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Abstract

The ability to make predictions about the flow in the wake of a lift-generating
body has a range of important applications. One example is the wake of
an aircraft, where this flow significantly affects the proximity with which
a trailing aircraft can take off, cruise or land. Another application is the
placement and operation of wind turbines in a wind farm, where wake effects
can significantly impact the performance of the turbines and the loading
they experience. Offshore wind energy technology is progressing rapidly and
it is expected to play a significant role in the transition to a clean energy
grid. In offshore wind, wake interactions potentially play an even larger role
than in onshore cases.
The designing engineer must currently resort to the use of low-fidelity models
in the treatment of wake physics due to the computational expense of using
high-fidelity models. Medium-fidelity tools are a good compromise between
both fidelities as they offer better resolution of the problem without a
significant increase in computational cost.
The present work introduces a method which aims to bridge the gap between
medium- and high-fidelity wake treatments. This method is based on the
vortex particle method, which treats the flow field as a superposition of
vorticity-carrying elements. The approach is inherently grid-free which
reduces computational overhead, simplifies the problem setup and allows for
higher order effects such as viscous and turbulent diffusion to be accounted
for.
Direct evaluation of a particle problem with N elements has computa-
tional complexity of O(N2). The present method uses the multilevel multi-
integration cluster method, which reduces the complexity to O(N). Two
solvers have been implemented which employ this method. The first uses a
Green’s function treatment and is more suitable for medium-fidelity investi-
gations. The second is based on the Poisson equation and is more suitable
for high-fidelity studies.
The solvers have been validated against analytical and numerical results
from the literature and the reduction of the computational complexity to
O(N) is demonstrated. This work includes numerous simulated cases to
demonstrate the range of application of the method: the wake behind an
elliptic airfoil, the four-vortex wake system of an aircraft, the helical wake
system of a wind turbine and the modes of instability of a helical vortex.
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Zusammenfassung

Die Vorhersage der Strömungsverhältnisse im Nachlauf von Auftrieb erzeu-
genden Körpern ist in vielen Anwendungsbereichen von hoher Relevanz.
Eine Anwendung betrifft beispielweise den Nachlauf von Flugzeugen in der
Luftfahrt, bei denen die Nachlaufwirkung maßgeblich den Minimalabstand
zwischen Flugzeugen bei Start und Landung sowie im Reiseflug bestimmt.
Eine andere Anwendung betrifft die Windkraft. Bei der Platzierung und
beim Betrieb von Windkraftanlagen in einem Windpark kann die Interaktion
mit dem Nachlauf von stromauf platzierten Anlagen einen signifikanten
Einfluss auf Wechsel- und Dauerlasten haben. Da die Windenergiebranche
sich zunehmend auf Offshore-Anlagen konzentriert, bei denen die Nach-
laufinteraktion eine noch größere Rolle als bei Onshore-Anlagen spielen
kann, wird in Zukunft die Untersuchung von Nachlaufinteraktionen weiter
an Bedeutung gewinnen.
Numerische Methoden höherer Ordnung können den Nachlauf zufriedenstel-
lend abbilden, benötigen jedoch einen hohen Rechenaufwand. Daher werden
zur Auslegung von aerodynamischen Komponenten aktuell hauptsächlich
Methoden niedriger Ordnung angewendet, die allerdings wichtige physikalis-
che Phänomene vernachlässigen. Diese Arbeit präsentiert eine Methode,
die einen guten Kompromiss zwischen Rechenaufwand und realistischer
Abbildung der wichtigen Phänomene schafft. Diese Methode basiert auf der
Wirbelteilchen-Methode (vortex particle method), die das Strömungsfeld als
Überlagerung von Wirbelelementen modelliert. Im Gegensatz zu etablierten
numerischen Methoden wird hierbei grundsätzlich kein Berechnungsgitter
benötigt, was zu einer Senkung des Rechenaufwands, Vereinfachung der
Anwendung sowie Inklusion physikalischer Effekte höherer Ordnung wie
molekularer und turbulenter Diffusion führt.
Der Rechenaufwand für die direkte Berechnung eines Systems aus N Wirbel-
teilchen ist O(N2). Durch die Anwendung der multilevel multi-integration
cluster-Methode kann der Rechenaufwand auf O(N) reduziert werden.
In dieser Arbeit wurden zwei Strömungslöser implementiert. Ein Strö-
mungslöser basiert auf Greenschen Funktionen und eignet sich für Simulatio-
nen mittlerer Ordnung. Der zweite Strömungslöser basiert auf der Lösung
der Poisson-Gleichung und eignet sich für Simulationen höherer Ordnung.
Die Strömungslöser wurden anhand von analytischen und numerischen Ergeb-
nissen aus der Literatur validiert und der optimal mögliche Rechenaufwand
von O(N) realisiert. Anhand der folgenden ausgewählten Beispiele wurde
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der breite Anwendungsbereich der Methode demonstriert: Der Nachlauf
eines elliptischen Tragflügelprofils, das Vier-Wirbel-System im Nachlauf
eines Flugzeugs, das helikale Nachlaufsystem einer dreiblättrigen Wind-
kraftanlage sowie die instabilen Moden eines helikalen Wirbelfadens.
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Dimensions
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[ s ] second time
[ rad ] radian angle
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Chapter 1 Introduction

The field of fluid dynamics contains a plethora of fascinating and puzzling
phenomena. The application of mathematical analysis, in particular the
field of continuum mechanics, bestows upon the avid investigator a powerful
tool which allows great insight into the underlying processes. In some cases
it is possible to derive analytical or closed-form solutions to certain flow
problems [1]. In the majority of cases, however, analytical solutions are
difficult to obtain due to the complex nature of the differential equations
to be solved. Since the advent of modern computers, the advancements
made in the field of numerical analysis have allowed engineers to gain insight
into such phenomena by making use of numerical approximations to the
equations of fluid motion, a field referred to commonly as computational
fluid dynamics (CFD) [2].

Figure 1.1: Left: The wake of a Boeing 747 [3]. Right: The wake behind a row of
wind turbines in the Horns Rev offshore wind farm [4].

The main application case for the work presented here is the simulation of
the wake generated by lifting bodies, such as the blades of a wind turbine
or wings of an aircraft– see Fig. 1.1. Within a design environment, when
selecting simulation tools one often resorts to the use of low-order models
in order to achieve quick solution turnaround times. These models often
neglect important physics of the problem under investigation. Alternatively,
one may employ high-fidelity simulation. This accounts for higher order
physics, however can often require unrealistic computational resources. The
work in this thesis aims to close this gap by developing a calculation method
which allows for the simulation of complex flows without the necessity to

1



Chapter 1. Introduction

resort to high performance computing (HPC). The motivation for the choice
of modelling method is outlined in the proceeding sections, followed by the
main application cases. Finally an outline of the thesis is provided.

1.1 Objectives and Modelling Choices

There exists numerous methodologies for simulating a fluid numerically
depending on the available resources and desired application. It is hence
instructive to first clearly define the objectives prior to reviewing different
modelling options.

1.1.1 Objectives

The aim of the work presented here is to develop a flow solver which is
capable of simulating unbounded incompressible flows of a Newtonian fluid
in the wake a lifting body. The main application case is the wake of a
horizontal axis wind turbine. This however can be considered a specialised
case of the more general lifting body problem. To increase the range of
applicability of the solver the more general problem should be handled.

Modelling objectives The solver should be capable of capturing domi-
nant physical phenomena at numerous ranges of fidelity. This motivates the
modelling choices in the next section. The following objectives are specified:

• Wake flows resolved both spatially and temporally
• Wall-bounded flows are not considered
• Influence of viscous diffusion captured
• Influence of turbulent diffusion captured
• Adaptability of solver depending on desired resolution
• Seamless extension to multiple bodies / turbines

Performance objectives The solver should be deployable in numerous
environments.

• The expense should scale optimally for a given problem size
• Parallel processing on a central processing unit (CPU)
• Parallel processing on a graphical processing unit (GPU)
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Chapter 1. Introduction

• Applicability and scalability for future applications with high perfor-
mance computing (HPC)

The target user is the practicing engineer wishing to carry out simulations
at a range of fidelities. As such, the solver should be optimised for a single
CPU-GPU combination environment.

1.1.2 Modelling Choices

It is necessary at this stage to carry out a review of the range of modelling
choices available. This allows for an informed decision as to which method
is best applied to achieve the objectives set down in Section 1.1.

General problem statement The motion of an incompressible Newto-
nian fluid can be handled numerically by solving two differential equations
for the flow field: the continuity equation and the Navier-Stokes (NS) equa-
tion (see Chapter 2). Treatment of these equations can be broadly classed
into two categories: Eulerian methods or Lagrangian methods. For a given
vector quantity of interest a⃗ in a flow field with a local velocity of u⃗, the
substantial derivative of a⃗ is given by [5]:

da⃗

dt
= ∂a⃗

∂t⏞⏟⏟⏞
Local

+ (u⃗ · ∇)a⃗⏞ ⏟⏟ ⏞
Convective

, (1.1)

where the two terms on the right hand side are the local or temporal
derivative, and the convective derivative. As these differ greatly in their
implementation, they will be discussed separately.

Eulerian (grid-based) methods The majority of current CFD solvers
make use of an Eulerian method, where the flow quantities are resolved
on a fixed grid. As these coordinates do not translate with the local
flow, the convective component must be explicitly accounted for in the
equations of motion. A range of structured or unstructured grid options
are possible. The differential equations describing the fluid motion are
discretely approximated using finite differences (FD) for flow quantities
(mass, momentum etc.) either between grid nodes in the finite-difference
method (FDM) or as grid volume or cell fluxes in the finite-volume method
(FVM) [6]. The use of basis functions over these elements to represent
solutions gives rise to other approaches, such as the discontinuous Galerkin
method [7] and spectral methods [8]. In regions where strong gradients must

3



Chapter 1. Introduction

be resolved (e.g. near a lifting body) the grid resolution must necessarily
be increased to resolve gradients. The presence of moving bodies such
as lifting surfaces furthermore requires the use of overset or sliding grids,
increasing complexity. If resolution of the flow near walls does not need
to be resolved (for example when investigating the wake), computational
savings can be made with immersed source treatments of lifting bodies such
as the well-established actuator disc or actuator line methods [9, 10].
As per the modelling objectives, focus is now restricted to simulating un-
bounded flows. This requires the choice of a computational domain which
is sufficiently large for the problem. The extent of the domain has to be
chosen large enough so that the representative boundary conditions (BC)
on the domain can be specified and do not interfere with the developing
flow field. This BC unfortunately often necessitates very large grid domains
to ensure that the far field BCs are met. Grid coarsening near boundaries is
often applied in order to reduce computational expense. Despite this, large
regions of the domain must be meshed, despite the fact that the solution in
these regions is not sought.
The numerical approximation of the flow quantities is a Taylor series usually
carried out to a given (often 2nd) order, the effect of neglecting higher
order terms introduces numerical diffusion into the solution, this plays
a significant role in wake simulations [11]. Velocity gradients alone are

DNS
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Global hybrid

unsteady statistical approaches
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Figure 1.2: Classification of unsteady approaches to turbulence modelling [12].

sufficient for resolving viscous diffusion. Resolution of turbulent diffusion
requires a suitable turbulence model, a broad field in which great progress
has been made [13]. To limit the scope of the review and align it with the
objectives stated above, attention is now restricted to unsteady models. An
overview of modelling approaches is given in Fig. 1.2. Direct Numerical
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Chapter 1. Introduction

Simulation (DNS) resolves the relative time and length scales in a turbulent
flow [14]. For a flow with Reynolds number Re the computational complexity
scales as Re3 [15]. As wake flows generally have a high Re, this option is
quickly deemed to be unfeasible.
Numerous methods exists for truncating the time and length scales which
are resolved in order to reduce computational expense. A reduction in
computational expense is achieved with large-eddy simulation (LES) where
larger 3D unsteady turbulent motions are resolved and smaller-scale, more
universal fluctuations are modelled [15, 16]. This utilises an appropriate
spatial filter for small-scale motions [17] which are generally modelled with
a sub-grid scale (SGS) model, the simplest being the one proposed by
Smagorinski [18]. The least expensive turbulence modelling can be achieved
by applying the Reynolds-Averaged Navier-Stokes (RANS) equations, where
an averaging of the flow field is applied and the turbulent Reynolds’ stress
is modelled [15]. The target applications considered in this dissertation
require temporal resolution of the flow field, making the unsteady analog
URANS more favorable. In this case unsteadiness of the mean flow field is
accounted for. Although additional turbulence closure models are required,
grid and temporal resolutions can be significantly lower in URANS than
LES, leading to computational savings. These models however are generally
less accurate for unsteady flows due to the underlying averaging operations
[19]. Numerous combinations of these two approaches are available: global
hybrid models such the partially averaged Navier-Stokes equations [20] or
zonal hybrid models, such as detached eddy simulation [19].

Lagrangian (grid-free) methods These methods do not require speci-
fication of a grid and the flow quantities are specified with discrete elements
which are advected with the local fluid velocity, and hence within a moving
reference frame [21]. The convective term therefore does not need to be
explicitly calculated. Theoretically, these methods have zero numerical dif-
fusion. Elements are created or destroyed as required to accurately describe
the flow field, implying a spatial adaptivity of the method. There are two
main types of Lagrangian flow modelling applied to fluid simulations, vortex
methods and smoothed particle hydrodynamics.
Vortex methods (VM) express the vorticity field at a set of discrete points,
each with a given position and orientation. These can effectively be consid-
ered as quadrature nodes of the field. Applying the Helmholtz decomposition,
the velocity can be extracted directly from the vorticity field using the Pois-
son equation [22]. Every time step, the properties of the vortex elements
are updated as follows: positions are updated via convection with the local
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Chapter 1. Introduction

velocity and element strengths are updated with the curl of the NS equations-
the vorticity transport equation (VTE) [5]. For incompressible fluids being
acted upon by a conservative body force, the pressure term vanishes from
the equation, simplifying modelling. Each vortex element influences the
entire flow domain of interest, as such the solution of the Poisson equation,
achieved by performing a convolution of the vorticity field, can lead to high
computational costs.
In order to avoid singular solutions to the field equations, the vorticity
description is supplemented with a regularisation or smoothing in order to
make the model numerically applicable [23]. Regularisations are generally
radially symmetric, implying that they are not suitable for applications
with a strong preferential gradient. In fact, for wall-bounded flows the ratio
between the number of grid nodes for a non-conforming and body-fitted mesh
scales as Re3/2 for a 3D problem [24]. This makes this method impractical
for resolution of e.g. lifting surfaces, particularly in high Re 3D scenarios.
This however is inconsequential here as wall-bounded flows are not within
the objectives set out. Numerous works have demonstrated the advantages
of hybrid Eulerian-Lagrangian solvers which use an Eulerian approach for
body-fitted meshes and Lagrangian solvers elsewhere [25, 26, 11]. The effect
of viscous diffusion appears in the VTE as the Laplacian of the vorticity
field. This is calculated either with an integral operator– the particle
strength exchange (PSE) scheme [27]– or with FD on a local grid [28]. The
application of LES to VM has been successful with numerous publications
demonstrating the efficacy of this approach [29, 30, 25, 31, 32]. Here the
filtering procedure is applied to the vorticity field, otherwise the approaches
are similar to those used for Eulerian solution methods.
Within smoothed particle hydrodynamics (SPH), a discrete representation
is again used, however the field is represented with pressure terms. This
allows the introduction of an equation of state if desired [33]. The pressure
field is updated by solving an appropriate pressure Poisson equation [34].
Unlike VM, each element has a finite influence radius and hence a limited
interaction distance. This makes the method ideal for calculation on a GPU
[35]. Viscous effects are captured with a direct SPH discretisation of the
Laplacian of the velocity field, as with Eulerian methods. Although there
are studies which suggest the applicability of SPH to turbulence modelling
using LES [36], thus far few practical applications have been demonstrated.

Overview and summary A summary has been provided here of the
advantages and disadvantages of both models, with consideration of the
objectives outlined in Section 1.1. Based on these points, it can been seen
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Chapter 1. Introduction

that Lagrangian vortex methods are the superior choice given the modelling
objectives. The following sections expound in greater detail the relative
literature and modelling choices relevant to this method.

Eulerian Methods

(+) Extensive literature
(+) Comprehensive options for

turbulence modelling
(+) Variable fidelity possible
(-) Numerical diffusion
(-) Complex gridding required
(-) Large domain required:

Very high expense
(-) Mesh complexity increase

with multiple bodies

Lagrangian Methods

(+) VM extensive literature
(+) VM & SPH: gridding unnec-

essary
(+) Variable fidelity possible
(+) No numerical diffusion
(+) Multiple bodies straightfor-

ward
(-) SPH: Turbulence excluded
(-) VM: Convolutions expensive
(-) Unsuitable for lifting bodies

Flow element choice For 2D problems there exist numerous practical
methods of analysis. Discrete particles can be used to represent the vorticity
field [37, 38, 39] and allow for the treatment of viscous effects [40]. The
method of contour dynamics makes use of the material contours to follow
regions or patches of circulation [41, 42, 43]. A third approach is to use
particles of vorticity gradient as an alternative to contour dynamics [22].
As the focus here however is on fully 3D flows, the remaining options are
either vortex filaments or 3D particles. Filaments by construction ensure
that the vorticity field remains divergence free [22], however curvature of
the filament plays a significant role in self-induction [44] and hence the
filaments must be regularly updated to ensure that curvature is properly
represented. Furthermore, the treatment of viscous diffusion can only be
approximately modelled with simplified regularisations which approximately
treat viscous core growth models [45, 46]. As stated in Winckelmans [22],
these are best suited to inviscid flow problems and are hence unsuitable here.
The 3D vortex particle method (VPM) however allows for the treatment
of viscous interaction, adequate spatial representation of flow elements and
furthermore enables the treatment of turbulent flows. The work here shall
therefore focus on the use of 3D vortex particles.
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Chapter 1. Introduction

Particle-particle and Particle-mesh methods The time-evolution of
the particle set within VPM requires field data directly at the Lagrangian
marker positions. Two approaches are commonly taken to resolve these field
quantities. The first approach considers particle-particle interactions. In
this case the influence of a particle on a given position is calculated using
closed-form expressions for the velocity and shear fields. These expressions
depend upon the choice of particle regularisation scheme. Three schemes
can be applied for the calculation of the shear terms: the classic, transpose
and mixed schemes [23]. The availability of closed-form expression facilitate
simple implementation however choice of regularisation and gradient scheme
can potentially greatly influence the evolution of the particle distribution
on vorticity distribution, particle spacing and flow topology [47, 48]. This
approach can be extended for viscous effects with PSE, provided suitable
stability criteria are considered [40].

Particle-particle Methods

(+) Direct expressions for influ-
ence

(+) Viscous stresses easily re-
solved with PSE

(+) Field resolved exactly where
required

(-) Restrictive stability con-
straints

(-) High order gradients difficult
to extract

Particle-mesh Methods

(+) Application of efficient Fast-
Poisson solvers

(+) Simple calculation of high or-
der gradients

(+) Grid-interactions easily ex-
pressed as template

(-) Large memory footprint
(-) Mapping to/from particles

required
(-) Gradient calc. require grid

overlap regions

The second approach applies particle-mesh interactions. In this case the
source distribution of the Lagrangian particles is mapped to an underlying
regular grid. The Poisson equation is solved on this grid and field quantities
are extracted by applying a FD scheme. These are interpolated back to the
particle position to calculate particle set evolution. Although this technically
can be considered a grid-based method, the grids are regular and adaptive
and therefore require no mesh preparation per se. In addition, particles are
still convected in a Lagrangian sense. This is conceptually simpler than
the particle-particle methods as complicated interaction expressions are
avoided and near-field interactions are automatically handled by the Poisson
solver. Gradients of any order of the flow field are accessible simply through
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application of FD stencils, enabling for example straight-forward application
of turbulence models. A simple overview of advantages and disadvantages of
both approaches are summarised in the table above. Both of these methods
present attractive features. Which approach is most suitable certainly
depends on both flow properties and desired outcomes. Both methods will
be explored in the work carried out in this thesis.

Optimisation of problem scaling Considering now the calculation of a
given problem with VPM, the velocity field is necessary for specification of
the advection velocity of the Lagrangian elements. This can be calculated
by solving a Poisson equation (see Chapter 2) which leads to an expression
for the velocity induced by each vortex or source particle. It shall be
assumed that there are Ns source particles and it is desired to evaluate
the velocity at Np probe points. Without loss of generality, it shall be
assumed the Ns = Np and the computational complexity is seen to scale
as O(N2): N evaluation points each being influenced by N source points.
As the particle set grows in size, as e.g. with an evolving wake, this scaling
becomes impractical. In order for the method to be applicable without the
necessity to resort to HPC, methods of optimisation must be sought out.
For direct particle interactions there exists a range of techniques which
optimise computational complexity. These all involve some form of spatial
coarsening of the source distribution. For the proceeding discussion the word
kernel refers conceptually to the function which describes the influence
a unit source has on a given probe position. The properties of the kernel
applied for the solution of the Poisson equation generally admit approxima-
tion for large separation distances. This was first carried out in the work of
Barnes & Hut by applying it to the gravity kernel for astrophysical N-body
problems [49]. Their method used an Octtree-style approach to describe the
source distribution hierarchically, where source regions are subdivided until
each source is effectively enclosed within an isolated region or cell.
The source points at each box level are approximated by an equivalent
pseudo-source placed at the centroid of the particle in that box, this is
visualised for an exemplary 2D case in Fig. 1.3. For the calculation of the
influence at any probe position as required an integration over the whole
field (all boxes) is carried out. If a given source box obeys a specified
distance threshold, the influence of the pseudo-particle is calculated rather
than the contribution of each particle contained within. The error of
the approximation decreases (and computational expense increases) by
increasing the distance threshold. This algorithm greatly reduces the cost of
the influence of distance particles and the computation expense is reduced to
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O(N logN). For N very large logN behaves almost as a constant and this
performance is in practice almost indiscernible from O(N). Conceptually,
some form of influence calculation must occur for each source particle N ,
one can hence heuristically argue that the most optimum possible calculation
has order O(N). The approximation of the source particles using a single

Branches l ≥ 1 Branches l ≥ 2

Figure 1.3: Octtree concept of Barnes-Hut algorithm. Left: Source distribution.
Right: Source centroids of higher branch levels. Adapted from [49].

lumped mass treatment can be greatly improved by applying the concept
of a multipole expansion. This is defined as a polynomial expansion for
functions which depend only on two angular arguments, generally expressed
in terms of spherical harmonics. This was carried out in the seminal work by
Greengard [50], where the so-called Fast-Multipole Method (FMM) was first
described. As with a Taylor series, the infinite expansion involves higher
order derivatives and the error is controlled by specifying the order of the
multipole expansion. It was shown that this method, when applied to 3D
problems also reduces problem complexity to O(N logN) [51]. This method
has been found to be well suited to VPM [28, 37], however the application to
the higher-order VPM interactions such as vortex stretching is not intuitive
and presents challenges for implementation [52]. Other approaches to this
problem have been suggested to simplify this approach [47].
In cases where the particle set can be mapped or approximated on a regular
grid (this topic will be handled later), there exists numerous methods to
optimise efficiency depending on the differential equation being investigated,
for example the elliptic Poisson equation in this work. Multigrid methods [53]
apply a range of grid resolutions to iteratively reduce the error of the solution
by using restriction and interpolation operations between grid levels. High-
frequency errors decay efficiently on finer grids and low-frequency errors on
coarser grids, with the residual acting as a communication variable between
grid levels [54]. This approach can reduce the computation complexity to
O(N logN), where in this case N refers to number of grid points. This has
been implemented for general problems in the open-source library MudPack
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[55]. For application to the solution of the Poisson problem specifically,
the linear system on the grid can be expressed as an expansion of Fourier
coefficients and solved using the Fast Fourier Transform (FFT), which has
computational complexity O(N logN). This class of solvers are referred
to as Fast Poisson solvers (FP) and also have numerous implementations
[56, 57].
A method recently developed by van Garrel [58], the multilevel multi-
integration cluster (MLMIC) scheme, applies an adaptation of the Multi-
Level Multi-Integration (MLMI) scheme of Brandt, Lubrecht & Venner
[54, 59] to particle-like problems. In this scheme both the kernel function
(source distribution) and influence are approximated using pseudo-source
and probe nodes with an interpolating polynomial. Although, for a given
accuracy, fewer expansion terms are required by FMM, the MLMIC scheme
appears to be much more intuitive and amenable to optimisation. In [58]
it was shown that this method reduces the computational complexity to
the optimal O(N). The method furthermore is greatly generalisable, and
can be applied to numerous physical problems involving fluid dynamics,
astrophysics and electrostatics.
For the work applied here two solvers have been developed depending on
the desired application case, both make use of the MLMIC scheme and the
second makes use of the FP solver.

1.2 VPM: Wind Turbine Aerodynamics

The evolution and stability of the wake of a wind turbine is a complex and
fascinating process [60, 61]. The clustering of turbines in a wind farms
inevitably gives rise to wake interactions- i.e. wind turbines operating
in either partial or full wake shadowing of upstream turbines- increasing
unsteady and fatigue loads [62], which impacts the operational life of turbine
components. It has also been shown to reduce farm energy yield by 5 − 10%
[63]. These factors are directly coupled to the Levelized Cost of Energy
(LCOE) of operating a farm [64] and therefore influence investment in wind
energy. There has been growing interest in floating offshore wind energy
in the last decade due to the abundant wind energy resources in offshore
farms. Here the aforementioned wake interaction effects have been shown
to be even more prominent than in onshore scenarios as the turbines are
exposed to stronger, steadier winds and stabler atmospheric stratification
than comparable onshore environments. Under these conditions turbine
wakes can remain stable and coherent for much greater distances (up to
tens of kilometres) downstream of the turbine [65].
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It is important here to distinguish between two wind turbine architectures:
the much more commonly applied horizontal axis wind turbine (HAWT) and
the vertical axis wind turbine (VAWT). The blade and wake aerodynamics
in both cases are vastly different and VPM has been applied extensively to
the simulation of both architectures.

VAWT wake aerodynamics This case poses additional modelling chal-
lenges as the blade interacts directly with the wake in the downstream
rotation sector. As early as 1981, a 2D vortex model was applied to in-
vestigate the aerodynamics of VAWTs by Strickland [66]. This can also
be applied to the unsteady wake behind an oscillating airfoil for unsteady
2D cases [67, 68]. More recently a much higher fidelity LES simulation
was carried by Chatelain et al. [32] and was shown to capture in detail
wake patterns and aerodynamics at multiple tip speed ratios λ– see Fig. 1.4.
The case of offshore VAWT wakes was inspected in the work of Balty et al.
[69], where simulations demonstrated that wake interaction leads to larger
oscillations of downstream turbines and accelerated wake breakdown.

λ = 2.14 λ = 4.28

Figure 1.4: VPM-LES simulations of the wake of a VAWT, taken from [32].

HAWT wake aerodynamics Here it is observed that generally two
approaches have been taken. In the first approach, the vortex filament
is not spatially resolved. This filament-style treatment greatly reduces
computational expense and is adequate for near-field analysis, e.g. single
turbine performance as shown in the work by the author [70]. In the second
approach the filament (and generally the vorticity distribution shed from
the blade) is spatially resolved. This is commonly carried out with a hybrid
Langrangian-Eulerian approach making use of a FP solver. Interaction
between multiple turbine was simulated along with the effect of turbulent
inflow description in the work of Chatelain et al. [31]. The method was
applied to aeroelastic simulations with a VPM representation of turbulent
inflow in the paper of Branlard et al. [71]. A similar approach was carried
out for a hybrid filament-particle solver within the MIRAS solver in Ramos-
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Garcia et al. [72]. The same model was applied to investigate the influence of
the atmospheric boundary layer and ground effect in a follow-up paper [73].
An analysis of the underlying modes of symmetry of a helical wake, described
analytically in Widnall [74], was investigated with VPM in Walther [75].

τ = 1.39 τ = 1.97 τ = 2.35

Figure 1.5: VPM simulation of medium-wavelength instability in a four-vortex
aircraft wake system, taken from [76]. Normalised time shown.

1.3 VPM: Aircraft Wake Aerodynamics

As stated in the objectives, it is desired that the solver should generally
be applicable to unbounded aerodynamic problems. For this reason the
applicability of VPM to aircraft wake problems is briefly reviewed. The
geometry of the aircraft wake problem is in general much simpler than that
of a wind turbine. Persistent aircraft wakes give rise to problematic take-off
and landing conditions for a trailing aircraft, motivating investigation into
their evolution and excitation [77]. Here, two common wake geometries are
usually investigated: the two-vortex system, where only tip vortex filaments
(or more generally the merged tip-trailing vortex system) is inspected. Much
as with the helical case, there exist well explored analytical results for the
stabilities which arise in the two vortex system, namely the Crow (long-
wavelength) [78] and the Widnall (short-wavelength) [79, 80] instabilities.
These generally make use of an underlying assumption of periodicity in
flight direction. The second configuration is a four-vortex system where a
secondary inner vortex set is generated by inboard flap edges [81]. VPM
was applied successfully to analyse these instabilities, determine optimum
excitation parameters and investigate nonlinear behaviour in Winckelmans
et al. [82]. Very high resolution investigations were carried out in Chatelain
et al. [83] where a hitherto unseen resolution of the connection process was
captured. Medium wavelength instabilities were also captured in the works
of Cocle et al. [28], see Fig. 1.5.
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1.4 Thesis Outline

The thesis has been structured as follows.

Chapter 2: The vortex particle method The fundamental assump-
tions of the flow field and the corresponding equations of motion are pre-
sented. A description of VPM is given. The solvers implemented in the
work here are described: i) the particle-particle scheme based on Green’s
functions and ii) the particle-mesh scheme based on the solution of Pois-
son’s equation. A description of both solution methods is given along with
important modelling considerations when applying VPM.

Chapter 3: The multilevel integration method The scheme utilised
here to achieve optimal problem scaling is described along with the applica-
tion to VPM. The method is applied to a representative flow geometry and
the ability of the scheme to accurately integrate the particle influence for
both kernels of interest is validated.

Chapter 4: Flow solver implementation A description of the applied
numerical scheme is given. This includes particle description, grid defini-
tion and parameters, and time integration schemes. The methodology for
handling problems with symmetry and periodicity are described, along with
individual parameters for both solvers.

Chapter 5: Flow solver validation and performance evaluation
The flow solvers are verified against analytical and numerical results from
the literature for a set of cases involving vortex rings. The ability of both
solvers to capture a range of physical phenomena is demonstrated. The
ability to simulate turbulent flow is demonstrated. The performance of the
method is analysed and compared to expected behaviour.

Chapter 6: Flow solver application A set of flow cases suitable for
application of the method are demonstrated. These include: i) a time
and space evolving wake behind an elliptical airfoil, ii) a demonstration
of instability growth in an infinite aircraft wake , iii) the wake of a wind
turbine, and iv) the modes of instability of a helical wake.

Chapter 7: Conclusions and outlook A summary of the results is
given along with an overview of the planned future work using the imple-
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mented solver. Other applications of practical interest are also described.

Appendices Numerous validation cases are provided to supplement the
results in Chapter 5, in additional to a 2D validation of the solver. The
theory of the vortex ring is described as an addendum to the cases in the
validation. The expressions for the Green’s functions for a regularised vortex
particle are given.
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Chapter 2 The Vortex Particle Method

This chapter exposes the theory underlying the vortex particle method
(VPM). Two methods are commonly applied when resolving the desired
field quantities with the VPM.

• Green’s method: This makes use of Green’s functions to calculate
direct particle-particle interactions- described in Section 2.3.

• Poisson method: This makes use of an intermediate grid to calculate
particle-mesh interactions- described in Section 2.4.

Although the two methods resolve the same field quantities, their method-
ologies differs significantly, hence motivating separate exposition. The field
equations underlying both methods are initially described in Section 2.1
along with relevant nomenclature. The discretisation of the vorticity field
along with time evolution of the discrete particle set is detailed in Sec-
tion 2.2. Following this important numerical considerations for application
of the VPM along with criteria for well-resolved simulations are described
in Section 2.5. Finally methods for the resolution of turbulent shear stresses
within the VPM are described.

2.1 Field Equations

It assumed that the flow is incompressible and consisting entirely of a
Newtonian fluid. Position is denoted with the vector x⃗ and time with the
symbol t. An implicit assumption is hereafter made that all variables are a
function of both space and time.

Velocity formulation The flow is described in terms of the velocity field
u⃗(x⃗, t). Enforcing the conservation of mass leads to the continuity equation:

∇ · u⃗ = 0 . (2.1)

Conservation of momentum for an incompressible Newtonian fluid leads to
the Navier-Stokes (NS) equation:

du⃗

dt
= ∂u⃗

∂t
+ (u⃗ · ∇)u⃗ = f⃗ − 1

ρ
∇ p+ ν∇2u⃗ , (2.2)
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where ν is the kinematic viscosity of the fluid, f⃗ is the body force and p
is the fluid pressure. Although of great theoretical and practical interest,
these forms of the field equations are not directly applied in the work here.

Velocity-vorticity formulation An alternative representation is achieved
by taking the curl of the velocity field, the vorticity ω⃗(x⃗, t) = ∇ × u⃗. By
nature of its definition, it follows that the vorticity is divergence-free:

∇ · ω⃗ = 0 . (2.3)

Assuming that the body force is irrotational, taking the curl of the NS
equations gives the vorticity transport equation (VTE):

dω⃗

dt
= ∂ω⃗

∂t
+ (u⃗ · ∇)ω⃗ = (ω⃗ · ∇)u⃗+ ν∇2ω⃗ . (2.4)

Helmholtz decomposition Helmholtz [84] demonstrated that a twice
continuously differentiable vector field can be expressed as the sum of an
irrotational scalar potential Φ and a divergence-free vector potential ψ⃗, here
expressed for the velocity field:

u⃗ = −∇Φ + ∇ × ψ⃗ = U⃗∞ + ∇ × ψ⃗ . (2.5)

The vector potential ψ⃗ is generally referred to as the stream function. U⃗∞
represents the ambient freestream flow. Taking the curl of the above equation
results in the Poisson equation:

∇2ψ⃗ = −ω⃗ , (2.6)

which directly links vorticity to the stream function of the flow.

2.2 Vortex Particle Representation

In the vortex particle method, the spatial distribution of vorticity is defined
as the sum of a set of vortex particles, each having vorticity ω⃗p and occupying
a volume dvp, representing an incremental circulation αp⃗ = ω⃗pdvp:

ω⃗(x⃗) disc.=
∑︂
p

ω⃗p δ(x⃗− x⃗p) , (2.7)

where δ is the 3D Dirac delta function. The evolution of the particle set is
treated in a Lagrangian sense, implying the particle positions and strengths
are tracked, rather than being defined within a spatially constant grid.
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Time evolution of particle position Recalling that the evolution equa-
tion for a material line element δI⃗ is given by [85]: d

dtδI⃗ = (δI⃗ · ∇)u⃗ and
comparing with Eq. (2.4), it follows that vortex filaments move as material
lines for inviscid flows. This is precisely the statement of the second theorem
of Helmholtz [84]. For viscous flows however, vortex tubes do not neces-
sarily retain their identity due to merging and breakdown. For a particle
treatment, particle motion is specified purely with the kinematic definition:

dx⃗p
dt

= u⃗(x⃗p) . (2.8)

Time evolution of particle strength Inspecting the VTE in Eq. (2.4),
the evolution of particle strength is seen to be composed of two contributions:

dω⃗p
dt

= (ω⃗ · ∇)u⃗⏞ ⏟⏟ ⏞
Stretching

+ ν∇2ω⃗⏞ ⏟⏟ ⏞
Viscous diffusion

. (2.9)

The first term is a consequence of the divergence-free nature of the vorticity
field and represents the change in vorticity which occurs when the vortex
is sheared or strained. The second term is the change due to viscous
diffusion. There are numerous approaches to calculating these terms. The
two approaches used in the work here are described in the following sections.

2.3 VPM: Green’s Method

When using the Green’s function approach, one makes direct use of un-
bounded Green’s functions [86] to calculate the velocity field. Closed-form
expressions for the velocity and stretching fields induced by a particle
are derived and these terms are used to calculate direct particle-particle
interactions, this is visualised in Fig. 2.1.

