum price.

According to VGC, all auctions and bids would be matched, the following pay-
ments would be allocated: the auctioneers would receive a payment of 10 each,
while the bidder’s payment would be 0.

Suppose now that the first auctioneer would demand a minimum price of 7. VGC
would then allocate a payment of 10 to this auctioneer, while the other one’s pay-
ment would shrink to 7.

This contrasts with one-sided Vickrey payment or plain pay-your-bid payment for
single item auctions where specifying a minimum price does not change payment
allocation once the payment surpasses the minimum price.

In many settings, specification of minimum prices is not required by the sellers.
In particular, this holds when the market has sufficient liquidity,

or when the fixed - variable cost ratio is high. We therefore refrain from con-
sidering minimum prices. We nevertheless acknowledge the problem of respecting
minimum prices in the above sense, while preserving other desired properties of the
payment allocation algorithm, an interesting question for further research.

3.3 Pricing properties required by autonomous traders

Pricing in a combinatorial exchange is far from being trivial. Following [58] and
[39], we take individual rationality and budget-balance as hard constraints that our
payment allocation algorithm must satisfy. Besides these two constraints, we con-
sider a couple of other properties being useful which are discussed in the following.
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3.3.1 Respecting single item bids.

By accepting combinatorial bids, we expect more willingness from the bidders to
bid and therefore an increased total revenue. Thus, a reasonable constraint for the
payment allocation is that no bidder looses from combinatorial bids:

Definition 41. A payment allocation function p respects single item bids, if for all
auctions a and for all buying bids b that bid only for a, we have p(a) > p°.

Proposition 42. VGC respects single item bids.

Proof. Let a be an auction bid, and b, be a bid bidding for a only. Let V_, be the
maximized revenue of all auctions except a. By accepting bid b,, the revenue in-
creased by p%e. So a increases the total revenue by at least p’*, and therefore a’s
Vickrey discount is at least p’e. O

Parkes et al. [58] present some VGC-based budget-balanced payment rules. The
rules are generated by minimizing the deviation from the Vickrey payments mea-
sured in various distance function. Practically, they divide the available revenue’
between all traders, using various division rules:

e The Equal payment rule splits the available surplus equally among all sellers
and buyers.

e The Fractional payment rule splits the available surplus according to the frac-
tional share from the total Vickrey discount of every agent

e Small starts awarding discounts to the traders with small Ayicx and proceeds
until the available discount is used up.

While VGC does respect single item bids, these variants of VGC do not as is illus-
trated in the following example:

Example 43. Let there be auctions and bids
ap : (=1,0,0)
az : (0,—1,0)

by : (1,1,60)
by : (1,0,50)
b3 : (1,0,49)

a1,a9 and by are accepted. The available surplus is 60. The Vickrey discounts for
the agents are:

a; : 60
as 10
by : 10

!'Remember that we have no minimum prices in our setting

43



The Equal payment rule splits the available surplus equally, so a; and ay receive
20 each, and by pay 40. However, a1 would prefer to accept bid b, with a surplus
of 50, leaving a with a share of 25 under the Equal payment rule. The Fractional
payment rule leads to the following payments: a; receives 60-60/80 = 45, as receives
10-60/80 = 7.5, by pays 60 — 10 -60/80 = 52.5. If however a, accepts bid by, a surplus
of 50 results. The Vickrey discount of a; is 50, of by is only 1, and a; receives
a payment of 50 - 49/50 = 49 under the Fractional rule. Similarly, examples for
the other payment rules (Threshold, Small, Large, and Reverse payment) can be
constructed showing that they do not respect single item bids.

We are tempted to generalize single item bid respect to “all bids respect” by
demanding that for all bids b

>k plai) = pP (3.7)

1<i<n

where a; is the auctioning bid of the auction offering good :. Basically, this would
mean that every auction can choose its favourite bid to be accepted. However, we
can easily see that this is incompatible with budget-balance:

Example 44. Let there be three auctions, and let there be bids as follows:

by : (1,1,0,10)
by : (1,0,1,10)
bs : (0,1,1,10)

The maximal revenue is 10 as only one bid can be accepted. To satisfy the three
inequalities resulting from (3.7), we would need a revenue of 15, however.

3.3.2 No loss from a bid.

Next, we desire that no auctioneer ever looses from a bid for his good. Formally,
that means:

Definition 45. A payment allocation algorithm has the no loss from a bid property
if the following holds: Let A be a set of auctions and let B be a set of bids. Let a € A
be an auction offering good i and let b = (k%,... kY, p’) be a bid with k? = 1. Let
p be the payment allocation function for (A, B) and let p’ be the payment allocation
function of (A, BU{b}). Then p'(a) > p(a).

Note that VGC does satisfy the no loss from a bid property. However, the Small
rule of [58] does not:
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Example 46. Let there be two auctions a1 and ao, and bids as follows:

b : (1,1,100)
b2 . (1,1,99)
b3 : (170’1)

Then bid by is accepted, V* = 100, and

AV1'ck,aL1 = 100
AV1'ck,aL2 = 99
AV1'ck,b1 =1

and the Small rule allocated discounts to b; and as, leaving as with a payment of 99
and a; with no payment. Suppose now that there is an additional bid

by : (0,1,2)

Now the discount goes to b; and a1, leaving as with no payment. So as suffered from
an additional bid.

3.4 A new pricing scheme

Now, we present a budget-balanced, individual rational, single item bid respecting
payment allocation algorithm with the no loss from a bid property.

Algorithm SBNL
Input: A - a set of auctions, B - a set of bids

Output: a payment allocation function p : A — R.

e Step 1. Compute the item allocation that maximizes revenue. Let V be the
maximized revenue.

* Step 2. For an auction a offering good ¢, let b, = (0,...,0,1,... ,O,pba) be the
highest bid bidding for good i only. If there is no such a bid, define p®* = 0. Let

Vsingle = ZaeA pba-
» Step 3. Solve the linear programming problem
Minimize Y = »
1<i<n
such that

(Voen) Sy =p

1<i<n

Among all optimal (y’: 1 <14 < n), choose the one that minimizes _,(y*)?.
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V- Vsingle

* Step 4. Let Q = y—y <.

+ Step 5. For all auctions a € A, let p(a) = p* + (y* — p¥) - Q, where a is offering
good 7.

Our pricing mechanism let successful buyers pay exactly the amount of their bid.
Winner determination takes place subject to maximizing total revenue. The pricing
mechanism distributes this revenue among the sellers.

Proposition 47. Algorithm SBNL satisfies budget-balance and individual rational-
ity, respects single item bids, and has the no loss from a bid property.

Proof. Obviously the algorithm is individual rational. The sum of the payments is

Zp(a) = Zpba + Q : (Zyz - Zpba> = Vsingle + Q : (Y - Vsingle) =V

and this proves budget-balance. Step 2 ensures single item bid respect. For the
no loss from a bid property, note that we always have Y > V, and this implies
(@ < 1. Thus an additional single item bid for a can only increase a’s payment. The

argument for an additional combinatorial bid is similar.
(I

3.5 Bid synchronization

After developing a pricing scheme, we will now turn our attention to the clearing
policy of an auction protocol which defines at what times auction and buying bids
are being matched.

Our market model allows continuous publication of new auctions. There are vari-
ous clearing strategies in use for continuous double auction markets [19, 20]:

* Continuous clearing. The trade occurs as soon matching bids and asks arrive.

e Periodic or random clearing. The trade occurs at certain times (periodic, ran-
dom, or a combination of both), bids and asks are matched subject to certain
optimality conditions (e.g. maximizing surplus or throughput).

All three policies have serious drawbacks in our scenario. Periodic clearing of bids
that are submitted continuously results in auctions whose live span is very short
when they are entered shortly before the end of an aggregation slot. A similar
effect occurs with random clearing: some auctions will close after a short time, and
little value is generated, while others may run longer than the auctioneer desires
to wait. Continuous clearing can’t be used when sell-bids have no minimum price,
since otherwise, sell-bids would always be matched with the first bid that asks for
the offered good.

We find it desirable to allow the auctioneer to control the live span of his auction.
Therefore, we use another clearing policy that we now describe.
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3.5.1 A new clearing policy

Definition 48 (Commit window clearing). Every auction announcement

a= (aaa 75?.;31'11'95153 7ﬁfatest) (3.8)
contains the following information:
e the auction bid a?, i.e. identity of the good

. . . a
* the earliest commit time t3, ;.o

* the latest commit time t3,,.,
Every auction goes through the following sequential phases:

e Pre-commit. Bids for this auction can be submitted. The auction will not com-
mit to accepting any of them.

e Allow-commit. Bids for this auction can be submitted. The auction house can
request that the auction commits to a bid if that bid wins by the winner deter-
mination algorithm applied by the auction house. In this case, all unsuccessful
bids for this auction are uncommitted, and the auction transits into Expired
state.

e Force-commit. No bids can be submitted anymore for this auction. The winner
determination algorithm determines the winner among all bids that bid for
auctions in Allow-commit or Force-commit stage. Non-accepted bids for this
auction are uncommitted. Transit into Expired state.

e Expired. The auction is finished, the winner was determined and the payment
computed.

A bid is committable if all auctions the bid is bidding for are in Allow-commit

or Force-commit state. Pre-commit for an auction a is the time before t3, .., The
Allow-commit phase lasts from t3, ..., to t,,..; and are followed by the Force-commit
and Expired phases.

This policy lets the auctioneer control the live span of his auction. A combinatorial
bid can be accepted if the commit phases of all auctions bidden for do overlap.
The larger the Allow-commit phase, the more inviting his auction will be toward
combinatorial bids.

47



3.5.2 A lower bound for the revenue

In this section, we give a lower bound of the revenue assuming that the set of auc-
tions open for bidding does not change. In this case, it is reasonable to assume that
the set of items bidden for and the amount of the bids submitted within that interval
are independently, but identically distributed.

Let us fix a set A of open auctions A = {A44,...,4,} and assume that bids are
independent random variables b(p, A, #2) for fixed p € [0, 1].

Consequently, the number of items a bid b is bidding for follows binomial distribu-
tion with parameters n and p:

#items(b) ~ Binomial(n, p)

and the amount distribution is a squared binomial distribution.
Let us compute the expected value of the revenue generated by one bid.

E[amount(b)] = Zn: (Z) PP —p)RE?

k=0

=n(1—p)"p(1 —p+np)(1+ ﬁ)” (3.9)

The cumulative distribution function is

vz
P(amount(b) < z) = Z <Z>pk(1 —p)nk,
k

[e=]

and thus

P(max{amount(b;), ...,amount(b,)} < x)
= (P(amount(b) < z))Y

=) (Z)p’“(l —p)**

k=0

Now we can give a lower bound E.,.«(g,n,p) on the expected value E,(n,p) of the
revenue of the auctions with ¢ bids

E4(n,p) = E(revenue of g bids)

> F(max{amount(b;), ...,amount(b,)})

(S @)

= Emax(.g, n, p)
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Figure 3.1: Maximal revenue of one bid over number of bids.

Figure 3.1 is a plot of values for Ey.x(g,n,p) with n=10, p=0.1, 0 < g < 200.

Now if 0<p<1, P(amount(b) < x) = 1 for + > n? and P(amount(b) < x) < 1 for
r < n? and therefore,

lim F(max{amount(b;),...,amount(b,)}) = n?
g—0o0
On the other hand, the revenue of the nth auctions is bounded from above by n?.
Thus we conclude that lim E,(n,p) = n? for all 0<p<1.
g—00

The lower bound we gave is not tight at all. We are not aware of a closed-form
representation of the precise expected revenue F,(n,p). Figure 3.2 shows results
of a numeric simulation of £,(10,0.1) with 1000 iterations per g(0 < g < 20), plotted
over the lower bound Ey,.x(g,n,p).

revanLe

115 ¢

L]

bids

Figure 3.2: Simulated revenue and lower bound over number of bids.
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3.5.3 Comparison between periodic and commit window clearing
3.5.3.1 Side conditions for the comparison

We wish to evaluate efficiency in connection with the surplus-maximizing good al-
location of two of the three mentioned clearing policies: the new commit window
clearing policy, and periodic clearing. We will measure efficiency in terms of the
generated revenue? per auction, for a fixed set of auctions the timing of which we
adjust to the used clearing policy.

