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Brain Computer Interfacing has witnessed a tremendous growth
of scientific interest during the last 10 years. However, some down-
falls have prevented this exciting technology to produce mainstream
applications for the general public. Among those are long setup time,
illiteracy of some subjects as well as non-stationarities within record-
ing sessions.

This thesis introduces a number of hardware as well as software
related neurotechnological developments, which address and allevi-
ate these issues, thus making BCI a more compact, robust and ready-
to-use technology. A patented dry electrode EEG cap with 6 chan-
nels is introduced and its capabilities demonstrated within a BCI en-
vironment. While this development certainly enhances BCI usability,
also future EEG research will benefit from dry electrode technology.
To further reduce setup time to essentially zero, an ensemble frame-
work, consisting of a large number of BCI datasets, was developed and
gated by a number of machine learning methods, to enable instanta-
neous feedback for users. In addition, a multimodal neuroimaging
study was conducted and shown to reduce illiteracy among subjects
as well as enabling basic neuroscientific insight.
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for
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Siamac Fazli
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Prof. Dr. Klaus Obermayer, Chair

Gehirn Computer Schnittstellen haben in den letzten 10 Jahren ein
enormes wissenschaftliches Interesse hervorgerufen. Allerdings of-
fenbart diese spannende Technology bei näherer Betrachtung noch
einige Hürden, welche bisher die Entwicklung von massentauglichen
Anwendungen verhindert haben. Unter Anderem eine lange Vor-
bereitungszeit eines BCI Systems, die fehlende Steuermöglichkeiten
für manche Benutzer, sowie die nicht Stationaritäten innerhalb einer
Aufnahme.

Diese Dissertation führt eine Reihe von neurotechnologischen En-
twicklungen ein, welche diese Probleme addressieren. Dadurch wird
BCI zu einer kompakteren, robusteren und praktikableren Technolo-
gie. Eine patentierte EEG Kappe mit sechs trockenen Elektroden wird
vorgestellt und ihre Funktion innerhalb der BCI Umgebung demon-
striert. Während diese Entwicklung für BCI von Nutzen ist, wird
auch zukünftige EEG Forschung von dieser Technologie profitieren.
Zur weiteren Reduzierungs der Vorbereitungszeit, wurde ein Ensem-
ble Framework entwickelt, welches aus einer grossen Menge von BCI
Daten besteht. Mit Hilfe der Methoden des maschinellen Lernens er-
laubt dieses Framework damit ein instantanes Feedback. Weiterhin
wurde eine multi-modale Studie durchgeführt, welche die Inoperabil-
ität des Systems für einige Benutzer reduzieren konnte, und desweit-
eren zu neurophysiologischen Erkenntnissen geführt hat.
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CHAPTER 1

Introduction

Oscillations abound all domains of nature and deciphering the characteristics of
those oscillations is at the heart of most scientific fields of the past and today. The
present work will deal with the oscillatory activity of the human brain and how vol-
untary modulation of those brain oscillations can be exploited to form meaningful
communication channels.

A Brain Computer Interface (BCI) is a device that enables a subject to use her
brain to communicate with an external device. In general one distinguishes two
types of BCI: invasive and non-invasive. While invasive BCIs in humans require
a craniotomy, the surgical removal of a section of the skull, in order to access the
brain underneath, non-invasive BCIs measure brain activity without invading the
integrity of the body. In electrocorticography (ECoG) electrodes are placed beneath
the skull, directly onto the cerebral cortex. This is common practice in medical di-
agnosis for identifying epileptogenic zones in the cortex. Invasive BCIs, where elec-
trodes are implanted into the grey matter, can measure single neurons or local field
potentials (LFP) and thus yield the ’cleanest’ signals. Animal and human experi-
ments have shown that very accurate control of a cursor is possible in up to three
dimensions [93, 76]. However, these implants also pose high (infectious) risks for
the user. Another yet unsolved problem is the scaring of the brain tissue as a re-
sponse to the implant, which in turn leads to progressively lower signal quality as
time goes by. The following work will solely deal with non-invasive BCIs and uses
the term ’BCI’ interchangeably with ’non-invasive BCI’.

While recently there has been a surge of interest in non-invasive BCI, with many
groups starting research in this area, impressive pioneering work had already be-
gun in the early 70’s [127, 128], which relied on visually evoked response potentials
(VEPs). The early approaches to BCI primarily relied on electroencephalography
(EEG) as a neuroimaging method [138, 35]. However, since then BCI technology
has developed many variants and employed a large number of other neuroimag-
ing methods, such as Magnetoencephalography (MEG) [133], Electrocorticography
(ECoG) [110, 82, 47, 105, 90, 22], functional magnetic resonance imaging (fMRI) [136,
141, 116, 77] and near-infrared spectroscopy (NIRS) [126, 1, 44] among others.

This work will primarily focus on sensory motor rhythm (SMR)-based Brain Com-
puter Interfaces, which exploit the suppression of motor related idle rhythms during
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Figure 1.1: An illustration of current problems in BCI and where these are addressed
within this thesis.

motor execution and motor imagery. Other physiological measures for successful
communication are visual, auditory or sensory-motor evoked potentials as well as
slow cortical potentials. For a detailed review of the different types and modes of
current BCI research we would like to refer the reader to [35, 138].

While a large number of achievements have been made in SMR-based BCIs,
there are still a number of problems, which hinder the introduction of this field
of research to a wider community. The work presented here will show how vari-
ous neurotechnological developments and their application help in making state-
of-the-art Brain Computer Interfaces (BCI) more versatile, easier to use and more
compact. A number of these problems are addressed and some of them alleviated
within this thesis. The flowchart of Figure 1.1 gives an overview of the current prob-
lems and goals in present day BCI research and the approach that was developed to
alleviate them.

One of the primary goals of BCI today is to reduce the setup time of a given BCI
system. Setup time can be setup of hardware, such as applying conducting gel to
EEG electrodes, as well as the estimation of subject-dependent filters. To reduce the
hardware-related setup time a novel EEG cap, which is based on 6 dry electrodes is
introduced. Furthermore, its successful operation within a BCI paradigm is demon-
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strated.

Early BCI prototypes relied on operant conditioning of the subject [8]. With such
a system it can take months for a subject to adapt his brain, such that she would
be able to interact with the system. Through the statistical dissemination of motor-
related EEG data it became apparent that it is possible to extract features from train-
ing data of a given subject and use the estimated subject-dependent model to form
a stable high-speed BCI. It is now common practice to record such training sets
with or without initial feedback [11, 99, 27, 24, 12, 35]. We show that being able
to select from a very large database of experiments allows to construct a subject-
independent classifier, which is comparable in quality to subject-dependent ones.
The approach is thus able to decrease the calibration time of SMR-based BCI’s to
practically zero.

EEG is the neuroimaging method with the highest temporal resolution and could
therefore potentially provide the highest information transfer rates, which so far is
indeed the case. A long-standing problem of BCI designs which detect EEG patterns
related to some voluntarily produced brain state is that such paradigms work with
varying success among subjects/patients. We distinguish mental task based BCI
such as SMR-based BCI from paradigms based on involuntary stimulus related po-
tentials such as P300, which are limited to very specific applications such as typing
for locked-in patients and require constant focus on stimuli extraneous to the task
at hand. The peak performance to be achieved even after multiple sessions, varies
greatly among subjects. Using a recent study [17] and other unreported data by
many research groups, we estimate that about 20% of subjects do not show strong
enough motor related mu-rhythm variations for effective asynchronous motor im-
agery BCI, that for another 30% performance is slow (<20 bits/min) and for up to
50% it is moderate to high (20−35 bits/min). It is still a matter of debate as to why
BCI systems exhibit illiteracy in a significant minority of subjects and what can be
done about it in terms of signal processing and machine learning algorithms. Fur-
thermore long-term usage of a BCI can lead to non-stationarities in the data. While
both these issues have been addressed within the EEG itself [70, 15], also combi-
national approaches for EEG features from multiple domains [34] as well as com-
binations of EEG and peripheral parameters like electromyography [78] have been
shown to robustify the classification. In this context we propose a multi-modal ap-
proach, consisting of EEG and NIRS and show that NIRS can not only help to elevate
classification accuracies for most subjects, but also enables successful BCI opera-
tion for some subjects, who were previously not able to do so.
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1.1 Outline

The following parts of the introduction deal with the basic ingredients, necessary
for the successful operation of a Brain Computer Interface. A brief history and the
physiological basis of some non-invasive neuroimaging methodologies is given in
Section 1.2. Section 1.3 reviews the machine learning and statistical tools, that are
used within this work and Section 1.4 gives a general introduction to Brain Com-
puter Interfacing. In Chapter 2 a novel dry electrode cap is introduced, utilized in a
BCI study. The following Chapter explores how ensemble methods can be beneficial
for reducing calibration times in BCI. Two approaches are proposed and validated.
The first deals with the problem of findings subject specific temporal filters from
training data. It shows that commonly used heuristics for temporal filter estimation
can be unstable for low numbers of training trials or for subjects, where the discrim-
inability is low in general. In these cases it shows that multiple classifier systems,
trained with an ensemble of temporal filters enhances the decoding performance
for BCI. The second approach shows how ensemble methods may help in reducing
the calibration time to zero. Ensembles of subject-dependent classifiers are gener-
ated, using a very large set of previous experiments of many individual subjects and
a convex optimization problem is formulated to obtain a weight vector, that enables
new subjects to start high-speed feedback session without the need of recording a
calibration session. Chapter 4 examines how multi method imaging may help in
robustifying EEG-based BCI. Chapter 5 concludes this work and gives an outlook of
the possible future directions of BCI.

1.2 Non-invasive Neuroimaging for the Brain

1.2.1 Electroencephalogramm (EEG)

The discovery that the brain exhibits electrical activity was first discovered in the
19th century [25]. In the late 1920s Hans Berger measured electrical potentials on
the surface of the skull [5] for the first time and thus created the basis for a new field
of study: the EEG.

The EEG records oscillations of electrical potentials, measured by electrodes
that are placed on the human scalp. While the EEG has the highest temporal res-
olution of all non-invasive neuroimaging methods, its spatial resolution is limited
for reasons which are explained below. To understand the neurophysiological and
physical basis of the EEG one needs to consider the electrical properties of individ-
ual neurons and their anatomical organization within the cortex. While the central
nervous system consists of neurons and glia cells, most of the effects measured by
EEG reflect the summated activity of postsynaptic potentials of large populations of
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neurons. Glia cells have been found to contribute only very modestly to the surface
EEG.

A neuron shares many characteristics of other cells in the body, but in addition
a neuron can communicate with other neurons by means of its axonal processes.
Neurons keep a high intracellular concentration of potassium (K +) and chloride
(C l−), while maintaining a low intracellular sodium (N a+) and calcium (C a2+) con-
centration. These concentration differences result in a negative cellular potential of
approx. -70 millivolts, relative to the extracellular space. Within the cell membranes
there are a large number of ion channels, which serve to maintain the negative cel-
lular potential in its resting state. However these ion channels are also responsible
for the generation and initiation of action potentials. An influx of N a+ (and in some
cases C a2+) causes the cell to depolarize. The outflow of K + repolarizes the mem-
brane by restoring the initial charge distribution.

An action potential traveling along the axon generates a very brief local current
in the axon and thus a small potential field. At the nerve terminal various neuro-
transmitters are released. These neurotransmitters produce changes in membrane
conductance and transmembrane potentials at the post-synaptic membrane. The
neurotransmitter can have an excitatory or an inhibitory effect on the postsynaptic
neuron. If the effect is of excitatory nature, it leads to a temporary depolarization
of the postsynaptic membrane potential, caused by the inflow of negatively charges
ions into the cell. This effect is called excitatory postsynaptic potential (EPSP). An
EPSP makes it easier for the cell to fire an action potential. While a single EPSP is
generally not sufficient for the generation of an action potential, EPSPs are additive.
The higher the number of EPSPs that arrive at a given cell, the higher the probability
that the membrane potential will reach the threshold for firing an action potential.
If the neurotransmitter has an inhibitory effect on the postsynaptic neuron, it leads
to a hyperpolarization of the postsynaptic cell (a so-called inhibitory postsynaptic
potential (IPSP)) and thus reducing the probability of that cell firing an action po-
tential.

The pyramidal neurons are the major projection neurons of the neocortex. Their
dendrites receive a variety of synaptic inputs and are oriented perpendicular to the
cell surface. The ion fluxes of these pyramidal neurons, associated with their re-
spective EPSPs and IPSPs, generate extracellular field potentials (or local field po-
tentials). A local field potential, measured within the brain will always represent
the linear sum of a large number of overlapping fields generated by currents from
the intracellular space to the extracellular space (so-called current sources) as well
as currents from extracellular space to intracellular space (so-called current sinks).
The effects of postsynaptic potentials propagate much further in the extracellular
space, as compared to action potentials. While EPSPs and IPSPs are far smaller in
amplitude as compared to action potentials, they last up to 100ms and therefore
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the probability that they occur in a temporally overlapping manner is far higher
than the very brief action potentials, which typically last only a few milliseconds.
Also EPSPs and IPSPs have a higher contribution to the local field potential, since
only a small minority of neurons will spike at a given time, but EPSPs and IPSPs
contribute to changes of the local field potential, since these effects are displayed
by many more neurons.

The electrical activity on the scalp is thus the result of extracellular current flows
from summated activity of a large number of relatively synchronously activated
neurons. The primary source of EEG activity is the synaptic activity of the men-
tioned pyramidal neurons of the neocortex. The surface EEG mainly consists of a
spatially smoothed version of the local field potentials under a scalp surface on the
order of 10cm2, but has little discernible relationship with the specific patterns of
activity of the neurons that generate it [95, 96]. Thus the electrical potentials mea-
sured on the scalp mostly represent the superficial layers of the cortex, while deep
structures of the brain, such as hippocampus, thalamus or brain stem are very im-
plicit in the surface EEG.

1.2.2 Near Infrared Spectroscopy (NIRS)

NIRS is a relatively recent noninvasive neuroimaging technique. It enables con-
tinuous monitoring of changes in blood oxygenation and blood volume with re-
spect to human brain function. First evidence that activity of nerve cells cause
changes of the optical properties of brain tissue was discovered in 1949 [60]. While
researchers in the 70’s began to record oxygenation parameters from the intact, hu-
man brain [63], only in the 90’s local functional brain mapping with optical signals
became possible [87, 26].

The high transparency of brain tissue to waves in the near infrared spectrum
(approximately from 0.7 micrometers to 300 micrometers) allows the transmission
of photons through the intact brain. A photon, which enters the tissue, undergoes
two types of interaction. It is either absorbed or scattered. Absorption leads to ra-
diationless loss of energy to the medium. Infrared (IR) light can be absorbed and
emitted by molecules, which in course undergo molecular electronic transitions.
These take place, if electrons in a molecule are excited from one energy level to
another. Scattering can occur at unchanged frequency in stationary tissue or be ac-
companied by a Doppler shift due to scattering by moving particles in tissue [130].

To understand the physical properties of NIRS one needs to consider the Beer-
Lambert law. The Beer-Lambert law describes the absorption of light as a function
of the properties of the material the light is traveling through (see also Figure 1.2):

6



e

Figure 1.2: Illustration of the Beer-Lambert law.

A = log10
I

I0
= e · c · l (1.1)

where A is the Absorbance (or light extinction), I0 the original light intensity, I
the transmitted light intensity, e the molar absorbivity [Lmol−1cm−1], l the path
length of the light and c the concentration of the compound [molL−1].

The Beer-Lambert law holds as long as photons are either absorbed or trans-
mitted in a straight line directly to the detector (see Figure 1.3: photons 2 and 3,
respectively). Higher substance concentrations may lead to significant light scat-
tering (photon 1) and Equation 1.1 needs to be modified, such that it takes into ac-
count the longer pathways of light (photon 1) and the loss of light due to scattering
(photon 4). The modified Beer-Lambert law, as is given in Equation 1.2, therefore
accounts for the increased pathlength with the term B , called the differential path
length factor (DPF) and a term G , which represents the signal loss due to light scat-
tering [130]:

A = e · c · l ·B +G (1.2)

For some situations it may be sufficient to calculate the change of the concen-
tration of the absorber (∆c). Assuming a constant light scattering loss Equation 1.2
reduces to: ∆A = e ·∆c · l ·B . Estimating the pathlength of light l ·B enables to cal-
culate absolute changes in concentration.

The fact that infrared light between 650 and 950 nm is only weakly absorbed
by biological tissue and that the absorption spectra of oxyhemoglobin (HbO2) and
deoxyhemoglobin (HbR) differ substantially in this range [139], enable to measure
(changes in) concentrations of HbO2 and HbR in vivo [118].

7



1
2
3
4

photons

light source detector

Figure 1.3: Illustration of the modified Beer-Lambert law (This figure is adopted
from [130]).

For further literature we would like to refer the interested reader to the following
classic NIRS papers [98, 130, 131].