2.3.1 Resolution of Field Quantities

The application of Green’s function begins by initially describing the method
used to retrieve the velocity field from the vorticity field. These quantities are
then used to calculate higher order terms. These are described individually
for clarity:

Velocity field The stream function can be calculated from the vorticity
field using Eq. (2.6) by applying the Green’s function for the Laplacian in
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Vortex particle

Mapped vorticity

Probe particle

Figure 2.1: Left: Green’s method (particle-particle). Right: Poisson method
(particle-mesh).

an unbounded domain G(r⃗) = (4π∥r⃗∥)−1 to perform a spatial convolution:

ψ⃗(x⃗) = G � ω⃗
disc.=

∑︂
p

G(x⃗− x⃗p) α⃗p = 1
4π
∑︂
p

α⃗p⃦⃦
x⃗− x⃗p

⃦⃦ . (2.10)

It should be noted here that the discrete particle representation of ω⃗ and ψ⃗
are in general not divergence free, and care must be taken in their application.
The velocity field corresponding to the particles is then extracted from the
stream function field by applying Eq. (2.5):

u⃗(x⃗) = ∇×ψ⃗ disc.= 1
4π
∑︂
p

∇G(x⃗− x⃗p)×α⃗p(x⃗p) =
∑︂
p

K(x⃗− x⃗p)×α⃗p , (2.11)

where K represents the Biot-Savart (BS) kernel for a singular vortex element:

K(r⃗) = − 1
4π

r⃗

∥r⃗∥3 . (2.12)

The velocity field is hence calculated through a convolution of the vorticity
with the Biot-Savart kernel. In practice the singular representation of the
vorticity field of Eq. (2.7) generally gives rise to singular velocity fields,
which are of limited practical application. This is overcome by applying a
regularisation to the vorticity field.

Regularised vorticity field A more realistic and numerically applicable
representation of the vorticity field ω⃗σ is achieved by introducing a smoothing
function ζ:

ω⃗σ(x⃗) = ζ(x⃗) � ω⃗
disc.=

∑︂
p

ω⃗p dvp ζ(x⃗− x⃗p) . (2.13)

The smoothing function is generally taken as being a radially symmetric
function of ρ, the distance normalised with respect to a characteristic length
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σ:
ρ =

⃦⃦
x⃗− x⃗p

⃦⃦
σ

, (2.14)

where σ effectively specifies the spatial spreading of the vorticity, analogous
to the standard deviation of a Gaussian distribution. This parameter is
generally associated with the inner core region a vortex element, hence the
common name for σ: the core radius. The smoothing function ζ is chosen
such as to ensure that the circulation is conserved: 4π

∫︁∞
0 ζ(ρ)ρ2 dρ = 1.

A similar procedure with somewhat more careful consideration is carried
out as with singular particles in order to extract the stream function [23].
This is again expressed in terms of the corresponding regularised Green’s
function Gσ:

ψ⃗(x⃗) disc.=
∑︂
p

Gσ(x⃗− x⃗p) α⃗p . (2.15)

This is then used to calculate the regularised velocity field:

u⃗σ(x⃗) = ∇ × ψ⃗σ
disc.=

∑︂
p

Kσ(x⃗− x⃗p) × α⃗p . (2.16)

Numerous choices of ζ are available, a summary of these is provided in
Appendix F. The influence of the choice ζ on the velocity field is shown in
Fig. 2.2. For a comprehensive overview the reader is referred to Winckelmans
& Leonard [23]. For the work shown here, unless otherwise stated, it should
be assumed that a Gaussian regularisation function has been used.

Vortex stretching field It is seen in Eq. (2.9) that the stretching op-
erator (ω⃗ · ∇) must be calculated for resolution of the stretching terms.
Alternative forms of these can be written [23]:

(ω⃗ · ∇)u⃗⏞ ⏟⏟ ⏞
Classic

= (ω⃗ · ∇T )u⃗⏞ ⏟⏟ ⏞
Transpose

= 1
2(ω⃗ · (∇ + ∇T ))u⃗⏞ ⏟⏟ ⏞

Mixed

. (2.17)

The three methods are equivalent if it is assumed that vorticity exactly
satisfies ω⃗ = ∇ × u⃗, however as mentioned above the discrete VPM does not
guarantee a divergence-free vorticity field. The three methods hence slightly
deviate when applied to the discretised particle set. As described in [23], the
transpose scheme alone appears to lead to the exact conservation of total
vorticity [87] and to a weak solution of Eq. (2.4) [88]. This certainly appears
to be the better scheme for singular particles, for regularised particles the
advantages of the transpose formulation are less pronounced. Despite this,
the transpose method has been used for essentially all simulations carried
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out in this work. Calculating the divergence of the velocity field gives rise
to a stretching kernel of the form:

K∇ = 3
4π

r⃗

∥r⃗∥5 . (2.18)

This appears in combination with the BS kernel in Eq. (2.11) for the closed-
form solutions of the stretching, which are described for available schemes
in Appendix F. For brevity these are not expressed here.

Viscous diffusion There are a number of approaches applied to calculate
viscous diffusion with the VP method. An example is the random walk
method, whereby a random velocity components is added to the particle
velocities with certain statistical normalisations [89]. A further example is
the core-spreading method [90], a much more intuitive approach where the
smoothing parameter σ varies in time to account for diffusion. Certainly the
most successfully applied method however is the particle strength exchange
(PSE) scheme introduced by Degond & Mas-Gallic [27], whereby the diffusion
operator ∇2 is approximated by an integral operator:

∇2ω⃗(x⃗) ≃ 2
σ2

∫︂
(ω⃗(y⃗) − ω⃗(x⃗)) ησ(x⃗− y⃗) dy⃗ , (2.19)

where the diffusive function ησ follows directly from the choice of smoothing
function: η(ρ) = −(dζ/dρ)/ρ. The choice of Gaussian smoothing in this case
has the computational advantage that η(ρ) = ζ(ρ). Although not strictly a
Green’s function, this approach allows the diffusive nature of the vorticity
field to again be represented with a simple particle-particle representation.
The PSE scheme, however, is also subject to stability constraints, which
depend on the time integration scheme used. As described in [40], this
constraint specifies the timestep must be such that ν∆t σ−2 ≤ φs where
for the Euler explicit scheme φs = 0.595 and for the Adams-Bashforth 2nd

order scheme φs = 0.297.

2.3.2 Far Field Behaviour

The interaction between two particles is completely described with closed-
form expressions as described above. An important observation can be made
here: As the distance between evaluation point and source particle becomes
very large (ρ → ∞), the influence asymptotes to that of a singular particle.
This region is referred to as the far field of the particle, as opposed to the
near field, where the smoothing function ζ has a significant impact on the
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particle’s influence. This is demonstrated in Fig. 2.2 for a range of standard
regularisation functions: Singular, low-order algebraic (LOA), high-order
algebraic (HOA) [22], Gaussian, and Hejlesen [91]. It is observed that they
asymptote to the singular kernel in the far field. Equivalent behaviour is

0 2 4 6 8 100

0.5

1

1.5

ρ

4π∥Kσ∥ r2

r−1

Low-order alg.
High-order alg.
Gaussian
Hejlesen

Figure 2.2: Biot-Savart kernel for a range of regularisation functions.

observed for the stretching kernel, however this has not been exploited in
this work. The PSE kernels described above vanish very quickly, generally
within 5σ, implying physically that the action of viscosity is dominated by
near field interactions. This is an intuitive result as the friction forces scale
with the velocity gradient, which is greatest for small ρ. In the far-field the
tendency towards the singular BS kernel implies the tendency towards an
irrotational far field influence, where viscous effects play no role. This shall
be demonstrated in Chapter 3.

2.4 VPM: Poisson Method

When using the Poisson method, a particle-mesh approach is applied. Here
the volume solution is attained on a volume mesh, from which all desired
flow quantities are extracted. This process substantially is composed of
three steps:

i) Vorticity defined at source particle positions is mapped to the regular
grid with chosen mapping function- Section 2.4.1.

ii) Solve Eq. (2.6) on the grid for resolution of stream function ψ⃗ using
Poisson solver- Section 2.4.2.

iii) Extract flow from the grid using FD and map desired quantities back
to particles with chosen mapping function.
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These steps are illustrated in Fig. 2.1.

2.4.1 Mapping Functions

Within VPM the vorticity field is defined at a set of particle positions
(Eq. (2.7)), which are in general not regularly distributed in space. The
Poisson solver however requires specification of vorticity on a regular grid.
This implies that the known vorticity field of each particle must be trans-
ferred to the surrounding regular grid points of the Poisson solver. This
can be accomplished with a mapping function M(x⃗). These are formulated
such that the spatial moments of vorticity are preserved up to order m:
Ω⃗ = ω⃗ xm. A set of common mapping functions are shown in Fig. 2.3: The

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

d
H

M
(︂
d
H

)︂
M0 (0)
M2 (1)
M4 (4)
M′

4 (4)

Figure 2.3: Mapping functions to transfer quantities from Lagrangian particle
positions to a regular grid of cell width H: d is the distance to the neighboring
grid point. The order of the mapping is shown in parenthesis.

mapping function determines, based on the relative position within the
grid, the portion of vorticity mapped to each of the surrounding grid nodes.
The stencil width refers to the number of surrounding points to which the
particle vorticity is mapped, this increases with desired mapping order m.
The mapping functions are generally described as one-dimensional, and
produce a mapping in a single dimension M(x). For mapping in higher
dimensions the tensor product is taken Mx,y,z = M(x)M(y)M(z). These
mapping functions have the additional advantage that they can be used not
only for mapping to the grid, but also for interpolating results from the
grid, which is necessary as the field variables are generally solved on the
grid using FD. A visualisation of the mapped field is given in Fig. 2.4.
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Figure 2.4: The x-y plane of a dense vortex ring- investigated in Chapter 5. The ωy

field is shown corresponding to the mapped vorticity field. The particle positions
and magnitudes are shown with points and the resultant mapped vorticity field is
shown with the contour.

2.4.2 Poisson Solver

The solution to Eq. (2.6) on a regular grid can be achieved numerically
through the application of FD methods. The Laplacian of the stream
function at a given node is expressed in terms of the surrounding vorticity
values by means of an FD stencil. The unknowns values of ψi over the N
nodes can be expressed as a block-tridiagonal linear equation system which
can be solved with numerous approaches. For a comprehensive overview,
the reader is referred to Hockney & Eastwood [92], here common approaches
are described:

• Direct Evaluation: By directly using Gaussian elimination the
system has computational complexity O(N3).

• Generalised Thomas Algorithm: An optimised Gaussian elimina-
tion procedure with theoretical complexity O(N 3/2) [93].

• Spectral Solver: Representing the solution in terms of a finite
Fourier series allows the linear system to be reformulated in terms of
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Fourier coefficients. Application of the Fast Fourier Transform (FFT)
allows theoretical complexity reduction to O(N log(N)) [94].

• Multigrid Method: The solution is found iteratively between nu-
merous grids of varying resolution by using the residual at one grid
level to find the solution vector at a coarser grid level to remove lower
frequency errors. This method has a theoretical complexity of O(N)
[95].

Clearly the multigrid method has the optimal theoretical complexity, however
in practice logN behaves essentially as a constant for large N and significant
advances made in the field of FFT algorithms (e.g. for image compression)
imply that the spectral solver generally leads to the best performance.

Fast Poisson solvers An algorithm which applies the FFT to the solution
of the Poisson equation is generally referred to as a Fast Poisson (FP) solver.
These are commonly formulated to be applicable to the solution of the
Helmholtz equation, of which the Poisson equation is a special case:

−∇2ψ⃗ + qu⃗ = f⃗⏞ ⏟⏟ ⏞
Helmholtz Eq.

q=0−→ −∇2ψ⃗ = f⃗⏞ ⏟⏟ ⏞
Poisson Eq.

f=0−→ ∇2ψ⃗ = 0⃗⏞ ⏟⏟ ⏞
Laplace Eq.

. (2.20)

This greatly expands the scope of applicability of the solvers to problems
of astrophysics, acoustics, electromagnetics and potential flow, amongst
others. The fast Poisson method is based upon applying a discrete Fourier
transform to the variables, and then solving the corresponding continuous
problem from the discrete formulation given above. It can then be shown
that the Fourier modes are the eigenvectors of the system matrix, and
furthermore are eigenmodes of the continuous solution [94]. The coefficients
of the Fourier modes can be computed by applying an FFT. The solution
of the problem is sought on a domain D with boundary ∂D. The boundary
condition, the value of the stream function on ∂D must be known as this
allows for a unique solution. This requirement is important to note at this
point, as this influences greatly the method of solution. There are numerous
approaches to address this:

• Lattice Green’s Functions The Fourier-space Green’s function on
the grid are calculated such that they satisfy the desired boundary
conditions on the given domain. The vorticity field f⃗ (here ω⃗) is first
Fourier-transformed, the solution found in Fourier space. The back-
ward transform of the solution is then calculated [96]. This includes
the Hockney-Eastwood method where an additional padding zone
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appended to the domain allows for unique specification of the Fourier
coefficients for the solution of the unbounded problem [92].

• James-Lackner Algorithm This involves separating the solution
into two contributions: a homogeneous solution (with zero boundary
condition) and a boundary forcing contribution- chosen to satisfy
continuity of the full solution at the boundary [97, 98].

• Method of Local Corrections A multigrid-style approach where
the solution is found on progressively coarser grids and the result is
interpolated or contracted to finer grids [11, 99].

The method of local corrections is ideal for implementation purposes as only
the Poisson solver is required for calculating the solution. The interpolation
process however is relatively complex and great care needs to be taken to
ensure influences from nested grids are not counted multiple times [99]. In
terms of computational expense the Hockney-Eastwood method is most
optimal. However, the method requires a rectangular grid, the vorticity field
is therefore not tightly contained which can lead to unnecessary memory
overhead. The padding regions additionally greatly increase memory over-
head. Despite this, this method has enjoyed great success and is commonly
applied to VPM simulations [100, 32]. The application of the James-Lackner
(JL) algorithm however ensures tight domain constraints and is amenable to
application of the multilevel method, which shall be described in Chapter 3.
A more detailed description of the JL algorithm is now given.

D
∂D

De

∂De

Figure 2.5: The solution to ψ⃗ is sought within D. This requires specification of ψ⃗
on the boundary ∂D. Left: Direct specification with Green’s function. Right: Use
of the James-Lackner algorithm.

James-Lackner algorithm Rather than selecting the solution domain
D (here the Poisson grid) large enough so that the stream function on the

26



Chapter 2. The Vortex Particle Method

boundary ∂D vanishes, the unbounded problem can be treated on a compact
grid with an equivalent boundary forcing term, as described in James [97]
and Lackner [98]. A necessary condition for the JL method is that the
vorticity has compact support, implying that a slightly larger domain De

must be constructed such that the region of interest D is padded with zero
vorticity, as is seen in Fig. 2.5. The solution is attained by treating the
problem as the superposition of two potentials:

i) The homogeneous potential ψ⃗0: The Poisson equation is solved
with zero boundary forcing (boundary potential zero):

∇2ψ⃗0(x⃗) = ω⃗(x⃗) , x⃗ ∈ De . ψ⃗0(x⃗) = 0⃗ , x⃗ ∈ ∂De . (2.21)

ii) The single-layer potential ψ⃗1: The Poisson equation is solved with
zero volume forcing:

∇2ψ⃗1(x⃗) = 0⃗ , x⃗ ∈ D . ψ⃗1(x⃗) = ω⃗∂ , x⃗ ∈ ∂D . (2.22)

The full solution is then attained by superposing the two contributions:
ψ⃗ = ψ⃗0 + ψ⃗1. The boundary forcing term ω⃗∂ for the single-layer step is the
external forcing which occurs due to the truncation from an unbounded prob-
lem to a bounded one. This is treated as a source influence distributed along
the boundary ∂De, and can be calculated with the following convolution:

ψ⃗1(x⃗) =
∫︂
∂De

γ⃗(x⃗∂) G(x⃗− x⃗∂)dx⃗∂ , (2.23)

where the force density on the boundary γ⃗ represents the jump in the normal
derivative on ∂De: ∂ψ1

∂n . This influence is valid both interior and exterior to
De. The source density γ⃗ can be determined simply by requiring continuity
of the solution ψ = ψ0 + ψ1 across the boundary:

∂ψ

∂n
= ∂ψ0

∂n
+ ∂ψ1

∂n
= 0 −→ γ⃗(x⃗∂) = ∂ψ1

∂n
= −∂ψ0

∂n
. (2.24)

In summary, the total solution is found by calculating first the homogeneous
potential ψ⃗0. The normal gradient of ψ⃗0 on ∂D is then calculated with FD
to specify boundary forcing γ⃗. The boundary forcing allows calculation of
ψ⃗1 within the domain De. An efficient approach for the total solution here is
to calculate ψ⃗1 only over ∂D. The homogeneous solution ψ⃗0 is extracted at
this boundary from the previous step and added to ψ⃗1. The total boundary
condition on the boundary ∂D being known, the FP solver can be executed
again for the full solution. This implies that for the full solution the JL
algorithm requires two FP evaluations plus a boundary gradient calculation.
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Desired solution region Dsol

Neighbor source region Dsrc

Homogeneous solution ψ⃗0,src

Homogeneous solution ψ⃗0,sol

Overlap region ψ⃗0,src + ψ⃗0,sol

Boundary forcing sources.

Figure 2.6: The James-Lackner algorithm applied to neighboring source regions.

Multiple Domains The problem described above is perfectly applicable
to multiple regions of vorticity, allowing a compact treatment of vortical
domains. As described previously, an enlarged region must be taken to
ensure that the vorticity on the grid has compact support. For neighboring
domains this leads to overlaps between the regions as visualised in Fig. 2.6.
Care must simply be taken to ensure that the solution on the desired
boundary (∂Dsol in Fig. 2.6) includes overlapping homogeneous solutions
from neighboring region ψ⃗0,src, as well as the boundary forcing contributed
by neighboring regions γ⃗src. Although illustrated in Fig. 2.6 only for a single
neighbor position, the extension to any neighboring source region and in
fact to 3D is straightforward.

2.4.3 Resolution of Field Quantities

After the solution with the FP solver, the extraction of desired field quan-
tities from the ψ⃗ grid is achieved by using FD calculations. This has the
computational advantage that the grids are uniform, the FD stencils are
hence specified at the beginning of the simulation and thereafter remain
unchanged. The quantities at the desired evaluation points are then specified
using the mapping procedure described above.

Velocity field When the solution to the stream function ψ⃗ is known on
the grid, the velocity field can be extracted by applying Eq. (2.5). The
partial derivatives of velocity ∂ui/∂xj can be determined by applying a
FD scheme of desired order to calculate the components of ∇ × ψ⃗. This is
visualised in Fig. 2.7.

Stretching field FD can again be applied upon the calculated velocity
field in order to calculate ∇u⃗ (a second order tensor). Vorticity has been
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Figure 2.7: Outputs of step iii) of the Poisson method. FD stencils have been used
to extract the velocity field. The contour shown corresponds to uz. The field here
corresponds to the flow problem in Fig. 2.4.

previously stored on the grid for the Poisson solver, the procedure to calculate
(ω · ∇)u⃗ is hence straightforward.

Calculation of viscous diffusion With the value of vorticity being
known on the grid, a Laplacian FD stencil can be used to extract ∇2ω⃗. As
with velocity and stretching, this is mapped back to the particles as desired.

2.5 Numerical Considerations

The numerical treatment of the flow field with Lagrangian elements intro-
duces modelling challenges. If unaccounted for, these can lead to erroneous
results and badly conditioned particle sets. The following sections detail
important modelling procedures which must be applied.

Remeshing The regularised vortex particle method can be proven to con-
verge to smooth solutions of the Euler equations with grid-free formulations
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[101, 102]. The solution converges, however only under the assumption
that the number of particles is increased, and that the particles overlap:
ρ ≤ 1. The combined effects however of Lagrangian convection and vortex
stretching often imply that neighboring particles bunch together or are
stretched apart and the aforementioned requirement is no longer fulfilled.
If left unchecked, this generally leads very quickly to a badly conditioned
particle set with discontinuous field quantities. This can be overcome by
regularly remeshing the particle set. This is carried out by mapping the
particles onto a regular grid with a desired choice of mapping function (see
Section 2.4.1). This is illustrated in Fig. 2.8. This furthermore introduces a
spatial expansion which artificially accounts for spatial diffusion. Remeshing
introduces a constraint between vortex core size σ and characteristic grid
size, which can be used to ensure particle overlapping. The frequency of

Figure 2.8: Remeshing applied to the neutral plane of a vortex ring. Left: Azimuthal
description, particle separation is seen to be inconsistent. Right: After remeshing
(M′

4 scheme) the vorticity distribution is seen to be conserved, however the particles
are now regularly distributed.

remeshing is user-defined and optimum specification depends on the flow
scenario and numerous spatial grid and time integration parameters. It is
furthermore not strictly necessary to remesh the entire particle set, but
rather to restrict remeshing to regions where e.g. increased particle stretch-
ing is seen. The remeshing procedure produces regularly spaced particles,
each with the characteristic volume Vchar of the grid. This shall be detailed
in Chapter 4.

Magnitude filtering Remeshing in general maps each particle onto nu-
merous surrounding particles (see Fig. 2.8). Without some form of filtering
process, one can imagine how the outer boundary of a domain continuously
expands with each remeshing procedure and the number of particles in a
simulation grows without bound. One practical way of overcoming this
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issue is to perform magnitude filtering, as described in Cocle et al. [28].
The particle set is first scanned such that the maximum vorticity ωmax is
found. Following this, the particle set is again scanned and all particles for
which ∥ω⃗∥ < κωmax are discarded. Very low vorticity particles contribute
negligibly to the surrounding flow field. A further method is to perform
spatial particle filtering. Here particle are removed in regions where the
flow is known to be restricted or where the relative energy of the particles
contribute negligibly to the global solution.

Vorticity field divergence correction The discretised treatment of the
flow field generally leads to a vorticity field which is not divergence-free. For
a particle set which is being time-integrated, the particle set after updating
should continue to satisfy the relation of Eq. (2.13). These effects amplify for
either long-time or under-resolved simulations. Numerous approaches have
been suggested to remedy this. Pedrizzetti [103] suggests using Eq. (2.13)
to apply a relaxation to the time integration of the particle set. A fur-
ther method suggested by Winckelmans & Leonard [23] reconstructs the
divergence-free field with an expression from Novikov [104] and then ex-
presses this as a linear system to be solved. These are both procedures
of complexity O(N2). A much more efficient method, formulated within
the framework of the Poisson solver, is to re-project the vorticity onto a
divergence-free basis [28, 105]:

ω⃗new = ω⃗old − ∇F , where: ∇2F = ∇ · ω⃗ . (2.25)

The divergence of the vorticity field is hence used to solve for the intermediate
variable F , which acts to decrease divergence of the vorticity field. The fast
Poisson solver can again be used, here with zero Dirichlet BC. This allows a
quick, non-diffusive correction to the vorticity field. This is applied at regular
time steps, again user-defined. The calculation overhead is insignificant as
only a single call to the fast Poisson solver is required.

Criteria of quality for a VP simulation Two criteria guarantee that
the field is adequately resolved temporally and spatially. The first parameter
is the mesh Reynolds number, which guarantees that the computational
grid is sufficiently fine to resolve viscous scales present in the flow:

Remesh = ωmaxH

ν
, (2.26)

where H is the characteristic grid size. For a well-resolved simulation
Remesh ≈ O(1). Furthermore, the effects due to diffusion must also be
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correctly captured by ensuring the diffusion time scales are correctly resolved:

D = ν∆t
H2 . (2.27)

For a well-resolved simulation D ≈ O(1). Combining these two one finds
that ωmax∆t ≈ O(1) should be satisfied. As described in Ploumhans [40]
this parameter essentially limits the relative rotation of the particles.

Turbulent shear stresses The effects of turbulence can be included with
the use of a large-eddy simulation (LES) approach. In the LES approach
the velocity field is decomposed using an appropriate convolution into a
filtered (or resolved) field and a residual (or sub-grid scale (SGS)) field [15].
The effect of the residual field is included in the momentum Eq. (2.4) in the
form of an additional shear stress term τt:

dω⃗

dt
= ∂ω⃗

∂t
+ (u⃗ · ∇)ω⃗ = (ω⃗ · ∇)u⃗+ ν∇2ω⃗ − ∇ · τt . (2.28)

Closure of the system is obtained by specifying τt with a model of the
SGS stress tensor. Care must be taken to ensure sufficient grid resolution
for the SGS modelling. A common measure for this is the Pope criterion:
M = kr/(K + kr) [106], where kr and K are the turbulent kinetic energies
of the residual and resolved motions, respectively. For a well-resolved LES
simulation generally M < 0.2 is suggested. Two SGS models have been
applied in the work here, substantially as described in Cocle et al. [28]. The
implementation of both methods is described in Chapter 4 and validation
has been carried out in Chapter 5. The two methods are briefly described
here:

HV Model: The first approach makes use of a hyper-viscosity operator
as described in Jeanmart et al. [30], written here in general form for an
order-n operator:

τt = −2C(−1)n∆2(n+1)⃦⃦Sij ⃦⃦∇2nSij , (2.29)

where ∆ is the length scale, here taken to be the grid size H and Sij is
the rate of strain tensor of the velocity field. This reduces to the classical
Smagorinsky eddy viscosity model [18] for the case n = 0. The use of
higher order derivatives extends the range of the inviscid inertial cascade by
pushing dissipation towards the smaller scales in the flow [107]. In the work
here the case n = 1 was applied, in which case application to the vorticity
field is expressed as:

∇ · τt = C

T0
(H2∇2)2ω⃗ , (2.30)
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where C is a Smagorinski constant and T0 a global time constant. This
approach carries with it a very low computational cost, however the necessary
specification of a global time constant makes the application less general.

RVM Model: The second approach makes use of a regularised variational
multiscale approach. Here the diffusion operates solely on the high-frequency
or small-scale vorticity field: ω⃗s, which is found by applying a spatial filter
to the velocity field n times to achieve an nth order filter as described in
Jeanmart et al. [30]:

τt = νsgs[∇ω⃗s + (∇ω⃗s)T ] where: νsgs = Cnr ∆2
√︂

2SijSij . (2.31)

The eddy viscosity νsgs is seen to take the form of the standard Smagorisnki
expression with Cr dependent upon filter order n, these are given in Cocle
[76]. Although more computationally demanding, this method does not
require global flow constants and is therewith more general.
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Chapter 3 Multilevel Integration

The main contribution of this work is the application of the multilevel
multi-integration cluster (MLMIC) scheme as described in van Garrel [108]
to the vortex particle method (VPM). When evaluated directly, a VPM
calculation with N particles has a computational complexity of the order
O(N2). This computational scaling is unrealistic for large N as calculations
are prohibitively slow. Application of the MLMIC method to spatially
integrate the particle set allows the complexity to be reduced to O(N),
massively increasing efficiency for large particle sets. The general problem
description and nomenclature shall first be described in Section 3.1 followed
by a description of the method of spatial discretisation in Section 3.2. The
underlying concepts and calculation steps of the MLMIC method are then
described in Section 3.3. The MLMIC method has been thoroughly validated
for the integration kernels of interest in this work by applying the method
to a representative geometry in Section 3.5.

For clarity some points of nomenclature shall be addressed here: A source
refers to an object which influences the surrounding flow field, this can be
either distributed continuously in space or specified discretely at points. A
probe refers to a discrete point where flow quantities are to be calculated.
For the VPM it is often necessary to evaluate the field quantities directly at
particle positions, in which case sources and probes coincide.

3.1 Description of the Problem

The spatial density of the source distribution is given by α(y⃗). In general
α can be scalar, vector or tensor. The influence of this source field on a
position x⃗ is given by convoluting over the entire source field with the kernel
K. The canonical problem is to find the total influence I due to the source
field at a point x⃗:

I(x⃗) =
∫︂

R
K(x⃗, y⃗)α(y⃗) dy⃗ . (3.1)

The source representation α can be continuous or discrete. In the case of
VPM, source positions y⃗p are discrete and each represent a discrete volume
dVp. This allows the above equation to be expressed as a discrete sum over
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source particle positions:

I(x⃗) =
∑︂
p∈R

K(x⃗, y⃗p)α(y⃗p) dVp . (3.2)

Evaluating the terms in this equation by making use of the convolution
kernels (App. F) shall hereafter be referred to as direct evaluation. This
is illustrated visually for a simple case in Fig. 3.1. For the analysis of a
particle set of size N , the particles themselves are probes, one hence has
to carry out the above evaluation for N probe positions. The summation
displays immediately how the problem scales as O(N2) as for each probe
evaluation I(x⃗i)|i=1:N , N calculations are required.

Direct evaluation Polynomial approximation

Source Probe Source node Receiver node
Anterpolation Interpolation

Figure 3.1: A demonstration of the underlying concept of the MLMIC method.
Left: Particle influence calculated directly. Right: Influence of source nodes on
receiver nodes is calculated.

3.2 Spatial Discretisation

The region R is uniformly discretised into non-overlapping regions Bi,
R = ∪Bi. These regions are cubic in form. This is not a requirement, but is
done rather for implementation purposes– see Chapter 4. These regions are
hereafter referred to as boxes. This allows expression of the above equation
as:

I(x) =
∑︂

Bi∈R
I(Bi) =

∑︂
Bi∈R

⎧⎨⎩∑︂
p∈Bi

K(x⃗, y⃗p)α(y⃗p) dVp

⎫⎬⎭ , (3.3)

where I(Bi) is the influence due to particles within box Bi. The influence is
therewith discretised to contributions from individual source boxes. The
spatial discretisation allows for a simplified coarsening of the domain by
using nested box regions. The smallest boxes have a characteristic side
length Hb and are hereafter referred to as base boxes and are denoted
with subscript 0: B0,i. These are geometrically contained within coarser
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boxes, denoted as Bl,i where l refers to the box level. This is illustrated for
three grid levels in Fig. 3.2. The representation with coarser box regions

y

x

Hb

B0 {4, 1}

B1 {2, 1}

B2 {1, 1}

∈

∈

Figure 3.2: The nested box geometry illustrated for a 2D case (quadrants). Here
each box B1 contains four boxes B0. In 3D (octants) each box B1 contains eight
boxes B0. Box Cartesian IDs are given in parenthesis (see Chapter 4).

allows the discretised integral above to be expressed in terms of coarser box
regions:

I(x⃗) =
∑︂
B0,i

I(B0,i) =
∑︂
B1,i

I(B1,i) = · · · =
∑︂
Bl,i

I(Bl,i) . (3.4)

This representation will be exploited frequently in the application of the
multilevel method.

3.3 Multilevel Multi-Integration Cluster

The MLMIC method reduces the complexity of the calculation of Eq. (3.2) by
spatially approximating the kernel influence K. This is carried out in such a
way that the order of approximation decreases with increasing distance from
the evaluation point by using geometric coarsening. As opposed to direct
evaluation, where the exact source and probe positions are used to calculate
the influence I(x⃗, y⃗p), in the MLMIC method the source distribution within
a box is mapped to source nodes at predefined positions within the box.
The influence on receiver nodes within the probe-containing box is then
calculated, these act as pseudo-probes. The influence is then interpolated
to the actual probe positions, this is illustrated in Fig. 3.1.
The method is applicable to d-dimensional space Rd, however in the work
here the method has been applied only to 2D (R2) and 3D (R3) problems.
For a full mathematical description the reader is referred to the comprehen-
sive description given in van Garrel [108]. The MLMIC method is composed
of three primary steps:
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1. Anterpolation: The source distribution is approximated at source
nodes with polynomial interpolation;

2. Interaction: Influence of source nodes on receiver nodes is calculated.
3. Interpolation: A polynomial approximation is used to interpolate

influence from receiver nodes to probes.

The general concept is visualised in Fig. 3.1. These three processes shall
be described in the following sections. For simple reference in that which
follows, the naming convention parent and child box will be taken to refer
to a box pair where the child box is within the parent box.

3.3.1 Anterpolation

Boxes containing sources are referred to as source boxes. Within each
source box the kernel function is approximated at a set of source nodes
within the box. The approximation and node position is specified by a
suitable polynomial, described in Section 3.3.3. This results in a mapping
matrix Imn which has dimension [nint, np], where nint is the number of
source nodes and np is the number of sources. The inverse process: mapping
to the source nodes is achieved by using the adjoint-interpolation (hence
anterpolation), which for real-valued sources is simply the transpose matrix
IT . In this sense, anterpolation can be considered to be the process by
which the spatial distribution of the sources is represented at the source
nodes of each box. The anterpolation process is illustrated graphically in
Fig. 3.3. This source description can take on arbitrary forms: scalar, vector
(used here) or tensor. The location of the sources nodes is a function of the
interpolation scheme applied and is described in Section 3.3.3.
The number of source nodes in each spatial dimension is defined by the order
P of the approximating polynomial function, so that the total number of
source nodes nint = P d. The greater P , the better the spatial approximation
of the kernel function. This will be demonstrated in Section 3.5. By making
use of the nested geometry approach, the source distribution can be spatially
coarsened by anterpolating to the parent box, as illustrated in Fig. 3.3.
This provides a method to approximate the source distribution at higher box
levels within Eq. (3.4). If the order P between parent and child is equivalent,
an advantage is gained in implementation as the anterpolation matrix IT

between between both levels is equivalent and hence need only be calculated
once. This naturally also incurs a penalty as the spatial approximation
becomes less accurate with higher levels. This is used in the work here,
however custom Pl at different grid levels can be applied if desired.
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Source Anterpolation Node Anterpolation

Source Source nodes B0 Source nodes B1

Figure 3.3: Anterpolation process. Particle source strength is mapped to source
nodes using anterpolation. The same process is carried out for higher box levels in
order to coarsen the spatial source representation. For illustration purposes here,
the order of anterpolation Pint = 2.

3.3.2 Interaction

With direct evaluation, interaction is calculated between sources and probes.
In the MLMIC method, however, interaction is calculated between source
nodes and receiver nodes. Much as with the source nodes, receiver nodes are
nodes within boxes containing probes, or receiver boxes. The advantage of
this approach is that it allows interaction templates to be identified, making
use of source-receiver box symmetries. This is illustrated in Fig. 3.4. The
width of this template is specified by the parameter NFint: the number of
surrounding source boxes (in each spatial direction) which contribute to the
desired receiver box. This region shall hereafter be referred to as the near
field of the receiver box. Everything outside of this is referred to as the
far field. For many kernels of interest (most importantly for the work here
the Biot-Savart kernel and the stream function kernels), this interaction
is easily expressed as a matrix multiplication. The anterpolated source
node strengths are simply multiplied by the interaction template to get the
corresponding influence at the desired receiver nodes. This simplifies the
influence I(Bi) to a matrix multiplication, this matrix is hereafter referred
to as an interaction template. The interaction template need only be
calculated once at the beginning of the simulation from the relative positions
between source and receiver nodes of the given template. This appears at
first to account only for the influence on a reciever box due to the near
field. The influence of the far field can however also be taken into account
by using the concept of nested interaction templates.
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Interaction Template NFint

Source nodes
Receiver nodes
Receiver box

Source box

Figure 3.4: Left: Box interaction template: The influence of source nodes on
receiver nodes is calculated, arrows indicate influence. Right: Demonstration of
repetition of the interaction template for a region containing multiple receiver
boxes.

Nested interaction templates The use of box regions Bi to enable a
nested geometrical description can be exploited to represent interactions at
different box levels. Comparing the near field template of a child box to the
near field template of a parent box in Fig. 3.5, one sees immediately that
the templates are geometrically equivalent, however scaled. Assuming an
equivalent Pl at every box level, it becomes clear that the relative positions
between source nodes and receiver nodes at higher levels are also simply
scaled. The interaction templates are therefore also geometrically scaled.

Note: The geometric scaling of the interaction template
cannot generally be assumed and this assumption will be inves-
tigated later for kernels of interest.

Influence is always calculated between sources and receivers nodes at the
same box level. This implies two important consequences:

1. The influence calculated within parent boxes must be interpolated to
children boxes, this shall be described in the following section.

2. The near-field influence of the child box must be somehow be excluded
from the interaction template, otherwise the influence will erroneously
be counted twice. This is achieved simply by ensuring that the
corresponding portions of the interaction template are nullified.

