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Abstract

During the last decade, the problem of consensus in multiagents systems has been studied
with special emphasis on graph theoretical methods. Consensus can be regarded as a control
objective in which is sought that all systems, or agents, in a network have an equivalent out-
put value. This is achieved through a given control strategy usually referred to as consensus
algorithm. The motivation to study such an objective comes from different areas, such as engi-
neering, and social and natural sciences. In the control engineering field, important application
examples are formation control of swarms of mobile robots and distributed electric generation.
Most of the work in this area is done for agents with single or double integrator dynamics and
algorithms derived as the Laplacian matrix of undirected graphs. That is, consensus is often
studied as a property of particular networks and particular algorithms.

In this thesis, we tackle the problem from a Control Theory perspective in an attempt to
augment the class of systems that can be studied. For that we translate the consensus problem
from its classical formulation for integrator systems into a general continuous time stability
problem. From here, different algorithmic strategies under several dynamical assumptions of
the agents can be studied through well known control theoretical tools — as Lyapunov’s theory,
linear matrix inequalities (LMI), or robust control — along with graph theoretical concepts. In
particular, in this work we study consensus of agents with arbitrary linear dynamics under the
influence of linear algorithms not necessarily derived from graphs. Furthermore, we include
the possibility that the agents are disturbed by several factors as external signals, parameter
uncertainties, switching dynamics, or communication failure. The theoretical analysis is also
applied to the problem of power sharing in electric grids and to the analysis of distributed
formation control.
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Zusammenfassung

Im Laufe der letzten zehn Jahre wurde das Problem des Konsenses in Multi-Agenten-Systemen
mit besonderem Augenmerk auf graphen-theoretische Methoden erforscht. Ein Konsens kann
als ein Regelungsziel interpretiert werden, in welchem alle Systeme, oder Agenten, in einem
Netzwerk identische Ausgangswerte anstreben. Dies wird durch eine Regelungsstrategie er-
reicht, die man iiblicherweise als Konsens Algorithm bezeichnet. Motiviert wird diese Rege-
lungsstrategie aus verschiedenen Bereichen, wie den Ingenieurwissenschaften und den Sozial-
und Naturwissenschaften. Wichtige Beispiele im Bereich der Regelungstechnik sind die For-
mationsregelung in Schwiarmen von mobilen Robotern oder die verteilte Energieerzeugung.
Die Mehrheit der Werke in diesem Bereich konzentriert sich auf Agenten mit Einfach- oder
Doppel-Integratordynamiken, sowie Algorithmen abgeleitet aus der ,,Laplacian-Matrix* von
ungerichteten Graphen. In anderen Worten, der Konsens wird oft als eine Eigenschaft beson-
derer Netzwerke und Algorithmen erforscht.

In dieser Dissertation wird das Problem des Konsenses aus einer regelungs-theoretischen
Perspektive betrachtet. Dies wird durch die Ubersetzung des Konsens-Problems aus seiner
klassischen Formulierung fiir Integratorensysteme zu einem zeitkontinuierlichen Stabilitét-
Problem bewerkstelligt. Basierend auf bekannten Methoden der Regelungstechnik (zum Bei-
spiel, auf Lyapunovs Theorie, den linearen Matrixungleichungen (LMI), oder der Robustre-
gelung) und graph-theoretische Ideen werden unterschiedliche algorithmische Strategien und
mehrere Arten von dynamischen Agenten behandelt. Im Besonderen wird in dieser Arbeit
der Konsens von Agenten mit willkiirlichen linearen Dynamiken betrachtet. Dies ist eine Er-
weiterung zu den klassischen Einfach- und Doppelt-Integratoren Dynamiken. Desweiteren
betrachten wir Algorithmen, die nicht unbedingt von Graphen abgeleitet sind. Es wird weiter-
hin das Verhalten der Agenten unter dem Einfluss von Storungen untersucht. Dies beinhaltet
zum Beispiel externe Storungssignale, parametrische Unsicherheiten, geschaltete Dynamiken
oder Kommunikationfehler. Die Anwendbarkeit der hier erlangten theoretischen Ergebnisse
wird am Beispiel der Formationsregelung und der Stabilisierung verteilter Energiesysteme
demonstriert.
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Introduction

1.1. Motivation

The idea of consensus in multi agents systems had gain much attention in the control society
during the last decade. The analogy of a swarm of birds is a useful way to explain the main
characteristic of the problem: a group of similar systems (or agents) agree to coordinate some
important variables through a given information exchange strategy (or algorithm). Consensus
is in this way a control objective where all systems in a network aim to have an equivalent
output. Research in this topic is motivated by applications in many fields such as engineering,
computer science, physics, social sciences, and biology. In engineering, attention has been
paid to applications where multiple agents have to coordinate to perform common tasks. For
example, manoeuvres of groups of vehicles, large array of telescopes, sensor networks, electric
grids, or mobile cooperative robots.

Over the years, multiple works have driven attention to this topic. The publication of books
like [22, 33, 34] shows that the field has already reached an advanced state. However the
topic is still a popular area of research as shown in the review paper [29] where more than a
hundred references are quoted. More recently, the review paper [5] includes over three hundred
references.

Most of the work in the area is based on Graph Theoretical approaches to the problem and
single or double integrators dynamics. Examples of this are the already quoted publication, the
doctoral theses [14, 31] and an increasing number of papers such as [1, 2, 15, 16, 18, 32]. From
a more mathematical perspective, some examples are [0, 118, 119, 17, 23, 46] and the refer-
ences within. The particular dynamics with which these publications deal makes it difficult
to systematically extend the results to other cases of interest. Some publications, e.g. [20, 21,
36, 38, 47, 53, 54, 60], extend the graph theoretical approaches to systems with more general
linear dynamics by introducing other control theoretical tools like Linear Matrix Inequalities
(LMI), Optimal Control Theory or Lyapunov’s Theory. Consensus in multi agents systems is
also defined and studied in fields far away from classical control theory. For example, Games
Theoretical approaches [28, 37, 40] or Max Plus algebra systems [25, 26]. Nevertheless, these
efforts have still left many unanswered questions.

One of these, which has taken much attention in the field, is related to switching algorithms.
This has become an important topic in the area and can be found in many publications as, for
example, [9, 19, 22, 31, 41, 47, 50-52, 55, 57-61]. The study of switching systems cannot
be avoided because of the nature of the consensus problem where communication plays a
fundamental role. The communication channels between the agents are, in practice, far from



1. Introduction

ideal and, therefore, robustness or persistence against temporal or permanent loss of commu-
nication needs to be addressed. Unfortunately, the limitations of the switching systems theory
leave, again, many unanswered questions. Other interesting issue regarding to communication
is signals delay. This is present in many of the already quoted works but also in, for example,
[35, 43, 56].

A related problem to consensus is that of formation. This is perhaps easier to relate to
practical cases and explains up to a certain point the interest in single and double integrators
dynamics. Indeed, in formation control, consensus is not searched in the state variables or
outputs of the agents (what can be interpreted as their “velocity”), but on the integral over
time of them (what can be interpreted as the agents’ “position”). Examples of this can be
found in the quoted books and theses, but also in a wide spectrum of papers with emphasis
on different aspects: [3, 7, 8, 10-13, 24, 27, 30, 32, 39, 42, 44, 45, 48, 49, 62]. As in the
“velocity” case, the described communication issues are also present.

These various approaches are far to constitute an ordered and comprehensive body of
knowledge that is flexible enough to treat complex scenarios from a control systems per-
spective. The view of consensus as a collection of particular problems (particular dynamics,
algorithms, or communication dynamics) makes it difficult to give the subject a theoretical
frame robust enough to study coordination as a control objective of the same relevance as
stability, robustness or frequency response. That is why, in this work, a general view of the
problem is proposed by means of classical Control Theory concepts. This approach is thought
as a complement to the existing works on the subject, allowing the gradual extension of the
analysis to include more complex assumptions on the systems.

To do this, consensus can be intuitively compared with the equilibrium point of a system
that resumes the characteristics of the whole network. The underlaying hypothesis is that
consensus can be studied through a (not unique) characterization of the whole network as a
stability problem. However, this aspect is usually not expressly addressed in the quoted works.
Some exceptions to this are the recent papers [4, 35, 50, 51, 60], where consensus is studied as
the convergence property of a differences vector between the outputs of one of the agents and
the rest of them. This agent that serves as comparing references is usually called the leader
agent.

In this thesis, this idea is further exploited to formally translate the consensus problem
into a classical stability one through the introduction of an analysis tool named hierarchical
organization. This tool is neither unique nor does it have a predefined structure. Therefore,
the resulting differences-vector does not necessarily represent the differences between one
unique agent and the rest of them, but, for example, between each agent and the next one in
line or in a pyramidal structure. From here, the problem is addressed by means of standard
Control Theory and different situations are investigated by changing the assumptions about
the dynamics and characteristics of the agents and their relations.
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1.2. Structure

After this introduction, this thesis is divided in two main parts. The first part (Chapters 2
and 3) gives a general mathematical background for the rest of the thesis. The second part
(Chapters 4 to 7) deals with the consensus problem from different aspects. Additionally, two
appendices of needed results are considered. A brief summary of the contents of each chapter
is as follows:

* Chapter 2. A general overview of Graphs Theory is presented. The main notions in this
area are generalized to model, afterwards, the interaction of multiple signals between
agents. In the second part, this chapter deals with general Lyapunov’s Stability Theory
and its relationship to Linear Matrix Inequalities (LMI).

¢ Chapter 3. Some existing results in Switched Systems stability are shown. First, poly-
topic systems are defined and from there time dependent switching systems are studied.
This is done for system with deterministic and stochastic switching laws.

* Chapter 4. The problem of Consensus is explained and formally stated. First a gen-
eral description of Multi Agents Systems is given and then the concept of consensus is
formalized through the concept of organization and consensus error.

* Chapter 5. The consensus problem is analyzed through different control strategies.
The first Section deals with consensus algorithms derived from loopless weighted undi-
rected graphs, which is the standard approach to the problem, in networks composed
of, first, pure integrator systems and, secondly, general lineal dynamical systems. The
second section proposes other kind of algorithms to address problems derived from par-
ticular characteristics of the agents or to generalize other strategies. The last section of
this chapter deals briefly with some generalizations of dynamics of the agents or their
control strategies. Chapters 4 and 5 can be considered the main part of the thesis.

* Chapter 6. An application of the described methodology is used to treat the problem of
power sharing in electric microgrids. The first section of the chapter models a microgrid
as a multiagent system, then the problems of active and reactive power sharing are
treated separately.

* Chapter 7. The formation problem, as a special case of consensus, is studied in small
networks. First a description of the problem and the multiagent systems is given. Then it
follows a centralized solution of the problem that can be totally distributed in the agents
without the need of communication. Finally, further distributed issues are addressed
from a centralized perspective.

* Chapter 8. This chapter presents comprehensively the conclusions of the thesis.
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* Appendix A. This appendix presents several non-original results used in different parts
of the thesis. The sections are respectively focused on pseudoinverses, norms, general
algebraic results, LMI results and, lastly, a linear optimization problem. This comple-
ments the mathematical background chapters.

» Appendix B. This appendix deals with the model of electrical grids as a complement
to Chapter 6. The first section is about general definitions on the electrical field. The
second section derives the active and reactive power models by means of a circuital
analysis of a generic grid.

Even though this thesis is meant to be read and understood in a sequential way, there are
strong relationships between certain chapters and sections. A schematic representation of these
relationships is to be seen in Figure 1.1.

1.3. Notation

Through this thesis the set of real numbers is denoted R, of positive real numbers R, of
non-negative real numbers Rar and of complex numbers C. Powers of these sets are used to
denote vectors and matrices sets. For example, R” is the set of all n-dimensional vectors with
real elements and C"*" is the set of all m x n-dimensional matrices with complex elements.
Other sets are denoted by capital Latin letters. The cardinality of a set S, i.e. the number of
elements in the set, is denoted |S|. The complement of a set S is the set of all elements that
are not elements of S. Union and intersection of sets are denoted by the standard symbols U
and N respectively, while the intersection of a set S| and the complement of another set S5, by
S1\S2. Graphs, and graphs related sets (see Section 2.1), are denoted by calligraphic symbols
as¥, v, &, etc.

Given a set S — R, its minimum is denoted min {S}; its maximum, max {S}; its infimum
inf {S}; and its supremum, sup {S}. An optimization problem is denoted with the help of these
sets. For example, minimize a non-negative functional J(x) > 0, over a vector x € R” subject
to a set of conditions f(x) < 0 is denoted J* = inf{J(x) € RT|f(x) < 0}. Alternatively, it can
be written through the conventional use in optimization texts:

rrgn J(x)
s.t. f(x) <0
J(x)=0

The optimal value is denoted by J* and the argument of the problem (the vector for which the
optimum value holds) as x*.

In general, matrices will be represented by bold capital Latin letters (e.g. A € R"*", B e
R"™*P C e R9*", etc.), vectors by bold small Latin letters (e.g. x € R", y € RY, u € R?, etc.),
and scalars as Greek small letters (e.g. o > 0, € < 1, etc.). Exceptions to these rules are matrix
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operators over a graph ¢ (e.g. L(¢) € RV*N), the so called parametrization vector & € RM in
Section 3.1.2, matrices related to the Finsler Lemma A.14, and functions of already defined
matrices within a matrix inequality denoted by Franktur font symbols. e.g. 9t;; = A+BR™'B’
in

M =

M C] < 0.
* D

Matrix A’ € R"*™ is the transpose of A € R"*", Matrix A* € C"*" is the conjugate transpose
of A € C"™*". The notation “x” is used to indicate a symmetric block within a matrix, for
example,

A B| |A B
x C B C
Matrix inequalities such as A < 0 (A > 0) are used to indicate that matrix A € R"*" is sym-
metric negative (or positive) definite (see Section 2.2.2). The inverse of a matrix A € C"*"
is denoted as A~! € C"*". The (Moore-Penrose) pseudoinverse (see Section A.1) of a matrix
A € C™™ is denoted A" € C"™*", An element in the (block) position (i, j) of a matrix A is
denoted [A];.

Other operations over matrix A € C are its rank, denoted r = rank {A}; its dimension,
d = dim {A} = min{n, m}; the determinant of a square matrix, det{A} = |A|; the set of eigen-
values of a square matrix of dimension n, eig{A} = {Ai,42,...,A4,}; and the set of singu-
lar values of a matrix svd{A} = {0},02,...,0,,0,...,0}. The real part of a complex matrix
A =X+ ;Y eC"™ isdenoted real {A} = real {X + jY} = X € R"*™; and its imaginary part,
imag{A} = imag {X + Y} =Y € R". In general scalars, vectors and matrices can be time
dependent functions, but for simplicity’s sake and when it is clear enough from the context,
the time dependence will be dropped. A time delayed vector is defined as v; = v( — 7).

The identity matrix and the null matrix are respectively denoted by I and 0. A column vector
of identity matrices is denoted as 1 = [I,1,...I]". If necessary, the dimensions of these matrices
will be stated as an index, e.g. I, is the identity matrix in R9%4,0,,, is the zero matrix in
R™*" and 1y4x4 is composed of N identity matrix in R?*¢. The matrix stack operators over

nxm
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an ordered set S = {s1,..,sy} are defined as:

XS]
col {Xi}ieS = e
[ Xow
TOW {Xl}zeS = I:XSI “e XSN:l 5 and
X, - 0 v
diag{Xi},eg:=1| : . = |= Zs,Xs‘.sﬁ.
[0 - X, i=1

Note that matrices X;, i € S, must have compatible dimensions. We denote s; € RV9*4 as the
N blocks column vector where each element is 0, but the i-th element that is the identity
matrix I, so that 1 = Zi\’: 1 Si-

The probability of occurrence of an event g will be denoted as P{g} € [0, 1]. The expected
value of a variable X € 2", which can be a scalar, a vector, or a matrix, in the discrete space
2, will be denoted as E{X} := > _, xP{x = X}.

1.4. Publications

Some parts of this thesis are based on the following publications, to all of which the author is
the main contributor.

Miguel Parada Contzen. “Consensus Algorithm Analysis and Design For Agents With Lin-
ear Dynamics.” In: European Control Conference (ECC). 2015.

Miguel Parada Contzen. “Consensus in networks with arbitrary time invariant linear agents.”
Accepted in European Journal of Control. 2017.

Miguel Parada Contzen and Jorg Raisch. “A polytopic approach to switched linear systems.”
In: IEEE Multi-Conference on Systems and Control (MSC). 2014.

Miguel Parada Contzen and Jorg Raisch. “Active Power Consensus in Microgrids.” In: In-
ternational Symposium on Smart Electric Distribution Systems and Technologies (EDST).
2015.

Miguel Parada Contzen and Jorg Raisch. “Reactive Power Consensus in Microgrids.” In:
European Control Conference (ECC) 2016. 2016.
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Preliminaries

This chapter establishes the basic background to understand this thesis. Consensus is usually
studied through graph theoretical methods and therefore a short summary on the subject is
presented. A summary of Lyapunov’s Theory on stability of systems with emphasis on Linear
Matrix Inequalities (LMI) follows. Other relevant results are to be found in Appendix A.

2.1. Graph Theory

Traditionally, the consensus problem is strongly related to Graph Theory. Most of the consen-
sus works use intensely graph theoretical methods for description and analysis of networks.
Some key examples are [22, 33, 34]. In this section, basic notions of the subject are presented
based on the quoted works and specialized books as [116, 117, 122]. The following definitions
are modified for the purpose of this thesis from the standard notions of graph theory.

Definition 2.1.1. An undirected graph is a tuple &4 = (¥, &) where
o ¥ ={1,2,..N} is a set of N nodes or vertices, and

» &< {(i,j) € ¥ x ¥}isasetof edges, where we interpret that the edge denoted (i, j) € &
is the same as the edge (j,i) € &.

Note that when referring to an unordered edge we slightly abuse notation by representing it
by an ordered pair (i, j). With this notation we mean that an unordered edge between nodes i
and j of an undirected graph can be equivalently specified either by the pair (i, j) or the pair
(j,i). Which is not the same as the graph having two different ordered edges.

In the context of this thesis, the nodes correspond to agents, and the existence of an edge
labeled ex = (ix, jx) €& = {el,ez, .- ,€|g‘} means that agent i; and agent jj interact with each
other either through input and output signals, or by a hierarchical relationship. Note that this
defines implicitly an arbitrary indexation of the edges which is independent of the labeling of
the nodes. We will refer to edges (i,i) € & indistinctly as loops or selfloops. A graph without
selfloops will be called loopless.

Definition 2.1.2. A path is an ordered sequence of nodes in an undirected graph such that any
pair of consecutive nodes is connected by an edge. An undirected graph is connected if there is
a path between every two nodes and unconnected otherwise. A fully connected graph is such
that there is an undirected edge between every pair of different nodes.

11
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Definition 2.1.3. A (spanning) tree .7 is an undirected graph over a set of nodes #" which is
connected and has N — 1 edges, where N = |#| is the number of nodes.

The usual definition of tree accepts that the graph has less than N — 1 edges. However, in
the context of this work, only spanning trees are meaningful and therefore, to abbreviate, we
will refer to them simply as trees. Equivalent definitions for (spanning) trees can be found
with ease, but Definition 2.1.3 is sufficient for our needs. Cayley’s Formula states that in a set
of N vertices, NV =2 spanning trees can be defined.

Definition 2.1.4. The neighbor set of anode i € ¥ in an undirected graph ¢ is defined as
Hi={jeV|i.j)eé ni#j}
Definition 2.1.5. Am undirected weighted graph is a tuple ¢,, = (¢, w,) where
* & = (7,&) is an undirected graph, and

* wy: & — A < R?7*9\{0} is a function that associates a non-zero positive definite weight
matrix to each edge.

This last definition is a generalization of the usual one because it considers that the weight
associated with each edge is not only a positive scalar, but a (¢ x ¢) matrix. This consideration
is done to model multiple input/output signals of the agents. e.g. three-dimensional position
or speed of a vehicle; active and reactive power of an electric generation unit; etc.

Definition 2.1.6. The dimension of a weighted graph is the dimension of the image matrix
space ./ of the weight function w,. That is, dim{¥,,} = g < .# < R?7*9\{0}.

Definition 2.1.7. An unweighted graph is a special case of weighted graphs where w,((i, j)) =
I, V(i,j)e&.

Note that, contrary to the conventional definition, in an unweighted graph we do not deny
the existence of the weight function, but merely restrict it to the trivial case. This is thought so
that the dimension of an unweighted graph can be defined.

Definition 2.1.8. A strictly directed graph, or strict digraph, is an unweighted graph where
the edge set & € ¥ x ¥ is redefined so that each edge has an unique orientation. That is,

(i,))eE=(j,i)¢E&.

In this case the notation (i, j) € ¥ x ¥ and (j,i) € ¥ x ¥ represent two different edges
that cannot be simultaneously part of a strict digraph. Note that strict digraphs cannot have
selfloops. For every loopless undirected unweighted graph, 2141 strict digraphs can be defined
by giving an orientation to every edge. An arbitrary strict digraph generated from an undirected
unweighted graph ¢ will be denoted by ¥4°.

12
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To represent graphs, nodes will be drawn as black dots and undirected edges as lines linking
the nodes. If necessary, nodes will be labeled by a natural number over it. If several graphs
in a figure are defined over the same set of nodes, the labels will be shown only in the first
graph. When no label is shown over an edge, it will be assumed that it is unweighted. If the
weight needs to be shown, it will be represented by the corresponding weight matrix. In some
cases, the label ¢; is used to name the edge. The edges of a strictly directed graph will be
represented with an arrow at the end of the line showing its direction. Their labeling is as for
the undirected edges. See Figure 2.1 for an example.

Because of the inclusion of matrix weights, the usual definitions of graph related matrices
also need to be generalized.

Definition 2.1.9. The Incidence Matrix, denoted D(%°), of a strict digraph ¥ of dim{¥°} = ¢
is defined as a matrix where each block o = [D(¥°)],, takes either the value oy = —I, if the
edge ¢, hasits origin in 7, 0j; = I, if node i is the destination of edge e or 0, = 0,4 otherwise.

Note that this definition assumes that the edges are labeled by the index k. Different labeling
systems for the edges of a graph would lead to different incidence matrices. In total, if the
graph has |&’| edges, |&|! different labeling systems can be defined.

Definition 2.1.10. The adjacency matrix, denoted A(%,,), of a weighted graph %, is con-
structed so that each block W j; := [A(¥,,)];; takes the value W ;; = wy((j,1)) € A if (j,i) € &
or Wj; = 0 otherwise.

Note that this matrix is symmetric for undirected weighted graphs.

Definition 2.1.11. The matrix degree of node i, A;, in an undirected weighted graph is defined
as the sum of all elements of the respective block column or block row of the adjacency matrix
plus the corresponding diagonal element (the weight of the selfloop). i.e. A; = 21}]11 W;; +

W, =3V | Wi+ W,;.. The degree matrix is A(%,) = diag {A, .., Ay} .

Definition 2.1.12. The Laplacian matrix of an undirected weighted graph 4, is L(%,,) :=
A(gw) _A(gw)'

This matrix is sometimes referred to as the “loopy Laplacian” [172]. We decompose the
Laplacian matrix as L(%,) = L(%,) + diag {W;;},.,. Then, each column and row of L(%,,)
sums up to zero. This can respectively be written as 1'L(%4,) = 0 and L(%,)1 = 0 where
1 =col{I;},., € R¥9*4 is a column of N (¢ x g)-identity matrices. Note that L(%,,) = L(%,,)
whenever the graph has no selfloops.

Lemma 2.1. Given an undirected weighted graph 4,, = (V,& = {e1,-- ,e 5|}, w,) without
selfloops, then

L(%,) :== D(9°)WD'(9°) = A(%,,) — A(%,),
where W = diag {W; ;, 1@1 = diag {wq(ek)},‘i'l and 9° is an arbitrary strict digraph defined
from G = (V&) with the edge labeling given by k€ {1,2,...,|&|}.