1.3 Machine Learning, Signal Processing and Statistical Tools

The following sections will briefly introduce the most important analytical tools,
which were used within this dissertation. This introduction focuses mostly on the
intuitive understanding, rather than mathematical rigorosity or even completeness.
More detailed descriptions and explanations of the only briefly mentioned tools
would go beyond the scope of this document. However there is a variety of excel-
lently written literature available, which we would like to refer the reader to [80, 57,
10, 37].

1.3.1 Statistical Tools

Given two random variables X and Y , with respective means

E [X ] =µX and E [Y ] =µY , (1.3)

their standard deviations σX and σY are defined as

σX =
√

E
[
(X −µX )2

]
σY =

√
E

[
(Y −µY )2

]
. (1.4)

E denotes the expected value of the random variable.
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1.3.1.1 Independent two-sample t-test

The t-statistic was introduced by William Gosset in 1908 [119] and is one of the most
popular statistical tests of today. Two-sample t-tests of independent samples are
used if two separate sets of independent and identically distributed samples are
available and one would like to test the null hypothesis that the means of two nor-
mally distributed populations are equal. It is defined by

t = µX −µY√
1
2

(
σ2

X +σ2
Y

) . (1.5)

1.3.1.2 Covariance

The covariance between the two random variables is then defined by

cov(X ,Y ) = E [(X −E [X ])(Y −E [Y ])] (1.6)

= E
[
(X −µX )(Y −µY )

]
.

1.3.1.3 Pearson’s product-moment Correlation Coefficient

Pearson’s correlation coefficient is defined as the covariance of X and Y divided by
the product of their standard deviations

ρX ,Y = cov(X ,Y )

σXσY
. (1.7)

1.3.1.4 Point-biserial Correlation Coefficient (r-value)

The point-biserial correlation coefficient is a special case of the Pearson product-
moment correlation coefficient and measures the association of a binary random
variable and a continuous random variable. It is defined as

rpb = (µ1 −µ2)

σ

√
n1n2

(n1 +n2)(n1 +n2 +1)
, (1.8)

where n1/2 are the number of examples in groups 1 and 2.

Using Fishers transformation these correlations can be transformed into unit
variance z-scores for each subject j [61] and grand average z-scores can be obtained
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by a weighted sum of individual z-scores over a number of subjects:

z j =
tanh−1(r j )√

m j −3
and z̄ =

∑N
j=1 z jp

N
, (1.9)

where m j is the sample size of subject j and N the total number of subjects. p-
values for the hypothesis of zero correlation in the grand average can now be com-
puted by means of a two-sided z-test.

1.3.2 Classification and Regression

In neuroscience, brain imaging and in particular in BCI scientists are interested to
find significant differences between two or more brain states within the recorded
data due to some carefully chosen paradigm. These brain states need to be found
within the spatial and temporal domains of the data. In recent years machine learn-
ing techniques greatly aided this search by estimating and identifying meaningful
models, which lead to significant advances in the comprehension and detection of
human brain function.

In classification the task is to find a rule, which assigns an N-dimensional data
vector x to one of several classes. Given that only two classes exist, a classifier can be
formalized as a decision function f : RN → {−1,+1}. The decision function may be
linear or non-linear. For the linear case f is a separating hyperplane. A separating
hyperplane is parametrized by its vector w and a bias term b. The label y is thus
predicted by: y = f (x;w,b) = sgn(wT x+b).

While in classification the label y to be predicted takes only discrete values, in
regression the label y is continuously valued, such that f : RN → {−∞,+∞}. As for
the case of classification there also exist linear as well as non-linear regression func-
tions. Within the following subsections we will briefly cover the most popular forms
of regression, namely the classic least squares regression (LSR), `1-regularized least
squares regression (`1-LSR) as well as logistic regression.

1.3.2.1 Linear Discriminant Analysis (LDA)

LDA assumes the classes to be normally distributed with different means µ1 and µ2

but identical covariance matrix Σ with full rank. Assuming these quantities to be
known, the hyperplane, given by the normal vector w, can be calculated by:

w =Σ−1(µ1 −µ2) . (1.10)
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Given that these assumptions hold, the separating hyperplane is Bayes optimal.
However in practice the true means and covariance matrices are not known and
have to be approximated.

1.3.2.2 Linear Programming Machine

The linear programming machine (LPM) can be defined as follows:

minw,b,ξ
1

2
||w ||1 + C

n
||ξ||1 (1.11)

s.t. yi · ((wT xi +b) ≥ 1−ξi , i = 1, ...,n

ξi ≥ 0

Due to the 1-norm optimization of w and ξ, the solution of the LPM is sparse. This
sparsity can be very useful, since by identifying only most important features it leads
to a compact model, which can in many cases lead to superior neurophysiological
interpretations.

1.3.2.3 k-nearest neighbor

The decision k-nearest neighbor (knn) algorithm [30] is based on the distance of
the closest training points within the feature space. The positive integer k defines
how many of the nearest neighbors are considered for the decision. While the knn
algorithm is one of the simplest machine learning algorithms, it represents an im-
portant baseline method for the valuation of more complex algorithms. Figure 1.4
gives an example of how the knn classification is made.

1.3.2.4 Support Vector Machines (SVM)

Support Vector Machines, originally invented by Vapnik in 1995 [29], are so-called
Large Margin Classifiers. Based on the training data, the support vector machine
constructs a hyperplane, such that the distance of the hyperplane to the nearest
training data points is maximal. The training points closest to the hyperplane are
the so-called support vectors and define the parameters of the model.
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Figure 1.4: Illustration of the k-nearest neighbor algorithm: To classify the red trian-
gle the number of nearest neighbors is to chosen to be k = 3. The red triangle would
then be classified as blue (first circle). Note however, if k = 7, the red sample would
be classifed as green (2nd circle).

The optimization problem of the SVM is given as:

minw,b,ξ
1

2
||w ||22 +C

n∑
i=1

ξi (1.12)

s.t. yi · ((wT xi +b) ≥ 1−ξi , i = 1, ...,n

ξi ≥ 0

While in their standard form SVMs are non-probabilistic binary linear classi-
fiers, they can be adapted such that they also suit regression problems [36]. Fig-
ure 1.5 shows a sketch of the SVM.

1.3.2.5 Least Squares Regression

Let the input space be X ∈ Rn×p , where n denotes the number of trials/examples
and p the number of parameters. Given that X T X is nonsingular, the unique solu-
tion is

w = (X T X )−1X T y . (1.13)

Least squares regression (LSR) or ordinary least squares (OLS) models are estimated
by minimizing the residual square error. The Gauss-Markov theorem states that the
least-squares solution is the best linear unbiased estimate. OLS generally results in
models known to have low bias, but a large variance. If one or more predictor vari-
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Figure 1.5: Sketch of an SVM. The support vectors are shown as bold.

ables are correlated (known as near collinearity), the determinant of X T X becomes
almost singular, making w sensitive to random variations in y. The problem is then
known to be ’ill-conditioned’.

1.3.2.6 `2-regularized Least Squares Regression

One possible method to reduce this sensitivity is called `2-regularized Least Squares
Regression (`2-LSR) or Ridge Regression. The problem can be defined as a mini-
mization problem:

min
w

λ

2
||w ||22 +

1

2
||X w − y ||22 (1.14)

In ridge regression a number δ is added to the diagonal elements, i.e. X T X +δI .
By doing so one sacrifices a little bias to reduce the variance of the predicted values
and may therefore improve prediction accuracy.

1.3.2.7 `1-regularized Least Squares Regression

In 1996 Tibshirani proposed `1-regularized Least Squares Regression or least abso-
lute shrinkage and selection operator (lasso) [125]. It is defined as:

min
w

λ

2
||w ||1 + 1

2
||X w − y ||22 (1.15)
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By shrinking or setting some coefficients to 0 their prediction accuracy can some-
times be improved. Due to the sparse nature of the resulting models, the inter-
pretability of results can be greatly improved, since sometimes it can be more desir-
able to identify as few as possible active coefficients having the strongest effects.

1.3.2.8 Logistic Regression

While the term logistic regression suggests otherwise, logistic regression is actually
a classification technique. If formulated as an optimization problem it is given as:

min
w

λ

2
||w ||22 + l (X w |y) , (1.16)

where l (X w |y) and σ(w T xi ) are defined as:

l (X w |y) =
n∑

i=1

{
yi · ln

(
σ(w T xi )

)+ (1− yi ) · ln
(
1−σ(w T xi )

)}
σ(w T xi ) = 1

1+e−wT xi

1.3.3 Model Selection

1.3.3.1 Cross-validation

Cross-validation (CV) [67] is a method for evaluating how well an estimated predic-
tive model generalizes to an independent dataset. Lets consider the first step of a
cross-validation procedure: A given dataset is partitioned into two parts, a training
and a test set. The training set is used to estimate the parameters of a predictive
model, such that it fits the training data as well as possible. This model is then ap-
plied to the test set and its performance measured by an adequate loss function,
such as mean squared error, or otherwise. To minimize the variance of this test er-
ror, this procedure is repeated a number of times. The mean loss and its standard
deviation are usually reported as the result and are called generalization error or ex-
pected risk. Figure 1.6 shows a sketch of a cross-validation scheme with four splits.

While there are multiple ways of partitioning a given data set the most common
method is k-fold CV : the data is split into k disjoint subsets of equal size. The model
is trained then on all subsets except of one, on which it is tested. As before the
procedure is then repeated k times, each time leaving out a different subset, such
that each subset becomes the test set once. Another popular CV scheme is so-called
leave-one-out CV (LOO-CV). Here all data, except of one example (or trial) is used as
the training set and the left-out trial is used as a test set. Also here the procedure
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Figure 1.6: Chronological cross-validation with four blocks.

is repeated until each trial was used as a test set once. However, for large datasets
LOO-CV becomes computationally expensive.

When choosing the appropriate cross-validation technique, one needs to take
into account the exact form of the data, since there are some pitfall that need to be
avoided. For example unbalanced class sizes need to be taken account for by choos-
ing an appropriate loss function. Also non-stationarities in the data, which may
stem from block-design - a common practice in neuroscientific experiments, needs
to be addressed, since this non-stationarity can perturb the assumption of standard
CV techniques that the data is independent and identically distributed (i.i.d.). For
the case of possible non-stationarities a comparison of standard CV with chrono-
logical CV is proposed by [80]. For a recent review of common pitfall of applying
machine learning techniques and their validation, we would like to refer the reader
to [80].

1.4 The Berlin Brain Computer Interface (BBCI)

In the early 70’s pioneers such as Vidal [127, 128] started the field of EEG-based BCI.
Up to the mid 90’s only very few groups were actively working in BCI. Today BCI now
constitutes a diverse field with a large number of groups participating in this field
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Figure 1.7: Number of articles containing the term Brain Computer Interface in the
years from 1970 to today, according to Google scholar

of research (see Figure 1.7 for the growth of publications in the BCI field).

The BBCI group was formed in 1999 and has since then continuously grown.
One of its main principles as compared to other groups at the time was to let the
machines learn instead of the user. Due to this approach it was possible to reduce
calibration times for individual users from many weeks to a only half an hour, before
a BCI feedback session could be initiated. This approach has now been adopted by
most other BCI groups and become a standard procedure in the field. The individ-
ual steps of the SMR-based BBCI setup are sketched below.

1.4.1 Calibration sessions

Before meaningful measurements of brain related potentials can be taken by means
of EEG, the impedances between the electrodes of the EEG cap and the scalp must
be reduced by means of a salt-containing gel. Depending on the number of chan-
nels this setup can take between 20 minutes and 1 hour. After the setup of the EEG
cap, a training session is initiated, where typically three motor imagination tasks are
cued, either by letters or arrows appearing on the screen. The three classes of motor
imaginations were left hand (L), right hand (R) and right foot (F).
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1.4.2 Outlier Removal

Excessive blinking, swallowing, clenching teeth, or severe tiredness may all be un-
desireable sources of noise that can interfere with the acquisition of ’clean’ EEG data
on a trial level during the calibration session and may therefore prevent successful
estimation of covariance matrices and thus potentially harm the training of a BCI
classifier. Furthermore an electric defect, or drying up of an electrode may render
recordings of individual channels useless. It has therefore been an ongoing effort,
within the BBCI to reduce these sources of noise in order to obtain a homogeneous
set of training data. The methods considered include the Mahalanobis Distance of
the variance of each trial and channel as measurement of the outlierness of the trials
among others [56, 71, 70].

1.4.3 Temporal and Spatial filtering

For running any high-speed BCI system, it is of vital importance to identify features,
which predict the intention of the user in a reliable and robust manner. In the con-
text of BCI a high number of features is available and the choice of a small, but stable
set is of paramount importance. Temporal and spatial filtering can help in reducing
numbers of features significantly. We therefore briefly review a number of methods,
many of which are used in the BBCI.

1.4.3.1 Finite Impulse Response Filter

The finite impulse response (FIR) filter is a digital filter and defined by the following
difference equation:

y(t ) = b0x(t )+b1x(t −1)+ ...+bNb x(t −Nb) (1.17)

where x(t ) is the input signal at time t , b the filter coefficients and N the order of the
filter. An FIR filter is inherently stable, since all poles are located at the origin and
thus within the unit circle.

1.4.3.2 Infinite Impulse Response Filter

While the FIR filter depends only on past value of the input signal, Infinite Impulse
Response (IIR) Filters also depend on past output values. In its general form it can
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be written as:

y(t ) = 1

a0

(
b0x(t )+b1x(t −1)+ ...+bNb x(t −Nb) (1.18)

−a1 y(t −1)−a2 y(t −2)+ ...+aNa y(t −Na)
)

(1.19)

or in a compacter form as:

y(t ) = 1

a0

( Nb∑
i=0

bi x(t − i )−
Na∑
j=1

a j y(t − j )

)
(1.20)

One example of a IIR filter, among others is the butterworth filter [23], which we
will use for temporal filtering in many of the following Chapters. The butterworth
filter is designed, such that it does not have any ripples in the passband and thus
particularly useful for the purpose of BCI.

1.4.3.3 Common Average Reference

The Common Average Reference [52] is a very simple method to get rid of the influ-
ence of having one particular reference. Subtracting from the potential Vi of each
electrode i the mean potentials of all electrodes, results in the so-called Common
Average Reference:

V com
i =Vi − 1

N

N∑
i=1

Vi ∀i = 1...N (1.21)

1.4.3.4 Weighted Local Average Reference

As proposed in [94] and [81] the potentials, of a given electrode are subtracted by a
weighted sum of neighboring electrodes either locally or by all available electrodes
(weighted). The weights depend on the inverse linear distance to the electrode in
question. For obvious reasons this method cannot be used for boundary electrodes,
however it can be shown to yield beneficial results, when compared to simpler ref-
erencing methods, such as Common Average Reference or Laplace Filtering.

V lap
i =Vi −

∑
j∈Si

gi j V j ∀i = 1 : N with gi j =
1/di j∑

j∈Si
1/di j

(1.22)

and

V lap
i =Vi −

∑
j∈Si

gi j V j ∀i = 1 : N with gi j =
1/di j∑

j∈Si
1/di j

(1.23)
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for the inclusion of all channels. A very early BCI study on the classification of move-
ment onset in EEG showed superior results for local average referencing [48].

1.4.3.5 Common Spatial Patterns

The CSP algorithm (see e.g. [18, 79, 68]) searches for a matrix W and a vector of n
values 0 ≤ di ≤ 1 which achieves:

WΣ1W > = D and WΣ2W > = I −D, (1.24)

where n is the number of channels and D is a diagonal matrix with entries di . Us-
ing z-transform notation for digital signals, for any trial, the spatio-temporally de-
mixed data is:

f (z) =W H(z) s(z) (1.25)

Where x is the raw EEG signal and H(z) is a diagonal matrix of identical band-
pass filter transforms. The columns of the source to signal transform W −1 are called
the Common Spatial Patterns (CSPs). The CSP decomposition can be thought of as
a coupled decomposition of 2 matrices (for 2 classes) similar to a principal com-
ponents analysis yielding eigenvectors and eigenvalues. As the eigenvalues di are
equal to the power ratio of signals of class 1 by class 2 in the corresponding CSP
filter (eigenvector in i -th column of matrix W ), best discrimination is provided by
filters with very high (i.e. near 1) or very low (i.e. near 0) eigenvalues. Accordingly
CSP projections with the highest 2 and lowest 2 eigenvalues are generally chosen as
features (n = 4).
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CHAPTER 2

A novel dry electrode EEG cap

Electro-encephalography (EEG) is the oldest brain imaging technology, and among
non-invasive methods it still offers the highest temporal resolution. Far from being
a mere research aid, it promises an inexpensive, risk-free means of communication
and neuroprosthetic control for the severely disabled [8, 138]. Recent advances in
Brain Computer Interface (BCI) research have dramatically increased the amount
of information we can extract from EEG over classical averaging and neurofeedback
techniques [35]. Although EEG can monitor brain events very responsively in time,
it suffers from high inter-trial variability and spatial mixing: numerous electrical
sources active at any given time in the brain are superimposed onto the scalp across
distances of over 5 cm [33]. These limitations have led to the assumption that many
electrodes are necessary, and that one needs to average signal features across time
or repeated trials to accurately discriminate mental states. However, as we will see,
these assumptions do not necessarily hold for some paradigms we consider in the
following.