This principal is applied recursively to higher levels boxes (aka parents
of parents) until the entire source field contributes to the solution. This
demonstrates how higher level regions influence a receiver box in such a way
that increasing distance from the receiver box implies coarser approximation
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Base box B0,i

Box near field

Parent box B1,i

Parent near field

Figure 3.5: The interaction template for the base box (downward hatching) is
equivalent to that of the parent box (upward hatching), however with geometric
scaling. The influence of the near field of the parent can hence also be accounted
for with the given interaction template. This motivates anterpolation to parent
boxes. This concept is applied to calculate the source influence of progressively
larger surrounding regions.

of the source field. The interaction template itself does not need to be
modified in order to account for interaction at higher grid levels, all that is
necessary is that the anterpolated strengths be multiplied by an appropriate
scaling factor which represents the geometric scaling of the kernel. This
is usually simply a factor of 2−l. By correctly concatenating the source
node strength matrix to be multiplied with the interaction template, this
implies that the entire far field calculation carried out with the MLMIC
method of an interaction template is practically represented as a single
matrix multiplication.

3.3.3 Interpolation

In the interaction step the influence the surrounding source field was calcu-
lated at the receiver nodes of a given box and the receiver nodes of its parent
box (and so on for higher levels). The influence at the receiver nodes of a
given parent box can be interpolated to the receiver nodes of the child box
using the inverse process of parent anterpolation described in Section 3.3.1.
This procedure is carried out for every box level until the base box level is
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reached. Within the base boxes the interpolation matrix Imn interpolates
the influence at the probes from the receiver nodes. The calculated influence
at the base boxes is hence composed of the superposition of the interpolation
of the influences calculated at the base box level plus all higher levels and
therewith the entire source field. It follows logically from Section 3.3.1
that increasing P improves the spatial approximation of the influence and
therewith the accuracy of the MLMIC approximation. At the base box level,
the desired field quantities are then calculated at the probe positions and
stored for output.

Polynomial interpolation Interpolating polynomials and node positions
must be chosen to ensure that spurious boundary values which generally
occur during polynomial interpolation of a function on a closed domain are
avoided. Following van Garrel [108], barycentric Lagrangian interpolation
has been chosen due to its stability and ease of calculation [109]. This
makes use of the following formula for an interpolating polynomial p at the
position x between n+ 1 known values fj at positions xj :

p(x) =
n∑︂
j=0

wj
x− xj

fj

⎛⎝ n∑︂
j=0

wj
x− xj

⎞⎠−1

. (3.5)

The barycentric weights wj of the interpolation are defined by:

wj = 1∏︂
k ̸=j

(xj − xk)
. (3.6)

For certain choices of xj , there exist explicit formulas for the weights wj . The
choice of equidistant nodes leads to large oscillations in the interpolant at
the edge of the interpolation interval and should hence be avoided. For well-
behaved interpolation one can choose Chebyshev nodes, chosen by projecting
equally spaced points on the unit circle down to the unit interval [−1, 1].
Chebyshev points of the first kind and their corresponding barycentric
weights are given by:

xj = cos (2j + 1)π
2n+ 2 , j = 0, . . . , n −→ wj = (−1)j sin (2j + 1)π

2n+ 2 . (3.7)

In the work here these are applied for the Green’s method solver as the
distribution of the influence is interpolated throughout the volume of a
given receiver box– see Chapter 4. Chebyshev points of the second kind
and their corresponding barycentric weights are given by:

xj = cos jπ
n

, j = 0, . . . , n −→ wj =

⎧⎨⎩1/2(−1)j j = 0 or n
(−1)j otherwise

(3.8)
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In this case, interpolation nodes are also located on the boundary of a
given domain. This is beneficial for the Poisson method solver as the
distribution of the influence must be calculated on the boundary of the box
(for specification of the stream function BC). The interpolating polynomials
are illustrated in Fig. 3.6.

−1 −0.5 0 0.5 1−0.5

0

0.5

1

1.5

x

Li(x)

L1 (1)
L2 (1)
L3 (1)
L1 (2)
L2 (2)
L3 (2)

Figure 3.6: Basis polynomials for Lagrangian interpolation through Chebyshev
nodes for interpolation order P = 3. The Chebyshev node type is in parenthesis
in the legend. The intercepts of the polynomial are shown with circular (type 1)
and square (type 2) nodes. It can be seen that type 2 interpolation extends to the
boundary edges.

The choice of the P hence has a twofold effect on the accuracy solution by
specifying:

1. The order of the spatial anterpolation of the source distribution (source
boxes); and

2. The order of the spatial interpolation of the influence (receiver boxes)

It is shown in van Garrel [108] that the maximum error of this interpolation
for smooth kernels is given by |ϵmax| = O(HP ). It furthermore directly
influences the computational expense of the far field integration, as the
number of source/receiver nodes per box scales as P 3. The influence this
has on the computational expense will be investigated in Chapter 5. The
interpolation functions above are stated for a single dimension. For two
or three dimensional interpolations, the tensor product is simply used:
p(x, y, z) = p(x) p(y) p(z).
The choice of barycentric Lagrangian interpolation has the advantage that
the gradient of the interpolating function can also be pre-calculated based
on the gradients of the interpolating polynomials. This procedure carries
minimimal overhead and is carried out in the pre-processing step. In this
case the maximum error is given by |ϵmax| = O(HP−1). This is extensively
described in Appendix F of van Garrel [108] and in Berrut & Trefethen
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[109]. This has been used to calculate ∇u⃗ in the Green’s method solver
described in Chapter 4.

Separation of near field and far field influence A distinction must
be made at this stage for the behaviour of the kernel K. In the case that the
kernel does not become singular and has bounded higher-order derivatives,
the approach described above is sufficient to calculate the interaction at
every box level [108]. This however is often not the case. For the cases
of interest here for example, the Biot-Savart and stream function kernels
both behave singularly as the evaluation distance ∥x⃗− y⃗∥ approaches zero,
similarly to the velocity field induced by a potential flow vortex [1]. This
implies that the maximum error of the multilevel approximation, given
by O(KP HP

b ) [108], scales unfavorably. Below a certain cutoff distance,
the approximation carried out in the MLMIC method is unsuitable and
the influence should be calculated with direct evaluation. This region is
controlled by specifying the size of Hb and the parameter NFint to ensure
that any source elements outside of this region are automatically captured
by the multilevel scheme.

3.3.4 Summary of the MLMIC Procedure

Within the MLMIC routine the spatial integration of Eq. (3.2) is broken
into two calculations steps. The entire particle set (containing sources and
probes) is discretised into base boxes Bi. At the beginning of the simulation,
a template for the source and receiver node distributions is calculated, with
the appropriate barycentric lagrangian positions and weights for the far field
calculation. An interaction template is calculated based upon the kernel
being investigated. The specific kernels applied here will be described in
more detail in Chapter 4.

Far field influence The far field calculation is composed of three indi-
vidual steps which must be chronologically executed:

1. Anterpolation A polynomial approximation of the source distribu-
tion at the base box level is carried out for all boxes containing source
nodes. This source distribution is mapped to parent boxes. This
mapping is repeated for higher levels until the maximum box level is
reached (this is a modelling parameter and will be described in more
detail in Chapter 4.

2. Interaction The interaction template is used to calculate the influence
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at receiver nodes due to the anterpolated source strengths carried out
in the previous step. Using appropriate scaling of the source strengths,
this procedure can be reduced for each interaction template to a single,
albeit large, matrix multiplication.

3. Interpolation The influence at parents box receiver nodes is inter-
polated to children boxes. This interpolation is repeated for lower
levels until the base box level is reached. For all boxes containing
probe nodes, an interpolation maps the far field influence to the probe
positions.

Two modelling parameters influence the accuracy and computational com-
plexity of the MLMIC routine: i) the order of the polynomial approximation
P and ii) the near field parameter NFint, which influences the size of the
interaction template.

Near field influence Within an isolated region surrounding each base
box, termed the near field, the polynomial approximation carried out in
the far field step leads to unfavorable integration errors. This is avoided by
directly evaluating the influence of sources within this region with the direct
expressions, given in Appendix F. The size of the near field is specified by
two modelling parameters: i) the base box side length Hb and ii) the near
field parameter NFint.

3.4 Application to the Vortex Particle Method

The VPM is an ideal application case of the MLMIC method, as both
sources and probes both are treated as discrete points and the far field
behaviour of the kernels can be well predicted. In the following sections
the fundamentals for applying the MLMIC to the VPM will be described.
A full description of the implementation of the MLMIC method and the
VPM is given in Chapter 4. The interpolation quantities will be described
initially, before the inspection of the two kernels of interest in this work are
investigated. The first is the Biot-Savart (BS) kernel, which shall be resolved
when using a Green’s type solution method to determine the velocity field
around a probe point. The second is the stream function (SF) kernel, this
shall be used to calculate the value of the stream function on the boundary
of a regular grid.

Source treatment The anterpolation as described requires a source
strength to be mapped to the source nodes. As described in Section 3.3.1,
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this can take arbitrary forms. For the treatment of a potential source for
example, this is represented simply as a scalar- the source strength. A
quadrupole for application to e.g. aeroacoustic problems [110] would require
a tensor description. It is seen in the expressions for the velocity or stream
function that the source distribution is represented by the circulation vector
of each particle α⃗p = ω⃗p dVp. This term is hence calculated for each source
particle and this is mapped to the source nodes. This implies that particles
volumes do not need not be equivalent, and it is not a requirement that
the particle are regularly distributed in space, this can be advantageous for
certain geometries [23]. The source vector is described as follows for 2D and
3D problems, respectively:

α⃗ =

⎧⎨⎩
[︂
0 0 ωz

]︂
· dVp if 2D[︂

ωx ωy ωz
]︂

· dVp if 3D
. (3.9)

Probe treatment In the case that the problem is 2D, the outputs of the
MLMIC integration are given by:

I2D =

⎧⎨⎩
[︂
ux uy 0

]︂
Biot-Savart kernel[︂

0 0 ψz
]︂

Stream function kernel
(3.10)

In the case that the problem is 3D, the outputs of the MLMIC integration
are given by:

I3D =

⎧⎨⎩
[︂
ux uy uz

]︂
Biot-Savart kernel[︂

ψx ψy ψz
]︂

Stream function kernel
(3.11)

Regardless of the problem type or solution method, the application here
has been formulated such that the influences calculated are of matrix data
type for generality.

3.4.1 Behaviour of the Biot-Savart Kernel

For the application of the Green’s method of solution the BS kernel is
calculated with interaction templates as described earlier. This requires
an analysis of the behaviour in the near and far field to ensure geometric
scaling of the kernel. Inspecting Eq. (2.16), the velocity induced by a vortex
particle can be expressed as:

u⃗σ,p = Kσ(r⃗) × α⃗p = − 1
4πr3 q(ρ)(r⃗ × α⃗p) , (3.12)
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where r⃗ = y⃗ − x⃗p is the distance between source point x⃗p and evaluation
(probe) point y⃗ and r is the norm of this distance. The function q(ρ) is
derived from the chosen regularisation ζ(ρ). The behaviour of this function
for a range of common smoothing functions is shown in Fig. 3.7. It is seen

0 1 2 3 4 5 60

0.5

1

ρ

q(ρ) Low-order algebraic
High-order algebraic
Gaussian
Super Gaussian

Figure 3.7: Biot-Savart smoothing for a range of common smoothing types.

that the smoothing factor q(ρ) tends to unity for large ρ. This implies that
for large ρ the influence behaves as the singular BS kernel:

lim
ρ→∞

u⃗σ,p = − 1
4πr3 (r⃗ × α⃗p) . (3.13)

This is advantageous as the interaction r⃗/r3 is easily implemented as an in-
teraction template within the MLMIC method. This furthermore motivates
specifying the minimum box size Hb as a multiple of the characteristic core
size σ of the problem being investigated. This will be investigated further
in the following section. It shall be demonstrated in Chapter 4 that this
requires the calculation of three interaction templates, corresponding to
[rx, ry, rz] r−3.

3.4.2 Behaviour of the Stream Function Kernel

An analogous inspection is carried out for the SF kernel. In this case the
discrete contribution to the stream function due to a source particle is given
by inspecting Eq. (2.15):

Ψ⃗σ,p = Gσ(x⃗− x⃗p) α⃗p = 1
4πrg(ρ) . (3.14)

As with for the BS kernel, the function g(ρ) is derived from the chosen
smoothing function ζ(ρ). The behaviour of g for a range of common
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Figure 3.8: Stream function smoothing for a range of common smoothing types.

smoothing functions is shown in Fig. 3.8. Analogous behaviour to the BS
kernels is seen. For large arguments the g function tends to unity:

lim
ρ→∞

ψ⃗σ,p = 1
4πr α⃗p . (3.15)

This again is simple to express as an interaction template, however here
only a single interaction is necessary: r−1.

3.5 MLMIC Verification

The existence of explicit expressions for induced velocity, stretching and
stream function of a source particle allow investigation into the performance
of the MLMIC method. This is achieved by calculating the influence of
a particle set with direct evaluation and comparing this to the result of
integration with the MLMIC method. The two far field quantities which
are resolved by the MLMIC method are the velocity u⃗ and the stream
function ψ⃗. In addition, if using Green’s method the calculation of the
vorticity stretching terms (ω⃗· ∇)u⃗ are required for the accurate prediction
of vorticity evolution. This however is a secondary output of the MLMIC
method and is hence handled subsequently to the verification of the velocity
field. The ability of the MLMIC method to predict the near field influence
is unnecessary, as these are directly evaluated within the solvers using the
explicit expressions described in Chapter 2 and Appendix F.
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3.5.1 Test Vorticity Distribution

A suitable flow field must be chosen to test the MLMIC method on. Cases
of dense and more complicated vorticity distributions shall be handled in
the solver validation presented in Chapter 5. Focus is made on a simple flow
field demonstrating features representative of wake flows. A suitable flow
field here is a helical vortex. The helical vortex filament has the following
spatial parametrisation:

R cos(2π t) e⃗y +R sin(2π t) e⃗z + k t e⃗x +R for: t ∈ [0, 1] , (3.16)

where R and k are the radius and length of the helix respectively. This
describes a helix of pitch 2π k. This is shown for a triple root-tip vortex
filament set in Figure 3.9. For the triple-helix cases visualised here and
investigated in the proceeding cases, k = 4 and R = 1. The vorticity field
around the filament is described with a Gaussian distribution given by:

ω⃗(r) = Γ
2πa2 exp

{︄
− r2

2a2

}︄
e⃗t , (3.17)

where r is the radial distance to the vortex filament, a is the vortex core
size and Γ is taken as unity. The unit vector e⃗t is tangent to the vortex
filament. In the proceeding cases a = 0.05 m was chosen to represent a
thick vortex core. This choice geometry includes a number of important
features which are inherent to the vorticity distribution in the wake of a
wind turbine. These include:

• Geometry ratios For this field the global characteristic length pa-
rameters (length-radius-core) mimic those of a realistic application;

• Small scale interactions The vortex core roughly mimics that of
an actual tip vortex shed from a sharp-edged blade. Accuracy of the
predictions must therefore also be modelled for local interactions at
the scale of a;

• Large scale interactions The actions at larger separation distances
r > 5a must also be captured to ensure accurate global behaviour.

Generation of particle grid The vorticity distribution was generated
on a regular grid with spacing H. The strength of the vortex particle was
specified by initially generating a single vortex filament along the curve
given by Eq. (3.16). It is observed in Fig. 3.10 that for r > 5a the vorticity
practically vanishes, so coordinates which satisfy this equality are essentially
ignored and no vortex particles are generated. For a cubic region with
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Figure 3.9: The helical vortex arrangement for a 3-bladed helical wake. This
represents approximately the tip and root vortex of a wind turbine or propellor.

dimension [5a, 5a, 5a] around each filament point, the convolution of the
filament strength is carried out with Eq. (3.17). For overlapping convolution
regions and multiple helices, the vortex strengths are simply superimposed.
The field visualised in Fig. 3.9 was generated by creating this field and then
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a = 1.0
a = 1.25

Figure 3.10: The decay of the Gaussian distribution given by Eq. (3.17) for a range
of core sizes a.

extracting vorticity contour plots from the volume vorticity distribution.

3.5.2 Error Metric

The influence of the far field using direct evaluation with the explicit particle
expressions shall be referred to as I⃗dir. This allows the error of the predicted
field with the MLMIC method I⃗ml to be quantified. The errors in these
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tests are based on the continuous Lm-norm of a variable x over a region R
which is defined as:

Lm(x) =
(︃ 1
V

∫︂
R

|x|m dV
)︃ 1

m disc.=

⎛⎝ 1
n

∑︂
n∈R

|x|m dvn

⎞⎠ 1
m

, (3.18)

where | · | represents the absolute value for scalar functions and norm in the
case of vectors. A normalized error metric is achieved by dividing the error
term with L2(I⃗dir), resulting in the relative L2-norm error ϵ:

ϵ(x) = L2(I⃗ml(x) − I⃗dir(x))
L2(I⃗dir(x))

. (3.19)

The MLMIC solver has been configured in such a way that the near and far
field influences– Inf and Iff , respectively– are stored separately for testing
purposes. This is necessary here as Inf generally dominates the global
influence at a position in space. Including Inf in the calculation would
hence bias the results in a positive sense, as the relative error would appear
smaller.

3.5.3 Biot-Savart Kernel

The convolution with this kernel is being calculated by the MLMIC method
when using Green’s method in order to calculate the velocity field u⃗. It
should be noted that a far field influence term is also calculated for the
stretching term dω⃗/dt. This however is derived from the velocity field and
is therewith a secondary output. This shall be described in the following
sections.

Specification of minimum box size Hb The choice of minimum box
size Hb must ensure that the far field influence is sufficiently approximated
by the singular particle approximation. The distance at which this approxi-
mation is valid shall be hereafter referred to as the cut-off distance rc, and
is normalized with the core size σ of the source particle to give ρc = rc/σ as
described previously. It is instructive to inspect the behaviour of the kernels
of interest for different regularisations to provide a metric for a suitable
cutoff distance. The higher the order of the regularisation function, the
lower the error of the particle treatment. This naturally motivates the use
of the highest-possible order regularisation. These however incur additional
calculation expense and make expression of the stretching functions more
complicated and error-prone. For this reason, three regularisations were
investigated here. These are shown in Figure 3.7 for the BS kernel q(ρ).
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As can be seen the choice of regularisation function influences the cut-off dis-
tance. In order to quantify the error incurred by making this approximation
for a given choice of rc, a range of relative accuracies of the approximation:
ϵρ = 1 − gρ/gsing is given in Table 3.1. It can be seen that the Gaussian

Table 3.1: Cut-off distance for a range of desired accuracies ϵρ.

ρc - Biot Savart ρc - Stream function
ϵρ LOA HOA Gaussian LOA HOA Gaussian

10−1 2.07 1.07 1.65 3.71 1.77 2.50
10−2 7.02 2.30 2.58 12.20 3.54 3.37
10−3 22.24 4.30 3.29 38.71 6.49 4.03
10−4 70.71 7.77 3.89 122.47 11.65 4.59
10−5 223.61 13.86 4.42 387.30 20.78 5.09
10−6 707.11 24.73 4.89 1224.7 36.99 5.54

kernel requires the smallest cut-off distance. For this reason the Gaussian
regularisation has been used in the following work, as this allows the near
field region to be chosen smaller, therewith reducing the expense of the near
field calculation. Furthermore, in the expansive literature on the VPM, the
Gaussian kernel appears to be the most common form of smoothing and has
an intuitive connection to realistic flow in that the vorticity distribution is
that of a Lamb-Oseen vortex at a given time value [1]. The LOA and HOA
regularisations are practical for reduction of computational overhead and
for comparison with analytical results [22]. This is however irrelevant here
as the choice of regularisation only affects the near field, in the far field all
interactions are treated with the singular particle approximation, any results
shown here are hence also valid for the LOA and HOA regularisations.

Relative contribution of far field influence In order to quantify from
I the relative proportions of near field influence Inf and far field influence
Iff , these quantities have been inspected here. The portion χff = Iff/I is
shown in Fig. 3.11 for the velocity and stretching fields, respectively. The
results are shown for a range of particle spacing H and base box sizes Hb,
normalized with respect to the characteristic core size σ. This was chosen
so as to ensure particle overlap σchar = 1.1H.
The first point to be observed is that, as expected, the contribution of
the far-field decreases as Hb increases. This is because the portion of the
total source field which is in the geometric far field (dictated by Hb) is
decreased. The second noteworthy point is that in general the stretching
term is dominated by the near field interaction. This is well explained with
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Figure 3.11: Far field contribution to velocity (left) and stretching term (right) for
a range of grid parameters.

inspection of the BS kernel, which scales in the far field as r−3, as opposed
to the stretching kernel, which scales as r−5– see Section 2.3.1. The far field
contribution to the velocity field for the case H = 0.2 is seen to rapidly
decrease for larger box sizes, this is because the far field is in this case
geometrically smaller than the near field.

Accuracy of far field velocity influence In order to assess the accuracy
of the MLMIC method in the calculation of the induced velocity from
regularized vortex particles, the geometry described above has been used
with the grid sizes H = 0.2, 0.1, 0.05 and 0.025 m, these have particle counts
N between approximately 103 (0.2 m) and 106 particles (0.025 m). Three
choices of minimum box size Hb have been inspected. The minimum box size
ensures the minimum distance where the singular particle approximation is
employed by the MLMIC solver, and hence it is expected that the accuracy
decreases as this is reduced. For the coarsest case (H = 0.2 m, Hb = 9σ)
the particle distribution is sufficiently dense that the MLMIC routine only
extends up to grid level l = 1. In comparison to this, for the finest case
(H = 0.025 m, Hb = 3σ) the MLMIC routine must extend up to box level
l = 5 in order to capture the entire source field. The results are shown in
Fig. 3.12. For the simulations carried out here a Gaussian regularisation
has been used with a characteristic particle core size which ensures particle
overlap σchar = 1.1H.
It is observed in Fig. 3.7 and Table 3.1 that, in general, for ρ < 5 the particle
influence is not well predicted by the singular particle approximation, this
is observed in Fig. 3.12 as for all cases where Hb = 3, the error asymptotes
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Figure 3.12: L2-norm error induced by using the multilevel approximation of the
velocity field compared to direct evaluation. From top to bottom the grid sizes are
H = 0.2, 0.1, 0.05 and 0.025 m.

beyond a certain polynomial approximation P . Van Garrel describes in
[108] that the maximum error ϵmax for interpolation of kernels with bounded
higher order derivatives is proportional to O(HP

b ). This implies that for
a fixed box size, it is expected that log(ϵmax) ∝ P . This behaviour is
marked with a dashed line in the plots shown in Fig. 3.12 for reference
and it can be seen that this indeed is seen to be the case. The results for
all grid sizes demonstrate that, provided the minimum box size is chosen
adequately, the scaling of the error can be well controlled by specifying P
as desired. Furthermore it can be seen that provided Hb ≥ 6σ, the error
can be reduced to an arbitrarily low value by specifying higher values of P .
Similar results are observed for other regularisation functions such as LOA
or HOA, however the minimum box size Hb must then be adapted as per
Table 3.1.
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Figure 3.13: L2-norm error induced by using the multilevel approximation of the
stretching field compared to direct evaluation. From top to bottom the grid sizes
are H = 0.2, 0.1, 0.05 and 0.025 m. The error for the case of no regularisation
(singular particles) are also shown, and are seen to be practically equivalent to
regularised particles.

Accuracy of far field vortex stretching An equivalent calculation is
carried out to determine the error incurred in the stretching term when
using the Green’s method solver. A full description of the implementation
is given in Chapter 4, a brief description is nonetheless given here in order
to facilitate analysis. Although it is possible to formulate the far field
stretching term as an interaction template, this greatly increases the number
of templates required and the computational complexity increases becomes
impractical. It is seen in Fig. 3.11 that the far field contribution to the
stretching term is in general not dominant and hence a further approximation
may be suitable. The stretching term requires the calculation of the velocity
gradient tensor ∇u⃗, calculated here using the polynomial approximation
inherent to barycentric Lagrangian interpolation as described in Section
3.3.3. The relative L2-norm error ϵ(dω⃗/dt) for a range of grid sizes H

54



Chapter 3. Multilevel Integration

and base box sizes Hb is given in Fig. 3.13. For these tests the transpose
stretching scheme has been used.
Similar results are observed as with the BS kernel. The errors incurred by
choosing an insufficient minimum box size Hb are however more marked.
This is to be expected as the near field contribution dominates. As described
previously, an additional error is incurred due to the polynomial interpolation
of the gradient of the velocity field. The maximum error should here scale
as log(ϵmax) ∝ (P − 1) ∝ P , this has been shown as a dashed line in
Fig. 3.13 and appears to approximately describe the accuracy. These results
demonstrate again that, provided a suitable choice of Hb is made, the error
can be arbitrarily specified with P . Equivalent behaviour was been observed
for both classic and mixed stretching schemes. Similar behaviour was also
observed for other regularisation schemes.

3 6 9
10−16

10−9

10−2

Hb
σ

χFF (dω⃗dt )

H = 0.2 m, Gaussian
H = 0.1 m, Gaussian
H = 0.05 m, Gaussian
H = 0.1 m, LOA
H = 0.1 m, HOA

Figure 3.14: The relative contribution due to the far field influence on the viscous
diffusion term for a range of regularisations and grid sizes. The results demonstrate
that for large Hb, the far field contributes negligibly. The error for the case of no
regularisation (singular particles) are also shown, and are seen to be practically
equivalent to regularised particles.

Near field viscous diffusion When solving with Green’s method, viscous
diffusion is treated with the PSE scheme as described in Chapter 2. This
makes use of a diffusion function ησ which decays rapidly with ρ. For e.g.
the Gaussian regularisation the function decays as exp{−ρ2}. This implies
that, the contribution of the far field (under the assumption of a somewhat
uniform source distribution) is negligible. This has been investigated by
evaluating the far field contribution of the viscous diffusion term, this is
defined analogously to χff above. The results are displayed in Fig. 3.14 for
a range of grid resolutions and regularisation types.
It can be seen how the influence greatly decreases with increasing Hb due to
the behaviour of the PSE kernel. This implies that, provided Hb is chosen
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large enough, the far field contribution of the viscous diffusion can effectively
be neglected with negligible consequences to the accuracy of the solution.
In parallel with the results shown above, it is again clear that the error of
ignoring the far field contribution to diffusion can be reduced arbitrarily
with the parameter Hb.

3.5.4 Stream Function Kernel

When using the Poisson method solver it is necessary to resolve the stream
function of a particle set in order to specify boundary conditions on the
Eulerian grid. This calculation proceeds exactly as with the BS kernel,
however the SF kernel is somewhat simpler.

Specification of minimum box size Hb Analog to the procedure car-
ried out for the BS kernel, the box size must be specified such that any
particles in the far field are well approximated by the singular particle rep-
resentation. This is dictated by the g(ρ) function as illustrated in Fig. 3.8.
The accuracy of the approximation is summarised in Table 3.1. Here the
behaviour can be seen to be seen to be quite comparable to the BS kernel,
however in general a slightly larger cutoff distance is required for a given
accuracy when approximating with the singular kernel. In practice the
core size is not chosen by this constraint, but rather by specifying that the
calculated stream function from the particle representation agrees with that
predicted by the fast Poisson (FP) solver. This is done by comparing the
stream function for a unit strength particle between the two approaches, and
specifying the core size σ such that they coincide. This allows specification
of the characteristic coresize σchar as a function of grid resolution H and is
detailed further in Chapter 4.

Relative error limits The relative contribution due to the far field of the
stream function is again inspected here and summarized with the parameter
χff , defined as above. The results for a range of grid sizes H and base box
sizes Hb are shown in Fig. 3.15. As opposed to the case of the BS kernel,
for the Poisson solver generally it is desired to increase the FP domain size
(base box size Hb– see Chapter 4) in order to improve efficiency. For this
reason, values of Hb up to 40σ have been investigated here. For the BS
kernel this would be unnecessarily large and greatly reduce performance.
It is seen also here that increasing Hb in general decreases the contribution
to the far field, again completely explained in terms of the geometric size of
the near field. The relationship is seen to be well approximated as a linear
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Figure 3.15: Far field contribution to the stream function. The error for the case of
no regularisation (singular particles) are also shown, and are seen to be practically
equivalent to regularised particles.

function of Hb. In comparison to Fig. 3.11, it can generally be observed
that the far field contributes slightly more to the SF kernel than to the BS
kernel. This is an intuitive result as the BS kernel scales as r−3 whereas the
SF kernel scales as r−1, implying that for a continuous source distribution
the far field contribution dominates.

Far field stream function An equivalent procedure was used to verify
the far field influence of the SF kernel as carried out above for the BS kernel.
The relative error of using the MLMIC method to calculate the SF kernel
for grid sizes H = 0.2, 0.1, 0.05 and 0.025 m and three base box sizes Hb

are given in Fig. 3.16.
Essentially equivalent behaviour is seen here as with the BS kernel, however
the results appear to be less sensitive to the choice of Hb. In fact, for
the highly resolved case H = 0.025 m, it appears that the error can be
completely controlled by P . Again, the error can be controlled for a given
box size Hb by specifying the polynomial order P . A choice of Hb ≥ 6σ
appears to produce perfectly satisfactory results.

3.5.5 Summary

It has been shown that if applying the MLMIC method, the integration
error for both kernels of interest in this work:

1. The BS kernel for application with the Green’s method solver, and;
2. The SF kernel for the Poisson method solver,

can be reduced to an arbitrarily small value by appropriately specifying the
polynomial order of interpolation P . Provided the minimum box size Hb
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Figure 3.16: L2-norm error induced by using the multilevel approximation of the
stream function field compared to direct evaluation. From top to bottom the grid
sizes are H = 0.2, 0.1, 0.05 and 0.025 m.

is specified to be large enough that the singular particle representation of
the far field is satisfied (see Table 3.1), the maximum relative error ϵmax
scales as log(ϵmax) ∝ P . Higher values of P lead to higher computational
complexity of the MLMIC method due to:

1. Increased order of the polynomial approximation of the source distri-
bution within source boxes,

2. Increased order of the polynomial approximation of the influence
within receiver boxes, and

3. Increased size of the interaction templates,

it will however be shown in Chapter 5 that this expense is warranted, as
the computational complexity is indeed reduced from O(N2) to O(N).
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Chapter 4 Flow Solver Implementation

Chapters 2 and 3 described the underlying theories of the VPM the MLMIC
methods. This chapter presents the implementation of these concepts in the
solver developed in this work. The software shall hereafter be referred to as
the vortex particle multilevel library or VPML. Within the VPML library two
solvers have been implemented:

• GML Solver A particle-particle solver making use of Green’s functions
to resolve the field quantities.

• PML Solver A particle-mesh solver making use of the FP solver and
FD to resolve field quantities.

Although the two approaches to solving the field equations are concep-
tually quite different, the implementation has been carried out such that
both solvers make use of common data types and have a common library
architecture. The library is written in the object-oriented language C++
and makes extensive use of the concepts of polymorphism and inheritance,
as shall be later described. The solver makes frequent use of matrix and
vector operations, for this the linear algebra library Eigen [111] has been
extensively employed. All visualisations have been provided for 2D systems
for clear representation of the concepts, however in practice the application
has been predominantly applied to 3D problems.

Optimisations For cases where large matrix multiplications are necessary
such as template interactions (Section 3.3.2) or for the James-Lackner
algorithm (Section 4.4), the procedure has been carried out on the graphical
processing unit (GPU). This task is much more amenable to GPU calculation
and furthermore there already exists optimized linear algebra libraries. This
has been accomplished with both the open-source library OpenCLBlast [112]
and the proprietary library cuBLAS from NVIDIA [113]. Another process
which can be highly parallelised are near field calculations for the Greens
solver, in this case the OpenCL framework [114] has been used for preparing
kernels for parallelised execution on the GPU. Finally the shared-memory
multi-processing platform OpenMP [115] has been employed to carry out
parallel processing operations on the CPU, such a discrete box operations
(see Section 4.1.2).
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Visualisations Within the simple user-interface of VPML for purposes of
code checking a simple particle-grid visualisation has been prepared with
the OpenGL library. For detailed visualisations presented in this thesis an
export functionality was prepared which generates a node-cell representation
with cell connectivity in.vtk file format for use in the visualisation tool
ParaView [116].

Particle Treatment The field at any time step is described entirely in
terms of a set of discrete vortex particles. These are represented most
conveniently as an Eigen vector type, P⃗ :

P⃗ =
[︂
x y z⏞ ⏟⏟ ⏞
Position

ωx ωy ωz⏞ ⏟⏟ ⏞
V orticity

σ⏞⏟⏟⏞
Core size

dV⏞⏟⏟⏞
V olume

]︂
. (4.1)

Particles are stored in a dynamic array which is updated (modified, appended
to or truncated) during a simulation. This representation has numerous
benefits. Export of a particle set is achieved simply by storing the data in
row-format in a standard .dat file. For cases where matrix operations are
to be performed from the particle data, the necessary elements can easily
be extracted from the vector, or for multiple particles concatenated to a
matrix object.

4.1 Grid Definition

For both solvers, an underlying grid is required for both remeshing and
divergence filtering of the particle set. This grid makes use of a nested
volume (box B) description to account for particle- and probe-containing
regions.
Three grid parameters are introduced here:

• Characteristic Grid Size H The spatial resolution which dictates
characteristic particle spacing.

• Base box sidelength Hb The flow domain is discretised into boxes
Bi with side length specified as a multiple of H: Hb = nH.

• Cartesian ID CID Specifies the grid index locations with bracket
notation

{︁
ix, iy, iz

}︁
. This is used to describe both box and cell posi-

tions.

These parameters are visualised in Fig. 4.1. The hierarchical description
of the volume implies that larger boxes contain smaller boxes, this allows

60



Chapter 4. Flow Solver Implementation

H
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x

y

Cell {11, 6}

Box B {4, 3}0

Box B {1, 1}1

Source particle

Probe point

Figure 4.1: Characteristic objects and indices used to describe the grid in the VPML
library. The volumes are described in a hierarchical sense: Cell {11, 6} ∈ Box
B {3, 1}0 ∈ Box B {2, 1}1 etc. For the case here, Hb = 4H, so that each box is
discretised into four cells in each spatial direction.

simple application of the MLMIC concept described in Chapter 3. For box
descriptions the box level is denoted with the subscript l. Boxes at level
0 are denoted as base boxes B { · , · , · }0. These grid definitions allow the
specification of two further grid-dependent parameters.

• Characteristic Volume dV Specifies the volume occupied by the
particle within the mesh and is equivalent to the characteristic cell
volume dV2d = H2, dV3d = H3.

• Characteristic Core Size σ Specifies the core size parameter for
particle regularisation: Eq. (2.14). The specification of this parameter
depends on the solver type and is described later.

4.1.1 Box Octtree Data Structure

Particle storage and data access with box objects implies the necessity
of a framework to create, access and edit the box objects. There exists
numerous methodologies which could be employed to this end. One option
is to generate a rectangular box region to describe the entire domain. This is
the most straightforward approach in terms of creation and access, however
it generally leads to creation of boxes which for the duration of a simulation
remain unused, hence consuming unnecessary runtime memory. Furthermore,
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as resolution increases, this method of storage leads to a larger memory
overhead due to the scaling (cubic in 3D or quadratic in 2D) of the domain
volume. This option is activated within the solver with the BLOCK grid
option.
A second approach has been taken here which generates only boxes which
are required, and which allows optimised access and generation speed. This
has been accomplished with an octtree data structure [117] and is activated
with the TREE grid option. Within the octtree data structure space is divided
into octants, and the octant index refers to a given region in space. Any
volume region is then conveniently described simply with a list of octant
IDs (Ol), called a tree id: TID = {Ol1, Ol2...}. This is illustrated for the 2D
analog (quadtree) in Fig. 4.2.

111
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33333
444444444444444444
1

2424
3333

4

3333333333333333333333

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Tree Node

TID = {4, 3}

TID = {3, 2, 3, 2}
Figure 4.2: Left: A visualisation of spatial discretisation with a quadtree. Right:
The heirarchical data structure along with the tree IDs for the two boxes of interest.

