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Moments of quantum Lévy areas

using sticky shuffle Hopf algebras

Robin Hudson, Uwe Schauz, and Yue Wu

Abstract. We study a family of quantum analogs of Lévy’s stochastic area for planar

Brownian motion depending on a variance parameter � � 1 which deform to the classical

Lévy area as � ! 1. They are defined as second rank iterated stochastic integrals

against the components of planar Brownian motion, which are one-dimensional Brownian

motions satisfying Heisenberg-type commutation relations. Such iterated integrals can be

multiplied using the sticky shuffle product determined by the underlying Itô algebra of

stochastic differentials. We use the corresponding Hopf algebra structure to evaluate the

moments of the quantum Lévy areas and study how they deform to their classical values,

which are well known to be given essentially by the Euler numbers, in the infinite variance

limit.
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1. Introduction

Lévy’s stochastic area for planar Brownian motion is important in several areas of

modern mathematics and probability theory, ranging from harmonic analysis on

the Heisenberg group to rough noise analysis.

Let us first review the definition of Lévy area as a stochastic integral [13].

Intuitively it is the signed area between the chord joining two time points on

the planar Brownian path and the trajectory between those points. To make this

rigorous, let there be given a planar Brownian motion B and write B D .X; Y / in

terms of components X and Y which are independent one-dimensional Brownian

motions. Let two real numbers a < b be given.

Definition 1. The Lévy area of B over the time interval Œa; b/ is the stochastic

integral

AŒa;b/ D
1

2

b
Z

a

..X � X.a//dY � .Y � Y.a//dX/:

In this definition the integral takes the same value whether it is regarded as of

Stratonovich or Itô type. In the remainder of this paper, however, all stochastic

integrals will be of Itô type, in contrast to [11] where the Stratonovich integral is

used. The latter cannot be defined coherently in a quantum context.

Lévy’s area has interesting connections with classical mathematics through its

characteristic function, which is given by the following theorem.

Theorem 2 (Lévy [12]). We have

EŒexp.izAŒa;b//� D sech .1
2
.b � a/z/:

We can expand the right-hand side of the formula in Theorem 2 using the

Taylor series

sech.z/ D

1
X

mD0

.�1/m A2m

.2m/Š
z2m ; (1)

where the even Euler zigzag numbers A2m are related to the Riemann zeta function

� by

�.2m/ D
�2m

.2m/Š
A2m: (2)

Levin and Wildon in [11] used iterated integrals and combinatorial arguments

arising from the formalism of rough noise to evaluate the moments ofAŒ0;1/; which

is tantamount to proving Theorem 2.



Moments of quantum Lévy areas 439

A one-parameter family of quantum Lévy areas has been introduced recently

[7, 3]. In these the component one-dimensional Brownian motions of the clas-

sical Lévy area are replaced by a pair of self adjoint operator-valued processes

.P .�/.t /; Q.�/.t //t�0: Each such pair is determined by a variance parameter �

taking a value in the range 1 � � < 1: Each of P .�/ and Q.�/ is individually a

one-dimensional Brownian motion of variance �2; so that for example, for each

positive time t; P .�/.t / is a Gaussian random variable of mean 0 and variance �2t .

But the processes P .�/ and Q.�/ do not commute with each other; instead they

satisfy the Heisenberg type commutation relation

ŒP .�/.s/; Q.�/.t /� D �2i min ¹s; tº (3)

in the rigorous Weyl sense that for arbitrary real x and y and nonnegative s and t;

eixP .�/.s/eiyQ.�/.t/ D e2ixy min¹s;tºeiyQ.�/.t/eixP .�/.s/ (4)

as unitary operators. Despite their mutual noncommutativity P .�/ and Q.�/ can

be regarded as stochastically independent in a certain sense, and hence as the

two components of a quantum planar Brownian motion. Indeed, for arbitrary

real x1; x2; : : : ; xm; y1; y2; : : : ; yn and nonnegative s1; s2; : : : ; sm; t1; t2; : : : ; tn;

the operator
P

xj P .�/.sj / C
P

ykQ.�/.tk/ defined on the intersection of do-

mains is essentially self-adjoint, so that the quantum probabilistic expectation

EŒei.
P

xj P .�/.sj /C
P

ykQ.�/.tk//�, which in effect determines the joint characteristic

function, is well defined. Moreover this factorizes:

EŒei.
P

xj P .�/.sj /C
P

ykQ.�/.tk//�

D EŒei
P

xj P .�/.sj /�EŒei
P

ykQ.�/.tk/�
(5)

and in classical probability such factorization is sufficient for independence.

We use the standard quantum stochastic calculus of [15] in the case when

� D 1 and the non-Fock finite temperature calculus of [8] when � > 1 to define

the corresponding quantum Lévy areas, in which the planar Brownian motion is

replaced by its quantum version R.�/ D .P .�/; Q.�//:

Definition 3. The quantum Lévy area B
.�/

Œa;b/
of R.�/ of variance � over the time

interval Œa; b/ is the quantum stochastic integral

B
.�/

Œa;b/
D

1

2

b
Z

a

..P .�/ � P .�/.a//dQ.�/ � .Q.�/ � Q.�/.a//dP .�//:
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When � D 1; the distribution at all times of the corresponding Lévy areas is

degenerate at 0 and all moments are zero [3]. For values � > 1 the processes R.�/

generate Type III factorial von Neumann algebras,1 whose mutual strong unitary

inequivalence as � varies can be regarded as a quantum version of the mutual

singularity of the measures obtained by dilatation of planar Wiener measure

through different dilatation factors �:

In view of (3), the normalised standard unit variance Brownian motions

yP .�/ D ��1P .�/, yQ.�/ D ��1Q.�/; (6)

become mutually commutative in the limit of large �; so that the corresponding

quantum Lévy areas
yB

.�/

Œa;b/
D ��2

B
.�/

Œa;b/
(7)

interpolate between the degenerate distribution at � D 1 and the classical case

AŒa;b/ at 1: Thus it is a natural question to ask how the moments behave under

this interpolation and in particular how the Euler zigzag numbers are approached

at 1. The main purpose of this paper is to address this question.

Our method is based firstly on the observation that Definition 1, Definition 3,

and the normalized form of the latter, can be regarded as iterated stochastic

integrals:

AŒa;b/ D
1

2

Z

a<x<y<b

.dX.x/dY.y/ � dY.x/dX.y//; (8)

B
.�/

Œa;b/
D

1

2

Z

a<x<y<b

.dP .�/.x/dQ.�/.y/ � dQ.�/.x/dP .�/.y//; (9)

yB
.�/

Œa;b/
D

1

2

Z

a<x<y<b

.d yP .�/.x/d yQ.�/.y/ � d yQ.�/.x/d yP .�/.y//: (10)

We may thus evaluate moments as expectations of powers, using the so-called

sticky shuffle [6] or stuffle [5] Hopf algebra. Multiplication in this algebra can

be used to express the product of two iterated Itô stochastic integrals as a linear

combination of such iterated integrals. Since the expectation of an iterated integral

vanishes unless each of the individual integrators is time, the recovery formula

[6, 1], involving higher order Hopf algebra coproducts, reduces the evaluation of

the moments to a combinatorial counting problem.

1 More precisely, it is the the unitary operators eixP .�/.s/ and eixQ.�/.s/ for real x and positive

� which generate these algebras.
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As mentioned above, the moments of Levy area are directly related to classical

formulas of Euler for values of the zeta function at even integers. Many more

modern applications depend on the so-called Levy area formula [12] for the

conditional characteristic function given the the values of the increments. Among

many recent results of this type are proofs of Apery’s theorem and more general

results on values of the zeta function at odd integers, and also new results on values

of multizeta functions. Because of mutual noncommutativity analogous joint

conditioning cannot be applied to the component processes of the quantum Levy

processes considered here. Instead, motivated by Yor’s conceptual simplification

of the conditional characteristic function using the rotational symmetry of planar

Brownian motion, which is shared in a certain sense by the quantum planar

Brownian motions considered here, it may be interesting to study what amounts

to a joint characteristic function for quantum Levy areas with its “radial part”

P.t/2 C Q.t/2 by regarding the latter as an iterated quantum stochastic integral.