13
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Proof. The proof consists in algebraic matrix manipulations to show the equivalence. First
note that considering the labeling of nodes given by k, the adjacency matrix and the degree
matrix can be written in the following way:

€]
A(gw) = 2 (Sikwlkjk S +SJkWikij§k) >
k=1
€|
!
A(gW) = Z (Silek]k Siy +sjkWikjksjk) .
k=1
Where s; is a matrix column vector composed of N square blocks and with the identity matrix
in the i-th block and zeros everywhere else. Now note that the triple product in the equation
of the Lemma can be decomposed as:

]
D(%")WD'(4°) = D(%") Zskw,m 8, |0'(@)

Where §; is a matrix column vector composed of |&’| square blocks and with the identity matrix
in the k-th block and zeros everywhere else. The product D(¥°)$; can also be decomposed
into D(¥°)8, = s;, —s;, and so,
&
D(g(})le(go) — Z (SikWikij;k +sjle-kjks;~k) — (SikW,ka ]k +S1kWikij;k) .
k=1

Which proves the equivalence. O

Example 2.1. To illustrate the proof of Lemma 2.1, consider the graphs depicted in Figure 2.1
where ¢ is an undirected graph with 7" = {1,2,3}, & = {(1,2),(1,3)}; the weight function of
%, is such that w,((1,2)) = Wi, = Wi, and w,((1,3)) = W3 = Wi3; and the directed edges
of 4 are e; = (1,2) and e = (1,3). The corresponding matrices are:

Wi +Wiz —Wip —Wyis e B |
L(%,) = -Wp, Wi, 0 ,D(9°) = I 0
_W13 0 W13 0 |

The triple product can be decomposed as:

D(9°)WD' (9°) = D(4°) H Wi, [1 0]+ m Wis [o 1] D'(9°)
— —

N s N s
S1 SZ

14
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Figure 2.1.: Simple Graph in Example 2.1.
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Wi +Wis 0 0 0 Wi Wis
D(9°)WD'(9°) = [ 0 Wi 0 |—(Wp 0 0
0 0 Wi Wis 0 0
= A%,) —A(G,) = L(%,).

In the case of undirected graphs with scalar weights (dim{¥} = 1 <= .# =R™") and with-
out selfloops, Lemma 2.1 is usually given as an alternative definition of the Laplacian matrix.
From this property is immediate that when W, ; = W;k i >0, Vey € &, then the Laplacian
matrix is positive semi-definite, i.e. all its eigenvalues are real and non negative.

Lemma 2.2. Let 9, be a loopless undirected weighted graph, rank {i(%w)} =(N—1)qifand
only if 4, is connected.

Proof. AsL(%,)=D(4°)WD'(¥4°) and rank {W} = |£|q, then rank {L(%,,) } = rank {D(¥4°)}.
Note that D'(%°)1 = 0 which implies that the columns of 1 € R¥9%4 are vectors in the null

space of D'(%°) and therefore rank {D(4°)} < (N — 1)g. From here, two cases can be distin-

guished:

* If the graph is not connected, then there is at least one pair of nodes, i and j, between
which there is no path. Let 4; € ¥ be the set of all nodes that are connected with i (ex-
cluding the node i itself), and therefore not connected to j, then D'(4)(s; + 3 e S1) =
0 and therefore the columns of (s; + >4 1) € RN9%4 are also, along with 1, vectors
in the null space of D'(¢°). This shows that for the unconnected case, rank {D(¥4°)} <
(N—2)qg.

* If the graph is connected, then the ¢ columns of s; + Zle% s; = 1 are the only vectors in
the null space of D/(%?), implying that rank {D’(4°)} = (N — 1)gq.

O

From this result, if the eigenvalues of the Laplacian matrix of an undirected weighted graph
are ordered in an increasing order, it is clear that the first g of them are identically zero.

Definition 2.1.13. Let ¥, be a weighted undirected loopless graph of dim{¥,,} = ¢, the (¢ +
1)-th element of the increasing ordered set eig {ﬁ(gw)} is the algebraic connectivity of the
graph denoted a(%,).

elg{i‘(gw)} = {A'I = 072'2 = 07 aA'q = Ova(gw) = q+1a)~q+2v"' aANq}

The algebraic connectivity is a measure of how well a graph is connected. If it is zero, then
the graph is not connected. A useful study on the matter is the paper [127]. The following
result is modified from [119].
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Lemma 2.3 ([119]). If % = (¥,&1) and %, = (V',&,) are two undirected unweighted loop-
less graphs such that & n & = {}, then a(%) + a(%) < a(% ® %), where G ©% =
(V,E 0 8).

Proof. Define the set W = {xe R¥||x|=1 A X1=0}. As &0 & = {}, L& @%) =
L(%) + L(%,). Thus,

a(% ©%) = min {(XL(%)x+x'L(%)x}
. 1% . 1%
> min {X'L(%)x} + min {X'L(%)x}
=a(%) +a(%).
]

Corollary 2.4. Given a connected undirected unweighted loopless graph %, = (V,&) with
|&] <N(N —1) edges, adding an additional edge e\, & & results in a graph % = (V',&
{e|s|+1}) with an algebraic connectivity larger than that of the 9. i.e., a(%) < a(%2). The
algebraic connectivity is maximum when the graph is fully connected. In that case, L(¥,,) =
NI—11" and a(%,) = N.

Note that a similar result can be proposed for undirected weighted graphs when the weights
associated with the possible edges of the graphs are fixed.

2.2. Stability of Systems

2.2.1. Lyapunov’s Stability

Lyapunov’s Theory on stability of dynamical systems is fundamental to understand the contri-
butions of this work. Nowadays the so called Lyapunov’s Second Method is standard in control
theory and can be easily found in non linear control books as [69, 74]. These concepts were
developed by Aleksandr Mikhailovich Lyapunov in his doctoral dissertation in 1892. They
were translated to French and immediately attracted the attention of the scientific community.
However, these results were long forgotten by the western scientific community until the mid
1950’s when researchers as R. E. Kalman [67, 68] and J. P. LaSalle [70, 71] drew attention to
them. In the centenary of its first publication, the International Journal of Control republished,
in English, Lyapunov’s Doctoral thesis in a special issue of the journal [72].

In this section we state the main definitions and results of Lyapunov’s theory without proofs.
The following definitions and theorems are mainly taken from [67] and [69] with some minor
changes in notation.

Definition 2.2.1. A non autonomous continuous time system is such that:

)ka(t,X) (2.1)
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where f :[0,00) x D — R" is piecewise continuous in ¢ and locally Lipschitz in x on [0, 0) x
D, and D < R" is a domain that contains the origin.

Definition 2.2.2. The origin x* = 0 is an equilibrium point of (2.1) if and only if V¢ > 0,

x* = f(z,x%).
Additionally, it is
e stable if, for each € > 0, there is 0 = §(&,) > 0 such that

||Ix(t0)|| < & = ||x(¢)|| < &,Vt =19 = 0.
* uniformly stable if, for each € > 0, there is 6 = §(¢g) > 0, independent of 7y, such that
the previous stability condition is fulfilled.
e unstable if not stable.

* asymptotically stable if it is stable and there is ¢ = c(fp) > 0 such that x(t) — 0 as
t — oo, for all ||x(#0)|| < c.

* uniformly asymptotically stable if it is uniformly stable and there is ¢ > 0, independent
of 1y, such that for all ||x(#0)|| < ¢, x(t) — 0 as t — o0, uniformly in 7y; that is, for each
€ >0, there is T = T (&) > 0 such that

||Ix(2)|| < €Vt =10+ T(g),Y||x(t0)]| <c.

* globally uniformly asymptotically stable if it is uniformly stable and, for each pair of
positive numbers € and ¢, there is T = T'(g,c) > 0 such that

|Ix(0)|| < €,Vt =19+ T(g,c),V||x(t0)]| < c.
For simplicity of language, in many cases we will describe system (2.1) as stable, if the

origin is a stable equilibrium point. Analogous for the other cases in Definition 2.2.2.

Definition 2.2.3. A function v : R" — R is positive definite iff v(0) = 0 and v(x) > 0 for all x €
R™ {0}. Analogously, it is negative definite when the inequality is reversed, and semidefinite
when weak inequalities (= or <) are used.

Lyapunov’s Second Method for non autonomous systems is described by the following
theorem:
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Theorem 2.5 (Non autonomous Lyapunov). Let x* = 0 be an equilibrium point for (2.1) and
D c R" be a domain containing the origin. Let v : [0,00) x D — R be a continuous function
such that ¥t = 0 and Yx € D,

wi(x) < v(t,X) < wa(x), 2.2)

d
“v(t,%) < —wa(x), @3)

where wi(x), wo(X) and w3(X), are continuous positive definite functions on D, and v(t,0) =0,
then x* = 0 is uniformly asymptotically stable.

Corollary 2.6 (Global Nonantonomous Lyapunov). Suppose that all the assumptions of The-
orem 2.5 are satisfied globally (for all x € R") and w(X) is radially unbounded, i.e. |x|| —
0 = wi(X) = o, then x* = 0 is globally uniformly asymptotically stable.

Corollary 2.7 (Exponential Nonantonomous Lyapunov). Suppose that all assumptions of
Theorem 2.5 are satisfied with

wi(x) = ki[[x][, wa(x) < ka[x[[%, wa(x) = ks|[x]|".

for some positive constants ki, ko, k3 and c, then X* = 0 is exponentially stable. Moreover, if
the assumptions hold globally, then X* = 0 is globally exponentially stable.

The previous theorems can be relaxed for the case of autonomous systems in the form
x = f(x). 2.4)

That is, by considering Lyapunov functions that depend only on x and not explicitly on time.
In that case, the theorems are simplified as there is no need to use the auxiliary autonomous
functions wy, w, and ws.

Corollary 2.8 (Autonomous Lyapunov). Let x* = 0 be an equilibrium point for (2.4). Let v :
R" — R be a continuous and radially unbounded positive definite function, such that Vx # 0,

v(x) <0,
then x* = 0 is globally asymptotically stable.
Lyapunov’s theory has its parallel to discrete time systems in the form of
x(k+1) = h(k,x(k)), (2.5)

where i : Ng x D — R" is piecewise continuous in x € D. See, for example, [68]. All other
definitions in the discrete time case are identical as in the continuous case considering the
discrete time variable k instead of the continuous ¢. Stability for this kind of systems can be
verified with the help of the following theorem.
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Theorem 2.9 (Discrete Lyapunov). Let x* = 0 be an equilibrium point for (2.5) and let v :
Np x R" — R be a continuous function in X € D such that Yk € Ny and Vx € R",
wi(x (k)) < v(k,x(k)) < wa(x(k)), (2.6)
Avi:=v(k+1,x(k+ 1)) —v(k,x(k)) < —ws3(x(k)), 2.7)
where wi(x), wa(X) and wi(X), are continuous positive definite functions on R", wy(X) is

radially unbounded, and v(k,0) = 0. Then, x* = 0 is globally uniformly asymptotically stable.
Furthermore, if

wi(x) = k[ [x][, wa(x) < ko[x][, wa(x) =

for some positive constants ki, ky, k3 and ¢, then x* = 0 is globally exponentially stable.

2.2.2. Linear Matrix Inequalities

Linear Matrix Inequalities (LMIs) are an active research topic in control theory and a pow-
erful tool for the analysis of system stability. During the last decades LMI techniques have
been successfully applied in many control problems including, for example, dynamic feed-
back design, uncertainty analysis and robust control design. The book [80] is often quoted
as the basic reference in the field. Immediately after the publication of this book, a Matlab®
Toolbox for solving LMI problems was published [88]. The book [84] gives an interesting
insight on different implementation and application aspects from both, control and optimiza-
tion, perspectives. Other introductory references on the matter are [86, 87, 98, 101, 108, 109,
113]. Additionally, many interesting results and a broad bibliographic review can be found in
the course material [103] which is available online (in Portuguese).

In this work, matrix inequalities will be used to indicate that a certain matrix is positive
(or negative) definite (or semi-definite). The expression linear matrix inequality refers to a
matrix inequality where all variables are linear with respect to each other. LMIs are convex
optimization problems and therefore they can be numerically solved with the help of several
available software. During the 1980’s many algorithms with guaranteed global convergence
were developed under what is now known as semi-definite programming. Because of this, in
practice, to formulate a problem in terms of LMIs is sufficient to compute a numeric solution.
In this work we prefer the solver SeDuMi [111] parsed by YALMIP [96] which have become
the de facto standard in the area. Definiteness of matrices is a property defined in the following
way.

Definition 2.2.4. A matrix M = M’ € R" " is positive definite, denoted M > 0, if and only
if its quadratic form is positive definite. That is, if v(x) = xX’Mx > 0, Vx # 0. It is positive
semidefinite, denoted M > 0, if v(x) = x'Mx > 0, Vx # 0 and negative (semi) definite, denoted
M < 0 (respectively M < 0), if =M > 0 (—M = 0).
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Positive (semi) definite matrices have only positive (non negative) real eigenvalues and can
be decomposed into M = N'N where N € R"*",

The development of LMIs is strongly related to Lyapunov’s theory. Indeed, a very simple
LMI is obtained from applying Lyapunov’s second method to the linear time invariant system:

X = Ax 2.8)

where A € R"*". It is a well known fact that a linear system in this shape is asymptotically
stable if and only if matrix A is Hurwitz, i.e. if all its eigenvalues have negative real parts. This
condition can be equivalently expressed as an LML

Theorem 2.10. System (2.8) is asymptotically stable, if and only if it exists P > 0 such that
PA +A'P <0. 2.9)

Proof. Consider the autonomous quadratic Lyapunov function v(x) = x'Px with P = P’ > 0.
It can be easily shown that this function fulfills all the assumptions of Corollary 2.8. Therefore
if v(x) = x’Px+ x'Px = x' (PA + A'P) x < 0, the origin is asymptotically stable and A is Hur-
witz. As this condition has to be fulfilled for all x € R”, this leads to LMI (2.9). Furthermore,
if A is Hurwitz, then P = {7 eA"eAdr satisfies (2.9):

400
PA+A'P= J (eA TATA + AleA ’eAt> dt
0

+00
= J (deAlteAt) dt
0 dt

’ +0
eAeA =-I<0

O]

Remark 2.1. Note that if A is an eigenvalue of A, then A + &, with § € R, is an eigenvalue of
A + S1. From here, P(A + 81I) + (A’ + SI)P < 0 if and only if the eigenvalues of A have real
parts strictly smaller than —§. Furthermore, P(A + 8I) + (A’ + 81)P < 0 if the real parts of
the eigenvalues of A are smaller or equal than —9.

Similar, from the discrete Lyapunov theorem, a discrete time linear system x(k + 1) =
Ax(k), with k € N, is stable if there exist v(x) = x'Px > 0 such that Yk € Ny, Av; := v(x(k +
1)) — v(x(k)) = x'(k) (A'PA —P) x(k) < 0. Which is equivalent to study the feasibility of
A’PA — P < 0 with P > 0. A stable discrete time system has all its eigenvalues in the unitary
circle. If that is the case, then P = 3%, (A’)*A fulfills the inequality.

These results, which are modified versions of Lyapunov’s original statements in his thesis,
are important because they show the basic procedure followed by most applications of LMIs
to control theory. That is, to propose a Lyapunov function to check stability and from there
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develop LMI conditions that can be numerically verified. Other LMI related results useful to
this thesis can be found in Appendix A.4.

Some remarks on the numeric solution of LMI need to be taken into account. It is sometimes
important to count the number of “scalar variables” that defines the problem. A scalar variable
is a variable entry in a “matrix variable”. A full variable matrix X € R"*" is composed of n x m
scalar variables. A symmetric matrix P € R"*" (typically referred to as Lyapunov Matrix) has
(n*> —n)/2+n = (n+ 1)n/2 variables. If more demanding structural restrictions on the matrix
variables are imposed, the number of variables can be diminished. For example, a diagonal
matrix D € R"*" has only n variables.

In general, any available LMI software is capable of solving most of common problems
(feasibility or optimization) with acceptable efficiencies in any standard software/hardware
configuration. For example, all numeric evaluations of LMI in this thesis are done with a Dell
notebook with an Intel Core i5 CPU at 2.50GHz and with 6.00GB RAM, over Matlab R2011b
on Windows 7 of 64-bits. However, the complexity of the restrictions have a direct impact on
the time needed to compute a solution and on its accuracy.

By complexity we refer mainly to 1) number of scalar variables, 2) number of inequalities,
and 3) dimensions of the involved matrices that define the inequalities. Of course, these three
elements are related to each other as, for example, larger matrices will imply larger numbers
of variables and more inequalities will usually imply also more matrix variables. A fourth
component that determines how fast a problem can be solved is related to “how large” is the
possible solutions region. If the solutions region of a given problem is too “narrow”, in general
it is difficult to reach it and therefore it takes longer to solve the problem. Therefore, minimiza-
tion problems are in general more demanding than feasibility problems. Furthermore, having
“too many” restrictions, which directly impacts the number of variables, is also often impracti-
cal. However, the performance of any algorithm can be improved by more powerful hardware
configurations and better software implementations. Typically, all LMI computations in this
thesis are in the range of fractions of seconds to seconds.
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Hybrid Systems are a very active research area where many disciplines merge in the study of
complex dynamical behaviors with continuous and discrete states, e.g. [153]. Switched linear
systems can be interpreted as a special case of hybrid systems. They have been widely studied
and a key reference is the book [151]. Many results rely on the finding of Lyapunov functions
to ensure stability. A good summary of this idea may be found in survey papers such as [137,
152, 157], which give a wide spectrum of the topic.

The study of switched systems typically makes the differences between continuous and dis-
crete time. Some examples for the continuous case are [133, 141], where conditions for global
asymptotic stability are developed considering dwell time. In [158], stability for a particular
case with two discrete states is studied, while in [154] the problem of continuous state feed-
back and pole allocation is addressed by imposing a common Lyapunov function to every
discrete mode. Piecewise Continuous Lyapunov functionals have also been proposed, some
examples are [132, 137, 161, 163, 166, 167]. This approach suggests a relationship between
continuous and discrete time switched systems as it associates different Lyapunov functions
to the time intervals corresponding to each mode.

In discrete time, besides the case where switching is arbitrary [77], we can distinguish when
the switching sequences are known and fixed, and the case where only jumping probabilities
are known. In the first case the stability analysis is done either by computing the spectral
radius of a matrix that represents the whole cycle of the system, e.g. [152], or by using Lya-
punov functions as in [136, 140, 170]. For the probabilistic case, strongly related with Markov
Chains Theory, the definition of stability needs to be modified in order to consider the stochas-
tic nature of the switching mechanisms. However, similar analysis tools can be used. Some
examples are the recent survey paper [156] and other references such as [142, 148, 149, 162,
164, 168]. Because of the formality and completeness of the analysis, the paper [135] and the
book [134] of the same authors deserve special attention. A more general approach is followed
in publications such as [143-145, 150, 176, 159, 160, 165, 169, 171], where stochastic stabil-
ity is studied through the expected behavior of a Lyapunov function. The analysis of Markov
jumping systems have been also extended to the continuous case, see for example [139, 146,
147, 156, 168].

In this chapter an application of Lyapunov’s Second Method and LMIs to switched systems
is presented. We represent a continuous time switched system by a discrete time equivalent
system and from there we deriver stability conditions based on discrete time Lyapunov con-
ditions. We consider the case where the jumps between discrete modes are deterministic and
where they are the result of a Markov stochastic process. Most of the results presented here
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can be found in the quoted references on discrete time switched systems with exception of the
result that consider robustness against parametric uncertainties at the end of the chapter.

3.1. Preliminary Definitions

3.1.1. Switched Systems

A switched system can be defined in the following way.

Definition 3.1.1. A switched linear system has discrete mode dynamics given by a relation of
time ¢ : R* — Q = {q1,92, ...,qu}, and continuous dynamics such that

X = f(qi,x) = Ax 3.1)

where A; e R™" i€ {1,2,...M}. The possible transitions between discrete modes are modeled
by aset of edges E = {e;; = (¢i,q9;)|qi,q; € O ~ qi # q;} < Q x Q. These transitions occur at
switching instants T, with k € N. x is continuous at the switching instants.

Definition 3.1.2. An Infinite Switching Time Set is an infinite sequence of switching instants:
Seo = {’L’Q, Tlyeeey Tk }

We assume that for some sufficiently small 6 > 0, § < Ty 1 — T, so that within any finite
time interval, there is only a finite number of switching instants. Note that in this description
of switched systems, the value k is associated with the jumps as a function of time. In other
words, k is not a relation of the continuous states, nor of the current or future discrete modes.
E may be a strict subset of Q x Q so that certain discrete modes transitions may be forbidden.

A first case of interest is when arbitrary switching sequences are allowed. Here, asymptotic
stability can be defined as the asymptotic stability of the steady state x; = 0 for any switching
signal g allowed by E. It is trivial to show that a necessary condition is that all A; are Hurwitz.
If that is not the case for an A ;, we can choose g = ¢g; = const to show that the switched system
is not asymptotic stable for every switching signal. In the references, e.g. [151], a decreasing
common Lyapunov function v(x) = x'Px for all modes is shown as a sufficient condition for
the stability of the switched system. The author has extended this approach in [155] to a more
general class of Lyapunov functions derived from Homogeneous Polynomials.

Because of space limitations and relevancy to the rest of the thesis, in this chapter we will
not discuss the arbitrary switching case. We will concentrate on a second class of switching
structure driven solely by time dependent restrictions.

Stability under time dependent switching is defined as the (global uniform asymptotic)
stability of the steady state X, = 0 for any switching signal g allowed by E over an infinite
switching time set. The trivial case when the switching time set is finite is not of interest as
then, after a successive chain of discrete jumps, the switched system rests in a final mode
where the continuous states evolve. It is clear that if this final mode is stable, then every
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possible execution of the system will be stable and there is no need of further analysis. On
the contrary, if the system has the ability of switching endlessly, then stability must be studied
considering all infinite possible jumps.

3.1.2. Polytopic Systems

Since the beginning of the last decade, many results have been published on polytopic sys-
tems. See for example [82, 90, 91, 95, 105], etc. This kind of systems is often used to model
uncertain linear systems or time variant systems with smooth parametric changes. Different
approaches with LMIs as the main analysis tool have been proposed to characterize stability
through quadratic Lyapunov functions.

Definition 3.1.3. The Unit Simplex of RM is the set

i=1

M
AMz{ae]RM|Za,-=1 Ao =0, Vie{l,Z,...,M}},

where ¢ is the i-th element of the parametrization vector Q.

Definition 3.1.4. A polytopic system in continuous time is such that
= A(a)x, (3.2)

where & € Ay and A(er) = Z?il o;A; with known matrices A; € R"*", = 1,....M, called
vertices.

The parametrization vector & can be an unknown constant & € Ay, in which case the poly-
topic structure is commonly used to model uncertainties in the parameters of a linear system;
or a function of time () : RT™ — Ay,. Stability of systems described in this way has been
widely studied and the complexity of the problem increases when @ is time dependent.

To investigate whether there are conditions that assure that the system is asymptotically
stable regardless of the unknown value of &, only by considering the known information
on the vertices, the existence of a common quadratic Lyapunov function (v = x'Px) for all
vertices is a sufficient condition. This situation might however be too restrictive as it imposes
a very particular kind of stability condition that has to be fulfilled by all the vertices. This
is why other Lyapunov functions are proposed. For example [105, 106] propose the use of a
Lyapunov matrix which is a linear function of the parametrization vector.

Definition 3.1.5. A Linear Polynomial Lyapunov Function is such that
v =xP(a)x, (3.3)

where

M
P(a) = 2 (X,‘Pl‘,
i=1
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aeAM,andPi=P§>O.

In this case the original common stability condition is relaxed by considering a functional
that also depends in a linear way on the unitary simplex Ays. Note that common quadratic
Lyapunov stability is a special case of (3.3) when P; =P, Vie {1,...,M}.

Further assumptions about the structure of the Lyapunov function can be made. Particularly,
homogeneous matrix polynomials can be used to test stability. The use of such Lyapunov
functions has been documented in, for example, [78, 79, 81, 82, 99, 100, 107]. However, for
our objectives, we will not need these more complex Lyapunov functions.

3.1.3. Polytopic Approximation of a Switched System

In the switched linear system (3.1), each of the matrices A; can be interpreted as a vertex of the
polytopic system described by (3.2). Considering the time dependence of g, if it is imposed
that V¢ : ¢ = g = a;(t) > 0, then the parametrization vector @ is a function of time that
interprets the evolution of the discrete state g.

In particular, the behavior of a switched linear system can be approximated by using para-
metrization vectors in the following function class:

N
Kh(S) = {a ‘RT —>AM|OCZ'(I) =c¢;it+ Zni(k)®g(t_fk)},
k=1

with N the number of switching instants considered (that might be infinite), ¢c; = 1 if the i-th
mode is active at t = 0 and ¢; = 0 otherwise, and n;(k) € {—1,0, 1} selected according to the
edge active at 7. If the jump is from mode g; to ¢, then n;(k) = —1; if the jump is from g;
to g;, then n;(k) = 1; n;(k) = 0 otherwise. @, (¢) is an analytical smooth approximation of the
Heaviside step function:

0 , t<0
©() = lim O(r) =1y 1/2 , 1=0
1, t>0

The parameter € > 0 characterizes the accuracy of the approximation. A possible choice for
this function would be O (1) = 1/(1 + e~2/%).

Note that this approximation of a switched system is done through a smooth function o(z)
that depends on parameter € > 0. In the limit € — 0, this approximation becomes an exact
representation of the switched system.

