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Abstract

During the last decade, the problem of consensus in multiagents systems has been studied
with special emphasis on graph theoretical methods. Consensus can be regarded as a control
objective in which is sought that all systems, or agents, in a network have an equivalent out-
put value. This is achieved through a given control strategy usually referred to as consensus
algorithm. The motivation to study such an objective comes from different areas, such as engi-
neering, and social and natural sciences. In the control engineering field, important application
examples are formation control of swarms of mobile robots and distributed electric generation.
Most of the work in this area is done for agents with single or double integrator dynamics and
algorithms derived as the Laplacian matrix of undirected graphs. That is, consensus is often
studied as a property of particular networks and particular algorithms.

In this thesis, we tackle the problem from a Control Theory perspective in an attempt to
augment the class of systems that can be studied. For that we translate the consensus problem
from its classical formulation for integrator systems into a general continuous time stability
problem. From here, different algorithmic strategies under several dynamical assumptions of
the agents can be studied through well known control theoretical tools – as Lyapunov’s theory,
linear matrix inequalities (LMI), or robust control – along with graph theoretical concepts. In
particular, in this work we study consensus of agents with arbitrary linear dynamics under the
influence of linear algorithms not necessarily derived from graphs. Furthermore, we include
the possibility that the agents are disturbed by several factors as external signals, parameter
uncertainties, switching dynamics, or communication failure. The theoretical analysis is also
applied to the problem of power sharing in electric grids and to the analysis of distributed
formation control.
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Zusammenfassung

Im Laufe der letzten zehn Jahre wurde das Problem des Konsenses in Multi-Agenten-Systemen
mit besonderem Augenmerk auf graphen-theoretische Methoden erforscht. Ein Konsens kann
als ein Regelungsziel interpretiert werden, in welchem alle Systeme, oder Agenten, in einem
Netzwerk identische Ausgangswerte anstreben. Dies wird durch eine Regelungsstrategie er-
reicht, die man üblicherweise als Konsens Algorithm bezeichnet. Motiviert wird diese Rege-
lungsstrategie aus verschiedenen Bereichen, wie den Ingenieurwissenschaften und den Sozial-
und Naturwissenschaften. Wichtige Beispiele im Bereich der Regelungstechnik sind die For-
mationsregelung in Schwärmen von mobilen Robotern oder die verteilte Energieerzeugung.
Die Mehrheit der Werke in diesem Bereich konzentriert sich auf Agenten mit Einfach- oder
Doppel-Integratordynamiken, sowie Algorithmen abgeleitet aus der „Laplacian-Matrix“ von
ungerichteten Graphen. In anderen Worten, der Konsens wird oft als eine Eigenschaft beson-
derer Netzwerke und Algorithmen erforscht.

In dieser Dissertation wird das Problem des Konsenses aus einer regelungs-theoretischen
Perspektive betrachtet. Dies wird durch die Übersetzung des Konsens-Problems aus seiner
klassischen Formulierung für Integratorensysteme zu einem zeitkontinuierlichen Stabilität-
Problem bewerkstelligt. Basierend auf bekannten Methoden der Regelungstechnik (zum Bei-
spiel, auf Lyapunovs Theorie, den linearen Matrixungleichungen (LMI), oder der Robustre-
gelung) und graph-theoretische Ideen werden unterschiedliche algorithmische Strategien und
mehrere Arten von dynamischen Agenten behandelt. Im Besonderen wird in dieser Arbeit
der Konsens von Agenten mit willkürlichen linearen Dynamiken betrachtet. Dies ist eine Er-
weiterung zu den klassischen Einfach- und Doppelt-Integratoren Dynamiken. Desweiteren
betrachten wir Algorithmen, die nicht unbedingt von Graphen abgeleitet sind. Es wird weiter-
hin das Verhalten der Agenten unter dem Einfluss von Störungen untersucht. Dies beinhaltet
zum Beispiel externe Störungssignale, parametrische Unsicherheiten, geschaltete Dynamiken
oder Kommunikationfehler. Die Anwendbarkeit der hier erlangten theoretischen Ergebnisse
wird am Beispiel der Formationsregelung und der Stabilisierung verteilter Energiesysteme
demonstriert.
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✶
Introduction

1.1. Motivation

The idea of consensus in multi agents systems had gain much attention in the control society
during the last decade. The analogy of a swarm of birds is a useful way to explain the main
characteristic of the problem: a group of similar systems (or agents) agree to coordinate some
important variables through a given information exchange strategy (or algorithm). Consensus
is in this way a control objective where all systems in a network aim to have an equivalent
output. Research in this topic is motivated by applications in many fields such as engineering,
computer science, physics, social sciences, and biology. In engineering, attention has been
paid to applications where multiple agents have to coordinate to perform common tasks. For
example, manoeuvres of groups of vehicles, large array of telescopes, sensor networks, electric
grids, or mobile cooperative robots.

Over the years, multiple works have driven attention to this topic. The publication of books
like [22, 33, 34] shows that the field has already reached an advanced state. However the
topic is still a popular area of research as shown in the review paper [29] where more than a
hundred references are quoted. More recently, the review paper [5] includes over three hundred
references.

Most of the work in the area is based on Graph Theoretical approaches to the problem and
single or double integrators dynamics. Examples of this are the already quoted publication, the
doctoral theses [14, 31] and an increasing number of papers such as [1, 2, 15, 16, 18, 32]. From
a more mathematical perspective, some examples are [6, 118, 119, 17, 23, 46] and the refer-
ences within. The particular dynamics with which these publications deal makes it difficult
to systematically extend the results to other cases of interest. Some publications, e.g. [20, 21,
36, 38, 47, 53, 54, 60], extend the graph theoretical approaches to systems with more general
linear dynamics by introducing other control theoretical tools like Linear Matrix Inequalities
(LMI), Optimal Control Theory or Lyapunov’s Theory. Consensus in multi agents systems is
also defined and studied in fields far away from classical control theory. For example, Games
Theoretical approaches [28, 37, 40] or Max Plus algebra systems [25, 26]. Nevertheless, these
efforts have still left many unanswered questions.

One of these, which has taken much attention in the field, is related to switching algorithms.
This has become an important topic in the area and can be found in many publications as, for
example, [9, 19, 22, 31, 41, 47, 50–52, 55, 57–61]. The study of switching systems cannot
be avoided because of the nature of the consensus problem where communication plays a
fundamental role. The communication channels between the agents are, in practice, far from
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1. Introduction

ideal and, therefore, robustness or persistence against temporal or permanent loss of commu-
nication needs to be addressed. Unfortunately, the limitations of the switching systems theory
leave, again, many unanswered questions. Other interesting issue regarding to communication
is signals delay. This is present in many of the already quoted works but also in, for example,
[35, 43, 56].

A related problem to consensus is that of formation. This is perhaps easier to relate to
practical cases and explains up to a certain point the interest in single and double integrators
dynamics. Indeed, in formation control, consensus is not searched in the state variables or
outputs of the agents (what can be interpreted as their “velocity”), but on the integral over
time of them (what can be interpreted as the agents’ “position”). Examples of this can be
found in the quoted books and theses, but also in a wide spectrum of papers with emphasis
on different aspects: [3, 7, 8, 10–13, 24, 27, 30, 32, 39, 42, 44, 45, 48, 49, 62]. As in the
“velocity” case, the described communication issues are also present.

These various approaches are far to constitute an ordered and comprehensive body of
knowledge that is flexible enough to treat complex scenarios from a control systems per-
spective. The view of consensus as a collection of particular problems (particular dynamics,
algorithms, or communication dynamics) makes it difficult to give the subject a theoretical
frame robust enough to study coordination as a control objective of the same relevance as
stability, robustness or frequency response. That is why, in this work, a general view of the
problem is proposed by means of classical Control Theory concepts. This approach is thought
as a complement to the existing works on the subject, allowing the gradual extension of the
analysis to include more complex assumptions on the systems.

To do this, consensus can be intuitively compared with the equilibrium point of a system
that resumes the characteristics of the whole network. The underlaying hypothesis is that
consensus can be studied through a (not unique) characterization of the whole network as a
stability problem. However, this aspect is usually not expressly addressed in the quoted works.
Some exceptions to this are the recent papers [4, 35, 50, 51, 60], where consensus is studied as
the convergence property of a differences vector between the outputs of one of the agents and
the rest of them. This agent that serves as comparing references is usually called the leader
agent.

In this thesis, this idea is further exploited to formally translate the consensus problem
into a classical stability one through the introduction of an analysis tool named hierarchical
organization. This tool is neither unique nor does it have a predefined structure. Therefore,
the resulting differences-vector does not necessarily represent the differences between one
unique agent and the rest of them, but, for example, between each agent and the next one in
line or in a pyramidal structure. From here, the problem is addressed by means of standard
Control Theory and different situations are investigated by changing the assumptions about
the dynamics and characteristics of the agents and their relations.

2



1.2. Structure

1.2. Structure

After this introduction, this thesis is divided in two main parts. The first part (Chapters 2
and 3) gives a general mathematical background for the rest of the thesis. The second part
(Chapters 4 to 7) deals with the consensus problem from different aspects. Additionally, two
appendices of needed results are considered. A brief summary of the contents of each chapter
is as follows:

• Chapter 2. A general overview of Graphs Theory is presented. The main notions in this
area are generalized to model, afterwards, the interaction of multiple signals between
agents. In the second part, this chapter deals with general Lyapunov’s Stability Theory
and its relationship to Linear Matrix Inequalities (LMI).

• Chapter 3. Some existing results in Switched Systems stability are shown. First, poly-
topic systems are defined and from there time dependent switching systems are studied.
This is done for system with deterministic and stochastic switching laws.

• Chapter 4. The problem of Consensus is explained and formally stated. First a gen-
eral description of Multi Agents Systems is given and then the concept of consensus is
formalized through the concept of organization and consensus error.

• Chapter 5. The consensus problem is analyzed through different control strategies.
The first Section deals with consensus algorithms derived from loopless weighted undi-
rected graphs, which is the standard approach to the problem, in networks composed
of, first, pure integrator systems and, secondly, general lineal dynamical systems. The
second section proposes other kind of algorithms to address problems derived from par-
ticular characteristics of the agents or to generalize other strategies. The last section of
this chapter deals briefly with some generalizations of dynamics of the agents or their
control strategies. Chapters 4 and 5 can be considered the main part of the thesis.

• Chapter 6. An application of the described methodology is used to treat the problem of
power sharing in electric microgrids. The first section of the chapter models a microgrid
as a multiagent system, then the problems of active and reactive power sharing are
treated separately.

• Chapter 7. The formation problem, as a special case of consensus, is studied in small
networks. First a description of the problem and the multiagent systems is given. Then it
follows a centralized solution of the problem that can be totally distributed in the agents
without the need of communication. Finally, further distributed issues are addressed
from a centralized perspective.

• Chapter 8. This chapter presents comprehensively the conclusions of the thesis.

3
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• Appendix A. This appendix presents several non-original results used in different parts
of the thesis. The sections are respectively focused on pseudoinverses, norms, general
algebraic results, LMI results and, lastly, a linear optimization problem. This comple-
ments the mathematical background chapters.

• Appendix B. This appendix deals with the model of electrical grids as a complement
to Chapter 6. The first section is about general definitions on the electrical field. The
second section derives the active and reactive power models by means of a circuital
analysis of a generic grid.

Even though this thesis is meant to be read and understood in a sequential way, there are
strong relationships between certain chapters and sections. A schematic representation of these
relationships is to be seen in Figure 1.1.

1.3. Notation

Through this thesis the set of real numbers is denoted R, of positive real numbers R
�, of

non-negative real numbers R
�
0 and of complex numbers C. Powers of these sets are used to

denote vectors and matrices sets. For example, Rn is the set of all n-dimensional vectors with
real elements and C

m✂n is the set of all m✂ n-dimensional matrices with complex elements.
Other sets are denoted by capital Latin letters. The cardinality of a set S, i.e. the number of
elements in the set, is denoted ⑤S⑤. The complement of a set S is the set of all elements that
are not elements of S. Union and intersection of sets are denoted by the standard symbols ❨
and ❳ respectively, while the intersection of a set S1 and the complement of another set S2, by
S1③S2. Graphs, and graphs related sets (see Section 2.1), are denoted by calligraphic symbols
as G , V , E , etc.

Given a set S ⑨ R, its minimum is denoted mintS✉; its maximum, maxtS✉; its infimum
inftS✉; and its supremum, suptS✉. An optimization problem is denoted with the help of these
sets. For example, minimize a non-negative functional J♣xq ➙ 0, over a vector x P Rn subject
to a set of conditions f ♣xq ➔ 0 is denoted J✝ ✏ inftJ♣xq P R�⑤ f ♣xq ➔ 0✉. Alternatively, it can
be written through the conventional use in optimization texts:

min
x

J♣xq
s.t. f ♣xq ➔ 0

J♣xq ➙ 0

The optimal value is denoted by J✝ and the argument of the problem (the vector for which the
optimum value holds) as x✝.

In general, matrices will be represented by bold capital Latin letters (e.g. A P R
n✂n, B P

R
n✂p, C P Rq✂n, etc.), vectors by bold small Latin letters (e.g. x P Rn, y P Rq, u P Rp, etc.),

and scalars as Greek small letters (e.g. α → 0, ε ✦ 1, etc.). Exceptions to these rules are matrix
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operators over a graph G (e.g. L♣G q P RN✂N), the so called parametrization vector ααα P RM in
Section 3.1.2, matrices related to the Finsler Lemma A.14, and functions of already defined
matrices within a matrix inequality denoted by Franktur font symbols. e.g. M11 ✏A�BR✁1B✶

in

M :✏
✓
M11 C

✍ D

✛
➔ 0.

Matrix A✶ P Rn✂m is the transpose of A P Rm✂n. Matrix A✝ P Cn✂m is the conjugate transpose
of A P C

m✂n. The notation “✍” is used to indicate a symmetric block within a matrix, for
example,✓

A B

✍ C

✛
✏
✓

A B

B✶ C

✛
.

Matrix inequalities such as A ➔ 0 ♣A → 0q are used to indicate that matrix A P R
n✂n is sym-

metric negative (or positive) definite (see Section 2.2.2). The inverse of a matrix A P C
n✂n

is denoted as A✁1 P Cn✂n. The (Moore-Penrose) pseudoinverse (see Section A.1) of a matrix
A P C

n✂m is denoted A� P C
m✂n. An element in the (block) position ♣i, jq of a matrix A is

denoted rAsi j.
Other operations over matrix A P C

n✂m are its rank, denoted r ✏ ranktA✉; its dimension,
d ✏ dimtA✉ ✏ mintn,m✉; the determinant of a square matrix, dettA✉ ✏ ⑤A⑤; the set of eigen-
values of a square matrix of dimension n, eigtA✉ ✏ tλ1,λ2, ...,λn✉; and the set of singu-
lar values of a matrix svdtA✉ ✏ tσ1,σ2, ...,σr,0, ...,0✉. The real part of a complex matrix
A ✏ X� jY PCn✂m, is denoted realtA✉ ✏ realtX� jY✉ ✏ X PRn✂m; and its imaginary part,
imagtA✉ ✏ imagtX� jY✉ ✏ Y P Rn✂m. In general scalars, vectors and matrices can be time
dependent functions, but for simplicity’s sake and when it is clear enough from the context,
the time dependence will be dropped. A time delayed vector is defined as vτ ✏ v♣t ✁ τq.

The identity matrix and the null matrix are respectively denoted by I and 0. A column vector
of identity matrices is denoted as 1 ✏ rI,I, ...Is✶. If necessary, the dimensions of these matrices
will be stated as an index, e.g. Iq is the identity matrix in R

q✂q, 0m✂n is the zero matrix in
R

m✂n, and 1Nq✂q is composed of N identity matrix in R
q✂q. The matrix stack operators over

6
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an ordered set S ✏ ts1, ..,sN✉ are defined as:

coltXi✉iPS :✏

✔
✖✖✕

Xs1

...

XsN

✜
✣✣✢ ,

rowtXi✉iPS :✏
✑
Xs1 ☎ ☎ ☎ XsN

✙
, and

diagtXi✉iPS :✏

✔
✖✖✕

Xs1 ☎ ☎ ☎ 0
...

. . .
...

0 ☎ ☎ ☎ XsN

✜
✣✣✢✏

N➳
i✏1

siXsis
✶
i.

Note that matrices Xi, i P S, must have compatible dimensions. We denote si P R
Nq✂q as the

N blocks column vector where each element is 0q✂q but the i-th element that is the identity

matrix Iq, so that 1 ✏➦N
i✏1 si.

The probability of occurrence of an event q will be denoted as Ptq✉ P r0, 1s. The expected
value of a variable X P X , which can be a scalar, a vector, or a matrix, in the discrete space
X , will be denoted as EtX✉ :✏➦xPX xPtx ✏ X✉.

1.4. Publications

Some parts of this thesis are based on the following publications, to all of which the author is
the main contributor.

Miguel Parada Contzen. “Consensus Algorithm Analysis and Design For Agents With Lin-
ear Dynamics.” In: European Control Conference (ECC). 2015.

Miguel Parada Contzen. “Consensus in networks with arbitrary time invariant linear agents.”
Accepted in European Journal of Control. 2017.

Miguel Parada Contzen and Jörg Raisch. “A polytopic approach to switched linear systems.”
In: IEEE Multi-Conference on Systems and Control (MSC). 2014.

Miguel Parada Contzen and Jörg Raisch. “Active Power Consensus in Microgrids.” In: In-
ternational Symposium on Smart Electric Distribution Systems and Technologies (EDST).
2015.

Miguel Parada Contzen and Jörg Raisch. “Reactive Power Consensus in Microgrids.” In:
European Control Conference (ECC) 2016. 2016.
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✷
Preliminaries

This chapter establishes the basic background to understand this thesis. Consensus is usually
studied through graph theoretical methods and therefore a short summary on the subject is
presented. A summary of Lyapunov’s Theory on stability of systems with emphasis on Linear
Matrix Inequalities (LMI) follows. Other relevant results are to be found in Appendix A.

2.1. Graph Theory

Traditionally, the consensus problem is strongly related to Graph Theory. Most of the consen-
sus works use intensely graph theoretical methods for description and analysis of networks.
Some key examples are [22, 33, 34]. In this section, basic notions of the subject are presented
based on the quoted works and specialized books as [116, 117, 122]. The following definitions
are modified for the purpose of this thesis from the standard notions of graph theory.

Definition 2.1.1. An undirected graph is a tuple G ✏ ♣V ,E q where

• V ✏ t1,2, ...N✉ is a set of N nodes or vertices, and

• E ❸t♣i, jq P V ✂V ✉ is a set of edges, where we interpret that the edge denoted ♣i, jq PE

is the same as the edge ♣ j, iq P E .

Note that when referring to an unordered edge we slightly abuse notation by representing it
by an ordered pair ♣i, jq. With this notation we mean that an unordered edge between nodes i
and j of an undirected graph can be equivalently specified either by the pair ♣i, jq or the pair
♣ j, iq. Which is not the same as the graph having two different ordered edges.

In the context of this thesis, the nodes correspond to agents, and the existence of an edge
labeled ek ✏ ♣ik, jkq P E ✏ ✥

e1,e2, ☎ ☎ ☎ ,e⑤E ⑤
✭

means that agent ik and agent jk interact with each
other either through input and output signals, or by a hierarchical relationship. Note that this
defines implicitly an arbitrary indexation of the edges which is independent of the labeling of
the nodes. We will refer to edges ♣i, iq P E indistinctly as loops or selfloops. A graph without
selfloops will be called loopless.

Definition 2.1.2. A path is an ordered sequence of nodes in an undirected graph such that any
pair of consecutive nodes is connected by an edge. An undirected graph is connected if there is
a path between every two nodes and unconnected otherwise. A fully connected graph is such
that there is an undirected edge between every pair of different nodes.
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Definition 2.1.3. A (spanning) tree T is an undirected graph over a set of nodes V which is
connected and has N✁1 edges, where N ✏ ⑤V ⑤ is the number of nodes.

The usual definition of tree accepts that the graph has less than N✁ 1 edges. However, in
the context of this work, only spanning trees are meaningful and therefore, to abbreviate, we
will refer to them simply as trees. Equivalent definitions for (spanning) trees can be found
with ease, but Definition 2.1.3 is sufficient for our needs. Cayley’s Formula states that in a set
of N vertices, NN✁2 spanning trees can be defined.

Definition 2.1.4. The neighbor set of a node i P V in an undirected graph G is defined as

Ni ✏ t j P V ⑤♣i, jq P E ❫ i✘ j✉

Definition 2.1.5. Am undirected weighted graph is a tuple Gw ✏ ♣G ,wqq where

• G ✏ ♣V ,E q is an undirected graph, and

• wq : E ÑM ❸R
q✂q③t0✉ is a function that associates a non-zero positive definite weight

matrix to each edge.

This last definition is a generalization of the usual one because it considers that the weight
associated with each edge is not only a positive scalar, but a ♣q✂qqmatrix. This consideration
is done to model multiple input/output signals of the agents. e.g. three-dimensional position
or speed of a vehicle; active and reactive power of an electric generation unit; etc.

Definition 2.1.6. The dimension of a weighted graph is the dimension of the image matrix
space M of the weight function wq. That is, dimtGw✉ ✏ q ðñ M ❸ R

q✂q③t0✉.
Definition 2.1.7. An unweighted graph is a special case of weighted graphs where wq♣♣i, jqq ✏
Iq, ❅♣i, jq P E .

Note that, contrary to the conventional definition, in an unweighted graph we do not deny
the existence of the weight function, but merely restrict it to the trivial case. This is thought so
that the dimension of an unweighted graph can be defined.

Definition 2.1.8. A strictly directed graph, or strict digraph, is an unweighted graph where
the edge set E ❸ V ✂V is redefined so that each edge has an unique orientation. That is,
♣i, jq P E ñ ♣ j, iq ❘ E .

In this case the notation ♣i, jq P V ✂V and ♣ j, iq P V ✂V represent two different edges
that cannot be simultaneously part of a strict digraph. Note that strict digraphs cannot have
selfloops. For every loopless undirected unweighted graph, 2⑤E ⑤ strict digraphs can be defined
by giving an orientation to every edge. An arbitrary strict digraph generated from an undirected
unweighted graph G will be denoted by G o.
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To represent graphs, nodes will be drawn as black dots and undirected edges as lines linking
the nodes. If necessary, nodes will be labeled by a natural number over it. If several graphs
in a figure are defined over the same set of nodes, the labels will be shown only in the first
graph. When no label is shown over an edge, it will be assumed that it is unweighted. If the
weight needs to be shown, it will be represented by the corresponding weight matrix. In some
cases, the label ek is used to name the edge. The edges of a strictly directed graph will be
represented with an arrow at the end of the line showing its direction. Their labeling is as for
the undirected edges. See Figure 2.1 for an example.

Because of the inclusion of matrix weights, the usual definitions of graph related matrices
also need to be generalized.

Definition 2.1.9. The Incidence Matrix, denoted D♣G oq, of a strict digraph G o of dimtG o✉✏ q
is defined as a matrix where each block oik ✏ rD♣G oqsik takes either the value oik ✏✁Iq if the
edge ek has its origin in i, oik ✏ Iq if node i is the destination of edge ek or oik ✏ 0q✂q otherwise.

Note that this definition assumes that the edges are labeled by the index k. Different labeling
systems for the edges of a graph would lead to different incidence matrices. In total, if the
graph has ⑤E ⑤ edges, ⑤E ⑤! different labeling systems can be defined.

Definition 2.1.10. The adjacency matrix, denoted A♣Gwq, of a weighted graph Gw is con-
structed so that each block W ji :✏ rA♣Gwqsi j takes the value W ji ✏ wq♣♣ j, iqq PM if ♣ j, iq P E

or W ji ✏ 0 otherwise.

Note that this matrix is symmetric for undirected weighted graphs.

Definition 2.1.11. The matrix degree of node i, ∆i, in an undirected weighted graph is defined
as the sum of all elements of the respective block column or block row of the adjacency matrix
plus the corresponding diagonal element (the weight of the selfloop). i.e. ∆i ✏

➦N
j✏1 Wi j �

Wii ✏
➦N

i✏1 Wi j �Wii. The degree matrix is ∆♣Gwq ✏ diagt∆1, ...,∆N✉.

Definition 2.1.12. The Laplacian matrix of an undirected weighted graph Gw is L♣Gwq :✏
∆♣Gwq✁A♣Gwq.

This matrix is sometimes referred to as the “loopy Laplacian” [172]. We decompose the
Laplacian matrix as L♣Gwq ✏ L̂♣Gwq� diagtWii✉iPV

. Then, each column and row of L̂♣Gwq
sums up to zero. This can respectively be written as 1✶L̂♣Gwq ✏ 0 and L̂♣Gwq1 ✏ 0 where
1 ✏ coltIq✉iPV

P RNq✂q is a column of N ♣q✂qq-identity matrices. Note that L♣Gwq ✏ L̂♣Gwq
whenever the graph has no selfloops.

Lemma 2.1. Given an undirected weighted graph Gw ✏ ♣V ,E ✏ te1, ☎ ☎ ☎ ,e⑤E ⑤✉,wqq without
selfloops, then

L̂♣Gwq :✏ D♣G oqWD✶♣G oq ✏ ∆♣Gwq✁A♣Gwq,
where W ✏ diagtWik jk✉⑤E ⑤k✏1 ✏ diagtwq♣ekq✉⑤E ⑤k✏1 and G o is an arbitrary strict digraph defined
from G ✏ ♣V ,E q with the edge labeling given by k P t1,2, ..., ⑤E ⑤✉.
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Proof. The proof consists in algebraic matrix manipulations to show the equivalence. First
note that considering the labeling of nodes given by k, the adjacency matrix and the degree
matrix can be written in the following way:

A♣Gwq ✏
⑤E ⑤➳
k✏1

�
sik Wik jk s

✶
jk � s jk Wik jk s

✶
ik

✟
,

∆♣Gwq ✏
⑤E ⑤➳
k✏1

�
sik Wik jk s

✶
ik � s jk Wik jk s

✶
jk

✟
.

Where si is a matrix column vector composed of N square blocks and with the identity matrix
in the i-th block and zeros everywhere else. Now note that the triple product in the equation
of the Lemma can be decomposed as:

D♣G oqWD✶♣G oq ✏ D♣G oq
☎
✆ ⑤E ⑤➳

k✏1

ŝkWik jk ŝ
✶
k

☞
✌D✶♣G oq

Where ŝk is a matrix column vector composed of ⑤E ⑤ square blocks and with the identity matrix
in the k-th block and zeros everywhere else. The product D♣G oqŝk can also be decomposed
into D♣G oqŝk ✏ sik ✁ s jk and so,

D♣G oqWD✶♣G oq ✏
⑤E ⑤➳
k✏1

�
sik Wik jk s

✶
ik � s jk Wik jk s

✶
jk

✟✁ �sik Wik jk s
✶
jk � s jk Wik jk s

✶
ik

✟
.

Which proves the equivalence.

Example 2.1. To illustrate the proof of Lemma 2.1, consider the graphs depicted in Figure 2.1
where G is an undirected graph with V ✏ t1,2,3✉, E ✏ t♣1,2q,♣1,3q✉; the weight function of
Gw is such that wq♣♣1,2qq ✏ W12 ✏ W✶

12 and wq♣♣1,3qq ✏ W13 ✏ W✶
13; and the directed edges

of G o are e1 ✏ ♣1,2q and e2 ✏ ♣1,3q. The corresponding matrices are:

L♣Gwq ✏

✔
✖✕W12 �W13 ✁W12 ✁W13

✁W12 W12 0

✁W13 0 W13

✜
✣✢ , D♣G oq ✏

✔
✖✕✁I ✁I

I 0

0 I

✜
✣✢ .

The triple product can be decomposed as:

D♣G oqWD✶♣G oq ✏ D♣G oq

☎
✝✝✝✝✆
✓

I

0

✛
❧♦♦♠♦♦♥

ŝ1

W12

✑
I 0

✙
❧♦♦♠♦♦♥

ŝ✶
1

�
✓

0

I

✛
❧♦♦♠♦♦♥

ŝ2

W13

✑
0 I

✙
❧♦♦♠♦♦♥

ŝ✶
1

☞
✍✍✍✍✌D✶♣G oq
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G 1 2

3

Gw W12

W13

G o e1

e2

Figure 2.1.: Simple Graph in Example 2.1.

D♣G oqWD✶♣G oq ✏

✔
✖✕✁I

I

0

✜
✣✢

❧♦♦♠♦♦♥
s2✁s1

W12

✑
✁I I 0

✙
❧♦♦♦♦♦♠♦♦♦♦♦♥

s✶
2✁s✶

1

�

✔
✖✕✁I

0

I

✜
✣✢

❧♦♦♠♦♦♥
s3✁s1

W13

✑
✁I 0 I

✙
❧♦♦♦♦♦♠♦♦♦♦♦♥

s✶
3✁s✶

1

✏

☎
✝✆
✔
✖✕✁I

0

0

✜
✣✢W12

✑
✁I 0 0

✙
�

✔
✖✕0

I

0

✜
✣✢W12

✑
0 I 0

✙
� ...

✔
✖✕✁I

0

0

✜
✣✢W12

✑
0 I 0

✙
�

✔
✖✕0

I

0

✜
✣✢W12

✑
✁I 0 0

✙☞✍✌� ...

☎
✝✆
✔
✖✕✁I

0

0

✜
✣✢W13

✑
✁I 0 0

✙
�

✔
✖✕0

0

I

✜
✣✢W13

✑
0 0 I

✙
� ...

✔
✖✕✁I

0

0

✜
✣✢W13

✑
0 0 I

✙
�

✔
✖✕0

0

I

✜
✣✢W13

✑
✁I 0 0

✙☞✍✌

✏

☎
✝✆
✔
✖✕I

0

0

✜
✣✢W12

✑
I 0 0

✙
�

✔
✖✕0

I

0

✜
✣✢W12

✑
0 I 0

✙
� ...

✔
✖✕I

0

0

✜
✣✢W13

✑
I 0 0

✙
�

✔
✖✕0

0

I

✜
✣✢W13

✑
0 0 I

✙☞✍✌� ...

✁

☎
✝✆
✔
✖✕I

0

0

✜
✣✢W12

✑
0 I 0

✙
�

✔
✖✕0

I

0

✜
✣✢W12

✑
I 0 0

✙
� ...

✔
✖✕I

0

0

✜
✣✢W13

✑
0 0 I

✙
�

✔
✖✕0

0

I

✜
✣✢W13

✑
I 0 0

✙☞✍✌
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2. Preliminaries

D♣G oqWD✶♣G oq ✏

✔
✖✕W12�W13 0 0

0 W12 0

0 0 W13

✜
✣✢✁

✔
✖✕ 0 W12 W13

W12 0 0

W13 0 0

✜
✣✢

✏ ∆♣Gwq✁A♣Gwq ✏ L♣Gwq.
�

In the case of undirected graphs with scalar weights (dimtG ✉✏ 1 ðñ M ✏R
�) and with-

out selfloops, Lemma 2.1 is usually given as an alternative definition of the Laplacian matrix.
From this property is immediate that when Wik jk ✏ W✶

ik jk → 0, ❅ek P E , then the Laplacian
matrix is positive semi-definite, i.e. all its eigenvalues are real and non negative.

Lemma 2.2. Let Gw be a loopless undirected weighted graph, rank
✥

L̂♣Gwq
✭✏ ♣N✁1qq if and

only if Gw is connected.

Proof. As L̂♣Gwq✏D♣G oqWD✶♣G oq and ranktW✉✏ ⑤E ⑤q, then rank
✥

L̂♣Gwq
✭✏ ranktD♣G oq✉.

Note that D✶♣G oq1 ✏ 0 which implies that the columns of 1 P R
Nq✂q are vectors in the null

space of D✶♣G oq and therefore ranktD♣G oq✉ ↕ ♣N✁1qq. From here, two cases can be distin-
guished:

• If the graph is not connected, then there is at least one pair of nodes, i and j, between
which there is no path. Let Ci ⑨ V be the set of all nodes that are connected with i (ex-
cluding the node i itself), and therefore not connected to j, then D✶♣G oq♣si�

➦
lPCi

slq ✏
0 and therefore the columns of ♣si �

➦
lPCi

slq P R
Nq✂q are also, along with 1, vectors

in the null space of D✶♣G oq. This shows that for the unconnected case, ranktD♣G oq✉ ↕
♣N✁2qq.

• If the graph is connected, then the q columns of si�
➦

lPCi
sl ✏ 1 are the only vectors in

the null space of D✶♣G oq, implying that ranktD✶♣G oq✉ ✏ ♣N✁1qq.

From this result, if the eigenvalues of the Laplacian matrix of an undirected weighted graph
are ordered in an increasing order, it is clear that the first q of them are identically zero.

Definition 2.1.13. Let Gw be a weighted undirected loopless graph of dimtGw✉ ✏ q, the ♣q�
1q-th element of the increasing ordered set eig

✥
L̂♣Gwq

✭
is the algebraic connectivity of the

graph denoted a♣Gwq.

eig
✥

L̂♣Gwq
✭✏ tλ1 ✏ 0,λ2 ✏ 0, ☎ ☎ ☎ ,λq ✏ 0,a♣Gwq :✏ λq�1,λq�2, ☎ ☎ ☎ ,λNq✉

The algebraic connectivity is a measure of how well a graph is connected. If it is zero, then
the graph is not connected. A useful study on the matter is the paper [127]. The following
result is modified from [119].
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2.2. Stability of Systems

Lemma 2.3 ([119]). If G1 ✏ ♣V ,E1q and G2 ✏ ♣V ,E2q are two undirected unweighted loop-
less graphs such that E1 ❳ E2 ✏ t✉, then a♣G1q � a♣G2q ↕ a♣G1 ❵ G2q, where G1 ❵ G2 ✏
♣V ,E1❨E2q.
Proof. Define the set W ✏ ✥

x P RNq⑤⑥x⑥ ✏ 1 ❫ x✶1 ✏ 0
✭

. As E1 ❳ E2 ✏ t✉, L̂♣G1 ❵ G2q ✏
L̂♣G1q� L̂♣G2q. Thus,

a♣G1❵G2q ✏ min
xPW

✥
x✶L̂♣G1qx�x✶L̂♣G2qx

✭
➙ min

xPW

✥
x✶L̂♣G1qx

✭�min
xPW

✥
x✶L̂♣G2qx

✭
✏ a♣G1q�a♣G2q.

Corollary 2.4. Given a connected undirected unweighted loopless graph G1 ✏ ♣V ,E q with
⑤E ⑤ ➔ N♣N✁1q edges, adding an additional edge e⑤E ⑤�1 ❘ E results in a graph G2 ✏ ♣V ,E ❨
te⑤E ⑤�1✉q with an algebraic connectivity larger than that of the G1. i.e., a♣G1q ➔ a♣G2q. The

algebraic connectivity is maximum when the graph is fully connected. In that case, L̂♣Gwq ✏
NI✁11✶ and a♣Gwq ✏ N.

Note that a similar result can be proposed for undirected weighted graphs when the weights
associated with the possible edges of the graphs are fixed.

2.2. Stability of Systems

2.2.1. Lyapunov’s Stability

Lyapunov’s Theory on stability of dynamical systems is fundamental to understand the contri-
butions of this work. Nowadays the so called Lyapunov’s Second Method is standard in control
theory and can be easily found in non linear control books as [69, 74]. These concepts were
developed by Aleksandr Mikhailovich Lyapunov in his doctoral dissertation in 1892. They
were translated to French and immediately attracted the attention of the scientific community.
However, these results were long forgotten by the western scientific community until the mid
1950’s when researchers as R. E. Kalman [67, 68] and J. P. LaSalle [70, 71] drew attention to
them. In the centenary of its first publication, the International Journal of Control republished,
in English, Lyapunov’s Doctoral thesis in a special issue of the journal [72].

In this section we state the main definitions and results of Lyapunov’s theory without proofs.
The following definitions and theorems are mainly taken from [67] and [69] with some minor
changes in notation.

Definition 2.2.1. A non autonomous continuous time system is such that:

✾x ✏ f ♣t,xq (2.1)
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2. Preliminaries

where f : r0,✽q✂DÑR
n is piecewise continuous in t and locally Lipschitz in x on r0,✽q✂

D, and D⑨ R
n is a domain that contains the origin.

Definition 2.2.2. The origin x✝ ✏ 0 is an equilibrium point of (2.1) if and only if ❅t ➙ 0,

x✝ ✏ f ♣t,x✝q.

Additionally, it is

• stable if, for each ε → 0, there is δ ✏ δ ♣ε, t0q → 0 such that

⑤⑤x♣t0q⑤⑤ ➔ δ ñ ⑤⑤x♣tq⑤⑤ ➔ ε,❅t ➙ t0 ➙ 0.

• uniformly stable if, for each ε → 0, there is δ ✏ δ ♣εq → 0, independent of t0, such that
the previous stability condition is fulfilled.

• unstable if not stable.

• asymptotically stable if it is stable and there is c ✏ c♣t0q → 0 such that x♣tq Ñ 0 as
t Ñ✽, for all ⑤⑤x♣t0q⑤⑤ ➔ c.

• uniformly asymptotically stable if it is uniformly stable and there is c → 0, independent
of t0, such that for all ⑤⑤x♣t0q⑤⑤ ➔ c, x♣tq Ñ 0 as t Ñ✽, uniformly in t0; that is, for each
ε → 0, there is T ✏ T ♣εq → 0 such that

⑤⑤x♣tq⑤⑤ ➔ ε,❅t ➙ t0�T ♣εq,❅⑤⑤x♣t0q⑤⑤ ➔ c.

• globally uniformly asymptotically stable if it is uniformly stable and, for each pair of
positive numbers ε and c, there is T ✏ T ♣ε,cq → 0 such that

⑤⑤x♣tq⑤⑤ ➔ ε,❅t ➙ t0�T ♣ε,cq,❅⑤⑤x♣t0q⑤⑤ ➔ c.

For simplicity of language, in many cases we will describe system (2.1) as stable, if the
origin is a stable equilibrium point. Analogous for the other cases in Definition 2.2.2.

Definition 2.2.3. A function v : Rn ÑR is positive definite iff v♣0q ✏ 0 and v♣xq → 0 for all x P
R

n③t0✉. Analogously, it is negative definite when the inequality is reversed, and semidefinite
when weak inequalities (➙ or ↕) are used.

Lyapunov’s Second Method for non autonomous systems is described by the following
theorem:

18



2.2. Stability of Systems

Theorem 2.5 (Non autonomous Lyapunov). Let x✝ ✏ 0 be an equilibrium point for (2.1) and
D ⑨ R

n be a domain containing the origin. Let v : r0,✽q✂D Ñ R be a continuous function
such that ❅t ➙ 0 and ❅x P D,

w1♣xq ↕ v♣t,xq ↕ w2♣xq, (2.2)

d

dt
v♣t,xq ↕ ✁w3♣xq, (2.3)

where w1♣xq, w2♣xq and w3♣xq, are continuous positive definite functions on D, and v♣t,0q ✏ 0,
then x✝ ✏ 0 is uniformly asymptotically stable.

Corollary 2.6 (Global Nonantonomous Lyapunov). Suppose that all the assumptions of The-
orem 2.5 are satisfied globally (for all x P Rn) and w1♣xq is radially unbounded, i.e. ⑥x⑥ Ñ
✽ ùñ w1♣xq Ñ✽, then x✝ ✏ 0 is globally uniformly asymptotically stable.

Corollary 2.7 (Exponential Nonantonomous Lyapunov). Suppose that all assumptions of
Theorem 2.5 are satisfied with

w1♣xq ➙ k1⑤⑤x⑤⑤c, w2♣xq ↕ k2⑤⑤x⑤⑤c, w3♣xq ➙ k3⑤⑤x⑤⑤c.

for some positive constants k1, k2, k3 and c, then x✝ ✏ 0 is exponentially stable. Moreover, if
the assumptions hold globally, then x✝ ✏ 0 is globally exponentially stable.

The previous theorems can be relaxed for the case of autonomous systems in the form

✾x✏ f ♣xq. (2.4)

That is, by considering Lyapunov functions that depend only on x and not explicitly on time.
In that case, the theorems are simplified as there is no need to use the auxiliary autonomous
functions w1, w2 and w3.

Corollary 2.8 (Autonomous Lyapunov). Let x✝ ✏ 0 be an equilibrium point for (2.4). Let v :
R

n Ñ R be a continuous and radially unbounded positive definite function, such that ❅x✘ 0,

✾v♣xq ➔ 0,

then x✝ ✏ 0 is globally asymptotically stable.

Lyapunov’s theory has its parallel to discrete time systems in the form of

x♣k�1q ✏ h♣k,x♣kqq, (2.5)

where h : N0✂D Ñ R
n is piecewise continuous in x P D. See, for example, [68]. All other

definitions in the discrete time case are identical as in the continuous case considering the
discrete time variable k instead of the continuous t. Stability for this kind of systems can be
verified with the help of the following theorem.
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Theorem 2.9 (Discrete Lyapunov). Let x✝ ✏ 0 be an equilibrium point for (2.5) and let v :
N0✂R

n Ñ R be a continuous function in x P D such that ❅k P N0 and ❅x P Rn,

w1♣x♣kqq ↕ v♣k,x♣kqq ↕ w2♣x♣kqq, (2.6)

∆vk :✏ v♣k�1,x♣k�1qq✁ v♣k,x♣kqq ↕ ✁w3♣x♣kqq, (2.7)

where w1♣xq, w2♣xq and w3♣xq, are continuous positive definite functions on R
n, w1♣xq is

radially unbounded, and v♣k,0q ✏ 0. Then, x✝ ✏ 0 is globally uniformly asymptotically stable.
Furthermore, if

w1♣xq ➙ k1⑤⑤x⑤⑤c, w2♣xq ↕ k2⑤⑤x⑤⑤c, w3♣xq ➙ k3⑤⑤x⑤⑤c,

for some positive constants k1, k2, k3 and c, then x✝ ✏ 0 is globally exponentially stable.

2.2.2. Linear Matrix Inequalities

Linear Matrix Inequalities (LMIs) are an active research topic in control theory and a pow-
erful tool for the analysis of system stability. During the last decades LMI techniques have
been successfully applied in many control problems including, for example, dynamic feed-
back design, uncertainty analysis and robust control design. The book [80] is often quoted
as the basic reference in the field. Immediately after the publication of this book, a Matlab®

Toolbox for solving LMI problems was published [88]. The book [84] gives an interesting
insight on different implementation and application aspects from both, control and optimiza-
tion, perspectives. Other introductory references on the matter are [86, 87, 98, 101, 108, 109,
113]. Additionally, many interesting results and a broad bibliographic review can be found in
the course material [103] which is available online (in Portuguese).

In this work, matrix inequalities will be used to indicate that a certain matrix is positive
(or negative) definite (or semi-definite). The expression linear matrix inequality refers to a
matrix inequality where all variables are linear with respect to each other. LMIs are convex
optimization problems and therefore they can be numerically solved with the help of several
available software. During the 1980’s many algorithms with guaranteed global convergence
were developed under what is now known as semi-definite programming. Because of this, in
practice, to formulate a problem in terms of LMIs is sufficient to compute a numeric solution.
In this work we prefer the solver SeDuMi [111] parsed by YALMIP [96] which have become
the de facto standard in the area. Definiteness of matrices is a property defined in the following
way.

Definition 2.2.4. A matrix M ✏ M✶ P Rn✂n is positive definite, denoted M → 0, if and only
if its quadratic form is positive definite. That is, if v♣xq ✏ x✶Mx → 0, ❅x ✘ 0. It is positive
semidefinite, denoted M➙ 0, if v♣xq ✏ x✶Mx➙ 0, ❅x✘ 0 and negative (semi) definite, denoted
M➔ 0 (respectively M↕ 0), if ✁M→ 0 (✁M➙ 0).
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Positive (semi) definite matrices have only positive (non negative) real eigenvalues and can
be decomposed into M✏ N✶N where N P Rn✂n.

The development of LMIs is strongly related to Lyapunov’s theory. Indeed, a very simple
LMI is obtained from applying Lyapunov’s second method to the linear time invariant system:

✾x✏ Ax (2.8)

where A P Rn✂n. It is a well known fact that a linear system in this shape is asymptotically
stable if and only if matrix A is Hurwitz, i.e. if all its eigenvalues have negative real parts. This
condition can be equivalently expressed as an LMI.

Theorem 2.10. System (2.8) is asymptotically stable, if and only if it exists P→ 0 such that

PA�A✶P➔ 0. (2.9)

Proof. Consider the autonomous quadratic Lyapunov function v♣xq ✏ x✶Px with P ✏ P✶ → 0.
It can be easily shown that this function fulfills all the assumptions of Corollary 2.8. Therefore
if ✾v♣xq ✏ x✶P ✾x� ✾x

✶
Px✏ x✶

�
PA�A✶P

✟
x➔ 0, the origin is asymptotically stable and A is Hur-

witz. As this condition has to be fulfilled for all x P Rn, this leads to LMI (2.9). Furthermore,
if A is Hurwitz, then P✏ ➩�✽

0 eA✶teAtdt satisfies (2.9):

PA�A✶P✏
➺ �✽

0

✁
eA✶teAtA�A✶eA✶teAt

✠
dt

✏
➺ �✽

0

✂
d

dt
eA✶teAt

✡
dt

✏ eA✶teAt
✞✞✞�✽
0

✏✁I➔ 0

Remark 2.1. Note that if λ is an eigenvalue of A, then λ �δ , with δ P R, is an eigenvalue of
A�δ I. From here, P♣A�δ Iq�♣A✶�δ IqP ➔ 0 if and only if the eigenvalues of A have real
parts strictly smaller than ✁δ . Furthermore, P♣A� δ Iq� ♣A✶� δ IqP ↕ 0 if the real parts of
the eigenvalues of A are smaller or equal than ✁δ .

Similar, from the discrete Lyapunov theorem, a discrete time linear system x♣k� 1q ✏
Ax♣kq, with k P N0, is stable if there exist v♣xq ✏ x✶Px → 0 such that ❅k P N0, ∆vk :✏ v♣x♣k�
1qq ✁ v♣x♣kqq ✏ x✶♣kq�A✶PA✁P

✟
x♣kq ➔ 0. Which is equivalent to study the feasibility of

A✶PA✁P ➔ 0 with P → 0. A stable discrete time system has all its eigenvalues in the unitary
circle. If that is the case, then P✏➦✽

k✏0♣A✶qkAk fulfills the inequality.
These results, which are modified versions of Lyapunov’s original statements in his thesis,

are important because they show the basic procedure followed by most applications of LMIs
to control theory. That is, to propose a Lyapunov function to check stability and from there
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develop LMI conditions that can be numerically verified. Other LMI related results useful to
this thesis can be found in Appendix A.4.

Some remarks on the numeric solution of LMI need to be taken into account. It is sometimes
important to count the number of “scalar variables” that defines the problem. A scalar variable
is a variable entry in a “matrix variable”. A full variable matrix X PRn✂m is composed of n✂m
scalar variables. A symmetric matrix P P Rn✂n (typically referred to as Lyapunov Matrix) has
♣n2✁nq④2�n✏ ♣n�1qn④2 variables. If more demanding structural restrictions on the matrix
variables are imposed, the number of variables can be diminished. For example, a diagonal
matrix D P Rn✂n has only n variables.

In general, any available LMI software is capable of solving most of common problems
(feasibility or optimization) with acceptable efficiencies in any standard software/hardware
configuration. For example, all numeric evaluations of LMI in this thesis are done with a Dell
notebook with an Intel Core i5 CPU at 2.50GHz and with 6.00GB RAM, over Matlab R2011b
on Windows 7 of 64-bits. However, the complexity of the restrictions have a direct impact on
the time needed to compute a solution and on its accuracy.

By complexity we refer mainly to 1) number of scalar variables, 2) number of inequalities,
and 3) dimensions of the involved matrices that define the inequalities. Of course, these three
elements are related to each other as, for example, larger matrices will imply larger numbers
of variables and more inequalities will usually imply also more matrix variables. A fourth
component that determines how fast a problem can be solved is related to “how large” is the
possible solutions region. If the solutions region of a given problem is too “narrow”, in general
it is difficult to reach it and therefore it takes longer to solve the problem. Therefore, minimiza-
tion problems are in general more demanding than feasibility problems. Furthermore, having
“too many” restrictions, which directly impacts the number of variables, is also often impracti-
cal. However, the performance of any algorithm can be improved by more powerful hardware
configurations and better software implementations. Typically, all LMI computations in this
thesis are in the range of fractions of seconds to seconds.
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✸
Stability of Switched Systems

Hybrid Systems are a very active research area where many disciplines merge in the study of
complex dynamical behaviors with continuous and discrete states, e.g. [153]. Switched linear
systems can be interpreted as a special case of hybrid systems. They have been widely studied
and a key reference is the book [151]. Many results rely on the finding of Lyapunov functions
to ensure stability. A good summary of this idea may be found in survey papers such as [137,
152, 157], which give a wide spectrum of the topic.

The study of switched systems typically makes the differences between continuous and dis-
crete time. Some examples for the continuous case are [133, 141], where conditions for global
asymptotic stability are developed considering dwell time. In [158], stability for a particular
case with two discrete states is studied, while in [154] the problem of continuous state feed-
back and pole allocation is addressed by imposing a common Lyapunov function to every
discrete mode. Piecewise Continuous Lyapunov functionals have also been proposed, some
examples are [132, 137, 161, 163, 166, 167]. This approach suggests a relationship between
continuous and discrete time switched systems as it associates different Lyapunov functions
to the time intervals corresponding to each mode.

In discrete time, besides the case where switching is arbitrary [77], we can distinguish when
the switching sequences are known and fixed, and the case where only jumping probabilities
are known. In the first case the stability analysis is done either by computing the spectral
radius of a matrix that represents the whole cycle of the system, e.g. [152], or by using Lya-
punov functions as in [136, 140, 170]. For the probabilistic case, strongly related with Markov
Chains Theory, the definition of stability needs to be modified in order to consider the stochas-
tic nature of the switching mechanisms. However, similar analysis tools can be used. Some
examples are the recent survey paper [156] and other references such as [142, 148, 149, 162,
164, 168]. Because of the formality and completeness of the analysis, the paper [135] and the
book [134] of the same authors deserve special attention. A more general approach is followed
in publications such as [143–145, 150, 176, 159, 160, 165, 169, 171], where stochastic stabil-
ity is studied through the expected behavior of a Lyapunov function. The analysis of Markov
jumping systems have been also extended to the continuous case, see for example [139, 146,
147, 156, 168].

In this chapter an application of Lyapunov’s Second Method and LMIs to switched systems
is presented. We represent a continuous time switched system by a discrete time equivalent
system and from there we deriver stability conditions based on discrete time Lyapunov con-
ditions. We consider the case where the jumps between discrete modes are deterministic and
where they are the result of a Markov stochastic process. Most of the results presented here
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3. Stability of Switched Systems

can be found in the quoted references on discrete time switched systems with exception of the
result that consider robustness against parametric uncertainties at the end of the chapter.

3.1. Preliminary Definitions

3.1.1. Switched Systems

A switched system can be defined in the following way.

Definition 3.1.1. A switched linear system has discrete mode dynamics given by a relation of
time q : R� ÞÑ Q✏ tq1,q2, ...,qM✉, and continuous dynamics such that

✾x✏ f ♣qi,xq ✏ Aix (3.1)

where Ai PRn✂n, i P t1,2, ...M✉. The possible transitions between discrete modes are modeled
by a set of edges E ✏ tei j ✏ ♣qi,q jq⑤qi,q j P Q ❫ qi ✘ q j✉ ❸Q✂Q. These transitions occur at
switching instants τk with k P N. x is continuous at the switching instants.

Definition 3.1.2. An Infinite Switching Time Set is an infinite sequence of switching instants:
S✽ ✏ tτ0,τ1, ...,τk, ...✉.

We assume that for some sufficiently small δ → 0, δ ➔ τk�1✁ τk so that within any finite
time interval, there is only a finite number of switching instants. Note that in this description
of switched systems, the value k is associated with the jumps as a function of time. In other
words, k is not a relation of the continuous states, nor of the current or future discrete modes.
E may be a strict subset of Q✂Q so that certain discrete modes transitions may be forbidden.

A first case of interest is when arbitrary switching sequences are allowed. Here, asymptotic
stability can be defined as the asymptotic stability of the steady state xs ✏ 0 for any switching
signal q allowed by E. It is trivial to show that a necessary condition is that all Ai are Hurwitz.
If that is not the case for an A j, we can choose q✏ q j ✏ const to show that the switched system
is not asymptotic stable for every switching signal. In the references, e.g. [151], a decreasing
common Lyapunov function v♣xq ✏ x✶Px for all modes is shown as a sufficient condition for
the stability of the switched system. The author has extended this approach in [155] to a more
general class of Lyapunov functions derived from Homogeneous Polynomials.

Because of space limitations and relevancy to the rest of the thesis, in this chapter we will
not discuss the arbitrary switching case. We will concentrate on a second class of switching
structure driven solely by time dependent restrictions.