Apart from intrinsic challenges of EEG signal analysis, one of the main obstacles
precluding EEG-BCI from being used in patients’ daily lives is setup encumbrance.
Modern EEG practice, as part of the electrode application procedure known to spe-
cialists as montage, requires tedious application of conductive gel between elec-
trodes and scalp (see left part of Figure 2.1). While recordings in certain clinical
applications may last up to 72 hours, they progressively degrade as the gel dries
leading to a failure of about a quarter of the electrodes within 24 hours and thus
requires daily maintenance [40].

In this Chapter we introduce a new EEG cap design with a low number of elec-
trodes and show that the much sought-after dry electrode technology can be sur-
prisingly frugal and accurate enough for single trial discrimination. Dry electrodes
have already been proposed since the early 90’s [51, 121] and early pioneering work
of capacitive electrodes had already begun in the early 70’s [88]. Here we show the
results of the first EEG-based BCI online study with dry electrodes.

Dry electrodes bypass gel application, thereby reducing set-up time. Fewer elec-
trodes mean less time spent checking individual signal quality and adjusting the
cap. Our new design can be seen in Figure 2.2c. It consists of only 6 dry unipolar
electrodes and one dry reference electrode. The cap applies a moderate amount of
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Figure 2.1: on the left: preparation of a gel cap, on the right: after the experiment

pressure upon the scalp via an array of gold-plated contacts which do not cause dis-
comfort to the users as reported by our experimental subjects. The sparse electrode
arrangement and slightly reduced ’dry’ signal quality places the onus on robust sig-
nal processing for effective BCI.

The advent of machine learning in the field of BCI has led to significant ad-
vances in real-time EEG analysis. While early EEG-BCI efforts required neurofeed-
back training on the part of the user that lasted on the order of days [9] in current
practice it suffices to collect data in which the patient is cued to perform one of a
small set of mental tasks called classes. After setup and less than 30 minutes [12]
of training data collection, a classification algorithm analyzes brief recordings and
learns to discriminate mental tasks in less than 5 minutes of computation time,
thereby relocating adaptation from the user to the computer. Robustness of BCI
decoding algorithms, re-use of classifiers [72] and artifact removal have benefited
from significant research effort [35].

As already discussed in Section 1.4, successful EEG analysis requires both tem-
poral (filtering) and spatial (source-localizing) decomposition. The current Berlin
Brain Computer Interface consists of a heuristic search of EEG frequency bands
and time intervals which maximize class discrimination, as a temporal decompo-
sition step. It is followed by an automatic, signal driven source localization algo-
rithm termed Common Spatial Pattern (CSP) [69, 35] which correlates spatial ac-
tivity within a class while concurrently discriminating this correlation pattern from
that of another class. The final step is an algorithm which performs automatic dis-
crimination (i.e. classification) based on features generated by the spatio-temporal
decomposition. As has been shown [12], the frequency bands chosen, the time
intervals and the spatial patterns are consistent with known neurophysiology of
movement imagination, provide excellent discrimination and, as shown in this study,
work well despite noise in the signal and sparse recording sites. Furthermore, the
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Figure 2.2: Signal spectra and electrode placement: a) Typical signal spectrum from
proposed dry electrode (each trace corresponds to averaged spectra for each class).
b) Comparable signal from conventional electrode with electrolyte gel (same sub-
ject, same conditions). c) Illustration of dry cap. d) Contralateral CSPs of left/right
classes from full cap and location of 6 dry cap electrodes.
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Figure 2.3: dry electrode prototype

analysis method required in order to maximize information gain from EEG, as evi-
denced by our investigative study, can be both straightforward and effective.

2.1 Development of dry electrode EEG cap prototypes

The impedances of dry electrodes are significantly higher than those of wet ones.
Ensuring functionality of dry electrodes depends critically on the contact they make
with the scalp surface. If impedances of individual electrodes are similar in magni-
tude, the external noise sources, that rise linearly with the impedances on individ-
ual electrode levels, can be minimized significantly by referencing electrodes with
a common reference. This effect is due to the characteristics of the external mea-
surement noise. It is instantaneous and global. It therefore cancels out completely
by referencing, given that impedances are the same. While this assumption does
not hold true completely, it is of vital importance that all electrodes maintain con-
stant contact with similar pressures, while at the same time not hurt the wearer of
the cap. Since the metal electrodes have sharp edges as can be seen in Figure 2.3
a complex mounting was necessary to be designed. A triangular arrangement of
electrodes was found and combined a number of joints at various positions.

The first prototype fulfilling these requirements can be seen in Figure 2.4. A
second, more advanced version was designed in collaboration with fast part GmbH,
Berlin, Germany, as can be seen in Figure 2.5. The design and dry electrode technol-
ogy resulted in an international patent [108], two journal publications [107, 55] and
was demonstrated at the conference of Neural Information Processing Conference in
2009.

23



Figure 2.4: First prototype of the dry electrode cap

Figure 2.5: Second prototype of the dry electrode cap
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2.2 High Speed BCI with dry electrodes

The results of our 1D cursor control paradigm [13], previously run with a full (64
gel electrode) cap [12], was repeated in this study such that dry cap performance
could be compared for the same subjects. 5 healthy subjects (4 male, 1 female) par-
ticipated. Two subjects were initially tested, however due to particularly thick and
full hairstyle no continuously stable signal could be extracted, and thus they were
excluded from the study. For 3 of the 5 selected subjects the previously collected
data was used, while for the other 2 the paradigm was reproduced. All subjects were
volunteers drawn from the members of the laboratory, and all had prior experience
with the paradigm. As it was judged that through the use of dry electrodes there was
minimal increase in physical, psychological and social risk to the subjects no further
ethics board approval was needed than that already in use for gel electrodes (Charité
- Universitätsmedizin Berlin Ethics Commission). As per our standard EEG proce-
dure, which may involve skin preparation, in the unlikely case of a minor scratch,
disinfectant and a first-aid kit were on hand. Subjects were instructed to end the
session if they felt any discomfort. No injury of any kind occurred and no serious
discomfort was reported. The subjects gave verbal consent to the eventual dissem-
ination of results and are identified by randomized initials herein.

While EEG cap setup normally requires an attendant and about 30 minutes of
preparation, the dry cap can be simply placed on the head and manually adjusted
even by the subject herself in less than 2 minutes. For the ’dry cap’ experiments
a 14-channel DC amplifier set-up (BrainAmp128DC, Munich, Germany) was used
(6 EEG channels and 4 bipolar artifact measure channels). In the first part of the
experiment (’calibration session’), a sequence of 80 left/right cues was presented
visually by means of a letter which appears in the middle of the computer screen.
The subjects were asked to imagine the cued class without moving either limbs or
the eye. All subjects used left/right hand movement imagination except one subject
who used left hand/ right foot imagination since the earlier study [12] predicted
this combination to be optimal for that subject. The cues were presented for 3.75
seconds with an inter-cue relax interval of 1.75±0.5 seconds. Electro-oculo-grams
(EOG) were measured using 2 standard (gel) electrodes per eye (one lateral to each
eye, one above the left eye, one below the left eye) the difference between each
pair being amplified as to obtain vertical and horizontal components, while sur-
face bipolar electromyogram (EMG) electrodes where placed on the Flexor Carpi
Radialis. As one of the subjects used right foot imagination for one class EMG was
measured from the Gastrocnemius. Apart from off-line checks, electromyograms
are monitored online and the maximal co-contraction EMG level recorded: no tri-
als were excluded. The average dry electrode impedance measured was 78.6±30.0
KΩ.
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The dry cap BCI system was thus ready for use after roughly 15 minutes: 2 for
electrode preparation, 8 for calibration data collection and 5 minutes for the classi-
fier algorithm to learn from the calibration data. For habitual use, calibration could
be eliminated and classifiers reused [72]. In a second part of the experiment (feed-
back session) subjects were asked to move a dot displayed on the screen to a target
represented by a bar on either the right or left side of the screen by imagining the
corresponding class. The dot movement provided continuous performance feed-
back to the subjects. Each subject performed 400 trials divided into 4 sets allowing
him/her a brief pause for mental relaxation.

A semi-automatic search was performed for the estimation of the event-related
desynchronization (ERD) time interval and for the frequency band whose power
discriminates most between classes. For each subject the heuristic generally selects
the so-called mu- and beta- rhythms (8− 25 Hz, Figure 2.7 a,b) in the motor cor-
tex [12, 102]. The discriminating frequency band search determined a band-pass
filter, which attenuated signal amplitude outside these bands and thereby accom-
plishing a temporal demixing.

The resulting filtered multivariate signals, segmented in the ERDs time interval,
are used to compute two covariance matrices Σ1 and Σ2 from the calibration data.
These are then fed to the CSP algorithm (see Section 1.4.3.5).

The decomposed time-varying multivariate signal y(t) can be easily transformed
into an n-vector of log-variances, by estimating ỹ = ln

(
var

(
y(t )

))
over a desired time

window. The elements of this vector are the features that the classifier learns to asso-
ciate with a given class. The classifier used was Linear Discriminant Analysis (LDA),
which assigns linear weights to features as to provide a separating hyper-plane be-
tween classes in feature space. In the feedback sessions the time window length
used was adjusted to subject preference for cursor responsiveness and ranged from
600 to 1000 msec. The speed of the cursor is proportional to the continuous linear
weighted sum of features as computed by the LDA output.

In order to rule out that the reported ITRs are due to muscle artifact, we analyze
whether a classifier based on EOG or EMG alone could achieve a significant ITR.
For this, unfiltered EOG and EMG signals were segmented into 5 windows, each
500 msec long, starting after cue presentation for feedback data. The log variance of
these segments provided features (i.e. 5 segments of 2 EOG resp. EMG channels = 10
features) that were classified by LDA in a leave-one-out fashion, i.e. each segmented
feedback trial is labeled by a classifier trained on all other trials.
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2.3 Online BCI feedback results with dry electrodes

The main object of the study was to compare the Information Transfer Rate (ITR)
obtainable with the dry cap with that previously established for the full cap for an
existing paradigm using the same subjects. Classification results are summarized in
Table 2.6. Feedback - Gel Cap (top) reports feedback data from an earlier study [13].
The first line shows the bit/min information transfer rate of 1D cursor control aver-
aged over 8 sessions consisting of 25 trials each. The second line gives the average
time per trials and the peak performing session result. Feedback - Dry Cap (mid-
dle) as above. Note that here 4 sessions of 100 trials each were evaluated. Also the
peak performance was computed as the best 25 consecutive trials. The lower part
(bottom) of the table summarizes the relative loss in performance of the respective
setups for the subjects. A negative sign indicates lower performance of the dry elec-
trode cap. % of MVC stands for the power of feedback trials, as compared to the
maximum voluntary contraction (MVC). EMG-fb stands for the EMG activity in the
activity in the actual feedback trials, as compared to the preparatory phase of each
feedback trial, EMG-pre.

The locations of the 6 channels used were determined with the aid of a sensitiv-
ity analysis on full cap data similar to [41]. After a CSP matrix W is calculated, the
row with the lowest sum of absolute values is labeled as the least-significant chan-
nel in terms of classification. After elimination of this channel from further analysis,
the entire CSP/LDA classification procedure can be re-run. By performing channel
elimination iteratively, we can approximate the expected error for any best m < n
channels and derive a relative ranking of channel relevance (see Figure 2.7).

While subject experience and proper instruction can alleviate the confounding
role of EMG and EOG by encouraging performance in which no such activity can be
detected (2 of the subjects had no detectable artifact) in most subjects, artifacts are
unavoidable as they are involuntary in nature. The results in Table 2.6 (lowest part)
show that classification based on EOG/EMG is either close to chance level, or much
less accurate than the classification based on EEG. Furthermore note that in trials
in which EOG or EMG analysis erred in classification, EEG can still be consistently
classified with the same accuracy as in other trials.

With only 6 dry electrodes approximately placed above the motor cortex (Fig-
ure 2.2 d), the information transmission rate achieved a peak of 36.5 bits/min (on
par with any EEG-BCI performance reported) and is on average 30.8% slower than
previous experiments with 64 wet electrode caps on the same subjects.

Despite its simplicity the CSP algorithm and extensions thereof [35, 79] remains
among the highest consistent performers among the many EEG-BCI analysis tech-
niques developed and attempted [16]. For general scientific interest, a BCI algo-
rithm needs to do more than simply show a high ITR. Critical is the identification
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Figure 2.6: Results of feedback sessions for dry vs. full cap.
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Figure 2.7: Relationship of ITR to number of electrodes and position: a) Predicted
error rates vs. number of channels for different subjects (colored lines) and average
(black line). b) electrode importance ranking averaged across subjects, plus dry cap
electrode placement.

and description of the physiological origin of signal that provides for discrimina-
tion. It would be useful to perform EEG source localization, i.e. a spatial de-mixing
of the signal which provides for electrical dipole locations back-calculated from
the recorded signal. Using algorithms designed for this particular purpose, it has
been shown that motor imagery based BCI does indeed localize to the motor cor-
tex [137]. Although source localization from only 6 channels of recording cannot be
done without an unacceptable loss in accuracy, we had full-cap data from the same
paradigm at our disposal.

Interestingly, the CSP algorithm was originally conceived to be a signal-driven
source localization technique which can locate known dipole sources [69]. As such,
the primary CSP patterns of the full-cap data for left- and right- classes do indeed
show highest sensitivity around the contra-lateral motor cortical areas (compare
Figure 2.2 and Figure 2.7) as would be expected from basic motor neurophysiol-
ogy. Further evidence is gained by simply asking the question: if we only had m
electrodes available, where should they be placed in order to maximize classifica-
tion? We performed a sensitivity study where the electrode that least contributed to
the CSP-based classification was iteratively removed from the analysis. Results are
shown in Figure 2.7. The best placement for electrodes varies from subject to sub-
ject but is fundamentally fronto-parietal and bilateral (i.e. above the motor cortical
areas). Note also that for at least one subject the expected 6-channel performance
is low, as was confirmed in the dry cap experiment. Since potentials propagate per-
pendicularly from the folded cortical surface, varying anatomy and cranial electri-
cal properties among subjects means that one cannot just place electrodes ’above
the motor cortex’ and expect maximal performance. However, our study does show
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that such a simplifying strategy works surprisingly well, based on a ranking of elec-
trode location relevance (see Figure 2.7) averaged across subjects. Individualized
electrode placement will likely improve performance, but not without considerable
cost, however. Further technical development of the electrode design - and spe-
cialized research - may also be necessary in order for the recording pins design to
improve in such a manner that they bypass all hair-types and make consistent con-
tact with the scalp. The subjects tested were not chosen with any such criteria in
mind and good results were obtained from 5 out of the first 7 people tested.

EEG analysis, whether it is classification or localization, can be compromised
by EOG and EMG even if these are produced involuntarily. However, arm muscle
activation or bodily movement must be considerably large in order to affect EEG
[33, 20]. In our experiments, no movement is visible and measured hand EMG mag-
nitudes averaged 1.5% of maximum voluntary contraction (MVC). Note that this is
not necessarily phasic activity but mostly tonic co-contraction. EMG levels during
cue presentation (i.e. movement imagination) are from -1.9% to 9.5% greater than
EMG levels during the brief rest period between trials. A look at the last rows of
Table 2.6 shows that EMG classification accuracy correlates with the magnitude of
this difference (on the order of 0.15% of MVC) rather than the overall EMG magni-
tudes. Being based on overall differences so slight, EMG affords significantly poorer
classification than EEG.

EOG represents mainly ocular muscle activity but can also partially reflect facial,
tongue and jaw muscle activity. As EOG electrodes are closer to the scalp than EMG
electrodes, their activity, even if moderate, is more likely to represent an artifact in
EEG. The EMG/EOG classifiers operated on feedback trial data and not calibration
trial data, may have contained other types of eye movement patterns due to the
absence of visual target presentation.

Prior analysis of artifact influence in BCI experiments has shown that the type of
movement can be determined earlier and more accurately in EEG than in EMG/EOG
[14]. That EEG, in this study, still indicates mental states in trials and subjects in
which artifact, whether EMG or EOG, cannot discriminate the mental class further
reinforces the idea that the classifier responds mainly to cortical activity patterns,
in a physiologically expected location and frequency range.