3.1.4. Discrete Time Representation

A Switched System can be represented as a non-linear discrete time system. As the execution
of the system between switching instants is deterministic, there is an algebraic expression for

26



3.1. Preliminary Definitions

the values of the continuous states in any interval defined between consecutive switching. In
this sense, a switched system is similar to an asynchronous sampled-data system and stability
can be studied by observing the system at switching instants only.

The transition matrix ®(,7y) of system (3.2) is such that V¢ > t,

%d)(t,to) _ A(@)B(1,10).

Note that the transition matrix depends explicitly on the approximation parameter € when
a € K, (¢g). Unfortunately, when & € Kj,(€) and in the limit € — 0%, as A(et) is a function
of time, in general it is not possible to find an expression for the transition matrix. However,
between switching instants, the system behaves as a linear system, and therefore, a piece wise
expression for the trajectory of the system can be found. From here, the states at switching
instants can be found as the states of a time-variant discrete time system.

Indeed, the solution of a linear dynamic system X = Ax with initial condition x(zp) = X is
given by x(r) = eAl—)x, . (See Proposition A.11 in the Appendix.) Therefore, we can write
the following relationship between switching instants 7; and T 1:

X(Terr) = lim [@(Ter1, 7) [ x(7)

= Al)Tix ()
= d>kX(Tk),
with residence time 7 = T;. | — T and

o = lim a(t,),
e—0t
for some #,, € (T, Tx+1)- The vector @ is a vector in the respective unit simplex with zeros in
every element but in the associated with the discrete mode active between 7; and 7. Note
that in general, 0t (7;) # 0 # @(T+1). The discrete time system matrix is implicitly defined
as @y = eA@)Tk As Tj is not constant and o, changes after every switching instant, the above
described discrete time system is not time-invariant. For a given signal ¢, it is clear that for
h>keNp,
h—k
X(Th) = Hq)h_,' X(Tk) = (q)h—lq)h—Z---q)k) X(Tk). (34)
i=1
We will define for notation simplicity:

h—k
| - H@h,i.
i=1

Note that this discrete time representation of the switched system could also be done without
introducing the polytopic approximation of Section 3.1.3. However, we choose to maintain the
polytopic representation in order to describe the Lyapunov functions to be used in the sequel
in a more clear way.
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3.2. Time Dependent Switching Results

In this section we introduce the key result that allow us to study stability of a continuous time
switched system through its discrete time representation. From here we state several known
results for the case of deterministic and probabilistic switching and we extend the conditions to
consider uncertainty in the residence time at each discrete mode. The results on deterministic
switching are equivalent to those to be found in several publications as [136, 140, 170]. The
probabilistic results are based greatly in [134, 135].

3.2.1. Sampled Lyapunov Stability Criteria

In most publications (e.g. [67—69, 74]), it is usually considered that a Lyapunov function has
to have continuous partial derivatives with respect to time and the states. However, as noted
by LaSalle in [70, 71], this requirement is mainly for ease of calculation of the time derivative
of the Lyapunov function in most practical cases where the function f is “well behaved”. It is
however, only required for a Lyapunov function in LaSalle’s definition to have a “right hand”
derivative at any time. That is, the Lyapunov function does not need to be smooth at every
time instant.

A different topic is treated in [65, 73], where a methodology based on hybrid (discrete and
continuous time) Lyapunov functions is proposed to treat asynchronous sampled time sys-
tems. That is, systems that depend continuously on the value of the states sampled at irregular
intervals'. Taking into account these two ideas, stability of time depending switching systems
can be studied by observing their behavior at the switching instant, similarly as what is done
in publications such as [132, 137, 161, 163, 166, 167].

Lemma 3.1 (Sampled Lyapunov). For the switched system (3.1), if there exists an infinite
sequence of switching instants S = {7, Ty, ..., T, ...} S S and a quadratic positive definite
scalar function w : R" x Rj > R, (x,1) — w(x,1) = x'(t)P(t)x(t), with P(t) > 0, Vt = 0, such
that Vk € N,

Awy = W(X(TIHI ), le+1) — W(X(le), le) <0, 3.5
then the system is asymptotically stable towards the origin.

Proof. For any x # 0 that is a solution of (3.1), from the discrete Lyapunov theorem, Aw; < 0
implies that the implicit discrete time system that results from observing the polytopic system
at specified instants, is stable. To prove the stability of the continuous time system, the inter
sampling behavior needs to be analyzed.

IFor example, a continuous time system X = Ax 4+ Bu with a feedback law u(r) = Kx(z), Vk € N that only
considers the value of the states at certain instants #; and keeps the input constant in the inter-sampling interval
so that the continuous closed loop dynamics of the system become x = Ax + BKx(#;).
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Figure 3.1.: Graphical representation of proof of Lemma 3.1

For all k € N, define Iy = [7,,7,,,) and Wy := max {w(x(t),t)|t € [}. Because (3.5)
holds, then Wy, x happens either at ., = Tj, OF at a time tyqe k € (Ty,, T, . ). In either case,
we can write that

X(l‘max7k) = leax,kX(le)’
where

L) eA('xlk+h)(fmr,k*ﬁﬁh)\lnfk-i-h’
k

max,k —

for some & € Ny such that I +h < [ .

Therefore, Wyaxx = X' (7,) <‘Pmax,k>,P(tmax7k) (‘Pmax‘k> x(7, ), which is a quadratic form
on the vector x(7;,). Then, it always exists a scalar p; > 1 such that wy.x < pew(X(7,), 7, )
because w(x(1, ), 7, ) = X'(1,)P(7,)x(7, ) is a quadratic form on the same vector and P(¢) > 0,
Vt € R. Defining p > sup {pi|k € N}, we conclude that Yk € N, Vr € I, w(x,1) < pw(x(7;,), Ty, )-
That is, a piece wise constant upper bound for w(x,) can found and, by hypothesis (3.5),
this bound approach to zero as time increases. Note that the bound cannot approach a value
different than zero, as that would imply that there are trajectories of the system where (3.5)
does not hold.

Asymptotic stability of the continuous time system is then proved by the existence of the
Lyapunov function w(x,) = x'(¢)P(z)x(¢) which is confined to a region that approximates to
zero asymptotically. A graphical sketch of the proof can be seen in Figure 3.1. O
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This theorem has the obvious inconvenience that Aw; needs to be evaluated in an infinite
number of instants and therefore it can only be used for systems that present some kind of
cyclical behavior. From here on, the task is to find suitable discrete time Lyapunov functions
w(x,?) such that the conditions of Lemma 3.1 can be verified, leading to results that are similar
to those in the quoted publications.

Example 3.1. One could propose as a counter example for Lemma 3.1 a simple linear system
(a trivial case of switched system) with a conjugate pair of unstable eigenvalues. Take for
example the linear system X = Ax where,

—2.00 0.00 0.00
A=1{(000 050 —6x],
0.00 o6mx 0.50

with eigenvalues A € {—2.00,0.50 + j67r,0.50 — j67}. The conjugate states associated to the
conjugate unstable eigenvalues oscillate at a frequency of f = 3[Hz]. The system is clearly
unstable as can be seen in the simulation shown in Figure 3.2 a).

It can be then argued that sampling the system at exactly the instants where a non negative
function of both unstable conjugate states vanishes, then this information will not be mapped
into the Lyapunov functional and therefore, a strictly decreasing discrete Lyapunov function
can be found if the other states are stable. This is not the case, because the non negative
function that cancels the effect of the conjugated states would only be positive semidefinite
and not positive definite as Lyapunov’s theory requires.

The quadratic function w(x,€) = x'P(g)x can be proposed, with a parameter € > 0 such
that,

oo 0
P = — —
(¢) ool0 1 1-e

0 1—¢ 1

If € = 0, then det{P} = 0 and the function is only positive semidefinite and therefore cannot
be used to prove stability of the system. Indeed, in Figure 3.2 b) the continuous evolution in
time of this function is shown. Sampling at a rate of f, = 6[Hz] when the sum of both unstable
states vanishes (the marked points in Figure 3.2 a) ), leads to a decreasing sequence of values
given by the local minima of the function (the red dashed line in the Figure). However, stability
cannot be concluded from this sequence. For any € > 0, w(x, €) becomes positive definite, but
no infinite decreasing sequence exists. See Figure 3.2 ¢), where € = 0.1.

This can be further studied through the discrete time system x(f, 1) = eA%x(tk). As some
eigenvalues of the discrete system matrix are outside the unitary circle, it can be numerically
verified that there does not exist a positive definite matrix P > 0 such that the discrete Lya-

1 1 .. . . .
punov inequality (eA iy Pe 7 — P < 0 holds. This is not surprising as the matrix exponential
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Figure 3.2.: Evolution of a) the states of system, b) a positive semidefinite quadratic function of the
states, and c) a positive definite quadratic function of the states in Example 3.1.
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operator maps only the stable eigenvalues of matrix A% in the unitary circle, leaving the un-
stable ones out of the discrete stability region and making the inequality unfeasible. Thus,
showing that the system is unstable. |

3.2.2. Deterministic Switching
Common Lyapunov Function

Assume that the switching sequence is deterministic and known. That is, the infinite switching
times set So = {70, 71, ...} is known and the discrete modes transitions active at each switching
instants are also known. Lemma 3.1 allows us to study stability of a linear switched system
only by observing it at the switching instants. Furthermore, it is not required to observe the
system at every switching instant 7; but only in an infinite sequence of them. This means
that we can arbitrarily skip some switching instants in the stability analysis when the discrete
jump to perform at this moment is known. For example, if we know that at 7; the system
jumps from state g; to state g;, we can skip 7; and use only 7,_; and 7,1, as an expression for
the behavior of the continuous states during both time intervals can be found. In this case, a
sufficient stability condition is given by the following theorem.

Theorem 3.2 (Discrete Common Lyapunov Function). Given an infinite subset of the switch-
ing instants set, this is S = {Tky, Tays -y Thys -} S Seo = {70, 7T1,...}, switched system (3.1) is
asymptotically stable towards the origin if there exists a symmetric matrix P > 0 such that
Vhe No,

kna1)' k
() (¥ ) -P<o, (3.6)
with kh-H > kj, € Ng, Vh e Ny.

Proof. Consider Lemma 3.1 and a Lyapunov function w(x(7),k) = x(7)'Px(7) > 0, with
P =P’ > 0. Then, a sufficient condition for stability of the system (3.2) with & € Kj, (&) is:

A, = w(x(T,)) — w(x(m,)) <O0.

In the limit € — 07, equation (3.4) leads to
!
Awy, = x(ty,)’ [(‘PZ“) P(¥y) - P} x(74,) < 0.

With x(7, ) arbitrary, the previous condition holds if and only if (3.6) is fulfilled VA e Ny. [

This stability condition presents some important restrictions regarding its practical use. The
most obvious one is that condition (3.6) must hold for an infinite number of matrices ‘PZZ“
as h € Ny. Therefore, if the switched system does not present a cyclic behavior, where only
a limited number of switching sequences is possible, the previous theorem is not applicable.
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3.2. Time Dependent Switching Results

Other important issue to be taken into account is that it is required that the switching instants
and all possible switching sequences are known during the entire infinite hybrid time set. This
means that the switching rules are predefined as a function of time only. A third aspect to
be taken into account is that when a switching subset S cannot be used to prove stability,
it does not mean that another subset S’ can also not be used. It can well be the case that
a given sequence of switching instants does not possess a common Lyapunov function, but
other particular sequence does.

Linear Polynomial Lyapunov Function

By changing the Lyapunov function to be considered, less restrictive stability conditions can
be found. Particularly, a linear polynomial function of the parametrization vector as (3.3) can
be used to test stability.

Theorem 3.3 (Linear Discrete Lyapunov). Given an infinite subset of the switching instants
set, this is S = {Tky, Thys - Thys -} S S0 = {70, T1, ...}, switched system (3.1) is asymptotically
stable towards the origin if there exists a linear function of the parametrization vector P(@) =
M oiP; such that P; > 0 and Yh e Ny,

’
(%) Pl (%0 ) —Plaw,) <0, 3.7)
with kh+1 > ky € Ng, Vh e Ny.

Proof. The proof is the same as for Theorem 3.2 but considering a linear Lyapunov function
w(x(T),k) = x(7)'P(a(T + 8))x(1%) > 0, where 6 > 0 is chosen sufficiently small so that
T + 6 € (T, Ter1). The vector e¢(r + &) represents the discrete modes in an immediate future.
Note that, in the limit, this vector evaluated at a switching instant 7, becomes lim,_,y+ €¢( Ty +
5) = 0. ]

Note that Theorem 3.2 is a special case of Theorem 3.3 when P(a) = P. With this formu-
lation we observe the same application problems as in the previous theorem. Nevertheless,
the inclusion of a linear polynomial on & gives a higher degree of freedom that allows us to
probe stability by considering a less restrictive switching instants sequences. The following
corollary is immediate:

Corollary 3.4. Switched system (3.1) is asymptotically stable towards the origin in the set of
switching instants So, = {70, T1,...}, if Vi€ {1,2,...,M}, there exists matrices P; > 0 such that

@, P&, —P; <0, (3.8)

where Ty, € {71 € Sw|[@k]i = 1} (all instants at which the system switches to mode g;), and
Je{1,2,...,M} is such that i # j and [0, 1]; = 1 (q; is the mode where the system jumps
from q;).
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3. Stability of Switched Systems

O
3 2

Figure 3.3.: Switched system for Sequential Process in Example 3.2.

Proof. Evaluate Theorem 3.3 at every switching instant and distinguish that each discrete
mode allows one only possible jump (from g; to g;). O

This last result is useful because it associates with each switching instant the dynamic in-
formation of one, and only one, discrete mode. This is, at each instant, the respective LMI
condition only includes one A; matrix. This helps to decrease the number of LMI restrictions
needed to prove stability of a switched system as the information of which transition is active
at each switching instant is contained only in the Lyapunov matrix P(e) and not implicitly in
‘I‘],i:“. Similar results can be found in [133, 136, 140, 141, 170] and other works by the same
authors.

The use of linear Lyapunov functions as described deals with the problem that it needs to
be evaluated at all possible infinite switching instants. If the number of possible switching se-
quences is too large then the previous results might be not applicable in practice. Furthermore,
if there is only information about the probability of occurrence of the switching between the
states, this deterministic approach needs to be modified to accept some notion of stochastic
stability.

Example - Periodic Switching Process

Example 3.2. Periodic switching processes are such that switching occurs on a periodical
basis where a fixed sequence of discrete modes is repeated at regular intervals. Consider the
sequences defined by the automaton in Figure 3.3 and the following matrices:

—-1.0 0.2 0.5 0.0 02 02

A = Az = .
00 03 —-0.1 0.5 0.0 -3.0
Note that all these matrices have at least one positive real eigenvalue. The sequence of mode
changes g1 — g2, g2 — g3, g3 — ¢q1 Wwill take place respectively at instants 73,3, T3,—2 and
T3n—1, 1 € N. The system will stay in mode ¢ for 73,_3 = 73,2 — 73,3 = 0.4, in mode ¢,
for 13,7 = T3y—1 — Tan—2 = 0.2 and in g3 for T3,—1 = 73, — T3s.—1 = 0.4 at each cycle. The
parametrization vector as a function of time is such that Vn € N:

A=

!/

! !
03, 3 = [1 0 O] , 032 = [0 1 O] ,and Q3,1 = [0 0 1] ,
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3.2. Time Dependent Switching Results

so that A(et3,—3) = Ay, A(&3,-2) = A and A(@3,—1) = Az. With this, we can define three
matrices that describe the behavior of the system in all these possible changes:

W2 _ @y, = M T s _ | 06703 0.0703] |

0.0000 1.1275

1.1052  0.0000
| —0.0221  1.1052]

[1.0833  0.0489
10.0000 03012

\Pgn*% =®;, ,= eAl@n—2)Tn—a
ni E

Wi =@y, = AT

Note that the eigenvalues of the previous matrices are not in the unitary circle and therefore
Theorem 3.2 is not applicable considering every switching instant. Furthermore, if we apply
the theorem every two switching instants, i.e., defining the matrices

3n—1 _ \gy3n—2 3n—1
\P3n73 - \P3n73 "P3n72’
3n—2 3 3n—2
f SHREL SRS SHeS
3 3n—1 3
L SUICRL KR
there is still no matrix P satisfying inequality (3.6).

However, if we consider the whole period of the sequential process, that is one every three
switching instants, we can then define matrix ¥3" , =W3"~2. W3] .@3"  which has all its
eigenvalues inside the unitary circle and therefore there exists P > 0 that satisfies inequality
3.6), e.g.,

1.4680 0.0615
0.0615 1.0815]|

Note that when the whole sequential period is considered, the discrete time system associated
with the switched system is time invariant.

Now consider Corollary 3.4. A linear polynomial P(a) = o) P} + P + a3P3 and the three
possible jumps, lead to the following three LMIs derived from condition (3.8):

¢g,1_3P2¢3n,3 — P1 < 0,
@, ,P3®;3, » —P, <0,
'3,,_1P1‘1>3n71 —P3 < 0.

These conditions must hold simultaneously to probe the stability of the switched system under
the specified switching sequence. The feasibility problem is satisfied by the following matrices
whose existence proves the stability of the system under the given switching rule:

0.1436 2.3796 0.0634 1.3591

1.2146 0.1436
’ 0.0843 0.7039

[2.3478 0.0634] [1.6678 0.0843]
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3. Stability of Switched Systems

a) b) T

Figure 3.4.: Evolution of the states of systems in Example 3.2 for a) stable deterministic switching, b)
non stable deterministic switching.

This result is confirmed by the simulation shown in Figure 3.4 a) where the evolution towards
the origin of the continuous states are drawn from an arbitrary initial condition.

Note that the existence of the previous matrices only proves that the system is stable under
the specified switched rule. Indeed, if other switching rule is defined, the switched system
might not present a stable behavior. For example, with 73,_3 = 0.5, T3, = 0.4 and T3,—; =
0.1, the system becomes unstable as shown in Figure 3.4 b). |

3.2.3. Probabilistic Switching

Up to here, only deterministic switching sequences have been addressed. That is, sequences
where at every switching instant, the discrete modes associated to the jump are exactly known.
If this assumption is relaxed to consider only the probability of switching from one mode
to others, the problem of stability becomes stochastic in nature. Therefore, the definition of
stability needs to be slightly modified. Equivalent statements to the following definitions can
be found in several works as, for example, [150] which gives a easy to follow introduction
to the topic. Other examples are [134, 135, 142—145, 148, 149, 176, 159, 160, 162, 164, 165,
168, 169, 171].

Definition 3.2.1. The stochastic discrete time system
x(k+1) = h(k,w(k),x(k)), 3.9

where w(k) is a scalar stochastic process, and with initial condition xo = X(ko), is said to have
an equilibrium point x* = 0 if, Vk € N, x* = h(k,w(k),x*) = 0. This equilibrium point is said
to be

o Almost surely stable if, for every € > 0 and h > 0, there exists 6 = d(&,h, ko) > 0, such
that

P{lx(k)| <h}=1—¢, k= ko,
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3.2. Time Dependent Switching Results

when |xg]| < 0.

* Almost surely globally asymptotically stable if it is almost surely stable and for all x €
R”,

P{klir& Ix(k)| = 0} ~ 1.

In other words, x* = 0 is almost surely stable when for a small initial condition, the evo-
lution of the discrete variable x(k) stays within a small region around the origin with a high
probability. It is almost surely globally asymptotically stable if, additionally, for any initial
condition, the states of the system evolve to the origin with probability one. This definitions
can be directly extended to the continuous time case. In the quoted references, several equiv-
alent names are given for the concept of "almost surely”, e.g., "with probability one" (w.p.1),
"in probability", "stochastically", etc.

With this definitions, a stochastic Lyapunov theorem can be stated. The result is presented

without proof. For a detailed explanation of the theorem see [150].

Theorem 3.5 (e.g. [150]). Let x* = 0 be an equilibrium point for (3.9) and let w : Ng x R* - R
be a continuous function such that Vk € Ny and Vx € R”,

wi (x(k)) < wk,x(k)) < wa(x(k)), (3.10)
E {Awg} i= E {w(k+ 1,x(k+ 1)) — w(k,x(k))} <0, 3.11)

where wi(X) and wa(X), are continuous positive definite functions on R", wi(X) is radially
unbounded, and w(k,0) = 0. Then, x* = 0 is almost surely globally asymptotically stable.

From this result, a stochastic analysis of the switched system can be done if information on
the switching probability at each state is known. For this, first we need to define the following.

Definition 3.2.2. The probability vector Tt; € Ay associated to mode g; € Q, is such that each
element [7;"] j 18 the probability of finding the system in mode ¢; immediately after switching
from mode ¢; at instant 7, ;. It follows that for all 7, € {7 € Seo|[@k];i = 1},

ﬂ'-lJr = E{akh+1} .

We assume that this vector is always known for the studied systems. Note that, as we con-
sider only switching between different modes, [#;]; = 0. This assumption could be however
relaxed to admit "switching" from one mode to itself. Furthermore, it can be considered that
deterministic switching is a special case of stochastic switching that holds when ;" = oy, ;1.
That is, when the probability of the future state is zero for all modes but one.

The set of all M probability vectors defines implicitly a Markov Chain where the Markov
matrix is given by

= col{(n?)/}il )
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3. Stability of Switched Systems

The diagonal of this matrix is always zero as there cannot be a jump from one mode to itself.
Therefore, the Markov chain cannot be absorbing, i.e. it cannot recursively jump into one final
discrete mode. It depends on the structure of the edges that define the possible jumps if the
chain is ergodic (or irreducible), i.e. if any mode can be reached by successive jumps from
any other mode.

Fixed residence time

If the residence time 7}, at each mode is known and constant, the following theorem can be
stated:

Theorem 3.6. Given a set of switching instants Sy, = {7y, 71,...} and a set of probability
vectors {nl* }?il’ switched system (3.1) is almost surely globally asymptotically stable towards

the origin if there exists a symmetric homogeneous matrix polynomial P(a@) = Zf‘i 1 P such
that Vie {1,2,....M}, 1, € {7 € Seo|[@k]i = 1} (all instants at which the system switches to
mode q;), P; > 0 and

@, P(n;)®;, —P; < 0. (3.12)

Proof. The proof is similar to the previous cases with a Lyapunov function w(x(7),k) =
x(7) Pl (7 + 8))x(7) > 0, with & > 0 small so that 7, + & € (7, Tx+1). Considering a
switching instant 7;, where the system switches to mode g;, condition (3.12) follows from
imposing E {Awy,} < 0 and taking the limit € — 0*. As the Lyapunov function is linear with
respect to the elements of @, we obtain that E {P(e, +1)} = P (E {@,+1}) = P(x;"). Further-
more, E {P(a, )} =P(E{o,}) =P(ay,) =P O

Note that Theorem 3.6 associates exactly one LMI condition to each mode, independently
of the number of possible switching sequences.

This result, or slightly different versions of it, is often found in the quoted references.
In particular, in [134, 135] it is shown that conditions (3.12) are not only sufficient for al-
most surely stability, but necessary and sufficient for mean square stability (MSS), i.e. for
limg_,o0 E {[x(7)|*} = 0. In [134, 135] it is further shown that MSS implies almost surely
stability but the reverse, that almost surely stability implies MSS, as far as we know, does not
always hold. Therefore, MSS can be seen as a more restrictive condition than almost surely
stability.

In [138] it is argued that the difficulty of finding suitable Lyapunov functions in general
makes it hard to apply this methodology to stochastic systems. In particular, the computation
of the expected value of the gradient of the Lyapunov function in Theorem 3.5 is not always
possible and inhibits the use of more complex functions as, for example, homogeneous poly-
nomials.
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3.2. Time Dependent Switching Results

Uncertain residence time

In the cases where the residence time is only partially known, one can write T}, = Tk”’l’i” +
ATy, < Tk’:i" + AT}C’;’“", where Tk’:m € R™ is a lower bound for the residence time and ATy, €
[0, ATk’f“x] an unknown deviation. The stability of a system under this kind of uncertainty can
also be addressed by the previous result by considering a bound for the Euclidean norm of
the exponential matrix. Given a time interval / = [T, 7™, define the upper bound of the
norm as

8(A,I) := max{||eA|| e R*|reI}.
Then it follows that Vr € 1,
AT < M PT < 82(A, DI (3.13)

Note that the scalar bound always exits as |eA’|| is a continuous function of the parameter ¢
within a closed interval. Even in cases where it might be difficult to numerically compute this
value, an upper bound can be easily found, for example, by using the so-called log norm de-
fined in Appendix A.2 to find the bound in equation (A.9). Another suitable option would be a
bound typically used to compute approximations of the exponential matrix, derived from the
Schur decomposition of matrix A, see for example [14, Ch. 9.3.2, pp. 532]. These quadratic
bounds can be used to modify the almost surely stability result of the previous section. Nat-
urally, this implies a (possibly large) conservatism derived from the uncertain nature of the
residence time and the quadratic bound.

