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Abstract

In this thesis we study robot perception to support a specific type of manipulation task in

unstructured environments, the mechanical manipulation of kinematic degrees of freedom. In

these tasks the goal of the robot is to create controlled motion, i.e. to change configuration

of the kinematic degrees of freedom (DoF) of the objects in the environment. Often, the

environment contains articulated objects. Their manipulation is specially complex because the

knowledge about their properties that would facilitate the task (e.g. their motion constraints,

the geometry of their parts, their dynamic and frictional properties) are first revealed when

the robot interacts with the object. Therefore, the perception of these objects should exploit

interactions to create information-rich sensor signals. This type of problem and the perceptual

methods that incorporate actions are called interactive perception. In this thesis we propose a

general approach for interactive perception and instantiations of this approach into perceptual

systems to build kinematic, geometric and dynamic models of articulated objects.

Perceptual problems in the domain of robot mechanical manipulation of DoF possess spe-

cial challenges. While unstructured environments are usually continuously changing, robot

mechanical manipulation exacerbates this characteristic. But in fact, these changes in the en-

vironment contain crucial information for a robot that aims to change purposely the state of

the world. Perception for robot manipulation has to extract information from changing sensor

signals and their relationship to changes in the environment and to actions. The perceptual

process has to deliver information quickly and in an online manner, based only on past and

current sensor signals, so that the information can be applied to ongoing interactions. And

the perceptual solutions must be versatile enough to cope with a broad range of environmen-

tal and task conditions in which the robot should be able to manipulate DoF.

To address these challenges, we propose an approach for interactive perception that lever-

ages four structural regularities of perceptual problems in the domain of robot mechanical

manipulation of DoF. First, our approach leverages the dependency between robot actions and

changes in the sensor stream using ideas from interactive perception. Second, our approach ex-

ploits the temporal structure of the physical processes involved in the mechanical manipulation

of DoF using temporal recursion. Third, our approach makes use of task-specific priors that

encode physical regularities of the world. These physical priors relate to the manipulation of

DoF in unstructured environments and the sensor signal formation: physics laws that govern

the motion of objects (e.g. kinematics), mathematical models for the signal formation (e.g.

projective geometry), and assumptions about the physical properties of the environment (e.g.

that the environment is composed of rigid solid parts). And fourth, our approach leverages

dependencies between multiple perceptual subtasks that extract different information patterns

about the same articulated object.
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The approach we propose leverages the aforementioned problem structure with an intercon-

nected network of recursive estimation processes encoding physical priors and exploiting robot

interactions. We instantiated this approach in several robot perceptual systems, presented in

consecutive chapters, to extract information about articulated objects –kinematic, geometric

and dynamic properties– using only RGB-D information, or a combination of RGB-D and

proprioceptive signals (e.g. applied wrenches, configuration of robot’s joints). We study our

proposed approach through these interactive perception systems. We evaluate if the systems

can extract task-relevant information for the mechanical manipulation of DoF of articulated

mechanisms for different objects and in varying and challenging environmental and task con-

ditions. To truly demonstrate that the perceived information is useful for robot manipulation,

we complement the perceptual systems with methods to monitor, control and steer the robot

interaction based on the online perceived information. We also propose and evaluate a novel

method to generate and select informative actions for interactive perception based on the

information acquired so far.
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Zusammenfassung

In dieser Dissertation untersuchen wir künstliche Wahrnehmungs-Methoden die ermöglichen,

dass Robotern bestimmter Manipulationsaufgaben – die mechanische Manipulation kinema-

tischer Freiheitsgrade – in unstruktierten Umgebungen lösen. Der Roboter soll dabei in die

Lage versetzt werden die kinematischen Freiheitsgrade von Objekten in seiner Umgebung

durch zielgerichtete Bewegungen zu verändern. Menschliche Umgebungen sind voll von ar-

tikulierten Objekten, die nur bestimmte kinematische Freiheitsgrade zulassen. Diese Objekte

zu manipulieren ist besonders schwierig, da die Konsequenzen der Handlungen des Roboters

von der kinematischen Struktur des Objekts, seiner Geometrie und den dynamischen Eigen-

schaften (z.B. Gelenkreibung) abhängt. Hinzu kommt, dass sich diese Eigenschaften nur erken-

nen lassen wenn der Roboter mit dem Objekt interagiert. Deshalb sollte die Wahrnehmung

solcher Objekte Interaktionen ausnutzen, um Sensorsignale mit hohem Informationsgehalt

zu generieren. Diese Art von Problemen und die Wahrnehmungsmethoden die Handlungen

berücksichtigen nennt man interaktive Wahrnehmung. In dieser Dissertation schlagen wir

einen allgemeinen Ansatz für interaktive Wahrnehmung vor um kinematische, geometrische

und dynamische Modelle artikulierter Objekte zu erstellen.

Wahrnehmungsprobleme im Bereich der mechanischen Manipulation von Freiheitsgraden

sind durch besondere Herausforderungen gekennzeichnet. Während sich unstrukturierte

Umgebungen ohnehin permanent verändern, wird dieser Umstand durch manipulierende

Roboter noch zusätzlich verschärft. Tatsächlich enthalten die Veränderungen der Umgebung

jedoch wichtige Informationen, die ein Roboter ausnutzen kann, um den Zustand der Welt

zielgerichtet zu verändern. Wahrnehmung für Manipulation muss Informationen von sich

verändernden Sensorsignalen, deren Zusammenhang mit Änderungen in der Umgebung und

deren verursachenden Handlungen extrahieren. Der Wahrnehmungsprozess muss Informatio-

nen unmittelbar zur Verfügung stellen, so dass diese in laufenden Interaktionen verwendet

werden können. Zusätzlich müssen die Wahrnehmungslösungen vielseitig genug sein um mit

einer breiten Palette an Umgebungen und Aufgaben zurechtzukommen, in denen der Roboter

Freiheitsgrade manipulieren soll.

Zur Bewältigung dieser Herausforderungen stellen wir einen Ansatz für interaktive Wahrnehmung

vor, der vier strukturelle Regularitäten von Wahrnehmungsproblemen im Bereich der Ma-

nipulation von Freiheitsgraden ausnutzt. Erstens nutzen wir die Korrelation zwischen den

Handlungen des Roboters und Änderungen im Sensorsignalfluss aus. Zweitens machen wir uns

die zeitliche Struktur der physikalischen Prozesse zu Nutze, indem unser Ansatz auf zeitlicher

Rekursion basiert. Drittens benutzen wir aufgabenspezifisches Vorwissen, das physikalische

Regelmäßigkeiten der Welt abbildet. Dieses physikalische Vorwissen bezieht sich auf die Ma-

nipulation von Freiheitsgraden in unstrukturierten Umgebungen und die Entstehung von
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Sensorsignalen: Physikalische Gesetze, die die Bewegung von Objekten beschreiben (z.B. Kine-

matik), mathematische Modelle für die Signalentstehung (z.B. projektive Geometrie) und

Annahmen über die physikalischen Eigenschaften der Umwelt (z.B. dass diese aus Festkörpern

zusammengesetzt ist). Viertens nutzen wir die Korrelation zwischen mehreren informa-

tionsverarbeitenden Prozessen (Unteraufgaben der Wahrnehmung) bezüglich eines einzelnen

artikulierten Objekts aus, indem Informationen zwischen Teilprozessen ausgetauscht werden.

Unser Ansatz macht sich die o.g. Problemstruktur mittels eines ineinandergreifenden

Netzwerks aus rekursiven Schätzprozessen zu Nutze. Wir haben diesen Ansatz in Form

mehrerer künstlicher Wahrnehmungssysteme implementiert. Diese werden in aufeinander-

folgenden Kapiteln vorgestellt und beziehen auf die Art der Information, die dabei über ar-

tikulierte Objekte gewonnen wird: kinematische, geometrische und dynamische Eigenschaften.

Unser Ansatz benötigt lediglich RGB-D Daten oder eine Kombination aus RGB-D und pro-

priozeptiven Signalen (z.B. angewendete Dyname oder Konfiguration der Robotergelenke).

Wir analysieren unseren Ansatz mit Hilfe dieser interaktiven Wahrnehmungssysteme. Wir

evaluieren ob die Systeme aufgabenrelevante Informationen für die mechanische Manipulation

von Freiheitsgraden für unterschiedliche Objekte und unter wechselnden Umgebungs- und

Aufgabenumständen extrahieren können. Um zu zeigen, dass die wahrgenommene Informa-

tion für einen manipulierenden Roboter hilfreich ist, ergänzen wir das Wahrnehmungssystem

mit Methoden zum Überwachen, Regeln und Steuern der Interaktion durch den Roboter.

Zusätzlich stellen wir eine neue Methode vor die informative Handlungen für interaktive

Wahrnehmung erzeugt.
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Übung Unterricht where I learned to read your lips, an important asset for the many years

of laughing and science with you that were to come. Thanks Sebastian, working with you

was a motivation to come everyday. Thanks Arne, Raphael, Rico, Vincent, you have been my

hardest critics and my best supporters. Thank you Manolo, behind the slow-moving man is a

fast-moving mind. Thank you Janika, for helping me with the fierce monster of the German

bureaucracy and the research life.

I feel so lucky I had the honour and pleasure of working with you and having you in my

life.

I thank also to the institutions that made this thesis possible, the Technische Universität

Berlin, the Deutsche Forschungs Gemeinschaft, the European Commission and the Alexander

von Humboldt Foundation. And a very important institution that supported me from the

beginning, my family. Thank you Dad, Mum, Pifo. Thank you Thomas, you have been so

understanding and supporting these many years. Your positive energy helped me go further.

And last, but not least, thank you Oliver, my Thesis father. You infected me with the

addiction to robotics and science, to question everything and everyone, even myself. You

taught me how to be a researcher, a critical thinker and an expert in music videos from the

80s.

v



vi



Prepublication and Statement of Contribution

Parts of this thesis have been previously published in the following peer-reviewed articles:

A. Roberto Mart́ın-Mart́ın and Oliver Brock, Online Interactive Perception of Articulated
Objects with Multi-Level Recursive Estimation Based on Task-Specific Priors. In Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 2494–2501. Chicago, USA. 2014
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1
Introduction

Robots have been a successful working force in factories for decades1. In these environments,
most of the robot’s tasks are considered mechanical manipulation tasks, e.g. picking up ob-
jects, placing them and assembling them. In these tasks, the robot interacts with the environ-
ment by exerting forces in order to move objects (Mason, 2001). When the robot moves an
object, the robot is effectively changing the configuration of the kinematic degrees of freedom
(DoF) of the environment. We consider the purposeful change of the DoF of the environment
to be the goal of any mechanical manipulation task.

Robots in other types of human environment –homes, airports, streets, schools, hospi-
tals,. . . – are not as successful as robots in factories. In these other environments robots are
still not capable of manipulating kinematic DoF successfully and reliably. Until now, the only
successful robot in this type of human environments is a rolling vacuum cleaner that suctions
dust (with all my respect); very different to mechanical manipulation tasks robots execute in
factories. The differences between factories and other types of human environments have been
so far insurmountable obstacles to extend the success of mechanical industrial manipulators to
these other environments.

Factories are structured environments : they are carefully designed and controlled to facil-
itate robotic manipulation. On the other hand, other human environments are unstructured :
dynamic, uncontrolled, uncertain and very different from one another. These differences have
crucial implications on the development of robots that aim to physically manipulate these
environments (Kemp et al., 2007).

In structured environments the information that is relevant for the robot’s manipulation
task can be given a priori (e.g. where to find the parts to assemble the car, how to move
without collisions from A to B, or how much force to apply on a tool) or assumed implicitly
(e.g. “when the robot motion is finished, the picked part will be at the desired configuration”).
On the contrary, in unstructured environments it is very difficult to give this information
a priori because of the large variety of environments, tasks and conditions the robot could
confront, and the ever-changing nature of these environments. In fact, the robot has to con-
tinuously monitor the progression of the task to adapt online towards the goal and detect the
task termination. Thus, robots in unstructured environments are advocated to continuously

1The International Federation of Robotics estimated 1.632 million industrial robots on operation
in 2015. They predict 2.589 million industrial robots active in 2019 (International Federation of
Robotics, 2016).
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acquire the information that is relevant for the task from their input sensor signals. In other
words, robots have to perceive to compensate the absence of prior knowledge about the en-
vironment (Ersen et al., 2017). This process of continuously acquiring the information that is
relevant for the manipulation task is what we call perception for robot manipulation and is the
topic of this thesis.

Even in unstructured environments the robot’s perceptual system needs to make some as-
sumptions to be able to extract task-relevant information from the sensor signals. The input
signals correlate to different physical processes or types of energy (e.g. vision to electromag-
netic fields, audio to air pressure waves, haptics to mechanical forces). These input signals are
usually high-dimensional and full of noise. Moreover, the input signals arrive continuously and
change quickly, leading to a complex sensor stream. Searching for information in this input
space is a process that the robot cannot approach näıvely, as an uninformed search. To put
some numbers on this, a binary image of size 20 × 20 pixels spans a space of 220×20 ≈ 10120

elements, impossible to be rendered, searched and analyzed element by element. Thus, the
perceptual system of the robot needs to make assumptions about the underlying structure
of the problem. These assumptions are prior information about the problem that the system
leverages to solve it.

Artificial perception is plenty of solutions that leverage the right problem structure. We
can analyze the structure leveraged by solutions of a largely studied perceptual task: object
classification. Computer vision solutions for object classification have traditionally been based
on feature descriptors like SIFT (Lowe, 2004) or SURF (Bay et al., 2008). These solutions
assume that the classification of an image should not be sensitive to photometric effects like
scale or orientation. More recent solutions apply artificial neural networks (ANN) both to
generate an intermediate feature representation and to learn the mapping between features
and classes (Krizhevsky et al., 2012a). These networks leverage the spatial structure of the
image using convolutions (Rumelhart et al., 1985, LeCun et al., 1998) and the structure of
the visual classification problem using hierarchical architectures (e.g. groups of pixels define
elementary image structures that, when combined, define an object).

Perceptual solutions to object classification from robotics have exploited additional assump-
tions that are available to embodied agents. These solutions use the robot’s capabilities to
interact with the objects, revealing and generating a sensory response that makes the classifi-
cation easier (Sinapov et al., 2014, Willimon et al., 2011, Venture et al., 2009, Atanasov et al.,
2014). Known or learned correlations2 between actions and changes in the sensor signals are
leveraged as prior knowledge to extract information from the sensor stream and to solve the
classification task. The common pattern in the aforementioned solutions for object classifica-
tion, both in computer vision and in robotics, is to identify and leverage the right structure of
the problem.

So far, we have seen two contradicting lines of argument with respect to the amount of
prior information we should encode in the robot’s perceptual system. On one hand, we have
argued that perception in unstructured environment needs to reduce its dependency on a-
priori given information. In this process, the robot will gain in generality at the cost of mak-
ing robot perception more challenging, since the robot will be able to manipulate in a larger
variety of environments based on the perceived task-relevant information.

2Some authors use the term correlation only to indicate a linear relationship between variables. In
this thesis we adopt the less restricted definition from the Cambridge Dictionary of Statistics:

Correlation: A general term for interdependence between pairs of variables (Everitt
& Skrondal, 2002, p. 107).
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On the other hand, we argued that perception needs prior assumptions about the structure
of the problem and the environment. Only based on these assumptions the perceptual solution
can extract information from the complex input sensor stream. The more information can be
assumed a-priori, the less challenges for perception. But excessive assumptions could restrict
the generality of the solution. This trade-off is depicted in Figure 1.1. The goal when devel-
oping a perceptual solution for robot manipulation in unstructured environments is to find a
balance between assumptions about the problem and generality of the perceptual approach.
Finding this balance involves 1) identifying generic prior assumptions that apply to a large
variety of environments, problem conditions, and, possibly, perceptual tasks, and 2) devis-
ing methods that leverage these assumptions and are capable of extracting the task-relevant
information from the robot’s sensor stream.

In this thesis, our goal is to leverage the inherent structure of problems in the domain of
perception for robot manipulation in unstructured environments. We will focus on the specific
type of manipulation tasks we mentioned before, mechanical manipulation tasks, where the
goal of the robot is to change the kinematic DoF of the environment. Often, the environment
contains articulated objects: objects composed of rigid parts and connections between them
(e.g. doors, drawers, laptops, scissors). Robots that aim to manipulate unstructured environ-
ments must be able to actuate this type of objects, i.e. to change the configuration of their
internal DoF. This manipulation is specially complex because the knowledge about their prop-
erties that would facilitate the task (e.g. their motion constraints, the geometry of their parts,
their dynamic and frictional properties) are first revealed when the robot interacts with the
object. Perception that supports the mechanical manipulation of DoF of environments includ-
ing articulated objects should be able to perceive motion constraints and other properties of
these objects. These perceptual tasks will be the goal of the systems presented in this thesis,
as we will see in Chapters 4, 5 and 6.

In robot mechanical manipulation the goal of the robot is to change the state of the envi-
ronment (its DoF) purposefully through interactions. Therefore, we consider that the goal of
perception for robot mechanical manipulation is to extract the information that is relevant for
this task. Shifting the goal of perception from building a complete model (Marr, 1982) towards
extracting task-relevant information is a journey that began with the concepts of Purposive
Active Vision by Aloimonos (1990) and Animate Vision by Ballard (1991). This goal-shift
brings the behavior of the interacting agent to the central role (Brooks, 1986).

There are multiple ways to define that something is relevant to a task. In this thesis, we
adopt the definition by Hjørland & Christensen (2002):

Something is relevant to a task if it increases the likelihood of accomplishing
the goal which is implied by the task (Hjørland & Christensen, 2002, p. 964).

To evaluate if the perceptual systems presented in this thesis achieve the aforementioned
goal of perception for robot mechanical manipulation, we will evaluate experimentally the
improvement in the manipulation task when the robot uses the perceived information (e.g.
Chapter 4.3.4, and Chapter 6.6.2). We will complement our proposed perceptual systems
with manipulation methods to control and steer the robot actions based on the information.
Additionally, in Chapter 7 we will present a method that uses the perceived information to
generate, plan, select and execute information-rich robot actions.

In the rest of this chapter we will analyze further the structure of perceptual problems
to support robot mechanical manipulation of DoF. We will see that the manipulation task
imposes additional challenges to the already demanding problem of robot perception in un-
structured environments. But we will also see that the structure of the problems presents
some opportunities in the form of generally valid prior assumptions that we can leverage to
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Figure 1.1: Pictorial represen-
tation of the trade-off in per-
ceptual problems between prior
assumptions and challenges (and
generality); a point on the curve
represents a perceptual task;
perception in structured environ-
ments (e.g. a industrial robot
factory, right picture) is less
challenging because more infor-
mation can be assumed a priori;
perception in unstructured envi-
ronments (e.g. an untidy room,
left picture) is more challenging
because less information can be
assumed a priori

Perceptual
Challenge Generality

Prior Assumptions

structured environments

unstructured environments

solve them. In the following we will identify the most important challenges and opportuni-
ties, and propose based on them an approach to leverage the opportunities and address the
challenges.

A Note about Priors: In Bayesian probability theory the term “prior” has a clear and
restricted definition: a prior is a probability distribution that, combined with an observation
through the likelihood function in the Bayes Rule, generates the posterior distribution (see 2).
In this thesis, we will use the term prior in a broader sense: priors are information about the
problem that is known before the actual sensor data of the problem has been observed. In
this sense, the term prior could be a probability distribution (Bayesian definition), but also
a model, an algorithm to apply to a problem, the structure of a neural network or any other
type of information about the task, the environment or the problem. This information repre-
sents assumptions about the structure of the problem that we leverage to solve it. Training
data can be also considered prior information, since it is observed before the actual perceptual
process (applying the trained model to new data).

1.1 Challenges in Perception for Robot Manipulation of DoF

Given that the goal of a mechanical manipulation task is to purposefully change the kinematic
state of the environment, perception for robot mechanical manipulation must focus on these
changes: detect them, track them, and understand their relationship to the robot’s actions. In
contrast, other fields of artificial perception (in the context of manipulation) are focused on
extracting static, geometric models of the environment. These models cannot represent the
dynamic nature of environment and task and are unrelated to actions. Changes in the envi-
ronment and their relationship to actions, however, provide the most appropriate perceptual
signal to support robot mechanical manipulation – more appropriate than static, geometric
models–, since they can be used to guide the robot towards the manipulation goal. The first
challenge in perception for robot manipulation (CH1) then consists of devising perceptual
methods to extract information from changing sensor signals and their relationship to changes
in the environment and to actions. Only if acquired quickly enough, this information can
be used to monitor, steer and control robot’s interaction and achieve the desired change in
the environment. The second challenge (CH2) is to develop perceptual algorithms that can
perceive this information online in unstructured environments.
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1.2 Opportunities in Perception for Robot Manipulation of DoF

As commented before, structured environments are challenging because they are uncon-
trolled and very different from one another. The third challenge in perception for robot
mechanical manipulation (CH3) is to generate versatile algorithms that can cope with the
variability of conditions of the environment and of the task in which the robot needs to suc-
cessfully perceive and manipulate the DoF of the environment.

Other researchers studying the challenges of perception and manipulation in unstructured
environments have suggested similar challenges. For example, Kemp et al. (2007) list the fol-
lowing properties of the environment as challenges for robots: dynamic variation, real time
constraints, and variation in object placement, type, appearance, structure, and sensory sig-
nals. We think the three challenges we discussed (CH1-CH3) is a condensed version of the
ones of their analysis, while we did not include the challenges due to human presence in the
environment.

1.2 Opportunities in Perception for Robot Manipulation of DoF

Perceptual problems in the context of the robotic manipulation of DoF present structural reg-
ularities that we can leverage to address them. These regularities represent opportunities for a
perceptual system to extract task-relevant information and overcome the aforementioned chal-
lenges. In the following we will identify these regularities in perceptual problems for robotic
mechanical manipulation.

The goal in robotic mechanical manipulation is to modify the kinematic state of the envi-
ronment. The manipulation causes changes in the sensor signals and exacerbates the dynamic
behavior of the unstructured environments. In the previous section we identified the changing
nature of the unstructured environments as one of the challenges in perception for robotic
mechanical manipulation. However, what is a challenge can be also an opportunity. By chang-
ing the environment, robot interactions generate information-rich changing signals and reveal
information that could not be perceived passively, e.g. motion constraints and dynamic prop-
erties of articulated mechanism. Moreover, knowledge of the interaction can be used as prior
to restrict the space of possible perceptual solutions and simplify perceptual tasks. The first
opportunity (OP1) is thus to exploit the additional knowledge provided by robot interactions
to generate and interpret changes in the sensor signal and extract task-relevant information.
Methods that integrate interactions as part of the perceptual solution are called Interactive
Perception (IP) methods.

Our goal is that the robot perceives and manipulates DoF in unstructured environments
based on perception. These environments vary strongly from one another. However, robots
are embodied agents and therefore, their perceptual tasks are always grounded into the same
physical world. Physical priors (e.g. physics laws, knowledge about the sensor signal forma-
tion) are universal constraints that help to understand the sensor data generated by physical
events within it. A second opportunity (OP2) is to exploit the physical priors prevalent to
all unstructured environments for the interpretation of sensor signals.

The sensor signals the robot acquires at a point in time are intimately related to the signals
acquired before (and later). This relationship is stronger the shorter the time interval between
sensor signals. This is a consequence of the smooth nature of many physical processes in the
environment (e.g. motion): the environment does not change drastically from one time step to
another. For perception that implies that the information acquired before is a strong prior to
interpret current signals. In other words, we can exploit recursively what has been perceived
so far to acquire information now, and to focus on the changes. A third opportunity (OP3)
is to leverage the temporal structure of the perceptual task evidenced in the continuous sensor
stream.
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Robot mechanical manipulation does not rely on a single type of information or property
of the environment. For a robot that aims to manipulate the DoF of an articulated object,
multiple properties are relevant, e.g. the kinematic constraints of the object, its geometry or
its dynamic and friction properties. These information patterns are the result of different in-
formation extraction processes, or perceptual subtasks. These subtasks are not completely in-
dependent because the properties they perceive depend on each other (e.g. perceiving friction
on the joints of an object depends on assumed object’s kinematic structure), and the sensor
signals they use originate in the same physical interaction and/or the same object. Changes
in the sensor signals are best explained combining information from these subprocesses (e.g.
the change in visual appearance of an articulated object depends on its kinematic structure
and the geometry of its parts). Therefore, information from one subprocess can be used to
help the others. The fourth opportunity (OP4) in perception for robotics is to exploit the
interrelation between perceptual subtasks so that information from one can be used as prior to
interpret sensor signals in the other in a self-bootstrapping manner, and their information can
be combined to better support the robot manipulation.

The following table summarizes the challenges and the opportunities we identify in percep-
tion for robot manipulation of kinematic DoF. The abbreviations OP1 to OP4, and CH1 to CH3
along the thesis document contain hyper-references that point to the definitions of this table:

Challenges in Interactive Perception

Challenge 1
(CH1)

To extract information from changing sensor signals and their relationship to
actions

Challenge 2
(CH2)

Online Perception: quickly enough to support ongoing interaction, based only
on past and current sensor signals

Challenge 3
(CH3)

To be versatile to cope with different environmental and task conditions

Opportunities in Interactive Perception

Opportunity 1
(OP1)

To exploit the additional knowledge provided by robot interactions to gener-
ate and understand changes in the sensor signal

Opportunity 2
(OP2)

To interpret sensor signals as manifestations of underlying physical processes
and known properties

Opportunity 3
(OP3)

To use the information perceived before to help you interpret the sensor
signals now

Opportunity 4
(OP4)

To use the information from one perceptual subtasks to help solving other
subtasks

Table 1.1: Summary of the challenges and the opportunities in interactive perception for robot manipula-
tion

1.3 Our Approach

In this thesis, we propose an approach to leverage the aforementioned opportunities and
address the challenges of perception for robot mechanical manipulation of kinematic DoF. Our
approach is in essence a structure of interconnected recursive estimation processes (Figure 1.2).
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This algorithmic architecture allows us to exploit the structure of the perceptual problem,
as we discuss in the following. Clearly, recursive estimation is a well suited computational
solution to exploit the temporal structure in the sensor signals and the physical environment
(OP3) and to extract information from changing sensor signals online (CH1, CH2). Recursive
estimation processes require models to predict and update the perceived information online.
In our approach these models are based on task-related physical priors (e.g. kinematics, rigid
body assumption, projective geometry) encoding general physical knowledge (OP2). The
physical priors “enrich” the sensor signals and allows the recursive process to interpret them
as evidence of the modelled physical processes, while being general enough to apply to many
unstructured environments (CH3).

As methodological approach, we propose to factorize the original perceptual task into
simpler subtasks that we can address using recursive processes based on physical priors. To
compose these factors, our approach intercommunicates the recursive processes in a way that
reuses priors and results from other processes to help on each subtask (OP4). Finally, our
approach for perception integrates robot interactions to create information-rich signals, and
uses knowledge about these interaction as additional prior knowledge for the interpretation of
these signals (OP1).

Figure 1.2: Our view of interactive perception for manipulation: a structure of highly connected sub-
processes that interpret sensor-action signals based on task-specific physical priors and information from
other subprocesses; generic sensor-action signals are enriched with the physics priors and transformed
into a stream of task-relevant information; interactive perception generates information to monitor, steer,
generate and select task-relevant actions; actions reveal information contained in the sensor-action stream

Figure 1.2 illustrates the proposed approach for interactive perception for robotic mechani-
cal manipulation. We depict the recursive processes that tackle perceptual subtasks as loops.
The recursive processes integrate sensor signals and information about the interaction (sensor-
action stream), physical priors, previous estimates (recursively), and information from other
processes to continuously extract patterns of information. The output can act again as an
input to another recursive estimation process. The outputs can therefore be seen as signals
of a virtual sensor. The combination, integration, and sequencing of these estimation pro-
cesses leads to a general flow of information from sensor-action data (blue, on the left) to
task-relevant information (red, on the right). The idea is to incrementally process and
interpret the sensor streams through cascades of interconnected estimation pro-
cesses until the necessary perceptual information has been extracted robustly and
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efficiently. The interconnectivity of these processes reflects that different but correlated in-
formation can be leveraged to further increase the robustness and efficiency. Based on the
perceived information robots can monitor, control, and plan actions, thus closing the loop and
affecting the input to the processes.

We will instantiate this perceptual approach into several interactive perception systems
in the following chapters (chapters 4, 5 and 6). These systems will perceive different proper-
ties of articulated objects that are relevant for robots manipulating the object’s DoF. The
evaluation of these systems will allow us to assess if our proposed approach for interactive
perception acquires task-relevant information overcoming the challenges of the perceptual
problem.

1.4 Contributions and Thesis Structure

The first intellectual contribution of this thesis is the approach for interactive perception
we presented above. Our hypothesis is that, based on this general approach, we can build
interactive perceptual systems that support robot mechanical manipulation of DoF in the
environment. In the rest of the thesis we will propose and study perceptual systems based on
this generic approach to validate and evaluate this hypothesis.

The second contribution of this thesis is an interactive perceptual system based on vi-
sion (an RGB-D stream) that builds kinematic models of articulated objects in an online
manner. The system will be presented and evaluated in Chapter 4. Studying this first system
we will evaluate if our general approach is applicable to a single perceptual task using a single
sensor modality. This work led to one publication (Mart́ın-Mart́ın & Brock, 2014) and an
open-source perceptual system (Online Interactive Perception, Mart́ın-Mart́ın (2014))3.

The second contribution of this thesis is a system that integrates the segmentation of im-
ages and reconstruction of the shape of the parts of the articulated object with the perception
of kinematic models. With this system we will study how to further exploit interdependencies
between perceptual subtasks (OP4). We evaluate the benefits of the integration comparing
the results of the integrated and non-integrated systems. This perceptual system will be pre-
sented and evaluated in Chapter 5. This work led to another publication (Mart́ın-Mart́ın
et al., 2016a) and we included it as part of the previous open-source perceptual system.

The third contribution of this thesis is an interactive perceptual system based on multi-
ple sensor modalities including signals about the specific robot action (proprioception). We
will propose a method to leverage interdependencies between perceptual subtasks (OP4) using
signals from different sensor modalities. To exploit their interdependencies we will make use
of the concept of cross-modality: using information from one modality as prior to interpret an-
other. Our goal will be to increase the versatility of the system to cope with a broader range
of environmental and task conditions, and also to perceive new properties, e.g. the dynamic
properties (friction) of articulated objects. In our path to further exploit the interdependen-
cies between interactions (proprioceptive signals) and changes in the sensor signals we will
need to hardcode models of these interdependencies in our perceptual system. These models
will assume certain robot morphology and are therefore not general. We will explore simple
online learning methods to obtain such interactive models from experiences and reduce the
dependency on predefined interaction models. The description and evaluation of this third
system is the content of Chapter 6. This work led to three publications (Mart́ın-Mart́ın &
Brock, 2017a), (Mart́ın-Mart́ın et al., 2016b) and (Mart́ın-Mart́ın & Brock, 2017b), and an

3https://github.com/tu-rbo/omip
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open-source perceptual system (Online Multi-Modal Interactive Perception, Mart́ın-Mart́ın
(2016))4.

Action is a crucial component of any interactive perception system. The fourth contri-
bution of this thesis is the development of methods to generate robot motion with two ob-
jectives: 1) to safely explore and generate informative sensor signals for perception, and 2)
to exploit the perceived information to support the mechanical manipulation task. As part
of the perceptual system of Chapter 6 we will present a compliant controller for the safe ac-
tuation of articulated mechanisms, and a method to exploit the information obtained with
our perceptual systems to generate new robot trajectories online. Chapter 7 will present a
novel action selection algorithm for interactive perception based on the systems presented in
Chapters 4, 5, and 6. The algorithm will allow the robot to build incrementally richer models
by generating and choosing the most informative actions. This work was part of two publica-
tions (Mart́ın-Mart́ın et al., 2016b) and (Mart́ın-Mart́ın & Brock, 2017b), and led to a new
publication (Eppner et al., 2017).

4https://github.com/tu-rbo/omip/tree/omip2
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2
Related Work

In this thesis, we present a method to overcome the challenges of problems in interactive
perception for robot manipulation leveraging structural regularities of these problems. In
the introduction we identified four structural regularities shared by many perceptual tasks
in robot manipulation. They represent opportunities to overcome the perceptual challenges
exploiting the correlation between interactions and (changes in) sensor signals (OP1), the
physical structure of the environment and the sensor signal formation (OP2), the temporal
structure in the manipulation processes and its influence in the sensor stream (OP3), and the
interdependencies between information extraction subprocesses (OP4). In this section, we
will review how these four problem regularities have been exploited in previous perceptual
solutions in the literature. We will see that many of the advances in artificial perception can
be explained by a better exploitation of these regularities, which motivates a historically
growing use of them.

Since the work presented here belongs to the family of interactive perception approaches,
we will also analyze previous methods in that field. We will evaluate how they use the four
aforementioned opportunities (problem regularities) to overcome the challenges of perception
for robotics in unstructured environments. At the end of this chapter, we will summarize and
classify the interactive perception methods included in our review in Table 2.1. We classify
them by their application and their exploitation of the four opportunities.

Our ultimate goal is to provide robots with perceptual skills that enable manipulation in
unstructured human environments. Obviously, a successful example of a perceptual system in
this domain is the human perceptual system. We will review work in the fields of psychology,
cognitive science, and philosophy that provide evidence of the crucial role of the four afore-
mentioned problem regularities for the robustness and versatility of the human perceptual
system.

2.1 Leveraging Interaction as Prior for Perception (OP1)

2.1.1 From Passive to Active to Interactive Perception

Since the early days of robotics until our days, most research in robot manipulation relies
on perception that extracts geometric 3D models from sensor data. Obtaining such a com-
plete and detailed 3D model has been the main goal in visual perception since the seminal
work of Marr (1982). The hope was that any task in robotics could be easily solved given an
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accurate geometric 3D model of the environment. The advent of RGB-D sensors has made
the acquisition of such models particularly easy since they “solved” the hard problem of find-
ing the inverse transformation from 2D to 3D. A variety of methods, mostly stemming from
the SLAM community, integrated these 3D images into complete shape models of the static
environment (Gonzalez-Aguirre et al., 2011, Kerl et al., 2013, Endres et al., 2014).

A break-through in the field was the work by Newcombe et al. (2011a), known as Kinect-
Fusion. In this work, the authors incrementally built a 3D reconstruction of the environment
from depth images, represented as a truncated signed distance function (Curless & Levoy,
1996). For each new depth image the authors estimate the pose of the generating depth sensor
within the map, and an extension to the map, in a SLAM-like approach.

KinectFusion made the generation of complete geometric 3D models of static scenes and
the estimation of the pose of a depth sensor with respect to the model a “solved” problem.
One of the reasons for the success of KinectFusion is that it leveraged correctly the structure
of the perceptual problem: the synergies generated from the combination of the scene recon-
struction and pose estimation processes, the exploitation of the known physics behind the
formation of depth images from a known geometry, elegantly leveraged using a signed distance
function, and the boost in performance from the recursive initialization of the pose. However,
by not exploiting the correlations between interactions and changes in the sensor signals the
method restricts itself to static environments. Its “detachment” from interactions limits the
applicability of KinectFusion (and other methods that generate geometric 3D models) for
robot manipulation tasks.

The resulting 3D models from the aforementioned methods serve as input to a variety of
grasping and manipulation planning algorithms (Miller & Allen, 2004, Rusu et al., 2009, Pa-
pazov et al., 2012, Nieuwenhuisen et al., 2012, Jentzsch et al., 2015). However, this geometry-
based perception cannot extract time-varying signals and therefore does not explicitly con-
sider the robot’s interactions. As a result, time-varying aspects of the robot’s action must be
planned prior to execution and therefore without access to up-to-date sensor feedback. The
resulting limitations in reactivity necessitates complex planning under uncertainty (Smallwood
& Sondik, 1973, Kaelbling et al., 1998, Hsiao et al., 2007). The reliance on static, geomet-
ric models also makes it impossible to extract certain object properties, including kinematic
articulations and dynamic properties, although these properties are essential for robust and
versatile manipulation.

Researchers have attempted to overcome the limitations of static scenes and handle the
complexity of a changing sensor signal by building 3D deformable models (Schulman et al.,
2013b, Furch & Eisert, 2012, Channoufi et al., 2016). Newcombe et al. (2015) extended
KinectFusion with a warp-field that encode the deformation of the reconstructed surface
from the nominal pose. These methods provide impressive reconstruction results, but the
deformation field is not easily correlated to interactions and it cannot be applied to robot
manipulation.

The reduced reactivity, the thereby necessitated complex reasoning, and the limitations on
the type of properties that can be perceived—all consequences of the static, non-interactive
view of perception—must be viewed as significant obstacles on the path towards perception
tailored to manipulation.

Realizing the limitations of static perception, researchers began to consider time-varying
sensor signals correlated to actions. The insight that time-varying signals together with knowl-
edge of the actions that caused the changes contain important additional information led
to a novel paradigm in computer vision: to active vision (Aloimonos et al., 1988, Bajcsy,
1988, Ballard, 1991). The active vision paradigm exploits correlations between changes in
sensor’s parameters (e.g. pose or focal length) and changes in sensor signal. This enables new
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approaches to computer vision problems, such as image segmentation or structure from mo-
tion (Aloimonos, 1990, Salganicoff et al., 1992, Aloimonos, 1993, Aloimonos & Fermüller, 1995,
Whitehead & Ballard, 1990, Blake & Yuille, 1993, Pahlavan et al., 1993, Chaumette et al.,
1996, Hayman, 2000). It also led to the novel challenge of appropriately directing sensing
resources to satisfy the requirements of a perceptual task, i.e. “where to look” to perceive
effectively (Rizzi et al., 1996, Kragic et al., 2005). The field has been recently reviewed by
some of its founders (Bajcsy et al., 2016). However, in spite of the appropriateness of active
vision for perception and manipulation, this paradigm has not yet found widespread use in
that context.

A reason for the limited dissemination of the active vision paradigm is the type of actions
involved and thus, the type of information about the environment it can reveal. Active vi-
sion only considers changing the sensor’s parameters and exploiting the correlation of these
actions to changes in sensor signals. Properties related to the way the environment reacts to
interactions that are crucial for manipulation (e.g. kinematic and dynamic properties) are not
contained in the signals that active vision is able to generate and perceive.

Researchers in the intersection of artificial perception and robotics proposed to exploit
the interactive capabilities of embodied agents to overcome the limitations of passive and
active perception. The information revealed through physical interactions relating actions and
environmental reactions is crucial for manipulation because it allows the agent to plan and
predict the outcome of the manipulation.

The first to realize the potential of physical interaction as part of the perceptual process
were Tsikos & Bajcsy (1991) (published even earlier as a technical report (Tsikos & Bajcsy,
1988)). In their approach they generate an initial set of hypotheses about objects on a table
using range sensing and build a relational graph were the nodes are object hypotheses and
the edges connecting nodes indicate a on-top relationship. Through interactions (shaking,
pushing, picking) the robot was capable of refining the relational representation, identifying
the topmost object at each step, and using this information to plan and execute actions to
clear the table.

Later on Fitzpatrick & Metta (2002) (Fitzpatrick, 2003, Fitzpatrick et al., 2003) integrated
interactions as part of a perceptual system for object segmentation. Their robot identified its
own arm and correctly segmented objects in the visual stream using poking actions to create
motion cues that are sufficient for the task. Extending this idea Katz & Brock (2007) used
robot interactions to reveal and perceive kinematic properties of articulated objects. They
coined the term interactive perception to design methods that integrate physical interaction
with the environment as part of the perceptual process. Since then, interactions has been
leveraged to simplify and solve multiple perceptual tasks including object recognition (Li &
Kleeman, 2011, Sinapov et al., 2011), object singulation (Chang et al., 2012), image segmen-
tation (van Hoof et al., 2014, Schiebener et al., 2012, Kenney et al., 2009), and the estimation
of kinematic and dynamic properties of articulated objects (Atkeson et al., 1986, Katz et al.,
2013a, Endres et al., 2013). A recent survey (Bohg et al., 2017) has summarized the most
important existing approaches in interactive perception.

2.1.2 Interactions in Interactive Perception

Obviously, interactions are an intrinsic component of any interactive perception approach.
They can play two main roles: as generators of information-rich sensor signals, and as prior
to interpret these signals. Which role interactions play depends on how much information
about the interaction and its consequences on the environment is available to the perceptual
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method (i.e. self-interaction or observation of another agent, forward and other predictive
models, . . . ).

Initial methods in interactive perception used interactions just as generators of informative
signals (Tsikos & Bajcsy, 1991, Fitzpatrick, 2003, Katz & Brock, 2007). These methods do
not require to know the exact interaction; they only assume that the interaction will reveal
the desired information contained in the sensor signals. Because of their low dependency on
detailed information about the interaction, these methods can be applied to perceive from
self-interactions and from interactions from other agents. However, these methods fail to
perceive unequivocally in cases where the same sensor signals could result from multiple pairs
of interaction - environment property, cases that could be easily disambiguated exploiting
further information about the interaction as prior.

Trying to overcome these limitations, a second group of interactive perception methods
make use of more detailed information about the action and its correlation to changes in the
environment to interpret the sensor signal. Zhang & Trinkle (2012) use knowledge of the
robot action and tactile sensing to solve a dynamic equation and track the motion of an inter-
acted object. Similarly, Koval et al. (2013) also use tactile sensing and knowledge about the
robot interaction to localize an object inside the robot’s end-effector. They realized that the
object’s pose lies on a submanifold within all possible poses defined by the contact configura-
tions. Hausman et al. (2015) heuristically define the possible outcomes of an action in terms
of changes of the environment and sensory signals, and use the measured sensor signals to
update the robot’s internal belief. In general sensor modalities like haptics and tactile sensing
that can only register spatially close events greatly benefit from this variant of the interactive
perception paradigm because the information contained in the sensor signals extends spatially
when interpreted with detailed information of the interaction that caused them (Schneider
et al., 2009, Ilonen et al., 2014, Martinez-Hernandez et al., 2017, Michel et al., 2014). While
methods exploiting deeper knowledge of the interaction can extract more information more
accurately from the same sensor signals, they require complex models (forward models relat-
ing actions to changes in the state of the environment, measurement models relating changes
in the state of the environment to changes in the sensor signals (Corke, 2017)) that are not
available for many tasks.

Some recent methods try to learn these models directly from interactions (Agrawal et al.,
2015, 2016). Learning the models from pairs of action-sensor signals avoids having to define
them analytically. Moreover, the learned models can even outperform hard-coded models
because they replace the intermediate represented states by representations that are more
tailored to the specific action-sensor space. However, these methods require vast amounts
of training data that is generally costly to obtain for interactions and robot manipulation.
Also, the task-tailored representations cannot be easily adapted and shared between domains
and tasks, which limits their generalization. A promising recent research line tries to alle-
viate these problems by imposing soft constraints in the resulting intermediate representa-
tions (Byravan & Fox, 2017).

There is a trade-off between the information that can be extracted from the sensor signals
using knowledge about the interaction, and the complexity of the required prior knowledge
about the correlation between actions and changes in the sensor signals. Simpler methods
just assume that the actions generate information-rich signals, but cannot fully extract the
information contained in the signals. More elaborate approaches obtain additional information
at the cost of complex forward and measurement models. An additional advantage of having
these complex models is that they allow to plan for the most informative actions to guide
exploration for interactive perception (Krüger et al., 2011, van Hoof et al., 2014, Hausman
et al., 2015, Otte et al., 2014, Kulick et al., 2015, Baum et al., 2017, Barragán et al., 2014).
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There is an increasing interest in the robotics community for interactive perception methods
that can obtain their own interaction models and apply them to interpret sensor signals and
to plan informative actions.