Other quantum “quadratic Wiener functionals,” with their many mathematical

links, may also be explored. A start in this exploration has been made in [10].

The sticky shuffle Hopf algebra is reviewed in Section 2. Its use for reducing

the evaluation of moments to a counting problem is described in Section 3.

Several combinatorial results needed to accomplish the nontrivial counting task

are then provided in Section 4. These combinatorial results are crucial within

our calculations, but may become useful beyond the scope of this paper, too. In

Section 5, we evaluate the moments of the quantum Lévy area (10). Finally, in

Section 6, we show how the classical moments [11] are recovered in the “infinite

temperature” limit as � ! 1:

2. The sticky shuffle product Hopf algebra

2.1. The shuffle product Hopf algebra. Given a complex vector space L, the

usual shuffle product Hopf algebra overL is formed by equipping the vector space

T.L/ D
L1

nD0

Nn
j D1 L of tensors of all ranks over L with the operations of

product, unit, coproduct, counit and antipode defined as follows. We denote a

general element ˛ of T.L/ by ˛ D ˛0˚˛1˚˛2˚� � � or .˛0; ˛1; ˛2; : : : /; where only

finitely many of the ˛m are nonzero. For each ˛m 2
Nm

j D1 L the corresponding

embedded element .0; 0; : : : ; ˛m; 0; : : : / of T.L/ is denoted by ¹˛mº.
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� The shuffle product is defined by bilinear extension of the rule

¹L1 ˝ L2 ˝ � � � ˝ Lmº¹LmC1 ˝ LmC2 ˝ � � � ˝ LmCnº

D
X

s2S.m;n/

¹Ls.1/ ˝ Ls.2/ ˝ � � � ˝ Ls.mCn/º
(11)

where S.m; n/ denotes the set of .m; n/-shuffles, that is permutations s of

¹1; 2; : : : ; m C nº for which s.1/ < s.2/ < � � � < s.m/ and s.m C 1/ <

s.m C 2/ < � � � < s.m C n/:

� The unit element for this product is 1T.L/ D .1C; 0; 0; : : : /.

� The coproduct � is the map from T.L/ to T.L/ ˝ T.L/ defined by linear

extension of the rules that �.1T.L// D 1T.L/ ˝ 1T.L/ D 1T.L/˝T.L/ and

�¹L1 ˝ L2 ˝ � � � ˝ Lmº

D 1T.L/ ˝ ¹L1 ˝ L2 ˝ � � � ˝ Lmº

C

m
X

j D2

¹L1 ˝ L2 ˝ � � � ˝ Lj �1º ˝ ¹Lj ˝ Lj C1 ˝ � � � ˝ Lmº

C ¹L1 ˝ L2 ˝ � � � ˝ Lmº ˝ 1T.L/:

(12)

� The counit " is the map from T.L/ to C defined by linear extension of

".1T.L// D 1C; " ¹L1 ˝ L2 ˝ � � � ˝ Lmº D 0 for m > 0: (13)

� The antipode is the map S from T.L/ to T.L/ defined by linear extension of

S.1T.L// D 1T.L/ (14)

and

S ¹L1 ˝ L2 ˝ � � � ˝ Lmº D .�1/m ¹Lm ˝ Lm�1 ˝ � � � ˝ L1º (15)

for m > 0:

There are two useful equivalent definitions of the shuffle product. For the first,

we use the notational convention that, for arbitrary elements ˛ of T.L/ and L of

L; ˛ ˝L is the element of T.L/ for which .˛ ˝L/0 D 0 and .˛ ˝L/n D ˛n�1 ˝L

for n � 1: Then the shuffle product of arbitrary elements of T.L/ is defined

inductively by bilinear extension of the rules

1T.L/ ¹L1 ˝ L2 ˝ � � � ˝ Lmº D ¹L1 ˝ L2 ˝ � � � ˝ Lmº 1T.L/

D ¹L1 ˝ L2 ˝ � � � ˝ Lmº ;
(16)
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and

¹L1 ˝ L2 ˝ � � � ˝ Lmº ¹LmC1 ˝ LmC2 ˝ � � � ˝ LmCnº

D .¹L1 ˝ L2 ˝ � � � ˝ Lm�1º ¹LmC1 ˝ LmC2 ˝ � � � ˝ LmCnº/ ˝ Lm

C .¹L1 ˝ L2 ˝ � � � ˝ Lmº ¹LmC1 ˝ LmC2 ˝ � � � ˝ LmCn�1º/ ˝ LmCn:

(17)

Here the two terms on the right-hand side of (17) correspond to the mutually

exclusive and exhaustive possibilities that s.m C n/ D m and s.m C n/ D m C n

in the expansion (11). The second alternative definition is that the shuffle product

 D ˛ˇ of arbitrary elements ˛ and ˇ is given by

N D
X

A[BD¹1;2;:::;N º

A\BD;

˛A
jAjˇ

B
jBj: (18)

Here the sum is over the 2N ordered pairs .A; B/ of disjoint subsets whose union is

¹1; 2; : : : ; N º and the notation is as follows; jAj denotes the number of elements in

the set A so that ˛jAj denotes the homogeneous component of rank jAj of the tensor

˛ D .˛0; ˛1; ˛2; : : : /; and ˛A
jAj

indicates that this component is to be regarded as

occupying only those jAj copies of L within
NN

j D1 L labelled by elements of the

subset A of ¹1; 2; : : : ; N º: Thus with ˇB
jBj

defined analogously the combination

˛A
jAj

ˇB
jBj

is a well-defined element of
NN

j D1 L.

2.2. The sticky shuffle algebra. Now suppose that the complex vector space L

is an associative algebra. We define the sticky shuffle product in the vector space

T.L/ by modifying definition (17) by inserting an extra term so that now

¹L1 ˝ L2 ˝ � � � ˝ Lmº ¹LmC1 ˝ LmC2 ˝ � � � ˝ LmCnº

D .¹L1 ˝ � � � ˝ Lm�1º ¹LmC1 ˝ � � � ˝ LmCnº/ ˝ Lm

C .¹L1 ˝ � � � ˝ Lmº ¹LmC1 ˝ � � � ˝ LmCn�1º/ ˝ LmCn

C .¹L1 ˝ � � � ˝ Lm�1º ¹LmC1 ˝ � � � ˝ LmCn�1º/ ˝ LmLmCn:

(19)

The sticky shuffle (also known as quasishuffle and as stuffle) Hopf algebra appears

to originate in [14]. Or we can modify the alternative definition of the shuffle

product (18) by defining the product  D ˛ˇ by

N D
X

A[BD¹1;2;:::;N º

˛A
jAjˇ

B
jBj: (20)
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Here the sum is now over the 3N not necessarily disjoint ordered pairs .A; B/

whose union is ¹1; 2; : : : ; N º; ˛A
jAj

and ˇB
jBj

are defined as before but now if

A \ B ¤ ; double occupancy of a copy of L within
Nn

j D1 L is reduced to single

occupancy by using the multiplication in the algebra L as a map from L � L to

L: Thus the sticky shuffle product reduces to the usual shuffle product in the case

when the multiplication in L is trivial with all products vanishing. That (20) is

equivalent to (19) (and in particular, that (18) is equivalent to (17)) is seen by noting

that the three terms on the right-hand side of (19) correspond to the three mutually

exclusive and exhaustive possibilities that N 2 A\Bc; N 2 Ac\B and N 2 A\B

in (20).