Theorem 3.7. In Theorem 3.6, if for some i € {1,2,...,M} the residence time is such that Ty, =
Tk’j:i” + AT, < Tk’:m + AT, with Tk’:‘" € R™ and an unknown deviation ATy, € [0, AT"],
condition (3.12) can be replaced by:

—P; + nkh6k2hI —th th
o '
* (@™ P(aF )@ — Yy, — Y}, Yy, | <O (3.14)
* * _nkhI

. . . . e )T
with additional variables Ny € R, Xy, € R™" and Yy, € R""; and where ®]" := e (g )T

and &, = 5(A(ay,), [0,AT"™]).

Proof. This proof uses the Finsler Lemma A.14 and the Crossed Products Proposition A.15
in Appendix A.4. Define,

Y = [eA(""h)ATkn —I] ) Tl [ A(akI)ATk ] ’
e h h

(x)

—P; 0
- [ min\' + min] I'=
0 (Qkh ) P(ﬂi ) kp,

39



3. Stability of Switched Systems

Where X;, € R"" and Yy, € R"*" are new variables. With this and considering that

eA(akh)(TkrszrATkh) _ @gineA(akh)ATkh _ eA(akh)ATkh(bkmhin’
1

condition @ of Finsler Lemma becomes

!/
I —P 0 I
TL /E'ri — i . '
o [A”] [0 ( 2",,’”)'P(7r,-+)<1>21’”] [A”]

=@ P(n])®;, —P; <0
— (3.12).

The equivalent condition @ of the Lemma can be conveniently written as

_Pl - th
* ( Z;ln) I P(E+) Z]lfn - Ykh - Y;Ch

1

E4+IY+YT = [

A’ (ay, )AT;
.. +r|:eA(ak/1)ATkh 0:| + [e ( kh) kp,

< 0.

As @ < @ , the last inequality is also a sufficient condition for stability of the system.
It presents the advantage that the additional variables relax its numeric feasibility when con-
sidering bounds for the uncertainties given by the unknown quantity A7, . From the Crossed
Products Proposition and the bound of the exponential matrix norm (3.13), it follows that for
any 1M, > 0,

A’ (ay, )AT, A (e, )ATy,
r [eA(akh)ATkh 0] + [e :;: kh] r < M, [e ’(‘;z Ky ] [eA(akh)AT}“h 0] + LI'TI

Nk,
_ ur eA,(akh)ATkh eA(“kh)ATkh 0 n LIT,
* 0 Nk,
<m0 1
* 0 Nk,
Therefore, an upper bound sufficient condition for @ is
—P; 521 -X 1
1 + nkh kp iy . r/;/;n ) ] + 71-1-\/ < 0
* ( k, ) P(ﬂ:l ) k, Ykh - Ykh nkh
Condition (3.14) is equivalent by Schur complement to the last inequality. O

Note that a similar result could be proposed for the deterministic switching case.
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3 2

Figure 3.5.: Switched system in Fault Operation for Example 3.3.

Example - Operation under Faults

Example 3.3. Consider the switching sequences defined by the automaton in Figure 3.5 and
the following matrices:

Al = -2 -1 Ay = 1 0 As = -2 —1.
-1 =2 -1 -2 0 1

Note that the first matrix is Hurwitz, but not the others. This represents a system that operates
in a nominal safe mode g; but where two different fault modes ¢, and g3 may occur. In this
example, the indexes associated with jumps into mode g are denoted as kj, 1, to jumps into
q> as ky o, and into g3 as kj 3. In that way, the switching instants associated with a jump to
q1 are Ty, |, to g2 are Ty, ,, and to g3 are Ty, ;. Furthermore, A(@ay,,) = Ay, A(ey,,) = Az, and
A(akhs) = As.

Assume that the residence times at each discrete mode are known and constant with 7y :=
Ty,, = 0.2 for q1, T(y) := T,, = 0.5 for g2 and T3y := T}, , = 0.4 for g3. Note that the infinite
repetitive sequence ... — g — g2 — ¢1 — ¢» — ... is not stable as the matrix

ki1
kn2

Y =@ B, = eA(akh‘l)T}‘h,l eA(akh‘Z)T}‘h,Z

has one eigenvalue, A = 1.2116, outside of the unitary circle. The same happens with the
sequence ... — g1 — g3 — g1 — q3 — .... Therefore the system is not stable for all allowed
switching sequences.

However, if we additionally know that the fault described by ¢, occurs once every three
faults, the previous sequences are very unlikely to happen. In this case, the future probability
vectors are:

/ /
nfz[o 1/3 2/3] : n;=n§=[1 0 o] :
For this system, the LMI conditions of Theorem 3.6 are fulfilled by P(&) = Py a; + Prop +
P;03 > 0 where

—0.4591 1.3860 —0.2205 0.4813

0.8895 —0.4591
' —0.2270  3.8499

[ 3.6648 —0.2205] [ 0.4832 —0.2270]
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a) b)

v "

Figure 3.6.: Evolution of the states of systems in Example 3.3 for a) almost surely stable probabilistic
switching, b) almost surely stable uncertain probabilistic switching, ¢) non almost surely
stable uncertain probabilistic switching, d) presumable almost surely stable uncertain prob-
abilistic switching.

This shows that the specified system is almost surely stable. This can be seen in Figure 3.6 a)
for a random switching sequence with the switching probabilities stated before.

Now consider that residence time for each mode is not exactly known. For each mode, the
uncertainty is however bounded and given by

g1 T =0.50 and AT"" = 0.05,
g2 T =030 and AT{"Y = 0.20,

L%

3T =030 and AT,ZZZX = 0.10.

ks

A bound &, , = 6(A(ay,,), [0,AT"]), i € {1,2,3}, can be easily obtained by computing the
norm of the exponential map for all values in the interval as shown in Figure 3.7. As mode
q1 presents stable non-oscillating dynamics, the maximum norm is obtained at ATy, , = 0.00
and therefore we can choose &, , = 1.0000. In the fault modes, ¢, and g3, because of their
unstable non-oscillating dynamics, the maximum is given at ATy, , = ATk’fo‘x and so we can
choose, &,, = 1.2408 and §;,, = 1.1141. '

The application of Theorem 3.7 results in this case in three LMIs, each one with the
variables associated to the Lyapunov function with one additional scalar variable (n-type
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Figure 3.7.: Norm of the exponential map as a function of the uncertainty in the residence time, ATy, , —

||eA(akh‘i)ATkh‘i ||, for the three modes, i € {1,2,3}, of the system in Example 3.3.

variable) and two additional matrix variables (X- and Y-type variables). That is, there are
3 x (24 1)(2)/2 = 9 Lyapunov scalar variables, and 3 x (1 +22 +22) = 27 additional scalar
variables. In the case of the specified uncertainty, the corresponding LMIs can be proven fea-
sible, thus showing that the system is stable. We do not show these matrices for sake of space.
This is corroborated by the simulation shown in Figure 3.6 b).

If we consider a more restrictive uncertainty given by

g1 :T{™ =0.0667 and AT = 0.05,
g2 T =0.3000 and AT}" = 0.20,

kn2

g3 T = 0.3000 and AT{'Y = 0.10,

ki3

the inequalities resulting of Theorem 3.7 are not feasible. Because this result only gives a
sufficient condition for stability, the non feasibility of the LMIs does not mean that the system
is unstable. However, it leaves space for well-founded doubts. Indeed, the simulation in Figure
3.6 c¢) shows that the switched system under these conditions does not approximate the origin.

However, as Theorem 3.7 is only a conservative condition, because an upper bound is con-
sidered in order to deal with the uncertain parameters, the cases where the inequalities are not
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feasible need to be interpreted carefully. For example, if we choose the following parameters

g1 T =020 and AT = 0.05,
g>:T"™ = 0.30 and AT™* = 0.20,

L% kn2

g3 T =030 and ATJ'¥ = 0.10,

the respective LMIs are not feasible, although this values represent a relaxed situation with
respect to the system without uncertainty at the beginning of the example (the system stays
during less or equal time in the unstable modes as in the original case but longer in the stable
mode). Simulations show that the system converges in all considered cases as in Figure 3.6 d).
|
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The Global Perspective

4.1. Multi Agents Systems

Even though consensus based control is formulated for Multi Agents Systems, it is not easy
to find a general description of such a system in the related works. In this section, the general
model used in this thesis is explained and some important restrictions are stated. As a result,
this section summarizes the characteristics of the plant over which control is performed.

4.1.1. General Description of Multi Agents Systems

In Figure 4.1 a general distributed control scheme for a multi-agent system is shown. This
representation considers a realistic scenario in a control theoretical framework, where the dif-
ferent components of the network are defined according to their physical characteristics or
functions. The subsystems are detailed in the following list.

Subsystems:

* Agent i: N controlled machines. Possible non linear dynamics. The agents dynamics
can be extended to other cases as discrete time or discrete states. The actuators are
assumed to be part of the model of the agent. Example: Electric generators in a grid;
Mobile vehicles.

* Controller i: each agent is equipped with an on board local controller that considers
control tasks, input and output filtering, and communication management.

* Communication Channels: Is a communication interface between the on board com-
ponents. Note that there is no control logic allocated in this block. This block includes
the feedback signals from each block to itself. In the case that the dynamics of such a
feedback are not of importance, the corresponding communication channel can always
be modeled as a unitary matrix gain.

* Hardware Interconnections: All physical links existing between the agents that are
not part of the control strategy. This block might be unknown, partially unknown or
even not exist. Example: The electrical grid where generators are connected; terrain
constrains where the vehicles move.
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Figure 4.1.: General scheme of a multi-agents system.
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* Distributed control strategy: Is the union set of on board controllers with the commu-
nication channels. If the control objective is consensus, then this block is the Consensus
Algorithm.

* Interconnected network: Is the union set of all agents and the hardware interconnec-
tions between them.

* Central controller: Is an additional agent that interacts through communication chan-
nels with the on board logic of the rest of the agents or through hardware interconnec-
tions directly with the agents. It is considered an extra agent due to its importance for
the control strategy, its great influence on hardware interconnections or its different na-
ture. While the agents are some kind of similar systems (for example aircrafts or electric
generators), the central controller can be special hardware designed for specific tasks.

Even though not expressly shown, all these blocks can be dynamic systems. Figure 4.1
shows the agents as continuous dynamical systems, however the dynamics of different blocks
can well be in continuous time, discrete time, discrete event or combinations of the previous.
The main variables associated with these blocks are described in the following list.

Variables:
* Xx;: Vector of states of agent i.
* y;: Vector of physical outputs of agent i.
* y,: Vector of communicated outputs of agent i.

* u;: Vector of control inputs of agent i. The actuators are assumed to be included in the
agents.

* u;: Vector of data that the controller of agent i obtains from communication with others.

* u, ;: Vector of external inputs of agent i to allow the possibility of manual operation of
the agents.

* z;: Vector of the physical variables of agent i that interact with other agents.

* w;: Vector of physical variables that affect agent i as a result of the physical interaction
between agents.

* d: Vector of perturbations.

¢ r: Vector of communication noise.
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4.1.2. Model Restrictions

The described model is very widespread in the sense that it allows many different dynamical
models for its components, making the analysis difficult. For this reason, only linear contin-
uous dynamics will be considered. Due to the methodology followed here, the results to be
presented can be extended to other more complex scenarios. However, not making the linear-
ity assumption of the models would lead to complications that are not due to the multi agent
plant or the consensus problem, but due to the modeling of the components. With this in mind,
the following definitions will be considered in most parts of this thesis.

Definition 4.1.1. A linear autonomous agent (AA) is an agent i € ¥ that does not have any
hardware interconnections with any other agent and presents individual dynamics given by:

).(l' =A;x; + B;u; @1
y; =Cix; '

With A; € R">", B; € R"*7i, and C; € R7*".

Note that the number of outputs does not depend on the agent but is always g. We assume
that C;B; is full rank. Unless specifically stated otherwise, we also assume that each agent has
the same number of outputs as inputs, that is g = p;.

A typical special case in the consensus field are agents modeled as integrators.

Definition 4.1.2. An integrator agent (1A) is an AA that presents individual dynamics given
by:

f(i ZB,'U,'
“4.2)
yi =Cix;

That is, an AA with A = 0, so that y; = C;Bu;.

Definition 4.1.3. An autonomous agents network (AAN) is the aggregation of all N autonomous
agents in a set ¥. The dynamics of such a network are described by:

x =Ax +Bu
4.3)
y =Cx
Where,

A = diag{A;}Y |, B = diag {B;}Y ,, C = diag {C;}}_,,

X = col {X,'}fy:l , u=col {u,'}f.\’:l ,y = col{yi}?/:1

so that A € R"" Be R"™?, Ce RVN*" n=3N njand p=3"  pi.
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4.2. The Consensus Objective

Definition 4.1.4. An integrators network (IN) is an AAN composed only of IA, so A = 0 and
y = CBu
where matrix CB = diag {C;B;}_, is full rank.
A network described in such a way can be classified according to its size.
Definition 4.1.5. A small network is such that:
i It can be analyzed in a centralized way.

ii The agents are capable of computing variables as a function of the information they know
about the others.

If any of these assumptions is dropped, the network will be called medium sized. If none of
the assumptions is true, the network is big.

Unless otherwise stated, this thesis deals with small networks, or at least with medium
networks where a centralized analysis can be performed. In these cases it is possible to have
information about the whole network and the analysis can be done from a global point of view,
considering all possible relationships between agents. Note that a centralized analysis of a
network does not mean that its control is done from a centralized position. Control actions and
hardware can be distributed among the agents and still be analyzed from a central position.

4.2. The Consensus Objective

4.2.1. The Idea of Consensus

Given a Multi Agent System described as before, consensus can be defined as a control ob-
jective in the same way as stability or robustness in classical control. That is, the definition
of consensus is independent of the agent’s dynamics or methodology that the agents follow
to reach this objective. It is however not an exception in the field, e.g. [14, 29, 34, etc.], to
find definitions not only in terms of the output signals but also in terms of specific dynamics
(usually integrators) and specific consensus algorithms (usually Laplacian algorithms). That
is, not as a control objective for synthesis of controllers in an arbitrary plant, but as a property
of particular control plants with particular controllers that can be analyzed.

Informally, to reach consensus is understood in this thesis as the outputs of different agents
having an equivalent value. This value is usually the same, where some publications talk about
point consensus, but it can also be defined as the difference with a given known vector. In
that sense consensus can be intuitively compared with the equilibrium point of a system that
resumes the characteristics of the whole network. However, explicitly reducing consensus to a
stability problem, is not typically addressed in the existing works. Nevertheless, some recent
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4. The Global Perspective

conference papers, e.g. [4, 35, 50], have shown that consensus can be explained through the
idea of a unique “leader” agent.

Consensus is usually defined as lim,, 0 [[y; —y,ll = 0,Vi, j € ¥ [14, 29, 34, etc.]. That is,
in the limit, the output signals of every agent i € ¥ need to be the same. However, due to the
symmetry (a = b <= b = a) and transitivity (a = b A b = ¢ = a = c) properties of the
equality relationship, in the limit, this definition becomes redundant and therefore expensive
to test.

Indeed, if it is true that y; —y; = 0, it is also true that y; —y; = 0 and therefore only one
(and not both!) of these relationships needs to be computed in order to check that agent i and
agent j reached consensus. Furthermore, if it is also true that y; —y, = 0, there is no need to
compute the differences y; —y, =y, —y; = 0 to verify that agent k reached consensus with
agent j, as the transitivity property assures it already. The previous definition also implies that,
to check if consensus is achieved, the trivial differences y; —y; = 0 also needs to be computed.

In the case of three agents i, j and k, the quoted definition implies that six non trivial
relationships (y; —y; =0,y; =y, =0,y;—y; =0, ¥y, -y, =0,y, —y;=0,and y, —y,; =0)
need to be verified to say that the agents reached consensus. However, in the limit, only two of
them are actually required. In general, for N agents, only N — 1 relationships need to be studied
and not all possible N(N — 1) non trivial relationships. This property is further exploited in
the following sections to define the idea of organization and from there to redefine consensus
as a stability problem.

4.2.2. Hierarchical Organization

From a collective perspective, a network can be described through hierarchical relationships
between the agents. The nature or structure of these relationships is defined arbitrarily by the
analysis instance and are independent of the agents’ dynamics or communication channels.
Therefore, an organization is not a physical concept related to the network dynamics, but an
arbitrary analysis tool.

Definition 4.2.1. Given a strictly directed graph, .77°, derived from an unweighted undirected
tree .7 over the set of agents ¥, with |¥'| = N, where D(.7°) denotes its incidence matrix as
in Definition 2.1.9. Then T = D'(.7°) e RW-1)4*N4 is called an organization matrix.

Trees represent hierarchical organizations in a natural way when each agent is a node and
the hierarchical relationship between the systems is an oriented edge. The use of a particular
transformation instead of another, implies the choice of one particular way to study the net-
work. For example, it can be defined that all systems follow only one reference system, that
each agent follows only one other agent, or even that only one agent follows every other one.

The organization matrix is unique given a graph .7 °. However, note that different organiza-
tion matrices could be constructed from strict digraphs defined from the same given undirected
tree .7, by giving the edges different directions or labeling them in a different way. Consider-
ing Cayley’s formula, between N agents, NV ~2 spanning trees can be drawn. For each of these
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7 l I -I 0
ANy

Figure 4.2.: Example of a consensus organization.

trees, there are 2V~! ways to give orientations to the edges. Furthermore, there are (N — 1)!
ways to label N — 1 oriented edges. Therefore, the number of possible organization matrices
that can be defined to study a network of N agents is NV=2.2V=1. (N —1)!.

Example 4.1. Figure 4.2 gives an example of an organization matrix derived from a tree. The
labels of the edges are assumed e; = (2,1) and e, = (3, 1) and, therefore, the first row of
matrix T corresponds to the edge (2,1) and the second row to (3,1). If another digraph is
assumed with labels e; = (3,1) and e, = (2, 1), the resulting organization matrix would be

RLCCE |

With the original labeling, if the orientation of the edges is changed, thus defining different
digraphs, the following additional organizations matrices can be defined.

T:_IIO,T:I —I(),T:—IIO‘
I 0 —I -1 0 I -1 0 I

By also changing the labeling, three more matrices can be defined. If other undirected trees
over the same set of vertices are considered, several other matrices can be defined. As N =3
only two additional undirected trees with & = {(1,2),(2,3)} and & = {(1,3),(2,3)} can be
drawn. In total, for this simple case with three vertices there are 3°~2.23=1.(3 —1)! = 24
possible organization matrices. |

By construction of T = D'(.7?), an organization matrix is always full row rank and there-
fore it always has a unique pseudo-inverse matrix' T so that TT™ = I and that can be com-
puted as

T =T/(TT) .

Furthermore, the matrix 1 = col{Iqxq}?/: | is a basis of the kernel of T, i.e. T1 = 0 and the
composed matrix [T’ 1] is non singular. From here, the following can be written:

ol [2] [E]

"More details on pseudo inverses can be found in the Appendix A.1.
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By developing the inverse terms, one gets:

-1
/
[T’ 1] T 0 T|_ I
0 NI 1
Which finally leads to:
T =T (44)

For simplicity, we define

1
= —11.
J N

Note that JJ =J, TJ =0and JT = 0.

Remark 4.1. Many of the possible organization matrices that can be defined have equiva-
lent properties. In particular, given an organization T defined from an undirected unweighted
tree .7, all (N — 1)! organizations T resulting from different labeling of the edges are row
permutations of T. That is, they can be expressed as T = MT, where M € RW—1ax(N-1)q
is a block permutation matrix and so MM = MM = L In this cases T' = ’i‘l(’i“’i‘l)*1 =
T'M (MTT'M )~ = T'M (M)~ 1(TT/)~}(M)~! = T*M.

Furthermore, all 2V~! organizations T resulting from different orientations of the edges can
be expressed as T = MT, where M € RV-1ax(V=1)4 i5 3 block diagonal matrix such that
each of its N — 1 diagonal (g x ¢)-blocks is either I or —I. Clearly, M = M’ and MM = I.

Therefore, TF=T*M.

4.2.3. Consensus Error
For any of these organizations a vector of consensus errors can be defined.

Definition 4.2.2. The consensus error vector of a network analyzed through organization T =
D'(.7°) is defined as

e=Ty 4.5)

The multiplication of each of the N — 1 block rows of matrix T with vector y computes
the difference between the outputs of the different agents. Therefore, if the norm of this error
decreases to zero over time, the network will achieve consensus in steady state. Consensus can
be then redefined by means of the organization idea as the convergence of the error targets e:

Definition 4.2.3. A network of autonomous agents is said to reach or achieve consensus if the
error e defined by an organization T = D'(.7°) asymptotically approaches the origin for any
initial condition. That is, Vx(0) € R"™:

Consensus < lim |e|=0
t—+00
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The analysis of consensus through the organization matrix and the convergence of the error
vector is similar to what is done in [2, 37, 38] but considering the outputs space and not the
particular dynamics of the states. From here, the definition of consensus suggested in Section
4.2.1 can be proved equivalent.

Lemma 4.1. tl}g—nooHeH =0 < lim_ lvi—vyj|=0Vie¥ rnjev.
Proof. Define T = D'(.7°) from atree 7 = (¥,&). For any instant ¢ > 0, it follows that,

e =0 <= [e|* =Ty = ] [vi—y;[*=0
(i.)e€

= V(i,j)e&:y;—y; =0
= V(i,j)eV xV 1y, —y; =0
= V(i,j)eV xV: Hy,-—yszo.

Where the change of & by 7" x ¥ holds because .7 is a tree and through transitivity and
symmetry of the equality operation. O

Note that achieving consensus does not necessarily imply that the states or outputs of the
agents approach the origin, only ensures that the target error vanishes. With this definition,
the case where the outputs of the systems tend to infinity but are equal after some transient
is considered a successful coordination. From these last observations, the following types of
consensus may be defined.

Definition 4.2.4. For any initial condition, consensus is said to be

a) Trivial when

dim Jle()] =0 <= lim_|y(1)] =0.

b) Static when it is not trivial and V¢ > 0, dv € RY:
le(®)] =0 = [y() —1v] = 0.

¢) Bounded dynamic when it is not trivial and V¢ > 0, v : Rg —— R%and 3Ibe RT:
le(®)] =0 = [y(r) =1v(z)| = 0 and [v(z)| < b.

d) Unbounded dynamic when it is not trivial and V¢ = 0, v : Rar — RY:

e =0 = [y()—1¥()] =0and lim |v(s)| = o».
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In the trivial case, the outputs of the systems are equal only because the systems in the
network are asymptotically stable and not necessarily because of the control strategy. Simply
defining a network with stable AAs, will result in trivial consensus for any initial condition
when the input signals and perturbations are zero. Note that |y| — O always implies that
|e|| = || Ty|| — O and therefore the trivial case holds when additionally |e|| - 0 = |y| — O,
ast — +o0.

The other cases are more interesting as then consensus is reached regardless of the kind
of dynamics that the network presents. Static consensus refers to the case where the agents
reach consensus to a constant point in the outputs space. In the dynamic cases, consensus is
reached towards a non constant function of time. Note that the fundamental difference between
bounded dynamic consensus and trivial consensus is that in the dynamic case, consensus may
be reached long before the outputs approach to zero. Examples of these four definitions can
be seen in Figure 4.3.

From these definitions, the dynamics of the error given by (4.6) become relevant for con-
sensus analysis.

¢ = Ty = TCx = TCAx + TCBu (4.6)

Note that the consensus capacity of a network is strongly related to the properties of the
feedback law chosen for the network but also to the dynamics of the states of the agents. We
assume that rank {CB} = N¢ unless otherwise stated.

Observe that using the properties of an organization matrix, it can be written that Tte =
T*Ty =y —Jy = y — JCx, and from here,

y=T"e+Jy=T"e+JCx 4.7)

In the general case, y cannot be written only as a function of e as matrix T is not square and,
therefore, vector e is of lower dimension. Note that if e(r) = 0, it holds that,

Y(0) = Jy(0) = UY(0) = y(0) = 1v(r),

with a (possibly) time dependent vector v : Rar — RY. From here, if e = 0, then it also holds
that € = Ty = T(1v) = (T1)v = 0. Therefore, if a network reaches consensus, it stays in
consensus regardless of the dynamic behavior of v.

Example 4.2. To numerically evaluate the performance of a network regarding to how success-
fully it reaches consensus within a time interval [0,z], the following indices can be defined con-
sidering the deviation of the outputs with respect to their mean value ey, :=y — 11%, Zﬁ Lyl =

I-Dy:

t t

ISD(1) = f ol ey di = J VY= Ty dt,
0 0

t N—1

IAD(r) :J S el dr.
i=1

0 ;=
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Table 4.1.: Network simulation indicators for four different networks in Example 4.2.