2.1.3 Interactions in Human Perception

Traditionally, the dominating idea in the scientific community was to consider perception as a
passive process1: signals acquired by our sensing organs are transmitted to the brain, where
they are processed to generate a percept and possibly a response action. At the beginning of
the 70s psychologists and cognitive scientists developed a new theory of the perceptual process
that departed from this passive model.

In his seminal work the psychologist Gibson (Gibson, 1966) proposed a new view of percep-
tion that integrates actions in an active process of the agent within its environment. In his
theory, perceiving agents are not waiting for information-rich signals to arrive, but they move,
explore, interact with their environment to generate and find these signals (Gibson, 1979).

Experiments with human subjects support Gibson’s active view of the perceptual process.
In one of these experiments, subjects are asked to recognize pebbles of varying forms. The
subjects are allowed to have different levels of interaction with the pebbles: no interaction,
observing the pebbles rotating but without control on their motion, and full control of the
pebble motion (and therefore, the obtained visual signals). While the first group could only
recognize 49% of the pebbles, having changing sensor signals increased it to 72%. The group
that could actively interact achieved 99% accuracy. The combination of known interactions
and corresponding changes in sensor signals contains much richer information to solve the
perceptual task.

Philosophers like Alva Noë (Noë, 2006) and cognitive scientists like Varela (Varela et al.,
1993), O’Regan (O’Regan, 2011) and Gallagher (Gallagher, 2006) further developed the idea
that action is part of perception into what they called the enactive perception paradigm.
Within this paradigm, a property of the environment is just a link between a set of actions
and the corresponding changes in the sensory responses.

For example, we say that a plate presents a circular-form not because its shape projects
onto our retina as a circle, but rather because it projects as ellipses of varying eccentricity as
we move our eyes around it and the variation pattern linking motion and ellipse eccentricity
matches the one we associate to “perceiving a circle”. Actions (in this case moving our head
around) generates changes in the sensor signals (in this case images) defined the sensory prop-
erty. Properties of the environment are then subsets in the combined space of actions and
changing sensor signals, A× S × t. Elements of this space contain richer information than static
sensor signals or changing signals alone. The changing signals acquire more meaning when
combined with the actions that caused them.

The experiments by Held & Hein (1963), while not in humans, support the idea that per-
ception in biological systems is intrinsically linked to actions. In their study, the authors
placed two kittens in a carousel: both could visually observe their surroundings but only one
kitten was controlling the motion with its walking movements, while the other was passively
moved based on the motion of the first kitten (see Figure2.1). As a result, only the kitten that
controlled its own motion learned to understand the correlation between walking and changing
visual signals that is necessary to navigate. The second kitten, even though it had acquired
the same visual signals, was unable to avoid obstacles or to follow a path.

1Some authors have argued against this historical narrative and suggest that the passive-view
was not the only paradigm when studying perception (Wagner, 2016). However, these alternative
paradigms were marginal compared to the predominant passive perception model.
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Figure 2.1: Experimental setup of (Held & Hein,
1963); one kitten (A) controls the motion while
the other (P) moves passively; both kittens observe
the same environment; only the active kitten (A)
learns the correlation between actions and changes
in the visual field and can use perception to support
navigation ( c⃝ 1963 APA)

Given the compelling indications from psychology and cognitive science about the crucial
role of interactions in the perceptual process, our goal in this thesis is to exploit interactions
in order to reveal and create information-rich sensor signals for robot perception.

2.2 Leveraging Physical Priors for Perception (OP2)

2.2.1 Physical Priors in Signal Processing and Artificial Perception

Subsumed under the term physical priors, we consider two types of regularities that a per-
ceptual solution can exploit: 1) assumptions about the physical properties and structure of
the environment and signal (e.g. the rigid body prior, the assumption that the environment
is composed of rigid bodies), and 2) known models of the physical processes related to the
signal generation (e.g. the kinematics prior, that motion in the environment is governed by
known kinematic equations). Both types of priors have played a crucial role since the early
days of artificial perception, when it was still called signal processing. Signal processing is the
analysis, manipulation and transformation of sensor signals. Processing a signal requires to
leverage physical priors about the signal itself and its generation. For example, processing
an image to detect intensity discontinuities between areas (Canny detector (Canny, 1986)),
compute intensity gradients and spatial-frequency properties (Fast Fourier Transform (Cooley
& Tukey, 1965)), or find salient points (Harris & Stephens, 1988) requires to assume a cer-
tain image formation procedure (i.e. the projective geometry prior) and a fixed image spatial
representation.

Artificial perception goes beyond the analysis of the sensor signal itself and interprets the
signal as evidence of relevant properties of the world. For this interpretation, artificial percep-
tion methods use physical priors, not only about the signal, but also about the environment.
The transition from image processing to computer vision is a clear example of this increasing
role of physical priors (Rosenfeld & Pfaltz, 1966, Rosenfeld et al., 1976, Barrow & Tenenbaum,
1978).

Computer vision researchers used increasingly complex physical priors and models to de-
velop the family of methods of shape-from-X (Ramachandran, 1988, Aloimonos, 1988, Nayar
& Nakagawa, 1994). These methods obtain three dimensional information based on detailed
models of illuminance and reflection (Phong, 1975, Oren & Nayar, 1994). Advances in geo-
metric and projective physical models derived into multi-view geometry, and generated the
first sparse three-dimensional reconstructions based on sets of images (Shashua, 1995, Ull-
man, 1979, Hartley & Zisserman, 2003). Assumptions about the continuity of the object
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surfaces (i.e. the surface continuity prior in color, in curvature, in depth, . . . ) are at the core
of most image segmentation algorithms Shi & Malik (2000), Kato & Pong (2001), Papon et al.
(2013b). Recent artificial perception approaches have imported more complex physical priors
from other fields like computer graphics (Seitz & Szeliski, 1999, Benno Heigl, 2000, Sigal &
Black, 2006, Bogo et al., 2015), and analytic physics (Zhou et al., 2016, Battaglia et al., 2013,
Pauwels & Kragic, 2015, Schenck & Fox, 2017).

As a reaction to this dependency on assumptions and complex physical priors, artificial per-
ception researchers have proposed to extract these regularities directly from sensor data using
machine learning techniques (Krizhevsky et al., 2012b, Deng et al., 2009). Unfortunately, this
process requires large amounts of data to find the right general patterns in the signals. The
most recent and promising trend to decrease this data-hunger is to combine simple physical
priors with machine learning techniques (Jonschkowski & Brock, 2015, Schenck & Fox, 2016,
Byravan & Fox, 2017). Nevertheless, researchers in artificial perception are still looking for
the right combination of physical priors and sensor data.

2.2.2 Physical Priors in Interactive Perception

Interactive perception methods solving the same task usually leverage the same physical pri-
ors. In the following, we will take a look on the most important of these priors per interactive
perception application. Most interactive segmentation algorithms assume that the environ-
ment is composed of rigid bodies (rigid body prior). Some of them create an initial segmen-
tation hypothesis leveraging physical priors from computer vision, e.g. the surface continuity
prior in (Bergström et al., 2011, Beale et al., 2011), object surface convexity (Tsikos & Ba-
jcsy, 1991, Chaudhary et al., 2016), geometric primitives (Schiebener et al., 2012, 2014, Chang
et al., 2012), smooth normal orientation, or combinations of the previous (van Hoof et al.,
2013, 2014, Katz et al., 2013c), and refine incrementally this initial segmentation through in-
teractions. For the refinement, some of them exploit additional knowledge of the kinematics
of rigid bodies, i.e. the kinematic prior (Schiebener et al., 2012, 2014). The kinematic prior
is also necessary to build kinematic models of articulated objects (Sturm et al., 2009, Katz &
Brock, 2008), estimate the pose of an object (Koval et al., 2015, Zhang & Trinkle, 2012), or
perceive dynamic properties from interactions (Endres et al., 2013, Atkeson et al., 1986).

Some interactive perception methods that reconstruct the shape of an object or recognize
it from images rely on models of the projection of light from the environment onto the cam-
era, i.e. the projective geometry prior (Ude et al., 2008, Katz & Brock, 2011b). These models
are useful to plan the best next action (Krainin et al., 2011). Other interactive shape recon-
struction approaches from sparser data (e.g. tactile information) resort to continuity priors to
interpolate between data points (Ilonen et al., 2014, Martinez-Hernandez et al., 2017, Michel
et al., 2014).

Essentially, interactive perception uses the same physical priors as other artificial percep-
tion fields like computer vision. However, in interactive perception the kinematic prior has a
more prominent role, since one of the most common reasons to integrate interactions into the
perceptual process is to generate motion and its association information-rich sensor signals.

2.2.3 Physical Priors in Human Perception

We observe two types of physical priors involved in human perception: physical priors “hard-
coded” in the anatomical system, and “soft” priors about physics learned and used to make
inference. The first type of physical priors exploit the known underlying process of signal for-
mation. Being co-evolved for millions of years, sensor organs and brain have developed mech-
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(a) (b) (c) (d)

Figure 2.2: Experiments on intuitive physics by Baillargeon et al. (1985); (a) the baby is habituated to
the rotation of a screen around a revolute axis; (b) the experimenter places an obstacle in the trajec-
tory and repeat the motion; the baby predicts a collision based on its intuitive physical priors (c), and
demonstrates surprise if the collisions does not take place because the experimenter removes the obstacle
(without the baby noticing)

anisms that assume a known type of physical process generating the sensor signals (Corke,
2011). The result of extracting information with “hard-coded” priors is similar to the results
signal processing: the transformation of the sensor signal into a more favourable representa-
tion.

For example, while the number of photoreceptor cells in a human eye is approx. 100 mil-
lions, the connections to the brain through the optic nerve contains less than 2 millions (Jonas
et al., 1992). There is a first reduction of the raw visual signal of two orders of magnitude
performed at the retina. This reduction is based on the geometric distribution of the cells:
signals from adjacent cells are aggregated following an innate mechanism. This physiological
process is tailored to the anatomy of the eye that dictates the formation of the images in the
retina and constitutes an example of physical prior in human perception.

The second type of physical prior exploitation in human perception derives from an innate
knowledge of some of laws of physics, called näıve or intuitive physics. Experiments with in-
fants (Spelke et al., 1995, Hespos & vanMarle, 2012) support the hypothesis that we are born
with a certain basic knowledge of the physical processes that govern our environment. The
experiments show that infants are surprised when they observe illusions breaking physical con-
cepts like solidity, occlusions, object permanence, and containment. For example, Baillargeon
et al. (1985) exposed three and half months old babies to a screen rotating around a revolute
joint (see Figure 2.2). They place an obstacle in the trajectory of the blade and actuate the
mechanism, removing in some trials the obstacle without the babies noticing. In these trials,
babies were surprise because of the absence of a collision (starring longer to the event). The
experiment indicates a intuitive concept of solidity and rigid body physics. These concepts
clearly relate to the physical priors we have seen for interactive perception, e.g. rigid body or
surface continuity, and encode the same problem regularities.

Despite the initial studies highlighting human misjudgements and wrong predictions of
physical phenomena (McCloskey et al., 1980), the majority and more recent experiments sup-
port the idea that humans can foreseen accurately the outcome of physical processes (Proffitt
et al., 1990, Gilden & Proffitt, 1989, Nusseck et al., 2007) especially in the context of motion.
This prior knowledge is encoded in our interactive perception systems as kinematic priors.

Physical priors are thus a crucial element of the human perceptual process to encode reg-
ularities of the problem that allow to interpret and predict the sensor signals. The approach
presented in this thesis aims to similarly exploit simple physical priors about rigid bodies and
image formation to interpret the sensor signals from interactions.
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2.3 Leveraging Temporal Consistency as Prior for Perception (OP3)

2.3.1 From Snapshots to Batches to Continuous Stream Interpretation

In some subfields of artificial perception like audio analysis or speech recognition, the relevant
information is contained in a time series of signals. In contrast, in other subfields like com-
puter vision the sensor signal at a single time step (an image) contains rich information by
itself. Initial methods of computer vision focussed on the extraction of patterns of information
from single images (Rosenfeld & Pfaltz, 1966, Rosenfeld et al., 1976).

Based on the increasing understanding of the structure of a single signal and the improve-
ment in computing and sensing technologies, computer vision researchers turned to the anal-
ysis of temporal sequences of signals, i.e. signal streams or video sequences. Adding the tem-
poral dimension researchers could focus on new perceptual problems like tracking (Kass et al.,
1988, Lucas & Kanade, 1981) or optical flow (Nagel & Enkelmann, 1986). Many initial meth-
ods exploit the information of the entire signal sequence to interpret each individual snap-
shot (Faugeras, 1992, Poelman & Kanade, 1997). These methods are batch processing: they
assumed that the entire signal sequence is available at processing time. However, this process-
ing approach is not suited for online applications, like perception for robot manipulation.

Applications with online constraints require solutions that interpret sensor signals as they
arrive. Researchers found out that this is possible leveraging further the underlying temporal
structure of the problem, e.g. by turning perceptual problems into recursive estimation prob-
lems. Using recursion the solution at the previous step acts as constraint to restrict the space
of possible solutions at the next step, making the search of the most likely state easier (Thrun
et al., 2005).

The first and most successful examples of this idea appeared in robot localization (Smith
et al., 1990, Leonard & Durrant-Whyte, 1991, Fox et al., 1999) and simultaneous localization
and mapping (SLAM) (Se et al., 2002, Thrun et al., 1998, 2005). Following this success, many
other robot perceptual problems have been posed as recursive state estimation like object
tracking (Weng et al., 2006, Choi & Christensen, 2013), manipulator state tracking (Garcia Ci-
fuentes et al., 2017, Hebert et al., 2012), and semantic segmentation (Miksik et al., 2013).

Recursive state estimation became a crucial technique to overcome the challenges of per-
ception for robotics (specially the online requirements, CH2) and remains today one of the
most useful algorithmic approaches for robots to perceive the continuously changing state of
a dynamic system from noisy observations. In fact, many artificial perception researchers con-
sider Bayesian inference the most crucial mechanism in perception (Knill & Richards, 1996),
and recursive state estimation as the application of Bayesian inference along the temporal
dimension.

2.3.2 Temporal Priors in Interactive Perception

Initial methods in interactive perception did not extract information from the continuous sen-
sor stream. They applied instead signal differencing between snapshots of the sensor stream
before and after the interaction and perceived the changes in the environment caused by the
robot (Tsikos & Bajcsy, 1991). This algorithmic methodology disregards all the information
revealed in intermediate steps of the interaction that can be crucial to understand the out-
come.

Later approaches moved towards an analysis of entire sensor sequences of interactions in a
batch manner (Pillai et al., 2015, Katz & Brock, 2011b, 2008, Schiebener et al., 2012, 2014).
These methods compare each signal to the first one and evaluate the changes during the entire
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Figure 2.3: Example of the beta
effect; the missing element in the se-
quence of images gives the illusion of
motion, despite the large the distance
between elements

manipulation. These approaches can thus extract more information from the sensor stream,
but they cannot still be applied to extract task-relevant information online and are therefore
not suited to address the challenges of perception for robotics.

As in other fields of artificial perception, some methods turned interactive perception prob-
lems into recursive state estimation problems. Hausman et al. (2013) proposed an online
tracking framework to segment objects in a table top scenario using robot interactions. Com-
bining color and depth visual salient points, their method can be applied to textured and
texture-less objects. Other authors have proposed recursive state estimation solutions to per-
ceive and track the pose of a pushed object from tactile measurements (Koval et al., 2013,
2015, Zhang & Trinkle, 2012). However, recursive state estimation is still not the prevalent
algorithmic solution in interactive perception due to the complexity of the required models
of the interaction (forward, measurement) and the additional challenge of only using the past
and current measurements to perceive. However, only such an online approach can be applied
to create interactive perception methods that can support and steer ongoing robot manipula-
tion.

2.3.3 Temporal Priors in Human Perception

The human perceptual system is prone to apply temporal priors (consistency, smoothness) to
interpret the continuously arriving sensor signals. This becomes evident from illusions like
the phi and the beta phenomenon Wertheimer (1912). In this illusions (see Figure 2.3), a
sequence of static images is shown, triggering immediately the sensation of motion into human
subjects. These effects are called long-range apparent motion. A related effect, the short-range
apparent motion effect, is responsible for creating the illusion of motion between consecutive
images with small differences, e.g. in cinematographic movies Grossberg & Rudd (1992). Long
and short-range apparent motion effects evidence the predisposition of the human perceptual
system to apply temporal consistency priors for the interpretation of sensor streams. This
predisposition shows how the human perceptual system has adapted to exploit the temporal
consistency of the physical processes.

Numerous studies in cognitive science shed a light on the consequences of this adaptation:
the human perceptual system performs better in tasks that present temporal consistency and
correlation (Kristjánsson et al., 2010, Maljkovic & Nakayama, 1994, Maljkovic & Martini,
2005, Niemi & Näätänen, 1981). Given that many perceptual tasks present strong temporal
structure, it seems reasonable to exploit it. This is one of the goals of the perceptual approach
we present in this thesis: to increase the perceptual capabilities of robots leveraging the tem-
poral structure of the task.
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2.4 Leveraging Information from Other Processes as Prior for Perception
(OP4)

2.4.1 From Independent to Collaborative Perceptual Subtasks

The easier way to build perceptual systems of arbitrary complexity is to structure them into
modules. Modularity is a way of decomposing complexity by breaking down a problem into
smaller subproblems that can be solved and tested individually. Researchers can focus on
specific parts of the perceptual problem (e.g. image segmentation, object recognition or pose
estimation) and implement their solutions assuming they are independent processes (Marr,
1982).

While this divide and conquer approach has enabled the study of each subproblem in isola-
tion and the development of successful solutions, it commonly neglects the interdependencies
between subproblems. However, exploiting these interdependencies could be necessary to
solve them. To ensure maximum performance of a entire perceptual system, and to avoid
making wrong commitments or addressing subproblems that are unnecessarily difficult, all
components of the system should be chosen to maximally exploit potential synergies between
components (Katz & Brock, 2011a).

Important advances in artificial perception research were achieved by overcoming existing
modularizations and exploiting the interdependencies between predefined perceptual subtasks.
The best known example is SLAM (Se et al., 2002, Thrun et al., 1998, 2005), a problem that
couples localization and mapping and that has been addressed with recursive solutions that
tackle effectively the joint problem. Other methods have shown the benefits of integrating
segmentation, reconstruction and pose estimation to improve each subtask by leveraging their
interdependencies (Stückler & Behnke, 2012, Ma & Sibley, 2014).

Perceptual systems can also exploit interdependencies between subtasks within hierarchi-
cal architectures. The usual procedure in a hierarchy is to propagate information bottom-up.
However, a way to further exploit interdependencies between subtasks is to propagate informa-
tion from higher levels into lower levels. This information helps to interpret lower level signals.
Rao & Ballard (1999) present an elegant hierarchical architecture for image recognition based
on bottom-up and top-down communication between interconnected neural networks. In their
approach each network implement a recursive estimator that generates predictions and correc-
tions for increasingly complex parts of the image. From the bottom-up communication, the
higher levels recognize more complex structures composing information from smaller parts.
But interestingly, from the top-down communication, the information from the higher levels
helps the lower levels in the recognition of small patches. We deem the exploitation of interde-
pendencies between perceptual subtasks at different abstraction levels an opportunity that we
aim to exploits in perception for robot mechanical manipulation of DoF.

2.4.2 Interdependencies Between Subtasks as Prior in Interactive Percep-
tion

Initial methods in interactive perception focussed on a single perceptual task and neglected
the synergies of a more holistic approach (Tsikos & Bajcsy, 1991, Fitzpatrick, 2003). How-
ever, subsequent methods achieved important advances by integrating multiple perceptual
subtasks. For example, many interactive segmentation methods combine clustering and mo-
tion estimation to find the rigid bodies that move in from interactions (Schiebener et al., 2012,
2014, Chang et al., 2012). Katz et al. (2014) combined the problems of segmentation, 3D pose
estimation and kinematic analysis to perceive the kinematic models of articulated objects.
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These methods found a right factorization of the original task that allows to inject simpler
priors at each level (e.g. simple physical priors), simplifies the analysis and evaluation of each
subcomponent and facilitates possible extensions.

In the aforementioned methods the subproblems are combined following a sequential
bottom-up pipeline structure: the outcome of one subtask is the input for the next one. This
pipeline architecture to build perceptual systems was already proposed by Marr (1982). Infor-
mation in the opposite direction (from higher levels of abstraction to lower levels, top-down)
or between subprocesses pertaining to other information extraction processes (e.g. between
subprocesses, or from different modalities) is thus not exploited. This one-way sequential pro-
cessing structure cannot fully leverage the interdependencies between subproblems as priors to
interpreting sensor signals.

In addition to the limitations of the one-way information flow mechanism, most interac-
tive perception algorithms proposed so far are based on a single sensor modality, mainly vi-
sion (Bergström et al., 2011, Schiebener et al., 2012, Katz et al., 2014). Integrating informa-
tion from other modalities, however, is crucial to improve robustness, versatility and accuracy
of perceptual systems. Some few methods have explored the use of several modalities, but
in a one-modality-per-task fashion. This is the case of Hausman et al. (2015). The authors
apply vision to generate hypotheses of kinematic models, and proprioception (force-torque
signals) to reject wrong hypotheses from robot interactions. The output of these processes
is combined, but the processes do not help each other. This is a multi-modal version of the
serial pipeline processing, and thus, it neglects the interdependencies between subtasks and
top-down information flow. There is a clear opportunity to improve interactive perception
with a tighter integration of perceptual subprocesses from different sensor modalities. This
has been explored by Krainin et al. (2011) combining tracking and reconstruction, or more
recently by Byravan & Fox (2017) combining segmentation and pose estimation.

A recent and elegant example of the benefits of a tighter integration is the work of Gar-
cia Cifuentes et al. (2017). In their approach based on coupled recursive processes, the au-
thors fuse proprioceptive signals (robot’s arm noisy encoder values) and visual information
(RGB-D stream) to perceive, in an online manner, the configuration of the robot arm. Percep-
tual subprocesses defined in one sensor modality pass information to the other subprocesses,
which is used as prior to help each other and achieve accurate tracking performance. While
this method is not applied to perceive the environment from interactions, we think (and pro-
pose in this thesis) that such an interconnection between online processes can be applied to
exploit interdependencies between subtasks in interactive perception.

2.4.3 Interdependencies Between Subtasks as Prior in Human Perception

There is evidence from neuroscience, cognitive science and psychology supporting the hypoth-
esis that the human brain processes sensor signals in parallel subprocessing units, and that
these units share information at multiple areas to help each other. For example, Livingstone
et al. (1988) discovered that the human perceptual system contains two parallel functional
and anatomical subprocesses that share information at various levels. The first subprocess,
called the magno system, focusses on the perception of motion and three-dimensional scene ar-
rangement. The second subsystem, the parvo system, perceives color, shape and other surface
properties.

What are possible reasons for their structural separation? As the authors say:

Segregating the processing of different types of information into separate path-
ways might facilitate the interactions between cells carrying the same type of
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ba-ba ba-ba ga-ga ba-ba

Figure 2.4: Illustration of the experiments on the McGurk Effect (McGurk & MacDonald, 1976); left:
sound and video are congruent (no effect); right: the altered video leads to many subjects hearing a differ-
ent syllable even though the audio signal is the same (McGurk effect)

information. It might also allow each system to develop functions particularly
suited to its specialization.(Livingstone et al., 1988, p. 748)

The segregation thus enables the adaptation of the processes to the type of information
that need to be extracted, while the interconnection between processes permits the injection
of additional information into the other subprocesses.

When it comes to the integration of sensor signals obtained from different sensing organs,
the human perceptual system seamlessly generates a coherent unified experience. Ernst &
Banks (2002) demonstrated that for tactile and visual integration, the information is merged
in a statistical optimal fashion. The results of this integration can be modelled and well pre-
dicted using a Kalman-filter-like approach. Information from each information extraction
process is merged into a combined percept based on its uncertainty. Uncertainty will also play
a crucial role in the integration of information from different concurrent subprocesses of the
perceptual approach proposed in this thesis.

Psychologist have also found evidence supporting that the integration of modalities does
not follow a simple bottom-up approach –from sensor data to a higher level percept– but
that there is information transfer between interpretation processes in different modalities.
An example of this intercommunication is the McGurk effect. The McGurk effect (McGurk
& MacDonald, 1976) is a perceptual illusion where a subject watches a video of a person
pronouncing syllables. The subject is convinced to hear different utterances, such as da-da
or ga-ga, when in fact the sounds are identical (see Figure 2.4). The subjects misjudges the
sound because the video in fact shows the person saying different syllables but the sound has
been altered to play the identical syllable. The illusion occurs because the visual cue produced
by the facial motions influences the perception of the sound. As a result, identical sounds
are perceived as being different. This illusion demonstrates that visual cues affect hearing.
If the integration of information in the human perceptual system were purely centralized
and bottom-up, the subject would notice the contradiction in the visual and audio signal.
This cross-modal interpretation of multiple modalities is necessary for humans to robustly
perceptive speech (Rosenblum et al., 2007). In this thesis, we will propose mechanisms to
exploit the interdependencies between concurrent processes of the perceptual system (within
the same modality or across different modalities) to help each other.

2.5 Conclusion

In this chapter, we have seen that the four opportunities for perception are crucial in human
perception. This supports the hypothesis that leveraging these problem regularities could
enable robust and versatile perception in unstructured environments.

23



Chapter 2 • Related Work

We have also seen in this chapter that the four opportunities play a crucial role in many
successful artificial perception and interactive perception methods. In Table 2.1 we summarize
the interactive perception methods we reviewed in this chapter and classify them by appli-
cation and the way they leverage the four opportunities for perception. The most important
applications are defined in Table 2.2. We will conclude this chapter deriving conclusions about
the contribution of the four opportunities in the IP methods we have reviewed, and linking
them to the approach we presented in Chapter 1 and the perceptual systems we propose in
following chapters.

Existing IP methods can use actions to 1) create information-rich sensor signals (CS), and
2) to interpret these signals (IS). Theoretically, IP methods of the IS group extract more in-
formation from the interaction because they use it to disambiguate between unclear events,
restricting effectively the space of possibilities. However, IS methods require complex interac-
tion models that are difficult to formulate. The approach we present in this thesis can be used
to instantiate perceptual systems of both groups. If equipped with the necessary models, the
recursive processes that compose our approach use information about the interaction to pre-
dict state and measurement changes, as we will see in Chapter 6. Nevertheless, the recursive
processes can also interpret changes in sensor signals without explicit information about the
generating action, only from the signals the interaction creates, the information perceived so
far, and physics models, as we will see in Chapter 4 and 5.

The reviewed IP methods exploit different physical priors to extract information. Physi-
cal priors allow the IP methods to understand sensor signals as evidence of the underlying
physical structure, to complete missing information and to reject noise in the sensor signals.
Most IP methods presented so far assume that the environment is composed of rigid bod-
ies (RB). Some of the methods use kinematic models to interpret the sensor signals (K). IP
Methods tackling computer vision tasks (e.g. image segmentation) employ also projective
geometry models (PG) and assume some degree of continuity (in color, depth, curvature, . . . )
on the surface of the environment (SC). Interestingly, as a reaction to the increasingly com-
plex physical priors and models, some IP researchers are trying to reduce this dependency on
hard-coded physical models by learning statistical regularities from the sensor data. However,
even these approaches try to leverage physical priors to reduce the necessary amount of data.
In this thesis, we will encode simple physical priors (projective geometry, rigid body assump-
tion, kinematics of rigid bodies) in our perceptual solutions to help in the interpretation of the
sensor signals.

While almost all IP methods assume some temporal structure in the problem (e.g. that
after an interaction the environment will change) only a few IP methods try to exploit the
mutual information between consecutive sensor signals to interpret the changes in the envi-
ronment as they occur (online processing, OP). Most existing IP methods use either signal
differencing (D) or batch processing (BP). These methods cannot be applied to continuously
interpret changes in sensor signals and use the information to monitor and steer ongoing in-
teractions, one of the challenges in perception for robot manipulation of DoF (CH2). We
consider this challenge an important obstacle for robot perception. The IP approach and the
perceptual systems that we present in this thesis are online, delivering information to support
ongoing manipulation.

And finally, very few IP methods have explore how to maximally exploit the interdependen-
cies between perceptual subtasks. Most of the reviewed methods are focussed on a single task
(ST) or they compose multiple subtasks in serial manner (serial pipeline, SP). Very few IP
approaches fully exploit the multi-modal sensor signal available to most robots nowadays. We
believe that this design decisions are a consequence of an excessive modularization in robotics
and artificial perception, and that neglecting the interdependencies between perceptual sub-
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tasks renders them more difficult. In this thesis, we propose an approach that intercommu-
nicates solutions to perceptual subtasks so that information from one helps to solve others,
within one modality or across modalities.

Note: This chapter reviewed IP methods (and other artificial and human perception studies)
in the context of the four problem regularities we propose to leverage for robot perception. In
the following chapters we will present additional related work sections that discuss previous
IP methods in the context of the perceptual applications addressed in the chapters: the per-
ception of kinematics, geometry, and dynamics of articulated objects, from a single or multiple
modalities. We believe this way of dividing and presenting prior work in the field helps to
understand better the contribution of this thesis.

Taxonomy of IP Solutions by Application and Exploitation of Opportunities

Applications IP Methods OP1 OP2 OP3 OP4

IS

Fitzpatrick & Metta (2002), Fitzpatrick (2003),
Fitzpatrick et al. (2003)

CS RB D ST*

Kenney et al. (2009) CS RB BP ST

Bergström et al. (2011) CS RB,K D SP

Chaudhary et al. (2016) CS RB, K D SP

Beale et al. (2011) CS RB, PG BP SP

van Hoof et al. (2014, 2013, 2012) CS RB, SC D SP

IS+OR Schiebener et al. (2012, 2014) CS RB, K BP SP

OR

Schneider et al. (2009) CS PG BP ST

Li & Kleeman (2011) CS RB, K BP ST

Sinapov et al. (2011) IS – D ST*

OS

Tsikos & Bajcsy (1991, 1988) CS* RB D ST

Chang et al. (2012) CS RB D SP

Katz et al. (2013c) CS RB BP SP

SR

Krainin et al. (2011) IS* RB, K, PG OP IT*

Michel et al. (2014) IS RB, K, SC BP ST

Ilonen et al. (2014) IS RB, K OP ST*

Martinez-Hernandez et al. (2017) IS RB, K OP ST

PE

Zhang & Trinkle (2012) IS RB, K OP SP

Hausman et al. (2013) CS RB, K, PG OP SP

Koval et al. (2013, 2015) IS RB, K OP SP

Table 2.1: Taxonomy of the interactive perception (IP) methods discussed in this section, their applica-
tion and how they leverage the four opportunities for perception for robotics presented in Chapter 1.2)
A glossary of applications and their initials is depicted in Table 2.2
OP1: CS= “to create signals”, IS=“to interpret signals”, *=“with action selection”
OP2: RB=“rigid body”, K=“kinematics”, PG=“projective geometry”, SC=“surface continuity”
OP3: D=“differencing”, B=“batch processing”, OP=“online perception”
OP4: ST =“single task”, SP=“serial pipeline”, IT=“interconnected tasks”, *=“multimodal”
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Taxonomy of IP Solutions (Continued)

KM

Katz & Brock (2007), Katz et al. (2013a), Katz
& Brock (2011b, 2008), Katz et al. (2014)

CS RB, PG, K BP SP

Sturm et al. (2009) CS RB, K BP ST

Pillai et al. (2015) CS RB, K BP SP

Otte et al. (2014) CS* RB, K BP SP

Hausman et al. (2015) IS* RB, K OP SP*

Barragán et al. (2014) IS* RB, K D SP

Baum et al. (2017) CS* RB, K BP SP*

DM
Atkeson et al. (1986) IS RB, K BP SP

Endres et al. (2013) IS RB, K BP ST*

IML
Agrawal et al. (2015, 2016) IS PG BP ST*

Byravan & Fox (2017) IS RB, K BP IT*

Table 2.1: (Continued) Taxonomy of the interactive perception (IP) methods discussed in this section,
their application and how they leverage the four opportunities for perception for robotics presented in
Chapter 1.2

Applications of Interactive Perception

Image
Segmentation

IS Divide images into connected regions corresponding to the same
object

Object
Recognition

OR Estimate the identity of an object within a set of known possi-
bilities

Object
Singulation

OS Separate individual objects from an unordered group/structure

Kinematic Model
Estimation

KM Build a model of an articulated object defining the motion
constraints between its movable parts

Dynamic Model
Estimation

DM Build a model of the dynamic properties of an object

Object Pose Esti-
mation

PE Estimate the pose in 6D space of a known object

Shape
Reconstruction

SR Generate a model of the geometric surface of an object

Interaction
Model Learning

IML Build a model that predicts the outcome of robot interactions
with the environment (as changes of environment’s state and/or
sensor signals)

Table 2.2: Glossary of applications of interactive perception methods
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3
Background

In this thesis, we propose an approach to overcome the challenges of perception for robot
manipulation (CH1-CH3, Section 1.1) exploiting favourable structural properties of interac-
tive perception problems (OP1-OP4, Section 1.2). This chapter will review the theories and
algorithms that our approach is based on. These theoretical foundations are not part of the
contribution of the thesis although they are crucial to understand its contributions, and thus,
make the text self-complete.

One of the opportunities we aim to leverage is the temporal structure of the problem
(OP3). Signals in the sensor stream evidence the temporal structure in the changing state
of the environment. Information about the state that has been extracted from previous sig-
nals can be used as prior to interpret current sensor data. Exploiting algorithmically the
temporal structure in this manner is called recursive estimation. Recursive estimation will
allow us to build online systems to perceive environmental changes associated to interactions
(CH1 and CH2). Supported by the online information, the robot will more likely accomplish
its task, the manipulation of mechanical DoF in the environment. Therefore, we will begin
this chapter by summarizing Bayesian filters, the most important family of recursive estima-
tion algorithms in robotics that we will apply in this thesis.

As we explained in Chapter 1, in this thesis we focus on a specific type of robot manipu-
lation: the mechanical manipulation of kinematic DoF in the environment, and the special
case of articulated mechanisms. We presented a general approach for interactive perception
(see Section 1.3) that we will use in the next chapters to instantiate perceptual systems to
acquire information about articulated objects (kinematic, geometric, dynamic models). These
perceptual systems extract task-relevant information leveraging physical priors (OP2), and
known or learned correlations between interactions and changes in sensor signals (OP1). The
task-related priors encode knowledge about spatial descriptions and transformations,
kinematics of rigid bodies, and articulated objects. In this chapter, we will revise these
fields to know how to exploit this regularities for perception.

Finally, this chapter serves also to define the mathematical notation used all along the text,
summarized in Table 3.1.
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3.1 Recursive Estimation

Estimation is the process of producing a reasonable statement about a latent (i.e. non-directly
observable) variable based on input data. When the input data comes from a sensor and
the latent variable is some task-relevant property of the world, the estimation problem is a
perceptual task.

As we argued in Chapter 1, in the specific type of robot tasks we are focussed on, the
mechanical manipulation of kinematic DoF of the environment, the goal is to change the kine-
matic state of the world, e.g. the pose of the objects and parts of articulated mechanisms.
Perception to support mechanical manipulation tasks needs to estimate and monitor these
changes continuously. The estimation of a dynamically changing latent (not directly perceiv-
able) state is called state estimation (Thrun et al., 2005, Bar-Shalom et al., 2001, Barfoot,
2017).

The physical processes involved in mechanical manipulation of DoF present a strong tempo-
ral structure: the current state of the process (e.g. the pose of an object or the configuration
of a joint) is strongly related to the previous states1. This temporal structure can be lever-
aged to help in the estimation of the current state (OP3in 1.2). The main idea is simple but
powerful: use what has been perceived before as prior for the interpretation of current sensor
signals, assuming a certain temporal evolution. Applying this idea, the estimation of the cur-
rent state is guided by the previously estimated information, improving convergence (Young,
2012). Recursive state estimation is a family of algorithms that leverage the temporal struc-
ture in a perceptual problem to solve it.

To correctly exploit the information perceived before, recursive state estimation uses a
model that correlates previous and current states. This model is called forward model, or also
dynamic or transition model because describes to the underlying dynamic process and the
transitions between its states.

So far we have not assumed any interactive capabilities for the perceiving agent: the agent
could be a passive observer that has no influence on the state to estimate. However, a robot is
an active agent : it performs actions that can change the state world. Recursive state estima-
tion also provides mechanisms to leverage action for perception by encoding the relationship
between interactions and changes in the state in the interaction forward model.

All the aforementioned properties make recursive estimation algorithms well suited to
overcome the challenges of perception for robot manipulation.

In recursive state estimation the state can be represented either deterministically, or proba-
bilistically. With a deterministic representation, the estimated state is a single element of the
space of possible states. On the other hand, with a probabilistic representation the state is a
random variable and what we estimate is its probability distribution over the space of possible
states. By maintaining multiple hypothesis (i.e. a distribution over a space of possibilities)
with a probabilistic representation, a recursive solution increases its robustness because it does
not commit prematurely to a wrong estimate. Probabilistic representations also account for
the uncertain nature of the unstructured environment and the noisy behavior of the sensor
signals, and provide a mathematical framework to express the degree of certainty on the per-
ceived information. The robot can use this degree of certainty to act not only based on the
current estimate, but also on the uncertainty about it, e.g. to guide exploration (Settles, 2012)
or to operate safely (Liu & Tomizuka, 2015). This makes probabilistic representations best
suited for recursive state estimators for robot perception in unstructured environments.

1Kinematics provide mathematical models of the temporal evolution of these processes. We will
cover them in the next sections of this chapter.
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The downside is that representing and operating on distributions over entire state spaces is
computationally expensive and in some cases intractable. Using a probabilistic representation
we commit ourselves to use calculus and algebra of probability theory within our recursive
state estimation algorithm. We will see that, to render recursive estimation problems with
probabilistic representations solvable, we will have to make some assumptions (e.g. Gaussian
distributions, linear or linearizable dynamics, . . . ) about the nature and properties of the
problem and the environment that will restrict their applicability. The perceptual approach
propose in this thesis aims to alleviate these limitations by factorizing perceptual problems
into subproblems that are simpler to linearize.

In probability theory the way to exploit prior information (which in our recursive solution
are the previously estimated states) is to apply the Bayes rule2 so that we can integrate ob-
servations to obtain a posterior. Recursive state estimation algorithms using probabilistic
representations receive the name of Bayesian filters (BF) and have achieved some of the most
successful online perceptual algorithms in robotics so far.

3.1.1 Bayesian Recursive State Estimation: The Bayes Filter

In Bayesian recursive state estimation we assume that the state of the dynamical system we
aim to estimate belongs to X, the space of all possible states. We denote as xt ∈ X the ran-
dom variable3 that represents the state at time t, and p(xt = xt) = p(xt) the function that
defines the probability of the variable to take each concrete value, xt, also called probability
distribution function. In Bayesian terms, we consider p(xt) the prior probability, prior to the
integration of knowledge from the sensor measurements and robot actions. We also assume
that the measurement, z, is a random variable defined over the space Z of possible measure-
ments. The measurement acquired at time t is denoted by zt ∈ Z. Finally, let’s assume that
the space of possible actions is U and an action executed at time t is denoted by ut ∈ U .

The goal in state estimation is to determine the probability distribution over the space of
possible current states conditioned on the data acquired so far (measurements, actions and,
possibly, an estimate of the initial state x0)

4: p(xt|zt:1, ut:1, x0). This probability distribution
is called belief state at time t, or posterior because is the result of the integration of the prior
and the measurements. We will compute the belief in a recursive form using the Bayes rule:
as the result of the integration of the previous belief(s) with the latest measurement and
action. We will see in the following how to obtain a recursive form of the posterior.

To obtain a recursive solution exploiting previous estimates as priors, we first apply the

2In general, p(a|b) indicates a conditional probability: the probability of the event a conditioned
on the event b. The Bayes rule can be used to express this conditional probability as an equation of
the probability of b conditioned on a:

p(a|b) = p(b|a)p(a)
p(b)

(3.1)

p(a) is called prior probability distribution because it represents the knowledge we have about the
distribution over possible states of a before integrating knowledge about b. p(a|b) is called posterior
probability distribution because is the result of the integration of the prior with knowledge about b.
When b is fixed (e.g. a given measurement), p(b|a) is the likelihood function of a.

3Strictly speaking, X is the sample space of the random variable x, and outcomes of x (x = x) are
elements of X. We abuse the notation by saying that x ∈ X.

4Note that some algorithms do not compute the full probability distribution but focus on a specific
statistical component of it, e.g. its maximum (Maximum a Posteriori estimators, MAP).
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Bayes rule to the belief at time t:

p(xt|zt:1, ut:1,x0) =
p(zt|xt, zt−1:1, ut:1,x0)p(xt|zt−1:1, ut:1,x0)

p(zt|zt−1:1, ut:1,x0)

= η p(zt|xt, zt−1:1, ut:1,x0)p(xt|zt−1:1, ut:1,x0)

(3.2)

where η is a renormalization constant (independent of xt). The role of this constant is to
guarantee that the resulting function is a probability distribution by normalizing its integral
over the entire state space to the unity,


p(x)dx = 1.

We can simplify the first term in the following manner:

p(zt|xt, zt−1:1, ut:1,x0) = p(zt|xt) (3.3)

which indicates that the probability distribution over current measurements is independent
of previous measurements, robot actions and estimated states. p(zt|xt) is our probabilistic
measurement model: the probability of acquiring a measurement z at time t assumed the
state xt.

In the previous simplification we made an important assumption: the state is complete.
A state is complete if all the necessary information to predict the future evolution of the
state (and the measurements) is contained in the current state. In other words, any addi-
tional knowledge about previous states, measurements or actions does not improve our pre-
dictions. A temporally evolving physical process with a complete state is called a Markov
chain. Many dynamical systems of interest for robot manipulation (and for the applications
of this thesis, the manipulation of articulated objects) are naturally modelled as Markov
chains.

In our path towards a recursive solution that exploits the previously perceived information
we introduce xt−1 as variable within the second term of our Bayes rule equation:

p(xt|zt−1:1, ut:1,x0) =


p(xt|xt−1, zt−1:1, ut:1,x0)p(xt−1|zt−1:1, ut:1,x0)dxt−1 (3.4)

Applying again the Markov assumption we can simplify the first term of the integral:

p(xt|xt−1, zt−1:1, ut:1,x0) = p(xt|xt−1, ut), (3.5)

which means that the probability distribution over current state depends only on the previous
state and the last robot action. p(xt|xt−1, ut) is a probabilistic forward model, also called
transition model because it indicates how the state transitions from one step to the next one
given the robot’s action. This model defines the probability distribution over states at time t
given the previous state and the action at time t, ut.

Altogether we can write the probability of our estimated state given all acquired measure-
ments and robot actions in the following recursive form:

p(xt|zt:1, ut:1,x0) = η p(zt|xt)


p(xt|xt−1, ut)p(xt−1|zt−1:1, ut:1,x0)dxt−1 (3.6)

where p(xt−1|zt−1:1, ut:1,x0) is the belief distribution over the previous state.
The computation of the current belief, p(xt|zt:1, ut:1,x0), given the previous belief,

p(xt−1|zt−1:1, ut−1:1,x0), can be considered two steps:

1. Prediction Step (Equation 3.4): Integrates information about the action to predict the
state. This step increases the uncertainty about the current belief.
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2. Correction Step (Equation 3.6): Integrates information about the measurement to
correct the predicted state. This step decreases the uncertainty about the current belief.

Following the recursion we observe that we need to assume a prior distribution over the
space of possible initial states, p(x0). If we do not have any information about the initial
state, this prior can be assumed to be uniformly distributed over all possible states. The
performance and convergence of the Bayesian filter improves significantly if we leverage addi-
tional information to define a sharper distribution over the initial state.