The same unit, coproduct and counit as before can be applied to make the sticky

shuffle product algebra into a Hopf algebra, but the definition of the antipode must

be modified [6] to

.�1/mS ¹L1 ˝ L2 ˝ � � � ˝ Lmº

D ¹Lm ˝ Lm�1 ˝ � � � ˝ L1º

C

m
X

rD1

X

1�k1<k2<���<kr�1<m

¹Lkr�1C1Lkr�1C2 : : : Lm

˝ Lkr�2C1Lkr�2C2 : : : Lkr�1
˝ � � �

˝ L1L2 : : : Lk1
º:

(21)

The recovery formula [1] expresses the homogeneous components of an ele-

ment ˛ of T.L/ in terms of the iterated coproduct �.N /˛ by

˛N D .�.N /˛/
.1;1;:::;

.N/

1 /
: (22)

Here, �.N / is defined recursively by

�.2/ D � and �.N / D .� ˝ Id˝.N�2/T.L// ı �.N �1/ for N > 2: (23)

Hence, it is a map from T.L/ to the N th tensor power

O

.N /
T.L/ D

O

.N /

1
M

nD0

n
O

j D1

L D

1
M

n1;n2;:::;nN D0

N
O

rD1

nr
O

jr D1

L (24)

so that �.N /˛ has multirank components ˛.n1;n2;:::;nN / of all orders. The recovery

formula (21) also holds when N D 0 and N D 1 if we define �.0/ and �.1/ to be

the counit " and the identity map IdT.L/ respectively.
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Note that the recovery formula is the same for both the sticky and nonsticky

cases; it only involves the coproduct � which is one and the same map. However

our application of it will use the fact that � is multiplicative, �.˛ˇ/ D �.˛/�.ˇ/,

where the product on the tensor square T.L/˝T.L/ is defined by linear extension

of the rule

.a ˝ a0/.b ˝ b0/ D ab ˝ a0b0: (25)

This holds in particular with the sticky shuffle product as the product in T.L/.

3. Moments and sticky shuffles

We now describe the connection between sticky shuffle products and iterated

stochastic integrals. We begin with the well-known fact that, for the one-dimen-

sional Brownian motion X and for a � b;

.X.b/ � X.a//2 D 2

Z

a�x<b

.X.x/ � X.a//dX.x/ C

Z

a�x<b

dT .x/; (26)

where T .x/ D x is time. We introduce the Itô algebraL DC hdX; dT i of complex

linear combinations of the basic differentials dX and dT; which are multiplied

according to the table

dX dT

dX

dT

dT 0

0 0

(27)

together with the corresponding sticky shuffle Hopf algebra T.L/: For each pair of

real numbers a < b; we introduce a map J b
a from T.L/ to complex-valued random

variables on the probability space of the Brownian motion X by linear extension

of the rule that, for arbitrary dL1; dL2; � � � dLm 2 ¹dX; dT º

J b
a ¹dL1 ˝ dL2 ˝ � � � ˝ dLmº

D

Z

a�x1<x2<���<xm<b

dL1.x1/dL2.x2/dL3.x3/ � � � dLm.xm/

D

b
Z

a

� � �

x4
Z

a

x3
Z

a

x2
Z

a

dL1.x1/dL2.x2/dL3.x3/ � � � dLm.xm/:

(28)

By convention J b
a maps the unit element of the algebra T.L/ to the unit random

variable identically equal to 1.
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Then (26) can be restated as follows,

J b
a .¹dXº/J b

a .¹dXº/ D J b
a .¹dXº ¹dXº/; (29)

using the fact that ¹dXº2 D 2 ¹dX ˝ dXº C ¹dT º :

The following more general Theorem is probably known to many classical and

quantum probabilists; the quantum version was first given in [2].

Theorem 4. For arbitrary ˛ and ˇ in T.L/,

J b
a .˛/J b

a .ˇ/ D J b
a .˛ˇ/:

Proof. By bilinearity it is sufficient to consider the case when

˛ D ¹dL1 ˝ dL2 ˝ � � � ˝ dLmº; ˇ D ¹dLmC1 ˝ dLmC2 ˝ � � � ˝ dLmCnº (30)

for dL1; dL2; � � � ; dLmCn 2 ¹dX; dT º : In this case Theorem 4 follows, using the

inductive definition (19) for the sticky shuffle product, from the product form of

Itô’s formula,

d.��/ D .d�/� C �d� C .d�/d� (31)

where stochastic differentials of the form d� D FdX C GdT; with stochastically

integrable processes F and G, are multiplied using table (27). �

For planar Brownian motion R D .X; Y / the Ito table (27) becomes

dX dY dT

dX dT 0 0

dY 0 dT 0

dT 0 0 0

(32)

For the quantum planar Brownian motion .P .�/; Q.�// it becomes

dP .�/ dQ.�/ dT

dP .�/ �2dT �idT 0

dQ.�/ idT �2dT 0

dT 0 0 0

(33)

Theorem 5. Theorem 4 holds when L is either of the algebras defined by the

multiplication tables (32) and (33).

Remark 6. In both cases this follows from the corresponding Itô product rule (31).

For classical planar Brownian motion the Itô product rule is well-known. For the

quantum case, when � D 1 see [15] and when � > 1, see [8].
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In view of (8) and (9)

AŒa;b/ D
1

2
J b

a .dX ˝ dY � dY ˝ dX/; (34)

B
.�/

Œa;b/
D

1

2
J b

a .dP .�/ ˝ dQ.�/ � dQ.�/ ˝ dP .�// (35)

For use below we note that the table (32) becomes

dZ d xZ dT

dZ 0 1
2
dT 0

d xZ 1
2
dT 0 0

dT 0 0 0

(36)

in terms of the basis .dZ; d xZ; dT / where

dZ D
1

2
.�idX C dY /; d xZ D

1

2
.idX C dY /: (37)

Correspondingly

AŒa;b/ D iJ b
a .dZ ˝ d xZ � d xZ ˝ dZ/ (38)

Similarly (33) becomes

dA.�/ dA�.�/ dT

dA.�/ 0 1
2
.�2 C 1/dT 0

dA�.�/ 1
2
.�2 � 1/dT 0 0

dT 0 0 0

(39)

in terms of the basis .dA.�/; dA�.�/; dT / where

dA.�/ D
1

2
.�idP .�/ C dQ.�//; dA�.�/ D

1

2
.idP .�/ C dQ.�//: (40)

For the basis .d yP .�/; d yQ.�/; dT /; (33) becomes

d yP .�/ d yQ.�/ dT

d yP .�/ dT �i��2dT 0

d yQ.�/ i��2dT dT 0

dT 0 0 0

(41)

which deforms to the classical table (32) as � ! 1: Similarly, for the basis

.d yA.�/; d yA�.�/; dT / where

d yA.�/ D
1

2
.�id yP .�/ C d yQ.�//; d yA�.�/ D

1

2
.id yP .�/ C d yQ.�// (42)
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we have
d yA.�/ d yA�.�/ dT

d yA.�/ 0 �CdT 0

d yA�.�/ ��dT 0 0

dT 0 0 0

(43)

with

�˙ D
1

2
.1 ˙ ��2/; (44)

which becomes isomorphic to (36) when � ! 1: The normalized quantum Lévy

area which is our main concern is

yB
.�/

Œa;b/
D iJ b

a .d yA.�/ ˝ d yA�.�/ � d yA�.�/ ˝ d yA.�//: (45)

In the following theorem, the basis referred to is any of those for which the

respective algebras have multiplication tables (32), (33), (36), (39), (41) or (43).