Stability under time dependent switching is defined as the (global uniform asymptotic)
stability of the steady state xs ✏ 0 for any switching signal q allowed by E over an infinite
switching time set. The trivial case when the switching time set is finite is not of interest as
then, after a successive chain of discrete jumps, the switched system rests in a final mode
where the continuous states evolve. It is clear that if this final mode is stable, then every
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3.1. Preliminary Definitions

possible execution of the system will be stable and there is no need of further analysis. On
the contrary, if the system has the ability of switching endlessly, then stability must be studied
considering all infinite possible jumps.

3.1.2. Polytopic Systems

Since the beginning of the last decade, many results have been published on polytopic sys-
tems. See for example [82, 90, 91, 95, 105], etc. This kind of systems is often used to model
uncertain linear systems or time variant systems with smooth parametric changes. Different
approaches with LMIs as the main analysis tool have been proposed to characterize stability
through quadratic Lyapunov functions.

Definition 3.1.3. The Unit Simplex of RM is the set

ΛM ✏
★

ααα P RM⑤
M➳

i✏1

αi ✏ 1 ❫ αi ➙ 0, ❅i P t1,2, ...,M✉
✰

,

where αi is the i-th element of the parametrization vector ααα .

Definition 3.1.4. A polytopic system in continuous time is such that

✾x ✏ A♣αααqx, (3.2)

where ααα P ΛM and A♣αααq ✏ ➦M
i✏1 αiAi with known matrices Ai P R

n✂n, i ✏ 1, ...,M, called
vertices.

The parametrization vector ααα can be an unknown constant ααα P ΛM, in which case the poly-
topic structure is commonly used to model uncertainties in the parameters of a linear system;
or a function of time ααα♣tq : R� Ñ ΛM. Stability of systems described in this way has been
widely studied and the complexity of the problem increases when ααα is time dependent.

To investigate whether there are conditions that assure that the system is asymptotically
stable regardless of the unknown value of ααα , only by considering the known information
on the vertices, the existence of a common quadratic Lyapunov function (v ✏ x✶Px) for all
vertices is a sufficient condition. This situation might however be too restrictive as it imposes
a very particular kind of stability condition that has to be fulfilled by all the vertices. This
is why other Lyapunov functions are proposed. For example [105, 106] propose the use of a
Lyapunov matrix which is a linear function of the parametrization vector.

Definition 3.1.5. A Linear Polynomial Lyapunov Function is such that

v ✏ x✶P♣αααqx, (3.3)

where

P♣αααq ✏
M➳

i✏1

αiPi,
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3. Stability of Switched Systems

ααα P ΛM, and Pi ✏ P✶i → 0.

In this case the original common stability condition is relaxed by considering a functional
that also depends in a linear way on the unitary simplex ΛM. Note that common quadratic
Lyapunov stability is a special case of (3.3) when Pi ✏ P, ❅i P t1, ...,M✉.

Further assumptions about the structure of the Lyapunov function can be made. Particularly,
homogeneous matrix polynomials can be used to test stability. The use of such Lyapunov
functions has been documented in, for example, [78, 79, 81, 82, 99, 100, 107]. However, for
our objectives, we will not need these more complex Lyapunov functions.

3.1.3. Polytopic Approximation of a Switched System

In the switched linear system (3.1), each of the matrices Ai can be interpreted as a vertex of the
polytopic system described by (3.2). Considering the time dependence of q, if it is imposed
that ❅t : q ✏ qi ùñ αi♣tq → 0, then the parametrization vector ααα is a function of time that
interprets the evolution of the discrete state q.

In particular, the behavior of a switched linear system can be approximated by using para-
metrization vectors in the following function class:

Kh♣εq ✏
★

ααα : R�Ñ ΛM⑤αi♣tq ✏ ci�
N➳

k✏1

ni♣kqΘε♣t✁ τkq
✰
,

with N the number of switching instants considered (that might be infinite), ci ✏ 1 if the i-th
mode is active at t ✏ 0 and ci ✏ 0 otherwise, and ni♣kq P t✁1,0,1✉ selected according to the
edge active at τk. If the jump is from mode qi to q j, then ni♣kq ✏ ✁1; if the jump is from q j

to qi, then ni♣kq ✏ 1; ni♣kq ✏ 0 otherwise. Θε♣tq is an analytical smooth approximation of the
Heaviside step function:

Θ♣tq ✏ lim
εÑ0�

Θε♣tq ✏

✩✬✫
✬✪

0 , t ➔ 0

1④2 , t ✏ 0

1 , t → 0

The parameter ε → 0 characterizes the accuracy of the approximation. A possible choice for
this function would be Θε♣tq ✏ 1④♣1� e✁2t④εq.

Note that this approximation of a switched system is done through a smooth function ααα♣tq
that depends on parameter ε → 0. In the limit ε Ñ 0, this approximation becomes an exact
representation of the switched system.

3.1.4. Discrete Time Representation

A Switched System can be represented as a non-linear discrete time system. As the execution
of the system between switching instants is deterministic, there is an algebraic expression for
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3.1. Preliminary Definitions

the values of the continuous states in any interval defined between consecutive switching. In
this sense, a switched system is similar to an asynchronous sampled-data system and stability
can be studied by observing the system at switching instants only.

The transition matrix ΦΦΦ♣t, t0q of system (3.2) is such that ❅t → t0,

d

dt
ΦΦΦ♣t, t0q ✏ A♣αααqΦΦΦ♣t, t0q.

Note that the transition matrix depends explicitly on the approximation parameter ε when
ααα P Kh♣εq. Unfortunately, when ααα P Kh♣εq and in the limit ε Ñ 0�, as A♣αααq is a function
of time, in general it is not possible to find an expression for the transition matrix. However,
between switching instants, the system behaves as a linear system, and therefore, a piece wise
expression for the trajectory of the system can be found. From here, the states at switching
instants can be found as the states of a time-variant discrete time system.

Indeed, the solution of a linear dynamic system ✾x ✏ Ax with initial condition x♣t0q ✏ x0 is
given by x♣tq ✏ eA♣t✁t0qx0. (See Proposition A.11 in the Appendix.) Therefore, we can write
the following relationship between switching instants τk and τk�1:

x♣τk�1q ✏ lim
εÑ0�

rΦΦΦ♣τk�1,τkqsx♣τkq

✏ eA♣αααkqTk x♣τkq
✏ΦΦΦkx♣τkq,

with residence time Tk ✏ τk�1✁ τk and

αααk ✏ lim
εÑ0�

ααα♣tmq,

for some tm P ♣τk,τk�1q. The vector αααk is a vector in the respective unit simplex with zeros in
every element but in the associated with the discrete mode active between τk and τk�1. Note
that in general, ααα♣τkq ✘ αααk ✘ ααα♣τk�1q. The discrete time system matrix is implicitly defined
as ΦΦΦk ✏ eA♣αααkqTk . As Tk is not constant and αααk changes after every switching instant, the above
described discrete time system is not time-invariant. For a given signal q, it is clear that for
h → k P N0,

x♣τhq ✏
✄

h✁k➵
i✏1

ΦΦΦh✁i

☛
x♣τkq ✏ ♣ΦΦΦh✁1ΦΦΦh✁2...ΦΦΦkqx♣τkq. (3.4)

We will define for notation simplicity:

ΨΨΨ
h
k ✏

h✁k➵
i✏1

ΦΦΦh✁i.

Note that this discrete time representation of the switched system could also be done without
introducing the polytopic approximation of Section 3.1.3. However, we choose to maintain the
polytopic representation in order to describe the Lyapunov functions to be used in the sequel
in a more clear way.
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3. Stability of Switched Systems

3.2. Time Dependent Switching Results

In this section we introduce the key result that allow us to study stability of a continuous time
switched system through its discrete time representation. From here we state several known
results for the case of deterministic and probabilistic switching and we extend the conditions to
consider uncertainty in the residence time at each discrete mode. The results on deterministic
switching are equivalent to those to be found in several publications as [136, 140, 170]. The
probabilistic results are based greatly in [134, 135].

3.2.1. Sampled Lyapunov Stability Criteria

In most publications (e.g. [67–69, 74]), it is usually considered that a Lyapunov function has
to have continuous partial derivatives with respect to time and the states. However, as noted
by LaSalle in [70, 71], this requirement is mainly for ease of calculation of the time derivative
of the Lyapunov function in most practical cases where the function f is “well behaved”. It is
however, only required for a Lyapunov function in LaSalle’s definition to have a “right hand”
derivative at any time. That is, the Lyapunov function does not need to be smooth at every
time instant.

A different topic is treated in [65, 73], where a methodology based on hybrid (discrete and
continuous time) Lyapunov functions is proposed to treat asynchronous sampled time sys-
tems. That is, systems that depend continuously on the value of the states sampled at irregular
intervals1. Taking into account these two ideas, stability of time depending switching systems
can be studied by observing their behavior at the switching instant, similarly as what is done
in publications such as [132, 137, 161, 163, 166, 167].

Lemma 3.1 (Sampled Lyapunov). For the switched system (3.1), if there exists an infinite
sequence of switching instants S ✏ tτl1 ,τl2 , ...,τlk , ...✉ ❸ S✽ and a quadratic positive definite
scalar function w : Rn✂R

�
0 ÑR, ♣x, tq ÞÑ w♣x, tq ✏ x✶♣tqP♣tqx♣tq, with P♣tq → 0, ❅t ➙ 0, such

that ❅k P N,

∆wk :✏ w♣x♣τlk�1q,τlk�1q✁w♣x♣τlkq,τlkq ➔ 0, (3.5)

then the system is asymptotically stable towards the origin.

Proof. For any x✘ 0 that is a solution of (3.1), from the discrete Lyapunov theorem, ∆wk ➔ 0
implies that the implicit discrete time system that results from observing the polytopic system
at specified instants, is stable. To prove the stability of the continuous time system, the inter
sampling behavior needs to be analyzed.

1For example, a continuous time system ✾x ✏ Ax�Bu with a feedback law u♣tq ✏ Kx♣tkq, ❅k P N that only
considers the value of the states at certain instants tk and keeps the input constant in the inter-sampling interval
so that the continuous closed loop dynamics of the system become ✾x ✏ Ax�BKx♣tkq.
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t

w♣x♣tq, tq

w♣x♣tq, tq

ρw♣x♣τkl
q,τkl

q

τlk τlk�1 τlk�1 τlk�2

Figure 3.1.: Graphical representation of proof of Lemma 3.1

For all k P N, define Ik ✏ rτlk ,τlk�1q and wmax,k :✏ maxtw♣x♣tq, tq⑤t P Ik✉. Because (3.5)
holds, then wmax,k happens either at tmax,k ✏ τlk or at a time tmax,k P ♣τlk ,τlk�1q. In either case,
we can write that

x♣tmax,kq ✏ΨΨΨmax,kx♣τlkq,

where

ΨΨΨmax,k ✏ eA♣αααlk�hq♣tmax,k✁τlk�hqΨΨΨlk�h
lk

,

for some h P N0 such that lk �h ➔ lk�1.

Therefore, wmax,k ✏ x✶♣τlkq
✁

ΨΨΨmax,k

✠✶
P♣tmax,kq

✁
ΨΨΨmax,k

✠
x♣τlkq, which is a quadratic form

on the vector x♣τlkq. Then, it always exists a scalar ρk ➙ 1 such that wmax,k ↕ ρkw♣x♣τlkq,τlkq,
because w♣x♣τlkq,τlkq ✏ x✶♣τlkqP♣τlkqx♣τlkq is a quadratic form on the same vector and P♣tq → 0,
❅t PR. Defining ρ ➙ suptρk⑤k P N✉, we conclude that ❅k PN, ❅t P Ik, w♣x, tq ↕ ρw♣x♣τlkq,τlkq.
That is, a piece wise constant upper bound for w♣x, tq can found and, by hypothesis (3.5),
this bound approach to zero as time increases. Note that the bound cannot approach a value
different than zero, as that would imply that there are trajectories of the system where (3.5)
does not hold.

Asymptotic stability of the continuous time system is then proved by the existence of the
Lyapunov function w♣x, tq ✏ x✶♣tqP♣tqx♣tq which is confined to a region that approximates to
zero asymptotically. A graphical sketch of the proof can be seen in Figure 3.1.
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3. Stability of Switched Systems

This theorem has the obvious inconvenience that ∆wk needs to be evaluated in an infinite
number of instants and therefore it can only be used for systems that present some kind of
cyclical behavior. From here on, the task is to find suitable discrete time Lyapunov functions
w♣x, tq such that the conditions of Lemma 3.1 can be verified, leading to results that are similar
to those in the quoted publications.

Example 3.1. One could propose as a counter example for Lemma 3.1 a simple linear system
(a trivial case of switched system) with a conjugate pair of unstable eigenvalues. Take for
example the linear system ✾x ✏ Ax where,

A ✏

✔
✖✕✁2.00 0.00 0.00

0.00 0.50 ✁6π

0.00 6π 0.50

✜
✣✢ ,

with eigenvalues λ P t✁2.00,0.50� j6π,0.50✁ j6π✉. The conjugate states associated to the
conjugate unstable eigenvalues oscillate at a frequency of f ✏ 3[Hz]. The system is clearly
unstable as can be seen in the simulation shown in Figure 3.2 a).

It can be then argued that sampling the system at exactly the instants where a non negative
function of both unstable conjugate states vanishes, then this information will not be mapped
into the Lyapunov functional and therefore, a strictly decreasing discrete Lyapunov function
can be found if the other states are stable. This is not the case, because the non negative
function that cancels the effect of the conjugated states would only be positive semidefinite
and not positive definite as Lyapunov’s theory requires.

The quadratic function w♣x,εq ✏ x✶P♣εqx can be proposed, with a parameter ε ➙ 0 such
that,

P♣εq ✏ 1

100

✔
✖✕1 0 0

0 1 1✁ ε

0 1✁ ε 1

✜
✣✢ .

If ε ✏ 0, then dettP✉ ✏ 0 and the function is only positive semidefinite and therefore cannot
be used to prove stability of the system. Indeed, in Figure 3.2 b) the continuous evolution in
time of this function is shown. Sampling at a rate of fr ✏ 6[Hz] when the sum of both unstable
states vanishes (the marked points in Figure 3.2 a) ), leads to a decreasing sequence of values
given by the local minima of the function (the red dashed line in the Figure). However, stability
cannot be concluded from this sequence. For any ε → 0, w♣x,εq becomes positive definite, but
no infinite decreasing sequence exists. See Figure 3.2 c), where ε ✏ 0.1.

This can be further studied through the discrete time system x♣tk�1q ✏ eA 1
fr x♣tkq. As some

eigenvalues of the discrete system matrix are outside the unitary circle, it can be numerically
verified that there does not exist a positive definite matrix P → 0 such that the discrete Lya-

punov inequality ♣eA 1
fr q✶PeA 1

fr ✁P ➔ 0 holds. This is not surprising as the matrix exponential
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Figure 3.2.: Evolution of a) the states of system, b) a positive semidefinite quadratic function of the
states, and c) a positive definite quadratic function of the states in Example 3.1.

31



3. Stability of Switched Systems

operator maps only the stable eigenvalues of matrix A 1
fr

in the unitary circle, leaving the un-
stable ones out of the discrete stability region and making the inequality unfeasible. Thus,
showing that the system is unstable. �

3.2.2. Deterministic Switching

Common Lyapunov Function

Assume that the switching sequence is deterministic and known. That is, the infinite switching
times set S✽✏ tτ0,τ1, ...✉ is known and the discrete modes transitions active at each switching
instants are also known. Lemma 3.1 allows us to study stability of a linear switched system
only by observing it at the switching instants. Furthermore, it is not required to observe the
system at every switching instant τk but only in an infinite sequence of them. This means
that we can arbitrarily skip some switching instants in the stability analysis when the discrete
jump to perform at this moment is known. For example, if we know that at τl the system
jumps from state qi to state q j, we can skip τl and use only τl✁1 and τl�1, as an expression for
the behavior of the continuous states during both time intervals can be found. In this case, a
sufficient stability condition is given by the following theorem.

Theorem 3.2 (Discrete Common Lyapunov Function). Given an infinite subset of the switch-
ing instants set, this is S ✏ tτk0 ,τk1 , ...,τkh

, ...✉ ❸ S✽ ✏ tτ0,τ1, ...✉, switched system (3.1) is
asymptotically stable towards the origin if there exists a symmetric matrix P → 0 such that
❅h P N0,✁

ΨΨΨ
kh�1

kh

✠✶
P
✁

ΨΨΨ
kh�1

kh

✠
✁P ➔ 0, (3.6)

with kh�1 → kh P N0, ❅h P N0.

Proof. Consider Lemma 3.1 and a Lyapunov function w♣x♣τkq,kq ✏ x♣τkq✶Px♣τkq → 0, with
P ✏ P✶ → 0. Then, a sufficient condition for stability of the system (3.2) with ααα P Kh♣εq is:

∆wkh
✏ w♣x♣τkh�1qq✁w♣x♣τkh

qq ➔ 0.

In the limit ε Ñ 0�, equation (3.4) leads to

∆wkh
✏ x♣τkh

q✶
✒✁

ΨΨΨ
kh�1

kh

✠✶
P
✁

ΨΨΨ
kh�1

kh

✠
✁P

✚
x♣τkh

q ➔ 0.

With x♣τkh
q arbitrary, the previous condition holds if and only if (3.6) is fulfilled ❅h PN0.

This stability condition presents some important restrictions regarding its practical use. The

most obvious one is that condition (3.6) must hold for an infinite number of matrices ΨΨΨ
kh�1

kh

as h P N0. Therefore, if the switched system does not present a cyclic behavior, where only
a limited number of switching sequences is possible, the previous theorem is not applicable.
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Other important issue to be taken into account is that it is required that the switching instants
and all possible switching sequences are known during the entire infinite hybrid time set. This
means that the switching rules are predefined as a function of time only. A third aspect to
be taken into account is that when a switching subset S cannot be used to prove stability,
it does not mean that another subset S✶ can also not be used. It can well be the case that
a given sequence of switching instants does not possess a common Lyapunov function, but
other particular sequence does.

Linear Polynomial Lyapunov Function

By changing the Lyapunov function to be considered, less restrictive stability conditions can
be found. Particularly, a linear polynomial function of the parametrization vector as (3.3) can
be used to test stability.

Theorem 3.3 (Linear Discrete Lyapunov). Given an infinite subset of the switching instants
set, this is S ✏ tτk0 ,τk1 , ...,τkh

, ...✉ ❸ S✽ ✏ tτ0,τ1, ...✉, switched system (3.1) is asymptotically
stable towards the origin if there exists a linear function of the parametrization vector P♣αααq ✏➦M

i✏1 αiPi such that Pi → 0 and ❅h P N0,

✁
ΨΨΨ

kh�1

kh

✠✶
P♣αααkh�1q

✁
ΨΨΨ

kh�1

kh

✠
✁P♣αααkh

q ➔ 0, (3.7)

with kh�1 → kh P N0, ❅h P N0.

Proof. The proof is the same as for Theorem 3.2 but considering a linear Lyapunov function
w♣x♣τkq,kq ✏ x♣τkq✶P♣ααα♣τk � δ qqx♣τkq → 0, where δ → 0 is chosen sufficiently small so that
τk �δ P ♣τk,τk�1q. The vector ααα♣t�δ q represents the discrete modes in an immediate future.
Note that, in the limit, this vector evaluated at a switching instant τk becomes limεÑ0�ααα♣τk�
δ q ✏αααk.

Note that Theorem 3.2 is a special case of Theorem 3.3 when P♣αααq ✏ P. With this formu-
lation we observe the same application problems as in the previous theorem. Nevertheless,
the inclusion of a linear polynomial on ααα gives a higher degree of freedom that allows us to
probe stability by considering a less restrictive switching instants sequences. The following
corollary is immediate:

Corollary 3.4. Switched system (3.1) is asymptotically stable towards the origin in the set of
switching instants S✽ ✏ tτ0,τ1, ...✉, if ❅i P t1,2, ...,M✉, there exists matrices Pi → 0 such that

ΦΦΦ
✶
kh

P jΦΦΦkh
✁Pi ➔ 0, (3.8)

where τkh
P tτk P S✽⑤rαααksi ✏ 1✉ (all instants at which the system switches to mode qi), and

j P t1,2, ...,M✉ is such that i ✘ j and rαααkh�1s j ✏ 1 (q j is the mode where the system jumps
from qi).
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Figure 3.3.: Switched system for Sequential Process in Example 3.2.

Proof. Evaluate Theorem 3.3 at every switching instant and distinguish that each discrete
mode allows one only possible jump (from qi to q j).

This last result is useful because it associates with each switching instant the dynamic in-
formation of one, and only one, discrete mode. This is, at each instant, the respective LMI
condition only includes one Ai matrix. This helps to decrease the number of LMI restrictions
needed to prove stability of a switched system as the information of which transition is active
at each switching instant is contained only in the Lyapunov matrix P♣αααq and not implicitly in

ΨΨΨ
kh�1

kh
. Similar results can be found in [133, 136, 140, 141, 170] and other works by the same

authors.
The use of linear Lyapunov functions as described deals with the problem that it needs to

be evaluated at all possible infinite switching instants. If the number of possible switching se-
quences is too large then the previous results might be not applicable in practice. Furthermore,
if there is only information about the probability of occurrence of the switching between the
states, this deterministic approach needs to be modified to accept some notion of stochastic
stability.

Example - Periodic Switching Process

Example 3.2. Periodic switching processes are such that switching occurs on a periodical
basis where a fixed sequence of discrete modes is repeated at regular intervals. Consider the
sequences defined by the automaton in Figure 3.3 and the following matrices:

A1 ✏
✓
✁1.0 0.2

0.0 0.3

✛
, A2 ✏

✓
0.5 0.0

✁0.1 0.5

✛
, A3 ✏

✓
0.2 0.2

0.0 ✁3.0

✛
.

Note that all these matrices have at least one positive real eigenvalue. The sequence of mode
changes q1 Ñ q2, q2 Ñ q3, q3 Ñ q1 will take place respectively at instants τ3n✁3, τ3n✁2 and
τ3n✁1, n P N. The system will stay in mode q1 for T3n✁3 ✏ τ3n✁2 ✁ τ3n✁3 ✏ 0.4, in mode q2

for T3n✁2 ✏ τ3n✁1 ✁ τ3n✁2 ✏ 0.2 and in q3 for T3n✁1 ✏ τ3n ✁ τ3n✁1 ✏ 0.4 at each cycle. The
parametrization vector as a function of time is such that ❅n P N:

ααα3n✁3 ✏
✑
1 0 0

✙✶
, ααα3n✁2 ✏

✑
0 1 0

✙✶
, and ααα3n✁1 ✏

✑
0 0 1

✙✶
,

34



3.2. Time Dependent Switching Results

so that A♣ααα3n✁3q ✏ A1, A♣ααα3n✁2q ✏ A2 and A♣ααα3n✁1q ✏ A3. With this, we can define three
matrices that describe the behavior of the system in all these possible changes:

ΨΨΨ
3n✁2
3n✁3 ✏ΦΦΦ3n✁3 ✏ eA♣ααα3n✁3qT3n✁3 ✏

✓
0.6703 0.0703

0.0000 1.1275

✛
,

ΨΨΨ
3n✁1
3n✁2 ✏ΦΦΦ3n✁2 ✏ eA♣ααα3n✁2qT3n✁2 ✏

✓
1.1052 0.0000

✁0.0221 1.1052

✛
,

ΨΨΨ
3n
3n✁1 ✏ΦΦΦ3n✁1 ✏ eA♣ααα3n✁1qT3n✁1 ✏

✓
1.0833 0.0489

0.0000 0.3012

✛
.

Note that the eigenvalues of the previous matrices are not in the unitary circle and therefore
Theorem 3.2 is not applicable considering every switching instant. Furthermore, if we apply
the theorem every two switching instants, i.e., defining the matrices

ΨΨΨ
3n✁1
3n✁3 ✏ΨΨΨ

3n✁2
3n✁3 ☎ΨΨΨ3n✁1

3n✁2,

ΨΨΨ
3n✁2
3n✁1 ✏ΨΨΨ

3n
3n✁1 ☎ΨΨΨ3n✁2

3n✁3,

ΨΨΨ
3n
3n✁2 ✏ΨΨΨ

3n✁1
3n✁2 ☎ΨΨΨ3n

3n✁1,

there is still no matrix P satisfying inequality (3.6).
However, if we consider the whole period of the sequential process, that is one every three

switching instants, we can then define matrix ΨΨΨ
3n
3n✁3 ✏ΨΨΨ

3n✁2
3n✁3 ☎ΨΨΨ3n✁1

3n✁2 ☎ΨΨΨ3n
3n✁1 which has all its

eigenvalues inside the unitary circle and therefore there exists P → 0 that satisfies inequality
(3.6), e.g.,

P ✏
✓

1.4680 0.0615

0.0615 1.0815

✛
.

Note that when the whole sequential period is considered, the discrete time system associated
with the switched system is time invariant.

Now consider Corollary 3.4. A linear polynomial P♣αααq ✏α1P1�α2P2�α3P3 and the three
possible jumps, lead to the following three LMIs derived from condition (3.8):

ΦΦΦ
✶
3n✁3P2ΦΦΦ3n✁3✁P1 ➔ 0,

ΦΦΦ
✶
3n✁2P3ΦΦΦ3n✁2✁P2 ➔ 0,

ΦΦΦ
✶
3n✁1P1ΦΦΦ3n✁1✁P3 ➔ 0.

These conditions must hold simultaneously to probe the stability of the switched system under
the specified switching sequence. The feasibility problem is satisfied by the following matrices
whose existence proves the stability of the system under the given switching rule:

P1 ✏
✓

1.2146 0.1436

0.1436 2.3796

✛
, P2 ✏

✓
2.3478 0.0634

0.0634 1.3591

✛
, P3 ✏

✓
1.6678 0.0843

0.0843 0.7039

✛
.
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a) b)

Figure 3.4.: Evolution of the states of systems in Example 3.2 for a) stable deterministic switching, b)
non stable deterministic switching.

This result is confirmed by the simulation shown in Figure 3.4 a) where the evolution towards
the origin of the continuous states are drawn from an arbitrary initial condition.

Note that the existence of the previous matrices only proves that the system is stable under
the specified switched rule. Indeed, if other switching rule is defined, the switched system
might not present a stable behavior. For example, with T3n✁3 ✏ 0.5, T3n✁2 ✏ 0.4 and T3n✁1 ✏
0.1, the system becomes unstable as shown in Figure 3.4 b). �

3.2.3. Probabilistic Switching

Up to here, only deterministic switching sequences have been addressed. That is, sequences
where at every switching instant, the discrete modes associated to the jump are exactly known.
If this assumption is relaxed to consider only the probability of switching from one mode
to others, the problem of stability becomes stochastic in nature. Therefore, the definition of
stability needs to be slightly modified. Equivalent statements to the following definitions can
be found in several works as, for example, [150] which gives a easy to follow introduction
to the topic. Other examples are [134, 135, 142–145, 148, 149, 176, 159, 160, 162, 164, 165,
168, 169, 171].

Definition 3.2.1. The stochastic discrete time system

x♣k�1q ✏ h♣k,w♣kq,x♣kqq, (3.9)

where w♣kq is a scalar stochastic process, and with initial condition x0 ✏ x♣k0q, is said to have
an equilibrium point x✝ ✏ 0 if, ❅k P N, x✝ ✏ h♣k,w♣kq,x✝q ✏ 0. This equilibrium point is said
to be

• Almost surely stable if, for every ε → 0 and h → 0, there exists δ ✏ δ ♣ε,h,k0q → 0, such
that

Pt⑥x♣kq⑥ ➔ h✉ ➙ 1✁ ε , k ➙ k0,
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3.2. Time Dependent Switching Results

when ⑥x0⑥ ➔ δ .

• Almost surely globally asymptotically stable if it is almost surely stable and for all x0 P
R

n,

P

✧
lim

kÑ✽
⑥x♣kq⑥ ✏ 0

✯
✏ 1.

In other words, x✝ ✏ 0 is almost surely stable when for a small initial condition, the evo-
lution of the discrete variable x♣kq stays within a small region around the origin with a high
probability. It is almost surely globally asymptotically stable if, additionally, for any initial
condition, the states of the system evolve to the origin with probability one. This definitions
can be directly extended to the continuous time case. In the quoted references, several equiv-
alent names are given for the concept of "almost surely", e.g., "with probability one" (w.p.1),
"in probability", "stochastically", etc.

With this definitions, a stochastic Lyapunov theorem can be stated. The result is presented
without proof. For a detailed explanation of the theorem see [150].

Theorem 3.5 (e.g. [150]). Let x✝✏ 0 be an equilibrium point for (3.9) and let w :N0✂R
n ÑR

be a continuous function such that ❅k P N0 and ❅x P Rn,

w1♣x♣kqq ↕ w♣k,x♣kqq ↕ w2♣x♣kqq, (3.10)

E t∆wk✉ :✏ E tw♣k�1,x♣k�1qq✁w♣k,x♣kqq✉ ➔ 0, (3.11)

where w1♣xq and w2♣xq, are continuous positive definite functions on R
n, w1♣xq is radially

unbounded, and w♣k,0q ✏ 0. Then, x✝ ✏ 0 is almost surely globally asymptotically stable.

From this result, a stochastic analysis of the switched system can be done if information on
the switching probability at each state is known. For this, first we need to define the following.

Definition 3.2.2. The probability vector πππ�i P ΛM associated to mode qi P Q, is such that each
element rπππ�i s j is the probability of finding the system in mode q j immediately after switching
from mode qi at instant τkh�1. It follows that for all τkh

P tτk P S✽⑤rαααksi ✏ 1✉,
πππ�i :✏ E tαααkh�1✉ .

We assume that this vector is always known for the studied systems. Note that, as we con-
sider only switching between different modes, rπππ�i si ✏ 0. This assumption could be however
relaxed to admit "switching" from one mode to itself. Furthermore, it can be considered that
deterministic switching is a special case of stochastic switching that holds when πππ�i ✏αααkh�1.
That is, when the probability of the future state is zero for all modes but one.

The set of all M probability vectors defines implicitly a Markov Chain where the Markov
matrix is given by

ΠΠΠ ✏ col
✦�

πππ�i
✟✶✮M

i✏1
.
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The diagonal of this matrix is always zero as there cannot be a jump from one mode to itself.
Therefore, the Markov chain cannot be absorbing, i.e. it cannot recursively jump into one final
discrete mode. It depends on the structure of the edges that define the possible jumps if the
chain is ergodic (or irreducible), i.e. if any mode can be reached by successive jumps from
any other mode.

Fixed residence time

If the residence time Tkh
at each mode is known and constant, the following theorem can be

stated:

Theorem 3.6. Given a set of switching instants S✽ ✏ tτ0,τ1, ...✉ and a set of probability

vectors
✥
πππ�i

✭M

i✏1
, switched system (3.1) is almost surely globally asymptotically stable towards

the origin if there exists a symmetric homogeneous matrix polynomial P♣αααq ✏➦M
i✏1 αiPi such

that ❅i P t1,2, ...,M✉, τkh
P tτk P S✽⑤rαααksi ✏ 1✉ (all instants at which the system switches to

mode qi), Pi → 0 and

ΦΦΦ
✶
kh

P♣πππ�i qΦΦΦkh
✁Pi ➔ 0. (3.12)

Proof. The proof is similar to the previous cases with a Lyapunov function w♣x♣τkq,kq ✏
x♣τkq✶P♣ααα♣τk � δ qqx♣τkq → 0, with δ → 0 small so that τk � δ P ♣τk,τk�1q. Considering a
switching instant τkh

where the system switches to mode qi, condition (3.12) follows from
imposing E t∆wkh

✉ ➔ 0 and taking the limit ε Ñ 0�. As the Lyapunov function is linear with
respect to the elements of ααα , we obtain that E tP♣αααkh�1q✉ ✏ P♣E tαααkh�1✉q ✏ P♣πππ�i q. Further-
more, E tP♣αααkh

q✉ ✏ P♣E tαααkh
✉q ✏ P♣αααkh

q ✏ Pi.

Note that Theorem 3.6 associates exactly one LMI condition to each mode, independently
of the number of possible switching sequences.

This result, or slightly different versions of it, is often found in the quoted references.
In particular, in [134, 135] it is shown that conditions (3.12) are not only sufficient for al-
most surely stability, but necessary and sufficient for mean square stability (MSS), i.e. for
limkÑ✽E

✥⑥x♣τkq⑥2
✭ ✏ 0. In [134, 135] it is further shown that MSS implies almost surely

stability but the reverse, that almost surely stability implies MSS, as far as we know, does not
always hold. Therefore, MSS can be seen as a more restrictive condition than almost surely
stability.

In [138] it is argued that the difficulty of finding suitable Lyapunov functions in general
makes it hard to apply this methodology to stochastic systems. In particular, the computation
of the expected value of the gradient of the Lyapunov function in Theorem 3.5 is not always
possible and inhibits the use of more complex functions as, for example, homogeneous poly-
nomials.
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Uncertain residence time

In the cases where the residence time is only partially known, one can write Tkh
✏ T min

kh
�

∆Tkh
↕ T min

kh
�∆T max

kh
, where T min

kh
P R

� is a lower bound for the residence time and ∆Tkh
P

r0,∆T max
kh

s an unknown deviation. The stability of a system under this kind of uncertainty can
also be addressed by the previous result by considering a bound for the Euclidean norm of
the exponential matrix. Given a time interval I ✏ ✏

T min
,T max

✘
, define the upper bound of the

norm as

δ ♣A, Iq :✏ maxt⑥eAt⑥ P R�⑤t P I✉.
Then it follows that ❅t P I,

eA✶teAt ↕ ⑥eAt⑥2I ↕ δ 2♣A, IqI. (3.13)

Note that the scalar bound always exits as ⑥eAt⑥ is a continuous function of the parameter t
within a closed interval. Even in cases where it might be difficult to numerically compute this
value, an upper bound can be easily found, for example, by using the so-called log norm de-
fined in Appendix A.2 to find the bound in equation (A.9). Another suitable option would be a
bound typically used to compute approximations of the exponential matrix, derived from the
Schur decomposition of matrix A, see for example [14, Ch. 9.3.2, pp. 532]. These quadratic
bounds can be used to modify the almost surely stability result of the previous section. Nat-
urally, this implies a (possibly large) conservatism derived from the uncertain nature of the
residence time and the quadratic bound.

Theorem 3.7. In Theorem 3.6, if for some i P t1,2, ...,M✉ the residence time is such that Tkh
✏

T min
kh

�∆Tkh
↕ T min

kh
�∆T max

kh
, with T min

kh
P R

� and an unknown deviation ∆Tkh
P r0,∆T max

kh
s,

condition (3.12) can be replaced by:✔
✖✕✁Pi �ηkh

δ 2
kh

I ✁Xkh
Xkh

✍ �
ΦΦΦ

min
kh

✟✶
P♣πππ�

i qΦΦΦmin
kh

✁Ykh
✁Y✶

kh
Ykh

✍ ✍ ✁ηkh
I

✜
✣✢➔ 0 (3.14)

with additional variables ηk PR�, Xkh
PRn✂n and Ykh

PRn✂n; and where ΦΦΦ
min
kh

:✏ e
A♣αααkh

qT min
kh

and δkh
➙ δ ♣A♣αααkh

q, r0,∆T max
kh

sq.
Proof. This proof uses the Finsler Lemma A.14 and the Crossed Products Proposition A.15
in Appendix A.4. Define,

ϒϒϒ ✏
✑
eA♣αααkh

q∆Tkh ✁I

✙
, ϒϒϒ

❑ ✏
✓

I

eA♣αααkh
q∆Tkh

✛
,

ΞΞΞ ✏
✓
✁Pi 0

0
�
ΦΦΦ

min
kh

✟✶
P♣πππ�

i qΦΦΦmin
kh

✛
, ΓΓΓ ✏

✓
Xkh

Ykh

✛
.
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Where Xkh
P Rn✂n and Ykh

P Rn✂n are new variables. With this and considering that

e
A♣αααkh

q♣T min
kh

�∆Tkh
q ✏ΦΦΦ

min
kh

eA♣αααkh
q∆Tkh ✏ eA♣αααkh

q∆TkhΦΦΦ
min
kh

,

condition ② of Finsler Lemma becomes

♣ϒϒϒ❑q✶ΞΞΞϒϒϒ
❑ ✏

✓
I

eA♣αααkh
q∆Tkh

✛✶✓✁Pi 0

0
�
ΦΦΦ

min
kh

✟✶
P♣πππ�

i qΦΦΦmin
kh

✛✓
I

eA♣αααkh
q∆Tkh

✛

✏ΦΦΦ
✶
kh

P♣πππ�
i qΦΦΦkh

✁Pi ➔ 0

ðñ (3.12).

The equivalent condition ④ of the Lemma can be conveniently written as

ΞΞΞ�ΓΓΓϒϒϒ�ϒϒϒ
✶
ΓΓΓ
✶ ✏

✓
✁Pi ✁Xkh

✍ �
ΦΦΦ

min
kh

✟✶
P♣πππ�

i qΦΦΦmin
kh
✁Ykh

✁Y✶
kh

✛
� ...

...�ΓΓΓ

✑
eA♣αααkh

q∆Tkh 0

✙
�
✓

eA✶♣αααkh
q∆Tkh

0

✛
ΓΓΓ
✶

➔ 0.

As ④ ðñ ② , the last inequality is also a sufficient condition for stability of the system.
It presents the advantage that the additional variables relax its numeric feasibility when con-
sidering bounds for the uncertainties given by the unknown quantity ∆Tkh

. From the Crossed
Products Proposition and the bound of the exponential matrix norm (3.13), it follows that for
any ηkh

→ 0,

ΓΓΓ

✑
eA♣αααkh

q∆Tkh 0

✙
�
✓

eA✶♣αααkh
q∆Tkh

0

✛
ΓΓΓ
✶ ↕ ηkh

✓
eA✶♣αααkh

q∆Tkh

0

✛✑
eA♣αααkh

q∆Tkh 0

✙
� 1

ηkh

ΓΓΓΓΓΓ
✶

✏
✓

ηkh
eA✶♣αααkh

q∆Tkh eA♣αααkh
q∆Tkh 0

✍ 0

✛
� 1

ηkh

ΓΓΓΓΓΓ
✶

↕
✓

ηkh
δ 2

kh
I 0

✍ 0

✛
� 1

ηkh

ΓΓΓΓΓΓ
✶.

Therefore, an upper bound sufficient condition for ④ is✓
✁Pi�ηkh

δ 2
kh

I ✁Xkh

✍ �
ΦΦΦ

min
kh

✟✶
P♣πππ�

i qΦΦΦmin
kh
✁Ykh

✁Y✶
kh

✛
� 1

ηkh

ΓΓΓΓΓΓ
✶ ➔ 0.

Condition (3.14) is equivalent by Schur complement to the last inequality.

Note that a similar result could be proposed for the deterministic switching case.
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1

23

Figure 3.5.: Switched system in Fault Operation for Example 3.3.

Example - Operation under Faults

Example 3.3. Consider the switching sequences defined by the automaton in Figure 3.5 and
the following matrices:

A1 ✏
✓
✁2 ✁1

✁1 ✁2

✛
, A2 ✏

✓
1 0

✁1 ✁2

✛
, A3 ✏

✓
✁2 ✁1

0 1

✛
.

Note that the first matrix is Hurwitz, but not the others. This represents a system that operates
in a nominal safe mode q1 but where two different fault modes q2 and q3 may occur. In this
example, the indexes associated with jumps into mode q1 are denoted as kh,1, to jumps into
q2 as kh,2, and into q3 as kh,3. In that way, the switching instants associated with a jump to
q1 are τkh,1 , to q2 are τkh,2 , and to q3 are τkh,3 . Furthermore, A♣αααkh,1q ✏ A1, A♣αααkh,2q ✏ A2, and
A♣αααkh,3q ✏ A3.

Assume that the residence times at each discrete mode are known and constant with T♣1q :✏
Tkh,1 ✏ 0.2 for q1, T♣2q :✏ Tkh,2 ✏ 0.5 for q2 and T♣3q :✏ Tkh,3 ✏ 0.4 for q3. Note that the infinite
repetitive sequence ...Ñ q1 Ñ q2 Ñ q1 Ñ q2 Ñ ... is not stable as the matrix

ΨΨΨ
kh,1

kh,2
✏ΦΦΦkh,1ΦΦΦkh,2 ✏ e

A♣αααkh,1
qTkh,1 e

A♣αααkh,2
qTkh,2

has one eigenvalue, λ ✏ 1.2116, outside of the unitary circle. The same happens with the
sequence ...Ñ q1 Ñ q3 Ñ q1 Ñ q3 Ñ .... Therefore the system is not stable for all allowed
switching sequences.

However, if we additionally know that the fault described by q2 occurs once every three
faults, the previous sequences are very unlikely to happen. In this case, the future probability
vectors are:

πππ�
1 ✏

✑
0 1④3 2④3

✙✶
, πππ�

2 ✏ πππ�
3 ✏

✑
1 0 0

✙✶
.

For this system, the LMI conditions of Theorem 3.6 are fulfilled by P♣αααq ✏ P1α1�P2α2�
P3α3 → 0 where

P1 ✏
✓

0.8895 ✁0.4591

✁0.4591 1.3860

✛
, P2 ✏

✓
3.6648 ✁0.2205

✁0.2205 0.4813

✛
, P3 ✏

✓
0.4832 ✁0.2270

✁0.2270 3.8499

✛
.
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a) b)

c) d)

Figure 3.6.: Evolution of the states of systems in Example 3.3 for a) almost surely stable probabilistic
switching, b) almost surely stable uncertain probabilistic switching, c) non almost surely
stable uncertain probabilistic switching, d) presumable almost surely stable uncertain prob-
abilistic switching.

This shows that the specified system is almost surely stable. This can be seen in Figure 3.6 a)
for a random switching sequence with the switching probabilities stated before.

Now consider that residence time for each mode is not exactly known. For each mode, the
uncertainty is however bounded and given by

q1 :T min
kh,1

✏ 0.50 and ∆T max
kh,1

✏ 0.05,

q2 :T min
kh,2

✏ 0.30 and ∆T max
kh,2

✏ 0.20,

q3 :T min
kh,3

✏ 0.30 and ∆T max
kh,3

✏ 0.10.

A bound δkh,i
➙ δ ♣A♣αααkh,i

q, r0,∆T max
kh,i

sq, i P t1,2,3✉, can be easily obtained by computing the
norm of the exponential map for all values in the interval as shown in Figure 3.7. As mode
q1 presents stable non-oscillating dynamics, the maximum norm is obtained at ∆Tkh,1 ✏ 0.00
and therefore we can choose δkh,1 ✏ 1.0000. In the fault modes, q2 and q3, because of their
unstable non-oscillating dynamics, the maximum is given at ∆Tkh,i

✏ ∆T max
kh,i

and so we can

choose, δkh,2 ✏ 1.2408 and δkh,3 ✏ 1.1141.
The application of Theorem 3.7 results in this case in three LMIs, each one with the

variables associated to the Lyapunov function with one additional scalar variable (η-type
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Figure 3.7.: Norm of the exponential map as a function of the uncertainty in the residence time, ∆Tkh,i
ÞÑ

⑥eA♣αααkh,i
q∆Tkh,i ⑥, for the three modes, i P t1,2,3✉, of the system in Example 3.3.

variable) and two additional matrix variables (X- and Y-type variables). That is, there are
3✂♣2�1q♣2q④2 ✏ 9 Lyapunov scalar variables, and 3✂♣1�22 �22q ✏ 27 additional scalar
variables. In the case of the specified uncertainty, the corresponding LMIs can be proven fea-
sible, thus showing that the system is stable. We do not show these matrices for sake of space.
This is corroborated by the simulation shown in Figure 3.6 b).

If we consider a more restrictive uncertainty given by

q1 :T min
kh,1

✏ 0.0667 and ∆T max
kh,1

✏ 0.05,

q2 :T min
kh,2

✏ 0.3000 and ∆T max
kh,2

✏ 0.20,

q3 :T min
kh,3

✏ 0.3000 and ∆T max
kh,3

✏ 0.10,

the inequalities resulting of Theorem 3.7 are not feasible. Because this result only gives a
sufficient condition for stability, the non feasibility of the LMIs does not mean that the system
is unstable. However, it leaves space for well-founded doubts. Indeed, the simulation in Figure
3.6 c) shows that the switched system under these conditions does not approximate the origin.

However, as Theorem 3.7 is only a conservative condition, because an upper bound is con-
sidered in order to deal with the uncertain parameters, the cases where the inequalities are not
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3. Stability of Switched Systems

feasible need to be interpreted carefully. For example, if we choose the following parameters

q1 :T min
kh,1

✏ 0.20 and ∆T max
kh,1

✏ 0.05,

q2 :T min
kh,2

✏ 0.30 and ∆T max
kh,2

✏ 0.20,

q3 :T min
kh,3

✏ 0.30 and ∆T max
kh,3

✏ 0.10,

the respective LMIs are not feasible, although this values represent a relaxed situation with
respect to the system without uncertainty at the beginning of the example (the system stays
during less or equal time in the unstable modes as in the original case but longer in the stable
mode). Simulations show that the system converges in all considered cases as in Figure 3.6 d).
�
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Consensus Systems
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✹
The Global Perspective

4.1. Multi Agents Systems

Even though consensus based control is formulated for Multi Agents Systems, it is not easy
to find a general description of such a system in the related works. In this section, the general
model used in this thesis is explained and some important restrictions are stated. As a result,
this section summarizes the characteristics of the plant over which control is performed.

4.1.1. General Description of Multi Agents Systems

In Figure 4.1 a general distributed control scheme for a multi-agent system is shown. This
representation considers a realistic scenario in a control theoretical framework, where the dif-
ferent components of the network are defined according to their physical characteristics or
functions. The subsystems are detailed in the following list.

Subsystems:

• Agent i: N controlled machines. Possible non linear dynamics. The agents dynamics
can be extended to other cases as discrete time or discrete states. The actuators are
assumed to be part of the model of the agent. Example: Electric generators in a grid;
Mobile vehicles.

• Controller i: each agent is equipped with an on board local controller that considers
control tasks, input and output filtering, and communication management.

• Communication Channels: Is a communication interface between the on board com-
ponents. Note that there is no control logic allocated in this block. This block includes
the feedback signals from each block to itself. In the case that the dynamics of such a
feedback are not of importance, the corresponding communication channel can always
be modeled as a unitary matrix gain.

• Hardware Interconnections: All physical links existing between the agents that are
not part of the control strategy. This block might be unknown, partially unknown or
even not exist. Example: The electrical grid where generators are connected; terrain
constrains where the vehicles move.
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✾x1 ✏ f1♣x1,u1,w1q
y1 ✏ g1♣x1,u1,w1q
z1 ✏ h1♣x1,u1,w1q

Agent 1

Controller 1

uext,1

ū1

ȳ1

u1

y1

z1

w1

✾xi ✏ fi♣xi,ui,wiq
yi ✏ gi♣xi,ui,wiq
zi ✏ hi♣xi,ui,wiq

Agent i

Controller i

uext,i

ūi

ȳi

ui

yi

zi

wi

✾xN ✏ fN♣xN ,uN ,wNq
yN ✏ gN♣xN ,uN ,wNq
zN ✏ hN♣xN ,uN ,wNq
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Figure 4.1.: General scheme of a multi-agents system.
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• Distributed control strategy: Is the union set of on board controllers with the commu-
nication channels. If the control objective is consensus, then this block is the Consensus
Algorithm.

• Interconnected network: Is the union set of all agents and the hardware interconnec-
tions between them.

• Central controller: Is an additional agent that interacts through communication chan-
nels with the on board logic of the rest of the agents or through hardware interconnec-
tions directly with the agents. It is considered an extra agent due to its importance for
the control strategy, its great influence on hardware interconnections or its different na-
ture. While the agents are some kind of similar systems (for example aircrafts or electric
generators), the central controller can be special hardware designed for specific tasks.

Even though not expressly shown, all these blocks can be dynamic systems. Figure 4.1
shows the agents as continuous dynamical systems, however the dynamics of different blocks
can well be in continuous time, discrete time, discrete event or combinations of the previous.
The main variables associated with these blocks are described in the following list.

Variables:

• xi: Vector of states of agent i.

• yi: Vector of physical outputs of agent i.

• ȳi: Vector of communicated outputs of agent i.

• ui: Vector of control inputs of agent i. The actuators are assumed to be included in the
agents.

• ūi: Vector of data that the controller of agent i obtains from communication with others.

• uext,i: Vector of external inputs of agent i to allow the possibility of manual operation of
the agents.

• zi: Vector of the physical variables of agent i that interact with other agents.

• wi: Vector of physical variables that affect agent i as a result of the physical interaction
between agents.

• d: Vector of perturbations.

• r: Vector of communication noise.
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4.1.2. Model Restrictions

The described model is very widespread in the sense that it allows many different dynamical
models for its components, making the analysis difficult. For this reason, only linear contin-
uous dynamics will be considered. Due to the methodology followed here, the results to be
presented can be extended to other more complex scenarios. However, not making the linear-
ity assumption of the models would lead to complications that are not due to the multi agent
plant or the consensus problem, but due to the modeling of the components. With this in mind,
the following definitions will be considered in most parts of this thesis.

Definition 4.1.1. A linear autonomous agent (AA) is an agent i P V that does not have any
hardware interconnections with any other agent and presents individual dynamics given by:

✾xi ✏Aixi�Biui

yi ✏Cixi
(4.1)

With Ai P Rni✂ni , Bi P Rni✂pi , and Ci P Rq✂ni .

Note that the number of outputs does not depend on the agent but is always q. We assume
that CiBi is full rank. Unless specifically stated otherwise, we also assume that each agent has
the same number of outputs as inputs, that is q ✏ pi.

A typical special case in the consensus field are agents modeled as integrators.

Definition 4.1.2. An integrator agent (IA) is an AA that presents individual dynamics given
by:

✾xi ✏Biui

yi ✏Cixi
(4.2)

That is, an AA with A ✏ 0, so that ✾yi ✏ CiBiui.

Definition 4.1.3. An autonomous agents network (AAN) is the aggregation of all N autonomous
agents in a set V . The dynamics of such a network are described by:

✾x ✏Ax�Bu

y ✏Cx
(4.3)

Where,

A ✏ diagtAi✉N
i✏1 , B ✏ diagtBi✉N

i✏1 , C ✏ diagtCi✉N
i✏1 ,

x ✏ coltxi✉N
i✏1 , u ✏ coltui✉N

i✏1 , y ✏ coltyi✉N
i✏1

so that A P Rn✂n, B P Rn✂p, C P RNq✂n, n ✏➦N
i✏1 ni and p ✏➦N

i✏1 pi.
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Definition 4.1.4. An integrators network (IN) is an AAN composed only of IA, so A ✏ 0 and

✾y ✏ CBu

where matrix CB ✏ diagtCiBi✉N
i✏1 is full rank.

A network described in such a way can be classified according to its size.

Definition 4.1.5. A small network is such that:

i It can be analyzed in a centralized way.

ii The agents are capable of computing variables as a function of the information they know
about the others.

If any of these assumptions is dropped, the network will be called medium sized. If none of
the assumptions is true, the network is big.

Unless otherwise stated, this thesis deals with small networks, or at least with medium
networks where a centralized analysis can be performed. In these cases it is possible to have
information about the whole network and the analysis can be done from a global point of view,
considering all possible relationships between agents. Note that a centralized analysis of a
network does not mean that its control is done from a centralized position. Control actions and
hardware can be distributed among the agents and still be analyzed from a central position.

4.2. The Consensus Objective

4.2.1. The Idea of Consensus

Given a Multi Agent System described as before, consensus can be defined as a control ob-
jective in the same way as stability or robustness in classical control. That is, the definition
of consensus is independent of the agent’s dynamics or methodology that the agents follow
to reach this objective. It is however not an exception in the field, e.g. [14, 29, 34, etc.], to
find definitions not only in terms of the output signals but also in terms of specific dynamics
(usually integrators) and specific consensus algorithms (usually Laplacian algorithms). That
is, not as a control objective for synthesis of controllers in an arbitrary plant, but as a property
of particular control plants with particular controllers that can be analyzed.

Informally, to reach consensus is understood in this thesis as the outputs of different agents
having an equivalent value. This value is usually the same, where some publications talk about
point consensus, but it can also be defined as the difference with a given known vector. In
that sense consensus can be intuitively compared with the equilibrium point of a system that
resumes the characteristics of the whole network. However, explicitly reducing consensus to a
stability problem, is not typically addressed in the existing works. Nevertheless, some recent

51



4. The Global Perspective

conference papers, e.g. [4, 35, 50], have shown that consensus can be explained through the
idea of a unique “leader” agent.

Consensus is usually defined as limtÑ�✽ ⑥yi✁y j⑥ ✏ 0,❅i, j P V [14, 29, 34, etc.]. That is,
in the limit, the output signals of every agent i P V need to be the same. However, due to the
symmetry (a ✏ b ðñ b ✏ a) and transitivity (a ✏ b❫ b ✏ c ùñ a ✏ c) properties of the
equality relationship, in the limit, this definition becomes redundant and therefore expensive
to test.