Network | ISD(3) IAD(3)
a) 0.859693 2.357284
b) 0.266529 0.730825
) 0.242299 0.664386
d) 0.277635 0.761276

The abbreviation ISD stands for Integral Square Deviation and IAD for Integral Absolute
Deviation. These indicators do not depend on the organization and they directly consider the
evolution in time of the outputs of the systems. For given network and initial condition, a
“good” consensus algorithm should imply a relatively small value for the defined indicators.
Table 4.1 shows the simulation indicators evaluated at ¢ = 3 for the four situations in Figure

4.3.
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Consensus Algorithms

Given a network and an organization, that is, a control plant and a control objective, a consen-
sus algorithm is introduced as a feedback law for the network in order to achieve the consensus
objective. We will concentrate on linear consensus algorithm defined as a proportional output
feedback:

u=0Ly 5.1

with L € RP*N4_In this work, only square consensus algorithms are considered with p = Ng.
An external input u., can be considered to study the behavior of the network under other
objectives considering u = Ly + u,,,. However, unless contrary stated, for consensus analysis
and without lost of generality this work considers that u,,, = 0.

A consensus algorithm can be described by a block matrix in the shape of:

A1 Wi - Wiy
Wo Ay - W

L— .21 ‘2 | .2N , 52)
Wy Wap oo —Ay

where the blocks W;; = [L]; ;€ R?*4, i # j, are gains that represents the weights with which
the output of system j € ¥ is added to the input of agent i € ¥'. The matrices A; = [L],, € R7*¢
are used to compute feedback signals from the output to the input of each system i € ¥". In
general, a consensus algorithm described by the previous expression does not assume any
further conditions over the blocks of the matrix. Equation (5.1) can be equivalently written
with respect to the input signal u; of each agent i€ 7.

N
u = 2 [L]l-jyj.
j=1

In the sequel, several special cases of interest are studied in terms of their ability to reach
consensus.
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5. Consensus Algorithms

5.1. Loopless Laplacian Algorithms

The most studied case is where the consensus algorithm is derived as the negative Laplacian
matrix of an undirected weighted graph %,,.

Definition 5.1.1. A loopless negative Laplacian consensus algorithm is a linear output feed-
back u = Ly for network (4.3) where the feedback matrix is derived as L = —f,(%v) e RNaxNq
with ¢, an undirected weighted graph without selfloops over the vertices set 7.

A note on the interpretation of such an algorithm needs to be stated. While a graph %,
is commonly associated with physical properties of the communication links between the
agents, here we simply regard it as a convenient description of the algorithm. In the same
way, a strictly directed tree is a convenient description for an organization matrix. From the
definition of algorithm as a linear feedback law, what is distributively implemented by the
agents are the gains described by the block elements of matrix L. Furthermore, the definition
of the error e and of consensus as a stability problem, makes it natural to answer the ques-
tion of consensus not through graph theoretical tools, but through algebraic properties of the
involved matrices and general control theory. In this sense, a graph %, becomes useful for
the specification of different algorithms, but does not imply a particular specification of the
underlaying communication processes.

Note that the feedback matrix is symmetric with the shape:

A1 Wi - Wiy
. W -A - W
L=-Lg)=|" " 7 .y
Wiy Woy - —Ay

where W;; = W; ] and A; = ), j #Wi ; and therefore has the zero row sum property (L1 = 0).
Furthermore, it follows that L] = —L(%,,)J = — (L(%,)1) 1" = 0 and therefore, because of
4.7,

u=Ly=L(T"e+JCx) =LT"e
For simplicity of notation, a matrix
H=LT+eRVixW-1g (5.3)

can be defined. Note that HT = LT*T = L(I—J) = L for Laplacian consensus algorithms as
in Figure 5.1. With this, the dynamics of the error given by (4.6) for AAN can be presented
as:

e = TCBHe + TCAx 5.4
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L Loopless Laplacian Consensus Algorithm

Figure 5.1.: Feedback configuration of an ANN with a Loopless Laplacian Algorithm including an
external input u,y, and an output perturbation d.

5.1.1. Integrators Network

In the case of networks composed only of integrators, as A = 0, is immediate that the dynamics
of the error depend only on the characteristics of the consensus algorithm in the following way:

e = TCBHe (5.5)

This simplifies the consensus problem greatly as it can be studied by simply analyzing the
eigenvalues of matrix G := TCBH. Note that in the definitions of Section 4.1.2, it is assumed
that the product CB is full rank.

Proposition 5.1. In an IN with a loopless Laplacian algorithm, consensus is reached if and
only if G := TCBH is Hurwitz. That is, if and only if all its eigenvalues have a negative real
part.

Note that CB = diag{CiBi}iey/ is block diagonal but not necessarily (element) diagonal.
This makes it possible to expressly study agents with coupled input/output relationships.
Hurwitz Properties of TCBH

Equation (5.5) suggests that the dynamics of the error depend on the chosen organization.
However this is not the case.

Lemma 5.2. An IN with a loopless Laplacian algorithm reaches consensus if and only if the
product CBL € RN?N4 s exactly (N — 1)q eigenvalues with negative real part and q zero
eigenvalues.

Proof. According to the Augmented Eigenvalues Proposition (see Proposition A.9 in the Ap-
pendix), as the organization matrix has more columns than rows,

eig{TCBH} UZ = eig {CBLT'T} = eig {CBL}.

61



5. Consensus Algorithms

Which does not depend on T, and so TCBH e RWN=Dax(N=1)q is Hurwitz only when the
product CBL has (N — 1)q eigenvalues with negative real part and ¢ zero eigenvalues. O

Note that dim {TCBH} = (N — 1)g and dim {CBL} = Ng, and then |Z| = g. It follows that:

Lemma 5.3. [fan IN with a loopless Laplacian algorithm reaches consensus, then the graph
associated with the algorithm is connected.

Proof. If G = TCBH is Hurwitz, then rank {G} = dim{G} = (N — 1)q. Hence, considering
that CBL has in this case exactly |Z| = g zero eigenvalues, rank {CBL} = (N — 1)q. If it is
assumed that rank {CB} = Ng (CB is full rank), rank {CBL} = rank {L} = (N — 1)g. When
L = —L(%,), from Lemma 2.2, this is only possible if %,, is connected. O

Observe that because of matrix CB, the previous result is only a necessary condition and not
sufficient. Unfortunately, in general, there is no relationship that links the eigenvalues of CB
and L to the eigenvalues of CBL and therefore consensus cannot be studied as a property only
of the chosen graph. Indeed, if the graph is connected so that the consensus algorithm has rank
(N — 1)g, we can only deduce that the matrix G = TCBH is full rank, but nothing about the
signs of the real parts of its eigenvalues. For example, if CB = —I and a connected undirected
graph %, is used to define L = —L(%,), consensus cannot be reached as all eigenvalues of G
are located on the right complex half-plane.

Only in special cases Lemma 5.3 is valid in both directions. In particular, when CB =1,
then eig {TCBLT " } UZ = eig {LT" T} = eig {L} which implies that G = TCBH is Hurwitz
as [(%,) > 0 and rank {L.} = (N — 1)q when %, is connected.

Remark 5.1. Note that in the case that the consensus transformation were a square matrix
or a matrix with more rows than columns, i.e. not derived from a tree but from a digraph
with more than N — 1 edges (T = D'(%4°) € R"*N4), this condition could not be satisfied. As
eig {TCBH} = eig {CBHT} U Z whenever r > Ng. So G = TCBH would have at least r — Ng
zero eigenvalues and cannot be Hurwitz. Thus, it is harder to study consensus considering
more than N — 1 relationships, as suggested by the definition in Section 4.2.1.

Another interesting result has to do with the kind of consensus that is reached.

Lemma 5.4. If consensus is reached in an IN with a Loopless Laplacian algorithm, then it is
static consensus.

Proof. Asy=T"%e+Jy, whene=0,theny =Jy <y = 1v(t), where v(¢) : Rj —> RY. The
dynamics of the outputs in a IN can be written as: y = CBLy. Evaluating when consensus is
reached, then y = 1v = —CB (L(%,,)1) v(r) = 0, and therefore v = 0 and v(t) = v is constant.

O

Furthermore, v € R? is not necessarily zero.
Stability of the consensus targets can be studied as an LMI feasibility problem.
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Lemma 5.5. Consensus in an IN with a loopless Laplacian algorithm is achieved if and only
if a matrix P = P' > 0 exists such that

PTCBH +HB'C'T'P < 0. (5.6)
Proof. The same as Theorem 2.10 with system matrix G = TCBH. O

Whenever the consensus algorithm is known, the previous expression can be used to check
if the network reaches consensus by numerically solving the feasibility problem of LMI (5.6)
with P =P’ > 0. However, this inequality cannot be directly used to design different algo-
rithms for a given network due to the product of variable matrices P and H. Here, there are
two possible ways to proceed. Either fix matrix P to a known value to design an arbitrary
shaped loopless Laplacian algorithm, or restrict the algorithm to a have a tree structure. In
the next sections, these two ways to design algorithms are presented by considering different
performance criteria based on the previous matrix inequality.

Algorithm Rate of Convergence

From classical control theory, it is known that the convergence rate A > 0 at which the agents
reach consensus is given by the eigenvalues of the Hurwitz matrix G = TCBH. Namely,
A := min{real {eig{—G}}} > 0. As shown before with the help of Proposition A.9, these
eigenvalues for an algorithm derived from a connected graph are the same as the non-zero
eigenvalues of the product CBL. In the usual consensus formulation for single integrator sys-
tems, CB = Iy« . Therefore, in this special case, the spectrum of the Laplacian matrix defines
the consensus characteristics of the network. Particularly, the algebraic connectivity of the
graph coincides with the convergence rate. Furthermore, because of Lemma 2.3, additional
edges between the agents will speed up consensus.
Using remark 2.1, the following matrix inequality is always fulfilled for some P = P’ > 0:

PG +G'P+2AP <0 (5.7

Consider an undirected loopless graph ¢ over the vertices ¥ with a set of edges & and
an unknown function of symmetric weights w, : & — R?*9. The Laplacian matrix of the
weighted graph 4, = (¢,w,) is then L(%,,) = E'WE, where E = D'(94°) € RI¢12*Na and
W = diag {W;, jk}li‘ | € RI¢19x1€14 is a block diagonal symmetric matrix of weights for each
edge. Imposing L = —L(%,,), inequality (5.7) leads to:

—~PTCBE'WET" — (T*)E'WEB'C'T'P+2AP <0 (5.8)

The previous expression is not an LMI because of the multiplication of variables P and W.

The linearization, in term of its variables, of an expression as (5.8) is usually done by
pre- and post-multiplication of the condition by a full rank transformation Q = P~! > 0 (See
Proposition A.8 in the Appendix). An equivalent condition is thus obtained:

—~TCBE'WETTQ - Q(T")E'WEB'C'T' +21Q <0

63



5. Consensus Algorithms

Defining an auxiliary variable Z = WET™Q leads to an LMI on variables Z and Q. However,
the feasibility of this inequality can be used to design the weights of an algorithm, only if W
is block diagonal and there is a bijective relationship between matrices W and Z, i.e. only if
det{ET"} # 0sothat W=ZQ '(ET") ! &= Z = WET" Q. This is in general not possible,
even forcing a special structures on Q and Z, as the product ET" is neither square nor full
rank.

Note however that in the special case when the selected graph for the algorithm is the same
as the one from where the organization is derived, i.e. when ¥ = .7, then we can choose
E =T and so ET' = I. Therefore, this procedure can be used to design consensus algorithms
described by the same tree as the organization and imposing matrices Q and Z to be block
diagonal. This can be formalized in the following theorem.

Theorem 5.6. Given an IN, a tree 5 = (¥ ,{e1, - ,en_1}), a corresponding organization
matrix T =D'(T°) € RW=14%xNa_ 4nd a scalar A > 0, a consensus algorithm described by
L =—L((7,w,)) = —T'WT such that min{real {eig {—G}}} < A, can be designed if LMI
(5.9) is feasible over the structured variable Q = diag{p;I, q}f.vz_ll > 0, with N — 1 scalars
pi > 0; and the block diagonal symmetric variable Z. = 7 = diag {Zi}ﬁ\;jl e RW=1ax(N=1)q,
In that case, W = ZQ ™' and each diagonal block [W],, = w,(e) € RI*9 represents the
weight of the corresponding k-th edge of the tree.

~TCBT'Z—-ZTB'C'T +22Q <0 5.9

Proof. min{real {eig{—G}}} < A if and only if PG — G'P + 2AP < 0 with P = P’ > 0. Pre-
and post- multiply this condition by a full rank symmetric congruence transformation Q =
P~! > 0 and replacing HQ = LTTQ = —T'WTT'Q = —T'Z, leads to LMI (5.9). The special
structure of matrix Q = diag {p;I,x q}?’: _11 > 0is needed so that the product W = ZQ ! is block
diagonal and symmetric. 0

Unfortunately, arbitrary shaped consensus algorithms that guarantee certain known value
of A > 0 cannot be directly designed. In that case, other strategy is to impose

d
EHBH < —¢le]. (5.10)

where the scalar ¢ > 0 represents the convergence rate of the consensus error error. As |le]| =
v/ e'e, then (5.10) is equivalent to

eé+ée< —2cee.
From the dynamics in (5.5), the previous condition leads to the following matrix inequality:

TCBH+H'B'C'T +2¢I <0 (5.11)
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5.1. Loopless Laplacian Algorithms

Note that this expression is equivalent to impose negativity of the derivate of a positive Lya-
punov function v = €¢'Pe + 2¢ Sf) ¢'Pedt, with P = I. When restricting P to the identity, equa-
tion (5.10) has a direct intuitive interpretation. However, this stability condition might be too
restrictive for certain networks as a very particular Lyapunov function is imposed. That is,
it might be the case that the matrix TCBH + H'B'C'T’ is not negative definite, even when
TCBH is Hurwitz. By defining a norm ||e||p = v/¢/Pe, with a fixed matrix P =P’ > 0, similar,
but potentially less restrictive, stability conditions may be found.

Considering the Schur’s Complement (See Proposition A.12 in Appendix), inequality (5.11)
is equivalent to

TCBH+HB'CT 1
* —el

<0, (5.12)

with € = 1/(2¢). From here, it is immediate that the consensus converge rate of the norm
related to an organization T of an IN with a consensus algorithm described by L. = HT, can
be calculated as ¢ = 1/(2€,,;,) where &4, > 0 is obtained from a convex minimization problem
Emin = inf {€ > O|LMI (5.12)}.

This result can be used to compare the performance of different algorithms subject to the
same organization. However, using different organizations will, in general, lead to different
values of ¢ for the same consensus algorithm. Therefore the following results become relevant.

Lemma 5.7. All the organizations derived from a tree 7, independently of the orientations
and labels given to the edges, can be used to obtain the same value ¢ > 0 for a given algorithm

L=—-1L(%,).

Proof. Given an organization T; = D/(.7°), then every other organization derived from the
same tree can be expressed as Ty = MT;, where M'M = MM’ = I (M is either a permutation
matrix or a matrix with positive and negative ones in the diagonal, see Remark 4.1), and
therefore T, = T;"M'. Then,

T,CBLT{ + (T} )L'B'C'T| +25I <0
<= M (T,CBLT, +(T})'L'B'C'T| +2¢I) M’ <0
<= T,CBLT; +(T;)'L'B'C'T, +2¢I < 0.
O

Note that, for any organization and any consensus algorithm, if it is possible to obtain the
value of ¢ = sup {g > O|LMI (5.11)} then it holds that TCBH +H'B’'C'T’ + 2¢I < 0. This can
be rewritten as I{(gI + TCBH) + (¢I + TCBH)'I < 0. This implies that the real parts of the
eigenvalues of TCBH + gI are non positive. From here, A = min{real{eig {—TCBH}}} > ¢.
Therefore, designing an algorithm based on LMI (5.11) will guarantee that the convergence
rate of the error A is not smaller than the design value 6.

To design algorithms that fulfill certain convergence rate condition described by an arbitrary
weighted connected graph ¥, = (¢, w) the following theorem can be stated:
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5. Consensus Algorithms

Theorem 5.8. Given an IN, an organization T = D’ (), a consensus convergence rate value
Gs > 0, and a connected graph ¢ = (V' ,& = {el, o ,€‘g|}), a consensus algorithm described
by L = —E'WE, withE = D'(¥9°) € RI€1axNa  sych that

©lel < —cle
dr cdl €|,
can be designed if LMI (5.13) is feasible over the block diagonal symmetric variable W =
diag {W,,; }|7|, e RI¢lox|4la,

—~TCBE'WET™ — (TT)E'WEB'C'T’ + 2¢,1 < 0 (5.13)
Proof. Evaluating L = —E'WE in inequality (5.11) leads directly to the result. O

Note that this design procedure involves only solving a feasibility problem and not a min-
imization. Furthermore, the imposed condition might be very restrictive due to the particular
Lyapunov function considered.

Algorithm Sensitivity to External Signals

A network cannot only be thought of as an isolated system with no interactions with external
signals. Perturbations like external inputs to each agent or output bias need to be considered
when analyzing a particular algorithm. This can be done by considering the Hy,-norm of the
system.

A general engineering interpretation of Hy,-norm associates it with the largest input-output
gain of a system through all frequencies. That is, the maximum factor by which the magnitude
of an (uncontrolled) input vector v is amplified by the network. In fact, if the error vector e
approaches the origin,

(55 e(eye(r)ar) V2

< [Hye(s)] oo < +o0.
( o V(t)’v(t)dt) =

Where v is some external signal to be defined and H,,(s) the transfer function matrix from
this input to the consensus error vector. From here ¥, = |H,.(s)||c can be interpreted as a
sensitivity measure of the algorithm against the effect of v. This value can be calculated with
the help of the Bounded Real Lemma (BRL, see Lemma A.13 in Appendix). Here, this will
be done in two cases.

First consider the external signal u,,; : ]Rar +— RV4 as in Figure 4.1. In that case, u = Ly 4 oy
and so the dynamics of the error of the IN are modified to obtain:

¢ = TCBHe + TCBu,, (5.14)
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5.1. Loopless Laplacian Algorithms

Considering e as the state and output variable and u,,, as the perturbation signal, directly
applying the BRL over the system (5.14) leads to the following matrix inequality:

PTCBH+H'B'C'T'P+1 PTCB -

0 (5.15)
* —1

Therefore, given a weighted graph %, and the associated consensus algorithm L = —L(%,);
and given an organization T = D'(.7?), the sensitivity of the algorithm against additive exter-
nal inputs can be measured by a scalar 7,,; > 0 that can be calculated by a convex minimization
problem 72, = inf{u = y* e RT|LMI (5.15) AP =P’ > 0}.

In general, in terms of analysis, this way to obtain the Hy,-norm of the system is not numeri-
cally the most efficient one'. Nevertheless, the introduction of LMI (5.15) gives the possibility
of designing algorithms that guarantee certain Hy, performance in a simple way.

Indeed, considering a connected graph ¢, an organization T = D'(.7°), a given positive
definite matrix P € RV—D4x(N=1)¢ apd a scalar Y > 0, it is immediately clear that a consensus
algorithm described by L = —E'WE, with E = D/(%°) € RI€19*N4 such that |Hy ()| o < 7,
can be designed if LMI (5.15) is feasible over the symmetric block diagonal variable W =
diag {W, ;,}1, € RI¥0x|€la with H = —E'WET™.

This result gives the possibility of designing consensus algorithms with any given structure
but imposing particular Lyapunov functions that might be too restrictive. However, if consen-
sus algorithms with a tree structure only are searched, the following theorem is helpful.

Theorem 5.9. Given an IN, a tree 5 = (¥ ,{e1, - ,en_1}), a corresponding organization
matrix T = D'(F°) € RW—1)q *Na - and a scalar Y > 0, a consensus algorithm described by
L =—L((Z,w,)) = —T'WT such that |Hoy(s)|w < ¥, can be designed if LMI (5.16) is
feasible over the structured variable Q = diag{p;l,x q}i.\:]l > 0, with N — 1 scalars p; > 0;
and the block diagonal symmetric variable Z. = 7! = diag{Zi}?lz_l1 e RWV=Dax(N=14a_ 1 thar
case, W = ZQ ™" and each diagonal block [W],, = w,(ex) € RI*4 represents the weight of
the corresponding k-th edge of the tree.

~TCBT'Z—Z'TB'C'T TCB Q
. P10 | <0 (5.16)

* * —1I

Proof. Pre- and post- multiply LMI (5.15) by a full rank symmetric congruence transforma-
tion diag {Q, T} € RGN -Dax(2N-1)q with Q = P! > 0. Applying Schur complement over the
term QQ and replacing HQ = LTTQ = ~T'WTT'Q = —T'Z leads to LMI (5.16). The spe-
cial structure of matrix Q = diag {piquq}?’: _11 > 0 is needed so that the product W = ZQ ! is
symmetric. 0

UIn fact, the Matlab command noxrm applied over a state space model constructed through function ss, usually
gives faster answers for big systems. This is related to the additional decisions variables in P that also need to
be determined, slowing the overall computation and compromising its precision.
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5. Consensus Algorithms

Consider now that the IN is perturbed by a signal d : ]Rar > RN? 50 that y = Cx +d. Given
the integrator dynamics and a Laplacian algorithm, then the dynamics of the error become:

e = TCBHe + Tw (5.17)

where w = %d. Note that the error dynamics do not depend on the actual value of the pertur-
bation d, but on its change rate over time w. That is, constant output perturbations do not have
an influence in reaching consensus. However, as in this case X = (A + BLC)x + Bd, output
perturbations do affect the value of the states of the network, and therefore, the value at which
consensus will be reached.

Nevertheless, in some cases it might be meaningful to analyze the effect of time varying
perturbations on the consensus error. This can also be done using a Hy, argument. Applying
the BRL to (5.17), the following inequality is obtained.

el i
PTCBH+HBCTP P'IZ‘I <0 (5.18)
* J—

This expression can be again used as a comparison tool to calculate the Hy,-norm %, > 0
of the transfer function matrix H,.(s) from vector w to the consensus error e by solving the
convex optimization problem: y2 = inf { =7 eRYLMI(5.18) AP =P > 0}.

For design of algorithms, analog as in the previous case, considering a connected graph
&, an organization T = D'(.7°), a given positive definite matrix P € RIW=1ax(N=1)¢ anq 4
scalar y > 0, is clear that a consensus algorithm described by L = —E'WE, with E = D'(¥4°) €
RI¢19%Na guch that | Hyye(s)]|oo < 7. can be designed if LMI (5.18) is feasible over variable W =
diag {W; ; }?|| € RI€0xI€l9 with H = —E'WET". Furthermore, in the case of algorithms
described by trees, the following procedure is analog to Theorem 5.9:

Theorem 5.10. Given an IN, a tree 7 = (¥ ,{e1,--- ,en—1}), a corresponding organization
matrix T = D'(7°) e RN=D4*Na_qnd g scalar y > 0, a consensus algorithm described by
L = —L((7,w,)) = —T'WT such that |H,e(s)||c < ¥, can be designed if LMI (5.19) is
feasible over the structured variable Q = diag{p;l,x q}ﬁ\:ll > 0, with N — 1 scalars p; > 0;
and the block diagonal symmetric variable Z. = 7 = diag {Zi}ﬁ\[:jl e RWV=Dax(N=-1a_ 1 that
case, W = ZQ ™" and each diagonal block [W],, = w,(ex) € RI*4 represents the weight of
the corresponding k-th edge of the tree.

~TCBT'Z-Z'TB'C'T T Q

* 1 o0 | <0 (5.19)
* * —1I
Proof. Analogous to Theorem 5.9. O
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2 I\I ? b) o<+—o
o——r0 .—>I
4 3
) d) Wi
Wiy Wo3
Wiy

Figure 5.2.: Organizations and Consensus Algorithms for Example 5.1.

Example 5.1. Consider N = 4 integrator systems with, Vi € {1,2,3,4},

CB, 1.0 0.5 .
02 1.0

That is, coupled integrator systems over two dimensions. We will study the network through
organizations described by the directed trees of Figure 5.2 a) and b); and the corresponding
matrices:

-I 0 I 0 I -I 0 0
T, = 0 -I T o|.T,={0 1T -1 0
0 0 I -I 0 0 I -I

The fully connected algorithm derived from the graph in Figure 5.2 ¢) with the correspond-
ing matrix:

I | I 31

reaches consensus faster than any other algorithm derived from an unweighted graph due to
the larger number of edges. Using Theorem 5.8 with a structure given by the graph in Figure
5.2 d), organization T, and a fixed value ¢; = 4.00, the following matrix can be obtained:

—Wip—Wyy Wi 0 Wiy
L, = Wi —Wi— Wy Wos 0 ’
0 W3 —Wiy3 —Wyy Wiy
Wiy 0 Wiy —Wiy—Wyy
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5. Consensus Algorithms

Table 5.1.: Consensus algorithms performance in Example 5.1.