Theorem 7. For arbitrary n 2 N; a < b 2 R and basis elements dL1, dL2, . . . ,

dLn,

EŒJ b
a ¹dL1 ˝ dL2 ˝ � � � ˝ dLnº� D 0

unless

dL1 D dL2 D � � � D dLn D dT:

Proof. If dLn ¤ dT then

J b
a ¹dL1 ˝ dL2 ˝ � � � ˝ dLnºD

b
Z

a

J x
a ¹dL1 ˝ dL2 ˝ � � � ˝ dLn�1ºdLn.x/: (46)

In the classical cases (32) and (36), Ln is a real or complex-valued martingale and

the expectation of the stochastic integral against dLn vanishes. When � D 1 it

also vanishes in the cases (33), (39) and (41) by the first fundamental formula of

quantum stochastic calculus in the Fock space F [15]. When � > 1 it vanishes as

may be seen for example by realising the processes P .�/ and Q.�/ in the tensor

product of F with its Hilbert space dual, F ˝ xF , equipped with the tensor product

e.0/ ˝ e.0/ of the Fock vacuum vector with its dual vector as

P .�/ D

r

1

2
.�2 C 1/.P .�/ ˝ xI / C

r

1

2
.�2 � 1/.I ˝ xP .�//; (47)

Q.�/ D

r

1

2
.�2 C 1/.Q.�/ ˝ xI / C

r

1

2
.�2 � 1/.I ˝ xQ.�//; (48)
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and again invoking the first fundamental formula. Thus in all cases

EŒJ b
a ¹dL1 ˝ dL2 ˝ � � � ˝ dLnº� D 0 (49)

unless dLn D dT:

If dLn D dT then by Fubini’s theorem we can write

EŒJ b
a ¹dL1 ˝ dL2 ˝ � � � ˝ dLnº�

D

b
Z

a

¹EŒJ x
a ¹dL1 ˝ dL2 ˝ � � � ˝ dLn�1º�ºdx

D 0;

(50)

unless dLn�1 D dT , by the previous argument. By repetition we see that

EŒJ b
a ¹dL1 ˝ dL2 ˝ � � � ˝ dLnº� D 0; (51)

unless each of dLn; dLn�1, dLn�2, . . . , dL1 is equal to dT . �

Now consider the moments sequence of the normalized quantum Lévy area of

variance �2 in the form (45). In view of Theorem 4,

ŒyB
.�/

Œa;b/
�n D in.J b

a .d yA.�/ ˝ d yA�.�/ � d yA�.�/ ˝ d yA.�///n

D inJ b
a .¹d yA.�/ ˝ d yA�.�/ � d yA�.�/ ˝ d yA.�/ºn/

(52)

The nth sticky shuffle power ¹d yA.�/ ˝d yA�.�/ �d yA�.�/ ˝d yA.�/ºn will consist

of non-sticky shuffle products of rank 2n together with terms of lower ranks

n; n C 1; : : : ; 2n � 1, all of which except the rank n term will contain one or more

copies of d yA.�/ and d yA�.�/; and will thus not contribute to the expectation in

view of Theorem 7. The term of rank n will be a multiple of dT ˝ dT � � � ˝
.n/

dT ,

where the symbol .n/ on the top of the last copy dT indicates the position of the

referred term in a row. Thus we can write

¹d yA.�/ ˝ d yA�.�/ � d yA�.�/ ˝ d yA.�/ºn

D w.�/
n ¹dT ˝ dT � � � ˝

.n/

dT º C terms of rank > n:

(53)
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for some coefficient w
.�/
n : The corresponding moment is given by

EŒyB
.�/

Œa;b/
�n D inw.�/

n EŒJ b
a .¹dT ˝ dT � � � ˝

.n/

dT º/�

D inw.�/
n

Z

a�x1<x2<���<xn<b

dx1dx2 : : : dxn

D inw.�/
n

.b � a/n

nŠ
:

(54)

By the recovery formula (21) and the multiplicativity of the nth order coprod-

uct �.n/;

w.�/
n dT ˝ dT � � � ˝

.n/

dT

D ¹¹d yA.�/ ˝ d yA�.�/ � d yA�.�/ ˝ d yA.�/ºnºn

D .�.n/.¹d yA.�/ ˝ d yA�.�/ � d yA�.�/ ˝ d yA.�/ºn//
.1;1;:::;

.n/

1 /

D ..�.n/.¹d yA.�/ ˝ d yA�.�/ � d yA�.�/ ˝ d yA.�/º//n/
.1;1;:::;

.n/

1 /
:

(55)

Now

�.n/.¹d yA.�/ ˝ d yA�.�/ � d yA�.�/ ˝ d yA.�/º/

D
X

1�j �n

1T.L/ ˝ � � � ˝
.j /

¹d yA.�/ ˝ d yA�.�/ � d yA�.�/ ˝ d yA.�/º ˝ � � � ˝ 1T.L/

C
X

1�j <k�n

.1T.L/ ˝ � � � ˝

.j /

¹d yA.�/º ˝ � � � ˝

.k/

¹d yA�.�/º ˝ � � � ˝
.n/

1T.L/

� 1T.L/ ˝ � � � ˝

.j /

¹d yA�.�/º ˝ � � � ˝

.k/

¹d yA.�/º ˝ � � � ˝
.n/

1T.L//:

(56)

The first term of this sum, being of rank 2; cannot contribute to the component of

joint rank .1; 1; : : : ;
.n/

1 / of the nth power of �.n/.¹dX ˝ dY � dY ˝ dXº/, where

product in the nth tensor power
N

.N /
T.L/ is defined exactly as in the case n D 2
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in (25). Thus

w.�/
n dT ˝ dT � � � ˝

.n/

dT

D ..�.n/.¹d yA.�/ ˝ d yA�.�/ � d yA�.�/ ˝ d yA.�/º//n/
.1;1;:::;

.n/

1 /

D
��

X

1�j <k�n

.1T.L/ ˝ � � � ˝

.j /

¹d yA.�/º ˝ � � � ˝

.k/

¹d yA�.�/º ˝ � � � ˝
.n/

1T.L/

� 1T.L/ ˝ � � � ˝

.j /

¹d yA�.�/º ˝ � � � ˝

.k/

¹d yA.�/º ˝ � � � ˝
.n/

1T.L//
�n�

.1;1;:::;
.n/

1 /

(57)

This calculation of w
.�/
n can be finished using some combinatorics. We do that in

the following two sections.

4. Some background about Eulerian and Euler numbers

In this section, we present several lemmas about Euler numbers, Eulerian num-

bers, Euler polynomials and forth-back permutations, as we call them. These com-

binatorial results are of sufficient general nature to be of interest elsewhere. A view

of the provided lemmas appear as exercises in [16], but are still proven here for the

sake of completeness. Additional explanations to the used methods and many

similar results can be found in [16, 17].

A permutation s in the symmetric group Sn is a zigzag permutation (mislead-

ingly also called alternating permutation) if s.1/ > s.2/ < s.3/ > s.4/ < � � � .

In other words, s is zigzag if s.1/ > s.2/ and

either s.j � 1/ < s.j / > s.j C 1/ or s.j � 1/ > s.j / < s.j C 1/ (58)

for all j 2 ¹2; 3 : : : ; n � 1º. If we have the initial condition s.1/ < s.2/, instead of

s.1/ > s.2/, we may call s zagzig. The number of all zigzag permutations in Sn is

the Euler zigzag number An. These numbers occur in many places, for instance,

as the coefficients of z2n

.2n/Š
in the Maclaurin series of sec.z/C tan.z/. In this paper,

we meet them as the number of forth-back permutations, as we call them. These

are the permutations s 2 Sn with

either s
�1.j / < j > s.j / or s

�1.j / > j < s.j / (59)

for all j 2 ¹1; 2; : : : ; nº. As forth-back permutations do not contain cycles of odd

length, n must be even for there to exist forth-back permutations. If n is even, say

n D 2m > 0, we have the following lemma:
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Lemma 8. The number of forth-back permutations in S2m is the Euler zigzag

number A2m.