For periodic and random clearing, the time when bids and offers are matched is
determined by the clearing policy parameters - neither auctions nor bids have to
state anything about that time. Let Aperiogic be the length of the interval between
two clearings for the periodic clearing policy. Then the length of an auction is be-
tween 0 and Aperiodic-

For commit window clearing, the length of an auction is between tgariiest and tiatest-
Its precise value will be determined during the life of the auction and will depend
on the submitted bids.

We will model behaviour of market participants as follows:

e Sellers initiate new auctions according to a Poisson process with parameter
Aq. Sellers require that these auctions must terminate within a specified time
tMaxAuctionDuration Which is constant for all auctions. For a given auction, let tgiart
be its start time.

* Sellers have no fixed costs and therefore, wish to auction their goods without
minimum price.

* For the periodic auction, we set Aperiodic = tMaxAuctionDuration- 1he auction lives
from tsart to the end of the current clearing period, that is to min{nAperiogic :
n €N, nAperiodic > 75'start}-

e For the commit window clearing, we set tiatest = tstart + tMaxAuctionDuration- 1N€
size of the commit window Syingow Can vary from O to fmaxauctionDuration and
therefore, teariiest varies from tgiart 0 tstart + tMaxAuctionDuration- FOT our study, we
fix the commit window size to its maximal value Sywindow = {MaxAuctionDuration -

* Buyers submit bids for combinations of goods. A Poisson process with param-
eter )\, determines the times when a bid is submitted. A bid, submitted at time
tpid, will be a random variable b(p, A, #% + §) where A is the set of auctions
open for bidding at the time when the bid is submitted, and

5~ N(O,# Y (3.12)

2social surplus
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In the choice of the amount distribution, we follow [9] who suggests as an
acceptable distribution of the bid amount a normal distribution with expected
value equaling the “fair” value of the item combination bidding for.

We claim that commit window clearing generates, under the side conditions de-
scribed above and for syindow Properly chosen, a higher revenue than periodic clear-
ing. We support this claim by some simulations whose parameters are derived from
mentioned side conditions.

3.5.3.2 Simulation results

Figure 3.3 shows a comparison of revenues of auctions with periodic and commit
window clearing. The parameter p varies in 100 steps between 0 and 1. The Poisson
parameters A\, and )\, are constants with value 0.1. The auction duration is set to
100. The average total revenue of 50 iterations for all auctions generated within a
period of 10000 was measured.

revenue

500

400

300 ¢ Ccwe
200 ~ period
100

0.2 0.4 0.6 0.8 1°P

Figure 3.3: Comparison of periodic and commit window clearing

We conclude that this simulation supports our claim.

3.5.3.3 An analytic approach for offline winner determination

Bids in the stochastic model from above are generated on the fly with a target cho-
sen from all auctions that are open for bidding at the time when a bid is submitted.
In this section, we will modify bid generation slightly: the target of a bid submitted
at time typ;q is chosen from all auctions a with tegriest < thid < tlatest. Winner deter-
mination takes place offline, that is, among all bids that were submitted during the
total run. For this scenario, we can show analytically that commit window clearing
generates a higher surplus, then periodic clearing.

For a set B of bids bidding for subsets of the auction set A, define

(3.13)

o(B) = 1 if all bids is x are compatible
N 0 otherwise.
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and let revenue(B) be the maximized revenue possible to generate from B, that is,

revenue(B) = max c(B) Z amount(b). (3.14)
= beB/

The following is easy:

Lemma 49. Let there be given two finite sets of bids, B = {B; : i € I}, and B' =
{B}:i e I}, with the property that for every i,j € I,

« amount(s;) = amount(s}), and
» if s; and s; are compatible, so are s; and 5;.

Then
revenue(B) < revenue(B’) (3.15)

This implies

Lemma 50. Let S = {b; : ¢ € I} be a set of independently identically distributed
variables
bi ~ b(p, A, #°) (3.16)

and let ' = {b : i € I} be a set of independently identically distributed variables

b ~ b(p, Ai, #°) (3.17)
for some A; with |A;| = |A|.
Then
E(revenue(S)) < E(revenue(S’)) (3.18)
(I

Suppose auctions are started with constant rate r, during time 7' and bids sub-
mitted with constant rate r, (number per second). For simplicity, let r, be a multiple
of r,. Furthermore, assume tpaxauctionDuration 1S constant, and the size of the commit
Window Swindow = ¢MaxAuctionDuration = Aperiodic-

Figure 3.4 illustrates the situation with commit window clearing: auctions A; to
Ay are subsequently started. Auctions A; and A; overlap if |i —j| < MaXAHCtif:Duration.
For three bids B;, By and Bs, vertical lines show the auctions the bid target is drawn
from.

The situation for the periodic clearing is shown in figure 3.5. The target of all
bids is contained in the set of auctions started within one clearing interval.

Now let the bP*" be, for 1 < i < T, independent, identically distributed random
variables with distribution b(p, {4+ A 1, #%), and let

b Aperiodic

410 Y d H’TaAperiodic

TbAperiodic
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Figure 3.4: Overlapping auctions for commit window clearing
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Figure 3.5: Auctions for periodic clearing
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b7"¢ be, accordingly, independent, identically distributed random variables with dis-
tribution b(p, {Ai:—Z> ce >Ai:—ZJrMaxAuctionDuration-raa #2) We compute

E(revenue of periodic clearing)
= revenue({b}*" : 1 <i < nT})) (3.19)
< revenue({b{"° : 1 <i < nr,T})) (3.20)

where the last inequality follows from lemma 50.
We conclude

Corollary 51. The expected revenue of a commit window auction with maximal
auction duration tpaxauctionDuration, @uction start rate r, and bid submission rate ry, is
greater or equal to the expected revenue of a periodic auction with r,taaxauctionDuration
auctions running in parallel and rytpaxauctionDuration PIdS.

3.5.3.4 Further research on the performance of commit window clearing

Here we presented a first analysis on the efficiency of a new clearing policy suit-
able for combinatorial exchanges with multiple sellers and buyers. The policy was
compared with the classical periodic clearing policy, and it was found that commit
window clearing yields a higher mean revenue when auction and bid submission
rates, bid distribution and maximal auction duration are fixed.

Some estimates on the expected revenue for periodic and commit window clearing
were presented.

Undoubtedly, further analysis of the policies in regard of their generated rev-
enue, particularly under the side conditions used for the simulation, would be quite
interesting. The same should apply to analyzing more clearing policies like random
clearing, and generalizing the results to more amount distribution functions.

3.6 Extending SBNL to multiple item auctions

Remember that bids are of the form b = (kl{, e kff“ pb), where we defined above that
k? € {~1,0,1}. For buying bids, we have k! € {0, 1}, while for auction bids, k? < 0.
We now generalize the notion of auction bids by allowing kf € Z~, the set of non-
positive integers. We keep the assumption that auction bids are non-combinatorial,
that is, that for every bid b, there is only one i with k¥ # 0. Now we can generalize
definition 37.

Definition 52 (Multiple item winner determination algorithm). A multiple item win-
ner determination algorithm takes as input a set A of auction bids

A= {ba = (Kb, ... kb pbn) by € A} (3.21)
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such that for every i, there is exactly one b, with k:f“ # 0, and a set B of buying bids.
From this, it computes an acceptance function y : B — {0,1} with

S x(b) k< <k (3.22)
b=(k},....k%.pb)eB

for alli = 1,...,n, where b, is the unique bid in A with kf“ % 0. Abidb € B is
accepted by the algorithm if x(b) = 1, and rejected otherwise.

Definition 38 remains unchanged. It is easy to see that the two-sided Vickrey-
Groves-Clarke mechanism of definition 39 can be generalized to multiple item auc-
tions:

Definition 53 (Two-sided Vickrey-Groves-Clarke for multiple item auctions). Let x
be maximizing the sum of revenues

VE= " x(0) - p (3.23)
beB

subject to condition (3.22). Let for c € AU B be (V_.)* be the maximized sum
of revenues for auctions and bids AU B\ {c}, and let

AV1'ck,c =V"- (Vfc)* (3.24)
be the Vickrey discount for c. Let the payment function p be defined by

p(a) = —Avicka foraec A (3.25)
p(b) =p® — Aviecky ~ forb € B. (3.26)

The resulting mechanism (x, p) is the Two-sided Vickrey-Groves-Clarke mechanism
for combinatorial exchanges with multiple items.

It follows that the mechanism SBNL generalizes to the multiple item case as well.
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4 Application to network management:
Advanced resource reservation in
networks

Nisan and Ronen define in [57, p.13] a scenario of a network that consists of a di-
rected graph GG whose nodes are connected by edges that represent links with asso-
ciated costs for usage. In this setting, they define the natural shortest path problem
that now corresponds to fining the cost-minimizing path between two nodes. A Vick-
rey mechanism in which the link costs are treated as bids, gives the “owners” of the
links incentive to bid according to their true costs. Nisan and Ronen’s results are
extended by Hershberger and Suri [32] and Archer and Tardos [5]. Hershberger
and Suri proved that the Vickrey pricing can be computed in the same time as the
solution of a single-source shortest path problem, if the graph is undirected!'. For
results on directed graphs, see the follow-up paper [35].

The Vickrey mechanism pays more than the actual costs to the link owners (thus
buying truthfulness). Archer and Tardos note that the additional premium can be
a multiple of the actual costs. They prove that for a large class of graphs, every
truthful mechanism has in some instances to pay a high premium even if there is a
choice between multiple paths of essentially the same cost.

We have argued above that the fact that marginal usage costs are neglectible
compared to fixed costs makes it disputable whether there is a meaningful definition
of “costs” associated with usage of a link. Similar to the application scenario for
transport logistics, it seems much more natural to leave the pricing to the network
users that compete for resources. Users, however, would bid for paths rather than
for single links. The resulting market would be precisely the combinatorial exchange
that this chapter deals with.

Are the pricing rules of SBNL suitable for such a scenario?

e The requirement of budget balance may be obsolete if payments are small
compared with fixed “basic fees” users pay to the network owners independent
from usage. A pricing structure that is split into fixed fees and per-usage fees
is appropriate if the basic fee users pay is mirrored by a basic utility users

!Beware of the conference version [33] of that paper, which erroneously claims that that holds for
directed graphs, too (see also the erratum [34] of the authors).
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have from being “connected” to the network. The amount of the fixed fee
would then be determined independently from the exchange pricing. The bids
of the users would be based on the marginal utility users have from using a
certain path. Of course, there would be then a question on the acceptance
of the fixed fee by the user. Thus, there would be no clear separation of the
analysis of the mechanism, and the analysis of the economical context.

In the absence of basic fees, however, budget balance of the exchange market
would be strictly required. This would hold true even if there is a basic fee but
per-usage fees may be of comparable size.

* Respecting single item bids and no loss from a bid are clearly desirable prop-
erties from the point of view of the link owners.

We conclude that if budget balance is required, SBNL's pricing rules are reasonable
choice for network linkage pricing.

The definition of good synchronization rules seems more challenging. We have so
far not yet stated whether the bid amount refer to a payment per package or per
time interval. Nisan and Ronen have left that question unconsidered.