2.4 Bristle sensors

In 2011 a study was published by Grozea at al. [55], where a novel dry electrode is in-
troduced and coined bristle-sensors. These electrodes consist of metal-coated poly-
mer bristles, as can be seen in Figure 2.4. As already stated, good physical contact
between electrodes and the scalp leads to low impedances and is of paramount im-
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Figure 2.8: On the left: bristle sensor prototype. On the right: Flexibility of the bris-
tles. The figure is reproduced from Grozea et al. [55].

portance for the quality of the EEG signal during acquisition. However, at the same
time user discomfort needs to be kept at a minimum. Due to the flexible nature of
the bristle-sensors, the pressure they exert is distributed uniformly and therefore
the reliability of the contact is also increased.
Classical wet electrodes were measured in close proximity to the dry electrodes. A
typical sample of time domain simultaneous recordings can be seen on the left part
of Figure 2.9. Furthermore a number of standard EEG paradigms were tested to in-
vestigate the signal quality: The α-rhythm of the occipital cortex was recorded and
compared for eyes open and eyes closed conditions. Its grand average of four subjects
is depicted on the right panel of Figure 2.9. A standard auditory oddball paradigm
was performed. The N100 as well as P300 components were stimulus aligned, and
baseline corrected. One-sample t-tests revealed highly significant p-values in the
range of 10−12-10−2 for the individual subjects.
Finally a small survey was conducted among the participants of the study and most
of them agreed that the bristle-sensors are more comfortable to wear, as compared
to the pin-based electrodes introduced earlier.

2.5 Conclusions

The implications of dry electrode technology are significant, both in terms of prac-
ticability of non-invasive BCI for the severely disabled and in terms of a robust, af-
fordable brain imaging technique for long-term neuroscience experiments (some
sessions lasted over 5 hours). Clinical applications may include daily EEG monitor-
ing for epilepsy or narcolepsy. Regarding healthy subjects, dry-electrode BCI opens
a more practical outlook for Human-Machine Interaction, for monitoring alertness,
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Figure 2.9: Left: Signal quality assessed by direct comparison with simultaneously
recorded signal with gel-based electrodes: Sample time domain signal accompa-
nied by signal from a gel-based electrode on a neighbor location, after bandpass
filtering 1 to 45 Hz; Alpha rhythm is visible from t = 4000ms to t = 6000ms. Right:
Spectra of the EEG signal recorded with the prototype for the eyes open/eyes closed
conditions, averaged over all subjects with available data. It shows a peak at 10Hz
for the eyes closed condition. The figure is reproduced from Grozea et al. [55].

emotion or mental workload.

Here the attempt was made of maximizing the practical value of BCI from the
fewest number of recording channels possible. The scientific implications of this
approach are that by careful analysis and electrode placement effective functional
imaging of the awake, active brain can be achieved non-invasively and in a fairly
simple, cost and time-effective manner. Dry electrodes may be sparsely placed else-
where on the scalp as to focus on other cortical areas that are not motor-related.

The state of current EEG-BCI research makes use of electrophysiological phe-
nomena that contribute to accurate discrimination among mental states in single
trials. Miniaturization of EEG equipment as well as the wearability and convenience
of novel EEG systems will be a vital factor in determining whether EEG-based re-
lated BCI technology will be accepted by the wider community and thus gain wide-
spread use. Future research will focus on further improvements of EEG sensor and
data analysis technology and strive towards simple devices that learn to adapt to a
user or patient and allow communication even in highly noisy and non stationary
real world scenarios.
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CHAPTER 3

Ensemble Methods for BCI

Classical BCI-systems relied on subject-training or operant conditioning [8],[39]. As
discussed before, lately machine learning methods have been introduced for BCI
and greatly helped in reducing subject-training [11, 91]. Finding accurate subject-
dependent temporal and spatial filters is of paramount importance for achieving
high information transfer rates in ERD related BCI systems. Very recently the reuse
of old CSP-patterns of expert BCI subjects has been realized [72] and thus feed-
back sessions without a preceding calibration session could be started. However,
for naïve users there is still the need of a calibration session to estimate parameters
for spatial filters, temporal filters and classifiers.
In this Chapter we will explore how ensemble learning can assist in estimating suit-
able classifiers for BCI. The following Chapter is split into two parts. Part one En-
semble Methods for subject-dependent BCI (Section 3.2) shows how ensemble meth-
ods can help in the estimation of temporal filters for subject-dependent classifiers.
The second part Ensemble Methods for subject-independent BCI (Section 3.3) shows
that it is possible and feasible to use an ensemble methods based approach to ob-
tain a subject-independent classifier by formulating an optimization problem that
can be solved by various regression and classification methods. We show that `1-
regularized regression and `1-regularized linear mixed effects models (Section 3.3)
are a good choice to fulfill this task.

However before we take a closer look at the two main parts of this Chapter, the
two large datasets, which are exploited for this endeavor are introduced.

3.1 Available Data and Experiments

We consider two different sets of BCI data and through both datasets, different as-
pects of our approach will become apparent.

The first (dataset A) consists of 83 BCI experiments (sessions) from 83 individ-
ual subjects, where each session consists of 150 trials. This results in a total of 12450
trials. Our second dataset (dataset B) consists of 90 sessions from 44 subjects. The
number of trials of a single session varies from 60 to 600 trials. Table 3.1 gives the
exact details of how the trials are distributed within sessions (experiments) and sub-
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number of datasets/subject 1 2 3 5 8 9 13
occurance 32 5 3 2 1 1 1
percentage [%] 39.0 11.0 11.6 12.5 6.8 8.0 11.1

Table 3.1: The first row gives the numbers of experiments that exist for a single sub-
ject, while the second row shows how often this occurs. Third row shows percentage
of trials in that category.

jects. In other words, our first dataset can be considered to be balanced in the num-
ber of trials per subjects and sessions per subject. Our second dataset is unbalanced
in this sense.

As one may expect, the balanced dataset makes it easier to build a zero-training
classifier, since not only we do not need to correct for the uneven number of trials
per subject but also because we have a larger base of subjects. That enables us to
obtain a ’clean’ model. However, the unbalanced dataset enables us to examine how
individual sessions of the same subject affect the estimation of our model and leads
to a more thorough understanding of the underlying processes.

Each trial consists of one of two predefined movement imaginations, being left
and right hand, i.e. data was chosen such that it contains only on these two classes,
although originally three classes were cued during the calibration session, being left
hand (L), right hand (R) and foot (F). 45 EEG channels, which are in accordance with
the 10-20 system, were identified to be common in all sessions considered. The data
were recorded while subjects were immobile, seated on a comfortable chair with
arm rests. The cues for performing a movement imagination were given by visual
stimuli, and occurred every 4.5-6 seconds in random order. Each trial was refer-
enced by a 3 second long time-window starting at 500 msec after the presentation of
the cue. Individual experiments consisted of three different training paradigms. The
first two training paradigms are visual cues in form of a letter or an arrow, respec-
tively. In the third training paradigm the subject was instructed to follow a moving
target on the screen. Within this target the edges lit up to indicate the type of move-
ment imagination required. The experimental procedure was designed to closely
follow [13]. Electromyogram (EMG) on both forearms and the foot were recorded
as well as electrooculogram (EOG) to ensure there were no real movements of the
arms and that the movements of the eyes were not correlated to the required mental
tasks.
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3.2 Ensemble Methods for subject-dependent BCI

Various ways of choosing the temporal filters have previously been proposed. It
could be set globally, for example within the α- or β-band. However, if one exam-
ined the calibration data of individual subjects, one would find that the frequency
ranges at which the most significant differences occur, vary from subject to subject
and that finding the exact frequency ranges would enhance overall classification
rates significantly (see also Figure 3.2). To this end automatic heuristics have been
developed recently to optimize this task (see Algorithm 1) [11, 91].

In the following approach, we employ a multi-classifier system (MCS), based on
a predefined filter-bank of temporal filters and apply it to dataset B, that consists of
90 sessions from 44 subjects. As previously stated it comprises 2-class experiments
consisting of left and right hand movement imaginations. Our results indicate that
our novel approach is a superior alternative to existing methods since it is inherently
immune to overfitting and achieves a highly competitive performance [42].

3.2.1 Methods

3.2.1.1 Selection of a Frequency Band

Before introducing the novel, ensemble based approach, we would like to briefly
review a popular heuristic, which has proven to be very useful in detecting the most
discriminant frequency range for given subjects, if enough calibration data is at
hand [18]. Its pseudo code is given by Algorithm 1. However, a less formal descrip-
tion is given here:

1. Use Laplacian or bipolar channels, from motor cortex related electrodes

2. For each trial, channel and frequency in the range from 7 to 35 Hz, calculate
the log-bandpower

3. Calculate the correlation coefficient between the log-bandpowers and their
true labels

4. Find the frequency with the highest correlation coefficient and broaden the
band step-wise in both directions, until the next frequency bin is smaller than
5% of the peak

Note, that the algorithm works best if only few channels are used. A good choice
is, e.g., to choose C = {c1, c2, c3} with ci being one from each motor-related areas of

the left hand, right hand and foot with max
√∑

f (scorec ( f ))2 [18].

35



Require: Let X(c,i ) denote trial i at channel c with label yi and let C denote the set
of channels.

1: dBc ( f , i ) ← log band-power of X(c,i ) at frequency f ( f from 5 to 35Hz)
2: scorec ( f ) ← corrcoef

(
dBc ( f , i ), yi

)
i

3: fmax ← argmax f
∑

c∈C scorec ( f )

4: score∗c ( f ) ←
{

scorec ( f ) if scorec ( fmax) > 0

−scorec ( f ) otherwise
5: fscore( f ) ←∑

c∈C score∗c ( f )
6: f ∗

max ← argmax f fscore( f )
7: f0 ← f ∗

max; f1 ← f ∗
max

8: while fscore( f0 −1) ≥ fscore( f ∗
max)∗0.05 do

9: f0 ← f0 −1
10: while fscore( f1 +1) ≥ fscore( f ∗

max)∗0.05 do
11: f1 ← f1 +1
12: return frequency band [ f0, f1]

Algorithm 1: Selection of a discriminative frequency band, reproduced from [18]

Filter bank Two idle rhythms of the postcentral somatosensory and precentral
motor cortex, namely theµ-rhythm (9-14 Hz) and beta band (16-22 Hz) are found in
healthy adults. Preparation of movements or mere imaginations of those can lead
to suppression of the idle rhythms contralaterally [100]. On an individual subject
level, the µ and β-rhythms have different modulation frequency ranges as well as
differing (de-)synchronization strengths. Machine learning techniques have been
shown to be a viable approach in finding optimal subject-dependent temporal fil-
ters. Here we a present a different approach, where we generate a filter-bank, con-
sisting of 9 different band-pass filters (see Figure 3.1). The temporal filters are de-
signed by using prior neurophysiological knowledge and experience from BCI ex-
periments: While most subjects show optimal performance with µ-rhythm tempo-
ral filters, some show optimal performance with β-band filters. The choice of the
individual filters in our filter-bank approach reflects these considerations. For each
temporal filter we calculate a spatial filter and process the data in parallel as can be
seen in Figure 3.2.

3.2.1.2 Setup of the ensemble

3.2.1.3 Validation

Each dataset is split into two chronological halves. A chronological split of the data
is proposed, since this represents a setup that is very similar in nature to an actual
experiment, where first a training session is obtained and then used to optimize
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7−30

7.5−14

10−14 16−25

9−12 17.5−20.5

11−13 19−22 26−34

frequency [Hz]
5 10 15 20 25 30 35

Figure 3.1: Frequency ranges of all temporal filters, used in the ensemble.

Figure 3.2: The movement imagination data of a given subject is processed by
predefined temporal filters in parallel, and subsequently filtered by a spatial filter,
which was obtained by training data of that subject) and finally classified, once the
spectral power has been estimated. The classifier outputs are then combined via a
gating function.
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frequency [Hz] test loss [AOC*100] best performance [%]
7.5−14 12.4 16.5
11−13 19.6 9.9
10−14 12.8 30.8
9−12 18.6 11.0
19−22 42.9 1.1
16−22 31.8 6.6
26−34 46.4 2.2
17.5−20.5 41.4 2.2
7−30 14.8 19.8

Table 3.2: Summary of the performance of each temporal filter, we chose to include
for the ensemble. test loss gives the cross-validated median classification loss over
all subjects. best performance gives the percentage of datasets for which the given
frequency band performed best. Note that for seemingly unsuitable filters, some
datasets score their best validation loss.

subject-dependent filters to optimize the BCI performance. In other words, the al-
gorithm was trained on the first half and validated on the second. The outputs for a
single trial are given as X ∈Rd×t , where d is the number of temporal filters and t the
number of trials. The ensemble mean ŷm = 1

d

∑d
j=1 X performs surprisingly well for

many ensemble problems in general [106] as well as for the problem we considered
here.

3.2.2 Results

Each LDA output for a given trial indicates how far the feature is from the hyper-
plane and can thus be interpreted as how confident a classifier is. In this sense the
weighting of the individual classifiers is already optimal. It is therefore not surpris-
ing that the ensemble mean yields the best results, as can be seen from Table 3.3. As
can also be seen from Table 3.3, the heuristic performs very well for good subjects,
while for subjects, where the bandpower differences are not so well detectable, a
broadband CSP performs favorably. Errors are given as area over the curve (AOC) of
the receiver operating characteristic (ROC) [143].

3.2.3 Discussion and Conclusions

The principal aim of this work is to make classifier tuning as automatic and fast as
possible. In this sense the ensemble method obviates the need of any parameter
estimation in the domain of temporal filters.
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csp[7-30] cspauto emean emax ema j emed
25%-tile 7.2 4.1 3.6 6.8 24.1 5.1
median 14.8 15.5 11.2 17.3 43.8 11.3
75%-tile 31.7 36.7 30.7 32.7 64.9 31.4

Table 3.3: Results for two baselines and four ways to combine the outputs of the
ensemble members. Errors are given as [AOC*100].
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Figure 3.3: The panel on the left shows the resulting loss of 4 different frequency
bands, data is sorted by the mean performance of all bands. The panel on the right
shows the test loss for each individual experiment for the best ensemble method
(mean), versus the classical procedure, with the automatic heuristic.
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The results of the ensemble of temporal filters show that that for small num-
bers of training trials, or for subjects, where the detection of the correct frequency
band is difficult, it is possible to improve classification accuracy, since heuristics
can fail. By using the ensemble we exploit prior information from neurophysiology
and BCI classifier calibration experience and let the ensemble of classifiers decide
which band scores the highest confidence at minimal computational cost. While
the proposed combination of classifier outputs can be realized in simple and effec-
tive manner, it is also less prone to overfitting.

It would be unrealistic to claim that the data presented here can be seen as an
unbiased sample of society, as only successful BCI subjects are likely to participate
in more than one experiment. However, since most of the BCI community is inter-
ested in well performing subjects, the results presented here should be of interest.
Furthermore, when possible we look at individual subject performance as well as
experiment performance, as to reduce this bias as much as possible.

It remains to be seen, whether by this method, the resulting architecture is more
robust to nonstationarities, which may occur over long feedback sessions. Also in
the future this could be easily tested by applying the presented method to datasets
where non-stationarities are known to exist or by putting the method into practice
within a feedback environment.

3.3 Ensemble Methods for subject-independent BCI

A time consuming step in the preparation of a BCI system is the required individu-
alized adaptation to the BCI user, which involves approximately 30 minutes of cal-
ibration for assessing a subject’s brain signature. Here we aim to also remove this
calibration procedure from BCI setup time by means of machine learning. In par-
ticular, we harvest a large database of EEG BCI motor imagination recordings (83
subjects, dataset A) for constructing a library of subject-specific spatio-temporal
filters and derive a subject independent BCI classifier. Our offline results indicate
that BCI-naïve users could start real-time BCI use with no prior calibration at only
a very moderate performance loss.

3.3.1 Introduction of ensemble methods for zero training

Modern BCI systems require the recording of a brief calibration session during which
a subject conceives a fixed number of brain states, say, movement imagination and
after which the subject-specific spatio-temporal filters (e.g. [18]) are inferred along
with individualized classifiers [35]. Recently, first steps to transfer a BCI user’s filters
and classifiers between sessions was studied [72] and a further online-study con-
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firmed that indeed such transfer is possible without significant performance loss
[74]. In the following sections we will go one step further in this spirit and propose
a subject-independent zero-training BCI that enables both experienced and novice
BCI subjects to use BCI immediately without calibration.

Our offline study applies a number of state-of-the-art learning methods (e.g.
SVM, Lasso etc.) in order to optimally construct such one-size-fits-all classifiers
from a vast number of redundant features, here a large filter bank available from 83
BCI users. The use of sparsifying techniques specifically tell us what are the interest-
ing aspects in EEG that are predictive to future BCI users. As expected, we find that
a distribution of different µ-band features in combination with a number of char-
acteristic common spatial patterns (CSPs) is highly predictive for all users. What is
found as the outcome of a machine learning experiment can also be viewed as a
compact quantitative description of the characteristic variability between individ-
uals in the large subject group. Note that it is not the best subjects that characterize
the variance necessary for a subject-independent algorithm, rather the spread over
existing physiology is to be represented concisely. Clearly, our procedure may also
be of use apart from BCI in other scientific fields, where complex characteristic fea-
tures need to be homogenized into one overall inference model.