Proof. A bijection between the forth-back permutations s and the zigzag permu-

tations in S2m is obtained by applying the so-called transformation fundamen-

tale [4]. To perform this transformation, we write s in cycle notation

s D .s1; s2; : : : ; s`2�1/.s`2
; s`2C1; : : : ; s`3�1/.s`3

; s`3C1; : : : ; s`4�1/ � � �

.s`m
; s`mC1; : : : ; s2m/: (60)

This representation and the numbers sj are uniquely determined if we require that

the first entry of every cycle is bigger than all other entries in that cycle, and also

that s1 < s`2
< s`3

< � � � < s`m
. The new permutation Ns is then obtained by

forgetting brackets and setting Ns.j / WD sj . We just have to see that this actually

yields a bijection s 7! Ns between forth-back and zigzag permutations. To do this

we proceed as follows.

Assume first that s is forth-back. Then all cycles necessarily have even length

and the permutation Ns is obviously zigzag, s1 > s2 < s3 > s4 < � � � > s2m.

Conversely, let us show that every zigzag permutation Ns has a unique pre-image

s, and that that pre-image is forth-back. To construct a pre-image s of Ns, we only

need to find suitable numbers j̀ , which indicate where we have to insert brackets

into the sequence .s1; s2; : : : ; s2m/ WD .s.1/; s.2/; : : : ; s.2m// to actually get a pre-

image. However, if we have already found `2; `3; : : : ; j̀ , then j̀ C1 is necessarily

the first index x with sx > s
j̀
. Using this, we can construct a pre-image s of Ns in

S2m, and it is uniquely determined. Moreover, if Ns is zigzag then this construction

ensures that s1 and the s
j̀

are peaks and their neighbors and s2m are valleys.

Since also s1 > s`2�1, s`2
> s`3�1, . . . , s`m

> s2m, insertion of brackets before

the peaks j̀ yields forth-back cycles in s.

With the bijection established, it is now clear that there are as many forth-back

permutations as there are zigzag permutations in S2m. This number is the Euler

zigzag number A2m. �

The number of forth-back permutations with just one cycle is given by the

following lemma. If Cn denotes the subset of cyclic permutations in Sn, we have:

Lemma 9. The number of forth-back permutations in C2m is A2m�1.

Proof. The cycle notation s D .s1; s2; : : : ; s2m/ of cyclic permutations s 2 S2m

is not uniquely determined, as one may rotate the entries cyclically. It becomes

uniquely determined if we require that s2m D 2m. In this case, removal of the
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last entry yields a sequence .s1; s2; : : : ; s2m�1/ that is zagzig (with s1 < s2 as

s2m was the biggest entry of s). If we define Ns 2 S2m�1 by setting Ns.j / WD sj ,

for j D 1; 2; : : : ; 2m � 1, we obtain a bijection s 7! Ns from the cyclic forth-back

permutations in S2m to the zagzig permutations in S2m�1. Indeed, every zagzig

permutation Ns in S2m�1 has the cycle s WD .Ns.1/; Ns.2/; : : : ; Ns.2m�1/; 2m/ as unique

pre-image. The existence of this bijection shows that the number of cyclic forth-

back permutations in S2m is equal to the number of zagzig permutations in S2m�1,

which is A2m�1, as for zigzag permutations. �

This enumerative result about cyclic forth-back permutations can also be ap-

plied to forth-back permutation with k cycles of lengths 2m1; 2m2; : : : ; 2mk (nec-

essarily all even). To formulate this, we denote with Cn1;n2;:::;nk
the set of all per-

mutations in Sn with k cycles of lengths n1; n2; : : : ; nk , i.e. the set of permutations

of typ .n1; n2; : : : ; nk/, as we say. We also denote with
�

n
n1;n2;:::;nk

�

the number of

unordered partitions ¹N1; N2; : : : ; Nkº of the set ¹1; 2; : : : ; nº with k blocks Nj of

sizes jNj j D nj > 0. With this we get the following more general formula.

Lemma 10. If positive integers m1 � m2 � � � � � mk with m1Cm2C: : :Cmk D m

are given, then the number of forth-back permutations in S2m with k cycles of

lengths 2m1; 2m2; : : : ; 2mk is

j¹s 2 C2m1;2m2;:::;2mk
js is forth-backºj D

�

2m

2m1; 2m2; : : : ; 2mk

� k
Y

j D1

A2mj �1:

In particular,

A2m D
X

�

2m

2m1; 2m2; : : : ; 2mk

� k
Y

j D1

A2mj �1;

where the sum runs over all partitions m1 C m2 C � � � C mk of m, that is over

all non-decreasing sequences m1 � m2 � � � � � mk of positive integers of every

possible length k with m1 C m2 C � � � C mk D m > 0.

Proof. If a partition m1 C m2 C � � � C mk D m of the number m is given, then

there are
�

2m
2m1;2m2;:::;2mk

�

partitions of the set ¹1; 2; : : : ; 2mº into a set of k blocks

Nj with sizes 2mj , j D 1; 2; : : : ; k. The block Nj can be turned into a cyclic

forth-back permutation in A2mj �1 many ways, by Lemma 9. Hence, we get the

stated expression for the number of forth-back permutations of that type.
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Moreover, it is easy to see that the sum over all possible expressions of this

form gives the number of all forth-back permutations, which is A2m by Lemma 8.

Indeed, every forth-back permutations s in S2m, has a certain number k of cycles

and a certain type, certain lengths 2m1; 2m2; : : : ; 2mk of its cycles. In this respect,

every partition m1 C m2 C � � � C mk D m is possible. Hence, the sum covers all

A2m forth-back permutations, as stated. �

In our investigations, we will also need to look at a certain notion of sign,

denoted by sn.s/, for permutations s 2 Sn, defined by

sn.s/ WD

n
Y

j D1

.�1/des.j;s.j //; (61)

where

des.h; k/ WD

´

0 if h � k;

1 if h > k:
(62)

We want to show that
P

s2S
¤
2m

sn.s/ D .�1/mA2m, where S
¤
n denotes the set of

fixed-point-free permutations in Sn. To establish this and similar results, we need

to introduce certain equivalence classes of permutations which are based on the

notion of a transit of a permutation. We call h 2 ¹1; 2; : : : ; nº a transit of the

permutation s 2Sn if

either s
�1.h/ < h < s.h/ or s

�1.h/ > h > s.h/ : (63)

Let S
T
n denote the set of permutations in Sn which contain a transit, and let

C
T
n1;n2;:::;nk

be the set of permutations in Cn1;n2;:::;nk
which contain a transit. Every

permutation s with transit contains a unique smallest transit h, say inside a cycle

.j1; j2; : : : ; s�1.h/; h; s.h/; : : : ; j`/ of length `, which we may also write as

j1 7�! j2 7�! � � � 7�! s
�1.h/ 7�! h 7�! s.h/ 7�! � � � 7�! j` 7�! j1: (64)

We obtain a permutation s
0 of ¹1; 2; : : : ; nº n ¹hº by replacing the chain of assign-

ments s
�1.h/ 7! h 7! s.h/ with the shorter chain s

�1.h/ 7�! s.h/. Hence, the

new permutation s
0 contains the cycle

j1 7�! j2 7�! � � � 7�! s
�1.h/ 7�! s.h/ 7�! � � � 7�! j` 7�! j1: (65)

We define an equivalence relation � on the set ST
n . For two permutations s and r

with transit, we write s � r if and only if s and r have the same smallest transit

h, if s0 D r
0 and if the smallest transit h is missing from the same cycle in s

0 as

in r
0. The equivalence class of s is denoted as Œs�. The equivalence relation � can

also be restricted to the sets of the form C
T
n1;n2;:::;nk

. We have Œs� � C
T
n1;n2;:::;nk

whenever s 2 C
T
n1;n2;:::;nk

.
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Example 11. In the 8-cycle s WD .4; 1; 8; 2; 6; 7; 5; 3/ the number 5 is the smallest

transit, a downwards transit in this case, as 7 > 5 > 3. If we remove it from

the cycle, and reinsert the 5 as a transit in all possible ways into the remaining

7-cycle .4; 1; 8; 2; 6; 7; 3/, we get four permutations. The 5 would not be a transit

between 4 and 1, but can be inserted between 1 and 8, yielding .4; 1; 5; 8; 2; 6; 7; 3/.