¢ One approach is to introduce time slots and auction them each to one bidder
exclusively. This makes sense if the link’s capacity can’t be split between bid-
ders. If this is not the case, we could divide the link’s capacity into smaller
portions and auction them either as independent goods, or as a good with
quantity more than one. But from the bidder’s point of view, the portions are
substitutes, so if they are auctioned independently, we would have to allow
bidders to submit OR-connected bids. In the second case, the auction would
be a multi-item auction.

* Alternatively, we can auction the right to send a package over the link within a
time slot. The link’s capacity will most probably allow more than one package
per time slot. This means that the uniqueness of goods condition defined above
is violated.

Table 4.1 gives a summary of the possible market types.
How do the second and third lines of the table relate to each other?

Proposition 54. AND-of-OR-connected bids have strictly greater expressive power
than selling bids for identical copies: That is, let there be a combinatorial exchange
market AND-OR with

» selling bids of the form bs; = (slot, link, portion) where

- slot is a time slot,
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Unsplittable link capacity Combinatorial exchange with AND-
connected buying bids and non-
combinatorial selling bids

Link capacity portions as distinct | Combinatorial exchange with AND-
goods of-OR-connected buying bids and
non-combinatorial selling bids

Link capacity portions as identical | Combinatorial exchange with AND-

copies of the same good connected buying bids and selling
bids with quantity
Package in a timeslot auction Combinatorial exchange with AND-

connected buying bids and selling
bids with quantity

Table 4.1: Possible market types for network bandwidth auctions

- link is a network link, and

- portion is a capacity portion of link for slot,

* buying bids of the form b, = <1'd, Aink V portion(slot, link, portion), p), where

- id is the buyer’s identity,
- slot, link and portion are as above, and

- p is the bid amount,

and a combinatorial exchange market AND-MULT with
« selling bids of the form b, = (slot, link, q) where

- slot is a time slot,
- link is a network link, and

- q is a quantity (that is, a positive integer),

* buying bids of the form b, = (id, \};,.(slot, link), p), where the variable’s in-
terpretations are as above.

Then there are mappings Ty, resp. T that map any any buying bid b, of AND-MULT
to a set of buying bids T (b,) of AND-OR, and any selling bid b, of AND-MULT to a
set of selling bids Ts(bs) of AND-MULT, such that for any bid acceptance function
xanp-murtr for AND-MULT, there is a bid acceptance function yanp-or for AND-OR,
such that for any given sets of buying and selling bids for AND-MULT, B, and B, a
buying bid b, € B, is accepted by x anp-murr if and only if all buying bids in T;(b,) are
accepted by xanp-or, and similarly, selling bids b; € B, are accepted by x anp-murt if
and only if all selling bids in T,(bs) are accepted by X aND-OR-
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Proof. Define T, and T} as

bs = (slot,link, q) — T(bs) = {(slot, link, portion) : portion =1, ..., ¢}

4.1)
by = (id, /\(slot, link),p) — Ty(by) =
link
n
id, /\ \/ (slot, link, portion), p (4.2)
link portion=1
Define XAND-OR aS
XAND—OR(b/;ND_OR) =1 (4.3)
iff
b/yAND-OR €T, (b/;ND-MULT) and yAND.MULT (nyAND-MULT) 1 (4.4)

We have to show that if yanp.murT is a valid bid acceptance function, then so is
XaND-OorR- The first means that if for all slots sloty and links linkj and selling bids
bs = (slot, link, q),

<gq. (4.5)

‘{by = ((sloto, linko) AN /\ (SlOtQ7 link)) : XAND-MULT(by) = 1}

link

The latter means that there is an allocation function ¢ that allocates triples
(slot, link, portion) (4.6)

to bidders such that every triple is allocated at most once, and that if

xanpor | [id, /\ \/ (slot,link portion),p | | =1, (4.7)

link portion

then there is a triple (slot,link, portion) with ¢((slot,link, portion)) = id. But
clearly, equations (4.1) and (4.5) imply such a ¢ exists. O

If two selling bids offer portions in the same spot and are of the same size, we
can safely assume that buyers are indifferent between the two bids. This means
that rational buyers that wish to acquire one portion for a certain slot will always
submit bids that OR-connect all selling bids for the same slot. But this means that
the additional expressive power that AND-OR provides more than AND-MULT, is
not being used by the bidders. Consequently, a market that sells link capacities
as multiple copies of identical goods will always be preferred over a market that
sells link capacity portions as individual goods. We are therefore interested in the
extension of SBNL that admits selling bids with multiple copies of the same good.

59



4.1 Background: The RSVP protocol

Reservation protocols for network resources, most prominently bandwidth, have
been suggested for a long time now. While many applications, like file transfer or
email, rarely create short-term bandwidth shortages, multimedia applications like
video streaming are more demanding. If both real time transmission and high band-
width are required, even generously designed networks quickly run into temporary
capacity deficits.

One of the most popular resource reservation protocols is the Resource Reserva-
tion Setup Protocol (RSVP) ([10], see [79]) which was designed with its application
to multicast videoconferencing in mind. RSVP uses PATH messages that are sent
by the stream source to the potential receivers, and RESV messages that travel the
opposite way and carry reservation requests from the receiver to the source. Reser-
vation requests are processed hop-by-hop by the routers which are responsible for
acceptance or rejection of reservations. A rejected reservation is not propagated
further upstream, and an error messages is sent in reply to the issuer of the re-
quest. Two aspects of RSVP are of interest here:

* RSVP reservation messages can either request controlled load service, or
guaranteed service. Controlled load requests are specified by traffic specifica-
tions (TSpecs) which contain parameters that describe the anticipated traffic,
like average and peak rate, package size, etc. Guaranteed service is character-
ized by service rate (the bandwidth in bytes/second), and slack (the additional
delay that the hop may add, in microseconds).

* Reservation messages are for immediate resource usage, there is no advanced
reservation for time slots in the future.

RSVP does not specify how RESV messages are processed. Clearly, the protocol
was designed with the intention that bandwidth is reserved at a first-come first-
served base. It is, however, conceivable that monetary bids are added to RESV
messages, and that reservation requests are aggregated at intermediate hops in
order to implement an allocation based on monetary bids. Reservations in RSVP
expire unless renewed within a given time (specified in the TIME VALUE field), but
if they are renewed, they remain valid.

If bid amounts refer to a reservation whose duration is indefinite, any bid accep-
tance mechanism obviously leads to inefficiencies of arbitrary degree. There are
only two ways out of that: either reservations are for a bounded time, or reser-
vations are unbounded but it is accepted that possibly, flows will be interrupted.
Among others, Burchard [12] uses the first approach: reservations apply to certain
time slots well-known in advance. Extensions to RSVP that support reservations
for given time slots have been suggested e.g. in [69]. While indefinite reservations
are not considered in [69], it is possible to re-negotiate the duration of reservations,
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albeit without a guarantee of success. An overview about advance resource reserva-
tion is given in [80], but in respect to reservation with unknown in advance duration,
the authors note only that they are “difficult to implement”.

4.2 An auction market for advanced reservations with
well-known duration

In this scenario, we have
* selling bids of the type b; = (slot, link, q), and

* buying bids of type

b, = (id, A\ A (slot,link),p), (4.8)

slotcslotset linkclinkset

where slotset is the set of slots that define the time period that the reservation
request refers to?, and linkset is the set of links that flow travels through.

It is easy to see that this yields an instance of the market from definition 52; one just
needs some enumeration of {(slot, link) : slot < slotset, link € linkset} that maps
slot-link pairs of b, to the corresponding is in (k:ll)'“, kY .,kfi’,p) of equation
(3.21).

Let

B, = {by = (id, A /\  (slot,link), p> :by, € By} (4.9)
slotcslotset linkclinkset
be a set of reservation request bids. For a slot-link-pair sl = (slot, link), let le be
the set of all bids in B, that bid for sl. Condition 3.22, applied to our market, then
says for any valid bid acceptance function y, for any slot-link-pair sl = (slet, link),
the condition
> xlby) <1 (4.10)

byeBS!

holds.

How is the matching of buying and selling bids to be timed? An advantage of
commit window clearing (see definition 48) is that auctions don’t have to be syn-
chronized exactly, it is enough if the time windows (fearliest, tlatest) Where a com-
mit is possible do overlap. For a slot slot = (519 Slot)  clearly we should have

tlatest < t:%gﬁt and there is no need for a stricter condition. But what should be

the earliest time that a bid is accepted? If uniformly for all slots, the slot length is

[s1°t and AS!®t js such that we allow commit for a slot slot = (¢5[2% ¢51ot) from time

2We do not formally require slotset to be a contiguous set of time slots.
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tslot _ Aslot for reservation request that requests resources between ¢, and 1%

star end’
to be granted it is necessary that

trnd <t tart_|_Aslot lslot (4.11)
or

Spanres < Aslot+lslot (4.12)

with span™® = 7% — t£5, is the reservation’s time span.

4.3 Unknown reservation duration: Extensions to the
admission control algorithm of Greenberg et al. for a
single link

If reservation duration is unknown (and with no known bounds) but accepted reser-
vations must be honoured, then a link that has accepted a reservation for a slot slot
can’t accept reservations for any slot after slot until the given reservation has been
released.

Greenberg et al. [31] 3 proposes the parallel use of book-ahead requests (BA)
with known duration, and instantaneous requests (IR) which are of unlimited valid-
ity. While book-ahead requests are guaranteed once accepted, it is admissible that
service based on instantaneous requests is interrupted or downgraded with a suffi-
ciently small probability. Greenberg et al. assume that BA and IR requests arrivals
are given as independent Poisson processes with rates Ag, A\; and that BA and IR
holding times (known in advance for BA and unknown for IR) are independent and
exponentially distributed with means ,LLLB7 i Furthermore it is assumed that total
link capacity is s, that IR requests are for capacity 1 and BA requests are (uniformly)
for capacity b. Let rp and r; be the per time unit rates paid for completed BA and
IR requests, and let C7 be the “penalty” (cost) for an interrupted IR request*. Then

there are three variables that control the total generated revenue:
e the probability P; that an incoming IR request is rejected,
e the probability Pp that an incoming BA request is rejected, and

e the probability p; that an admitted IR request is interrupted while in progress.

3A similar approach was presented in [68].
“There is no penalty if the request was rejected or if the reservation was released by the user.
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Parameter | Definition Known| Known| Depends on
to to
net- user
work
link capacity yes no
link capacity put aside for IR re- | yes no s,b,Ap,
quests AL JIs 0B
b capacity of BA requests yes yes
AB BA arrival rate yes no
A1 IR arrival rate yes no
115 IR holding parameter yes yes
73z; BA holding parameter yes yes
pi? empirical interruption probability | yes yes 5,0, g,
AL I 4B
PI interruption  probability = with | yes no existing IR and
known existing IR and BA reser- BA reservations
vations
Py maximal interruption probability | yes no s,b, A\,
such that IR request is accepted AL, I, 0B
D Pt < t) = 1 — e Fnc't, where | yes yes PP g
tint is the time when a (never re-
leased) reservation is interrupted
Tq per-time utility of user a no yes
C, interruption cost for user a no yes
Tp payable rate for some reservation | yes yes Pr
Cp compensation for interrupting | yes yes pr
some reservation
ty time when user stops usage of re- | no yes
source reservation
t), time when resource reservation is | yes yes Tp, Cp, Mint

released

Table 4.2: Parameters in the Greenberg et al. model
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With these variables, we can write the revenue rate per time unit

T T
R=(1—Pp)(1—pr) =X+ (1—Pp)ZAp — pr(1— Pr)Crir (4.13)

Ky KB
Here y/; is the mean holding time for IR request conditioned upon that the request
is not interrupted. If p; is small, then we can approximate p/; by y; .

e With the assumption that BA requests are far into the future, the admission
control for BA requests can take place without consideration of the IR calls
in progress. A BA request will be admitted if, including that request, at no
time more that s — r capacity is reserved by BA reservation. The parameter r
defines an amount of capacity that is “put aside” for IR calls.