Analog to the grid box hierarchy described previously (Fig. 4.1), the vol-
ume regions are nested within this data structure and access to the next
higher/lower grid object is achieved by a simple translation of the tree id.
The functionality of the tree index is encapsulated within the Leaf_Node
class, a template class which accepts any object for storage in a given leaf
position. The relative position and indexing of the objects is inherently
guaranteed by the leaf-tree storage structure, illustrated in Fig. 4.2. If a box
contains smaller box octants, it is referred to as a parent box. Equivalently,
boxes stored within a parent box are naturally referred to as children boxes.
The leaf objects of the tree themselves consume minimal memory overhead,
and ensure that access to the objects is easily achieved through the tree
node (see Fig. 4.2) and the desired tree ID. The octtree is not thread-safe,
implying parallel access is not possible without risking a data race, where
multiple processors attempt to access the same data object concurrently.
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The overheads of tree access are however negligible in comparison to other
calculation steps, this is further detailed in Chapter 5.

4.1.2 Grid Activity & Proactivity

A distinction is made here between vortex particles which have a nonzero
vorticity and therewith have an influence on the flow field (source points),
and points at which the field quantitities are desired (probe points). For
the majority of cases investigated in the work here, the field quantities are
desired directly at the source particle positions, in this case source points
and probe points coincide. This however is not the most general case, and
for generality it is much more desirable to differentiate the two. This also
has important consequences for the application and efficiency of the MLMIC
method. The following box descriptors are defined:

Active boxes Boxes which contain source points are flagged as being
active. The source density is anterpolated onto the source nodes and the
boxes actively contribute to the multilevel expansion. For example, in
Fig. 4.1 base boxes B {4, 1}0 and B {2, 3}0 are active. Corresponding to
Fig. 4.2 these boxes have TID {3, 3} and {2, 3}, respectively.

Proactive boxes Boxes which contain probe points are flagged as being
proactive (probe-active). The field quantities are calculated only within
proactive boxes. For example, in Fig. 4.1 only base box B {2, 4}0 is proactive.
Corresponding to Fig. 4.2 this box has TID {2, 4}.

4.1.3 Binning

At the beginning of the calculation for a particle set, the source points
are binned into their respective base boxes, which are marked as active.
The active base boxes are then stored in a temporary array. An equivalent
procedure is carried out for the probe nodes with proactive boxes. By
doing this, the entire particle interaction problem is transformed from a
particle-particle interaction problem to a box-box interaction problem. This
has the enormous computational advantage that box-local procedures (e.g.
for the PML solver grid mapping or for the GML solver influence interpolation)
can be carried out in parallel. This will be detailed in Chapter 5.
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4.1.4 MLMIC Tree Structure

After binning has been completed, the box tree structure for use in the
MLMIC method must be created. For each active box, the parent box is
found, which is marked as ML_Active and added to an MLMIC branch list.
The same procedure is carried out for proactive boxes, which are marked as
ML_Proactive. This process is repeated for higher box levels by identifying
parents boxes with the octtree structure. The progression to higher box
levels terminates based on a user-specified option:

• MaxBranch Option A specified maximum tree level l is considered
in the ML algorithm, specified as MaxBranch. This essentially restricts
the radius around a given proactive box which contributes to the
solution. This may be practical in cases where the influence of sources
beyond a given Euclidean distance can be assumed to negligibly
contribute to the solution:

• Automatic Option The entire active field is accounted for in the
MLMIC algorithm This option ensures that the influence of all sources
in the field are accounted for. This has been used for all simulations
in this work.

Upon construction of the MLMIC tree, the interaction templates are used
to calculate the influences between ML_Active boxes and receiver nodes in
ML_Proactive boxes. For all ML_Proactive boxes the influence at higher
grid levels are interpolated down the tree to lower grid levels and added
with local MLMIC interactions. This is repeated at each grid level until the
base box level is reached, where the far field influences are added to the
near field influences for the full influence. This approach ensures that only
active (source) boxes are anterpolated and the influence is calculated only
where it is required in proactive (probe) boxes automatically. This reduces
computational expense and ensures generality for both solver configurations.

4.1.5 Eulerian Grid Template

Each base box is meshed with a regular Eulerian grid. In the GML solver
this is used exclusively for remeshing and divergence filtering, within the
PML solver however the grid contributes actively to the solution, as this
provides the data for the FP solver. The mapping procedure distributes the
vorticity over a certain grid stencil width, this implies that box grids overlap.
Without accounting for this within the mapping, large discontinuities at
box boundaries would be observed and spurious errors in the solution would
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arise. This is overcome by constructing the Eulerian grid within each box
with an overlap factor N+, which describes the number of cells which extend
beyond the box domain– see Fig. 4.3.

Source particle
Source map nodes
Probe

Probe map nodes

Base box

Extended box bomain

Neighboring boxes

N+

Figure 4.3: Overlapping Eulerian grids ensure that mapping occurs consistently with
neighboring domains. The mapping stencil here corresponds to the M′

4 mapping
routine (see Section 2.4.1). For the example here the box side length Hb = 16H.

This principle applies not only for vorticity mapping to the grid, but also
for mapping field quantities from the grid back to probe nodes. Although
this increases the memory footprint of the base boxes, it is necessary to
ensure continuity between domains. Care must be taken to ensure that
the local grid CID is correctly calculated for transfers to and from Eulerian
grid objects. Upon completion of the vorticity mapping within each base
box, an additional global routine ensures that grid values are continuous by
superimposing overlap regions.

4.1.6 Problems Exhibiting Symmetry

There are many cases which allow symmetries of the flow field to be exploited.
Such cases are easily handled within the solver by specifying a plane of
symmetry, this is illustrated for the case of an airfoil in Fig. 4.4, where the
plane y = 0 acts as the symmetry plane. After particle binning, all active
boxes are duplicated such that the mirrored box BM is created at the mirror
position about the symmetry plane. An example is given here for a case
with y-symmetry:

B {i, j, k}0
y symm.−→ B {i,−j, k}0,M . (4.2)
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Figure 4.4: The wake of a symmetric airfoil modelled using a symmetry condition
at the plane y = 0. Blue boxes represents the position of the reflected boxes BM .

To ensure that the influence is correctly mirrored, all source particles within
the mirror box are also mirrored- both position and vorticity vector:

P⃗ (x, y, z, ωx, ωy, ωz)
y symm.−→ P⃗M (x,−y, z,−ωx, ωy,−ωz) . (4.3)

The mirrored boxes for the aforementioned case are visualised in Fig. 4.4.
This approach has the computational advantage that field quantities only
need to be calculated on one side of the symmetry plane due to the known
symmetry of the solution. The number of probe points and therewith
computational expense is hence halved for each symmetry plane. Care is
taken after particle evolution to ensure that any particles which translate
through the symmetry plane are immediately replaced with their mirrored
counterpart to ensure that no erroneous reflection errors occur.

4.1.7 Problems Exhibiting Periodicity

The method applied here to treat periodic problems is not significantly
different to that applied for symmetry planes. Reference is made here to
Fig. 4.5. Let D be the domain to be repeated in the periodic direction. One
observes that the influence of source particles in domain D on domain D+1
is equivalent to the influence of source particles in domain D−1 on domain
D. The same is true for D on D+2 and D−2 on D. This implies that only
the source box D need be treated as active, neighboring regions however
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are treated as proactive. The influence on domains D± are simply added
to D in order to calculate the periodic influence. Provided that the periodic
length Lper is chosen such that it is an integer multiple of the box side length
Hb, this is also perfectly amenable to analysis with box-box interactions.

D−2

D−1
D

D+1
D+2

Lper

Nper

Nper

Figure 4.5: Method of treatment for periodic problems. The source domain is
repeated in the periodic direction and neighboring sections are proactive.

The number of repeated domains on each side Nper is user-defined and
chosen to ensure that the true periodic flow is captured. It is suggested
in Cocle et al [28] that Nper = 50 should guarantee practically periodic
solutions, however in the work here Nper = 30 appeared to be completely
sufficient. As with the case of symmetric conditions, care must be taken
to ensure that any particles which convect out of D are replaced by their
equivalent particles within D. It is observed here that only the single domain
D is active, this significantly decreases the calculation overhead, as the
majority of interactions calculated are in the far field and are hence captured
by the MLMIC calculation.

4.2 Time Evolution of Particle Set

VPML is formulated such that regardless of the choice of solver, the spatial
quantities of interest are resolved at the given particle/probe positions.
These are then used to specify particle evolution with a suitable time
integration scheme. The reader is referred to Kreyszig [86] for an overview
of the schemes described here. For purposes of simple integration testing
a first-order Eulerian-forward (EF) scheme has been implemented. For
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function f⃗ at timestep n this is expressed as:

f⃗
⃓⃓⃓
n+1

= f⃗
⃓⃓⃓
n

+ ∆t df⃗
dt

⃓⃓⃓⃓
⃓⃓
n

. (4.4)

For higher-order time integration the second and fourth-order Runge-Kutta
schemes have been implemented (RK2,RK4). The second-order scheme is
given here:

f⃗
⃓⃓⃓
n+1

= f⃗
⃓⃓⃓
n

+ 1
2∆t

⎧⎪⎨⎪⎩ df⃗

dt

⃓⃓⃓⃓
⃓⃓
n

+ df⃗

dt

⃓⃓⃓⃓
⃓⃓
n+

⎫⎪⎬⎪⎭ , (4.5)

where the n+ is a corrector step taken at t = tn + 0.5 ∆t. As with spatial
integration a balance must always be struck between accuracy and com-
putational speed. Despite the stability of the RK methods, they require
the calculation of predictor steps to achieve the higher order accuracy. In
the case of RK4 for example three additional intermediate steps are re-
quired for a single time step. For this reason the second-order multi-step
Adams-Bashforth method (AB2) has also been implemented. This allows the
gradients from previous timesteps to be utilised, incurring minimal memory
overhead while recovering higher order accuracy. The Adams-Bashforth
second order method is given by:

f⃗
⃓⃓⃓
n+1

= f⃗
⃓⃓⃓
n

+ ∆t

⎧⎪⎨⎪⎩3
2
df⃗

dt

⃓⃓⃓⃓
⃓⃓
n

− 1
2
df⃗

dt

⃓⃓⃓⃓
⃓⃓
n−1

⎫⎪⎬⎪⎭ . (4.6)

It has been shown furthermore that leapfrog methods (LF), which makes use
of staggered position-velocity data to perform timestepping are well suited
to particle convection problems [28]. The second-order leap frog method is
given by:

f⃗
⃓⃓⃓
n+1

= f⃗
⃓⃓⃓
n−1

+ 2∆t df⃗
dt

⃓⃓⃓⃓
⃓⃓
n

. (4.7)

The method most frequently applied to the simulations carried out in this
work combines LF for particle position update with AB2 for particle strength
update. This combination is named AB2LF.

4.3 GML Solver

The GML solver calculates particle-particle interaction using the theory
outlined in Chapter 2, Section 2.3. The resolution of field quantities due
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to source contributions in both far field and near field shall be separately
outlined here for the sake of clarity. Upon their calculation the two terms
are added to yield the full influence on each probe.

Far Field

The simulation flag SPAT_INT specifies which method is used to spatially
integrate the particle set. Three options are available within the VPML
library:

• DIRECT The direct expressions (Appendix F) are used and evaluated
in parallel with OpenMP on the CPU,

• DIRECT_OCL The direct expressions are used and evaluated in parallel
with OpenCL on the GPU,

• MULTILEVEL Interactions are calculated with the MLMIC routine as
described in Chapter 3.

The following sections describe how individual terms are calculated when
the spatial integration option MULTILEVEL has been activated.

Velocity Inspection of the BS kernel (Eq. (2.11)) allows the velocity terms
to be deconstructed:

4π u⃗ = r⃗

r3 × α⃗ =
{︄[︃

ry
r3
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]︃
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}︄
e⃗z .

The influence coefficients given by the bracketed terms [ · ] are calculated
here using a multilevel expansion calculated with an interaction template
at the beginning of each simulation. There are three individual interaction
templates as seen above. At each calculation the vorticity terms αi of all
active boxes are anterpolated. The influence on all proactive boxes are
then calculated with the multilevel expansions and the products are added
together to get the desired far field velocity influence. In total, this operation
requires six matrix multiplications, followed by three matrix additions.

69



Chapter 4. Flow Solver Implementation

Stretching It is possible to formulate the stretching equations (Eq. (2.17))
as is done above for the velocity field. Due to additional products here
however this requires an additional 18 interaction templates, compared
to the 3 required for the BS velocity interaction. Inspection of Eq. (2.18)
reveals that the influence decreases as r−5. This has the effect that the far
field contributes minimally to the stretching terms. This is demonstrated in
Fig. 3.11 where the contribution is seen to not exceed 0.5% (Hb = 8H). It
is questionable whether this increased expense is warranted considering the
great increase in computational expense.
A second method to calculate the far field stretching terms is by resorting
back to the expression for the stretching term: dω⃗p/dt = (ω⃗ · ∇)u⃗. Using
the known vorticity of the probe particle, it remains simply to calculate the
velocity gradient tensor ∇ u⃗. This is conveniently achieved using the prop-
erties of barycentric Lagrangian interpolation (Section 3.3.3), which allow
for the calculation of the gradient based on the pre-calculated interpolation
weights [109]. The velocity gradient due to the far field contributions are
then known, and are then interpolated to the probe position. The use of
the classic, transpose and mixed schemes here is easily facilitated by simply
using ∇ u⃗, (∇ u⃗)T and 1/2(∇ u⃗+ (∇ u⃗)T ), respectively.
Although this method greatly reduces computational expense as compared
to the aforementioned method, it should be noted that the approximation of
the gradient on the interpolation nodes is essentially a weighted FD approx-
imation, which incurs error. The error incurred by using this calculation
was already investigated in Chapter 3. There it was seen that the error can
be completely controlled with adequate specification of Hb and P . This
approach is validated for actual flow cases in the following chapter.

PSE The viscous diffusion kernel decays very quickly with ρ. Testing has
shown that regardless of choice of regularisation, the contribution due to
particles at a distance ρ > 5 is essentially negligible. For this reason the far
field viscous contribution is ignored here.

Turbulent shear stresses The approaches described in Chapter 2 require
knowledge of higher order derivatives of the flow field. The HV method
requires knowledge of the bilaplacian of the vorticity field ∇4ω⃗, and the RVM
approach requires knowledge of the small-scale vorticity ω⃗s, which implies
the use of an appropriate spatial filtering on a regular grid. It would be
possible to map the vorticity field to a local grid and extract this information,
however this constitutes a large portion of the solution procedure of the PML
solver, and hence the overhead incurred for this component alone within the
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GML solver would make simply using the PML solver more practical. For this
reason, no turbulence modelling has been incorporated into the GML solver.

Near Field

Unlike the far field influence, where the MLMIC method is used to accelerate
the calculation, the near field influence must be directly calculated (see
Section 3.3.4). The near field of any given box (and the probes within) is
specified as the region which contains NFint boxes in all spatial directions.
If, for example, NFint = 1, each box has 27 near field boxes (in 3D) which
contribute to its near field solution. The influence on the probes of the
sources within these boxes is directly calculating. The expressions for
velocity, stretching and PSE are implemented directly from the closed-form
expressions (Appendix F). The user is able to specify these with two solver
options:

• REG specifies the type of regularisation desired for the particle smooth-
ing. This choice influences all field parameters. The options are: LOA,
HOA, GAUSS, SUP_GAUSS, HEJ, representing low-order algebraic, high-
order algebraic [23], Gaussian [118], higher order Gaussian polynomial
and spectrally convergent kernel [91], respectively. Unless otherwise
stated the GAUSS regularisation has been used in the work here. The
options above are applicable to 3D problems, however 2D particle
regularisations were also implemented.

• STRETCH specifies which type of stretching scheme is to be used: The
options are CLASSIC, TRANSPOSE and MIXED.

Specification of characteristic core size The expressions for the ve-
locity, stretching and diffusion (PSE) terms are functions of the regularised
radius ρ and therefore the core size σ of each source particle. The GML solver
can accept particle sets with non-uniform core size specification for purposes
of comparison and to ensure particle overlap for non-uniform problems,
this however is generally not the case as uniform particle sets have been
investigated. In the work here, the core size is specified such as to ensure
that the particle overlap requirement is met after remeshing: σ = 1.1H.
It was observed that, provided remeshing was regularly carried out, the
results were not noticeably impacted for 1.1H ≤ σ ≤ 1.5H, beyond this
range however an overly large damping effect was observed in the velocity
fields. It should be noted furthermore that it has been observed that for
under-resolved simulations (large relative grid size), the stretching terms
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would cause the particle set to diverge. This was difficult to avoid without
prescribing an overly large σ to dampen the equation system. This could be
somewhat delayed by the application of strong divergence filtering, however
this did not overcome the underlying stability issue.

Specification of stretching scheme All three forms of stretching have
been investigated. In Chapter 2 it was described that for numerous reasons
the transpose method appears to be the most suitable. It was found through
preliminary investigation that this scheme performed most satisfactorily
in terms of stability, robustness, and conservation of flow quantities. For
this reason, for all simulations in this work the TRANSPOSE scheme has been
applied.

Optimisations The box-box style implementation implies that sets of
particle interact, rather than single particles. This approach is amenable
to calculation on the GPU, as the particle sets can be tiled into blocks of
a given size, specified with the TILESIZE variable, and their interaction
calculated in parallel. Depending on the hardware available the choice
of tilesize can have a drastic influence on performance. Implementation
has been done here with the OpenCL framework and the modelling options
specified above are automatically accounted for when compiling the OpenCL
kernels. This greatly increases speed as the data is passed in a single block to
and from the GPU for each convolution, reducing communication overheads
between the CPU and GPU. When using the MULTILEVEL solver option, the
near-field interaction also makes use of these optimisations.

4.4 PML Solver

The field quantities in this method are extracted using FD on the Eulerian
grids within each base box. The solution of the Poisson equation on each of
these grids is achieved using the FP solver which requires two inputs:

• Grid Vorticity The values of vorticity on each grid are calculated
by using mapping functions as described in Chapter 2. An additional
global superposition check ensures that the boundary vorticity between
neighboring regions is continuous as described in Section 4.1.5.

• Boundary Condition This is necessary to ensure that the stream
function on the domain is correctly specified– see Chapter 2.

The distinction between near field and far field influence in the PML solver
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hence refers not to the influence on individual probes as with the GML solver,
but rather to the value of the stream function for the BC coordinates of
a given Eulerian grid. Upon their calculation, the far field and near field
terms are added to yield the full influence on each BC coordinate. Multiple
approaches have been taken in the work here to calculate the near field
contribution of neighboring regions, these are individually described below.
For all methods however the far field methodology of the PML solver is
equivalent, as described below.

Far Field

From Eq. (2.10), it is seen that the far field approximation of the stream
function kernel is in fact even simpler than that of the BS kernel:

4π ψ⃗ = α⃗

r
=
{︄[︃1

r

]︃
αxe⃗x +

[︃1
r

]︃
αy e⃗y +

[︃1
r

]︃
αz e⃗z

}︄
. (4.9)

This requires only a single interaction template [r−1] and three matrix
multiplications. This can be further reduced by concatenating the three
matrices αi to require only one single matrix multiplication. The procedure
follows otherwise exactly as for the BS kernel. The far field influence is then
interpolated down the box levels to the proactive base boxes, where it is
mapped from the interpolation grid to the boundary nodes of the Eulerian
grid. This is again an interpolation template which is equivalent for all base
boxes and can be calculated at the beginning of the simulation. This is
illustrated in Fig. 4.6.

Near Field

Two methods have been implemented within the VPML solver for calculation
of the near field influence when using the PML solver.

Near field direct evaluation

The first method implemented is activated by specifying the POISSON_DIR
solver option. This method makes direct use of the Green’s function for
the SF kernel, see Eq. (2.15). Although conceptually the simplest of all
approaches, this method is only really practical for relatively sparse particle
distributions. This can be observed by carrying out an order of magnitude
analysis of the number of evaluations required: the number of sources within
a densely distributed volume N is proportional to the cube of the box
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Active Boxes Proactive Box Grid boundary

Figure 4.6: Far field specification of the stream function in the PML solver. Left:
The far field influences on the receiver nodes of the proactive box is calculated with
the multilevel expansion of ψ⃗. Right: The far field influence on the receiver nodes
is interpolated to the boundary nodes of the Eulerian grid for specification of the
solver. The boundary dilation is here exaggerated for illustrative purposes.

sidelength: Hb = nH −→ N ∼ n3, the number of boundary nodes is propor-
tional to n2 ∼ N

2/3, the expense hence scales as O(N 5/3) and has therewith
unfavourable scaling. Despite this, the approach is practical as a means to
validate the James-Lackner (JL) method described in the proceeding section.
As with the BS kernel, the SF kernel must be regularised. This requires
the specification of a particle core size. For the JL method described in
the proceeding section, the singular particle treatment is used for boundary
interactions and the specification of particle core size is unnecessary.

Specification of characteristic core size As opposed to the GML solver
where the core size σ is specified by the overlap requirement, this is not the
case for the PML solver as the particle-particle interactions are inherently
handled by the grid solver. For consistency however, it is observed that
when solving for an impulse node vorticity strength with the FP solver,
the stream function distribution appears to behave as a regularised particle
with a given core size. This is a function of the order of approximation
used in the FD formulation of the FP solver stencil. For the Gaussian
regularisation this was found to be σ = 0.251H. Interestingly, this value is
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in exact agreement with Cocle et al., where a different FP solver was used
([28], Fig. 1).

James-Lackner method for near field calculations

The JL method is denoted within the solver as POISSON_JL, and makes use
of the theory described in Section 2.4.2. This method requires additional
solver steps, along with additional templates to treat boundary forcing
from neighboring domains. In this method the stream function BC of each
Eulerian grid it is composed of two contributions: the homogeneous solution
and the single-layer solution, both from box self-influence and neighboring
boxes. For simplified implementation each base box is filled with two
Eulerian grids. The first, the omega grid DΩ is used for the homogeneous
solve step to calculate ψ⃗0. The second, the psi grid DΨ) is used for the
final solve incorporating the full BC. It was found in implementation that
generating two distinct grids enabled simpler implementation as the grids
have different overlap factors N+.

Homogeneous solution The homogeneous solution ψ⃗0 on the omega
grid is calculated by executing the FP solver with the stream function BC
set to zero. This step must occur prior to the superposition of the vorticity
field from neighboring domains as described in Section 4.1.5, otherwise
neighboring sources may be counted multiple times. The requirement that
the vorticity field has compact support is conveniently achieved here by
specifying the overlap factor N+ of the omega grid to be larger than otherwise
necessary, automatically padding the domain with a region of zero vorticity.
As with the mapped vorticity, the homogeneous solution domain overlaps
into neighboring domains, and an equivalent function as that for the vorticity
is applied to ensure that the solutions of ψ⃗0 are superimposed. It has been
observed in practice that the larger the choice of N+, the more continuous
the solution for ψ⃗0 over the boundary of neighboring domains is found. The
choice of N+ = 5 was found to be completely sufficient without incurring
significant computational overhead. This motivates a larger choice of Hb

for the PML solver, as a significant portion of the omega domain overlaps,
increasing computational overhead and reduntant memory consumption.

Boundary forcing density The homogeneous solution is then used to
specify the boundary forcing density γ⃗ over the boundary of the omega
grid ∂DΩ. This is calculated by determining the normal derivative over the
surface by application of an appropriate FD stencil. The order of accuracy
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of the FP solver dictates the order of the FD stencil used. In the work
applied here the FP solver uses a five-point FD stencil and hence has 4th

order accuracy. For this reason the boundary forcing density is calculated
with a 4th order one-sided FD stencil.

1: Map ω⃗ to Omega grid. 2: Solve ψ⃗0 on Omega grid.

3: Calc. dψ0
dn on boundary. 4: Calc. ψ⃗1 on Psi grid

boundary.

Figure 4.7: The four steps of the James-Lackner routine in the PML solver. Three
distinct regions are seen. The box domain B (inner region), the Psi grid (dashed
line), and Omega grid (large outer domain). The full solution to ψ⃗ on the boundary
of the Psi domain is attained by adding ψ0 and ψ1.

Single layer solution This is calculated by numerically integrating
Eq. (2.23) over the boundary ∂DΩ to calculate the influence of the boundary
forcing on the boundary of the solution grid ∂DΨ. The influence of a given
boundary node can be treated as an integration over a source panel. This
can be practically achieved with a Gaussian quadrature rule. A single-point
Gaussian rule has been applied here for large separations and a 6 × 6 sub-
paneling is applied for small separations. The influence of each source point
i on probe boundary point j can hence be calculated for a box template and
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results in an interaction template aij . It is seen in Eq. (2.22) that the SF
Green’s function G is integrated over the panel to calculate this influence.
Although numerically it presents no challenges to implement the regularised
form of this, better results were found by using the singular form of the SF.
The singularity which arises for evaluation points which lie close together is
effectively removed by the use of sub-paneling. This template is calculated
not only for the single-layer self-influence, but also for neighboring boxes.
This is calculated once at the beginning of the simulation for a box template
family, resulting in 9 aij interaction templates for the 2D case and 27 aij
interaction templates for the 3D case. This is illustrated in Figure 4.7.
This methodology demonstrates how with application of the JL method, the
near field evaluation is reduced to a matrix multiplication (plus additional
FP solver call), making the problem again suitable for execution on the
GPU. The POISSON_JL routine is currently configured such that the 27
interaction matrices aij are concatenated into a single very large matrix.
All possible near field interactions of each active box are calculated, and
the desired influences ∂DΩ,i → ∂DΨ,j are then extracted and added to the
BC of ψ⃗1 for the each proactive box. This method reduces the necessary
memory passing processes which must occur and allows the computational
burden to be isolated to a single very large matrix multiplication.

Complete solution The total stream function BC for each proactive
domain boundary is found by adding the homogeneous and single-layer
solutions of the domain itself (if active) plus the active neighboring domains.
This is illustrated in Figure 4.7 for a single domain (showing only self-
influence). This constitutes the near field contributions. When the far field
influence is added (see proceeding section), the total boundary condition
is known and the FP solver can be again called to yield to full volume
description of the stream function ψ⃗.

Extraction of Field Quantities from Grid Data

Once the stream function ψ⃗ over the domain of interest is known, the field
data required to determine the evolution of the particle field can be calculated.
This involves specification of a number of additional variables. The Eulerian
grids store in theory the necessary information for the calculation of these
parameters over their entire volume. In practice however, the information
is only desired at the grid points surrounding the probe node position, with
the stencil width corresponding to the mapping option selected. This total
number of calculations can be restricted by carrying out FD evaluations only
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where it is necessary. This is accomplished by marking the grid cells during
probe binning procedure as being proactive. The nodes surrounding these
proactive cells are then marked and listed for the FD calculation. This
ensures that each FD calculation is only carried out once.

Velocity As described in Chapter 2, the velocity is extracted by carrying
out a simple FD calculation on the grid. The order of accuracy of this
calculation can be specified, however for the work done here a 2nd order
central FD scheme was applied. For nodes which are on an Eulerian domain
boundary, a 2nd order one-sided FD scheme is used. In practice however,
due to the overlapping regions, the one-sided FD calculations are rarely
required

Stretching A similar procedure here is carried out for the stretching
component. This is however calculated with nodal velocity, obtained in
the previous step. In order to avoid spurious results at edges of the active
regions, the velocity must be calculated at additional boundary nodes. This
is accounted for by padding the proactive nodes. It is stated in Cocle et al.
[28] that using the conservative form of the stretching term ∇ · (u⃗ ω⃗) led to
better conservation of vorticity moments, however this was not observed in
the work here. The quantity ∇u⃗ (a second order tensor) is calculated on
the grid and together with grid value ω⃗ allows for the specification of the
stretching term.

Viscous diffusion Inspection of Eq. (2.9) demonstrates that it is nec-
essary to calculate the Laplacian of the vorticity field L(ω⃗) in order to
specify the viscous diffusion. This is accomplished here using isotropic FD
templates, in particular the second-order template (no. 5) from Patra &
Karttunen [119]. These remove the directional bias and ensure that the
FD stencil size is not greater than that of the stretching calculation carried
out in the previous step. This approach was also used in Cocle et al. [28],
however an alternative stencil was used.

Turbulent shear stresses As described in Chapter 2, two methods have
been applied here to calculate viscous shear stresses. Both methods are
carried out on the local Eulerian grid within each base box in order to
facilitate parallel processing. Depending on the choice of turbulence model,
different quantities must be resolved:

• HV model: The laplacian of the vorticity field ∇2ω⃗ having already
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been calculated for resolution of the viscous stresses enables calculation
of the bilaplacian ∇4ω⃗ by simply reapplying the Laplacian stencil to
this field. This carries a very low computational expense.

• RVM model: Two field quantities must be resolved in order to apply
this method. The first is the small-scale vorticity ω⃗s. This is achieved
by applying the discrete operator F(x) to the vorticity field:

ω̄(x) = F ~ω(x) = ω(x) + 1
4[ω(x+H) − 2ω(x) +ω(x−H)] . (4.10)

Here filtering is applied in the x direction. The small-scale component
is then found by subtracting this from the vorticity field ωs = ω − ω̄.
This is carried out first in x direction, then repeated in the other
spatial dimensions F(y) and F(z). This produces the fully filtered
small-scale field ω⃗1

s. The procedure is repeated on this field n times to
produce a filter of order n. The second component is the Smagorinsky
sub-grid scale viscosity νsgs = Cnr ∆2√︁2SijSij . The entries of Sij were
calculated previously for the stretching terms ∇u⃗. The stretching
calculation step can hence be exploited to additionally calculate this
term. These are stored such that the scalar quantity

√︁
2SijSij on the

grid is known. The bilaplacian stencil is then applied in the following
form to resolve the turbulent shear stresses:

∇ · νsgs[∇ω⃗s + (∇ω⃗s)T ] = Cnr ∆2L
(︃
ω⃗s
√︂

2SijSij
)︃
. (4.11)

4.5 Monolithic PML Solver

A second architecture of the PML was carried out for the purposes of achieving
the goal outlined in the objectives of optimising for a CPU-GPU environment.
This is marked in the PML solver as POISSON_MONO, which stands for the
monolithic Poisson solver. This is so named as the FP solver is used to
solve not for each individual base box, but rather for a monolithic Eulerian
grid Dmono which contains all vorticity sources. The stream function BC
over the monolithic grid boundary ∂Dmono are calculated with the MLMIC
method, greatly accelerating the evaluation. Care is taken to ensure that
the boundary nodes of the monolithic Eulerian grid are always in the far
field of the vorticity sources, ensuring full exploitation of the efficiency of
the MLMIC method. This implementation provides an MLMIC equivalent
to a number of well-established monolithic Poisson solvers in the literature
such as the FLUPS library [96] or the MIRAS solver [72, 73].
Although this method is not strictly in alignment with the fundamental
ideology of the VPML library– as it does not exploit a tightly constrained
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solution domain– it allows for a much faster solution for certain geometries.
The reason for this is that the ideal scaling of the FP solver is combined
with the speed up afforded by the MLMIC method.

Monolithic grid In alignment with the VPML framework, Dmono is con-
structed using a rectangular prism of base boxes B0,i, with the BLOCK grid
option specified. At the beginning of each time step, the particle set extrema
are checked to ensure that any boundary nodes on ∂Dmono are within the
far field of the sources. If this is not satisfied, Dmono is grown with a buffer
factor to ensure that domain resizing occurs infrequently. During creation
of Dmono, all base boxes B0,i ∈ Dmono are created and stored in a static list.

Parallelisation The binning procedure occurs exactly as with the stan-
dard PML solver. Source and probe data preparation and anterpolation are
carried out in parallel for all active and proactive boxes B0,i. The Eulerian
grid within each base box B0 is then mapped to the Eulerian grid of Dmono.
An equivalent procedure is carried out to map the solution ψ⃗ to the proactive
base boxes B0. The entire FD and probe mapping procedure can therewith
proceed for each base box in parallel exactly as with the standard PML
implementations.

Boundary conditions When the monolithic grid is created, all B0 on
∂Dmono are stored in a designated list. These are automatically marked
as being ML_Proactive for the multilevel expansions. After evaluation of
the far field, the values of the stream function at the boundaries of interest
are extracted from the multilevel expansion of the necessary boxes and
interpolated to the corresponding boundary node positions of ∂Dmono. This
is illustrated in Fig. 4.8. The far field calculation of the stream function
proceeds exactly as with the standard PML implementations.

Problems Exhibiting Periodicity The monolithic PML solver has also
been configured to simulate cases with periodic symmetry. It is common
for FP solvers to have the capability to handle periodic BCs in one or
numerous spatial dimensions. In this case the BCs for certain faces need
not be specified within the solver as they are fully specified by the periodic
boundary condition:

ψ⃗(x) = ψ⃗(x+ Lper) , ∂ψ⃗

∂x
(x) = ∂ψ⃗

∂x
(x+ Lper) . (4.12)
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Here and hereafter it is assumed that the flow has periodicity in x direction
with a periodic domain length of Lper, as in Fig. 4.5. The concept is however
applicable also to other Cartesian directions. This implies that the BC of
ψ over the ∂Dmono faces x = const. need not be calculated. The MLMIC
routine is configured such that these boundary faces are not included within
the multilevel expansions, and the specification of the boundary condition
proceeds otherwise exactly as for the standard monolithic solution routine.
Additional care needs to be taken to ensure that the vorticity field is
continuous in the periodic direction. This is ensured by implementing
the monolithic Eulerian grid such that any overlapping regions (x < 0 or
x > Lper) are automatically mapped back to the domain 0 < x < Lper.
This is carried out for numerous procedures for the VP method including
remeshing, divergence filtering and mapping results from the monolithic
grid to individual box grids.
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Figure 4.8: The monolithic Eulerian grid around a turbine simulation. Isosurfaces
of vorticity of the turbine are shown. The monolithic grid contains all sources of
vorticity and the FP solver is executed once for the entire volume of interest. The
stream function boundary conditions are calculated with the MLMIC method. A
visualisation of ψy calculated over the z+ and z− boundaries calculated by the ML
method is shown here.
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The GML and PML solvers have been validated for numerous flow cases against
both analytical and numerical results from the literature in Section 5.1. The
flow cases simulated here involve vortex ring geometries, as these demon-
strate numerous well-understood physical phenomena for vortical flows of
an incompressible fluid. A detailed overview of the theory of the vortex ring
has been included in Appendix E. The cases demonstrated here represent
dense 3D vorticity fields for which vortex filaments are spatially resolved. A
number of additional validation cases were simulated to demonstrate solver
sensitivities and lower complexity phenomena.

In Section 5.2 a performance analysis of the GML and PML libraries is carried
out and the optimal computational expense O(N) for the algorithm is
observed. The scaling of the solvers for HPC applications is investigated.
A summary describing optimal solver choice is then described. For all re-
sults shown here the PML solver has been used with the POISSON_JL option
enabled, the near field is therefore being calculated with an interaction
matrix.

5.1 Flow Solver Validation

These cases validate the solvers in order of complexity of the physical
phenomena:

1. Single vortex ring Demonstration of correct calculation of the ve-
locity field;

2. Translating and colliding vortex rings Accurate capture of vortex
time evolution, vortex stretching and viscous merging for a laminar
flow case;

3. Low Re unstable vortex ring Instability growth and turbulent
breakdown using the HV turbulence model;

4. High Re unstable ring Instability growth and turbulent breakdown
using the RVM turbulence model.

Supplementary validation cases For brevity numerous cases have been
omitted and included in the Appendices as a supplement to the validations

83



Chapter 5. Flow Solver Validation

performed here. These cases act to further demonstrate the efficacy of the
solvers against analytical solutions. A brief summary is provided here and
the reader will be guided towards relevant results throughout this chapter:

1. 2D Solver Appendix A: The solver is validated for two 2D vortex
cases: Inviscid shearing of an elliptical vortex and viscous merging of
a vortex couple to a steady analytical solution (Burgers Vortex)

2. Filament Cases Appendix B: The GML solver is validated for two
cases where a sparse vortex particle set is investigated, an infinite
helical vortex and a vortex ring. This demonstrates the application
of the MLMIC method for sparse particle sets, which have practical
applicability to low-resolution simulations.

3. Steady Flow Appendix C: The Hill’s vortex is an ideal inviscid case
for which there exist analytical expressions for all fields of interest.
This is inspected to demonstrate accuracy and sensitivity of both
solution methods to grid resolution.