Indeed, if it is true that yi ✁ y j ✏ 0, it is also true that y j ✁ yi ✏ 0 and therefore only one
(and not both!) of these relationships needs to be computed in order to check that agent i and
agent j reached consensus. Furthermore, if it is also true that yi✁yk ✏ 0, there is no need to
compute the differences y j ✁ yk ✏ yk ✁ y j ✏ 0 to verify that agent k reached consensus with
agent j, as the transitivity property assures it already. The previous definition also implies that,
to check if consensus is achieved, the trivial differences yi✁yi ✏ 0 also needs to be computed.

In the case of three agents i, j and k, the quoted definition implies that six non trivial
relationships (yi✁y j ✏ 0, yi✁yk ✏ 0, y j✁yi ✏ 0, y j✁yk ✏ 0, yk✁yi ✏ 0, and yk✁y j ✏ 0 )
need to be verified to say that the agents reached consensus. However, in the limit, only two of
them are actually required. In general, for N agents, only N✁1 relationships need to be studied
and not all possible N♣N ✁ 1q non trivial relationships. This property is further exploited in
the following sections to define the idea of organization and from there to redefine consensus
as a stability problem.

4.2.2. Hierarchical Organization

From a collective perspective, a network can be described through hierarchical relationships
between the agents. The nature or structure of these relationships is defined arbitrarily by the
analysis instance and are independent of the agents’ dynamics or communication channels.
Therefore, an organization is not a physical concept related to the network dynamics, but an
arbitrary analysis tool.

Definition 4.2.1. Given a strictly directed graph, T o, derived from an unweighted undirected
tree T over the set of agents V , with ⑤V ⑤ ✏ N, where D♣T oq denotes its incidence matrix as
in Definition 2.1.9. Then T✏ D✶♣T oq P R♣N✁1qq✂Nq is called an organization matrix.

Trees represent hierarchical organizations in a natural way when each agent is a node and
the hierarchical relationship between the systems is an oriented edge. The use of a particular
transformation instead of another, implies the choice of one particular way to study the net-
work. For example, it can be defined that all systems follow only one reference system, that
each agent follows only one other agent, or even that only one agent follows every other one.

The organization matrix is unique given a graph T o. However, note that different organiza-
tion matrices could be constructed from strict digraphs defined from the same given undirected
tree T , by giving the edges different directions or labeling them in a different way. Consider-
ing Cayley’s formula, between N agents, NN✁2 spanning trees can be drawn. For each of these
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T o 1

2 3

T ✏ D✶♣T oq ✏
✓

I ✁I 0

I 0 ✁I

✛

Figure 4.2.: Example of a consensus organization.

trees, there are 2N✁1 ways to give orientations to the edges. Furthermore, there are ♣N ✁ 1q!
ways to label N ✁ 1 oriented edges. Therefore, the number of possible organization matrices
that can be defined to study a network of N agents is NN✁2 ☎2N✁1 ☎ ♣N ✁1q!.
Example 4.1. Figure 4.2 gives an example of an organization matrix derived from a tree. The
labels of the edges are assumed e1 ✏ ♣2,1q and e2 ✏ ♣3,1q and, therefore, the first row of
matrix T corresponds to the edge ♣2,1q and the second row to ♣3,1q. If another digraph is
assumed with labels e1 ✏ ♣3,1q and e2 ✏ ♣2,1q, the resulting organization matrix would be

T ✏ D✶♣T oq ✏
✓

I 0 ✁I

I ✁I 0

✛
.

With the original labeling, if the orientation of the edges is changed, thus defining different
digraphs, the following additional organizations matrices can be defined.

T ✏
✓
✁I I 0

I 0 ✁I

✛
, T ✏

✓
I ✁I 0

✁I 0 I

✛
, T ✏

✓
✁I I 0

✁I 0 I

✛
.

By also changing the labeling, three more matrices can be defined. If other undirected trees
over the same set of vertices are considered, several other matrices can be defined. As N ✏ 3
only two additional undirected trees with E ✏ t♣1,2q,♣2,3q✉ and E ✏ t♣1,3q,♣2,3q✉ can be
drawn. In total, for this simple case with three vertices there are 33✁2 ☎ 23✁1 ☎ ♣3✁ 1q! ✏ 24
possible organization matrices. �

By construction of T ✏ D✶♣T oq, an organization matrix is always full row rank and there-
fore it always has a unique pseudo-inverse matrix1 T� so that TT� ✏ I and that can be com-
puted as

T� ✏ T✶♣TT✶q✁1.

Furthermore, the matrix 1 ✏ coltIq✂q✉N
i✏1 is a basis of the kernel of T, i.e. T1 ✏ 0 and the

composed matrix
✏
T✶ 1

✘
is non singular. From here, the following can be written:

✑
T✶ 1

✙✑
T✶ 1

✙✁1
✓

T

1✶

✛✁1✓
T

1✶

✛
✏ I

1More details on pseudo inverses can be found in the Appendix A.1.
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By developing the inverse terms, one gets:

✑
T✶ 1

✙✓
TT✶ 0

0 NI

✛✁1✓
T

1✶

✛
✏ I

Which finally leads to:

T�T✏ I✁ 1

N
11✶ (4.4)

For simplicity, we define

J :✏ 1

N
11✶.

Note that JJ✏ J, TJ✏ 0 and JT� ✏ 0.

Remark 4.1. Many of the possible organization matrices that can be defined have equiva-
lent properties. In particular, given an organization T defined from an undirected unweighted
tree T , all ♣N ✁ 1q! organizations T̂ resulting from different labeling of the edges are row
permutations of T. That is, they can be expressed as T̂ ✏ M̂T, where M̂ P R

♣N✁1qq✂♣N✁1qq

is a block permutation matrix and so M̂M̂
✶ ✏ M̂

✶
M̂ ✏ I. In this cases T̂

� ✏ T̂
✶♣T̂T̂

✶q✁1 ✏
T✶M̂✶♣M̂TT✶M̂✶q✁1 ✏ T✶M̂✶♣M̂✶q✁1♣TT✶q✁1♣M̂q✁1 ✏ T�M̂

✶
.

Furthermore, all 2N✁1 organizations T̄ resulting from different orientations of the edges can
be expressed as T̄ ✏ M̄T, where M̄ P R

♣N✁1qq✂♣N✁1qq is a block diagonal matrix such that
each of its N ✁ 1 diagonal ♣q✂ qq-blocks is either I or ✁I. Clearly, M̄ ✏ M̄

✶
and M̄M̄ ✏ I.

Therefore, T̄
� ✏ T�M̄

✶
.

4.2.3. Consensus Error

For any of these organizations a vector of consensus errors can be defined.

Definition 4.2.2. The consensus error vector of a network analyzed through organization T✏
D✶♣T oq is defined as

e✏ Ty (4.5)

The multiplication of each of the N ✁ 1 block rows of matrix T with vector y computes
the difference between the outputs of the different agents. Therefore, if the norm of this error
decreases to zero over time, the network will achieve consensus in steady state. Consensus can
be then redefined by means of the organization idea as the convergence of the error targets e:

Definition 4.2.3. A network of autonomous agents is said to reach or achieve consensus if the
error e defined by an organization T ✏ D✶♣T oq asymptotically approaches the origin for any
initial condition. That is, ❅x♣0q P Rn:

Consensus ðñ lim
tÑ�✽⑥e⑥ ✏ 0
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The analysis of consensus through the organization matrix and the convergence of the error
vector is similar to what is done in [2, 37, 38] but considering the outputs space and not the
particular dynamics of the states. From here, the definition of consensus suggested in Section
4.2.1 can be proved equivalent.

Lemma 4.1. lim
tÑ�✽⑥e⑥ ✏ 0 ðñ lim

tÑ�✽
✎✎yi✁y j

✎✎✏ 0, ❅i P V ❫ j P V .

Proof. Define T✏ D✶♣T oq from a tree T ✏ ♣V ,E q. For any instant t ➙ 0, it follows that,

⑥e⑥ ✏ 0 ðñ ⑥e⑥2 ✏ ⑥Ty⑥2 ✏
➳

♣i, jqPE
⑥yi✁y j⑥2 ✏ 0

ðñ ❅♣i, jq P E : yi✁y j ✏ 0

ðñ ❅♣i, jq P V ✂V : yi✁y j ✏ 0

ðñ ❅♣i, jq P V ✂V : ⑥yi✁y j⑥ ✏ 0.

Where the change of E by V ✂V holds because T is a tree and through transitivity and
symmetry of the equality operation.

Note that achieving consensus does not necessarily imply that the states or outputs of the
agents approach the origin, only ensures that the target error vanishes. With this definition,
the case where the outputs of the systems tend to infinity but are equal after some transient
is considered a successful coordination. From these last observations, the following types of
consensus may be defined.

Definition 4.2.4. For any initial condition, consensus is said to be

a) Trivial when

lim
tÑ�✽⑥e♣tq⑥ ✏ 0 ðñ lim

tÑ�✽⑥y♣tq⑥ ✏ 0.

b) Static when it is not trivial and ❅t ➙ 0, ❉v P Rq:

⑥e♣tq⑥ ✏ 0 ùñ ⑥y♣tq✁1v⑥ ✏ 0.

c) Bounded dynamic when it is not trivial and ❅t ➙ 0, ❉v : R�
0 ÞÝÑ R

q and ❉b P R�:

⑥e♣tq⑥ ✏ 0 ùñ ⑥y♣tq✁1v♣tq⑥ ✏ 0 and ⑥v♣tq⑥ ↕ b.

d) Unbounded dynamic when it is not trivial and ❅t ➙ 0, ❉v : R�
0 ÞÝÑ R

q:

⑥e♣tq⑥ ✏ 0 ùñ ⑥y♣tq✁1v♣tq⑥ ✏ 0 and lim
tÑ�✽⑥v♣tq⑥ ✏ ✽.
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In the trivial case, the outputs of the systems are equal only because the systems in the
network are asymptotically stable and not necessarily because of the control strategy. Simply
defining a network with stable AAs, will result in trivial consensus for any initial condition
when the input signals and perturbations are zero. Note that ⑥y⑥ Ñ 0 always implies that
⑥e⑥ ✏ ⑥Ty⑥ Ñ 0 and therefore the trivial case holds when additionally ⑥e⑥ Ñ 0 ùñ ⑥y⑥ Ñ 0,
as t Ñ�✽.

The other cases are more interesting as then consensus is reached regardless of the kind
of dynamics that the network presents. Static consensus refers to the case where the agents
reach consensus to a constant point in the outputs space. In the dynamic cases, consensus is
reached towards a non constant function of time. Note that the fundamental difference between
bounded dynamic consensus and trivial consensus is that in the dynamic case, consensus may
be reached long before the outputs approach to zero. Examples of these four definitions can
be seen in Figure 4.3.

From these definitions, the dynamics of the error given by (4.6) become relevant for con-
sensus analysis.

✾e ✏ T ✾y ✏ TC ✾x ✏ TCAx�TCBu (4.6)

Note that the consensus capacity of a network is strongly related to the properties of the
feedback law chosen for the network but also to the dynamics of the states of the agents. We
assume that ranktCB✉ ✏ Nq unless otherwise stated.

Observe that using the properties of an organization matrix, it can be written that T�e ✏
T�Ty ✏ y✁Jy ✏ y✁JCx, and from here,

y ✏ T�e�Jy ✏ T�e�JCx (4.7)

In the general case, y cannot be written only as a function of e as matrix T is not square and,
therefore, vector e is of lower dimension. Note that if e♣tq ✏ 0, it holds that,

y♣tq ✏ Jy♣tq ✏ 1

N
11✶y♣tq ðñ y♣tq ✏ 1v♣tq,

with a (possibly) time dependent vector v : R�0 ÞÑ R
q. From here, if e ✏ 0, then it also holds

that ✾e ✏ T ✾y ✏ T♣1 ✾vq ✏ ♣T1q ✾v ✏ 0. Therefore, if a network reaches consensus, it stays in
consensus regardless of the dynamic behavior of v.

Example 4.2. To numerically evaluate the performance of a network regarding to how success-
fully it reaches consensus within a time interval r0, ts, the following indices can be defined con-
sidering the deviation of the outputs with respect to their mean value eM :✏ y✁1 1

N

➦M
i✏1 rysi ✏

♣I✁Jqy:

ISD♣tq ✏
➺ t

0

❜
e✶MeM dt ✏

➺ t

0

❛
y✶♣I✁Jqy dt,

IAD♣tq ✏
➺ t

0

N✁1➳
i✏1

⑤reMsi⑤ dt.
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4.2. The Consensus Objective

Table 4.1.: Network simulation indicators for four different networks in Example 4.2.

Network ISD♣3q IAD♣3q
a) 0.859693 2.357284

b) 0.266529 0.730825

c) 0.242299 0.664386

d) 0.277635 0.761276

The abbreviation ISD stands for Integral Square Deviation and IAD for Integral Absolute
Deviation. These indicators do not depend on the organization and they directly consider the
evolution in time of the outputs of the systems. For given network and initial condition, a
“good” consensus algorithm should imply a relatively small value for the defined indicators.
Table 4.1 shows the simulation indicators evaluated at t ✏ 3 for the four situations in Figure
4.3. �
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4. The Global Perspective
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Figure 4.3.: Time trajectories examples for a) Trivial consensus, b) Static consensus, c) Bounded dy-
namic consensus, and d) Unbounded dynamic consensus.
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✺
Consensus Algorithms

Given a network and an organization, that is, a control plant and a control objective, a consen-
sus algorithm is introduced as a feedback law for the network in order to achieve the consensus
objective. We will concentrate on linear consensus algorithm defined as a proportional output
feedback:

u ✏ Ly (5.1)

with L P Rp✂Nq. In this work, only square consensus algorithms are considered with p ✏ Nq.
An external input uext can be considered to study the behavior of the network under other
objectives considering u ✏ Ly�uext . However, unless contrary stated, for consensus analysis
and without lost of generality this work considers that uext ✏ 0.

A consensus algorithm can be described by a block matrix in the shape of:

L ✏

✔
✖✖✖✖✕
✁∆1 W12 ☎ ☎ ☎ W1N

W21 ✁∆2 ☎ ☎ ☎ W2N
...

...
. . .

...

WN1 WN2 ☎ ☎ ☎ ✁∆N

✜
✣✣✣✣✢ , (5.2)

where the blocks Wi j ✏ rLsi j P Rq✂q, i ✘ j, are gains that represents the weights with which
the output of system j P V is added to the input of agent i P V . The matrices ∆i ✏ rLsii PRq✂q

are used to compute feedback signals from the output to the input of each system i P V . In
general, a consensus algorithm described by the previous expression does not assume any
further conditions over the blocks of the matrix. Equation (5.1) can be equivalently written
with respect to the input signal ui of each agent i P V :

ui ✏
N➳

j✏1

rLsi j y j.

In the sequel, several special cases of interest are studied in terms of their ability to reach
consensus.
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5. Consensus Algorithms

5.1. Loopless Laplacian Algorithms

The most studied case is where the consensus algorithm is derived as the negative Laplacian
matrix of an undirected weighted graph Gw.

Definition 5.1.1. A loopless negative Laplacian consensus algorithm is a linear output feed-
back u✏Ly for network (4.3) where the feedback matrix is derived as L✏✁L̂♣Gwq PRNq✂Nq

with Gw an undirected weighted graph without selfloops over the vertices set V .

A note on the interpretation of such an algorithm needs to be stated. While a graph Gw

is commonly associated with physical properties of the communication links between the
agents, here we simply regard it as a convenient description of the algorithm. In the same
way, a strictly directed tree is a convenient description for an organization matrix. From the
definition of algorithm as a linear feedback law, what is distributively implemented by the
agents are the gains described by the block elements of matrix L. Furthermore, the definition
of the error e and of consensus as a stability problem, makes it natural to answer the ques-
tion of consensus not through graph theoretical tools, but through algebraic properties of the
involved matrices and general control theory. In this sense, a graph Gw becomes useful for
the specification of different algorithms, but does not imply a particular specification of the
underlaying communication processes.

Note that the feedback matrix is symmetric with the shape:

L ✏✁L̂♣Gwq ✏

✔
✖✖✖✖✕
✁∆1 W12 ☎ ☎ ☎ W1N

W12 ✁∆2 ☎ ☎ ☎ W2N
...

...
. . .

...

W1N W2N ☎ ☎ ☎ ✁∆N

✜
✣✣✣✣✢ ,

where Wi j ✏ W✶
i j and ∆i ✏

➦
j✘i Wi j and therefore has the zero row sum property (L1 ✏ 0).

Furthermore, it follows that LJ ✏✁L̂♣GwqJ ✏✁ 1
N

�
L̂♣Gwq1

✟
1✶ ✏ 0 and therefore, because of

(4.7),

u ✏ Ly ✏ L
�
T�e�JCx

✟✏ LT�e

For simplicity of notation, a matrix

H ✏ LT� P RNq✂♣N✁1qq (5.3)

can be defined. Note that HT ✏ LT�T ✏ L♣I✁Jq ✏ L for Laplacian consensus algorithms as
in Figure 5.1. With this, the dynamics of the error given by (4.6) for AAN can be presented
as:

✾e ✏ TCBHe�TCAx (5.4)
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5.1. Loopless Laplacian Algorithms

tA,B,C✉
Agents

Network

� �

T

Hierarchical

Organization

H

u

uext

e

y

d

L Loopless Laplacian Consensus Algorithm

Figure 5.1.: Feedback configuration of an ANN with a Loopless Laplacian Algorithm including an
external input uext and an output perturbation d.

5.1.1. Integrators Network

In the case of networks composed only of integrators, as A✏ 0, is immediate that the dynamics
of the error depend only on the characteristics of the consensus algorithm in the following way:

✾e ✏ TCBHe (5.5)

This simplifies the consensus problem greatly as it can be studied by simply analyzing the
eigenvalues of matrix G :✏ TCBH. Note that in the definitions of Section 4.1.2, it is assumed
that the product CB is full rank.

Proposition 5.1. In an IN with a loopless Laplacian algorithm, consensus is reached if and
only if G :✏ TCBH is Hurwitz. That is, if and only if all its eigenvalues have a negative real
part.

Note that CB ✏ diagtCiBi✉iPV is block diagonal but not necessarily (element) diagonal.
This makes it possible to expressly study agents with coupled input/output relationships.

Hurwitz Properties of TCBH

Equation (5.5) suggests that the dynamics of the error depend on the chosen organization.
However this is not the case.

Lemma 5.2. An IN with a loopless Laplacian algorithm reaches consensus if and only if the
product CBL P R

Nq✂Nq has exactly ♣N ✁ 1qq eigenvalues with negative real part and q zero
eigenvalues.

Proof. According to the Augmented Eigenvalues Proposition (see Proposition A.9 in the Ap-
pendix), as the organization matrix has more columns than rows,

eigtTCBH✉❨Z ✏ eig
✥

CBLT�T
✭✏ eigtCBL✉ .
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5. Consensus Algorithms

Which does not depend on T, and so TCBH P R
♣N✁1qq✂♣N✁1qq is Hurwitz only when the

product CBL has ♣N✁1qq eigenvalues with negative real part and q zero eigenvalues.

Note that dimtTCBH✉ ✏ ♣N✁1qq and dimtCBL✉ ✏ Nq, and then ⑤Z⑤ ✏ q. It follows that:

Lemma 5.3. If an IN with a loopless Laplacian algorithm reaches consensus, then the graph
associated with the algorithm is connected.

Proof. If G ✏ TCBH is Hurwitz, then ranktG✉ ✏ dimtG✉ ✏ ♣N✁ 1qq. Hence, considering
that CBL has in this case exactly ⑤Z⑤ ✏ q zero eigenvalues, ranktCBL✉ ✏ ♣N✁ 1qq. If it is
assumed that ranktCB✉ ✏ Nq (CB is full rank), ranktCBL✉ ✏ ranktL✉ ✏ ♣N✁ 1qq. When
L✏✁L̂♣Gwq, from Lemma 2.2, this is only possible if Gw is connected.

Observe that because of matrix CB, the previous result is only a necessary condition and not
sufficient. Unfortunately, in general, there is no relationship that links the eigenvalues of CB

and L to the eigenvalues of CBL and therefore consensus cannot be studied as a property only
of the chosen graph. Indeed, if the graph is connected so that the consensus algorithm has rank
♣N✁ 1qq, we can only deduce that the matrix G ✏ TCBH is full rank, but nothing about the
signs of the real parts of its eigenvalues. For example, if CB✏✁I and a connected undirected
graph Gw is used to define L✏✁L̂♣Gwq, consensus cannot be reached as all eigenvalues of G

are located on the right complex half-plane.
Only in special cases Lemma 5.3 is valid in both directions. In particular, when CB ✏ I,

then eig
✥

TCBLT�✭❨Z ✏ eig
✥

LT�T
✭✏ eigtL✉ which implies that G✏ TCBH is Hurwitz

as L̂♣Gwq ➙ 0 and ranktL✉ ✏ ♣N✁1qq when Gw is connected.

Remark 5.1. Note that in the case that the consensus transformation were a square matrix
or a matrix with more rows than columns, i.e. not derived from a tree but from a digraph
with more than N✁ 1 edges (T ✏ D✶♣G oq P Rr✂Nq), this condition could not be satisfied. As
eigtTCBH✉ ✏ eigtCBHT✉❨Z whenever r→ Nq. So G✏ TCBH would have at least r✁Nq
zero eigenvalues and cannot be Hurwitz. Thus, it is harder to study consensus considering
more than N✁1 relationships, as suggested by the definition in Section 4.2.1.

Another interesting result has to do with the kind of consensus that is reached.

Lemma 5.4. If consensus is reached in an IN with a Loopless Laplacian algorithm, then it is
static consensus.

Proof. As y✏T�e�Jy, when e✏ 0, then y✏ Jyðñ y✏ 1v♣tq, where v♣tq :R�
0 ÞÝÑR

q. The
dynamics of the outputs in a IN can be written as: ✾y ✏ CBLy. Evaluating when consensus is
reached, then ✾y✏ 1 ✾v✏✁CB

�
L̂♣Gwq1

✟
v♣tq ✏ 0, and therefore ✾v✏ 0 and v♣tq ✏ v is constant.

Furthermore, v P Rq is not necessarily zero.
Stability of the consensus targets can be studied as an LMI feasibility problem.
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5.1. Loopless Laplacian Algorithms

Lemma 5.5. Consensus in an IN with a loopless Laplacian algorithm is achieved if and only
if a matrix P✏ P✶ → 0 exists such that

PTCBH�H✶B✶C✶T✶P➔ 0. (5.6)

Proof. The same as Theorem 2.10 with system matrix G✏ TCBH.

Whenever the consensus algorithm is known, the previous expression can be used to check
if the network reaches consensus by numerically solving the feasibility problem of LMI (5.6)
with P ✏ P✶ → 0. However, this inequality cannot be directly used to design different algo-
rithms for a given network due to the product of variable matrices P and H. Here, there are
two possible ways to proceed. Either fix matrix P to a known value to design an arbitrary
shaped loopless Laplacian algorithm, or restrict the algorithm to a have a tree structure. In
the next sections, these two ways to design algorithms are presented by considering different
performance criteria based on the previous matrix inequality.

Algorithm Rate of Convergence

From classical control theory, it is known that the convergence rate λ → 0 at which the agents
reach consensus is given by the eigenvalues of the Hurwitz matrix G ✏ TCBH. Namely,
λ :✏ mintrealteigt✁G✉✉✉ → 0. As shown before with the help of Proposition A.9, these
eigenvalues for an algorithm derived from a connected graph are the same as the non-zero
eigenvalues of the product CBL. In the usual consensus formulation for single integrator sys-
tems, CB✏ IN✂N . Therefore, in this special case, the spectrum of the Laplacian matrix defines
the consensus characteristics of the network. Particularly, the algebraic connectivity of the
graph coincides with the convergence rate. Furthermore, because of Lemma 2.3, additional
edges between the agents will speed up consensus.

Using remark 2.1, the following matrix inequality is always fulfilled for some P✏ P✶ → 0:

PG�G✶P�2λP↕ 0 (5.7)

Consider an undirected loopless graph G over the vertices V with a set of edges E and
an unknown function of symmetric weights wq : E Ñ R

q✂q. The Laplacian matrix of the
weighted graph Gw ✏ ♣G ,wqq is then L̂♣Gwq ✏ E✶WE, where E ✏ D✶♣G oq P R

⑤E ⑤q✂Nq and

W ✏ diagtWik jk✉⑤E ⑤k✏1 P R⑤E ⑤q✂⑤E ⑤q is a block diagonal symmetric matrix of weights for each
edge. Imposing L✏✁L̂♣Gwq, inequality (5.7) leads to:

✁PTCBE✶WET�✁♣T�q✶E✶WEB✶C✶T✶P�2λP↕ 0 (5.8)

The previous expression is not an LMI because of the multiplication of variables P and W.
The linearization, in term of its variables, of an expression as (5.8) is usually done by

pre- and post-multiplication of the condition by a full rank transformation Q ✏ P✁1 → 0 (See
Proposition A.8 in the Appendix). An equivalent condition is thus obtained:

✁TCBE✶WET�Q✁Q♣T�q✶E✶WEB✶C✶T✶�2λQ↕ 0

63



5. Consensus Algorithms

Defining an auxiliary variable Z✏WET�Q leads to an LMI on variables Z and Q. However,
the feasibility of this inequality can be used to design the weights of an algorithm, only if W

is block diagonal and there is a bijective relationship between matrices W and Z, i.e. only if
dettET�✉✘ 0 so that W✏ZQ✁1♣ET�q✁1 ðñZ✏WET�Q. This is in general not possible,
even forcing a special structures on Q and Z, as the product ET� is neither square nor full
rank.

Note however that in the special case when the selected graph for the algorithm is the same
as the one from where the organization is derived, i.e. when G ✏ T , then we can choose
E✏ T and so ET� ✏ I. Therefore, this procedure can be used to design consensus algorithms
described by the same tree as the organization and imposing matrices Q and Z to be block
diagonal. This can be formalized in the following theorem.

Theorem 5.6. Given an IN, a tree T ✏ ♣V ,te1, ☎ ☎ ☎ ,eN✁1✉q, a corresponding organization
matrix T ✏ D✶♣T oq P R♣N✁1qq✂Nq, and a scalar λ → 0, a consensus algorithm described by
L ✏ ✁L̂♣♣T ,wqqq ✏ ✁T✶WT such that mintrealteigt✁G✉✉✉ ➔ λ , can be designed if LMI

(5.9) is feasible over the structured variable Q ✏ diagtρiIq✂q✉N✁1
i✏1 → 0, with N ✁ 1 scalars

ρi → 0; and the block diagonal symmetric variable Z ✏ Z✶ ✏ diagtZi✉N✁1
i✏1 P R♣N✁1qq✂♣N✁1qq.

In that case, W ✏ ZQ✁1 and each diagonal block rWskk ✏ wq♣ekq P R
q✂q represents the

weight of the corresponding k-th edge of the tree.

✁TCBT✶Z✁ZTB✶C✶T✶�2λQ ➔ 0 (5.9)

Proof. mintrealteigt✁G✉✉✉ ➔ λ if and only if PG✁G✶P� 2λP ➔ 0 with P ✏ P✶ → 0. Pre-
and post- multiply this condition by a full rank symmetric congruence transformation Q ✏
P✁1 → 0 and replacing HQ✏LT�Q✏✁T✶WTT�Q✏✁T✶Z, leads to LMI (5.9). The special
structure of matrix Q✏ diagtρiIq✂q✉N✁1

i✏1 → 0 is needed so that the product W✏ZQ✁1 is block
diagonal and symmetric.

Unfortunately, arbitrary shaped consensus algorithms that guarantee certain known value
of λ → 0 cannot be directly designed. In that case, other strategy is to impose

d

dt
⑥e⑥ ➔ ✁ς⑥e⑥, (5.10)

where the scalar ς → 0 represents the convergence rate of the consensus error error. As ⑥e⑥ ✏❄
e✶e, then (5.10) is equivalent to

e✶ ✾e� ✾e
✶
e ➔✁2ςe✶e.

From the dynamics in (5.5), the previous condition leads to the following matrix inequality:

TCBH�H✶B✶C✶T✶�2ςI ➔ 0 (5.11)
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5.1. Loopless Laplacian Algorithms

Note that this expression is equivalent to impose negativity of the derivate of a positive Lya-
punov function v ✏ e✶Pe� 2ς

➩t
0 e✶Pedt, with P ✏ I. When restricting P to the identity, equa-

tion (5.10) has a direct intuitive interpretation. However, this stability condition might be too
restrictive for certain networks as a very particular Lyapunov function is imposed. That is,
it might be the case that the matrix TCBH�H✶B✶C✶T✶ is not negative definite, even when
TCBH is Hurwitz. By defining a norm ⑥e⑥P ✏

❄
e✶Pe, with a fixed matrix P✏ P✶ → 0, similar,

but potentially less restrictive, stability conditions may be found.
Considering the Schur’s Complement (See Proposition A.12 in Appendix), inequality (5.11)

is equivalent to✓
TCBH�H✶B✶C✶T✶ I

✍ ✁εI

✛
➔ 0, (5.12)

with ε ✏ 1④♣2ςq. From here, it is immediate that the consensus converge rate of the norm
related to an organization T of an IN with a consensus algorithm described by L ✏ HT, can
be calculated as ς ✏ 1④♣2εminqwhere εmin → 0 is obtained from a convex minimization problem
εmin ✏ inftε → 0⑤LMI (5.12)✉.

This result can be used to compare the performance of different algorithms subject to the
same organization. However, using different organizations will, in general, lead to different
values of ς for the same consensus algorithm. Therefore the following results become relevant.

Lemma 5.7. All the organizations derived from a tree T , independently of the orientations
and labels given to the edges, can be used to obtain the same value ς → 0 for a given algorithm
L✏✁L̂♣Gwq.
Proof. Given an organization T1 ✏ D✶♣T oq, then every other organization derived from the
same tree can be expressed as T2 ✏MT1, where M✶M✏MM✶ ✏ I (M is either a permutation
matrix or a matrix with positive and negative ones in the diagonal, see Remark 4.1), and
therefore T�

2 ✏ T�
1 M✶. Then,

T1CBLT�
1 �♣T�

1 q✶L✶B✶C✶T✶
1�2ςI➔ 0

ðñM
�
T1CBLT�

1 �♣T�
1 q✶L✶B✶C✶T✶

1�2ςI
✟

M✶ ➔ 0

ðñ T2CBLT�
2 �♣T�

2 q✶L✶B✶C✶T✶
2�2ςI➔ 0.

Note that, for any organization and any consensus algorithm, if it is possible to obtain the
value of ς ✏ suptς → 0⑤LMI (5.11)✉ then it holds that TCBH�H✶B✶C✶T✶�2ςI↕ 0. This can
be rewritten as I♣ςI�TCBHq� ♣ςI�TCBHq✶I ↕ 0. This implies that the real parts of the
eigenvalues of TCBH� ςI are non positive. From here, λ ✏ mintrealteigt✁TCBH✉✉✉ ➙ ς .
Therefore, designing an algorithm based on LMI (5.11) will guarantee that the convergence
rate of the error λ is not smaller than the design value ς .

To design algorithms that fulfill certain convergence rate condition described by an arbitrary
weighted connected graph Gw ✏ ♣G ,wq the following theorem can be stated:
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5. Consensus Algorithms

Theorem 5.8. Given an IN, an organization T✏D✶♣T oq, a consensus convergence rate value
ςd → 0, and a connected graph G ✏ ♣V ,E ✏ ✥

e1, ☎ ☎ ☎ ,e⑤E ⑤
✭q, a consensus algorithm described

by L ✏✁E✶WE, with E ✏ D✶♣G oq P R⑤E ⑤q✂Nq, such that

d

dt
⑥e⑥ ➔ ✁ςd⑥e⑥,

can be designed if LMI (5.13) is feasible over the block diagonal symmetric variable W ✏
diagtWik jk✉⑤E ⑤k✏1 P R⑤E ⑤q✂⑤E ⑤q.

✁TCBE✶WET�✁♣T�q✶E✶WEB✶C✶T✶�2ςdI ➔ 0 (5.13)

Proof. Evaluating L ✏✁E✶WE in inequality (5.11) leads directly to the result.

Note that this design procedure involves only solving a feasibility problem and not a min-
imization. Furthermore, the imposed condition might be very restrictive due to the particular
Lyapunov function considered.

Algorithm Sensitivity to External Signals

A network cannot only be thought of as an isolated system with no interactions with external
signals. Perturbations like external inputs to each agent or output bias need to be considered
when analyzing a particular algorithm. This can be done by considering the H✽-norm of the
system.

A general engineering interpretation of H✽-norm associates it with the largest input-output
gain of a system through all frequencies. That is, the maximum factor by which the magnitude
of an (uncontrolled) input vector v is amplified by the network. In fact, if the error vector e

approaches the origin,

✁➩�✽
0 e♣tq✶e♣tqdt

✠1④2

✁➩�✽
0 v♣tq✶v♣tqdt

✠1④2 ↕ ⑥Hve♣sq⑥✽ ➔�✽.

Where v is some external signal to be defined and Hve♣sq the transfer function matrix from
this input to the consensus error vector. From here γv ✏ ⑥Hve♣sq⑥✽ can be interpreted as a
sensitivity measure of the algorithm against the effect of v. This value can be calculated with
the help of the Bounded Real Lemma (BRL, see Lemma A.13 in Appendix). Here, this will
be done in two cases.

First consider the external signal uext :R�
0 ÞÑR

Nq as in Figure 4.1. In that case, u✏Ly�uext

and so the dynamics of the error of the IN are modified to obtain:

✾e ✏ TCBHe�TCBuext (5.14)
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5.1. Loopless Laplacian Algorithms

Considering e as the state and output variable and uext as the perturbation signal, directly
applying the BRL over the system (5.14) leads to the following matrix inequality:✓

PTCBH�H✶B✶C✶T✶P� I PTCB

✍ ✁γ2I

✛
➔ 0 (5.15)

Therefore, given a weighted graph Gw and the associated consensus algorithm L ✏ ✁L̂♣Gwq;
and given an organization T ✏ D✶♣T oq, the sensitivity of the algorithm against additive exter-
nal inputs can be measured by a scalar γext → 0 that can be calculated by a convex minimization
problem γ2

ext ✏ inf
✥

µ ✏ γ2 P R�⑤LMI (5.15)❫P ✏ P✶ → 0
✭

.
In general, in terms of analysis, this way to obtain the H✽-norm of the system is not numeri-

cally the most efficient one1. Nevertheless, the introduction of LMI (5.15) gives the possibility
of designing algorithms that guarantee certain H✽ performance in a simple way.

Indeed, considering a connected graph G , an organization T ✏ D✶♣T oq, a given positive
definite matrix P PR♣N✁1qq✂♣N✁1qq and a scalar γ → 0, it is immediately clear that a consensus
algorithm described by L ✏✁E✶WE, with E ✏ D✶♣G oq P R

⑤E ⑤q✂Nq such that ⑥Hext♣sq⑥✽ ➔ γ ,
can be designed if LMI (5.15) is feasible over the symmetric block diagonal variable W ✏
diagtWik jk✉⑤E ⑤k✏1 P R⑤E ⑤q✂⑤E ⑤q with H ✏✁E✶WET�.

This result gives the possibility of designing consensus algorithms with any given structure
but imposing particular Lyapunov functions that might be too restrictive. However, if consen-
sus algorithms with a tree structure only are searched, the following theorem is helpful.

Theorem 5.9. Given an IN, a tree T ✏ ♣V ,te1, ☎ ☎ ☎ ,eN✁1✉q, a corresponding organization
matrix T ✏ D✶♣T oq P R

♣N✁1qq✂Nq, and a scalar γ → 0, a consensus algorithm described by
L ✏ ✁L̂♣♣T ,wqqq ✏ ✁T✶WT such that ⑥Hext♣sq⑥✽ ➔ γ , can be designed if LMI (5.16) is

feasible over the structured variable Q ✏ diagtρiIq✂q✉N✁1
i✏1 → 0, with N ✁ 1 scalars ρi → 0;

and the block diagonal symmetric variable Z ✏ Z✶ ✏ diagtZi✉N✁1
i✏1 P R

♣N✁1qq✂♣N✁1qq. In that
case, W ✏ ZQ✁1 and each diagonal block rWskk ✏ wq♣ekq P R

q✂q represents the weight of
the corresponding k-th edge of the tree.✔

✖✕✁TCBT✶Z✁Z✶TB✶C✶T✶ TCB Q

✍ ✁γ2I 0

✍ ✍ ✁I

✜
✣✢➔ 0 (5.16)

Proof. Pre- and post- multiply LMI (5.15) by a full rank symmetric congruence transforma-
tion diagtQ,I✉ P R♣2N✁1qq✂♣2N✁1qq with Q ✏ P✁1 → 0. Applying Schur complement over the
term QQ and replacing HQ ✏ LT�Q ✏✁T✶WTT�Q ✏✁T✶Z leads to LMI (5.16). The spe-
cial structure of matrix Q ✏ diagtρiIq✂q✉N✁1

i✏1 → 0 is needed so that the product W ✏ ZQ✁1 is
symmetric.

1In fact, the Matlab command norm applied over a state space model constructed through function ss, usually
gives faster answers for big systems. This is related to the additional decisions variables in P that also need to
be determined, slowing the overall computation and compromising its precision.
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5. Consensus Algorithms

Consider now that the IN is perturbed by a signal d : R�
0 ÞÑ R

Nq so that y ✏ Cx�d. Given
the integrator dynamics and a Laplacian algorithm, then the dynamics of the error become:

✾e ✏ TCBHe�Tw (5.17)

where w ✏ d
dt d. Note that the error dynamics do not depend on the actual value of the pertur-

bation d, but on its change rate over time w. That is, constant output perturbations do not have
an influence in reaching consensus. However, as in this case ✾x ✏ ♣A�BLCqx�Bd, output
perturbations do affect the value of the states of the network, and therefore, the value at which
consensus will be reached.

Nevertheless, in some cases it might be meaningful to analyze the effect of time varying
perturbations on the consensus error. This can also be done using a H✽ argument. Applying
the BRL to (5.17), the following inequality is obtained.✓

PTCBH�H✶B✶C✶T✶P PT

✍ ✁γ2I

✛
➔ 0 (5.18)

This expression can be again used as a comparison tool to calculate the H✽-norm γw → 0
of the transfer function matrix Hwe♣sq from vector w to the consensus error e by solving the
convex optimization problem: γ2

w ✏ inf
✥

µ ✏ γ2 P R�⑤LMI (5.18)❫P ✏ P✶ → 0
✭

.
For design of algorithms, analog as in the previous case, considering a connected graph

G , an organization T ✏ D✶♣T oq, a given positive definite matrix P P R
♣N✁1qq✂♣N✁1qq and a

scalar γ → 0, is clear that a consensus algorithm described by L✏✁E✶WE, with E✏D✶♣G oq P
R
⑤E ⑤q✂Nq such that ⑥Hwe♣sq⑥✽➔ γ , can be designed if LMI (5.18) is feasible over variable W✏

diagtWik jk✉⑤E ⑤k✏1 P R
⑤E ⑤q✂⑤E ⑤q with H ✏ ✁E✶WET�. Furthermore, in the case of algorithms

described by trees, the following procedure is analog to Theorem 5.9:

Theorem 5.10. Given an IN, a tree T ✏ ♣V ,te1, ☎ ☎ ☎ ,eN✁1✉q, a corresponding organization
matrix T ✏ D✶♣T oq P R

♣N✁1qq✂Nq, and a scalar γ → 0, a consensus algorithm described by
L ✏ ✁L̂♣♣T ,wqqq ✏ ✁T✶WT such that ⑥Hwe♣sq⑥✽ ➔ γ , can be designed if LMI (5.19) is

feasible over the structured variable Q ✏ diagtρiIq✂q✉N✁1
i✏1 → 0, with N ✁ 1 scalars ρi → 0;

and the block diagonal symmetric variable Z ✏ Z✶ ✏ diagtZi✉N✁1
i✏1 P R♣N✁1qq✂♣N✁1qq. In that

case, W ✏ ZQ✁1 and each diagonal block rWskk ✏ wq♣ekq P R
q✂q represents the weight of

the corresponding k-th edge of the tree.✔
✖✕✁TCBT✶Z✁Z✶TB✶C✶T✶ T Q

✍ ✁γ2I 0

✍ ✍ ✁I

✜
✣✢➔ 0 (5.19)

Proof. Analogous to Theorem 5.9.
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Figure 5.2.: Organizations and Consensus Algorithms for Example 5.1.

Example 5.1. Consider N ✏ 4 integrator systems with, ❅i P t1,2,3,4✉,

CiBi ✏
✓

1.0 0.5

0.2 1.0

✛
.

That is, coupled integrator systems over two dimensions. We will study the network through
organizations described by the directed trees of Figure 5.2 a) and b); and the corresponding
matrices:

Ta ✏

✔
✖✕✁I 0 I 0

0 ✁I I 0

0 0 I ✁I

✜
✣✢ , Tb ✏

✔
✖✕I ✁I 0 0

0 I ✁I 0

0 0 I ✁I

✜
✣✢ .

The fully connected algorithm derived from the graph in Figure 5.2 c) with the correspond-
ing matrix:

L1 ✏

✔
✖✖✖✖✕
✁3I I I I

I ✁3I I I

I I ✁3I I

I I I ✁3I

✜
✣✣✣✣✢ ,

reaches consensus faster than any other algorithm derived from an unweighted graph due to
the larger number of edges. Using Theorem 5.8 with a structure given by the graph in Figure
5.2 d), organization Ta and a fixed value ςd ✏ 4.00, the following matrix can be obtained:

L2 ✏

✔
✖✖✖✖✕
✁W12✁W14 W12 0 W14

W12 ✁W12✁W23 W23 0

0 W23 ✁W23✁W34 W34

W14 0 W34 ✁W14✁W34

✜
✣✣✣✣✢ ,
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5. Consensus Algorithms

Table 5.1.: Consensus algorithms performance in Example 5.1.

Ta Tb

λ ISD♣8q IAD♣8q ς γext γw ς γext γw

L1 2.735089 8.567 19.861 2.600000 0.505594 0.756215 2.600000 0.467108 0.698652

L2 8.292125 2.536 5.836 7.168781 0.158732 0.227251 6.888741 0.122408 0.175098

with

W12 ✏W14 ✏
✓

6.8675 0.0000

0.0000 6.1513

✛
and W23 ✏W34 ✏

✓
6.0663 0.0000

0.0000 5.4823

✛
.

The performance indicators γext , γw and ς , are computed for both organizations in Table 5.1.
From the table is clear that the designed weighted consensus algorithm is faster than the fully
connected one. Furthermore, it is also less sensitive to external signals.

This can be seen in Figure 5.3 where the response in time of both outputs of the agents
are drawn separately for the same initial conditions. At t ✏ 2 the outputs of the agents are
directly perturbed by a random vector d that stays constant until the end of the simulation
time. Between t ✏ 4 and t ✏ 6 a random external input uext is added to the systems. From the
simulation, it is clear that consensus is reached in less time by the algorithm defined by L2. In
presence of the outputs perturbation d the consensus value is changed, but the the algorithms
still ensure consensus when this signal is constant. The external inputs modify the consensus
value constantly making the outputs of the systems to have different values. However, the
difference between these values in the case of the fully connected algorithm is also larger.
This is coherent with the simulation indicators ISD and IAD in Table 5.1 which show that the
designed algorithm presents a lower accumulated deviation. �

Algorithm Robustness Against Parametric Uncertainties

Consider now that the parameters of the network are known only up to certain precision. In
particular we consider that B ✏ B0�∆B♣tq, where B0 P Rn✂Nq is a precisely known matrix
and ∆B♣tq : R� ÞÑ R

n✂Nq an unknown, (possibly) function of time, matrix such that ❅t ➙
0, ∆

✶
B♣tq∆B♣tq ↕ ε2I, with ε → 0. Similar analysis as in the sequel can be done considering

uncertainties in other matrices that describe the network or the algorithm.
For an uncertain network described in this way, directly from Lemma 5.5, a sufficient con-

dition for stability of the error is the existence of matrix Q✏Q✶ → 0 such that:

TCB0HQ�QH✶B✶
0C✶T✶�TC∆B♣tqHQ�QH✶

∆
✶
B♣tqC✶T✶ ➔ 0 (5.20)

This condition cannot be numerically verified as it includes matrix ∆B♣tq which is unknown.
Using the crossed products property (see Proposition A.15 in the Appendix), to impose nega-
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Figure 5.3.: First and second output evolution for integrators agents in Example 5.1 with a) Algorithm
L1 and b) Algorithm L2.
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5. Consensus Algorithms

tivity of an upper bound of the matrix in (5.20) is a sufficient condition for stability, i.e.

G0Q�QG✶
0�TC∆B♣tqHQ�QH✶

∆
✶
B♣tqC✶T✶ ↕ G0Q�QG✶

0�αTCC✶T✶� 1

α
QH✶

∆
✶
B♣tq∆B♣tqHQ

↕ G0Q�QG✶
0�αTCC✶T✶� ε2

α
QH✶HQ

!➔ 0

with G0 ✏ TCB0H and scalar α → 0. Applying Schur’s complement, the following sufficient
condition for stability is obtained:✓

TCB0HQ�QH✶B✶0C✶T✶�αTCC✶T✶ QH✶

✍ ✁ α
ε2 I

✛
➔ 0 (5.21)

This condition depends only on the quadratic bound of the uncertainty, not on the uncertain
matrix itself, what makes it possible to evaluate it numerically. Note that a small ε2 makes
it more likely to find a suitable α → 0 such that the ♣1,1q-block term of inequality (5.21) is
negative definite. That is, it is numerically less demanding to prove stability of a system with
“small” uncertainties than other with “large” uncertainties. A stability condition for the system
under these circumstances can be formalized by the following theorem.

Theorem 5.11. A given IN with parametric uncertainties described as B ✏ B0�∆B♣tq, such
that B0 PRn✂Nq is a precisely known matrix and ∆B♣tq : R� ÞÑR

n✂Nq an unknown, (possibly)
function of time, matrix where ❅t ➙ 0, ∆

✶
B♣tq∆B♣tq ↕ ε2I and ε → 0; and with a Laplacian

algorithm L ✏ ✁L̂♣Gwq, reaches consensus if for a given organization matrix T ✏ D♣T oq,
there exists Q✏Q✶ → 0 of proper dimensions and a scalar α → 0 such that LMI (5.21) holds.

Note that there is no structure assumption about the uncertain matrix ∆B♣tq. That means
that Theorem 5.11 proves stability in the overly restrictive case where structural zero entries
of matrix B (entries not in the main block diagonal) are possibly uncertain. Furthermore, with
the previous formulation it is considered that the uncertainties of every system in the network
are bounded by the same value. This is of course not necessarily the case in all networks.
To keep this section brief, no further developments to solve these problems are explicitly
considered. However, it is possible to study them by considering the uncertainties to be in the
form of ∆B♣tq ✏

➦N
i✏1 si∆i♣tqs✶i where ❅i P V , ∆

✶
i♣tq∆i♣tq ↕ ε2

i I and si are column vectors of
matrices where each block is zero except for the i-th block which is the identity matrix. That
results in a block diagonal matrix ∆B♣tq where each block has its own quadratic bound.

Example 5.2. Consider the same network, organization and algorithms as in Example 5.1 but
with uncertainty in the input matrix. That is, B✏ diagtBi✉iPV �∆B♣tq. With the value ε ✏ 0.6
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Figure 5.4.: First and second output evolution for integrators agents in Example 5.2 with Algorithm L2

under uncertainties with a) ε ✏ 0.6 and b) ε ✏ 1.2.

for the designed algorithm L2, Theorem 5.11 with organization Ta leads to α ✏ 0.5457 and

Q✏

✔
✖✖✖✖✖✖✖✖✖✕

0.1095 ✁0.0283 0.0457 ✁0.0195 0.0457 ✁0.0195

✁0.0283 0.1000 ✁0.0192 0.0426 ✁0.0192 0.0426

0.0457 ✁0.0192 0.0885 ✁0.0218 0.0134 ✁0.0138

✁0.0195 0.0426 ✁0.0218 0.0802 ✁0.0138 0.0135

0.0457 ✁0.0192 0.0134 ✁0.0138 0.0885 ✁0.0218

✁0.0195 0.0426 ✁0.0138 0.0135 ✁0.0218 0.0802

✜
✣✣✣✣✣✣✣✣✣✢
→ 0

which proves that the network reaches consensus for this level of uncertainty. However, if
ε ✏ 1.2 then it is not possible to solve the corresponding feasibility problem. As Theorem
5.11 involves only a sufficient condition for stability there is no formal guarantee that the
network does not reach consensus under this condition.

To verify this, the network is simulated with a randomly generated time varying uncertainty
over the diagonal elements of B with ε ✏ 0.6 in Figure 5.4 a). The network is then again
simulated under identical conditions but with the uncertain matrix multiplied by two at every
instant. The results are shown in Figure 5.4 b). It is clear that in the first case the network
reaches consensus but not when the uncertainty is larger. �
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5. Consensus Algorithms

5.1.2. Autonomous Agents Network

Consider the more general case where A ✘ 0. Here consensus does not only depend on the
properties of the algorithm, but on the relationship between the states of the systems and the
consensus errors as defined in equation (5.4):

✾e✏ TCBLT�e�TCAx.

However, the inverse relationship between the consensus error and the states of the systems is
not explicitly considered. That is, the effect of x over e is not adequately expressed. Therefore,
the condition to guarantee consensus that can be derived from this expression (namely that
G✏ TCBLT� must be Hurwitz and A✏ 0), is overly restrictive.

Pseudoinverse of the Output Matrix C

Under the assumption that all matrices Ci P Rq✂ni , with q➔ ni, of an AAN are full row-rank,
then the right pseudoinverse of C can be calculated as

C� ✏ C✶♣CC✶q✁1 P Rn✂Nq,

so that CC� ✏ I, where n → Nq. Let matrix C❑ P Rn✂♣n✁Nqq be an orthonormal basis for the
null space of C, that is, CC❑ ✏ 0 and ♣C❑q✶C❑ ✏ I.

Similar as for T in section 4.2.2, the following can be written as the composed matrix✑
C✶ C❑

✙
is non singular:

✑
C✶ C❑

✙✑
C✶ C❑

✙✁1
✓

C

♣C❑q✶

✛✁1✓
C

♣C❑q✶

✛
✏ I

ðñ
✑
C✶ C❑

✙✓
CC✶ CC❑

♣C❑q✶C✶ ♣C❑q✶C❑

✛✁1✓
C

♣C❑q✶

✛
✏ I

ðñ C✶♣CC✶q✁1C�C❑♣♣C❑q✶C❑q✁1♣C❑q✶ ✏ I.

Replacing the definition of the pseudo inverse and the null space basis,

C�C✏ I✁C❑♣C❑q✶.

From here, an inverse relationship for x in terms of y can be developed:

y✏ Cx

ðñ C�y✏ C�Cx✏ x✁C❑♣C❑q✶x
ðñ x✏ C�y�C❑♣C❑q✶x.
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Then, using equation (4.7), y✏ T�e�JCx, we finally obtain that:

x✏ C�T�e�
✁

C�JC�C❑♣C❑q✶
✠

x. (5.22)

When C P RNq✂Nq is square and non singular, the previous relationships are simplified as
C� ✏ C✁1 and C❑ cannot be defined2. In that case x✏ C✁1T�e�C✁1JCx.

States Influence

Replacing equation (5.22) in the dynamics of the error (5.4), the following is obtained:

✾e✏ TC
�
BL�AC�✟T�e�TCA

✁
C�JC�C❑♣C❑q✶

✠
x (5.23)

Note that consensus is not only dependent on the chosen algorithm but also on internal char-
acteristics of the network, namely, on the matrices A and C. Because of this, from expression
(5.23) we can state a less restrictive result on consensus.

Lemma 5.12. In an AAN, if RA :✏ TCA
�
C�JC�C❑♣C❑q✶✟ is identically zero, and if L ✏

✁L̂♣Gwq is selected so that GA :✏ TC
�
BL�AC�✟T� is Hurwitz, then the network reaches

consensus. Furthermore, if CA✘ 0, then consensus is not static.

Proof. Directly from equation (5.23) is easy to verify that if RA ✏ 0, then the error conver-
gences to the origin if GA is Hurwitz. To prove that it is non statical consensus, consider that
if e✏ 0, then y✏ 1v♣tq. It is then sufficient to show that v♣tq is indeed a function of time. As
✾y✏CAx�CBLy, evaluating when the error vanishes, 1 ✾v♣tq ✏CAx�CBL1v♣tq ✏CAx thus
✾v✏ 1

N 1✶CAx. Then v : R�0 ÞÑR
q is a function of time which is not constant at all times unless

1✶CA✏ 0 ðñ CA✏ 0 (because of the block diagonal structure of CA).

Note that when RA ✏ 0, similar properties as for integrator networks hold. For example,
if GA is Hurwitz, then it is regardless of the organization used to define it: Z❨ eigtGA✉ ✏
Z❨eig

✥
TC

�
BL�AC�✟T�

✭✏ eig
✥

CBL�CAC�♣I✁Jq✭ and so the non zero eigenvalues
of GA are the non zero eigenvalues of CBL�CAC�♣I✁ Jq. This also shows that consensus
also depends on the dynamics of the agents through matrices A and C, and not only on the
chosen algorithm.