The equations presented before describe the Bayes Filter. Even after the application of the
Markov assumption, the equations of the Bayes filter cannot be solved for arbitrary probabil-
ity distributions. There are two reasons for this:

1. The probability density functions are defined over the entire space of possible values of
the random variables (states, measurements,. . . ). In other words, we have to define the
value p(x), ∀x ∈ X and for all the random variables involved. Defining and operating
with these distributions in an explicit form is usually intractable. For discrete and finite
spaces we can define and update the probability of each state. For continuous or large
discrete spaces we are advocated to 1) operate with the moments or 2) with a finite
number of samples of the random variables.

2. The integral term (Equation 3.6) is very costly to compute unless we can solve it an-
alytically. If an analytic solution cannot be computed we can evaluate the integral
approximately, e.g. using Monte Carlo integration.

A way to address both aforementioned problems is to assume that all random variables
involved in the Bayes filter are Gaussian distributed. In this case, the integral can be solved
analytically and we can represent completely the distributions by their first two order mo-
ments, the mean and the standard deviation (or the covariance). This way of representing the
distribution of a random variable is called parametric representation. A Bayes filter where
we constrain the random variables to be Gaussian distributed is called a Gaussian filter. The
best known solution (optimal if the Gaussian assumption holds) to the Gaussian filter is the
Kalman Filter, which we summarize in the following.

A limitation of the Kalman filter is that, to assure that the random variables are still Gaus-
sian distributed after passing through the dynamical system, both the measurement and the
forward models have to be linear. However, many physical processes of interest in perception
for robotics are non-linear. One way to extend the Kalman filter machinery to non-linear sys-
tems is to linearize the measurement and/or forward model around the current estimate. This
approach receives the name of Extended Kalman Filter, which we will summarize after the
Kalman Filter.

As explained before, in both the Kalman and the Extended Kalman Filter we will use a
parametric representation: we represent probability distributions by their first and second
order moments (mean and variance). These two moments represent completely (without loss
of information) a Gaussian distribution, but any other distribution is not fully represented
by just the distribution’s mean and covariance. Instead of representing probability distribu-
tions parametrically, we can represent them in a non-parametric way: with a finite number of
samples. The samples can pass directly through a non-linear measurement or forward model
without any linearization, and can be recombined to approximate the posterior of the Bayes
filter. The best known approach using this procedure to approximate the solution of the
Bayes filter is called the Particle Filter and we will review its most relevant components after
the parametric filters.
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3.1.2 The Kalman Filter

The Kalman Filter is an optimal solution to a Bayes Filter when measurement and forward
models are linear and all involved probability functions are Gaussian distributed. A dynamic
process with linear forward and measurement model can be written in the form:

xt = Axt−1 +But +wt (3.7)

zt = Cxt + vt (3.8)

where the first equation defines a linear forward model, p(xt|xt−1, ut), and the second equa-
tion defines a linear measurement model, p(zt|xt).

The forward and the measurement models encode prior knowledge about the problem and
the domain, i.e. the temporal evolution of the underlying dynamical system, the correlation
between actions and changes in the environment, and the relationship between the state of the
environment and the acquired sensor measurements. In most recursive estimation processes of
this thesis we will use physical priors to define these models. Later in this thesis, we will also
present a method to learn some of these models from robot experiences (see Chapter 6.8). In
this section, we will assume the models to be given.

We assume that x, z are multidimensional random variables such that x ∈ Rn, and z ∈ Rm.
u is a multidimensional input action vector, u ∈ Rk. For the models of Equations 3.7 and 3.8
to be linear, A,B,C have to be matrices5, A ∈ Rn×n, B ∈ Rn×m and C ∈ Rk×n. wt ∈ Rn

is a random variable that represents the additive system noise. vt ∈ Rm is a second random
variable that represents the additive measurement noise. Both system and measurement noise
are zero-mean Gaussian distributed:

wt ∼ N (0, Qt) (3.9)

vt ∼ N (0, Rt) (3.10)

with Qt and Rt the system and measurement noise covariances, respectively6.
As we stated before, in the Kalman Filter we assume that all distributions involved in

Equations 3.7 and 3.8 are Gaussian distributed. Then, the prior belief at time t is defined by:

p(xt−1|zt−1:1, ut−1:1,x0) = N (xt−1, Pt−1) (3.11)

We can predict the next state by passing this prior through our previously defined forward
model:

p(xt|zt−1:1, ut:1,x0) = N (x̂t, P̂t) (3.12)

x̂t = Axt−1 +But (3.13)

P̂t = APt−1A
T +Qt (3.14)

Based on the predicted state, we can predict the expected measurement:

p(zt|xt) = N (ẑt, Ŝt) (3.15)

ẑt = Cx̂t (3.16)

Ŝt = CP̂tC
T +Rt (3.17)

5We have assumed that the forward and measurement models are constant over time, i.e.
A ̸= A(t), B ̸= B(t) and C ̸= C(t), to simplify notation. The analysis and the solution we present for
time-constant models also applies to time-dependent models.

6In this thesis, we usually represent covariances with the symbol Σ. However, the covariances in
the Kalman filter have traditionally received the symbols we use in our explanation
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The joint distribution of both state and measurement is then:

p(xt, zt|zt−1:1, ut:0,x0) = N


x̂t

ẑt


,


Σxx Σxz

Σzx Σzz


(3.18)

Σxx = P̂t (3.19)

Σzz = Ŝt (3.20)

Σzx = ΣT
xz = E[(x− x̂)(z − ẑ)T ] = CP̂t (3.21)

By applying the product rule7 to the joint distribution we obtain a closed form solution for
the desired posterior:

p(xt|zt:1, ut:1,x0) = N (xt, Pt) (3.22)

xt = x̂t +Kt(zt − Cx̂t) (3.23)

Pt = (I −KtC)P̂t (3.24)

Kt = P̂tC
T (CP̂tC

T +Rt)
−1 (3.25)

Kt is called the Kalman Gain. The Kalman Gain balances the estimation of the belief be-
tween the predicted state and the correction from the measurement. The balance is based on
the relative uncertainty of the prediction and the measurement. This behavior of the Kalman
Filter gives us a principled way to correct the estimation towards the state predicted from
previously perceived information when the measurement is noisy, or towards the measurement-
based estimate when the prediction is uncertain.

3.1.3 The Extended Kalman Filter

An important limitation of the Kalman filter is that both the forward and the measurement
models of the system are assumed to be linear. In many physical processes of interest in robot
perception, this assumption does not hold. A solution when the system and/or the measure-
ment models are non-linear is to linearize them. This linearization of the models is the key
element of the Extended Kalman filter (EKF). Once the EKF has linearized the models, the
random variables will continue being Gaussian distributed after going through the equations
of the dynamical system.

While the Kalman filter is an optimal estimator if the assumption (linear system and Gaus-
sian distributed variables) hold, the EKF is in general non-optimal because of the approxima-
tion due to the linearization. However, the EKF provides a good approximation to the true
state distribution for many perceptual problems in robotics.

In the EKF the dynamical system present the form:

xt = f(xt−1, ut) +wt (3.26)

zt = h(xt) + vt (3.27)

where f and g are possibly non-linear but linearizable functions that represent the system and
measurement models.

7Product rule: p(a, b) = p(a|b)p(b)
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The EKF linearizes the possibly non-linear models using a first order Taylor expansion8

around the expected state:

f(xt−1, ut) ≈ f(xt−1, ut) + f ′(xt−1, ut)(xt−1 − xt−1) (3.28)

f ′(xt−1, ut) =
∂f(x, ut)

∂x


xt−1

= Ft (3.29)

h(xt) ≈ h(xt) + h′(xt)(xt − xt) (3.30)

h′(xt) =
∂h(x)

∂x


xt

= Ht (3.31)

We use the notation ∂f(x)
∂x


x̄
to indicate that we compute the derivative of function f with

respect to its variable x, and substitute in the result x by a specific value x̄.
Ft and Ht are Jacobian matrices, Ft ∈ Rn×n and Ht ∈ Rk×n, that correlate (infinitesimally)

small changes in the previous and current state, and (infinitesimally) small changes in the
state to changes in the expected measurement, respectively.

Based on the linearization, the EKF predicts the distribution of the next state as:

p(xt|zt−1:1, ut:1,x0) = N (x̂t, P̂t) (3.32)

x̂t = f(xt−1, ut) (3.33)

P̂t = FtPt−1F
T
t +Qt (3.34)

The EKF predicts the distribution of next measurement as:

p(zt|xt) = N (ẑt, Ŝt) (3.35)

ẑt = h(ẑt) (3.36)

R̂t = HtP̂tH
T
t (3.37)

Ŝt = R̂t +Rt (3.38)

where R̂t is the covariance matrix of the measurement noise (see Equations 3.9 and 3.10),
and Ŝt is the covariance of the innovation.

Finally, based on the previous definitions and the linearizations, the EKF computes the
posterior distribution as:

p(xt|zt:1, ut:1,x0) = N (xt, Pt) (3.39)

xt = x̂t +Kt(zt − h(x̂t)) (3.40)

Pt = (I −KtHt)P̂t (3.41)

Kt = P̂tH
T
t (HtP̂tH

T
t +Rt)

−1 (3.42)

As commented before, the EKF is an approximation to the true posterior distribution
when the models (measurement or forward) are non-linear. The quality of the approximation
depends on two factors: 1) the spread of the prior distribution, and 2) the degree of non-
linearity in the model around the linearization point. Therefore, if the distributions involved
in the Bayes Filter are widely spread over the state space, or if the models are highly non-
linear (i.e. f(x) ̸≃ f(x+∆x) for small ∆x) the true posterior distribution diverges largely from

8Taylor Expansion: f(x+ δx) =
∞

n=0
f ′n(x)

n!
δxn
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the approximation obtained by the EKF. The initialization of the EKF (x0) plays therefore a
crucial role in its performance, since it determines the initial spread of the distribution.

A way to overcome the aforementioned limitations of the EKF, and also the limitation of
both EKF and Kalman filters that assume Gaussian distributed variables, is to represent the
distributions with a finite number of samples. We can pass the samples through the non-linear
system and measurement models and reconstruct the distributions afterwards. Solutions based
on samples are called non-parametric Bayesian filters to differentiate them from the Kalman
and EKF filters (parametric filters) that operate on a parametric representation (mean and
covariance) of the distributions. The best known non-parametric Bayes filter is called the
Particle Filter.

3.1.4 The Particle Filter

A Particle Filter represents the estimated state (the posterior distribution given the measure-
ments and robot actions) with a set of N samples called particles:

p(xt|zt:1, ut:1,x0)→ Xt = {x0
t , . . . , x

N
t } (3.43)

where the number of particles N can be constant or vary over time. The main idea of the
Particle Filter is to link the probability of having a sample at the state xt to the posterior
probability of this state p(xt|zt:1, ut:1,x0), so that areas represented by many particles are
areas of the space with high probability and vice-versa.

Assuming a recursive solution, the posterior of the previous step will be also represented by
a set of particles:

p(xt−1|zt−1:1, ut−1:1,x0)→ Xt−1 = {x0
t−1, . . . , x

N
t−1} (3.44)

The first step of the Particle Filter is to propagate the samples through the forward model
to generate samples of the predicted state distribution. The forward model here could be non-
linear and with a different noisy model than the additive Gaussian model of the (Extended)
Kalman Filter. Therefore, we represent it in its more general form p(xt|xt−1, ut). The exact
way to sample this distribution will depend on the forward model. For now we will assume we
can sample from this distribution and generate a new set of samples:

xn
t−1 → p(xt|xn

t−1, ut,x0)→ x̂n
t (3.45)

X̂t = {x̂0
t , . . . , x̂

N
t } (3.46)

We now use the measurement model p(zt|xt) to estimate the probability of the acquired
measurement given each particle. This value is called importance factor and the set of parti-
cles with their importance factor approximates the posterior distribution p(xt|zt:1, ut:1,x0).

A crucial step in the Particle Filter is to change the representation of the posterior from
a set of particles with importance factor to a new set of particles resampled based on their
importance. Areas of the state space with higher probability will have a higher density of
particles than areas with lower probability. This process is called Importance Resampling. The
benefit of Importance Resampling is to cover with more samples, and therefore more accu-
rately, the areas of the state space that are more important for the estimation, i.e. the areas
where the posterior is higher. Given that we do not make use of Important Resampling in this
thesis, we won’t cover it in this review. For a detailed explanation of Important Resampling
we recommend Thrun et al. (2005).
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The Particle Filter can successfully approximate the posterior even if it presents multiple
maxima (multi-modal distributions), or for complex forward and measurement models. The
limitation is that the non-parametric representation of the distributions is more accurate
the more samples the filter uses, but the more samples it uses, the higher the computation.
The number of samples to cover the state space with an equivalent degree of detail increases
exponentially with the dimensionality of the state. This problem is known as the curse of
dimensionality in robotics, and limits the applicability of the Particle Filter to state spaces
with low dimensionality.

3.2 Spatial Descriptions and Kinematics of Rigid Bodies

In the previous section we have seen algorithmic techniques to exploit the temporal struc-
ture of the perceptual problem. To apply these techniques (the family of Bayesian filters) we
need prior knowledge about: 1) the underlying dynamical system that governs the temporal
evolution of the state of the environment, 2) the influence of robot actions in the temporal
evolution of the state, and 3) the way the state reflects into sensor signals. We will encode
this prior knowledge in the recursive estimation solutions in the form of measurement and
forward models.

In this section, we will review physical models that can be used as priors to solve inter-
active perceptual tasks in unstructured environments. These priors define mathematically
the kinematic state of a rigid body –its pose– and the way the state changes over time –its
motion. Such models are crucial to perceive the changes in the environment caused by robot
mechanical manipulation of DoF.

3.2.1 Spatial Descriptions

The pose of a rigid body B in 3D space with respect to a reference observer O possesses six
degrees of freedom (DoF): three degrees for the position and three for the orientation. While
the position can be well represented with an explicit parametrization9, explicit parametriza-
tions for the orientation (e.g. Euler or roll-pitch-yaw angles) present two limitations:

• They do not represent correctly the periodic nature of orientations

• They suffer from singularities (e.g. small changes in the orientation lead to large changes
in the parameters and vice-versa)

Implicit representations for the orientation (and by extension, of the pose) of a rigid body
address these problems.

In robotics the most common implicit representation for a rigid body pose is a homoge-
neous transformation matrix. Homogeneous matrices are an embedding of the six dimensional
space of rigid body poses into a 16 dimensional parameter space with the form of 4 × 4 matrices
of real elements. Therefore, for this embedding the redundant dimensions of the homogeneous
transformation have to be constrained and will form a manifold. In the following we will de-
scribe the general form of a homogeneous transformation and its manifold constraints.

9Given a space of dimensionality N a parametrization of this space is called explicit if it requires
N parameters to cover the entire space. The parametrization is called implicit if it requires M > N
parameters and additional constraints (Lynch & Park, 2017).
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Figure 3.1: 6D pose O
Bp of a frame B f attached to

the body B with respect to the frame O f attached
to the body O; this pose can be represented by a
homogeneous transformation (OBT ) or any other
suited representation

A homogeneous transformation representing the pose O
Bp of a frame B f attached to a body

B with respect to a frame O f attached to an observer O and defined in the coordinate system
of O f , as depicted in Figure 3.1, presents the form10:

O
BT =


O
BR

O
Bd

01×3 1


(3.47)

where O
Bd ∈ R3 is the position of the origin of coordinates of B f with respect to the origin of

coordinates of O f and O
BR is a 3× 3 matrix of real elements defining the orientation of the axes

of B f with respect to the frame O f , both expressed in the O f coordinate system11.
The previous definition:

• constrains 4 of the 16 parameters due to the fixed last row definition

• assigns 3 of the 12 remaining parameters to represent the 3 DoF of the position of the
rigid body

• dedicates the remaining 9 parameters to represent the 3 DoF of the orientation

A homogeneous transformation matrix is thus composed of an explicit parametrization of
the position and an implicit parametrization of the orientation that requires to define addi-
tional constraints.

To embed the three DoF space of rigid body orientations into the 9 dimensional space of
3× 3 matrices of real elements, we impose on R the following properties:

{R ∈ R3×3|RRT = RTR = I, |R| = +1} (3.48)

This definition constrains 6 of the 9 parameters and keeps three parameters to represent the
three DoF of the orientation.

10This definition could seem redundant because usually some parts of it are assumed implicitly,
e.g. the homogeneous transformation matrix to be defined in the coordinate system of the frame
that is used as geometric reference. We will decrease gradually the verbosity of our definitions to
avoid the excessive clutter. We refer the reader to De Laet et al. (2013) for a complete analysis of the
constraints necessary to fully define geometric primitives and the most common implicit assumptions.

11We use the convention for sub-indices and super-indices as defined by Craig (2005). Sub-indices
and super-indices are on the left side of the variable. The super-index indicates the reference frame in
the observer body. For geometric relationships between two bodies, the sub-index indicates the frame
on the second body. For geometric elements (e.g. points, vectors, frames), the sub-index indicates the
body they are attached to.
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Chapter 3 • Background

The set of matrices R that fulfil the previous constraints together with the binary oper-
ation of matrix multiplication is called SO(3), the Special Orthogonal group in dimension
three12. Alternatively, we will use the symbol ⊕ to refer to the matrix multiplication. In gen-
eral, an orthogonal group of dimension N in an Euclidean space is a group of linear transfor-
mations that preserve distance between transformed elements. The Special Orthogonal group
is the subgroup that includes the identity transformation, indicated by the last constrain
|R| = +1 (the first constraint could be also fulfilled with matrices R such that |R| = −1).
The Special Orthogonal group corresponds to the group of all rotations about the origin, with
composition (matrix multiplication) as group operation.

The result of these constraints in the rotation matrix extend to homogeneous transforma-
tions and reduce the 16 parameters of the matrix to an embedding of the 6 DoF of a rigid
body pose. The set of all homogeneous transformations O

BT (4 × 4 matrices of real numbers
with the aforementioned constraints on the rotational part) together with the binary opera-
tion of matrix multiplication form also a special group, the Special Euclidean group, SE(3).
SE(3) corresponds to the group of all possible poses of a rigid body in 3D space. We will use
alternatively the symbol ⊕ to refer to the matrix multiplication, and extend it later to refer to
the composition of poses, independently of their representation.

To summarize, we defined the Special Orthogonal and Special Euclidean groups in 3D
space as:

SO(3) = {R ∈ R3×3|RRT = RTR = I, |R| = +1} (3.49)

SE(3) =


T ∈ R4×4, T =


R d

01×3 1


|R ∈ SO(3), d ∈ R3


(3.50)

Interpretations of a homogeneous transformation matrix So far we have con-
sidered that a homogeneous matrix represents the pose of a body with respect to another.
However, there are two other interpretations (or uses) of a homogeneous matrix: as an oper-
ator to transform the spatial description of geometric elements like points, vectors and other
poses from one reference frame to another, and as the result of the motion of a rigid body and
the operator to apply the motion to the aforementioned geometric elements. Summarizing, the
uses of a homogeneous transformation matrix are:

• A representation of the pose of a rigid body in 3D space with respect to another

• An operator to change the reference frame of a geometric element (e.g. a point, a vec-
tor, a frame) in 3D space

• An operator to apply a rigid body motion to a geometric element in 3D space

In this thesis, we will alternate these three usages depending on the task at hand. We will
now see how to apply homogeneous transformation matrices for the two additional usages
listed above.

12Given a set of elements G = g1, g2, . . . and a binary operation between elements of the set f , G is
a group under the operation f if:

1. ∀g1, g2 ∈ G, f(g1, g2) = g3 ∈ G (Closure)

2. ∃e ∈ G, f(e, g) = f(g, e) = g ∀g ∈ G (Identity element)

3. ∀g ∈ G ∃g−1 ∈ G, f(g, g−1) = f(g−1, g) = e (Inverse)

4. f(a, f(b, c)) = f(f(a, b), c) ∀a, b, c ∈ G (Associative law)

The operation f is usually called dot product, ·, or in the case of SO(3) and SE(3), ⊕.
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3.2 Spatial Descriptions and Kinematics of Rigid Bodies

We assume we define a point q in 3D space by its location with respect to the origin of
a frame Af attached to a body A and expressed also in the coordinates of frame Af . The
homogeneous transformation B

AT that defines the pose of a frame Af with respect to B f can
be used to express the coordinates of the same point with respect to the reference frame B f
attached to a body B (in the coordinate frame B f ):

Bq = B
AT

Aq (3.51)

In order to apply the homogeneous transformation as a matrix-vector product, we have
to express the coordinates of point q in the reference frame Af in the so-called homogeneous
coordinates:

Aq = (Aqx,
Aqy,

Aqz, 1)
T (3.52)

We will apply the same equation 3.51 when B
AT represents the change in the pose of a rigid

body between two time steps from the pose defined by the frame B to the pose defined by
the frame A. Equation 3.51 gives us the change in the kinematic state (motion) of a point q
rigidly attached to the rigid body.

To transform the coordinates of a free vector v from a reference frame A to a reference
frame B, we will use only the rotational part of the homogeneous transformation matrix:

Bv = B
AR

Av (3.53)

We will apply the same equation 3.53 when B
AT represents the change in the pose of a rigid

body from the frame B to the frame A and we aim to compute the motion of a vector v
rigidly attached to the rigid body.

Given the pose of a frame P f attached to a rigid body P with respect to a reference frame

Af attached to another body A as a homogeneous transformation A
PT , we can express this

pose with respect to another reference frame B by composing their homogeneous transforma-
tions:

B
PT = B

AT
A
PT (3.54)

We will apply the same equation when B
AT represents the change in the pose of the rigid

body13.
Finally, given the pose of two rigid bodies A and B with respect to a shared reference

frame fC by their homogeneous transformations C
AT and C

BT respectively, we can express the
pose of body A with respect to body B (their relative pose) as:

B
AT = C

BT
−1 C

AT (3.55)

where we have made use of the inverse of an element of SE(3) that is defined by:

B
AT

−1 = A
BT =


B
AR

T − B
AR

T B
Ad

01×3 1


(3.56)

So far, we have seen the mathematical equations to represent the pose of a rigid body as a
homogeneous transformation and defined the Special Euclidean group SE(3) as the group of
all possible rigid body poses. We have also defined how to transform poses, points and vectors
between different frames and how to apply a known displacement. These equations will be
used in this thesis as physical priors to interpret sensor data in recursive state estimation
processes (Chapter 4).

13Here we assumed that B
AT is expressed with respect to the reference frame P f (see Footnote 10)
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Chapter 3 • Background

Figure 3.2: Pure rotation of a body B with respect
to a body O around an axis defined by the unitary
vector ω̇ an amount of rotation θ; the trajectory of
a point q on body B is also shown; B f and O f are
coordinate frames attached to the respective bodies

However, in this thesis we are interested in the changes over time of the pose of rigid bodies
and other geometric elements because these changes are the result and often the purpose of
robot manipulation. The robot needs to perceive motion patterns to understand the outcome
of its own interactions. We will now revise notions, principles and representations for the
motion of rigid bodies in 3D space.

3.2.2 Kinematics of Rigid Bodies

The temporal evolution of the pose of a rigid body in 3D space is defined by its velocity,
which receives the name of twist. A rigid body twist can be used to predict poses, and is thus
an important element of a recursive solution. While the pose of a rigid body is represented
by an element of the spatial euclidean group SE(3), twists do not belong to this group but
to its associated Lie Algebra se(3). We will see that, in order to integrate velocities over time
to predict future poses or the trajectory of geometric elements, we need to define a mapping
between se(3) and SE(3). This mapping receive the name of matrix exponential. Using this
mapping, and the inverse, the matrix logarithm, we could also represent poses in exponential
coordinates.

In our path towards a definition of a rigid body twists and the equations involved in the
temporal evolution of the pose of a rigid body, we will begin by defining a simpler concept,
the angular velocity, and the equations that describe the change of orientation of a rigid body
over time. The concepts developed for angular velocities will extend to 6D velocities and
twists.

We assume that a 3D point q is rigidly attached to a moving body B, and that the body
rotates with respect to an observer frame O. The trajectory of the body B is defined by its
orientation over time O

BR(t). The position of the point q with respect to O is given by the
equation:

Oq(t) = O
BR(t)Bq (3.57)

where the position of p with respect to B, Bq , does not depend on time because it is rigidly
attached to it.

The time derivative of the previous equation gives the instantaneous velocity of the point:

Oq̇ =
O

B Ṙ
Bq =

O

B Ṙ(OBR
−1(t)Oq) (3.58)

Alternatively, we can represent the motion of the body B between time t and t+∆t as
a rotation of θ around an axis defined by the unitary vector Oω̂ (see Figure 3.2). 14 θ ∆t is

14We have dropped the sub-index B since in its geometric meaning Oω̂ is just a vector defined with
respect to the frame O f . Alternatively, we can also write O,O

B ω̂ to indicate that we are describing the
velocity of B with respect to O expressed in the coordinate frame of O, but this verbose notation
becomes quickly too cumbersome.

40



3.2 Spatial Descriptions and Kinematics of Rigid Bodies

the amount of rotation per time unit. When ∆t approaches zero, θ ∆t becomes the rate of
rotation, θ̇, and Oω̂ becomes the instantaneous axis of rotation. We can write both together
as:

Oω = Oω̂θ̇ (3.59)

which we call angular velocity defined with respect to the observer frame O f and in the coordi-
nate frame of O f .

From this definition of the angular velocity, the instantaneous velocity of the point Oq with
respect to the body O is defined by:

Oq̇ = Oω × Bq (3.60)

We can write the cross product as a matrix product by defining a special matrix Oω×, the
skew-symmetric matrix representation of Oω = (Oωx,

Oωy,
Oωz)

T :

Oq̇ = Oω× Bq (3.61)

Oω× =

 0 −Oωz
Oωy

Oωz 0 −Oωx

−Oωy
Oωx 0

 (3.62)

From Equations 3.58 and 3.60 we see that:

Oω× =
O

B Ṙ
O
BR

−1 → O

B Ṙ = Oω× O
BR (3.63)

which defines the relationship between (the skew-symmetric representation of) the angular
velocity with respect to the observer frame, the rotation matrix and the rate of change of the
rotation matrix.

We can define the coordinates of the angular velocity with respect to the body frame B f
(from Equation 3.53: Bω = O

BR
−1 Oω), the rate of change of the rotation matrix becomes:

Bω× = O
BR

−1 O

B Ṙ →
O

B Ṙ = O
BR

Bω× (3.64)

which defines the relationship between the rotation matrix, the rate of change of the rotation
matrix, and the (skew-symmetric representation of the) angular velocity of the body B with
respect to the observer O in the coordinate frame of B f , .

Both Bω× and Oω× are elements of so(3), a special set containing all skew-symmetric ma-
trices called the Lie Algebra of the Lie Group SO(3). The elements of the Lie Algebra so(3)
are all the possible Ṙ when R = I.

The coordinates of ω are also known as the exponential coordinates of the rotation. It
is interesting to understand the origin of this name and the mapping between exponential co-
ordinates and rotation matrices by taking a look at the Equations 3.61 and Equation 3.62. If
we assume that the body B rotates with a constant velocity given by ω (rotation around the
axis defined by ω̂ of θ per time unit), the trajectory of the point q is defined by the following
first order differential equation:

Oq̇ = Oω× Oq (3.65)

A first order differential equation of the form ẋ = Ax and with initial condition x0 has a
unique solution given by the exponential function x(t) = exp (At)x(0). Analogously, for the
case of the 3D trajectory of a point the solution is:

Oq(t) = exp

Oω×t


Oq(0) = exp


Oω̂×θt


Oq(0) (3.66)
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where Oq(0) = O
BR(0)Bq is the initial location of the point q in the observer reference frame

O f , and we have used that ω = ω̂θ with ω̂ a unitary vector in the direction of the axis of
rotation and θ the amount of rotation per time unit.

Because of the special form of the elements of the Lie Algebra (skew-symmetric matrices),
the matrix exponential in the previous equation has a closed form solution:

exp

Oω̂×θt


= I + sin(θt)Oω̂× + (1− cos(θt))(Oω̂×)2 (3.67)

which is known as the Rodrigues’ formula.
The matrix exponential of an element of so(3) is an element of SO(3), a rotation matrix.

Thus, the matrix exponential relates elements of the Lie Algebra to elements of the Lie Group

exp : ω× ∈ so(3)→ R ∈ SO(3) (3.68)

We will use the Rodrigues’ formula to integrate angular velocities over time and obtain the
equivalent rotation matrices15.

We can define an inverse operation to the matrix exponential, the matrix logarithm, that
computes the element of the Lie Algebra ω× associated to rotation matrix R:

θ = cos−1(0.5(tr(R− I))) (3.69)

ω̂× =
1

2sinθ
(R−RT ) (3.70)

log (R) = ω̂×θ = ω× (3.71)

log :R ∈ SO(3)→ ω× ∈ so(3) (3.72)

where tr() is the trace of a (square) matrix, which is the sum of the elements of its main
diagonal16. In other words, the matrix logarithm finds the angular velocity that would result
in the given rotation matrix if we would integrate it one time unit.

The matrix exponential is not a bijective mapping between the Lie Algebra so(3) and the
Lie Group SE(3): an infinite number of elements of the Lie Algebra are mapped to each
element of the Lie Group. This is a consequence of the periodic nature of the rotations:
exp ((ω̂θ)×) = exp ((ω̂(θ + 2π)×). Therefore, while the matrix exponential provides a unique
solution for each element of the Lie Algebra, the matrix logarithm has infinite solutions for
each element of the Lie Group with the same ω̂ and θ ± 2kπ for k any natural number of
complete turns. It is common to restrict the solution to the interval θ ∈ [0, π] and maintain
externally a count of the turns of a trajectory. We will use this technique in Chapter 4 to
correctly estimate the amount of rotation around a revolute axis.

We can extend these definitions from rotations to the case of 6D rigid body motions. We
first compute the result of the Equation 3.64 for the case of homogeneous transformations. We
define a rigid body velocity, also known as twist, as:

O
BT

−1 O

B Ṫ =


RT −RT d
01×3 1


Ṙ ḋ

01×3 0


=


RT Ṙ RT d
01×3 0


=


Bω× Bv
01×3 0


(3.73)

where Bω× is the angular velocity of the body B and Bv is the linear velocity of the origin of
the frame B f , both expressed in body frame coordinates.

15The Rodrigues’ formula generates also the rotation matrix associated to a rotation defined in
axis-angle representation (amount of rotation θ around an axis ω̂)

16There are two singular points of these equations for the cases a) R = I, and b) tr(R) = −1. The
first case indicates that there is no rotation, θ = 0, and ω̂× is undefined. The second case is a rotation
of π, θ = π, and there are three valid solutions for ω̂×.
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3.2 Spatial Descriptions and Kinematics of Rigid Bodies

Figure 3.3: Screw motion of a body B with respect
to a reference frame O f ; body B rotates around and
translates along the screw axis defined by the unitary
vector ω̇; the amount of rotation θ and the pitch of
the screw, h, define the amount of translation, hθ;
The trajectory of a point q on body B is also shown;

B f and O f are coordinate frames attached to the
respective bodies

Even though the previous matrix is not skew-symmetric, it is common to extend the nota-
tion × and summarize the previous result as:

Bη× =


Bω× Bv
01×3 0


Bη = (Bω,Bv)T

(3.74)

Bη× is an element of se(3), the Lie Algebra of the Lie Group SE(3), and Bη are the expo-
nential coordinates or twist of the rigid body motion, both expressed in body frame coordi-
nates.

We can similarly define:

Oη× =
O

B Ṫ
O
BT

−1 =


Oω× Ov
01×3 0


(3.75)

Oη = (Oω,Ov)T (3.76)

where Oω× is the angular velocity of the body B and Ov is the linear velocity of the origin of
the frame B, both expressed in the coordinates frame of the observer O.

The relationship between twists in different coordinate frames is defined by the Adjoint
Transformation matrix:

Oη = O
BAd

Bη (3.77)

O
BAd =


O
BR 0

d× O
BR

O
BR


(3.78)

The trajectory of a point attached to the body B is given by the equation:

Oq(t) = exp

Oη×t


Oq(0) = exp


η̂×Oθt


Oq(0) (3.79)

If both the angular and the linear velocity terms are non-zero the point follows a helical tra-
jectory (see Figure 3.3). In that case the rigid body B follows a screw trajectory, where the
linear and angular velocities are related by a constant value called pitch, h. A mechanism
restricting the relative motion between two rigid bodies to a constant twist is called screw
joint.

In the special cases of zero angular velocity or zero linear velocity we have a pure rotation
or pure translation. We will see later that the mechanisms restricting the relative motion
between two rigid bodies to these special cases are called revolute joint and prismatic joint.
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Analogously to the rotation case, we can define a matrix exponential and logarithm to
integrate twists into homogeneous transformations and “derive” homogeneous transformations
into twists.

exp : η× ∈ se(3)→ T ∈ SE(3) (3.80)

log : T ∈ SE(3)→ η× ∈ se(3) (3.81)

Geometric interpretation of a twist Before, we interpreted an angular velocity ω
as a line (the rotation axis) with orientation represented by the unit vector ω̂ = ω

∥ω∥ passing

through the origin, and a rate of rotation around this line ∥ω∥ = θ̇. Analogously, a twist can
be interpreted as a line (the twist axis) in 3D Euclidean space, and a rate of rotation around
it and translation along it. Equivalently, we can define a single rate of motion (twist velocity,
θ̇ ∈ R) associated with the line, and the factor relating amount of rotation and translation.
The line, together with the factor between rotation and translation, is also known as the screw
axis, and the factor is the pitch of the screw.

Given a twist η = (ω, v)T we can compute the screw axis as the line λ = (l̂ori, lpos, h)

parallel to the unitary vector l̂ori, passing the three-dimensional point lpos with the pitch h,
defined by the equations:

l̂ori =
ω

∥ω∥
(3.82)

lpos =
ω × v

∥ω∥2
(3.83)

h =
ω · v
∥ω∥2

(3.84)

In the special case of a pure rotation (∥v∥ = 0), the line of the screw axis passes through
the origin (lpos = 0̄) and the pitch is zero (lpitch = 0), reducing the screw axis to the revolute
axis we studied before.

In the special case of a pure translation (∥ω∥ = 0) the orientation of the screw axis is

defined as the direction of the translation, l̂ori =
v

∥v∥ and the pitch is infinite (h = ∞). The

location of the screw axis of a pure translation is undefined, meaning that any line parallel to
l̂ori represents the axis of motion.

Inversely, given a screw axis l = (l̂ori, lpos, h) and a twist velocity θ̇, the complete twist is
given by

η =


l̂oriθ̇

−l̂oriθ̇ × lpos + hl̂oriθ̇


if h ̸=∞ (3.85)

or

η =


03×1

l̂oriθ̇


if h =∞ (3.86)

In the general case (h ̸=∞) the linear velocity is the sum of two components, a motion along

the screw axis hl̂oriθ̇ and a motion on the perpendicular plane resulting from the rotation
−l̂oriθ̇ × lpos.

We will use the equations and definitions of this section to perceive from interactions the
motion of rigid bodies in the environment. These equations will be useful to define models for
recursive state estimation processes so that the processes can exploit physical priors. However,
as stated in Chapter 1, our goal is to apply our approach for interactive perception for robotic
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3.3 Articulated Objects and their Kinematics

manipulation to the estimation of properties of articulated objects. These objects are defined
by the constraints in the motion of their composing rigid bodies. So far we have seen only
mathematical definitions for the unconstrained motion of a rigid body. In the next section
we will provide mathematical models for motion constraints that we will use within recursive
state estimation processes to perceive the kinematic structure of an articulated object, and
also its dynamic properties.

3.3 Articulated Objects and their Kinematics

Articulated objects are mechanisms composed of rigid parts, called links, and connections
between them, called joints. The joints restrict the relative motion between links to less di-
mensions than the six generally possible between disconnected rigid bodies. From a dynamics
point of view, the joint mechanisms return forces applied in the constrained dimensions, while
forces in the allowed dimension (if sufficient to overcome friction and other dynamic effects of
the mechanism) will generate motion of the links and a change in the kinematic state of the
articulated object.

Humans exploit these kinematic and dynamic properties to create articulated objects with
desired restrictions in their motion. Many tools and everyday human objects are articulated
mechanisms, e.g. scissors, pliers, books, drawers, doors, boxes, or faucets. Humans can eas-
ily manipulate them using compliant interactions, which reveal and allow to perceive their
constraints.

Mechanically restricting the relative motion between components of an articulated object
provides an important advantage for manipulation: forces applied to the object induce mo-
tion only along the allowed (desired) dimensions. This property is exploited in the design of
mechanisms so that a large variety of applied forces result in the same restricted motion of the
mechanism and undesirable areas of the space of relative motion are avoided. The kinematic
structure of an articulated objects acts as a funnel guiding (restricting) the motion towards
the desired subspace.

Being such a common type of object, perceiving these objects (their kinematic, geometric
and dynamic properties) is crucial for robots that aim to understand and manipulate human
environments. And to do so, interacting with them is the best way to reveal their properties
and their functionalities.

In the previous sections we studied the free motion of rigid bodies, how to represent and
operate 6D poses and trajectories. We will now study constraints in this motion: how to
represent them and how to relate them to 6D rigid body motion. In the following we will
review the most relevant types of kinematic constraints in articulated mechanisms and their
representation.

We call kinematic structure the model that defines the motion constraints and degrees of
freedom within rigid components of an articulated object. The kinematic structure defines
a submanifold in the space of all possible combinations of 6D relative poses between links.
Elements of this submanifold are possible configurations of the articulated mechanism. The
coordinates to uniquely define each element of the submanifold are called generalized coor-
dinates and represent the state of each joint of the object. The set of all joint states is also
called kinematic state of the articulated object. Given the kinematic structure and state, the
pose of each link can be estimated unequivocally in an operation that is called forward kine-
matics. The inverse operation, obtaining the kinematic state given the kinematic structure
and the pose of one/several links of the mechanism is called inverse kinematics.
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Types of Links Links are classified based on the number of joints they connect to, called
the order of the link. We talk about a binary link when it connects with two joints to other
links, a ternary link if it connects to three joints, and a quaternary link if it connects to four
joints. In this thesis, we will encounter mostly articulated objects with binary links but the
proposed methods apply to links of any order. Most articulated objects possess binary links,
while higher order links are used to create complex mechanisms like motors.

Types of Joints We define analogously the order of a joint as the number of links they
connect to: a binary joint connects two links, a ternary joint connects three links and a qua-
ternary joint connects four links. The approaches presented in this thesis are restricted to
binary joints and thus we will only review this type of joints in this section. However, we do
not consider this limitation to be relevant since most articulated objects in human environ-
ments possess only binary joints.

The number of degrees of freedom (DoF) of a joint represents the dimensionality of the
manifold of the 6D space of relative poses defined by the joint. It corresponds to the minimum
number of independent variables required to span the manifold and fully define the relative
pose. Based on their number of degrees of freedom we further classify binary joints into the
following most common linkages:

• 0-DoF joints: rigid joints

• 1-DoF joints: revolute (also called hinge or pin), prismatic (also called slider) and screw
joints (also known as helical joints).

• 2-DoF joints: cylindrical joints

• 3-DoF joints: planar and spherical joints

Revolute and prismatic joints are the most common in human environments, and therefore,
the perceptual systems we will present in the following chapters will focus on the perception
of these types of motion constraints.

In the following we will review the most common parametric representations and properties
of 0, 1 and 2-DoF joints. We will assume that each link connected to the joint have a refer-
ence frame rigidly attached to it. Without loss of generality we will consider one of the links
to be the reference, also known as parent link, and the other to be the dependant or child link.
We will specify the joint parameters with respect to the frame of the parent link.

Given the parameters of a joint, we will define the forward kinematic equations to de-
scribe the pose of the child link frame with respect to the parent link frame. The forward
kinematic equations depend on the joint parameters and the kinematic state of the joint:
parent
childT (λjoint, qjoint).
We will decompose the forward kinematics equation into a constant element given by the

relative pose of the child link with respect to the parent link when the joint state is zero, and
a variable component representing the change in relative pose due to joint actuation:

parent
childT (λjoint, qjoint) = parent

child∆T (λjoint, qjoint) parentchildT (qjoint = 0) (3.87)

Rigid Joint A rigid joint does not allow any relative motion between the connected links.
Therefore, there are no parameters nor joint state variable required to define the joint. The
pose of the child link frame with respect to the parent link is constant over time and does not
depend on any joint state variable, parent

childT = cte.
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Figure 3.4: An articulated object, a
door, with a revolute joint; the blade
of the door rotates with respect to
the door frame around the joint axis;
the joint axis is shown in red color;
the point-vector parametrization of
the axis is shown in salmon color

Revolute Joint A revolute joint allows a single degree
of freedom of rotation between the connected links. The
axis of rotation fully defines the constraints of motion
of a revolute joint. This axis corresponds to a line in 3D
Euclidean space (see Figure3.4). We can choose any line
parametrization to define the rotation axis. In the next
chapters, we will use a point-vector parametrization:

λrev = (l̂revori , l
rev
pos) (3.88)

where lrevpos ∈ R3, and l̂revori ∈ R3 and ∥l̂revori ∥ = 1, which

constrains l̂revori to lay on the unit sphere S2 in R3. We will

often represent l̂revori by its spherical coordinates l̂revori =
(ϕ, θ, r = 1), where we could drop r. Compared to the
equations of a screw axis, we can represent a revolute axis
as a screw axis with zero pitch, h = 0.

Given a rate of rotation q̇rev, a revolute joint constrains
the velocity twist to present the form:

ηrev(q̇rev) =


l̂revori q̇

rev

−l̂revori q̇
rev × lrevpos


(3.89)

Similarly, the change in relative pose for a given joint
state qrev is constrained by the revolute joint to

parent
child∆T (λrev, qrev) = exp (ηrev(qrev)) (3.90)

Prismatic Joint A prismatic joint allows only one degree of freedom of translation be-
tween the connected links. To fully define the motion constraints of a prismatic joint we
need to define the axis of translation. This axis is a free-floating line in 3D Euclidean space
(see Figure3.5). Any parametrization for free-floating lines can be used to define the transla-
tion axis. We use a vector parametrization:

λpri = l̂priori (3.91)

l̂priori ∈ R3 and ∥l̂priori∥ = 1, which constrains l̂priori to lay on the unit sphere S2 in R3. As with the

orientation of a revolute axis, we will often represent l̂priori by its spherical coordinates, azimuth
ϕ and elevation θ. The above prismatic axis definition is equivalent to an screw axis with the
same line parameters and infinite pitch, h =∞.

Given a rate of translation q̇pri, the prismatic joint constrains the velocity twist to:

ηpri(q̇pri) =


03×1

l̂priori q̇
pri


(3.92)

The change in relative pose due to prismatic joint actuation for a given joint state qpri is

parent
child∆T (λpri, qpri) = exp


ηpri(qpri)


(3.93)
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Figure 3.5: An articulated object,
a drawer, with a prismatic joint;
the drawer translates with respect
to cabinet along the joint axis; the
joint axis is shown in green color;
the orientation vector of the axis is
shown in light green color

Screw Joint A screw joint allows only one degree of
freedom of motion (rotation and translation with a fixed
scale factor) between the connected links. To fully define
the motion constraints of a screw joint we need to define
the axis of motion. This axis is a line in 3D Euclidean
space. Any parametrization for lines can be used to define
the screw axis. We use again a point-vector parametriza-
tion:

λscw = (l̂scwori , l
scw
pos ) (3.94)

where lscwpos ∈ R3, and l̂scwori ∈ R3 and ∥l̂scwori ∥ = 1.
Given a velocity of screw motion q̇scw, the screw joint

constrains the velocity twist to:

ηscw(q̇scw) =


l̂scwori q̇

scw

−l̂scwori q̇
scw × lscwpos


(3.95)

The change in relative pose due to screw joint actuation
for a given joint state qscw is

parent
child∆T (λscr, qscr) = exp (ηscr(qscw)) (3.96)

Cylindrical Joint A cylindrical joint allows two degrees of freedom of motion (inde-
pendent rotation and translation) between the connected links. To fully define the motion
constraints of a cylindrical joint we need to define the axis of motion. This axis is a line in 3D
Euclidean space. Any parametrization for lines can be used to define the screw axis. We use a
point-vector parametrization:

λcyl = (l̂cylori, l
cyl
pos) (3.97)

where lcylpos ∈ R3, and l̂cylori ∈ R3 and ∥l̂cylori∥ = 1.