Similarly, we also obtain .4; 1; 8; 5; 2; 6; 7; 3/, .4; 1; 8; 2; 5; 6; 7; 3/ and the original

permutation .4; 1; 8; 2; 6; 7; 5; 3/. These four 8-cycles form the equivalence class

Œs� of swith respect to �. Interestingly, two of the four 8-cycles contain the number

5 as upwards transit, and their sign is opposite to the sign of the other two 8-cycles

with 5 as downwards transit, as one can easily check. The situation is illustrated

in Figure 1.

Figure 1. The cycle .4; 1; 8; 2; 6; 7; 5; 3/ with smallest transit h D 5.

The observation about the sign of the elements in equivalence classes that we

made in this example is no coincidence. We have the following lemma.

Lemma 12. If a permutation s contains a transit, then there is an even number

of elements in its equivalence class Œs�. One half of them have negative sign, and

one half have positive sign.

Proof. Assume the cycle that contains the smallest transit h of s is denoted as in

equation (64). If we walk once around the shortened cycle of s0 in equation (65)

and observe the indices j1; j2; j3; : : : as a kind of altitude, then we will cross the

altitude h as many times upwards (from below h to above h) as downwards (from

above h to below h), see Figure 1. Hence, there are as many ways to reinsert
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h as an upwards transit and as a downwards transit. Therefore, one half of the

permutations that we obtain have positive sign, and one half have negative sign.

The equivalence class Œs� of s is as claimed. �

With the help of Lemma 12, we can now prove the following theorem.

Theorem 13. Let a partition n1 Cn2 C : : :Cnk D n with 2 � n1 � n2 � � � � � nk

be given. Then,

X

s2Cn1;n2;:::;nk

sn.s/ D

´

.�1/
n
2

�

n
n1;n2;:::;nk

� Qk
j D1 Anj �1 if all nj are even,

0 otherwise.

In particular,

X

s2S
¤
n

sn.s/ D

´

.�1/
n
2 An if n is even,

0 otherwise.

Proof. We observe that we can cancel out all permutations in Cn1;n2;:::;nk
that

contain a transit, that is, all elements of CT
n1;n2;:::;nk

. In fact, CT
n1;n2;:::;nk

is parti-

tioned into equivalence classes, and each of them cancels out by Lemma 12. The

remaining elements of Cn1;n2;:::;nk
do not contain a transit. Hence, if there are

any remaining permutations in Cn1;n2;:::;nk
n C

T
n1;n2;:::;nk

, they must be forth-back

permutations. In particular, in this case, all nj must necessarily be even. Now,

Lemma 10 yields the first stated result, since all forth-back permutations in S
¤
n

have sign .�1/
n
2 . The second formula follows from this and the second formula

in Lemma 10, but it can also be deduced from Lemma 8 directly, after canceling

out equivalence classes in S
¤
n . �

For the number of partitions in some of the previous results, we also have the

following well known formula, whose proof we present for completeness:

Lemma 14. We have

�

n

n1; n2; : : : ; nk

�

D

�

n

n1; n2; : : : ; nk

�

1

k1Šk2Š � � � kr Š
D

nŠ

n1Šn2Š � � � nkŠk1Šk2Š : : : kr Š
;

where k1; k2; : : : ; kr are the multiplicities of the different elements in the multi-set

¹n1; n2; : : : ; nkº. (For example, the elements in the multi-set ¹2; 2; 2; 4; 4º have

the multiplicities k1 D 3 and k2 D 2, and r D 2.)
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Proof. Without loss of generality, we may assume that n1 � n2 � � � � � nk .

There are
�

n
n1;n2;:::;nk

�

WD nŠ
n1Šn2Š���nkŠ

ordered partitions (sequences of blocks) with

block sizes n1; n2; : : : ; nk (in that order). This number can also be generated

by first choosing all
�

n
n1;n2;:::;nk

�

unordered partitions (sets of blocks) with block

sizes n1; n2; : : : ; nk, and then arranging each of them in all possible ways as a

sequences of blocks, i.e. as ordered partition. Hence, for each unordered partition

¹N1; N2; : : : ; Nkº, we have to see how many ways there are to arrange its blocks

in a sequence with nondecreasing cardinalities (equal to the sequence n1 �

n2 � � � � � nk). Ambiguities in this order of the blocks are only given for

blocks of equal size, which correspond to multiplicities of the elements in the

multi-set ¹n1; n2; : : : ; nkº. Hence, the number of ways is always k1Šk2Š : : : kr Š,

where k1; k2; : : : ; kr are the multiplicities of the different elements in the multi-set

¹n1; n2; : : : ; nkº. Combining this factor with the number of unordered partitions

yields the relation

�

n

n1; n2; : : : ; nk

�

k1Šk2Š � � � kr Š D

�

n

n1; n2; : : : ; nk

�

; (66)

which proves the lemma. �

In this paper we will also consider the number of descends of sequences

.j1; j2; : : : ; jn/ of n � 1 integers, that is, the number

des.j1; j2; : : : ; jn/ WD j¹` 2 ¹1; 2; : : : ; n � 1ºjj` > j`C1ºj ; (67)

which generalizes des.h; k/ 2 ¹0; 1º in (62). The number of permutations s 2 Sn

for which

des.s.1/; s.2/; : : : ; s.n// D j (68)

is the so-called Eulerian number
˝

n
j

˛

. We follow [16] in taking this as the definition

of the Eulerian numbers, but Eulerian numbers also count various other kinds of

objects, see [16]. The corresponding generating function is the so-called Euler

polynomial

Sn.�/ WD
X

s2Sn

�des.s.1/;s.2/;:::;s.n// D

n�1
X

j D0

�

n

j

�

�j : (69)

In this paper, we will also need the closely related number of cyclic descends,

defined by

cdes.j1; j2; : : : ; jn/ WD des.j1; j2; : : : ; jn; j1/; (70)

which has the following statistic [16, Exercise1.11].
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Lemma 15. All permutations s 2 Sn have 0 < cdes.s.1/; s.2/; : : : ; s.n// < n. For

0 < j < n, the number of permutations s 2 Sn with exactly j cyclic descents is

j¹s 2 Snj cdes.s.1/; s.2/; : : : ; s.n// D j ºj D n

�

n � 1

j � 1

�

:

In particular,
X

s2Sn

�cdes.s.1/;s.2/;:::;s.n// D n�Sn�1.�/: (71)

Proof. Assume s 2 Sn with cdes.s.1/; s.2/; : : : ; s.n// D j . Since every sequence

of distinct integers has at least one cyclic descent and one cyclic ascent, j cannot

be 0 or n, and 0 < j < n as claimed. Now, let M be such that s.M/ is the biggest

entry of the sequence .s.1/; s.2/; : : : ; s.n//. We construct a new shorter sequence

Ns WD .s.MC1/; s.MC2/; : : : ; s.n/; s.1/; s.2/; : : : ; s.M�1// (72)

by removing s.M/ and gluing together the remaining halves in opposite order.

Obviously, Ns has exactly j � 1 descends. If we first rotate the entries of the

sequence .s.1/; s.2/; : : : ; s.n// and then remove the biggest entry, we still get the

same sequence Ns in the same way. This idea shows that removal of the biggest

entry yields an n to 1 correspondence s 7! Ns between the permutations in Sn with

j cyclic descends and the permutations in Sn�1 with j � 1 descends. Hence,

there are n
˝

n�1
j �1

˛

permutations in Sn with exactly j cyclic descends. In particular,

this number is the coefficient of �j in both polynomial on the left of (71) and the

polynomial on the right. So these polynomials are equal. �

One can also prove the following lemma, which might be useful in calculations

similar to the ones in our paper [16, Excercise 1.7].