¢ On the other hand, the admission control for IR request must take into consid-
eration the IR calls in progress as well as the pending BA reservation. From
that information, the probability p; is computed, and the IR request is granted
if and only if the interruption probability for this request is less than p7®*, with
p7® being the “threshold probability” parameter.

Thus, the variables P;, Pp and p; that control the revenue all depend on the param-

eters r and p7"®*. The maximization of R in (4.13) takes place by variation of » and
max

Dy

Greenberg et al. sketch how p; can be computed and point out that the com-
putation is somewhat cumbersome. They suggest different approximations whose
precision they evaluate in simulations. Greenberg et al.’s simulations also showed
that allowing BA and IR requests can significantly increase generated revenue even
if the probability threshold for service interruption is small.

4.3.1 Bidding for paths in the admission protocol of Greenberg et al.

Greenberg et al.’s admission control mechanism can easily be extended to the case
that a reservation request asks for a combination of resources: the admission con-
trol algorithm is run separately for every link, and the request is granted if and only
if all links are available. Figure 4.1 shows a summary of the extended algorithm.

The procedures AdmitBA and AdmitIR are called when requests arrive. They use
the global variables AdmittedBA and ASdmittedIR whose keeping up-to-date we
have omitted in the pseudocode. The procedure InterruptProbability performs
the (approximate) computation of p; as in [31]. The parameters p;*®* and r are either
constants fixed in advance, or could also be dynamically adopted to maximize R in
(4.13).

4.3.2 Mechanism design for reservations with unknown duration.

Greenberg et al. assume that the pay rates r; and rp and the “penalty” for inter-
rupted IR reservations C are constants for all requests (which than can be set to 1
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16

21

26

31

36

41

globals Admit
Admit
procedure Adm
forall (slo
n=0
forall (
if (slo
n++
endif
end
if (nxb>c
return
endif
end
return true
end procedure

procedure Adm
pir=Interru
if (pir < p
return tr
else
return fa
endif
end procedure

procedure Adm
forall (lin
if (Admit
return
endif
end
return true
end procedure

procedure Adm
forall (lin
if (Admit
return
endif
end
return true
end procedure

tedBA(link) // set of admitted BAs per link
tedIR(link) // set of IR calls in progress per link
itBAperLink (slotset, link)

t in slotset) do

(islotset,ilinkset) in AdmittedBA(link) ) do
t is in islotset)

77")
false

itIRperLink (link)

ptProbability (AdmittedIR(link),AdmittedBA(link))
max

)

ue

lse

itBA(slotset, linkset)

k in linkset) do

BAperLink (slotset,link) == false)
false

itIR(linkset)

k in linkset) do
IRperLink (link) == false)
false

Figure 4.1: Admission control for combinatorial requests.
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without loss of generality).
We now consider a market where users submit buying bids

by = |id>, A /\  (slot link), r%, C (4.14)

slotcslotset®” linkelinksetby

and selling bids b; = (slot, link, q).
How would a good mechanism for this market look like?

First note that if the per-time rate is payable only for completed calls, there is
no incentive for a user ever to finish a call. Therefore, this approach is unfeasible.
We thus modify the revenue R of (4.13) such that the rate r; is payable even for
interrupted calls®. This yields

r r
R=(1-P)-Lax + (1=Pg)-LEXg — pr (1= P))CrA; (4.15)
M KB

A first glance may suggest a mechanism that pays a (per-time usage) price payable
if the request is accepted, and a “penalty” that is paid to the bidder in case that the
request is accepted but the service is interrupted. The problem with that approach
is that if the duration of the request is controlled by the bidder, he may manipulate
by intentionally not terminating the service to be entitled to the penalty payment.

So a user a's type is a tuple (r,,C,) where r, is the utility rate and C, is the
cost of interrupt. Furthermore, we assume that the duration of a reservation is
a random variable ¢, with exponential distribution. The value of ¢, , is unknown
even to a itself at the time when he places his bid. We assume that after ¢, has
expired, the user has no further utility from his reservation. However, he can keep
up the reservation to speculate on the interruption penalty C;. The utility of a thus
depends on a parameter ¢/, that a chooses and that defines the time that a releases
his reservation, provided that it hasn’t been cancelled before. This decision has to
be made only after ¢, is known, so ¢/, can be dependent on ¢,. a will choose t/, in
such a way that his expected utility is maximized.

Let is compute the expected utility that a gains from the call after t, has expired,
conditioned on ¢, and the assumption that the call was not interrupted so far. Let tint
be the time when the reservation is interrupted. Greenberg et al. give a computation
of the interruption probability for a call, depending on the currently existing BA
reservation. While the reservation owner does indeed have this information, a does
not. Therefore, it is safe for a to assume that the interruption probability time for
any given call (of infinite duration) is also exponentially distributed with parameter

>One might argue that this is quite a realistic model anyway: the “interruption cost” C could then
be interpreted as the cost of the inconvenience to re-build the connection, while the utility already
gained by the service before the interruption is not lost.
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Lint- Then

t
Ua(t|ta, tine > to) = / pine ) (G — (8 — t,)rp) di
ta

— (th —tg) rpP(time > t),) (4.16)
et;c:uint <et;,uint _ etzﬂint) (Cpﬂ/int _ Tp)
= (4.17)
Mint
e O — 2 (4.18)
’ Mint

with r, be the price rate that a has to pay and C), is the amount of the interruption
compensation payment.
So a has an expected win from choosing ¢/, > t, if and only if pinC), > 7).

How can a get an estimate of pjnt?

Case 1. We assume that the network attempts to optimize welfare and drops least
valuable calls first. In this case, some information is required on the distribution of
utility rates and interruption costs. We don’t consider this case here.

Case 2. We follow Greenberg et al. and let the network interrupt younger calls
first. Under this assumption, a can compute x* from the empirical interruption
emp

probability p; " and the parameter .y of the (exponentially distributed) call duration
distribution:

o
p?mp = /P(tint < 75dur)f(tdur)dtdur (4-19)
0
o
— / (1 _ e—ﬂimtdur) Iule_ﬂ]tdurdtdur (4.20)
0
1 1
=pr\——-— (4.21)
M1 Ming + UI
S P S (4.22)
Mint + U1
and therefore
emp
p
fint = 115w (4.23)
1—p;

Note that for a given pair (r,,C}), both a and the network can compute pin;, and
therefore know whether “speculating” on C), is profitable and also the amount of
the expected profit.
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4.3.2.1 Non-existence of efficient two-dimensional mechanisms.

Definition 55. A two-dimensional access control mechanism takes as input bids of
the form (b, = r,,C,) and computes a decision function x with x(b,) € {0,1}, and a
rate-compensation vector (r,, Cp) such that r, is the rate that a pays per time unit
until the reservation is released by a or cancelled by the network, and C, is the
compensation that a receives if the reservation is interrupted by the network.

We say that a mechanism satisfies rate-compensation voluntary participation if
always r, < rq and C, > C,.

emp

Corollary 56. If the interruption probability p; = is publicly known, there is no
efficient two-dimensional access control mechanism.

Proof. Suppose there is only one bid (r,, C,) with pintCy > pa.-

If the mechanism is efficient, it must accept the single bid. Let (r,,,C,,) be the
rate-compensation vector returned by the mechanism.

Case 1: r,, < r, and C,, > C,. Then speculating on C,, is profitable for a. But
then the mechanism can’t be efficient.

Case 2: rp, > 14 or Cp, < C,. Without loss of generality we can assume that a
has revealed his true type. But then it would be profitable for release the reserva-
tion right away. But this contradicts efficiency, because the request is lost even if
capacity is not used up. O

4.3.2.2 Mapping two-dimensional types to one-dimensional ones.

In order to apply standard VGC mechanisms, we have to project the two-dimensional
types and bids (7, C') to one-dimensional ones. Here a one-dimensional bid is a per-
time price r, and no compensation being paid for service interrupts. The projection
7 has to satisfy that a risk-neutral user « is indifferent between the choices of either
being offered rate r and a compensation C' if service is interrupted, and a (“dis-
counted”) rate n(r,C) and no interrupt compensation. This is the case when the
expected profit from (r,C) and from = (r,C') are equal. The fact that the only differ-
ence between the two options is in payment implies that expected payments must
be equal.

While the empirical interrupt probability p;™ ( and the distribution f;,,* and the
parameter " of the corresponding exponential distribution) is public informa-
tion (see table 4.2), the network additionally knows at any given time the currently
present BA reservations and can use this additional information to compute the in-
terrupt distribution function. Note that even if the expected profit computation is
based on the currently present BA reservations, it is obvious that there always is
some projection 7 such that both expected profits are equal.

68



The use of the approximated distribution function fi,; yields
o0
E(payment(r,C)) = /,u e Hte [ / JolP () (—rtl, + C)dt,
0

— P(tins > tm)rtx] dt, (4.24)

00 ty
:/ : Ie_%[ / pmP e e (—rt], + C)dt,

0 0

_ e—uif@"tzm] dt, (4.25)
O STP
_—r+t 5&?15 (4.26)
‘U/[ + lu’int
and
oo ty
E(payment(n(r, 0))) = / me“’t’[ / e ()t (r, C)dt,
0 0
— P(tiny > to)m(r, O)t, | dt, (4.27)
o0 tz
:/memtz[ / P ufif’?ptéct;w(r, C)dt!,
0 0
— e i b m(r, C)ty | dty, (4.28)
C
GLY (4.29)
‘U/[ + lu’int
Simplifying yields
m(r,C) =1 — Cug® (4.30)

4.3.2.3 The empirical interrupt probability.

The above assumed that users have access to an empirical interrupt probability pemp

This probab1l1ty is public information, and is equal for all users. It is not necessary
that p7™ be a constant over time, that is, it can be time-dependent. For instance, it
is conceivable that p™? is drawn from previous days and depending on the time of
the day.
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request interrupt certificate (reservation id)—|

send IR request

| send interrupt certificate
request reservation certificate (AcceptediR) \

\mmesem)mcemmm\’ send interrupt (interrupt certficate) ___———————— |

register reservation certificate |

(a) Verified counting of reservation requests (b) Verified counting of service interrupts

Figure 4.2: Verified interrupt statistics

An important point is that, using standard cryptographic infrastructure, p7"* can
be independently verified to guarantee its accuracy even if mutual trust between
users and the network is absent. The verification algorithm uses that

e it is in the interest of the network to have a low published interruption proba-
bility (because then, users will bid higher according to equation (4.30)), while

* the users want certainty that pj"" is not to optimistic, because they incur

losses with every interruption.

The verification assumes that there is a trusted by all sides statistics authority SA
that counts admitted reservation requests and interrupts, and publishes p‘}mp. The
data collection used by SA is built into the protocols for IR reservation requests and
IR interrupts. Let NW denote the network, and US the user. NW maintains a counter
AcceptedIR. If NW accepts an IR request, it increments AcceptedIR and sends its
value as a challenge to US. US replies with a reservation certificate that contains the
signed value. NW registers the reservation certificate at SA.

In case of a service interruption, NW requests from SA a interrupt certificate con-
taining some identification of the IR to be interrupted. NW sends the certificate to
the affected US. SA counts every reservation certificate as an admitted reservation
(not accepting duplicates with identical counter AcceptedIR), and every interrupt
certificate as a service interrupt. NW won’t serve IR reservations without the user is-
suing a proper reservation certificate. Users complain if service interruption occurs
without NW presenting a corresponding interrupt certificate.

Figure 4.2 shows an overview of the verified counting protocol.