In the following we present the ensemble learning algorithm, consisting of the
procedure for building the filters, the classifiers as well as the gating function, where
we apply various machine learning methods. Interestingly we are able to success-
fully classify trials of novel subjects with zero training suffering only a small loss in
performance. Finally we put our results into perspective.

3.3.2 Generation of the Ensemble

The ensemble consists of a large redundant set of subject-dependent common spa-
tial pattern filters (CSP cf. [18]) and their matching classifiers (LDA). Each dataset is
first preprocessed by 18 predefined temporal filters (i.e. band-pass filters) in parallel
(see upper panel of Figure 3.4). A corresponding spatial filter and linear classifier is
obtained for every dataset and temporal filter. Each resulting CSP-LDA couple can
be interpreted as a potential basis function.

To give an example, let us consider our balanced dataset, which we introduced
in Section 3.1. The design matrix X and targets y for the regression are generated
as follows: Each trial of each subject is first processed by 18 predefined band-pass
filters, CSPs and then linearly classified. Since we have 83 subjects with 18 classi-
fiers each, the total number of features is 18 ·83 = 1494 ⇒ β ∈ R1494. Each of the 83
subjects performed 150 trials, therefore we have 150 · 83 = 12450 data points. The
data matrix X and the targets y have thus the dimensionalities X ∈ R12450×1494 and
y ∈R12450. Note that contrary to the usual use case of `1-regularization, our regres-
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Figure 3.4: 2 Flowcharts of the ensemble method. The red patches in the top panel
illustrate the inactive nodes of the ensemble after sparsification.
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sion problem is not ill-posed, i.e., in our case, n > p.

Finding an appropriate weighting for the classifier outputs of these basis func-
tions is of major importance for the accurate prediction. We employed different
forms of regression and classification in order to find an optimal weighting for pre-
dicting the movement imagination data of unseen subjects[11, 14]. This processing
was done by leave-one-subject-out cross-validation, i.e. the session of a particu-
lar subject was removed, the algorithm trained on the remaining trials (of the other
subjects) and then applied to this subject’s data (see lower panel of Figure 3.4).

3.3.3 Temporal Filters

We identified 18 neurophysiologically relevant temporal filters (see left part of Fig-
ure 3.7, of which 12 lie within the µ-band, 3 in the β-band, two in between µ- and
β-band and one broadband 7−30Hz. In all following performance related tables we
used the percentage of misclassified trials, or 0-1 loss.

3.3.4 Final gating function

The final gating function combines the outputs of the individual ensemble mem-
bers to a single one. This can be realized in many ways. For a number of ensemble
methods the mean has proven to be a surprisingly good choice [106]. As a baseline
for our ensemble we simply averaged all outputs of our individual classifiers. This
result is given as mean in Table 3.5.

Classification and Regression We employ various classification methods such as
k Nearest Neighbor (kNN), Linear Discriminant Analysis (LDA), Support Vector Ma-
chine (SVM) and a Linear Programming Machine (LPM), all of which already intro-
duced in Section 1.3.2.
Furthermore, we also performed classic least squares regression (LSR in Table 3.5),
as well as quadratic regression with `1 regularization. For the dataset we consider it
can be expressed as

argmin
β(k)

i j

∑
x∈X \Xk

(
hk (x)− y(x)

)2 +α
√√√√ B∑

i=1

∑
j∈S\Sk

∑
x∈X \Xk

ci j (x)2

(
B∑

i=1

∑
j∈S\Sk

|β(k)
i j |+ |b|

)
(3.1)

hk (x) =
B∑

i=1

∑
j∈S\Sk

β(k)
i j ci j (x)−b ,

where ci j (x) ∈ [−∞;∞] is the continuous classifier output, before thresholding,
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obtained from the session j by applying the bandpass filter i , B is the number of
frequency bands, S the complete set of sessions, X the complete data set, Sk the set
of sessions of subject k, Xk the dataset for subject k, y(x) is the class label of trial
x and βk

i j in equation (3.2) are the weights given to the LDA outputs. The hyper-
parameter α in equation (3.1) was varied on a logarithmic scale and multiplied by
a dataset scaling factor which accounted for fluctuations in voting population dis-
tribution and size for each subject. The dataset scaling factor is computed using
ci j (x), for all x ∈ X \ Xk .

For computational efficiency reasons the hyperparameter was tuned on a small
random subset of subjects whose labels are to be predicted from data obtained from
other subjects such that the resulting test/train error ratio was minimal, which in
turn affected the choice (leave in/out) of classifiers among the 83x18 candidates.
The `1 regularized regression with this choice of α was then applied to all subjects,
with results (in terms of feature sparsification) shown in Figure 3.5.

The exemplary CSP patterns shown in the lower part of the Figure exhibit neu-
rophysiologically meaningful activation in motorcortical areas. The most predic-
tive subjects show smooth monopolar patterns, while subjects with a higher self-
prediction loss slowly move from bipolar to rather ragged maps. From the point of
view of approximation even the latter make sense for capturing the overall ensem-
ble variance.

The implementation of the regressions were performed using CVX, a package
for specifying and solving convex programs [53]. We coupled an `2 loss with an `1

penalty term on a linear voting scheme ensemble.

3.3.5 Validation

The subject-specific CSP-based classification methods with automatically, subject-
dependent tuned temporal filters (termed reference methods) are validated by an
8-fold cross-validation, splitting the data chronologically. The chronological split-
ting for cross-validation is a common practice in EEG classification, since the non-
stationarity of the data is thus preserved [35].

To validate the quality of the ensemble learning we employed a leave-one-subject
out cross-validation (LOSO-CV) procedure, i.e. for predicting the labels of a partic-
ular subject we only use data from other subjects.

3.3.6 Results

The performances of the various ensemble methods as well as a number of base-
lines are presented in Table 3.5. As a reference method, performances of subject-
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Figure 3.5: Feature selection during cross-validation: white dashes mark the fea-
tures kept after regularization for the prediction of the data of each subject. The
numbers on the vertical axis represent the subject index as well as the Error Rate (%).
The red line depicts the baseline error of individual subjects (classical auto-band
CSP). Features as well as baseline errors are sorted by the error magnitude of the
self-prediction. Note that some of the features are useful in predicting the data of
most other subjects, while some are rarely or never used.

specific CSP-based classification with heuristically tuned frequency bands [18] are
presented and termed self. Furthermore, we considered much simpler (zero-train-
ing) methods as a control. Lap stands for the power difference in two Laplace fil-
tered channels (C3 vs. C4) and simple band-power (named BP) stands for the power
difference of the same two channels without any spatial filtering. For these simple
zero-training methods we chose a broad-band filter of 7−30 Hz, since it is the least
restrictive and scored one of the best performances on a subject level (for a com-
parison, please refer to Figure 3.2.

The bias b in equation (3.2) can be tuned broadly for all sessions or corrected
individually by session, and implemented for online experiments in multiple ways
[74, 114, 73]. In our case we chose to adapt b without label information, but oper-
ating under the assumption that class frequency is balanced. We therefore simply
subtracted the mean over all trials of a given session. Table 3.4 shows a compari-
son of the various classification schemes. We evaluate the performance on a given
percentage of the training data in order to observe information gain as a function of
datapoints. Clearly the two best ML techniques are on par with subject-dependent
CSP classifiers and outperform the simple zero-training methods (not shown in Ta-
ble 3.4 but in Table 3.5) by far. While SVM scores the best median loss over all
subjects (see Table 3.4), `1-regularized regression scored better results for well per-
forming BCI subjects (Figure 3.6 column 1, row 3). In Figure 3.6 and Table 3.5 we
furthermore show the results of the `1-regularized regression and SVM versus the
auto-band reference method (zero-training versus subject-dependent training) as
well as vs. the simple zero-training methods Laplace and band-power.
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classification regression
% of data kNN LDA LPM SVM LSR LSR-`1

10 31.3 45.3 37.3 31.3 46.0 30.7
20 32.0 40.0 38.0 28.7 42.0 31.3
30 32.7 38.7 37.3 33.1 38.0 30.0
40 32.7 36.0 37.9 31.3 36.7 29.3

Table 3.4: Main results of various machine learning algorithms.

approach machine learning classical
zero training self

method mean kNN LDA LPM SVM LSR `1 Lap BP CSP
# <25% 31 30 18 14 29 19 36 24 11 39
25%-tile 17.3 17.3 27.3 26.7 18.7 26.0 16.0 22.0 31.3 11.9
median 30.7 31.3 36.0 37.3 28.7 36.7 29.3 34.7 38.7 25.9
75%-tile 41.3 42.0 43.3 44.0 41.3 44.0 40.7 45.3 45.3 41.4

Table 3.5: Comparing ML results to various baselines.

Figure 3.7 shows all individual temporal filters used to generate the ensemble,
where their color codes for the frequency they were used to predict labels of previ-
ously unseen data. As to be expected mostly µ-band related temporal filters were
selected. Contrary to what one may expect, features that generalize well to other
subjects’ data do not exclusively come from BCI subjects with low self-prediction
errors (see white dashes in Figure 3.5), in fact there are some features of weak per-
forming subjects that are necessary to capture all variance of the ensemble. How-
ever there is a strong correlation between subjects with a low self-prediction loss
and the generalizability of their features to predicting other subjects, as can be seen
on the right part of Figure 3.7.

3.3.6.1 Focusing on a particular subject

In order to give an intuition of how the ensemble works in detail we will focus on
a particular subject. We chose to use the subject with the lowest reference method
cross-validation error (10%). Given the non-linearity in the band-power estimation
(see Figure 3.4) it is impossible to picture the resulting ensemble spatial filter ex-
actly. However, by averaging the chosen CSP filters with the weightings, obtained
by the ensemble and multiplying them by their LDA classifier weight, we get an ap-
proximation:

PE N S =
B∑

i=1

∑
j∈S\Sk

wi j Wi j Ci j (3.2)
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Figure 3.6: Compares the two best-scoring machine learning methods
`1-regularized regression and Support Vector Machine to subject-dependent
CSP and other simple zero-training approaches. The axes show the classification
loss in percent.
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Figure 3.7: On the left: The used frequency ranges of the temporal filters and in col-
or-code their contribution to the final `1-regularized regression classification (the
scale is normalized from 0 to 1). Clearly µ-band temporal filters between 10−13Hz
are most predictive. On the right: Number of features used vs. self-predicted cross–
validation. A high self-prediction can be seen to yield a large number of features
that are predictable for the whole ensemble.

where wi j is the weight matrix, resulting from the `1 regularized regression, given
in equations (3.1) and (3.2), Wi j the CSP filter, corresponding to temporal filter i
and subject j and Ci j the LDA weights (B in Figure 3.8). For the case of classical
auto-band CSP this simply reduces to PC SP =W C (A in Figure 3.8).

Another way to exemplify the ensemble performance is to refer to a transfer
function. By injecting a sinusoid with a frequency within the corresponding band-
pass filter into a given channel and processing it by the four CSP filters, estimating
the bandpower of the resulting signal and finally combining the four outputs by
the LDA classifier, we obtain a response for the particular channel, where the sinu-
soid was injected. Repeating this procedure for each channel results in a response
matrix. This procedure can be applied for a single CSP/LDA pair, however we may
also repeat the given method for as many times as features were chosen for a given
subject by the ensemble and hence obtain an accurate description of how the en-
semble processes the given EEG data. The resulting response matrices are displayed
in panel C of Figure 3.8. While the subject-specific pattern (classical) looks less fo-
cused and more diverse the general pattern matches the one obtained by the en-
semble. A third way of visualizing how the ensemble works: we show the primary
projections of the CSP filters that were given the 6 highest weights by the ensemble
on the left panel (F) and the distribution of all weights in panel D. The spatial posi-
tions of highest channel weightings differ slightly for each of the CSP filters given,
however the maxima of the projection matrices are clearly positioned around the
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primary motor cortex.

In the upper part of Figure 3.9 the outputs of all basis classifiers are applied to
each trial of one subject. The top row (broad) gives the label, the second row (broad)
gives the output of the classical auto-band CSP, and each of the following rows (thin)
gives the outputs of the individual classifiers of other subjects. The individual clas-
sifier outputs are sorted by their correlation coefficient with respect to the class la-
bels. The trials (columns) are sorted by true labels with primary key and by mean
ensemble output as a secondary key. The row at the bottom gives the sign of the
average ensemble output. The lower left part of Figure 3.9 depicts the covariance
matrix of all broad-band classifier outputs. The lower right part shows the covari-
ance matrix of the concatenated classifiers of all 9 temporal filters. The classifiers of
both covariance matrices are sorted according to their average correlation with all
respective other classifiers.

3.3.7 Conclusion

The offline analysis in the previous sections presents evidence that it is possible to
generate a subject-independent classifier, which enables expert as well as BCI-naïve
users to start a feedback session without the necessity of recording a calibration
session in advance. We have taken great care in this work to exclude data from
a given subject when predicting his/her performance by using the previously de-
scribed LOSOCV. In contrast with previous work on ensemble approaches to BCI
classification based on simple majority voting and Adaboost [134, 21] that have uti-
lized only a limited dataset, we have profited greatly by a large body of high quality
experimental data accumulated over the years. This has enabled us to choose by
means of machine learning technology a very sparse set of voting classifiers which
performed as well as standard, state-of-the-art subject calibrated methods. `1 reg-
ularized regression in this case performed better than other methods (such as ma-
jority voting) which we have also tested.

Note that, interestingly, the chosen features (see Figure 3.5), do not exclusively
come from the best performing subjects, in fact some average performer was also
selected. However most white dashes are present in the left half, i.e. most subjects
with high auto-band reference method performance were selected. Interestingly
some subjects with very high BCI performance are not selected at all, while others
generalize well in the sense that their model are able to predict other subject’s data.
No single frequency band dominated classification accuracy – see Figure 3.7. There-
fore, the regularization must have selected diverse features. Nevertheless, as can be
seen in the upper and lower part of Figure 3.9, there is a high redundancy between
the individual classifiers of the ensemble. Our approach of finding a sparse solu-
tion reduces the dimensionality of the chosen features significantly. For very able
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Figure 3.8: A: primary projections for classical auto-band CSP. B: linearly averaged
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shown in F. E: linear average ensemble temporal filter (red), heuristic (blue). F: pri-
mary projections of the 6 ensemble members that received highest weights.
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Figure 3.9: Top: Broad-band version of the ensemble outputs for a single subject.
The outputs of all basis classifiers are applied to each trial of one subject. The top
row (broad) gives the label, the second row (broad) gives the output of the classi-
cal auto-band CSP, and each of the following rows (thin) gives the outputs of the
individual classifiers of other subjects. The individual classifier outputs are sorted
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ondary key. The row at the bottom gives the sign of the average ensemble output.
Lower left: Covariance matrix of sorted broad-band classifier outputs. Lower right:
Covariance matrix of all sorted classifiers outputs.
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subjects our zero-training method exhibits a slight performance decrease, which
however will not prevent them from performing successfully in BCI.

The sparsification of classifiers, in this case, also leads to potential insight into
neurophysiological processes. It identifies relevant cortical locations and frequency
bands of neuronal population activity which are in agreement with general neuro-
scientific knowledge. While this work concentrated on zero training classification
and not brain activity interpretation, a much closer look is warranted. Movement
imagination detection is not only determined by the cortical representation of the
limb whose control is being imagined (in this case the arm) but also by differen-
tially located cortical regions involved in movement planning (frontal), execution
(fronto-parietal) and sensory feedback (occipito-parietal). Patterns relevant to BCI
detection appear in all these areas and while dominant discriminant frequencies
are in the α range, higher frequencies appear in our ensemble, albeit in combina-
tion with less focused patterns.

What we have found from our machine learning algorithm can be interpreted
as representing the characteristic neurophysiological variation of a large subject
group, which in itself is a highly relevant and interesting result. While here we
present results of a motor-imagery paradigm, future studies may show that the en-
semble approach may also be applied for other paradigms.

3.4 `1-penalized Linear Mixed-Effects Models for zero-training BCI

When measuring experimental data we typically encounter a certain inbuilt het-
erogeneity: data may stem from distinct sources that are all additionally exposed
to varying measuring conditions. Such so-called group, respectively individual ef-
fects need to be modeled separately within a global statistical model. Note that here
the data are not independent: a part of the variance may come from the individual
experiment, while another may be attributed to a fixed effect. Such mixed-effects
models [104] are known to be useful whenever there is a grouping structure among
the observations, e.g. the clusters are independent but within a cluster the data may
have a dependency structure. Note also that mixed-effects models are notoriously
hard to estimate in high dimensions, particularly, if only few data points are avail-
able.

In the following we will for the first time use a recent `1-penalized estimation
procedure for high-dimensional linear mixed-effects models [112] in order to esti-
mate the mixed effects that are persistent in experimental data from neuroscience.
This novel method builds upon Lasso-type procedures [125, 89, 142], assuming that
the number of potential fixed effects is large and that the underlying true fixed-
effects vector is sparse. The `1-penalization on the fixed effects is used to achieve
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sparsity. The idea of `1-penalized likelihood approaches in linear mixed-effects
models is not novel. The work of [19] and [62] present `1-penalized methods for lin-
ear mixed effects models. While the latter [19, 62] only studied the low-dimensional
setting, only [112] have succeeded in investigating the high-dimensional case (i.e.
n ¿ p).