Given the joint velocity q̇cyl ∈ R, the cylindrical joint constrains the velocity twist to:

ηcyl(q̇cyl) =


l̂cyloriq̇

cyl
ang

−l̂cyloriq̇
cyl
ang × lcylpos + l̂cyloriq̇

cyl
lin


(3.98)

where q̇cylang and q̇cyllin) are the angular and linear velocities, respectively.

The change in relative pose due to cylindrical joint actuation for a given joint state qcyl is

parent
child∆T (λcyl, qcyl) = exp


ηcyl(qcyl)


(3.99)

We will use the previously presented kinematic models of joints to build, estimate and track
articulated objects from interactions.

3.4 Mathematical Notation

The following tables give a list of variables, operators, and functions used throughout the
thesis. We will diverge from this notation in individual cases to maintain the explanations
unambiguous, or to improve the readability of the text. The correct meaning of the symbols
in those cases should be obvious from the context.
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Notation

x Random variable

p(x) Probability distribution of the random variable x

x Mean of the random variable x

Σx Covariance of the random variable x

N (x,Σx) Gaussian distribution of mean x and covariance Σx

xt Current state in a recursive estimation process

zt Current measurement in a recursive estimation process

ut Current action in a recursive estimation process

x̂t Predicted state in a recursive estimation process

ẑt Predicted measurement in a recursive estimation process

Pt Covariance of the current state in a parametric Bayes filter

wt Additive Gaussian system noise

Qt Covariance of the system noise in a parametric Bayes filter

vt Additive Gaussian measurement noise

Rt Covariance of the measurement noise in a parametric Bayes filter

Ft First order derivative of the forward model with respect to the state variable in
an EKF

Ht First order derivative of the measurement model with respect to the state vari-
able in an EKF

∆t Time interval between state estimations
∂f(x)
∂x


x̄

Derivative of function f with respect to its variable x, followed by the substitu-
tion x = x̄

Table 3.1: Mathematical notation used in this thesis: probability theory and Bayesian filtering
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Notation (cont.)
O
Bp 6D pose of (a frame attached to) a body B with respect to

(a frame attached to) a body O (undetermined parametriza-
tion)

O
BR Rotation matrix representing a) the 3D orientation of a

frame B with respect to O, b) a transformation of the coor-
dinates from frame B to O, or c) the operation when a body
moves from the orientation of frame O to B

O
Bd Translation vector representing a) the 3D position of a frame

B with respect to O, b) a transformation of the coordinates
from frame B to O, or c) the operation when a body moves
from the location of frame O to B

O
BT Homogeneous transformation matrix representing a) the 6D

pose of a frame B with respect to O, b) a transformation of
the coordinates from frame B to O, or c) the operation when
a body moves from the location of frame O to B

⊕ Composition of poses (product of matrices in homogeneous
form)

⊖ Composition of poses with pre-inversion of the second el-
ement (product of matrices in homogeneous form, with
pre-inversion of the second)

O
Bω Angular velocity of a body B with respect to O, expressed in

the coordinate frame of O
O
Bω

× Skew-symmetric matrix representation of the angular veloc-
ity of a body B with respect to O

O
B ω̂ Unitary vector in the direction of the angular velocity of a

body B with respect to O
O
Bv Linear velocity of a body B with respect to O
O
B v̂ Unitary vector in the direction of the linear velocity of a

body B with respect to O
O
Bη = (OBω,

O
Bv) 6D spatial velocity of a body B with respect to O (twist in

exponential coordinates)
O
Bη

× Matrix representation of the 6D spatial velocity of a body B
with respect to O

exp

O
Bω

×∆t


, exp


O
Bη

×∆t


Matrix exponential

log

O
BR


, log


O
BT


Matrix logarithm

O
BAd Adjoint transformation matrix from frame B to frame O

Table 3.1: (Continued) Mathematical notation used in this thesis: spatial descriptions and kinematics of
rigid bodies
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4
Perceiving Kinematics of Articulated Objects

from RGB-D Streams

Robots achieve tasks by manipulating their environment. This manipulation is the deliberate
change of the configuration of objects. When it comes to articulated objects, the change
in the configuration is a change of the kinematic state of the joints of the mechanism. To
perform such manipulation successfully, the robot must be able to detect and track degrees of
freedom (DoF) and constraints in the environment, defined by the kinematic joints. Detection
includes the characterization of DoF based on joint type and joint axis. Tracking implies
the continuous perception of DoF state in order to monitor manipulation progress, recognize
completion, or detect failure. These perceptual capabilities are a fundamental prerequisite for
successful manipulation in unstructured environments with unknown objects (Figure 4.1).

Perceiving kinematic properties of articulated objects is intrinsically an interactive task.
Interactions generate motion and reveal the constraints imposed by the kinematic structure
on the links of the object. The insight that interaction should be an intrinsic component of
a perceptual solution is at the core of the family of algorithms called interactive perception,
which includes the system presented in this chapter.

The perception of DoF of articulated objects poses the challenges we discuss in Chapter 1.1:
the robot needs to understand the changes caused by interaction from changes in the sensor
signals (CH1), this understanding has to be quick and based only on sensor signals acquired
so far (CH2), and the perceptual skill has to be versatile and applicable to many different
objects and environmental conditions (CH3). In this chapter, we present an online interac-
tive perception (online IP) system to estimate parametrized kinematic models of unknown
objects from streaming RGB-D data addressing the aforementioned challenges. The key of our
approach is to leverage the structure of the perceptual problem: the information from inter-
actions, physical priors that model the underlying processes, the temporal correlation in the
perceived information, and the interdependency between perceptual subproblems. To exploit
these structural properties we propose an online interactive perception system based on three
interconnected levels of recursive estimation: 1) the estimation of 3D feature motion based
on the 2D motion of tracked RGB features, 2) the estimation of rigid body motion based on
the estimated feature motion, and 3) the estimation of the kinematic model based on the
rigid body motion (Figure 4.2). The probabilistic representations used for estimation yield a
kinematic model with uncertainty estimates.

Our system exploits structural properties inherent to perceptual problems related to robot
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Figure 4.1: Example of online interactive percep-
tion: The robot pulls on the drawer using an an-
thropomorphic soft hand built in our lab (Deimel
& Brock, 2014) and perceives the prismatic joint
(joint axis shown as narrow green cylinder, joint
value shown as wider green cylinder), including
an estimate of the uncertainty (transparent green
cone) [ c⃝ 2014 IEEE]

manipulation of DoF in unstructured environments, leading to the observed robustness, accu-
racy, and generality. First, the online IP system exploits and integrates interaction as part
of the perceptual solution. The system focusses on the interpretation of the changes in the
environment revealed from interactions, and the understanding of the underlying structure
in the world that governs these changes (the kinematic constraints). This working principle
classifies our proposed approach into the family of interactive perception methods.

Second, our solution uses recursion as algorithmic implementation to exploit the tem-
poral structure in the perceptual problem. Using recursion our solution turns detection into
tracking using the previously perceived state as prior to restrict the possible next states. This
contributes to the online capabilities of our solution.

Third, the factorization of the overall perceptual problem into three levels enables the
use of highly relevant, level-specific physical priors, namely motion continuity, rigid body
physics (based on the assumption that the environment is composed of rigid parts) and kine-
matics of rigid bodies. The physical priors effectively improve the quality of data at each
level.

And fourth, the three levels of the recursive estimation problems are interconnected,
leveraging synergistically the interdependencies between subtasks. The information improved
by the level-specific priors is passed to other levels, thereby also improving the effectiveness
of the estimation process on other levels. The overall effect is that the combined estimation
process is informed not only by sensor data but also by three specific process models, each
containing task-relevant information to help interpret the uncertain data.

In the following, we will first review previous approaches from computer vision and robotics
that tackle the problem of perceiving kinematic properties of articulated objects. We will
see that our system is the first solution that addresses the full perceptual problem (from raw
sensor data to kinematic model) for previously unknown objects and in an online manner.
Then, we will present our approach based on coupled recursive estimation, followed by an
experimental evaluation on different articulated objects and environmental conditions. We will
end with a discussion of the limitations and the implications of this work, also in the context
of the challenges and opportunities for perception discussed in this thesis.

4.1 Related Work

The earliest approaches to perceive articulated objects were proposed by the computer vision
community. These approaches perceived kinematic constraints in the motion of multiple rigid
bodies from video sequences. Approaches of this “first generation” are based on the seminal
work by Costeira & Kanade (1998). The authors propose an approach to reconstruct shape
and motion for multiple moving bodies. Their approach builds and analyzes the structure of
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a matrix containing the trajectories of a set of point features tracked along the entire video
sequence. This matrix is called the measurement matrix (Tomasi & Kanade, 1992) and, cor-
rectly interpreted, leads to information about the (sparse) shape and the motion of the bodies.
The method to interpret the measurement matrix is spectral clustering, and generates groups
of features that move with correlated trajectories and the motion parameters of these trajecto-
ries in 3D space.

Tresadern & Reid (2005) proposed an integrated approach for segmentation and joint detec-
tion based on an analysis of the dependencies in the motion subspaces obtained with spectral
clustering. They find intersecting dimensions in these subspaces that indicate constraints
in the relative motion between pairs of bodies. Based on the intersecting dimensions their
method can classify joints into disconnected, universal and revolute/hinge, and estimate the
joint parameters: the axis of rotation of the revolute joint and the point of rotation of the
universal joint. This method is limited to one-joint structures.

Later on, Yan & Pollefeys (2006) extended the idea of Tresadern and Reid to more com-
plex kinematic structures. They build a fully connected graph where the nodes are moving
bodies and the edges are weighted by the motion dependency observed between bodies, mea-
sured as the minimum principle angle between their motion subspaces (Golub & Van Loan,
2012). Pairs of bodies moving with high dependency are connected by joints. The complete
kinematic structure of the articulated object is defined as the minimum spanning tree in the
motion dependency graph. Their method can deal with multiple articulated objects based
on an upper threshold for the minimum principle angle that indicates that two bodies are
disconnected, but it cannot deal with closed kinematic chains.

The methods based on spectral clustering demonstrated that it is possible to perceive visu-
ally the kinematic constraints between moving bodies and infer the kinematic structure of an
object. However, they require to accumulate large motion data to estimate correctly the clus-
ters and the motion subspaces of the point features, and are thus inherently offline algorithms.
While this limitation is not important for video analysis, it restricts the application of spectral
clustering-based methods to perception that aims to support ongoing robot manipulation of
articulated objects.

More recent solutions to perceive kinematic structures adopted a probabilistic approach.
They posed the perceptual problem as the estimation of the model (the kinematic structure,
and possibly also its dynamic state) that maximizes the likelihood of the observations. Ross
et al. (2008) proposed a generative model as solution to the underlying multi-body structure
from motion (SfM) from point feature trajectories and joint estimation problems. In an iter-
ative process they first assign point features to links, run SfM, and estimate the points that
belong to a pair of links and that do not change their 3D location. These points indicate pos-
sible locations of a revolute or a universal joint. The generative model obtained with this
method is used to evaluate how well the hypothetical kinematic structure model fits the ob-
served point feature trajectories, and select the most likely. This method cannot cope with
prismatic joints nor with multi-joint structures.

Sturm et al. (2009) (Sturm et al., 2010b, 2011) presented a probabilistic approach to joint
classification and parameter estimation. Their method uses as input the 6D pose trajecto-
ries of the moving bodies to build and maintain four models of possible motion constraints
between pairs of bodies. The method estimates through optimization the set of parameters
maximizing the likelihood of the observed trajectories. The authors propose three possible
parametric models for joints – rigid, prismatic, or revolute joints – and one non-parametric
model – a Gaussian process joint. Similar to Yan & Pollefeys (2006), they compute the min-
imum spanning tree on a graph structure as final kinematic structure of the object. But dif-
ferently, in their method the weight of the nodes is inversely proportional to the posterior
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probability of the estimated best joint models, and therefore finding the minimum spanning
tree is equivalent to a maximum a posteriori computation (MAP).

While the method by Sturm et al. (2009) is elegant, completely defined using probabilis-
tic algebra, and applicable in real-time, it does not tackle the full perceptual problem. The
method does not address a crucial subtask when perceiving kinematics of articulated objects:
detecting and tracking unknown rigid bodies from raw sensor data. The approach assumes the
number of rigid bodies to be known beforehand, and their poses to be tracked reliably, dele-
gating this task to a visual tracker based on AprilTag-like fiducial markers (Wang & Olson,
2016). The exclusion of the “lowest” part of perception (the interpretation of the noisy sensor
stream) from the problem is a missed opportunity to link and exploit high level reasoning and
low level signal processing.

In two later extensions Sturm et al. extended their approach to reduce the dependency on
the fiducial visual markers. In a first extension (Sturm et al., 2010b) they proposed to obtain
the body trajectories from a plane tracker based on depth images. This method is limited to
planar objects, and its serial processing procedure does not leverage the information about
the kinematic structure that could help the plane tracker. In a second extension (Sturm et al.,
2010a) the authors use as perceptual signal the robot’s end-effector trajectories generated
with a model predictive controller. This approach, while nicely linking perception and ac-
tion, is strongly limited because it can only perceive one DoF objects rigidly attached to the
environment (see Section 6.2.2).

Another group of methods perceive the kinematic model from a geometrical analysis of the
rigid body trajectories. Huang et al. (2012) present an offline method to extract 3D models
of articulated rigid objects using interactive perception. This method requires multiple object
views to first generate a full point cloud of an object, which is then used to estimate the
kinematic state by matching the configurations before and after the interaction.

Katz et al. (2014) propose an RGB-based, offline solution for the perception of three-
dimensional, rigid kinematic structures. In their approach, the authors apply bundle adjust-
ment to groups of point feature trajectories to estimate their 3D motion, and fit the computed
3D trajectories to joint hypothesis based on their geometrical properties. To group features
into rigid bodies the authors apply a series of min-cuts (Matula, 1987) to a graph where the
nodes are point features, and the edges are weighted based on a set of feature similarity es-
timators (color, relative motion, . . . ). Subsequently, this method was adapted for RGB-D
sensors (Katz et al., 2013b). The use of RGB-D sensing avoids the costly bundle adjustment
computation and is therefore more accurate and computationally more efficient, but still of-
fline since it requires large feature trajectories, and thus suffering some inherent limitations,
for example for newly appearing objects (see Section 4.3.3).

Conclusions and comparison to the proposed approach: The existing methods
in the literature estimate the kinematic model in a batch offline manner: first they collect
enough motion observations, and then they analyse the motion to infer the kinematic con-
straints. The robot cannot use the information acquired in this form to support and steer
ongoing interactions. Storing all measurements and running one of these methods over the
entire memory when a new signal arrives becomes quickly computationally infeasible since the
computation complexity grows with the number of measurements.

An exception is the algorithm by Sturm et al. (2009): it runs in an online manner using
a sliding window approach that selects a subset of the entire series of acquired observations.
This is possible because the perception of motion of the rigid parts is not part of the tackled
problem, but obtained from fiducial markers, which solve the segmentation, matching, and
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pose estimation problems. The sliding window approach fails if there are large time periods
without any motion.

There are two possibilities to improve over the batch and the sliding window approaches.
The first solution is to design a measurement selection method to reduce the amount of data
for the analysis, losing as few information as possible. Such a method would need to evaluate
the information contained on each measurement before the analysis, which usually requires
complex heuristics.

The second solution is to take an online recursive approach: reuse at each step the result
of the kinematic computation at the previous step and refine it based on the latest observa-
tion. Using recursion we keep the amount of data to process constant: ideally only the latest
observation. As explained in Chapter 3.1.1 this is possible if we assume that the state is com-
plete and the dynamic system is Markovian. Finding a factorization of the problem where
the subcomponents can be assumed to fulfill these properties would allow us to use recursive
estimation for the solution. Moreover, if we characterize probabilistically the uncertainty over
the measurements and the predictions generated by the recursive solution we can apply a
Bayesian filter implementation to balance correctly between the previously perceived informa-
tion and the newly acquired observation.

Compared to the existing systems, the system we present in this chapter advance the state
of the art in interactive perception of kinematics of articulated bodies in three respects. First,
as explained before, existing IP methods are offline systems and therefore cannot inform the
ongoing action of the robot, originally the goal of interactive perception. The proposed online
method overcomes this, and integrates the perception process into the execution of actions.
Second, the offline setting lead to failure cases that are properly addressed with our online
method. Third, existing offline methods are not probabilistic and hence do not include an
estimate of model uncertainly. We deem it to be important to reason about uncertainty when
manipulating in unstructured environments and this reasoning is a crucial component of our
recursive solution.

4.2 Online Visual Perception of Kinematics from Interactions

Our proposed online system factorizes the interactive perception of articulated objects into
three recursive state estimation levels: estimating feature motion, rigid body motion, and
the overall kinematic model. The structure and interactions of these levels is depicted in Fig-
ure 4.2. The system instantiates the general approach for IP we proposed in Section 1.3. Each
level exploits a level-specific physical prior: motion continuity, rigid body physics (assuming
the objects are composed of rigid parts), and the kinematics of rigid bodies. These priors
improve convergence of the state estimate. The resulting state information is passed as a mea-
surement to the next-higher level (blue arrows). The predicted measurement of each level
is also fed back as the predicted state to the next-lower level (red arrows). The information
passed to the next-higher and next-lower levels is now informed by the prior and improves
convergence at the other levels. These design choices (factorization, recursion, use of priors,
feedback to lower levels), based on the opportunities for perception for robot mechanical ma-
nipulation, are crucial to achieve the effectiveness, robustness, accuracy, and versatility of the
proposed online IP system.

We will now explain in detail the three recursive state estimation levels that constitute our
proposed online IP system.
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Figure 4.2: Multi-level recursive es-
timation of kinematic models: (from
bottom to top) an RGB-D sensor
data stream provides information
about a scene, feature motion is es-
timated, from the feature motion
rigid body motion is estimated, from
the rigid body motion the kinematic
model is estimated; the estimations
from each level are passed as mea-
surements to the next-higher level
(blue arrows) and the predicted mea-
surements from one level are passed
to the next-lower level as state pre-
dictions (red arrows); level-specific
physical priors to help the estimation
process are a key feature of the pro-
posed system (vertical text on the
left side of the boxes); the system
instantiates the general approach of
Section 1.3 [ c⃝ 2014 IEEE]

4.2.1 Recursive Estimation of Feature Motion

The first level of recursive processing tracks the motion of
a set of salient point features in an RGB-D sensor stream
using a recursive procedure. The state of this filter at time

t, xfmt (fm = feature motion) presents the form:

x
fm
t = {fn

t = (xn
t , y

n
t , z

n
t , l

n)}n∈{1,...,N} (4.1)

where xn
t , y

n
t , z

n
t ∈ R are the coordinates of the salient

point feature n in the 3D Euclidean space relative to the
sensor frame at time t, and ln ∈ N is a time-constant label
that identifies uniquely the feature. N is the number of
tracked points that we maintain constant by detecting new
salient point features when necessary (see Section 4.2.1).

In the following, we will use the operator Loc(fn) =
(xn, yn, zn)T to build a 3D vector of the location of a
feature fn. Sometimes, we will abuse the terminology
and use the same operator to build the vector of homo-
geneous coordinates of the feature location, Loc(fn) =
(xn, yn, zn, 1)T . The difference will be clear from the con-
text of the operation.

The measurements for this salient point feature tracking
process at time t present the form:

zfmt = {qnt = (un
t , v

n
t , l

n)}n∈{1,...,N} (4.2)

where un
t , v

n
t ∈ R are the 2D coordinates of the salient

point feature n in the image plane at time t, and ln ∈ N
is the feature label of the corresponding 3D point. To
obtain these measurements we align the surroundings
of the salient point features between consecutive RGB
images using the iterative registration approach by Lucas
& Kanade (1981). Applying this registration method to
track points in consecutively images of a video was first
proposed by Tomasi & Kanade (1991). This point feature
tracking procedure is known as the Kanade-Lucas-Tomasi
(KLT) salient point feature tracker. In the following we
will summarize the characteristics of the KLT tracker that
are relevant to our method.

The KLT tracker estimates the displacement d =
(du, dv) (also known as flow) of an image point (pixel)
from an initial location q in a first image at time t − 1 to
its corresponding location q + d in a second image at time
t. To estimate the displacement, the KLT tracker consid-
ers a window W surrounding the point and minimizes the
following energy (error residue) term:

ϵ =


q∈W

[It−1(q)− It(q + d)]2dq (4.3)
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It() is the video intensity function that defines the intensity of the image points time t, I :
R2 × R→ R.

The estimation of the flow of a point is solved iteratively from an initial estimate d0 using
the first element of the Taylor series of the video intensity function assuming that:

It(q + d) ≈ It(q) + gdi (4.4)

where g is the 2D vector of the gradient of the image It and di the currently estimated dis-
placement. This iterative process composed of a linearization (first order Taylor expansion)
and a minimization is equivalent to a Newton-Raphson optimization procedure. The Newton-
Raphson process estimates the displacement that minimizes the difference between image
intensities ϵ.

Being an iterative gradient-based method, the solution depends on the initial estimate
of the displacement d0. Different initializations could converge to different local minima of
the error ϵ. This sensitivity to the initialization is a known problem of the KLT tracker. In
our method we will leverage different priors to initialize the KLT based on predictions of the
motion of the point features (see Figure 4.3).

Prediction in Feature Motion Estimation

We propose two forward models to predict the motion of the features. The first model is an
internal forward model within the recursive process that assumes that the tracked 3D points
do not move from their previous location. This forward model generates a first prediction for
the next state (I = first prediction):

x̂fm,I
t = {f̂n,I

t = (xn
t−1, y

n
t−1, z

n
t−1, l

n)}n∈{0,...,N} (4.5)

Therefore, the internal forward model encodes motion continuity as physical prior: the current
3D location of a point is close to its previous location.

The second model leverage information from the next-higher level (the recursive Bayesian
estimation of rigid body motion, see Section 4.2.2) as prior to generate a second prediction for

the next state, x̂fm,II
t = {f̂n,II

t }n∈{0,...,N} (II = second prediction). We predict the location of
a point feature fn on a body B that moves with a predicted velocity η̂Bt as:

Loc(f̂n,II
t ) = exp


∆tη̂

B
t


Loc(fn

t−1) (4.6)

where ∆t is the time elapsed between t− 1 and t,
This second forward model leverages physics of rigid bodies as prior: the motion of the

point features on a rigid body must be consistent with the motion of that rigid body. This
second prior allows us to leverage information determined by the next-higher level, the esti-
mated motion of rigid bodies. The next-higher level effectively acts as the forward model of
the recursive estimation of feature motion. These more informed predictions lead to a better
initialization of the KLT feature tracker of the measurement update, as we will see next.

Measurement Update in Feature Motion Estimation

To predict the measurements we project the two sets of predicted 3D locations into the image

plane and obtain two sets of predicted 2D locations, ẑ
fm,I
t and ẑ

fm,II
t . In this process, our

measurement model leverages projective geometry as physical prior to interpret sensor data as
evidences of the state.
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Figure 4.3: Estimating feature motion; left: RGB image input to our perceptual system ; right top: detail
on the surface of the moving drawer and location and window (red) of one tracked point feature; right,
middle and bottom; same area of the drawer in the next processed RGB image and corrected point feature
location from the first initialization (middle, green window) and from the second initialization (bottom,
magenta window); the initialization with priors from the next-higher level guides the search to the right
location

We use the predicted 2D locations to initialize the KLT salient point tracking algorithm.
The KLT tracker corrects these predicted 2D locations finding the displacement that mini-
mizes the registration error.

The two sets of predicted 3D locations lead to different initialization values for the KLT
feature tracker. The first set, from the internal forward model based on motion continuity,
leads to the standard zero initial displacement of the iterative KLT process, d0 = (0, 0). The
KLT tracker then searches for the optimal registration of the intensity window of the point in
the first image starting by the window around the same location in the second image. This
standard initialization restricts the capabilities of the KLT to track large motions between
frames since the initial displacement could lay in the region of convergence of different point.
This problem is depicted in Figure 4.3.

The second set of predicted 3D locations leads to an initialization of the KLT tracker in-
formed by the motion of the rigid bodies. Predictions about the 3D location of the point
features based on the expected motion of the bodies guide the salient point KLT tracker to a
different area of the image that is closer to the right location.

We compare the feature tracking residues based on the two initializations, ϵn,I and ϵn,II ,
and select the correction with lowest residue. As we explained before, the residue measures
the quality of the matching between image patches after applying the estimated optimal
flow. The assumption is that the best correction is the one that best aligns the image patches
around the salient point. Finally, we update the state of the recursive process, the 3D location
of the point features, by querying the value of the depth map at the corrected tracked 2D
locations.

Our recursive estimation schema (prediction and measurement update) in feature motion
improves the tracking accuracy and robustness of the salient point KLT feature tracking
algorithm by initializing the iterative process using information from the next-higher level.
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Feature Initialization and Maintenance

The above presented procedure estimates recursively the 3D location of a set of N points
associating them to 2D point features in the image. To initialize the recursion we need to find
a set of points that we can track reliably. Additionally, we will need to find new points to
maintain a constant number of N tracked points when previous features are lost or actively
removed, as we will explain later.

We have seen before that our measurement update uses the KLT iterative solution to the
point feature registration problem (Tomasi & Kanade, 1991). We also saw that this solution is
based on the computation of the image gradient g in the window W around the point feature.
We will now see that, concretely, the computation depends on the second order moments of
the intensity gradient in the search window. Based on this dependency, Shi & Tomasi (1994)
proposed a method to find the good features to track with the KLT. We will now summarize
the method to find good features to track by Shi & Tomasi (1994) and the characteristics that
are relevant to our system.

To understand the dependency on the second order moments of the intensity gradient we
first replace the first order Taylor expansion of the image intensity (see Equation 4.4) in the
equation of the residue error:

ϵ =


q∈W

[It−1(q)− It(q)− gd]2dq (4.7)

The previous equation is quadratic in d and we can solve it analytically by setting its deriva-
tive with respect to d to zero: 

q∈W

[It−1(q)− It(q)− gd]gdq = 0 (4.8)

We can factorize the previous equation into:

Gd = e (4.9)

where e is the projection of the difference between images along the direction of the gradient,

e =


q∈W

[It−1(q)− It(q)]gdq and G is the matrix of second order moments of the gradient in the

window W (Hessian):

G =


q∈W

ggT dq =




q∈W

I2u(q)dq


q∈W

Iu(q)Iv(q)dq
q∈W

Iv(q)Iu(q)dq


q∈W

I2v (q)dq

 (4.10)

with Iuu(q), Ivv(q), and Iuv(q) are the image gradients in the window in the different direc-
tions.

We can solve the Equation 4.9 computing d = G−1e. This computation depends on the
2× 2 matrix G to be well-conditioned so that we can invert it. For G to be invertible its two
eigenvalues should be non zero. In practice, obtaining a numerically stable inverse is only
possible if both eigenvalues are over a discriminative threshold min(λ1, λ2) > λmin. This
minimum eigenvalue is called the saliency of the point.

We can give an intuition of the significance of the salience of a point. If only one of the
eigenvalues is large, the intensity of the image varies along one direction. This is the case for
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Figure 4.4: Rejection of features on the depth discontinuities; left: original image to our perceptual sys-
tem; right: depth discontinuities mask (black frame added for visualization); point features on the black
edges are rejected

image windows depicting an edge. Image locations where the matrix of second order moments
of the gradient in the window is well-conditioned are locations where the image intensity
changes abruptly along both directions. This correspond to a corner-like structure in the
window. This structures are clearly distinctive compared to points along an edge or on a
uniform surface. Therefore, these points are called salient point features or corner features
and they are tracked more robustly and unequivocally that pixels on uniformly textured
surfaces.

Based on the previous definition of good features to track (Shi & Tomasi, 1994) with the
KLT procedure, we detect an initial set of N salient point features where the second order
moments of the gradient of the RGB image are maximum and over a discriminative threshold,
λdetecting
min .
We compute their corresponding 3D coordinates to initialize the state of the process based

on the associated depth value in the fourth channel of the registered RGB-D frame. Often,
our approach detects salient points features in sub-optimal locations like depth edges or
shadows that do not actually move with the motion of the rigid body. Using our prediction-
correction mechanism informed by the motion of the rigid bodies that we explained before we
can compensate for these points.

We further improve the reliability of feature tracking by actively rejecting features based on
four criteria. First, we remove features when they move out of the field of view because we do
not have sensor measurements to update their location. Second, we reject features lying close
to depth discontinuities in the RGB-D image (see Figure 4.4). In the presence of sensor noise,
these features change their depth drastically, negatively affecting the estimation of rigid body
motion. We estimate discontinuities in the depth image using a Canny edge detector (Canny,
1986) and use them to reject point features. Third, when the robot arm enters the field of
view, we reject features tracked on its surface (see Figure 4.5). We determine these features
by projecting a geometric model of the robot into the image plane using the joint angles of
the robot’s arm and forward kinematics. In this way we focus the attention of the percep-
tual system into the degrees of freedom of the unknown articulated objects, and not on the
known robot arm. And fourth, we reject points if their tracking error residue increases over a
maximum value ϵmax, or if their saliency (minimum eigenvalue of the matrix of second order

moments of the gradient image) falls under a discriminative threshold λtracking
min .

Due to the mechanisms explained above, features get lost often. To compensate for this
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Figure 4.5: Rejection of features on the surface of the robot manipulator; left: original image to our
perceptual system from a camera on the robot; right: same image with an overlay (red) of the projected
geometric model of the robot; point features on the red area are rejected; the soft hand is represented by a
sphere because its exact geometry after the inflation is unknown

loss and to continuously be able to extract useful information from the sensor stream, we
increasingly add novel points (based on the approach explained above to detect salient points)
to constantly maintain a set of N features.

4.2.2 Recursive Bayesian Estimation of Rigid Body Motion

The second level of recursive state estimation is responsible for detecting and tracking the mo-
tion of rigid bodies, based on the feature motion estimated by the next-lower estimation level
and the kinematic model estimated by the next-higher estimation level (see Section 4.2.3).

The online solution to this problem requires to solve three interdependent problems. First,
we have to continuously associate salient point features to existing or novel rigid bodies. Sec-
ond, we have to detect when a novel rigid body begins to move. And third, given the associ-
ation of features to rigid bodies, we have to estimate the motion of each rigid body based on
the feature motion.

The motion of one single rigid body is estimated with a recursive Bayesian filter (RBF).
We instantiate and maintain one independent RBF for each moving rigid body. In the follow-
ing, we first suppose that a set of salient point features have been correctly associated to one
RBF and describe its prediction and measurement update steps. The RBF to estimate the
motion of one rigid body is implemented as an extended Kalman filter (EKF). The detection
of rigid bodies and the assignment of features to rigid bodies will be described later in this
section.

We represent the kinematic state of a rigid body by its 6D pose and velocity relative to
the sensor frame, which we assume to be Gaussian distributed. Representing a Gaussian
distribution over 6D poses is not trivial. We adopt the formalism of Barfoot & Furgale (2014)
and represent the pose distribution as a mean pose, p (represented in exponential coordinates),
perturbed with noise in the tangential Lie algebra space, Σpt

t . The resulting state is (rbm =

61



Chapter 4 • Perceiving Kinematics of Articulated Objects from RGB-D Streams

rigid body motion):

xrbm
t = (pt,ηt) ∼ N ((pt, ηt), P

rbm
t ) (4.11)

pt ∈ se(3) (4.12)

ηt ∈ se(3) (4.13)

where the upper-left 6× 6 block of the state covariance matrix, P rbm
t ∈ R12×12, corresponds to

the pose uncertainty in the tangential Lie algebra space as commented before1.
The measurements of this RBF is the set of M point features f0

t , . . . , f
M−1
t in 3D Eu-

clidean space associated to this rigid body. We stack their 3D locations to compose a mea-
surement vector for the rigid body RBF:

zrbmt = (Loc(f0
t ), . . . ,Loc(f

M−1
t ))T ∈ R3M (4.14)

Prediction in Single Rigid Body Motion Estimation

We use three different process models in parallel to predict the next rigid body state. The
first model predicts the next pose of the rigid body based on its current pose and velocity and
the elapsed time, ∆t. The second process model handles the special case when a rigid body
stops moving abruptly (for example, when closing a door), setting the current velocity to
zero and the predicted pose to be the current pose. The third process model uses the current
kinematic model, estimated by the next-higher estimator, to predict an alternative next pose
and velocity for the rigid body.

The first forward model is a constant velocity model with random walk in acceleration (I =
first prediction):

xrbm,I
t = frbm,I(xrbm

t−1 ) +wrbm
t ∼ N ((p̂It , η̂

I
t ), P̂

rbm,I
t ) (4.15)

p̂It = ∆tηt−1 ⊕ pt−1 (4.16)

η̂It = ηt−1 (4.17)

where ⊕ is the composition of poses.
The system noise is a zero mean Gaussian distributed random variable defined as:

wrbm
t =


T 2

2
T


arbm (4.18)

where T = I6x6 · ∆t, I6x6 is the identity matrix of size 6 × 6 and arbm ∼ N (0,Σa) is a 6D
zero mean Gaussian distributed random variable that represents the unknown rigid body
acceleration. The covariance of its distribution is given by:

Σa =


ax 0 0 0 0 0
0 ay 0 0 0 0
0 0 az 0 0 0
0 0 0 arx 0 0
0 0 0 0 ary 0
0 0 0 0 0 arz

 (4.19)

1Strictly speaking, the vectors of their exponential coordinates pt and ηt are not elements of the
Lie algebra, but the matrices p×t , η

×
t ∈ se(3). Here we are simplifying the notation.
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where the diagonal elements correspond to possible accelerations of the rigid body in the
different 6D dimensions. Larger values in the diagonal allow the RBF to adapt to fast motions
at the cost of being more sensitive to point feature noise.

The second process model handles the special case when a rigid body stops moving abruptly
(for example, when closing a door), setting the current velocity to zero and the predicted pose
to be the current pose (II = second prediction):

xrbm,II
t = frbm,II (xrbm

t−1 ) +wrbm
t ∼ N ((p̂IIt , η̂IIt ), P̂ rbm,II

t ) (4.20)

p̂IIt = pt−1 (4.21)

η̂IIt = 06×1 (4.22)

The third process model uses the current kinematic model, estimated by the next-higher
estimator (see Section 4.2.3), to predict an alternative next pose and velocity for the rigid
body (III = third prediction):

xrbm,III
t = frbm,III (ẑjointt ) +wrbm

t (4.23)

where the function frbm,III , independent of the current state, predicts the pose and velocity of
the body with respect to the sensor frame based on the relative pose between links predicted
by the kinematic model. The next-higher level is used therefore as alternative process model
of the recursive estimation of rigid body motion.

We will select the prediction among the three alternatives that best predicts the motion of
the point features, as we will see later in this section.

Measurement Update in Single Rigid Body Motion Estimation

The measurement input consists of the 3D feature locations estimated on the next-lower level.
We predict the future locations of features based on the predicted state of the rigid body and
the following observation model:

zrbm,i
t = h(xrbm,i

t ) + vrbmt (4.24)

zrbm,i
t =


Loc(f̂0

t )
i

Loc(f̂1
t )

i

...

Loc(f̂M−1
t )i

 =


exp


p̂rbm,i
t


Loc(f0

init )

exp

p̂rbm,i
t


Loc(f1

init )

...

exp

p̂rbm,i
t


Loc(fM

init )

 (4.25)

where exp

p̂rbm,i
t


∈ SE(3) is the homogeneous transformation obtained from the predicted

rigid body pose, Loc(f̂m
t )i is the predicted feature location based on that predicted pose,

i ∈ {I, II , III } indicates one of the three alternative predictions, and Loc(fm
init ) are the homo-

geneous coordinates of the 3D location of the features when the body was initially detected.
We predict the new observations relative to this reference to take advantage of increased pre-
cision with larger feature motion. While the result of the row operations in the matrix of
Equation 4.25 are also homogeneous coordinates, i.e. (x, y, z, 1)T , we remove the constant 1 at
the end and stack the remaining elements to obtain a 3M dimensional predicted measurement
vector.
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The noise associated to the measurement, vrbmt , is a zero mean Gaussian distributed vari-
able with 3M × 3M covariance matrix, Rt. We assume that the measured locations are uncorre-
lated between features, and that the uncertainty about the measured location of a feature fm

is defined by the measurement covariance:

Rm
t = fσ(λ

m
t , zmt ) · I3×3 (4.26)

where zmt is the z-coordinate of the feature, λm
t is the salience of the feature given by the

KLT tracker, and fσ(λ
m
t , zmt ) is a function that characterizes the uncertainty about a feature

location based on its depth and its salience.
For a measured point feature at the location (x, y, z) with salience value of λ the uncer-

tainty about its location, fσ(λ, z), is defined as:

fσ(λ, z) = min


σmin,

αλ

λ− λmin
, αzz

2


(4.27)

where σmin is the minimum uncertainty value about the point feature measurements, αλ

λ−λmin

assigns higher uncertainty to features tracked in visual areas with low texture (see Section 4.2.1
for an explanation of the salience of a point feature and the minimum value λmin), and αzz

2

represents the quadratic dependency of the measurement uncertainty to the depth of the point
in fσ. This dependency is based on the statistical analysis of RGB-D sensors by Khoshelham
& Elberink (2012).

The three alternative process models in our RBF generate different state and measurement
predictions, Loc(f̂m

t )i. To select the best prediction, the Bayes filter measures the distance
between predicted and measured location per feature and adds a vote to the state prediction
that leads to the shortest distance. The prediction with most votes is selected as the best
state prediction and is used for correction.

Our system exploits in the measurement update the assumption that the environment is
composed of rigid bodies, and that the motion of a rigid body is governed by known kinematic
relationships. The generated predictions for the feature locations (which our system propa-
gates down to the feature motion estimation level) are thus informed by these two priors.

Extended Kalman Filter for Rigid Body Motion

The estimation of rigid body motion as presented above presents non-linearities in the state
and measurement updates. We implement an extended Kalman filter for the recursive solution
of this state estimation problem (Section 3.1.3). The EKF linearizes the system using a first-
order Taylor expansion of the forward and measurement models around xrbm

t−1 , the previous
state estimate. The EKF uses the linearization to estimate the correction and the covariance
matrix of the next state of the rigid body.

The linearization of the first forward model corresponds to the following Jacobian matrix:

F rbm,I
t =

∂f rbm,I

∂xrbm


x̂rbm,I
t

=


Ad∆tvt−1

∆tI6×6

06×6 I6×6


(4.28)

where Ad∆tvt−1
is the adjoint transformation corresponding to the kinematic update based on

the estimated velocity (see Section 3.2.2 for the definition of the adjoint transformation).
We can give an intuition of the role of the adjoint transformation in this linearization.

In Chapter 3 we introduce the adjoint transformation as an operation to transform twist
velocities from one reference frame to another. In the linearization of the first forward model,
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the adjoint is playing another role. Here, the adjoint transforms the uncertainty about the
pose of the body from the frame of the previous estimate to the frame of the predicted body
pose. In general, when we transform a random 6D pose that we assume Gaussian distributed
with mean p and covariance defined in the tangential Lie space Σp ∈ R6×6 applying a second
pose p′, the result will not be Gaussian distributed. However, we can approximate the result
to Gaussian distribution of mean pnew = p ⊕ p′ and covariance Σnew = AdpΣpAdTp , correct
to first order (Barfoot & Furgale, 2014). Observe the similarity between this equation and the
Equation 3.34 of the EKF, which is now transforming the uncertainty about the pose of the
rigid body to the predicted new location.

The linearization of the second forward model (assuming an abrupt break event in the
motion) corresponds to the following Jacobian matrix:

F rbm,II
t =

∂f rbm,II

∂xrbm


x̂rbm,II
t

=


I6×6 06×6

06×6 06×6


(4.29)

In practice, what the RBF does if the second forward model generates the best predictions is
to consider only the pose of the rigid body, pt, as the state of the body and correct it.

The third forward model (based on information from the next-higher level) is independent
of the state of the filter. To correct the state we use the linearization of the first forward

model, F rbm,III
t = ∂frbm,I

∂xrbm


x̂rbm,III
t

, using the prediction from the higher level as a different

point for the linearization. If this point is closer to the true mean of the posterior, the result
of the EKF correction based on the third prediction generates a better approximation of the
true current state.

The linearization of the measurement model with respect to the state yields the following
Jacobian matrix:

Hrbm
t =

∂hrbm

∂xrbm


x̂rbm,i
t

=


Hf0,i

t

Hf1,i
t
...

HfM ,i
t

 (4.30)

where Hfm,i
t correspond to the linearization of the model for an individual feature of the form

around the best predicted state from the model i ∈ {I, II , II }:

Hfm,i
t =

 0 Locz(f̂
m
t )i −Locy(f̂m

t )i

I3×3 −Locz(f̂m
t )i 0 Locx(f̂

m
t )i 03×6

Locy(f̂
m
t )i −Locx(f̂m

t )i 0

 (4.31)

Sequential processing of measurements: In the equations of the EKF (see Equa-
tion 3.42) we observe that the covariance of the innovation, St = HtP̂tH

T
t + Rt, has to be

inverted to compute the Kalman gain. In our case this involves the inversion of a 3M × 3M
matrix, with M the number of features assigned to the RBF. If M is large (many features are
associated to the rigid body) the matrix inversion can be computationally expensive and affect
the online capabilities of our system. Therefore, based on the assumption that the measured
feature locations are uncorrelated to each other, we process the point features sequentially and
avoid the costly inversion of the full matrices (Bar-Shalom et al., 2001).
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In the sequential procedure we initialize the corrected state and its covariance with x0
t = x̂t

and P 0
t = P̂t. We then compute a correction based on each feature m. For the feature m,

the corrected state becomes (we dropped some super-indices to make the equations easier to
read):

xm
t = xm−1

t +Km
t (Loc(fm

t )− Loc(f̂m
t )i) (4.32)

Pm
t = (I −Km

t Hfm

t )Pm−1
t (4.33)

Km
t = Pm−1

t (Hfm

t )T [Hfm

t Pm−1
t (Hfm

t )T ]−1 (4.34)

In Equation 4.32, the first part of the state vector x represents a 6D pose in Euclidean space.
To correctly integrate the corrections of this first part of the state vector we use the composi-
tion of poses, ⊕, instead of the normal vector sum.

The final correction is then:

xt = xM−1
t (4.35)

Pt = PM−1
t (4.36)

Recursive Bayesian Estimation of Multi-Body Motion

To track the motion of multiple rigid bodies, we have to match point features to the corre-
sponding rigid body RBF and use them to update the state of the filters. This matching
process is called data-association. We associate features to those rigid bodies that best predict
their motion. We measure the Euclidean distance between the observed and the predicted
feature location from the filters and assign the features to the filter with the lowest predic-
tion distance. We assume that the existing filters cannot predict the motion of a feature if all
predicted locations are further than dfmax from measured location.