Lemma 16. The number of permutations s 2 Sn with s.x/ < x for exactly j points

x 2 ¹1; 2; : : : ; nº is the Eulerian number
˝

n
j

˛

and the corresponding generating

function is the Euler polynomial.

5. Moments of quantum Lévy areas

To evaluate the moments EŒyB
.�/

Œa;b/
�n, we need to calculate the number w

.�/
n , as

explained in (54). By (57), we have

w.�/
n dT ˝ dT � � � ˝

.n/

dT D
��

X

h¤k

.�1/des.h;k/Rh;k

�n�

.1;1;:::;
.n/

1 /
(73)
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with

Rh;k WD 1 ˝ � � � ˝ 1 ˝

.h/

¹d yA.�/º ˝ 1 ˝ � � � ˝ 1 ˝

.k/

¹d yA�.�/º ˝ 1 ˝ � � � ˝ 1: (74)

As in the previous section,

des.h; k/ WD

´

0 if h � k;

1 if h > k;
(75)

and the nth power is based on the sticky shuffle product in T.L/ and its extension

to the nth tensor power
N

.N /
T.L/, as described in (25) for n D 2.

If we set e WD .h; k/, then we may also write Re for Rh;k and des.e/ for

des.h; k/. Using distributivity, this yields

w.�/
n dT ˝ dT � � � ˝

.n/

dT D
�

X

n
Y

`D1

.�1/des.e`/Re`

�

.1;1;:::;
.n/

1 /
; (76)

where the sum runs over all n-tuples .e1; e2; : : : ; en/ of pairs .h; k/ with h ¤ k.

We may imagine each pair e` D .h`; k`/ as a directed edge, an arc, from h` to k`.

Each n-tuples .e1; e2; : : : ; en/ is then a directed labeled multigraph, or digraph, on

the vertex set V WD ¹1; 2; : : : ; nº. It is important to keep track of the indices ` as

labels of the arcs e`, because our product is not commutative,

d yA.�/d yA�.�/ D �CdT and d yA�.�/d yA.�/ D ��dT ; (77)

and

.¹d yA.�/º¹d yA�.�/º/.1/ D �CdT and .¹d yA�.�/º¹d yA.�/º/.1/ D ��dT : (78)

For example, in the case n D 4, the two arcs e1 D .1; 2/ and e2 D .2; 3/ contribute

.Re1
Re2

/.1;1;1;1/

D ..¹d yA.�/º ˝ ¹d yA�.�/º ˝ 1 ˝ 1/.1 ˝ ¹d yA.�/º ˝ ¹d yA�.�/º ˝ 1//.1;1;1;1/

D .¹d yA.�/º1/.1/ ˝ .¹d yA�.�/º¹d yA.�/º/.1/ ˝ .1¹d yA�.�/º/.1/ ˝ .1 � 1/.1/

D ��d yA.�/ ˝ dT ˝ d yA�.�/ ˝ 1;

(79)

while if the labels 1 and 2 are exchanged, e1 D .2; 3/ and e2 D .1; 2/, we get

.Re1
Re2

/.1;1;1;1/

D ..1 ˝ ¹d yA.�/º ˝ ¹d yA�.�/º ˝ 1/.¹d yA.�/º ˝ ¹d yA�.�/º ˝ 1 ˝ 1//.1;1;1;1/

D �Cd yA.�/ ˝ dT ˝ d yA�.�/ ˝ 1:

(80)
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In order to calculate the coefficient w
.�/
n of dT ˝ dT ˝ � � � ˝ dT in (73),

we need to retain only those summands in (76) that contribute scalar multiple of

dT ˝ dT ˝ � � � ˝ dT . We may discard other summands. Hence, we do not have

to sum over all digraphs .e1; e2; : : : ; en/. To see which ones we have to retain,

let us assume that .e1; e2; : : : ; en/ yields a multiple of dT ˝ dT ˝ � � � ˝ dT

in (76). Since the n copies of d yA.�/ and n copies of d yA�.�/ in the unexpanded

product
Qn

`D1 Re`
must yield n copies of dT , one in each possible position,

each vertex of the digraph .e1; e2; : : : ; en/ must have exactly one incoming arc

and one outgoing arc. Thus, .e1; e2; : : : ; en/ must consist of disjoint cyclically

oriented cycles that cover V . This allows us to view each arc e` D .h`; k`/ as the

assignment of a function value, h` 7! k` DW s.h`/. We obtain a fixed-point-free

permutation s on V D ¹1; 2; : : : ; nº. We obtain a second permutation l on V by

assigning to each label ` 2 V the vertex h` from which the arc e` D .h`; k`/

originates, ` 7! h` DW l.`/. The pair .l; s/ of permutations, l in Sn and s in

the set S
¤
n of fixed-point-free permutations of V D ¹1; 2; : : : ; nº, contains the

full information about .e1; e2; : : : ; en/. Our construction describes a bijection

.e1; e2; : : : ; en/ 7�! .l; s/ from the set of digraphs .e1; e2; : : : ; en/ that contribute a

multiple of dT ˝dT ˝� � �˝dT onto the set Sn �S
¤
n . The edges e` of the digraph

.e1; e2; : : : ; en/ can be recovered from s and l through the formula

e` D .l.`/; s.l.`///; (81)

which describes the inverse bijection .l; s/ 7! .e1; e2; : : : ; en/. With this, the term

w
.�/
n dT ˝ dT ˝ � � � ˝ dT in (76) can be calculated as

w.�/
n dT ˝ dT ˝ � � � ˝ dT

D
�

X

.l;s/2Sn�S
¤
n

n
Y

`D1

.�1/des.l.`/;s.l.`///Rl.`/;s.l.`//

�

.1;1;:::;
.n/

1 /

D
X

.l;s/2Sn�S
¤
n

sn.s/
�

n
Y

`D1

Rl.`/;s.l.`//

�

.1;1;:::;
.n/

1 /
;

(82)

where, for every l 2 Sn,

sn.s/ WD

n
Y

j D1

.�1/des.j;s.j // D

n
Y

`D1

.�1/des.l.`/;s.l.`//: (83)

We have to consider the product
Qn

`D1 Rl.`/;s.l.`//, for every fixed .l; s/ 2

Sn�S
¤
n . In this product, one dT is produced in each position j , and it comes either

with the scalar factor �C or with ��. If dT arrives as d yA.�/d yA�.�/ then we get �C
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as scalar factor, if it arrives as d yA�.�/d yA.�/ then we get ��. To examine how the

dT in position j arrives, let `1 WD l
�1.j / and `2 D l

�1.s�1.j //, then Rl.`1/;s.l.`1//

contributes a d yA.�/ in position j as `1th factor, and Rl.`2/;s.l.`2// contributes a

d yA�.�/ in position j as `2th factor. So, if l�1.s�1.j /// > l
�1.j / then `2 > `1 and

the d yA�.�/ comes after the d yA.�/, yielding a �C as scalar factor. In general, the

scalar factor of the dT in position j is ��.�C=��/des.l�1.s�1.j //;l�1.j //. Therefore,

w.�/
n D �n

�

X

.l;s/2Sn�S
¤
n

sn.s/

n
Y

j D1

.�C=��/des.l�1.s�1.j //;l�1.j //: (84)

We substitute s.j / for j and l
�1 for l, and obtain the following theorem.

Theorem 17. We have

w.�/
n D �n

�

X

s2S
¤
n

sn.s/
X

l2Sn

n
Y

j D1

�des.l.j /;l.s.j ///;

where � WD �C=��.