In BCI we encounter high variability both between subjects and within repeti-
tions of an experiment for the same subject. The novel approach splits up the overall
inherent variance into a within-group and a between-group variance and therefore
allows us to model the unknown dependencies in a meaningful manner. While this
is a conceptual contribution to adapt the mixed effects model for BCI, we also con-
tribute practically: Due to the more precise modeling of the dependency structure
we cannot only quantify both sources of variance but also provide an improved en-
semble model that is able to serve as a one-size-fits-all BCI classifier – the central
ingredient of a so-called zero-training BCI [74, 45, 2]. In other words we can mini-
mize the usually required calibration time for a novel subject – where the learning
machine adapts to the new brain (e.g. [11, 12]) – to practically zero.

The following section will introduce the novel statistical model. The BCI setup
and data basis were already introduced before (see Section 3.1). Section 3.4.3 will
discuss the experimental results.

3.4.1 Statistical Model

We will investigate a so called linear mixed-effects model [104], due to the depen-
dence structure inherent to the two sources of variability: within-subject (depen-
dence) and between-subject (independence). The classical mixed-effects frame-
work has two limiting issues: (1) it cannot deal with high-dimensional data (i.e. the
total number of observations is smaller than the number of explanatory variables)
and (2) fixed-effects variable selection gets computationally intractable if the num-
ber of fixed-effects covariates is very large. By using a LASSO-type concept [125]
these limits can be overcome in the present method [112], thus allowing applica-
tion in the real world as we will see in the next sections.

3.4.1.1 Model Setup

Let i = 1, . . . , N be the number of subjects, j = 1, . . . ,ni the number of observations
per subject and NT = ∑

ni the total number of observations. For each subject we
observe an ni -dimensional response vector yi . Moreover, let Xi and Zi be ni × p
and ni ×q covariate matrices, where Xi contains the fixed-effects covariates and Zi

the corresponding random-effects covariates. Denote by β ∈Rp the p-dimensional
fixed-effects vector and by bi , i = 1, . . . , N the q-dimensional random-effects vec-
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tors. Then the linear mixed-effects model can be written as ([104])

yi = Xiβ+Zi bi +εi i = 1, . . . , N , (3.3)

where we assume that i ) bi ∼ Nq (0,τ2Iq ), i i ) εi ∼ Nni (0,σ2Ini ) and i i i ) that the
errors εi are mutually independent of the random effects bi .

From (3.3) we conclude that

yi ∼Nni (Xiβ,Λi (σ2,τ2)) with Λi (σ2,τ2) =σ2Ini +τ2Zi ZT
i . (3.4)

It is important to point out that assumption i ) is very restrictive. Nevertheless, it is
straightforward to relax this assumption and assume that bi ∼Nq (0,Ψ) for a general
(or possible structured) covariance matrixΨ.

To give the reader an intuition of the method, we generated a simple toy ex-
ample that demonstrates why estimating mixed-effects can help in finding a supe-
rior solution that takes possible shifts in the input-space of multiple-subject data
into account: The data is generated with the model given in Equation (3.3) and
by setting Zi = 1ni and bi ∈ R we assume a random-intercept model or one bias
per group. The top left panel of Figure 3.10 shows the five groups of input data we
generated, each consisting of 40 trials with the following parameters: βORIG = 0.5,
bORIG = [−2;−1;0;1;2] and a noise level of εORIG ∼ N (0,0.2). While least-square re-
gression (LSR) estimates βLSR = 0.048 and bLSR = 0.075, the proposed mixed-effects
model is far more accurate and estimates βLMM = 0.504 and the individual biases to
be bLMM = [−1.96;−1.015;−0.014;0.973;2.013], as can be seen in the lower part of
Figure 3.10. Figure 3.11 depicts a flowchart, which also gives an intuition of when
mixed-effects models should be considered.

foreach
(
σ2,τ2,λ

)
do

foreach i do
(Whiten data and labels)
Λi =σ2Ini +τ2Zi ZT

i
X̄i =Λ−1/2

i Xi , ȳi =Λ−1/2
i yi

end
(Fit `1-penalized least-squares to concatenated data)
β̂= argmin

∥∥X̄β− ȳ
∥∥2

2 +2λ
∑p

k=2 |βk |
foreach i do

(Find random effects)
b̂i = [ZT

i Zi +σ2/τ2Iq ]−1ZT
i (yi −Xi β̂)

end
end

Algorithm 2: algorithm for fitting the mixed effects model
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Figure 3.10: Illustration of the fitting procedure for a linear mixed-effects model
with Z = 1ni , i.e. a random intercept model: groups have the same slope but dif-
ferent intercepts. The colors distinguish groups. If fitted with a classical regression,
the fixed-effect is not recovered correctly. By applying Algorithm 2, the data are first
whitened with Λi and then the fixed-effect is estimated from the whitened data by
linear regression. In as a second step, the random effects are recovered.
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y = Xiβ+ Zi bi without noise, with i = {1,2}, β = 1, b1 = 1, b2 = 1/2. Grey: group
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independent linear functions.
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3.4.1.2 `1-penalized Maximum Likelihood Estimator

Since we have to deal a large number of covariates, it is computationally not fea-
sible to employ the standard mixed-effects model variable selection strategies. To
remedy this problem, in [112] a Lasso-type approach is proposed by adding an `1-
penalty for the fixed-effects parameterβ. This idea induces sparsity inβ in the sense
that many coefficientsβ j , j = 1, . . . , p are estimated exactly zero and we can perform
simultaneously parameter estimation and variable selection. Consequently, from
(3.4) we derive the following objective function

Sλ(β,σ2,τ2) :=−1

2

N∑
i=1

{
log |Λi |+ (yi −Xiβ)TΛ−1

i (yi −Xiβ)

}
−λ

p∑
k=1

|βk | , (3.5)

where λ is a nonnegative regularization parameter.
Hence, estimating the parameters β, σ2 and τ2 is carried out by maximizing
Sλ(β,σ2,τ2):

β̂, σ̂2, τ̂2 = argmax
β,σ2,τ2

Sλ(β,σ2,τ2) . (3.6)

It is worth noting that Sλ(β,σ2,τ2) is a non-concave function, which implies that we
can not apply a convex solver to maximize (3.5).

3.4.1.3 Prediction of the random-effects

The prediction of the random-effects coefficients bi , i = 1, . . . , N is done by the max-
imum a posteriori (MAP) principle. Given the parameters β, σ2 and τ2, it follows
by straightforward calculations that the MAP estimator for bi , i = 1, . . . , N is given by
bi = [ZT

i Zi +σ2/τ2Iq ]−1ZT
i (yi −Xiβ). Since the true parameters β,σ2 and τ2 are not

known, we plug in the estimates from (3.6). Hence the random-effects coefficients
are estimated by

b̂i = [ZT
i Zi + σ̂2/τ̂2Iq ]−1ZT

i (yi −Xi β̂). (3.7)

3.4.1.4 Model Selection

The optimization problem in (3.6) is applied to a fixed tuning parameter λ. In prac-
tice, the solution of (3.6) is calculated on a grid of λ values. The choice of the opti-
malλ-value is then achieved by minimizing a criterion, i.e. a k-fold cross-validation
score or an information criteria. We propose to use the Bayesian Information Crite-
rion (BIC) defined as

−2`(β̂, σ̂2, τ̂2)+ log NT · d̂ f λ , (3.8)

57



where d̂ f λ = |{1 ≤ j ≤ p; β̂ j 6= 0}|denotes the number of nonzero fixed regression co-
efficients and `(β̂, σ̂2, τ̂2) denotes the likelihood function following from the model
assumptions in (3.3). The BIC works well in the simulation examples presented in
[112] and is computationally fast.

3.4.2 Computational Implementation

With τ and σ fixed, the cost function (3.5) is equivalent to an `1-penalized linear
regression after whitening by the covariancesΛi :

β̂= argmin
β|τ,σ

N∑
i=1

∥∥Λ−1/2
i

(
Xiβ− yi

)∥∥2
2 +2λ

p∑
k=2

|βk | (3.9)

We solve the resulting convex optimization problem for b with fixed σ and τ

using the orthant-wise limited memory quasi-Newton algorithm [3]. As suggested
in [112], the optimization is performed over a grid of (σ2,τ2) to find the optimum of
the considered parameters.

Since, in our case, the labels yi are binary (i.e, 0 when the left hand was cued
and 1 for the right hand), we have also fitted the logistic regression equivalent to the
least-squares regression presented in Section 3.4.1.2. Preliminary analysis indicates
that a so called random-intercept (i.e. one bias per group) is appropriate for our
data, i.e., Zi = 1 and βi ∈R:

yi j = f
(
xT

i j b +βi

)
+εi j i = 1, . . . , N , j = 1, . . . ,ni (3.10)

where f (x) = 1/
[
1+exp(−x)

]
is the sigmoid function. We assume thatβi ∼N (0,τ2),

εi ∼ Nni (0,σ2Ini ) and that εi are mutually independent of βi . We solve the result-
ing numerical optimization problem using the orthant-wise limited memory quasi-
Newton algorithm [3].
In the context of (3.10), σ2 corresponds to the within-subject variability and τ2 to
the between-subject variability. By estimating σ2 and τ2 we are able to allocate the
variability in the data to these to sources.

3.4.3 Results

3.4.3.1 Subject-to-Subject Transfer

As explained in Section 3.1, we use our first balanced dataset to find a zero-training
subject-independent classifier. Figure 3.12 shows the results of fitting a least-squares
and a logistic regression model, both `1-regularized, fit to a) a linear model with one
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Figure 3.12: The two top figures show the mean classification loss over subjects for
the balanced dataset as a function of the regularization constant λ. The LMM ap-
proach is compared to classical `1-regularized least squares (left) and logistic (right)
regression. The two lower figures show the same results the unbalanced dataset.
LMM-subj estimates one bias per subject and LMM-exp one bias per experiment
(session).

bias and b) a mixed-effects model with one bias per subject. We are able to improve
classification by use of the mixed-effects model for both regressions.

To further explore the group effect of the mixed-effects model, we assigned the
trials in the balanced dataset to random groups. The results can be seen in the yel-
low lines in the top panels of Figure 3.12 as well as in Table 3.6 (indicated by rand
LMM). As expected, Table 3.6 shows that the mixed-effects model with randomly as-
signed groups does not improve the classification, while the meaningfully applied
mixed-effects model gets very close to the self-prediction error. Self-prediction error
denotes the average cross-validation error when using the training data of a subject
to predict his test data, i.e., performing conventional, subject-dependent BCI. The
self-prediction error could therefore be interpreted as a lower bound for subject-
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least squares regression logistic regression
one bias 28.34% 28.30%
rand LMM 28.62% 28.25%
LMM 27.76% 27.60%

self-prediction 27.51%
Laplace 33.95%
band-power 37.60%

Table 3.6: Classification loss of the balanced dataset for various methods. In the one
bias method only one bias is estimated for the whole dataset, in random LMM one
bias per group is estimated, however members of groups are randomly assigned. In
LMM one bias per group is estimated.

independent classifier loss.

In Figure 3.13 we compare the performance of our method on the basis of indi-
vidual subjects with other methods and perform t-tests to examine their statistical
significance. The p-values are included within the figure. As the most simple base-
line method we used ’Laplace features’ by calculating the difference of two motor
related channels (namely ’C3’ and ’C4’) within a time interval of 750−3500 ms, af-
ter broadband (7−30 Hz) temporal and Laplacian spatial filtering of the individual
channels. This method scored an average loss of 33.95% as can be seen in Table 3.6.
In Table 3.6 the results of the various ensemble approaches, as well as the consid-
ered baselines are given for the balanced dataset.

As can be seen on the left side of Figure 3.13 our novel method performs very
favorably. LMM improves classification performance for 89.2% of the subjects con-
sidered with high significance and leads to an average loss of 27.6%. Furthermore,
we compare with with the previously proposed zero-training procedure [43] (see
also Section 3.3.6), which is very similar to the LMM method described here, except
that it performs `1-regularized regression for combining the outputs of the individ-
ual classifiers (average loss 28.3%). Also here we achieve a significant improvement.
Finally, we compare our method to the subject-dependent, cross-validated classi-
fier loss, derived from the data themselves (average loss 27.51%). A per se unfair
comparison. Given that the subject-dependent classifier is not significantly better
(p = 0.93), we may state that we are on par.

The sparsity of our results becomes apparent from Figure 3.14, where we display
the magnitude of weights for each run of the LOSO-CV. For LMM on average 28.9%
of all features are active, while for ’one-bias’ 33.5% of all features are non-zero. Note
that for both methods most of the active features lie within a vertical line, indicating
that the feature is also active for most other subjects and can thus be considered
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Figure 3.13: Scatter plot, comparing the proposed method with various baselines
on a subject specific level.

particularly stable.

As can be seen in Figure 3.15 (left panel) the LMM method needs less features
per subject (NLMM ≈ 310) as compared to estimating only one bias (N`1 ≈ 500). Be-
sides from selecting less features in total, the LMM chose a higher fraction of fea-
tures with low self-prediction errors. This is shown in the middle panel, where we
display the cumulative sum of features, sorted by increasing self-prediction accu-
racy.

To visualize differences between weight vectors resulting from the LOSO-CV pro-
cedure, the right panel displays these vectors, projected to two dimensions. The
matrix of Euclidean distances between all pairs of weights was embedded into a
2× 83-dimensional space and projected onto the resulting point cloud’s first two
principal axes for visualization. The mixed effects model absorbs more of the vari-
ability into its bias terms and thus results in more consistent weight vector esti-
mates.

3.4.3.2 Session-to-Session Transfer

To investigate how the results of the method can be understood in terms of indi-
vidual subjects and their (possibly multiple) sessions, we validated the method in
two ways. First we allow each experiment to have an individual bias. In the second
approach, we allow only one bias per subject, i.e. multiple experiments/sessions
from the same subject will be grouped. The results are shown in the right panel
of Figure 3.16. For both validation approaches the logistic regression captures a
higher between-group variability as compared to linear regression and can thus be
seen as the more appropriate method, as is also apparent from the lowest cross-
validation loss (see Figure 3.12). Furthermore and more interestingly, we see sub-
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Figure 3.15: Left: histogram of the number of selected features for all subjects. Mid-
dle: cumulative sum of features, sorted by ’self prediction’. LMM rather chooses
features, that had a good ’self prediction’, and needs less features in total. Right:
Variability between classifier weights b of the two models for each of the N = 2×83
LOSO-training runs using the best regularization strength.
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Figure 3.16: Both figures show the magnitude of between-subject variability as a
fraction of total variability. On the left: Results for the first balanced dataset. One
the right: Results for the unbalanced dataset. log stands for logistic regression, ls for
least squares, exp for one bias per experiment and subj for one bias per subject.

stantially higher between-group-variability if we allow biases for each experiment.
This result does not only confirm knowledge from previous publications, that the
transfer of classifiers from sessions to sessions required a bias correction [74], but
also underlines the validity of our approach in the sense that we are able to capture
a meaningful part of the variability which would otherwise be ignored as noise.

3.4.4 Relation of baseline misclassification to σ2 and τ2

Using standard methods for ERD-related BCI decoding [18], we obtain a mean clas-
sification loss for each subject within our balanced dataset, based on the cross-
validation of band-pass and spatially filtered features. In Figure 3.17 we examine
the relationship between this baseline loss and the within-subject variability σ.2 and
between-subject variability τ.2. The baseline loss and σ2 have a strong positive cor-
relation, with high significance. This makes intuitive sense: a dataset that is well
classifiable should also exhibit low variance of its residuals. We furthermore exam-
ine the relation of τ2 and σ2 and find a strong positive relation.

Interestingly we do not find a significant relation between the baseline loss and
τ2. In other words it is not possible to draw conclusions about the quality of a sub-
ject’s data by the variance of its assigned biases.
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Figure 3.17: The three scatterplots show relations between within-subject variabil-
ity σ.2, between-subject variability τ2 and the baseline cross-validation misclassifi-
cation for every subject. cc stands for correlation coefficient and p stands for paired
t-test significance.

3.4.5 Effective spatial filters and distances thereof

To estimate the similarity of effective spatial filters, we use a transfer function as
described in [45]: By injecting a sinusoid into a given channel and processing it by
the spatial filter, estimating the bandpower and applying the classifier, we obtain
a response for one particular channel. Repeating this procedure for each channel
results in a response matrix that can be easily visualized. We define a distance mea-
sure for each individual subject between her original CSP filter and those estimated
via ’LMM’ and ’one bias’ methods. The measure we use is the angle between their
vectorized response matrices (see [74]).