If the motion of a set of features cannot be accurately predicted by any of the existing rigid
body Bayes filters it could be necessary to instantiate a new filter. We instantiate a new filter
if a set of non-assigned features move coherently. To evaluate if a set of non-assigned features
move coherently we use RANSAC and try to find a rigid body transformation describing their
motion. If a rigid body transform explains the motion of at least fmin features, a new RBF
is created using this rigid body transform as the initial state. Based on this procedure the
proposed system works for an arbitrary number of moving rigid bodies in the scene, as long as
fmin visual features can be tracked on each body.

The overall perceptual process begins with a single Bayes filter that represents the static
background. We assume that the static background does not move (ηbg = 06×1), although
it would be easy to integrate an algorithm that provides motion estimates of the camera
with respect to the static background (Nistér et al., 2004, Forster et al., 2014). New detected
point features are initially assigned to the static rigid body, until they begin to move and
their location cannot be predicted by the static background filter. These features are either
assigned to another filter (if it can predict their motion) or used to create a new filter for a
newly moving body.

4.2.3 Recursive Bayesian Estimation of Kinematic Model

The third level of our system estimates and tracks the kinematic model of the scene, based
on the motion of rigid bodies obtained on the next-lower estimation level. We assume a pair
of rigid bodies to be related in one of four possible ways: (i) prismatic joint, (ii) revolute
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joint, (iii) rigid connection, or (iv) disconnected, the latter being a special case defined as the
absence of relationships (i)–(iii). We model these relationships with different types of RBF,
each type modeling the necessary parameters for that relationship (joint axis, joint variable,

etc.) in the random state variable x
joint
t . We instantiate and maintain one RBF of every type

for each pair of rigid bodies in the scene.

The measurements zjointt ∈ R6 are obtained from the next-lower estimation level and
correspond to the change in relative pose (in exponential coordinates) between the two rigid
bodies attached to the joint, defined with respect to one of the bodies:

zt =
parent
child∆pt + v

joint
t = parent

childpt ⊖
parent
childpinit + v

joint
t (4.37)

The body that acts as reference is called parent link, and the second body is called child link.
In the previous equation ⊖ represents the subtraction between poses, parent

childpt is the current

pose of the child link with respect to the parent link (in parent link frame), and parent
childpinit is

the pose of the child link with respect to the parent link when the joint starts to be tracked.
The terms parent and child link refer to the common terminology for tree structures of kine-
matic mechanisms in the literature.

The covariance, Rjoint
t , of the measurement model noise, vjointt is also obtained from the

next-lower level:

R
joint
t = parentAd(Σparentp

) parentAd
T + parentAd(Σchildp

) parentAd
T (4.38)

As explained in Section 4.2.2, we are applying the adjoint operator here to transform covari-
ances between reference frames (Barfoot & Furgale, 2014). In this case, we transform the
covariance of the pose of both parent and child link from the sensor reference frame to the
reference frame of the parent link.

In the following we will explain the state representation, prediction, measurement update
and EKF solution of the three different RBF types. Each RBF type uses a different kine-
matic prior which defines its state and measurement model. As before, the priors enable the
estimation and tracking of kinematic models, but also the prediction of the next state of the
next-lower level (feedback). Following this, we explain how we estimate the most likely joint
type between two bodies and the overall kinematic structure, which completes the description
of this estimation level.

Prismatic Joint Estimation

The state of a prismatic joint is parametrized by the orientation of its axis (azimuth ϕ and
elevation θ in spherical coordinates), its joint variable qp ∈ R (translation along the joint axis),
and the velocity of the joint variable q̇p ∈ R, which we represent with a multidimensional
Gaussian distributed random variable. In the prediction step, we use the joint velocity to
update the joint state.

To predict the change in pose of the child link relative to the parent link, we use the follow-
ing measurement model:

ẑjoint ,pt =


03×1

qp · op


(4.39)

where 03×1 is a three dimensional null vector that indicates that the orientation between the
links is constrained by the prismatic joint, and op ∈ R3 is the axis orientation (unit vector)
estimated from ϕ and θ as op = (cos(ϕ) sin(θ), sin(ϕ) sin(θ), cos(θ))T .
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Extended Kalman Filter for Prismatic Joint Estimation While the forward model
of the prismatic joint is linear, the measurement model is non-linear with respect to the joint
parameters. Therefore, we implement an EKF to correct the state based on the acquired
measurement.

The matrix of derivatives of the measurement model with respect to the state, H joint ,p
t , is

defined by:

H joint ,p
t =


−qp sin(ϕ) sin(θ) qp cos(ϕ) cos(θ) cos(ϕ) sin(θ) 0
qp cos(ϕ) sin(θ) qp sin(ϕ) cos(θ) sin(ϕ) sin(θ) 0

0 −qp sin(θ) cos(θ) 0
0 0 0 0
0 0 0 0
0 0 0 0

 (4.40)

where we have made use of the equivalence between spherical (ϕ and θ) and Cartesian (op)
representations of the orientation vector.

Revolute Joint Estimation

The state of a revolute joint is parametrized by the orientation of its axis (azimuth ϕ and
elevation θ in spherical coordinates), a point on the axis pr ∈ R3, its joint variable qr ∈
R (rotation about the joint axis), and the velocity of the joint variable q̇r ∈ R, which we
represent with a multidimensional Gaussian distributed random variable. We use the joint
velocity to predict the next joint state as process model.

To predict the change in pose of the child link relative to the parent link, we use the follow-
ing measurement model:

ẑjoint,rt =


qr · or
tr


(4.41)

where or ∈ R3 is the axis orientation (unit vector) estimated from ϕ and θ and tr = (−qr · or)×
pr is the linear relative motion between rigid bodies.

Extended Kalman Filter for Revolute Joint Estimation As in the case of a pris-
matic joint, the filter for the revolute joint model contains a non-linear measurement model.
We implement an EKF that linearizes this model and corrects the state from the acquired

measurement. The linearization of the measurement model, H
joint ,r
t , is defined as:

H joint ,r
t =
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(4.42)

where sϕ = sinϕ, cϕ = cosϕ, sθ = sin θ, and cθ = cos θ, and pr = (prx, p
r
y, p

r
z)

T .
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Rigid Joint Estimation

A rigid joint does not allow for relative motion between rigid bodies. Therefore, it has no
parameters nor variables to estimate. The measurement model of a rigid joint predicts that

there is no change in the relative pose between bodies, i.e. ẑjoint ,rigidt = 06×1. Because there
are no parameters to estimate, we do not need to implement an EKF for this type of joint.

Recursive Bayesian Estimation of Multi-Type Kinematic Model

After evaluating the RBF of every type for each pair of rigid bodies, we select the RBF that
is most consistent with the observed rigid body motion. We base this selection on the likeli-
hood of the measurements given the estimated models. The likelihood of the observed data is
defined as

p(zjointt |M,xjoint ,M
t ) = N (zjointt ; ẑjoint ,Mt , R̂joint ,M

t ) (4.43)

where M are the considered joint models, M ∈ {Prism,Rev,Rigid}, xjoint ,M
t is the current

estimate of model M , and ẑjoint ,Mt and R̂joint ,M
t are the predicted measurement mean and

covariance, respectively.
Instead of selecting the model that best explains only the latest measurement, we select

the one that explains all past measurements. This makes the selection of the most likely joint
more stable. We consider that large measured relative motion is more informative to find the
most likely joint, since large motions are more difficult to predict randomly. Therefore, we as-
sign a weight to the estimated likelihood at each step proportional to the amount of change in
relative motion between links, measured as the norm of the vector of exponential coordinates

∥zjointt ∥, and compute the mean of these weighted likelihood values over the trajectory.
We select the model with the maximum accumulated weighted likelihood as the joint that

best explains the motion between a pair of bodies. We consider that none of the models can
explain the motion with sufficient reliability if any of their accumulated weighted likelihoods
is over a minimum threshold, Ldisc. In this case, we declare this pair of rigid bodies to be
disconnected.

From all pairwise selected joint types and parameters, we build the kinematic model of the
scene. Because joints are always determined considering only pairs of rigid bodies, our system
can naturally determine the kinematic model of branching mechanisms and closed kinematic
chains.

4.3 Experiments

We conducted four sets of experiments. In the first set we study the sensitivity of the system
to the number of tracked features, N . We evaluate if the computation time, the accuracy and
the robustness depend on N . To measure the accuracy we compute the error between the esti-
mated rigid body poses and the ground truth obtained with a motion capture system (Motion
Analysis, 2017). We evaluate also the contribution of the predictions from higher levels in the
performance of the system.

In the second set of experiments we evaluate the performance of the online IP system with
different articulated objects. We measure the robustness, quality, and convergence of the
kinematic model estimation by comparing to ground truth. To obtain the ground truth for
the joint parameters, we placed artificial markers that are not used by the system to estimate
the kinematic model. We then manually measured the joint parameters in the RGB-D stream
using the markers.
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Parameters for the Estimation of Kinematic Properties

Parameter Description Value(s)

N Number of tracked features 150–250*

λmin Threshold for the smallest eigenvalue of the second order
moments of the gradient around a point feature

0.005

σ2
min Minimum standard deviation of the feature location measure-

ments
1 cm

αλ Constant factor for the uncertainty of a feature due to its
saliency

5× 10−4

αz Constant factor for the uncertainty of a feature due to its
depth

2.58mm/m2

a2
x, a

2
y, a

2
z Linear acceleration noise in rigid body motion estimation 0.02mm−1

a2
rx, a

2
ry, a

2
rz Angular acceleration noise in rigid body motion estimation 0.2mm−1

dfmax Maximum prediction error for the feature-to-body data
association

1.5 cm

Ldisc Minimum likelihood for joint models 0.1

Table 4.1: Parameters in our system for the online estimation of kinematic models (* indicates the se-
lected values after their evaluation)

In the third set of experiments, we test our system in scenarios were offline systems fail.
And in the fourth set, we make use of the online abilities of the system to control the mo-
tion of a robot, closing the loop between perception and action. This demonstrates that the
perceived information is relevant for the robot manipulation of DoF.

In all experiments, the input is an RGB-D stream, provided either by a Kinect or a Carmine
RGB-D sensor. The articulated objects are of different size, color, texture, and with different
kinematic structures (number and type of joints). The only constraint for the objects is that
they have some visible texture. We also vary lighting conditions and the relative pose between
the objects and the sensor. In these experiments we use N between 150 and 250. Our sys-
tem computes at a frame rate of 30 frames per second, running on real-time on an Intel Xeon
E5520 PC at 2.27GHz. Table 4.1 contains the value of the most relevant parameters used in
the experimental evaluation.

4.3.1 Parameter Sensitivity Analysis

The computation complexity in our system increases with the number of features N . This
parameter is involved in the feature motion and the rigid body motion estimation. Therefore,
we first evaluate if the number of features influences the computation time at these levels.

Figure 4.6 shows the computation time of the feature motion for different values of N . We
observe that the computation at this level is independent of the number of tracked features.
In most of the iterations our system spends approximately 20ms in the computation of the
motion of the features. This time includes the tracking of the features with the KLT algo-
rithm (Tomasi & Kanade, 1991) and the detection of new features to maintain their number
on N using the approach by Shi & Tomasi (1994). If the detection process does not gener-
ate enough new features, our system retries to detect features. Each detection increases the
time by approximately 10ms. In some iterations our system tracks successfully all features
and does not need to detect new features. This iterations last approximately 10ms. The com-
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4.3 Experiments

(a) Distribution of computation time as function
of the number of tracked features, N ; orange dots
indicate the computation time of each iteration

(b) Histogram of computation times; most itera-
tions require around 20ms; the detection of new
features requires around 10ms that cause the peri-
odically spaced peaks

Figure 4.6: Computation time of the feature motion level; the time is independent of the number of
features N ; most of the iterations consume approximately 20ms to track and detect features to maintain
N ; each additional detection process adds approximately 10ms

(a) Computation time for the rigid body motion
level at each iteration and associated number of
features

(b) Histogram of computation times at the rigid
body level

Figure 4.7: Computation time of the feature motion level; the time slowly increases with the number of
features assigned to a rigid body; most of the iterations consume approximately 2ms

putation time of this level allows us to estimate at 30 fps (approximately 33.33ms between
frames).

Figure 4.7 depicts the computation time of the rigid body motion for different values of
assigned features. The computation time increases from 2ms to 4ms when the associated
features increase from 30 to 320. These times do not restrict the performance of the system.

Until now, we did not find any strong limitation on the number of tracked features N from
the analysis of the computation times. However, if the number of tracked features is high,
some of them are placed in less distinctive locations. Features in non-distinctive locations will
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Figure 4.8: Generation of virtual (wrong) rigid body
hypotheses as a function of the number of tracked
features N ; imposing a large number of features to
track increases the amount of noisy trajectories and
the probability of creating a virtual body hypothesis

produce noisy trajectories. When the proportion of noisy trajectories grows, subsets of fea-
tures will randomly move in a coherent manner and create virtual rigid bodies. Even though
the “life-span” of this virtual bodies is short, we consider them harmful for the perceptual
process and we will try to reduce their appearance. Figure 4.8 depicts the number of virtual
(error) rigid bodies created as function of the tracked features N . When N is under 300 there
are almost no virtual bodies. Over this value, the number of virtual bodies increases.

In a last experiment, we evaluate the contribution of the predictions from other levels to
the overall performance of the system. To evaluate this contribution, we compare the accuracy
in the estimated rigid body motion in the fully integrated system (with predictions) versus
the system without predictions from kinematics to rigid body motion estimation, or without
predictions from rigid body motion to feature motion estimation. In the experiment the sys-
tem perceives the motion of a drawer from human interactions during 6.2 s. The ground truth
of this motion is obtained with a motion capture system Motion Analysis (2017). Figure 4.9
shows the results of the experiment.

The combined system using all predictions outperform the other two variants. Significantly,
the predictions about next feature locations help to reject noise, especially when the number
of tracked features is large. In this case, many of the features are noisy and of low quality: the
predictions from the rigid body level helps to reject them and track them more stable.

4.3.2 Experimental Evaluation

We measured the accuracy and convergence of our online IP system for kinematic properties
on four articulated objects. Figure 4.10 shows initial, intermediate (after 1 s), and final frames
of these experiments. The figure also includes graphs of the estimation error including esti-
mated uncertainty over time. In some of the experiments, the observed motion was produced
by human interaction, in some by a robot interacting with the environment, and in some
the environment moved autonomously. We recorded all interactions and made them publicly
available2. In the following, we discuss each of the experiments from Figure 4.10.

Book Experiment

The book is opened 60◦ and closed again (120◦ of accumulated motion) in 14 s. The joint is
correctly classified from the first frame and converges within 1 s to a stable set of parameters.
Point features are correctly assigned to the moving book cover. The error remains under 4◦

2https://tinyurl.com/onlineIPdata
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(a) Mean error in position over the entire video
sequence (6.2 s) for different number of tracked
features

(b) Mean error in orientation over the entire video
sequence (6.2 s) for different number of tracked
features

Figure 4.9: Error in the estimated rigid body pose; the nominal system (with predictions from kinematics
to rigid motion estimation and from rigid motion to feature motion estimation) outperforms the two
variants without one of the two predictions

for the orientation and under 2 cm for the position of the revolute axis. We used artificial
markers to obtain the ground truth of the revolute axis.

Umbrella Experiment

The umbrella is extended by 40 cm in a motion lasting 10 s. The joint is continuously esti-
mated correctly as prismatic. The features on the umbrella are correctly assigned. Some
features on the hand are also assigned to the umbrella since they move coherently with it.
The error of the estimated joint axis remains under 5◦ during the entire experiment. We used
artificial markers to obtain the ground truth of the prismatic axis.

PUMA 560 Experiment

In a motion lasting 15 s, the shoulder joint of the PUMA 560 robot moves 90◦ and the elbow
joint moves 140◦. Initially, our system detects both links as a single moving rigid body. When
the motion of the two links of the robot arm is different enough (0.7 s), the system succeeds
at separating them. Once both moving rigid bodies are detected, the features are correctly
assigned. The revolute axis between base and upper arm and the revolute axis between upper
arm and forearm are quickly classified as revolute, and their parameters converge fast to a
stable accurate value. The joint between the base and the forearm is initially classified as
revolute, but the system quickly detects that there is no direct connection (disconnected
joint). The estimation error of the first revolute axis (shown in the graph) remains under
6◦ for orientation and 5 cm for position; for the second joint the error remains under 8◦ and
8 cm after convergence. The estimates of joints connecting two moving bodies are usually less
accurate, as the errors in motion estimation for both bodies add up. The robot does not have
sufficient texture to reliably track features at this distance; we attached checkerboards to it to
remedy this problem. In this experiment, the RGB-D sensor is pointing parallel to the joint
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Figure 4.10: Experiments with online IP (each row represents a different experiment): initial (first col-
umn), intermediate (second column), and final frame (third column) of the estimation of the kinematic
model, including error plot (fourth column) of joint configuration estimation, relative to ground truth,
including uncertainty (shaded areas); the insets in the three images show the time t and the estimated
joint variable q; estimated prismatic joints are shown as solid green cylinders, revolute joints as solid red
cylinders; transparent, narrow cones represent the uncertainty of the axes orientation; red dots are fea-
tures assigned to the static background; dots of other colors are features assigned to moving rigid bodies
[ c⃝ 2014 IEEE]

axes of the robot to simplify ground truth estimation. The experiments demonstrates the
system’s ability to determine multiple DOF of a kinematic chain at the same time.

Human Head Experiment

The system estimates the neck joint of a human shaking his head. The human rotates his
head 100◦ in 5 s. The joint is correctly classified from the beginning of the motion, all fea-
tures are correctly assigned, and the error of the axis after convergence remains under 5◦ and
4 cm. The RGB-D sensor is pointing perpendicular to the orientation of the joint to simplify
ground truth estimation. The joint position is manually measured in the point cloud. This
experiment demonstrates the performance of the system on large semi-rigid articulated bodies.
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t=0 s
q=0◦

t=2 s
q=10◦

t=31 s
q=300◦

t=0 s
q=0 cm

t=2 s
q=8 cm

t=13 s
q=70 cm

Figure 4.11: Experiments on a failure case of previous approaches: point features disappear from the
view due to occlusions and/or large displacements; each row represents a different experiment; initial (first
column), intermediate (second column), and final frame (third column) of the estimation of the kinematic
model; the insets show the time t and the estimated joint variable q; estimated prismatic joints are shown
as solid green cylinders, revolute joints as solid red cylinders; transparent, narrow cones represent the
uncertainty of the axes orientation [ c⃝ 2014 IEEE]

4.3.3 Failure Cases of Previous Offline Algorithms Solved With Online
IP

In this section, we show three situations that can only be handled by an online incremental IP
system. Existing offline methods would fail in the following scenarios.

Disappearing Features

The motion of the object may cause all features obtained at the beginning of the motion to
disappear by moving out of visual field or simply due to tracking error. Offline IP methods
would fail, as they cannot find matching features between the initial and the final frame. We
use a rotating globe and a portable projection screen with casing (see Figure 4.11) to demon-
strate that the incremental nature of our online IP system aims to overcome this problem.
We rotate the globe 300◦ in 31 s and open the poster hanger 70 cm in 13 s. Our online system
quickly detects the moving bodies and incrementally assigns new features to them as they ap-
pear. This allows us to successfully track the motion of the rigid body, even when the initially
visible parts of the object get obstructed (globe) or leave the field of view (projection screen).

Appearing Objects

The articulated object may not be visible at the beginning of the analysis. To demonstrate
how our online IP system can address this, we use a book in a cabinet and a Pioneer mobile
base (see Figure 4.12). The cabinet has to be opened to perceive the book. We then open
the book 30◦ in 3 s. Once the book is visible, new features are detected on its surface, and
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t1=0 s
q1=0◦

t2=0 s
q2=0◦

t1=11 s
q1=80◦

t2=0 s
q2=0◦

t1=15 s
q1=80◦

t2=3 s
q2=30◦

t =0 s
q1=0 cm
q2=0◦

t =15 s
q1=20 cm
q2=90◦

t =22 s
q1=82 cm
q2=305◦

Figure 4.12: Experiments on a failures case of previous approaches: objects are not visible at the begin-
ning of the interaction; each row represents a different experiment; initial (first column), intermediate
(second column), and final frame (third column) of the estimation of the kinematic model; the insets show
the time t and the estimated joint variable q; estimated prismatic joints are shown as solid green cylin-
ders, revolute joints as solid red cylinders; transparent, narrow cones represent the uncertainty of the axes
orientation [ c⃝ 2014 IEEE]

the joint can be perceived when the book is opened. The Pioneer base enters the field of
view from the right. The base moves 82 cm in 22 s after entering the scene. The revolute joint
connecting the wheel to the base as well as the prismatic joint between the robot base and the
background are correctly estimated. At the end of the experiment the uncertainty about the
prismatic joint increases because the robot base slightly changes its orientation.

Identical Initial and Final Configuration

When the initial and final configuration of the object performing the motion are identical, a
comparison of these poses will not reveal information about the kinematic model. To show
that our online IP system overcomes this problem of some offline IP methods, we experiment
with a cabinet door and a drawer. The drawer is opened and closed (50 cm of accumulated
motion) in 6 s, and the door is opened and closed (80◦ of accumulated motion) in 7 s. The
proposed online IP system estimates accurately the kinematic model. The model remains
converged after the object returns to its initial configuration.

4.3.4 Monitoring Interaction With Online IP

One of the main advantages of an online IP system is the ability to use the kinematic model
to control the robot’s interaction with the environment. By using the information for an ongo-
ing interaction we demonstrate that the perceived information is relevant for the mechanical
manipulation of DoF. In this section, we demonstrate the utility of online perception in two
experiments with two objects each (door and drawer). The goal of the first experiment is to
obtain a kinematic model with a specified uncertainty bound (5◦ in orientation and 5 cm in
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t=0 s
q=0◦

t=6 s
q=4.4◦

t=17 s
q=45◦

t=0 s
q=0 cm

t=5 s
q=3 cm

t=29 s
q=15 cm

Figure 4.13: Experiments on the usability of the online perceived kinematic model to steer robot manip-
ulation of DoF; each row represents a different experiment; initial (first column), intermediate (second
column), and final frame (third column) of the estimation of the kinematic model; the insets show the
time t and the estimated joint variable q; estimated prismatic joints are shown as solid green cylinders,
revolute joints as solid red cylinders; transparent, narrow cones represent the uncertainty of the axes orien-
tation [ c⃝ 2014 IEEE]

position of the joint axis). The goal of the second experiment is to move one of the joints to
a specific configuration. Each experiment is repeated ten times. Figure 4.13 shows initial, in-
termediate, and final frames of two trials of these experiments, with the online estimated joint
variable in the bottom right corner.

In the first experiment we measure the amount of interaction necessary for the system to
reduce the uncertainty below a required level, and the deviation of the estimated kinematic
model to ground truth (manually measured in the point clouds). In the case of the drawer,
our controller stops, due to the attained uncertainty bounds, after a mean amount of motion
of 5.07 cm. The mean error of the estimated axis is 4◦ with a single value above 5◦ (5.08◦). In
the case of the door our controller stops due to the attained uncertainty bounds after a mean
amount of motion is 8.4◦, with a maximum value of 26◦. The mean error of the estimated
axis is 2.95◦ with a maximum of 4.47◦. The mean error in the estimated joint axis position is
7.03 cm with a maximum of 49.71 cm for a failed trial. Without this value the mean position
error is 2.28 cm (under the 5 cm threshold).

In the second experiment, the robot manipulates the same objects as before so as to attain
a certain value of a joint variable. In the case of the drawer, this value is 15 cm. The robot
stops, when its model indicates this amount of motion. We measure the ground truth motion
manually. The mean value of the measured joint value is 15.55 cm and the maximum and
minimum are 15.9 cm and 15.2 cm, respectively. In the case of the door, the desired joint
configuration is 45◦. The mean value of the measured rotation is 44.8◦ with a minimum of 44◦

and a maximum of 46◦.
The results of these experiments demonstrate that our online IP can be used to monitor

and control interactions with articulated objects in the environment. We showed that it is
possible to adjust the robot’s action based on a desired uncertainty bound for the accuracy
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during the estimation of a kinematic model. This demonstrates that the estimated uncertainty
reflects the correctness of the estimated kinematic structure. We also showed that the online
estimation of joint values can be used to monitor and attain manipulation goals, expressed in
terms of specific joint configurations.

4.4 Discussion and Limitations

We will begin this section by discussing the strengths and limitations of the presented online
IP system. We will discuss them in the context of the four opportunities for perception for
robot manipulation of DoF presented in Chapter 1 (OP1-OP4). We will also discuss whether
the system overcomes the challenges for perception (CH1-3), and possible future directions
and extensions.

Exploiting Interactions (OP1) Our system depends on motion to perceive the kine-
matic model. This dependency is solved by the interactions from the robot or from another
agent. These interactions create information-rich sensor signals and reveal the underlying mo-
tion constraints. Thus, our system exploits the information revealed by an interacting agent.
However, due to the lack of the necessary interactive models, our system cannot fully exploit
information about the concrete interaction that create the sensor signals. We will address this
limitation later in this thesis in Chapter 6.

Another limitation of the system is that the interactions have to be dexterous enough to
cause motion in the articulated object. In our robot experiments we overcome this limitation
teaching the robot kinesthetically how to actuate the mechanism. We will reduce the depen-
dency on fully taught robot trajectories implementing force/torque impedance controllers for
our robot in Chapter 6. And in Chapter 7 we will propose a method for the robot to generate
and select the interactions that promise to reveal most information.

Exploiting Physical Priors (OP2) Each level of our perceptual system is based on
task-specific priors encoding physical regularities: spatial consistency and projective geometry
for the estimation of feature motion, physics of rigid bodies for the estimation of body motion,
and kinematics of articulated objects to build and update the kinematic model. Based on
these physical priors our system interprets the input signals as evidences of a known underly-
ing physical process.

A limitation of this approach (and of the system) is that the environment should be well
represented by the physical priors. This restricts the application of our approach to objects
composed of rigid (or semi-rigid) bodies, since we exploit priors about rigid body physics.
Perceiving motion in non-rigid bodies require other types of models, like physics models for
liquids (Schenck & Fox, 2017) or motion fields (Newcombe et al., 2015).

Another way of overcoming this limitation on predefined and accurate physical priors is
to extract the physical models from the sensor data with machine learning techniques. The
physical priors we use in our system allow us to 1) predict the changes in the environment
from previous states and interactions, and 2) correlate this changes to sensor signals. Learning
these types of forward and measurement models (or a combination thereof) is a currently
active and very promising research field. An example of this idea for the context of kinematic
models can be seen in the work by Sturm et al. (2011), where one of the joint models is a
Gaussian process that can predict body motion from the previously seen data. The system
presented in this chapter does not show such an adaptive behavior.
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Exploiting Temporal Structure (OP3) Recursion is a crucial element of each of
the levels of our solution. The perceptual system restricts the space of possible solutions for
each newly acquired measurement based on the results of the previous analysis. Combining
temporal and with physical priors, the system can predict the upcoming events and adapt
the perceived models when the sensor signal arrives, balancing the correction to the relative
reliability between the predictions and the measured signals. Temporal recursion is a crucial
element to the online capabilities of our system.

Exploiting Interdependencies between Perceptual Subtasks (OP4) At the core
of our proposed perceptual system is a factorization of the original problem into subproblems
that can be solved with recursive estimation, and their synergistic interconnection. Each of
this subproblems represents a perceptual subtask. Information flowing bottom-up (input
measurements) and top-down (predictions) enabled the online capabilities and contributed to
the robustness and accuracy of our system by reusing priors of one level into the other levels.

In our first set of experiments we evaluated the contribution of the predictions to the over-
all performance of the system. The predictions of rigid body poses from the kinematic model,
and of the feature locations from the rigid body motion, help to reject noise and stabilize the
estimation at all levels.

A current caveat of our approach is that finding the right factorization (and what to rep-
resent and how to represent it) is a human engineering process. We think that this difficult
design task is a limitation to apply our general approach for perception to other problems.
Current approaches in artificial perception has shown improved performance applying machine
learning techniques to find the most suited representation for a perceptual task (Krizhevsky
et al., 2012b).

Technically, the proposed factorization and representation present also limitations. For ex-
ample, we chose deliberately to not represent and update a “map” of each rigid body, avoiding
the full SLAM problem. Maintaining several maps that grow and shrink dynamically (based
on the association of feature) is a complex problem. However, representing the map in the
state could have benefits, e.g. a possible improvement in accuracy and robustness by using the
interdependencies between feature locations in the map that we assume independent. Extend-
ing our RBF for rigid body motion to full SLAM solutions would be a promising extension.

We will now conclude this chapter discussing whether the proposed online IP system
achieves the goal of extracting information that is relevant to support robot mechanical ma-
nipulation of DoF, and to what degree the system addresses the three challenges in perception
for robot manipulation (CH1-3) presented in Chapter 1.

Applying the Information for Manipulation In our experimental section (Sec-
tion 4.3.4) we showed that the information acquired online can be used to monitor and steer
a predefined robot interaction. This information is relevant to support ongoing mechanical
manipulation of DoF. However, we still need to develop additional methods to generate and
adapt ongoing robot motion based on the information perceived online. We will address this
problem later in this thesis (see Chapter 6).

Extracting Information from Changing Sensor Signals correlated to Interac-
tions (CH1) The presented system exploits the changes in the sensor signals as source of
information. The system focusses its attention (and computation) on the moving bodies in
the environment, creating filters on demand to estimate their motion. These moving bodies
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are the most important since the goal is to perceive kinematics of articulated objects, and to
support robot mechanical manipulation tasks that aim to change the pose of the bodies.

The kinematic model, together with the intercommunication mechanism between levels,
correlates changes in the sensor signals and interactions. The model constrains the motion
of the bodies. Through the intercommunication between levels, our system transforms these
constrains in body motion into predictions of feature motion, that are effectively predictions
about the appearance of the windows around features in the next image. The process links
actions represented as changes in the kinematic state of the articulated object to changes
in the sensor signals. However, the system does not link robot actions and changes in the
articulated object. Later in this thesis (Chapter 6) we will investigate how to perceive and
learn interaction models to bridge this gap, and link more intimately actions to changes in the
environment and in sensor signals.

Perceiving Quickly and Online (CH2) Our presented system is fully online, using only
previous measurements to interpret current signals. Moreover, thanks to our Bayesian filter
approach the system does not need to memorize sensor signals and uses only the last acquired
measurement. There are computational limitations, but we do not deem these severe, given
the results of our first set of experiments. To be able to integrate into the robot’s action loop,
our system must perform at reasonably high frame rates. In all our experiments, we track
between 150 and 250 features at 30Hz, independent of the number of moving rigid bodies.

Versatile Perception in Unstructured Environments (CH3) We evaluated our pro-
posed system in articulated objects of different sizes, structure, color and shape, demonstrated
experimentally its robustness and versatility. Now, only objects with sufficient trackable tex-
ture can be perceived. As a result, our method inherits the limitations of the salient point
feature KLT tracker, including the requirement of good features, relatively stable lighting
conditions and bounded object acceleration. Note that we explicitly address the case of high
deceleration to zero velocity (see Section 4.2.2) and high velocities using predictions from the
estimation of rigid body motion. Alleviating these limitations will be the goal of the percep-
tual system we will present in the next chapter, integrating and exploiting information about
the geometry of the object.

An occasional failure in our approach is that the system instantiates multiple rigid body
filters to track the motion of the same rigid body. We evaluated this problem in the experi-
ments of Section 4.3.1. We saw that the problem is more acute when the system tracks a high
number of point features, increasing the probability of tracking features in low-textured areas
that generate noisy trajectories. Our system alleviates the problem using the predictions from
higher levels (informed by their priors) to reject noise. The rigid joint model is a second way
of correcting for this failure. However, since a rigid joint indicates the same rigid body, the
best strategy would be to inform the rigid body motion estimation level of this connection
and merge the RBFs to improve the tracking accuracy. This further exploitation of kinematic
information in the estimation of rigid body motion would be a good extension to our method.

4.5 Conclusion

In this chapter, we presented an online system for the interactive perception of kinematic
properties of articulated bodies. It receives as input an RGB-D stream and outputs, at in-
teractive frame rates, a kinematic model of the observed scene, including joint configuration
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values. This perceptual capability supports and facilitates robot mechanical manipulation of
DoF in unstructured environments.

Our perceptual system exploits the four problem regularities discussed in Chapter 1.2
(OP1-OP4) based on a coupled recursive estimation structure. This structure is composed of
three interconnected recursive estimation processes, successively estimating feature motion,
rigid body motion, and kinematic model of moving objects in the scene. The composition
of these three processes and the bidirectional flow of information between them result in a
highly robust system that exploits the interdependencies between the subproblems. This
robustness is a result of level-specific physical priors that help to interpret the data and to
reject measurement noise. The connectivity between the levels passes valuable information
among the levels, further improving the convergence of the overall system.
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5
Integrating the Perception of Shape and

Kinematics of Articulated Objects

In the previous section we presented a perceptual system that builds kinematic models of pre-
viously unseen articulated objects from visual (RGB-D) input. The versatility of the system
to different objects presents a limitation: the objects’ surface have to present enough color tex-
ture. A way to overcome this limitation is to exploit the shape of the objects to compensate
for uniformly textured-surfaces. This shape is unknown if the objects have not been seen be-
fore. Therefore, in order to support the feature-based tracking of objects the previous chapter,
with shape-based tracking, we need to tackle the additional perceptual subproblem of building
a model of the object’s geometry, what is known as shape reconstruction. The result of the
reconstruction process is useful, not only to support the perception of motion of uniformly
textured objects, but also for other processes in robotics like motion planning, grasping, or
action selection, as we will see in Chapter 7.

The majority of the existing approaches in robot perception, addresses the perception of
pose, shape, and kinematic relationship in isolation, as we will see in the next section. This
procedural approach neglects the interdependencies between these subtasks and their possible
synergies. Shape reconstruction, pose tracking, and kinematic structure estimation naturally
complement each other. To reconstruct the shape of an object from the information from the
RGB-D sensors, it is necessary to integrate multiple views of the object under the assumption
that the relative poses of the views are known. Most approaches, therefore, require knowl-
edge of the pose (Krainin et al., 2011). On the other hand, to track the pose of an object,
methods commonly rely on the knowledge of the object’s shape and its segmentation in the
image (Wuthrich et al., 2013, Choi & Christensen, 2013, Schmidt et al., 2014). Similarly, the
estimation of the kinematic structure of an unknown object is facilitated by knowing the poses
of its rigid parts (Sturm et al., 2011)—but knowing the kinematic structure can also improve
pose estimation, as we saw in the previous chapter. Since each of these problems requires
input that is provided by the others, we propose to combine them in a synergistic manner
so that each subproblem provides helpful information to the others. Therefore, the solution
we present in this chapter, while leveraging the four structural properties presented in Chap-
ter 1.2 (OP1-OP4), delves deeper into the synergistic exploitation of the interdependencies
between perceptual subtasks. We show that the integrated solution achieves better results
than solutions for the individual problems.

Since the objects we are interested in are articulated and composed of parts that move
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Figure 5.1: Our robot perceiving an articulated object using our integrated approach; it interacts with the
drawer and detects the moving body, tracks it and incrementally reconstructs its shape (yellow layer); the
robot estimates and tracks the kinematic model, including the joint axis (narrow green cylinder) and joint
state (wider green cylinder), and an estimate of the uncertainty (transparent green cone) [ c⃝ 2016 IEEE]

differently, we cannot build a geometric model using methods that assume static environ-
ments (Gonzalez-Aguirre et al., 2011, Kerl et al., 2013, Endres et al., 2014, Newcombe et al.,
2011a). In fact, we need to identify the areas of the RGB-D images that move coherently
in order to process them separately and build separate models of the links. Interestingly, in
the combined problem, object motion segmentation serves as the connection between shape
reconstruction and pose tracking: each of the two subcomponents passes information about
its current object segmentation hypothesis to the other in order to improve the estimation
(Figure 5.2). We will address object motion segmentation as an additional subtask in our
perceptual system.

The method we will present in this chapter extends to two methods that follow the same
insight (Stückler & Behnke, 2015, Ma & Sibley, 2014). Most importantly, it includes and ex-
ploits the estimation of kinematic structures of the interacted articulated objects (Figure 5.1).
We will also provide a thorough experimental evaluation to analyze the improvements afforded
by an integrated solution. We will analyze the contribution of each component to the final re-
sult. The evaluation includes difficult cases that are unsolvable when the subproblems are not
tightly integrated. Our experimental evaluation will demonstrate the benefits of combining
problems in robot perception and solving them in an integrated manner.

5.1 Related Work

In this section, we first review related approaches that address pose estimation, shape recon-
struction, and segmentation independently. The scientific literature on these topics is vast; we
focus on the most prominent approaches and the methods that directly relate to ours. At the
end of this section, we will turn to combined approaches that integrate these problems.

5.1.1 Visual Pose Estimation

Visual pose estimation is the problem of inferring an object’s pose from an image; the problem
is called visual tracking if performed on a stream of images exploiting the temporal struc-
ture in the problem (using the previous pose to estimate the current pose). We have distin-
guished two main approaches to visual tracking: based on a known shape model of the ob-
ject (Wuthrich et al., 2013, Schmidt et al., 2014, Choi & Christensen, 2013, Garcia Cifuentes
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et al., 2017), and based on sufficient surface-texture on the objects using point features (Choi
& Christensen, 2012, Lepetit & Fua, 2006, Collet et al., 2011) or dense optical flow (Stückler
& Behnke, 2015, Ochs et al., 2014). While tracking with a known model is more accurate,
texture-based approaches are also applicable to unknown objects. In this chapter, we present
a method that exploits the advantages of both approaches by bootstrapping the system with
feature-based tracking, and subsequently combining it with shape-based tracking.

5.1.2 Shape Reconstruction

Shape reconstruction acquires a 3D appearance model of an object by merging a set of par-
tial object views into a coherent shape model using information about the relative object
poses with respect to the camera. Partial object views can be obtained using image segmen-
tation (Matsuyama et al., 2004), and pose information by the controlling camera and object
motion (Krainin et al., 2011) or estimating this pose visually. Our approach automatically
generates both, partial object views and their pose information, and uses them to reconstruct
the shape.

5.1.3 Image Segmentation

The segmentation problem consists of finding the region in the visual input occupied by the
object. We distinguish between single-image-based segmentation and motion-based segmen-
tation operating on image streams. For segmenting single images, a wide variety of different
approaches has been proposed, e.g. assuming surface continuity as exploited by conditional
random fields (Lafferty et al., 2001) graph-cuts, (Felzenszwalb & Huttenlocher, 2004), and
supervoxel region growing (Papon et al., 2013a), or exploiting object location as in active
segmentation (Mishra et al., 2009). Motion-based segmentation exploits the notion of “object-
ness” by assuming that all points on a rigid body move together. To detect which points
moved due to object motion, image differencing (Chien et al., 2002, Kenney et al., 2009) can
be applied. To reject changes caused by background motion, image differencing can be com-
bined with information from a tracker to select only points that move consistently with the
object (Stückler & Behnke, 2015, Ochs et al., 2014). In our approach, we have applied motion-
based segmentation to generate sparse segments and extend them using supervoxel region
growing, and we have used single-image segmentation by using the continuously updated
reconstruction of the shape.

5.1.4 Integrated Approaches

A prominent combined approach to tracking and shape reconstruction is visual SLAM (Gonzalez-
Aguirre et al., 2011, Kerl et al., 2013, Endres et al., 2014, Rusinkiewicz et al., 2002, Weise
et al., 2009, Newcombe et al., 2011a,b). However, visual SLAM reconstructs an entire scene
assuming it is static, and does not segment and reconstruct single objects. An extension for
deformable objects was presented by Newcombe et al. (2015). This method considers only one
object and it does not build kinematic models of articulated objects.

This object perception problem has recently been addressed in a combined manner. Ren
et al. (2013) present a method to simultaneously track and reconstruct 3D objects by refin-
ing an initial primitive shape model; in contrast to our method, it can only reconstruct and
track one moving object, and the initial location of this object must be manually provided.
Walsman et al. (2017) present an approach that tracks articulated objects and refines an ini-
tial coarse model of the shape of the links. This method needs to know the kinematic model
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Figure 5.2: Our tightly integrated shape, pose and kinematic structure estimation system, using segmen-
tation as an intermediate process; tracking information is used to segment changing parts of the RGB-D
images into coherently moving segments; the segments are extended to larger regions of continuous color
and curvature (supervoxels) and accumulated into shape models; the models of the shape are used to
find a more complete segmentation of the RGB-D images, and to support the tracking of the objects; the
refined pose information improves the estimation of the kinematic models [adapted from c⃝ 2016 IEEE]

beforehand and cannot be applied to build models of previously unseen objects. Stückler &
Behnke (2015) suggest a method that combines object tracking, segmentation, and reconstruc-
tion using an Expectation-Maximization (EM) algorithm. Their method differs from ours,
as it relies on an initial oversegmentation and groups the segments using motion and surface
clues, making it sensitive to a wrong initial segmentation. Other methods (Ma & Sibley, 2014,
Herbst et al., 2010, Xu et al., 2015) build on top of KinectFusion (Newcombe et al., 2011a).
These methods build a model of the environment and consider any part that becomes incon-
sistent with this model as a new object. In contrast to these methods, the approach presented
here combines object segmentation and tracking with the generation of a kinematic model and
thus is able to track articulated objects.

Conclusions and comparison to the proposed approach: Most existing methods
in the literature address the estimation of kinematics, shape, and pose of articulated objects
in isolation. This factorization of the problem does not leverage the interdependencies and
synergies between the subtasks. A few methods integrate some of the subtasks into unified
perceptual systems but none of them address the shape reconstruction, pose tracking, and
kinematic structure estimation for previously unseen objects. The system we present in this
chapter will integrate these three subtasks and the segmentation of images based on motion.

5.2 Integrating Shape Reconstruction, Segmentation and Kinematic
Modeling

In this section, we describe our integrated method for pose tracking, object segmentation,
shape reconstruction, and kinematic structure estimation (Figure 5.2). Our feature and shape
trackers (Section 5.2.1) provide the motion information to segment RGB-D frames into ob-
jects (Section 5.2.2). These object segments are used to reconstruct the shape of the object
over time (Section 5.2.3). To close the loop, we have used result from shape reconstruction to
find better object segments (Section 5.2.4) and use them to refine tracking (Section 5.2.1).
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5.2.1 Sensing and Tracking

As in the previous chapter, the input to our method is an RGB-D stream that we represent as
a sequence of color images I(t) and depth maps D(t) for every time step t. Some parts of our
method directly operate on point clouds P (t), which combine color and depth.

We pre-process the raw depth images by applying a joint bilateral filter (Le et al., 2014)
that fills the depth-missing areas based on their surrounding depth and color information.
Similar to the original bilateral filter (Tomasi & Manduchi, 1998), the joint bilateral filter
extends information over regions delimited by edges. The main difference is that while the
bilateral filter detects edges and extends to regions of the same image, the joint bilateral
filter detect edges in the color image and uses it to extend information of the depth image.
The assumption is that a region of uniform color possesses uniform depth. This process fills
the areas without range measurements that appear frequently in depth images from RGB-D
sensors based on projected light due to occluding shadows.

Feature-Based Tracking and Kinematic Model Estimation

To bootstrap our pipeline, we obtain information about object motion and location from the
combined perceptual system for motion tracking and kinematic model estimation that we
presented in the previous chapter (see Chapter 4). The system of Chapter 4 is composed of
three interconnected processes. The first process estimates the motion of a set of 3D point
features. The location of these features is passed to the second process, a feature-based tracker,
that groups coherently moving features into rigid bodies and tracks the motion of the bodies.
Finally, the third process estimates a kinematic model that explains the motion constraints
between the rigid bodies, and defines the articulated object. The key of this system is to lever-
age the four problem structural regularities we identified in Chapter 1: temporal structure,
physical priors, interactions as source of information, and interdependencies between subpro-
cesses. In this chapter, we further exploit interdependencies between perceptual subprocess,
passing information between them to mutually improve each others results.