In this expression for w
.�/
n there are many terms that cancel against each other

when we carry out the sum. To remove these unnecessary summands and bundle

together equal terms, we first study the inner sum

w s

n .�/ WD
X

l2Sn

n
Y

j D1

�des.l.j /;l.s.j ///; (85)

for a fixed s 2 S
¤
n . Initially, for simplicity, also assume that there is only one

cycle, of length n in s. In cycle notation, s D .s1; s2; : : : ; sn/ with s2 D s.s1/,

s3 D s.s2/, etc. In this particular case, by Lemma 15,

ws

n.�/ D
X

l2Sn

n
Y

`D1

�des.l.s`/;l.s`C1//

D
X

l2Sn

�cdes.l.s1/;l.s2/;:::;l.sn//

D
X

r2Sn

�cdes.r.1/;r.2/;:::;r.n//

D n�Sn�1.�/;

(86)

where Sn.�/ is the Euler polynomial and cdes.r.1/; r.2/; : : : ; r.n// denotes the

number of descends of the sequence .r.1/; r.2/; : : : ; r.n/; r.1//.
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Formula (86) holds only for cyclic permutations s 2 S
¤
n . For the general

case, suppose that s has k D k.s/ cycles of lengths n1; n2; : : : ; nk, say where

2 � n1 � n2 � � � � � nk and n1 C n2 C � � � C nk D n. We say that .n1; n2; : : : ; nk/

is the typ of s and write s 2 Cn1;n2;:::;nk
. We have to split the product in the

definition (85) of ws

n.�/ into k parts correspondingly. If C` denotes the set of the

n` elements of the `th cycle of the fixed given s 2 Cn1;n2;:::;nk
, then

n
Y

j D1

�des.l.j /;l.s.j /// D

k
Y

`D1

Y

j 2C`

�des.l`.j /;l`.s.j ///; (87)

where l` is the restriction of l to C`, so that l D l1 [ l2 [ � � � [ ln. The range

of each l` can be any subset N` � V of n` elements, provided only that all the

subsets N` together form an ordered partition .N1; N2; : : : ; Nk/ of V . We want to

describe the set Sn of permutations l in terms of smaller bijections l` W C` ! N`.

Let N denotes the set of all partitions N WD .N1; N2; : : : ; Nk/ of V into k blocks

N` with jN`j D n`, let B`.N / be the set of bijections from C` to N`, and let

B.N / WD B1.N / � B2.N / � � � � � Bn.N /. With this, the set of permutations Sn is

partitioned as

Sn D
[

N 2N

¹l1 [ l2 [ � � � [ ln j.l1; l2; : : : ; ln/ 2 B.N /º: (88)

From that disjoint union we get

w s

n .�/ D
X

N 2N

X

l2B.N /

k
Y

`D1

Y

j 2C`

�des.l`.j /;l`.s.j ///

D
X

N 2N

k
Y

`D1

X

l`2B`.N /

Y

j 2C`

�des.l`.j /;l`.s.j ///:

(89)

Here, for all N 2 N, the inner sum is

X

l`2B`.N /

Y

j 2C`

�des.l`.j /;l`.s.j /// D n`�Sn`�1.�/; (90)

by (86), because the names of the elements in C` and N` do not matter. Every

fixed set N` of n` different numbers is linearly ordered and produces the same

statistic for the cyclic descents, if we consider all sequences that can be arranged

using all elements of N`. Using

jNj D

�

n

n1; n2; : : : ; nk

�

WD
nŠ

n1Šn2Š � � � nkŠ
; (91)
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we obtain

ws

n.�/ WD

�

n

n1; n2; : : : ; nk

� k
Y

j D1

nj �Snj �1.�/; (92)

where .n1; n2; : : : ; nk/ is still the typ of s, i.e. s 2 Cn1;n2;:::;nk
.

We can now calculate w
.�/
n out of (92) and Theorem 17. Since we have the

disjoint union

S
¤
n D

[

n1Cn2C���CnkDn;

2�n1�n2�����nk

Cn1;n2;:::;nk
; (93)

we get

w.�/
n D �n

�

X

s2S
¤
n

sn.s/

�

n

n1; n2; : : : ; nk

� k
Y

`D1

n`�Sn`�1.�/

D �n
�

X

n1Cn2C���CnkDn;

2�n1�n2�����nk

X

s2Cn1;n2;:::;nk

sn.s/

�

n

n1; n2; : : : ; nk

� k
Y

`D1

n`�Sn`�1.�/:

D �n
�

X

n1Cn2C���CnkDn;

2�n1�n2�����nk

�

n

n1; n2; : : : ; nk

�

�

k
Y

`D1

n`�Sn`�1.�/
�

X

s2Cn1;n2;:::;nk

sn.s/:

(94)

Now, Theorem 13 shows that w
.�/
n D 0 for odd n, and that for even n, n D 2m,

w
.�/
2m D .�1/m�2m

�

X

m1Cm2C���CmkDm;

1�m1�m2�����mk

�

2m

2m1; 2m2; : : : ; 2mk

��

2m

2m1; 2m2; : : : ; 2mk

�

k
Y

`D1

2m`A2m`�1�S2m`�1.�/:

(95)

Using Lemma 14, we obtain the following theorem:

Theorem 18. For odd n, w
.�/
n D 0. For even n, n D 2m > 0, we have

w
.�/
2m D .�1/m.2m/Š2

X �2m�k
� �k

C

k1Šk2Š � � � kr Š

k
Y

j D1

A2mj �1

2mj .2mj �1/Š2
S2mj �1.�C=��/;

where the sum runs over all partitions m1 C m2 C � � � C mk D m with 1 � m1 �

m2 � � � � � mk , and where k1, k2, . . . , kr are the corresponding multiplicities of

the different elements in the multi-set ¹m1; m2; : : : ; mkº:
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From this and equation (54), we derive our final result:

Theorem 19. The nonzero moments of the quantum Lévy area yB
.�/

Œa:b/
are

EŒ.yB
.�/

Œa:b/
/2m�

D .2m/Š.b � a/2m
X �2m�k

� �k
C

k1Šk2Š � � � kr Š

k
Y

j D1

A2mj �1

2mj .2mj �1/Š2
S2mj �1.�C=��/;

(96)

where the sum runs over all partitions m1 C m2 C � � � C mk D m with 1 � m1 �

m2 � � � � � mk , and where k1, k2, . . . , kr are the corresponding multiplicities of

the different elements in the multi-set ¹m1; m2; : : : ; mkº: The An are Euler zigzag

numbers and the Sn are Euler polynomials.

6. The classical limit

We calculate the limit of EŒ.yB
.�/

Œa:b/
/2m� as � ! 1; or equivalently, �C ! 1

2
;

�� ! 1
2
: Putting �C D �� D 1

2
in (96), we get

lim
�!1

EŒ.yB
.�/

Œa:b/
/2m�

D .2m/Š
�b � a

2

�2m X 1

k1Šk2Š � � � kr Š

k
Y

j D1

A2mj �1

2mj .2mj �1/Š2
S2mj �1.1/;

(97)

where the sum runs over all partitions m1 C m2 C � � � C mk D m, and where k1,

k2, . . . , kr are the corresponding multiplicities of the elements of the multi-set

¹m1; m2; : : : ; mkº. But, by the definition of the Euler polynomial,

Sn.1/ WD
X

s2Sn

1des.s.1/;s.2/;:::;s.n// D jSnj D nŠ: (98)

So, using Lemma 10 and Lemma 14, we see that

lim
�!1

EŒ.yB
.�/

Œa:b/
/2m� D .2m/Š

�b � a

2

�2m X 1

k1Šk2Š � � � kr Š

k
Y

j D1

A2mj �1

.2mj /Š

D
�b � a

2

�2m

A2m:

(99)

This result is in agreement with the main theorem in [11].
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