For four subjects the resulting response matrices, based on the original CSP pat-
tern, are shown on the top row of the left part of Figure 3.18. To obtain a response
matrix for the ensemble approaches, we calculate the weighted sum of responses,
determined by β (see middle and lower parts of Figure 3.18).

In the right part of Figure 3.18 the resulting distances between ’LMM’ or ’one
bias’ and the original CSP based response function are plotted against all subjects
with self-prediction loss of less than x. As one would expect both distances increase
on average, as more subjects with higher self-prediction loss are added to the anal-
ysis. It shows that the linear mixed-effects model is consistently closer, irrespective
of the subject’s self-prediction error.
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Figure 3.18: Left part: Response matrices of the four best subjects for ’original CSP’,
’LMM’ and ’one bias’. Classification loss is given as percentage numbers. Right part:
Response distances of ’LMM’ and ’one bias’ versus self-prediction error [%].

3.4.6 Discussion and Conclusions

When analyzing experimental data, it is of generic importance to quantify variation
both across the ensemble of acquired data and within repetitions of measurements.
Distinguishing and modeling such mixed effects is of high interest e.g. in medicine,
biology, physics and the neurosciences.

In this Chapter we have applied a recent sparse modeling approach from statis-
tics [112] based on a so-called `1-penalized linear mixed-effects model and pro-
posed its first time use for a large BCI data set, leading to a novel BCI zero-training
model (see also [74, 45]). In this manner we could efficiently model the different
dependencies and variabilities between and within subjects. Note that the novel
statistical model not only gave rise to a better overall prediction – in other words to
an improved zero-training model – but it furthermore allowed to quantify the dif-
ferences in variation more transparently and also interpretability. By attributing
some of the total variability, in other methods considered as noise, to differences
between subjects, we are now able to obtain a solution that is sparser and at the
same time superior in prediction accuracy. Not only features with high prediction
performance are preferably chosen, but also responses of the novel ensemble are
more similar to its original counterpart.

Furthermore, we would like to note that while more complex random effects
would in principle be conceivable, our random intercepts model was not just cho-
sen by intuition but from our experience with BCI: When performing an experi-
ment with the same subject on two subsequent days, on the second day the clas-
sifier can often be reused without much retraining, only the bias needs to be ad-
justed [74, 114].
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We have developed a statistical framework that can be applied to a large number
of scientific experiments from a large number of domains, where inter-dependencies
of input space exist and have shown that our approach leads to more robust feature
selection and is superior in its classification accuracy. Future research will study on-
line adaptation of penalized linear mixed-effects models in the context of medical
diagnosis and may well find its way into a broader scientific context.
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CHAPTER 4

Multimodal NIRS and EEG measurements for BCI

4.1 Combined NIRS-EEG measurements enhance Brain Computer
Interface performance

Since its precursors in the early 70’s [127] BCI technology has developed many vari-
ants and employed a large number of neuroimaging methods (please see Section 1
for further details and references). Combinational approaches for EEG features
from multiple domains [34], such as movement related potentials (MRPs) and event-
related desynchronizations (ERD), as well as combinations of EEG and peripheral
parameters like electromyography [78] have been shown to increase the robustness
of the classification.

These positive findings for combined approaches have motivated us for an eval-
uation of a simultaneous EEG and NIRS setup which preserves the advantages of
both non-invasive techniques namely low costs, portability and easiness to han-
dle. NIRS measures the concentration changes of oxygenated and deoxygenated
hemoglobin ([HbO] and [HbR]) in the superficial layers of the human cortex. While
concentration of [HbO] is expected to increase after focal activation of the cortex
due to higher blood flow, [HbR] is washed out and decreases [75, 131, 84]. Thereby,
it measures a comparable effect to the blood oxygenation level dependent (BOLD)
contrast in functional magnetic resonance imaging (fMRI), since also here the wash-
out of [HbO] is the major constituent [65].

The idea of using NIRS as an optical BCI has been introduced by Coyle et al.
in 2004 [32]. Since then a number of groups followed the direction of using NIRS
as a basis for optical BCI [31, 115, 140, 4, 64, 85], by either examining the resulting
signals for motor imagery or classifying the NIRS signals directly. A recent publi-
cation used NIRS as a ’brain switch’ and combined it with an EEG-based SSVEP
for the operation of an orthosis [103]. However, to our knowledge our study is the
first report of simultaneous EEG and NIRS measurements for SMR-based Brain-
Computer-Interfacing. In general a multi-modal approach can have a number of
benefits: As every neuroimaging method suffers from its particular limitations (EEG
from spatial resolution, while NIRS or fMRI from the sluggishness of the underly-
ing vascular response limiting its temporal resolution), it now becomes possible to
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partly overcome these by focusing on their individual strengths [49, 7]. Furthermore
and maybe more importantly, the information gained from these various sources
complement each other to some degree [6, 92]. Due to this reasoning it becomes
apparent, why simultaneous NIRS and EEG measurements are widely used in order
to research language processing [135, 38, 124, 111, 54] and the visual cortex [97, 59].
A recent study that examines the somato-motoric activity following median nerve
stimulation [122] shows the reliability of simultaneous measurements of NIRS and
EEG in the motor and somatosensory domain, which proves to be valid for SMR-
based BCI as well.

By extracting relevant NIRS features to support and complement high-speed
EEG-based BCI and thus forming a hybrid BCI [101], we exploit the responsiveness
of EEG (i.e. high ITR) as well as enhance and robustify overall BCI performance by
using information from the vascular response, which are not contained within the
EEG. Moreover, we evaluate the time delay and spatial information content of the
hemodynamic response during a SMR-based BCI paradigm.

The following section introduces the setup and design of our study, as well as
the statistical tools we applied for the analysis of the acquired data. In Sections 4.5
and 4.6 we present the experimental results and Section 4.7 concludes the work by
discussing our findings and puts them into perspective with future work.

4.2 Participants and Experimental Design

Fourteen healthy, right-handed volunteers (aged 20 to 30) participated in the study,
which lasted approximately four hours. The experiment was approved by the local
ethics committee (Charité University Medicine, Berlin, Germany), and performed
in accordance with the policy of the Declaration of Helsinki. The subjects were
seated in a comfortable chair with armrests and were instructed to relax their arms.
The experiment consists of 2 blocks of motor execution by means of hand gripping
(24 trials per block per condition) and 2 blocks of real-time EEG-based, visual feed-
back controlled motor imagery (50 trials per block per condition). For all blocks the
first 2 s of each trial began with a black fixation cross, that appeared at the center
of the screen. Then, as a visual cue, an arrow appeared pointing to the left or right.
For the case of motor imagery, the fixation cross started moving for 4 s, according
to the classifier output. After 4 s the cross disappeared and the screen remained
blank for 10.5±1.5 s. The online processing was based on the concept of coadaptive
calibration [129] and is described in detail in Section 4.4. For the case of executed
movements the fixation cross remained fixed and the subjects were instructed to
open and close their hands with an approximate frequency of 1 Hz. Also here after
4 s the cross disappeared and the screen remained blank for 10.5±1.5 s.
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NIRS source

NIRS detector

NIRS channel

EEG electrode

Figure 4.1: Locations of EEG electrodes; sources, detectors and actual measurement
channels of NIRS. Note that electrodes and optodes might share a location.

4.3 Data Acquisition

During both tasks simultaneous measurements of EEG and NIRS were performed.
The NIRS-System (NIRScout 8-16, NIRx Medizintechnik GmbH, Germany) was e-
quipped with 24 optical fibers (8 sources with wavelengths of 850 nm and 760 nm,
16 detectors convolving to 24 measurement channels). Frontal, motor and parietal
areas of the head were covered as shown in Figure 4.1. The sampling frequency was
fNIRS = 6.25 Hz. EEG, electrooculogram (EOG) and electromyogram (EMG) were
recorded with a multichannel EEG amplifier (BrainAmp by Brain Products, Munich,
Germany) using 37 Ag/AgCl electrodes, 2 bipolar EMG, 2 bipolar EOG (vertical as
well as horizontal EOG), sampled at fEEG = 1 kHz and downsampled to 100 Hz. NIRS
probes and EEG electrodes were integrated in a standard EEG cap (extended 10-20
system with a possibility of 256 electrodes) with inter-optode distances between 2
and 3 cm. The optical probes are constructed, such that they fit into the ring of stan-
dard electrodes. This enables us to situate the NIRS channel positions according to
the standard 10-20 system, as can be seen in Figure 4.1.

4.4 Data Analysis

Based on a recent development coined Co-adaptive Calibration the user was given
instantaneous EEG-based BCI feedback for the two blocks of motor imagery [129].
During the first block of 100 trials a subject-independent classifier, depending on
band power estimates of Laplacian filtered, motor-related EEG channels, was used.
For the second block subject-dependent spatial and temporal filters were estimated
from the data of the first block and combined with some subject-independent fea-
tures, namely band power of Laplacian filtered, motor-related EEG electrodes, to
form the classifier for the second block. During the online feedback features were
calculated every 40 ms with a sliding window of 750 ms.

The analysis of NIRS data was performed offline. Concentration changes of
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hemoglobin were calculated according to the modified Lambert-Beer law on the
NIRS data (differential path length factor of 5.98 (higher wavelength: 830 nm) and
7.15 (lower wavelength: 760 nm), extinction coefficients for [HbO] 2.5264/1.4866
(higher/lower wavelength) and [HbR] 1.7986/3.8437 (higher/lower wavelength), and
an inter-optode-distance of 3 cm). This procedure converts attenuation changes
measured by the NIRS system into concentration changes of oxygenated [HbO] and
deoxygenated [HbR] hemoglobin [28, 66]. NIRS data was low-pass filtered at 0.2 Hz
using a one-directional filter method, namely a 3r d order Butterworth-filter. A base-
line interval was defined from -2 s to 0 s before stimulus onset, and its mean was
subtracted from each trial. To examine how well the NIRS data classifies the given
tasks we analyzed the time courses with the help of a moving window (width 1 s, step
size 500 ms) that we apply from 6 s, prior to stimulus onset and up to 15 s after stim-
ulus onset. Time courses of [HbO] and [HbR] were averaged over the time length
of the moving window width, resulting in average concentration changes for each
of the 24 channels. These time-averaged concentration changes were then used
as features for a linear discriminant analysis (LDA). Validation was performed by
a cross-validation with an 8-fold chronological split. Previous studies have shown
that a chronological split maintains non-stationarities of the data and thus repre-
sents a relatively conservative measure [80]. We used the time interval of the global
peak classification accuracy and performed paired t-tests to test whether classifica-
tion of motor imagery shows a significantly earlier peak accuracy as compared to
executed movements and in which chromophore accuracy was higher. Trials of the
two measured blocks per condition were combined.

Offline EEG decoding was performed as follows: for both paradigms (real move-
ments and motor imagery) the two blocks were combined. Subject-dependent band-
pass filter coefficients were estimated by means of an established procedure (a heu-
ristic, based on r 2-values) [18]. The selected band-pass filter coefficients for exe-
cuted movements were mostly in the α-band (5 of 14 subjects) and in the β-band (7
of 14 subjects). For a small proportion of subjects (2 of 14) a broad-band filter was
selected. For the case of motor imagery the discriminant information was highest
in theα-band (10 of 14 subjects), followed by the β-band (3 of 14 subjects). Only for
one subject a broad-band filter was chosen.

A spatial filter, in form of Common Spatial Patterns [50, 69, 109, 18] was es-
timated and an LDA classifier computed. The previously mentioned parameters
for subject-dependent temporal filters, spatial filters and linear classifier were es-
timated solely on the training set of each cross-validation step [80]. The cross-
validation followed the same principle as mentioned for the NIRS signals. For the
time course of classification accuracy the same moving window was applied as for
the NIRS data. Furthermore to establish a single measure of classification accuracy
for each subject and paradigm, the time interval was chosen to be [750−3500] ms

70



EEG data - training

[HbO] data - training

[HbR] data - training

Figure 4.2: Flowchart of the first step of the cross-validation procedure: The EEG
and NIRS data is split into 7/8 training data and 1/8 test data. First an individual LDA
classifier is computed for EEG, [HbO] and [HbR]. Then a meta-classifier is estimated
for optimally combining the three LDA outputs. All LDA classifiers are then applied
to the test set (dotted green line) and a test loss is computed. The procedure is
repeated for 8 chronological splits.

after stimulus onset for all subjects.

To examine the possible benefits of combining both signal domains, classifica-
tion results were calculated for EEG and NIRS separately, but also in combination
by estimating a meta-classifier. After estimation of the three individual classifiers
(one for the EEG induced band power changes and one each for the evoked deflec-
tion from baseline [HbO] and [HbR]) and their performance, we explore a number
of possible combinations (such as EEG, [HbO] or EEG, [HbO], [HbR] etc.).

Our selection of NIRS features for the combination with EEG was based on the
global peak cross-validation accuracy for each individual subject. As a meta-classi-
fier we used an LDA. The LDA weights are re-estimated within each cross-validation
step in order to avoid a bias in the estimation of the generalization error [80]. The
general procedure can be seen in Figure 4.2. To graphically investigate the poten-
tial improvement of a combination of NIRS and EEG measurements as compared
to a BCI, solely dependent on EEG, we show scatter plots comparing EEG classifica-
tion accuracy and the improvement for EEG in combination with each NIRS chro-
mophore as well as both chromophores.

To gain topographical maps of significant features, and thereby show the phys-
iological validity of our approach, we calculated point-biserial correlation coeffi-
cients [123]. The point-biserial correlation coefficient is a special case of the Pear-
son product-moment correlation coefficient and measures the association of a bi-
nary random variable and a continuous random variable and was introduced in
Section 1.3.1.4.

Mutual information is an information theoretic measure, which estimates the

71



information that two random variables share. It can be expressed in terms of con-
ditional entropies of random variables X and Y :

I (X ;Y ) = H(X )−H(X |Y ) = H(Y )−H(Y |X ) (4.1)

The conditional entropy H(X |Y ) quantifies the remaining entropy of X , after the
value of Y is known. If H(X |Y ) = H(X ), then I (X ;Y ) = 0: the variables are inde-
pendent. On the other hand, if X and Y are identical, then H(X |Y ) = 0 and hence
I (X ;Y ) = H(X ). I (X ;Y ) is symmetric and its values are in the range of 0 and 1:
I (X ;Y ) = I (Y ; X ) ∈ [0;1] [86]. To examine the degree of independence between the
NIRS and EEG-based classifier outputs, we restrict their outputs to values 0 and 1
and estimate their mutual information.

To further investigate, whether mostly the same trials are classified wrongly by
EEG and by NIRS, we form two groups of trials: one group consists only of trials,
where EEG classification was correct, while in the other group only misclassified
trials are included. By comparing the NIRS classification of each of these groups to
the mean classification of both groups, we can examine to which extent the NIRS
classification results resemble those of the EEG.

4.5 Physiological reliability of NIRS features

Our first aim is to show the physiological reliability of NIRS feature classification
both in time and location. We performed single trial classification of left vs. right
motor execution (and imagery) with a moving time window after stimulus onset.
Classification accuracies for each subject over time can be seen in Figure 4.3 for EEG
(top row) and both chromophores of NIRS (middle: [HbO], bottom: [HbR]). The left
column shows motor imagery and the right column executed movements. A clas-
sification accuracy of 100% means that the two conditions are perfectly separable,
while a classification accuracy of 50% represents random guessing when consider-
ing a binary classification task.

Average EEG classification peaks at 〈t real
eeg 〉 = 1680±1014 ms for executed move-

ments and at 〈t imag
eeg 〉 = 1430±707 ms for motor imagery. Peak classification times of

[HbO] are at 〈t real
hbo〉 = 7430±2201 ms and at 〈t imag

hbo 〉 = 6501±1579 ms and of [HbR] at

〈t real
hbr 〉 = 6966±2484 ms and 〈t imag

hbr 〉 = 6109±1339 ms for executed movements and
motor imagery, respectively. EEG features are thus earlier classifiable as compared
to [HbO] and [HbR] for executed movements (p < 10−6 and p < 10−5) and for motor
imagery (p < 10−6 and p < 10−6).

Average EEG classification accuracy for executed movements (90.8%) is higher
than that of [HbO] (71.1%) and [HbR] (73.3%). Paired t-tests between EEG and the
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two NIRS chromophores yields highly significant results (p < 10−3 and p < 0.01).
While also for motor imagery EEG scores higher average classification rates (EEG:
78.2%, [HbO]: 71.7%, [HbR]: 65.0%), here not both p-values are significant (p = 0.09
and p < 0.05). For motor imagery [HbO] shows a significantly higher classification
accuracy, as compared to [HbR] (p < 0.01).