The system presented in the previous chapter estimated the 6D pose {pit}i∈{1,...,N} of the
N currently tracked objects, their 6D velocities {ηit}i∈{1,...,N}, a sparse set of M tracked 3D
point features on each object {fm

t }m∈{1,...,M}, and kinematic constraints, i.e. joints, between
the objects. We will use the output from the system presented in the previous chapter (and
later of the combined tracker) in our motion segmentation component (Section 5.2.2), which
will generate inputs for the shape reconstruction.

Shape-Based Tracking

We use the reconstructed shape to improve the pose estimation based on point features. First,
we estimate the part of the reconstructed shape that is visible from the current view project-
ing the model into the image plane (previously transformed based on the initial pose estimate
predicted from the previous pose and velocity). Then, we align this partial view to the cur-
rent point cloud using the iterative closest point (ICP) algorithm (Pomerleau et al., 2011). To
reduce the complexity of this process, which depends on the number of points to be aligned,
we focus the search to the area of the current point cloud where we expect the object to be
found. We use the results of the shape-based segmentation (Section 5.2.4) to delimit the area
of the field of view where the object should be located. Using only the visible part of the re-
constructed shape, the segmented part of the current point cloud and the initialization to the
predicted pose, we reduce the computation time and facilitate convergence to a favorable pose.
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This shape-based tracking overcomes the limitations of the system presented in the previous
chapter that could only track texturized objects, as shown in our experiments.

5.2.2 Motion Segmentation

We build increasingly complete models of the geometry of the moving objects b integrating
partial views. To obtain these partial views, we use the information from the pose tracker and
compute a motion segmentation of the objects. The pose information and the object segments
are combined to reconstruct the entire object as detailed in Section 5.2.3.

The general idea of motion segmentation is to first detect changes in the depth and color
images of two consecutive time steps, and then use the tracked 6D poses to identify areas
that change consistently with the motion of the object. These areas are the motion segments.
Using the pose for motion segmentation is beneficial, even in cases where only one object
moves, because it allows to reject the false positives found by change detection.

In the following section, we will explain the two similar processes we follow to detect and
classify changing image segments into moving objects. Each processes is based on changes in a
different visual channel: depth and color images.

Motion Segmentation in Depth

Algorithm 1 Motion Segmentation in Depth

1: ∆D = D(t)−D(t− 1)
2: ME := ∆D < −γmotion

3: ML := ∆D > γmotion

4: MAccE := MAccE ∧ME ∧ ¬ML

5: for all pi do
6: ∆pi := pit ⊖ pit−1

7: SegAccE
i := 1NN(∆pi · P (t− 1), P (t)|MAccE

)
8: SegLi := 1NN(∆pi · P (t− 1)|ML

, P (t))
9: SegMD

i := SegAccE ∪ SegL

We first detect changes in the scene by computing a difference image ∆D of depth maps
from subsequent computation steps (line 1 in Algorithm 1). Assuming for a moment that
every change in ∆D has been caused by the motion of the body, we know that the body
has abandoned some part of the image and/or entered some other. In a particular region of
the image, we can discriminate between these two cases by looking at the sign of ∆D and
computing a binary motion mask for each case (lines 2-3): the entering-motion mask ME

contains distance decreasing pixels (the sign of the difference is negative), the leaving-motion
mask contains distance increasing pixels (the sign of the difference is positive), considering
only absolute differences over a noise threshold γmotion. To handle small motions between
subsequent time steps we accumulate points in ME over time in the accumulated entering-
motion mask MAccE.

Next, we discriminate which of the detected changes are consistent with each object’s
tracked motion ∆pi (line 6). The basic idea is to apply ∆pi to the previous point cloud P (t− 1)
and compare the result to the current P (t) using nearest-neighbor search (1NN, line 7). By
first filtering P (t) with MAccE we only take into account points that changed in depth. In a
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similar fashion we use ML to find points that belong to the object in P (t− 1) (line 8), and add
the two point clouds together to obtain the final depth-based motion segment SegMD

i .

Motion Segmentation in Color

Our depth-based motion segmentation method is rather conservative as it does not add points
to the segments that have not changed their depth value, even if they are consistent with ∆pi.
Although reducing the risk of adding false positives, the approach fails if no change in depth
is present, e.g. a rotating globe (see Section 5.3). We, therefore, add a color-based motion
segmentation, which works similar to the depth-based version presented in Algorithm 1. The
main differences are that we compute the image difference in HSV color space, using only hue
(H) values for all pixels with sufficient saturation (S > 90) and that we do not discriminate
between image regions that the body has left or entered (since depth information is required
for this). We discriminate into coherent moving bodies in the exact same way as in the seg-
mentation in depth: moving the previous point with the motion and comparing to the current
point cloud, but filtering first using the parts of the image that changed their color.

5.2.3 Shape Reconstruction

We use the information from the pose tracker (pi) to reconstruct the shape based on the
motion-based segments (SegMD

i and SegMC
i ). We transform the points of the segments to the

initial object pose applying the inverse of the current pose, and accumulate the result into
a shape model. We represent the shape by a point cloud, which is resampled using a voxel-
grid filter at every time step in order to keep the required memory constant and to address
the inhomogeneous point distribution resulting from the depth measurements. To deal with
regularly shaped objects with uniform color, which usually generate sparse motion segments,
we first extend these segments by exploiting surface continuity and known object location, and
finally filter out points that are inconsistent with the current view of the scene, as we will
explain in the following section.

Supervoxel Region Growing

We extend the partial motion segments with a region growing procedure on a supervoxel seg-
mentation. First, we apply a supervoxel segmentation to the RGB-D point cloud. Then, for
each moving object, we seed region growing with the supervoxel that contains most of the
points of object segment. Region growing then extends from a supervoxel (A) to a neighbor-
ing supervoxel (B) if (B) fulfills one of the following criteria: (i) most of its points demon-
strated coherent motion (resulting from the segmentation based on motion 5.2.2), (ii) most of
its points are part of the reconstructed shape so far (resulting from the segmentation based
on shape 5.2.4), or (iii) the mean color and mean surface normal of (B) are very similar to the
mean color and mean surface normal of (A). We also extend the segment if the neighboring
supervoxel contains multiple point features of the rigid body. The result is then merged into
the shape model.

Depth Consistency Filtering

All previous steps are adding points to the shape model. However, sensor noise, errors in
tracking and overly optimistic supervoxel extensions can lead to wrong points being added
to the model. We can remove many of these points by verifying whether they are consistent
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with the current depth map D(t) when projecting the model to the image plane. We therefore
remove every point for which the projection calculates a lower depth value than observed in
D(t) – this means that we could see a background point in the image where we expected a
point of the object. We do not remove points where the measured depth is lower than the
expected from the projection of the model, since they could be produced by occlusions with
other objects.

5.2.4 Shape-Based Segmentation

Using the results from the previous shape reconstruction steps, shape segmentation becomes
trivial. The shape segment at the current time step SegSi (t) is the result of transforming the
shape model using its tracked pose pi and projecting the result into the image plane. The
projection of the model into the image plane does not include points that are outside the cur-
rent viewing area or points that are occluded by the object itself or by other moving objects.
We feed the shape segment to the shape tracking component to restrict the alignment of the
visible part of the model to the area of the point cloud occupied by the object. This helps in
the computation of the ICP algorithm and thus, in the kinematic structure estimation, and
the procedure starts over in the next time step.

5.3 Experiments

5.3.1 Experimental Setup

We evaluate our approach in eight different experiments, each carefully selected to verify the
contribution of each component of our method1. In each experiment, a human or a robot ac-
tuates one or more objects in the scene. During robot manipulation, we exploit additional
information (forward kinematics and a known shape model of the robot arm) to infer the part
of the image that corresponds to the robot and to exclude it from tracking and segmentation.
We recorded each experiment using a statically mounted Asus Xtion RGB-D sensor. We run
our algorithm on an Intel Xeon E5520 CPU at 2.27GHz, reaching 3 to 10 frames per second
for the shape-based tracker, depending on the size and number of moving objects. Segmenta-
tion and shape reconstruction are running at a lower rate of 0.8 s due to the computationally
demanding supervoxel segmentation and to clearly discriminate changes in the image dif-
ferencing steps. But since tracking is running at a high rate, slow reconstruction time does
not affect the capability to track fast motions, and the overall online capabilities to estimate
kinematic models.

The experiments consist of three scenes containing only rigid objects and five scenes with
articulated ones. Three of the RGB-D sequences of the experiments were part of the evalua-
tion of the online IP system of the previous chapter and we include them in this evaluation to
examine the influence of the new perceptual subtasks on the overall system. In the following
we will describe each experiment and the challenges it presents for perception.

Box: A box with little texture moves parallel to the viewing-plane for about 50 cm (dura-
tion: 9 s). We expect approaches that do not exploit surface continuity to require longer time
to reconstruct the shape.

Two Bodies: In this experiment two bodies move freely on a table-top at the same time
(duration: 14 s). We want to verify that the method can cope with multi-body settings and to
which extent the hand of the experimentator is added to the reconstructions.

1Our datasets are publicly available under http://tinyurl.com/o3bu7pd.
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5.4 Results

Red Figure: A red figure is moved freely on a table-top (duration: 10 s). This experiment
is designed to test how the pipeline performs when the quality of the point-features abruptly
degrades. We therefore manually force the textured part of the object to become occluded
after 3 s, and evaluate the contribution of shape-based tracking.

Drawer: A robot opens a drawer (duration: 2 s). An easy articulated object case.
Globe: A globe rotating 360 degrees around its revolute axis (duration: 18 s). We expect

that pure feature-based tracking is inaccurate due to the large uniformly colored areas, and we
expect incomplete reconstructions if surface continuity is not used.

Head: The first author rotates his head left and right (duration: 8 s). This experiment
evaluates to which extent semi-rigid objects pose a problem for our method.

Cabinet and Drawer: A cabinet moves freely on the floor (duration: 15 s). At some point,
a drawer is pulled out of the cabinet and pushed inside again. We evaluate the performance
when objects partially get out of the field of view.

Laptop: A laptop is moved freely on a table-top and then being closed and opened (dura-
tion: 9 s). We evaluate the effect of purely rotational motion on the reconstruction.

5.3.2 Evaluation Criteria

We evaluate the contribution of each component of our system using two criteria. First, we
quantitatively assess the object segmentation results provided by each component. This gives
an indirect means of comparing the impact of the different parts, as the accuracy of the pose
tracker directly influences the quality of the motion-based segmentation, and the correctness
of the shape reconstruction affects the shape-based segmentation. Secondly, we evaluate the
quality of the reconstructed shape and the estimated kinematic structure (using the online IP
system of previous chapter extended with the shape-based tracking) by visual inspection of
the results.

To evaluate the segmentation results, we manually annotated each video sequence with
the ground truth every 0.8 seconds. We compute precision, recall and f0.5-score

2 for the full
pipeline (i) and five additional variants of our algorithm: to assess how integrating tracking
and shape reconstruction affects the result, we evaluate the full pipeline without feedback from
shape tracking (ii); to evaluate the contribution of the tracker to the pipeline we look at depth-
based motion segmentation (iii) and color-based motion segmentation (iv); finally, we assess
the contribution of shape-base tracking by evaluating shape-based segmentation using only
depth (v) and shape-based segmentation using only color information (vi). We additionally
compare our results to a baseline, a dense optical flow approach using RGB presented by Ochs
et al. (2014) (using the recommended standard parameters). We compare against this method
as it is the only relevant approach for which code was available at the time of the evaluation.

5.4 Results

The segmentation results are depicted in Figure 5.5 (rigid objects) and Figure 5.6 (articulated
objects). We observe that, at the end of each experiment for all except two cases (two bod-
ies: statue; cabinet: drawer), the full pipeline with tracking (solid black curve) outperforms
all other variants, attaining f0.5-scores above 0.8. Thus overall, our method detects most of

2The f0.5-score is a standard variant of the f-score which weighs precision higher. We use this
variant since points wrongly attributed to the object – which only affect precision – have a more
significant negative impact on tracking and thus reconstruction performance than missed points. In
our system, we primed precision over completeness on the model.
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Figure 5.3: Results of the shape reconstruction in combination with motion tracker; estimated prismatic
joints are shown as solid green cylinders, revolute joints as solid red cylinders; joint value shown as wider
cylinder [ c⃝ 2016 IEEE]

the area occupied by each object (high recall) while adding few false points (high precision).
Secondly, we observe that both full pipeline variants converge very quickly to their final re-
sults. The reason is the effective combination of the different priors: whereas the pure motion
segmentation variants (blue and red curves) usually require long time to obtain the full seg-
ment and reach high recall, extending the motion segment with region growing on supervoxels
allows to quickly obtain a complete segment. The baseline by Ochs et al. (2014) often fails to
find the correct segments and gives competitive results only in the head experiment.

The reconstruction and kinematic structure estimation results are shown in Figure 5.3
and Figure 5.4. The results are in line with the segmentation results since all objects except
for the statue and the drawer are reconstructed correctly. We also observe that the joint
estimation is much more accurate when including shape tracking, which indicates that the
combined tracker provides higher quality pose estimates.

We will now turn to a detailed analysis of every scene.

Box: Most variants perform well in segmentation and reconstruction, but close to the ob-
ject borders, some variants add wrong points that belong to the background. The reason is
inaccurate registration of depth and RGB pixels by the sensor, causing wrong depth measure-
ments at the objects borders.

Two Bodies – Metal case: The full pipeline succeeds in quickly segmenting the metal case
and reconstructing all three visible sides of the object. The motion-based segmentation meth-
ods fail because they do not exploit knowledge about object location, and add spurious points
on the arm.

Two Bodies – Statue: This is the only case where the full pipeline without shape tracking
(dashed black curve) outperforms the other strategies. The reason is that early during the
experiment, the hand of the experimenter is added to the segment. When the hand starts
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Figure 5.4: Results of the shape reconstruction and kinematic structure estimation; each column repre-
sents a different articulated object; from top to bottom: results when shape-based motion tracker is not
integrated, results when shape-based motion tracker is integrated; estimated prismatic joints are shown
as solid green cylinders, revolute joints as solid red cylinders; joint value is shown as wider cylinder; uncer-
tainty about the joint is represented as transparent cones [ c⃝ 2016 IEEE]

retracting at t = 9.8s till the end, the full pipeline wrongly biases the feature tracker to pay
attention to the motion of the hand, whereas the variant without shape tracker removes the
hand from the model. This effect is a limit of our motion segmentation approach: two bodies
moving similarly during enough time are perceived as the same body. This effect also biases
the reconstruction result: when using shape tracking, the arm motion causes the consistency
filter to remove the right half of the statue. If we omit the feedback to the tracker, a smaller
part of the arm is initially added, but eventually removed in the consistency filtering step.

Red Figure: The red figure is best segmented by the full pipeline. Without shape-based
tracking, the performance drops drastically when the point-features disappear because the
textured part becomes occluded. However, even without the shape tracker the pipeline can
partially recover because enough changes in depth are visible. The reconstructed shape is
almost complete when using feedback from shape tracking, in contrast to the partial recon-
struction of the other variants.

Drawer: Almost all variants segment and reconstruct the front lid of the drawer (which is
the only visible part) and detect the prismatic joint quickly. Color-based segmentation fails
because the drawer contains many dark areas and we ignore points where the saturation in
the HSV space is low.

Globe: Since there is no change in depth and little change in color, pure motion segmenta-
tion fails to segment large parts, indicated by the low recall values. The variant using region
growing on supervoxels obtains the most complete reconstruction and segmentation. The qual-
ity of the reconstruction and joint estimation depends on the tracker (Figure 5.4). There is
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Figure 5.5: Results of the segmentation (each row represents a different object); from left to right: full
initial scene (RGB-D point cloud projected to image plane), result after first segmentation, and final
segmentation result (solid color indicates the segment), precision, recall, F-Score; we compare our full
pipeline to subparts of it and to the segmentation generated by Ochs et al. (2014); the insets in the three
images show the time t [ c⃝ 2016 IEEE]

a large part of the globe that does not exhibit sufficient texture to accurately track a large
number of features and hence tracking is as accurate as in the other parts, resulting in a non-
spherical shape reconstruction. By constantly integrating the feedback from shape-based
tracking, we obtain a much more spherical reconstruction.

Head: Similar to the globe, the head is only well segmented by the full pipeline (and the
baseline). Some misclassifications of the neck and the hair lead to minor segmentation errors.
The reconstruction is accurate but exhibits some abrupt color changes due to non-uniform
lighting.

Cabinet – Frame: The cabinet frame is quickly segmented by the full pipeline which is also
reflected in the reconstruction. Without shape tracking, the feature-based tracker loses the
frame object at t = 7 seconds after the drawer moved for 3 seconds. This is because there
are more features on the drawer, so the tracker assumes that the remaining features on the
cabinet are outliers and drops them. In contrast, by taking into account the shape of the
bodies the tracker correctly splits the cabinet and the drawer into two rigid objects. In this
case, the cabinet is correctly reconstructed and remains stable even when it leaves the scene.

Cabinet – Drawer: The drawer is only partially segmented by the full pipeline. This is
because the motion segmentation provides two disconnected components: the inner part and
the lateral part. The supervoxel growing is seeded from the inner part and, due to the gap in
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Figure 5.6: Results of the segmentation of articulated objects (each row represents a different rigid body);
from left to right: full initial scene, result after first segmentation, final segmentation result, precision, re-
call, F-Score; the insets in the three images show the time t; estimated prismatic joints are shown as solid
green cylinders, revolute joints as solid red cylinders; transparent, narrow cones represent the uncertainty of
the axes orientation [ c⃝ 2016 IEEE]

depth, does not extend to the lateral part. The purely motion-based segmentation performs
better because it does not use this location information (which however leads to degraded
performance in the box experiment as mentioned earlier). The segmentation reduces the
quality of the reconstruction. Still, using the partially reconstructed drawer for shape-based
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tracking largely improves the reconstruction and the estimation of the prismatic joint, as
shown in Figure 5.4, first column. Moreover, our method correctly handles the occlusion of
the drawer when it closes and remembers its shape.

Laptop – Bottom and Lid: Both rigid bodies of the laptop are correctly segmented by the
full pipeline, with only some points incorrectly added. These points are close to the revolute
axis and present small errors when the body motion is applied to them. We consider this a
limitation of our current algorithm that could be solved by reconstructing jointly all parts of
the articulated object, instead of independently for each part.

Again, shape reconstruction and tracking is much more accurate when the shape-based
tracker is used. Without shape-tracking, the orientation of the estimated joint in the kine-
matic structure diverges by approximately 5◦, as visible in Figure 5.4, second column.

To conclude, in all experiments the full pipeline with tracking feedback provides good
segmentation and reconstruction results, and outperforms the other variants in all but two
experiments.

5.5 Discussion and Limitations

In this section we discuss the benefits and weaknesses of our system. We first analyze its tech-
nical limitations. Then, we discuss the role of each of the four opportunities for perception for
robot manipulation (OP1-OP4) in the performance of our presented system. We conclude by
discussing whether the presented system overcomes the challenges of perception (CH1-CH3).

The presented system obtains precise motion segmentation results that generate shape
models to support texture-based pose estimation. However, the reconstructed models are
not at the quality level (e.g. level of detail, completeness) of other state-of-the-art shape
reconstruction approaches (Newcombe et al., 2011a, 2015, Sturm et al., 2013, Xu et al., 2015).
We think the gap is largely caused by our representation of shapes. We represent shapes as
point clouds. This forces us to a costly maintenance of the shape models (voxel-grid filtering,
see Section 5.2.3), and to use point-to-point ICP implementations.

On the other hand, state-of-the-art reconstruction approaches use (truncated) signed dis-
tance functions, SDF (Curless & Levoy, 1996). An SDF is an implicit surface representation.
It represents the space as a voxel grid and stores the distance from each voxel to the object’s
surface. Implicitly, the object surface is defined by the zero-distance voxels. SDFs naturally
capture the information from an RGB-D sensor, like the Kinect sensor, with an efficient ray-
tracing operation. The SDF also allows for quick rendering of virtual depth maps. SDFs
enable the efficient computation of point-to-plane ICP alignments of the shape models to the
RGB-D sensor data, based on the quick estimation of distance gradients and surface normals.
For these reasons, we think that an optimal implementation of our shape reconstruction ap-
proach should be based on an SDF. In spite of the suboptimal representation, our system
delivers fairly complete and accurate geometric models that support robot manipulation, as
we will demonstrate in Chapter 7.

A second technical limitation on which we commented before (see Section 5.4) arises from
the independent reconstruction of the geometric models for each moving body. Because of
the independent process, the same points can be added simultaneously to different rigid bod-
ies. We think that the points should be exclusively integrated into the rigid body that best
predicts their motion.

After the discussion of the most critical technical limitations, we will now discuss how the
system exploits the four proposed opportunities for robot perception. The role of interactions
(OP1), physical priors (OP2) and temporal structure (OP3) did not change significantly be-
tween the systems of Chapter 4 and this chapter. In a nutshell, the system of this chapter
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1) uses interactions (only) as generators of information-rich motion cues, 2) leverages priors
about projective geometry and rigid body physics to segment and reconstruct the shape of
the links, and 3) segments images using the shape models that result from the temporal accu-
mulation of previously segmented partial views. Differently from the system of the previous
chapter, in this chapter, our system exploits additional physical priors to extend the segmenta-
tion results. The system assumes that objects have continuous color and curvature.

The most important difference between the systems of previous and current chapters is in
the way they exploit interdependencies between perceptual subtasks (OP4). The system of
this chapter integrates segmentation and shape reconstruction as subtasks into the perceptual
process. These subtasks and the ones of our system of Chapter 4 (especially the pose tracking)
are strongly correlated and complement each other naturally, as we have shown in our exper-
imental evaluation. The pose of the moving parts is the necessary information to integrate
partial views correctly into a shape model. The shape improves the pose estimation through
tracking and helps to obtain more accurate kinematic model estimates. The segmentation
connects both the subtasks, since information of the pose is needed to identify new extensions
of the shape models, and the shape models restrict the parts of the current point cloud for
tracking.

We will now turn to a discussion of the limitations of the presented system in the context
of the three challenges of perception for robot manipulation. We will focus on the main differ-
ences with respect to the system presented in Chapter 4.

Extracting Information from Changing Sensor Signals correlated to Inter-
actions (CH1) The proposed system focusses on signal changes using image differencing
at constant intervals. This contrasts to our procedural approach to estimate motion of point
features and rigid bodies, where we focus on signal changes using a predicting-correcting re-
cursive procedure. For segmentation and shape reconstruction we chose image differencing
to reduce the high computational cost of predicting and correcting motion of entire shape
models. As explained before, this high cost is a consequence of our inefficient representation
of the shapes, as sets of points. To operate efficiently on entire shapes we would need a differ-
ent representation, e.g. signed distance functions (Newcombe et al., 2011a) or groups of 3D
points (Stückler & Behnke, 2015)

Thanks to the integration of segmentation and shape reconstruction with the other sub-
processes in the perceptual system, the robot can predict better changes in the sensor stream.
Based on the generated dense shape models, the tracking of the rigid bodies improves and the
robot can predict more accurately the motion of the point features and their surroundings.
Additionally, while we do not use this capabilities for perception, the robot can use the shape
models to predict the appearance of the parts of the image where the rigid bodies project.
However, it is still not possible to link robot actions to changes in the kinematic state because
of the lack of the necessary interaction models. Therefore, the current model does not entirely
link actions to changes in sensor signals. We will overcome this limitation in the next chapter,
Chapter 6.

Perceiving Quickly and Online (CH2) The segmentation and the reconstruction sub-
processes run every 0.8 s. The robot cannot rely on shapes reconstructed at this rate to sup-
port highly dynamic and fast manipulations. The main reason for this low rate is the com-
putationally demanding supervoxel segmentation, and that the image differencing needs to
observe enough change between the input images. The model projections and the subsampling
of the accumulated point cloud model also contribute to the large computation time. As we
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discussed before, a way to reduce the computation time would be to use a more efficient shape
representation, e.g. a truncated SDF. However, since the shape-based tracking is performed at
a higher rate, the system can still perceive online kinematic models.

Versatile Perception in Unstructured Environments (CH3) The dependency
on image differencing to generate candidate regions for segmentation makes our approach
more suited for setups where the camera is static. Motion of the camera would result in our
system detecting the entire field of view as moving, and it would increase the computational
burden significantly. While this is an important limitation in the versatility of the system, in
many real world robotic manipulation scenarios, the camera is static when the robot needs to
perceive a kinematic model from an interaction.

The initial motivation for us to build shape models was to support and improve feature-
based tracking, and thus, improve the versatility of our system to perceive articulated objects
without highly textured surfaces. We have shown in the experimental evaluation that the
synergistic integration of shape reconstruction improves pose estimation (OP4), and that
the overall system is more robust and generate more accurate kinematic model estimates.
The versatility of the system improved as well, since the system compensates with shape
information for the lack of texture to perceive motion. However, the system is still dependant
on vision to contain sufficient information about the articulated object. The system fails if the
visual conditions are suboptimal, e.g. due to occlusions of the articulated object or adversarial
lighting conditions. We will see in the next chapter that we can exploit interdependencies
between perceptual subprocesses in different sensor modalities to alleviate these limitations.

5.6 Conclusion

In this chapter, we presented a combined perceptual system for estimating pose, shape, and
kinematic structure of articulated objects. The system exploits the synergies between the
subprocesses and integrates them online. The subprocesses provide information to each other,
leading to performance improvement and eliminating the dependency on a priori knowledge
about the objects. We demonstrated the benefits of the combined system by comparing its
performance with that of subsystems with less integrated subprocesses, in several challenging
perceptual tasks. Our algorithm perceives the shape and the pose of multiple moving objects,
and estimates a kinematic model of the articulation.
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6
Perceiving Articulated Objects From

Multi-Modal Streams

In chapters 4 and 5, we presented and evaluated two interactive perceptual systems for articu-
lated objects. The systems are based on our proposed approach to tackle perceptual problems
in robot manipulation. Our approach aims to address the challenges (CH1-CH3) in percep-
tion for robot manipulation by exploiting the structure of the problem (the opportunities,
OP1-OP4). The systems of Chapters 4 and 5 are based on a single sensor modality, vision,
provided by an RGB-D sensor. From the evaluation and the discussion of the properties of the
previous systems we concluded that:

• Concerning the versatility of perception to different unstructured environments (CH3):
The robustness and versatility of the systems are limited because the systems are solely
based on visual information. This sensor modality does not contain sufficient informa-
tion for the perceptual task in certain environment and manipulation conditions, e.g. in
adversarial lighting conditions or when the object is visually occluded.

• Concerning the use of action for perception (CH1): The systems do not fully exploit
the information about the interaction (and its correlation to changes in the sensor sig-
nals) that is available when the robot manipulates articulated objects, e.g. haptics and
robot’s motion.

• Concerning the use of perceived information to support ongoing manipulation of DoF:
While we have shown that the robot can monitor an ongoing DoF manipulation based
on the information perceived online, we did not demonstrate yet that the information
can be applied to control and generate new interactions, increasing the relevance of the
information for the task.

In this chapter we will address these three limitations.
First, we will increase the versatility and the robustness of robot perception with a novel

perceptual system that integrates multiple sensor modalities in a cross-modal manner. Cross-
modal perception is a form of multi-modal perception that leverages the information obtained
from one modality to facilitate the interpretation of signals of another modality. We will
leverage cross-modal information using our proposed approach based on coupled recursive
estimation for perception for robot manipulation. The goal is to create a system that robustly
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perceives kinematics of articulated objects in challenging unstructured environments, e.g.
when the lighting conditions are adversarial or the properties of the task impedes the direct
visualization of the articulated objects. We will combine vision and proprioception to perceive
dynamic properties of the joints, like the force to overcome stiction and kinetic friction.

Second, given that one of the modalities we will integrate –proprioception– contains di-
rect information about the interaction, we will propose a simple method to learn interaction
forward models, i.e. models relating the interaction to changes in the sensor signals. These
models can be exploited for perception and for controlling the robot towards a manipulation
goal as well.

And third, we will present and evaluate motion generation methods to explore unknown
articulated objects safely and to exploit the information acquired online to generate new robot
motion trajectories.

6.1 Cross-Modal Integration of Sensor Information for Interactive
Perception

We will begin this chapter presenting a perceptual system for the cross-modal perception of ar-
ticulated objects. In cross-modal integration the information of one modality is used as prior
to interpret signals in another modality. Cross-modal integration is able to leverage regular-
ities in the combined multi-modal signal space, whereas traditional multi-modal perception
interprets the individual sensor signals independently and then combines the results.

An example of cross-modal perception in humans is the McGurk effect (McGurk & Mac-
Donald, 1976). In this perceptual illusion, a subject watches a video of a person pronouncing
the same syllable repeatedly but dubbed with different audio utterances, such as ba-ba or
ga-ga. The subject is convinced to see a change in the lip motion when the dubbed sound
changes. The subject misjudges the visual information because the video in fact depicts the
person saying the exact same syllables, but the sound has been altered to play the different
phonemes (see Figure 2.4 in Section 2 for an illustration of the McGurk experiments). In-
terestingly, the inverse effect –the wrong perception of changing auditory phonemes due to
changes in the facial motion in a dubbed video– has also been reported. These illusions occur
because the auditory cue influences the perception of the facial motions, and vice-versa. As
a result, the identical facial motions (or sounds in the inverse effect) are perceived as being
different. The illusions demonstrate the dependency on visual cues of hearing, as well as the
influence of auditory cues on seeing. This cross-modal interpretation of multiple modalities is
necessary for the robust perception of speech (Rosenblum et al., 2007). If humans were simply
merging modalities, the subject would notice the contradiction in the visual and audio signals.

We will leverage cross-modality in robot perception using our proposed approach based on
coupled recursive estimation processes. As in previous chapters, each estimation process in
our proposed system addresses a perceptual subproblem. The coupling of these components
allows us to use the estimated value of one recursive estimation loop as a prior for others,
even across different modalities. For example, our system predicts motion from proprioception
and uses it to interpret visual perception. The system also combines proprioception and vision
to perceive the type of grasp achieved by the robot hand, then uses this information as a prior
to disambiguate proprioceptive signals. Using information about the kinematic structure, the
system can interpret the wrenches as evidences of the dynamic properties of the articulated
object. These examples illustrate that information from multiple modalities and multiple
perceptual subproblems propagates through the network, leading to robust online perception.

We will also evaluate experimentally if the information perceived during an interaction can
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Figure 6.1: Our robot manipulating three articulated objects (a cupboard door, a glass door, and a cam-
era tripod) and perceiving their kinematic structure; the robot uses a RBO2 soft-hand (Deimel & Brock,
2016) for safe interactions; the exploratory interaction is steered using our velocity-impedance controller;
our online perceptual system integrating vision (RGB-D stream) and proprioception (joint encoders, force-
torque and air-pressure signals) acquires information from the exploration and generates robot trajectories
for new manipulation tasks [ c⃝ 2017 IEEE]

be used to monitor the manipulation and to generate new trajectories (see Figure 6.1).

6.2 Related Work

The work we present here is 1) a new interactive perception system integrating multiple sen-
sor modalities in a cross-modal manner. On the path towards a multi-modal system, we also
propose 2) a novel perceptual approach to perceive kinematic structures based only on propri-
oception. Finally, using the information about the kinematic structure as prior, we propose 3)
a system to the following infer dynamic properties of the articulated objects: the wrench to
overcome stiction and initiate an actuation, and the wrench to maintain an ongoing actuation.
We will now discuss these thee areas of related work: multi-modal perception (in the context
of interactive perception), proprioception-based perception of kinematic structures, and the
estimation of dynamic properties of articulated objects.

6.2.1 Multi-Modal Perception

Multi-modality has been applied previously in recursive filters to overcome limitations of uni-
modal robotic perceptual systems. The common methodology is to estimate a correction by
fusing the multi-modal signal into a single estimate (Ilonen et al., 2014, Hebert et al., 2012).
This approach does not leverage information from one modality to help interpret the other.
Instead, we exploit the results from one recursive filter as priors in the others to obtain more
information. This cross-modal exploitation was applied successfully by Garcia Cifuentes et al.
(2017) to track a robot arm and an object from a multi-modal stream. However, their method
requires models of the arm and the object, and cannot be applied to perceive previously un-
seen articulated objects.

Previous interactive perception methods applied to object segmentation and recogni-
tion (van Hoof et al., 2012, Sinapov et al., 2011), shape reconstruction (Xu et al., 2015), and
the perception of dynamic (Endres et al., 2013) and kinematic properties (Hausman et al.,
2015) of articulated objects are based on a single modality, or use multiple sensor modalities,
but they apply one independently to each perceptual subtask. This neglects the benefits of
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a tighter integration and exploitation of the interdependencies between subtasks. The multi-
modal interactive perception system we present in this chapter improves robustness and ver-
satility over previous approaches and the systems we presented in previous chapters, by using
cross-modal communication to acquire priors from one modality for the interpretation of the
other.

6.2.2 Perceiving Kinematic Models From Proprioception

Previous approaches show that the kinematic properties of an articulated object can be per-
ceived from end-effector trajectories (Sturm et al., 2010a) and applied wrenches (Karayianni-
dis et al., 2016) during interaction. These methods are based on two assumptions that limit
their applicability: 1) There is only one moving part connected with a joint to the static envi-
ronment, and 2) there is no translation between the end-effector and the moving part during
the interaction. We leverage information from vision to correctly interpret proprioception
and to overcome these limitations, estimating the correct grasp model and perceiving more
complex kinematic structures.

6.2.3 Perceiving Dynamic Models of Articulated Objects

Atkeson et al. (1986) presented an approach to estimate the inertia properties of a grasped ob-
ject from interactions, based on the information from the robot’s encoders. When it comes to
the estimation of dynamic properties of articulated objects most existing approaches generate
models of the dynamics of a robot arm, based also on the robot’s encoders signals (Xinjilefu
et al., 2014, Ma & Hollerbach, 1996). However, few methods addressed the estimation of
dynamics of external articulated objects for which internal joint sensors are not available. En-
dres et al. (2013) presented an approach to learn dynamic models of doors with a force/torque
sensor on robot’s wrist. Their model is composed by a parametric component representing the
moment of inertia, and a non-parametric model (a Gaussian process) representing the decel-
eration of the mechanism due to friction (some kind of viscous friction model). To obtain the
kinematic information necessary to estimate the dynamics (e.g. velocity of the actuation of
the joint), the authors employed the method by Sturm et al. (2011). The authors demonstrate
that the learned dynamic model is useful for manipulation by planning and executing swing
interactions on the door that bring it to a predefined goal. Our model differs from theirs since
we are focussed on controlled interactions while grasping the articulated object rather than
dynamic swinging. In our manipulation scenario, the inertia and viscous friction effects are
negligible and we focus on the force necessary to initiate and to maintain the joint actuation.

In a different type of work, Jain et al. (2010) presented a study of doors and drawers from
human interactions. They estimated kinematic and dynamic properties of several everyday
objects in human environments. The mechanisms of their study contained springs that create
dynamic effects depending on the configuration of the joint. They also observed that the high-
est forces are required to initiate the actuation. This supports our proposed simple model of
the joint dynamics that also acknowledges the importance of the force to initiate the actua-
tion, the force to overcome stiction.

Conclusions and comparison to the proposed approach: Most existing interactive
perception approaches are based on a single sensor modality, or use one modality indepen-
dently for each perceptual subtask. These methods fail if the environmental conditions are
adversarial for the modality they use. Differently, we aim to exploit the interdependencies
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between modalities passing information across subprocesses so that the resulting perceptual
system is versatile to cope with different environment and task conditions.

While some initial work demonstrated that it is possible to perceive kinematics of articu-
lated objects from proprioception, these methods made strong assumptions about the problem
(e.g. the object possesses only one joint and it that connects it to the environment) that we
will relax combining multiple sensor source. We will additionally address the estimation of the
dynamic properties of articulated objects, which was not studied extensively in the literature.

6.3 Proprioception-Based Perception of Kinematic Properties

Our goal is to integrate vision and proprioception into a single multi-modal system that ex-
ploits cross-modal information. We will integrate the system presented in Chapter 4 to a novel
perceptual system based on proprioception. We leave out the extension of Chapter 5 to sim-
plify the evaluation of the benefits of the cross-modal integration. The integrated system with
its most relevant recursive filters is depicted in Figure 6.2: on the left, the visual system of
Chapter 4 and in the middle and the right, the novel system of this chapter. In this section,
we will present a novel perceptual system for kinematic models based on proprioception. In
the next section (Section 6.4), we will explain how to integrate vision and proprioception
such that both systems leverage cross-modal information, and how to exploit their combina-
tion to perceive the dynamic properties of the articulated objects.

Proprioception refers to sensory information about the configuration of the robot’s own
body (kinesthetics) and the forces it exerts (haptics). Our robot obtains proprioceptive signals
from a force-torque sensor on its wrist, from the air-pressure sensors monitoring the chambers
of its pneumatic soft hand, and from the joints encoders of its arm. The goal is to use these
signals to perceive the motion of the object the robot is interacting with as well as its motion
constraints, leading to the object’s kinematic model.

The motion of the interacted body and the robot’s end-effector are coupled, as their rela-
tive motion is constrained by their contact. Because our robot uses a soft hand for the interac-
tion, the relative motion between the hand and the object depends on the deformation of the
hand and on the remaining degrees of freedom of the contact interaction (grasp).

We factorize the perception of articulated bodies into the following five subproblems: The
estimation of A) the motion of the end-effector, B) the bending state of the soft-hand, C) the
kinematic model of the grasp, D) the motion of the interacted body, and E) the constraints
in the motion of the interacted body. Figure 6.2 depicts the recursive filters addressing these
subproblems, together with the filters of the vision-based system. The estimation of motion
of the interacted body is subsumed with the estimation of other bodies from vision in the box
“Rigid Body Motion”.

Blue arrows in the figure represent estimated states passed as measurements to the next
process. Thus, the originating process acts as a virtual sensor for the second process. We used
this communication pattern to “inject” more priors at each filter until we solve the entire
perceptual problem.

Red arrows in the figure represent predicted measurements passed as state predictions to
the next process. Exploiting this communication pattern, we restrict the space of possible
solutions of one subproblem using the other processes (and their priors) as alternative for-
ward and measurement models. We will exploit similar intercommunication patterns in the
perceptual system based on proprioception, and will exploit cross-modal information in the
multi-modal system.

In the following, we will explain how we solve the subproblems of the proprioception-based
system using coupled recursion estimation (the last subproblem is solved the same way as the
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Kinematic Model Grasping Model Soft-Hand Bending

Joint Encoder Readings
Wrenches and 

Air Pressure Signals

Rigid Body Motion End-Effector Motion

Feature
Motion

RGB-D Stream

Figure 6.2: Our proposed system for interactive perception of kinematic properties of articulated objects
based on cross-modal information between coupled recursive filters; bottom: input sensor signals; arrows:
information flow between filters and across modalities (blue: input measurements, red: alternative predic-
tions) [ c⃝ 2017 IEEE]

estimation of kinematic models from rigid body motion in Chapter 4).

6.3.1 Estimation of End-Effector Motion

The first recursive filter estimates the motion of the end-effector. The state of the end-effector
is represented by the end-effector’s pose and velocity, xee

t ∼ N ((eept, eeηt), P
ee
t ). To predict

the next state based on the previous estimate, we use a velocity-based kinematic update:

ee p̂t = ∆t eeηt−1 ⊕ eept−1 (6.1)

ee η̂t = eeηt−1 (6.2)

The measurements for the estimation of the end-effector motion are the pose and velocity
of each robot joint provided by the robot’s joint encoders, zee = (qj , q̇j), j ∈ {0, . . . , J − 1},
where J = robot’s number of joints. Predicting this measurement based on the state would
require to solve an inverse kinematics problem. Instead, we combine the measurements on the
robot’s joints’ poses and velocities with prior knowledge about the robot’s embodiment and
forward kinematics. This way, we obtain a direct measurement of the end-effector’s pose and
velocity, which we integrate recursively:

z′ee = (eepz, eeηz) (6.3)
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Figure 6.3: Effect of the deformation of the soft-hand; left: hand in the nominal state; middle and right:
hand in the bent state after a motion of the end-effector without motion of the interacted body (a door
handle) [ c⃝ 2017 IEEE]

where the sub-index z indicates that they are measurements (direct observations of the state).
With this measurement model, the estimation of end-effector motion corresponds to a

filtering of the proprioceptive measurements, weighted by the uncertainty of the observations,
Ree

t , that we set proportional to the velocity (fast end-effector motion corresponds to highly
uncertain pose measurements).

6.3.2 Estimation of Hand Bending

When the robot interacts with an object, the soft hand deforms (bends). This changes the
relative pose between the hand and the object (see Figure 6.3). In the second recursive filter,
we estimate the consequences of this bending effect.

We represent the bending state of the soft hand as the relative transformation between the
nominal end-effector pose (estimated by the filter described above) and the pose of a virtual
body we call bent end-effector (defining the hand’s physical pose),

xbent
t ∼ N ( ee

beept, P
bent
t ) (6.4)

ee
beep = beep ⊖ eep (6.5)

where ⊖ is the inverse composition of poses. We assume that the bending state remains con-
stant between consecutive time steps, x̂bentt = xbentt−1 .

We use as measurements the signals of the proprioceptive stream that correlate to the
bending of the hand. These are the wrenches measured at the robot’s wrist and the pressure
values in the four air chambers of the soft-hand:

zbent = (w, a) (6.6)

where the wrenches are w ∈ R6, w = (f, τ)T , and the air pressure signals a ∈ R4.
Defining an analytic measurement model relating bending and proprioceptive signals for

a complex soft-manipulator as the RBO Hand 2 (Deimel & Brock, 2016) is a difficult prob-
lem (Smoljkic et al., 2015). We will adopt a data-driven approach and learn from experiences
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a model that transforms the proprioceptive signals into direct observations of the bending
state:

f(w, a) = z′bent ∼ N ( ee
beepz, R

ee−bee
z ) (6.7)

where the sub-index z indicates that they are measurements (direct observations of the state).
We approximate the model f using an artificial neural network. To obtain labeled data

to train the model, we execute 15 interactions of the robot grasping an object that is rigidly
attached to the environment. We record the wrenches and the pressure signals at different
relative poses of the bent soft hand with respect to the nominal pose during these interactions.
We then train a multi-layered perceptron regressor (MLPR1) to map from wrenches and
pressure signals to the 6D relative pose observations.

To integrate the observations recursively, we also need to learn their uncertainty, Ree−bee
z .

Following the approach proposed by Rojas (1996), we train several partial MLPRs, leaving
out groups of two trials, and computing the standard deviation between predictions from
these partial MLPRs and the fully trained MLPR. We then train a second MLPR (MLPR2),
mapping wrenches and pressure signals to the standard deviation of the regressor. With this
procedure, the second MLPR learns the difficulty of the transformation problem for each
input signal and allows us to filter proprioceptive signals into a robust estimate of the hand
bending state.

6.3.3 Estimation of Interaction-Grasp Model

In the third recursive filter, we estimate a kinematic model of the grasp. The grasp model
explains the kinematic constraints between the motion of the bent end-effector and the inter-
acted body. We maintain and estimate independently the parameters of four filters for the
grasp models, one for each type of grasp that our anthropomorphic soft-hand can perform:
(i) perfect grasp (no relative motion), (ii) revolute grasp (allowing rotation around the grasp-
ing axis), (iii) cylindrical grasp (allowing rotation around and translation along the grasping
axis), and (iv) failed grasp (no motion constraint).