4. Filament Cases Appendix D: In order to isolate stretching phe-
nomena two dense inviscid vortex rings are collided to demonstrate
conservation of vorticity and efficacy of the stretching schemes.

5.1.1 Grid and Field Parameters

In general a single parameter must be specified for a given simulation,
namely the grid size H. This specifies the characteristic spacing between
particles after remeshing is carried out and at the beginning of a simulation.
All other parameters are specified based on this as described in Chapters 3
and 4. The values which depend upon this are given in Table 5.1. The

Table 5.1: Characteristic grid parameters

Parameter Unit Description GML PML

dV m3 Particle volume H3 H3

σ m Particle core size. 1.1H 0.251H
Hb m Multilevel grid size. 8H 16H
P − MLMIC polynomial order 5 5

choice of Hb = 8H for the GML solver is motivated by the results of Section
3.5.3, where a choice of Hb > 6σ ensures satisfactory far field calculation
with the MLMIC method. For the PML solver this is increased to Hb = 16H
in part because of the results of Section 3.5.4, but also for the reasoning
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outlined in Section 4.4. In general, choosing this factor to be a power of
two is convenient for implementation reasons.

Eulerian mapping parameters If the PML solver is being used, the M′
4

scheme has been used for mapping field quantities to and from the Eulerian
grid. FD calculations on the grid have been carried out with a 2nd order FD
stencil. In cases where surrounding grid nodes exist, a centered scheme has
been used. On Eulerian domain boundaries a one-sided scheme has been
used. For the calculation of the boundary forcing density γ⃗, a 4th order
one-sided FD stencil has been used.

Regularisation parameters Unless otherwise stated, a Gaussian reg-
ularisation has been used and the transpose scheme is used to calculate
stretching with the GML solver– see Appendix F. When using the PML solver,
the near field interaction matrix is calculated based on a singular Green’s
function and hence the regularisation becomes redundant as described in
Section 4.4.

5.1.2 Unsteady Flow Parameters and Diagnostics

For all tests which follow, the flow is allowed to evolve in time. This implies
that a time integration of the particle set occurs. The particle position
is being updated with Eq. (2.8) and the particle strength with Eq. (2.9).
As described in Chapter 4 this is carried out with the Adams-Bashforth
Leapfrog integration routine AB2LF. If the particle set has been resized (e.g.
after remeshing), the Runge-Kutta 2nd order scheme RK2 has been applied.
This ensures a consistent 2nd order time integration scheme. Time step size
is given by dT and is generally specified based on the characteristic time of
the problem under consideration Tchar.

Particle set filtering The particle set is regularly updated with numerous
checks to ensure that the particles are uniformly distributed and the particle
set is consistent as described in Section 2.5.

• Remeshing. For consistency with the Eulerian grid mapping, the
M′

4 scheme has been used and unless otherwise stated, occurs every 10
time steps. This value was found to be suitable for the investigations
carried out here, although it is noted that more frequent remeshing
may be required depending on flow topology and integration scheme
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or step size. This is monitored by ensuring that maximum particle
translation is small between remeshing.

• Magnitude filtering To ensure removal of diffused and/or super-
fluous particle regions, particle magnitude filtering also occurs after
remeshing. Unless otherwise stated the magnitude filtering factor
κ = 1e−3 is used.

• Divergence filtering. The scheme used to ensure ∇ · ω⃗ = 0⃗ is
applied in both the PML and GML solvers. This is carried out after
remeshing of the particle set. The frequency of this is a simulation
parameter. Experience has shown it is practical to carry out this step
after remeshing.

Flow diagnostics The accuracy of the particle set evolution can be
checked by monitoring flow diagnostics which are known to obey certain
functional relations. When discussing a real flow, conserved quantities are
referred to as flow invariants. When discussing a simulated flow these are
referred to as flow diagnostics and can be monitored throughout a simulation
[23]. It shall be hereafter assumed that the fluid has unit density. Three
linear invariants of an unbounded flow exist which describe conservation of
circulation, linear and angular momentum, respectively:

Γ⃗ =
∫︂∫︂

S
ω⃗ dV

disc=
∑︂
p

ω⃗p dVp , (5.1)

L⃗ = 1
2

∫︂∫︂
S
x⃗× ω⃗ dV

disc= 1
2
∑︂
p

x⃗p × ω⃗p dVp , (5.2)

A⃗ = 1
3

∫︂∫︂
S
x⃗× (x⃗× ω⃗) dV disc= 1

3
∑︂
p

x⃗p × (x⃗p × ω⃗p) dVp . (5.3)

The discrete expressions here demonstrate calculation for a particle set.
For a compressible fluid the term dVp must be updated to account for
dilatation, this however remains constant in an incompressible fluid [5].
Linear invariants describe conservation of the moments of vorticity, which
upon inspection are also connected directly to the impulse of the fluid. The
linear impulse I⃗ (5.1) can be considered the total mechanical impulse of
non-conservative body forces required to instantaneously generate from rest
the motion at any time t. An equivalent consideration for the torque can
be made for the angular impulse A⃗ (5.3). Provided the vortex particle
representation of the vorticity field is divergence free, the linear impulse
should be conserved [22]. Both linear and angular impulse are conserved in a
viscous flow [85]. In the case that regularised vortex particles are being used,
angular impulse must be appended with an additional term A⃗: −1

3Cσ
2Γ⃗.
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In the case of a Gaussian regularisation it can be shown that C = 3
√

2π. In
addition to these there exists three quadratic diagnostics.

E = 1
2

∫︂∫︂
S
(u⃗ · u⃗) dV disc= 1

2
∑︂
p

(u⃗p · u⃗p) dVp , (5.4)

E =
∫︂∫︂

S
ω⃗ · ω⃗ dV disc=

∑︂
p

ω⃗p · ω⃗p dVp , (5.5)

H =
∫︂∫︂

S
ω⃗ · u⃗ dV disc=

∑︂
p

ω⃗p · u⃗p dVp . (5.6)

In an inviscid flow kinetic energy E (5.4) is conserved. In a viscous un-
bounded flow however, it can be demonstrated from kinematical considera-
tions [1], that:

dE

dt
= −νE . (5.7)

Enstrophy (5.5) is directly related to the kinetic energy and corresponds
to viscous dissipation. This can be used as a check in simulated flows that
viscous effects are correctly being captured. It was shown in Moffatt [120]
that the helicity (5.6), a measure of the net linkage of vortex lines, is in fact
a fourth invariant in an inviscid flow, however is not conserved in a viscous
flow.

5.1.3 Case 1: Single Vortex Ring

The case of a single translating vortex ring presents a suitable initial test to
ensure that the velocity field is correctly calculated from a given vorticity
distribution. For a specific ring vorticity distribution, an analytical solution
is known which allows for validation of the velocity calculation at a frozen
point in time. The influence of time stepping parameters, integration scheme
and particle evolution equations hence play no role in the solution, these
are described for the unsteady tests cases in the proceeding sections. As
previously described, other steady cases were carried out which demonstrate
the order of accuracy of the method as a function of grid size H , particularly
the case of the Hill’s spherical vortex in Appendix C. For the case inspected
here an overview of the underlying theory of the vortex ring is provided in
Appendix E. The vortex core of the ring is aligned along a circle of radius
R. The quantity inspected here is the global normalised translation velocity
U of the vorticity centroid as a function of ring core size. An analytical
expression for this was derived by Saffman [121] and an improved, less
conservative estimate of this result was provided by Stanaway et al. [122].
These were extracted by allowing the particle set to convect for a single time
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τ = 2.5e−3
a = 0.1 m
Ω = 16

τ = 1.5e−2
a = 0.25 m
Ω = 2.5

τ = 4e−2
a = 0.4 m
Ω = 1

Figure 5.1: Vorticity isosurfaces for a single translating vortex ring. Normalized
time τ shown. Colour scheme normalised with ωmax = Ω · 103m2s−1. Translation
due to self induction is seen along with diffusion as ωmax decreases and the core
expands.

step dT and evaluating the change in the position of the vorticity centroid
X1. The vorticity distribution around the vortex core is as described in
Saffman [121]:

ω0(r) = Γ
4πνt exp

{︄
− r2

4νt

}︄
= Γ
πa2 exp

{︄
−r2

a2

}︄
, (5.8)

where Γ is the ring circulation, r represents distance from the vortex core and
ν represents the kinematic viscosity of the fluid. This allows the specification
of a characteristic time t0 = R2/Γ. This allows specification of a normalised
time τ = t/t0. The initial vorticity distribution is generated on a regular grid
with spacing H. The variable a =

√
4ν t is the viscous core size of the ring.

A single, translating vortex ring is illustrated in Fig. 5.1. The particle count
increases quickly for decreasing a. This is because the global dimension of
the problem (R) remains constant, while H must be continuously decreased
to ensure sufficient resolution of the vortex core. This was achieved by
setting H = 0.1 a in the test here. As described in Stanaway, the effects of
curvature on the assumption of a perfectly Gaussian vortex ring cross-section
increase with the vortex Reynolds number ReΓ = Γν−1, for which reason
this is chosen here to be relatively small: ReΓ = 1e−2.
The results were compared to the analytical expression for a range of a
values and are shown in Fig. 5.2. The agreement with the improved estimate
due to Stanaway is seen to be excellent for both solvers. As expected by the
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Figure 5.2: Translation velocity of a Saffman vortex ring as a function of normalised
time.

theory, the effect of viscosity is to decrease the velocity as the vortex core
spreads due to viscous diffusion. In the limit as νt → 0 (which approximately
is satisfied for these points) the core size of the filament is small enough
that stretching terms are essentially negligible here.

5.1.4 Case 2: Translating and Colliding Vortex Rings

This test case has been divided into two sub-cases. The first inspects the
simpler case of a translating inviscid vortex ring. This validates the time
integration and particle set filtering procedures. The second investigates the
fully viscous merging process undergone by two obliquely colliding viscous
vortex rings and validates the treatment of both stretching and viscous
diffusion in the solvers.

Translating inviscid vortex ring

The first unsteady test case investigated is that of a simple translating
inviscid vortex ring. The initial vorticity distribution generated as with the
Saffman vortex ring (Eq. (5.8)) with core size such that a2 = 4ν t = 1e−2.
Without the effects of the viscosity, the perfectly axisymmetric vortex ring
can be assumed to remain undeformed and translate under the action of
self influence alone. The effects of finite core size introduce non-azimuthal
stretching terms which will eventually act to compress the torus cross-section
into an elliptical form [122], eventually introducing perturbations which will
lead to azimuthal instabilities, these are however left for later cases as the
goal here is simply to demonstrate the time evolution of the simulation.
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Evolution of particle set The evolution of the system can be effectively
checked by inspection of the particle set diagnostics. These are displayed
in Fig. D.3 against normalised simulation time τ = tR2Γ−1. The time
series shown represents a simulation with over 104 time steps. It is seen in
Fig. D.3 that both solvers advance as expected in time with conservation of
circulation and angular momentum. Linear momentum is seen to slightly
decay with time, this is a consequence of the vorticity field not remaining
divergence free [23]. This is not due to an erroneous implementation of
the divergence filtering routine, but rather follows from the relatively large
choice of κ = 1e−3. This phenomenon shall be further explored in the
next section. Either reduction of the time step or increased frequency of
the divergence filtering remedies this issue. Finally, as expected for an
inviscid flow the helicity is seen to be preserved quite well. In general for all
quantities the PML solver appears to perform slightly better than the GML
method.
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0.9
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0.5

1 · 10−6

A

0 1 2 3 4 5 6 7 8 9 10−1
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τ

H

Figure 5.3: Flow diagnostics for the case of an inviscid translating vortex ring.
Simulations here were advanced through 104 time steps.
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Colliding vortex rings

An intermediate case for demonstration of vortex stretching would include
dilation of the vortex ring under inviscid conditions. This case is included
in Appendix D for brevity. In the case presented here two vortex rings are
initially aligned obliquely such that they collide during their translation.
During the collision process, the vortices merge together and form a single
vortex filament. The process of vortex merging is a viscous process distinct
from diffusion where regions of high vorticity merge together to form new
strong vortex filaments. This is illustrated for the case here in Fig. 5.4. The
initial vorticity field has been generated as in the previous cases with a =
0.1 m and Γ = 10 m2s−1. For consistency with the test case in Winckelmans
& Leonard [23] the rings have radii R = 1, initial separation (centre-to-
centre) of ∆y = 2.7 m and an initial inclination angle θ = 15◦. The kinematic
viscosity of the fluid has been set such that the vortex Reynolds number Re
= Γν−1 = 400.

Evolution of particle set Linear diagnostics for the evolution of the
particle set are shown in Fig. 5.5. As with the previous case it can be seen
that the linear diagnostics behave essentially the same as with the inviscid
case: circulation and angular impulse are perfectly conserved and linear
impulse decays slowly with time. This was detailed previously and shall
be explained further here. It was observed that if the magnitude filtering
parameter is too large, removal of particles decreases the total linear impulse
of the system, particularly for large simulation times. In order to illustrate
this, the case κ = 1e−5 is shown in Fig. 5.5. For the latter case, linear
impulse conservation is seen to be drastically improved for both solvers.
This however has a direct influence on the computational expense of the
simulation, as the particle count increases greatly as κ is reduced. The
current implementation ensures conservation of circulation. Based upon
the points outlined above however, it would be advantageous to have an
implementation which ensures linear impulse conservation, independent of
the choice of κ. As with the previous case for the dense vortex it is observed
that the PML generally performs better across all diagnostics.

Merging process Inspection of quadratic diagnostics for this case allows
for the demonstration of the decay of kinetic energy through viscous diffusion.
These diagnostics are shown in Fig. 5.6. Here the quantity dE/dt has been
approximated with a simple 1st order Eulerian forward finite difference. The
functional relationship of Eq. (5.7) is generally well captured through both
diffusion and the connection process, demonstrating that viscous processes
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0 7.5

2.5 10

5 12.5

Figure 5.4: The collision and viscous merging of two vortex rings. Normalized time
τ shown.

are well represented. A qualitative check is provided by observing the
progression of the ring motion displayed in Fig. 5.4. For the times τ = 2.5
the attraction typically seen in merging scenarios is observed [123]- this is
also observed for the 2D case in Appendix A. At τ = 7.5, the two filaments
have paired off to form a new single continuous vortex filament which
continues to translate downwards. This reconnection due to viscous effects
is well documented for a range of initial ring geometries and the behaviour
here is consistent with known results [23, 124]. The qualitative results of the
PML and GML solvers were practically identical, the solid contours in Fig. 5.4
are in fact those from the PML solver and the semi-opaque contours from
the GML solver.
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Figure 5.5: Progression of flow diagnostics for the case of colliding viscous vortex
rings. Simulations here were advanced through 104 time steps.

5.1.5 Case 3: Low Re Perturbed Vortex Ring

Application of the turbulence models requires access to higher order spatial
derivatives (or spatial filtering for the RVM model) which excludes the use of
the GML solver. For this reason the following results represent the ability
of the PML solver to capture the effects of turbulent diffusion. This is
demonstrated by simulating the evolution of an azimuthally perturbed vortex
ring. In this test the hyperviscosity turbulence model (HV) is investigated.

Unstable vortex rings Within an experimental environment, the gener-
ation of a perfectly axisymmetric vortex is quite challenging. This is usually
carried out by forcing a slug through a nozzle with a sharp lip. Generally
for Re < 600 a stable, laminar vortex ring is formed. For Re > 600, per-
turbations in the initial vorticity distribution are observed to grow as the
vortex translates, this is shown with a dye injection experiment in Fig. 5.7.
Perturbations are seen to grow linearly until non-linear effects dominate
and the flow reaches the saturation point, where the ring becomes fully
turbulent and a breakdown process occurs. The physical mechanism for the
initial stages of perturbation growth is considered to be well understood
and is described further in Appendix E. By considering any perturbation in
a spectral sense to be composed of a set of sinusoidal excitations [125, 126],
the growth of these perturbations can be predicted. For these perturbations,
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Figure 5.6: The rate of decay of kinetic energy of the particle set is demonstrated
here as dictated by Eq. (5.7). The merging process occurs approximately within
tb ≤ τ ≤ te.

the wave number with the fastest growth rate kmax will dominate the break-
down process. kmax depends heavily upon the initial conditions of the ring
and kinematic parameters such as core size a and ring Reynolds number
Re = Γν−1. This will be investigated here by simulating a vortex ring for
which there exists previous numerical results.

Figure 5.7: Azimuthal instabilites of a vortex ring at Re ≈ 2000 made visible by
injecting dye into the vortex core. Reproduced from Van Dyke [127].

Initial vorticity distribution The case here follows the test case given
in Shariff et al. [128] (hereafter referred to as SH). The vortex ring is
generated as in the previous cases, with the exception that the ring radius
is perturbed with an azimuthal excitation R(θ) = R(1 + ϵg(θ)). Here
g(θ) = ∑︁

m cos(mθ+φm) is a sum of Fourier modes with unit amplitudes and
random phases. The first m azimuthal modes are hence uniformly excited.
The initial vorticity distribution accounts not only for the perturbation
of the ring radius due to g(θ) at each azimuthal position, but also for
the perturbed orientation of the vorticity distribution by realigning the
tangential vector along e⃗mod = e⃗θ + dg

dθ e⃗r in order to maintain consistency.
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Simulation parameters The simulation here echoes Case 1 from SH.
The ring has a vortex Re of 5500. The time step has been chosen such
that dT = 0.01τ where τ = R2Γ−1. The ring has a core size σ = 0.4131R
and the grid has a resolution of H = 0.04R. The perturbation parameter
is chosen to be low enough that it does not affect the dynamics during
the initial translation phase: ϵ = 2e−4R and the first 24 azimuthal modes
are perturbed. Particle set filtering is carried out every 10 time steps and
the magnitude filtering factor is set to κ = 1e−3. The simulation was
carried out for 0 ≤ t ≤ τ . The global time constant has been set to T0 = τ
and the Smagorinsky constant set to C = 2.5e−2, following Cocle et al.
[28](hereafter referred to as COCLE).

Spectral analysis In order to inspect quantitatively the evolution of the
modal energies, a spectral analysis was employed. This was carried out by
performing an azimuthal Fourier transform of the flow quantities, defined
for the azimuthal mode m of a stream function ψ in cylindrical coordinates
as:

ψ̂m(r, z) = 1
2π

∫︂ 2π

0
ψ⃗(r, θ, z)e−imθ dθ . (5.9)

This is performed numerically by discretising the field azimuthally in seg-
ments of arclength dθ = 2πRH−1. Only the modes for which m≥0 are
inspected as the symmetry of the modes can be exploited: Em = E−m. This
allows the modal energy to be expressed as [28]:

Em =
∫︂∫︂

[û · û∗]r dr dz = 1
2

∫︂∫︂
[ψ̂ · ω̂∗ + ω̂ · ψ̂∗] r dr dz , (5.10)

where ( · )∗ denotes complex conjugation. This formulation allows direct
extraction from the stream function solution. This has been carried out
by discretising the field in radial and axial directions (dr = dz = H) and
integrating numerically. Each Fourier transform is hence denoted as a
complex vector. The first Nθ (most energetic) modes have been used such
that the total energy of the field is given as Etot = ∑︁Nθ/2

m Em. This method
follows that described in COCLE.

Flow stages Four distinct stages can be identified during the simulation.

1. Transient stage τ ≤ 25: The ring geometry relaxes and approaches
a steady flow pattern. Excitation modes are energetically too weak to
be easily identified.

2. Linear stage 25 ≤ τ ≤ 80: The fastest growing (linear) eigenmodes
begin to dominate transients.
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3. Non-Linear stage 80 ≤ τ ≤ 150: Higher wave number modes grow
more rapidly than the first eigenmodes.

4. Saturation & decay stage 150 ≤ τ : Instabilities saturate and the
turbulent decay process begins.

These phases shall be inspected chronologically in the following. A visuali-
sation of the process is given in Fig. 5.8 and 5.9.

0

90

70

100

80

120

Figure 5.8: The evolution of the vortex ring. Two isocontours of vorticity are
visualised. The color scale indicates ωz, initially zero. Normalized time τ shown.

Transient stage As described in the heuristic model of Maxworthy [129],
a region of low energy vorticity is shed by the ring after it has been entrained
from the upstream fluid. This can be identified with a dividing streamline
which becomes steady within the transient stage. Prior to this, a low-energy
vortical wake is left behind by the translating ring. This wake is initially
visible and eventually vanishes due to viscous diffusion. This is observed
in the simulations and is shown in Fig. 5.10. After a certain translation
distance the initially toroidal isocontours of the ring become flattened out
such that they take on a more elliptical shape. This is due to the self-induced
strain field of the vortex ring, as described and observed in Stanaway et
al. [122]. This is seen by inspecting the vorticity contours for τ = 20 in
Fig. 5.10. These are reminiscent of the Hill’s spherical vortex as described
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0 70 80

90 100 120

Figure 5.9: The evolution of the vortex ring perpendicular to the axis of symmetry
z. Visualised are two isocontours of vorticity. The color scale indicates ωz, initially
zero. Normalized time τ shown.

in Appendix C or the family of quasi-steady Hill’s-like axisymmetric vortex
rings described in Norbury [130].

Linear stage The development of the flow field in time is seen in Fig. 5.11.
The initial distribution is essentially unperturbed and the vortex ring trans-
lates as expected. The relative modal energies is shown in Fig. 5.12 for the
first 10 modes. It can be seen that modes 6, 7 and 8 appear to show the
quickest growth in the simulations here, in agreement with COCLE. The
modal energies have been used to numerically estimate the modal growth
rates αm = (2Em)−1dEm/dt, shown in Fig. 5.13. The agreement of the
7th and 8th modes in particular is seen to be excellent. The factors for
the second mode α2 is not shown as E2 still displays oscillatory behaviour
at τ = 45, this is also seen to occur in both COCLE and SH. In SH it is
suggested that these modes are perhaps forced by the axisymmetric core
unsteadiness, which has a much larger time scale compared to the growth
rate of E2. It is observed that the 6th azimuthal mode dominates the linear
stage as shown in the cross-sectional vorticity seen at approximately τ = 80
in Fig. 5.11 and 5.8. This is in disagreement with COCLE, where m = 7
dominates, is however in agreement with SH, where modes 5-7 dominate.
It is suggested in COCLE that this may be erroneous due to the use of
periodic boundary conditions in the translation direction.
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Figure 5.10: The low energy wake trailing the ring at τ = 20. The streamlines
around the ring have begun to form elliptical contours.

40 70 90 100 120

Figure 5.11: Planes through the vorticity centroid of the translating ring- colour
scale represents vorticity magnitude. Normalised time τ shown. The amplification
of the 6th azimuthal mode can be seen, along with the transition into the non-linear
stage at τ = 90. The breakdown beyond saturation is also observed.

Non-linear stage It is seen in Fig. 5.11 and 5.8 that as the nonlinear
stage begins, clefts of concentrated vorticity around the ring are seen. This
is indicative of secondary radial extrema. A lateral visualisation looking
perpendicular to the azimuthal axis is given in Fig. 5.9. There it is seen
that these clefts locally induce a displacement in axial direction of the
surrounding ring segments. The modal growth rates for τ = 100 are shown
in Fig. 5.13. The growth rate of dominant low wave number α2 is seen to be
captured well. In addition to this the amplification of E12 is seen to agree
in both cases. As most linearly amplified mode predicted is m = 6, it is
clear that E12 represents the first harmonic of the dominant mode. The
higher modes are also seen to be growing m = 17, 18 and 19, these are then
the third harmonics. Besides slightly higher prediction of the growth rates
of modes 5 and 6 (and their harmonics), the general trends align well with
COCLE.

98



Chapter 5. Flow Solver Validation

0 20 40 60 80 100 120 140 16010−4

10−3

10−2

10−1

100

Normalised time τ

Em
Etot

m = 1
m = 2
m = 3
m = 4
m = 5
m = 6
m = 7
m = 8
m = 9

Figure 5.12: Fractional modal energy. It seen that modes 6-8 have the quickest
growth through the linear phase.
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Figure 5.13: Modal growth rates αm of the azimuthal modes for the low Re vortex
ring. Displayed are the growth rates for the linear stage τ = 45 (left) and for the
transition stage τ = 100 (right).

Saturation and decay stage As is seen in Fig. 5.11 at the end of the
nonlinear stage, the saturation point is reached: The modal energy growth
is constrained by the appearance of strong turbulent diffusion and the
flow enters into a turbulent decay regime. The breakdown of the ring is
accompanied by the injection of mass into the wake as seen in Fig. 5.9. The
azimuthal modes become visually indiscernible and all large scale energy
cascades down into turbulent eddies. The spectral energy distribution has
been plotted in Fig. 5.14. The dominance of the 6th mode is seen in the
linear stage at τ = 80. After saturation and partially into the turbulent
decay phase, it can be seen that the k−5/3 Kolmogorov scale characteristic
of isotropic turbulence is approached [131, 132].
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Figure 5.14: Spectral energy distribution as a function of azimuthal wavenumber
in the transient, linear and decay phases.
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Figure 5.15: Planes through the vorticity centroid of the translating ring. Nor-
malised time τ shown. The amplification of the 11th azimuthal mode can be seen.
The breakdown beyond saturation is also observed. Color scale represents vorticity
magnitude.

5.1.6 Case 4: High Re Perturbed Vortex Ring

A second unsteady vortex ring test is carried out here here for a higher Re
number ring. This case was chosen for the RVM turbulence model, as the
decay phase should be better captured by this model. This is because the
RVM model is guaranteed not to dissipate in the well-resolved flow region
[76]. The case investigated is essentially identical to the previous unstable
ring test, however with a modified initial ring distribution.

Simulation parameters The ring has a higher Reynolds number of Re
= 25K and a smaller initial core size of σ = 0.2R. For this reason the
grid is also refined to H = 0.02R. The excitation has been reduced to
ϵ = 1e−3R. The modal excitation was again carried out for modes up to
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Figure 5.16: The evolution of the vortex ring for the case Re = 25K. The color
scale indicates ωz, initially zero. Normalised time τ shown.

m = 24. The small-scale filtering as described in Chapter 2 was carried
out on the vorticity field twice in order to achieve a 2nd order filter. The
Smagorsinki constant for this filter was taken from the PhD thesis of Cocle
[76]: C{2}

r = 0.0476.

Linear stage In general, increasing the ring Re results in a higher domi-
nant unstable mode. This is observed to be the 11th azimuthal mode for
this test case as seen in the vorticity cross-sections for τ = 50 in Fig. 5.15.
This is also seen in the growth of E11 in Fig. 5.18. This initial growth of
the perturbations of the 11th mode are observed in Fig. 5.16 where not only
radial perturbations are visible, but also a nonzero ωz component appears.
An approximation to the most amplified wave number as a function of
time N(t) based on analytical arguments was given by Saffman [126]. This
is a function of the velocity profile in the core. The reader is referred to
SH and COCLE, the calculated function will be stated directly here as
N(t) = 2.51R [1.12091

√
σ2 + 4νt]−1. In the linear stage of the evolution of

a ring with these kinematic parameters, this predicts that the 11th mode
will grow most quickly. The simulated behaviour here therefore agrees with
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ωx ωy ωz

Figure 5.17: Vorticity at τ = 80 through the vorticity centroid of the ring along
the plane z=const. The formation of eddies of variable scale is visible, particularly
in axial direction.

the predictions of Saffman.

Nonlinear stage The nonlinear stage is reached much earlier in the
present simulation (τ ≈ 60) than for the equivalent test in COCLE. This
is certainly explained by the coarser resolution in the present simulation,
which is roughly twice the grid size used in the work presented there.
The simulation may hence be slightly under-resolved here which amplifies
the nonlinear effects. For purposes of inspection of the RVM model this is
secondary. Similar flow phenomena are observed as for the low Re case
where azimuthal segments of the ring fold upon themselves and act to
amplify the nonlinear growth as is seen in Fig. 5.16.
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Figure 5.18: Fractional modal energy. It is seen that mode 11 has the quickest
growth through the linear phase.
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Saturation and decay stage Fig. 5.18 shows that the modal growth
has essentially saturated by τ ≈ 70. The larger flow structures, although
somewhat still present at τ = 80, have begun to decay into smaller eddies.
This is visualised for the ring cross section in Fig. 5.17. It is also observed
in Fig. 5.16 that fine-structured secondary filaments are formed which wrap
around and permeate the vortex ring. The spectral energy distribution is
given in Fig. 5.19. Here, as with the previous case, the dominant modes
are seen in the linear phase and the k− 5

3 Kolmogorov scale characteristic of
isotropic turbulence is approached.
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Figure 5.19: Spectral energy distribution as a function of azimuthal wavenumber
in the transient, linear and decay phases.
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5.2 Flow Solver Performance Analysis

In order to demonstrate the performance of the library and theoretical
benchmarks, an investigation of the calculation time and memory require-
ments for a range of problem sizes has been carried out. To enable a better
overview of the results and implementation, a review of the parallel process-
ing architectures is first given. Following this, the efficacy of the MLMIC
method has been evaluated using direct evaluation as a benchmark. Compu-
tational expense along with memory demands of each solver are individually
investigated and important bottlenecks and opportunities for optimisation
are highlighted. The scalability of the solvers is then investigated for appli-
cation in high-performance computing (HPC) cluster environments. Finally
a comparison between all implementations under equivalent conditions is
carried out to identify the most practical use cases.

5.2.1 Parallel Processing

Two parallel processing architectures have been employed here to improve
computational efficiency. These are described here prior to their application
in the performance evaluation which follows. Suitable hardware parameters
are discussed along with ideal application cases.

OpenMP The shared-memory multi-processing platform OpenMP has been
applied here to allow parallel processing on central processing unit (CPU)
nodes [115]. In order for portions of the calculation to be efficiently computed
concurrently, there must be very little or no data dependencies between the
threads. An example of this in the VPML library is the source preparation
(hereafter source prep) step. This begins with source binning, where
nodes are sorted into their corresponding spatial box, a process of almost
negligible computational expense. Prior to the global anterpolation and
interaction steps of the MLMIC method, the data within each box must be
locally prepared for subsequent steps (this varies for each solver and shall
be detailed in the proceeding section). This process requires essentially no
communication between boxes, and is hence suitable for parallel calculation
with OpenMP. In fact, the VPML library has been deliberately programmed
in such a way that processes which occur on data within boxes have
been compartmentalised within box objects in order to enable parallel
calculations. These processes include source, probe, and output prep
steps. These processes can be executed in parallel over all box objects.
Minimal memory overhead is incurred and theoretical scaling proportional
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to the number of available processors on the machine Nc should be attained.
This formulation furthermore makes the library amenable to execution
within a HPC framework with CPU nodes.

OpenCL The platform-heterogeneous framework OpenCL has been applied
here for data-parallelised computing carried out on the graphical processing
unit (GPU). The GPU is generally more suitable for cases with a very large
number of low-complexity calculations with high data-dependency. An ideal
application of this is the direct evaluation problem, where the influence at
each evaluation point requires accessing the data of all source particles. The
high bandwidth achieved by having a very large number of processors acting
on a simplified kernel makes this O(N2) process highly amenable to GPU
treatment. Following the same argument, matrix multiplication is an ideal
application being calculated on the GPU. This is a high-bandwidth problem
with a very low-complexity kernel. The library has been prepared in such
a way that high bandwidth processes such as these can be calculated on
the GPU. A disadvantage here is the overhead incurred by data transfer
between CPU and GPU. Depending on problem size this can constitute a
significant portion of the execution time and is highly hardware dependent.

Hardware description The tests here were carried out on a desktop
with the following hardware:

• CPU: AMD Ryzen Threadripper (1950X): 16-cores, 3.40 GHz clock
frequency

• GPU: AMD Radeon RX Vega (GFX900): 64 compute units, Max
work group size 256, 1247 base frequency.

• Installed Memory: 32 GB RAM

The GPU however certainly does not reflect the state of the art and for
some of the software implemented is not an optimal setup. This will be
detailed in the following sections.

5.2.2 Direct Evaluation

The computational expense of carrying out the direct particle interaction
for a range of problem sizes has been investigated. This allows comparison
to the MLMIC method in the following section and furthermore allows
investigation of theoretical problem scaling. The geometry of a vortex ring
has again been used and was generated as described in the previous section.
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The problem size was modulated by adapting the grid size H- the grid sizes
are described in Table 5.2.
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Figure 5.20: Direct evaluation of the test geometry with N particles. Left: GML
(velocity and stretching field), Right: PML (stream function). The dashed line
represents the theoretical scaling O(N2).

OpenMP Displayed in Fig. 5.20 is the computation time T (wall time) for
a direct evaluation of the particle set for a range of problem sizes on the CPU
with Nc parallel threads. A few points should be made here: It can be seen
that T in inversely correlated with Nc, the number of concurrent threads
being used suggesting that the parallelisation is functioning accurately.
This will be detailed further in the scalability examinations carried out
in the proceeding section. The theoretical scaling of the direct evaluation
O(N2) is also captured. Both kernel types of interest in the work here have
been tested, the BS kernel for the GML solver and the SF kernel for the PML
problem. The problem scaling in both cases is seen to be essentially identical,
however the computation time for the SF kernel is significantly lower due to
the greater complexity of the BS kernel. It is also observed that as suggested
above, the overhead incurred by applying OpenMP is independent of Nc.

OpenCL Also shown in Fig. 5.20 are the computation times on the GPU.
Here one sees precisely how suitable direct evaluation problem is for GPU
calculation, for larger problem sizes the GPU time is more than two orders of
magnitude faster than the equivalent calculation on the CPU. This however
is constrained by the additional overhead in passing the data between
CPU and GPU as described previously. This is seen by the flattening
curve for lower particle counts, where for small N the overhead required
makes calculation on the GPU less beneficial. Despite the drastic increases
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in computation potential achieved, the unfavorable O(N2) scaling of the
evaluation is still observed.

5.2.3 MLMIC Evaluation

Each implementation has applicability depending on available resources
and choice of solution method. For each solver, a range of resolutions shall
be investigated in order to demonstrate the scaling of the libraries. The
three MLMIC solver configurations employed in the work here have been
investigated: the GML solver, the PML solver and the monolithic PML solver.
Computational steps have furthermore been classed into four categories:
input preparation, far field calculation, near field calculation and output
preparation in order to identify bottlenecks and optimisation potential.

Table 5.2: Simulation Parameters: Number of active boxes NB

H [m] N NB-GML NB-PML NB-PML mono
0.258 308 8 (1) 8 (1) 152 (2)
0.175 1016 24 (1) 8 (1) 152 (2)
0.123 2984 32 (1) 8 (1) 152 (2)
0.082 10147 64 (2) 24 (1) 240 (2)
0.057 29580 160 (2) 32 (1) 240 (2)
0.038 99078 368 (3) 64 (2) 344 (3)
0.0265 292522 992 (3) 200 (2) 552 (3)
0.0176 999268 2816 (4) 448 (3) 872 (3)
0.0122 3003902 8018 (4) 1168 (3) 1408 (4)
0.00815 10077655 25352 (5) 3734 (4) 2864 (4)

Problem description The ring geometry generated for the previous test
cases has been exploited once more with variable grid sizes H and variable
polynomial order P . The problem size for each grid resolution is given in
Table 5.2 for each solver. The number of active boxes NB is shown, along
with the branch level reached in the MLMIC integration in parentheses.

GML Solver

The performance of the GML solver is shown in Fig. 5.21. The calculation
time for different values of P is given there. It can be seen that the behaviour
for 105 ≤ N ≤ 106 appears to behave linearly, however the cost increases
beyond this point. The explanation for this is found when analyzing the
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computation of the near field step, described below. For large N , the near
field step dominates the computational expense. Although results for P = 1
are possible, these are omitted here for consistency with the PML solver
routines. The integration has been broken up into four steps with the
relative time of each step χ = Ti/Ttot displayed in Fig. 5.21.

103 104 105 106 107101

102

103

104

105

106

N

T [ms]

P = 2 P = 3
P = 4 P = 5
P = 5 TS512 P = 6
O(N)

103 104 105 106 107
0

20

40

60

80

100

N

χ[%]

Input Prep
Far field
Near Field
Near Field TS512
Output Prep

Figure 5.21: Left: Calculation time as a function of particle size for different
polynomial orders: The dashed line represents an O(N) complexity. Right: Relative
time for calculation steps (P = 5). The performance increase by using tile size
TS = 512 is also demonstrated.