4.4 Is there an advantage in auctioning bandwidth ?
We have above demonstrated how auction solutions can be used for bandwidth al-

location. So far, we have not stated how such a “market solution” performs in com-
parison with the classical first come first served allocation with a fixed rate.
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For the comparison, we assume that there is a single link of fixed capacity ¢ which
is allocated to requests issued by users in a random (Poisson) process with fixed
parameter \. Granted requests are served until they are terminated after an expo-
nentially with parameter d distributed time ¢, and users are charged rt where r is a
rate determined by the allocation mechanism. While in the fixed price scenario, the
rate is a constant at all times, the auction mechanism recomputes the rate periodi-
cally on the base of the currently issued requests.

Requests have an associated maximum rate the issuer is willing to pay, and it
is guaranteed that a request is never charged more than this maximum rate. We
assume that the maximum rate of any request is drawn from a normal distribution
with constant parameters p and o. The fixed price mechanism always denies all
requests with a maximum rate lower than the fixed rate. The auctioning mechanism
computes a current rate and accepts all requests with maximum rate at least the
current rate, and denies all other requests. The mechanism guarantees the current
rate for the complete time until the request is terminated by the issuer, no matter
how future current rates develop.

We simplify our scenario by assuming that there are no BA calls, and therefore,
there is no need of cancelling requests from the side of the mechanism.

In order to perform an auction, the mechanism needs to collect requests over a
certain time span which without loss of generality be of length 1.

4.4.1 Fixed price mechanism

Let us analyze the mechanism that offers a fixed rate ry. Requests are generated as
a Poisson process with parameter )\, and the associated maximum rates are normally
distributed with parameters ;. and o. As described above, requests with associated
rate less than r are discarded. Thus, the sequence of non-discarded requests is
generated by a Poisson process with parameters \*(ry) = AP(r > ry) where r ~
N(u,0). Write f(r) and F(r) for the probability density function and cumulative
probability function of N(u, o). So

N (ry) :A(l— % <1+Erf<n:/;au>>> (4.31)

with Erf being the well-known error function Erf(z) = % IS e dz.

Since the requests of the modified process are served on first-come first-served
base, the reservation state for the fixed price scenario can be modelled as a queue
with Poisson arrival, exponential living time, ¢ servers and no additional waiting
room. It follows (see e.g. [60, p.65]) that the state probability distribution is

(%)

c ()
KT+ 5%

pc(k) =

(4.32)
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and the mean generated revenue per step can be computed by

C

meanrevenue(c,ry) = Z(rfkpc(k)) (4.33)
k=1

Miller [51] considers M/M/c/c queues with a discrete set of customer classes. They
give an algorithm to compute the optimal admission policy if decision is immediate,
that is, the decision depends on the number of customers currently in the queue.
They introduce "shadow costs" Vy; = y;11 — y; of serving a customer if the system
is in state ¢ that reflect the expected revenue lost from the fact that now one more
server is busy. They show that than the following holds:

Ab = Vyo) =A
Ab—Vy1) + uVy_1 =A (4.34)
cuVye—1 =A

where A is the per-time generated revenue (Vy; and A depend on the admission
policy.)

Miller and Buckman [52] compare revenues under optimal state-dependent ad-
mission policies with the ones with the optimally chosen fixed price. They assume
that customer utilities are exponentially distributed. They conclude that

in a more realistic setting where economic environment is uncertain,
calculations suggest that there is a greater incentive to use an optimal
transfer pricing policy.

Furthermore, Miller and Buckman compute the optimal value T* of the fixed price
T, by maximizing A. Their theorem 2 says that for the optimal value 7™, the follow-
ing holds:

c—1
T = q;Vyi(c,T") (4.35)
=0

with

_ pile)
> 5Zopi(e)
are the steady state probabilities of the queue conditioned on not all servers being
busy.

Low [45] computes optimal service price in a M/M/s/c queue if service prices
are computed in advanced after a new service has been accepted into the queue,
or a service was completed. Low assumes that at any such instance, the price
for the next arriving customer is chosen from a set P of possible prices with P
being finite or a bounded closed subinterval of R. Low proves the existence of a

4 = (4.36)
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stationary strategy maximizing average per-time revenue, and gives an algorithm
for its computation.

Ziya et al. [85] compute the revenue-maximizing rate r?pt. They prove that (propo-
sition 6.1)

riP(c) = inf{r : e(r)Ve(r) > 1} (4.37)
where
e(r) = r— 10 i the price elasticity, and (4.38)
1—F(r)
Ve(r) =1+ F*(pc(c) —pe—1(c—1)) (4.39)

4.4.2 Vickrey price mechanism

For a fair comparison of the revenue, we assume that the reservation requests are
generated exactly as above. However, resource allocation takes place at the end of
each time interval of length 1. Let t;, = (k—1,k] be the kth interval. Let {r{,... 7%}
with 7} <...7F, be the requests submitted during ¢;. (So n* has Poisson distribution
with parameter \.) Let [*¥ be the number of living requests at time k. Note that [*
is distributed according to the state distribution of a queue with Poisson(\) arrival
and exponential(d) departure with ¢ servers and no waiting room.

The requests r¥ are treated as bids for an auction of a good that is available in
c¢—1* copies. So all requests rf with i > n* —c+1¥ +1 are accepted and pay the rate

ek k
k) Tk etk ifn"—c+1">1 (4.40)
0 otherwise.
The mean revenue per step then is
meanrevenue = cE(rk) (4.41)

4.4.3 Comparing the revenue

In the following, we give a comparison of the revenues of Vickrey pricing and pricing
with an optimally chosen fixed price. It will be shown that in many cases, Vickrey
pricing generates a higher revenue than optimal fixed pricing. We remark that to
compute the optimal fixed price, it is necessary to have a priori assumptions on the
distribution of requests. Vickrey pricing, however, generates a high revenue even if
there is no information on the distribution parameters of the incoming requests.

This means that clients have to accept a delay < 1 until their reservations are accepted or rejected.
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Figure 4.3: Revenue ratio Vickrey vs. fixed pricing with A = 100,d = 0.1, 4 = 10,0 €
[0,20], ¢ € [1,150]

4.4.3.1 No global inequality.

While we intend to demonstrate that Vickrey pricing generates in some cases more
revenue than fixed rate pricing even with the optimally chosen fixed price, there is
no global inequality: Indeed, for % < c and small o, the Vickrey price will converge
to 0 for ¢ — oo (since the probability that less than ¢ requests are in the system
converges to 1) while the number of accepted bids is bounded by the number of
submitted bids, and consequently the Vickrey revenue converges to 0 if the capacity
grows beyond all limits, but the fixed rate revenue is still significantly positive. To
be more precise, we get from (4.32) and (4.33) for any fixed rate r,

o0
Clggo meanrevenue(c, 1) Z kpoo(k
k=1
W)
=T Z PNl
kle d
=r—>0 4.42
r ( )

4.4.3.2 Simulation results.

Figure 4.3 shows the ratio of the revenues generated by Vickrey pricing and fixed
pricing with the optimally chosen fixed price. Note that in the chosen parameter
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domain, Vickrey pricing generates a slightly higher revenue compared with optimal
fixed pricing. The advantage of Vickrey pricing here grows for small capacities and
larger o.

4.5 Summary

In this chapter, we applied the theory of double-sided combinatorial auctions to
advanced reservations in networks. In particular, we used extensions of SBNL that
allows multiple item and combinatorial auctions. After describing a mechanism that
allows fixed length reservations, we presented various results on the case where
reservations are open-ended:

e Efficient mechanisms do not exist if the mechanism pays a compensation for
service interrupts.

* We showed how to map bids with per-time rate and penalty for service inter-
rupts, to bids only with per-time rate.

With this mapping, it is possible to apply mechanisms for combinatorial exchanges,
in particular, the SBNL pricing and commit window clearing as presented in the pre-
vious sections.

Finally, we presented simulation results that support that Vickrey pricing gener-
ates, in some cases, a higher revenue than fixed pricing with an optimally chosen
price, while not requiring information on the distribution of the requests.

A general characterization of the relationship between Vickrey revenue and op-
timal fixed price revenue would be highly desirable. We, however, leave this point
open for future research.
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5 Indirect mechanisms for multicast
pricing

The previous chapter presented pricing for unicast streams based on the VGC mech-
anism. We considered direct mechanisms where users would reveal their utilities
to the network manager who would compute a resource allocation which maximizes
total utility.

Another line of research [41, 42, 40] works with indirect mechanisms, describ-
ing network flows as Walrasian tatonnement with elastic price and demand. Here,
network users adopt a control parameter that controls bandwidth allocation (in our
case, this parameter can be interpreted as payment either in monetary terms, or in
terms of an accepted delay). We adopt the interpretation that users control band-
width by monetary payment. In the tatonnement process, the auctioneer splits
bandwidth in proportion with the submitted payments. The adoption takes place
continuously.

Given a set of resources .J, a route is a subset r C .J. Fix set R of possible routes
and define A;, to be the matrix defined by A;, = 1if j € r, and 0 otherwise. Suppose
that every resource j has a capacity c; > 0. For a route r, let x, be the flow through
r. The vector x = (z, : € R) is called the total flow. z is feasible if for all resources
j € J, we have ), ...z, < c¢;. Let us furthermore assume that to every route r,
there is an associated user that has utility u,(x,) from r» which depends on .

Kelly considers three interconnected optimization problems®:

* the system tries to maximize aggregated utilities:

SYSTEM(u, A4, ¢)

max (Z ur(:UT)> over (z, : r € R) (5.2)

reR

!The setting described here is known as inelastic supply setting. This refers to the fact that every
link has a fixed capacity that is split among users. Elastic supply settings, see [40] assume that
supply can vary but that there is a cost associated with it. The corresponding SYSTEM problem

then has the form
max (Z up () — C (Z xr>> over (z, : 7 € R) (5.1)

reER
where C'(z) is the cost associated with a supply of capacity x.
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subject to

> a<¢forallje ] (5.3)
{reR:A; =1}
z, > 0forallr € R (5.4)

* the users maximize their own profit (that is, utility minus costs) while varying
the size of the flow he acquires for a given per-unit price A:

USER, (uy,, A)
max (u,(z,) — w,) Over z, (5.5)
subject to
x>0 (5.6)
Wy = Ty Ay (5.7)

e Finally, the network maximizes revenue by varying the flow sizes:

NETWORK(A, ), ¢)

maxz Arx, over (z, :r € R) (5.8)
reR
subject to
> oz <ciforallje] (5.9)
{reRr:;jer}
x> 0forall r € R. (5.10)

Theorem 1 of [40] interconnects these three optimization problems: If the u, are dif-
ferentiable, strictly concave functions, then there is a price-per-unit vector A = (A, :
r € R) such that the unique solution vector (x = x, : » € R) of the USER, problems
simultaneously solves NETWORK(A, A, ¢), and this vector also solves SYSTEM(u, A, ¢).
If we see users and network as self-interested agents (users maximizing their
private surplus, while the network maximizes revenue), we are tempted understand
this theorem as the guarantee that there is an equilibrium in the associated game,
and that at this equilibrium, the social surplus as given by the SYSTEM problem
(5.2) is also maximized. Note, however, that A\ depends on the user’s input. If there
is a large number of users, and none of their utility functions is dominating, we can
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assume, for approximation, that the price vector A does not depend on the input of
a fixed user r. Only in this case, the theorem implies that there is an equilibrium
with optimal social surplus.

Note that NETWORK(A, ), ¢) is the relaxation of the combinatorial auction prob-
lem

AUCTION(A, A, ¢)

max Z AT, OVET I (5.11)
reR
subject to
Y oz <cforallje] (5.12)
{reRr:jer}
z, € {0,1} for all r € R. (5.13)

where ¢; (1 < j < J) are goods and A = (A, : r € R) is the bid vector of the auction.