For revolute and cylindrical grasps, the state of the filter is parametrized by the orienta-
tion of the axis (azimuth ϕgr ,r or ϕgr ,c, and elevation θgr ,r or θgr ,c in spherical coordinates),
and by a point on the axis (pgr ,r ∈ R3 or pgr ,c ∈ R3). For the perfect grasp, the state is
parametrized by a fixed 6D pose between the bent end-effector and the interacted body (beeibp).
The failed grasp does not impose any motion constraints and therefore does not have any pa-
rameters to estimate, xgr ,f = ∅. We initialize these parameters based on the morphology of
the hand and an initial low uncertainty, indicating that this initial estimate for the parameters
of the grasping models should be trusted.

The estimation of the grasp model leverages the coupling between filters to obtain mea-
surements. The estimates of the pose of the bent hand (from the previous two filters) and the
interacted body (from the next filter) are combined to generate a measurement:

zgr = f(xee, xbent , xib) = ibp ⊖ (eep ⊕ ee
beep) =

bee
ibp (6.8)

The estimation of the parameters and the most likely type are performed similarly to the
estimation of joint parameters of a kinematic model in Chapter 4. A difference with respect to
our approach to estimate joints of kinematic models of articulated objects is that the grasping
model estimation does not include the estimation of the joint state. The predicted measure-
ments (relative poses) are a function of this joint state. For each measurement, we compute
the current joint state of each model that minimizes the difference between the predicted
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relative pose (a function of the joint state) and the measured relative pose. We will use this
minimum difference to evaluate the most likely model.

Given the low uncertainty of the initial estimates of the grasping parameters, the method
presented here can be seen as a model-selection approach (among a set of predefined models).
Later in this chapter (Section 6.8), we will present a method to replace the model selection
by a model-learning approach. We will learn a full interaction-grasp model in the form of a
Jacobian matrix from experiences (pairs of interactions and correlated changes in the envi-
ronment). This second approach reduces the dependency on a good initial estimate of the
parameters of the grasping model and can be applied to end-effectors of unknown morphology.

6.3.4 Estimation of Interacted Body Motion

The fourth recursive filter estimates the motion of the body the robot interacts with. The
state of the interacted body is represented by its pose, xib = ibp. The prediction of its next
state also leverages the coupling between filters: the change in pose depends on the motion
of the end-effector, corrected with the bending effect and propagated through the grasping
model,

ibpt = (x̄gr ee
beeAd eeη∆t)⊕ ibpt−1 (6.9)

where x̄gr is a 6× 6 matrix representation of the kinematic constraints of the grasping model
and ee

beeAd is the adjoint transformation associated with the bending effect.
None of the proprioceptive signals can be used as observations of the motion of the inter-

acted body, and thus the predicted distribution over the next state becomes the current belief.

Limitations of Proprioception-Based estimation of Kinematic Models The first
limitation of the system based only on proprioception is due to the mutual dependency be-
tween the estimation of the interacted body motion and the grasp model. The motion of the
interacted body is estimated based on the current belief over the grasp model. In turn, the
grasp model is updated based on the estimated motion of the interacted body. This mutual
dependency effectively reaffirms the initial prior distribution over the grasp model. The ac-
curacy of the estimated interacted body motion depends thus on the accuracy of this grasp
model prior.

The second limitation is that the proprioceptive signals, because of their limited range,
only provide measurements about the state of the robot and the responses from the inter-
acted body. The system can only perceive a single body connected by a joint to the environ-
ment, defining the kinematic model. Overcoming both limitations will require additional prior
knowledge that our integrated system will obtain from vision by leveraging the cross-modal
information.

6.4 Integration of Vision and Proprioception

6.4.1 Perceiving Kinematic Properties

Once we have explained how to extract information from each modality –from vision in Chap-
ter 4; from proprioception in the previous section– we will explain how to leverage information
from one modality to help interpret the other. The proposed multi-modal system exploits
cross-modal information to overcome the limitations of a uni-modal perception system.
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Predictions about the motion of the interacted body from proprioception are leveraged
to correctly assign visual point features, even under challenging visual conditions, e.g. with
very low lighting or large occlusions. The features can be used as observations to correct the
proprioceptive predictions, zib = xfm|ib , where xfm|ib are the visual point features assigned to
the interacted body. The cross-modal predictions from proprioception to vision and the correc-
tions from vision to proprioception lead to a new estimate that breaks the mutual dependency
of the proprioception-only system, xib = ibp.

Using the interacted body motion perceived from cross-modal information, our system can
correctly interpret the constraints in the bent end-effector motion perceived from proprio-
ception, and retrieve the kinematic grasp model, xgr . The type and parameters of the grasp
model are inferred from the relative motion between the bent end-effector and cross-modal
estimates of the interacted body motion (Section 6.3.3):zgr = beep ⊖ ibp.

The system can use grasp model estimates from cross-modal information as prior to further
interpret proprioceptive signals when the visual modality degenerates (e.g. the object goes out
of the field of view, or is occluded, or due to extremely bad lighting conditions or not enough
visual texture). The prior obtained from cross-modal information is sufficient to estimate the
kinematic model of the interacted body using only proprioceptive signals.

The integrated system correctly interprets the constraints in the motion of the interacted
body perceived from proprioception, leveraging information from vision. The system perceives
from vision the motion of other bodies apart from the directly interacted one and uses this
prior to analyze the motion constraints of the interacted body from proprioception. The
integrated system based on cross-modal information can perceive complex kinematic models
with multiple joints or when the interacted body is not connected to the static environment,
xjoint .

6.4.2 Perceiving Dynamic Properties

The combination of vision and proprioception allows the robot to infer new information about
an actuated articulated object: its dynamic properties. The dynamic properties relate the
forces and torques applied to an object with their kinematic effects.

Because in this thesis we are interested in controlled and safe robot interactions with con-
strained mechanisms, the wrenches the robot applies on the objects are bounded, and so are
the joint accelerations they generate. In these conditions, we can neglect the inertia effects
from our analysis of the dynamics, and we apply a quasi-static analysis, where the dominating
term is the friction. We also deem the effect of other dynamic processes (e.g. damping and
viscous friction, inertia) to be negligible for the objects and the safe contact interactions we
consider.

Roboticists have developed multiple models to explain the friction effects in articulated
mechanisms. These models vary in complexity and the number of parameters. In our estima-
tion method, we use the Coulomb friction model and estimate two parameters: stiction and
constant kinetic friction (Dupont, 1990). Both values and their relationship to the actuation
of the mechanism are depicted in Figure 6.4, and explained below.

The contact surface between two bodies (e.g. within a kinematic joint) creates friction
forces/torques1. We can distinguish between two dynamic regimes with different friction
effects, depending on the relative motion between the surfaces: If the bodies do not move

1In the rest of the text we will use the terms force/torque (instead of wrench) and linear/angular
velocity to keep the explanation general for any type of kinematic constraint; however, please note
that for prismatic joints, we should only consider forces and linear velocities, and for revolute joints,
consider torques and angular velocities.
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friction force [N] or torque [Nm]

linear or angular velocity

kinetic friction

stiction

(a) Friction as a function of the velocity; with-
out motion (static regime), friction ranges
between zero and stiction; with motion (kinetic
regime), friction is independent of the velocity
and equal to the constant kinetic friction; if
in motion the applied tangential force/torque
decays under the constant kinetic friction the
actuation stops

applied tangential force [N] or torque [Nm]

friction force [N] or torque [Nm]

kinetic friction

stiction

static regime
kinetic regime

(b) Friction as function of the applied tan-
gential force/torque; without motion (static
regime), friction is equal to the applied tangen-
tial force/torque; with motion (kinetic regime),
friction is constant and equal to the constant
kinetic friction; if in motion the applied tan-
gential force/torque decays under the constant
kinetic friction the actuation stops

Figure 6.4: Coulomb model of friction; motion of a joint begins when the applied tangential force (for
prismatic joints) or torque (for revolute joints) overcomes stiction; friction during motion is constant and
equal to kinetic friction; if the applied tangential force/torque decreases under the constant kinetic friction,
the motion of the joint stops

with respect to each other, the equilibrium of forces/torques is in the static regime, and the
force/torque opposing the applied force/torque is called static friction. Static friction is a
force/torque equal in magnitude and opposite in direction to the applied force/torque in the
allowed dimension by the joint, the so-called tangential force/torque. Forces/torques in the
dimensions constrained by the joint, the so-called normal forces/torques, do not generate
motion and are always counteracted by the mechanism. Therefore, we do not need to consider
the normal component of the applied force/torque in our dynamic analysis.

When the applied tangential force/torque overcomes a threshold, the two bodies begin to
move with respect to each other. This threshold is called stiction and is one of the parameters
we estimate in our model since it is relevant information for the manipulation.

During motion, the equilibrium of forces/torques is in the kinetic regime, and the force/torque
opposing the motion is called kinetic friction. We assume this force/torque to be approxi-
mately constant and independent of the relative velocity (Coulomb model). We call this value
(constant) kinetic friction and it is the second parameter we estimate in our model. If the
applied tangential force/torque decays under the (constant) kinetic friction, the motion decel-
erates and stops quickly, and the equilibrium of forces/torques returns to the static regime.
Knowledge about the force to overcome stiction and kinetic friction allows to plan safe interac-
tion, as we will see in the next chapter.

Given the previous definitions, we propose to estimate the parameters of the friction model
recursively using a particle filter. The state of the filter is a set of particles representing the
distribution over dynamic parameters of the joint: xdyn = {pdyn,i}, i ∈ {1 . . . Ndyn}. Each
particle contains a hypothesis of the dynamic parameters, pdyn,i = (Si,KF i).

The observations to update the state of the filter, zdyn, are joint velocities, q̇, and the
magnitude of applied tangential force/torque, ∥ft tan∥. We use here the term “force/torque”
and the symbol ft to indicate either force or torque (depending on the type of joint) and not
full 6D wrenches.
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As explained before, our dynamics (friction) model is independent of the magnitude of the
joint velocity. We will simplify the measurements and consider q̇ a binary variable, indicating
if the joint is moving or not, q̇ ∈ {0, 1}.

In the following, we will first assume that the measurements for the estimation, zdyn, are
given and explain how to update the state of the filter. Then, we will explain how we obtain
the measurements leveraging cross-modal information from other subprocesses of the percep-
tual system.

The way we use the measured tangential force/torque to update the filter state (the mea-
surement model) depends on the current dynamics regime: static or kinetic, or boundary
state. To evaluate the current dynamics regime, we compare the current and previous observa-
tions of the joint motion, and distinguish four cases:

• The joint was not moving before and is not moving now: This case indicates that in
both the previous and the current steps, the tangential force/torque is not enough to
overcome stiction. The current tangential force/torque is under stiction.

• The joint was not moving before and is moving now: The tangential force/torque now is
enough to overcome stiction and initiate motion. The current tangential force/torque is
over stiction.

• The joint was moving before and is moving now: The tangential force/torque is enough
to maintain motion. The current tangential force/torque is over kinetic friction.

• The joint was moving before and is not moving now: Kinetic friction dominates the
quasi-static scenario and impedes the motion now. This effect indicates that the current
tangential force/torque is under the kinetic friction.

These four cases lead to four measurement updates, with different importance functions for
the particles.

In the first case, the particles predicting motion should receive a lower importance factor
than the particles correctly predicting no motion, especially the ones that assume that the
threshold to initiate motion (stiction) was largely overcome. For a given measured tangential
force/torque, ∥ft tan∥, we define the importance factor of a particle pdyn,i = (Si,KF i) with the
function

p1(z
dyn|pdyn,i) = 1

2


1 + erf


Si − ∥ft tan∥

σft

√
2


(6.10)

The equation above is the accumulative density function of a Gaussian distribution with mean
∥fmtan∥ and covariance σft evaluated at the stiction value of the particle, Si. We will see
later how to obtain these mean and covariance values that represent the measured tangential
force/torque and its uncertainty. erf(x) = 2√

π

 x

0
exp


−t2


dt is the error function, the prob-

ability of a random variable normally distributed with mean 0 and variance 1/2 being in the
range [−x,+x].

The previous importance factor function is depicted in Figure 6.5a. While this is not a
well-defined probability density function (its integral over the entire space is not equal to
one), the renormalization of the particles before the resampling step assures that the filter is
probabilistically consistent. The function penalizes the particles where the stiction was largely
surpassed by the applied tangential force/torque.

In the second case, the particles that predict correctly that the motion starts in the cur-
rent step should receive a higher weight than any other, i.e. a higher weight than particles

110



6.4 Integration of Vision and Proprioception

(a) Case 1:
q̇t−1 = 0 and q̇t = 0

(b) Case 2:
q̇t−1 = 0 and q̇t = 1

(c) Case 3:
q̇t−1 = 1 and q̇t = 1

(d) Case 4:
q̇t−1 = 1 and q̇t = 0

Figure 6.5: Four different importance factor (likelihood) functions for the four cases, depending on
whether the joint was actuated or not in the previous and current steps; the functions are centered at
the mean applied tangential force/torque, µFT and “spread” accordingly to its covariance, σFT ; the func-
tions are applied to the stiction (S) or the kinetic friction (KF ) of the particles, {pidyn}

predicting no motion because the tangential force/torque is under stiction, and than parti-
cles predicting that the threshold to initiate motion (stiction) was largely overcome. For a
given magnitude of the tangential force/torque, ∥ft tan∥, we define the importance factor of a
particle pdyn,i = (Si,KF i) as

p2(z
dyn|pdyn,i) = 1

2πσ2
FT

exp


−Si − ∥ft tan∥

2σ2
FT


(6.11)

This importance factor function is depicted in Figure 6.5b. The function benefits the particles
that correctly predicted that the motion of the joint should begin now (values of stiction close
to the measured ∥ft tan∥).

The importance factor of the particles in the third and fourth cases are analogous to the
first and second cases, but based on the particle’s kinetic friction value:

p3(z
dyn|pdyn,i) = 1

2


1 + erf


KF i − ∥ft tan∥

σft

√
2


(6.12)

and

p4(z
dyn|pdyn,i) = 1

2πσ2
ft

exp


−KF i − ∥ft tan∥

2σ2
ft


(6.13)

The importance factor functions are depicted in Figure 6.5c and Figure 6.5d.
At each step we use the previous and current observations of the motion of the joints, q̇t−1

and q̇t, to select the right importance factor function to update the filter state. These obser-
vations are provided by an existing subprocess of the perceptual system, the estimation of the
kinematic model from visual data. In an example of cross-modal integration, information from
the estimation of kinematics is used as a prior to correctly interpret the measured tangential
force/torque, ∥ft tan∥. The subprocess estimating kinematics provides also prior information
to decompose the applied force/torque into the tangential and the normal components. In
the rest of this section, we will explain how to obtain these measurements of the tangential
force/torque relative to a given kinematic joint.

We compute the magnitude of the tangential force/torque applied by the robot in a two-
step process. First, we need to compute the force/torque the robot applies on the object, and
second, we need to decompose the applied force into the tangential and normal components.
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To compute the applied force/torque we use measurements from a sensor attached to the
robot’s end-effector. We account for the effect of the gravity on the end-effector by subtract-
ing the end-effector’s weight from the raw force/torque readings, w, using the end-effectors
mass, center of mass, and pose. The remaining force/torque signal is the applied force/torque
by the robot on the object, wapp = (fapp, τapp)

T .

To obtain the tangential force/torque, we geometrically compute the decomposition of the
applied force/torque given the joint axis definition. Because in our perceptual system the
joint axis are defined by probability distributions over joint parameters, we sample multiple
joint axes from these distributions and project the applied force/torque onto the hypothesized
axes. Then, we collect the tangential projections, compute their norm and fit a Gaussian
to the resulting norm samples. The result of this process, ∥ft tan∥ and σft , is a probability
distribution over the applied tangential force/torque, grounded in the uncertainty about the
kinematic model. We will explain in detail the geometric decomposition for a prismatic and
revolute joint.

For a prismatic joint, the tangential component corresponds directly to the projection of
the applied force onto the direction of the axis ftan (see Figure 6.6a).

For a revolute joint, we first compute the applied force/torque at the sampled axis, w′
app =

(f ′
app, τ

′
app)

T , from the applied force/torque at the point of contact, wapp = (fapp, τapp)
T . For

this transformation we assume that both locations are on the same rigid body, i.e. the robot
applies forces/torques on one of the two links connected the joint. The transformation of the
force/torque to another point on the same rigid body is given by

(f ′
app, τ

′
app) = (fapp, τapp + r̄ × fapp) (6.14)

where r̄ is the vector connecting the point of application of the force/torque and one point on
the sampled axis. Finally, we project the transformed torque, τ ′app, onto the direction of the
sampled revolute axis and obtain the tangential τtan (see Figure 6.6b).

To obtain measurements of the tangential applied force/torque our method integrates in-
formation from two other subprocesses in the perceptual system: the estimation of kinematic
models (to project the applied force/torque into the joint axis) and the estimation of end-
effector motion (to transform the measured wrenches from the reference frame of the robot’s
wrist to the spatial configuration of the joint).

Our particle filter method increasingly reduces the uncertainty over the dynamic param-
eters as more haptic measurements are acquired, especially when the joint starts or stops
moving. An example of the evolution of the estimated dynamic parameters from continuously
arriving haptic measurements is depicted in Figure 6.8.

6.5 Robot Motion Generation and Control

Generating a multi-modal stream rich in information depends on the strategy to control the
robot’s interaction. Our goal is to generate motion in the dimensions allowed by the (initially
unknown) kinematic structure. This adaptive behavior can be achieved using a compliant
controller based on the force-torque signals (Bruyninckx & Schutter, 1996).

We use an operational space impedance controller on the Lie Group SE(3) (Part, 1985,
Park & Kim, 2014) to adapt a desired trajectory of the 6D pose of the end-effector, eep

des(t),
based on the signals from the force-torque sensor. The operation space framework relates
robot’s joints motion to end-effector motion. Impedance control relates deviations from a
given end-effector trajectory to reactive forces. Impedance control is thus a crucial technique
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prismatic axis
belief

mean

sample

(a) Geometric projection (ftan)
of the applied force (fapp) onto
the direction of a sample from the
belief over the prismatic joint axis

revolute axis
           belief

mean
sample

(b) Geometric projection (τtan) of the applied torque onto the direc-
tion of a sample from the belief over the revolute joint axis; the ap-
plied wrench is transformed from the point of application (fapp, τapp)
to one point in the sampled axis (τ ′

app) assumed they are points on
the same rigid body

Figure 6.6: Geometric projection of the applied wrench onto a sample of a prismatic (a) or a revolute (b)
joint; translucent cones indicate one standard deviation to the mean of the axis orientation; the translucent
sphere indicates one standard deviation to the mean position of the axis; the projection of the applied
wrench decompose it into a tangential components (ftan and τtan) and normal components (not shown)

for robots to interact with constrained mechanisms in a safe manner, since it allows the robot
to adapt to the constraints of the mechanism with controlled forces.

The behavior of this controller is parametrized by three 6 × 6 matrices –stiffness (K), damp-
ing (D), and mass (M)– that transform virtually the end-effector into a spring-mass damped
system with different reactive behavior for each dimension. In a nutshell, the impedance con-
troller reacts with the following end-effector wrench to a deviation from the desired trajectory:

eew
imp = M(ee η̇

meas − ee η̇
des) +B(eeη

meas − eeη
des) +K(eep

meas ⊖ eep
des) (6.15)

where ee η̇ is the end-effector’s acceleration, eeη is its velocity and eep its pose (in exponen-
tial coordinates), and the super-indices meas and des indicate the measured and the desired
values. The former equation indicates that the robot compensates a deviation from a given
trajectory (desired values) exerting a wrench that is defined by the stiffness, damping and
mass parameters. To compute the robot commands (robot’s joint torques) to generate the
desired wrenches, we use the operational space formalism (Khatib, 1987). The operational
space control method is an approach to implement inverse dynamics control of eew directly in
task space. While we did not make any novel contribution to operational space or impedance
control, we developed the necessary robot skills to implement them.

The aforementioned controller can adapt an initial exploratory trajectory. To generate such
a trajectory for articulated objects we propose a velocity-based controller that sets a constant
goal in velocity and, at each step, a new goal for the end-effector pose, eep

des
t , based on the

error between the measured and desired velocity twists:

eep
des
t = kp(eeη

meas − eeη
des)⊕ eep

des
t−1 (6.16)

eeη
des
t = eeη

des
t−1 (6.17)
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Figure 6.7: Experiments of the estimation of kinematic models (each row represents a different object):
initial (first column), intermediate (second column), and final frame (third column) of the estimation,
including error plot (fourth column) of estimated joint parameters relative to ground truth; the insets
in the three images show the time t and the estimated joint configuration q using the cross-modal vari-
ant; estimated prismatic joints are shown as solid green cylinders, revolute joints as solid red cylinders
[ c⃝ 2017 IEEE]

We will define the desired velocity and the impedance parameters such that the robot per-
forms pulling operations while being compliant in the other dimensions. Combining both the
controllers the robot can explore articulated objects with different dynamic properties and
create rich multi-modal signals for perception.

Once the kinematic structure has been revealed and perceived leveraging cross-modal infor-
mation, the robot should be able to use this information to improve interaction or generate
new manipulations. We implemented this skill as an online trajectory generator that com-
putes an end-effector operational space trajectory to achieve a manipulation task, i.e. reaching
a desired joint configuration. The trajectory generator uses the perceived kinematic model of
the object and interpolates the object’s joint configuration towards the desired state. Then
the trajectory generator computes the motion of the interacted body necessary to obtain the
desired object’s joint configuration, and from that, the trajectory of the end-effector that
generates the interacted body motion.

6.6 Experiments on Cross-Modal Integration

We conducted three sets of experiments. In the first set, we evaluate quantitatively the per-
formance of our system when perceiving different articulated objects and compared the use
of 1) only vision, 2) proprioception, or 3) the multi-modal stream leveraging cross-modal in-
formation. We measure the robustness, accuracy, and convergence of the kinematic model
estimation by comparing the estimates to ground truth for the joint parameters and state.
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In the second set, we make use of the online information about kinematics from the cross-
modal system to control the robot’s motion and fulfill a manipulation task. The robot ex-
plores an articulated object until it discovers a joint and perceives that it reaches a desired
joint configuration. Then, the robot exploits the perceived information to plan a new trajec-
tory to return the object to its initial configuration. We measure the accuracy of the execu-
tion (final joint state) of both the explorative and the exploitative interactions.

In the third set, we apply our approach for the estimation of dynamic properties to dif-
ferent articulated objects. We analyze the properties of our method, first in isolation, using
kinematics information from a motion capture system, and second, in integration with the rest
of the online IP system for articulated objects.

6.6.1 Experimental Setup

In our robot experiments, we use a robot manipulator composed of a Barrett WAM arm and a
RBO Soft Hand 2 (Deimel & Brock, 2016). The joint configurations of the arm are measured
at 200Hz by encoders placed at the motors controlling the cables. The stretching of the ca-
bles introduces uncertainty about the end-effector’s pose that we model with a covariance of
1 cm and 3◦ in the end-effector pose measurements, resulting from an offset calibration. The
visual input is an RGB-D stream (640×480 pixels at 30Hz) provided by a Carmine sensor
rigidly attached and registered to the robot’s base. The force-torque signals are provided by
an ATI 6DoF sensor mounted on robot’s wrist delivering signals at 100Hz. Air pressure in the
chambers of the soft-hand are delivered at 100Hz. To compensate for the disparity in sensor
frequencies we accumulate signals and process them at 15 Hz. This estimation rate can be
maintained on an Intel Xeon E5520 PC at 2.27GHz.

The estimated states of each filter are assumed to be Gaussian distributions. Both process
and measurement models are of the form xt = f(xt−1, ut) + wt and zt = h(xt) + vt, where
f and h are possibly non-linear (but linearizable) forward and measurement models, and
wt and vt are the process and the measurement additive Gaussian noises. This allows us to
implement the recursive estimation filters as Kalman filters or their variant for non-linear
models, extended Kalman filters.

The neural network regressors (MLPR) have a topology of three layers with 10-10-10 fully
connected neurons. This topology was selected in a hyperparameter search by a leave-one-out
cross-validation process, selecting between 1 and 100 neurons per layer in networks of one,
two, or three layers. The vision-based system tracks N = 200 point features. To focus the
attention on the estimation of the kinematic model of the articulated object and not on the
robot’s arm, we project a model of the robot on the camera plane and subtract this part from
the visual analysis.

In our experiments, we parametrized the controller to be compliant in all dimensions (main
diagonal elements of K = 0.1, D = 1, and M = 1) except in the pulling direction of the
end-effector (main diagonal elements of K = 400, D = 200, and M = 1). In the pulling
direction the robot will attempt to follow the trajectory, while adapting with low forces in the
other dimensions. These parameters perform well in all objects we evaluated. To generate an
exploratory behavior we guide the robot’s end-effector into a grasping distance of the object,
command the robot to close the hand and command a desired velocity, eeη

des, of 1 cm s−1

in the pulling direction (kp = 0.1). As a result, the robot reveals the kinematic structure
by pulling with an increasing force and adapting to the dimension of allowed motion of the
articulated object.

For the experiments where we evaluate the estimation of dynamic properties in isolation,
we use a motion capture system to obtain ground truth about the kinematic information (Mo-
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tion Analysis, 2017). We use the motion capture system to obtain ground truth poses of the
links of the mechanisms and the joint parameters. The interactions are performed with a
force-torque sensor attached to a stick, whose pose is also tracked using the motion capture
system. This data is part of a dataset of articulated objects and sensor data of interactions
that we have released and made public for other researchers2.

We use 1000 particles in our particle filter for the estimation of the dynamic parameters.
The initial prior for the stiction and kinetic friction distribution is a uniform prior between
0N and 10N for prismatic joints, and between 0Nm and 3Nm for revolute joints. These
values cover the dynamics of all articulated mechanisms in human environments that our
robot can actuate with the soft hand. We impose in the particles the additional physical
constraint that stiction must be higher or equal the kinetic friction.

We evaluate our system on articulated objects with different types of joints, size, color, and
surface properties. We did not add artificial visual markers that could facilitate the visual per-
ception. The objects are placed at different pose with respect to the robot and the sensors. In
some experiments we also change abruptly the lighting conditions to evaluate the robustness
of the perceptual systems. To obtain the ground truth for kinematic properties, we manually
measured the joint parameters and the final joint state. To obtain the ground truth of the
dynamic properties we measured with a force gauge the minimum tangential force/torque to
initiate joint actuation and to maintain it. We average over three ground truth measurements
to obtain an accurate estimate.

6.6.2 Experimental Evaluation

Uni-Modal vs. Cross-Modal Perception

We evaluate the accuracy and convergence of the kinematic model estimates from the three
perceptual systems: 1) only vision, 2) only proprioception and 3) cross-modal integration.
Figure 6.7 shows three images from the RGB-D sensor (initial, middle, and final steps) and
graphs of the estimation error to ground truth over time.

In the first experiment the robot interacts with a drawer. After 6.5 s (indicated with a verti-
cal line in the plot) we change abruptly the lighting conditions by switching off the lights. The
vision-only system stops perceiving the object while the proprioception-only and the cross-
modal system continue the estimation. The final joint state estimated by the cross-modal
system is the most accurate (22.3 cm, ground truth 22.5 cm), followed by the proprioception-
only (23 cm). The vision-only system stops tracking at (9.8 cm). The cross-modal system
achieves the best performance because it leverages vision to estimate a more accurate grasp-
ing model, which lead to more accurate body motion estimates and robustness against vision
failures from the interpretation of proprioception.

In the second experiment, the robot interacts with a door that rotates around a revolute
joint. The robot almost completely occludes the object during the first 25 s of interaction
(indicated with a vertical bar in the plot). The proprioception-only and the cross-modal
system perceive the object during the entire interaction. The vision-only system perceives
the interacted object only when it becomes clearly visible. The final joint state estimation
from the cross-modal system (80◦, ground truth 85◦) is the most accurate, followed by the
proprioception-only (78◦). The final estimation of the visual system (43◦) is affected by the
delayed start. The cross-modal system achieves the best performance because it uses the
proprioceptive signals to interpret the visible motion in the small non-occluded parts of the
object.

2Our dataset is publicly available under https://tu-rbo.github.io/articulated-objects/.
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6.6 Experiments on Cross-Modal Integration

Object Error and std. dev. at the end
of the exploration phase

Error and std. dev. at the end
of the exploitation phase

Sliding Door 2.2 cm±1.6 cm 1.8 cm ±1.6 cm

Camera Tripod 7.8◦±2.3◦ 2.6◦±2.24◦

Glass Door 1.3◦±0.73◦ 0.6◦±0.5◦

Table 6.1: Error at the end of the exploration and the exploitation phases of the robot interaction based
on the cross-modal perceived information

In the third experiment, the robot interacts with a cardboard box and closes one of its lids.
As a result from the explorative interaction, the entire box translates. We focus the analysis
on the estimation of the relative revolute joint between the box and the lid. Both uni-modal
systems fail to detect this joint. The vision system only perceives the lower part of the box,
while the proprioception system detects only the motion of the lid and interprets it as a rev-
olute joint with respect to the environment. The cross-modal system correctly perceives the
relative joint between the box and the lid because it uses the motion of the box perceived
from vision to correctly interpret the motion constraints of the lid perceived from propriocep-
tion. The final joint state estimate from multi-modality is 90◦ (ground truth 100◦).

Controlling Interaction with Online Interactive Perception

We tested our cross-modal perceptual system and online trajectory generator for the manip-
ulation of three previously unseen objects (see objects in Figure 6.1): opening a glass door
(GD) 20◦, turning camera tripod (CT) 45◦ and opening a sliding door (SD) 30 cm. These ob-
jects are challenging because they do not present strong textured surfaces and because the
hand cannot grasp them perfectly. We repeated the interactions 5 times on each object with
different initial robot-object pose. The results (mean and standard deviation on the error to
ground truth) are depicted in Table 6.1. The interaction succeeded in the 15 trials (see video
attachment) indicating that the information perceived online can be used to generate new suc-
cessful trajectories. Our proposed perceptual system leverages information between vision and
proprioception to estimate accurately the joint state at the turning point and the end of the
manipulation, which indicates that the system can be applied to monitor ongoing interactions.

Perceiving Dynamic Properties of Joints

The results of the first set of experiments, where we use ground truth poses and kinematics
and evaluate only the estimation of dynamic properties, are summarized in Table 6.2. The
table compares the ground truth values of the parameters to the mean and standard devia-
tion of the estimated values. The standard deviation of the ground truth indicates that even
among the three controlled manual measurements, the observed frictional values are slightly
different, which illustrates that estimating the frictional properties is a hard perceptual task.
The estimated value is an average over five estimation processes from different interaction
sequences. In these sequences we vary the pose of the object, the force/torque sensor, and
the contact point on the link of the object. The evolution of the estimation from continuously
arriving signals in one of the experiments is depicted in Figure 6.8.

The method estimates both the threshold in force to initiate motion (stiction) and the min-
imum force to maintain the motion (kinetic friction) with sufficient accuracy, and the error
to ground truth is within the uncertainty bounds. However, the estimated values diverges
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Figure 6.8: Four steps of the estimation of the dynamic properties in a prismatic joint (Ikea); blue vertical
line: stiction ground truth (2.9N); orange vertical line: minimum kinetic friction ground truth (1.0N); red
vertical line: current tangential applied force; each plot depicts the histogram of particles (bottom axis),
the particles and Gaussian fit for the stiction parameter (middle axis) and the particles and Gaussian fit for
the kinetic friction parameter (top axis)

strongly in two cases: the cabinet drawer and the microwave door. The cabinet drawer is
quite heavy and possesses high quality bearings. This means that while a high force is nec-
essary to initiate motion (stiction), once the drawer is moving its inertia (an effect that we
don’t model) is considerable and helps the drawer to keep moving. The motion continues with
low friction thanks to the bearings, even without much additional force. In this conditions,
measuring the force to maintain the actuation (constant kinetic friction) is difficult. The
microwave door is very light and presents low friction. In these conditions, the noise in the
measured wrenches strongly affect the estimation.

In the second set of experiments we evaluate the integration of our dynamics estimation
method with the system that estimates kinematic properties from a cross-modal integration of
sensor signals. We evaluated the estimation of frictional properties on a cabinet door and two
drawers. The results are depicted in Table 6.3. While the integration in the system increases
the uncertainty about the working wrench, the estimated dynamic parameters are still close to
the ground truth values. However, the robot consistently overestimates the dynamic parame-
ters because our method does not discount the part of the tangential force that the soft-hand
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Object (Joint Type) Parameter Estimation ± SD Ground Truth ± SD

Ikea (prismatic)
Stiction 2.94N±0.756N 2.9N±0.12N

Kinetic Friction 0.94N±0.45N 1.0N±0.3N

Ikea (revolute)
Stiction 1.73Nm±0.54Nm 1.8Nm±0.4Nm

Kinetic Friction 1.69Nm±0.63Nm 1.7Nm±0.6Nm

Cabinet (prismatic)
Stiction 8.56N±0.85N 8.31N±1.2N

Kinetic Friction 0.62N±0.41N 1.83N±0.52N

Microwave (revolute)
Stiction 1.34Nm±0.71Nm 1.2Nm±0.35Nm

Kinetic Friction 0.48Nm±0.82Nm 0.65Nm±0.36Nm

Ikea small (prismatic)
Stiction 3.23N±0.47N 3.12N±0.65N

Kinetic Friction 1.78N±0.42N 1.98N±0.82N

Laptop (revolute)
Stiction 9.38Nm±2.31Nm 9.58Nm±0.84Nm

Kinetic Friction 7.94N±0.83N 8.40Nm±0.63Nm

Table 6.2: Estimation of stiction and kinetic friction from human interaction and ground truth kinematics;
SD stands for standard deviation; the standard deviation of the ground truth values corresponds to differ-
ences within our three ground truth measurements; the estimated values are averaged over five estimation
processes from different interactions

Object (Joint Type) Parameter Estimation ± SD Ground Truth ± SD

Ikea (prismatic)
Stiction 3.4N±0.77N 2.9N±0.12N

Kinetic Friction 1.35N±0.73N 1.0N±0.3N

Ikea (revolute)
Stiction 2.07Nm±0.61Nm 1.8Nm±0.4Nm

Kinetic Friction 1.93Nm±0.79Nm 1.7Nm±0.6Nm

Ikea small (prismatic)
Stiction 3.83N±0.88N 3.12N±0.65N

Kinetic Friction 2.51N±1.36N 1.98N±0.82N

Table 6.3: Estimation of stiction and kinetic friction from robot interaction in the integrated perceptual
system; SD stands for standard deviation; the standard deviation of the ground truth values corresponds
to differences within our three ground truth measurements; the estimated values are averaged over five
estimation processes from different interactions; the robot consistently overestimates the stiction and
kinetic friction due to the unaccounted effect of the soft-hand

absorbs and transforms into deformation. The estimated values are accurate enough to predict
approximately their effect on the interaction, as we will see in the next chapter.

6.7 Discussion and Limitations of the Cross-Modal Integration

We will begin this section by comparing the perceptual systems of previous chapters and this
chapter. We will analyze the different exploitation of problem structure. Due to the cross-
modal integration of modalities, the system of this chapter exploits further the interdependen-
cies between perceptual subtasks (OP4). And because one of the modalities characterizes the
robot’s actions, the cross-modal system also deepens the exploitation of interactions for the
interpretation of changes in sensor signals (OP1). We will focus on these two aspects.
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Exploiting Interactions (OP1) While in the systems of previous chapters the inter-
actions served only as generators of information-rich signals, in this chapter the system uses
information about the robot’s actions to interpret the changes in the sensor stream. This
is possible because part of the input sensor-action stream of the cross-modal system –the
state of the robot’s joints and the forces and pressures the robot applies on the environment–
reports about robot’s actions. Now, as we argued in previous chapters, a system that uses in-
formation about the interaction to interpret the changes in the sensor signals needs some sort
of interaction model. The model relates actions and changes in the sensor signals, the struc-
ture of the combined S×A×t. We defined four possible interaction-grasp models correlating the
motion of the robot’s end-effector and its effect into the pose of the parts of the articulate ob-
ject. Our perceptual system identifies the model that explains best the interaction and applies
it to interpret upcoming sensor signals. However, since our method depends on predefined
interaction-grasp models, it cannot generalize to different robots and end-effectors.

Thanks to the interaction grasping models, our cross-modal system improves robustness
and versatility, exploiting actions as source of information. In fact, we think that interaction
models are a crucial element for interactive perception and robot manipulation. There is a
justified interest from the robotics community on methods to estimate, learn and acquire
forward models (Agrawal et al., 2015, 2016, Byravan & Fox, 2017). In the next section of
this chapter we will investigate a method to learn interaction models online from experiences,
thereby reducing the dependency on predefined grasping models.

Exploiting Interdependencies between Perceptual Subtasks (OP4) The system
we have presented in this chapter implements our general approach for robot perception based
on coupled recursive estimation processes presented in Section 1.3. We have shown that this
algorithmic approach, when applied to multiple sensor modalities, leads to a system that
exploits the concept of cross-modality: when information from one sensor modality is applied
to interpret signals from another. This approach to multi-modal perception is present in
human perception (McGurk & MacDonald, 1976) and as we showed it is also beneficial for
robot perception.

In our system the models that define the interdependencies between perceptual subtasks
are given a priori. As part of the system description we define how subtasks interact with
each other and how to exploit information from one subtask for another. This dependency on
predefined engineered interdependencies is a limitation of our system. We believe that com-
bining our algorithmic approach with methods to infer the models of the interdependencies
between subtasks could be the key to apply our approach to a broader range of problems in
perception for robot manipulation.

We will now discuss to what extent the system presented in this first part of the chapter
accomplishes the goal and overcomes the challenges of perception for robot manipulation.
We will repeat the discussion at the end of the chapter, after we present our online learning
method for interaction models. Compared to the systems of Chapter 4 and Chapter 5, the on-
line IP system of this chapter 1) demonstrates that the perceived information is task-relevant
applying it to control ongoing interactions and generate new motion, 2) links further actions
and their consequences in the sensor signals (CH1), and 3) increases the robustness and versa-
tility of the robot perceptual skills to a broader range of unstructured environments and task
conditions (CH3).

Applying the Information for Manipulation As part of the experimental evaluation
we have developed and tested methods that exploit the information perceived online in our
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system to monitor ongoing interactions and to generate new manipulation actions. These
methods demonstrate that the perceived information is relevant for the task: the manipula-
tion of articulated objects. However, the trajectory generation method we presented in this
chapter only considers kinematic constraints of the articulated object, neglecting other proper-
ties like shape and dynamics. In Chapter 7 we will present a method that considers also these
characteristics to generate and select informative actions.

Extracting Information from Changing Sensor Signals correlated to Interac-
tions (CH1) As we have argued previously in this section, the interaction-grasp models link
actions and changes in the environment. The system we presented estimates the most likely
interaction-model as part of the perceptual problem. The result of this additional perceptual
subtask bridges the gap we identified in previous chapters: the robot can now predict changes
in the sensor signals as consequences of its own actions. This allows the robot to extract more
accurate information from the changing signals using information about the interaction.

Versatile Perception in Unstructured Environments (CH3) Our cross-modal sys-
tem builds kinematic models of articulated objects in adversarial environmental conditions,
and overcomes limitations of uni-modal systems. This increases the versatility of the IP sys-
tem to cope with different unstructured environments and tasks. The perceptual system uses
cross-modal information to also build simple models of the dynamics of the joints (frictional
properties). However, the system can only perceive the dynamic properties of one DoF artic-
ulated mechanisms. While mechanisms with only one DoF are the most commonly found in
human environments, we consider this characteristic a current limitation on the versatility of
our system. The estimation of the dynamics also assumes that the friction is independent of
the configuration, which does not hold for mechanisms with springs.

6.8 Learning Interaction Forward Models from Experiences

6.8.1 Motivation

We have seen in Chapters 4 and 5 and in the previous part of this chapter that we can build
uni-modal and multi-modal interactive perception systems as implementations of our general
approach based on coupled recursive estimation. These systems acquire task-relevant infor-
mation and address, with some limitations, the challenges of perception by leveraging the
structure of the problem. One of the structural properties they leverage is the interdependen-
cies between interactions and changes in the sensor signals, the key idea behind interactive
perception.

The systems of Chapter 4 and 5 exploit interactions to create information-rich signals and
reveal hidden structures, e.g. kinematic constraints. The system presented in the first part of
this chapter goes beyond that and uses information about the interaction (i.e. proprioceptive
signals) as prior to interpret changes in the sensor signals. This second type of exploitation of
interactions requires some form of interaction model that relates actions and changes in the
environment and in the sensor stream.

In the first part of this chapter we predefined four interaction-grasp models for a specific
end-effector that linked robot actions and changes in the environment. We proposed, as part
of the perceptual system, a method to select the most likely grasping model among these four
hypotheses. Previous approaches in interactive perception methods also assumed a priori
specified correlations between actions and changes in the sensor signals (Barragán et al., 2014,
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van Hoof et al., 2012, Hausman et al., 2015). These correlations represent the structure of the
combined space S×A×t of sensor signals S and actions A over time t that is relevant for the
perceptual task.

In the remainder of this chapter we will take a closer look to the problem of estimating
interaction forward models. An interaction forward model predicts the changes in the sensor
signals due to the robot’s actions (Levi & Kernbach, 2010). Our goal is to learn these models
online from robot’s experiences to reduce the dependency on predefined models. If the robot
can autonomously find the right structure in S×A×t this will improve the versatility of the
interactive perceptual system.

To be able to learn interaction forward models online, we will assume that the combined
space S×A×t is strongly structured, which means that the actions and the changes in the sensor
signals are intimately correlated. If our hypothesis is right and S×A×t is strongly structured, it
should be possible to find this structure for a large group of manipulation tasks by interacting
and observing the resulting changes in sensor signal.

We propose to find the relevant structure in this combined space by estimating the (pos-
sibly dynamic) correlations between A and changes in S. We assume that the relationship
between actions and changes in sensor signals is sufficiently smooth to be estimated recur-
sively from pairs of actions and observed changes. We will exploit the acquired model that
relates A and changes in S to address perceptual tasks that cannot be solved passively and to
achieve tasks defined as goals in S.

Methodologically, we will explore this hypothesis by extending the system we developed
in Chapter 4 with the integration and exploitation of knowledge about the robot interaction.
We will present a method to learn online the interaction forward model that relates robot
actions to changes in the environment and the sensor signals, the structure in the combined
S×A×t space. Using this model the robot can exploit the knowledge about the interaction
to complete missing sensor information and to make the perceptual process more robust. To
remove the dependency on predefined models and because such interaction models are usually
dynamic and task specific, we will propose a learning method to estimate the interaction
forward model from ongoing interactions (CH2).

We will evaluate if the learned model can be applied to improve perception and manipu-
lation in two aspects: a) to predict the motion of controllable degrees of freedom even under
occlusions, and b) to generate actions that fulfill a manipulation task.

In the following, we will first present our method to estimate recursively interaction mod-
els. Then, we will evaluate the improvement in perception and manipulation when using the
online learned interaction forward models.

6.8.2 Bayesian Recursive Estimation of Interaction Forward Models

The prevalent approach to learn interaction forward models is to restrict the problem to a
specific robot task and generate enough experimental data (changes in sensor signals) using
physical models (Barragán et al., 2014, Battaglia et al., 2013) or continuous executions of
the task (Lenz et al., 2015, Levine et al., 2016, Agrawal et al., 2015, 2016). This approach re-
quires large amount of data due to the high dimensionality of the state space for any realistic
robotic manipulation task. The approach cannot be applied to learn a model from ongoing
interactions.