T, T,

A ISD(8) IAD(3) S Yext Vv 9 Yex Y

L; | 2.735089  8.567 19.861 | 2.600000 0.505594 0.756215 | 2.600000 0.467108 0.698652
L, | 8.292125 2.536 5.836 | 7.168781 0.158732 0.227251 | 6.888741 0.122408 0.175098

with

6.8675 0.0000

Wi =Wy =
0.0000 6.1513

] and Was = Way [6.0663 o.oooo] |

0.0000 5.4823

The performance indicators .y, %, and ¢, are computed for both organizations in Table 5.1.
From the table is clear that the designed weighted consensus algorithm is faster than the fully
connected one. Furthermore, it is also less sensitive to external signals.

This can be seen in Figure 5.3 where the response in time of both outputs of the agents
are drawn separately for the same initial conditions. At ¢t = 2 the outputs of the agents are
directly perturbed by a random vector d that stays constant until the end of the simulation
time. Between ¢ = 4 and ¢ = 6 a random external input u,,, is added to the systems. From the
simulation, it is clear that consensus is reached in less time by the algorithm defined by L,. In
presence of the outputs perturbation d the consensus value is changed, but the the algorithms
still ensure consensus when this signal is constant. The external inputs modify the consensus
value constantly making the outputs of the systems to have different values. However, the
difference between these values in the case of the fully connected algorithm is also larger.
This is coherent with the simulation indicators ISD and IAD in Table 5.1 which show that the
designed algorithm presents a lower accumulated deviation. |

Algorithm Robustness Against Parametric Uncertainties

Consider now that the parameters of the network are known only up to certain precision. In
particular we consider that B = By + Ag(t), where By € R"*V4 is a precisely known matrix
and Ag(t) : R* s R"N4 an unknown, (possibly) function of time, matrix such that V¢ >
0, AL(t)Ap(t) < €1, with € > 0. Similar analysis as in the sequel can be done considering
uncertainties in other matrices that describe the network or the algorithm.

For an uncertain network described in this way, directly from Lemma 5.5, a sufficient con-
dition for stability of the error is the existence of matrix Q = Q' > 0 such that:

TCBoHQ + QH'B)C'T’ + TCA(t)HQ + QH'A4(1)C'T' < 0 (5.20)

This condition cannot be numerically verified as it includes matrix Ag(7) which is unknown.
Using the crossed products property (see Proposition A.15 in the Appendix), to impose nega-
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a.l)os : : : a.2) s

0 2 P 6 8 0 2 4 6 8
time time

Figure 5.3.: First and second output evolution for integrators agents in Example 5.1 with a) Algorithm
L; and b) Algorithm L.
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tivity of an upper bound of the matrix in (5.20) is a sufficient condition for stability, i.e.
GoQ + QG| + TCAp(1)HQ + QH'A;(1)C'T’' < GoQ + QG| + aTCC'T’ + éQH’A};(t)AB(t)HQ

2
< GoQ +QG) + aTCC'T + %QH'HQ
!

<0

with Gy = TCByH and scalar a > 0. Applying Schur’s complement, the following sufficient
condition for stability is obtained:

TCBoHQ + QH'B{C'T' +-aTCC'T' QH' | _
o
-

0 (5.21)

*

This condition depends only on the quadratic bound of the uncertainty, not on the uncertain
matrix itself, what makes it possible to evaluate it numerically. Note that a small &> makes
it more likely to find a suitable o > 0 such that the (1, 1)-block term of inequality (5.21) is
negative definite. That is, it is numerically less demanding to prove stability of a system with
“small” uncertainties than other with “large” uncertainties. A stability condition for the system
under these circumstances can be formalized by the following theorem.

Theorem 5.11. A given IN with parametric uncertainties described as B = By + Ag(t), such
that By € R™N4 is a precisely known matrix and Ag(t) : RT — R"™N4 an unknown, (possibly)
function of time, matrix where ¥t > 0, AL(t)Ap(t) < €1 and € > 0; and with a Laplacian
algorithm L = —L(%,), reaches consensus if for a given organization matrix T = D(.7°),
there exists Q = Q' > 0 of proper dimensions and a scalar o > 0 such that LMI (5.21) holds.

Note that there is no structure assumption about the uncertain matrix Ag(¢). That means
that Theorem 5.11 proves stability in the overly restrictive case where structural zero entries
of matrix B (entries not in the main block diagonal) are possibly uncertain. Furthermore, with
the previous formulation it is considered that the uncertainties of every system in the network
are bounded by the same value. This is of course not necessarily the case in all networks.
To keep this section brief, no further developments to solve these problems are explicitly
considered. However, it is possible to study them by considering the uncertainties to be in the
form of Ag(r) = S, siAi(1)s) where Vi€ ¥, Al(1)A;(t) < €1 and s; are column vectors of
matrices where each block is zero except for the i-th block which is the identity matrix. That
results in a block diagonal matrix Ag(¢) where each block has its own quadratic bound.

Example 5.2. Consider the same network, organization and algorithms as in Example 5.1 but
with uncertainty in the input matrix. That is, B = diag {B;},.,, + Ag(t). With the value € = 0.6
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Figure 5.4.: First and second output evolution for integrators agents in Example 5.2 with Algorithm L;
under uncertainties with a) € = 0.6 and b) € = 1.2.

for the designed algorithm L;, Theorem 5.11 with organization T, leads to & = 0.5457 and

[ 0.1095
—0.0283
0.0457
~0.0195
0.0457
~0.0195

—0.0283
0.1000
—0.0192
0.0426
—0.0192
0.0426

0.0457
—0.0192
0.0885
—0.0218
0.0134
—0.0138

—0.0195
0.0426
—0.0218
0.0802
—0.0138
0.0135

0.0457
—0.0192
0.0134
—0.0138
0.0885
—0.0218

—0.0195 |
0.0426
—0.0138
0.0135
—0.0218
0.0802 |

>0

which proves that the network reaches consensus for this level of uncertainty. However, if
€ = 1.2 then it is not possible to solve the corresponding feasibility problem. As Theorem
5.11 involves only a sufficient condition for stability there is no formal guarantee that the
network does not reach consensus under this condition.

To verify this, the network is simulated with a randomly generated time varying uncertainty
over the diagonal elements of B with € = 0.6 in Figure 5.4 a). The network is then again
simulated under identical conditions but with the uncertain matrix multiplied by two at every
instant. The results are shown in Figure 5.4 b). It is clear that in the first case the network
reaches consensus but not when the uncertainty is larger.
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5.1.2. Autonomous Agents Network

Consider the more general case where A # 0. Here consensus does not only depend on the
properties of the algorithm, but on the relationship between the states of the systems and the
consensus errors as defined in equation (5.4):

¢ = TCBLT"e + TCAx.

However, the inverse relationship between the consensus error and the states of the systems is
not explicitly considered. That is, the effect of x over e is not adequately expressed. Therefore,
the condition to guarantee consensus that can be derived from this expression (namely that
G = TCBLT" must be Hurwitz and A = 0), is overly restrictive.

Pseudoinverse of the Output Matrix C

Under the assumption that all matrices C; € R7*" with ¢ < n;, of an AAN are full row-rank,
then the right pseudoinverse of C can be calculated as

C+ — Cl(ccl)—l c RHXN([’

so that CCT = I, where n > Ng. Let matrix C* € R"*("~N4) be an orthonormal basis for the
null space of C, that is, CCt = 0 and (C1)'Ct =1.
Similar as for T in section 4.2.2, the following can be written as the composed matrix

[C’ CL] is non singular:
—1
[C' CL] [c’ CL] l [(C(i)/] [(CCL),] =1

~1
— [C’ CL] cc cc! C -1
(CL)/C/ (CL)/CL (CL)/
= c'(cc)'c+cH(chych ety =1L
Replacing the definition of the pseudo inverse and the null space basis,
c'Cc=1-CCh).
From here, an inverse relationship for x in terms of y can be developed:

y=Cx
— Cty=CTCx=x-CHC})x
—x=Cry+CHCH'x.
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Then, using equation (4.7), y = T*e + JCx, we finally obtain that:
x=C'T e+ (C*JC + CL(CL)’) X. (5.22)

When C € RV9*N4 is square and non singular, the previous relationships are simplified as
C* = C ! and C* cannot be defined?. In that case x = C~'T+e+ C~!JCx.

States Influence

Replacing equation (5.22) in the dynamics of the error (5.4), the following is obtained:
¢ =TC (BL+AC*) T*e+TCA (CHIC+CH(C) ) x (5.23)

Note that consensus is not only dependent on the chosen algorithm but also on internal char-
acteristics of the network, namely, on the matrices A and C. Because of this, from expression
(5.23) we can state a less restrictive result on consensus.

Lemma 5.12. In an AAN, if Ry := TCA (CTJC + CL(CL)') is identically zero, and if L =
—L(%,) is selected so that Ga := TC (BL+AC") T" is Hurwitz, then the network reaches
consensus. Furthermore, if CA # 0, then consensus is not static.

Proof. Directly from equation (5.23) is easy to verify that if R4 = 0, then the error conver-
gences to the origin if G4 is Hurwitz. To prove that it is non statical consensus, consider that
if e =0, then y = 1v(¢). It is then sufficient to show that v(z) is indeed a function of time. As
y = CAx + CBLy, evaluating when the error vanishes, 1v(r) = CAx+ CBL1v(r) = CAX thus
V= %1' CAX. Then v : R + R7 is a function of time which is not constant at all times unless
1"CA =0 <= CA = 0 (because of the block diagonal structure of CA). O

Note that when R4 = 0, similar properties as for integrator networks hold. For example,
if G4 is Hurwitz, then it is regardless of the organization used to define it: Z U eig{Ga} =
Zueig{TC (BL+AC")T"} =eig {CBL + CAC™(I—-J)} and so the non zero eigenvalues
of G4 are the non zero eigenvalues of CBL + CAC™ (I — J). This also shows that consensus
also depends on the dynamics of the agents through matrices A and C, and not only on the
chosen algorithm.

Unfortunately, it is difficult to characterize the eigenvalues of the sum of matrices as a
function of the eigenvalues of the individual matrices, so it is not easy to find graph theoretical
properties on %, that ensure that consensus can be achieved. Nevertheless, Lyapunov methods
remain valid to study consensus. Therefore, the convergence rate of the error can still be
characterized either through the eigenvalues of G4 or a scalar ¢ > 0 such that (5.10) holds.
Also, sensibility against external signals or robustness against parametric uncertainties can be
studied. From here, analogous to those of INs, design procedures of consensus algorithms that
consider certain performance criteria can be developed.

2The null space of C in that case is null {C} = {0} and its basis, C* = 0, is not orthonormal.
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Augmented Error Dynamics

To address the more challenging case when R4 # 0, the dynamics of the error can be expressed
in terms of an augmented states space. Define the following additional signals:

v =(Ch'x,
1
v=—1Cx.
N
Signal y | € R"“N4 is a complementary output that maps all the information of the states that

is not mapped into the output vector y € RV, while signal v € R? corresponds to the mean
value of the outputs. The composed matrix transformation

TC
R:= [(Cty | eR™"
1
yv1'C
is invertible with
R! = [C*T* cl C+1] c R
This can be easily checked by performing the multiplications RR™! = R™!R = I. Therefore

we have that

e e
-1
Y| = Rx < x=R YL
v v
Because the dynamics of the states in closed loop are given by

% = (A+BLO)x, (5.24)

the dynamics of the error can be expressed by the augmented system:

e e
vy, | =RA+BLC)R ' |y, (5.25)
v v

Equation (5.25) is simply a coordinates transformation of the states space of (5.24) in terms
of the error and the additional signals vandy .
Considering that L1 = 0, developing the matrix in (5.25) leads to

TC(BL+AC™)T"™ TCAC' TCAC'1
G,:=R(A+BLC)R ' = [ (C1YBL+ACHT+ (CLYACt (CLYAC*1|. (5.26)
LIC(BL+ACTH)TT 1L1'CACt 11'CAC*1
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5.1. Loopless Laplacian Algorithms

From this matrix is easy to obtain sufficient conditions for consensus. For example, if G, €
R"*" is Hurwitz, then consensus is trivially reached. That would impose that not only the
error e approaches the origin, but also signals y, and v (and therefore also x). This is of
course restrictive when we are only interested on the consensus error. The desired case is that
of the dynamics of the error totally decoupled from the rest of the variables. That is, when the
block matrices in positions (1,2) and (1,3) of G, are identically zero. In that case, consensus
is reached if matrix G4 = TC(BL + AC™)T™ is Hurwitz.

Is not difficult to show that the condition that the dynamics of the error are decoupled from
the rest of the variables, i.e. [TCACL TCAC*I] = 0, is equivalent to the condition stated in
Lemma 5.12, i.e. R4 = 0. Indeed, if we assume that the dynamics of the error are decoupled
we can show that the condition of the lemma holds:

CJ_ i
[TCACL TCAC’“I] =0= [TCACl TCAC+1] [(1 1/():] ~
N
— R, = TCA (C+Jc + Ci(ci)’) ~ 0.

On the other side, if we assume that the condition in Lemma 5.12 holds, we obtain that the
dynamics are decoupled:

R4 = TCA (C+Jc + CL(CL)’) —0=TCA (C+Jc + CL(CL)') [ci c+1] —0
= [TCACL TCAC*I] =0.
Between these two extreme cases, several partially decoupled cases can be defined. For
example, if TCAC"1 = 0 and (C)’AC*1 = 0, then the dynamics of the error are decoupled

from the mean value of the outputs v but not from the complementary output y |, . In that case,
if the matrix

>

[I o]G L,| | TC(BL+ACHT" TCAC*
na 1o (CH)(BL+ACHT" (CHYAC*

is Hurwitz, then the network reaches consensus and the complementary output y | approaches
the origin. Note that in this case, it is sufficient for decoupling that AC™1 = 0. This condition
is, however, in general not necessary:

TCAC*1
(CHYAC*1

TC
(chy
= (C+T+Tc + ci(ci)’) ACT1=0
= (I-C*JC)ACT1=0

= AC*1=C*JCACT1#0.

ACT1=0

o= ¢ [
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5. Consensus Algorithms

A similar exercise can be done by decoupling the error from the complementary outputs
but not from the mean value. In this case we need to introduce a permutation transforma-
tion in order to select the rows and columns associated to vector v. Then, if TCAC"* = 0,
(CYACT1=0, and

i, o [I(Nonq 0

o [T g 0 ||| _ | TCBL+ACH)TT  TCACH
' 0 L1Cc(BL+ACHT+ L1CAC*1

is Hurwitz, with

0 1,
Ly, O

U € RO—=(V=1)g) x (= (N~1)g)

B

consensus is reached and the mean value of the outputs approaches the origin. We can gener-
alize this procedure to verify if the consensus error and r € {0, 1,2,...,n — (N — 1)g} additional
arbitrary signals approach the origin with a given matrix L as follows.

Theorem 5.13. In an AAN with a consensus algorithm described by L. = —1.(%,,), let r €

{0,1,2,....n— (N — 1)q} be the minimal value for which it exists an invertible matrix
U e RO=W=1g)x(n=(N=1)9) gyych that

L —— [I(Nol)q 3

Iv-ng 0

G,
0 U~!

0 ] ~0. (5.27)
In—r—(N—l)q

Ir+(N71)q
0

is Hurwitz, then the network reaches consensus and, additionally, r elements of U[y’l v ]
approach the origin.

In that case, if

._ In-1g 0
Gr T [Ir+(N—l)q 0:| [ 0 U

G, |Iv-ne 0
0o U

!/

Proof. For some invertible matrix U R("~(V=Da)x(n=(N=1)a) the vector&=[I, 0]U[y, v'|'e
R" corresponds to r linear combinations of the elements of [y v']". If (5.27) holds, the
dynamics of the e and € are decoupled from the elements of [0 I,,_(N_l)q_r] Uly, v ]' €

R"~WV=1)4=7 and given by [¢ ¢ ]/ =G, [e¢’ @], which is clearly stable if G, is Hurwitz. [J

For a given network and algorithm, Theorem 5.13 gives a way to check if consensus can
be reached when the dynamics of the error depend on the internal dynamics of the agents.
Note that if r = 0, then the error dynamics are decoupled from other signals and we obtain
an equivalent result as that of Lemma 5.12. In the case where r = n— (N — 1)q, only trivial
consensus can be reached as then G, = G,.

78



5.1. Loopless Laplacian Algorithms

The following convergence rate indicators can be defined,

Ay := min{real {eig {—G,}}}
Ay := min{real {eig {—G,}}}.

Clearly consensus is reached if A, > 0. Furthermore, if A, > 0, the system (5.24) is asymptot-
ically stable. However, if A, » A, > 0, consensus is reached faster than the convergence rate
of the states of the system, leading to a case of bounded dynamical consensus, and not merely
trivial consensus. On the contrary, if 0 < A, < A,, the states of the network reach the origin
faster, what characterizes trivial consensus.

On the rest of this thesis, we will concentrate on the case where the dynamics of the error
are decoupled from any other signal, i.e., when R4 = 0, as in other cases, extensions of the
following discussions can be easily stated.

Example 5.3. Consider N = 10 SISO agents (i.e. with ¢ = p; = 1) and the following state
matrices:

A, = —0.1 0.0 A, = 0.0 0.1 A, = -0.2 0.1 Ay = —-0.8 0.1 ,
0.0 —0.1 0.1 0.0 0.1 —-0.1 0.1 -0.1

A, = —0.1 0.1 ,Af _ —0.1 0.1 ,Ag _ 0.1 0.0 A, = 0.1 -0.1 .
0.1 0.0 0.1 0.1 0.0 -0.1 0.1 0.0

From these matrices, eight different networks are defined, each of them with identical agents
with the respective state matrix and considering Vi € {1,2,...,N},

B, = [13] ,and C; = [0.5 0.5] .

Note that the eigenvalues of the aggregated matrices Ay = diag {Ak}i\lzl, ke{a,b,c,d,e,f, g, h},
of each network are the two eigenvalues of A, with multiplicity N each.

For consensus analysis, a star organization centered on the first agent shown in Figure 5.5
a) with its respective matrix T = D'(.7°) = row{1,—I} will be used. The networks will
be studied under a the fully connected algorithm shown in Figure 5.5 b) with its respec-
tive matrix L, = —L(¥9) = N(J —I) € RV Note that for this algorithm and this organi-
zation the consensus convergence rate as defined in Section 5.1.1 becomes A = 10. Addi-
tionally, consider the weighted tree in Figure 5.5 c) to define a second consensus algorithm
L, = —L(.7,) = —T'WT, where W = diag {Wl,i}ﬁvﬂ. The weights of this algorithm are cho-
senas Wy ; = 10, Vie {2,3,...,N}, to also obtain A = 10.

In Table 5.2 the characteristics of the previous networks in closed loop considering both
algorithms are shown. The first two networks are such that R4 = 0. As additionally G4 is
Hurwitz, consensus can be reached even if the states present unstable dynamics. Networks c)
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a) 9 10 1 b) C) Wiio
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Figure 5.5.: a) Organization Tree .7°, b) Unweighted Graph ¢ and, c) Weighted Tree .7, for Example

5.3.
Table 5.2.: Networks characteristics in Example 5.3.
Network eig {Ak} L, = -L(¥) Ly = ~L(Z)

Ar Ax ISD(50)  IAD(50) Ar Ax ISD(50) IAD(50)
a) —0.1000 —0.1000 | 10.1000  0.1000  1.2856 3.4385 10.1000  0.1000  1.2127  3.1467
b) —0.1000  0.1000 9.9000 —0.1000 1.3106 3.5080 9.9000 —0.1000 1.2371 3.2097
c) —0.2618 —0.0382 | 0.2497 0.0382  1.5027 4.0204 0.2497 0.0382  1.4314  3.7370
d) —0.8140 —0.0860 | 0.5375 0.0860 1.9256 5.1841 0.5375 0.0860 1.8598 4.9243
e) —0.1618  0.0618 0.1497  —0.0618  1.6678 4.4590 0.1497 —0.0618 1.5958  4.1710
f) —0.1414  0.1414 0.0990 —0.1414  2.4285 6.4855 0.0990 —0.1414 23570  6.1958
2) —0.1000  0.1000 | —0.0010 —0.1000  6.9045 18.3051 | —0.0010 —0.1000 6.8297  17.8930
h) 0.0500£0.0866j | —0.0500 —0.0500 37.8208 100.3292 | —0.0500 —0.0500 37.7478 99.6120

and d) are both stable in open and closed loop for both algorithms, therefore they can also
reach consensus in the long term. Nevertheless, by inspection of matrix G, (which is not
shown for space limitations), one can verify that in these cases the dynamics of the error e
and the complementary outputs y | , are both decoupled of the mean value v. By inspecting the
values of A, and A, one conclude that consensus is reached before the states approximate the
origin.

In the case of networks e) and f), the closed loop systems are unstable with only one eigen-
value at the right-hand side of the complex plane. However, as for networks ¢) and d), the
dynamics of the error and the complementary outputs are decoupled of the mean value. Be-
cause A, > 0, this allows to reach consensus even though the overall dynamics of the closed
loop networks are unstable. A different situation is observed in the last two networks. These
are unstable under both algorithms. Network g) can be decoupled as in the previous cases, but
the resulting G, matrix is not Hurwitz. Network h) cannot be decoupled, i.e. r =n— (N —1)g
or, equivalently, G, = G, which is also not Hurwitz. This leads to conclude that in these cases,
consensus cannot be reached.

To verify the previous statements, we will simulate the closed loop response for identical
initial conditions. The evolution of the networks is simulated until = 50. In Figure 5.6, for
algorithm L, and until 7 = 2, the outputs of the networks are shown for networks a) to f), and
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5.1. Loopless Laplacian Algorithms

the error for the last two cases. Algorithm L; presents similar graphical results, and therefore
the images are not shown.

Note that networks a) and b) reach dynamic consensus very fast as in these cases R4 = 0 and
the respective matrices G4 are Hurwitz for both algorithms. For the stable networks c¢) and d),
consensus is reached before the outputs approaches the origin. A similar situation is observed
for networks e) and f), which reach consensus even though the overall dynamics of the closed
loop system are unstable. This is not the case for networks g) and h) where consensus is first
approximated but, due to the unbounded behavior of x, the algorithm is not able to maintain
this approximation too long. Observe further that the ISD and IAD indicators, also shown in
Table 5.2 for the described simulations, are coherent with the previous statements. |

Identical Agents

The study of consensus can be simplified for the special case where in an AAN all agents have
the same dynamical behavior. Note that if a block diagonal matrix is such that all diagonal
blocks are identical, i.e. when X = diag {Y},.,, € RV9*N? with Y € R7*4, then it holds that

X1 = diag{Y},.4, 1 =col{Y},., = 1Y and
1'X = 1'diag{Y},., = row{Y},., = Y1'.

Therefore,
1o, 1o 1.
XJ=X-11"= —-1Y1' = —11'X = JX.
N N N

Particularly, consider an AAN where, for every i€ ¥, A; = Ag € R™*™ and C; = Cp €
R7*™ with known matrices Ay and Cy. Because of the block diagonal structure of matrices
A =diag{A;},., and C = diag {C;},cy, the product CAC" = diag { C;A;C;" }ie”// is also block
diagonal. From here, the residual matrix in (5.23) can be written as:

R4 = TCA (C+JC + CL(CL)’)
= TCAC*JC +TCACH(C1Y
= (TJ)CACTC + TCACH(CLY
= TCACH(CtY
Therefore, the dynamics of the error are simplified to:

é=TC(BL+AC")T"e+TCAC(C")'x

Consensus can then be reached independently of the dynamics of x only if the product CAC' =
0 or, equivalently because of the block diagonal structure of the matrices, CoAg Cé =0eR9*4,
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Figure 5.6.: Dynamic evolution for the eight networks analyzed in Example 5.3 with algorithm L,. a)

to f): Outputs y of the systems, for the respective networks. g) to h): Error e between the
outputs of systems, for the respective networks.
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5.1. Loopless Laplacian Algorithms

Observe that the requirement that all system and output matrices are identical can be relaxed
to only impose that Vi € 7 the product C;A;C;" € R7*7 is the same.

A particular case is when all agents are identical and ng = gq. i.e. the number of outputs are
the same as the number of states of the agents, what implies that Cy € R7*7 is square. If it is
also non singular, the dynamics of the error become:

é=TC(BL+AC")T"e+TCAC 'JCx
=TC(BL+AC")T"e+ (TJ)CAC 'Cx
=TC(BL+AC")T"e

That is, consensus can be reached independently of x if L is chosen correctly.