Unfortunately, it is difficult to characterize the eigenvalues of the sum of matrices as a
function of the eigenvalues of the individual matrices, so it is not easy to find graph theoretical
properties on Gw that ensure that consensus can be achieved. Nevertheless, Lyapunov methods
remain valid to study consensus. Therefore, the convergence rate of the error can still be
characterized either through the eigenvalues of GA or a scalar ς → 0 such that (5.10) holds.
Also, sensibility against external signals or robustness against parametric uncertainties can be
studied. From here, analogous to those of INs, design procedures of consensus algorithms that
consider certain performance criteria can be developed.

2The null space of C in that case is nulltC✉ ✏ t0✉ and its basis, C❑ ✏ 0, is not orthonormal.
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Augmented Error Dynamics

To address the more challenging case when RA ✘ 0, the dynamics of the error can be expressed
in terms of an augmented states space. Define the following additional signals:

y❑ ✏ ♣C❑q✶x,

v✏ 1

N
1✶Cx.

Signal y❑ P Rn✁Nq is a complementary output that maps all the information of the states that
is not mapped into the output vector y P RNq, while signal v P Rq corresponds to the mean
value of the outputs. The composed matrix transformation

R :✏

✔
✖✕ TC

♣C❑q✶
1
N 1✶C

✜
✣✢ P Rn✂n

is invertible with

R✁1 ✏
✑
C�T� C❑ C�1

✙
P Rn✂n.

This can be easily checked by performing the multiplications RR✁1 ✏ R✁1R ✏ I. Therefore
we have that✔

✖✕ e

y❑
v

✜
✣✢✏ Rx ðñ x✏ R✁1

✔
✖✕ e

y❑
v

✜
✣✢ .

Because the dynamics of the states in closed loop are given by

✾x✏ ♣A�BLCqx, (5.24)

the dynamics of the error can be expressed by the augmented system:✔
✖✕ ✾e

✾y❑
✾v

✜
✣✢✏ R♣A�BLCqR✁1

✔
✖✕ e

y❑
v

✜
✣✢ . (5.25)

Equation (5.25) is simply a coordinates transformation of the states space of (5.24) in terms
of the error and the additional signals v and y❑.

Considering that L1✏ 0, developing the matrix in (5.25) leads to

Gx :✏R♣A�BLCqR✁1 ✏

✔
✖✕ TC♣BL�AC�qT� TCAC❑ TCAC�1

♣C❑q✶♣BL�AC�qT� ♣C❑q✶AC❑ ♣C❑q✶AC�1
1
N 1✶C♣BL�AC�qT� 1

N 1✶CAC❑ 1
N 1✶CAC�1

✜
✣✢ . (5.26)
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From this matrix is easy to obtain sufficient conditions for consensus. For example, if Gx P
R

n✂n is Hurwitz, then consensus is trivially reached. That would impose that not only the
error e approaches the origin, but also signals y❑ and v (and therefore also x). This is of
course restrictive when we are only interested on the consensus error. The desired case is that
of the dynamics of the error totally decoupled from the rest of the variables. That is, when the
block matrices in positions ♣1,2q and ♣1,3q of Gx are identically zero. In that case, consensus
is reached if matrix GA ✏ TC♣BL�AC�qT� is Hurwitz.

Is not difficult to show that the condition that the dynamics of the error are decoupled from
the rest of the variables, i.e.

✏
TCAC❑ TCAC�1

✘✏ 0, is equivalent to the condition stated in
Lemma 5.12, i.e. RA ✏ 0. Indeed, if we assume that the dynamics of the error are decoupled
we can show that the condition of the lemma holds:

✑
TCAC❑ TCAC�1

✙
✏ 0ñ

✑
TCAC❑ TCAC�1

✙✓♣C❑q✶
1
N 1✶C

✛
✏ 0

ñ RA ✏ TCA
✁

C�JC�C❑♣C❑q✶
✠
✏ 0.

On the other side, if we assume that the condition in Lemma 5.12 holds, we obtain that the
dynamics are decoupled:

RA ✏ TCA
✁

C�JC�C❑♣C❑q✶
✠
✏ 0ñ TCA

✁
C�JC�C❑♣C❑q✶

✠✑
C❑ C�1

✙
✏ 0

ñ
✑
TCAC❑ TCAC�1

✙
✏ 0.

Between these two extreme cases, several partially decoupled cases can be defined. For
example, if TCAC�1✏ 0 and ♣C❑q✶AC�1✏ 0, then the dynamics of the error are decoupled
from the mean value of the outputs v but not from the complementary output y❑. In that case,
if the matrix

✑
In✁q 0

✙
Gx

✓
In✁q

0

✛
✏
✓

TC♣BL�AC�qT� TCAC❑

♣C❑q✶♣BL�AC�qT� ♣C❑q✶AC❑

✛
,

is Hurwitz, then the network reaches consensus and the complementary output y❑ approaches
the origin. Note that in this case, it is sufficient for decoupling that AC�1✏ 0. This condition
is, however, in general not necessary:✓

TCAC�1

♣C❑q✶AC�1

✛
✏ 0ñ

✑
C�T� C❑

✙✓
TC

♣C❑q✶

✛
AC�1✏ 0

ñ
✁

C�T�TC�C❑♣C❑q✶
✠

AC�1✏ 0

ñ �
I✁C�JC

✟
AC�1✏ 0

ñ AC�1✏ C�JCAC�1✘ 0.
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A similar exercise can be done by decoupling the error from the complementary outputs
but not from the mean value. In this case we need to introduce a permutation transforma-
tion in order to select the rows and columns associated to vector v. Then, if TCAC❑ ✏ 0,
♣C❑q✶AC�1 ✏ 0, and

✑
INq 0

✙✓
I♣N✁1qq 0

0 U

✛
Gx

✓
I♣N✁1qq 0

0 U✁1

✛✓
INq

0

✛
✏

✓
TC♣BL�AC�qT� TCAC�1

1
N 1✶C♣BL�AC�qT� 1

N 1✶CAC�1

✛

is Hurwitz, with

U :✏
✓

0 Iq

In✁Nq 0

✛
P R♣n✁♣N✁1qqq✂♣n✁♣N✁1qqq,

consensus is reached and the mean value of the outputs approaches the origin. We can gener-
alize this procedure to verify if the consensus error and r P t0,1,2, ...,n✁♣N ✁1qq✉ additional
arbitrary signals approach the origin with a given matrix L as follows.

Theorem 5.13. In an AAN with a consensus algorithm described by L ✏ ✁L̂♣Gwq, let r P
t0,1,2, ...,n✁♣N ✁1qq✉ be the minimal value for which it exists an invertible matrix
U P R♣n✁♣N✁1qqq✂♣n✁♣N✁1qqq such that

✑
Ir�♣N✁1qq 0

✙✓
I♣N✁1qq 0

0 U

✛
Gx

✓
I♣N✁1qq 0

0 U✁1

✛✓
0

In✁r✁♣N✁1qq

✛
✏ 0. (5.27)

In that case, if

Gr :✏
✑
Ir�♣N✁1qq 0

✙✓
I♣N✁1qq 0

0 U

✛
Gx

✓
I♣N✁1qq 0

0 U✁1

✛✓
Ir�♣N✁1qq

0

✛

is Hurwitz, then the network reaches consensus and, additionally, r elements of U ry✶❑ v✶s✶
approach the origin.

Proof. For some invertible matrix U PR♣n✁♣N✁1qqq✂♣n✁♣N✁1qqq, the vector ẽ✏rIr 0sU ry✶❑ v✶s✶ P
R

r corresponds to r linear combinations of the elements of ry✶❑ v✶s✶. If (5.27) holds, the
dynamics of the e and ẽ are decoupled from the elements of

✏
0 In✁♣N✁1qq✁r

✘
U ry✶❑ v✶s✶ P

R
n✁♣N✁1qq✁r and given by

✏
✾e
✶

✾ẽ✶
✘✶ ✏ Gr re✶ ẽ✶s✶, which is clearly stable if Gr is Hurwitz.

For a given network and algorithm, Theorem 5.13 gives a way to check if consensus can
be reached when the dynamics of the error depend on the internal dynamics of the agents.
Note that if r ✏ 0, then the error dynamics are decoupled from other signals and we obtain
an equivalent result as that of Lemma 5.12. In the case where r ✏ n✁♣N ✁ 1qq, only trivial
consensus can be reached as then Gr ✏ Gx.
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5.1. Loopless Laplacian Algorithms

The following convergence rate indicators can be defined,

λr :✏ mintrealteigt✁Gr✉✉✉
λx :✏ mintrealteigt✁Gx✉✉✉ .

Clearly consensus is reached if λr → 0. Furthermore, if λx → 0, the system (5.24) is asymptot-
ically stable. However, if λr ✧ λx → 0, consensus is reached faster than the convergence rate
of the states of the system, leading to a case of bounded dynamical consensus, and not merely
trivial consensus. On the contrary, if 0 ➔ λr ➔ λx, the states of the network reach the origin
faster, what characterizes trivial consensus.

On the rest of this thesis, we will concentrate on the case where the dynamics of the error
are decoupled from any other signal, i.e., when RA ✏ 0, as in other cases, extensions of the
following discussions can be easily stated.

Example 5.3. Consider N ✏ 10 SISO agents (i.e. with q ✏ pi ✏ 1) and the following state
matrices:

Āa ✏
✓
✁0.1 0.0

0.0 ✁0.1

✛
, Āb ✏

✓
0.0 0.1

0.1 0.0

✛
, Āc ✏

✓
✁0.2 0.1

0.1 ✁0.1

✛
, Ād ✏

✓
✁0.8 0.1

0.1 ✁0.1

✛
,

Āe ✏
✓
✁0.1 0.1

0.1 0.0

✛
, Ā f ✏

✓
✁0.1 0.1

0.1 0.1

✛
, Āg ✏

✓
0.1 0.0

0.0 ✁0.1

✛
, Āh ✏

✓
0.1 ✁0.1

0.1 0.0

✛
.

From these matrices, eight different networks are defined, each of them with identical agents
with the respective state matrix and considering ❅i P t1,2, ...,N✉,

Bi ✏
✓

1.0

1.0

✛
, and Ci ✏

✑
0.5 0.5

✙
.

Note that the eigenvalues of the aggregated matrices Ak ✏ diag
✥

Āk

✭N

i✏1
, k P ta,b,c,d,e, f ,g,h✉,

of each network are the two eigenvalues of Āk with multiplicity N each.
For consensus analysis, a star organization centered on the first agent shown in Figure 5.5

a) with its respective matrix T ✏ D✶♣T oq ✏ rowt1,✁I✉ will be used. The networks will
be studied under a the fully connected algorithm shown in Figure 5.5 b) with its respec-
tive matrix Lg ✏ ✁L̂♣G q ✏ N♣J✁ Iq P R

N✂N . Note that for this algorithm and this organi-
zation the consensus convergence rate as defined in Section 5.1.1 becomes λ ✏ 10. Addi-
tionally, consider the weighted tree in Figure 5.5 c) to define a second consensus algorithm
Lt ✏✁L̂♣Twq ✏ ✁T✶WT, where W ✏ diagtW1,i✉N

i✏2. The weights of this algorithm are cho-
sen as W1,i ✏ 10, ❅i P t2,3, ...,N✉, to also obtain λ ✏ 10.

In Table 5.2 the characteristics of the previous networks in closed loop considering both
algorithms are shown. The first two networks are such that RA ✏ 0. As additionally GA is
Hurwitz, consensus can be reached even if the states present unstable dynamics. Networks c)
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a) 1
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W1,10

Figure 5.5.: a) Organization Tree T o, b) Unweighted Graph G and, c) Weighted Tree Tw for Example
5.3.

Table 5.2.: Networks characteristics in Example 5.3.

Network eig
✦

Ā
k
✮

Lg ✏✁L̂♣G q Lt ✏✁L̂♣Twq
λr λx ISD♣50q IAD♣50q λr λx ISD♣50q IAD♣50q

a) ✁0.1000 ✁0.1000 10.1000 0.1000 1.2856 3.4385 10.1000 0.1000 1.2127 3.1467

b) ✁0.1000 0.1000 9.9000 ✁0.1000 1.3106 3.5080 9.9000 ✁0.1000 1.2371 3.2097

c) ✁0.2618 ✁0.0382 0.2497 0.0382 1.5027 4.0204 0.2497 0.0382 1.4314 3.7370

d) ✁0.8140 ✁0.0860 0.5375 0.0860 1.9256 5.1841 0.5375 0.0860 1.8598 4.9243

e) ✁0.1618 0.0618 0.1497 ✁0.0618 1.6678 4.4590 0.1497 ✁0.0618 1.5958 4.1710

f) ✁0.1414 0.1414 0.0990 ✁0.1414 2.4285 6.4855 0.0990 ✁0.1414 2.3570 6.1958

g) ✁0.1000 0.1000 ✁0.0010 ✁0.1000 6.9045 18.3051 ✁0.0010 ✁0.1000 6.8297 17.8930

h) 0.0500✟0.0866 j ✁0.0500 ✁0.0500 37.8208 100.3292 ✁0.0500 ✁0.0500 37.7478 99.6120

and d) are both stable in open and closed loop for both algorithms, therefore they can also
reach consensus in the long term. Nevertheless, by inspection of matrix Gx (which is not
shown for space limitations), one can verify that in these cases the dynamics of the error e

and the complementary outputs y❑, are both decoupled of the mean value v. By inspecting the
values of λx and λr one conclude that consensus is reached before the states approximate the
origin.

In the case of networks e) and f), the closed loop systems are unstable with only one eigen-
value at the right-hand side of the complex plane. However, as for networks c) and d), the
dynamics of the error and the complementary outputs are decoupled of the mean value. Be-
cause λr → 0, this allows to reach consensus even though the overall dynamics of the closed
loop networks are unstable. A different situation is observed in the last two networks. These
are unstable under both algorithms. Network g) can be decoupled as in the previous cases, but
the resulting Gr matrix is not Hurwitz. Network h) cannot be decoupled, i.e. r ✏ n✁♣N✁1qq
or, equivalently, Gr ✏Gx, which is also not Hurwitz. This leads to conclude that in these cases,
consensus cannot be reached.

To verify the previous statements, we will simulate the closed loop response for identical
initial conditions. The evolution of the networks is simulated until t ✏ 50. In Figure 5.6, for
algorithm Lg and until t ✏ 2, the outputs of the networks are shown for networks a) to f), and
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5.1. Loopless Laplacian Algorithms

the error for the last two cases. Algorithm Lt presents similar graphical results, and therefore
the images are not shown.

Note that networks a) and b) reach dynamic consensus very fast as in these cases RA ✏ 0 and
the respective matrices GA are Hurwitz for both algorithms. For the stable networks c) and d),
consensus is reached before the outputs approaches the origin. A similar situation is observed
for networks e) and f), which reach consensus even though the overall dynamics of the closed
loop system are unstable. This is not the case for networks g) and h) where consensus is first
approximated but, due to the unbounded behavior of x, the algorithm is not able to maintain
this approximation too long. Observe further that the ISD and IAD indicators, also shown in
Table 5.2 for the described simulations, are coherent with the previous statements. �

Identical Agents

The study of consensus can be simplified for the special case where in an AAN all agents have
the same dynamical behavior. Note that if a block diagonal matrix is such that all diagonal
blocks are identical, i.e. when X ✏ diagtY✉iPV P RNq✂Nq with Y P Rq✂q, then it holds that

X1 ✏ diagtY✉iPV 1 ✏ coltY✉iPV ✏ 1Y and

1✶X ✏ 1✶diagtY✉iPV ✏ rowtY✉iPV ✏ Y1✶.

Therefore,

XJ ✏ X
1

N
11✶ ✏ 1

N
1Y1✶ ✏ 1

N
11✶X ✏ JX.

Particularly, consider an AAN where, for every i P V , Ai ✏ A0 P R
n0✂n0 and Ci ✏ C0 P

R
q✂n0 with known matrices A0 and C0. Because of the block diagonal structure of matrices

A✏ diagtAi✉iPV and C✏ diagtCi✉iPV , the product CAC�✏ diag
✥

CiAiC
�
i

✭
iPV is also block

diagonal. From here, the residual matrix in (5.23) can be written as:

RA ✏ TCA
✁

C�JC�C❑♣C❑q✶
✠

✏ TCAC�JC�TCAC❑♣C❑q✶
✏ ♣TJqCAC�C�TCAC❑♣C❑q✶
✏ TCAC❑♣C❑q✶

Therefore, the dynamics of the error are simplified to:

✾e ✏ TC
�
BL�AC�✟T�e�TCAC❑♣C❑q✶x

Consensus can then be reached independently of the dynamics of x only if the product CAC❑✏
0 or, equivalently because of the block diagonal structure of the matrices, C0A0C❑

0 ✏ 0 PRq✂q.
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Figure 5.6.: Dynamic evolution for the eight networks analyzed in Example 5.3 with algorithm Lg. a)
to f): Outputs y of the systems, for the respective networks. g) to h): Error e between the
outputs of systems, for the respective networks.
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5.1. Loopless Laplacian Algorithms

Observe that the requirement that all system and output matrices are identical can be relaxed
to only impose that ❅i P V the product CiAiC

�
i P Rq✂q is the same.

A particular case is when all agents are identical and n0 ✏ q. i.e. the number of outputs are
the same as the number of states of the agents, what implies that C0 P Rq✂q is square. If it is
also non singular, the dynamics of the error become:

✾e✏ TC
�
BL�AC�

✟
T�e�TCAC✁1JCx

✏ TC
�
BL�AC�

✟
T�e�♣TJqCAC✁1Cx

✏ TC
�
BL�AC�

✟
T�e

That is, consensus can be reached independently of x if L is chosen correctly.

Sensitivity Against External Signals

An AAN can be under the influence of external signals in the form of control inputs uext :
R
�
0 ÞÑ R

Nq or perturbations d : R�0 ÞÑ R
Nq as seen in Figure 4.1. Similar as what was done

for INs, the sensitivity against this kind of signals can be studied through the H✽-norms of the
respective transfer function matrices.

Considering y✏Cx�d ùñ x✏C�y✁C�d�C❑♣C❑q✶x and u✏Ly�uext , with LJ✏ 0,
the definition of the error e✏Ty ùñ y✏T�e�Jy✏T�e�JCx�Jd leads to the dynamical
expression:

✾e✏ TC ✾x�T
d

dt
d

✏ TCBu�TCAx�Tw

✏ TCB
�
L
�
T�e�JCx�Jd

✟�uext

✟� ...

...�TCA
✁

C�
�
T�e�JCx�Jd

✟✁C�d�C❑♣C❑q✶x
✠
�Tw

✏ TC
�
BL�AC�

✟
T�e�TCA

✁
C�JC�C❑♣C❑q✶

✠
x�TCBuext �TCAC� ♣J✁ Iqd�Tw

✏GAe�RAx�TCBuext �TCAC� ♣J✁ Iqd�Tw,

where w✏ d
dt d. Note that, contrary to the case of IN, the dynamics of the error depend on both

the value of the perturbation d and its variation in time w, because A✘ 0.
In the case that RA ✏ 0, the sensitivity of the consensus error against the external inputs can

be studied by defining three transfer function matrices Hext♣sq, Hde♣sq and Hwe♣sq between,
respectively, uext , d and w, and the consensus error e, when the rest of the external signals are
zero.

Using the BRL, LMIs (5.28), (5.29) and (5.30), can be stated to respectively study ⑥Hext♣sq⑥✽,
⑥Hde♣sq⑥✽ and ⑥Hwe♣sq⑥✽. As in the previous sections, these inequalities can be used for anal-
ysis or design of consensus algorithms that fulfill certain performance criteria. Particularly, if
tree shaped algorithms are searched, i.e. imposing L ✏ ✁T✶WT with W block diagonal, the
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inequalities are sufficient and necessary conditions for design of such algorithms in analogous
way as for INs. To maintain this section brief, this will not be explicitly addressed.

✓
PGA�G✶

AP� I PTCB

✍ ✁γ2
extI

✛
➔ 0 ðñ

✔
✖✕GAQ�QG✶

A TCB Q

✍ ✁γ2
extI 0

✍ ✍ ✁I

✜
✣✢➔ 0 (5.28)

✓
PGA�G✶

AP� I PTCAC�♣J✁ Iq
✍ ✁γ2

deI

✛
➔ 0 ðñ

✔
✖✕GAQ�QG✶

A TCAC�♣J✁ Iq Q

✍ ✁γ2
deI 0

✍ ✍ ✁I

✜
✣✢➔ 0

(5.29)

✓
PGA�G✶

AP� I PT

✍ ✁γ2
weI

✛
➔ 0 ðñ

✔
✖✕GAQ�QG✶

A T Q

✍ ✁γ2
weI 0

✍ ✍ ✁I

✜
✣✢➔ 0 (5.30)

With P✏ P✶ → 0 and Q✏ P✁1 of proper dimensions.

Example 5.4. Consider N ✏ 15 identical agents with dynamics described by the following
matrices:

A0 ✏
✓
✁0.5 0.1

0.0 0.2

✛
, B0 ✏

✓
1.5 0.0

0.0 1.0

✛
, and C0 ✏

✓
1.0 0.0

0.0 1.0

✛
.

The agents are submitted to the action of external signals in the form of perturbations di. As the
agents are identical and the output matrix C0 is invertible, the residual matrix is identically
zero, RA ✏ TCAC✁1JC ✏ 0, and the dynamics of the error are described simply by ✾e ✏
TC

�
BL�AC✁1

✟
T�e when the external signals are zero.

The network will be analyzed by an organization derived from T o in Figure 5.7 a): T ✏
D✶♣T oq ✏ row

✥
I♣N✁1qq,✁1♣N✁1qq✂q

✭
. As the network is submitted to the action of external

perturbations, LMI (5.29) will be used to design consensus algorithms with the same shape as
the organization and diagonal weights. i.e. fixing an upper bound γ → 0 for the H✽-norm of the
system and forcing L✏✁T✶WT, with W diagonal. By making the variable Q to be diagonal
and defining the diagonal auxiliary variable Z✏WQ ðñ W✏ZQ✁1, solving the feasibility
problem of LMI (5.29) leads to an algorithm in negative Laplacian form based on the shape
of the unweighted tree T in Figure 5.7 b) with a weights function wq : E ÞÑ R

q✂q such that
the H✽-norm bound holds. Two algorithms, respectively L1 ✏ L̂♣Tw1q and L2 ✏ L̂♣Tw2q are
designed with this methodology for values γ1 ✏ 0.10 and γ2 ✏ 0.05.
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Figure 5.7.: a) Organization Tree T o, b) Unweighted Tree T for Example 5.4.

Table 5.3.: Algorithms design and simulation parameters in Example 5.4.

Algorithm γde λA ⑥Hde♣sq⑥✽ ⑥Hwe♣sq⑥✽ ⑥Hext♣sq⑥✽ ISD♣2q IAD♣2q
L1 0.10 4.570154 0.058780 0.218830 0.218845 3.550483 14.452537

L2 0.05 7.801018 0.030561 0.128191 0.128192 2.084995 8.243606

Both algorithms are tested through a simulation with identical initial conditions during two
seconds. At t ✏ 1.0 a randomly generated signal d is added as a perturbation to the outputs of
the network. At t ✏ 1.5 the perturbation is modified to a more critical condition (a perturbation
with a greater Euclidean norm). The results are to be seen in Table 5.3 where the ISD and
IAD indicators are shown along with the design parameter γde, the module λA ✏ λr of the
greatest negative eigenvalue of matrix GA, and the H✽-norms of the transfer functions from,
respectively, d, w, and uext to the error e. Additionally, the time responses of the networks
are depicted in Figure 5.8. Note that, as q ✏ 2, the agents have two outputs with different
dynamics that can be clearly distinguished in the figures.

From the table and the figure, it is clear that the second algorithm has a better performance.
When the perturbation is not present, it achieves consensus faster and more accurately. Also
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Figure 5.8.: Outputs evolution for the network analyzed in Example 5.4 with algorithm a) L1 and b)
L2.
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after instants when the perturbations are added, the network response is closer to the optimal.
This is clearly explained by the convergence rate indicator λA which is greater in the sec-
ond case. This also implies that the three norms defined in the table are smaller for a better
algorithm. �

5.2. Other Algorithms

Up to this point, only loopless Laplacian algorithms have been analyzed. This kind of al-
gorithm is by far the most common one in the consensus field. However, the definition of
algorithm as a linear feedback gives space to study other control strategies to deal with spe-
cific characteristics of the agents. In this section different kinds of alternative algorithms are
proposed and their main characteristics are described.

5.2.1. Self-looped Algorithms

In this section selfloops in the graph that describes the algorithm are considered. The moti-
vation for this is derived from the previous discussion about the role of the dynamics of the
states of the systems in the consensus error. It is desired to have alternatives to minimize the
effect of the residual signal r ✏ RAx over the dynamics of the error e. Therefore, here local
feedback for each agent in an AAN is proposed to directly modify the dynamics of the states.

Definition 5.2.1. A selflooped Laplacian consensus algorithm is a linear output feedback u ✏
Ly for system (4.3) where the feedback matrix is derived as L ✏ ✁L♣Gwq P R

Nq✂Nq with Gw

an undirected weighted graph over the vertices set V that considers selfloops in some or all of
its vertices.

The feedback matrix of this kind of algorithms can be expressed as:

L ✏✁L♣Gwq ✏

✔
✖✖✖✖✕
✁∆1 W12 ☎ ☎ ☎ W1N

W12 ✁∆2 ☎ ☎ ☎ W2N
...

...
. . .

...

W1N W2N ☎ ☎ ☎ ✁∆N

✜
✣✣✣✣✢ ,

where Wi j ✏ W✶
i j ✏ w♣♣i, jqq and ∆i ✏

➦N
j✏1 Wi j. Note that the block diagonal elements add

the weights of all edges including the self loops. Therefore, this kind of algorithms can be
decomposed as L ✏ Lc �Ll , where Lc ✏ ✁L̂♣Gwq and Ll ✏ ✁diagtWii✉N

i✏1, so that only Lc

has the zero sum row property and not L. With this, and considering that y ✏ T�e�JCx, the
feedback signal u can be written as

u ✏ Ly ✏ ♣Lc �Llq
�
T�e�JCx

✟✏ LT�e�LlJCx.
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5.2. Other Algorithms

Autonomous Agents Network

As seen in section 5.1.2 an AAN does not necessarily reach consensus with a loopless algo-
rithm. When considering that x ✏ C�T�e�♣C�JC�C❑♣C❑q✶qx, then the dynamics of the
error can be written as:

✾e✏ TC
�
BL�AC�✟T�e�TC

✁�
BLl �AC�✟JC�AC❑♣C❑q✶

✠
x. (5.31)

From here, the loops of an algorithm can be used to limit the effect of the states on the dynam-
ics of the consensus error. Indeed, if Ll ✏ L✶

l ✏ diagtWii✉N
i✏1 is chosen so that the residual

matrix Rl :✏ TC
��

BLl �AC�✟JC�AC❑♣C❑q✶✟ vanishes, then the dynamics of the error
depend only on Gl :✏ TC

�
BLc�BLl �AC�✟T�.

However, because the term AC❑♣C❑q✶ is not necessarily zero, it is in general not possible to
force Rl ✏ 0. At most, the weights on the selfloops can be chosen so that the norm of the resid-
ual matrix is minimal, what does not guarantee that consensus can be reached. Considering
that the dynamics of the states are such that,

x♣tq ✏ e♣A�BLCqtx0 ✏ eAcltx0,

then choosing Ll such that the product rl ✏ Rle
Aclt Ñ 0 as t Ñ�✽ will guarantee consensus

in the long term if Gl is Hurwitz. This problem is difficult to solve (numerically and alge-
braically) as it is highly non-linear because both matrices, Rl and eAclt , depend explicitly on
the unknown variable Ll . The problem becomes more difficult when Lc is also a variable.

Because of this, a more heuristic approach can be followed to choose a candidate feedback
matrix. In particular, if the dynamics of the agents combined with the respective selfloops can
be approximated by the behavior of an integrator system, i.e. if it is possible to find Wii such
that Ai�BiWiiCi ✓ 0, then the network can be approximated by an IN. Slightly more general,
if each agent is Hurwitz but slow, dynamical consensus can also be approximated in a good
way. From,

A�BXC✏✁λlI ùñ ✁BXC✏ A�λlI

ùñ X✏✁B� ♣A�λlIqC�,

with 0↕ λl ✦mintabs
✥

real
✥

eig
✥

TCBLcT�✭✭✭✉, a possible candidate for the selfloops feed-
back is to define

Ll :✏✁B� ♣A�λlIqC�. (5.32)

Because of the block diagonal structure of the matrices, Ll is also block diagonal and its
blocks can be computed locally by each agent making rLlsii ✏✁B�

i ♣Ai�λlIqC�
i . Note that

in general, as C�C✘ I and BB�✘ I, Ll ✏✁B� ♣A�λlIqC� does not imply that A�BLlC✏
✁λlI and the closed loop network only approximates the desired behavior. Indeed, replacing
(5.32) in (5.31), the dynamics of the error become:

✾e✏ TC♣BLc�MlqT�e�TC
✁

MlJC�AC❑♣C❑q✶
✠

x,
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5. Consensus Algorithms

where Ml ✏
�
I✁BB�

✟
AC�✁λlBB�C�. The dynamics of the states are

✾x ✏ ♣BLcC�MlCqx.

Nevertheless, observe that in the special case where B� ✏ B✁1 and C� ✏ C✁1, then x ✏
C✁1T�e�C✁1JCx and, considering (5.32), the dynamics of the error and the states become:

✾e ✏ TC
�
B♣Lc�Llq�AC✁1

✟
T�e�TC

�
BLl �AC✁1

✟
JCx

✏ TC
�
BLc✁AC✁1✁λlC

✁1�AC✁1
✟

T�e�TC
�✁λlC

✁1
✟

JCx

✏ �
TCBLcT�✁λlI

✟
e ✓ TCBLcT�e

✾x ✏ ♣BLcC✁λlIqx ✓ BLcCx

From here, consensus can be reached by properly designing Lc ✏ ✁L̂♣Gwq to fulfill certain
performance specification as in Section 5.1.1.

Complementary States Feedback

The previous discussion reveals that through the inclusion of self looped algorithms, at least in
some cases, the behavior of the individual agents can be approximated by integrator dynamics.
However, as the consensus algorithm is an output feedback, the states of the agents that are
not reflected in the output cannot be controlled, making the residual matrix non zero in most
of the cases.

If all the states of each agent are measured and are available for feedback, then the following
complementary signal can be defined:

y❑ ✏ ♣C❑q✶x.

As CC❑ ✏ 0, this signal includes the information of the states that are not mapped into the
output y. With this, an alternative feedback law including this complementary information can
be defined as:

u :✏ Ly�L❑y❑
✏ L

�
T�e�JCx

✟�L❑♣C❑q✶x
✏ LT�e�

✁
LJC�L❑♣C❑q✶

✠
x.

Where L ✏ ✁L♣Gwq ✏ Lc �Ll , with Gw a graph with self loops at every node, so that Lc ✏
✁L̂♣Gwq and LJ ✏ LlJ; and L❑ P Rn✁Nq✂n✁Nq. Replacing this expression in the dynamics of
the error, we obtain:

✾e ✏ TCBu�TCA
✁

C�T�e�
✁

C�JC�C❑♣C❑q✶
✠

x
✠

✏ TC
�
BLc�BLl �AC�✟T�e�TC

✁�
BLl �AC�✟JC�

✁
BL❑�AC❑

✠
♣C❑q✶

✠
x

✏ Gle�R❑x.
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5.2. Other Algorithms

Note that the introduction of the feedback matrix L❑ does not affect the matrix Gl . It only
appears in the residual matrix. Clearly, if R❑ is zero, then consensus can be reached indepen-
dently of the dynamics of the states.

In terms of the complementary output y❑ ✏ ♣C❑q✶x and the mean value of the outputs
v ✏ 1

N 1✶Cx, from the previous dynamic expression one can also write

✾e ✏ Gle�TC
�
BLl �AC�✟1v�TC

✁
BL❑�AC❑

✠
y❑.

From here is clear that the selfloops in an algorithm can be used to minimize the effect of v

over the dynamics of the error, while the complementary feedback to minimize the effect of
y❑.

Algebraically, to find matrices Ll and L❑ that make the residual matrix to vanish might be
a hard task. However, numerically, it can be achieved easily by bounding the Euclidean norm
of R❑ by a known tolerance ε → 0. That is,

R❑♣R❑q✶ ➔ ε2I.

Applying Schur’s complement, the previous expression is equivalent to the following LMI:✓
✁ε2I TC

��
BLl �AC�✟JC� �

BL❑�AC❑✟♣C❑q✶✟
✍ ✁I

✛
➔ 0 (5.33)

Fixing the tolerance value, the feasibility problem of LMI (5.33) can be solved to find the
desired variables Ll and L❑ so that ⑥R❑⑥ is arbitrarily small. Note that imposing structural
restrictions on the variables, like for example imposing that L❑ is derived as the Laplacian of
a graph, makes it harder to solve the corresponding feasibility problem.

The self loops of an algorithm and the complementary states feedback are used to minimize
the effect of the residual matrix over the error dynamics. In more simple words, the effect
achieved is to approximate a decoupled system where consensus depends only on the error
and not any other internal variables. Consensus however still relies on the edges between
nodes of the graph describing the algorithms.

It could be argued that simply considering a graph with only self loops to define the consen-
sus algorithm, i.e. without interconnections between the agents neither as output feedback nor
as complementary states feedback, would lead to consensus as matrix Gl can still be forced
to be Hurwitz. This is indeed true when x approaches the origin so that r ✏ Rlx vanishes and
allows the network to reach trivial consensus. However, this kind of control strategy is very
weak with respect to perturbations and external signals. If no interconnections are considered
then an arbitrary local modification of the input of any agent will irremediable lead to a differ-
ence between the outputs. The same would happen if agents are under the influence of other
kind of external perturbations. For this reason, the discussed strategies can only be used to
complement the interconnections in a AAN and not to replace them.

89



5. Consensus Algorithms
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Figure 5.9.: a) Organization tree T o, b) Looped graph T for Example 5.5.

Example 5.5. Consider network h) in Example 5.3, that is, N ✏ 10 agents with identical dy-
namics given by:

Ai ✏
✓

0.1 ✁0.1

0.1 0.0

✛
, Bi ✏

✓
1.0

1.0

✛
, Ci ✏

✑
0.5 0.5

✙
.

As shown in the quoted example, with a loopless Laplacian algorithm it is difficult for this
network to reach consensus because of the unstable dynamics of the agents. This can be solved
by considering looped algorithms and complementary state feedback.

We consider the organization matrix T ✏ D✶♣T oq derived from the oriented tree T o in
Figure 5.9 a). The undirected looped graph T ✏ ♣V ,E q in Figure 5.9 b) can be used as a
base for a looped consensus algorithm L ✏ ✁L♣Twq defining the weighted undirected graph
Tw ✏ ♣V ,E ,wq, where ❅i P V , w♣♣i, iqq ✏ B�i AiC

�
i ✏ 0.05 and ❅ j P V ③t1✉, w♣♣1, jqq ✏ 10.

However, with this pure loop control law, the network still cannot reach consensus be-
cause of the unbounded residual signal r ✏ Rlx. This can be seen in Figure 5.10 a) where
the response of the network under identical initial conditions as in Example 5.3 is shown.
This response does not differ substantially from the loop-less case in Example 5.3, and only
approximates consensus before the error diverges.

Solving the feasibility problem of LMI (5.33) with ε ✏ 10✁5 and Ll ✏ B�AC�, a comple-
mentary state feedback L❑ can be calculated. Unfortunately, this matrix cannot be forced to
have a particular structure. Imposing L❑ to be diagonal, symmetric, or with rows that add up
to zero, makes the LMI unfeasible in all three cases. However, the following matrix can still
be obtained as a solution of the LMI feasibility problem without structural restrictions:

L❑ ✏

✔
✖✖✖✖✖✕

✁0.0375 ✁0.0375 ✁0.0375 ✁0.0375 ✁0.0375 ✁0.0375 0.0265 0.0265 0.1015 ✁0.0485
✁0.0375 ✁0.0375 0.0375 0.0375 0.0375 0.0375 0.0265 0.0265 0.1015 ✁0.0485
✁0.0530 ✁0.0530 0.0000 0.0000 0.0000 0.0000 ✁0.0375 ✁0.0375 0.0375 ✁0.1125

0.0000 0.0000 0.0530 0.0530 ✁0.0530 ✁0.0530 0.0000 0.0000 0.0750 ✁0.0750
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0530 0.0530 0.0220 ✁0.1280

✁0.0750 0.0750 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0750 ✁0.0750
0.0000 0.0000 ✁0.0750 0.0750 0.0000 0.0000 0.0000 0.0000 0.0750 ✁0.0750
0.0000 0.0000 0.0000 0.0000 ✁0.0750 0.0750 0.0000 0.0000 0.0750 ✁0.0750
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ✁0.0750 0.0750 0.0750 ✁0.0750
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

✜
✣✣✣✣✣✢

Even though the matrix does not have a Laplacian structure, the algorithm that it describes
can still be distributively implemented when the corresponding signals are communicated
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Figure 5.10.: Error evolution for the network analyzed in Example 5.5 with a) L✏✁L♣Twq and b) with
complementary state feedback matrix L❑.

between the agents. The simulation results of the network including this control law are to
be seen in Figure 5.10 b). Clearly, the network reaches consensus successfully, although the
complementary feedback matrix cannot be directly associated to a graph as studied up to here.
This example shows that consensus cannot be always achieved if we restrict the algorithms to
be in the form of the Laplacian of an unweighted graph and, if possible, other strategies need
to be developed. �

Connected Agents Network

In Section 5.1.1 it is noticed that an algorithm can induce consensus in an IN only if ranktL✉✏
♣N✁1qq (Lemma 5.3). This comes from the assumption that the product CB is full rank which
implies that G✏TCBLT� is Hurwitz only if the rank condition on L is fulfilled. Similarly, in
an AAN, non trivial consensus can also only be induced by ♣N ✁ 1qq-rank algorithms. How-
ever, in some cases the assumption that CB is full rank may be dropped, making it possible to
use full rank looped Laplacian algorithms to reach consensus.

Definition 5.2.2. A connected agent (CA) is an agent i PV that has hardware interconnections
with other agents and individual dynamics described by:

✾xi ✏Aixi�Biui

yi ✏Ciixi�
➳
j✘i

♣Ci jx jq (5.34)

With Ai P R
q✂q, Bi P R

q✂q, and Ci P R
q✂q. The matrices Ci j P R

q✂n j describe the hardware
interconnections between agent i P V and agent j P V .

Note that it is assumed that the number of inputs is the same as the number of outputs and
of states. A Connected Agents Network is then defined as:
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5. Consensus Algorithms

Definition 5.2.3. A connected agents network (CAN) is the aggregation of N connected agents
in a set V where the hardware interconnections between the agents are described by an undi-
rected, weighted and connected graph Cw and a full rank diagonal matrix M P RNq✂Nq. The
dynamics of such a network are described by:

✾x✏Ax�Bu

y✏Cx
(5.35)

with,

A✏ diagtAi✉N
i✏1 , B✏ diagtBi✉N

i✏1 , C✏ML̂♣Cwq P RNq✂Nq,

x✏ coltxi✉N
i✏1 , u✏ coltui✉N

i✏1 , y✏ coltyi✉N
i✏1

We assume that B is full rank and therefore its inverse exists. Note that A P RNq✂Nq, B P
R

Nq✂Nq, C P RNq✂Nq and, CJ✏ML̂♣Cwq11✶ 1
N ✏ 0.

For this kind of networks a self looped algorithm derived from an undirected weighted graph
Sw with only self loops can be used to reach consensus. That is, an algorithm that avoids the
need to communicate signals between the agents.

To demonstrate the previous statement we need to quote the properties of the pseudo inverse
of C with respect to its singular values decomposition (SVD, see Appendix A.1). Note that
as Cw is connected, then ranktC✉ ✏ mintranktM✉ , rank

✥
L̂♣Cwq

✭✉ ✏ ♣N✁1qq. Additionally
C✶C1✏ L̂♣CwqMML̂♣Cwq1✏ 0 and 1✶1✏ NI. So the columns of Vz ✏ 1❄

N
1 are the orthonor-

mal eigenvectors associated with the q zero eigenvalues of C✶C. From Corollary A.7, with

V✏
✑
V� Vz

✙
for some matrix V� consistent of orthonormal eigenvectors of C✶C, it is easy

to show that

C�C✏ V

✓
I♣N✁1qq✂♣N✁1qq 0

0 0q✂q

✛
V✶

✏
✑
V� Vz

✙✄
INq✂Nq✁

✓
0♣N✁1qq✂q

Iq✂q

✛✑
0q✂♣N✁1qq Iq✂q

✙☛✓
V✶
�

V✶
z

✛

✏ VV✶✁
✑
V� Vz

✙✓
0♣N✁1qq✂q

Iq✂q

✛✑
0q✂♣N✁1qq Iq✂q

✙✓
V✶
�

V✶
z

✛

✏ I✁VzV
✶
z ✏ I✁ 1❄

N
1

1❄
N

1✶

✏ I✁J

From here an inverse relationship between the states and the outputs of the systems can be
stated:

y✏ Cx ùñ C�y✏ C�Cx ùñ x✏ C�y�Jx.
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5.2. Other Algorithms

This, together with the error equation, e✏ Ty ùñ y✏ T�e�JCx, leads to:

✾e✏ TCBu�TCAx

✏ TC
�
BL�AC�

✟
T�e�TC

�
BLJC�A

�
C�JC�J

✟✟
x

When the feedback matrix is chosen so that L✏Ll ✏✁αB✁1 ✏✁L♣Swq, with α → 0 a scalar,
then TCBLJC ✏ ✁αTCJC ✏ 0 and the expression for the dynamics of the error is reduced
to

✾e✏ TC
�✁αI�AC�

✟
T�e�TCA

�
C�JC�J

✟
x. (5.36)

From (5.36) is clear that non trivial consensus can be reached if the residual signal r ✏
TCA

�
C�JC�J

✟
x vanishes with time. In the special case where, for given matrices A0 P

R
q✂q and M0 PRq✂q, A✏ diagtA0✉iPV and M✏ diagtM0✉iPV , i.e. is when the agents are all

identical except possible for the matrices Bi, then AJ ✏ 1
N 1A01✶ ✏ JA and JM ✏ 1

N 1M01✶ ✏
MJ making TCA

�
C�JC�J

✟✏ TCAC�MJL̂♣Cwq�TCJA✏ 0.
Contrary to the case of an AAN, due to the hardware interconnections between the agents,

a controller based on a graph with only self loops is still robust against external signals. To
verify this, let us consider an external control input uext : R�0 ÞÑ R

Nq so that u ✏ Ly�uext ✏
✁αB✁1y�uext . In that case, the dynamics of the error become

✾e✏ TC
�✁αI�AC�

✟
T�e�TCA

�
C�JC�J

✟
x�TCBuext .

Considering that agents are identical so that A ✏ diagtA0✉iPV and M ✏ diagtM0✉iPV , then
the previous expression is simplified to:

✾e✏ TC
�✁αI�AC�

✟
T�e�TCBuext . (5.37)

Expression (5.37) can be used to quantify the influence of the external input over the consensus
error by considering the H✽-norm of the transfer function matrix Hext♣sq between the external
signal and the error as in the previous sections. Note that, regardless of whether matrix Gα ✏
TC

�✁αI�AC�
✟

T� is Hurwitz, if the external signal is such that limtÑ�✽TCBuext ✘ 0,
consensus cannot be reached as then limtÑ�✽ e✘ 0. However, even in these cases, the param-
eter α characterizes the behavior of the network.

A similar analysis can be made by considering an external perturbation in the form of
y ✏ Cx� d. In this case both, the perturbation signal d and its change over time w ✏ d

dt d

needs to be taken into account when developing an expression for the dynamics of the error.

Example 5.6. Consider a CAN with N ✏ 7 agents with identical dynamics and q ✏ 1. The
hardware interconnections are described by the undirected weighted loopless graph Cw ✏
♣C ,wq, where C ✏ ♣V ,E q is the graph given in Figure 5.11 a) and ❅♣i, jq P E , w♣♣i, jqq ✏ 1.0.
Furthermore, the dynamics of the network are fully described by the matrices:

A✏ diagt0.1✉iPV , B✏ diagt1.0✉iPV and, M✏ diagt2.0✉iPV .
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Figure 5.11.: a) Hardware interconnections graph C , b) Organization tree T o, and c) pure loops graph
S for Example 5.6.

The organization to be used is derived from the directed tree in Figure 5.11 b). We also con-
sider the algorithm L ✏ ✁L♣Svq ✏ ✁αI, where Sv ✏ ♣S ,vq. S ✏ ♣V ,Esq is the looped
undirected graph in Figure 5.11 c) and ❅♣i, iq P Es, v♣♣i, iqq ✏ α → 0.

The H✽-norm of the transfer function between the external signal and the error can be stud-
ied as a function of the design parameter α as shown in Figure 5.12. The value of ⑥Hext♣sq⑥✽
peaks for the values of α where the matrix Gα ✏ TC

�✁αI�AC�
✟

T� is close to be singular
increasing the corresponding DC gain of the system. Nevertheless, besides from these points,
there is a clear inverse relationship between α and the H✽-norm.

The two highlighted points in the graph correspond to the algorithms defined by α ✏ 0.5
and α ✏ 5.0. Note that for the last value, ⑥Hext♣sq⑥✽ ➔ 1, and therefore the network damps the
action of the external signal instead of amplifying it as with the first value. A time simulation
of the behavior of the network in both cases is shown in Figure 5.13. The agents start with
identical initial conditions and (only) the first agent is submitted to the action of an external
signal uext,1, which is changed every four seconds identically in both cases.

As expected, it is clear from the graphs that the network cannot reach consensus under these
conditions. Independently of the chosen algorithm, as the transfer function between the exter-
nal input and the error cannot be forced to be identically zero, the error vector always reaches
certain value in steady state. However, there are clear differences between the performance of
both cases. First, due to the smaller gain when α ✏ 5.0, the differences between the outputs
are in this case around ten times smaller than when α ✏ 0.5. Secondly, as the eigenvalues of
matrix Gα are further to the left in the second case, the network reacts faster to the changes
reaching steady state sooner and minimizing the transient error between the signals. In sim-
pler words, by increasing the parameter α the network becomes “heavier”, making it more
resilient to external signals. �

5.2.2. Non Graphically Restricted Algorithms

With the introduction of the complementary states feedback, it has been shown that a consen-
sus algorithm can be selected in such a way that there is no immediate graph representation
of it. The idea of selfloops somehow also generalizes consensus algorithms to the use of more
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Figure 5.12.: H✽-norm of the transfer function matrix Hext♣sq as a function of parameter α in Example
5.6.
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Figure 5.13.: Outputs evolution for the network analyzed in Example 5.6 with L✏✁L♣Svq ✏✁αI for
a) α ✏ 0.5 and b) α ✏ 5.0.
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complex matrices, namely, without the row zero sum property. Indeed, a consensus algorithm
could be specified merely by the gains in a matrix L not associated with any other mathe-
matical entity like a graph. Furthermore, in the formulation of this thesis, the analysis of the
behavior of the network under a given algorithm is not done through graph related tools but
only in terms of classical control theory. Therefore, the use of graph theory to describe an
algorithm is justified only because it might simplify its representation for human analysis.

As an effort to include this more complex cases without loosing the convenient graph repre-
sentation of an algorithm, a common generalization is through Laplacian matrices of directed
graphs or digraphs. See for example [22, 33, 34]. Following this idea, one can define two
different kind of algorithms.

Definition 5.2.4.1. An incoming consensus algorithm is a linear output feedback u ✏ Ly for
system (4.3) where the feedback matrix L P R

Nq✂Nq is such that L1 ✏ 0, i.e., it has the zero
row sum property.

Definition 5.2.4.2. An outgoing consensus algorithm is a linear output feedback u ✏ Ly for
system (4.3) where the feedback matrix L P R

Nq✂Nq is such that 1✶L ✏ 0, i.e., it has the zero
column sum property.

Note that there is no restriction on the signs or structure of the elements of incoming or
outgoing algorithms as in the case of algorithms derived from undirected graphs. Furthermore,
observe that any arbitrary feedback matrix L P R

Nq✂Nq can be decomposed as the sum of a
block diagonal matrix matrix Ld ✏ diagtLii✉iPV , with Lii P R

q✂q, an incoming consensus
algorithm Lin, and an outgoing consensus algorithm Lout . That is, L ✏ Ld �Lin �Lout . In
any case, for an AAN, the dynamics of the error defined through an organization matrix T ✏
D✶♣T oq can be expressed as:

✾e ✏ TC
�
BL�AC�✟T�e�TC

✁
BLJC�A

✁
C�JC�C❑♣C❑q✶

✠✠
x.

As for incoming algorithms the product LJ vanishes, it seems natural to prefer them over
outgoing algorithms. Particularly when RA ✏ TCA

�
C�JC�C❑♣C❑q✶✟ ✏ 0. In [22, pp. 26]

an intuitive justification for this choice is also given in terms that the incoming algorithm
captures more directly how the dynamics of an agent are influenced by others while the out-
degree version captures better how one agent influences others. However, when matrix RA

does not vanish, outgoing algorithms are no worse than any other choice in the sense that the
dynamics of the error still depend on the coupled states of the agents.

Similar to the case of selfloops in undirected algorithms, in general, an outgoing algorithm
cannot be used to cancel the effect of the residual matrix RA because of the terms including the
null space base C❑ for the output matrix C. A particular case is when Nq ✏ n and the output
matrix is invertible, i.e. C� ✏ C✁1. In that case, the dynamics of the error are simplified to:

✾e ✏ TC
�
BL�AC✁1

✟
T�e�TC

�
BL�AC✁1

✟
JCx
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5.2. Other Algorithms

Therefore, if the algorithm is chosen in such a way that the residual matrix vanishes and the
system matrix GA ✏ TC

�
BL�AC✁1

✟
T� is Hurwitz, then consensus can be reached in spite

of the characteristics of the agents.
To numerically determinate a suitable matrix L, an LMI can be stated to quadratically bound

the norm of RA. That is, to enforce that RAR✶
A ➔ ε2I, with ε → 0 a design scalar, which is by

Shur’s complement equivalent to✓
✁ε2I TC

�
BL�AC✁1

✟
JC

✍ ✁I

✛
➔ 0 (5.38)

To fulfill this condition does however not ensure that the system matrix is Hurwitz. To do that
through an unknown Lyapunov matrix P✏ P✶ → 0 leads to non linear conditions. These cannot
be linearized by considering the inverse of the Lyapunov matrix because in (5.38), matrix L is
multiplied to the left and to the right by singular matrices. Furthermore, forcing the feedback
matrix to have the shape L ✏ XT so that LT�P✁1 ✏ XP✁1 :✏ Z is also not a valid condition
as then the product LJ ✏ XTJ ✏ 0 vanishes in (5.38). Therefore, the only remaining option is
to fix the Lyapunov matrix to a known constant. In particular P✏ I leads to the same situation
as in Section 5.1.1 for the calculation of the convergence rate of an undirected algorithm for
an IN. From condition (5.10), the following LMI is obtained:

TC
�
BL�AC�✟T��♣T�q✶ �BL�AC�✟✶C✶T✶�2ςI ➔ 0, (5.39)

with a design scalar ς → 0 that represents the desired convergence rate of the consensus error
norm. If matrix L needs to be in the shape of an outgoing algorithm, structural restrictions also
need to be imposed. This can be easily achieved by imposing that 1✶L✏ 0. If these three mini-
mal conditions are simultaneously feasible, then an outgoing algorithm that ensures consensus
can be numerically determined. Additional structural conditions can also be imposed to shape
the algorithm according to other criteria. For instance, to impose unidirectional exchange of
signals.

Example 5.7. Consider network with N ✏ 9 agents such that ❅i P V , Bi ✏ Ci ✏ 1; and for
i P t1,2,3✉, Ai ✏ 0.10, for i P t4,5,6✉, Ai ✏✁0.10, and for i P t7,8,9✉, Ai ✏ 0.05. To define
the error vector, we consider an organization matrix T ✏ rowt1,✁I✉.