Input preparation: This is composed of source and probe binning and
anterpolation to the base box source nodes. This is seen inf Fig. 5.21 to be
a relatively negligible portion of the calculation time, particularly for very
large particle counts.

Far field calculation: This is composed of anterpolation up the to nec-
essary box level (shown in parentheses in Table 5.2), calculation with the
interaction templates, and finally interpolation down to the base box level.
The majority of the calculation time of this step is the multiplication of the
interaction matrices. The multiplication is carried out on the GPU using
the open-source software CLBlast [112]. It can be seen that this consumes a
very large portion of the calculation for smaller particle sets and constitutes
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the main reason why the MLMIC method is not beneficial for particle sets
with small N .

Near field calculation: This step calculates the interaction between
neigboring boxes and is seen to dominate the computation time for large N .
This has been implemented in OpenCL as this problem is well handled there.
For optimised execution on the GPU these interactions are grouped into
tiles of size TS, which dictates the number tasks on each GPU processor
node. TS greatly impacts performance as a choice below the average number
of nodes in a box results in a scaled number of tile-tile interactions which
increases overhead and switching time on the GPU. The GPU chosen here
has a maximum work group size of 256. For the choice Hb = 8H, a
densely populated box contains up to 512 source nodes, implying additional
partitioning. To investigate the effect of this, an equivalent calculation was
carried out on a more performant GPU with TS = 512. The results are
seen to drastically reduce the computational expense and the scaling of
the expense approaches the optimal complexity O(N) as expected from the
theory.

Output preparation: Far field influence (velocity and stretching term)
is interpolated from receiver nodes within the base box level to probe nodes.
Calculation time here is greatly reduced by storing interpolation matrices
in the input prep step. This too contributes negligibly for N large.

PML Solver

The performance of the PML solver with solver is shown in Fig. 5.22. There it
can be seen that the behaviour for large N optimally scales with complexity
O(N). As with the GML solver, the near field step generally dominates
computational expense. Solution with P = 1 is not possible as interpolation
at the box boundary for the Poisson boundary condition requires at least
two receiver points in each spatial direction. It is also observed in Table 5.2
that the number of active boxes NB is greatly reduced as compared to the
GML method. This lies purely in the fact that for the PML solver HB = 16H
rather than 8H for the GML solver, and hence base boxes are physically
larger (the motivation for this is described in Section 5.1.1). The integration
has been broken up into four steps with the relative time of each step
χ = Ti/Ttot displayed in Fig. 5.22. Each step is executed in parallel with
OpenMP with the exception of the near field step, which is carried out on the
GPU with the near field interaction matrix. As shall be detailed later, the
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evaluation of the FP solver within the input prep and output prep steps
does not occur in parallel.
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Figure 5.22: Left: Calculation time as a function of particle size for different
polynomial orders: The dashed line represents an O(N) complexity. Right: Relative
time for calculation steps (P = 5).

Input preparation: This step is much more involved than for the GML
solver. Initially source and probe binning is carried out. Anterpolation to
the base boxes source nodes is then carried out. Thereafter, the sources are
mapped to the Eulerian grid. The first FP computation is executed and the
boundary forcing γ⃗ is calculated from the homogeneous potential ψ⃗0 for use
in the near field step.

Far field calculation: This is essentially identical to the GML case, how-
ever in this case the SF interaction template is being calculated which
requires only three large matrix multiplications. This is seen in Fig. 5.22 to
constitute a minimal portion of the calculation.

Near field field calculation: The interaction template calculated in the
pre-processing step is used to express the near field calculation as a very
large matrix multiplication. In this case the matrix multiplication is seen
to dominate the calculation expense. Calculations with a more performant
GPU were seen to greatly reduce the expense of this step.
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Output preparation: The second FP computation is executed and finite
differences are calculated within each base box. This constitutes the majority
of the expense in this step. Optimisation of the FD calculation for example
on the GPU would likely greatly improve performance here.

Monolithic PML Solver

The performance of the monolithic PML solver is shown in Fig. 5.23. The
procedure here is similar to that carried out for the PML solver. The resolution
of ψ⃗ is achieved however on a single monolithic Eulerian grid, to and from
which ω⃗ and ψ⃗ must be transferred from the individual boxes. Here, the
desired optimal scaling is again observed, however the computation time is
seen to be significantly lower than for the other solver configurations. This
is primarily due to the reduction in expense achieved by utilising the FP
grid solver. The integration has been broken up into four steps with the
relative time of each step χ = Ti/Ttot displayed in Fig. 5.23. As a global
boundary solve is executed here there is no need for a near field evaluation.
The solution of the boundary condition ψ⃗ is conceptually similar to the far
field evaluation of the previous solvers as this is performed with the MLMIC
method.
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Figure 5.23: Left: Calculation time as a function of particle size for different
polynomial orders: The dashed line represents an O(N) complexity. Right: Relative
time for calculation steps (P = 5).
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Input preparation: This is carried out as with the PML method, however
rather than carrying out the first FP solve, ω⃗ is mapped to the monolithic
grid.

Boundary condition: In this step, anterpolation, interaction and inter-
polation are carried out to calculate the value of ψ⃗ on the boundary of the
monolithic grid. This explains why, for an equivalent particle count NB

is greater for the monolithic PML solver as compared to the PML solver in
Table 5.2. Furthermore, beyond a given dimension the number of active
boxes NB becomes smaller than for the standard PML solver. This can
be explained by considering a monolithic grid with side length NB. The
number of proactive boxes evaluated in the MLMIC method scales for the
monolithic solver as N2

B,S , as values on the boundary values are evaluated
for the BC calculation. In comparison, for the volume in the PML solver the
number of proactive boxes scales as N3

B,S . For large N , this constitutes only
approx. 5 % of the calculation time.

Poisson calculation: Fig. 5.23 demonstrates how optimised the FP solver
is, as the entire volume calculation constitutes only approx. 5 % of the
calculation time for large volumes.

Output preparation: This process is carried out as with the PML solver,
however rather than carrying out the second FP solve, ψ⃗ is mapped back to
individual boxes and consumes the majority of the calculation time.
The analysis demonstrates that there exists significant optimisation potential
for the use of the monolithic solver, provided the input and output steps are
carried out on the GPU rather than the CPU. An important observation
here is that for a large N , the expense of the boundary condition evaluation
is equivalent to that for the FP solver.

5.2.4 Scalability

Results presented previously are based upon execution on a device with both
CPU and GPU nodes, which allows for the optimisation of key processes.
The results presented here are carried out purely only multiple CPU nodes
the analyse the transferability of results to a HPC architecture. Certain
processes within the VPML library have not been parallelised, eg. the
Octtree data structure. These processes generally contribute negligibly
to the calculation expense and are not expected to be bottlenecks within
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the range investigated here. Two forms of scaling with multiple processors
are commonly investigated for a problem with Nc nodes and U unknowns:
Weak scaling, where U is increased proportionally to Nc and strong
scaling, where the U is held fixed for variable Nc [76]. In the VPML library,
box operations are carried out in parallel over Nc nodes and the box count is
proportional to the grid size Hb = nH. A given problem hence scales with
the number of resources, corresponding to weak scaling [96]. Let T (Nc, U)
be the calculation time necessary to solve a problem of U unknowns using
Nc cores, then the weak scaling ηweak is given by:

ηweak = T (N ref
c , U ref )

T (Nc, SU ref ) , S = Nc

N ref
c

. (5.11)

The ring geometry used in the previous test cases is unsuitable as U ref does
not scale linearly with Nc due to the geometry. For this reason the four-
vortex wake system described in Chapter 6 has been used here and configured
to ensure linear scaling. Results are shown in Fig. 5.24. The GML solver is
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Figure 5.24: Weak scaling of the problem based on Nref
c = 4. Dashed line represents

a serial problem scaling.

seen to scale optimally. For the PML solver however a decrease in efficiency
is seen. The bottleneck of the simulation in this case is the FP solver
utilised, which was unable to be executed over parallel threads. Within a
devoted HPC environment this bottleneck is avoided due to multiple library
instances. Despite this, the relatively low cost of the FP solver over each
box is seen to not be a complete bottleneck as the efficiency is still well
above that of serial scaling, represented by the dashed line in Fig. 5.24. The
use of hyperthreading was observed to reduce performance when Nc > 16
was used.
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5.2.5 Solver Comparisons

In order to identify optimal application cases the solvers are compared here.
The static and dynamic memory demands of the solvers are first inspected,
followed by simulation times. Based on the results of this section a general
summary is provided.

Memory Overhead

The run-time memory requirements of the solvers has been investigated for a
range of problem sizes. The results here are valid for single-precision floating
point accuracy and are displayed in Fig. 5.25. The memory consumption is
broken up into static and dynamic memory overhead.

0 0.5 1
· 107

0

2

4

N

M [GB]

0 0.5 1
· 107

0

5

10

15

20

N

GML
PML
PML mono

Figure 5.25: Memory requirements for a range of problem sizes. Left: Static
memory, Right: Dynamic memory.

Static overhead This includes memory allocated in pre-processing, prior
to the solution step. It is seen on the left hand side of Fig.5.25 that the
GML solver has the lowest static overhead. In this case the static overhead
is simply the three interaction templates of the BS kernel. The overhead
increase with problem size for all three solvers is due to storage of the particle
set data. Although the PML solver only requires a single interaction matrix
for the SF kernel, a much larger initial overhead is required due to storage
of the near field interaction matrix necessary for the James algorithm. In
the case of the monolithic Poisson solver the monolithic grid is allocated in
the pre-processing step, indicating why the overhead grows and eventually
becomes expensive for greater particle sets.

Dynamic overhead This is allocated during an integration step. It
includes the storage of all MLMIC tree elements, source and receiver grid
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node data and an/interpolated data values. On the right hand side of
Fig. 5.25 the GML and PML monolithic are seen to have linearly increasing
overhead. This is a logical progression as the problem size directly influences
the box count Nb, which for uniformly distributed particles grows linearly
with particle set size for a given minimum box size Hb = nH. The PML
solver is seen to consume approximately double the memory. This is well
explained due to the implementation of the PML solver, which for each base
box allocates two Eulerian grids: one for solution of ψ⃗0, and a second for
the full solution ψ⃗ = ψ⃗0 + ψ⃗1 as described in Chapter 4.

Simulation Time

The total simulation time for a single integration for the implemented solvers
and direct evaluation is compared for two polynomial orders in Fig. 5.26.
In general it seen that direct evaluation is the most efficient method for
N < 105. This limit is certainly hardware specific and should be expected
to increase as general GPU technologies improve. Above this count the
unfavorable O(N2) complexity becomes impractical. The GML solver is seen
to be more efficient than the PML solver for N . 3e5. This number however
is expected in general to be much lower when the FP solver no longer causes
a multithreading bottleneck, in which case the entire PML curve practically
will shift down by a constant factor. The overhead of the monolithic Poisson
solver is seen to be impractical compared to the GML method for N < 104.
For N > 104 however the monolithic Poisson solver is seen have the best
performance.

Summary and optimal solver choice

The choice of an optimal solver is very much application-dependent. If
turbulent diffusion is to be modelled, then a PML solver must be implemented,
in this case if the overhead memory costs of the monolithic PML solver are
not constrained by the hardware, it achieves the quickest result. It is, as
outlined in the objectives in Chapter 1, the optimal choice for a single desktop
environment with a CPU-GPU combination. If however a HPC cluster is
being used, the standard PML solver demonstrates the most potential to
reduce calculation time as the procedure is the most amenable to distribution
over a high computational node count.
If turbulent diffusion is not being modelled, for particle counts N < 105,
direct evaluation on the GPU produces the quickest results.
It should be additionally noted that in the case the sparse particle sets are
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Figure 5.26: Calculation time for VPML solvers and direct evaluation. Left: P = 2,
Right: P = 5.

being modelled, the PML solver option is unsuitable as described previously.
In this case either direct evaluation or the GML solver should be applied, the
optimal choice is again dependent upon particle set size.
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Chapter 6 Flow Solver Application

A number of application cases have been simulated here in order to demon-
strate the domain of applicability of the VPML library. Following the objec-
tives outlined in Chapter 1, the desired application here is the calculation
of the wake of a wind turbine, however the solver should be capable of
simulating other aerodynamic flows. For this reason four application cases
have been simulated:

1. Spatially developing wake of an elliptic wing
2. Periodic four-vortex wake of an aircraft
3. Spatially developing wake of a horizontal axis wind turbine, and:
4. Periodic wake of a horizontal axis wind turbine.

These cases demonstrate the ability of the solver to handle a range of
aerodynamics flows. Furthermore, all simulations have been carried out
on a desktop computer, demonstrating the ability of the solver to resolve
highly detailed flows without requiring high power computing resources. It
should be noted here that the simulated cases do not represent exhaustive
studies, but rather are intended to illustrate the domain of application of
the VPML library.

Treatment of Vorticity Flux

For cases of validation in Chapter 5, an initial vorticity field was specified
and allowed to evolve in time. As no circulation was introduced into the
system, one expects the net circulation of a material volume containing all
particles to remain constant, this was indeed observed numerically. In many
cases of practical interest, circulation flux into the system occurs through
regions of shear flow. The introduction of a vorticity flux is achieved by
introducing the concept of a spatial and material source elements.
Material source particles are convected with the local velocity field.
Position and strength are updated at every time step as per the VTE by
treating each source as a probe. All validation cases in Chapter 5 were
composed completely of material source particles.
Spatial source particles have prescribed position and strength and are
hence not treated as probes. These are not convected and represent the
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effect of vorticity flux into the flow domain. Spatial source elements are not
remeshed.
For simulations with vorticity flux, the two particle types listed above can
be combined to yield a representative vorticity field. The location and
strength of the spatial elements is prescribed, this is further detailed in
Sections 6.1 and 6.3. Vorticity flux into the flow domain is achieved by
generating material elements at regular intervals which are duplicates of the
spatial elements. These, unlike the spatial elements are allowed to freely
convect, this is illustrated in Fig. 6.1 for a simplified 2D flow.

U∞

t = t0 t = t0 + dT

Figure 6.1: An illustrative flow around a 2D cylinder. Vorticity generating regions
are represented with spatial source particles (filled points), these are specified and
occupy source cells. Vorticity flux into the flow is represented with material source
particles (hollow points). Only material elements are convected and updated.

The cells in the flow domain occupied by spatial source elements– hereafter
referred to as source cells– are marked at the beginning of a time step
and they alone specify the vorticity contribution of elements within this cell.
This is equivalent to stating that the global vorticity field around a body is
dominated by the effect of the body on the flow field. This approximation
is valid for many cases of practical interest and avoids numerous numerical
issues which result from overlapping material and spatial source particles.

6.1 Case 1: Space-Evolving Wake of a Wing

In this case the ability of the solver to capture the development of the space-
evolving wake behind a lifting surface shall be demonstrated. The wing is
modelled as an equivalent vorticity source distributed along the y axis in
a flow field with freestream velocity U∞ e⃗x. The wing has span b = 1 m,
extends along the y axis between − b

2 ≤ y ≤ b
2 and has the circulation

distribution γ(y) e⃗y.
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Specification of circulation γ It is assumed that the wing has an elliptic
planform and constant geometric angle of attack α(y). Under the assumption
of potential flow and thin airfoil theory, the classical lifting line theory due
to Prandtl [133] gives for the circulation distribution:

γ = Γ
[︄
1 −

(︃2y
b

)︃2
]︄

,
∂γ

∂y
= 4Γ
b2

[︄
1 −

(︃2y
b

)︃2
]︄−1

. (6.1)

The lifting line here is here approximated by a set of vortex segments aligned
along the y axis with strength γ(y) dy where dy is the length of the segment.
The wing segments are distributed with a cosine spacing in order to improve
resolution near the blade tips, where the trailing vorticity is greatest. An
inspection of the Laplace equation for potential flow (the mathematical
expression of Helmholtz’ second theorem) implies that any variation in
circulation generated along the spanwise direction is accompanied by an
equivalent change in streamwise direction. In this case this is a vorticity
shed into the wake with magnitude ∂γ

∂y dy e⃗x. For the simulations here the
wing circulation has been chosen to have unit strength, Γ = 1 m2s−1.

Spatial and material source generation This distribution is sufficient
for the description of the GML particle distribution, where each segment
introduces an equivalent vortex particle into the flow region. For the PML
method, a continuous distribution of vorticity is desired. This is achieved
by performing a spatial convolution over the lifting line with an appropriate
kernel, a 2D Gaussian kernel has been chosen here:

ω(y, z) = 1
2πσ2

∫︂ b/2

−b/2
γ(Y )

⎡⎣exp
(︄

−(y − Y )2 + z2

2σ2

)︄⎤⎦ dY , (6.2)

where this is carried out sequentially on each vortex element. This method
allows a generalized vortex filament to be represented as a volume distribu-
tion. Both representations are visualised in Fig. 6.2. It is observed that the
segment distribution for Eq. (6.2) does not need to be uniformly distributed,
allowing an improved convolution in regions of higher gradient, such as near
the wing tip.

Simulation parameters The wake has been simulated with both the
GML and PML solvers. For the GML solver, the lifting line alone has been used
to generate the source particles. Here no remeshing or vorticity divergence
filtering has been carried out. For PML solver, source particles are generated
with the convolution of Eq. (6.2) with a Gaussian smoothing parameter
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Figure 6.2: The wake vorticity distribution of an ideal elliptical wing. Spatial
source elements for the GML solver are shown with points. For the PML solver the
continuous distribution achieved through convolution (6.2) is also displayed.

σ = 0.05 b. The problem here is treated to be symmetric about the y axis.
Employing the symmetric treatment described in Section 4.1.6 hence reduces
computational expense by a factor of two. Material particles are generated
every 10 time steps. The wing remains stationary in an inflow field with
U∞ = 2.5, 5, and 10 ms−1. Material particles are generated every ten time
steps, Ngen = 10 and the simulation time step dt is chosen such that a
material source particle is convected a distance dx approximately one cell
distance away H from the spatial source positions every Ngen time steps:
dx = H ≈ dtU∞Ngen → dt = H/(U∞Ngen). The cell grid size is chosen to
be H = 0.02 m. This gives a resolution in spanwise direction of 50 elements.
Particle remeshing is carried out only with the PML solver and with the M2
mapping procedure.

Wake development

Here the results for a range of inflow velocities are presented and the
behaviour of the two models is investigated.

Velocity induced by the wing To demonstrate the accuracy of the
induced velocity, a case was generated which mimics the assumptions of the
Prandtl lifting line theory. In this theory the wake is convected only in x
direction and extends to x = ∞ in the plane z = 0 behind the wing. The
particles therefore do not convect in the z of y-directions. A wake sheet
is composed of infinitely many horseshoe vortices. Under this assumption
an analytical result for the induced downwash Uz can be found [134]. In
the case of an elliptical wing, the analytical value of Uz is constant and

120



Chapter 6. Flow Solver Application

has value −Γ/2. The downwash over the semi-span is shown in Fig. 6.3. It

0 0.1 0.2 0.3 0.4 0.5−0.6

−0.4

−0.2

0

0.2

Semi-span y [m]

Uz

H = 0.1 b
H = 0.05 b
H = 0.01 b
H = 0.005 b
Convected
Prandtl

Figure 6.3: The induced downwash due to the idealised wake treatment of the
Prandlt lifting line theory. The prediction of the GML method for numerous grid
sizes are shown. The case of a freely convected wake is also displayed.

can be seen as the grid resolution is increased the induced velocity indeed
approaches that of the analytical solution. The influence which is seen by
allowing the wake to deflect under self-induction for the case H = 0.02 · b is
also shown. This is seen to reduce both the average downwash and and the
downwash in the tip regions.

Tip roll-up The large reduction in circulation at the blade tips implies
that the trailing vorticity shed into the wake is strongest in the tip region.
It is thus expected that the wake sheet rolls up on itself in this region.
The behaviour of the wake is shown in Fig. 6.4 for the three different
freestream velocities U∞ = 2.5, 5 and 10 ms−1. The motion of the wake is
demonstrated for both solvers here. For the GML solver discrete particles
are seen as remeshing is not carried out and the particles are generated
only along the lifting line. For the PML solver, the field is continuously
represented. For this reason, contours of constant vorticity have been
extracted for visualisation. The stronger core seen for U∞ = 10 ms−1 is
explained through the shorter convection time to the given x plane in the
image. Insufficient time has passed for the viscous core to diffuse out, as
compared to the core for U∞ = 2.5 ms−1, where the convection time is four
times greater. Furthermore, the greater convection time for U∞ = 2.5 ms−1

is seen in the GML output. Here the weak center wake sheet is convected
further in negative z direction due to the downwash induced by the tip
vortices.

Starting vortex In a realistic scenario, the lifting vortex does not instan-
taneously develop, but slowly increases in strength during take-off. Much
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U∞ = 10 ms−1

U∞ = 5 ms−1

U∞ = 2.5 ms−1

Figure 6.4: Wake roll-up. Left: Oblique view. Right: View looking down negative x
axis (upstream). Vorticity contours are equally scaled. Each image demonstrates the
results of the GML solver (discrete particles) and the PML solver (surfaces extracted
from the vorticity distribution).

as with the spatial variation of the vorticity over the span, the change in
vorticity is shed into the wake of the aircraft, this leads to a rolling-up of
the starting vortex. This is simulated in the simulations here by adding a
vorticity component to the spatial source particles in the spanwise (y) direc-
tion with magnitude equal to the trailing vorticity magnitude in the initial
stages of the simulation. The formations of the starting vortex is shown for
two velocities for the PML solver in Fig. 6.5. This was also observed for the
GML solver, however the discrete particle treatment led to a less continuous
starting vortex sheet.

Oscillating wing As an illustrative example, the strength of the vortex
was varied sinusoidally in time with a full cycle occurring every 1000 time
steps. Analog to the case previously described, any change in spanwise
vorticity must be accompanied by a change in the shed streamwise vorticity,
this is accomplished by a vorticity component in the y direction, which
gives rise to a von-Karman style vortex street pattern. This is shown in
Fig. 6.6 for the initial simulation stage. It is seen that both solvers gives
rise of a repeated folding of the tip vortices due to the oscillating spanwise
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U∞ = 10 ms−1 U∞ = 2.5 ms−1

Figure 6.5: Starting vortex development.

z

y

x

Figure 6.6: Wake of an oscillating wing. For the time step shown the wake has
extended 2b downstream of the wing. The particle field representation from the
GML solver is shown for y < 0 and contour plots of the vorticity from the PML solver
are shown for y > 0.

circulation being shed. This flow was simulated with the PML until the wake
had reached a distance 10 b downstream of the wing. Contours of vorticity
for this case are shown in Fig. 6.7. It is seen that the folded regions of the
tip vortex eventually form together in viscous merging processes, forming
ring-like structures with their axis parallel to the freestream direction. This
is conceptually similar to the case simulated in Section 5.1.4.

6.2 Case 2: Four-Vortex Aircraft Wake System

In this section the ability of the method to treat high resolution periodic
problems shall be demonstrated. An optimal case for this is a converged
aircraft wake, as the steady pattern formed can be well approximated with
a periodic flow. For the case of a two-vortex system, the well known Crow
instability is known to occur [78]. The slightly more complicated system
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x
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z

Figure 6.7: Wake oscillations 10b behind a sinusoidally oscillating wing. Vorticity
magnitude contours of the PML solver are shown with colour scale based on ωz

magnitude.

investigated here consists of a counter-rotating four vortex system. In this
case not only the long wavelength Crow instability arises, but additionally
a medium wavelength and short wavelength (Widnall) instability also arises
[80]. The flow field is an approximation of the flow field behind an aircraft
and is as described in Fabre et al. [81]. It was found in initial testing
that the use of discrete filaments (filament in this sense refers to a line of
particle, in alignment with the GML methodology) acted to amplify certain
unrealistic modes (this effect was seen elsewhere– see Winckelmans et al.
[82]). This effect can be overcome with the application of suitable filtering,
this however was not done here as vortex filament stability analysis is less
illustrative of the capabilities of the developed solvers. For this reason, the
results presented here pertain only to the use of the PML solver.

Flow description The dominant outer vortices are characterised by a
circulation Γ1 and separation distance b1, the inner vortices by a circulation
Γ2 and separation distance b2, as shown in Fig. 6.8. At initialisation, the
inner vortices are driven downwards by the much stronger outer vortices.
For the counter-rotating configuration, where Γ2/Γ1 < 0, the inner vortices
enter into orbits around the larger outer filaments. A set of natural reference
scales for the system can be defined as follows: Circulation Γ0 = Γ1 + Γ2,
mean vortex separation b0 = (Γ1 b1 + Γ2 b2)/Γ0 vortex mean descent velocity
U0 = Γ0/(2π b0) and mean timescale T0 = b0/U0.
The inner and outer vortices have core sizes σ2 and σ1, respectively. The
parameters chosen here are Γ2/Γ1 = −0.3, b2/b1 = 0.3, σ1/b1 = 0.075 and
σ2/σ1 = 2/3 following numerous references in the literature [81, 82, 28]
which demonstrate that these parameters lead to rapidly growing instabilities.
Filament vorticity is distributed initially with an algebraic core ωx(r) =
Γ
π

σ2

(r2+σ2)2 where r is the distance to the filament centre. The periodic length
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Figure 6.8: Geometry of the model four-vortex wake system shed by an aircraft.

of the domain in the x direction is Lx.

Demonstration of periodicity The periodicity is demonstrated by in-
specting the induced velocities along a vortex filament. In the case of a
periodic representation, the velocity should be independent of downstream
position x due to the 2D nature of the system. This is demonstrated in
Fig. 6.9 where it is seen that the induced velocity becomes constant with
increasing periodic reflections Nper. It is recommended in Cocle et al. [28]
that Nper = 50 is sufficient to remove any far field effects, however in the
work here Nper = 30 proved to be perfectly sufficient.
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Figure 6.9: Induced velocity along an outer vortex

Simulation parameters The geometric parameters defined above allow
for the complete description of the initial flow field, provided any of the
length parameters is explicitly specified. In this case the periodic domain
length Lper is used, as this is a modelling parameter for the periodic solver.
This factor is specified with the number of base boxes in the periodic
direction within the periodic domain NBper. The simulation parameters
as described in Section 5.1.1 have been used with a grid spacing of H =
0.02 m.The filaments were specified by defining initially the core centre and
then extruding this in the periodic direction. The initial core position was
perturbed sinusoidally parallel to the periodic direction with the function
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dy = g sin(fx), where the wave number f corresponds to the dominant
instability f = 6.39/b1 and g = b1 · 10−6 m.

Wake Evolution

Two configurations have been investigated, a truncated domain and a full
length domain. These are discussed separately.

Truncated domain- Medium wavelength instability: The periodic-
ity and stability of the configuration is checked by initially carrying out a
truncated simulation at the most unstable wavelength for this problem. This
was found to be the medium-wavelength instability, which has a wavelength
of Lx = 0.983 b1 as described in Winckelmans et al. [82]. The number of
base boxes in periodic direction is set to NBper = 5. This gives a resolution
of 80 elements in periodic direction. The evolution of the particle field is
given for multiple time steps in Fig. 6.10. These results agree qualitatively

τ = 0 τ = 0.33

τ = 0.83 τ = 1.24

Figure 6.10: Simulation of medium wavelength instability for a single wavelength.
Here no turbulence model was used. Two isocontours of vorticity are shown.
Normalized time τ = t/T0 shown.

very well with those presented in Chatelain et al. [83], where a much higher
resolution was applied. It is observed that the weaker inner vortices rotate
around the stronger outer vortices until the perturbation grows and a seg-
ment of the weaker vortex becomes entrained in the stronger vortex. The
process is characteristic of the nonlinear evolution of such an instability
and the resulting hooks which remain are referred to as Omega-loops, due
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to the similarity with the Greek letter. This is will discussed for the full
periodic domain in the following test. If allowed to evolve further, the
smaller vortices are eventually consumed by the larger vortices with only
tailing regions of vorticity remaining. This is comparable to the process of
2D viscous vortex merging processes where one (stronger) vortex dominates
and consumes the second [123]. A Fourier analysis of the modal energies
has been carried out on the flow field with essentially the same procedure
as described in Section 5.1.5. In this case the integration is carried out in
axial (periodic) direction, as opposed to the azimuthal direction for the
vortex ring. This allows the identification of the modal energy growth of
the developing instabilities. This is shown in Fig. 6.11. It is seen that
the medium wavelength instability corresponding to m = 1 quickly grows
beyond τ > 0.5.

Full periodic domain In this case a much larger periodic domain has
been taken. This domain length corresponds to the long wavelength Crow
instability of the corresponding two-vortex system: Lx = 8.53 b0. In this case
NBper = 45 was taken to ensure adequate resolution in periodic direction.
The HV turbulence model has been enabled with Smagorinski constant
C = 6.8 and global time constant T0 following Cocle [76]. The evolution
of this system is shown in Fig. 6.12. In this case numerous instabilities are
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Figure 6.11: Relative modal energy of the four-vortex wake system simulations.
Left: Short domain corresponding to the medium wavelength instability. Right:
Long domain corresponding to the long wavelength Crow instability. Normalized
time τ = t/T0 shown.

seen to occur. The medium wavelength instability seen in the previous test
case also occurs here. In this case the short-wavelength Widnall instability
is also seen to occur within the waves of the medium-wavelength instability,
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particularly during initial growth at τ = 0.75. This mode quickly reaches
saturation and the flow becomes highly turbulent by τ = 1.19. The very
high degree of filamentation here is undoubtedly a result of the specification
of the hyper-viscosity factor C to 6.8, which pushes the dissipation incurred
by the turbulent breakdown to smaller scales. This is observed furthermore
in the spectral analysis of the flow, where the Widnall mode, corresponding
to m = 77 is seen in Fig. 6.11 to grow around τ = 0.7. The dominant mode
remains however the medium wavelength instability, which for this domain
length corresponds to m = 9. It is useful at this stage to observe that the
Omega loops observed in these tests cases are also experimentally observed.
Shown in Fig. 6.13 are experimental visualisations performed in a towing
tank which demonstrate the occurrence of the omega loops in the wake of a
simple lifting body.

6.3 Case 3: Horizontal Axis Wind Turbine

For this case the solver will be applied to simulate the wake of a horizontal
axis wind turbine. A laboratory-scale experimental turbine is investigated.
A number of important flow features shall be shown to be captured by the
VPML library methods. In the cases simulated, the particle count using the
GML solver was relatively low, for this reason direct evaluation using the
GPU within the VPML solver was applied, this shall be discussed later. The
ability of the PML solver to model turbulent shear stresses in the wake shall
be demonstrated.

MexNext experiment The turbine investigated is the experimental
turbine of the MexNext project [136]. The experiments used as a comparison
here were carried out in 2014. The turbine in operation is illustrated in
Fig. 6.14. These experiments were a continuation of the 2006 MEXICO
(Model EXperiments in COntrolled conditions) project carried out in the
same wind tunnel in 2006 [137, 138]. This provides an ideal comparison
case as a relatively complete turbine definition was provided which allows
for numerical reproduction of the experiment. A range experimental data
was data were collected including wake velocity measurements, on-blade
pressure measurements and blade and rotor forces. The blade normal forces
Fx will be used to approximate the blade circulation, which then allows
specification of the shed wake vorticity. These experiments were carried out
in the Large Scale Low Speed Facility (LLF) of the German Dutch Wind
Tunnels (DNW). The turbine is operated in an open test section. This
greatly reduces blockage effects, estimated to be less than 1% [136].
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τ = 0

τ = 0.33

τ = 0.75

τ = 0.86

τ = 1.19

Figure 6.12: Simulation of the medium wavelength instability of a four-vortex
aircraft wake. The domain length in this case corresponds to the wavelength of the
long wavelength Crow instability.
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Figure 6.13: A visualisation performed with luminescent dye in the wake of a lifting
body within a towing tank from Ortega et al. [135]. The Omega-loops of the inner
vortices are reminiscent of those seen in Fig. 6.12.

Figure 6.14: Left: The MEXICO rotor within the open test section. Right: Smoke
visualisation of the tip vortices at TSR = 4.44, taken from [64].

Rotor description The MEXICO rotor has a tip radius R = 2.25 m and
a root radius of 0.25 m. The blade is composed of three distinct wing profiles,
visualised in Fig. 6.15. These airfoils are not directly modelled within VPML
but they shall be used for extraction of the blade circulation, described in
the following section. The blade chord and twist distribution are shown
in Fig. 6.16. The chord distribution is again used only for calculation of
a suitable circulation distribution, the twist however is used to rotate the
circulation distribution out of the rotor plane.
The turbine was operated at a range of tip speed ratios TSR, defined as
TSR = RΩ/U∞ where Ω is the rotation rate of the rotor and U∞ is the
freestream velocity. For consistency with the experiments conducted, the
rotational rate of the simulations is held constant at Ω = 425.1 RPM. The
tip speed ratio is modulated by modifying the inflow speed U∞. The cases
simulated here have been summarised in Table 6.1.
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Figure 6.15: The MEXICO rotor blade.
Dark regions indicate constant airfoil pro-
file. Light regions indicate transition re-
gions, taken from [108].
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Figure 6.16: MEXICO blade
chord and twist distribution.

Table 6.1: Simulated cases of the Mexico rotor.

TSR U∞ [ms−1] Ω [RPM]
4.1647 24.05 425.1
6.6509 15.06 425.1
9.9664 10.05 425.1

Treatment of blade within VPML For consistency with the formulation
of the library, each blade is treated with an equivalent vorticity sheet as
illustrated in Fig. 6.17. A convolution is carried out along the blade axis
in order to produce a vorticity sheet representative of the trailing vorticity
shed by each blade. It is assumed for simplicity that the shed vorticity is
aligned tangent to the blade chord, as such the vorticity sheet is generated
parallel to the freestream (x axis) direction. This is rotated at each time
step with the rotational velocity of the rotor. The blade axis is defined
with the same geometry as the experimental rotor. Specification of the
circulation is required in order to carry out the convolution with Eq. (6.2).
The circulation distribution was calculated by generating a representative
turbine definition within the open-source wind turbine simulation suite
QBlade [139, 140]. Within QBlade a vortex filament lifting line free vortex
wake (LLFVW) simulation can be carried out using vortex filaments. These
have been shown to represent very well the induction due to the wake of a
turbine [141, 142]. The LLFVW calculates blade loads by accounting for
velocities induced by neighboring blade elements and wake filaments together
with tabulated airfoil data to calculate the blade circulation distribution.
The aerodynamic definition of the rotor was specified with the geometric
and polar data provided within the MEXICO data set [136]. A time-domain
simulation was then carried out until convergence in order to extract steady-
state force values. Of the available experimental data for comparison, the
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Figure 6.17: The material source planes which introduce vorticity into the simula-
tion. The traverses used later for the velocity comparison are also shown. Direct
behind the rotor is the radial traverse (red,dashed) and running downstream is the
axial traverse (blue, dash-dot).

blade normal force appeared to be the most reliable, for which reason
this was used in the comparisons. These forces were only recorded at five
positions along the blade, as such the wake and polar parameters were
adapted in order to achieve a visual best-fit for the data points, shown in
Fig. 6.18. The blade circulation was then extracted for these conditions.
The circulation is then used within Eq. (6.2) in order to generate the
vorticity sheet. It should be noted that for lower order methods (e.g. vortex
filament methods) the core size σ of the convolution is optimally chosen
as a function of the local chord length of the turbine [143]. This is seen
here to influence the results significantly, this topic will be further detailed
in the following discussion. The circulation distribution itself is not used,
but rather the gradient ∂Γ/∂s · ds, where s is the coordinate in spanwise
direction. This gradient was calculated from the circulation distribution
with spline interpolation. This distribution must furthermore be multiplied
with the factor r dθ, where dθ is the segment of arc subtended by the blade
in a time step. This ensures kinematic consistency of the vorticity shed in
to the wake. It is observed in Fig. 6.17 that the small chord length and high
vorticity gradient near the tip (see Fig. 6.18) leads to a strong tip vortex,
as is physically expected.