Sensitivity Against External Signals

An AAN can be under the influence of external signals in the form of control inputs u.y; :
R(J)r > RN? or perturbations d : Rg +— RN4 a5 seen in Figure 4.1. Similar as what was done
for INs, the sensitivity against this kind of signals can be studied through the Hy,-norms of the
respective transfer function matrices.

Consideringy = Cx+d —> x=Cty—CTd+C*(C')xandu =Ly +u,y, with L =0,
the definition of the errore = Ty = y =T e+ Jy = T*e+JCx + Jd leads to the dynamical
expression:

e=TCk+T%d
dt

= TCBu + TCAx +Tw
=TCB (L (T"e+JCx+Jd) +uey) + ...

.+ TCA (C* (T*e+JCx+Jd) - C*d+CH(C)'x) + Tw
— TC (BL + AC*) T*e + TCA (C+Jc + Ci(ci)’) X + TCBu,y + TCAC* (J—T)d + Tw
= Gue +Ryx+TCBu,,, + TCAC* (J—-1)d + Tw,

where w = %d. Note that, contrary to the case of IN, the dynamics of the error depend on both
the value of the perturbation d and its variation in time w, because A # 0.

In the case that R4 = 0, the sensitivity of the consensus error against the external inputs can
be studied by defining three transfer function matrices Hey (s), Hg.(s) and H,,(s) between,
respectively, u.y, d and w, and the consensus error e, when the rest of the external signals are
Zero.

Using the BRL, LMIs (5.28), (5.29) and (5.30), can be stated to respectively study |Hey () | o»
|Hge(s)]loo and |Hye(s)[oo- As in the previous sections, these inequalities can be used for anal-
ysis or design of consensus algorithms that fulfill certain performance criteria. Particularly, if
tree shaped algorithms are searched, i.e. imposing L = —T'WT with W block diagonal, the
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5. Consensus Algorithms

inequalities are sufficient and necessary conditions for design of such algorithms in analogous
way as for INs. To maintain this section brief, this will not be explicitly addressed.

) G4Q+QG, TCB Q
PG4 +G,P+1 PTCB <0 . —Yezxtl 0| <0 (5.28)
* _yezxtl * * —I
[ (Y —
PG, +fAP+I PTCA_C2 J I)] <0
ydeI
G4Q+QG, TCAC*(J-I) Q 629
* _’}/L?EI 0 <0
* * —I
G4Q +QG,'4 T Q
li
[PGA +GP+1 P’2F I] <0 N —RJI 0 |<0 (5.30)
* —Ywe
* * —I

With P =P’ > 0 and Q = P! of proper dimensions.
Example 5.4. Consider N = 15 identical agents with dynamics described by the following

matrices:
~0.5 0.1] By [ 1.5 0.0] and Gy — [ 1.0 0.0] |
0.0 0.2 0.0 1.0 0.0 1.0
The agents are submitted to the action of external signals in the form of perturbations d;. As the
agents are identical and the output matrix Cy is invertible, the residual matrix is identically
zero, Ry = TCAC™!JC = 0, and the dynamics of the error are described simply by é =
TC (BL + AC ') T"e when the external signals are zero.

The network will be analyzed by an organization derived from .7 in Figure 5.7 a): T =
D'(T°) = row {I(N, g —Lv=1)gx q}. As the network is submitted to the action of external
perturbations, LMI (5.29) will be used to design consensus algorithms with the same shape as
the organization and diagonal weights. i.e. fixing an upper bound ¥ > 0 for the Hy,-norm of the
system and forcing L = —T'WT, with W diagonal. By making the variable Q to be diagonal
and defining the diagonal auxiliary variable Z = WQ <= W = ZQ !, solving the feasibility
problem of LMI (5.29) leads to an algorithm in negative Laplacian form based on the shape
of the unweighted tree .7 in Figure 5.7 b) with a weights function w, : & + R?*9 such that
the Hoo-norm bound holds. Two algorithms, respectively L = L(.%,,) and L, = L(.%,,) are
designed with this methodology for values y; = 0.10 and 9» = 0.05.

Ag =
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Figure 5.7.: a) Organization Tree .7°, b) Unweighted Tree .7 for Example 5.4.

Table 5.3.: Algorithms design and simulation parameters in Example 5.4.

Algorithm | 74, A |Hae ()l [Hwe($)lloo  |Heu(s)[wo  ISD(2)  IAD(2)
L 0.10 4570154 0.058780  0.218830  0.218845 3.550483 14.452537
L, 0.05 7.801018 0.030561  0.128191  0.128192  2.084995  8.243606

Both algorithms are tested through a simulation with identical initial conditions during two
seconds. Att = 1.0 a randomly generated signal d is added as a perturbation to the outputs of
the network. At ¢ = 1.5 the perturbation is modified to a more critical condition (a perturbation
with a greater Euclidean norm). The results are to be seen in Table 5.3 where the ISD and
IAD indicators are shown along with the design parameter 7y, the module A4 = A, of the
greatest negative eigenvalue of matrix G4, and the Ho-norms of the transfer functions from,
respectively, d, w, and u,,; to the error e. Additionally, the time responses of the networks
are depicted in Figure 5.8. Note that, as ¢ = 2, the agents have two outputs with different
dynamics that can be clearly distinguished in the figures.

From the table and the figure, it is clear that the second algorithm has a better performance.
When the perturbation is not present, it achieves consensus faster and more accurately. Also

a) 20

15

D

05 1 15 2 0 05 1 15 2
time time

Figure 5.8.: Outputs evolution for the network analyzed in Example 5.4 with algorithm a) L; and b)
L,.
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after instants when the perturbations are added, the network response is closer to the optimal.
This is clearly explained by the convergence rate indicator A4 which is greater in the sec-
ond case. This also implies that the three norms defined in the table are smaller for a better
algorithm. |

5.2. Other Algorithms

Up to this point, only loopless Laplacian algorithms have been analyzed. This kind of al-
gorithm is by far the most common one in the consensus field. However, the definition of
algorithm as a linear feedback gives space to study other control strategies to deal with spe-
cific characteristics of the agents. In this section different kinds of alternative algorithms are
proposed and their main characteristics are described.

5.2.1. Self-looped Algorithms

In this section selfloops in the graph that describes the algorithm are considered. The moti-
vation for this is derived from the previous discussion about the role of the dynamics of the
states of the systems in the consensus error. It is desired to have alternatives to minimize the
effect of the residual signal r = Ryx over the dynamics of the error e. Therefore, here local
feedback for each agent in an AAN is proposed to directly modify the dynamics of the states.

Definition 5.2.1. A selflooped Laplacian consensus algorithm is a linear output feedback u =
Ly for system (4.3) where the feedback matrix is derived as L = —L(%,,) € RN?*V4 with ¢,
an undirected weighted graph over the vertices set 7" that considers selfloops in some or all of
its vertices.

The feedback matrix of this kind of algorithms can be expressed as:

-Ar Wi - Wiy
Wi A - W

L— L) = ‘12 '2 | ‘2N ,
Wiy Woy - —Ay

where W;; = Wi, = w((i, j)) and A; = 27:1 W;;. Note that the block diagonal elements add
the weights of all edges including the self loops. Therefore, this kind of algorithms can be
decomposed as L = L. +L;, where L. = —L(%,) and L; = —diag {W,,}f\’: |» so that only L,
has the zero sum row property and not L. With this, and considering that y = T e + JCx, the
feedback signal u can be written as

u=Ly= (L +L;) (T"e+JCx) = LT"e+ L, JCx.
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Autonomous Agents Network

As seen in section 5.1.2 an AAN does not necessarily reach consensus with a loopless algo-
rithm. When considering that x = C*T"e 4 (C*JC + C1(C1)")x, then the dynamics of the
error can be written as:

é = TC (BL+AC*) T*e+TC ((BL, +AC*) JC+ACH(C) ) x. (5.31)

From here, the loops of an algorithm can be used to limit the effect of the states on the dynam-
ics of the consensus error. Indeed, if L; = L] = diag {W,,}fv= | 1s chosen so that the residual
matrix R; := TC ((BL,; + AC™) JC —l—ACL(Cl)’) vanishes, then the dynamics of the error
depend only on G; := TC (BL. +BL; +AC") T".

However, because the term AC* (CL)’ is not necessarily zero, it is in general not possible to
force R; = 0. At most, the weights on the selfloops can be chosen so that the norm of the resid-
ual matrix is minimal, what does not guarantee that consensus can be reached. Considering
that the dynamics of the states are such that,

) = SA+BLO) A

x(t X = e™'x,

then choosing L; such that the product r; = R;eA«’ — 0 as t — o0 will guarantee consensus
in the long term if G; is Hurwitz. This problem is difficult to solve (numerically and alge-
braically) as it is highly non-linear because both matrices, R; and eA<’, depend explicitly on
the unknown variable L;. The problem becomes more difficult when L. is also a variable.

Because of this, a more heuristic approach can be followed to choose a candidate feedback
matrix. In particular, if the dynamics of the agents combined with the respective selfloops can
be approximated by the behavior of an integrator system, i.e. if it is possible to find W;; such
that A; +B;W;;C; = 0, then the network can be approximated by an IN. Slightly more general,
if each agent is Hurwitz but slow, dynamical consensus can also be approximated in a good
way. From,

A+BXC=-}4I = —BXC=A+Al
= X=-BT(A+AI)CT,

with 0 < A4; « min{abs {real {eig {TCBLCT+ } } }} a possible candidate for the selfloops feed-
back is to define

L :=—B*(A+4I)C". (5.32)

Because of the block diagonal structure of the matrices, L; is also block diagonal and its
blocks can be computed locally by each agent making [L;];; = —B;" (A; + 4,I) C;". Note that
in general, as C*™C # Iand BBT # I, L; = —B™ (A + A,I) C* does not imply that A + BL;C =
—NI and the closed loop network only approximates the desired behavior. Indeed, replacing
(5.32) in (5.31), the dynamics of the error become:

é = TC(BL,+M,) T"e +TC (M,Jc +Aci(ci)’) X,
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where M; = (I — BB+) ACT — 4BBTC™. The dynamics of the states are
x = (BL.C+M,C)x.

Nevertheless, observe that in the special case where Bt =B land CT = C_l, then x =
C!T*e+ C~!'JCx and, considering (5.32), the dynamics of the error and the states become:

é=TC(B(L.+L;)+AC ") T"e+TC (BL,+AC ') JCx
=TC (BL.—AC™' -4, C'+AC™") TTe+TC(-4C ") JCx
= (TCBL.T* — 41)e ~ TCBL.T"e

x = (BL.C—A4I)x ~ BL.Cx

From here, consensus can be reached by properly designing L. = —L(%,,) to fulfill certain
performance specification as in Section 5.1.1.

Complementary States Feedback

The previous discussion reveals that through the inclusion of self looped algorithms, at least in
some cases, the behavior of the individual agents can be approximated by integrator dynamics.
However, as the consensus algorithm is an output feedback, the states of the agents that are
not reflected in the output cannot be controlled, making the residual matrix non zero in most
of the cases.

If all the states of each agent are measured and are available for feedback, then the following
complementary signal can be defined:

yi = (CH'x

As CCt = 0, this signal includes the information of the states that are not mapped into the
output y. With this, an alternative feedback law including this complementary information can
be defined as:

u:=Ly+L,y,
=L(T"e+JCx) +L,(C)'x
—LT e+ (LJC+LL(CL)’) X.

Where L = —L(%,,) = L. + L;, with %, a graph with self loops at every node, so that L. =
—L(%,) and LY = L;J; and L; € R"~N9*"=Na_Replacing this expression in the dynamics of
the error, we obtain:

¢ = TCBu + TCA (C+T+e + (C+Jc + CL(CL)’) x)
— TC (BL. + BL, + AC*) T"e+ TC ((BL, +AC*) JC+ (BL, +AC") (C1) ) x
=Ge+R x.
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Note that the introduction of the feedback matrix L. does not affect the matrix G;. It only
appears in the residual matrix. Clearly, if R is zero, then consensus can be reached indepen-
dently of the dynamics of the states.

In terms of the complementary output y, = (C*)'x and the mean value of the outputs
v = %1’ Cx, from the previous dynamic expression one can also write

é = Gye+TC (BL; +AC*) v+ TC (BL, +AC" ) y,.

From here is clear that the selfloops in an algorithm can be used to minimize the effect of v
over the dynamics of the error, while the complementary feedback to minimize the effect of
Yo

Algebraically, to find matrices L; and L | that make the residual matrix to vanish might be
a hard task. However, numerically, it can be achieved easily by bounding the Euclidean norm
of R, by a known tolerance € > 0. That is,

RJ_(RJ_)/ < 821.
Applying Schur’s complement, the previous expression is equivalent to the following LMI:

. 7_§271+‘ TC((BLI—i_ACJr)JC—i_I(BLL j_,A,C,J_) (,Cj_,)/) 1 <0 (5.33)
* I _

Fixing the tolerance value, the feasibility problem of LMI (5.33) can be solved to find the
desired variables L; and L so that |R || is arbitrarily small. Note that imposing structural
restrictions on the variables, like for example imposing that L | is derived as the Laplacian of
a graph, makes it harder to solve the corresponding feasibility problem.

The self loops of an algorithm and the complementary states feedback are used to minimize
the effect of the residual matrix over the error dynamics. In more simple words, the effect
achieved is to approximate a decoupled system where consensus depends only on the error
and not any other internal variables. Consensus however still relies on the edges between
nodes of the graph describing the algorithms.

It could be argued that simply considering a graph with only self loops to define the consen-
sus algorithm, i.e. without interconnections between the agents neither as output feedback nor
as complementary states feedback, would lead to consensus as matrix G; can still be forced
to be Hurwitz. This is indeed true when x approaches the origin so that r = R;x vanishes and
allows the network to reach trivial consensus. However, this kind of control strategy is very
weak with respect to perturbations and external signals. If no interconnections are considered
then an arbitrary local modification of the input of any agent will irremediable lead to a differ-
ence between the outputs. The same would happen if agents are under the influence of other
kind of external perturbations. For this reason, the discussed strategies can only be used to
complement the interconnections in a AAN and not to replace them.
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Figure 5.9.: a) Organization tree .7, b) Looped graph .7 for Example 5.5.

Example 5.5. Consider network h) in Example 5.3, that is, N = 10 agents with identical dy-
namics given by:

A= 0.1 —-0.1 B, — 1.0

0.1 00| 1.0 Ci= [0'5 0'5]'

As shown in the quoted example, with a loopless Laplacian algorithm it is difficult for this
network to reach consensus because of the unstable dynamics of the agents. This can be solved
by considering looped algorithms and complementary state feedback.

We consider the organization matrix T = D’(.7°) derived from the oriented tree 7 in
Figure 5.9 a). The undirected looped graph 7 = (#,&) in Figure 5.9 b) can be used as a
base for a looped consensus algorithm L = —L(.7},) defining the weighted undirected graph
T =(V,&,w), where Vie ¥, w((i,i)) = B;"A;C;" =0.05and V,j € ¥\{1}, w((1,j)) = 10.

However, with this pure loop control law, the network still cannot reach consensus be-
cause of the unbounded residual signal r = R;x. This can be seen in Figure 5.10 a) where
the response of the network under identical initial conditions as in Example 5.3 is shown.
This response does not differ substantially from the loop-less case in Example 5.3, and only
approximates consensus before the error diverges.

Solving the feasibility problem of LMI (5.33) with € = 107> and L; = B*AC™, a comple-
mentary state feedback L | can be calculated. Unfortunately, this matrix cannot be forced to
have a particular structure. Imposing L. to be diagonal, symmetric, or with rows that add up
to zero, makes the LMI unfeasible in all three cases. However, the following matrix can still
be obtained as a solution of the LMI feasibility problem without structural restrictions:

- —0.0375 —0.0375 —0.0375 —0.0375 —0.0375 —0.0375  0.0265
—0.0375 —0.0375 0.0375 0.0375 0.0375 0.0375 0.0265
—0.0530 —0.0530 0.0000 0.0000 0.0000 0.0000 —0.0375

0.0000 0.0000 0.0530 0.0530 —0.0530 —0.0530 0.0000

0.0265
0.0265
—0.0375
0.0000

0.1015 —0.0485
0.1015 —0.0485
0.0375 —0.1125
0.0750 —0.0750

0.0000
—0.0750
0.0000
0.0000
0.0000
- 0.0000

L, =

0.0000  0.0000
0.0750  0.0000
0.0000 —0.0750
0.0000 0.0000
0.0000  0.0000
0.0000  0.0000

0.0000  0.0000
0.0000  0.0000
0.0750  0.0000
0.0000 —0.0750
0.0000  0.0000
0.0000  0.0000

0.0000 0.0530
0.0000 0.0000
0.0000  0.0000
0.0750  0.0000
0.0000 —0.0750
0.0000  0.0000

0.0530
0.0000
0.0000
0.0000
0.0750
0.0000

0.0220 —0.1280
0.0750 —0.0750
0.0750 —0.0750
0.0750 —0.0750
0.0750 —0.0750
0.0000  0.0000 -

Even though the matrix does not have a Laplacian structure, the
can still be distributively implemented when the corresponding

algorithm that it describes
signals are communicated
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. 1 1.5 2
time time

Figure 5.10.: Error evolution for the network analyzed in Example 5.5 with a) L = —L(.%,) and b) with
complementary state feedback matrix L .

between the agents. The simulation results of the network including this control law are to
be seen in Figure 5.10 b). Clearly, the network reaches consensus successfully, although the
complementary feedback matrix cannot be directly associated to a graph as studied up to here.
This example shows that consensus cannot be always achieved if we restrict the algorithms to
be in the form of the Laplacian of an unweighted graph and, if possible, other strategies need
to be developed. |

Connected Agents Network

In Section 5.1.1 it is noticed that an algorithm can induce consensus in an IN only if rank {L} =
(N —1)g (Lemma 5.3). This comes from the assumption that the product CB is full rank which
implies that G = TCBLT™ is Hurwitz only if the rank condition on L is fulfilled. Similarly, in
an AAN, non trivial consensus can also only be induced by (N — 1)g-rank algorithms. How-
ever, in some cases the assumption that CB is full rank may be dropped, making it possible to
use full rank looped Laplacian algorithms to reach consensus.

Definition 5.2.2. A connected agent (CA) is an agent i € ¥ that has hardware interconnections
with other agents and individual dynamics described by:

).(,' =A;x; +Bu;
y; =Cixi + ) (Cijx)) (5-34)
J#i

With A; € R7*4, B; € R?*9, and C; € R7*9. The matrices C;; € R9*"/ describe the hardware
interconnections between agent i € ¥ and agent j € 7.

Note that it is assumed that the number of inputs is the same as the number of outputs and
of states. A Connected Agents Network is then defined as:
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5. Consensus Algorithms

Definition 5.2.3. A connected agents network (CAN) is the aggregation of N connected agents
in a set 7" where the hardware interconnections between the agents are described by an undi-
rected, weighted and connected graph %, and a full rank diagonal matrix M € RV9*N4, The
dynamics of such a network are described by:

x =Ax+Bu

5.35
y =Cx (5.35)

with,

A = diag {A;} |, B = diag {B}}_ |, C = ML(%,,) € VM9,

N N N
i=1° i=1° i=1

x = col{x;};_,, u=col{u;};_,,y = col{y;}

We assume that B is full rank and therefore its inverse exists. Note that A € RN9*N¢ B ¢
RNe*Ng C e RN9*N4 and, CJ = ML(%,)11'1 = 0.

For this kind of networks a self looped algorithm derived from an undirected weighted graph
S with only self loops can be used to reach consensus. That is, an algorithm that avoids the
need to communicate signals between the agents.

To demonstrate the previous statement we need to quote the properties of the pseudo inverse
of C with respect to its singular values decomposition (SVD, see Appendix A.1). Note that
as %, is connected, then rank {C} = min{rank {M},rank {L(%,)}} = (N — 1)g. Additionally

C'C1 = L(%,,)MML(%,,)1 = 0 and 11 = NI. So the columns of V, = ﬁl are the orthonor-
mal eigenvectors associated with the ¢ zero eigenvalues of C’'C. From Corollary A.7, with
V=|v, VZ] for some matrix V4 consistent of orthonormal eigenvectors of C'C, it is easy

to show that

ctCc=V Iv-ngxv-1g 0 ]V’
0 0;xq
Oyt v
= [V+ VZ] <IquNq_ [ (NI )qu] [OqX(N*UfI Iqu]> [er]
qxq N
0Nfl X V,
:VV'—[VJr VZ] (N=Daxq [qu(N—l)q Iqxq] T
I;xq V:
=I1-V.V —I—Llill
BRI v/
=I-]

From here an inverse relationship between the states and the outputs of the systems can be
stated:

y=Cx = CTy=C"Cx = x=CTy+Jx
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This, together with the error equation, e = Ty = y = T1e + JCx, leads to:

e = TCBu + TCAx
=TC(BL+AC")T"e+TC(BLIC+A (C'JC+J))x

When the feedback matrix is chosen so that L = L; = —aB ™' = —L(.%,,), with o > 0 a scalar,
then TCBLJC = —aTCJC = 0 and the expression for the dynamics of the error is reduced
to

¢=TC(—al+AC")T"e+TCA (CTJC+J)x. (5.36)

From (5.36) is clear that non trivial consensus can be reached if the residual signal r =
TCA (C+JC +J) x vanishes with time. In the special case where, for given matrices Ag €
R?*4 and My € R7*9, A = diag{A};c, and M = diag {Mo}, ., i.e. is when the agents are all
identical except possible for the matrices B;, then AJ = %IAOI' =JA and JM = %IMOI’ =
MJ making TCA (C*JC +J) = TCAC*MJL(%,,) + TCJA = 0.

Contrary to the case of an AAN, due to the hardware interconnections between the agents,
a controller based on a graph with only self loops is still robust against external signals. To
verify this, let us consider an external control input u,,; : RS’ — RN? 50 that u = Ly + u,y =
—OtB_ly + u,y. In that case, the dynamics of the error become

¢ =TC(—al+AC") T e+ TCA (C*JC +J)x+ TCBu,y.

Considering that agents are identical so that A = diag{A¢},.,, and M = diag {Mo},.,, then
the previous expression is simplified to:

¢ =TC(—al+AC")T"e+TCBu,y. (5.37)

Expression (5.37) can be used to quantify the influence of the external input over the consensus
error by considering the Ho,-norm of the transfer function matrix H,,, (s) between the external
signal and the error as in the previous sections. Note that, regardless of whether matrix Go =
TC (—al+AC*) T* is Hurwitz, if the external signal is such that lim,_, ;o TCBu,y # 0,
consensus cannot be reached as then lim,_, . ., € # 0. However, even in these cases, the param-
eter o characterizes the behavior of the network.

A similar analysis can be made by considering an external perturbation in the form of
y = Cx +d. In this case both, the perturbation signal d and its change over time w = %d
needs to be taken into account when developing an expression for the dynamics of the error.

Example 5.6. Consider a CAN with N = 7 agents with identical dynamics and ¢ = 1. The
hardware interconnections are described by the undirected weighted loopless graph %, =
(€¢,w), where € = (¥,&) is the graph given in Figure 5.11 a) and V(i, j) € &, w((i, j)) = 1.0.
Furthermore, the dynamics of the network are fully described by the matrices:

A = diag{0.1},., , B = diag{1.0},.,, and, M = diag {2.0},. .
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4 3 J \

Figure 5.11.: a) Hardware interconnections graph %, b) Organization tree .7, and c) pure loops graph
. for Example 5.6.

The organization to be used is derived from the directed tree in Figure 5.11 b). We also con-
sider the algorithm L = —L(.%,) = —al, where ., = (,v). % = (¥, &) is the looped
undirected graph in Figure 5.11 ¢) and V(i,i) € &, v((i,i)) = o« > 0.

The Hy,-norm of the transfer function between the external signal and the error can be stud-
ied as a function of the design parameter o as shown in Figure 5.12. The value of | Hey (s) | oo
peaks for the values of o@ where the matrix G = TC (—OcI + AC+) T is close to be singular
increasing the corresponding DC gain of the system. Nevertheless, besides from these points,
there is a clear inverse relationship between ¢ and the Hqo-norm.

The two highlighted points in the graph correspond to the algorithms defined by o = 0.5
and o0 = 5.0. Note that for the last value, |H,y (s)| s < 1, and therefore the network damps the
action of the external signal instead of amplifying it as with the first value. A time simulation
of the behavior of the network in both cases is shown in Figure 5.13. The agents start with
identical initial conditions and (only) the first agent is submitted to the action of an external
signal u,y 1, which is changed every four seconds identically in both cases.