Defining ε ✏ 0.1 and ς ✏ 1.0, by solving the feasibility problem of LMIs (5.38) and (5.39),
with additional structural restrictions 1✶L ✏ 0 and, ❅i P V and k P t2,3, ...,N✉, L♣i, i�kq ✏ 0,
we can obtain an outgoing algorithm characterized by:

Lout ✏

✔
✖✖✖✖✕

✁1.2810 1.1977 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
✁9.1777 ✁0.2435 9.3378 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1.6012 ✁8.1401 ✁1.4411 7.8967 0.0000 0.0000 0.0000 0.0000 0.0000
1.4012 1.1977 ✁7.8967 ✁1.2411 6.6556 0.0000 0.0000 0.0000 0.0000
1.4012 1.1977 0.0000 ✁6.6556 ✁1.2411 5.4145 0.0000 0.0000 0.0000
1.4012 1.1977 0.0000 0.0000 ✁5.4145 ✁1.2411 4.1733 0.0000 0.0000
1.5512 1.1977 0.0000 0.0000 0.0000 ✁4.1733 ✁1.3911 2.7822 0.0000
1.5512 1.1977 0.0000 0.0000 0.0000 0.0000 ✁2.7822 ✁1.3911 1.3911
1.5512 1.1977 0.0000 0.0000 0.0000 0.0000 0.0000 ✁1.3911 ✁1.3911

✜
✣✣✣✣✢
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Figure 5.14.: Outputs evolution for the network analyzed in Example 5.7 with a) incoming algorithm
Lin and b) outgoing algorithm Lout .

Furthermore, from this matrix, an incoming feedback matrix Lin can also be defined by re-
placing the diagonal elements of Lout in such a way that the rows (and not the columns) add
up to zero. Note that the signs of the off-diagonal elements of the feedback matrices are not
necessarily positive.

In Figure 5.14 a simulation of the behavior of the network is shown under the influence
of both algorithms with identical initial conditions. Note that in the case that the agents were
simple integrators, the incoming algorithm would guarantee consensus. However, this is not
the case for this network where the designed outgoing algorithm can successfully lead to
consensus but not its incoming version. �

5.2.3. Switched Algorithms

Most of current work on consensus is focused on switching communication topologies. There
is a long list of examples, some of which are [9, 19, 22, 31, 41, 47, 50–52, 55, 57–61]. Different
criteria can be applied to define the meaning of the discrete modes and how the systems
switch from one discrete mode to other. Furthermore, different approaches can be used to
deal with the switching characteristics of the systems. This makes consensus under switching
restrictions a challenging research field, even when considering only integrator systems.

In this section we focus mainly on intended changes of the consensus algorithm that de-
fines different operating discrete modes. The case where the consensus algorithm changes in
an unwanted or unplanned way (due to communication faults for example) will be discussed
at the end of this section. Attending the designer’s freedom to specify an algorithm in the
way it best fits his needs, the case of switched algorithms becomes relevant when, for some
(technical) reason, a connected algorithm cannot be specified. For example, if the agents only
support a limited number of incoming communication signals. Other reason to do this would
be to avoid using a unique algorithm for tactical reasons. For example, if it is known that the
communication process can be interrupted by an external “enemy” agent, switching from one
controller to other would make more difficult for the external agent to identify the needed
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5.2. Other Algorithms

communication channels, thus improving the resilience of the network to the “attacks” of the
agent. Strategic reasons can also justify a switching algorithm. For example, to approximate
consensus in different sections of the network with a “dense” algorithm (with many edges
between the agents of each section only), before switching to a less dense algorithm that con-
nects all agents in the network. In this section, however, we do not emphasize the reasons why
a given switched algorithm is considered but merely on conditions that guaranteed consensus
under these circumstances. To do this, we consider the original results in Chapter 3 and the
following definition of switching algorithm.

Definition 5.2.5. A switching algorithm is a control law u ✏ Lı̂y for an AAN that switches
between M feedback matrices Lı̂ P RNq✂Nq at switching instants τk in an infinite (but known)
switching instants set S✽ ✏ tτ1,τ2, ...,τk, ...✉. Each feedback matrix is associated with a dis-
crete mode qı̂ P Q ✏ tq1,q2, ...,qM✉.

Particularly, we investigate the case where, for each of the M discrete modes qı̂ P Q defined
in a set Q ✏ tq1,q2, ...,qM✉, one particular feedback matrix Lı̂ ✏ ✁L̂♣Gw,ı̂q is defined from a
weighted undirected graph Gw,ı̂; and, considering an organization matrix derived from a tree
T✏D✶♣T oq, to avoid the influence of the states over the consensus error, the residual matrix is
identically zero, i.e. RA ✏ TCA

�
C�JC�C❑♣C❑q✶✟✏ 0. In that case, the dynamics of target

error are described by the following switched system:

✾e ✏ TC
�
BLı̂�AC�✟T�e ✏ Gı̂e. (5.40)

Clearly, the stability of this switched system can be addressed through the various cases stud-
ied in Chapter 3. As the exact switching instants of these system are decided as part of the
consensus algorithm, of particular interest is the time dependent switching case with known
residence times.

Defining a polytope G♣αααq with vertices given by Gı̂, with ı̂ P t1,2, ...,M✉, if at an instant
τk P S✽ ✏ tτ1,τ2, ...✉ the system switches to mode qı̂ P Q, then the value of the error at instant
τk�1 P S✽ can be calculated as

e♣τk�1q ✏ eG♣αααkqTk e♣τkq
✏ eGı̂Tk e♣τkq
✏ΦΦΦke♣τkq,

where the transition matrix ΦΦΦk associated with mode qı̂ P Q is implicitly defined.

Periodic Algorithms

A first approach is to consider only deterministic switching in the form of a periodic process as
introduced in Example 3.2. We will understand a periodic process as a switched systems where
the only allowed sequence of discrete modes is q1 Ñ q2 Ñ ☎☎ ☎Ñ qM✁1 Ñ qM Ñ q1 Ñ ☎☎ ☎ that
repeats infinitely. That is, a system that can be represented by the automata shown in Figure
5.15.
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q1 q2 q3 ... qM✁1 qM

τ♣h✁1qM�1 τ♣h✁1qM�2 τhM✁1

τhM

Figure 5.15.: General Periodic Process with M discrete modes.

Definition 5.2.6. A periodic algorithm is a switching algorithm that associates with each of
the M discrete modes qı̂ P Q ✏ tq1,q2, ...,qM✉, a feedback matrix Lı̂ P RNq✂Nq and a unique
residence time T♣ı̂q :✏ Tk ✏ τk�1 ✁ τk P R

�, for all k P N where the algorithm is switched
to mode qı̂; and that switches between the modes in a unique infinitely repetitive sequence
q1 Ñ q2 Ñ ☎☎ ☎ Ñ qM✁1 Ñ qM Ñ q1 Ñ ☎☎ ☎ .

A cycle of a periodic algorithm is one repetition of the switching sequence q1 Ñ q2 Ñ☎☎ ☎Ñ
qM✁1 Ñ qM Ñ q1. Note that as the residence times are unique and associated with the modes,
the total time of a cycle is constant and given by Tcycle ✏

➦M
ı̂✏1 T♣ı̂q. Sampling the system every

M switching instants, that is at instants τhM with h PN, the transition matrix of the entire cycle
of the system can be obtained as:

ΨΨΨcycle :✏ΨΨΨ
hM
♣h✁1qM ✏

M➵
i✏1

ΦΦΦhM�1✁i ✏
M➵

i✏1

eG♣αααhM�1✁iqThM�1✁i

✏ eGMT♣MqeGM✁1T♣M✁1q ☎ ☎ ☎ eG2T♣2qeG1T♣1q

The implicit discrete time system defined when sampling at switching instants τhM, with h PN,
is then linear:

e♣τ♣h�1qMq ✏ΨΨΨcyclee♣τhMq (5.41)

Considering Lemma 3.1, the stability of the discrete time system (5.41) proves that the AAN
with the periodic algorithm leads to consensus. This can be verified considering a discrete
time Lyapunov matrix P → 0 as in Theorem 3.2, or simply by calculating the eigenvalues of
ΨΨΨcycle.

Clearly, the stability analysis could also be done by considering other switching instant
sequences like in Theorem 3.3. Using the whole cycle, however, gives some hints on the
convergence rate at which consensus is achieved. For this, let us define

σ :✏max
✥

svd
✥
ΨΨΨcycle

✭✭
σ :✏min

✥
svd

✥
ΨΨΨcycle

✭✭
,

then,

σ2I↕ΨΨΨcycle
✶
ΨΨΨcycle ↕ σ2I

ðñ σ2e✶♣τhMqe♣τhMq ↕ e✶♣τhMqΨΨΨcycle
✶
ΨΨΨcyclee♣τhMq ↕ σ2e✶♣τhMqe♣τhMq

ðñ σ⑥e♣τhMq⑥ ↕ ⑥e♣τ♣h�1qMq⑥ ↕ σ⑥e♣τhMq⑥
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Assuming that the consensus error approaches the origin, from the previous expression a
bound for the convergence rate of the norm of the error, similar to that in equation (5.10)
for the case of loopless algorithms, can be obtained. Furthermore, not only a higher bound
can be defined but also a lower one. By subtracting ⑥e♣τhMq⑥ and dividing by Tcycle → 0 one
obtains,

✁1✁σ

Tcycle
⑥e♣τhMq⑥ ↕

⑥e♣τ♣h�1qMq⑥✁⑥e♣τhMq⑥
Tcycle

↕✁1✁σ

Tcycle
⑥e♣τhMq⑥

✁ς⑥e♣τhMq⑥ ↕
⑥e♣τ♣h�1qMq⑥✁⑥e♣τhMq⑥

Tcycle
↕✁ς⑥e♣τhMq⑥, (5.42)

where ς :✏ 1✁σ
Tcycle

→ 0 and ς :✏ 1✁σ
Tcycle

→ 0 represent, respectively, approximated lower and higher

bounds for the convergence rate of the switched system in a similar sense that ς in section
5.1.1. Note that because of the negative sign in (5.42), ς ➙ ς ➙ 0.

It is important to notice that this bounds represent merely a long term mean approximation
of the convergence rate at which the network can reach consensus. There is not guarantee that,
at any given time, the convergence rate of the consensus error would stay within the limits.
This can be easily understood by considering a two modes algorithm, where in one mode, the
feedback matrix makes the norm of the error to increase, but this is compensated by the other
mode where the norm decreases. If the convergence rate is instantaneously evaluated during
the increasing mode, then it would be clearly out of the bounds. Furthermore, in the second
mode, the convergence rate would also be out of the limits as the norm decreases faster to
compensate the increase in the first mode. The bounds are however calculated considering
both behaviors and therefore are average values for the overall convergence rate.

Probabilistic Algorithms

A periodic algorithm is based on a deterministic switching sequence and therefore it is a
very special kind of consensus controller which is praised for its simplicity. In fact, a more
complex kind of algorithms can be defined by allowing more switching sequences. The most
extreme case would be to allow every M♣M✁1q possible jumps between the discrete modes,
associating with each one of them a non unitary probability as defined in Section 3.2.3. Sev-
eral categories of “mixed” (deterministic and probabilistic) algorithms could be defined in
between, by imposing unitary probability of some jumps like in Example 3.3.

Definition 5.2.7. A probabilistic algorithm is a switching algorithm that associates with each
of the M discrete modes qı̂ P Q ✏ tq1,q2, ...,qM✉, a feedback matrix Lı̂ P R

Nq✂Nq; a unique
residence time T♣ı̂q :✏ Tk ✏ τk�1 ✁ τk P R

�, for all k P N where the algorithm is switched

to mode qı̂; and a probability vector πππ�ı̂ P ΛM ⑨ R
N in such a way that the probability of

switching from mode qı̂ P Q to mode q̂ P Q at instant τk�1 is 0 ↕ ✏
πππ�ı̂

✘
̂
↕ 1.

Note that it is not necessary to relax the uniqueness property of the residence time as, when
several known residence times are associated with the same feedback matrix and probability
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a) b) c)

d) e) f)

Figure 5.16.: Non Connected Graphs for Switched Algorithms in Example 5.8.

vector, a new discrete mode can be defined for each of the different values. This would, of
course, increase the number of discrete modes and increase the complexity of the allowed
switching sequences.

When RA ✏ 0, consensus in an AAN under such an algorithm can be studied with the help of
Theorem 3.6. Unlikely the periodic case, it is however difficult to state approximated bounds
for the convergence rate of the system as no cycle matrix can be defined.

Example 5.8. Consider N ✏ 4 identical systems described by

Ai ✏
✓

0.001 0.000

0.000 0.002

✛
, Bi ✏

✓
1.000 0.500

0.002 1.000

✛
, Ci ✏

✓
1.000 0.000

0.000 1.000

✛
.

For analysis, we consider an organization matrix derived from a star graph centered in the
first agent: T ✏ D✶♣T oq ✏ rowt1, ✁I✉. Note that, as Ci ✏ I and the systems are identical, the
residual matrix RA is identically zero.

Assume that the agents can only handle communication signals with one unique other agent
at the same time. Therefore, switched algorithms are proposed based on the six graphs (Ga,
Gb, Gc, Gd , Ge, and G f ) of Figure 5.16 and their respective feedback matrices:

La ✏✁L̂♣Gaq, Lb ✏✁L̂♣Gbq, Lc ✏✁L̂♣Gcq,
Ld ✏✁L̂♣Gdq, Le ✏✁L̂♣Geq, L f ✏✁L̂♣G f q.

These matrices define six discrete modes of operation Q ✏ ta,b,c,d,e, f ✉.
First, consider a periodic algorithm with identical residence times for each mode, T♣ı̂q ✏ 0.2,

and the infinitely repeated sequence ☎ ☎ ☎ Ñ a Ñ b Ñ c Ñ d Ñ e Ñ f Ñ a Ñ ☎☎ ☎ . In this case,
the whole cycle matrix ΨΨΨcycle of the system is such that

eig
✥
ΨΨΨcycle

✭✏ t0.3425✟0.0435i,0.3582,0.5784✟0.0190i,0.5817✉ .

Clearly, this algorithm allows the network to reach consensus as the eigenvalues of the cycle
matrix are all within the unitary disc. This can be verified by the simulation shown in Figure
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5.17 a.1) and a.2) where, respectively, the first and second output of the systems are drawn for
an arbitrary initial condition.

Now consider that the network stays in each modes T♣ı̂q ✏ 0.2 time units before randomly
switching to other mode. The switching probabilities from each mode are given by:

πππ�
a ✏

✔
✖✖✖✖✖✖✖✕

0.0000

0.2375

0.2375

0.0500

0.2375

0.2375

✜
✣✣✣✣✣✣✣✢

, πππ�
b ✏

✔
✖✖✖✖✖✖✖✕

0.2375

0.0000

0.2375

0.2375

0.0500

0.2375

✜
✣✣✣✣✣✣✣✢

, πππ�
c ✏

✔
✖✖✖✖✖✖✖✕

0.2375

0.2375

0.0000

0.2375

0.2375

0.0500

✜
✣✣✣✣✣✣✣✢

,

πππ�
d ✏

✔
✖✖✖✖✖✖✖✕

0.0500

0.2375

0.2375

0.0000

0.2375

0.2375

✜
✣✣✣✣✣✣✣✢

, πππ�
e ✏

✔
✖✖✖✖✖✖✖✕

0.2375

0.0500

0.2375

0.2375

0.0000

0.2375

✜
✣✣✣✣✣✣✣✢

, πππ�
f ✏

✔
✖✖✖✖✖✖✖✕

0.2375

0.2375

0.0500

0.2375

0.2375

0.0000

✜
✣✣✣✣✣✣✣✢

.

Applying Theorem (3.6), the following six conditions for stability can be stated:

ΦΦΦ
✶
aP♣πππ�

a qΦΦΦa✁P1 ➔ 0,

ΦΦΦ
✶
bP♣πππ�

b qΦΦΦb✁P2 ➔ 0,

ΦΦΦ
✶
cP♣πππ�

c qΦΦΦc✁P3 ➔ 0,

ΦΦΦ
✶
dP♣πππ�

d qΦΦΦd ✁P4 ➔ 0,

ΦΦΦ
✶
eP♣πππ�

e qΦΦΦe✁P5 ➔ 0,

ΦΦΦ
✶
f P♣πππ�

f qΦΦΦ f ✁P6 ➔ 0.

The monomials of the polynomial ,

P♣αααq ✏ P1α1�P2α2�P3α3�P4α4�P5α5�P6α6 → 0,

are all positive definite matrices, and the transition matrices are defined as

ΦΦΦı̂ ✏ eTC♣BLı̂�AC✁1qT�T♣ı̂q ,

for all ı̂ P ta,b,c,d,e, f ✉. It can be numerically shown that the described conditions are feasi-
ble and therefore the network with this switching rule reaches consensus. For some randomly
generated switching sequence, the evolution of the outputs of the systems with the probabilis-
tic switched algorithm is shown for identical initial conditions as before in Figure 5.17 b.1)
and b.2).
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Figure 5.17.: First and Second Outputs Evolution of Agents in Example 5.8 with a) Periodic Switch-
ing Algorithm, b) Probabilistic Switching Algorithm, and c) Slower Periodic Switching
Algorithm.
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The convergence rate bounds for the periodic algorithm are given by ς ✏ 0.3243 and
ς ✏ 0.5963. If however the same algorithm is implemented with T♣ı̂q ✏ 1.0, then the bounds
become ς ✏ 0.0691 and ς ✏ 0.1667. This shows that by changing the residence time in the
modes, the convergence rate at which consensus is reached can be changed. In this case, in-
creasing the residence time makes the algorithm considerably slower as both bounds are closer
to zero. The time response of the slower algorithm can be seen in Figure 5.17 c). Unfortunately
for probabilistic algorithms, although it can be verified by simulation that changing the resi-
dence times will modify the convergence rate at which consensus is reached, it is not easy to
estimate a priori this change like in the periodic case. �

Unintended Switching

We understand as unintended switching the case where the feedback matrix switches between
M variations of a known ideal or original feedback matrix (derived, for example, from a loop-
less weighted graph). Typically, only a few of these possible matrices allows the network to
reach consensus while the majority only enforces consensus in some sections of the network.

Definition 5.2.8. An unintended switching process is such that it associates with each of the
M discrete modes qı̂ P Q ✏ tq1,q2, ...,qM✉, a feedback matrix Lı̂ P R

Nq✂Nq; a non precisely
known residence time T♣ı̂q :✏ T min

♣ı̂q �∆T♣ı̂q :✏ τk�1✁τk PR�, for all k PN where the algorithm

is switched to mode qı̂, such that T min
♣ı̂q PR� is known and ∆T♣ı̂q P r0,∆T max

♣ı̂q s; and a probability

vector πππ�
ı̂ P ΛM ⑨ R

N in such a way that the probability of switching from mode qı̂ P Q to
mode q̂ P Q at instant τk�1 is 0 ↕ ✏

πππ�
ı̂

✘
̂
↕ 1.

This kind of switching may occur as the result of communication or controller failure. In
these cases, the ideal feedback matrix is instantaneously changed by a similar one selected
from a vast number of possibilities. Given an ideal feedback matrix, the number of variations
that can be considered as a discrete mode increase explosively with the number of agents, of
edges of the original graph, and complexity of the accepted weight function for the edges.
Furthermore, the probabilities of jumping from any of these modes to any other needs to be
well estimated in order to describe the unintended switching process accurately.

Example 5.9. To illustrate the idea of explosion of modes, let us consider N ✏ 2 agents with
an algorithm derived of the unweighted undirected graph that connects both agents. In the
ideal case, the consensus algorithm is described by matrix L01 P R

Nq✂Nq below. Note that
this is a matrix with N2 ✏ 4 blocks. The diagonal ones represent feedback signals within an
agent, while the off diagonal blocks represent signals that are exchanged between the agents.
A simple failure of one of this blocks changes its value from ✟I to 0.
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L01 ✏
✓
✁I I

I ✁I

✛
,

L02 ✏
✓
✁I 0

I ✁I

✛
, L03 ✏

✓
✁I I

0 ✁I

✛
, L04 ✏

✓
0 I

I ✁I

✛
, L05 ✏

✓
✁I I

I 0

✛
,

L06 ✏
✓
✁I 0

0 ✁I

✛
, L07 ✏

✓
0 0

I ✁I

✛
, L08 ✏

✓
0 I

0 ✁I

✛
,

L09 ✏
✓
✁I I

0 0

✛
, L10 ✏

✓
0 I

I 0

✛
, L11 ✏

✓
✁I 0

I 0

✛
,

L12 ✏
✓
✁I 0

0 0

✛
, L13 ✏

✓
0 I

0 0

✛
, L14 ✏

✓
0 0

I 0

✛
, L15 ✏

✓
0 0

0 ✁I

✛
,

L16 ✏
✓

0 0

0 0

✛
.

If one block fails, then there are N2
C1 ✏ 4 possible feedback matrices3, L02, L03, L04, and

L05, that describe four different scenarios. When two blocks fail simultaneously, there are
N2

C2 ✏ 6 matrices (L06 to L11). Three simultaneous failures induce N2
C3 ✏ 4 new scenarios

(L12 to L15) and four failures impose a sixteenth possible feedback matrix L16.
Even for this very simple case, the number of discrete modes that can be defined is consid-

erably large in comparison with the number of agents. More sophisticated examples can also
be named by considering weighted graphs where each edge is associated with a larger set of
possible weight matrices. An interesting case would be that where the communication of only
some of the signals between two agents is interrupted and not all of them. In that case, only
some elements of the weights function would be switched to zero. By adding more agents and
considering different ideal algorithms, the number of possible discrete modes can be easily
incremented. In order to have a realistic description of a switching failure situation, the proba-
bility of jumping from any of these modes to any other must be correctly estimated along with
the residence time at each mode.

3The symbol nCk ✏
�n

k

✟
✏ n!④♣k!♣n✁ kq!q denotes Newton’s binomial coefficient: “choose k out of n”.
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5.2. Other Algorithms

Furthermore, note that these matrices are not always easy to describe through graphs and
therefore it is difficult to study them from that perspective. Also, only some of the matrices
have the zero sum row property so it does not always hold that Lı̂J ✏ 0. �

In the case of intended switching we have restricted the case to feedback matrices derived
of loopless graphs so that Lı̂J ✏ 0 for all ı̂ P Q. This restriction is very convenient to make
the residual matrix independent of the feedback matrices and therefore to avoid the influence
of the states of the agents. However, this condition is not necessarily fulfilled in the case
where the switching between feedback matrices occurs in an unintended way. In general, the
dynamics of the error can be written as the following switched system

✾e ✏ TC
�
BLı̂�AC�✟T�e�TC

✁
BLı̂JC�A

✁
C�JC�C❑♣C❑q✶

✠✠
x

✏ Gı̂e�Rı̂x.
(5.43)

Even when RA ✏ 0, the states of the systems might influence the value of the consensus error.
Therefore, to study consensus under this kind of switching, we must assume the existence
of a security mechanism that ensures that ⑥Rı̂x⑥ ➔ ε♣tq. In other words, a mechanism which
ensures that the effect of the states over the consensus error can be neglected at any time.

This can be achieved from a supervisory perspective quite simply for networks where RA ✏
0, by forcing the feedback matrix to switch to a safe mode ı̂ where Lı̂J ✏ 0, if the system
had stayed too long in a non safe mode ̂ where L̂J ✘ 0. For example, in Example 5.9, if
the communication line from the second agent to the first agent fails during a period longer
than tolerated, that is, if the system stays at L02 for a long time, then the controller forces the
feedback matrix to switch to the safe mode L07 until the failure is repaired and only then it
switches back to L01. This assumption will make the description of the unintended switching
process even more intricate that it would be without it.

In general, stability conditions for this case can be formulated with the help of Theorem
3.7. The main complication is to describe accurately the switching process due to the large
number of discrete modes expected and the uncertainty on the residence time at each mode.
Unfortunately, the stability conditions that can be formulated depend on the assumption that
⑥Rı̂x⑥ ➔ ε♣tq and therefore they cannot be regarded as a formal proof that consensus can be
reached but merely show that it can be reasonably approximated.

Example 5.10. Consider N ✏ 3 agents with dynamics described by:

A1 ✏ 0.02, B1 ✏ 1.00, C1 ✏ 0.20,

A2 ✏ 0.02, B2 ✏ 1.50, C2 ✏ 0.20,

A3 ✏ 0.02, B3 ✏ 0.50, C3 ✏ 0.20.

Note that RA ✏ TCA♣C�JC�C❑♣C❑q✶q ✏ 0, but the agents are not identical. The agents
search consensus through a nominal algorithm described as the negative Laplacian of the
unweighted undirected graph with edges between the first and the second agents and the first
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and the third agent. That is, matrix L01 below. To study consensus the organization matrix
T ✏ rowt1,✁I✉ will be considered.

First consider the case where failures may occur only in the used communication channels
between the agents and not in the feedback from one agent to itself. These signals correspond
to the non diagonal entries of the feedback matrix. Then, there are only four possible failures
in the system: either rL01s12, rL01s13, rL01s21 or rL01s23 switch from 1 to 0. Furthermore,
the agents are capable of detecting a fault almost immediately and change their individual
feedback gain (the diagonal numbers in the algorithm matrix) to always match the zero sum
row property. Therefore, it can be considered that every time a failure occurs, the system
switches instantaneously to an operation mode ı̂ where Lı̂J ✏ 0. Considering that up to four
successive failures may occur, this situation is described by M ✏ 16 discrete operation modes
in Q ✏ t01,02, ...,15,16✉, each one associated with one of the sixteen matrices listed below.

Ideal Algorithm:

L01 ✏
✔
✕✁2 1 1

1 ✁1 0

1 0 ✁1

✜
✢ ,

One Failure:

L02 ✏
✔
✕✁1 0 1

1 ✁1 0

1 0 ✁1

✜
✢ , L03 ✏

✔
✕✁1 1 0

1 ✁1 0

1 0 ✁1

✜
✢ ,

L04 ✏
✔
✕✁2 1 1

0 0 0

1 0 ✁1

✜
✢ , L05 ✏

✔
✕✁2 1 1

1 ✁1 0

0 0 0

✜
✢ ,

Two Failures:

L06 ✏
✔
✕ 0 0 0

1 ✁1 0

1 0 ✁1

✜
✢ , L07 ✏

✔
✕✁1 0 1

0 0 0

1 0 ✁1

✜
✢ , L08 ✏

✔
✕✁1 0 1

1 ✁1 0

0 0 0

✜
✢ ,

L09 ✏
✔
✕✁1 1 0

0 0 0

1 0 ✁1

✜
✢ , L10 ✏

✔
✕✁1 1 0

1 ✁1 0

0 0 0

✜
✢ , L11 ✏

✔
✕✁2 1 1

0 0 0

0 0 0

✜
✢ ,
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Three Failures:

L12 ✏
✔
✕ 0 0 0

0 0 0

1 0 ✁1

✜
✢ , L13 ✏

✔
✕ 0 0 0

1 ✁1 0

0 0 0

✜
✢ ,

L14 ✏
✔
✕✁1 0 1

0 0 0

0 0 0

✜
✢ , L15 ✏

✔
✕✁1 1 0

0 0 0

0 0 0

✜
✢ ,

Four Failures:

L16 ✏
✔
✕ 0 0 0

0 0 0

0 0 0

✜
✢ .

If a failure occurs, and so the system switches to a mode ı̂ ✘ 01, then the probability that
the failure is solved after an uncertain residence time T♣ı̂q P rT min

♣ı̂q ,T min
♣ı̂q �∆T max

♣ı̂q s is 50%. The
probability that after this period, another failure occurs is also 50%. In principle, all four
different failures might occur with the same probability. However the probabilities that, at
a switching instant, a failure is repaired and another different failure occurs, two different
failures occur, or two different failures are repaired, are considered to be neglectable. This
means that from a given mode ı̂ P Q, some other modes are not reacheable in one jump. This
can be seen graphically in Figure 5.18 where a double arrowed edge between modes ı̂ and ̂

represents that a jump may occur from ı̂ to ̂ and vice versa. Jumping downwards in the graph
represents the occurance of a failure and jumping upwards, that the failure is repaired. The
probabilities of these jumps are stated, for each level of arrows, as a tuple ♣pdw, pupq at the
right side of the figure, where pdw is the probability of jumping downwards in the figure and
pup of jumping upwards. For more clarity, the different probabilities are also shown in matrix
ΠΠΠ where the future probability vectors, πππ�

ı̂ , for each mode, are implicitly defined. Element
rΠΠΠsı̂̂ ✏

✏
πππ�

ı̂

✘
̂

should be understood as the probability of switching from mode ı̂ to mode ̂.
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01

02 03 04 05

06 07 08 09 10 11

12 13 14 15

16

♣1④4, 1④2q

♣1④6, 1④4q

♣1④4, 1④6q

♣1④2, 1④4q

First Failure

Second Failure

Third Failure

Fourth Failure

Figure 5.18.: Switching Graph for System in Example 5.10.

ΠΠΠ ✏ col
✥♣πππ�

ı̂ q✶
✭

ı̂PQ

✏

✔
✖✖✖✖✖✖✖✖✖✖✖✖✖✖✖✖✖✕

0 1④4 1④4 1④4 1④4 0 0 0 0 0 0 0 0 0 0 0
1④2 0 0 0 0 1④6 1④6 1④6 0 0 0 0 0 0 0 0
1④2 0 0 0 0 1④6 0 0 1④6 1④6 0 0 0 0 0 0
1④2 0 0 0 0 0 1④6 0 1④6 0 1④6 0 0 0 0 0
1④2 0 0 0 0 0 0 1④6 0 1④6 1④6 0 0 0 0 0
0 1④4 1④4 0 0 0 0 0 0 0 0 1④4 1④4 0 0 0
0 1④4 0 1④4 0 0 0 0 0 0 0 1④4 0 1④4 0 0
0 1④4 0 0 1④4 0 0 0 0 0 0 0 1④4 1④4 0 0
0 0 1④4 1④4 0 0 0 0 0 0 0 1④4 0 0 1④4 0
0 0 1④4 0 1④4 0 0 0 0 0 0 0 1④4 0 1④4 0
0 0 0 1④4 1④4 0 0 0 0 0 0 0 0 1④4 1④4 0
0 0 0 0 0 1④6 1④6 0 1④6 0 0 0 0 0 0 1④2
0 0 0 0 0 1④6 0 1④6 0 1④6 0 0 0 0 0 1④2
0 0 0 0 0 0 1④6 1④6 0 0 1④6 0 0 0 0 1④2
0 0 0 0 0 0 0 0 1④6 1④6 1④6 0 0 0 0 1④2
0 0 0 0 0 0 0 0 0 0 0 1④4 1④4 1④4 1④4 0

✜
✣✣✣✣✣✣✣✣✣✣✣✣✣✣✣✣✣✢

.

As for the residence times, we consider that for all ı̂ P Q③t01✉ these are described by iden-
tical bounds: T min

♣ı̂q ✏ 1.0 and ∆T max
♣ı̂q ✏ 0.5. For the nominal mode 01, we consider a fixed

residence T♣ı̂q ✏ 1.5.
With this long specification of the switching process, Theorem 3.7 can be applied to in-

vestigate consensus. This leads to one q♣N ✁1q✂q♣N ✁1q ✏ 2✂2 matrix inequality and 15
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Figure 5.19.: Output evolution of the network in Example 5.10 under a) Ideal non-switching Algorithm,
and b) Unintended Switching Algorithm.

matrix inequalities of dimension 3q♣N ✁ 1q✂ 3q♣N ✁ 1q ✏ 6✂ 6. This inequalities consider
16 Lyapunov 2✂ 2 matrix variables, 15 X-type 2✂ 2 matrix variables, 15 Y-type 2✂ 2 ma-
trix variables, and 15 η-type scalar variables. These inequalities can be tested numerically for
feasibility to verify that consensus can be reached with this switching specification. Figure
5.19 shows the behavior of the network in the ideal case without failures and with a random
switching sequence that fulfills the specified properties. �

Example 5.11. Now consider the same N ✏ 3 agents but in another switching scenario. This
time, if a failure occurs, the controllers at each agent do not react instantaneously. Therefore,
a short gap of time is considered where Lı̂J ✘ 0 before the algorithm is switched again to a
“safe” mode. In principle all four failures may occur. However, for simplicity, we will consider
that, given a failure that breaks the connection from agent i to agent j, then the probability that
a second failure occurs is neglectable except for the one that breaks the connection from agent
j to agent i. A third failure cannot occur. In the case of a second failure, the controllers also
need some time to move to a safe algorithm. Only from safe algorithms, the network can jump
again to the ideal algorithm. This specification leads to 15 discrete modes associated with the
matrices listed below.

Ideal Algorithm:

L01 ✏
✔
✕✁2 1 1

1 ✁1 0

1 0 ✁1

✜
✢ ,
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One Failure:

L02 ✏
✔
✕✁2 0 1

1 ✁1 0

1 0 ✁1

✜
✢ , L03 ✏

✔
✕✁2 1 0

1 ✁1 0

1 0 ✁1

✜
✢ ,

L04 ✏
✔
✕✁2 1 1

0 ✁1 0

1 0 ✁1

✜
✢ , L05 ✏

✔
✕✁2 1 1

1 ✁1 0

0 0 ✁1

✜
✢ ,

One Failure - Safe Modes:

L06 ✏
✔
✕✁1 0 1

1 ✁1 0

1 0 ✁1

✜
✢ , L07 ✏

✔
✕✁1 1 0

1 ✁1 0

1 0 ✁1

✜
✢ ,

L08 ✏
✔
✕✁2 1 1

0 0 0

1 0 ✁1

✜
✢ , L09 ✏

✔
✕✁2 1 1

1 ✁1 0

0 0 0

✜
✢ ,

Two Failures:

L10 ✏
✔
✕✁1 0 1

0 ✁1 0

1 0 ✁1

✜
✢ , L11 ✏

✔
✕✁1 1 0

1 ✁1 0

0 0 ✁1

✜
✢ ,

L12 ✏
✔
✕✁2 0 1

0 0 0

1 0 ✁1

✜
✢ , L13 ✏

✔
✕✁2 1 0

1 ✁1 0

0 0 0

✜
✢ ,

Two Failures - Safe Modes:

L14 ✏
✔
✕✁1 0 1

0 0 0

1 0 ✁1

✜
✢ , L15 ✏

✔
✕✁1 1 0

1 ✁1 0

0 0 0

✜
✢ .

The possible switching sequences are described graphically in Figure 5.20 and the switch-
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01

02 04 03 05

06 10 08 12 07 11 09 13

14 15

01

Figure 5.20.: Switching Graph for System in Example 5.11.

ing probabilities are given by the following matrix,

ΠΠΠ ✏ col
✥♣πππ�

ı̂ q✶
✭

ı̂PQ

✏

✔
✖✖✖✖✖✖✖✖✖✖✖✖✖✕

0 1④4 1④4 1④4 1④4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1④4 0 0 0 3④4 0 0 0 0 0
0 0 0 0 0 0 1④4 0 0 0 3④4 0 0 0 0
0 0 0 0 0 0 0 1④4 0 0 0 3④4 0 0 0
0 0 0 0 0 0 0 0 1④4 0 0 0 3④4 0 0

1④4 0 0 0 0 0 0 0 0 3④4 0 0 0 0 0
1④4 0 0 0 0 0 0 0 0 0 3④4 0 0 0 0
1④4 0 0 0 0 0 0 0 0 0 0 3④4 0 0 0
1④4 0 0 0 0 0 0 0 0 0 0 0 3④4 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

✜
✣✣✣✣✣✣✣✣✣✣✣✣✣✢

.

Ignoring the switching residual matrix Rı̂, with a fixed residence time for the ideal mode,
T♣1q ✏ 1.5, and,

T min
♣ı̂q ✏ 0.10, ∆T max

♣ı̂q ✏ 0.050, for ı̂ P t2,3,4,5✉,

T min
♣ı̂q ✏ 0.20, ∆T max

♣ı̂q ✏ 0.100, for ı̂ P t6,7,8,9✉,

T min
♣ı̂q ✏ 0.05, ∆T max

♣ı̂q ✏ 0.025, for ı̂ P t10,11,12,13✉,

T min
♣ı̂q ✏ 0.30, ∆T max

♣ı̂q ✏ 0.150, for ı̂ P t14,15✉,
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Figure 5.21.: Output evolution of the network in Example 5.11 under Unintended Switching Algorithm.

the inequalities resulting of Theorem 3.7 can be tested feasible. However, due to “unsafe”
modes where Lı̂J ✘ 0, this is not a prove that consensus can be reached. In Figure 5.21 a
simulation of the network under a random sequence of jumps with specified probabilities is
shown. From here is clear that, at moments, the effect of the unsafe modes drives the system
away from the consensus objective although a general tendency to consensus can be observed.
This effect can, eventually, move the agents too far away from each other making impossible
reaching consensus in the close future. This is more relevant when the state dynamics of the
network are unstable. �
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5.3. Generalized Dynamics

In this section, some direct generalizations of the previous discussions are shown. First, each
agent is generalized by including a proportional term in the transfer function matrix of each
agent. Then the case of higher order dynamics is studied. In all these cases, expressions for
the dynamics of the error and the states are derived. Finally, a discussion on the effect of
communication dynamics over the consensus error is stated.

5.3.1. Direct Input over Output

Up to now, only dynamical input/output relationships have been considered. That is, systems
where yi ✏ Cixi. Consider now a different kind of agent defined as:

Definition 5.3.1. An autonomous agent with direct output (DA) is an autonomous agent i P V

with individual dynamics described by:

✾xi ✏Aixi�Biui

yi ✏Ciixi�Diui
(5.44)

With Ai P Rni✂ni , Bi P Rni✂q, row full rank Ci P Rq✂ni , and a matrix Di P Rq✂q that models a
direct relationship between the inputs and the outputs of the system.

Note that we consider here that the number of input of each system is the same as the
number of outputs. A network composed only of this kind of agents will be referred to as a
Direct Agents Network.

Definition 5.3.2. A Direct Agents Network (DAN) is a network composed only of DA with
dynamics described by:

✾x ✏ Ax�Bu

y ✏ Cx�Du
(5.45)

Where, A ✏ diagtAi✉N
i✏1, B ✏ diagtBi✉N

i✏1, C ✏ diagtCi✉N
i✏1 and D ✏ diagtDi✉N

i✏1.

The consensus error described through an organization matrix T ✏ D✶♣T oq with a directed
tree T o is:

e ✏ Ty ùñ y ✏ T�e�Jy

A consensus algorithm derived from an undirected graph without selfloops L ✏ ✁L̂♣Gwq is
considered so that:

u ✏ Ly ùñ ✾u ✏ L ✾y (5.46)

u ✏ L
�
T�e�Jy

✟✏ LT�e ùñ ✾u ✏ LT� ✾e (5.47)
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The dynamics of the error are given by:

✾e✏ TCAx�TCBLT�e�TD ✾u

Using (5.46),

✾u✏ L ✾y✏ L♣C ✾x�D ✾uq
♣I✁LDq ✾u✏ LCAx�LCBLT�e

✾u✏ ♣I✁LDq✁1
LC

�
Ax�BLT�e

✟
,

assuming that ♣I✁LDq✁1 exists. So,

✾e✏ TCAx�TCBLT�e�TD♣I✁LDq✁1
LC

�
Ax�BLT�e

✟
✾e✏ T

✑
I�D♣I✁LDq✁1

L
✙

C
✏
Ax�BLT�e

✘
.

Note that I�D♣I✁LDq✁1
L✏ ♣I✁DLq✁1 (see Proposition A.10 in the Appendix), and so:

✾e✏ T♣I✁DLq✁1
CBLT�e�T♣I✁DLq✁1

CAx. (5.48)

Considering the right pseudoinverse C� PRn✂Nq, so that CC� ✏ I and C�C✏ I✁C❑♣C❑q✶,
with CC❑ ✏ 0 and ♣C❑q✶C❑ ✏ I, then

y✏ Cx�Du ùñ C�y✏ x✁C❑♣C❑q✶x�C�Du

ùñ x✏ C� �
T�e�Jy

✟�C❑♣C❑q✶x✁C�DLT�e

ùñ x✏ C� ♣I✁DL�JDLqT�e�
✁

C�JC�C❑♣C❑q✶
✠

x.

Therefore, (5.48) becomes:

✾e✏T♣I✁DLq✁1
C
�
BL�AC� ♣I✁DL�JDLq✟T�e� ...

...�T♣I✁DLq✁1
CA

✁
C�JC�C❑♣C❑q✶

✠
x.

(5.49)

Alternatively, using (5.47) the error dynamics can be expressed as

✾e ✏ TCAx�TCBLT�e�TDLT� ✾e�
I✁TDLT�

✟
✾e ✏ TCAx�TCBLT�e

✾e ✏ �
I✁TDLT�

✟✁1
TCAx� �

I✁TDLT�
✟✁1

TCBLT�e

Note that
�
I✁TDLT�

✟✁1 ✏ I�TD
�
I✁LT�TD

✟✁1
LT� and as LT�T✏ L,�

I✁TDLT�
✟✁1

T ✏
✑
I�TD

�
I✁LT�TD

✟✁1
LT�

✙
T�

I✁TDLT�
✟✁1

T ✏ T
✑
I�D♣I✁LDq✁1

L
✙

�
I✁TDLT�

✟✁1
T ✏ T♣I✁DLq✁1
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5.3. Generalized Dynamics

And from here equation (5.49) can easily be obtained.
As u ✏ Ly ✏ L♣Cx�Duq ùñ u ✏ ♣I✁LDq✁1

LCx, the dynamics of the error can be
written as:

✾x✏
✁

A�B♣I✁LDq✁1
LC

✠
x (5.50)

Note that when D✏ 0, equations (5.49) and (5.50) are equivalent to what has been studied
before. However, the introduction of matrix D makes these expressions to be strongly non
linear with respect to the algorithm matrix L. Therefore, although it can be used for consensus
analysis, it is not straight forward to derive LMI conditions suitable for algorithm design.

For analysis simplicity, the following matrices can be defined:

GD ✏ T♣I✁DLq✁1
C
�
BL�AC� ♣I✁DL�JDLq✟T�

RD ✏ T♣I✁DLq✁1
CA

✁
C�JC�C❑♣C❑q✶

✠
Acl,D ✏ A�B♣I✁LDq✁1

LC

From here, similar arguments as those exposed in Section 5.1.2 can be used to determinate if
consensus can be reached in specific cases. Particularly, necessary conditions are that matrix
GD is Hurwitz and that the signal rD ✏ RDx is either zero or vanishes with time.

Example 5.12. Consider N ✏ 10 agents with identical individual dynamics given by:

Ai ✏
✓
✁0.1 0.1

0.1 0.0

✛
, Bi ✏

✓
1.0

1.0

✛
, Ci ✏

✑
0.5 0.5

✙
, Di ✏ 1.

That is, the same as network e) in Example 5.3 but with D✏ I instead of zero. In that example
it was shown that considering the two consensus algorithms, Lg ✏✁L̂♣G q and Lt ✏✁L̂♣Twq,
and the organization T✏ D♣T oq derived from Figure 5.5, the network reaches dynamic con-
sensus as the residual signal r ✏ RAx vanishes with time even though x does not. However,
including matrix D ✏ I, the residual signal rD ✏ RDx does not vanishes although GD is Hur-
witz and Acl,D has only one unstable eigenvalue in both cases, which implies that consensus in
the long term cannot be reached. This can be seen in the simulation results depicted in Figure
5.22 where the errors between the outputs of the systems (e✏ Ty) are shown under the same
conditions as in Example 5.3. �

5.3.2. Higher Order Dynamics

Up to this point, a fundamental assumption in all the discussed cases is that the product CB

is full rank. In an AAN, that is only possible if for all i P V , CiBi ✘ 0. If this is not the case,
then there are some elements of the error e in an AAN that do not depend on the consensus
algorithm L. In the extreme case when CB✏ 0, then GA✏TC

�
BL�AC�✟T�✏TCAC�T�

allowing the systems to reach consensus dependent only on the characteristics of matrices A
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Figure 5.22.: Error evolution of the network in Example 5.12 under a) algorithm Lg ✏ ✁L̂♣G q and b)
Lt ✏✁L̂♣Twq.

and C. The rate at which consensus is then reached does not depend on the chosen algorithm
but merely on the dynamics of the agents.

This situation is not as unusual as desired. Consider for example a network composed only
of AA with dynamics described by the canonical second order transfer function:

yi♣sq ✏ kiωi

s2�2ωiζis�ω2
i

ui♣sq.

Their controllable canonical realization in the space of states is given by the matrices:

Ai ✏
✓

0 1

✁ω2
i ✁2ωiζi

✛
, Bi ✏

✓
0

1

✛
, Ci ✏

✑
kiωi 0

✙
. (5.51)

Clearly, CiBi ✏ 0 ùñ CB ✏ 0 implying that consensus depends only on the poles of each
agent. It can be further shown, that for transfer function of relative order greater than one
(i.e., where the difference between the number of poles and zeros of the transfer function is
more that one), then the product CiBi is always zero and consensus, for these agents, can-
not be directly controlled. This fact makes consensus especially vulnerable to perturbations,
uncertainties and other contradicting control objectives.

In an intuitive way, a strategy to deal with this problem is to “decrease” the order of the
plant. That is, to include derivative terms in the control strategy so that the overall trans-
fer function of each agent has a relative order of exactly one. This reminds naturally of a
proportional-derivative (PD) controller and can, in practice, present the same implementation
restrictions. Namely, the derivative of a quantity can only be approximated by analogous cir-
cuits but not exactly determined. However, in the special case where the states of the agents
are available for feedback, the derivative of the output can be easily calculated. Therefore, in
this section we would assume that each agent can obtain the exact value of the derivative of
its output and communicate it to other agents without problems.
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Figure 5.23.: Proportional Derivative Consensus Algorithm a) with Ideal Derivative Block, b) with
States Feedback Implementation.

A PD-type consensus algorithm is proposed in the block diagram of Figure 5.23 a). Here the
input of the agents is composed of the sum of a proportional and a derivative signal described
by the equation

u ✏ LPy�LD ✾y. (5.52)

Where LP ✏ ✁L̂♣GPq P R
Nq✂Nq and LD ✏ ✁L̂♣GDq P R

Nq✂Nq are two (possibly different)
feedback matrices obtained from the undirected weighted graphs GP and GD. Note that if
CB ✏ 0,

✾y ✏ C ✾x ✏ CAx�CBu ✏ CAx.

Therefore, if there is access to the states vector x, the derivative of the outputs can be precisely
calculated by a simple matrix multiplication as in Figure 5.23 b). For an AAN, this calculation
can be distributed in the agents as the product CA ✏ diagtCiAi✉iPV is block diagonal. Under
this assumption it is not necessary to approximate the derivative of the output to use it for
feedback. In more restrictive cases when the vector x is not available, a states observer strategy
can still be followed to obtain a good approximation of the derivative of the output without
the need to approximate it directly from the output.

Note that the inverse relationships between the error defined by an organization matrix
T ✏ D✶♣T oq and the output of the system, and their respective derivatives are

e ✏ Ty ùñ y ✏ T�e�Jy

✾e ✏ T ✾y ùñ ✾y ✏ T�
✾e�J ✾y.

From here, equation (5.52) can be rewritten as

u ✏ LPy�LD ✾y

✏ LP♣T�e�Jyq�LD♣T�
✾e�J ✾yq

✏ LPT�e�LDT�
✾e.
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5. Consensus Algorithms

For the consensus analysis of the network with the described strategy, it is not enough to
obtain the expression of the derivative of the error as the product CB✏ 0 makes it independent
of the value of the input. Indeed,

✾e✏ TC ✾x✏ TCAx�TCBu✏ TCAC�T�e�TCA♣C�JC�C❑♣C❑q✶qx.

To solve this problem, consider the fact that if a system reaches consensus, then it stays in
consensus. i.e. e✏ 0ñ ✾e✏ 0 as shown at the end of Section 4.2.3. This implies that imposing
stability of the aggregation of vector e and its derivative, is in fact not more restrictive than
imposing stability of only e. To make use of this, let us introduce the following auxiliary
variable:

z :✏ ✾e✏ T ✾y✏ TC ✾x✏ TCAx

Its derivative is,

✾z✏ TCA ✾x✏ TCA2x�TCABu

✏ TCA2C�T�e�TCA2
✁

C�JC�C❑♣C❑q✶
✠

x�TCAB
�
LPT�e�LDT�z

✟
✏ TCA

�
AC��BLP

✟
T�e�TCABLDT�z�TCA2

✁
C�JC�C❑♣C❑q✶

✠
x

From here, consensus can be studied by testing stability of the following enlarged system:✓
✾e

✾z

✛
✏
✓

0 I

TCA
�
AC��BLP

✟
T� TCABLDT�

✛✓
e

z

✛
�
✓

0

TCA2
�
C�JC�C❑♣C❑q✶✟

✛
x

Note that the system matrix in the previous expression depends on the feedback matrices LP

and LD only if CAB ✘ 0. If that is not the case, then consensus cannot be controlled. Again,
this happens when the relative order of the transfer functions of the agents is too large. For ex-
ample, in the controllable canonical realization of a third order transfer function, CiAiBi ✏ 0.
Intuitively, the explanation of this is simple. Introducing one derivative block in the algorithm
decreases the relative order of the plant in only one unit. Thus, to completely control consen-
sus in a network with agents of relative order o PN, o✁1 derivative terms should be included
in the feedback law of higher order agents. Furthermore, stability then needs to be verified not
only over the first derivative of the error, but on the first o✁1 derivatives. For simplicity, we
will not expressly address these higher order cases.

In the cases where the product TCA2
�
C�JC�C❑♣C❑q✶✟x does not vanish, then the dy-

namics of the states need also to be taken into account as in the previous sections. For a PD-
type algorithm, replacing (5.52) into the expression of the dynamics of the states ✾x✏Ax�Bu,
with CB✏ 0, one obtains directly:

✾x✏ Ax�B♣LPCx�LDC ✾xq
✏ Ax�BLPCx�BLDC♣Ax�Buq
✏ ♣A�BLPC�BLDCAqx.
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Figure 5.24.: a) Organization Tree T o, b) Unweighted Tree T for Example 5.13.

Example 5.13. Consider N ✏ 15 identical double order agents with dynamics described by
the matrices in (5.51). The parameter values of the agents are given by ki ✏ 3.00, ζi ✏ 0.25
and ωi ✏ 0.10, ❅i P V . The transfer function of the agents has poles given by eigtAi✉ ✏
t✁0.0250✟0.0968i✉. That is, the systems are stable but oscillatory.

The organization matrix to be considered is derived from the directed tree in Figure 5.24 a).
The proportional and derivative gains of the PD-type algorithm are obtained from weighted
graphs TP and TD, that have the same shape of the unweighted graph in Figure 5.24 b), with
weight functions that gives to all edges in TP the weight wP ✏ 10 and to all edges in TD the
weight wD ✏ 100.

In this case we obtain that the system matrix,

GPD :✏
✓

0 I

TCA
�
AC��BLP

✟
T� TCABLDT�

✛
,

is Hurwitz as it only has real eigenvalues from which the largest is λPD ✏✁0.1. Even though
RA ✘ 0, the residual signal r ✏ RAx vanishes as matrix A�BLPC�BLDCA is also Hur-
witz, but with conjugate complex eigenvalues. From this analysis, it can be concluded that
consensus will be reached with the proposed PD-type algorithm.

This is verified by the simulations shown in Figure 5.25 a) and b), where the evolution of
the outputs of the network are shown for an arbitrary initial condition with an ideal derivative
block in a) and a states feedback block in b). In Figure 5.25 c), the response of the network with
only the proportional part of the controller is shown (that is, when LD ✏ 0). In d) the response
of the network with only the derivative part is shown (when LP ✏ 0). From these figures it is
clear that consensus cannot be reached successfully only by considering the proportional or
derivative part of the algorithm. �
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Figure 5.25.: Output evolution of the network in Example 5.13 under a) PD-type algorithm with ideal
derivative block, b) PD-type algorithm with states feedback, c) P-type algorithm, and d)
D-type algorithm with states feedback.
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5.3. Generalized Dynamics

5.3.3. Communication Constrains

Up to this point, and in most of the consensus related references, consensus is studied making
emphasis on the algorithmic properties of the control feedback. That is to answer the ques-
tion which information needs to be shared in order to reach consensus? This however does
not describe the information sharing process. In this sense, a feedback law u ✏ Ly as studied
before, does not model the communications links between the agents, but merely describes
which signals need to be shared. Even though a consensus algorithm implies in most cases
that certain signals need to be communicated between the agents, the communication process
itself is assumed to be ideal and only dynamical behaviors of the agents are considered. How-
ever, in more realistic scenarios, it is sometimes necessary to explicitly model communication
constrains.

To study the role of communication on a given network, with a given consensus algorithm,
is to answer the question, how the information is shared? Which dynamical processes affect
the information while it travels from one agent to the other. This fundamental difference be-
tween what is shared and how it is shared, is sometimes overseen making the study of such
problems confusing. The idea of the separation between an intended algorithm and the com-
munication behavior can already be observed in Section 5.2.3 where switching algorithms are
studied. In the unintended switching case, we deal with the possibility that communication
channels temporary fail, preventing to implement the chosen nominal algorithm.

This case also gives some hints on the main complication of studying communication dy-
namics separately. In general, even for networks that reach consensus in the ideal case, when
the communication dynamics are considered, the residual signal is modified by the dynamics
of the communication channels (e.g. by the failures in the unintended switching case). Thus,
there is no guarantee that consensus can be reached. As with AANs, it is difficult to charac-
terize consensus a priori by a single numerical indicator. This is further complicated as the
residual signal might not only depend on the characteristics of the network or the channels,
but also on the chosen algorithm.