In contrast with the work of the mechanism design school, there are no costs
considered to be incurred by the transmission. Rather, the price is computed such
that

e certain fairness conditions are honoured, and

* a balance between supply (available capacity of the required resources) and
demand is achieved.

5.1 Linear utilities

In [29, par. 6.2], an example is considered that illustrates how the Nash equilibrium
is computed in the case that users are aware of the effect of their input on the price
vector A:

Assume that n users have linear utility functions u,(z,) = a,z, with a,, > 0. Fur-
thermore, assume that the network assigns rates to the users in proportion of their
willingness to pay w,. For convenience, write W, = )", 2w and S = > Wy =
w, + W, for all r. Then the maximization problem presented to the user r is

USER, (u,)

Wy
_— | - 5.14
max <ur (wr T Wr) wr> over w, ( )
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subject to

wy >0

Now

U Wr w, = « Wr w
r\ = s | " Wy = U —— — Wy
wy + W, wy + W,

and thus

Therefore, for the solutions of (5.14) we have
d Wy
| = < 0,
dw, (ur (wr + Wr> wT)
or d Wr 0
Up | ———— | —w, | =
dw, " \w, + W, " ’

+
wr:S<1—£> .
o

Summing up (5.20) for all r, we get

)

1:2(1—O%>+.

s

either w, = 0 and

or equivalently,

and consequently,

d " Wy Q. 1 Wy 1
r\ ———— | —Wr | = - -
dw, wy, + W, wy, + W, wy, + W,

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

Fact 57. a) There is a unique vector (w,) such that equations (5.20) hold for all

r,and S =) w,.
b) Forn = 2, we have w, > 0 for all r.
Proof. Note first that there is a unique S such that

1:2(1—%)

T

holds for all r, namely

n—1
S:
Y
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Define

) (5.25)

Urg = S <1 _ 2 ) . (5.26)

Qg

n—1 1 n—1
”TOM(Z% "o
— T

T oy

which is equivalent to

Consequently, if v,, > 0 holds for all r, then with w,, = v,, equations (5.20) and (5.22)
hold for all . Otherwise, remove all r with v, < 0, and apply (5.24-5.25) iteratively.
Note that for the case n = 2, (5.25) implies that v, > 0 and thus iteration terminates.
This proves existence of .S, and also part b of the claim.

To prove uniqueness, assume that there are S # S’ and (w;, ), (w.) such that (5.20)
holds for all r. Clearly if w, > 0 and w). > 0, then w, = w... Let ry be such that without
loss of generality, w,, < w,, . Then w,, = 0, w, > 0 and thus S’ < oy, < S. It follows
that for all users r, we have w, < w).. But this implies S < S, a contradiction. O

Those users r with «, > S set w, = S <1 — a%) with S according to (5.22), the
remaining ones set w, = 0.

5.1.1 Comparison with VGC mechanisms

Note that the equilibrium bid w, depends on the bids of the other players, and
so there is no dominant strategy for any user with positive utility. Also, at the
equilibrium, the social surplus is not maximized. Maximizing social surplus in the
case of linear utility functions would mean to allocate all capacity to the user r
with the highest «,. This, however, seems absurd: the assumption of linear utility
functions is reasonable only as an approximation for small ranges. The tatonnement
works independently from the shape of the utility functions, and the results apply
when utilities are linear for bandwidth range below the equilibrium allocation.

A dominant strategy mechanism would maximize surplus in respect to all possible
allocations and would therefore need the complete utility functions (for the band-
width ranges below the total capacity). The applicable VGC mechanism would then
be the auction of a divisible good, see the background chapter at 2.4. A dominant
strategy mechanism will split resources discontinuously in respect to the input from
the clients. This, of course, could impose problems for applications.

5.1.2 Approximativity of the Nash equilibrium

As noted above, the resource allocation at the Nash equilibrium is suboptimal. In
this paragraph, we give a bound for the quotient of the utilities of the Nash and
optimal allocations.
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Note first that the optimal allocation assigns all utility to the users with the high-
est a, (being indifferent of how these users share the resource among each other).
Utility is then

Uppt = MaxX oy (5.27)
T

For the utility at the Nash equilibrium, we get from (5.24) and (5.25) and with n =
{r : w, >0}

7

w

UNash = Z aré (5.28)

riwe>0

nin—1
> - (7)1 (5.29)
riws>0 Z7"Iwr>0 ar
and
Zr:wr>0 Qp — LUL

UNash — max Zr:wr>0 ar (5.30)
Uopt ! Oyt

Let rmax = arg max, o, and define

Zr:wr>0 Qp — %
fay :w, > 0)) = — (5.31)

OéT’max

This function is symmetric in all «, except for » = ryax. Therefore, at its local
minima, «, = « holds for some « and for all r # rpax. Now substitute « for a, with
r # Tmax tO TEeCeive

f((oz,...,a,ozr,oz,...>):1+(n—1)a< L n > (5.32)

Qmax (n - 1)Oémax +

and for the derivative, we get

4 )=(m-1a (— L, n-D ) (5.33)

d Omax Oémax2 ((n - 1)amax + 04)2

The derivative has a positive root at
O = O'max (1 —n4+vVn?— n) (5.34)

Substituting this back into the definition of f yields that f is independent of apax at
that location:

foni=f(0)=nB-2n)+2(n—1)y/n(n—1) (5.35)
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Now (f,) is monotonously decreasing, and

3
lim f, = -. (5.36)
n—o0 4

We conclude that 2

Fact 58. If users have linear utility functions, the total utility at the Nash equilib-
rium is at least three quarter of the total utility at the optimal resource allocation.

5.1.3 Multicast with linear utilities

Let us now generalize this example to a setting that considers multicast. In the
simplest model inspired by the one of Feigenbaum et al [26], we assume that there
are users sharing a transmission, and that the sharing does not imply any extra cost.
To model this, we just have to allow that x,, = z,~ for distinct users r,7’. Then the
user problem (5.14) turns into

MULTICAST USER, (u,)

Z Logp=x , Wr!
max <ar (% —w, | over w, (5.37)
T T

subject to

w, > 0. (5.38)

diwr (wr() = wr) = - TWT (1 - Zw+ww> -1 (5.39)
Now
d (ur() —wr) <0 (5.40)
dw,
if and only if
wy > S — 5 > we (5.41)
o

2Added in proof: This is a special case of Theorem 3 of [38] which is scheduled for publication. The
proof for linear utility functions is considerably simpler and since given here. For the case of elastic
supply, see [37].
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(and similarly for equality). Therefore, at the equilibrium, we must have w, > S —
g—i — Zr,#:xﬂzxr w, for all r, and equality for all » with w, > 0. However,if r and r’
are in one group, equality can hold for both only if o, = a,v. Write af = max,/eq, O.
Then from (5.14), we get g, = S (1 - a—%)+

This means that the resource is split between those multicast groups for which of
is large enough in proportion with the maximal utility gradients of each group, that
the users with maximal utility gradient in each group pay and the other users enjoy
free service on the level that their group leaders are willing to pay.

5.1.3.1 Example with 3 users in 2 groups.

Let us look at a simple example with two groups: ¢; consisting of users 11 and 12
with @17 < ajs, and group g» with one user 2 with as. With S = wis + we, we get
from (5.20) and claim b of fact 57 for r = 12 and r = 2

2
Qo2
Wiy = —= = (5.42)
2 (o2 + 042)2
2
1205
Wy = —————= (5.43)
2 (o2 + Oé2)2
and for the utilities
upy = 212 (5.44)
Qg + a2
2
[0
Uy = —12 w12 (5.45)
Qg + a2
3
P
=_ 12 (5.46)
(o2 + a2)2
2
a1z (afy + aqp(age + as
uit +upe = GE ( = ) (5.47)
(12 + ag)

5.1.3.1.1 Comparison with group agent. Suppose that the first group from the
example above employs a group agent that adjust a weight w; used jointly by users
11 and 12. This means that the multicast stream is treated exactly like a unicast
stream. We get

2
wy = (o1 + 0612) Q2 (5.48)

(o1 + 12 + a2)?

2
wy = L0 H012)05 (5.49)
a1 + Q12 + ag

w1
w1 + wa
(oa1 + a12)3

_ (5.51)
(11 + aq2 + Oé2)2

ur = (a11 + a12) w (5.50)
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utility

Figure 5.1: Utility without (green) versus with (blue) group agent, a2=10

From straightforward calculation, we get that the group utility with group agent
is larger than group utility without group agent, if and only if

(0411,0[12,042) S %i and (5.52)

9 2

2 4 2 2 4
of; Foanjary 1 Jog; + 20451”10412 + Saf a7y + 8a11a51”2 + 4dafy
2@12 2 a7y

(5.53)

(oa1 + ai2) (an +/a? + 404%2)
= %0 (5.54)
12

Figure 5.1 compares uj; + uj2 from (5.47) (blue surface) and u; from (5.51)
(green surface) for the case ay = 10. Figure 5.2 shows the bounds of the polytope
{(c11, 2, ) € RY :urg + w2 < wp )

5.1.3.1.2 Remark. One can easily construct an example such that the first group
is not served at all even though its total utility is larger than that of both other
groups: let the first group consist of three users with a1 = a0 = a3 = 2—3:” (write
a1 = a1 + a2 + aq3), let as = 10 and introduce a third group with one member with
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Figure 5.2: Polytope of points where utility with group agent is larger than without

asz = 20. We get from (5.25) with a = (alaﬁ("él"‘of;‘ﬁams)g
200
v11 + v12 + v13 = a(araz + araz — aza3) =736 (5.55)
1800
vy = a1y — ajas + asag) = 361 (5.56)
2200
vy = a(—agag + ajas + asas) =_— (5.57)
361
It follows that wi; = wi2 = wi3 = 0 and after another iteration, we compute wy =
400 500
s10 W3 = g1 -

5.1.3.2 Conclusion.

From the examples above, it follows that allocation at the Nash equilibrium for
multicast with individual weighs is arbitrarily inefficient in comparison with the
optimal allocation if multicast groups grow large. This contrasts the approximativity
of the Nash equilibrium for unicast (fact 58).

5.2 Logarithmic utilities

Suppose now that, as in the original model of Kelly, users have logarithmic utilities:

u, = oy log(z,) — w, (5.58)
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If resource allocation is in proportion with the w,’s, then the user problem is

LOGUSER, (u,)
max (ozr log <ﬁ> — wr> over w, (5.59)
subject to
wy >0 (5.60)
Note that lim,, %, = —oo and thus at the equilibrium, the derivative of v, must be

zero for every r. In this example, voluntary participation is not satisfied in general
in the sense that if a user refuses to pay anything, his resource share will be zero
and his utility —oo.

Now with S =" w,,

d Q. Wy
. —) 1 5.61
dw, tr Wy ( S ( )
and at the equilibrium,
oS

= . 5.62
Wy o+ 5 ( )

Summing (5.62) up for all r and dividing by S # 0, we get

a?"

1= 5.63
2 o+ S ( )

which determines S > 0 uniquely.
Note that S is the root of a polynomial of degree n + 1, where n is the number of
users.

5.2.1 Numerical simulation for unicast

Let us assume there are 3 users a,b and ¢ and fix o, = 1 for user a. How does a’s
optimal weight, resource share and surplus (utility minus costs) vary with b’s and
c’s weight?

Figures 5.3, 5.4 and 5.5 show a’s optimal weight , resource share and surplus for
b and c varying between 0 and 2.
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Figure 5.3: Equilibrium weight for user ¢ depending on «; and a,

Figure 5.4: Equilibrium resource share for user a depending on o3 and a

Figure 5.5: Equilibrium surplus for user a depending on «; and a.
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5.2.2 Approximativity of the Nash equilibrium

Logarithmic utility functions as in (5.58) are unbounded from below. Therefore,
theorem 3 of [38] does not apply. Anyway, since user’s utility is negative, a lower

bound of the coordination ratio is of interest.
Let T'= ) «,. First note

Fact 59. o
uopt(ah ce >an) = Z a; log %

1<r<n

Proof. Consider the function f, for a = (a1, ..., a,—1) defined by

fa:{(ml,...,xn_l):xr>0,2xr§ 1} —R

T

falz1, oo zp_q) = Z arlogx, + aylog(l — Z Tp).