Simulation parameters For the simulations here the grid resolution was
set to H = 0.07, resolving the blade with approximately 30 elements in the
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Figure 6.18: Left: Blade normal force values compared to experimental data (black
markers). Right: Corresponding blade circulation distribution.

spanwise direction. The time step was chosen such that every ten time steps
the rotor has rotated through 1◦, a single rotation is therefore composed
of 3600 time steps. The simulations were run for 20 rotations. Particle set
remeshing, divergence filtering and magnitude filtering occurred every ten
timesteps. New spatial source particle were also seeded into the simulation
every ten timesteps. The blade circulation is initially linearly ramped
up over the first 1.5 rotations of the simulation to avoid spurious initial
transient wake effects. The PML solver was used for the simulations here. The
kinematic viscosity was set to that of air ν = 1.5571 · 10−1m2s−1. All other
solver parameters as are specified in Table 5.1. The RVM turbulence model
has been activated with a second-order small-scale filter and corresponding
filter constant C{2}

r = 0.0476 [76].

Qualititative Wake Development

The results for the PML method for each inspected tip speed ratio are
inspected first. For these tests the James-Lackner method has been used to
treat the near field interactions within the PML solver. The results of both
solvers are then detailed in the following discussion section.

TSR 4.16 At the lowest TSR it is expected that the wake interaction is
relatively weak due to the larger spacing between wake filaments as caused
by the higher inlet speed (larger pitch). This is indeed observed in Fig. 6.19.
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The tip vortices are seen to decay due to the action of viscous diffusion.
The effect of the induction of the wake and rotor is seen to significantly
decrement the flow velocity in the wake region. In reality, it would be
expected that due to the very high angles of attack experienced by the
blades in this operating state that significant regions of separation along
the blade would be observed. This is somewhat predicted by the lifting
line method as seen in the circulation distribution in Fig. 6.18. The VPML
solver currently has no facility to account for this. This effect would also
increase the aerodynamic blockage of the turbine, influencing the velocity
distribution in the wake.

ux

Figure 6.19: Velocity field of the rotor for TSR 4.16 using the PML solver. The
contour shown is an isocontour of vorticity.

TSR 6.65 A visualisation of the flow field simulated by the PML solver is
shown in Fig. 6.20. A number of phenomena can be observed here. The
effect of the root vortex is seen to counteract the deceleration caused by the
blades. This of course is purely a result of the fact that in the numerical
simulations the nacelle is not modelled. In reality there is a dead water
region aft of the nacelle and there would be separation at the root regions
of the blade, it would hence be expected that the flow in this region would
be highly disturbed. The second observation to be made is the apparent
transition of the flow. The entire wake regions appears to transition in the
region D < x < 4D and visually appears to be fully turbulent for x > 4D.
Although visually appearing accurate, it must be stated here that the ratio
of turbulent kinetic energy was not monitored, as such it is quite likely
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that this represents a numerical artifact of the actual turbulent flow, this is
commonly referred to as under-resolved LES. It was furthermore observed
that this transition region was a strong function of the grid resolution H,
as such the filtering procedure appears to be quite grid dependent. As the
purpose of this section is simply to illustrate the efficacy of the numerical
model, a detailed study here is certainly desired to establish how physical
this turbulent region is. A detailed cross-section of the velocity field is

ux

Figure 6.20: Velocity field of the rotor for TSR 6.65 using the PML solver. The
contour shown is an isocontour of vorticity.

shown in Fig. 6.21. Here the entrainment of the irrotatational outer flow
is seen to be occurring in the turbulent region. The ability to capture this
effect is currently restricted to the PML solver, however both the HV and RVM
models allows for the extraction of the SGS viscosity. A possible future
application of the VPML library could be the use of the PML solver to extract
an appropriate spatial description of the SGS viscosity. This could then be
applied with a modified PSE method to model turbulence with the lower
order GML solver for improved lower-order simulations.

TSR 9.96 A visualisation of the wake predicted by the PML method is given
in Fig. 6.22. The wake expansion is much stronger than in the previous two
cases. This is to be expected and is the consequence of the turbine entering
a wake blockage state, where the rotor blockage is too high and energy
extraction decreases. The second observation is that the wake appears to
begin entraining the outer irrotational fluid at an earlier streamwise position
x ≈ 3D, as observed in Fig. 6.23. Equivalent observations can be made
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ux

Figure 6.21: Velocity field of the rotor for TSR 6.65 of the PML solver.

about the turbulence modelling here as with the TSR = 6 case. In the case
here it is desirable to simulated for a longer time period to ensure that the
wake region is fully converged. It can be observed in Fig.6.22 how the wake

ux

Figure 6.22: Velocity field of the rotor for TSR 6.65 of the PML solver. The contour
shown is an isocontour of vorticity.

appears to behave almost as that of a bluff body. This has also been made
experimentally [144]. In this case the individual helices merge together into
a vorticity sheet due to their greater proximity to each other.

Velocity Predictions and Discussion

In order to inspect the performance of the models the calculated velocities
have been inspected and compared to the experimental results and other
results from the literature. As pointed out earlier, for this particle count
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ux

Figure 6.23: Velocity field of the rotor for TSR 6.65 and H = 0.07 m.

the analysis could be carried out with direct evaluation on the GPU. This
was carried out in an earlier implementation of the Green’s kernel (GML
) method within the open-source software QBlade, for this reason the
Green’s results are marked as GML (QB) [70]. In addition to the results
of the VPML library, the results of the LLFVW model within QBlade are
demonstrated for comparison. Comparison is also made to the CFD results
given in the reference document [136]. These were chosen to be the best
and worst performing CFD solvers for each inspected field. The solvers will
be described where necessary.

Radial velocity traverse The first case inspected is the radial velocity
traverse. These measurements were carried out in the plane x = const.
located 0.3 m downstream of the turbine plane along the y axis and is
illustrated with a dashed line in Fig. 6.17. This position is relatively close
to the rotor, however the entire wake influences the induction through the
rotor plane, as such the velocities here are indicative of the integral effect of
the wake.
Comparison is made to the results of two CFD solvers given in the reference
document. The first is the Wind-Multi Block finite-volume solver with a
URANS turbulence model developed at the CFD laboratory of the University
of Liverpool (Liverpool)[145, 136]. The second set of comparison CFD
results were carried out in the Technion University in Haifa, Israel with
the commercial software package STAR-CCM [136]. This also uses a finite-
volume approach, however a steady simulation is carried out with a RANS
k-ω shear stress transport (SST) turbulence model.
The axial velocity predictions are shown in Fig. 6.24. It is seen that for the
case U∞ = 10.05 ms−1 (hereafter high TSR case) the VPML method slightly
underpredicts the induced velocity as compared to the CFD methods. This
disparity is seen to be stronger for the PML solver. It is suspected that this
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Figure 6.24: Comparison to experimental velocities collected along a radial traverse
at x = 0.3 m. Velocity component in x-direction. From top to bottom: U∞ = 10.05,
15.06 and 24.05 ms−1.

is a result of specifying the convolution core parameter σ too low, which
leads to a artificially low induction. This shall be discussed in the following
section. For the case U∞ = 15.06 ms−1 (hereafter design TSR case) this
deviation is not observed as strongly. The agreement generally appears
to be better for both solvers and agrees well with that of CFD methods.
All solvers fail to predict the velocity deficit which appears at r = 1 m,
this is likely caused by effects of the root vortex or nacelle. For the case
U∞ = 24.05 ms−1 (hereafter low TSR case) a large deviation is seen to
be observed from the PML solver, it is suspected that this is a result of the
strong shed vortex at r = 1.5 m which results from the steep change in
gradient at this low TSR configuration, see Fig. 6.18. It can be argued that
the circulation distribution predicted by the lifting line method results in an
unrealistically discontinuous distribution which does not affect the GML due
to the different core parameters used there. This lifting line methodology is
based on a quasi-2D sectional blade treatment and this circulation jump
may in reality be dampened out by 3D effects on the blade, this motivates
a fully 3D treatment of the blade aerodynamics. In general however, it
appears that the predicted trends agree well with the velocity distribution
along the radial traverse.
The radial velocity distribution uy along the radial traverse is shown in
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Figure 6.25: Comparison to experimental velocities collected along a radial traverse
at x = 0.3 m. Velocity component in y-direction. From top to bottom: U∞ = 10.05,
15.06 and 24.05 ms−1.

Fig. 6.25. For the high TSR case all solvers appears to fail to predict an
experimental dip in the radial velocity which occurs due to the tip vortex,
which it is seen has indeed drifted outwards due to wake expansion. The
agreement however between all solvers appears to be quite good. For the
design TSR case the PML solver appears to be the only solver to capture
a peak in the radial velocity profile. All solvers also fail to predict this,
including the GML method, where it is likely that not resolving the tip
vortex leads to erroneous tip vortex wandering. Significant differences are
already observed in the single airfoil case– see Fig. 6.4. Inspecting now the
radial velocity for the low TSR case, there is quite a large disparity in the
predictions. A possible explanation for this is the increased blockage caused
by the larger separation over the blade and nacelle which, as outlined earlier,
is completely neglected here. The steady solver from Technion appears to
produce the best results here, likely due to the assumption of steadiness,
which is likely a much better approximation for the low TSR case where
induction is low.

Axial velocity traverse The velocity predictions are now compared to
the experimental results collected along an axial traverse. In this case the
second CFD solver compared is the Ansys Fluent solver applied by Snel
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et al. [138], this also makes use of the SST k-ω model. For the results
shown here the velocity profile has been plotted up to x = 2D. The axial
velocity ux is shown in Fig.6.26. Here it is observed for both the high and
design TSR, the GML and PML methods both underpredict the induction
velocity. This was observed earlier for the radial velocity measurements. It
is believed that the main reason for this is an incorrect specification of the
core size of the convolution (6.2). In general, decreasing σ increases the
volume vorticity. As described in Section 6.3, this was chosen as per the
standard methodology to be a function of the chord length of the blade. It
is however possible that this parameter is better chosen based upon the grid
parameters of the simulation, in this case grid size H.
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Figure 6.26: Comparison to experimental velocities collected along an axial traverse
at y = 1.8 m. Velocity component in x-direction. From top to bottom: U∞ = 10.05,
15.06 and 24.05 ms−1.

Although the complete mapping of the total shed circulation is essentially
guaranteed by Eq. (6.2) as long as a sufficient mapping area is taken, for
a simulation with a relatively high Re the tip and root vortex cores may
translate over a large distance without significant viscous diffusion, implying
stronger induced velocities. It is necessary to carry out a detailed parameter
study of this in order to identify how best to choose this parameter based
upon the blade model applied. In addition to this, it must be clearly stated
that the blade treatment here is, at best, approximative. It takes very little
blade geometry information into account and the Gaussian convolution
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is an idealized mapping of the blade shed vorticity. The adoption of an
actuator-line [9] or lifting-dragging line approach [146] would very likely
produce much more realistic results.
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Figure 6.27: Comparison to experimental velocities collected along an axial traverse
at y = 1.8 m. Velocity component in y-direction. From top to bottom: U∞ = 10.05,
15.06 and 24.05 ms−1.

For the low TSR case, where this effect will be less noticeable due to the
lower induction, the results align much better and all solvers appear to
predict the oscillating velocity profile due to the proximity of the tip vortex
to the velocity probe position. The distribution of the radial velocity is
shown in Fig. 6.27. Here predictions are seen to be much better. The
unsteadiness for the low TSR case is again observed, and the drop off for
the high TSR case is well captured by the PML method. Unfortunately
due to human error the results for the GML for this case was not recorded.
The results for the optimum TSR also show relatively satisfactory results,
however the unsteadiness which is this case is again visisble is not well
captured by the solvers. Despite this, the mean magnitude appears to agree
relatively well.
For all cases it would be helpful to analyse the velocity prediction into
the far wake, e.g. x > 6D. The results here appear to demonstrate
the need for a dedicated parameter study to identifying optimum core and
convolution parameters for the GML and PML solvers. To inspect the velocities
in these regions would very likely lead back to errors which propagate from

141



Chapter 6. Flow Solver Application

the aforementioned specifications. The CFD solvers against which these
comparisons have been carried out are almost a decade old. The state of
the art with regards to unsteady turbulence modelling and in particular,
LES modelling, has already significantly advanced in this time. For the
desired parameter studied mentioned above it would hence be desirable to
carry out comparison to a state-of the art CFD solver with a validated LES
turbulence model.
In summary, considering the relatively approximative nature of the treatment
here, the PML and GML solvers appear to perform well. Further research
is required to validate both the solver and turbulence model thoroughly
against a comparable state of the art finite-volume approach with a similar
LES turbulence model.

6.4 Case 4: Periodic Helical Wake

An application of the solvers to wind turbine aerodynamics is the problem of
exciting the wake system of a horizontal axis wind turbine. As described in
Section 1.2, the ability to excite the wake helix in such a way that breakdown
occurs more rapidly has the potential to greatly increase the energy yield of
turbines in a wind farm environment [147]. This requires an investigation
of the fundamental modes of instability of a helical wake system.
For the purposes of investigating the instabilities present in a helical wake
system, the physics of the problem can be greatly simplified by assuming
periodicity along the axis of symmetry. This removes the influence of spatial
development, and treats directly the converged helical wake.
In the case of a single helical vortex, there exists an analytical treatment
of the linear stability problem which allows identification of the optimum
modes of excitation of the wake helix. These modes have been applied to
specify an initial perturbation in the cases here and the system is observed
in order to track the development of the instability into the non-linear
and saturation stages. The GML solver is more suitable to problems of
linear stability where the filament treatment is sufficient to capture initial
instability growth. For the case here it is desirable to inspect the effects
of turbulent diffusion on the evolution and henc ehte PML solver has been
applied. The James-Lackner algorithm has been used to solve the near field
influence.
These cases demonstrate the potential of the solver to investigate funda-
mental modes of instability of a wind turbine wake. Although the cases
here only contain a single helical filament, the extension of the problem to
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multiple helices within the solver is trivial, this can be considered a task
for future investigations. Furthermore, as the behaviour into the non-linear
regime is complicated to analyse analytically, the results presented in this
section are predominantly qualitative.

Widnall Solution

In her seminal paper, Widnall [74] investigated the modes of instability of a
single helical vortex by treating the helix as a thin-cored vortex filament.
The description of the helix differs from Eq. (3.16) in order to allow the
introduction of a perturbation in the helix filament position. The filament is
parametrised with the variable z, which represents a normalized azimuthal
angle. The helix has radius R and pitch h = 1/k. The filament is perturbed
sinusoidally with amplitude η in radial direction and ξ in axial direction
with wave number γ. The two displacements are fluid-dynamically coupled,
implying that for the linear analysis the perturbation only needs to be made
in one direction. Following Walther et al. [75], these perturbations are
introduced in the radial direction, as such ξ = 0. Through transformation
of an appropriate coordinate system, the position of the vortex filament can
be well approximated with a Taylor series as:

x⃗ =

⎡⎢⎣R cos k′z
R sin k′z
zζ2

⎤⎥⎦+ η exp{iγz}

⎡⎢⎣cos k′z
sin k′z

0

⎤⎥⎦ , (6.3)

where ζ2 = (1 + k2R2)−1 is a scaling factor along the axis of symmetry and
k′ = kζ2. By applying the Biot-Savart equation for the induced velocity due
to a vortex filament, a linear system is derived which allows for an eigenvalue
analysis. The core size of the filament was seen to strongly influence the
stability of the helix filament. A stability plot for various core sizes and
perturbation wave numbers is given in Fig. 6.28.

Modes of instability Widnall was able to identify three dominant modes
of instability. The first, referred to as the long-wave instability, occurs when
γ/k′ < kR. This physically can be considered to be a displacement of
a full helix winding. The second, referred to as the mutual-inductance
instability occurs when successive turns pass within a distance of one radius.
In this case neighboring vortex filaments attract each other, destroying the
symmetry of the wake and eventually merging. The mutual inductance
instability occurs for odd fraction multiples of γ/k′, e.g. 3/2, 3/2, . . . . The
third case, referred to as the short-wave instability, is analogous to the
short-wave instability seen along a vortex ring, as simulated in Section 5.1.6.
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Figure 6.28: Stability boundaries based upon the treatment of Widnall. The
parameter γ/k′ represents the wave number ratio of the perturbation to the
undisturbed helix. S and U indicate stable and unstable regions, respectively. Case
1,2 and 3 simulated here are marked on the graph in parenthesis. The values
indicate the relative core size of the vortex filament, σ/R. Figure has been modified
from [75].

Table 6.2: Simulation parameters for helical stability tests.

Case Re R [m] L [m] σ/R γ/k′ NBper Np

1 5000 0.48 2.4 0.125 0.0 48 3.68e5
2 2500 1.92 2.4 0.125 1.50 16 6.00e5
3 2500 1.92 2.4 0.125 5.0 16 6.05e5

Simulated cases

Three cases have been simulated here. Helix geometric and perturbation
parameters are summarised in Table 6.2. Case 1 is the undisturbed helix
baseline case. In case 2 a mutual inductance instability is be simulated.
In case 3 a short-wavelength instability is simulated. The parameters
here have been taken from an equivalent VPM simulation carried out by
Walther et al. [75]. The helix core is parametrised with Eq. (6.3) and the
vorticity of the core section is Gaussian, as given by Eq. (5.8) with core
size σ. For all cases the vortex has circulation Γ = 5e−3 m2s−1 and the
perturbation magnitude is set such that η = 0.02σ. This introduces a very
weak initial perturbation into the vorticity field at the desired wave number.
This encourages development of the growth of the stability. As the linear
stability analysis results are generally well known, the simulations here shall
demonstrate the capture of non-linear effects by the solver. The normalised
radius of the perturbed helix as a function of azimuth is given for each
case in Fig. 6.29. For each case the helix has four full windings. This is
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necessary to ensure that the full length of the perturbed helix segment is
contained within a single periodic domain for all cases considered. It can
be seen that the deviation from the unperturbed radius R0 are very small.
This simplifies the initial generation of the vorticity field and furthermore
ensures that the perturbation is not strongly forced.
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Figure 6.29: Perturbation of the initial filament radial position for the test cases
simulated.

Simulation parameters For all simulations the grid resolution is set to
H = 0.05 m. The resolution chosen for the simulations here is significantly
lower than those in [75], as the simulations carried out here are for illustrative
purposes rather than thorough investigation. As described in Section 4.1.7,
the length of the periodic domain Lper is specified with the number of
boxes which span this length NBper. This also given in Table 6.2. The
simulation time step has been set to dT = T0 · 10−3 where T0 = Γ/4πR2 is
the characteristic time of the problem.

Instability Growth

For the three cases displayed, the times shown are normalised time τ = t/T0
are shown. For cases demonstrating instability growth, the simulations are
carried out until the instability reaches a saturation stage.

Case 1: Unperturbed helix For the case of the unperturbed helix,
the choice of NBper = 48 was made to ensure that the periodic solver is
functioning by choosing a relatively long spatial domain. A visualisation of
this is given in Fig. 6.30. It is expected that the single, undisturbed helix
translate and rotates with constant rate along the axis of symmetry in a
corkscrew fashion. This is indeed seen to occur here. The core is also seen
to spread owing to the effects of viscous diffusion.
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Figure 6.30: Undisturbed single helix shown at : τ = 0,0.5, 1. Direction of
translation is shown, along with direction of rotation. Isocontours of vorticity
shown ω = 0.2 (opaque) and 0.1 s−1. It can be seen how the region of higher
vorticity decreases due to viscous diffusion.

It was observed in implementation that care must be taken to ensure that
particle flux over the periodic domain boundaries is carried out consistently.
This can otherwise create problems in virtually all steps of solution, including
filtering and remeshing procedures. The use of the PML method in this case
together with the description in Section 4.1.7 led to relatively straightforward
implementation of the periodic cases described here.

Case 2: Mutual inductance instability A visualisation of the mutual
inductance throughout the evolution of the simulation is shown in Fig. 6.31.
The relative pitch h/R in this case is much higher than in the undisturbed
case as the more densely packed helices induce a more rapidly growing
instability. The beginning of the growth stage is seen at τ = 0.375, where
neighboring windings are seen to be relatively displaced to each other. This
effect amplifies rapdily by τ = 0.625, at which point the outer contours of the
helix begin to become more chaotic. The saturation stage is almost reached
by τ = 1.125 where turbulent filamentation is seen to occur. A visual
comparison is made to the simulations of Walther in Fig. 6.32. Numerous
simularities are observed here. The larger outer filaments which are diverging
away can be seen. Furthermore, the inner region where fluid is being drawn
through these larger rings is also captured. The symmetry observed in
Walther is not observed here, but it is important to note that the simulations
here include the RVM turbulence model, whereas the simulation is Walther
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Figure 6.31: Mutual inductance instability development.

are purely DNS. In the simulation carried out here the helical filament
entered the saturation stage earlier than the Walther case. The inclusion
of turbulent diffusion is seen to influence both symmetry and also global
structure of the non-linear evolution.

Case 3: Short wave instability In this case the helix has been excited
with a much higher wave number, such that the instability which arises
is not a result of interaction with neighboring helices, but rather due to
the inherent short-wavelength Widnall instability which arises due to the
embedding of a straight filament in a sheared flow. The evolution of this
instability is shown in Fig. 6.33. Here the linear growth stage is observed at
τ = 0.125. As with the ring case simulated in Section 5.1.6, these regions
act to draw surrounding fluid in asymmetrically, which for a helical flow
creates the mushroom flow visible at τ = 0.375. Advanced filamentation is
already seen to occur at τ = 0.625 and the saturation is reached much more
quickly than for the mutual inductance case. The flow appears to be almost
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Figure 6.32: Comparison of the mutual inductance instability of the PML solver
(left) with the results shown in Walther et al. [75] at τ ≈ 1.

fully turbulent by τ = 1 in this case. These flow features are also observed
in Walther. The effects of turbulent diffusion however appear much stronger
here as the solution appears to have greatly broken down already by τ = 1.0,
whereas in Walther the global strucutre is still somewhat present at τ = 1.2.

Discussion The ability of the flow solver to simulate these cases is an
illustration of the potential application of the VPML library. The ability to
excite a helical wake is a topic of great interest currently as this could have a
significant influence on the turbine placement within a wind farm. Numerous
methods have been recommended for the excitation of these instabilities,
particularly of long-wave instabilities and mutual-inductance instabilities,
however thus far little research has been carried out into practical excitation
of the short-wave instability. The results above demonstrate that this
excitation can possible lead to quicker breakdown of the wake. It is hence
of interest to further investigate such flows in order to have a complete
physical picture of the problem, if successful excitation measures are to
be developed. For successful development, multiple design iterations are
required, necessitating quick computational turnaround. The solution above
were achieved on a desktop computer in less than 12 hours. With further
optimisation, it is the opinion of the author that even further reduction in
calculation time can be achieved.
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Figure 6.33: Development of the short-wavelength instability.

149



Chapter 7 Conclusions and Outlook

7.1 Conclusions

The ability to simulate the flow in the wake of lift-generating bodies has a
range of important and interesting applications. One major application is to
the problem of wind turbine wakes in order to be able to better predict the
flow within a wind farm environment to allow for better turbine placement
and operation. If detailed information about the flow field in the wake
is to be known, then higher-order effects such as viscous and turbulent
diffusion must be accounted for. A review of the current state of the
art methods reveals a gap in the required technology between lower-order
simulation methods and higher-order methods. The latter are generally far
too computationally expensive to be applicable in a design environment.
This work set out to address this gap by applying a general model which is
applicable to both medium- and high-order simulation methods. It was a
key design constraint that the developed method should not require access
to high-power computing (HPC) resources. The reason for this is that it
should be applicable to a design environment, where multiple, rapid design
iterations must be carried out. A review of the literature showed that two
simulation frameworks can be adopted: Eulerian methods, where a grid
must be generated, and Lagrangian methods, which avoid the use of a user-
generated grid. At an early stage it was concluded that Lagrangian methods
offer the ability to account for higher order physics and can be applied to
both medium and higher-order treatments by applying the vortex particle
method (VPM). The computational expense of directly evaluating the vortex
particle problem, which has the unfavorable computational complexity of
O(N2) for an N -particle problem, presents a barrier to the use of these
methods in higher-order simulations.
This barrier was overcome by applying the multilevel multi-integration
cluster (MLMIC) method. This method uses spatial coarsening and polyno-
mial interpolation of both the source and influence distribution in order to
reduce the computational expense to the optimal complexity O(N). The
method furthermore allows for the use of interaction templates, which allows
for significant optimisation of the treatment of the far field influence. In
Chapter 3 this method and the steps necessary to integrate a source field
were described. For application to VPM, two kernels are of interest: the
Biot-Savart kernel for velocity evaluation and the stream function kernel.
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It was observed that these kernels both behave as a singular kernel for
large evaluation distances, making them amenable to optimisation with the
MLMIC method. In that chapter it was demonstrated that, provided the
box size is adequately chosen, the error ϵ of interpolation can be completely
controlled by specifying of the order of the polynomial interpolating function,
P.
The MLMIC method was implemented within a general vortex particle
multilevel (VPML) library. Two solver types were implemented within the
VPML library. The first was the GML solver, which makes use of the Green’s
function of the induced velocity to calculate the evolution of the flow field.
The second was the PML solver, which makes use of the fast Poisson solver
to resolve the stream function and from this extract all fields of interest to
calculate evolution of the flow field. The implementation was described in
Chapter 4.
A validation of the solvers against a range of flow cases was carried out
in Chapter 5. The vortex ring was chosen for these tests as this is a well-
understood vortex-driven flow for which a range of analytical and numerical
solutions exist. The level of complexity was gradually increased for each test
case. The ability of the GML solver to capture viscous and stretching effects
was demonstrated. It is also shown that, unlike the GML method, the PML
method is able to capture turbulent diffusion of the flow. This is because
the higher-order gradients necessary for the calculation of the sub-grid
viscosity can be calculated easily within the PML solver. The final validation
cases show the ability of the PML solver to accurately model the turbulent
breakdown of an azimuthally excited vortex ring. The performance of the
solvers was investigated and the optimum complexity O(N) was attained in
all cases. The overhead of the solvers was investigated and criteria for the
choice of solver depending on desired application were described.
In order to demonstrate the range of applicability of the method to the
practical calculation of wake flows, four distinct cases were simulated in
Chapter 6. The unsteady developing wake of a single elliptical wing was
simulated demonstrating numerous well-known physical phenomena such
as the starting vortex and wing tip roll-up. Following this, a four-vortex
wake system behind an aircraft was simulated. Here it was demonstrated
that the solver is capable of simulating periodic systems and is able to
inherently capture the expected modes of instability of the wake. Following
this, the application cases to wind energy were simulated. The wake of an
experimental turbine was simulated. The transition of the wake appeared
to be well captured. This correct velocity distribution was shown to rely
heavily on grid size and convolution parameters, a topic which requires
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further investigation. The final investigated case was the modes of stability
of a helical vortex filament, where the filament was excited at known unstable
frequencies and the linear, non-linear and saturation stages of the instability
growth were qualitatively demonstrated. This demonstrates the ability to
carry out stability investigations with the VPML library.
All of the simulations in this work were carried out on a desktop PC with
a somewhat performant GPU. The VPML library was implemented such
that GPU resources can be exploited for problems which are amenable
to GPU calculation. This was seen to greatly increase performance. The
results demonstrate that both medium- and high-fidelity simulations can
be carried out without requiring HPC. It can hence be concluded that
the objectives have been reached and the VPML will hopefully have a place
amongst practical wake simulation tools in the future.

7.2 Outlook

The optimal scaling achieved implies that high-fidelity simulations can be
carried out with greater speed than were previously attainable. This allows
for the investigation of a range of phenomena for which there exist knowledge
gaps in the literature. Furthermore, there are further optimisations of the
solution method possible which expand the domain of applicability of the
solver.

Best practices for particle method with wind turbine simulations
It was demonstrated in Chapter 6 that the choice of grid size and convolution
parameter greatly influence the velocity field and turbulence models of the
PML method. For improved modelling of wind turbine wakes, a parameter
study which outlines the best practices for this should be carried out. An
improved blade treatment will also undoubtedly influence results. One
example of a suitable improvement would be the implementation of the
lifting and dragging line formulation of Caprace et al. [146].

PML and GML solver synergy The inability of the GML method to resolve
turbulence is a significant drawback if accurate simulation of wake break-
down is desired with lower-order models. The PML method in comparison
most likely has an overly high resolution for applications within the design
environment. A suitable compromise would be to use the PML method to
identify turbulent statistics, which are then used within the PSE routine of
the GML solver to account for the effects of viscous diffusion. This requires
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an adaptation of the particle strengths to replicate the effects of the higher
order gradients present, however this would provide an opportunity for the
somewhat more realistic treatment of turbulent effects in medium-order
models.

Wind turbine design and multiple turbine interactions The un-
steady loading of a wind turbine operating in the wake shadow of another
turbine is a crucial factor in turbine placement within a wind farm and a
topic of great interest currently. Ideally, the library developed in the work
here will enable the inexpensive simulation of such events and allow for
optimised designs of turbines operating in such environments.

Multi-resolution treatment The large range of scales present in a wind
turbine flow suggests that an approach which allows for multiple grid
fidelities would be advantageous. Formally, provided the box treatment is
adhered to, the VPML library could be configured such that it is possible to
treat multi-scale problems, particularly within the PML solver. A suitable
metric must be adopted which specifies a threshold grid resolution for each
flow region. This is a topic in which great progress has been made already
within vortex particle methods, by e.g. making use of wavelet-adapted grids
[148]. It is desired in the near future to implement such a capability into
the VPML library.

Open-source repository It is planned to make the MLMIC method
open-source with a version of the GML library to allow for use within both
the wind turbine and aircraft research and design communities. It has
been a dominant factor in the implementation of the VPML library that the
solution procedure reflects the intuitively simple concepts behind the MLMIC
method. It is hopes that this implementation style allows future engineers
to apply this framework to other problems which are equally amenable to
the application of the method. Two such examples are astrophysical N -body
problems and problems in electrostatics.
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Appendix A Validation: 2D Flow Cases

As an addendum to the validation of the solver for 3D cases in Chapter 5,
the results of the application of the GML and PML solvers to 2D cases are
demonstrated here. The results for the solver performance have not been
included here however relatively comparable results to those for the 3D
cases can be assumed. The validation occurs along the same lines as that
carried out for 3D flows in Chapter 5.

Description of Validation Procedure

As was carried out for 3D cases, the global and local flow quantities are
monitored as the particle set evolves as is dictated by the equations of
motion outlined in Chapter 2. This implies observation of global and local
flow quantities, along with qualitative observation of the evolution of the
particle field.

Simulation Parameters It should be noted that the simulation param-
eters conceptually are identical to those of the 3D cases (see Section 5.1.1).
All parameters are as described there with the following exceptions:

• Vorticity is a scalar quantity: Having only a component in z direction:
ω⃗2D = ωz e⃗z.

• Characteristic volume is calculated with: dVchar = H2
char

• For a 2D flow the term ∇u⃗ · ω⃗ vanishes as these vectors are always
orthogonal, and hence no vortex stretching occurs. The choice of
stretching scheme is therefore irrelevant for 2D simulations.

• The only physical process which gives rise to a rate of change of
circulation is viscous diffusion ∇2ωz.

• Divergence filtering need not be applied here as the particle set remains
divergence free.

• No turbulence modelling has been applied here.

Flow Diagnostics For the 2D validation, observation of the three linear
diagnostics was made. These are the circulation Γ (5.1), linear momentum
L (5.2) and angular momentum A (5.3).
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Case 1: Inviscid Elliptical Vortex

This case describes the decay of an inviscid vortex with an initially elliptical
distribution of vorticity. Here the ability of the solver to correctly capture
induced velocities and convection driven phenomena is shown. Following
Koumoutsakos [39] (hereafter referred to as KOUM) the initial vorticity
distribution is defined as:

ω(x, y) =

⎧⎪⎨⎪⎩Λ
[︃
1 − exp

(︂
− q
z exp( 1

z−1)
)︂]︃

z ≤ 1

0 z > 1
, z =

√︃(︂
x
2

)︂2
+ y2

R0
,

(A.1)
where Λ = 20 m2s−1, q = 2.56085 and R0 = 0.8, following KOUM.

Simulation parameters Simulation parameters were chosen to mimic
those of the simulations carried out in KOUM, with an exception being
the time step dT . A different integration scheme was used here, the AB2LF
method. Particle strengths were not modified as the process is assumed
to be inviscid. The time step was taken as dT = 2.5e−4 s. As with 3D
simulations, the characteristic core size is chosen such that σ = 1.1H to
ensure particle overlap after remeshing. Here the grid size H = 6.36e−4 m.
The minimum base box size has been chosen such that Hb = 10H. With
these parameters, the initial field has 88760 particles.

Global Flow Diagnostics As the process is assumed inviscid, the total
circulation of the field should be conserved. There is in fact no mechanism
for changing the circulation of the particles in the implemented code if the
simulation is inviscid, however the process of remeshing redistributes the
circulation spatially, so monitoring this quantity here is essentially a check
on the remeshing scheme. The time evolution of the circulation and linear
momentum are displayed in Fig. A.1. The ability of the remeshing scheme
to preserve circulation is demonstrated as the value remains practically
constant. Furthermore the conservation of momentum is also displayed in
that the linear momentum remains constant. As the simulation is symmetric
in terms of the planes x = 0 and y = 0 (also visible in Fig. A.2), it follows
that angular momentum is conserved, and this was observed but is not
shown for brevity.
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Figure A.1: Evolution of global diagnostics for an inviscid ellipse. Left: Circulation,
Right: Linear momentum.

Evolution of Flow Field

Local Flow Diagnostics The results of the evolution of the vorticity
field along the x axis are displayed in Fig. A.2. Results are compared to the
simulations carried out in KOUM. The evolution of the vorticity field for
the times t = 0, 1, 1.5, 4, 8 and 12 s are shown. In addition to the graphical
plots shown here a visualisation of the vorticity field at the different times is
provided in Fig. A.3. This demonstrates just how well the two solvers agree.
The results for the evolution of the vorticity agree perfectly, although the
methodology between the GML and PML solvers differs greatly. Furthermore,
both solvers agree excellently with the results of KOUM, indicating that the
flow field is evolving as expected. The process of narrowing of the vortex
core section is seen to occur and agrees perfectly in all cases, this is part of
the process of axysymmetrisation (phenomenology described in proceeding
section). The filamentation occuring at different stages is seen in the spikes
occurring lateral to the core of the ellipse. Further filamentation with more
arms is seen as the process evolves. The dilation of the filaments is also well
captured as they tend to spread away from the core. This should not be
confused with diffusion, as the process occurring here is inviscid. Results for
the vorticity distribution along the axis x = 0 were also in the comparative
document reported, however the agreement was equally excellent, and hence
showing these results in addition was deemed to be superfluous.

Flow Phenomena Two distinct phenomena are seen to occur here for
this flow. The first of these is the process of vortex filamentation. The arms
thrown away from the vortex in the initial stages of development are the
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result of the strong vorticity in the centre of the vortex giving rise to a
stronger rotation within the vortex core. This occurs increasingly as the
process evolves until the individual arms are no longer discernible from each
other. Colour contours represent the simulation with the GML solver, and
solid contours represent the simulation with the PML solver. Attention is
drawn here again to the excellent agreement between the two solvers. The
strong shearing produced at this interface and the non-monotonic vorticity
profile seen at the edges of the main vortex core (see Fig. A.2, t = 1 s) give
rise to a Kelvin-Helmholtz style instability which is visible in Fig. A.2 and
Fig. A.3 at t = 1.5 s as jumps in vorticity near the edge of the core domain.
In addition to this process, the axisymmetrisation of the elliptical vortex
is seen to occur as the simulation progresses. Vortex core and general
vortex arm distribution becomes more radially symmetric. This occurs
as the filamentation results in a shedding-off of the asymmetries via the
filamentation which distributes the asymmetrical vorticity into concentric
filaments around the vortex core. This is typical for this style of initial
vorticity distribution and the convergence towards a stable symmetric
vorticity profile is observed, however for other initial vorticity distributions
this is not necessarily the case [42].
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Figure A.2: Distribution of ω along the axis y = 0. Comparison to the data
of Koumoutsakos [39] shows excellent quantitative agreement in terms of both
contraction of the central region of vorticity and filamentation at the vortex
perimeter.
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Figure A.3: Evolution of an inviscid elliptical vortex. Colour contours correspond
to the GML solver. Solid contours correspond to PML solver. Contours are |ω| = 0.25,
0.5, 1 : 2 : 20. Agreement between the solvers is seen to be excellent. Qualitative
comparison with Koumoutsakos [39] shows vortex evolution to be visually identical.
For the plots t = 8,12, lower contours of |ω| have been omitted for clarity of detail.
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Case 2: Strained Merging Vortices

Here the ability of the solver to correctly capture viscous interaction and
shear-driven phenomena is shown. The case of vortex merging and cancella-
tion under the influence of either an ambient or self-induced shear field is of
fundamental importance in turbulence research [149, 150, 151]. A common
simulation case is that of a vortex evolving within a straining field u⃗s of the
form:

u⃗s = −β(t)x e⃗x + [β(t) − γ(t)] y e⃗y + γ(t) z e⃗z . (A.2)
When β = 1

2γ, the strain field is axysymmetric. A steady analytical solution
for this case was found by Burgers [149]. This solution stands as one of
the few fundamental solutions to the vorticity transport equation in 3D.
The so-called Burgers’ vortex arises when the action of viscous diffusion
is balanced by the vorticity intensification which results from the strain
field imposed on the flow, and hence acts as an excellent validation case
for viscous and shearing effects. The simulation captures not only vortex
merging, an important phenomena for coalescence of vortical structures in
a wake region, but also the action of diffusion as the simulation converges.