Coming back to the general model described in Section 4.1.1, to study the communication
process is to deal with the characteristics of the block labeled Communication Channels in
Figure 4.1. This block can be modeled with more detail as a collection of point-to-point com-
munication channels that can be subjected to different kind of dynamical behavior such as
switching failures, filtering, noise, uncertainties, or delays. In a network of N agents, there
are N2 possible point-to-point communication channels counting the feedback channel of
each system to itself. Whether these channels are used by the consensus algorithm or not,
is independent of their dynamical characteristics and therefore a differentiation between the
algorithm and the implementation of the communication process must be made.

A communication channel ♣i, jq P V ✂V from agent i to agent j is a (possibly) dynamical
system such that its input is a measurement of the output of system i and its output is an input
for the controller of agent j. The set of all N2 possible communication channels is denoted
H ✏V ✂V . For convenience of notation, as in [35], a communication channel can be labeled
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Figure 5.26.: Communication channels.

by an auxiliary index k ✏ ♣i✁1qN� j P ✥1, ...,N2
✭

, where i is the system sending a signal to
system j through the communication channel k. Note that as ♣i, jq P V ✂V , the pair ♣i, jq can
always be obtained from k ✏ ♣i✁1qN� j, i.e. ♣i, jq ðñ k.

From here, we define N2 vectors ŷk P R
q that represent the communicated signals from

system i to system j. A schematic representation of the communication channels between
agent i to agent j, and their respective labeling, can be seen in Figure 5.26. Taking this into
consideration, the feedback signal u can be characterized by the control law

u✏ L̂ŷ

where ŷ✏ coltŷk✉N2

k✏1 PRN2q and L̂ PRNq✂N2q is obtained from an ideal consensus algorithm
described by L P RNq✂Nq in equation (5.2) in the following way:

L̂✏
N➳

i✏1

sis
✶
iLSi (5.53)

Where, si P RNq✂q is a block column vector of N blocks with zeros everywhere but in the i-th
block element that is the identity matrix Iq, so that 1✏➦N

i✏1 si. Additionally, Si ✏ diagts✶i✉N
ı̂✏1

so that S✏➦N
i✏1 Si ✏ diag

✥
1✶
✭N

ı̂✏1
. ı̂ P V is an auxiliary index different from i P V . From here,

124



5.3. Generalized Dynamics

tA,B,C✉
Interconnected

Network

�
L̂

Consensus

Algorithm

Communication

Channels

yu

ŷ
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Figure 5.27.: Consensus under communication constrains block diagram.

the feedback signal u can be written as:

u ✏

✔
✖✖✖✖✕

✁∆11ŷ1 W12ŷ2 ☎ ☎ ☎ W1N ŷN

W21ŷN�1 ✁∆22ŷN�2 ☎ ☎ ☎ W2N ŷ2N
...

...
. . .

...

WN1ŷ♣N✁1qN�1 WN2ŷ♣N✁1qN�2 ☎ ☎ ☎ ✁∆NN ŷN2

✜
✣✣✣✣✢1N✂1 (5.54)

Note the similarity with the expression in equation (5.2). In the ideal case where all communi-
cation channels are modeled as the identity function, the feedback signal becomes u ✏ L̂ŷ ✏
Ly. A schematic representation of a non ideal consensus algorithm can be seen in Figure 5.27.

By expressly modeling each of the N2 signals ŷk, consensus can be studied under various
cases including filtering, delays, noise and uncertainties. As can be supposed from the def-
inition of matrix L̂, this is often laborious and demanding in notation. However, the main
problem is that the communicated signals are dynamical functions of the outputs of the sys-
tems, i.e. ŷ ✏Com♣t,yq. Therefore, there is no guarantee that the feedback signal u can be ex-
pressed as a function of the error only, even when in the ideal case u ✏ LT�e�LJy ✏ LT�e.
In general, u is a dynamical function of L̂, e, x, and time. Thus, a residual signal, different
from that of the ideal case, is always present in the expression for the dynamics of the er-
ror, ✾e ✏ TCBu�TCAC�T�e�TCA

�
C�JC�C❑♣C❑q✶✟x. As seen in the AAN case, this

makes it difficult to study consensus in general.

Example 5.14. To exemplify the influence of the states in the search for consensus under
different dynamical communication cases, consider N ✏ 4 identical agents described ❅i P
t1,2,3,4✉ by

Ai ✏
✓

0.01 0.00

0.00 ✁0.02

✛
, Bi ✏

✓
1.00 0.50

0.30 1.00

✛
, Ci ✏ I2✂2.

Note that, as all agents are identical and matrix Ci is square and non-singular. Thus, the resid-
ual matrix in the ideal case is identically zero for any organization: RA ✏ TCAC✁1JC ✏
TJCAC✁1C ✏ 0.
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Figure 5.28.: Algorithmic undirected unweighted graphs Gi, with i P ta,b,c,d✉, for Example 5.14.

Consider four algorithms derived as negative Laplacian matrices of the loopless unweighted
undirected graphs in Figure 5.28: Li ✏✁L̂♣Giq with i P ta,b,c,d✉. In the ideal case, all these
algorithms make the respective system matrix GA ✏TC

�
BL�AC�

✟
T� to be Hurwitz, there-

fore they allow to reach consensus. We consider also an organization centered in the first agent
with a matrix T ✏ rowt1,✁I✉.

As all agents are the same and the algorithms are derived from isomorphic graphs, any given
set of initial conditions can be permuted in such a way that the time response of the network
under different algorithms is equivalent. That is, that each trajectory followed by the agents
under the action of one algorithm, is exactly replicated by other agent when other algorithm
is considered. This can be seen in Figure 5.29. Note that the four plots, corresponding to the
four different controllers, are identical except for the agents assigned to each initial condition
(i.e., the colors of the lines are different). Observe further that in all cases, the network reaches
consensus.

Now consider that the communication channels are modeled so that only feedback channels
are ideal. Consider that the rest of the channels is modeled by first order dynamical filters:

✾ŷk ✏✁ 1

τk
ŷk �

1

τk
yi,

with k ✏ ♣i✁1qN� j, and

τk ✏

✩✬✬✬✬✫
✬✬✬✬✪

4.00, ♣i, jq P t♣1,2q,♣2,1q✉
2.00, ♣i, jq P t♣2,3q,♣3,2q✉
2.50, ♣i, jq P t♣3,4q,♣4,3q✉
1.50, ♣i, jq P t♣1,4q,♣4,1q✉

Because of the dynamics of the channels, the network behaves differently as in the ideal case.
This can be seen in Figure 5.30 where the time responses of the network with the non-ideal
algorithms are depicted under identical initial conditions for the states and zero initial condi-
tions for the dynamical communication channels. From the plots it is not clear if the networks
reach consensus in all cases.
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Consider now that the non ideal channels are described through delays of the input signal
such that

ŷk♣tq ✏

✩✬✬✬✬✫
✬✬✬✬✪

yi♣t ✁0.90q, ♣i, jq P t♣1,2q,♣2,1q✉
yi♣t ✁0.30q, ♣i, jq P t♣2,3q,♣3,2q✉
yi♣t ✁0.50q, ♣i, jq P t♣3,4q,♣4,3q✉
yi♣t ✁0.20q, ♣i, jq P t♣1,4q,♣4,1q✉

,

with k ✏ ♣i✁1qN� j.
Stability conditions can be formulated for the time delayed error, when the residual signal

is neglected. This can be done in an LMI framework through Lyapunov-Krasovskii functions.
Some examples in this area are [85, 92–94, 97, 110, 114]. However, in spite of these condi-
tions, under identical simulation conditions as in the ideal case, from Figure 5.31 it is also
not clear that the network reaches consensus for all equivalent algorithms. This shows that the
effect of the states and the residual signal cannot be simply ignored to study consensus.

Slightly different is the case where the channels are affected by noise. In this case,

ŷk ✏ yi�νknk,

where k ✏ ♣i✁ 1qN � j, nk P R
q are unknown white noise vectors that are uncorrelated with

each other, and νk is a known parameter of the channel that represents the standard deviation
of the noise. A large value for νk implies a noisier channel. Here, the noise signal can be
considered as an external randomly distributed perturbation added to the transmitted signal
and therefore an H✽-norm argument can be followed to categorize different algorithms by
defining a transfer function between the aggregation of the noise signals and the error.

For this example, the non-ideal channels are such that they are affected by noise with the
following parameters

νk ✏

✩✬✬✬✬✫
✬✬✬✬✪

0.1, ♣i, jq P t♣1,2q,♣2,1q✉
0.3, ♣i, jq P t♣2,3q,♣3,2q✉
0.8, ♣i, jq P t♣3,4q,♣4,3q✉
0.7, ♣i, jq P t♣1,4q,♣4,1q✉

.

The network is simulated under identical conditions as before but considering the noisy chan-
nels. This can be seen in Figure 5.32. Clearly, the presence of noise makes it impossible to
reach consensus, however choosing different algorithms makes it possible to minimize this ef-
fect. In particular, the simulation indicators ISD and IAD in all four cases are shown in Table
5.4 along with the H✽-norm of the transfer function between the noise and the error. It is clear
that a better performance is explained by a lower value of the norm.

From these examples it becomes clear that the effect of the residual signals cannot be simply
neglected when studying consensus under communication constrains. This makes it hard to
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5. Consensus Algorithms

Table 5.4.: Performance of different algorithms under noisy communication in Example 5.14.

Algorithm ⑥Hne♣sq⑥✽ ISD♣30q IAD♣30q
La 1.597554 26.761442 65.060689

Lb 1.822130 26.877189 65.749193

Lc 1.084465 25.901879 63.286071

Ld 1.254586 26.217052 63.852563

predict the behavior of the network in advance by only considering the parameters of the
dynamical behavior of the communications channels. Further development needs to take place
to study these issues in more detail. �
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Figure 5.29.: Outputs evolution for the network analyzed in Example 5.14 with ideal communication
and algorithms a) La, b) Lb, c) Lc, and d) Ld .
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Figure 5.30.: Outputs evolution for the network analyzed in Example 5.14 with filtered communication
and algorithms a) La, b) Lb, c) Lc, and d) Ld .
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Figure 5.31.: Outputs evolution for the network analyzed in Example 5.14 with delayed communication
and algorithms a) La, b) Lb, c) Lc, and d) Ld .
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Figure 5.32.: Outputs evolution for the network analyzed in Example 5.14 with noisy communication
and algorithms a) La, b) Lb, c) Lc, and d) Ld .
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✻
Power Consensus in Microgrids

Microgrids are a promising solution for the integration of renewable power sources into the
existing energetic matrix and for energy supply of remote areas, where significant social im-
pact can be achieved [177]. Therefore, during recent years, this technology has garnered a lot
of attention from the control community. Some recent examples of publications related to the
many technical challenges of microgrids are [174, 178–180, 185]. This chapter is related to
the thesis [182] and the associated papers [181, 183, 184]. However, a different perspective is
followed here as the control of microgrids is seen as an application of the concepts studied in
the previous chapters and not as a goal in itself.

Besides frequency and voltage stability of the grid, an important control topic is (active
or reactive) power sharing. This is understood as the ability of all connected three-phase
generation units to supply the demanded steady state power in a predefined proportion. That
is, to share the demanded load at an equivalent rate of the total capability of each generation
unit. The advantage of achieving this control objective lies in the possibility of predefining
operational set points for all generation units in order to avoid overload or operation under
the allowed minimum. This can be translated into a consensus problem where the generation
units play the role of the agents and the normalized power is the output variable.

In traditional synchronous machine based grids, active power sharing is achieved by what
is known as droop control. This is a set of proportional controllers, each implemented in every
generation unit, without communication between them. A similar approach has been proposed
by researchers for AC inverter based microgrids. In this chapter, we first adopt this approach
to study active power sharing, extending the results to analyze and design possible communi-
cation links between different generation units. In the second part of this chapter, the case of
reactive power sharing is studied by following the approach in [181], where communication
between the inverters is proposed as an alternative to voltage droop control. In both cases, the
problem is formulated in a consensus based framework.

6.1. Microgrid Modeling

A microgrid can be interpreted as an undirected graph G ✏ ♣V ,E ,wq where each electrical
node i P V is a vertex and the transmission lines are weighted edges. For the analysis of
a microgrid, it is a common assumption to consider grids composed only of active nodes,
i.e. nodes where voltage regulation can be done. This can be achieved by a Kron reduction
procedure as described in [172]. It is also assumed that the grid is connected and therefore
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6. Power Consensus in Microgrids

every active node i P V has at least one neighbor node j PNi.
At every active node i P V , a balanced load described by a resistance Rii in series with an

inductance Lii will be considered. The corresponding complex impedance is defined in fasor
notation as Zii ✏ Rii� ı̂ωoLii, with ı̂✏❄✁1 the imaginary unit, ωo ✏ 2π fo, and fo the nominal
operation frequency of the grid. The power factor at each load is

p f ,i ✏ cos

✂
arctan

✂
ωoLii

Rii

✡✡
.

A transmission line between nodes i P V and j P V will also be assumed as a balanced
impedance composed by a resistance Ri j in series with an inductance Li j. Note that always
Ri j ✏ R ji and Li j ✏ L ji. In fasor notation, the associated complex impedance is Zi j ✏ Ri j �
ı̂ωoLi j. It is assumed that these line parameters can be estimated with reasonable accuracy due
to the small size of a microgrid.

6.1.1. Power Flow

When the electric angle ψ of a three-phase balanced sinusoidal signal xabc is described by
a constant frequency ω and a phase shift angle δ ♣tq, i.e. ψ♣tq ✏ ωt � δ ♣tq, then it can be
represented in an equivalent rotatory reference frame as xdq ✏ rxq

, xds✶ by means of Park’s
transformation [175]. See Appendix B.1 for details.

In this notation, if iabc
i is the current injected by an inverter in an active node i P V and

vabc
i the voltage at that node, then the active power injected by the inverter can be defined

by Pi ✏ idi vd
i � iqi vq

i . Analogously, the reactive power injected by the inverter is defined as
Qi ✏ iqi vd

i ✁ idi vq
i .

Dynamical relationships as function of the node voltages for the current can be obtained
from a circuital analysis of the grid. From here, if the transient behavior of the line dynamics
is neglected, expressions for the active and reactive power injected by each inverter can be
obtained as functions of the voltage angle δi and amplitude Vi as in the following expressions.

Pi♣tq ✏ 3

2

✔
✕ Rii

R2
ii�ω2L2

ii

�
➳
jPNi

Ri j

R2
i j �ω2L2

i j

✜
✢V 2

i ♣tq� ...

✁ 3

2

➳
jPNi

Ri j

R2
i j �ω2L2

i j

Vi♣tqVj♣tqcos♣δi♣tq✁δ j♣tqq� ...

� 3

2

➳
jPNi

ωLi j

R2
i j �ω2L2

i j

Vi♣tqVj♣tqsin♣δi♣tq✁δ j♣tqq

(6.1)
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Qi♣tq ✏ 3

2

✔
✕ ωLii

R2
ii�ω2L2

ii

�
➳
jPNi

ωLi j

R2
i j�ω2L2

i j

✜
✢V 2

i ♣tq� ...

✁ 3

2

➳
jPNi

ωLi j

R2
i j�ω2L2

i j

Vi♣tqVj♣tqcos♣δi♣tq✁δ j♣tqq� ...

✁ 3

2

➳
jPNi

Ri j

R2
i j�ω2L2

i j

Vi♣tqVj♣tqsin♣δi♣tq✁δ j♣tqq

(6.2)

Where Vi♣tq is the amplitude of the sinusoidal voltage wave at the output of inverter i P V (not
its RMS value). A detailed development to obtain such models can be seen in Appendix B.2.
In practice, power is measured through first order filters with time constants τp,i and τq,i:

τp,i ✾Pm,i ✏ Pi✁Pm,i

τq,i
✾Qm,i ✏ Qi✁Qm,i.

However, when the time constants are sufficiently small these dynamics can be ignored.

6.1.2. Voltage Source Inverter Model

The model presented in this section is based on the thesis [182] and the associated papers
[181, 183, 184]. Other sources include, e.g., [178, 180]. In general, a Voltage Source Inverter
(VSI) is a highly non-linear system where the frequency and the amplitude of the output
voltage signal can be controlled through two different inputs. However, under some assump-
tions, a relative simple model can be used to used to describe its approximated behavior. A
VSI, considering internal control loops, switching modulation and appropriate filtering, can
be modeled by the following set of equations:

✾ψi♣tq ✏ uψi♣tq
τVi

✾Vi ✏✁Vi�uVi ,

Where ψi♣tq ✏ ωt�δi♣tq and Vi are, respectively, the electric angle and voltage amplitude
of the output AC voltage signal in the abc representation; uψi is a control frequency input, and
uVi a control amplitude input. This model assumes that each inverter is equipped with some
DC storage unit, large enough to increase and decrease the AC power output in a certain range.
Usually it is considered that the time constant τVi ✦ 1, so that the previous equation is simply
reduced to:

✾ψi♣tq ✏ uψi♣tq (6.3)

Vi ✏ uVi . (6.4)

In the following sections, the problem of power sharing will be treated separately for active
and reactive power.
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VSIi�κ
ψi ✏ ωt�δi

ω

ui uψi

Figure 6.1.: VSI frequency control.

6.2. Active Power Sharing

6.2.1. Control Strategy

The model for power flow in equation (6.1) is highly non linear. Therefore, a suitable sim-
plification should be considered to treat the problem of power sharing with the developed
consensus tools. In the case that the voltage amplitude at every node is constant and equal
(that is ❅i P V ,Vi♣tq ✏ V ) and the angle differences are small (⑤δi♣tq ✁ δ j♣tq⑤ ✦ 1) so that
sin♣δi♣tq✁δ j♣tqq ✓ δi♣tq✁δ j♣tq and cos♣δi♣tq✁δ j♣tqq ✓ 1, then one can obtain the following
affine approximation:

Pi ✓ Pii�
➳
jPNi

Qi j ♣δi♣tq✁δ j♣tqq ,

where

Pii ✏ 3

2

Rii

R2
ii�ω2L2

ii

V 2
, Qi j ✏ 3

2

ωLi j

R2
i j �ω2L2

i j

V 2.

Note that Qi j ✏Q ji and that this approximation is only accurate if the derivative of the electric
angles ψi of every inverter is approximately equal to the nominal value ω .

The inverter is operated around the nominal frequency ω and therefore its input is modified
by:

uψi♣tq ✏ ω �κui♣tq,

where κ → 0 is a constant equal for all inverters thought to limit the magnitude of signals
ui after feedback. If this constant is too large, then the model assumptions ψ ✏ ωt � δ and
δi ✓ δ j might not be satisfied in closed loop. Note that uψi♣tq ✏ ✾ψi♣tq ✏ω� ✾δi♣tq what implies

that ✾δi♣tq ✏ κui♣tq. This control strategy can be seen in Figure 6.1.
A so called droop controller is commonly defined through a proportional gain kp,i such that

ui ✏✁kp,iPm,i with Pm,i the measured power injected at node i. This kind of controller will be
treated later as a special case. A more general model can be obtained defining the phase angle
as state variable xi :✏ δi ✏ψi✁ωt and the normalized power as output variable yi :✏ 1

χi
Pi. Here

χi → 0 is the power sharing constant of each inverter. A practical choice of the proportional
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6.2. Active Power Sharing

constants would be χi ✏ Si where Si is the nominal power rating of the inverter at node i P V .
With this, the normalized active power injected by inverter i can be written as:

✾xi ✏ κui

yi ✏ 1

χi
Pii � 1

χi

➳
jPNi

Qi j ♣xi ✁ x jq .

6.2.2. Aggregated Microgrid Active Power Control Model

Given the model of each VSI, the whole grid can be characterized as a MIMO system by the
following compact equations:

✾x ✏ κu

y ✏ FCx�d
(6.5)

where the elements of matrix C are given ❅i, j P V by:

rCsi j ✏

✩✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✪

➳
kPNi

Qik if i ✏ j,

✁Qi j if j P Ni,

0 i.o.c.

and,

F ✏ diagt1④χi✉iPV ,

x ✏ coltxi✉iPV ✏ coltδi✉iPV ,

y ✏ coltyi✉iPV ✏ coltPi④χi✉iPV ,

u ✏ coltui✉iPV ,

d ✏ coltPii④χi✉iPV .

Note that, as Qi j ✏ Q ji, matrix C ✏ C✶ P RN✂N is the Laplacian matrix of a weighted undi-
rected graph without self loops. Consequently, the rows of this matrix always add up to zero
(i.e. ❅i P V ,

➦N
j✏1 rCsi j ✏ 0) and therefore C1 ✏ 0. That is, the described model for a micro-

grid is a CAN as studied in Section 5.2.1 with A ✏ 0, B ✏ κI, q ✏ 1, and submitted to the
action of an external perturbation d that represents the per unit load at each node.

Also note that the elements of matrix C are only dependent on the parameters of the electric
lines but not on the loads. It is useful to define the per unit load change rate w ✏ d

dt d.
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6.2.3. Active Power Sharing

Active power sharing is understood as the property that, for any i, jP V , it holds true that
(e.g.[181]):

lim
tÑ�✽

Pi♣tq
χi

✏ lim
tÑ�✽

Pj♣tq
χ j

.

This objective remains naturally to consensus as defined in this thesis, and therefore the
same methodology can be followed. That is, to define an organization matrix T ✏ D✶♣T oq P
R
♣N✁1q✂N from a strictly directed graph T o. From here, a target error vector can be defined

as:

e✏ Ty (6.6)

And power sharing can be redefined as the asymptotic convergence of this vector:

Active Power sharing ðñ lim
tÑ�✽⑥e⑥ ✏ 0

6.2.4. Consensus Based Control

Consider a consensus algorithm

u✏ Ly,

where L P RN✂N is obtained as the negative Laplacian of an undirected weighted graph Gw

with identically weighted selfloops:

L✏✁L♣Gwq ✏ ✁L̂♣Gwq✁ lI,

with l → 0 a design constant. Note that,

LT�T✏✁L̂♣GwqT�T✁ lT�T

✏✁L̂♣Gwq✁ lI� lJ

✏ L� lJ

Hence L✏ LT�T✁ lJ. Therefore, the feedback signal u can be rewritten as:

u✏ LT�e✁ lJy

From (6.5) and (6.6), it then follows that

✾e✏ T ✾y✏ κTFCLT�e✁κ
l

N
TF♣C1q1✶y�Tw
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Using the fact that C1 ✏ 0, then finally

✾e ✏ κTFCLT�e�Tw (6.7)

From here, it is possible to treat power sharing as the stability problem of system (6.7) under
the action of the perturbation w in the same way as for a CAN with a looped algorithm. That
is, consensus can be reached by considering algorithms derived of graphs with only selfloops
and no connections between the nodes. In particular, the so called droop controller for active
power sharing can be represented by L ✏ ✁L♣♣V ,S ,wqq, where S ✏ t♣i, iq✉iPV is a set of
selfloops and the weight function w : S ÞÑR

� is such that ❅e PS , w♣eq ✏ l PR�. However,
from equation (6.7), there is no mathematical reason to restrict the analysis only to algorithms
without communication edges. That is, matrix TFCLT� can be Hurwitz even without using
a droop controller strategy.

As w is an external signal that depends only on the behavior of the load, the H✽-norm of the

transfer function matrix Hwe♣sq ✏
�
sI✁κTFCLT�✟✁1

T between the normalized change rate
of the load and the consensus error can be interpreted as a load change accuracy measurement
and can be used to characterize the behavior of the grid. Similar to what has been done in the
previous chapters, the following procedure can be stated to design algorithms that guaranteed
certain performance of the network.

Theorem 6.1 (Active Power - Load Change Sensitivity). Given a microgrid modeled by equa-
tion (6.5) over the set of nodes V , an unweighted undirected tree T ✏ ♣V ,E q, a correspond-
ing organization matrix T ✏ D✶♣T oq P R

♣N✁1q✂N , and scalar values l → 0 and γ → 0; a
consensus algorithm described by L ✏ ✁L♣♣V ,E ❨S ,wqq ✏ ✁T✶WT✁ lI, with a weight
function defined by w♣♣i, jqq ✏ wi j → 0 for ♣i, jq P E , and w♣♣i, iqq ✏ wii ✏ l for equally
weighted selfloops in S ✏ t♣i, iq✉iPV , and a guaranteed sensitivity under load change given
by ⑥Hwe♣sq⑥✽ ↕ γ , can be designed through the feasibility problem of LMI (6.8) over diag-
onal variable matrices Q → 0 and Z of appropriate dimensions. In that case, W ✏ ZQ✁1 ✏
diagtwi j✉♣i, jqPE represents the weights of the corresponding edges of the tree.

✔
✖✕✁κTFCT✶Z✁κZTCFT✶✁ lκTFCT�Q✁ lκQ♣T�q✶CFT✶ T Q

✍ ✁γ2I 0

✍ ✍ ✁I

✜
✣✢➔ 0 (6.8)

Proof. Apply the BRL over system (6.7) and define L ✏ ✁T✶WT✁ lI and Z ✏ WQ. The
diagonal structure of W is assured by the imposition that the variables Z and Q → 0 are also
diagonal.

Note that additional structure conditions can be imposed to matrix W. In particular, impos-
ing certain diagonal elements of Z to be zero, results in forcing the corresponding edges to be
weighted by zero. That is, to design algorithms that can be represented with less than N✁ 1
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34

Z12

Z23
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Z11 Z22
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Figure 6.2.: Circuital Description of Microgrid in Example 6.1.

Figure 6.3.: Organization Strict Digraph T o in Example 6.1.

edges between different agents. As the microgrid is a CAN, such a strategy can be followed
and still reach consensus if l ✘ 0.

In Theorem 6.1, it is considered that the weight value of the selfloops is known. However,
inequality (6.8) can be modified to treat the value l → 0 also as a variable. We will not explic-
itly consider this case because typical microgrid setups work already with predefined droop
controllers that take into account other practical and implementation issues. The objective of
this result is then only to design information exchange schemes between the agents so that the
performance of the network with respect to ⑥Hwe♣sq⑥✽ can be improved.

Example 6.1. The objective of this simulation example is to evaluate the performance of differ-
ent consensus algorithms under uncontrollable load changes. Consider the microgrid depicted
in Figure 6.2. The nominal parameters of the lines and loads are given in Table 6.1 and the
parameters of the inverters in Table 6.2. The load parameters are only an estimation of the
nominal value and change with time. In the figures, the nodes in the graphs are labeled clock-
wise with node 1 at the upper left corner, like in Figure 6.2. The organization to be considered
is given by Figure 6.3 and the corresponding matrix

T ✏ D✶♣T oq ✏

✔
✖✕✁1 1 0 0

0 ✁1 1 0

0 0 ✁1 1

✜
✣✢ .

We consider the consensus algorithms described by the undirected graphs in Figure 6.4.
Controller a) represents simple droop control with gain l ✏ 1. The next three controllers also
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Table 6.1.: Line and Load Nominal Parameters for Microgrid in Example 6.1.

Ri jrΩs Li jrmHs
Z12 1.630 3.2900

Z23 0.140 0.2540

Z34 0.580 1.3400

Z14 0.128 0.1324

Z11 264.4689 276.6963

Z22 211.7525 196.5919

Z33 230.9099 184.2106

Z44 198.9333 128.5817

Table 6.2.: Inverters Parameters for Example 6.1.

i Si ✏ χi[MVA] τp,i[s] κ VRMS[kV] f [Hz]

1 5.50 0.012

0.01 20 50
2 6.50 0.015

3 6.30 0.011

4 7.00 0.018

include the same droop control but add links between the nodes. Controller b) uses the same
edges as the graph that describes the microgrid. On the other hand, controller c) considers only
the edges that are not part of the microgrid. Finally, controller d) considers all the possible
edges between the nodes.

Additionally, we consider Theorem 6.1 with l ✏ 1, and γ ✏ 0.10 for e) and γ ✏ 0.25 for f),
to design the weighted graphs depicted in Figure 6.4 e) and f), where the labels over the edges
represent their weights. Moreover, graphs g) and h) describe unweighted loopless algorithms
that can also be used for consensus. Note that graph h) is not connected. The looped algorithms
are characterized by matrices Li ✏✁L♣Giq ✏✁I✁ L̂♣Giq, i P ta,b,c,d,e, f ✉, while the last two
algorithms by Li ✏✁L̂♣Giq, i P tg,h✉.

The evaluation of the algorithms considers the load profiles depicted in Figure 6.5. Here,
the load active power demand and power factor are given for a period of 60 seconds at nom-
inal frequency. In Table 6.3, the H✽-norm of the transfer function between the load change
rate and the consensus error is shown along with the simulation indicators ISD and IAD at
t ✏ 60s for the described load profiles. It is clear that the predictions given by ⑥Hwe♣sq⑥✽ are
corroborated in general by the values of ISD and IAD. Note that the performance of the feed-
backs is better when the number of unweighted communication links is larger. Nevertheless,
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a) b) c) d)

e) f) g) h)6.3653

1.0607

5.4651

1.9654

1.5679

Figure 6.4.: Selflooped Graphs Gi, with i P ta,b,c,d,e, f ,g,h✉, for Algorithms in Example 6.1.
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Figure 6.5.: Load behavior in Example 6.1. a) Per unit load active power P̄ii, b) Power factor p f ,i.
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Table 6.3.: Numeric and Simulation Results in Example 6.1.

Li ⑥Hwe♣sq⑥✽ ISD♣60sq✂103 IAD♣60sq✂103

a) 0.7109 42.906810 82.200626

b) 0.2362 14.358624 27.533427

c) 0.2504 16.225617 28.489495

d) 0.1422 8.877602 16.828561

e) 0.0555 5.203841 8.868942

f) 0.1563 11.623881 19.131669

g) 0.5406 32.499430 57.306885

h) ✽ 38.140610✂102 76.261980✂102

using the designed weighted feedback e), leads to a better performance than the fully con-
nected unweighted feedback. Note that feedback f) has a similar performance as feedback d)
even though it has only two communication edges. The loopless algorithm h), as it is not con-
nected, shows the worst performance as, in that case matrix TFCLT� is not Hurwitz because
it has a zero eigenvalue. On the contrary, as algorithm g) is connected, it does indeed force
the network to reach consensus. Its performance could be easily improved by considering
appropriate weights or more links between the inverters.

The results in the table are complemented by Figure 6.6 where the output per unit powers of
the inverters with the “best” and “worst” looped algorithms are drawn. When no links between
the inverters are considered, the effect of load changes clearly compromise power sharing in a
larger way. Figure 6.7 shows the response of the network with the loopless algorithms g) and
h). It is clear that the non connected algorithm cannot ensure consensus. �

6.3. Reactive Power Sharing

6.3.1. Control Strategy

Contrary to the case of active power where the power is controlled through the voltage fre-
quency input, in the case of reactive power, control is done usually by varying the amplitude of
the voltage. To simplify equation (6.2), a common assumption is that the angle differences are
small so that sin♣δi♣tq✁δ j♣tqq ✓ δi♣tq✁δ j♣tq ✓ 0 and cos♣δi♣tq✁δ j♣tqq ✓ 1. This can be re-
laxed to assume some possibly time variant difference without much changes in the following
developments.

Moreover, it is assumed that the voltage amplitude of each inverter can only be modified
around the nominal value V by a signal νi so that Vi ✏ ♣1�νiqV with ⑤νi⑤ ✦ 1. The maximum
absolute value of the variable νi depends on local regulations, however a realistic bound is
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Figure 6.6.: Generated Active Power in [p.u.] in Example 6.1. a) Algorithm La, b) Algorithm Le.
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Figure 6.7.: Generated Active Power in [p.u.] in Example 6.1. a) Algorithm Lg, b) Algorithm Lh.
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6.3. Reactive Power Sharing

⑤νi⑤ ↕ 1.5%. With these simplifications, the reactive power expression can be approximated
by a quadratic equation:

Qi ✓ Qii♣1�νiq2�
➳
jPNi

Qi j ♣1�νiq♣νi✁ν jq , (6.9)

where

Qii ✏ 3

2

ωLii

R2
ii�ω2L2

ii

V 2, Qi j ✏ 3

2

ωLi j

R2
i j �ω2L2

i j

V 2.

Note that, again, Qi j ✏ Q ji and that this approximation is only accurate if the electric angles
ψi of every inverter change slowly around the nominal value ωt. Due to the fact that the
differences between νi and ν j are small, (6.9) is strongly dominated by the term Qii♣1�νiq2.
That is, in open loop, the reactive power injected at a node is mainly explained by the load
consumption at the same node and the effect of the rest of the grid is low.

Expression (6.9) is clearly non linear. If the nominal values of load resistance Rii,0 and load
impedance Lii,0 can be reliably estimated, and the load perturbation

∆Qii :✏ Qii✁Qii,0 ✏ Qii✁ 3

2

ωLii,0

R2
ii,0�ω2L2

ii,0

V 2

is reasonably small, (6.9) can be linearized around νi ✏ 0, ❅i P V to obtain the following affine
expression:

Qi ✓ Qii,0�∆Qii�2Qii,0νi�
➳
jPNi

Qi j ♣νi✁ν jq . (6.10)

A voltage droop control strategy, understood as a proportional controller uVi ✏ V � kd,iQi,
has been proposed [178, 180] to reach reactive power sharing imitating the strategy for active
power sharing. However, it has been shown that this kind of control does not achieve this
control objective [181]. This is because the injection of reactive power at a node is affected
mainly by the load at that node and not by the effect of the neighbors of the node. That is why,
following the approach in [181], we will consider an integral control strategy described by the
following set of equations:

uVi ✏V �wi

✾wi ✏V kiui,

where ki PR� is a design parameter and ui is a control signal that depends on the information
of the rest of the inverters of the grid. This control strategy can be seen in Figure 6.8.

For the system composed of the inverter and its integral controller, we can define the state
variable xi ✏ νi. The controlled variable is the per unit reactive power yi ✏ 1

λi
Qi injected to the

grid by the VSI. Here λi → 0 is the power sharing constant of each inverter. As in the active
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VSIi�V ki

➩ Vi

V

ui wi uVi

Figure 6.8.: VSI Voltage Amplitude Control.

power case, a practical choice of these constants would be λi ✏ χi ✏ Si where Si is the nominal
power rating of the inverter at node i P V [181]. However this is not a necessary condition and
therefore we distinguish two potentially different constants, χi for active power and λi for
reactive power. As Vi ✏ ♣1�νiqV ✏ ♣1� xiqV , a dynamic expression for the dynamics of the
consensus agent are given ❅i P V by

✾xi ✏ kiui

yi ✏ 1

λi
Qii,0 � 1

λi
∆Qii �2

1

λi
Qii,0xi � 1

λi

➳
jPNi

Qi j ♣xi ✁ x jq , (6.11)

where ∆Qii plays the role of an external dynamical perturbation.

6.3.2. Aggregated Microgrid Reactive Power Control Model

As in the active power case, the whole network can be modeled as a connected network in the
following compact way:

✾x ✏ Bu

y ✏ F♣C�2D0qx�d0 �∆d
(6.12)

Where the aggregated vectors and matrices are defined as:

x :✏ coltxi✉iPV
✏ coltνi✉iPV

, y :✏ coltyi✉iPV
✏ coltQi④λi✉iPV

, u :✏ coltui✉iPV
,

B :✏ diagtki✉iPV
, F :✏ diagt1④λi✉iPV

,

D0 :✏ diagtQii,0✉iPV
, ∆d :✏ Fcolt∆Qii✉iPV

, d0 :✏ FD01,

and the matrix C ✏ C✶ P RN✂N identical to the one of the active power case. That is,

rCsi j ✏

✩✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✪

➳
kPNi

Qik if i ✏ j,

✁Qi j if j P Ni,

0 i.o.c.

.
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6.3. Reactive Power Sharing

Note that this interconnected network is not a CAN, as defined in Section 5.2.1, nor an AAN
but a mixture between both as matrix C�2D0 is the Laplacian matrix of an undirected graph
with selfloops. Also, note that D0 depends only on the nominal load. The per unit reactive
power vector is defined as d ✏ d0�∆d and its derivative over time, the per unit load change
rate, as w✏ d

dt d✏ d
dt ∆d.

Reactive power sharing is defined analogously as active power sharing. That is, for all
i, jP V ,

lim
tÑ�✽

Qi♣tq
λi

✏ lim
tÑ�✽

Q j♣tq
λ j

This is equivalent to the convergence to the origin of a consensus error e ✏ Ty defined, as
usual, through an organization matrix T✏D✶♣T oq PR♣N✁1q✂N derived from a strictly directed
graph T o:

Reactive Power sharing ðñ lim
tÑ�✽⑥e⑥ ✏ 0

Where, e✏ Ty.

6.3.3. Consensus Based Control

As usual, a consensus algorithm for the described network is defined as a proportional feed-
back:

u✏ Ly.

Self-looped Controller

A selflooped controller considers only the reactive power measurement of each inverter for
feedback. That is, without sharing signals between the inverters. A controller in such a way
realizes the negative Laplacian matrix of an undirected graph, where the only edges are equally
weighted selloops. This kind of controller can be addressed as voltage droop controller be-
cause of the analogy with the frequency droop controller. In this section, we briefly show why
this kind of controllers should be avoided by considering the quadratical model of the agents.
Without loss of generality, the consensus algorithm matrix may take the form L✏✁I.

Considering the quadratical model for the reactive power, with state variable xi ✏ νi and
output variable yi ✏ 1

λi
Qi, each inverter can be characterized by:

✾xi ✏ kiui

yi ✏ 1

λi
Qii♣1� xiq2� 1

λi

➳
jPNi

Qi j ♣1� xiq♣xi✁ x jq
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6. Power Consensus in Microgrids

Then, the microgrid as a quadratic MIMO system can be written in compact way as

✾x ✏ Bu

y ✏ FD♣I�Xq2
1�F♣I�XqCX1

Where X ✏ diagtxi✉iPV and D ✏ diagtQii✉iPV . Note that d ✏ FD1 and x ✏ X1. After feed-
back, the dynamics of the system become:

✾x ✏ BLFD♣I�Xq2
1�BLF♣I�XqCX1

Considering that ⑤xi⑤ ✦ 1, then I�X ✓ I and so

✾x ✓ BLF♣D�CXq1

Due to the fact that the differences between xi and x j are small, then the term CX1 can be
neglected when compared to D1. In that case:

✾x ✓ BLFD1 (6.13)

Replacing the self looped controller and considering that B, F and D are diagonal positive
definite matrices, the following inequality holds element-wise:

✾x ✓✁Bd ➔ 0N✂1

That is, when a selflooped controller is considered and in the neighborhood of the operation
point ⑤xi⑤ ✦ 1, the node voltage is constantly decreasing with a speed proportional to the re-
active load. This drives the system away from the operation point what is not acceptable for
regulation reasons. In this sense, a selflooped controller should be avoided and other strategies
must be used.

Loopless Laplacian Controller

Consider that the consensus feedback is given as the negative Laplacian matrix of an undi-
rected weighted loopless graph Gw, i.e.,

L ✏✁L̂♣Gwq.

Note that for this kind of consensus algorithms, equation (6.13) does not imply the negativity
of the node voltage change rate, as this speed depends on the normalized difference between
the reactive loads and because L has at least one zero eigenvalue.

Because of the zero row sum property of the Laplacian matrix, the feedback signal u can
be rewritten as

u ✏ LT�e.
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6.3. Reactive Power Sharing

From here, the dynamics of the error using the affine dynamic model of the microgrid can be
written as

✾e✏ TF♣C�2D0qBLT�e�Tw. (6.14)

Reactive power sharing can then be treated as the stability problem of the linear system (6.14)
under the influence of the external perturbation w. When the operating point is either not
precisely known, or the consensus algorithm is studied over (infinitely) many operating points
within a range, this can be modeled by D0 ✏M�NU with M and N precisely known diagonal
matrices and U a diagonal matrix such that U2 ↕ ε2I, with ε → 0 a given scalar.

We can interpret the H✽-norm of the transfer function matrix

Hwe♣sq ✏
�
sI✁TF♣C�2D0qBLT�

✟✁1
T

between w and e, respectively its least upper bound γmin over all diagonal U satisfying U2 ↕
ε2I for a given ε → 0, as an indicator of load change accuracy. This is expressed in the follow-
ing theorem.

Theorem 6.2 (Reactive Power - Load Change Sensitivity). In a microgrid described by equa-
tion (6.12) with uncertainties over the loads described by D0 ✏ M�NU with M and N pre-
cisely known diagonal matrices and U a diagonal matrix such that U2 ↕ ε2I, with ε → 0, for
given T✏D✶♣T oq and L✏✁L̂♣Gwq, the sensitivity of the reactive power sharing control law
with respect to load changes can be characterized by a scalar value γmin ✏ ❄

µmin → 0 that
can be computed by solving the optimization problem

µmin ✏ inf
✥

µ P R�⑤ LMI (6.15) ❫ Q✏Q✶ → 0❫ α → 0
✭

.

✔
✖✖✖✖✖✕

TF♣C�2MqBLT�Q�Q♣T�q✶LB♣C�2MqFT✶�
4ε2αTF2N2T✶

T Q Q♣T�q✶LB

✍ ✁µI 0 0

✍ ✍ ✁I 0

✍ ✍ ✍ ✁αI

✜
✣✣✣✣✣✢➔ 0 (6.15)

Proof. Applying the BRL to system (6.14) leads to the following matrix inequality:✓
TF♣C�2D0qBLT�Q�Q♣T�q✶LB♣C�2D0qFT✶�QQ T

✍ ✁µI

✛
➔ 0 (6.16)

with µ ✏ γ2. Inserting D0 ✏ M�NU, and considering the Cross Products proposition A.15,
then the uncertain terms related to matrix U can be bounded to get an upper bound for inequal-
ity (6.16):✔

✖✕ TF♣C�2MqBLT�Q�Q♣T�q✶LB♣C�2MqFT✶

�QQ�4ε2αTFNNFT✶� 1
α Q♣T�q✶LBBLT�Q

T

✍ ✁µI

✜
✣✢➔ 0.
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6. Power Consensus in Microgrids

Table 6.4.: Inverters Parameters in Example 6.2.

i Si ✏ λi[MVA] ki[1/s] τV,i[s] τq,i[s]

1 5.50 0.0022 0.011 0.012

2 6.50 0.0018 0.013 0.015

3 6.30 0.0024 0.012 0.011

4 7.00 0.0016 0.016 0.018

a) b) c)

d) e) f)5.9892

3.1122

7.2390

9.8682

5.2222

12.3141

Figure 6.9.: Loopless Graphs Gi, with i P ta,b,c,d,e, f ✉, for Algorithms in Example 6.2.

Applying Schur’s complement on the quadratic terms, we finally obtain LMI (6.15).

Note that LMI (6.15) can be used, as in the active power case, to design tree shaped algo-
rithms by imposing L✏✁T✶WT, with W PRN✂N diagonal, defining an auxiliary linearization
variable Z✏WQ ðñ W✏ ZQ✁1 and imposing Z and Q→ 0 to be diagonal.

Example 6.2. Consider the same microgrid as in Example 6.1 with the same load and line
nominal parameters. The additional parameters of the inverters are given in Table 6.4. It is
also known that the operation point given by the load in the table can vary within a range of
✟3%. That is, M✏N✏ diagtQii,0✉iPVM

and ε ✏ 0.03. The study of consensus is done through
the same organization as in Example 6.1.

We consider the four arbitrary algorithms corresponding to the undirected loopless graphs
in Figure 6.9 a), b), c) and d). Additionally, through LMI (6.15), the tree shaped algorithms
associated with the weighted graphs depicted in Figure 6.4 e) and f) are designed with µ ✏
γ2 ✏ 0.50 for e) and µ ✏ γ2 ✏ 0.30 for f). The corresponding feedback matrices are given by
Li ✏✁L♣Giq, i P ta,b,c,d,e, f ✉.

The evaluation of the algorithms is done under the exactly same conditions as in Example
6.1. In Table 6.5 the values obtained by Theorem 6.2 are depicted along with the simulation
indicators ISD and IAD at t ✏ 60s. Similar conclusions as with the active power case can be
drawn. The table is complemented by Figure 6.10 where the injected reactive power in p.u. of
selected cases is shown. From Figure 6.10 b) and c), it is clear that the weighted control law
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6.3. Reactive Power Sharing

Table 6.5.: Numeric and Simulation Results in Example 6.2.

Li γmin ISE♣60sq✂103 IAE♣60sq✂103

a) – 14.0622✂102 28.0261✂102

b) 1.8271 59.8256 114.3103

c) 1.8729 70.5439 123.2655

d) 0.9186 33.2349 63.1663

e) 0.3148 14.2585 24.2328

f) 0.1876 9.6138 16.2864

f) behaves better than the fully connected but unweighted algorithm d).
Note that the performance of feedback a) cannot be evaluated by the indicators as the graph

related to the controller is not connected and because the dynamics of the reactive power
injected at each inverter are strongly decoupled. Indeed, in Figure 6.10 a), even though changes
in any load are reflected as perturbations for other nodes, their influence is not enough to
strongly modify the output power of all inverters. Only the connected nodes of the graph
reach this goal regardless of the structure of the grid. This differs greatly from the case of
active power sharing where the coupling between each node through the grid is large enough
to ensure power sharing. �
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Figure 6.10.: Generated Reactive Power [p.u.] in Example 6.2. a) Algorithm La, b) Algorithm Ld , c)
Algorithm L f .
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✼
Formation Control

The themes of consensus and formation control in multiagents systems are strongly related
and are usually studied together like in [22, 29]. Most of the interest in the formation problem
is focused on applications in mobile vehicles and robots, e.g. [3, 8, 11, 12, 24, 39, 45], where
the dynamical models of the systems are derived from movement laws and leader-follower
strategies are used in a mostly application oriented way. The link between formation control
and the consensus problem is suggested through the use of graph theoretical methods in papers
as [7, 42, 44]. However, most of the theoretically oriented approach to the formation problem
is done by means of consensus analysis on networks composed solely by double integrators
systems, [1, 13, 16, 27, 30, 32, 62]. This special kind of dynamics ease the consensus analysis
on the networks greatly, but are difficult to generalize into more complex scenarios.

In general, the formation problem as understood here deals with a network where the agents
do not search for consensus over their outputs (which can be interpreted as the agents’ “veloc-
ity”), but over the integral of the outputs (which can be interpreted as the agents’ “position”).
Furthermore, they usually do not aim to agree on the exact same position, what in a mobile
robots setup for example would not be physically possible, but on a given pattern or “for-
mation”. Implicitly, it is assumed that the integration process is independent of the internal
characteristics of the agents, in the same sense that, for example, the position of a vehicle on
a plane depends on its instantaneous speed, but not on the internal dynamic process to drive at
this speed. That is, the position of the vehicle is independent of if it has one or several engines,
if these are electric or combustion drives, or any technological characteristic of the individual
system. Furthermore, one could exchange one vehicle by other with completely different dy-
namics, and the integration process would remain the same. From this perspective, the agents
can be interpreted as the actuators for an integration process.

The most direct example of such formation problem are mobile robots commanded to move
from one point to other maintaining a circular, linear or triangular formation. The active power
sharing problem studied in Chapter 6 could also be considered as a formation problem, as
consensus is not searched on the frequency space of the inverters but on a function of the
electrical angle which is the integral of the frequency.
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7. Formation Control

7.1. The Formation Control Problem

Consider N autonomous agents with aggregated dynamics given by the usual representation:

✾x ✏ Ax�Bu

y ✏ Cx.
(7.1)

Where A✏ diagtAi✉iPV PRn✂n, and matrices B✏ diagtBi✉iPV PRn✂p and C✏ diagtCi✉iPV P
R

Nq✂n are full rank. We are also interested in the integral expression

zi ✏
➺ t

t0

yidt.

Clearly, with z ✏ coltzi✉N
i✏1 and y♣t0q ✏ 0,

✾z ✏ y. (7.2)

We assume that z cannot be directly measured and therefore is not available for feedback.
Only relative information of the differences between each zi is available.

Because of the immediate comparison with an agent moving in a two or three dimensional
space, the additional states z can be interpreted as the “position” of the agents, while the output
y can be considered their “velocity”. This does however not mean that the study is restricted
to only such a problem. Note that zi can only be controlled by modifying yi through the input
ui and so, in that sense, the agent is an “actuator” for the position process.

Consider the network described by (7.1) and (7.2). If this network is small in the sense of
what was defined in Section 4.1.2, it can be analyzed from a centralized perspective consider-
ing information on all the elements of the network. The objective of the controller is to ensure
that the agents can reach a given distribution in the space where vector z is defined. We as-
sume that a centralized relative measurement of the vector z is available and defined through
an organization transformation:

e0 ✏ Tz. (7.3)

With T ✏ D✶♣T oq P R♣N✁1qq✂Nq. As T�e0 ✏ T�Tz ✏ z✁Jz,

z ✏ T�e0�Jz. (7.4)

Observe that Jz ✏ 1E♣zq, where E♣zq ✏ 1
N

➦
iPV zi is the unknown mean value of all zi.

In principle, the following analysis of a network can be done with any arbitrary organiza-
tion matrix and not necessarily with the one that defines the relative measurements vector e0.
Nevertheless, for simplicity, we assume in this section that the analysis matrix is the same as
the one that defines the error.
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7.2. Control Strategy

It is of interest for the central controller that the systems reach in stationary state a fixed
formation in R

q described by a known set of relative differences p ✏ Tz̄ P R
♣N✁1qq, where

z̄ ✏ coltz̄i✉iPV , with z̄i P Rq, is an unknown vector that describes the desired formation of a
network in the unknown absolute reference frame.

From here, similar as with the consensus objective, the formation problem can be defined
as the stability of the difference between the relative measurements and the reference position.

Definition 7.1.1. A network is said to reach a desired formation, described by p, if the vector

e ✏ e0✁p,

asymptotically approaches zero. That is,

Formation ðñ lim
tÑ�✽⑥e⑥ ✏ 0.

Note that when e✏ Tz✁p✏ 0 we have that z✏ T�p�Jz. From here, when p is constant,
✾z ✏ J✾z. Therefore y ✏ ✾z ✏ Jy ðñ y ✏ 1v, for some v P R

q. That is, reaching formation
implies that the agents reach consensus on their outputs.

We are further interested in imposing that, in absence of external inputs, the states of the
agents, x, asymptotically approaches the origin. That is,

lim
tÑ�✽⑥x⑥ ✏ 0.

This requirement is in principle a particular and restrictive case, however it does make sense
when the agents are human-made physical systems. Indeed, it is expectable that, in open loop,
the agents have stable dynamics. In closed loop, this second objective must be imposed if we
aim to further control the behavior of the network as a whole once formation is achieved. If
it were not the case, simple additional objectives as moving all the agents, while keeping the
formation, from one region to other, would not be easy as the unbounded states might reflex
on the outputs.

7.2. Control Strategy

7.2.1. Central Control Strategy Analysis

Consider the following given feedback law

u ✏ Ly�H♣e0✁pq�uext , (7.5)

with known feedback matrices L P R
Nq✂Nq and H P R

Nq✂♣N✁1qq. Signal uext is an external
input used to arbitrary modify the velocity of the agents and will be treated as a perturba-
tion for the formation objective. This control strategy assumes that signals ui ✏ s✶iu, available
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A1, B1, C1
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u ✏ Ly�H♣e0✁pq�uext

Central Controller
T

y1

yi

yN
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u1
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uN

u

z1

zi

zN

ze0uext

Figure 7.1.: Centralized Formation Control Strategy.
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7.2. Control Strategy

at the central controller level, are communicated to each agent. Furthermore, the outputs of
the systems and the external inputs need also to be communicated to the central instance. A
schematic representation of this control strategy can be seen in Figure 7.1. Note that the need
of communication is implicitly necessary in this case.

If we want to avoid the active exchange of signals between the agents, we can assume that
the matrix feedback L is block diagonal so that there is a feedback of yi from each agent only
to itself. However, any general matrix can be considered. In particular, a Laplacian structure
derived from a weighted graph Gw can also be used.

With this control law, the dynamics of the network and the error can be written jointly as:✓
✾x

✾e

✛
✏
✓

A�BLC BH

TC 0

✛✓
x

e

✛
�
✓

B

0

✛
uext �

✓
0

✁I

✛
w,

with w ✏ ✾p. Defining the following matrices and vectors,

x̃ ✏
✓

x

e

✛
, Ã ✏

✓
A 0

TC 0

✛
, B̃ ✏

✓
B

0

✛
, B̃w ✏

✓
0

✁I

✛
,

C̃ ✏
✓

C 0

0 I

✛
, C̄ ✏

✑
0 I

✙
, L̃ ✏

✑
L H

✙
,

the expression can be written more compactly as

✾x̃ ✏ �
Ã� B̃L̃C̃

✟
x̃� B̃uext � B̃ww

e ✏ C̄x̃
(7.6)

Clearly, the dynamic behavior of x̃ depends on the eigenvalues of matrix

Ãcl :✏ Ã� B̃L̃C̃ P R♣n�♣N✁1qqq✂♣n�♣N✁1qqq.

Therefore, for known matrices L and H, and in absence of external inputs, simply calculating
the eigenvalues of Ãcl is enough to determine if the network can reach the specified formation
and the states converge to the origin. Observe that the lower right block of matrix Ãcl is always
zero.