1<r<n 1<r<n

For the partial derivatives of f, we have for 1 <r <n

Oy gy )=
Oz, 77" e 1=
=0
if
Ty o

1— Zl§r<n Lr Qn,

There is exactly one point x where all partial derivatives vanish, namely at

X = (21, ., Tn-1)
with
Ay
Ty = ?

Now at f’s domain boundary

{(wl,--.,xn_l) : x, = 0 for some r or Zmr = 1}7
T

f has value —oo. It follows that x is a global maximum.

(5.64)

(5.65)

(5.66)

(5.67)

(5.68)

(5.69)

(5.70)

(5.71)

O

In contract to the case with linear utilities, there is no bound for the coordination

ratio depending only on n:
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Fact 60. For any B > 0 and any n > 2, there are ay,...,qa, such that if for r =
1,...,n, utility functions are defined by (5.58),

unash(ah ce. 70471)

> B. (5.72)
Uopt(Q¥1, - .., Op)

Proof. Consider first the case n = 2. Then (5.63) turns into

a1 a2

=1, 5.73
o+ S * o+ S ( )
or
S = Vv 1009, (574)
Then
oS
= 5.75
wy. o 15 ( )
and
@ @
Unash (a1, @2) = a1 log o j_ 5 + ag log - j_ 5 (5.76)
and consequently
Unash 1 log Oél-l-a\/laloéz +azlog Oéz—f—a\/QC‘élO‘? (5.77)
Uopt arlog 8- + aglog %~ .

and this is unbounded for a; = 1 and as grows large. This concludes the case n = 2.
For the general case, simply add users r for » > 2 with «, = 0. The optimal utility
does not change by introducing these additional users, and equation (5.62) implies

that it doesn’t change the Nash utility either. This finishes the proof. O
The coordination ratio can be bounded depending on L =

maxy Q.
— 7

Fact 61. With L = % the following holds:

unasb(ala cee >an) 1
<1- . 5.78
Uopt(Q1, ..., 0) Llog L+ (1 —L)log(1 — L) ( )
Proof. Let S be satisfying (5.63). Now
Q
<1 5.79
Zr: L (5.79)
and consequently
S<T. (5.80)
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It follows

(673
Qp +

Unash (1, .« .., Q) = Zar log
T

o
> log ———
>_arlog ——

T

= Zarlogar — Zarlog(T—i—ar)
T T

>Zarlogar — Zar <logT+ %)
T T

using that log(z + y) < logx + £ for positive = and y, and thus

2
o o
Unash (1, .+ .., Q) > Zarlog% — Z 77; .
T

T

The coordination ratio can then be bound by

Unash (1, « ., Q) 14 >’
Uopt (1, .., ) Ty, o log(alr)
<1+ L
>, arlog <alr>

using that Y a,% < T for the last inequality.

Now consider the function f

flag,...,an—1) = Z ayloga, + (T — Z ay) log(T — Z o)

1<r<n 1<r<n

defined on the polyhedron P with bounds

o
= <
a1

042>043

ap92>ap1 2T — Z ap > 0.
1<r<n

We have that for 1 <r < n,

of
ooy,

1<r<n

90

1<r<n

(a1,y...,ap_1,T) =loga, — log(T — Z ar) >0

(5.81)

(5.82)

(5.83)

(5.84)

(5.85)

(5.86)

(5.87)

(5.88)

(5.89)



for all points in P: f assumes its maximum at the bounds of the polyhedron

OélzTL
CYQ:T(l—L)
a3:a4:...:an_1:0

T—ZQT:O.
T

It follows that
flag,...,an—1,T) <TLlog(TL)+T(1 — L)log(T(1 —L)). (5.90)
Continuing from (5.87), we conclude

unash(ala . aan) T
1 5.91
topt (s rom) T TlogT — (TLlog TL+ T(1 = L)log(T(1 —L)))  >9Y)

1
=1- . 5.92
Llog L+ (1 — L)log(1 — L) (5.92)

O

5.2.3 Multicast with logarithmic utilities

Let us now apply our model of multicast for the case of user utilities being loga-
rithmic. Let us write G, = {r' : z» = z,} for the multicast group of user r, and
gr = Zr,eGr w,s for the total weight of that group, and S = ) w, for the total
weight. The user problem then is

MULTICAST LOGUSER, (u,)

max <ar log <g_§) — wr) over w, (5.93)
subject to
wy > 0. (5.94)
For the derivative, we get
d aS (1 g
() —wp) = ——==1-1 5.95
w0 - un) =22 (L &) (5.95)
_ (9
= (1 S) 1 (5.96)
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Thus the derivative is nonnegative as long as
Qo

o + S’

Gr < S (5.97)

and zero if equality holds. Similarly as in the case for linear utilities, the latter
is the case only for those users r for which «, is maximal within their group, and
consequently, for the remaining users r’, we have w,» = 0.

Fact 62. The coordination ratio for multicast users with logarithmic utilities can
become arbitrarily bad.

Proof. Let there be two multicast groups: one with n members and one with only 1
member. Suppose for all users » we have a,, = 1. According to fact 59, the optimal
utility is

n
Uopt = N log ) + log ol (5.98)
= n(logn —log(n + 1)) — log(n + 1). (5.99)
The nash utility is
1 1
Unash = N log 3 + log 3 (5.100)
=—(n+1)log2. (5.101)
This implies
— 1) log 2
lim —nash _ (n+1)log (5.102)
n—oo Ugpy  n(logn —log(n + 1)) —log(n+1)
= 0.
(I

5.3 General case for multicast

From the formulation of the multicast user problem for general utility functions

(5.14) we get
d 9r 1 (9r S — 9r
) = — el -1 .1
dw, <ur <wr + Wr> wT) Ur (S> 52 (5.103)

This is positive if and only if

o, (%) > Sngr (5.104)

The right-hand side of (5.104) is identical for all users in a group. At the equilibrium,
only those users r for which u]. (%) is maximal among 7’ € G, have positive weight
while the others prefer to benefit from free service.
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This means that if multicast users submit individual weights to the mechanism,
the resource share they are assigned does not in general increase with the total
utility of the multicast group, but rather with the maximal individual utility. Thus,
the equilibrium solution of the resource share problem is far from efficient.

5.4 Summary

In this chapter, we showed that the classical indirect bandwidth allocation mecha-
nism introduced by Kelly cannot easily be applied to multicast settings without loss
of much of its efficiency at equilibrium. If utilities are linear, Kelly’s unicast mech-
anism has coordination ratio of at most % while if applied to multicast settings, the
coordination ratio is unbounded. In the general case and even in the case of log-
arithmic utilities, neither the unicast nor the multicast mechanisms have bounded
coordination ratio, however, the multicast coordination ratio can’t be bound even in
terms of the logarithmic unicast coordination ratio.
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6 Publish/subscribe systems

6.1 Publish/Subscribe Systems

6.1.1 Introduction

Part of the work presented in this chapter were published in [77] and presented as
brief announcement at DISC 2004, and in [75].

In many applications today, conglomerates of independently created components
have to be integrated into increasingly complex information systems. It is becom-
ing more and more obvious that for large-scale distributed applications a loosely-
coupled event-based style of communication has many advantages: it facilitates the
clear separation of communication from computation and eases the integration of
autonomous, heterogeneous components into complex systems.

Publish/subscribe systems implement the event-based style: individual process-
ing entities, which we call clients, can publish information without specifying a
particular destination. Similarly, clients express their interest in certain types of
information by subscribing, so clients can be producers and consumers at the same
time. Information is encapsulated in notifications and the notification service is re-
sponsible for notifying each consumer about all occurrences of notifications which
match one of its subscriptions.

6.1.2 Importance for mobile applications

In comparison to classical client/server systems, the publish/subscribe paradigm
offers serious advantages in information-driven applications. Here, a client is not
obliged to poll a data source for updates — she just subscribes for information she
is interested in and gets informed whenever new data is available that fits his sub-
scription. In consequence, a loose coupling is achieved and lots of network traffic
can be economized. Applying pub/sub in commercial applications the bandwidth
savings can become a substantial argument, especially when clients need to get
informed in realtime about updates with bandwidth being expensive and scarce.
Consider for example a wireless network of battery-driven info-nodes with clients
connected locally to the nodes by wire. Obviously, the bandwidth between the nodes
is restricted and data transmission comes at the cost of valuable battery lifetime. In
this scenario, to decide if a client, subscribing to some information, will finally be
served, depends on its “utility” from the data. For example, a subscriber employed
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in a research institute, may have a high utility of news from the scientific community,
published by newstickers from different news agencies. Thus, his subscription may
get served by the network while another subscription for less important news about
sports would not. Obviously, for the network operator in this scenario, finding out
over which links a message should be sent is a very expensive task regarding the
message and network complexity. Additionally, for encouraging the clients not to
lie about their utility, a price for the subscription has to be calculated and charged.
This price depends on the costs for the transmission and the utility of other clients
served on the same network-path. Of course calculation has to be redone every
time some change occurs in the network (e.g. a node (un)subscribes or a publisher
(un)advertises).

6.1.3 Why formalization?

There is a considerable amount of work on notification services, and many concrete
systems have been designed and implemented (e.g., Siena [14], JEDI [16], etc.).
Unfortunately, understanding and comparing these systems is difficult because of
differing and informal semantics. Research in the area of publish/subscribe has
concentrated on informal analyses and systems offering best-effort functionality.
Eugster et al. [22] give an overview about publish/subscribe systems and their rel-
atives. With the increasing popularity of publish/subscribe, however, the need for
a formal treatment and for systems guaranteeing more stringent properties is aris-
ing. A clear and detailed formalisation allows the behaviour of the system to be
described unambiguously and provides a basis for further reasoning, e.g. about the
correctness of the system. Formalisations have been proved useful in many areas
of distributed computing. However, the specification and verification of distributed
systems is a complex task. A variety of techniques (e.g. petri nets, temporal logic,
automata) have been proposed, each having its own set of strengths and weak-
nesses.

Propositional linear temporal logic (PTL) [59, 46] has proved to be a powerful
tool to characterise and verify the behaviour of concurrent distributed systems [28].
Fiege, Muhl, and Gartner [27, 55] introduced a formal specification of publish/sub-
scribe systems using linear temporal logic. In their work, a requirement specifi-
cation for publish/subscribe systems consisting of safety and liveness properties is
introduced. To the authors best knowledge no other formalisation for publish/sub-
scribe systems has been proposed yet. Datta et al. [18] informally state liveness
and safety conditions, however, only for static subscriptions and not paying respect
to the distributed nature of publish/subscribe systems by implicitly assuming global
time. Courtenage [15] offers a description of event types using the \-calculus, al-
lowing a formal specification of filters. However, system states and correct system
behaviour are not addressed in this work.

In this paper, we rewrite the formalism presented in [27, 55] such that it is
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strictly propositional and extend it to provide message completeness guarantees.
In a message-complete publish/subscribe system, the system eventually acknowl-
edges every subscription and guarantees the delivery of notifications matching an
acknowledged subscription from this time on. In a system without message com-
pleteness, the delivery of all notifications matching a subscription is also eventually
guaranteed, but the consumer is not aware of the time from which on completeness
is guaranteed.