Conversion to 2D field The shear field given above describes a fully
3D flow. Under an appropriate transformation the original vorticity field
formulated within a cylindrical coordinate system ω(r, θ, z) can be described
completely with a 2D solution in a new system Ω satisfying Ω(ξ, θ, τ) =
ω(r, θ, t)e−A(t) where ξ is a rescaled radial coordinate, τ a stretched time
coordinate and A the stretching factor based on γ(t). This allows a flow
with initial conditions ω(r, θ, t = 0) to be simulated for a fully 3D flow. For
details the reader is referred to the work of Lundgren [150] and Batchelor
[85].
This was simulated for a range of effective Reynolds number Reω by Buntine
& Pullin [152]. Their solver made use of a spectral solver combined with
a finite differences, not entirely dissimilar to the PML method developed in
this work however with assumed modes of the Fourier coefficients of ψ and
ω. The results of this study shall be used as a validation for the modelling
of the viscous component of the vorticity transport equation. For the case
here γ = 4, β = 2 and represents therewith an axysymmetric strain field.
The initial vorticity distribution is given by:

ω(x, y) = − Γ
2π [e−(x−x0)2−y2 + e−(x+x0)2−y2 ] . (A.3)

This represents physically two Gaussian vortices with equal sign, the total
circulation is hence Γ. The initial distribution is shown in Fig. A.6.
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Simulation Parameters The kinematic viscosity of the fluid is taken as
unity. The only remaining free parameter is the effective Reynolds number
Reω = Γ/2πν, which for comparative purposes was set here to Reω = 160.
As described in Chapter 2, the resolution of viscous effects are carried out in
two quite different ways depending on the choice of solver. The characteristic
core size is specified as described above. Here the grid size has been specified
as H = 7.5e−2 m. The minimum base box size has been chosen such that
Hb = 10H. The integration time step has been set to dt = 1e−3 s. With
these settings the initial field has 13080 particles.
The output of the solver is valid within the transformed field Ω and must
hence be appropriately scaled spatially and temporally with the factors ξ
and τ , for details see [150]. It was observed that the remeshing gave rise to
spurious regions of negative vorticity on the boundary of the particle set
after remeshing due to the choice of the M′

4 scheme which would give rise
to instabilities. For this reason the magnitude filtering factor was decreased
to Fmag = 10−7. Furthermore, for the GML method it was found that a
slightly larger Hml was necessary to capture the PSE correctly directly in
the centre of the domain, hence why this was increased to 15 ·Hchar. This
was not necessary for the PML solution.
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Figure A.4: Evolution of global diagnostics for a strained vortex. Left: Circulation,
Right: Angular momentum.

Global Flow Diagnostics The evolution of the circulation and angular
momentum for this case is displayed in Fig. A.4. It can be observed that
again the circulation is practically constant. This represents two important
modelling processes. The diffusion of vorticity occurring is being conserved
properly by the diffusion models implemented in both cases. The second
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important observation is that the total circulation is not significantly effected
by the magnitude filtering being applied.
As this solution represents a transformed 3D flow although the simulation
appears to show an increase in angular momentum, the reality is that for
the real 3D solution this angular momentum is being stretched out of the
plane, and hence a speed up of the core is expected. This is seen as a
increase in the angular momentum of the core section and is well observed
here. Further amplitude scaling would be required to calculate the actual
representative 2D angular momentum. Although this could be employed,
this was not followed here as it was deemed unnecessary for the purposes of
the 2D validation when the process occurring was intuitive. Despite this,
results are shown which display the excellent agreement between the two
solvers. As with the case of the inviscid ellipse, the total circulation was
seen to be conserved.
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Figure A.5: Vorticity distribution for a set of counter-rotating viscous vortices.
Values are compared to those calculated in [152]. The convergence of the solution
towards the steady Burgers vortex is seen.

Evolution of flow field

Local Flow Diagnostics In order to demonstrate that viscous effects
are correctly being captured, the transformed results for the vorticity distri-
bution along the axes x = 0 and y = 0 for numerous time values for both
solvers are displayed in Fig. A.5 along with the simulated results from [152].
The solution to the steady-state Burgers vortex as t → ∞ is shown. The
agreement between the two solvers is again seen to be excellent and the
solutions appear to be converging as predicted.
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In addition to the values plotted here, the vorticity field is demonstrated for
a range of time values for both solvers in Fig. A.6. The merging process is
clearly seen to occur and a qualitative comparison to [152] shows practically
identical progression of the vorticity field in time.

Flow Phenomena With the introduction of viscous effects a number of
important features are captured. The qualitative behaviour agrees well with
the results in [152]. Initially the vortex cores rotate about each other with
an angular velocity which can be approximated with a point-vortex model.
The regions of high vorticity begin to spiral together and eventually merge
into a single region of strong vorticity. The core regions rotate increasingly
rapidly due to the cumulative effect of the merging vortex regions. The
effect of viscosity acts to locally diffuse the vorticity gradients on much
shorter time scales than those over which the vortex converges to a single
Burgers vortex.

Conclusion

Two test cases have been investigated to validate the GML and PML solvers
for 2D flows. Here the physics of the problem is less complicated than the
3D case as the vorticity exists in a single plane and the effect of stretching
automatically vanish. Numerous physical processes were quantitatively and
qualitatively captured for the process of an evolving inviscid elliptical vortex.
The ability of the 2D solvers to model the action of viscous diffusion was
validated against an analytical Burger’s vortex and the solvers were both
seen to perform well.
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Figure A.6: Evolution of a viscous vortex pair. Colour contours correspond to the
GML solver. Solid contours correspond to PML solver. Contours are |ω| = 1 : 9 : ωmax.
Qualitative comparison with Buntine & Pullin [152] shows the vortex merging
process to be visually identical.
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aments

The GML solver will be validated here for the case that the flow field is being
represented with vortex filaments. As opposed to scenarios where straight
filaments are used, filaments are represented within the VPM as curves
discretised with vortex particles. This removes the assumption of a straight
vortex line and allows more complicated geometries to be investigated.
Vortex tubes are not represented with a continuous distribution, but rather
the circulation of the vortex tube is lumped onto a particle at the centre of
vorticity with an appropriate circulation. This representation is generally
unsuitable for treatment with the PML solver, as the FP solver relies on
a continuous distribution of vorticity. For this reason the results in the
following pertain only to the use of the GML solver. The case inspected here
is the flow field induced by a thin infinitely long helical vortex filament as
illustrated in Fig. B.1. The helix is defined with the parametrisation used
in Chapter 3, briefly repeated here: radius a, helix pitch h, giving a helix
length per winding of L = 2π h.

y

x

z

θ

e⃗r

e⃗φ

L = 2π h

Figure B.1: Coordinate system used for a helical vortex filament.
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Description of flow The analytical solution for the induced velocity field
and stream function due to an infinitely thin vortex filament was derived by
Hardin [153]1. Here the solution for the velocity u⃗ is expressed in cylindrical
coordinates (r, φ, z):

ur = Γ
πk2H

1,1 , uφ = Γ
2πr + Γa

rπk
H1,0 , uz = Γ

2πk − Γa
πk2H

1,0 , (B.1)

where H is a function closely related to the Kapteyn series (a product of
Bessel functions). This is defined as:

H i,j =
∞∑︂
m

mKi
m

(︃
am

k

)︃
Ijm

(︃
rm

k

)︃
, (B.2)

where I and K are the first and second modified Bessel functions [154] and
the superscript index implies differentiation with respect to the argument.
This expression is valid only for r < a. A separate solution is obtained for
values r > a which is relatively similar. An advancement upon this was
achieved by Fukumoto and Okulov [155], where an asymptotic expansion
was used to increase the accuracy of the prediction. Considering the terms
in the Hardin solution as a vortex monopole, the Fukumoto solution added
a dipole term which allows for a distribution of vorticity in the vortex core.
This higher order correction is not accounted for here as the focus is made on
the far field term, where the dipole effects vanish. The validation is carried
out by initially demonstrating that direct evaluation of the VP method
accurately predicts the velocity field. Following this, the GML solver will be
investigated and the solution compared to direct evaluation.

Direct evaluation For the comparisons made here a vortex with 40 wind-
ings in ±z directions has been constructed. Trial and error demonstrated
that this was sufficient to produce a pseudo-infinite influence (an observation
of practical interest in the consideration of wind turbine wake modelling).
Furthermore, the Kapteyn series was truncated to m = 50. The results
are shown in Fig. B.2. The vortex particle is treated as having a singular
distribution (modelling option REG=SINGULAR) for consistency with the
assumption of an infinitely thin vortex in the analytical solution. The grid
size has been chosen as H = 0.01 m which discretises each helix winding
with approximately 103 particles.
The induced velocities as a function of azimuthal angle φ are first compared
for r = 0.25 a, 0.75 a, and 1.25 a, the results for φ > π are not shown

1It is in fact stated in Hardin that the solution is practically used for validation of
Biot-Savart routines
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Figure B.2: Velocity components in a polar coordinate system induced by a single
infinite helical vortex filament. Analytical results are shown with dashed lines.
Left: Along lines r = const. Right: Along lines φ = const.

due to the symmetry of the solution. The position r = a is not inspected
as this leads to divergence in the Kapteyn series, where the analytical
solution is undefined, an issue avoided in the treatment of Fukumoto &
Okulov [155]. It is seen that the results are essentially perfect and no
discrepancy can be visibly observed. As is physically intuitive, the velocity
components uφ and uz due to the vortex filament peak as the evaluation
point nears the vortex filament at φ = 0◦. Velocity predictions along the
lines r = const. demonstrate essentially similar results, however in this
case the singularity at r = a is clearly captured. As expected at positions
φ = 0◦ and φ = 180◦ the radial velocity vanishes due to the antisymmetry
of the vortex filament about the plane x = 0. As with the previous results,
the induced velocity asymptotes like r−1 as the vortex filament is radially
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approached and antisymmetric velocities are predicted as expected.
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Figure B.3: Relative error induced by the GML solver as compared to direct evalua-
tion.

Accuracy of GML method: singular filaments The results predicted
by the GML shall now be validated against those from direct evaluation to
ensure that the velocity prediction behaves as demonstrated in the multilevel
chapter 3. In this case again singular regularisation of the vortex core has
been used. The grid size has been set for consistency with that from the
previous demonstration, H = 0.01 m. The minimum grid box size has been
set to Hb = 8σ where σ = 1.1H to ensure particle overlap. Displayed
in Fig. B.3 is the L2-norm error of the velocity prediction as described in
Chapter 3. The error of the integration along r = const is also seen. In this
case the singular position r = a is avoided by only considering positions
0.25 a < r < 0.9 a. It is seen that for essentially all cases the error logarithm
scales exactly as predicted by the MLMIC method with polynomial order P .
The near field evaluations of the VPM are hence accurately being captured
and the far field singular particle approximation inherent to the method
employed here appears to be working satisfactorily.

Accuracy of GML method: regularised vortex ring Although the
previous sections demonstrate the accuracy for a singular vortex filament,
in practice regularized vortex filaments must be applied in order to avoid
singularities in the numerical solution. A logical progression from the
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previous case is hence to inspect the accuracy of the solution when a
regularisation is being applied. An ideal comparison case here is the vortex
ring, as described more fully in Appendix E. As described there, for a
Gaussian core distribution (most commonly applied in the work here) β
takes the value 1

2 log 2 + 1 − γ
2 [22], this is used here to validate the GML

method for regularized filaments. The particle set is generated as particles
along the vortex ring circumference with vorticity tangent to the ring and
proportional to the angular segment and filament core parameter a. In
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Figure B.4: Error of VP treatment of a regularised vortex ring as compared to the
analytical value of translational velocity. Left: Accuracy as a function of grid size
H. Right: Accuracy of GML solver as a function of polynomial order P .

Fig. B.4 the error as a function of grid size H is shown and as expected
behaves as O(H2

c ). For purposes of comparison the error of prediction of a
single vortex filament is also shown. Also displayed is the error scaling of the
regularized ring as a function of polynomial order P . The grid size has been
chosen here as H = 0.001, which discretises the ring into approximately 600
elements. Here the behaviour is practically the same as for the regularised
tests, demonstrating that the GML method is applicable to regularised vortex
filaments. In Appendix D an unsteady vortex filament case will be inspected
where the accuracy of the stretching term is validated.
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cal Vortex

An ideal case for validation of the flow solver under steady conditions is
Hill’s spherical vortex. This represents a flow for which a sphere is a stream
surface. Originally described by Hill in 1884 [156], the case offers a unique
opportunity to inspect the accuracy of the solvers as it represents one of
the few cases where analytical solutions are known for all of the important
flow quantities: Vorticity ω⃗, stream function ψ⃗ and velocity u⃗. A plot of
the streamlines is given in Fig. C.1

Figure C.1: Streamlines around a Hill’s spherical vortex.

Description of flow The flow is described in a polar coordinate system
(r, φ, z). The vortex translates along the axial coordinate z with translation
velocity U0. Vorticity is confined within a sphere of radius a aligned purely
in azimuthal direction ω⃗ = ωe⃗φ with magnitude:

ω =

⎧⎨⎩−15
2
U0 r
a2 r ≤ a

0 r > a
. (C.1)

It is clear that the flow outside of the sphere is is irrotational and hence a
potential flow. The surfaces of ω = const. are cylinders around the axis of
translation.

Comparison of stream function It appears a logical choice to initially
check the ability of the solver to calculate the stream function. The GML
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solver can be utilised to directly output the stream function using a Green’s
function expression, as is done with the BS kernel. The stream function
furthermore is a direct output of the FP routine when using the PML solver.
The analytical value of the Stokes stream function Ψ is given as:

Ψ =

⎧⎪⎨⎪⎩
−3

4U0r
2
[︂
1 − r2+z2

a2

]︂
r ≤ a

−1
2U0r

2
[︃
1 − a3

(r2+z2)3/2

]︃
r > a

. (C.2)

It should be noted that the Stokes stream function is formulated for axysym-
metric incompressible flows of an inviscid fluid and for a cylindrical coordi-
nate system rψ⃗ = Ψe⃗φ. Similar to the stream function, values of Ψ = const
enclose a streamtube, everywhere tangential to the flow velocity vector. Both
solvers are configured for Cartesian coordinate systems. For comparison the
analytical solution to Ψ given above is converted to the equivalent Cartesian
solution. The relative L2-norm error of the stream function ϵ(ψ⃗) is shown
Fig. C.2 for both the GML and PML solvers. For comparison two Gaussian

10−210−1

10−4

10−2

H

ϵ(ψ⃗)

GML Gauss
GML SupGauss
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Figure C.2: Relative error in the calculation of the stream function as a function
of grid resolution.

kernels have been investigated when using the GML solver, the standard
Gaussian and the super Gaussian kernel, corresponding to the case m = 2
in Hejlesen [157] and to the super Gaussian in Winckelmans & Leonard [23].
The error reduction is seen scale as O(H−2) for all solvers. The accuracy of
the Super Gaussian is also as expected almost an order or magnitude lower
than the standard Gaussian. The Hejlesen-style spectral kernel [91] was also
tested, however this was found to have no better accuracy than the Super
Gaussian, furthermore the computational expense of evaluating the sine
integral was significantly higher than that for the Gaussian regularisations,
this kernel has application in e.g. Lattice Green’s functions representations
for FP solver– see Chapter 4.
In addition, two forms of the PML solver have been investigated as described in
Chapter 4. The first makes use of the James-Lackner (JL) algorithm for the
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boundary evaluations, the second makes use of a direct boundary condition
using the SF kernel (PML direct). This was carried out for verification of
the PML JL BC calculation. Two points are observed: Both solvers scale as
O(H2) as expected, and the boundary evaluation with the JL algorithm
incurs an error most likely due to the approximation of the boundary with
the singular SF kernel. For the PML -JL configuration some grid sizes were
impractical due to overlap requirements and hence a narrower band of grid
sizes could be investigated. The results generally are as expected and the
convergence with H is observed.
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Figure C.3: Axial velocity as a function of radial position.

Comparison of velocity The analytical value for velocity is given as:

uz = −3
2U0

(︄
1 − 2ρ2 + z2

a2

)︄
, uρ = −3

2
zρ

a2 . (C.3)

This again must be converted to the Cartesian frame of reference for com-
parison with the solvers. This expression along with the predictions made
by the solver is displayed in Fig. C.3. The GML solver in this case calculates
the velocity based on the expression for the BS Kernel. The PML solver
calculates this using FD as described in Chapter 4.
Two solvers have been plotted in Fig. C.3, the GML and PML -direct solvers as
described above. The results for GML -SupGauss and PML -JL were visually
identical and were hence not included. The relative L2-norm error of the
z-velocity ϵ(u⃗) is shown Fig. C.4 for the considered solvers. Here essentially
similar behaviour is seen, as the prediction for the stream function. The
O(H−2) error is again seen and the error induced by the FD calculation of
the velocity is predicted as expected. As a second-order method FD scheme
is used, a O(H−2) scaling of error is predicted and this is indeed observed.
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Figure C.4: L2-norm error in the calculation of the axial velocity as a function of
grid resolution.
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Appendix D Validation: Vortex Ring
Collision

An ideal test case to validate vortex stretching is the collision of two inviscid
vortex rings. Here two vortex rings are aligned along the same axis of
symmetry and collide head-on. The symmetry of the problem implies that
the problem is identical to the case of a vortex colliding against an inviscid
wall, as illustrated in Fig. D.1. The theory of the inviscid vortex ring of
Helmholtz and Kelvin as described in Section E shall be exploited. This test
demonstrates that the process of vortex stretching is proceeding correctly
for both filament or sparse particles and for dense particle representations.
This tests acts as a precursor to a viscous tests where both stretching and
diffusion terms act together.

t = 0

t = 6

t = 14

Figure D.1: The impingement of an inviscid vortex ring against a slip wall. The
time is normalized with respect to T0 = R2

0/Γ0. Here R0 = 1 m and Γ0 = 10 m2s−1.

Vortex filament In the case that a single vortex filament is used, the
particle are aligned along the curve R = 1 and the particle strength and
volumes are appropriately defined such that the circulation of the equivalent
infinitely thin vortex filament is specified. The efficacy of the GML solver
is demonstrated here, as the PML solver is unsuited to the treatment of
singular filaments as the finite difference process of the calculation requires
continuous field quantities. As described in Walker [158], a solution to
this system is found by considering that each vortex ring is influenced only
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by itself us and the mirrored ring um. The ring does not cause itself to
expand, hence ur,s = 0 and the self-induced axial velocity uz,s is given by
Eq. (E.3). The influence of the mirrored ring can be derived from Eq. (E.2)–
see Appendix E.

dz

dt
= uz,s + k̄

4πz [2F (k̄) − E(k̄)] , dr

dt
= k̄

3

4πrD(k̄) , (D.1)

where k2F (k) = E(k) − (1 − k2)K(k) and k2D = K(k) − E(k). When
appended with the additional constraint that ra2 = const, the differential
equations above can be numerically integrated to give the time evolution of
ring radius r(t) and distance z(t).
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a = 0.05 m GML a = 0.05 m
a = 0.025m GML a = 0.025 m
a = 0.01 m GML a = 0.01 m

Figure D.2: Motion of a colliding vortex ring pair. Lines indicate the numerically
integrated analytical solution as given in Eq. (D.1) and those predicted by the GML
solver.

This was carried out here with a simple forward Eulerian scheme and the
results for a range of vortex core sizes a is shown in Fig. D.2. Also visible in
this plot are the results of the GML solver with the assumption of a Gaussian
vortex smoothing and using the transpose stretching scheme. It is seen that
the prediction improves as a → 0. This is to be expected as the analytical
expression are valid for an infinitely thin vortex ring. This implies an
accurate resolution of the stretching term of the GML solver, as the vortex
position and strength are coupled.

Dense vortex ring In order to test both the GML and PML solvers, the
vorticity field is now described with a continuous field using the distribution
as described in Eg. (5.8). Visualisations are identical for the GML model. It
should be noted that in reality two vortex rings have been created in order
to simulate the effect of a slip wall by placing a second vortex mirrored
about the plane z = 0.
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Appendix D. Validation: Vortex Ring Collision

Diagnostics In order to demonstrate that flow diagnostics are being
conserved these have been monitored for both the GML solver and the PML
solver using the James algorithm for calculation of boundary terms. The
results are shown in Fig. D.3.

Circulation Γ For every particle in the vortex ring, there is a second
particle at the azimuthally opposite position with exactly the opposite
circulation, hence by construction the system has net zero circulation Γ =⃦⃦⃦
Γ⃗
⃦⃦⃦
. This is observed at the beginning of the beginning of the simulation and

it seen to be conserved during the process of ring collision and expansion.
This demonstrates that for the GML method the stretching scheme is effective,
and for the PML solver the FD scheme for the stretching terms is working
effectively. The expansion of the ring is seen to occur and the reduction
in radial velocity is observed in Fig. D.2. It should be noted here that
remeshing and divergence filtering is being applied to the field every 10 time
steps, so the results here further demonstrate the these filtering procedures
are operating effectively.
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0
0.5
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Γ

GML PML

0 2 4 6 8 10 12 14−1
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t∗

A

Figure D.3: Conservation of flow invariants during the collision process.

Angular Impulse A The net angular impulse A =
⃦⃦⃦
A⃗
⃦⃦⃦

given explicitly
by Eq. (5.3) should also by argument of symmetry vanish for this problem,
as seen at the beginning of the simulation. This quantity should also be
conserved, which is seen to occur through the expansion of the ring. This
suggests, in addition to the conservation of circulation above, that particle
convection is correctly being carried out for both solvers.
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Appendix D. Validation: Vortex Ring Collision

When compared with the plots in Chapter 5, one sees what appears to be
unsteadiness in the flow invariants. This results from the use of single preci-
sion floating point variables in the tests here rather than double precision
as used in Chapter 5. This inevitably gives rise to lower absolute accuracy.
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The validation cases described in Chapter 5 are based upon vortex rings.
For the avid reader of fluid dynamics the vortex ring presents a highly
insightful yet not overly complex flow case which permits investigation with
numerous techniques. The theory is abundant with analytical solutions
which are not only mathematically elegant, but which furthermore illustrate
important physical processes which occur in a vortex-driven flow. The
theory has a rich history spanning back almost two centuries and almost
every fluid dynamicist of notable achievement (including Helmholtz [84, 159],
Kelvin [160], and Lamb [1]) has left their mark on the field in some form.
Furthermore, the phenomena has not been unnoticed by the general public.
An enduring example was the camel man of Times Square in New York–
see Fig. E.1. A large billboard advertising camel cigarettes was constructed
which periodically generated a vortex ring imitating a joyous smoking
gentleman.

Figure E.1: The camel man, mounted at Times Square from the beginning of the
1940’s until 1966. In this time he puffed away approximately 200 million rings.
Image taken from [161].

The theory of the vortex ring is described here initially for inviscid rings,
the effect of including viscosity terms is then described. Following this
the instability of a vortex ring is described for reference to the unsteady
turbulent cases investigated.
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Appendix E. Theory of the Vortex Ring

Inviscid Vortex Ring

The theory is greatly simplified by assuming the fluid to be inviscid, this
furthermore allows a number of important results to be derived.

Stream function representation Assuming the vortex ring to be com-
posed of a single, thin vortex filament of radius R and cross-sectional
circulation Γ, Helmholtz was able to express the flow with the use of the
Stokes stream function Ψ [84]. This is valid for an axysymmetric flow
u⃗ = ure⃗r + uz e⃗z and allows reduction of the problem to a single potential Ψ:

ur = −1
r

∂Ψ
∂z

, uz = 1
r

∂Ψ
∂ρ

. (E.1)

By exploiting the symmetry of the problem Helmholtz was able to express
the stream function at a radial position r as:

Ψ(r, z, t) =
√
Rr

2πk [(2 − k2)K(k) − 2E(k)] , k2 = 4Rr
z2 + (r +R)2 , (E.2)

where K and E are the complete first and second elliptical integrals, respec-
tively.

Translational velocity of a vortex ring Each element of the vortex
filament induces a velocity on the remaining segments of the ring as described
by the Biot-Savart law [1]. Due to the axysymmetric geometry of the ring,
all components of induced velocity not aligned with the axis of symmetry
z of the vortex cancel and there remains only an induced velocity in the
axial direction U = uz which causes the vortex to translate under its own
self-influence. In a translation of Helmholtz’ seminal paper, Lord Kelvin
communicated the solution to the translation velocity of the thin vortex
ring of core size a as [159]:

U = Γ
4πR

{︄
log 8R

a
− β + O

(︃
a

R

)︃}︄
. (E.3)

The parameter β depends on the type of core description used. The ex-
pression due to Kelvin himself assumed a Rankine-type core-distribution
(uniform vorticity) which gives β = 1

4 . The general case however allows
determination of β based upon the core description used [22]. In the case
that a Gaussian vorticity distribution is used, β takes the value 1

2 log 2+1− γ
2

where γ is the Euler-Mascheroni constant.
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Expanding vortex rings Thus far only the case of a vortex ring with
constant radius has been discussed. The behaviour of the vortex ring in the
case that the radius is somehow changed due to an external field. Two cases
of interest present themselves:

A vortex ring approaching an impermeable wall In this case the
ring, moving under its own self influence (velocity U) approaches a wall
at a distance zw. An accurate treatment of the effects at the wall would
account for the no-slip condition there and the therewith evoked shear layer
in the limit as zw → 0. In order to remain within the scope of inviscid flows
however this shall be avoided. A kinematically equivalent case applying the
method of images is to mirror the vortex ring about the plane zw = 0 [162].
The two rings approach each other along the same axis of symmetry with
separation distance 2zw. The self-induced velocity U of each vortex as given
by Eq. (E.3) causes the rings to approach each other.
The effect of the each ring is to induce a dilation in the opposing ring. This
effect magnifies as the distance between the rings decreases. The linear
momentum in axial direction is converted to the radial direction as the
two rings expand outwards, their linear momentum (outward expansion)
decreasing with increasing radius– see Fig. D.1. The vorticity distribution
being axysymmetric, conservation of vorticity implies that the circulation Γ
of the ring remains constant and hence the vortex core must correspondingly
decrease as ring radius R increases and geometrically one observes that
Ra2 = const. Neglecting higher order processes, eventually the vortex
ring becomes so large that the radial velocity asymptotes to zero, as does
the axial velocity. The process is now inspected with the help of the
Helmholtz’s expression- Eq. (E.2). By superimposing the second mirrored
ring, one arrives at an expression for the total stream function: Ψtot =
Ψ(r, z+, t) + Ψ(r, z−, t). This is illustrated in Fig. E.2.

Leapfrogging vortices In this case two (or potentially more) vortex
rings are again aligned along the same axis of symmetry. They are initially
within the same plane, have however distinct radii such that R1 < R2. The
velocity field induced by both rings causes the inner ring to accelerate and
the outer ring to decelerate, inducing a displacement between the two rings.
The velocity field now causes the inner ring to expand and the outer to
contract, both proportionally to the difference in radii R2 −R1. This process
proceed, both vortices convecting, until the radii are equivalent and the
inverse process occurs, where the (initially) outer ring is pulled inside the
(initially) inner ring. The process continues and the inner and outer ring,
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Figure E.2: Contours of the Stokes stream function Ψ of a thin vortex ring. The ring
is mirrored about the plane z = 0, explaining the deflection of the stream contours
upwards and outwards. The contour lines shown dashed are those predicted by the
GML method under the assumption of a singular smoothing function, corresponding
to the infinitely thin filament in the analytical theory. The agreement is seen to be
perfect.

continuously convecting, leapfrog through each other, visualised in Fig. E.3.
The calculation of the motion occurs in a similar manner to that above for
the colliding vortices however the inner [ri, zi] and outer [ro, zo] velocity
contributions are added Ψtot = Ψ(ri, zi, t) + Ψ(ro, zo, t). Accounting for the
change in vortex cross section for each ring under expansion and contraction
Ra2 = const is again crucial for accurate results.

Figure E.3: Two initially parallel vortex rings undergoing leapfrogging.

Viscous Vortex Ring

The results were extended to the viscous case in the classical work by Saffman
[121]. There Saffman observed that the flow is unsteady in any reference
frame, hence making a specification of global velocity for U ambiguous. He
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introduced a new quantity to represent the vortical centroid of impulse
elements:

X⃗ =
∫︂∫︂

S

(x⃗× ω⃗) · I⃗

I2 x⃗ dV (E.4)

where I⃗ is the linear impulse (5.2), x⃗ and ω⃗ the position and vorticity vectors,
respectively. For many simple geometries, this definition simplifies to the
classical vorticity centroid, however the additional specification enabled
Saffman to apply earlier results to the viscous case. Using this he arrived at
the following expression:

U = dX1
dt

= Γ
4πR

⎧⎨⎩log 8R√
4νt

− 0.558 + O

⎡⎣(︃ νt
R2

)︃ 1
2

log
(︃
νt

R2

)︃⎤⎦⎫⎬⎭ (E.5)

One observes that the core size a is replaced by a viscous quantity. This
expression is valid in the limit νt

R2 = S → 0. The effect of the viscosity is
hence to slow down the ring like − log νt. This expression assumes that
the vorticity is, to first order, Gaussian in the limit of a small core. The
assumption of a locally Gaussian vortex is influenced by the curvature of the
vortex ring. The validity of this expression was numerically investigated in
the work of Stanaway et al. [122], where a dedicated spectral solver based on
the axisymmetric Navier-Stokes equation was applied to investigate vortex
ring geometries. There the error estimate due to Saffman was found to be
conservative and was improved to O(S logS1/2).

Asymptotically large time As described in Stanaway [122], a bubble
of vorticity surrounds the vortex core and travels with it. Viscous diffusion
entrains irrotational fluid into the bubble as the vortex ring translates causes
it to slow down as the ring grows. The ring asymptotically comes to rest as
vorticity spreads to the far field with viscous length scale

√
νt. Eventually

the ring takes on the velocity profile of a Stokes vortex ring and drafts with
characteristic time t−3/2 [163].

Stability of a Vortex Ring

The topic of the stability of a vortex ring has attracted much attention
due a number of fascinating experimental investigations into the topic.
Experimentally the generation of such a ring is accomplished simply by
impulsively pushing fluid through a circular orifice. This was carried out
by Krutsch [164] and tracer dye was injected in order to visualise the core
of the vortex ring. Here it was demonstrated that frequently instabilities
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occur which are manifested as azimuthal perturbations of the vortex core.
These have wavenumber of k– see Fig. 5.7. Similar experimental results
were reported in Windnall & Sullivan [125], where a heuristic inviscid model
was also proposed. In Widnall & Tsai [79] a convincing explanation is given
based on a rectilinear vortex filament. This was confirmed in greater detail
in a follow-up paper [165], where a rigorous mathematical basis allows for
general calculation of instability growth rates for a given k.
As described in Saffman [126], the underlying concept is that a rectilinear
vortex filament, deformed into a sinusoid with wavelength 2π/k is under
self-influence steady. When the filament however is placed into a plane
strain field parallel to the axis of the undisturbed vortex, the sinusoidal
peaks convect faster than the undisturbed vortex centreline and hence the
wave grows. The velocity field induced by a vortex ring (in an azimuthal cut)
appears as a plane strain field. The vortex core, small compared to the ring
radius R hence locally behaves as a rectilinear vortex. It was seen that the
wave number appeared to be coupled to the Re of the ring. An explanation
for this was proposed by Saffman [126] who furthermore showed how the
wave number is sensitive to vorticity distribution inside the vortex core.
There quantitative estimates are given which allow for the prediction of the
most unstable wavenumber for a representative Reynolds number which
includes a curvature.induced strain rate. This was investigated numerically
by Shariff et al. [128] which demonstrated the validity of the theory outlined
in Saffman.
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Introducing a core size σ allows specification of a smoothing function for
the vorticity field ζ(ρ) where ρ = r/σ is the normalised distance from the
particle. This smoothing influences the stream function g(ρ) (2.15) and
velocity q(ρ) (2.16) field induced by each particle. If PSE is used to calculate
viscous diffusion, the integral Laplace operator η(ρ) is also calculated from
this.

Regularisation Options

Numerous options for ζ(ρ) exist depending on application case. Four options
are given in Table F.1. These are the low-order algebraic (LOA), high-order
algebraic (HOA) [22], 1st order and 2nd order Gaussian [157]. Numerous
further options are available for e.g. 2D smoothings [23] and higher-order
Gaussian [157] and spectral smoothings, the latter being suitable for lattice-
Greens functions for FP solvers [166]. These have been omitted for brevity.
For the work presented here the Gaussian kernel has been applied. For
Gaussian expressions E = (2/π)1/2 exp{−ρ2/2} and F = erf{ρ2/21/2}, where
erf is the error function, defined as erf(x) =

∫︁ x
0 exp{−w2}dw [86].

Table F.1: Regularisation functions for the field induced by a vortex particle.

Reg. 4πζ(ρ) 4πg(ρ) 4πq(ρ) 4πη(ρ)

LOA 3
(ρ2 + 1)5/2

1
(ρ2 + 1)1/2

ρ3

(ρ2 + 1)3/2

15
(ρ2 + 1)7/2

HOA 15/2
(ρ2 + 1)7/2

ρ2 + 3/2

(ρ2 + 1)3/2
ρ3 ρ2 + 5/2

(ρ2 + 1)5/2

105/2
(ρ2 + 1)9/2

Gauss (1) E 1
ρ

F F − ρE E

Gauss (2)
(︄

5
2 − ρ2

2

)︄
E 1

ρ

(︃
F+ 1

2ρE
)︃

F−
(︄
1 − ρ2

2

)︄
ρE

(︄
7
2 − ρ2

2

)︄
E
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Expressions for the Stretching Term

Keeping in mind the expression for the rate of change of the particle
circulation from Eq. (2.9): (ω⃗ · ∇)u⃗, one observes that the stretching is only
nonzero in positions with nonzero vorticity. As such, the local vorticity (and
therewith circulation) influences the stretching term. Adopting the notation
that source particle quantities have the subscript ( · )q and local quantities
have the subscript ( · )p, the stretching terms as a function of regularisation
function are given for each stretching scheme by:

dα⃗p
dt

= dω⃗p
dt

dVp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−q(ρ)
r3 (α⃗p × α⃗q)) + 1

σ5 [(α⃗p · r⃗)(r⃗ × α⃗q)]S Classic

q(ρ)
r3 (α⃗p × α⃗q)) + 1

σ5 [α⃗p · (r⃗ × α⃗q)r⃗ ]S Transpose

1
2σ5 [(α⃗p · r⃗)(r⃗ × α⃗q) + α⃗p · (r⃗ × α⃗q)r⃗ ]S Mixed

(F.1)
where r⃗ = x⃗p − x⃗q and r =∥r⃗∥. The expression S depends again upon the
regularisation chosen and is given by:

S = −1
ρ

d

dρ

(︄
q(ρ)
ρ3

)︄
= 1
ρ2

(︄
3q(ρ)
ρ3 − ζ(ρ)

)︄
, (F.2)

where the latter expression allows for straightforward implementation. The
factor dVp is the volume of the particle, which in practice has a finite value.
It is seen that for evaluations of the velocity, stretching and viscous diffusion
terms, numerous expressions repeatedly occur. This can be exploited to
greatly reduce the number of floating point operations required for each
interaction calculation.
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