When Ãcl is Hurwitz, the H✽-norm of the transfer function matrix from uext to e, γext ✏
⑥Hext♣sq⑥✽, can be interpreted as an indicator of formation sensitivity to external input changes.
Similarly, the sensitivity to reference changes can be evaluated by the norm of the transfer
function matrix from w to e, γw ✏ ⑥Hwe♣sq⑥✽.

7.2.2. Relative Position Feedback Design

In the case where the feedback matrices are to be designed, the problem is in the form of an
output feedback design problem as those in, for example, [83, 89, 91], and stability conditions
in terms of linear matrix inequalities (LMI) and Lyapunov functions can be stated.
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7. Formation Control

Determining H with known L.

With the matrices defined for system (7.6), the problem of design of the feedback matrices
L and H such that Ã� B̃L̃C̃ is Hurwitz can be solved with the help of Theorem A.17 in the
Appendix. The resulting procedure is however difficult to apply when structural restrictions on
L are assumed. Therefore, we will first assume that this matrix is known and block diagonal
and that Acl :✏ A�BLC is Hurwitz. In that way, we can concentrate on determining H only.

When w✏ 0, the system can be rewritten as

✾x̃✏ �
Ā� B̃HC̄

✟
x̃� B̃uext

e✏ C̄x̃,
(7.7)

with

x̃✏
✓

x

e

✛
, Ā✏

✓
Acl 0

TC 0

✛
, B̃✏

✓
B

0

✛
, C̄✏

✑
0 I♣N✁1qq

✙
.

This leads to the following design procedure for H, which is based in the results stated in [89,
91] and the course [103].

Theorem 7.1. For a given scalar γ → 0 and a given known matrix R P Rn✂♣N✁1qq such that
the composed matrix✓

C̄

R̄

✛
:✏

✓
0 I

I R

✛
P R♣n�♣N✁1qqq✂♣n�♣N✁1qqq

is full rank, if there are matrices Q1 → 0, Q2 → 0, and Z of proper dimensions such that

Q̃ :✏
✓

Q1 ✁RQ2

✍ Q2

✛
→ 0, (7.8)

✔
✖✕ĀQ̃� Q̃Ā

✶� B̃Z̄� Z̄
✶
B̃
✶

B̃ Q̃C̄
✶

✍ ✁γ2I 0

✍ ✍ ✁I

✜
✣✢➔ 0, (7.9)

with Z̄ :✏ Z
✑
✁R✶ I

✙
, then the feedback matrix H :✏ ZQ✁1

2 makes (7.7) stable and the H✽-

norm of the transfer function, Hext , between uext and e is smaller than γ .

Proof. Note that

Q2

✑
✁R✶ I

✙
✏ C̄Q̃.
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7.2. Control Strategy

Furthermore, H✏ ZQ✁1
2 if and only if Z✏HQ2. Therefore,

Z̄✏ Z
✑
✁R✶ I

✙
✏HQ2

✑
✁R✶ I

✙
✏HC̄Q̃.

Replacing this last expression in (7.9) we obtain a sufficient condition for the BRL applied to
system (7.7).

Note that this theorem is only sufficient and not necessary because the choice of matrix
R̄ ✏ rI Rs is arbitrary. If the inequalities do not hold for a particular matrix R̄, it does not
mean that they do not hold for some other matrix. In particular, if R✏ 0, we have

ĀQ̃� Q̃Ā
✶ ✏

✓
AclQ1�Q1A✶

cl Q1C✶T✶✁AclRQ2

✍ ✁TCRQ2✁Q2R✶C✶T✶

✛

✏
✓

AclQ1�Q1A✶
cl Q1C✶T✶

✍ 0

✛
.

Which cannot be negative definite as the lower right block is identically zero and therefore
(7.9) cannot hold. An interesting choice for this matrix is R ✏ 1

2 C�T� so that ✁TCRQ2✁
Q2R✶C✶T✶ ✏✁Q2. Also note that because of Schur’s complement, Q̃→ 0 ðñ Q1 →RQ2R✶.

Determining H and L.

In the case where L is unknown, a similar procedure can be defined by writing the system as

✾x̃✏ �
Ã� B̃HC̄� B̃LĈ

✟
x̃,

with

Ĉ :✏
✑
C 0

✙
.

We made uext ✏ 0 to illustrate only the stability condition.

Theorem 7.2. For given fixed matrices R P R
n✂♣N✁1qq, X P R

n✁q✂n, and Y P R
n✁q✂♣N✁1qq

such that the composed matrices✓
C̄

R̄

✛
:✏

✓
0 I

I R

✛
P R♣n�♣N✁1qqq✂♣n�♣N✁1qqq

and

T̂ :✏
✓

Ĉ

R̂

✛
:✏

✓
C 0

X Y

✛
P R♣n�♣N✁1qqq✂♣n�♣N✁1qqq
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are full rank, if there exits matrices Q1 → 0, Q2 → 0, Z and Ẑ of proper dimensions such that

Q̃ :✏
✓

Q1 ✁RQ2

✍ Q2

✛
→ 0, (7.10)

ÃQ̃� Q̃Ã
✶� B̃Z̄� Z̃

✶
B̃� B̃Ẑ� Ẑ

✶
B̃
✶ ➔ 0, (7.11)

ẐR̂
✶ ✏ 0, (7.12)

ĈQ̃R̂
✶ ✏ 0, (7.13)

with Z̄ :✏Z
✑
✁R✶ I

✙
, then Ã�B̃HC̄�B̃LĈ is Hurwitz with H :✏ZQ✁1

2 and L :✏ ẐĈ
✶ �

CQ1C✶✟✁1
.

Proof. To determine H from the variable Z̄ the proof is the same as in Theorem 7.1. To

determinate L from the variable Ẑ, define K̂ :✏ ẐQ̃
✁1 ðñ Ẑ ✏ K̂Q̃. If (7.11) holds with

Q̃→ 0 and Z✏HQ2, we have�
Ã� B̃HC̄� B̃K̂

✟
Q̃� Q̃

�
Ã� B̃HC̄� B̃K̂

✟✶ ➔ 0.

If additionally (7.12) and (7.13) hold, we can write

K̂✏ ẐQ̃
✁1

✏ ẐT̂
✶✁

T̂Q̃T̂
✶✠✁1

T̂

✏ Ẑ
✑
Ĉ
✶

R̂
✶
✙✄✓

Ĉ

R̂

✛
Q̃
✑
Ĉ
✶

R̂
✶
✙☛✁1✓

Ĉ

R̂

✛

✏
✑
ẐĈ

✶
ẐR̂

✶
✙✓

ĈQ̃Ĉ
✶

ĈQ̃R̂
✶

R̂Q̃Ĉ
✶

R̂Q̃R̂

✛✁1✓
Ĉ

R̂

✛

✏
✑
ẐĈ

✶
0

✙✔✕
✁

ĈQ̃Ĉ
✶✠✁1

0

0
�
R̂Q̃R̂

✟✁1

✜
✢✓Ĉ

R̂

✛

✏ ẐĈ
✶✁

ĈQ̃Ĉ
✶✠✁1

Ĉ

✏ ẐĈ
✶ �

CQ1C✶✟✁1
Ĉ

✏ LĈ.

Therefore,�
Ã� B̃HC̄� B̃LĈ

✟
Q̃� Q̃

�
Ã� B̃HC̄� B̃LĈ

✟✶ ➔ 0,

what implies that Ã� B̃HC̄� B̃LĈ is Hurwitz.
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Note that, if C is block diagonal, forcing Q1 and the product ẐĈ
✶
to also be block diagonal,

leads to a block diagonal matrix L. The problem with this approach is the arbitrary choice of
suitable matrices X and Y.

Numeric attempts (see Example 7.1 below) show that the norm of matrix H have some
influence on the oscillations of signal z. If for this or other reasons, it is of interest to limit the
norm of H, we additionally want to enforce that

H✶H ➔ M2I ðñ Z✶Z✁M2Q2
2 ➔ 0, (7.14)

with M PR� a positive design constant. This expression is not linear with respect to Z and Q2.
To avoid this, the Crossed Products proposition can be used (see Proposition A.15) to enforce
negativity of an upper bound for (7.14):

1

α

�
Z✶Z✁M2Q2

2

✟↕ 1

α
Z✶Z�M2 ♣αI✁2Q2q ➔ 0,

for some scalar α → 0. By Schur complement, this is equivalent to:✓
M2 ♣αI✁2Q2q Z✶

✍ ✁αI

✛
➔ 0 (7.15)

This last inequality is linear with respect to its variables and can be used to complement
Theorem 7.1.

Example 7.1. Consider N ✏ 10 agents and the following matrices:

Āa ✏
✓
✁1.60 0.20

0.10 ✁3.30

✛
, Āb ✏

✓
✁1.80 0.40

0.20 ✁2.30

✛
,

and ❅i P t1, ...,10✉, Bi ✏ I and Ci ✏ I. The closed loops dynamics of each agents are so that
Acl,i ✏Ai�BiLiCi ✏ Āa when i P t1, ...,5✉ and Acl,i ✏ Āb when i P t6, ...,10✉. This represents
systems whose velocity along the horizontal axis is given by the first output ryis1 and along
the vertical axis by the second output ryis2. In this case, vector z represents the position of
the agents on the plane. We consider the organization graph depicted in Figure 7.2 with the
corresponding matrix

T ✏ D✶♣T oq ✏
✑
118✂2 ✁I18✂18

✙
.

First consider that the relative position feedback is defined as H ✏ ✁αT✶, with α → 0 a
design scalar variable. In this case, γext ✏ ⑥Hext♣sq⑥✽, γw ✏ ⑥Hw♣sq⑥✽ and the eigenvalues
λ ✏ σ � jω of matrix Ãcl are functions of α only and can be easily computed. From a direct
comparison with a second order transfer function, we can define for each eigenvalue a damp-
ing ration ζ ✏ ✁σ④❄σ2�ω2, and a natural frequency ωn ✏

❄
σ2�ω2. If ζ ✏ 1, then the
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1
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4
5

6

7

8

9
10

Figure 7.2.: Organization Tree T o for Example 7.1.

respective eigenvalue is real and negative (critically damped). Smaller values for the damping
constant imply oscillating behaviors which in the extreme case ζ ✏ 0 are undamped with fre-
quency ωn. For different values of α , the H✽-norms are shown in Figure 7.3 a), while the real
parts of the eigenvalues of the closed loop matrix are shown in b). The damping ratios and the
natural frequencies are respectively shown in Figure 7.3 c) and d).

It can be seen that the H✽-norms decrease with α making the closed loop system less
sensitive to external inputs or reference changes. However, large values of α also make the
damping ration of many eigenvalues to decrease sharply, making the response of the network
more oscillatory. Furthermore, the natural frequency of these oscillations also increase with α .
In practice, a compromise between sensitivity and oscillations must be achieved when design-
ing a feedback matrix. Note that the stability of the closed loop system is always guaranteed
as the real part of the eigenvalues are negative. However, with small values of α the speed of
the response is also compromised as the eigenvalues are closer to the imaginary axis.

With R ✏ 1
2 C�T� and γ ✏ 1.0, Theorem 7.1 can be used to design a general feedback ma-

trix H. Simply applying the theorem leads to a matrix with ⑥H⑥ ✏ 6.3960 and ⑥Hext♣sq⑥✽ ✏
0.4483. In this case, the closed loop matrix Ãcl is such that the largest real part of the eigen-
values is σmax ✏ ✁0.7941 (i.e. the matrix is Hurwitz), but the smallest damping ration of the
eigenvalues is ζmin ✏ 0.1773 what would imply important oscillations in the position of the
agents. If the bound condition for the norm of H, LMI (7.15), is included with M ✏ 1.0, the
problem with γ ✏ 1.0 becomes unfeasible. That is, a feedback matrix such that the network
attenuates the influence of external inputs over the formation objective and the oscillation
of the agents is “mild”, cannot be achieved. By increasing the tolerated H✽-norm bound
to γ ✏ 2.0, with M ✏ 1.0, a solution for both LMI conditions can be obtained such that
⑥Hext♣sq⑥✽ ✏ 1.4615, ⑥H⑥ ✏ 0.8492, σmax ✏ ✁0.2799 and ζmin ✏ 0.5064. That is, a feed-
back that ensures that the oscillation of the network is around one third of the previous case,
but where the influence of the external signal is larger. �
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Figure 7.3.: Characteristic values of the network in Example 7.1 when H ✏ ✁αT✶. a) γ ✏ ⑥Hext♣sq⑥✽
and γ ✏ ⑥Hw♣sq⑥✽, b) σ ✏Re

✥
eig

✥
Ãcl

✭✭
, c) ζ ✏✁σ④

❄
σ2�ω2, and d) ωn ✏

❄
σ2�ω2.
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T o
1 2 3 ... N-1 N

Figure 7.4.: Path organization graph TP.

7.2.3. Typical 2D reference vectors

Consider that q ✏ 2, i.e., the output space of all agents is R
2. We assume implicitly that the

plane is described in Cartesian coordinates. Also, consider the organization defined by the
directed tree T o in Figure 7.4, i.e.

TP ✏ D✶♣TPq ✏ row
✥

I♣N✁1qq,0♣N✁1qq✂q

✭✁ row
✥

0♣N✁1qq✂q,I♣N✁1qq
✭

✏

✔
✖✖✖✖✕

I ✁I 0 ☎ ☎ ☎ 0

0 I ✁I ☎ ☎ ☎ 0
...

...
. . .

. . .
...

0 0 ☎ ☎ ☎ I ✁I

✜
✣✣✣✣✢ .

In that case, the specified vectors p can be obtained by

p ✏ coltql✉N✁1
l✏1

where ql P R2 depends on the desired figure. Some examples are:

• Line with slope m and uniform distance d between agents:

ql ✏
d❄

1�m2

✓
1

m

✛

❅l P t1,2, ...,N ✁ 1✉. Note that when m ✏ 0, ql ✏ rd, 0s✶ and when m Ñ �✽, ql Ñ
r0, ds✶.

• Equilateral triangle of side a:

ql ✏
a

2v

✓
1❄
3

✛

for 1 ↕ l ↕ v, with v ✏ floortN④3✉;

ql ✏
a

2♣w✁ vq

✓
1

✁❄3

✛
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for v�1 ↕ l ↕ w, with w ✏ floort2N④3✉; and,

ql ✏
a

N✁w

✓
✁1

0

✛

for w�1↕ l ↕N✁1. The integer part function floor is defined for x PR�0 as floortx✉ ✏
maxtm P N0⑤m ↕ x✉.

• Square of side a:

ql ✏
a

u

✓
0

1

✛

for 1 ↕ l ↕ u, with u ✏ floortN④4✉;

ql ✏
a

v✁u

✓
1

0

✛

for u�1 ↕ l ↕ v, with v ✏ floortN④2✉;

ql ✏
a

w✁ v

✓
0

✁1

✛

for v�1 ↕ l ↕ w, with u ✏ floort3N④4✉;

ql ✏
a

N✁w

✓
✁1

0

✛

for w�1 ↕ l ↕ N✁1.

• Regular polygon with N sides of length a:

ql ✏ a

✓
sin

�
2π
N l

✟
cos

�
2π
N l

✟
✛

❅l P t1,2, ...,N✁1✉. Note that this is equivalent to locating the agents in a circumference
of radius r ✏ a

2 csc
�

π
N

✟
.

Other figures and motion transformations such as rotation, escalation or reflexions of the pre-
vious figures can be defined according to the needs of the controller.
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7.2.4. Formation Decision

We have shown that with centralized measurements, formation around a reference vector p

can be successfully reached. It remains to be answered how vector p should be chosen by the
central controller in a systematic way. In this section a method based on the linear program-
ming problem known as the Assignment Problem is proposed. This problem can be described
as how to assign a given number of resources (or workers) to an equal number of tasks in such
a way that an overall linear cost is minimized. See Appendix A.5 for details.

The proposed methodology can be informally explained as follows. At one moment, the
central controller decides to command the N agents distributed in R

q to form a given figure
(say, “a circle”). However, this specification can be satisfied by any of the N! permutations
that result from ordering the agents in a different way (given a circle, interchanging one agent
with other results in a “different” circle, and so there are N! circles). Furthermore, the centroid
of the figure can be anywhere in R

q. Therefore the central controller additionally requires that
the agents form a figure that is centered at the mean value of the current position of the agents
and that the overall movement of the agents is minimized. That is, at the moment when the
order to form is given, the controller needs to assign each of the N agents to each of the N
positions that define the figure in order to minimize a functional.

To do this, consider a permutation matrix E P RNq✂Nq described by

E ✏ col
✥

s✶k
✭

kPP
,

where

P P ttk1,k2, ...,kN✉⑤ki PW ❫ ki ✘ k j✉ ,

is an ordered permutation of the set W ✏ t1,2, ...,N✉. Note that dettE✉ ✏ 1. Pre-multiplying
a vector by this matrix results in a vector that is a permutation of the N subvectors in R

q that
compose the original aggregated vector. This permutation is completely described by the set
P.

Example 7.2. If N ✏ 3, there are 3! ✏ 6 possible permutations, and so

P P tt1,2,3✉,t1,3,2✉,t2,1,3✉,t2,3,1✉,t3,1,2✉,t3,2,1✉✉ ,

respectively,

E P

✩✬✫
✬✪
✔
✖✕ I 0 0

0 I 0

0 0 I

✜
✣✢1

2

3

,

✔
✖✕ I 0 0

0 0 I

0 I 0

✜
✣✢1

3

2

,

✔
✖✕ 0 I 0

I 0 0

0 0 I

✜
✣✢2

1

3

,

✔
✖✕ 0 I 0

0 0 I

I 0 0

✜
✣✢2

3

1

,

✔
✖✕ 0 0 I

I 0 0

0 I 0

✜
✣✢3

1

2

,

✔
✖✕ 0 0 I

0 I 0

I 0 0

✜
✣✢3

2

1

✱✴✳
✴✲ .
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The set P should be understood as the worker assigned to each task (and not the task assigned
to each worker). That is, for example, P ✏ t3,2,1✉ means that worker 3 is assigned to the first
task, worker 2 to the second task, and worker 1 to the third task. �

Assume that the desired formation of the agents is described through a known organization
matrix TP P R♣N✁1qq✂Nq and a fixed vector pP P R♣N✁1qq. Then, one of the possible formation
vectors z̄ of the network around its current mean value Etz✉ is

z̄ ✏ T�
P pP �1Etz✉.

Any of the N! permutations, Ez̄, of z̄ is a candidate formation for the network. Note that

z ✏ T�e0 �1Etz✉.

From here, the goal of the central controller is to choose which permutation matrix E✝ is the
one that makes z̄✝ ✏ E✝z̄ closer to z. That is, to solve the minimization problem

min
E

J ✏ ⑥z✁Ez̄⑥2

s.t. E ✏ col
✥

s✶k
✭

kPP

As E1 ✏ 1, the objective functional can be rewritten as

J ✏ ⑥T�e0 ✁ET�
P pP⑥2 ✏

N➳
l✏1

⑥s✶lT�e0 ✁ s✶lET�
P pP⑥2.

Note that s✶lE ✏ s✶k with k P P. From here, the problem can be written into an assignment
problem by defining resources (the agents) as k P W ✏ t1,2, ...,N✉ and tasks (their position
in the formation) l P T ✏ t1,2, ...,N✉. The assignment costs of each vector sk relative to each
task l P T are defined as:

c♣k, lq ✏ ✎✎s✶lT�e0 ✁ s✶kT�
P pP

✎✎2
.

And so, considering the notation of the assignment problem in Appendix A.5, J ✏➦N
l✏1

➦N
k✏1 c♣k, lqxkl .

For known vectors e0 and pP, solving this problem at a fixed instant with any algorithm in the
central controller, leads to a suitable vector p relative to the measurement organization T that
can be chosen as:

p ✏ Tz̄✝ ✏ T
�
E✝T�

P pP �E✝1Etz✉✟✏ TE✝T�
P pP.

Example 7.3. Consider N ✏ 10 agents with q✏ 2 outputs. The agents are initially distributed in
the plane so that, considering the organization matrix used in Example 7.1, the initial relative
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7. Formation Control

Table 7.1.: Assignment of Agents within a Formation in Example 7.3.

Case P J

Optimal t7,1,2,4,3,8,5,6,9,10✉ 1029.452897

Arbitrary t1,7,3,5,2,4,8,10,9,6✉ 1223.402266

differences are given randomly by

e0 ✏ col

★✓
122.1499

✁129.6115

✛
,

✓
222.3776

✁40.5040

✛
,

✓
58.4222

53.5299

✛
,

✓
120.3640

145.7429

✛
,

✓
256.7263

18.6710

✛
,

✓
69.7056

✁229.3907

✛
,

✓
208.6200

10.4253

✛
,

✓
150.1805

222.4607

✛
,

✓
185.8276

208.6263

✛✰
.

The controller wishes to reach a lineal formation with slope m ✏ 1 and a relative distance
between adjacent agents of d ✏ 30. That is, using the description and organization matrix of
Section 7.2.3, defined by the vector

pP ✏ col

★✓
21.2132

21.2132

✛✰N✁1

l✏1

.

The costs matrix that describes this situation is given by:

rc♣k, lqs ✏

✔
✖✖✖✖✖✖✖✖✖✕

82.2154 98.6333 180.7350 123.8396 228.3615 230.2818 161.9825 183.0011 310.6433 312.1791

81.1053 99.3166 157.3772 102.0060 201.6872 202.8899 181.1957 154.9670 283.7396 283.7943

90.5360 108.6235 136.6384 85.2889 176.0866 176.3487 203.0405 127.8287 257.5209 255.7785

107.7751 124.6368 119.8854 77.0920 152.1027 151.1074 226.7576 102.3014 232.2195 228.2676

129.7466 145.1537 108.9723 80.0759 130.6291 127.9377 251.8186 79.9435 208.1700 201.4685

154.4437 168.5374 105.7234 93.1725 113.1049 108.1787 277.8600 64.1588 185.8592 175.7071

180.7528 193.7528 110.8147 112.9163 101.5946 94.0064 304.6305 60.3469 165.9895 151.5137

208.0631 220.1713 123.2167 136.4517 98.2354 88.1578 331.9538 70.4779 149.5372 129.7685

236.0275 247.4079 141.0135 162.1359 103.8217 92.2300 359.7039 89.9585 137.7326 111.9075

264.4384 275.2198 162.4416 189.0953 117.0798 105.0760 387.7892 114.0961 131.8299 100.0336

✜
✣✣✣✣✣✣✣✣✣✢

The Hungarian Algorithm can be used to solve the associated assignment problem. The op-
timal result is shown in Table 7.1 along with an arbitrary permutation of the agents in the
formation. It is clear that the optimal case has a lower cost. In Figure 7.5, both assignments
can be graphically seen. The lines between the points show the distance between the original
point and its assignment within the formation, which sum is minimized to obtain the optimal
assignment. �
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Figure 7.5.: Assignment of N agents within a formation in Example 7.3. a) Optimal assignment, b)
Arbitrary assignment.

7.2.5. Fully Distributed Implementation of a Central Controller

The control law proposed in the previous section can be implemented either in the central
controller or distributively in the agents. In the first case the output signals of the agents yi, the
external inputs uext,i, and the control signals ui need to be communicated between the agents
and the controller, making formation control dependent on the quality of the communication
links between the systems. On the other hand, if the agents have the ability of measuring the
relative distances between the vectors zi, and L ✏ diagtLi✉N

i✏1, with Li P Rq✂q, the controller
can be implemented distributively in the agents without the need of active exchange of signals.

Let us consider that each agent has local access to a vector ei ✏ Tiz, that can be used as part
of the control strategy, where Ti ✏ D✶♣T o

i q P R♣N✁1qq✂Nq and Ti is an arbitrary spanning tree
over all agents. Note that the organizations are potentially different for every agent. Observe
further that z ✏ T�

i ei�Jz and therefore,

e0 ✏ T
�
T�

i ei�Jz
✟✏ TT�

i ei.

That is, any relative measurement performed by the agents can be “translated” into the rela-
tive measurement done by the centralized controller. Similarly, ei ✏ TiT

�e0. Also note that
T�TT�

i ✏ ♣I✁JqT�
i ✏ T�

i .
With this, if vector pP and matrix TP are known by each agent, the calculation of the refer-

ence vector can be done locally by independently solving the associated assignment problem
with the cost functions:

c♣k, lq ✏ ✎✎s✶lT�e0✁ s✶kT�
P pP

✎✎2 ✏ ✎✎s✶lT�
i ei✁ s✶kT�

P pP

✎✎2
.

A local reference vector can then be defined as:

pi ✏ TiT
�p ✏ TiT

�TE✝T�
P pP ✏ TiE

✝T�
P pP.
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z

Figure 7.6.: Distributed Formation Control Strategy without Communication.

From here, each input signal ui ✏ s✶iu can be calculated as:

ui ✏ Liyi�h✶iei✁h✶ipi�uext,i, (7.16)

with uext,i ✏ s✶iuext and h✶i ✏ s✶iHTT�
i a block row of gains used to weight the locally avail-

able vectors ei and pi. Note that h✶ipi ✏ s✶iHp. Through the introduction of these vectors, the
centralized measurement e0 and reference p are not used for control anymore and, therefore,
the transmission of these variables to the agents is not necessary. This control strategy is to be
seen in Figure 7.6.

The disadvantage of this fully distributed strategy is that each of the N agents has to perform
N ✁ 1 relative distance measurements, while in the centralized implementation only N ✁ 1
measurements are required. The use of one strategy instead of the other is then justified by
practical considerations regarding the relative cost of signals transmission versus measure-
ment. Naturally, partially distributed strategies can also be studied as particular cases.

Example 7.4. Consider again the network in Example 7.1 and five different position feed-
back matrices Hh ✏ ✁αhT✶, with h P t1,2,3,4,5✉, defined by α1 ✏ 0.1, α2 ✏ 0.5, α3 ✏ 1.0,
α4 ✏ 5.0 and, α5 ✏ 10.0. Each agent has the ability of independently solve the associated
assignment problem with an implementation of the Hungarian method and with local relative
position measurements, given through a star-graph centered on the agent. The relative position
feedback gains hi,h, distributively implemented on each agent i P V , are calculated for each
h P t1,2,3,4,5✉ so that h✶i,h ✏ s✶iHhTT�

i .
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Table 7.2.: Numeric Results for Example 7.4.

h αh ⑥Hext♣sq⑥✽ ISE♣60sq IAE♣60sq
1 0.1 10.1588 3147.45 455.37

2 0.5 2.0318 908.47 158.79

3 1.0 1.0159 512.22 85.46

4 5.0 0.3014 198.65 30.63

5 10.0 0.2058 159.71 26.45

The simulations start with the agents not moving and randomly distributed on the plane.
They are immediately instructed to form a line with slope m ✏ 1 and a distance between the
agents d ✏ 30. At t ✏ 30s, the agents are instructed to change their formation into a circle of
radius r ✏ 100. Additionally, a constant input uext,1 ✏ r15, 15s✶ is added to the first agent all
through the simulation time. Which results on the whole group of agents moving across the
plane following the first agent in order to maintain the required formation regardless of the
external input.

Due to the assumption that vector z cannot be measured, the ISD and IAD indicators used
up to here cease to make sense for evaluating the performance of the network. That is why,
similar accumulated error indicators are defined to obtain a fair comparison of the simulation
results:

ISE♣tq ✏ 10✁3
➺ t

0
e✶e dt,

IAE♣tq ✏ 10✁2
➺ t

0

N✁1➳
i✏1

⑤resi⑤ dt

Table 7.2 shows the numeric results of the simulations in terms of the ISE and IAE indi-
cators and the H✽-norm of the transfer function between the external input and the formation
error. It is clear that a smaller H✽-norm implies less accumulated error. However, from the
discussion in Example 7.1, a higher oscillation should also be expected. This can be seen by
comparing the trajectories of the agents as a function of time like in Figure 7.7, with α1 ✏ 0.1,
and in Figure 7.9, with α5 ✏ 10.0. Clearly, a higher value of α implies more oscillations. Note
that due to the effect of the constant external input in the first agent, the whole network changes
constantly its position on the plane. Also, note that for α1 ✏ 0.1, many of the eigenvalues are
close to the imaginary axis, making the network response considerably slow.

Figure 7.10 shows the spatial trajectories that the agents follow with α3 ✏ 1.0 in order to
achieve a line formation at t ✏ 30 and a circle formation at t ✏ 60. Figure 7.8 shows the
same trajectories as a function of time. It can be seen that the agents follow relatively smooth
trajectories with only some oscillations in the behavior of the first agent. �
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Figure 7.7.: Temporal trajectories for α ✏ 0.1 in Example 7.4. a) Horizontal position and b) Vertical
position.
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Figure 7.8.: Temporal trajectories for α ✏ 1.0 in Example 7.4. a) Horizontal position and b) Vertical
position.
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Figure 7.9.: Temporal trajectories for α ✏ 10.0 in Example 7.4. a) Horizontal position and b) Vertical
position.
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Figure 7.10.: Spatial trajectories for α ✏ 1.0 in Example 7.4. a) t ↕ 30, b) 30➔ t ↕ 60.
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7.3. Centralized Analysis of a Network with a Distributively

Implemented Controller

Before proceeding, a centralized description of the network with a distributively implemented
controller needs to be developed. For this, consider that each agent i P V performs rela-
tive measurements ei P R

♣N✁1qq described through an organization matrix Ti ✏ D✶♣T o
i q in

such a way that ei ✏ Tiz, where z P R
Nq is measured in the unknown absolute coordinates.

This can also be measured from an external position through a nominal organization matrix
T✏ D✶♣T oq, so that e0 ✏ Tz✏ TT�

i ei ðñ ei ✏ TiT
�e0. We assume that a general optimal

reference vector p PR♣N✁1qq, relative to organization T, is known, constant, and can be “trans-
lated” by each agent as p ✏ TT�

i pi ðñ pi ✏ TiT
�p. Furthermore, the agents implement the

control law in equation (7.16). That is, ❅i P V ,

ui ✏ Liyi�h✶iei✁h✶ipi�uext,i,

where the matrices hi P R♣N✁1qq✂q are known and fixed. From here, we can write that

u✏ coltui✉iPV ✏ Ly�
✄➳

iPV
sih

✶
iTi

☛
T� ♣e0✁pq�uext . (7.17)

With L ✏ diagtLi✉N
i✏1. Note that this expression is equivalent to equation (7.5) when h✶i ✏

s✶iHTT�
i :✄➳

iPV
sih

✶
iTi

☛
T� ✏

✄➳
iPV

sis
✶
iHTT�

i Ti

☛
T� ✏

➳
iPV

sis
✶
iHT♣I✁JqT� ✏ IHI✏H.

However, (7.17) captures in a better way the individual behavior of the agents as it expressly
contains the organization matrices Ti and the locally implemented control gains hi. In other
words, (7.5) can be used for a centralized analysis of a centrally planed consensus and for-
mation strategy, while (7.17) is better suit for a centralized analysis of a distributively imple-
mented control strategy.

Defining an error signal e ✏ e0 ✁ p, and considering a zero external input (uext ✏ 0) and
a constant reference vector ( d

dt p ✏ 0), the overall dynamics of the error and the states of the
agents can be written as✓

✾x

✾e

✛
✏
✓

A�BLC B
�➦

iPV sih
✶
iTi

✟
T�

TC 0

✛✓
x

e

✛
. (7.18)

Naturally, if this autonomous system is stable, then formation can be achieved and the states
of the agent approach the origin.
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7.3.1. Distributed Switching Modes

An interesting problem associated with formation control with distributed relative measure-
ments, is the possibility that, at least temporarily, the measurements associated with each agent
change. This can be due to a strategic decision of the agents that change their formation al-
gorithm or to a failure scenario similar to those studied in the unintended switching case in
Section 5.2.3. However, contrary to that case and to the general communication dynamics
studied in Section 5.3.3, when a failure in relative measurement occurs, the network cannot
switch into an “unsafe” mode where a residual matrix interferes with the dynamics of the er-
ror. Nevertheless, like in other switching situations, given a nominal mode of the network, the
number of possible switching modes that can be defined is considerably large.

This can be seen quite easily by considering only the measurement failure case. Each of the
N agents uses N ✁1 relative position measurements. Therefore, there are N♣N ✁1q measure-
ments that can fail. If only one failure occurs there are N♣N✁1qC1 ✏ N♣N ✁1q possible discrete
modes. If two failures occur simultaneously, there are N♣N✁1qC2 ✏ N♣N ✁ 1q♣N♣N ✁ 1q✁ 1q
modes. etc. In total then, there are

Msup ✏
N♣N✁1q➳

i✏0

✁
N♣N✁1qCi

✠
✏

N♣N✁1q➳
i✏0

♣N♣N ✁1qq!
i!♣N♣N ✁1q✁ iq! ✏ 2N♣N✁1q

possible discrete modes if up to N♣N ✁1q failures are allowed to occur simultaneously.
At each switching mode, several parameters have to be defined. In particular, N organiza-

tion matrices and N feedback vectors need to be associated with each mode to completely
describe the distributed parameters of the network. Furthermore, additional information on
the residence time at each mode and the switching probabilities associated is also needed.

Definition 7.3.1 (Distributed Switching Mode). A distributed switching mode, qı̂, is the union
of a set of N matrices tTi♣ı̂q✉iPV , and of N feedback vectors thi♣ı̂q✉iPV . Each pair tTi♣ı̂q,hi♣ı̂q✉
is associated with the agent i PV . Additionally, an uncertain residence time T♣ı̂q✏ T min

♣ı̂q �∆T♣ı̂q,
with ∆T♣ı̂q P r0,∆T max

♣ı̂q s, is given together with a switching probability vector πππ�
ı̂ P ΛM, where

M is the total number of distributed switching modes, so qı̂ P Q ✏ tq1,q2, ...,qM✉.

With this definition, the control signal of the network can be calculated as

u ✏ Ly�
✄➳

iPV
sih

✶
i♣ı̂qTi♣ı̂q

☛
T� ♣e0 ✁pq�uext , (7.19)

Note that it is assumed that the switching matrices h✶i♣ı̂qTi♣ı̂q multiply the error e ✏ e0✁p and
not only e0. This can be regarded as a security mechanism. If that where not the case, when
h✶i♣ı̂qTi♣ı̂q ✏ 0, the reference position vector would behave like an input to the network and
would modify its transient behavior. With this control law, however, if h✶i♣ı̂qTi♣ı̂q ✏ 0 then the
system remains static until the system comes to a mode where the product is no longer zero.
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From here, under no external inputs and constant formation reference, formation can be
studied through the stability of the following switching system,✓

✾x

✾e

✛
✏
✓

A�BLC B
�➦

iPV sih
✶
i♣ı̂qTi♣ı̂q

✟
T�

TC 0

✛✓
x

e

✛
, (7.20)

with qı̂ P Q. This can be written in compact way as

✾x̃ ✏ Ã♣ı̂qx̃,

with

x̃ ✏ coltx,e✉ , and Ã♣ı̂q ✏
✓

A�BLC B
�➦

iPV sih
✶
i♣ı̂qTi♣ı̂q

✟
T�

TC 0

✛
.

Again, the results of Chapter 3, particularly Theorem 3.7, can be directly applied to study sta-
bility of the previous expression and therefore determinate if the network can reach formation
under a specific switching process. We distinguish three cases where switching may occur:

Definition 7.3.2 (Switching Types).

• Failure switching: If for all i P V and for all qı̂ P Q, hi♣ı̂q ✏ hi P R
♣N✁1qq and Ti♣ı̂q ✏

Eı̂Ti, where Ti ✏ D✶♣T o
i q PR♣N✁1qq✂Nq and Ei♣ı̂q PR♣N✁1qq✂♣N✁1qq is a block diagonal

matrix where the block element rEi♣ı̂qs j j ✏ 0 if a failure occurs in the j-th measurement
of agent i P V and rEi♣ı̂qs j j ✏ I otherwise.

• Algorithmic switching. If for all i P V and for all qı̂ P Q, Ti♣ı̂q ✏ Ti ✏ D✶♣T o
i q and

hi♣ı̂q ✘ hi♣̂q for at least some i P V and some q̂ P Q③tqı̂✉.
• Apparent switching. If for all i P V and all tqı̂,q̂✉ P Q✂Q, h✶i♣ı̂qTi♣ı̂q ✏ h✶i♣̂qTi♣̂q.

The failure switching case refers to an unintended switching process that occurs when suc-
cessive failures occur in the distributed measurements. Each agent has a nominal organization
matrix that describes the measurements that it performs and a nominal feedback matrix. The
failures at agent i P V are described by the diagonal entries of matrix Ei♣ı̂q

The algorithmic and apparent switching cases are intended switching processes. The first
one of these deals with intended changes of the feedback matrix maintaining the local mea-
surement of the error. The later case considers switching in the measurements and the feed-
back weights in such a way that the feedback signal ui does actually not change because of the
switching. That is, the agents change their measurements but adapt their feedback matrices so
that the switching effect is not reveled to the network. This might be the result of a failure
avoidance mechanism or technological restrictions in the measurements.

Several different cases can be defined by combining the previous ones. For example, an
apparent switching strategy that considers also measurement failures. Because its unintended
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nature, failure switching demands a more critical stability analysis. The apparent switching
case can be trivially analyzed directly from equation (7.18).

Note that the dimension of the switched matrix Ã P R
♣Nn�♣N✁1qqq✂♣Nn�♣N✁1qqq might be

very large in networks with too many agents. Furthermore, in the defined switching processes,
particularly in the failure case, there are typically a large number of discrete modes. Also, Lya-
punov functions have usually a large number of matrix variables. These three facts combined
can make the LMI problems associated with stability difficult to solve numerically, leading to
scenarios where ir cannot be practically tested.

Example 7.5. Consider the same N ✏ 10 agents in the network of Example 7.4 with a relative
position feedback H ✏ ✁1.0T✶ distributively implemented in the agents. Each agent can be
under a measurement failure that inhibits all relative position measurements. That is, each
agent can either measure all the relative positions of the other agents with respect to itself, or
it cannot measure anything.

As in Example 5.10, we will neglect the probability that two (or more) different failures can
simultaneously be repaired, simultaneously occur, or simultaneously occur and be repaired.
In principle all different failures can occur with the same probability. If a failure occurs, the
probability of it being repaired after an uncertain residence time, T♣ı̂q ✏ T min

♣ı̂q �∆T♣ı̂q, is 50%.
The sum of the probabilities that other different failure occurs is then also 50%. The prob-
abilities of jumping between modes can be stated in a matrix ΠΠΠ ✏ col

✥♣πππ�ı̂ q✶✭ı̂PQ
P R

M✂M.
We will assume that the residence time at each discrete mode ı̂ depends on the number of
failures, in such a way that T min

♣ı̂q ✏ 3.0♣0.1q f♣ı̂q and ∆T max
♣ı̂q ✏ T min

♣ı̂q ④4, where f♣ı̂q P N0 is the
number of failures at mode ı̂. The only exception is when there are no failures, the nominal
mode ı̂ ✏ 1, where we will consider that ∆T max

♣ı̂q ✏ 0, i.e. the nominal mode has an known and
certain residence time of T♣ı̂q ✏ 3.0.

If we consider that more than one agent can be in a failure mode at the same time, we need
to define

M ✏
N➳

i✏0

�
NCi

✟✏ 2N ✏ 1,024

different discrete operation modes ı̂ P Q. Considering Theorem 3.7, this implies that there
are 1,024 LMI restrictions. Furthermore, given the dimension of the matrices involved (Ã P
R

38✂38 ùñ P♣αααq PR38✂38) each monomial matrix has 38♣38�1q④2✏ 741 scalar variables!
The number of variables involved can be very difficult to handle by any solver. One way of
lighten the burden of the solver is to impose that all variable matrices are diagonal (in this
case, each monomial will be described only by 38 variables). Additionally, the other variables
defined in Theorem 3.7 can also be forced to have a diagonal structure. This is however, in
many cases not enough to obtain a solution in practical time.

To show the numeric complexity of the problem, consider the different situations sum-
marized in Table 7.3 for networks with less agents but under equivalent failure switching
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Table 7.3.: Feasibility Results for Example 7.5.

N dim
✥

Ã
✭

Max. Failures M Scalar variables App. Solver Time Feasibility

4 14 4 16 659 3rss Yes

5 18 5 32 1,723 6rss Yes

6 22 6 64 4,243 23rss Yes

7 26 2 29 2,238 13rss Yes

7 26 7 128 10,059 122rss Yes

8 30 2 37 3,306 30rss Yes

9 34 2 46 4,669 60rss Yes

10 38 1 11 1,188 8rss Yes

10 38 2 56 6,363 121rss Yes

10 38 10 1,024 117,683 ? ?

schemes. For networks with less than eight agents, we consider that all agents can fail si-
multaneously. With eight or more agents, we consider only that a limited number of agents
can fail at the same time. Note that the time needed to solve the feasibility problem pro-
posed by Theorem 3.7 depends mainly on the number of scalar variables. This depends at
the same time on the number of discrete modes M but also on the dimension of the variables
(dim

✥
Ã
✭ ✏ Nn�♣N ✁ 1qq ✏ 4N ✁ 2). Furthermore, the time also depends on the efficiency

of the implementation of the problem and the characteristics of the underlaying software and
hardware. This makes it very difficult to predict the time needed to solve the problem when all
ten agents can fail. Note that then, there are more than 117 thousand scalar variables while in
the worst case successfully solved, the maximum number of variables is around 10 thousand.

However, note that in all the studied cases, the problems are feasible. This gives space to
speculate that the problem with ten agents and ten simultaneous failures is also feasible and
that the network can achieve formation through the specified failure switching law. This is
corroborated by Figures 7.11 and 7.12 where the behavior of the network is simulated under
exactly the same conditions as in the previous example but considering a random switching
sequence with the defined characteristics. It can be seen that the specified formations can still
be reached under this failure configuration but with slightly different trajectories as in the ideal
case. �

7.3.2. Measurement delays

Another interesting topic is delayed measurements. That is when the relative measurements
of an agent presents some time delay when used for feedback. For example, this can happen if
the relative position measurements are taken with some kind of optical device and processing
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Figure 7.11.: Temporal trajectories under M ✏ 1,024 possible failure states in Example 7.5.
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Figure 7.12.: Spatial trajectories under M ✏ 1,024 possible failure states in Example 7.5. a) t ↕ 30, b)
30➔ t ↕ 60.
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is needed to estimate the relative distances between the agents. Consider that, for every agent
i PV , a delay θi PR�, with θi ✘ θ j, i, j PV , is associated so the feedback signal can be locally
computed as

ui♣tq ✏ Liyi♣tq�h✶iei♣t✁θiq✁h✶ipi,

implying that

u♣tq ✏ Ly♣tq�
✄➳

iPV
sih

✶
iTiT

� ♣e0♣t✁θiq✁pq
☛

✏ Ly♣tq�
✄➳

iPV
sih

✶
iTiT

�e♣t✁θiq
☛

.

From here, the dynamics of the error and the states of the agents can be written as:✓
✾x

✾e

✛
✏
✓

A�BLC 0

TC 0

✛✓
x

e

✛
�
➳
iPV

✓
0 B

�
sih

✶
iTi

✟
T�

0 0

✛✓
x♣t✁θiq
e♣t✁θiq

✛
.

Note that the reference vectors pi and p are considered to be constant and the external input is
omitted. If some agents have exactly the same delay, or some have no delay, similar simplified
expressions can also be obtained. This can be compactly written as,

✾x̃ ✏ Ã0x̃�
➳
iPV

Ãix̃θi , (7.21)

with,

x̃ ✏ coltx,e✉ , x̃θi♣tq ✏ x̃♣t✁θiq,

Ã0 ✏
✓

A�BLC 0

TC 0

✛
, Ãi ✏

✓
0 B

�
sih

✶
iTi

✟
T�

0 0

✛
.

Note that these matrices are extremely sparse. This property can be used to lighten numeric
operations between them.

A way to deal with delayed systems in an LMI framework is through Lyapunov-Krasovskii
functions, e.g. [85, 92–94, 97, 110, 114]. Consider the following positive definite function:

v ✏ x̃✶P0x̃�
➳
iPV

✂➺ t

t✁θi

x̃✶♣αqPs
i x̃♣αqdα �

➺ 0

✁θi

➺ t

t�β

✾x̃✶♣αqPd
i

✾x̃♣αqdαdβ

✡
, (7.22)

with P0 ✏ P✶0 → 0; ❅i P V , Ps
i ✏ ♣Ps

i q✶ ➙ 0 and Pd
i ✏ ♣Pd

i q✶ ➙ 0 of proper dimension; and time
derivative

✾v ✏ x̃✶P0 ✾x̃� ✾x̃✶P0x̃�
➳
iPV

✂
x̃✶Ps

i x̃✁ x̃✶θi
Ps

i x̃θi �θi ✾x̃
✶Pd

i
✾x̃✁

➺ t

t✁θi

✾x̃✶♣αqPd
i

✾x̃♣αqdα

✡
.
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From equation (A.11) in the Appendix we can write that

✁θi

➺ t

t✁θi

✾x̃✶♣αqPd
i

✾x̃♣αqdα ↕✁
✂➺ t

t✁θi

✾x̃♣αqdα

✡✶
Pd

i

✂➺ t

t✁θi

✾x̃♣αqdα

✡
✏✁♣x̃✁ x̃θiq✶Pd

i ♣x̃✁ x̃θiq ,

implying that,

✾v ↕ ✾vb ✏ x̃✶P0 ✾x̃� ✾x̃✶P0x̃�
➳
iPV

✂
x̃✶Ps

i x̃✁ x̃✶θi
Ps

i x̃θi �θi ✾x̃
✶Pd

i
✾x̃✁ 1

θi
♣x̃✁ x̃θiq✶Pd

i ♣x̃✁ x̃θiq
✡

.

Imposing ✾vb ➔ 0, leads to the sufficient condition for ✾v ➔ 0. Replacing the expression for ✾x̃

and rewriting the previous inequality into the form ✾vb ✏ v
✶
Dv, with v✏ col

✥
x̃,coltx̃θi✉iPV

✭
,

stability of the states of the agents and consensus can be studied through LMI (7.23),

D✏

✔
✖✖✖✖✖✖✖✖✖✖✕

D00 D01 ☎ ☎ ☎ D0i ☎ ☎ ☎ D0N

✍ D11 ☎ ☎ ☎ Di j ☎ ☎ ☎ D1N
...

...
. . .

...

✍ ✍ Dii DiN
...

...
. . .

...

✍ ✍ ☎ ☎ ☎ ✍ ☎ ☎ ☎ DNN

✜
✣✣✣✣✣✣✣✣✣✣✢
➔ 0, (7.23)

where ❅i P V and ❅ j P ti�1, i�2, ...,N✉ each block is defined by:

D00 ✏P0Ã0� Ã
✶
0P0�

➳
iPV

✂
Ps

i ✁
1

θi
Pd

i

✡
� Ã

✶
0PdÃ0,

D0i ✏P0Ãi� Ã
✶
0PdÃi� 1

θi
Pd

i ,

Dii ✏✁Ps
i ✁

1

θi
Pd

i � Ã
✶
iP

dÃi,

Di j ✏Ã
✶
iP

dÃ j,

and Pd ✏➦
iPV θiP

d
i .

Note that if for any i P V in the Lyapunov function (7.22), Pd
i ✏ 0, then the derived con-

ditions do not depend on the value θi. That is, when this value is not known, LMI (7.23) can
be used to check stability of x̃ by forcing the respective matrices to be zero. If the delays are
known to be within certain interval but are not precisely known, LMI (7.23) can be modified
to also study these cases. This of course implies more restrictive numeric conditions.

Also observe that the matrix in LMI (7.23) is composed of ♣N � 1q2 blocks, each of them
of dimension ♣Nn�♣N✁1qqq✂♣Nn�♣N✁1qqq. Therefore,

D P R♣♣N�1q♣Nn�♣N✁1qqqq✂♣♣N�1q♣Nn�♣N✁1qqqq
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can be difficult to handle numerically due to the high dimension calculations involved. Fur-
thermore, the Lyapunov matrices P0, Ps

i and Pd
i , with i P V , are also of high dimension (they

are defined in R
♣Nn�♣N✁1qqq✂♣Nn�♣N✁1qqq) what makes the LMI problem also difficult to han-

dle for most solvers. These aspects need to be considered for an efficient implementation of
the LMI based test for stability of the delayed vector x̃.

Example 7.6. Consider the same N ✏ 10 agents that in the previous examples. Each agent
presents a delay in their relative position measurement given by

θ1 ✏ 0.0990, θ2 ✏ 0.0992, θ3 ✏ 0.0994, θ4 ✏ 0.0997, θ5 ✏ 0.0999,

θ6 ✏ 0.1001, θ7 ✏ 0.1003, θ8 ✏ 0.1006, θ9 ✏ 0.1008, θ10 ✏ 0.1010.

Note that the mean value of these values is E♣θq ✏ 1
N

➦
iPV θi ✏ 0.1. In this case, LMI (7.23)

is such that D P R
418✂418 and the Lyapunov function is defined by 1� 10✂ 2 ✏ 21 matrices

in R
38✂38. As in the previous example, this involves a considerable large number of scalar

variables (21✂38♣38�1q④2 ✏ 15,561) what makes it difficult to handle the problem. To di-
minish this number, diagonal structures of the Lyapunov matrices cannot be assumed because
the structure of matrices Ã0 and Ãi, ❅i P V , with a zero block in position ♣2,2q, makes the
diagonal structure too restrictive. However, symmetric Toeplitz1 matrices can be used to have
a total of 21✂38 ✏ 798 scalar variables.

With this, LMI (7.23) can be verified feasible with the stated delays. This is confirmed
in Figure 7.13 where the network response is simulated under the same conditions of the
previous examples. Note that the delays in the measurements make the agents positions to
oscillate heavily. However, this oscillation is not strong enough to break the formation and to
destabilize the internal dynamic of the agents.

Consider now a more demanding scenario with the following values:

θ1 ✏ 0.2970, θ2 ✏ 0.2977, θ3 ✏ 0.2983, θ4 ✏ 0.2990, θ5 ✏ 0.2997,

θ6 ✏ 0.3003, θ7 ✏ 0.3010, θ8 ✏ 0.3017, θ9 ✏ 0.3023, θ10 ✏ 0.3030,

with E♣θq ✏ 0.3. In this case, LMI (7.23) cannot be verified feasible. Because this is only a
sufficient condition for stability and because of the special structure chosen for the Lyapunov
matrices, this does not imply that the network under these conditions cannot reach forma-
tion successfully. Nevertheless, it does give space to suspect instability. Indeed, considering
the same simulation situation, Figure 7.14 shows that the oscillation of the agents makes it
impossible to achieve formation. �

1A Toeplitz matrix is a matrix in which each descending diagonal from left to right is constant. For example, the
following matrix is Toeplitz and symmetric:

✔
✕

a b c d e
b a b c d
c b a b c
d c b a b
e d c b a

✜
✢ .
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Figure 7.13.: Temporal trajectories with E♣θq ✏ 0.1 in Example 7.6.
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Figure 7.14.: Temporal trajectories with E♣θq ✏ 0.3 in Example 7.6.
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7.3.3. Discussion

Most of the cases studied in this thesis and, in particular, formation control, give rise to a
number of questions about the nature of the studied problems. Up to this point, we have
treated the consensus and formation problems from a global perspective. That is, all analyses
have been done considering that the whole network is known to the analyzer, even though the
control actions can be distributed in the local controllers of the agents. This, of course, can
only be done in small networks where each agent is seen as an element of a larger system.
However, in more complex cases, the analysis of the network can only be done locally, either
by one of the agents itself or by a local controller for a small section of a larger network. This
gives space to talk about an individual perspective of the consensus problem.

In this case, the agent that performs the analysis can only have partial information of the
network, typically limited to the dynamical behavior of its “neighbors”. In general, the agent
can also not assume that it has the power to influence other agents. It can only do its best to
stay “near” them.

When an agent looks at its neighbors, how does it evaluate if consensus is reached or not? He
can certainly not evaluate the error vector for the whole network but only for a small section,
probably described by a star tree from wich the agent is the center. In this sense, the idea of
organization is no longer valid as before for the whole network, but only as sub organizations
for each agent who evaluates different target errors. However, if a global approach cannot be
followed, then how can we evaluate whether the network reached consensus or not?

Another aspect to take into consideration is the number of neighbors that each agent has.
This might be a fixed number or a time variant quantity. Probably, the number of neighbors
that an agent can “see” will tend to increase as the agents are near to consensus or formation.
Can each agent manage information from as many neighbors as it might have? Or is it limited
to a maximal number of neighbors? Then, how does an agent choose its observed neighbors?
Which other agents are actually neighbor candidates?

How to deal with such questions in large networks is neither clear nor immediate. Probably,
at each instant, the agent will be tempted to solve an optimization problem in order to mini-
mize the error with respect to the reported information about the neighbors. How to do this?
What functional should be optimized? This could also be seen as a game theoretical problem.
However, most game theoretical approaches deal with a restricted number of strategies. On the
contrary, in the control case, an infinite number of strategies is usually considered: continuous
values for the input vectors of each agent.