The remainder of this paper is structured as follows: Sect. 6.2 introduces a formal
specification for message-complete publish/subscribe systems. Then, we present an
implementation framework in Sect. 6.3 that realizes message completeness on top
of a system without this guarantee. The approach of separating the development of
an axiomatic formalism from the description of a possible implementation enables
precise formulation of axioms on the distributed state of publish/subscribe systems,
and provable statements on the implementation’s properties regarding these ax-
ioms.

6.2 Formal specification

6.2.1 Propositional temporal logic and traces

Propositional linear temporal logic (PTL) uses formulas recursively built from atomic
propositions, the elementary state predicates, which are predicates on the finite
set S of states, propositional logical connectors V, A, -, = and temporal quantifiers
U,0,0and O.
For our purpose, we are a little more precise about the structure of S: The state
s € S of a system is an assignment s = s : V 3 v — s(v) of the state variables v € V
to some value s(v) € range(v). Both domain and range of s are assumed to be finite.
The semantics of PTL is defined by the notion of traces. A trace o is a sequence
of finitely many states
o=53,87,...,8 (6.1)

o=53,57,... (6.2)

of states.
Let X be the set of all traces and X* the set of all w-traces. For o € ¥,0’' € Y U X*,
we say that o’ extends o if 0 = sgl,s‘{/,...,sg/ for some n > 0. For o € %, define

o* = {0’ € ¥* : ¢/ extends o}. The collection {¢* : ¢ € ¥} of base-open sets induces
a topology for the space >*.

Proposition 63. Let Xy C Y. Then

Yo ={0" € ¥": ifo € ¥ such that ¢* extends o,then o € ¥} (6.3)
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is a closed subspace of ¥*.

Proof. Let o be in the closure of 3§, that is, all initial segments of o can be extended
so that the extension is in Yj. But then, all initial segments of these extensions are
in ¥¢. Therefore all initial segments of ¢ are in . O

Definition 64. Let >y C X be a set of traces. We say that ¥ is

¢ closed underinitial segments, ifsg, ..., s7,s7,1,...,s; € Yo implies thatsg,...,s] €
Y for arbitrary 0 < < n,

¢ closed under suffixes, if s§,...,s7,57,1,...,8; € Yo implies that s7,s7, {,... €
Y for arbitrary 0 <i <n,,

¢ closed under stuttering, if s, ..., s) € Yo, implies that
50y v 8] 387 ey 80,8511y, 80 € X (6.4)
for arbitrary 0 < ¢ < n, and
* closed under skipping states, if sJ, s{, ..., sy € Xo implies that
505187 155541,-++,5, € Xg (6.5)
for arbitrary 0 < ¢ < n.

By definition, an elementary state predicate applied to a trace o = sg,s7,..., s,
always refers to state sg. For instance, the predicate “v = vy” for some state variable
v € V and some v, € range(v) is true for trace o iff sy(v) = vp.

Temporal logic allows us to state properties for a trace by introduction of the
additional quantifiers ¢/,, ¢, and O. For some formulas ¢, ¢' and o = s§,s7,...,s7

n’

1. ¢U¢ (o) holds if either for all 4, ¢ holds for the trace s7,s7 ;,..., or there is &
such that ¢’ holds for s7,s7_,,... and ¢ holds for s7,s7, ,,... fori < k',

2. O¢(o) holds iff there exists i such that ¢ holds for the trace s7, s, ...,
3. O¢(o) holds iff for all 4, ¢ holds for the trace s7,s7, , ...,
4. O ¢(o) holds iff ¢ holds for the trace s7,s7,....

Alpern and Schneider [3, 4] give a definition of safety and liveness conditions in
this context, and a topological characterisation of them:

Definition 65. A predicate P is a safety predicate if the following holds for o € 3:
If for any i > 0, there is o/ € X such that o’ extends s{,...,s? and P satisfies o',
then P satisfies 0. A predicate () is a liveness predicate if for any o € Y, there is
an extension o’ € X of o satisfying Q.

!Note that our U/ is written as W (waiting for) in [46].
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Definition 66. Let Xy be closed under final segments. () is absolute liveness pred-
icate in ¥ if for any w-trace o = sg,s1,... € X, if there is an i > 0 such that )
satisfies s;, Si+1,. .., then () satisfies o.

With this definition, it is easy to see that P is a safety predicate exactly if the set
of w-traces satisfying P is closed in ¥*, and that () is a liveness predicate, if and only
if the set of w-traces satisfying () is dense in >*. [73] gives a sufficient syntactical
condition of safety predicates:

Theorem 67 (Sistla). Every elementary state predicate is a safety predicate, and if
P and () are safety predicates, soare PN Q, PV Q, O P, P and PUQ.

Sistla gives the following strengthening of safety:

Definition 68 (Sistla). P is a strong safety predicate, if P is a safety predicate and
closed under stuttering and skipping states.

Sistla also defines

Definition 69 (Sistla). P is an L-safety predicate, iff for any o = s{,s{,..., P sat-
isfies o if and only if for all i > 0, the trace o' = s§,...,s7,s7,s7,... is satisfied by
P.

Proposition 70 (Alpern and Schneider[2]). If P is closed under stuttering, then P
is a safety predicate if and only if P is an L-safety predicate.
6.2.2 Formalising publish/subscribe systems

In [55], a formal specification of publish/subscribe systems has been given by defin-
ing axioms about the admissible sequences (traces) of interface operations and
client states. We will present a formalism that differs from that one by

a) being strictly propositional, using only predicates on states rather than on
state transitions, and

b) giving message completeness guarantee.

6.2.2.1 State variables and Interface

We now define the state variables of message complete publish/subscribe systems.
State transitions are triggered by interface operations op : S — S.

Definition 71. The state of a client ¢ of a publish/subscribe system with message
completeness guarantee is determined by the following variables:

e the input variable for the publisher’s role P,., the set of notifications n pub-
lished by c,
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e the variables for the subscriber’s role,

output D., the set of notifications that c received,

output D3P, the set of notifications that c received at least twice,

input S, the set of active subscriptions of c.

output S2°, the set of acknowledged subscriptions of c.

The input state of the system is defined to be the state restricted to the input vari-
ables, and similarly, the output state is defined.

Next we define the operations that trigger state transitions. We write the oper-
ations as op : v — ©/, to be understood as operation op transforming state v € S to
v eSs.

Definition 72. The interface of a publish/subscribe system with message complete-
ness guarantee contains the following operations:

e operations called from the environment:

- pub(e,n) : P. — P.U{n}, client ¢ publishes notification n
- sub(c, F) : S.— S.U{F}, client ¢ subscribes to filter F’
- unsub(c, F) : S. — S, \ {F'}, client ¢ unsubscribes from filter F

e operations called by the system:

- notify(c,n, p) : DI s DIPY(D.N {n}), D. — D.U{n}, clientc is notified
about n coming from publisher p

- ack(c, F) : S ., gack [}, client c is notified that from now on, notifi-
cations matching F' will eventually be delivered to c

The initial state of the system is defined to be the state sj;+ with P, = D, = Dg“p =
S, = 53k = () for all clients c.

Definition 73. For a trace o = s{,s{,..., sy, let the input-restriction of o, denoted
by o™™PUt, be the sequence of the input states g™Put = si"PUt GJUPUE - ginput  Gimilarty,

we define the notion of output-restriction.

Definition 74. Let o = s{,s{,...,s; be a trace. The reduction of o is defined to be
the largest subsequence? o' = Shor Sky» Sty - - - 0f 0 such that for alli > 0, ng #+ ngg
We say that a trace o = sJ,s7,...,s; is input-admissible, if there is a sequence
opy, opy, - - -, 0D, of interface operations such that the input-restriction of the reduc-
tion of o is a subsequence of the input-restriction of sinjt, 0Py (Sinit), 0P1 (0P (Sinit))s - - -

Similarly, we define the notion of output-admissibility.

“Remember that a sequence (s; : i € N) is a subsequence of (t; : j € N) if there is a strictly
monotonous sequence (I; : ¢ € N) of natural numbers such that for all 4, we have s; = ¢;,.
*Note that although (k; : i € N) is not uniquely determined, o’ is.
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Note the following facts:
Fact 75.

e The operations pub, sub, and ack are idempotent for publish/subscribe systems
with message completeness guarantee.

e 0 =s5§,s],...,s7 is input-admissible if and only if the sequence of sets (P.(s7) :
0 <i < n) is monotonously increasing for all clients c.

e 0o = s3,87,...,s7 is output-admissible if and only if the sequences of sets

»°on

(D.(s7) : 0 < i < n) and (D3P(s?) : 0 < i < n) are monotonously increas-

ing for all clients c.

e The set of input admissible traces is closed under initial segments, suffixes,
stuttering and skipping states, and so is the set of output admissible traces.

O

6.2.2.2 Axioms of liveness and safety.

We now present the axioms of message complete liveness and safety.

Definition 76. We say that a publish/subscribe system satisfies message complete
liveness, if

O[0F € Sy = OOF € S&% (6.6)
O[(OF € S&) A (n ¢ Px) = (O(n € Px An € F) = On € Dy)] (6.7)

Condition (6.6) guarantees that subscriptions which are not subsequently can-
celled will eventually be acknowledged. Condition (6.7) says that once a subscrip-
tion was acknowledged, matching notifications published thereafter will eventually
be delivered to the subscriber.

Proposition 77. Conditions (6.6) and (6.7) are absolute liveness predicates in the
sense of definition 66.

Proof. Let 0 = s{,s7,... be an w-trace such that for some suffix s7,s7, ;,... of o,
condition (6.6) holds. We have to prove that (JF € Sy = (OOF € S?,Ck) holds for
all s7,s7.4,.... This is clear for j > i, so let now j < i and suppose that s7,s7.,,...
satisfies [JF' € Sy. Then also s7,s?, ,... satisfies [J I’ € Sy and consequently OF €
S?,Ck, which thus is also satisfied by s7,s7,;,.... The proof for condition (6.7) is

J
similar. O

4Strictly spoken, these are axiom schemata, as they are supposed to hold for any clients X, Y, no-
tifications n, and filter F'. Also note that we silently use operations on sets and integers in our
formulas. This does not alter expressibility since there are only finitely many states.
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Definition 78. We say that a publish/subscribe system satisfies message complete

safety, if
O[D§™ = ¢] (6.8)
D{neDy = neUPy] (6.9)
Y
D[ngéDy/\OnEDy = OnGUSy] (6.10)
Y

Message complete safety means that clients will be only notified about notifica-
tions that were published by someone and are matching some subscription of that
client, and that there are no duplicate notifications.

As a direct consequence of Sistla’s theorem, we have

Proposition 79. The conditions of definition 78 are safety predicates in the sense
of definition 65. They also satisfy strong safety and L-safety. O

Now we can define message complete correct publish/subscribe systems.

Definition 80. We say that a publish/subscribe system is message complete cor-
rect, if for all traces o of states of the system that are input-admissible, o is output
admissible and satisfies safety and liveness.

6.3 Implementation

In the last section, we gave an axiomatic description of the desired behaviour of a
message complete publish/subscribe system. This section, being titled implementa-
tion, has to start questioning what implementation of a system does actually mean in
this context. Practically, a system is implementable if it can be programmed on some
hardware using some programming language. From a theoretical point of view, the
implementation of some systems are described via system specification as opposed
to the requirement specification we have given above. There are many techniques
usable for system specification. However, one that is closely related with temporal
logic is based on fair transition systems [46, 47]. Fair transition systems have an
intrinsic temporal semantic and therefore can be used to derive requirements (our
axioms of liveness and safety) from the system specification.

Moreover, Manna and Pnueli introduce a simple command-style programming lan-
guage (SPL) that, additionally to the standard set of assignment, conditional and
loop statements, provides for semaphores and commands for channel-oriented, first-
in-first-out asynchronous and synchronous message passing. They give a semantic
interpretation of their language by defining an equivalent fair transition system.
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