The topology of significant EEG and NIRS features can be seen in Figures 4.4
and 4.5. Here log (p) significances of executed and motor imagery are shown, re-
spectively. The time-dependent scalp plots show grand-averages over all subjects,
based on the point-biserial correlation coefficient rpb , as described above. The col-
orbar scales on the right side indicate the significance levels of the individual imag-
ing methods. Note that the width of the scale illustrates the maximum level of sig-
nificance. Red colors denote higher values of the left class, while blue colors indi-
cate higher values within the right class. As can be seen for both paradigms EEG as
well as NIRS chromophores show highly significant patterns in motor-related cor-
tical areas. Note that for EEG (top rows of Figures 4.4 and 4.5) we observe event-
related desynchronization (ERD) which is followed by a event-related synchroniza-
tion (ERS), a previously described physiological effect for EEG oscillations in the
alpha and beta band [100].

Interestingly, we find higher significance levels of [HbR] in both paradigms, as
compared to the classification results, where [HbO] yielded higher accuracies for
motor imagery. A second interesting point to note is the inverted polarity of [HbO]
for motor imagery. This effect can also be seen in the averaged time courses of
NIRS data shown in Figure 4.6. [HbO] has the expected shape of a hemodynamic
response function in the motor execution task, although it ascends in both hemi-
spheres but decreases in the imagery condition. [HbR] shows the expected time
courses for both tasks (imagery/executed) and both conditions (left/right).

4.6 Enhancing EEG-BCI performance by NIRS features

While the examination of the NIRS classification itself provided information about
the quality and spatial specificity of the NIRS features, a second aim was to actu-
ally combine NIRS and EEG features to form a hybrid-BCI. As stated in Section 4.4
a meta classifier was derived for combining the individual signals. Table 4.1 shows
classification accuracies for EEG, [HbR] and [HbO] and their combinations for both
tasks. Furthermore we show scatter plots, where the EEG performance is plotted
against possible combinations (see Figure 4.7). Dots above the green line indicate
that a subject’s performance is increased by the combination of the NIRS chro-
mophore(s) as compared to using only EEG. The percentage within the figure indi-
cates the percent of subjects, for whom the combination leads to equal or improved
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Figure 4.3: EEG and NIRS classification accuracy [%] (LDA) for a 1 s moving time
window (top: EEG, middle: [HbO], bottom: [HbR], left: motor execution, right: mo-
tor imagery). The x-axis denotes the center of the moving window. Colored lines
show the accuracy for the single subjects while the black line is the average over
subjects. The grey bar indicates the time interval of cue presentation.
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Figure 4.4: Scalp evolution of grand-average log p values for motor execution in EEG
and NIRS over all subjects (top: EEG, middle: [HbO], bottom: [HbR]). Red colors
denote higher values of the left class, while blue colors indicate higher values within
the right class. Note that the width of the color-scale on the right indicates the level
of significance.

75



0 − 2000 ms 2000 − 4000 ms 4000 − 6000 ms 6000 − 8000 ms 8000 − 10000 ms 10000 − 15000 ms
 

 

−20

0

20

lo
g

 p
 (

 le
ft

 , 
ri

g
h

t 
)

0 − 2000 ms 2000 − 4000 ms 4000 − 6000 ms 6000 − 8000 ms 8000 − 10000 ms 10000 − 15000 ms
 

 

−5

0

5

lo
g

 p
 (

 le
ft

 , 
ri

g
h

t 
)

0 − 2000 ms 2000 − 4000 ms 4000 − 6000 ms 6000 − 8000 ms 8000 − 10000 ms 10000 − 15000 ms
 

 

−10

0

10

lo
g

 p
 (

 le
ft

 , 
ri

g
h

t 
)

Figure 4.5: Scalp evolution of grand-average log p values for motor imagery in EEG
and NIRS over all subjects (top: EEG, middle: [HbO], bottom: [HbR]). Red colors
denote higher values of the left class, while blue colors indicate higher values within
the right class. Note that the width of the color-scale on the right indicates the level
of significance.
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Figure 4.6: Group-average time courses for the two NIRS channels (namely C3|CFC3
and C4|CFC4) with highest discriminability for both conditions (left and right) and
chromophores ([HbO] and [HbR]). Executed movement timecourses are shown on
the left panels, while motor imagery timecourses on the right. Top panels depict
[HbO] and bottom panels [HbR]. The small grey patch before the first vertical line
indicates the baseline, which was set from −2 s to 0 s. The second, larger grey patch
indicates the time period of cue presentation (0 s to 4 s).
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Figure 4.7: Scatter plot comparing classification accuracies and significance values
of various combinations of NIRS and EEG for real and motor imagery. The x-axis de-
picts the EEG classification accuracy. The y-axes depict the classification accuracy
of the combinations: EEG + [HbO], EEG + [HbR] and EEG + [HbO] + [HbR] (from left
to right).

decoding, and the p-value indicates the significance of the improvement.

While the results in Table 4.1 indicate that combinations of EEG and NIRS are
beneficial for average decoding success for both paradigms, only combinations for
motor imagery score (highly) significant improvements. When comparing EEG with
combined EEG/[HbO] for motor imagery, there was an average 5% classification
accuracy increase across all subjects. This increase is highly significant (p < 0.01)
and the combination scores higher or equal classification rates for 13 out of 14 sub-
jects. Interestingly, two subjects (VPeaa and VPeam) with very bad performance in
EEG-BCI were much better classifiable when EEG/NIRS was used (with rates of 81%
and 80.5%, respectively). The two other subjects with very low EEG performance,
namely VPeac and VPeal, did not show further improvements.

Figure 4.8 shows the relation of the classification performance of the individual
measurement methods (EEG, [HbO] and [HbR]) in relation to their mutual informa-
tion content (I (EEG;[HbO]) and I (EEG;[HbR]). The left column shows these results
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for executed movements, while the left column shows the results for the motor im-
agery. Generally speaking the mutual information content rises with higher classifi-
cation accuracy for all considered methods. If for a given subject method X scores a
low classification accuracy, one would expect the conditional entropy H(X |Y ) to be
of similar magnitude as H(X ) and therefore the mutual information content is very
low. On the other hand if both methods score very high classification accuracies,
H(X |Y ) will be low, leading to a high mutual information content.

However, for some subjects we see that, while the classification accuracy of a
given method is high, we observe a low mutual information content. This can be
interpreted in two ways. Either the other classification method does not work well
(and its output is thus very different) or their information content is complementary.
The average mutual information over all subjects for executed movements are given
as: I (EEG;[HbO]) = 0.125±0.177 bit and I (EEG;[HbR]) = 0.194±0.277 bit. For motor
imagery I (EEG;[HbO]) = 0.096±0.127 bit and I (EEG;[HbR]) = 0.067±0.110 bit.

The left part of Figure 4.9 shows the relation of [HbO] classification performance
to [HbO] classification performance of trials that were correctly classified by EEG
(HbO(EEG+)) and to [HbO] classification performance of trials that were misclassi-
fied by EEG (HbO(EEG-)). The right part shows the same analysis, comparing EEG
classification accuracy to EEG(HbO+) and to EEG(HbO-). As can be seen for both
plots most points lie close to the angle bisector, only a few blue marks appear be-
low the diagonal. However, these are caused by very small subgroups (the size of
the squares encode the number of trials). This means that [HbO] and EEG gener-
ally misclassify different trials. If they did not and for example HbO(EEG+) would
classify more accurately as compared to HbO(EEG-), green dots would generally be
substantially higher than blue ones. However, since this is not the case we con-
clude that the classifier outputs, coming from the two signals are independent to
some degree. While we do not explicitly show the results here, results are similar for
[HbR].

To illustrate the spatial distribution of significant NIRS features with respect to
EEG classification accuracy, we formed two groups of trials: The first group con-
sists of all trials, which were correctly classified by EEG (EEG+), while the second
group consists of all trials, which were erroneously classified by EEG (EEG-). For
these two groups we calculate the grand average significances of left vs. right hand
movement trials. The resulting scalp maps can be seen in Figure 4.10. Two subjects,
namely VPeab and VPean, had to be removed from this analysis since their EEG
classification was so accurate (98% and 100%, respectively) that not enough EEG-
trials were present of both classes (namely left and right hand imagination). In Fig-
ure 4.10 the [HbO] chromophore is illustrated. This chromophore showed higher
classification accuracy for imagined movements over all subjects (the detailed re-
sults are given in Table 4.1). As one would expect the level of significance is higher
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Figure 4.8: Mutual information of EEG and NIRS classifier outputs (x-axes) are
compared with their respective classification performances (y-axes). Squares and
diamonds represent the results of single subjects (blue - [HbO] ; green - [HbR]).
The left column shows executed movements, the right column motor imagery. top
rows: EEG classification accuracy vs. the mutual informations of I (EEG;[HbO]) and
I (EEG;[HbR]). bottom rows: classification accuracies of [HbO] and [HbR] vs. their
respective mutual information with EEG.
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Figure 4.9: Left: Scatter plot comparing [HbO] classification accuracy of all trials to
[HbO] classification accuracy, whose EEG classification was correct (green dots) or
incorrect (blue dots). Right: comparing EEG classification accuracy of all trials to
EEG classification accuracy of trials, where [HbO] was correct/incorrect. The sizes
of squares encodes the number of trials.

within the EEG+ group, as compared to the EEG- group. However, we would like to
point out that some channels still exhibit highly significant p-values (p < 10−4) for
the EEG- group. Furthermore, and most importantly, we see that the spatial orga-
nization shows highest activations within expectable regions of the motor-related
cortical areas, very similar to the EEG+ trials.

4.7 Discussion and Conclusions

Recently BCIs that solely rely on NIRS have been realized [126, 1]. However, when
looking at plain NIRS classification rates it becomes apparent that NIRS cannot be
seen as a viable alternative to EEG-based BCIs on its own. However, in a combi-
nation with EEG we find that NIRS is capable of enhancing event-related desyn-
chronization (ERD)-based BCI performance significantly. Not only does it increase
performance for most subjects, but it also allows meaningful classification rates for
those who would otherwise not be able to operate a solely EEG-based BCI.

Given that the typical behavior of hemoglobin oxygenation during brain acti-
vation consists of an increase in [HbO] approximately mirrored by a decrease of
[HbR] [83, 117], for motor imagery (Figure 4.6) only [HbR] clearly showed the typi-
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Figure 4.10: Left: Grand average significance of NIRS features for all correct EEG
trials (EEG+). Right: Grand average significance of NIRS features for all incorrect
EEG trials (EEG-).

cal behavior. For [HbO] there seems to be an initial drop followed by a subsequent
rise. While we have no simple explanation for this finding, following are some con-
siderations which may be relevant: The overall amplitudes during motor imagery
are much smaller than during motor movements (note the different scaling) in line
with previous fMRI experiments [58]. Therefore, spontaneous fluctuations of [HbO]
and [HbR] may appear much more dominant to the point that they can obscure
some small simulation-related changes. Since spontaneous fluctuations are much
stronger for [HbO] than for [HbR] this may be part of the observed discrepancy.
Furthermore, in NIRS with its poorer spatial resolution as compared to fMRI acti-
vated and non-activated or deactivated brain areas may be within the sample vol-
ume and such partial volume effects may further "dilute" the effect of stimulation.
Given that during motor imagery premotor cortex may be activated and primary
motor cortex not [58] which is different from motor movements, it seems possible
that such partial volume effects have occurred during motor imagery. Finally, as
seen in Figure 4.6, [HbO] is rapidly changing during the "baseline" period, i.e. the
average of this time period may not serve as an optimal definition of baseline for
[HbO] making the quantitative interpretations referring to this baseline difficult. A
last consideration refers to potential extracerebral contributions which are stronger
for the HbO signal than the HbR signal and which may be related to such systemic
factors as e.g. blood pressure. Further research is needed to clarify this point. We
are currently preparing a similar study with EEG-feedback controlled SMR-BCI dur-
ing simultaneous fMRI recordings. Therewith, we will be able to relate BOLD fMRI
findings to the EEG and (indirectly) the NIRS recordings. Furthermore, we hope that
a simultaneous NIRS-fMRI study with measures of systemic variables such as blood
pressure and breathing will give us further evidence of the origin of this effect.
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An obvious concern that arises from the addition of NIRS to EEG-based BCI
feedback is the long time delay of the hemodynamic response. While we show
that classification accuracy increases substantially by employing NIRS, one may
rightly argue that information transfer rates, which measure information per unit
time, could suffer from the inferior temporal responsiveness of such a combina-
tion. To this end we would like to offer the following arguments. Firstly, for sub-
jects (and patients) which are not able to operate a BCI, solely based on EEG, this
combination presents a viable alternative. Secondly, one could imagine a feedback
scenario, where a secondary NIRS-derived classifier is only turned on in particular
trials, when the ’primary’ EEG-based classification is likely to fail.

In terms of information content, we show that the mutual information of both
methods rises with their individual classification accuracy. However, there are also
a few examples, where this relationship does not hold true and the mutual informa-
tion of EEG and NIRS classifier outputs is very small, as compared to their individual
accuracies (see Figure 4.8). To further examine these cases we offer an additional
analysis, which is given in Figure 4.9. As can be seen here the individual methods
mostly misclassify different trials. In combination with the fact, that increased clas-
sification accuracy does arise by combining the classifier outputs meaningfully, we
interpret these findings such that the individual methods complement each other
in terms of information content.

In our study we validated the NIRS data as well as its combinations with EEG
in an offline fashion, but our methods could also be applied to a real time experi-
ment. In addition, a large number of potential extensions are possible in order to
make the combined system faster to set-up. The current (wet) EEG channels could
be replaced by dry electrodes [107, 113, 55] and a zero-training classifier in the spirit
of [46, 45, 43] could be established for NIRS. A further interesting aspect would be
to study non-stationarities during an experiment [114] and techniques for compen-
sating it [120, 132] also for the present multi-modal BCI setup.
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CHAPTER 5

Conlusions and Outlook

In this work many of the shortfalls of state-of-the-art BCI are addressed, such as
high hardware-related preparation costs, the need for subject-specific calibration
sets and instability of BCI performance across subjects. For most of these given
problems novel solutions are introduced, implemented and tested.

The most elementary of EEG-BCI challenges for healthy users is not – at first
glance – a computational one. Standard EEG practice involves the tedious applica-
tion of conductive gel on EEG electrodes in order to provide for accurate measure-
ments of the micro-volt level scalp potentials that constitute EEG signals. With-
out dry-cap technology the proper set-up of BCI sessions in, say, a home environ-
ment, is too tedious, messy and therefore impractical. The computational chal-
lenges which we have addressed are optimal placement of the reduced number of
electrodes and robustness of BCI algorithms to the smaller set of recording sites.
With only 6 uni-polar electrodes one can achieve about 70% of full gel cap BCI per-
formance at sites above the motor cortex. The feasibility of the patented dry elec-
trode technology, as has been presented in this thesis, has already lead to a startup
company, where an advanced version thereof is being developed as a product.

Our ensemble framework is able to estimate subject-independent classifiers for
BCI. As seen, these subject-independent classifiers are on par with their subject-
dependent counterparts in terms of classification performance. The difference be-
ing that subject-dependent classifiers require a calibration dataset of the user. Thus,
the proposed approach allows both experienced and novice BCI subjects to en-
gage in BCI feedback sessions immediately without prior calibration. In addition,
we show that the ensemble framework, in combination with the appropriate ma-
chine learning algorithm, is able to represent the characteristic neurophysiological
variation of a large subject group. While we presented results of a motor-imagery
paradigm, the given approach may be transferred to a broad range of other experi-
mental designs.

However, EEG-based BCI remains inoperable for some users. To this end we
proposed a multi-modal neuroimaging approach, based on NIRS and EEG. It shows
that in combination with EEG, NIRS is capable of enhancing ERD-based BCI per-
formance significantly over all subjects. In addition it also allows meaningful clas-
sification rates for subjects who would otherwise not be able to operate a solely
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EEG-based BCI. Finally, our findings also show that the individual methods com-
plement each other in terms of information content. While in Chapter 4 a multi-
modal approach for ERD-based BCIs is presented, there is per se no reason why a
NIRS-EEG combination would not also be beneficial in other BCI paradigms, such
as event-related potential (ERP)-based BCIs or steady-state visual evoked potential
(SSVEP)-based BCIs, among others. Future studies will show if these type of com-
binations will also lead to beneficial results there. It is therefore highly likely that
multi-modal approaches, such as ours will become more frequent in the future.

Given the still low information transfer rates of typical non-invasive BCI sys-
tems, it is clear that a BCI system will not replace common communication para-
digms, such as keyboard and mouse or even telephony of video conferencing in the
near future. However the possible applications lie within the domains of patient
communication as well as within the gaming industry. Other possible applications,
which have recently been discussed and published are rehabilitation purposes af-
ter stroke, mental work load monitoring (also in industrial environments) or early
breaking detection in an automobile environment, among others.

For the future we anticipate a BCI scenario in which users purchase an afford-
able computer peripheral which is simply placed on the head and requires no gel.
Novel users will not need to undergo a calibration procedure to interact with the
BCI system in a game environment, to control a robot, a wheelchair or otherwise.
At repeated use, parameters from previous sessions are recalled and re-calibration
is rarely necessary. Such a system, capable of an average performance of about >20
bits/min, is achievable within the next few years.
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