This kind of questions leads to a richer understanding of consensus, distributed control, and
its associated implementation problems. To study this scenario, the fundamental assumption
that consensus is a design objective needs to be dropped, as there is no way to compute how
close is the network to consensus if the whole network is not known.
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✽
Conclusion

8.1. Summary

In this thesis, a comprehensive analysis of the consensus problem is formulated from a control
theoretical perspective. First, a general framework on graph theory and stability of systems is
summarized in Chapter 2. This is complemented with some mathematical concepts treated in
Appendix A. This mathematical background is closed in Chapter 3 with results on the stability
of time triggered switched systems.

After this background is stated, Chapter 4 defines the consensus problem as a control objec-
tive, independent of the characteristics of the agents, through the key concept of hierarchical
organization. From here, Chapter 5 studies different choices for feedback laws so that the
plant achieves this control objective. The first section of this chapter is dedicated to Laplacian
algorithms, which are the most popular in consensus references. Here we distinguish between
integrator networks and autonomous agents networks to study consensus accordingly. The
second section of this chapter deals with different kind of algorithms and describes their main
characteristics when applied to different networks. Finally, a third section is focused on dif-
ferent assumptions on the dynamics of the agents in an attempt to generalize the analysis to a
larger class of networks.

Chapters 6 and 7 apply the previously discussed concepts to two related problems. The first
one is that of power sharing in electric grids with inverters as generation units. This chapter
is in strict relationship with Appendix B. In the following chapter, the formation problem
is described as a higher order consensus problem and the distributed implementation of a
controller to achieve an optimal formation is studied from a centralized perspective.

8.2. Contributions

The main contribution of this thesis is to bring the consensus problem closer to classical
Control Theory. That is, to describe the problem in three different and independent entities: the
network of agents, the consensus objective defined through the idea of organization, and the
consensus algorithm as an output feedback. This description allows to systematically analyze
consensus with well known tools from control theory. In this way, consensus can be studied by
an equivalent stability problem under several assumptions, generalizing the class of systems
and controllers that can be considered, but maintaining a global framework that can be used
to further investigate different cases and applications.

183
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Nevertheless, there are also a number of specific contributions related to the different chap-
ters of the thesis that also need to be mentioned. Concerning graph theory, it is important to
mention the generalization of weighted graphs to include higher dimension weights. This is a
small contribution to the graph theoretical field, but it is a key aspect for the consensus analy-
sis, as it allows to study higher order coupled agents without losing the convenient graphical
representation of the algorithms.

The results on switched systems in Chapter 3 are also worth mentioning. The main con-
tribution in this aspect is the extension of known results on stability of stochastic switched
systems to include uncertainties on the implicit discrete time system matrices. These results
can be directly applied to the study of consensus.

As already mentioned, the consensus formulation stated in Chapter 4 can be regarded as the
main contribution of this work. From here, several results can be deducted in the following
chapter. For the case of integrator networks, sufficient and necessary conditions for consensus
can be achieved even in the case where the dynamics of the agents are coupled. These con-
ditions can be further modified to study consensus under the influence of perturbations and
uncertainties, and to define design procedures that consider performance criteria as robustness
or convergence rate.

But it is in the case of autonomous agents where the most contributions in the consen-
sus area are achieved. Particularly, we found necessary and sufficient conditions for reaching
consensus in a wide range of networks. Namely, when the residual signal vanishes. These con-
ditions can be again easily extended to study the roll of perturbations and uncertainties and
to define design procedures subject to some performance criteria. As far as the author knows,
output consensus between agents with arbitrary linear dynamics has not been characterized
before independently of the states dynamics.

To avoid the problem of residual signals, several alternative algorithms were studied. First,
we propose the use of selflooped algorithms to diminish the residual effect on the network.
As in general this is not possible, we consider further a complementary state feedback that
may not be necessarily described in a graph theoretical way. Further in this direction, non
graphically restricted algorithms are studied. This helps to stress the point that consensus does
not necessarily depend on the graphical description of the algorithms but on the relationship
between the different matrices that describes the network and the algorithm.

Switched algorithms are also addressed through the previously discussed results on switched
systems. The use of such algorithms is highlighted to describe the operation of the network
under communication failure. It is shown that, again because of the residual signals, it is diffi-
cult to guarantee consensus in all cases. However, under some operation conditions, consensus
can still be reached with this kind of strategies.

The final section of Chapter 5, further expands the discussion to networks with different
dynamical assumptions. The emphasis here is to enlarge the class of dynamic phenomena
that can be considered rather than to propose new control strategies. In particular, it is shown
that higher order dynamics can be studied by imposing stability of not only the consensus
error, but also of other auxiliary variables. The discussion on the role of communications, as
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an independent control entity of the consensus algorithm, opens space for interesting future
developments.

Chapter 6 on microgrids is an application of the previously discussed topics and well studied
power electric concepts. From a consensus perspective, its main contribution is to exemplify
the role of hardware interconnections between the agents and how they can influence the con-
trol strategy to be used. In particular, it is shown that selflooped algorithms can be successfully
applied to such networks. From an electrical point of view, the definitions of the grid compo-
nents and of their control strategies are borrowed from the available references. However, the
use of the explicit model of the grid, deducted in Appendix B, for design and evaluation of
control strategies, is usually not to be found in related works.

The formation problem chapter exemplifies the consensus analysis of higher order net-
works. It considers a coherent description of the problem to define a feedback strategy that
guarantees that any formation can be reached successfully without the need of exchanging
speed information between the agents. It only requires access to relative position measure-
ments. It also describes a novel methodology to calculate an optimal formation given the
current relative position of the agents. Based on local measurements, both elements can be
distributively implemented in the agents. This leaves space for a centralized analysis of the
network subject to a distributed implementation of the control strategy, which includes switch-
ing faults and delayed measurements.

8.3. Future Work

Further development in several parts of this work can be considered. Principally in three dif-
ferent areas: switched systems, general consensus, and the application to electric systems.

Firstly, regarding to stochastic switched systems, the possibility of verifying stability by
observing the systems behavior at switching instants only, opens a wide spectrum of opportu-
nities to study the behavior of time triggered switched systems under different assumptions.
Nevertheless, only sufficient conditions to test stability are shown based on a particular choice
of Lyapunov functions. To extend the analysis to find less conservative restrictions, favoring
other kind of Lyapunov functions derived, for example, from homogeneous polynomials, is a
pending matter. Furthermore, only time triggered switching schemes are considered. It seems
natural to proceed to more sophisticated scenarios where switching can occur as a function
of the continuous states of the system. This is not a trivial task as it is difficult to, in general,
describe switching regions to analyze the systems. A possible way to proceed is to extend the
studied approach to continuous time Markov chains and define the probability vectors as a
function of the continuous states of the system.

From the consensus point of view, the main difficulty for convergence of the error signal is
the influence of the states of the agents on the dynamics of the consensus error through what
have been denominated the residual signal. An interesting idea is to characterize this influence
through an scalar indicator in order to be able to compare different strategies and networks.
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The underlaying hypothesis is that this indicator exists as a function of the information of the
network and the controller only, and not of the time response of the network. This approach
can be used to further analyze other topics, as the influence of communication dynamics in the
consensus objective. A further situation to be studied is that of distributed analysis discussed
at the end of Chapter 7.

In the electric grid case, an interesting topic is to include different dynamics for the genera-
tion units. Particularly, to generalize the study to the case where some agents model VSIs but
others represent classical rotatory machine generators. This situation is nowadays an important
issue as the current state of distributed electric generation considers a hybrid scheme where
both technologies coexist. Furthermore, a unified analysis of both kinds of power sharing (ac-
tive and reactive) is needed. Both quantities are highly interconnected and an independent
analysis of each one can be restrictive. A third topic in this aspect is to change the view of the
problem from a mainly consensus theoretical one to an applied one. For this, the model and
control of a real grid seems as an interesting further step.
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❆
Other General Results

A.1. Pseudo Inverses

Generalized inverses, more specifically the Moore-Penrose pseudoinverse, are an important
and well studied subject in linear algebra. Some of the definitions and properties associated
with this topic are however some times overpassed. Therefore we include here a brief intro-
duction on the subject based on the book [115].

Definition A.1.1. Given a matrix A P Cm✂n, its Moore-Penrose pseudoinverse (or just pseu-
doinverse for short) A� P Cn✂m satisfies the Penrose equations:

AA�A✏ A, (A.1)

A�AA� ✏ A�, (A.2)

♣AA�q✝ ✏ AA�, (A.3)

♣A�Aq✝ ✏ A�A. (A.4)

where A✝ is the conjugate transpose of A.

The name of this generalized inverse comes from the work of R. Penrose who showed in
1955 that this matrix is unique and of E. H. Moore who previously studied the operation
though defined in a different way.

Lemma A.1 (Penrose). For every A P Cm✂n, if A� exits, then it is unique.

Proof. Let X and Y be different matrices that satisfy the four Penrose equations. Then,

X✏ X♣AXq ✏ X♣AXq✝ ✏ XX✝A✝ ✏ XX✝♣AYAq✝ ✏ XX✝A✝Y✝A✝

✏ X♣AXq✝♣AYq✝ ✏ X♣AYq✝ ✏ ♣XAqY
✏ ♣XAq✝♣YAq✝Y✏ ♣A✝X✝A✝qY✝Y✏ A✝Y✝Y

✏ ♣YAq✝Y✏ ♣YAqY
✏ Y

What contradicts the statement that X and Y are different.

It can also be shown that for every matrix A P Cm✂n the pseudoinverse always exists. In-
deed, if r ✏ ranktA✉ ✏ 0 ðñ A ✏ 0m✂n, then A� ✏ 0n✂m satisfies the Penrose equations.
For 0➔ r✏ ranktA✉ ↕mintn,m✉ the following lemma gives an explicit formula for the pseu-
doinverse.
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Lemma A.2 (MacDuffee). For A PCm✂n with r ✏ ranktA✉ → 0, and a full rank factorization

A ✏ FG, (A.5)

where F P Cm✂r and G P Cr✂n are full rank matrices, then

A� ✏ G✝♣F✝AG✝q✁1F✝. (A.6)

Proof. First we need to prove that F✝AG✝ is nonsingular. By (A.5),

F✝AG✝ ✏ ♣F✝Fq♣GG✝q,
and both factors on the right hand term are r ✂ r matrices with rank r. Then F✝AG✝ can
be expressed as the multiplication of two full rank matrices and is then also full rank and
nonsingular. Its inverse is then:

♣F✝AG✝q✁1 ✏ ♣GG✝q✁1♣F✝Fq✁1.

By inspection, it is easy to show that A� ✏ G✝♣GG✝q✁1♣F✝Fq✁1F✝ satisfies the Penrose
equations and therefore is the unique pseudoinverse of matrix A.

As for every matrix of rank r → 0, a full rank factorization can be found, then the previous
lemma also shows that every matrix has a pseudoinverse. From here, the following corollary
is immediate by making one of the full rank factors of the matrices equal to the identity.

Corollary A.3. If B P C
m✂r is full column rank (i.e. ranktB✉ ✏ r) and C P C

r✂n is full row
rank (i.e. ranktC✉ ✏ r), their respective pseudo inverses are:

B� ✏ ♣B✝Bq✁1
B✝ and

C� ✏ C✝ ♣CC✝q✁1 .

A pseudo inverse in the shape of B� ✏ ♣B✝Bq✁1
B✝ will be addressed as left pseudoinverse,

as B�B ✏ I, and in the shape of C� ✏ C✝ ♣CC✝q✁1, as right pseudoinverse as CC� ✏ I.
Moreover, the following facts are also easy to prove:

Proposition A.4. If A P C
n✂n is nonsingular (i.e. ranktA✉ ✏ n), then its pseudo inverse is

A� ✏ A✁1.

Proof. The right pseudoinverse of A is A� ✏ ♣A✝Aq✁1
A✝ ✏ ♣Aq✁1 ♣A✝q✁1

A✝ ✏ A✁1. Alter-
natively, it can be shown that the inverse matrix satisfies the Penrose equations.

Proposition A.5. For any matrix X P Cm✂n, if U P Cm✂m and V P Cn✂n are unitary matrices
(i.e., UU✝ ✏ U✝U ✏ I and VV✝ ✏ V✝V ✏ I) then,

♣UXVq� ✏ V✝X�U✝.
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Proof. By inspection, A ✏ UXV and A� ✏ V✝X�U✝ satisfy the Penrose equations:

1. ♣UXVq�V✝X�U✝✟♣UXVq ✏ U♣XX�XqV ✏ UXV,

2.
�
V✝X�U✝✟♣UXVq�V✝X�U✝✟✏ V✝♣X�XX�qU✝ ✏ V✝X�U✝,

3.
�♣UXVq♣V✝X�U✝q✟✝ ✏ �

UXX�U✝✟✝ ✏ U
�
XX�✟✝U✝

✏ UXX�U✝ ✏ ♣UXVq♣V✝X�U✝q,

4.
�♣V✝X�U✝q♣UXVq✟✝ ✏ �

V✝XX�V
✟✝ ✏ V✝ �XX�✟✝V

✏ V✝XX�V ✏ ♣V✝X�U✝q♣UXVq.

The previous proposition becomes important because of the Singular Value Decomposition
(SVD).

Definition A.1.2. The singular values of matrix A P C
m✂n, with m ↕ n, are the square root

of the eigenvalues of matrix AA✝: svdtA✉ ✏ ✥
σ ➙ 0, m ↕ n⑤σ2 P eigtAA✝✉✭. Analogously,

if m ➙ n, then the singular values are the square root of the eigenvalues of A✝A: svdtA✉ ✏✥
σ ➙ 0, m ➙ n⑤σ2 P eigtA✝A✉✭.

Note that the nonzero eigenvalues of AA✝ are the same as the nonzero eigenvalues of A✝A.
The two cases of the definition are then equivalent for nonzero singular values and only intro-
duced so that ⑤svdtA✉ ⑤ ✏ mintm,n✉. Also note that if r ✏ ranktA✉ ↕ mintm,n✉ there are r
nonzero singular values that are usually labeled in descending order:

σ1 ➙ σ2 ➙ ☎☎ ☎ ➙ σr → σr�1 ✏ σr�2 ✏ ☎☎ ☎ ✏ σmintm,n✉ ✏ 0.

Furthermore, from the definition of positive semi-definite matrices (Section 2.2.2), the LMI
A✶A ↕ σ2

1 I follows immediately.

Theorem A.6 (Singular Values Decomposition (SVD)). Given A PCm✂n with r ✏ ranktA✉ →
0 non zero singular values σ1 ➙ σ2 ➙ ☎☎ ☎ ➙ σr → 0, then there are unitary matrices U PCm✂m

and V P Cn✂n such that:

Σ ✏ U✝AV ✏
✓

diagtσi✉r
i✏1 0r✂♣n✁rq

0♣m✁rq✂r 0♣m✁rq✂♣n✁rq

✛
P Rm✂n.

Moreover, U ✏ rowtui✉m
i✏1 and V ✏ rowtvi✉n

i✏1, where ui P Cm are the normalized eigenvec-
tors of AA✝ and vi P Cn the normalized eigenvectors of A✝A.

Proof. See, for example, [75, Ch. 2.6, pp. 19], [115, Ch. 6.2, pp. 206], [123, Ch. 2.4, pp. 76],
[126, Ch. 5.12, pp. 411], etc.
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From Proposition A.5 and Theorem A.6 it is immediate that:

Corollary A.7. Given A PCm✂n with 0➔ r ✏ ranktA✉ ↕mintm,n✉ and its SVD, A✏UΣV✝,
then

A� ✏ VΣ
�U✝.

Where,

Σ
� ✏

✓
diagt1④σi✉r

i✏1 0r✂♣m✁rq
0♣n✁rq✂r 0♣n✁rq✂♣m✁rq

✛
P Rn✂m.

This becomes particularly important to numerically compute the pseudoinverse of a matrix
in an efficient way and to calculate the products of the third and fourth Penrose equations:

AA� ✏ UΣV✝VΣ
�U✝ ✏ UΣΣ

�U✝ ✏ U

✓
Ir✂r 0r✂♣m✁rq

0♣m✁rq✂r 0♣m✁rq✂♣m✁rq

✛
U✝,

A�A ✏ VΣ
�U✝UΣV✝ ✏ VΣΣ

�V✝ ✏ V

✓
Ir✂r 0r✂♣n✁rq

0♣n✁rq✂r 0♣n✁rq✂♣n✁rq

✛
V✝.

A.2. Norms

Norms are an important topic in this thesis and therefore a (very) short summary of their main
characteristics is presented here. The statements presented here are of common knowledge
and can be found in many linear algebra and control books. In particular we quote [64, 69, 75]
for being classical control specialized books.

Definition A.2.1. A norm ν♣☎q is any operator over x P Cn such that:

• ❅x P Rn, ν♣xq ➙ 0, with ν♣xq ✏ 0 ðñ x ✏ 0.

• ❅x❫y P Cn, ν♣x�yq ↕ ν♣xq�ν♣yq.
• ❅x P Cn❫α P R, ν♣αxq ✏ ⑤α⑤ν♣xq.

We reserve the notation ⑥x⑥ for the Euclidean norm of x P Rn:

⑥x⑥ ✏
❄

x✶x.

Note that this norm is dependent on time if vector x is so. A generalization of this norm to
make it time independent is the signal norm L2 that is defined as:

⑥x⑥2 ✏
✂➺ �✽

✁✽
x✶xdt

✡1④2
.
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Because of Parseval’s equation,➺ �✽
✁✽

⑥ f ♣tq⑥2dt ✏ 1

2π

➺ �✽
✁✽

⑥F♣ jωq⑥2dω ,

where F♣ jωq ✏ L t f ♣tq✉⑤s✏ jω , the Fourier transformation of the signal f ♣tq, it holds that

⑥x⑥2 ✏
✂

1

2π

➺ �✽
✁✽

x̂✶♣✁ jωqx̂♣ jωqdω

✡1④2
.

With x̂♣sq ✏ L tx♣tq✉, the Laplace transformation of x. From a general engineering perspec-
tive, this norm can be interpreted as the energy of a signal x P Rn. However, other norms can
also be defined. For example, the Lp signal norm for any p P N is defined as:

⑥x⑥p ✏
✂➺ �✽

✁✽
⑥x⑥pdt

✡1④p

.

As p Ñ✽, the L✽-norm is obtained as:

⑥x⑥✽ ✏ max
t
⑥x⑥.

Matrix norms inducted from a general vector norm ν♣☎q, are defined as:

ν♣Aq ✏ max
x✘0

ν♣Axq
ν♣xq .

Therefore ν♣Axq↕ ν♣Aqν♣xq. In the case of the Euclidean norm, the matrix norm is equivalent
to the largest singular value of the matrix. That is,

⑥A⑥ ✏ maxtsvdtA✉✉ ✏
❜

max
✥

eig
✥

A✶A
✭✭

. (A.7)

System norms over a transfer function matrix G♣sq are defined in a similar way. In particular,
the H✽-norm can be defined as:

⑥G♣sq⑥✽ ✏ sup
ω
t⑥G♣ jωq⑥✉ ✏ sup

ω
tmaxtsvdtG♣ jωq✉✉✉ .

An important property of the H✽-norm is that ⑥G♣sqû⑥2 ↕ ⑥G♣sq⑥✽⑥û⑥2, with û the Laplace
transformation of u. This leads to the following tight bound for the H✽-norm:

⑥G♣sq⑥✽ ➙ ⑥G♣sqû⑥2

⑥û⑥2
✏ ⑥z♣tq⑥2

⑥u♣tq⑥2
,

with ẑ♣sq ✏ G♣sqû♣sq ✏ L tz♣tq✉, the Laplace transformation of the signal z. Therefore, the
H✽-norm can be interpreted as the maximal energy gain between an input signal u and an
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output signal z. This norm is then a natural choice to characterize the sensitivity of a system
to perturbations. Indeed, if the H✽-norm of the transfer function matrix between a pertur-
bation and the outputs of a system is small, then the energy transfered to the output by the
perturbation is also small, making the system itself less sensitive to this signal.

The scalar function

µ♣Aq ✏max

✧
eig

✧
A�A✶

2

✯✯
,

is the so called logarithm 2-norm (or simply log norm) of matrix A. Note that this operator
is not a norm as it can be negative. A specialized summary on the topic with connections
to stability theory can be found in [130]. A more general reference on the exponential matrix
where this function becomes important is [128]. This value is related to the stability of a linear
dynamic system ✾x✏Ax as if µ♣Aq ➔ 0, then, the Lyapunov function v♣xq ✏ x✶x✏ ⑥x⑥2 proves
stability of the system. However, it can be the case that a Hurwitz matrix has a positive log
norm.

An important result, proven in [130], is that ❅t ➙ 0,

⑥eAt⑥ ↕ eµ♣Aqt (A.8)

Where ⑥ ☎ ⑥ is the Euclidean norm generalized to matrices. Observe that, as for Hurwitz matri-
ces the log norm can be positive, this bound might be very conservative in those cases. Also
note that if α♣Aq ✏ maxtrealteigtA✉✉✉, α♣Aq ↕ µ♣Aq ùñ eα♣Aqt ↕ eµ♣Aqt but there is no
guarantee that ⑥eAt⑥ ↕ eα♣Aqt . From the definition of the Euclidean norm (A.7) and from (A.8),
if A P Rn✂n, the following matrix inequality follows,

eA✶teAt ↕ ⑥eAt⑥2I↕ e2µ♣AqtI. (A.9)

A.3. General Algebraic Results

The results presented here are general algebraic properties of matrices that can be found in
different general texts as, for example, [121, 123, 124, 126] and control classical texts as [64,
66, 75]. The results presented here are sometimes modified for the notation and objectives of
this thesis.

Proposition A.8 (Congruence Transformation). For a given symmetric matrix R✏R✶ PRn✂n

and a linear full rank transformation T P Rn✂n it holds true that R→ 0 ðñ T✶RT→ 0.

Proof. R → 0 ðñ ❅x ✘ 0, x✶Rx → 0. Defining y ✏ T✁1x, then x✶Rx ✏ y✶T✶RTy → 0. As
y✘ 0 ðñ x✘ 0, T✶RT→ 0.
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Proposition A.9 (Augmented Eigenvalues). For matrices X PRq✂n and Y PRn✂q, with q➙ n,
the non-zero eigenvalues of YX are the same as the non-zero eigenvalues of XY. That is:

eigtYX✉ ✏ eigtXY✉❨Z,

where Z is a set of zeros (Z ✏ t0,0...0✉) with cardinality ⑤Z⑤ ✏ q✁n.

Proof. This proof is based on the Sylvester’s Determinant Theorem. For any scalar λ , define
the following matrix:

M ✏
✓

λ Iq X

λY λ In

✛
.

The LU composition of this matrix is:

M ✏
✓

Iq 0

Y In

✛✓
λ Iq X

0 λ In✁YX

✛
.

Therefore, the determinant of M is ⑤M⑤ ✏ λ ⑤λ In✁YX⑤. Similar, the UL composition of M is

M ✏
✓

λ Iq✁XY X

0 λ In

✛✓
Iq 0

Y In

✛
,

and the determinant ⑤M⑤ ✏ ⑤λ Iq✁XY⑤λ . So finally, for λ ✘ 0,

⑤λ In✁YX⑤ ✏ ⑤λ Iq✁XY⑤.
It is then clear that whenever λ ✘ 0, the characteristic polynomial of matrix XY has the same
roots as the characteristic polynomial of matrix YX. As there are m ↕ n non-zero solutions
for the characteristic equation of YX, matrix XY should have q✁m zero eigenvalues. This
situation can be written as the union of sets stated in the lemma.

Proposition A.10 (Matrix Inversion). For non singular matrices A, C and C✁1 �DA✁1B,
then

♣A�BCDq✁1 ✏ A✁1✁A✁1B
�
C✁1�DA✁1B

✟✁1
DA✁1.

Proof. Multiplication of ♣A�BCDq by the stated inverse leads directly to the identity matrix:

♣A�BCDq♣A�BCDq✁1 ✏ ♣A�BCDq♣A✁1✁A✁1B
�
C✁1�DA✁1B

✟✁1
DA✁1q

✏ �
I�BCDA✁1

✟✁♣B♣C✁1�DA✁1Bq✁1DA✁1✁
...✁BCDA✁1B♣C✁1�DA✁1Bq✁1DA✁1q

✏ �
I�BCDA✁1

✟✁
...✁BC♣C✁1�DA✁1Bq♣C✁1�DA✁1Bq✁1DA✁1

✏ I�BCDA✁1✁BCDA✁1 ✏ I.
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Proposition A.11 (Linear System Solution). The solution of the excited linear differential
equation,

✾x♣tq ✏ Ax♣tq�Bu♣tq,

with x♣tq P Rn, u♣tq P Rp, A P Rn✂n, B P Rn✂p, and initial condition x♣t0q ✏ x0 is

x♣tq ✏ eA♣t✁t0qx0�
➺ t

t0

eA♣t✁τqBu♣τqdτ .

Proof. First note that,

x♣tq ✏ eA♣t✁t0qx0�
➺ t

t0

eA♣t✁τqBu♣τqdτ

✏ eA♣t✁t0qx0� eAt

➺ t

t0

e✁AτBu♣τqdτ .

Then it follows that,

✾x♣tq ✏ d

dt

✁
eA♣t✁t0qx0

✠
� d

dt

✂
eAt

➺ t

t0

e✁AτBu♣τqdτ

✡

✏ AeA♣t✁t0qx0�
✂

AeAt

➺ t

t0

e✁AτBu♣τqdτ � eAte✁AtBu♣tq
✡

✏ A

✂
eA♣t✁t0qx0� eAt

➺ t

t0

e✁AτBu♣τqdτ

✡
�Bu♣tq

✏ Ax♣tq�Bu♣tq.

A.4. General LMI Results

The following results can be found in many LMI publications as they are useful to solve
particular problems.

Proposition A.12 (Schur’s Complement [80]). For constant matrices of proper dimensions,
R ➔ 0 and P✁S✶R✁1S ➔ 0 is true if and only if✓

P S✶

S R

✛
➔ 0
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Proof. Consider the decomposition:✓
P S✶

S R

✛
✏
✓

I S✶R✁1

0 I

✛✓
P✁S✶R✁1S 0

0 R

✛✓
I S✶R✁1

0 I

✛✶

Which, because of the Congruence Transformation property and the diagonal structure of the
in-between matrix, is negative definite if and only if P✁S✶R✁1S➔ 0 and R➔ 0.

Lemma A.13 (Bounded Real Lemma (BRL) [80]). For a real linear system described by

✾x✏ Ax�Bw

y✏ Cx�Dw.

Matrix A is Hurwitz (i.e. all its eigenvalues have negative real parts) and the H✽-norm of
the transfer function Hwy♣sq, between the signal w and the output y of the system, is smaller
than γ → 0, if and only if there exists P✏ P✶ → 0 of proper dimensions such that the following
inequality holds✓

PA�A✶P�C✶C PB�C✶D
✍ D✶D✁ γ2I

✛
➔ 0. (A.10)

A complete proof of the BRL is lengthy and difficult to summarize without omitting impor-
tant information. Most of the seminal works on LMI and H✽-norm, quote the result without
proof as a basic milestone. See for example [80, 86, 87, 101, 108, 109]. A complete proof of
the lemma can be found in [75, Ch. 12.1, pp. 238] (Corollary 12.3). We state here only some
key ideas to properly understand the lemma.

The H✽-norm of the system can be characterized as:

⑥Hwy♣sq⑥✽ ➔ γ ðñ sup

❜➩T
0 y✶ydt❜➩T

0 w✶wdt
➔ γ

ðñ sup

✧
l♣x,wq :✏

➺ T

0
y✶ydt✁ γ2

➺ T

0
w✶wdt

✯
➔ 0

That is, the required bound on the H✽-norm can be verified by solving a maximization prob-
lem. From standard LQR theory (see for example [63, 64]), it follows that a suboptimal so-
lution for the maximization problem can be found if and only if the Hamiltonian function of
the system, h♣x,wq :✏ ✾v� l♣x,wq, is negative, where v♣xq → 0 is a Lyapunov function. When
v♣xq ✏ x✶Px ùñ ✾v ✏ x✶P ✾x� ✾x

✶
Px, with P ✏ P✶ → 0, then it follows that the Hamiltonian is

negative when

✾v�y✶y✁ γ2w✶w➔ 0 ðñ
✓

x✶

w✶

✛✓
PA�A✶P�C✶C PB�C✶D

✍ D✶D✁ γ2I

✛✑
x w

✙
➔ 0 ðñ (A.10).
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Note that there is no further restriction regarding the use of the BRL but the existence of a
real system described by ♣A,B,C,Dq. In particular, signal w can be arbitrarily chosen, without
restrictions on its origin or nature as long as ⑥w⑥2 ➔�✽.

If the inequality in the lemma holds, the system matrix A is Hurwitz because of Sylvester’s
criterion on positive (negative) definite Hermitian matrices: (A.10) ùñ PA�A✶P�C✶C➔ 0
ðñ PA�A✶P➔✁C✶C↕ 0 ùñ PA�A✶P➔ 0 ðñ A is Hurwitz.

An immediate corollary of the BRL is that the H✽-norm of the system can be calculated
through a convex minimization problem:

⑥Hwy⑥2
✽ ✏ inf

✥
µ ✏ γ2 P R�⑤LMI (A.10)❫P✏ P✶ → 0

✭
.

Several equivalent representations of the Lemma can be found in the references. For exam-
ple, by Schur’s complement:

(A.10) ðñ
✓

PA�A✶P PB

✍ ✁γ2I

✛
�
✓

C✶

D✶

✛
I
✑
C D

✙
➔ 0

ðñ

✔
✖✕PA�A✶P PB C✶

✍ ✁γ2I D✶

✍ ✍ ✁I

✜
✣✢➔ 0

Applying a symmetric full rank congruence transformation and defining P̃✏ 1
γ P→ 0,

(A.10) ðñ

✔
✖✖✕

1❄
γ I 0 0

0 1❄
γ I 0

0 0
❄

γI

✜
✣✣✢
✔
✖✕PA�A✶P PB C✶

✍ ✁γ2I D✶

✍ ✍ ✁I

✜
✣✢
✔
✖✖✕

1❄
γ I 0 0

0 1❄
γ I 0

0 0
❄

γI

✜
✣✣✢➔ 0

ðñ

✔
✖✕P̃A�A✶P̃ P̃B C✶

✍ ✁γI D✶

✍ ✍ ✁γI

✜
✣✢➔ 0

A dual representation of the lemma can be obtained by defining Q✏ P✁1 → 0:

(A.10) ðñ

✔
✖✕Q 0 0

0 I 0

0 0 I

✜
✣✢
✔
✖✕PA�A✶P PB C✶

✍ ✁γ2I D✶

✍ ✍ ✁I

✜
✣✢
✔
✖✕Q 0 0

0 I 0

0 0 I

✜
✣✢➔ 0

ðñ

✔
✖✕AQ�QA✶ B QC✶

✍ ✁γ2I D✶

✍ ✍ ✁I

✜
✣✢➔ 0

198



A.4. General LMI Results

This last expression becomes important to design stabilizing state feedback controllers u ✏
Kx that guarantee a bound for the H✽-norm of the transfer function between perturbation
w and the output y. Indeed, consider that A ✏ Ā� B̄K, where K is unknown, then AQ ✏
ĀQ� B̄KQ ✏ ĀQ� B̄Z where Z ✏ KQ ðñ K ✏ ZQ✁1 is a new variable. In that case,
the inequality becomes linear with respect to its variables and its feasibility can be verified
numerically using any available software.

The Finsler Lemma is another important result that is usually used to introduce additional
variables that help relaxing the numeric verification of a Lyapunov stability condition. The
Lemma was introduced by Paul Finsler in 1937, [120], it can also be found in a survey of
1979, [131], and is related to the so called Projection Lemma in [76]. The formulation stated
here can be found in [98]. Other applications of the Lemma to LMIs are, e.g., [86, 87, 102,
104, 112].

Lemma A.14 (Finsler [98]). Consider w P R
n, ΞΞΞ P R

n✂n and ϒϒϒ P R
m✂n with ranktϒϒϒ✉ ➔ n

and ϒϒϒ
❑ a basis for the null space of ϒϒϒ (that is, ϒϒϒϒϒϒ

❑ ✏ 0). Then, the following statements are
equivalent.

① w✶
ΞΞΞw➔ 0, ❅w✘ 0: ϒϒϒw✏ 0.

②
�
ϒϒϒ
❑✟✶

ΞΞΞϒϒϒ
❑ ➔ 0.

③ ❉µ P R: ΞΞΞ✁µϒϒϒ
✶
ϒϒϒ➔ 0.

④ ❉ΓΓΓ P Rn✂m: ΞΞΞ�ΓΓΓϒϒϒ�ϒϒϒ
✶
ΓΓΓ
✶ ➔ 0.

Proof. We will prove that ① ðñ② ùñ③ ùñ④ ùñ② .

• ① ðñ② : every w so that ϒϒϒw✏ 0 can be written as w✏ϒϒϒ
❑y. Therefore,

w✶
ΞΞΞw➔ 0,❅w✘ 0 : ϒϒϒw✏ 0 ðñ y✶

�
ϒϒϒ
❑✟✶

ΞΞΞϒϒϒ
❑y➔ 0,❅y✘ 0

ðñ �
ϒϒϒ
❑✟✶

ΞΞΞϒϒϒ
❑ ➔ 0

• ② ùñ ③ : Matrix ϒϒϒ can be written as ϒϒϒ ✏ ϒϒϒLϒϒϒR with ϒϒϒL and ϒϒϒR full rank. Then,
defining ΩΩΩ ✏ ϒϒϒ

✶
R ♣ϒϒϒRϒϒϒ

✶
Rq✁1 ♣ϒϒϒLϒϒϒ

✶
Lq✁1④2, if ② is fulfilled then ♣ϒϒϒ❑q✶ΞΞΞϒϒϒ

❑ ➔ 0 and there
exists a µ P R such that:✓

ΩΩΩ
✶

♣ϒϒϒ❑q✶

✛�
ΞΞΞ✁µϒϒϒ

✶
ϒϒϒ
✟✑

ΩΩΩ ϒϒϒ
❑
✙
✏
✓

ΩΩΩ
✶
ΞΞΞΩΩΩ✁µI ΩΩΩ

✶
ΞΞΞϒϒϒ

❑

✍ ♣ϒϒϒ❑q✶ΞΞΞϒϒϒ
❑

✛
➔ 0

Consequently, ΞΞΞ✁µϒϒϒ
✶
ϒϒϒ➔ 0.

• ③ ùñ④ : if ③ is verified, then ΓΓΓ✏✁ µ
2 ϒϒϒ

✶ satisfy ④ .

• ④ ùñ② : Multiplying ④ to the left by
�
ϒϒϒ
❑✟✶ and to the right by ϒϒϒ

❑ leads to�
ϒϒϒ
❑✟✶

ΞΞΞϒϒϒ
❑ ➔ 0.
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The Finsler Lemma can be applied to find equivalent Lyapunov stability conditions. Indeed,
for discrete time systems the following may be defined:

w✏
✓

x♣kq
x♣k�1q

✛
,ϒϒϒ✏

✑
A ✁I

✙
,ϒϒϒ

❑ ✏
✓

I

A

✛
,ΞΞΞ✏

✓
✁P 0

0 P

✛

What leads to the following conditions:

① : ❉P✏ P✶ → 0 so that✓
x♣kq

x♣k�1q

✛✶✓
✁P 0

0 P

✛✓
x♣kq

x♣k�1q

✛
➔ 0,❅x✘ 0 :

✑
A ✁I

✙✓
x♣kq

x♣k�1q

✛
✏ 0

② : ❉P✏ P✶ → 0 so that✓
I

A

✛✶✓
✁P 0

0 P

✛✓
I

A

✛
✏ A✶PA✁P➔ 0

③ : ❉P✏ P✶ → 0 and µ P R so that✓
✁P 0

0 P

✛
✁µ

✓
A✶

✁I

✛✑
A ✁I

✙
➔ 0

④ : ❉P✏ P✶ → 0 and ΓΓΓ P R2n✂n so that✓
✁P 0

0 P

✛
�ΓΓΓ

✑
A ✁I

✙
�
✓

A✶

✁I

✛
ΓΓΓ
✶ ➔ 0

Proposition A.15 (Crossed Products). For given vectors v P Rn, w P Rm, matrices M and N

of appropriate dimensions. and for any α → 0, the following statement is true

v✶N✶Mw�w✶M✶Nv↕ 1

α
v✶N✶Nv�αw✶M✶Mw.

When v✏ w, is immediate that

N✶M�M✶N↕ 1

α
N✶N�αM✶M.
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Proof. Because of the definition of interior product between vectors, the following is always
true. ✂

1❄
α

Nv✁❄αMw

✡✶✂ 1❄
α

Nv✁❄αMw

✡
➙ 0.

By factorization we obtain the expression of the Proposition.

The following lemma and its proof can be found in [92].

Lemma A.16 (Gu’s Integral Inequality [92]). For a scalar τ → 0, a vector function v : r0,τsÑ
R

m and any positive definite symmetric matrix M P R
m✂m such that the integrations in the

following are well defined, then

τ

➺ τ

0
v✶♣αqMv♣αqdα ➙

✂➺ τ

0
v♣αqdα

✡✶
M

✂➺ τ

0
v♣αqdα

✡
. (A.11)

Proof. Using Schur’s complement, the following statement can be verified as always true for
any 0↕ α ↕ τ:✓

v✶♣αqMv♣αq v✶♣αq
✍ M✁1

✛
➙ 0

Integration over 0↕ α ↕ τ leads to✓➩τ
0 v✶♣αqMv♣αqdα

➩τ
0 v✶♣αqdα

✍ τM✁1

✛
➙ 0.

By applying Schur’s complement one gets the expression of the lemma. For the scalar case
(m✏ 1) this result is well known in calculus.

The following result can be found in [83] and deals with the problem of output feedback
design.

Theorem A.17 ([83]). If C PRq✂n is full row rank and there exist matrices Q→ 0, N PRp✂q,
and M P Rq✂q such that

AQ�QA✶�BNC�C✶N✶B✶ ➔ 0, (A.12)

and

MC✏ CQ, (A.13)

then the feedback matrix L✏ NM✁1 P Rp✂q makes A�BLC P Rn✂n to be Hurwitz.
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Proof. From (A.13), if C is full row rank, it follows that M is also full rank and therefore is
invertible. From the Lyapunov condition, A�BLC is Hurwitz if and only if it exists Q → 0
such that

AQ�QA✶�BLCQ�QC✶L✶B✶ ➔ 0. (A.14)

If (A.12) and (A.13) hold, then L✏NM✁1 ðñ N✏LM ùñ NC✏LMC ðñ NC✏LCQ

ùñ (A.14).

Several extensions of this result can be considered including, for example, conditions for
output feedback design subject to H✽-norm restrictions.

A.5. Other Results

The Assignment Problem is popular in linear optimization and usually described as how to
assign a number of resources to an equal number of tasks in such a way that an overall linear
cost is minimized.

Problem A.1 (Assignment Problem). Given sets W and T both with cardinality n; given a cost
function c : W ✂T Ñ R

�
0 ; and n2 binary variables xkl such that xkl ✏ 1 if k PW is assigned to

l P T and xkl ✏ 0 otherwise;

min
xkl➙0

J ✏
➳
kPW

➳
lPT

c♣k, lqxkl

s.t. ➳
lPT

xkl ✏ 1, ❅k PW

➳
kPW

xkl ✏ 1, ❅l P T

This problem can be found in most optimization text books, but we quote the seminal pa-
pers [125, 129] because of the proposed method known as The Hungarian Method or Munkres
Algorithm, which is the most popular algorithmic solution. This algorithm finds an optimal
solution in polynomial time and can be efficiently implemented. The obvious brute-force al-
gorithm of testing all possible n! permutations becomes prohibitive for large n. Besides this,
other optimal and sub-optimal algorithms can be proposed to solve the problem. Implemen-
tation details of the Hungarian method can be found on line at http://csclab.murra
ystate.edu/bob.pilgrim/445/munkres.html. A Matlab® implementation of
the algorithm can be found at http://www.mathworks.com/matlabcentral/
fileexchange/20328-munkres-assignment-algorithm.
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❇
Electrical Grid Modeling

This Appendix explains the model of an electrical grid and the main components used in this
Thesis. Most of the statements here are standard knowledge in electrical engineering and can
be found in many text books on the subject as [173, 175].

B.1. Electric quantities

Balanced electrical three phase signals (voltage or current) are represented as three elements
vector in the so call abc representation:

xabc ✏

✔
✖✕xa

xb

xc

✜
✣✢✏

✔
✖✕ Asin♣ψq

Asin♣ψ ✁2π④3q
Asin♣ψ ✁4π④3q

✜
✣✢ .

These signals are balanced in the sense that they add up to zero: xa�xb�xc ✏ 0. Unbalanced
signals will not be discussed. The electrical angle ψ : R�0 ÞÑ R

�
0 is a function of time whose

derivative is the frequency of the electrical signal. We assume that this function can be de-
scribed by a nominal constant angular frequency ω ✏ 2π f and an angular phase δ : R�0 ÞÑR

�
0

so that ψ♣tq ✏ ωt � δ ♣tq ✏ 2π f t � δ ♣tq, where f is measured in Hertz and usually has the
value 50rHzs or 60rHzs depending on national and regional regulations. Note that the real
frequency of the signal is then d

dt ψ ✏ ω � d
dt δ .

Because of their trigonometric characteristics, electrical signals in the abc representation
are difficult to be dealt with. Therefore the Park’s transformation (or dq0 transformation)
is proposed to map the abc signal to a rotatory reference frame of frequency ω where the
quantities can be managed easily. This transformation is defined as:

xdq0 ✏ Tabc✁dq0xabc,

with the time dependent matrix

Tabc✁dq0 ✏
❝

2

3

✔
✖✕sin♣ωtq sin♣ωt✁2π④3q sin♣ωt✁4π④3q

cos♣ωtq cos♣ωt✁2π④3q cos♣ωt✁4π④3q
1④❄2 1④❄2 1④❄2

✜
✣✢ .
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From here, the dq0 representation of an electric signal can be calculated as:

xdq0 ✏ Tabc✁dq0

✔
✖✕ Asin♣ψq

Asin♣ψ✁2π④3q
Asin♣ψ✁4π④3q

✜
✣✢ ✏ A

❝
3

2

✔
✖✕cos♣δ q

sin♣δ q
0

✜
✣✢✏

✔
✖✕xq

xd

0

✜
✣✢ .

Note that the third element of the vector is always zero for balanced signals and therefore
only the dq components are relevant for analysis. This is coherent with the fact that electrical
signals are usually described by their amplitude A and the phase angle δ defined around the
nominal frequency ω . Therefore, the following simplification holds true when it is known that
the signals are balanced:

xdq ✏
✓

xq

xd

✛
✏
✓

1 0 0

0 1 0

✛
xdq0 ðñ xdq0 ✏

✔
✖✕1 0

0 1

0 0

✜
✣✢xdq.

An inverse transformation can also be defined:

xabc ✏ Tdq0✁abcxdq0,

with

Tdq0✁abc :✏ T✁1
abc✁dq0 ✏ T✶

abc✁dq0.

Some relevant properties of the dq0 transformation are:

♣xabcq✶♣yabcq ✏ ♣xdq0q✶♣ydq0q,
d

dt
Tabc✁dq0 ✏W✶

dq0Tabc✁dq0,

d

dt
Tdq0✁abc ✏ Tdq0✁abcWdq0,

d

dt
xabc ✏ d

dt

�
Tdq0✁abcxdq0

✟
✏
✂

d

dt
Tdq0✁abc

✡
xdq0�Tdq0✁abc

d

dt
xdq0

✏ Tdq0✁abcWdq0xdq0�Tdq0✁abc
d

dt
xdq0,

where

Wdq0 ✏

✔
✖✕0 ✁ω 0

ω 0 0

0 0 0

✜
✣✢ .
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Consider current and voltage signals given in the abc representation respectively by:

iabc ✏

✔
✖✕ I sin♣ωt �δiq

I sin♣ωt ✁2π④3�δiq
I sin♣ωt ✁4π④3�δiq

✜
✣✢ , vabc ✏

✔
✖✕ V sin♣ωt �δvq

V sin♣ωt ✁2π④3�δvq
V sin♣ωt ✁4π④3�δvq

✜
✣✢ .

Or equivalently in the dq0 reference frame:

idq0 ✏
❄

3IRMS

✔
✖✕cos♣δiq

sin♣δiq
0

✜
✣✢ , vdq0 ✏

❄
3VRMS

✔
✖✕cos♣δvq

sin♣δvq
0

✜
✣✢ .

With the amplitude and the RMS (Root Mean Square) values related by I ✏ ❄
2IRMS and

V ✏❄
2VRMS. The RMS value of a periodic quantity x♣tq is defined as

XRMS :✏
❞

1

T

➺ T

0
x2♣tqdt,

where T ✏ 1④ f is the period of the signal. Applying this definition to pure sinusoidal signals,
the stated relationships between the amplitude and the RMS value are obtained.

The active power of the signals is defined as:

P ✏ vdq0 ☎ idq0 ✏ vd id � vqiq

✏ 3VRMSIRMS rcos♣δiqcos♣δvq� sin♣δiqsin♣δvqs
✏ 3VRMSIRMS cos♣δv ✁δiq.

From a physical perspective, this quantity is the fraction of the electric power that can be suc-
cessfully transformed into mechanical work. The reactive power in counterpart is the power
that cannot be transformed into mechanical work:

Q ✏ ⑤vdq0 ✂ idq0⑤ ✏ vd iq ✁ vqid

✏ 3VRMSIRMS rsin♣δvqcos♣δiq✁ cos♣δvqsin♣δiqs
✏ 3VRMSIRMS sin♣δv ✁δiq.

The apparent power is the vectorial addition of the previous quantities. That is:

⑤S⑤ ✏
❛

P2 �Q2 ✏
❜
♣vd idq2 �♣vd iqq2 �♣vqidq2 �♣vqiqq2

✏ 3VRMSIRMS.
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vabc
i

vabc
j

vabc
k

vabc
l

...

...

iabc
i

Zi j

Zik

Zil

Zii

Figure B.1.: Voltage and current at node i P V of a microgrid with Ni ✏ t j, ...,k, ..., l✉.

To have a relative indication of the power fraction that can be converted into work, the power
factor is defined as:

fp ✏ P④⑤S⑤ ✏ cos♣δv✁δiq
✏ cos♣arctan♣vq④vdq✁ arctan♣iq④idqq

✏ vd id � vqiq❛
♣vd idq2�♣vd iqq2�♣vqidq2�♣vqiqq2 .

B.2. Grid circuital relationships

A schematic circuital representation of a node connected to the rest of a grid with the de-
scription of Section 6.1 can be seen in Figure B.1. At each node i P V a three phase balanced
voltage vabc

i is inducted by a generation unit injecting to the grid a current iabc
i .

From Kirchhoff’s current law applied at node i P V we obtain that

iabc
i ✏ iabc

ii �
➳
jPNi

iabc
i j ðñ i

dq
i ✏ i

dq
ii �

➳
jPNi

i
dq
i j . (B.1)

From Kirchhoff’s voltage law applied over the load at node i P V :

vabc
i ✏ Riii

abc
ii �Lii

d

dt
iabc
ii ðñ v

dq
i ✏ �RiiI�LiiWdq

✟
i
dq
ii �Lii

d

dt
i
dq
ii . (B.2)

With Wdq the 2✂2 upper left submatrix of Wdq0. Similarly, over each line between i P V and
j PNi,

vabc
i ✏ vabc

j �Ri ji
abc
i j �Li j

d

dt
iabc
i j ðñ v

dq
i ✏ v

dq
j �

�
Ri jI�Li jWdq

✟
i
dq
i j �Li j

d

dt
i
dq
i j . (B.3)

Taking to Laplace domine and combining equations (B.1), (B.2) and (B.3):

i
dq
i ♣sq ✏

�
RiiI�LiiWdq�LiisI

✟✁1
v

dq
i ♣sq�

➳
jPNi

�
Ri jI�Li jWdq�Li jsI

✟✁1 ♣vdq
i ♣sq✁v

dq
j ♣sqq.
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Note that the inverse matrices in the previous equation can be rewritten using

�
RI�LWdq�LsI

✟✁1 ✏
✓

R�Ls ✁ωL

ωL R�Ls

✛✁1

✏ 1

♣R�Lsq2�ω2L2

✓
R�Ls ωL

✁ωL R�Ls

✛
,

and therefore,✓
iqi
idi

✛
✏ 1

♣Rii�Liisq2�ω2L2
ii

✓
Rii�Liis ωLii

✁ωLii Rii�Liis

✛✓
vq

i

vd
i

✛
� ...

...�
➳
jPNi

1

♣Ri j �Li jsq2�ω2L2
i j

✓
Ri j �Li js ωLi j

✁ωLi j Ri j �Li js

✛✓
vq

i ✁ vq
j

vv
i ✁ vv

j

✛
.

Identifying the d and q components,

iqi ♣sq ✏
✔
✕ Rii�Liis

♣Rii�Liisq2�ω2L2
ii

�
➳
jPNi

Ri j �Li js

♣Ri j �Li jsq2�ω2L2
i j

✜
✢vq

i ♣sq� ...

...

✔
✕ ωLii

♣Rii�Liisq2�ω2L2
ii

�
➳
jPNi

ωLi j

♣Ri j �Li jsq2�ω2L2
i j

✜
✢vd

i ♣sq� ...

...✁
➳
jPNi

Ri j �Li js

♣Ri j �Li jsq2�ω2L2
i j

vq
j♣sq✁

➳
jPNi

ωLi j

♣Ri j �Li jsq2�ω2L2
i j

vd
j ♣sq,

idi ♣sq ✏
✔
✕ ✁ωLii

♣Rii�Liisq2�ω2L2
ii

�
➳
jPNi

✁ωLi j

♣Ri j �Li jsq2�ω2L2
i j

✜
✢vq

i ♣sq� ...

...

✔
✕ Rii�Liis

♣Rii�Liisq2�ω2L2
ii

�
➳
jPNi

Ri j �Li js

♣Ri j �Li jsq2�ω2L2
i j

✜
✢vd

i ♣sq� ...

...✁
➳
jPNi

✁ωLi j

♣Ri j �Li jsq2�ω2L2
i j

vq
j♣sq✁

➳
jPNi

Ri j �Li js

♣Ri j �Li jsq2�ω2L2
i j

vd
j ♣sq.

A common assumption on electrical systems is that the dynamics of the phase angle are
very fast with respect to the rest of the components of the grid. Therefore, it can be considered
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that currents are in stationary state, i.e. s ✏ 0. Then,

iqi ✏
✔
✕ Rii

♣Riiq2�ω2L2
ii

�
➳
jPNi

Ri j

♣Ri jq2�ω2L2
i j

✜
✢vq

i � ...

...

✔
✕ ωLii

♣Riiq2�ω2L2
ii

�
➳
jPNi

ωLi j

♣Ri jq2�ω2L2
i j

✜
✢vd

i � ...

...✁
➳
jPNi

Ri j

♣Ri jq2�ω2L2
i j

vq
j ✁
➳
jPNi

ωLi j

♣Ri jq2�ω2L2
i j

vd
j ,

idi ✏
✔
✕ ✁ωLii

♣Riiq2�ω2L2
ii

�
➳
jPNi

✁ωLi j

♣Ri jq2�ω2L2
i j

✜
✢vq

i � ...

...

✔
✕ Rii

♣Riiq2�ω2L2
ii

�
➳
jPNi

Ri j

♣Ri jq2�ω2L2
i j

✜
✢vd

i � ...

...✁
➳
jPNi

✁ωLi j

♣Ri jq2�ω2L2
i j

vq
j ✁
➳
jPNi

Ri j

♣Ri jq2�ω2L2
i j

vd
j .

Using these expressions for the injected current as a function of the induced voltages and from
the definition of active and reactive power one gets:

Pi ✏
✔
✕ Rii

R2
ii�ω2L2

ii

�
➳
jPNi

Ri j

R2
i j �ω2L2

i j

✜
✢♣vq

i q2� ...

...✁
➳
jPNi

Ri j

R2
i j �ω2L2

i j

vq
jv

q
i ✁

➳
jPNi

ωLi j

R2
i j �ω2L2

i j

vd
j v

q
i � ...

...

✔
✕ Rii

R2
ii�ω2L2

ii

�
➳
jPNi

Ri j

R2
i j �ω2L2

i j

✜
✢♣vd

i q2� ...

...✁
➳
jPNi

✁ωLi j

R2
i j �ω2L2

i j

vq
jv

d
i ✁

➳
jPNi

Ri j

R2
i j �ω2L2

i j

vd
j v

d
i ,
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Qi ✏
✔
✕ ωLii

R2
ii�ω2L2

ii

�
➳
jPNi

ωLi j

R2
i j �ω2L2

i j

✜
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At ever node i P V the dq components of the voltages can be written as a function of their
amplitudes and phase angles:
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Replacing the voltage expressions and considering the trigonometric identities:
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cos♣δiqcos♣δ jq� sin♣δiqsin♣δ jq ✏ cos♣δi✁δ jq, and

sin♣δiqcos♣δ jq✁ cos♣δiqsin♣δ jq ✏ sin♣δi✁δ jq,
the expressions for the stationary active and reactive power can be simplified to obtain:
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