As expected, it is clear from the graphs that the network cannot reach consensus under these
conditions. Independently of the chosen algorithm, as the transfer function between the exter-
nal input and the error cannot be forced to be identically zero, the error vector always reaches
certain value in steady state. However, there are clear differences between the performance of
both cases. First, due to the smaller gain when o = 5.0, the differences between the outputs
are in this case around ten times smaller than when o = 0.5. Secondly, as the eigenvalues of
matrix G4 are further to the left in the second case, the network reacts faster to the changes
reaching steady state sooner and minimizing the transient error between the signals. In sim-
pler words, by increasing the parameter o the network becomes “heavier”, making it more
resilient to external signals. |

5.2.2. Non Graphically Restricted Algorithms

With the introduction of the complementary states feedback, it has been shown that a consen-
sus algorithm can be selected in such a way that there is no immediate graph representation
of it. The idea of selfloops somehow also generalizes consensus algorithms to the use of more
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Figure 5.12.: H,,-norm of the transfer function matrix H,,(s) as a function of parameter ¢ in Example
5.6.

y,®

0 5 10 15 20 0 5 10 15 20
time time

Figure 5.13.: Outputs evolution for the network analyzed in Example 5.6 with L = —L(.#,) = —alI for
a)a =0.5andb) ax =5.0.
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complex matrices, namely, without the row zero sum property. Indeed, a consensus algorithm
could be specified merely by the gains in a matrix L not associated with any other mathe-
matical entity like a graph. Furthermore, in the formulation of this thesis, the analysis of the
behavior of the network under a given algorithm is not done through graph related tools but
only in terms of classical control theory. Therefore, the use of graph theory to describe an
algorithm is justified only because it might simplify its representation for human analysis.

As an effort to include this more complex cases without loosing the convenient graph repre-
sentation of an algorithm, a common generalization is through Laplacian matrices of directed
graphs or digraphs. See for example [22, 33, 34]. Following this idea, one can define two
different kind of algorithms.

Definition 5.2.4.1. An incoming consensus algorithm is a linear output feedback u = Ly for
system (4.3) where the feedback matrix L € RV9*N4 is such that L1 = 0, i.e., it has the zero
rOW sum property.

Definition 5.2.4.2. An outgoing consensus algorithm is a linear output feedback u = Ly for
system (4.3) where the feedback matrix L € RN9XN4q ig guch that 1’L = 0, i.e., it has the zero
column sum property.

Note that there is no restriction on the signs or structure of the elements of incoming or
outgoing algorithms as in the case of algorithms derived from undirected graphs. Furthermore,
observe that any arbitrary feedback matrix L € RV7*N4 can be decomposed as the sum of a
block diagonal matrix matrix L; = diag {L;;},.,, with L; € R?*9, an incoming consensus
algorithm L;,, and an outgoing consensus algorithm L,,. That is, L = L; + L;, + L,,. In
any case, for an AAN, the dynamics of the error defined through an organization matrix T =
D'(.7°) can be expressed as:

¢ =TC(BL+AC")T*e+TC (BLIC+A (C*JC+CH(CY))x

As for incoming algorithms the product LJ vanishes, it seems natural to prefer them over
outgoing algorithms. Particularly when Ry = TCA (CTJC + C-(C1)’) = 0. In [22, pp. 26]
an intuitive justification for this choice is also given in terms that the incoming algorithm
captures more directly how the dynamics of an agent are influenced by others while the out-
degree version captures better how one agent influences others. However, when matrix Ry
does not vanish, outgoing algorithms are no worse than any other choice in the sense that the
dynamics of the error still depend on the coupled states of the agents.

Similar to the case of selfloops in undirected algorithms, in general, an outgoing algorithm
cannot be used to cancel the effect of the residual matrix R4 because of the terms including the
null space base C for the output matrix C. A particular case is when Ng = n and the output
matrix is invertible, i.e. C* = C~!. In that case, the dynamics of the error are simplified to:

¢=TC(BL+AC ")T"e+TC(BL+AC ') JCx
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Therefore, if the algorithm is chosen in such a way that the residual matrix vanishes and the
system matrix G4 = TC (BL + AC’I) T is Hurwitz, then consensus can be reached in spite
of the characteristics of the agents.

To numerically determinate a suitable matrix L, an LMI can be stated to quadratically bound
the norm of Ry4. That is, to enforce that RAR;, < €, withe>0a design scalar, which is by
Shur’s complement equivalent to

) —1
el TC(BL+1;C )ic| _
* p—

0 (5.38)

To fulfill this condition does however not ensure that the system matrix is Hurwitz. To do that
through an unknown Lyapunov matrix P = P/ > 0 leads to non linear conditions. These cannot
be linearized by considering the inverse of the Lyapunov matrix because in (5.38), matrix L is
multiplied to the left and to the right by singular matrices. Furthermore, forcing the feedback
matrix to have the shape L = XT so that LTTP~! = XP~! := Z is also not a valid condition
as then the product LJ = XTJ = 0 vanishes in (5.38). Therefore, the only remaining option is
to fix the Lyapunov matrix to a known constant. In particular P = I leads to the same situation
as in Section 5.1.1 for the calculation of the convergence rate of an undirected algorithm for
an IN. From condition (5.10), the following LMI is obtained:

TC (BL+ACH)T* +(T*) (BL+AC*) C'T’ + 251 < 0, (5.39)

with a design scalar ¢ > 0 that represents the desired convergence rate of the consensus error
norm. If matrix L needs to be in the shape of an outgoing algorithm, structural restrictions also
need to be imposed. This can be easily achieved by imposing that 1L = 0. If these three mini-
mal conditions are simultaneously feasible, then an outgoing algorithm that ensures consensus
can be numerically determined. Additional structural conditions can also be imposed to shape
the algorithm according to other criteria. For instance, to impose unidirectional exchange of
signals.

Example 5.7. Consider network with N = 9 agents such that Vie ¥, B; = C; = 1; and for
i€{1,2,3},A; =0.10, fori e {4,5,6}, A; = —0.10, and for i € {7,8,9}, A; = 0.05. To define
the error vector, we consider an organization matrix T = row {1, —I}.

Defining € = 0.1 and ¢ = 1.0, by solving the feasibility problem of LMIs (5.38) and (5.39),
with additional structural restrictions 'L = 0 and, Vi€ ¥ and k€ {2,3,...,N}, L(i,i+ k) =0,
we can obtain an outgoing algorithm characterized by:

—1.2810 1.1977 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

—9.1777 —0.2435  9.3378 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1.6012 —8.1401 —1.4411 7.8967 0.0000 0.0000 0.0000 0.0000 0.0000

1.4012  1.1977 —7.8967 —1.2411 6.6556 0.0000 0.0000 0.0000 0.0000

Lo, = 1.4012  1.1977 0.0000 —6.6556 —1.2411 5.4145 0.0000 0.0000 0.0000
1.4012 1.1977 0.0000 0.0000 —5.4145 —1.2411 4.1733  0.0000 0.0000

1.5512  1.1977 0.0000 0.0000 0.0000 —4.1733 —1.3911 2.7822  0.0000

1.5512 1.1977 0.0000 0.0000 0.0000 0.0000 —2.7822 —1.3911 1.3911

1.5512  1.1977 0.0000 0.0000 0.0000 0.0000 0.0000 —1.3911 —1.3911
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Figure 5.14.: Outputs evolution for the network analyzed in Example 5.7 with a) incoming algorithm
L;, and b) outgoing algorithm L,,;.

Furthermore, from this matrix, an incoming feedback matrix L;, can also be defined by re-
placing the diagonal elements of L,,, in such a way that the rows (and not the columns) add
up to zero. Note that the signs of the off-diagonal elements of the feedback matrices are not
necessarily positive.

In Figure 5.14 a simulation of the behavior of the network is shown under the influence
of both algorithms with identical initial conditions. Note that in the case that the agents were
simple integrators, the incoming algorithm would guarantee consensus. However, this is not
the case for this network where the designed outgoing algorithm can successfully lead to
consensus but not its incoming version. |

5.2.3. Switched Algorithms

Most of current work on consensus is focused on switching communication topologies. There
is along list of examples, some of which are [9, 19, 22, 31, 41,47, 50-52, 55, 57-61]. Different
criteria can be applied to define the meaning of the discrete modes and how the systems
switch from one discrete mode to other. Furthermore, different approaches can be used to
deal with the switching characteristics of the systems. This makes consensus under switching
restrictions a challenging research field, even when considering only integrator systems.

In this section we focus mainly on intended changes of the consensus algorithm that de-
fines different operating discrete modes. The case where the consensus algorithm changes in
an unwanted or unplanned way (due to communication faults for example) will be discussed
at the end of this section. Attending the designer’s freedom to specify an algorithm in the
way it best fits his needs, the case of switched algorithms becomes relevant when, for some
(technical) reason, a connected algorithm cannot be specified. For example, if the agents only
support a limited number of incoming communication signals. Other reason to do this would
be to avoid using a unique algorithm for tactical reasons. For example, if it is known that the
communication process can be interrupted by an external “enemy” agent, switching from one
controller to other would make more difficult for the external agent to identify the needed
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communication channels, thus improving the resilience of the network to the “attacks” of the
agent. Strategic reasons can also justify a switching algorithm. For example, to approximate
consensus in different sections of the network with a “dense” algorithm (with many edges
between the agents of each section only), before switching to a less dense algorithm that con-
nects all agents in the network. In this section, however, we do not emphasize the reasons why
a given switched algorithm is considered but merely on conditions that guaranteed consensus
under these circumstances. To do this, we consider the original results in Chapter 3 and the
following definition of switching algorithm.

Definition 5.2.5. A switching algorithm is a control law u = L;y for an AAN that switches
between M feedback matrices L; € RV9*N¢ at switching instants T in an infinite (but known)
switching instants set So, = {71, T2, ..., T, ... }. Each feedback matrix is associated with a dis-

crete mode q; € Q = {q1,92,-.-,qum}-

Particularly, we investigate the case where, for each of the M discrete modes ¢; € Q defined
in aset O = {q1,92,...,qu}, one particular feedback matrix L; = —lé(%,,;) is defined from a
weighted undirected graph %,;; and, considering an organization matrix derived from a tree
T = D'(.7°), to avoid the influence of the states over the consensus error, the residual matrix is
identically zero, i.e. Ry = TCA (CTJC + cH(cty ) = 0. In that case, the dynamics of target
error are described by the following switched system:

¢ =TC (BL; + AC*) T*e = Gse. (5.40)

Clearly, the stability of this switched system can be addressed through the various cases stud-
ied in Chapter 3. As the exact switching instants of these system are decided as part of the
consensus algorithm, of particular interest is the time dependent switching case with known
residence times.

Defining a polytope G(e) with vertices given by G;, with 7€ {1,2,...,M}, if at an instant
T € Soo = {71, T2, ...} the system switches to mode g; € Q, then the value of the error at instant
Tr+1 € Soo can be calculated as

e(Tiy1) = €C@Te(r))
= €GiTke(Tk)
= le(rk),

where the transition matrix @ associated with mode g; € Q is implicitly defined.

Periodic Algorithms

A first approach is to consider only deterministic switching in the form of a periodic process as
introduced in Example 3.2. We will understand a periodic process as a switched systems where
the only allowed sequence of discrete modesis g1 = q2 — - = qm—1 — gu — q1 — -+ - that
repeats infinitely. That is, a system that can be represented by the automata shown in Figure
5.15.
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Figure 5.15.: General Periodic Process with M discrete modes.

Definition 5.2.6. A periodic algorithm is a switching algorithm that associates with each of
the M discrete modes ¢; € Q = {q1,42,.--,qu}, a feedback matrix L; € R¥9*N4 and a unique
residence time T(;) =T = Tty — T € RT, for all k € N where the algorithm is switched
to mode ¢;; and that switches between the modes in a unique infinitely repetitive sequence

qr—>qa— = qyu—1 = qu —> q1 —>

A cycle of a periodic algorithm is one repetition of the switching sequence g1 = g2 — -+ —
qum—1 — qu — q1. Note that as the residence times are unique and associated with the modes,
the total time of a cycle is constant and given by 7¢.,.j. = Zf‘il T(;). Sampling the system every
M switching instants, that is at instants 7y, with & € N, the transition matrix of the entire cycle
of the system can be obtained as:

M M
. \phM _ | | L | | Glanvt1—i)Thm+1—i
lI‘cycle '_\P(hfl)M - q)hM'H—l - € (wiat 1) T+~
i=1 i=1

= oOMTn) LOu—1Tn-1y ... p62T(2) ,G1T(0)

The implicit discrete time system defined when sampling at switching instants 7y, with A€ N,
is then linear:
e(To 1) = ¥eyere®(Thmr) (5.41)

Considering Lemma 3.1, the stability of the discrete time system (5.41) proves that the AAN
with the periodic algorithm leads to consensus. This can be verified considering a discrete
time Lyapunov matrix P > 0 as in Theorem 3.2, or simply by calculating the eigenvalues of

cycle*
Clearly, the stability analysis could also be done by considering other switching instant

sequences like in Theorem 3.3. Using the whole cycle, however, gives some hints on the
convergence rate at which consensus is achieved. For this, let us define

G := max {svd {‘Pcyde}}
o :=min{svd {‘Pcyde}} ,
then,

o I<Y, ¥ , <G’1

= o€ (Tur)e(Tun) < € (Tu)¥

cycle * cycle

cycle,\Pcyclee ( T/’lM) < Ge ( Thm ) € ( ThM)

<= ole(tm)] < le(Tnrym)] < Ole(Tmn)]
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Assuming that the consensus error approaches the origin, from the previous expression a
bound for the convergence rate of the norm of the error, similar to that in equation (5.10)
for the case of loopless algorithms, can be obtained. Furthermore, not only a higher bound
can be defined but also a lower one. By subtracting ||e(7u)|| and dividing by Tiyce > O one
obtains,

l-o le(thrm)| —le(mm)| _ 1-G
= e(tmn) | < — <~ [le(z)|
Tcycle TC)cle Tcycle
le(Tghrnm) | — le(mm) | _
~glle(tiu) | < — 2 < —clle(zuan) (5.42)
cycle
where ¢ 1= 7—= S > 0and ¢ := =2 > 0 represent, respectively, approximated lower and higher

bounds for the convergence rate of the switched system in a similar sense that ¢ in section
5.1.1. Note that because of the negative sign in (5.42), ¢ = ¢ = 0.

It is important to notice that this bounds represent mgrely a long term mean approximation
of the convergence rate at which the network can reach consensus. There is not guarantee that,
at any given time, the convergence rate of the consensus error would stay within the limits.
This can be easily understood by considering a two modes algorithm, where in one mode, the
feedback matrix makes the norm of the error to increase, but this is compensated by the other
mode where the norm decreases. If the convergence rate is instantaneously evaluated during
the increasing mode, then it would be clearly out of the bounds. Furthermore, in the second
mode, the convergence rate would also be out of the limits as the norm decreases faster to
compensate the increase in the first mode. The bounds are however calculated considering
both behaviors and therefore are average values for the overall convergence rate.

Probabilistic Algorithms

A periodic algorithm is based on a deterministic switching sequence and therefore it is a
very special kind of consensus controller which is praised for its simplicity. In fact, a more
complex kind of algorithms can be defined by allowing more switching sequences. The most
extreme case would be to allow every M(M — 1) possible jumps between the discrete modes,
associating with each one of them a non unitary probability as defined in Section 3.2.3. Sev-
eral categories of “mixed” (deterministic and probabilistic) algorithms could be defined in
between, by imposing unitary probability of some jumps like in Example 3.3.

Definition 5.2.71. A probabilistic algorithm is a switching algorithm that associates with each
of the M discrete modes g; € Q = {q1,92,---,qu}, a feedback matrix L; € R¥9*N4; a unique
residence time Toy =Tk = o1 — & € R*, for all k € N where the algorithm is switched
to mode g;; and a probability vector ;" € Ay = RY in such a way that the probability of
switching from mode ¢; € Q to mode g; € Q at instant Ty is 0 < [7:;r ]] <1

Note that it is not necessary to relax the uniqueness property of the residence time as, when
several known residence times are associated with the same feedback matrix and probability
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Figure 5.16.: Non Connected Graphs for Switched Algorithms in Example 5.8.

vector, a new discrete mode can be defined for each of the different values. This would, of
course, increase the number of discrete modes and increase the complexity of the allowed
switching sequences.

When R4 = 0, consensus in an AAN under such an algorithm can be studied with the help of
Theorem 3.6. Unlikely the periodic case, it is however difficult to state approximated bounds
for the convergence rate of the system as no cycle matrix can be defined.

Example 5.8. Consider N = 4 identical systems described by

A=

0.001 0.000( o [1.000 0.500| . _{1.000 0.000
0.000 0.002| 0.002 1.000|’ 0.000 1.000|

For analysis, we consider an organization matrix derived from a star graph centered in the
first agent: T = D'(.7°) = row {1, —I}. Note that, as C; = I and the systems are identical, the
residual matrix Ry is identically zero.

Assume that the agents can only handle communication signals with one unique other agent
at the same time. Therefore, switched algorithms are proposed based on the six graphs (¥,,
%, Yer Y4, Ye, and 9y) of Figure 5.16 and their respective feedback matrices:

La = _t(ga)e Lb = _z(gb)s Lc = _Z(%)s
L, =—L(%), L. = —L(%,), Ly = —L(¥/).
These matrices define six discrete modes of operation Q = {a,b,c,d, e, f}.
First, consider a periodic algorithm with identical residence times for each mode, 7(;) = 0.2,

and the infinitely repeated sequence --- -a—>b —->c—>d - e — f — a— ---. In this case,
the whole cycle matrix ¥ of the system is such that

cycle

eig {'¥ 01 } = {0.3425 +0.0435i,0.3582,0.5784 + 0.0190i,0.5817}

Clearly, this algorithm allows the network to reach consensus as the eigenvalues of the cycle
matrix are all within the unitary disc. This can be verified by the simulation shown in Figure
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5.17 a.1) and a.2) where, respectively, the first and second output of the systems are drawn for
an arbitrary initial condition.

Now consider that the network stays in each modes 7(; = 0.2 time units before randomly
switching to other mode. The switching probabilities from each mode are given by:

[0.0000 | [0.2375 | [ 0.2375 |
0.2375 0.0000 0.2375
= 0.2375 = 0.2375 xt = 0.0000 ,
0.0500 0.2375 0.2375
0.2375 0.0500 0.2375
| 0.2375 | | 0.2375 | 0.0500 |
[0.0500 | [0.2375 ] [0.2375
0.2375 0.0500 0.2375
xt = 0.2375 = 0.2375 ’n;: 0.0500
0.0000 0.2375 0.2375
0.2375 0.0000 0.2375
| 0.2375 | | 0.2375 | 0.0000 |

Applying Theorem (3.6), the following six conditions for stability can be stated:

The monomials of the polynomial ,
P(a) =Piay +Prap + P3az + Pyoy + Psos + Peog > 0,

are all positive definite matrices, and the transition matrices are defined as

—1yp+
@, — (TCBL+ACTT 7

forall i€ {a,b,c,d,e, f}. It can be numerically shown that the described conditions are feasi-
ble and therefore the network with this switching rule reaches consensus. For some randomly
generated switching sequence, the evolution of the outputs of the systems with the probabilis-
tic switched algorithm is shown for identical initial conditions as before in Figure 5.17 b.1)
and b.2).
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Figure 5.17.: First and Second Outputs Evolution of Agents in Example 5.8 with a) Periodic Switch-
ing Algorithm, b) Probabilistic Switching Algorithm, and c) Slower Periodic Switching
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The convergence rate bounds for the periodic algorithm are given by ¢ = 0.3243 and
¢ = 0.5963. If however the same algorithm is implemented with 7(; = 1.0, then the bounds
become ¢ = 0.0691 and ¢ = 0.1667. This shows that by changing the residence time in the
modes, the convergence rate at which consensus is reached can be changed. In this case, in-
creasing the residence time makes the algorithm considerably slower as both bounds are closer
to zero. The time response of the slower algorithm can be seen in Figure 5.17 ¢). Unfortunately
for probabilistic algorithms, although it can be verified by simulation that changing the resi-
dence times will modify the convergence rate at which consensus is reached, it is not easy to
estimate a priori this change like in the periodic case. |

Unintended Switching

We understand as unintended switching the case where the feedback matrix switches between
M variations of a known ideal or original feedback matrix (derived, for example, from a loop-
less weighted graph). Typically, only a few of these possible matrices allows the network to
reach consensus while the majority only enforces consensus in some sections of the network.

Definition 5.2.8. An unintended switching process is such that it associates with each of the
M discrete modes g; € Q = {q1,q2,---,qu}, a feedback matrix L; € RN9*N4; a non precisely
known residence time Tj; := T(’Si" + AT = Tep1 — € R, for all k € N where the algorithm
is switched to mode ¢;, such that T(’g’” € R* is known and AT € [0, AT(’II;“X]; and a probability

vector ”l+ € Ay < RY in such a way that the probability of switching from mode ¢; € Q to
mode g; € Q at instant T4 is 0 < [ﬂ:;’]J <1l

This kind of switching may occur as the result of communication or controller failure. In
these cases, the ideal feedback matrix is instantaneously changed by a similar one selected
from a vast number of possibilities. Given an ideal feedback matrix, the number of variations
that can be considered as a discrete mode increase explosively with the number of agents, of
edges of the original graph, and complexity of the accepted weight function for the edges.
Furthermore, the probabilities of jumping from any of these modes to any other needs to be
well estimated in order to describe the unintended switching process accurately.

Example 5.9. To illustrate the idea of explosion of modes, let us consider N = 2 agents with
an algorithm derived of the unweighted undirected graph that connects both agents. In the
ideal case, the consensus algorithm is described by matrix Lo € RNaxN4 pelow. Note that
this is a matrix with N> = 4 blocks. The diagonal ones represent feedback signals within an
agent, while the off diagonal blocks represent signals that are exchanged between the agents.
A simple failure of one of this blocks changes its value from +1 to 0.
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—I 0 0 0 0 |
Lo = , Lo7 = , Log = s
06 0 I 07 [ I 08 0 1 ]
—1I | 0 | —1I 0
Log = , Lig= , Lip = ,
0 0 I 0 I 0
—1I 0 0 | 0 0 0 0
L = , Liz = , Lig = , Lis = ,
0 0 0 0 I 0 ] ! [ 0 —I ]
0 0
Lig =
0 0

If one block fails, then there are 2C1 = 4 possible feedback matrices’, Loz, Lo3, Los, and
Los, that describe four different scenarios. When two blocks fail simultaneously, there are
N2C2 = 6 matrices (Log to Li1). Three simultaneous failures induce N2C3 = 4 new scenarios
(L2 to Ly5) and four failures impose a sixteenth possible feedback matrix Lje.

Even for this very simple case, the number of discrete modes that can be defined is consid-
erably large in comparison with the number of agents. More sophisticated examples can also
be named by considering weighted graphs where each edge is associated with a larger set of
possible weight matrices. An interesting case would be that where the communication of only
some of the signals between two agents is interrupted and not all of them. In that case, only
some elements of the weights function would be switched to zero. By adding more agents and
considering different ideal algorithms, the number of possible discrete modes can be easily
incremented. In order to have a realistic description of a switching failure situation, the proba-
bility of jumping from any of these modes to any other must be correctly estimated along with
the residence time at each mode.

3The symbol "Cy = (}) = n!/ (k!(n —k)!) denotes Newton’s binomial coefficient: “choose k out of n”.
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Furthermore, note that these matrices are not always easy to describe through graphs and
therefore it is difficult to study them from that perspective. Also, only some of the matrices
have the zero sum row property so it does not always hold that L;J = 0. |

In the case of intended switching we have restricted the case to feedback matrices derived
of loopless graphs so that L;J = 0 for all 7 € Q. This restriction is very convenient to make
the residual matrix independent of the feedback matrices and therefore to avoid the influence
of the states of the agents. However, this condition is not necessarily fulfilled in the case
where the switching between feedback matrices occurs in an unintended way. In general, the
dynamics of the error can be written as the following switched system

¢ =TC (BL;+AC") T*e+TC (BL;JC YA (C+JC N CL(CL)/>) .
(5.43)
= Gje + Rix.

Even when R4 = 0, the states of the systems might influence the value of the consensus error.
Therefore, to study consensus under this kind of switching, we must assume the existence
of a security mechanism that ensures that |R;x| < &(¢). In other words, a mechanism which
ensures that the effect of the states over the consensus error can be neglected at any time.

This can be achieved from a supervisory perspective quite simply for networks where R4 =
0, by forcing the feedback matrix to switch to a safe mode 7 where L;J = 0, if the system
had stayed too long in a non safe mode j where L;J # 0. For example, in Example 5.9, if
the communication line from the second agent to the first agent fails during a period longer
than tolerated, that is, if the system stays at Ly, for a long time, then the controller forces the
feedback matrix to switch to the safe mode L7 until the failure is repaired and only then it
swit