In this work, we take a different approach: We exploit prior knowledge about the interac-
tion forward model by assuming that the model changes smoothly with respect to time and
robot’s configuration space. This assumption is reasonable for those tasks where an action of
the robot causes a proportional reaction in the environment, and there are no abrupt disconti-
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Interaction Forward
Model Servo Control

Robot Motion

Rigid Body Motion

RGB-D Sensor Data

Point Feature Motion

Figure 6.9: System to learn online forward models of the interaction; left column: original vision-based
system to estimate motion of rigid bodies; based on pairs of measurements of robot motion (eeη) and the
associated rigid body motion the robot learns a model that correlates both; the online learned model can
be used to improve perception (red arrow entering the estimation of rigid body motion) and to control the
manipulation (servo control loop)

nuities (e.g. due to changes in the contact interface between the robot and the environment).
This prior assumption allows us to approximate locally the forward model by a linear model L
that maps changes in the sensor stream, ṡ, to robot actions u:

ṡ = L · u (6.18)

where the matrix L ∈ Rk×m, k is the dimensionality of the action vector and m the dimen-
sionality of the measurement vector. In our method we consider as action the changes in the
configuration of the end-effector of the robot, i.e. the end-effector spatial velocity:

u = ee ṗ = eeη (6.19)

This information is contained in the proprioceptive signals we integrate in this chapter and
processed in Section 6.3.1.

The Equation 6.18 appears often in the context of robot visual control and servoing tasks (Corke,
2011). In these tasks, the robot’s goal is to cause changes in a set of visual features (ṡ) to-
wards a feature goal. For visual control tasks, the linear model correlating actions and changes
in sensor signals is known as the interaction matrix (Chaumette & Hutchinson, 2006). Given
the known general structure of the interaction matrix and the assumption that it changes
smoothly, this matrix can be learned online from pairs of robot actions and changes in the
visual sensor signals. Jägersand et al. (1997) presented an efficient update rule for visual ser-
voing tasks that estimates the elements of the interaction matrix when the changing sensor
signals are assumed to be visual point features.

Similar to the approach by Jägersand et al. (1997), we propose to estimate the interaction
matrix L recursively based on data of robot motion and corresponding feature change. There-
fore, the state we aim to estimate is the interaction forward model (ifm = interaction forward
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model):
xifm = L (6.20)

We transform our linear model relating changes in the sensor signals and robot actions to
obtain L in vector form:

ṡt = Ltut = Htlt (6.21)

lt = (L1,1
t , L1,2

t , . . . , L1,k
t , L2,1

t , L2,2
t , . . . , Lm,k

t )T (6.22)

Ht =

eeη
T 0

. . .

0 eeη
T

 (6.23)

where Li,j
t is the (i, j) element of the matrix Lt. The resulting state vector lt contains all

the elements of the interaction matrix. We reformulate our problem to the estimation of
x′ifm
t = lt. The use of the symbol H in the equation below is not casual: This matrix will act

as measurement model to estimate the interaction forward model, as we will see later.
We assume that the estimated interaction forward model does not change between time

steps:

lt = lt−1 +wifm
t (6.24)

l̂t = l̂t−1 (6.25)

The covariance of the system noise, Qifm
t , is a free parameter of our approach that governs the

sensitivity of the estimation: with large Qifm
t the estimation would adapt the model quickly to

new relationships between robot actions and changes in sensor signals, at the cost of increas-
ing the sensitivity to noise in the measured sensor changes.

We use as measurements to estimate the interaction model, observations of the changes in
the sensor signals:

zifmt = ṡt (6.26)

ṡt = Ht l̂t + vifm
t (6.27)

The measurement noise, Rifm
t , is based on the uncertainty of the sensor signals used for the

estimation.
The previously presented recursive estimation of a linear forward model can be applied

to any set of features in sensor space, s, that changes in correlation to the robot’s action.
We use as features the poses of the moving rigid bodies estimated from visual information,
{ip}i∈{1...N}, with N the number of currently tracked bodies. The measurements for the
estimation of the interaction forward model are thus ṡ = {i ṗ} = {iη}, the velocities of the N
rigid bodies. We create and maintain a separate interaction forward model for each moving
body, Li. To define the uncertainty of the measurements for the interaction forward model
estimation we use the visual uncertainty about the motion of the rigid bodies. The usage
of information from vision as explained above constitutes another example of cross-modal
integration, where the information perceived from vision enables a novel interpretation of the
proprioceptive signals.

The interaction forward models that we obtain from the recursive process defined are
called position-based image Jacobian matrices in the visual servoing literature (Chaumette
& Hutchinson, 2006). These matrices correlate motion of the end-effector, eeη, to visually
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6.9 Experiments on Learning Interaction Models

Figure 6.10: The robot grasps an object with a cylindrical grasp and manipulates it; rotations along
the main axis of the cylindrical grasp are not transmitted to the object; first row: external view of the
experiment; second row: robot view from an RGB-D sensor; left column: the robot observes the outcome
of its actions and learns an interaction forward model; right column: the object is occluded and its pose is
predicted using the forward model

perceived motion of the rigid bodies, {iη}. Nevertheless, the method is general enough to
estimate an interaction forward model for any other set of features that fulfill our working as-
sumption: the correlation between changes in the features and robot actions should be linear
or linearizable and change smoothly over time and configuration space.

6.9 Experiments on Learning Interaction Models

In the following experiments we initialize the interaction forward model x′ifm
0 = l0 with zeros

to indicate that the objects are usually uncontrollable until the robot perceives that they
move in correlation with its own actions. The estimation problem is solved using a Kalman
filter. We found experimentally that with a covariance matrix for the system noise of Qifm

t =
0.05I36×36 the estimation of the models converges quickly and is robust against noise in the
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sensor input.

6.9.1 Online Interactive Perception Using Interaction Forward Models

First, we evaluate if the online learned models improve perception. We compare the tracking
capabilities for rigid bodies of our online IP system based only on vision (Chapter 4) to a
system that predicts the motion of the rigid bodies based on the robot actions using the
online learned interaction forward model.

In the online IP system of Chapter 4, we predicted the motion of the rigid bodies based
on the estimated velocity. Alternatively, we predicted motion assuming that the body was
abruptly stopping, or using predictions based on the kinematic structure of the articulated
object. None of these predictions used information about the action of the robot.

We create an alternative online IP system that predicts the next pose of the rigid bodies in
the following manner:

ibpt = ibpt−1 ⊕∆t(L
i
t eeη) (6.28)

In the alternative IP system, this model substitutes the three alternative forward models in
the system presented in Chapter 4.

We will evaluate whether the robot is capable of tracking rigid bodies more accurately and
robustly using the alternative IP system, even when there is no visual information to correct
the prediction, e.g. due to visual occlusions.

Experiment: To evaluate the integration of the estimated forward models into the alter-
native IP system, we command the robot to grasp and move randomly a tool-box with a
broad handle. The model describing this interaction is not trivial because some robot mo-
tions have no effect on the pose of the object: The robot grasps the handle with a cylindrical
grasp that does not transmit rotations nor translations along the main axis of the cylinder
(see Figure 6.10).

Approximately after 65 s (enough time for the robot to learn the interaction forward
model), the robot moves the object to a region where the object becomes visually occluded.
And approximately 15 s later the robot moves the object outside of the occlusion area. We
will compare the pose estimation from the original IP system and the alternative IP system
using the learned interaction forward model. We obtain ground truth of the pose of the box
attaching AprilTags fiducial markers (Wang & Olson, 2016) and a second RGB-D sensor that
we calibrate externally. The markers are placed so that they are not visible to the RGB-D
sensor of the robot. The results are depicted in Figure 6.11.

During occlusion there are no visual signals to correct: both the online IP systems use the
predictions from their forward models as perceived object motion. The IP system that does
not use the interaction forward model predicts the object motion based on the last estimated
velocity. These predictions starts to drift as soon as the robot action changes the object’s
trajectory. The alternative IP system that uses the learned model can predict the object
pose correctly based on the robot’s actions, even though the error to ground truth in position
initially increases due to the unmodeled effect of the soft hand

When the object reappears in the visual field, only the IP system that uses the interaction
forward model can re-identify the object and assign correctly visual features. The IP system
that does not use the learned model cannot re-identify the object and continues drifting. We
think that the ability to re-identify objects after complete occlusions is a positive benefit of
the integration of the interactive forward models into the perceptual system of Chapter 4.
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Figure 6.11: Position and orientation (unrolled) error of the object pose using the interactive and the
passive forward models; the online IP system without the interaction forward model (blue) generates pre-
dictions based only on the estimated body velocity and fails when the object is occluded (after 65 s); the
modified online IP system (red) uses the online learned interaction forward model to predict the motion of
the body based on robot’s actions and estimates its pose even without visual signals

6.9.2 Visual Servoing

Given the similarity of the equations to estimate forward models and the visual servoing
control, we can “invert” the equation and formulate a servo control law to achieve desired
changes in the sensor signals from robot actions. In our case, the goal is to control the motion
of a manipulated object without prior knowledge about the contact, the hand morphology and
the camera configuration.

Similar to classical visual servoing control, we use a pseudo-inverse of the estimated interac-
tion forward model, (Li

t)
+ = L+

t , and a proportional gain λ, to define a control velocity twist

eeη
cmd
t that minimizes the error ep between the objects current and desired goal pose:

eeη
cmd
t = −λL̂+

t ep (6.29)

The error ep corresponds to the difference in exponential coordinates between the current pose
of the object and the goal.

We will evaluate if the robot can use the learned model to move an object to a desired pose
based on the RGB-D images from an uncalibrated camera (at an unknown pose with respect
to the robot).

Experiments: In our experiment, two objects move in front of the robot’s camera, one
grasped by the robot and the other moved by an experimenter (Figure 6.12). In the initial
phase, the robot moves randomly the object and observes the motion of both objects. The
robot estimates the interaction forward models correlating its own actions and the motion of
both objects. Then, the robot compares the interaction models to identify the controllable
object. The robot considers that one of the objects is controllable if the predictions based on
the learned interaction forward model are accurate under an error threshold eth.

In the second phase, after approximately 20 s, the robot is confident enough that one of
the bodies is controllable and uses the online learned interaction forward model to move this
object to the desired goal pose. The desired goal pose is at the center of the field of view of
the robot in the uncalibrated camera. We repeat the experiment three times with different
initialization of the robot and distractor. In the three trials, the robot successfully identifies
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Figure 6.12: Robot view of two objects moving, one controlled by itself the other controlled by an exper-
imenter; left: the robot identifies the controllable object based on the online learned interaction forward
model, and uses the model to bring the controllable object to the goal (circle and frame at the center of
the image); right: the pose of the controllable object converges to the goal

the controllable object and moves it to the desired goal pose with a final error under 3 cm in
position and 7◦ in orientation. The robot can successfully estimate the model that correlates
its own actions and the visually perceived motion of the objects, even without prior knowledge
of the camera pose and the grasping.

6.10 Discussion and Limitations of Learning Interaction Models

In this section we will discuss the strengths and limitations of the method we presented to
learn interaction models, and its applications for perception and control.

Applying the Information for Manipulation As part of the experimental evaluation,
we showed that the robot could use the online learned interaction model to control the motion
of an object towards a predefined goal. It would be necessary to carry out a more extensive
evaluation to assess thoroughly the convergence and robustness of the proposed approach in
different environmental and task conditions. However, we think that our experiments showed
that the robot can learn online how its own actions influence the environment, and use this in-
formation to control the manipulation. Learning interaction models online requires to leverage
additional problem structure, in this case the assumption that the interaction model changes
smoothly with respect to time and robot’s configuration space.

Extracting Information from Changing Sensor Signals correlated to Interac-
tions (CH1) Our proposed approach to learn interaction forward models uses the coupling
between changes in the sensor signal and interactions as input. Therefore, the method is focus
on the information contained in the changes, rather than in the static sensor signals. We also
presented an extended variant of the online IP system of Chapter 4 that integrates the learned
interaction forward model. This variant of the online IP system can predict the changes in the
sensor signals (in body poses and from that, in feature motion) using robot’s actions as input.
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Perceiving Quickly and Online (CH2) The method we presented estimates interac-
tion forward models from ongoing interactions. However, there are some limitations in the
method’s online capabilities. Given that we represent the interaction forward model as a Ja-
cobian, the dimensionality of the problem is the dimensionality of the combined sat space. In
our implementation, we assumed that the motion of the end-effector is the action signal and
the visually perceived motion of the rigid bodies are the sensor features. The dimensionality
of the interaction forward model estimation problem in this case is 6 × 6 = 36. Our method
requires some time to converge to a good estimation of these 36 values. For more complex
sensor features, the dimensionality of the problem increases.

Versatile Perception in Unstructured Environments (CH3) The main limitation
of our methods derives from our working assumption: The interaction forward model changes
smoothly with respect to time and configuration space. This assumption allowed us to assume
that the model is linearizable and solve the problem as an online Jacobian estimation problem.
However, if the interaction model was not linear or cannot approximated by a slowly changing
linearization (i.e. if the model changes abruptly), the method we presented would fail. There-
fore, our method cannot be applied to tasks with discontinuities like grasping/ungrasping
operations, or abrupt contact changes. For those scenarios, a model representation that can
cope with non-linearities (e.g. an artificial neural network) should be preferred (Levine et al.,
2016, Agrawal et al., 2016).

6.11 Conclusion

In the first part of this chapter, we presented an online IP system that perceived articulated
objects (kinematic and dynamic properties) integrating multiple sensor modalities in a cross-
modal fashion. Using cross-modality, our system leveraged information from one modality
as prior to interpret signals from the other. Exploiting these interdependencies between per-
ceptual subtasks, our IP system overcame limitations of previous uni-modal systems. We
complemented the perceptual system with a velocity-impedance controller that generated
information-rich signals from safe interactions. We also proposed an online trajectory genera-
tor that used the perceived information to bring the object to a new configuration.

Since one of the input modalities to our system contained information about the robot’s
actions, we developed interaction models correlating interactions and changes in the sensor
signals. In the first part of this chapter, we predefined several interaction (grasping) models
and proposed a method for our system to select the most likely one. In the second part of this
chapter, we investigated a simple method to reduce the dependency on predefined interaction
models with an online-learning approach. We demonstrated that for tasks where the interac-
tion model changes smoothly, an online Jacobian estimation approach provided models that
could be used to support and control ongoing robot interaction.
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7
Action Selection for Interactive Perception

In the previous chapters we presented three systems that perceive kinematic, geometric and
dynamic (frictional) properties of articulated objects from visual and proprioceptive signals of
interactions. To generate information-rich signals, we implemented an impedance controller
that guides the robot interaction (pushing and pulling actions) along the dimensions allowed
by the constraints of the object, based on measurements from a force-torque sensor on the
robot’s wrist. Using the controller, the robot actuates successfully the articulated mechanisms,
assuming a decent controller initialization. However, the robot still needs the initial param-
eters for the interaction (e.g. where and how to grasp, in which direction to pull or push),
which we provided using kinesthetic teaching or manual specification. This is a strong limita-
tion for robots that aim to explore autonomously the environment and acquire information
about the articulated objects in it.

In this chapter we overcome these limitations with a method to autonomously generate and
select the most informative actions to feed the interactive perception methods presented in
previous chapters. Combining the action selection method and the perceptual systems the
robot builds incrementally richer models with task-relevant information of the articulated ob-
jects. Our goal is thus twofold: first, we aim to increase the autonomy of the robot to create
and select actions that will serve for the interactive perception of the articulated objects in
the environment. And second, we close the loop and evaluate if the information perceived
with the systems of previous chapters enables autonomous robot manipulation of DoF, the
goal for perception we defined in Chapter 1.

As one of our goals is to generate informative actions, we need to define which actions
will create the information-richest sensor signals for the interactive perception systems of the
previous chapters. Usually, information gain is measured directly as the reduction of entropy
of the belief state of the environment. In our presented perceptual systems, the actuation
of the articulated mechanisms reduces the entropy about the articulated object. Therefore,
in our action selection method, we advocate for the use of induced motion as an simple but
effective proxy for information gain in the context of perceiving models of articulated objects.
In this problem, motion is a good proxy as it reveals the articulation of the mechanism and
the relationship between the motion of rigid bodies and the forces applied to them.

A crucial bottleneck in selecting informative actions is the model that is used to predict
action outcomes. Manipulations of articulated objects are contact-rich interactions. The
large variety of possible kinematic structures and their dynamic properties make it difficult to
find general predictors of the real world. This is even harder for soft end-effectors as the one
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Figure 7.1: The selection of
information-revealing actions
for interactive perception of
articulated objects is split
into two subproblems;(1)
constraints due to robot
kinematics, collisions, and
kinematics of the articu-
lated object are satisfied
via sequential convex opti-
mization (Schulman et al.,
2013a) on a kinematic model
(top); (2) the complex con-
tact interactions between
end-effector and object (cen-
ter) are evaluated with a
dynamic physics simula-
tion (Allard et al., 2007);
the execution of the selected
motion (bottom) reveals in-
formation about the object,
which improves the model
and in turn affects the next
action selection

equipped on our robot. We therefore propose the use of a physical simulation for predicting
and evaluating the outcome of actions. The proposed simulations are grounded in the real
world because they are based on estimated articulated models obtained during interactive per-
ceptual. To alleviate the accompanied computational costs of such simulations, we compare
different sampling methods to select informative actions.

As an action generation and selection approach, the contributions of this chapter are
twofold: We show that motion can be used as a proxy for information gain and that the
gained knowledge allows for riskier and more tailored manipulations. Second, we present a
method to find informative actions by sampling physics simulations and splitting the search
into kinematic and dynamic aspects. We integrate our proposed action selection method and
the perceptual systems of previous chapters into a real-world robot system that perceives and
interacts with articulated objects.

7.1 Related Work

Previous methods that select actions for interactive perception differ in 1) how they assess
the information gain of an action (some kind of cost or objective function), and 2) how they
explore the space of possible interactions to find the most informative one. One of the first
methods in interactive perception (Tsikos & Bajcsy, 1988)) proposed an approach to map
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the content of a tray into a graphical representation that encodes the spatial distribution of
objects. This representation is directly mapped into the best next action (e.g. shake the tray,
pick and remove) to clear the tray. In a similar vein, Gupta & Sukhatme (2012) proposed an
approach to perceive the “amount of clutter” of objects on a table. The amount of clutter
maps directly into the best next action (e.g. pick an object, push the clutter) to clear the
table. Hermans et al. (2012) presented an action selection method to push objects on a table
and singulate them. Their method is based on the insight that pushing along the direction of
visual edges between image regions would maximally help to separate objects. These meth-
ods generate an intermediate representation that maps heuristically to the most informative
action. The set of possible actions is predefined and their outcome is not explicitly predicted.
Differently, we do not use a representation limited to the action selection task, but the result
of the perceptual systems of previous chapters that, as we already shown, supports robot ma-
nipulation of articulated objects. Also, when interacting to perceive articulated objects, the
complexity of the manipulation do not allow for a simplification of the outcome as the one
of the previous approaches, and requires to better predict the effect of the interaction in the
constrained mechanism.

A second group of action selection methods use entropy-based information gain criteria to
select the action of (expected) largest reduction on the uncertainty about the environment.
van Hoof et al. (2012) presented a method to select the best pushing action to segment a clut-
tered scene. Their probabilistic model contains hypotheses about the regions that belong to
the same object and serves as simple forward model. Our model contains more detailed kine-
matic and dynamic information that we use to obtain more descriptive action consequences
and to generate and select more complex grasp-and-interact sequences. Hausman et al. (2015)
presented a method to select the best action to gain knowledge about the kinematic con-
straints of an articulated object. Similar to our approach, they require an initial human in-
teraction. They assume a known grasping pose and select the best pulling direction. Otte
et al. (2014) proposed a similar entropy reduction method based on a physics simulator. Their
method considers several single-joint articulated objects and selects to interact with the one
that will reveal more information about the overall structure of the environment. Different to
these methods, ours generates and selects autonomously complete actions –including grasping
pose and manipulation trajectory– and incrementally incorporates and exploits information
including dynamic properties.

Entropy-based methods require to predict 1) the outcome of an action, and 2) the influence
of the outcome on the belief (through a perceptual system). Because both predictions are
costly to compute, previous approaches generate a finite set of possible actions from the con-
tinuous space of action parameters based on a heuristic, and computes the most informative
one. Our method addresses differently the challenges of searching for the most informative
action: First, given that our perceptual system reduces entropy by accumulating motion
evidences about the articulated object, we avoid the costly computation of the exact belief
change for each action and predict instead the amount of actuation of the articulated mecha-
nism. Second, we do not predefine a discrete set of actions but explore the parameter space of
actions to find the most informative one.

The motion planning community has also addressed the problem of generating and plan-
ning interactions with articulated objects using knowledge about its kinematic constraints.
These methods exploit the definition of the task (the manipulation of an articulated object)
to simplify the generation and/or selection of actions (Prats et al., 2007, Boutselis et al., 2014,
Tovar & Suárez, 2016, Pflueger & Sukhatme, 2015). We also aim to obtain task-aware actions
but do not rely on given models; on the contrary, our method integrates the action genera-
tion, selection and the perceptual problem into a single process and provides interactions that
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reveal more information to build a richer model. Stilman (2007) use the constraints of the
articulated object to guide the search of robot trajectories in joint space. Instead of searching
in the space of joint trajectories, we search in a simpler task-related action space and enforce
the feasibility of the manipulation using trajectory optimization. Our goal is not to find one
solution for the overly constrained motion planning problem, but rather to find the optimal
solution to actuate the mechanism and reveal information about it.

Finally, the idea of using a physics simulator as a model for motion planning or action
selection has been previously explored (Otte et al., 2014, Dogar et al., 2012). We think this
is a well suited approach to avoid having to assume simplified action effects that cannot be
predicted for complex articulated objects. However, our approach is essentially different to the
literature because we integrate a perceptual algorithm to ground the simulation to the real
world, leading to more realistic simulated action effects.

Conclusions and comparison to the proposed approach: Most previous approaches
to generate informative actions for interactive perception did not tackled the manipulation
of constrained mechanisms. The approaches that selected actions for articulated objects pre-
defined a small set of actions and predicted the information gain based on simple forward
models. The motion planning community tackled the interaction with complex constrained
mechanisms only as a manipulation task, not as an information-gaining problem. They also
assume perfect models of the constraints. We will merge concepts from interactive percep-
tion and motion planning and propose a method to generate and select informative actions
autonomously. These actions are robust to uncertainties in the model of the articulated object
and help to reduce them.

7.2 Physics-Based Action Selection

7.2.1 Modeling Articulated Objects

We use the perceptual systems presented in previous chapters to estimate a (partly) proba-
bilistic model of an unknown articulated object. Based on this model we present a method
that selects the action that reveals most information to improve this estimate.

We integrate the kinematic, geometric and dynamic properties perceived in previous chap-
ters into an undirected graph, xao := (L, J), where the set of nodes L are links and the set
of edges J represent joints. A link li ∈ L is represented with a triangular mesh of its shape
computed from the model Shapei perceived with the method of Chapter 5. A joint jk ∈ J is
the most likely kinematic constraint between a pair of links, and it is represented with random
variables of its kinematic and dynamic properties perceived with the methods of Chapter 4
and Chapter 6:

jk := (λk, qk, q̇k,Sk,KF k), (7.1)

where λk are the joint-specific parameters, qk is the joint’s configuration, q̇k is the velocity
of the joint, Sk is the force to overcome stiction (force required to initiate joint motion), and
KF k is the constant kinetic friction (force required to maintain joint motion).

The prerequisite of the perceptual systems of previous chapters is a forceful interaction
with the articulated object that generates motion and information-rich sensor-action signals.
While kinematic and shape properties can be estimated both from observing another agent
interacting or (more easily) from self-interaction, the estimation of dynamic properties re-
quires the robot to contact the object to obtain haptic sensor signals. In the previous chapter
this prerequisite was circumvented by predefining contact-rich interactive manipulations, e.g.
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Figure 7.2: Left: robot view at the end of a human interaction with the articulated objects (estimated
kinematic structure overlaid: prismatic joints in green, revolute joints in red, uncertainty indicated with
translucent cones); Right: 3D visualization of the RGB-D input and the estimated kinematic model and
state (reconstructed shape of the movable link in red)

with kinesthetic teaching or providing a good initialization for an impedance controller. In
this work we address the fully autonomous generation and selection of the most informative
interactions to be used by the interactive perceptual systems of previous chapters.

7.2.2 Selecting Actions for Articulated Objects

Our goal is to generate and select robot actions that learn as much about the articulated ob-
ject as possible, i.e. decrease the uncertainty of the estimated model of the articulated object,
xao. To achieve this uncertainty reduction we use a task-specific objective – maximizing the
motion of the articulated object – since this is the main source of information for our interac-
tive perception method. However, when revealing information of articulated objects there are
additional (kinematic) constraints that the action needs to satisfy. And because our goal is to
generate actions to be executed by a real robot, the specific robot manipulator additionally
restricts the actions: they have to be achievable given the kinematics of the manipulator and
should not lead to collisions of the robot with the environment. Considering these require-
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ments, we are looking for an action

a∗ = argmax
a∈A

∆q(a) (7.2)

subject to valid robot kinematics(a),

valid object kinematics(q),

collision free(a)

where ∆q(a) is the change of the object’s kinematic configuration induced by the robot action
a.

To maximize the amount of motion and actuation of the mechanism we parametrize a by
assuming three phases: reach towards a grasping/pushing pose, close the hand and move it
along the estimated DoF of the mechanism. The first part is fully characterized with a grasp-
ing/pushing frame (that we assume to be on the surface of the movable link) and an approach
vector towards this frame. We use a soft hand (the RBO Hand 2 presented in Deimel & Brock
(2016)) in our interactions that simplifies the search problem because it adapts morpholog-
ically to the environment during the closing phase and avoids having to define additional
grasping parameters. The last phase is a motion of the hand along the dimension of allowed
motion of the articulated object. To avoid reaching the joint limits of the mechanism we
generate motion between the borders of the joint state range observed so far. Therefore, an
action a is defined as a ∈ S2 × SE(3).

The effect of an action a in terms of the motion ∆qk(a) induced on the articulated object
is predicted using the physics dynamic simulation SOFA (Allard et al., 2007). SOFA is a
simulator that provides physically coherent interactions between an articulated object and a
soft-manipulator like the RBO Hand 2. The simulation is spawned with the current estimate
xao by including the reconstructed triangular meshes for each rigid body, Shapei, the esti-
mated kinematic constraints λk, qk, q̇k, poses, and frictional properties Sk,KF k. To account
for the probabilistic components of xao, we draw Nmodel = 3 samples for each simulated action.
Because the simulation of contact and interaction of the soft-manipulator with the articu-
lated object is computationally expensive we pre-impose the kinematic constraints due to the
robot manipulator on the action. We enforce that the robot’s, object’s kinematic constraints
and collision constraints are fulfilled using a sequential convex optimization (Schulman et al.,
2013a). We simulate the robot-consistent actions on the physics simulator and estimate the ex-
pected actuation of the mechanism over the samples of the belief of the environment ∆qk(a

′).
The action selection process is summarized in Algorithm 2.

Sampling the space of action parameters and evaluating the induced motion to find a∗ is
costly. We compare three sampling schemes with increasing exploitation of previous sample
quality: a random mesh-based sampling (pure exploration), an evolution strategy with Gaus-
sian moves, and a sequential sampling based on batch Bayesian optimization. The assumption
of the exploitative methods is that the similar actions will result in similar outcomes. The
goal is to derive a sampling strategy that requires as few samples as possible to find infor-
mative actions avoiding costly simulations. To reduce the time required in the simulation
of sampled actions, we parallelize them within batches, i.e. we evaluate Nbatches batches of
Nbatchsize actions. In our experiments we use Nbatches = 10 and Nbatchsize = 100, totalling
1000 actions.

Random Sampling

The random sampling scheme uniformly selects a point on the mesh surface, a hand orien-
tation and approach vector. In contrast to the two other schemes it is a pure exploration
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Algorithm 2 Physics-Based Action Selection

Input: xao ▷ The current estimate of the articulated object
1: A← ∅, Q← ∅ ▷ The set of all available actions and the

corresponding induced articulated object motion
2: for i = 1..Nbatches do
3: Anew ← sample(A) ▷ Sample Nbatchsize actions
4: Anew ← constrain(Anew)
5: for a ∈ Anew do
6: for j = 1..Nmodel do
7: o← sample(xao)
8: ∆qjk ← simulate(a, o) ▷ Simulate an action on a current articulated

object sample (SOFA)

9: A← A ∪ {a}, Q← Q ∪ { 1
Nmodel


j
∆qjk}

10: a∗ ← argmax
a∈A

Qa

11: return a∗

strategy, without taking past samples and their performance into account.

Evolution Strategy

For each new batch the evolution strategy uses Nbatchsize of all best performing past actions
and mutates them by adding normally distributed noise. The standard deviation of the noise
decreases linearly in the number of batch iterations. This creates the effect of going from an
initially exploratory behavior towards an exploitative one, similar to the temperature decrease
in simulated annealing. The very first batch uses only uniformly distributed random actions,
as in the random sampling strategy.

Bayesian Optimization

In vanilla Bayesian optimization, samples are drawn sequentially based on an acquisition func-
tion which is estimated from known data. We use upper confidence bounds as our acquisition
function. Since we want to sample entire batches of actions instead of single ones, we use
a batch Bayesian optimization approach (González et al., 2016). In this approach, samples
within one batch are chosen iteratively as maximizers of the acquisition function. In each
iteration a penalizing function is applied which discourages new samples in the local neigh-
borhood of existing ones. The influence of the local penalizer depends on an estimate of the
Lipschitz constant of the acquisition function which represents the smoothness of the function
over the entire domain.

7.3 Experiments

We evaluate our approach by first supporting our assumption that motion indicates the
amount of information gained. Based on this result, we show that the informative actions
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Figure 7.3: Entropy of the probabilistic model of the articulated object as a function of the amount of
motion in prismatic (left) and revolute (right) joints; black curve: mean entropy of eight interactions with
different objects; light green/red: standard deviation of the entropy of eight interactions with different
objects; dark green and red curves indicate individual entropy reduction in each experiment; the entropy
monotonically decreases with the amount of actuation of the kinematic mechanism

incrementally improve the estimated model of the environment in real world experiments, and
lead to more robust actions. Finally, we find that Bayesian batch optimization is the most
efficient sampling strategy.

7.3.1 Induced Motion Correlates with Information Gain

The perceptual systems we use to update the belief about the state of the environment (from
previous chapters) recursively integrate sensor evidences about the constraints of motion.
These systems decrease the uncertainty about the belief over the state by observing motion in
the articulated object. We analyze the entropy reduction of our estimation algorithm on 16 ex-
amples of interactions with drawers and cabinet doors. This data was recorded from different
point of views and contains human as well as robot interactions. Figure 7.3 depicts the mean
and standard deviation of the entropy as a function of the amount of induced actuation. Since
all estimations begin with the same prior belief, the initial entropy is always the same. Our
experiment confirms that the entropy of the estimate decreases monotonically as more motion
of the mechanism is observed.

7.3.2 Acquiring Dynamic Information Improves Interactions

To show that our method selects informative actions which allow to plan more robust ma-
nipulations, we conduct two experiments including a drawer and a cabinet door. We use a
7-DoF Barrett WAM, equipped with the pneumatically actuated RBO Hand 2 (Deimel &
Brock, 2016), an Asus RGB-D sensor and an ATI FTN-Gamma force-torque sensor on the
wrist (Figure 7.1).

Our approach requires an initial human interaction, since it starts with the assumption
that the environment is a single static rigid body. Once the mechanism has been articulated
by a human, an initial kinematic model with significant certainty can be estimated (see Fig-
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Figure 7.4: Result of the action generation and selection for different levels of uncertainty about the
articulated object; First row: simulated actions; Second row: real robot execution; Left: best action for
highly uncertain articulated model (action robust against uncertain kinematics and dynamics); Right: best
action after the reduction of uncertainty from the execution of the robust action

ure 7.2). In contrast, the estimates of stiction and kinetic friction of the joints are still uncer-
tain. Based on this model, our method generates and selects an interaction that maximizes
the expected articulation (see Figure 7.6). By executing this action the robot gathers ad-
ditional visual and haptic data to infer the joint’s dynamic properties. In the drawer experi-
ment, the estimates after this interaction are S ∼ N (3.3N, 0.6N2) and KF ∼ N (1.1N, 0.2N2).

Figure 7.4 shows how certainty in the estimation of the drawer’s dynamic parameters af-
fects the selected interaction. During the first interaction our method finds a rather conser-
vative handle grasp to generate the most motion in the face of unknown joint stiction and
friction. After the first action, a riskier but more tailored manipulation is selected. Actuating
the drawer by pulling the edge of its front part only works because of the low known joint
resistance. This action would fail if the drawer was filled (see attached video). The effect of
higher certainty in the estimated model of the drawer and cabinet door is also shown in Fig-
ure 7.5. In both cases known dynamics lead to more solutions that cause large motions of the
articulated object. In the cabinet door experiment the robot’s haptic observation was noisier,
leading to a less pronounced benefit compared to the drawer experiment.
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Figure 7.5: Comparison of the random mesh-based sampling strategy on the models with uncertain (blue)
and certain (red) dynamic parameters; after acquiring information about the dynamics the algorithm
generates and selects interactions that lead to larger motion

7.3.3 Comparison of Action Sampling Schemes

We compare our three proposed action selection strategies (random sampling, an evolution
strategy, and batch Bayesian optimization) to evaluate how many samples they require to ap-
proximate the optimal action. We ran those strategies on the drawer example and selected a
total of 1000 actions in ten consecutive batches. The results in Figure 7.6 show that focussing
the search on promising actions – as done by the evolution strategy and Bayesian batch opti-
mization – helps to find informative actions more quickly. The Bayesian optimization already
finds multiple good solutions after 5 batches, while the evolution strategy becomes overly
exploitative in the later stages.

7.4 Discussion and Limitations

We will now discuss the most severe technical limitations of our proposed approach. We will
also discuss how the integration of the action selection method and the interactive perceptual
systems of previous chapters, changes the way the combined system leverages the opportuni-
ties in perception for the manipulation of DoF.

The current method does not show generalization to new articulated objects but it can be
applied to articulated objects with first order joints of any shape, appearance and size, as far
as it can be perceived by the perceptual systems and actuated by the robot. This is a result
of the versatility we pursued when developing the perceptual systems in previous chapters.
To improve generality, an simple object recognition method could be used to transfer the
estimated information and the successful interactions between instances of articulated objects.

All three evaluated sampling schemes are initialized with a uniform sampling. An initial
sampling based on heuristics exploiting shape or kinematic information, or by the same object
classification to transfer information about object classes would reduce the amount of initial
exploration.

Beyond the aforementioned limitations and properties of the action selection method, the
combination of action selection and the perceptual systems of previous chapters leads to
changes in the way these systems exploit the opportunities in perception for robot manipula-
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Figure 7.6: Comparison of three sampling schemes, showing the mean (solid) and standard deviation of
the induced motion of the top 100 actions and the 10th best action (dashed); dashed vertical lines depict
ten batches; exploitative methods find an optimal set of actions more efficiently (with less samples)

tion of DoF. From the side of the opportunities the presented method improves the way the
perceptual systems exploits interactions (OP1), and physical priors (OP3). Also, the method
presented here further demonstrates that the perceived information is useful for the manip-
ulation task and to increase the autonomy of robots in unstructured environments. In the
following we will analyze these changes.

Exploiting Interactions (OP1) Our action generation and selection method inherits
the need for an initial interaction from our systems to perceive articulated objects, Chap-
ter 4, 5 and 6. Without any initial information the amount of possible actions is too large to
be searched randomly. However, the integration of action selection removes the need of a pre-
defined robot interaction to improve the initial model and perceive dynamic properties. The
robot can autonomously generate and select the most informative action, given the current be-
lief over the articulated object. This represents a new level in the exploitation of interactions
for perception since the overall system is not limited to interpret the action-sensor stream, but
it can actively change the action-sensor stream to increase the information it contains.

Exploiting Physical Priors (OP2) While not directly for perception, the combined
system exploits in a different manner known physical regularities of the environment: through
the physics simulator. The simulator predicts accurately the effect of the robot interaction
with a soft manipulator, acting as forward model.

We think that a remarkable property of our combination of action selection and perceptual
system is that the predictive capabilities of the simulator greatly improve because we ground
the physics simulator to the real world with perception. However, using the Sofa physics
simulator as forward model presents a limitation: the simulations are very expensive compu-
tationally and in terms of time. This limitation, which not severe when planning next actions,
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is a handicap to use the physics simulator directly as forward model for our online perceptual
system.

Applying the Information for Manipulation The action selection method of this
chapter operates directly on the information provided by the perceptual systems of previous
chapters. Based on this information, the method of this chapter generates possible interac-
tions with a newly encountered articulated object. These interactions are free of collisions
and executable for the given robot platform and soft end-effector. We can conclude that the
information provided by the perceptual systems is thus allowing to generate and select robot
manipulation actions with the articulated objects.

7.5 Conclusion

We presented a method to generate and select actions for interactive perception, exploiting
the insight that for a class of interactive perception methods, information gain correlates with
the magnitude of the resulting motion (i.e. actuation of the articulated mechanism). The
action selection method is based on the information perceived with the systems presented
in the previous chapters. Based on the proposed action selection, the robot closes the loop
and builds increasingly rich and accurate models of articulated objects through interactions.
We presented and evaluated different action sampling schemes to reduce the costly step of
predicting the effects of the contact-based interactions while still finding the optimal action
parameters. We validated our approach in real-world experiments with two articulated objects
of different joint types, demonstrating that the method applies to both revolute and prismatic
joints.
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Discussion and Conclusion

In this thesis we investigated how to design robot perceptual systems that acquire information
to support ongoing robot mechanical manipulation. We focussed on a specific type of ma-
nipulation, the purposeful change of kinematic degrees of freedom (DoF) of the environment,
and the special case when the environment contains articulated objects with constrained DoF.
We now briefly summarize our main insights and then revisit the open challenges in robot
perception for manipulation of DoF presented in Section 1.1.

We started this thesis (Chapter 1) identifying several challenges that perception for me-
chanical manipulation must overcome (CH1-CH3), and opportunities, in the form of structural
properties of the problem, that perception can exploit (OP1-OP4). These structural prop-
erties are the correlation between interactions and (changes in) sensor signals (OP1) , the
physical structure of the environment and the sensor signal formation (OP2), the temporal
structure in the manipulation processes and its influence on the sensor stream (OP3), and the
interdependencies between information extraction subprocesses (OP4). We proposed a general
approach based on coupled recursive estimation processes to exploit these opportunities and
overcome the challenges of robot perception for mechanical manipulation.

In Chapter 4 we presented a first interactive perceptual system to build kinematic models
of articulated objects from a visual stream. The system exploited the opportunities for per-
ception (OP1-OP4) implementing our general approach for interactive perception. We showed
that the exploitation of the problem structure allows our perceptual system to build online
models of the constrained DoF of the objects, and that these models can be used to monitor
and steer ongoing interactions. However, the proposed system presented a limited versatility
because it can perceive only articulated objects with enough color texture.

In Chapter 5 we investigated how to overcome the aforementioned limitation in versatility
by integrating additional perceptual subtasks to the estimation of kinematics and leveraging
their interdependencies (OP4). We proposed a new perceptual system that includes the per-
ception of geometry (the shape of the objects) and uses the results of this process to improve
the estimation of kinematic models. We showed that the integrated system overcomes the
limitation of the system of Chapter 4. However, this second interactive perception system
was also based solely on visual input and failed if this sensor modality did not contain enough
information.

In Chapter 6 we investigated if our general approach for interactive perception can be
used to integrate information from different sensor modalities in a way that overcomes their
limitations. We presented a system that combines vision and proprioception in a cross-modal
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manner: using information from one modality as prior to interpret the other. Cross-modality
allows to leverage the interdependencies between perceptual subtasks (OP4) that use different
sensor signals. We showed that the cross-modal system overcomes the limitations of vision-
based interactive perception of kinematics, and obtains novel information about the dynamic
properties of the articulated objects.

To exploit proprioceptive information we formulated and selected the most likely model
among a set of possible grasp models that define the correlation between robot motion and
motion in the environment. To define these grasp models we used prior knowledge about the
morphology of the hand mounted on our robot. Therefore, our perceptual system can only be
used by our robot or robots with similar hand morphology. To alleviate this limitation, we
investigated how the robot can learn the interaction models correlating actions and changes
in the environment and in sensor signals online. We proposed a simple online learning mech-
anism combining visual and proprioceptive information to generate linear models (Jacobian
matrices) of the interaction that can be used for perception and for control.

In Chapter 7 we presented an approach to select robot actions to explore articulated ob-
jects based on the information acquired by the perceptual systems. Our motivation was two-
folded: 1) increase the autonomy of the robot to explore its environment, and 2) demonstrate
that the information obtained from our perceptual systems is relevant and useful for robot
manipulation. The combination of the action selection approach and the perceptual systems
allows the robot to build incremental models of the articulated objects in the environment.

We complemented the perceptual systems of chapters 4, 5 and 6 and the action selection
approach of Chapter 7 with robot control and motion generation approaches to interact safely
with constrained mechanisms. We proposed simple velocity-impedance controllers to guide the
robot motion along the DoF of the articulated objects using force-torque signals.

8.1 Challenges in Perception for Robot Manipulation Revisited

Extract Information from Changing Sensor Signals in Correlation to
Actions (CH1)

The perceptual problems tackled in this thesis and that related to the perception and ma-
nipulation of articulated objects illustrated the benefits of using interactions as part of the
perceptual solution. Interactions reveal information about the objects in the form of changing
sensor signals, information that is often very difficult to obtain passively, like the DoF or the
dynamic properties of articulated objects. The signals that the interaction creates are corre-
lated to the specific robot action and therefore knowledge about the interaction can be used
to interpret them.

We have argued that to fully exploit these interdependencies, perceptual systems need inter-
action models. The models can be defined based on physical priors, but defining these models
a-priori is complex for manipulation tasks involving rich contact with the environment. We
explored two possibilities to tackle this problem: 1) learning models from correlated action-
changing sensor signals, and 2) using a physics simulator as interaction model.

Learned interactive models can be very accurate but require large amount of training
data (Agrawal et al., 2015, 2016). A sensitive solution is to assume certain properties on the
model to be learned, e.g. the linear structure of the online Jacobian estimation, or the SE(3)
structure as demonstrated in the approach by Byravan & Fox (2017). The limitation of the
learned models is that their applicability is restricted to the domain represented by the train-
ing data. How to increase the generalization of these models without increasing the amount
of data is one the current research questions in the field. The most promising approach is to
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incorporate physical priors into the learning process (Byravan & Fox, 2017, Jonschkowski &
Brock, 2015)

Physics simulators overcome the aforementioned limitations of learned models. They are
valid to any environment and task that involve physical processes modelled in the simulation,
and do not require training data. However, the quality of the simulation depends strongly on
the accuracy of the parameters of the physical models. A way to overcome this limitation is to
ground the simulation to the real world through perception, as we showed in Chapter 7.

Summary: Perception becomes easier if it exploits the structure in the combined S×A×t
space. We need to develop new methods to learn this structure and obtain interaction models
correlating actions and changes in sensor signals, or link physics simulators to the real world
through perception.

Online Perception from Continuously Arriving Sensor Streams (CH2)

Perception for the type of robot tasks we consider in this thesis, the mechanical manipulation
of kinematic DoF, has to deliver information quickly. The robot needs to perceive and under-
stand the consequences of its own actions on the DoF of the environment while the interaction
is being performed. Based on the information perceived online the robot can monitor the task
execution, detect failures and correct for them. This online requirements apply to perceptual
tasks to support other types of robot manipulation.

We have seen that turning batch solutions into online perception could require a complete
different perceptual approach. In our case we compensated for the loss of future sensor data
using additional problem structure, e.g. using temporal recursion, leveraging physical priors
and exploiting information from other perceptual subtasks.

Summary: The online requirements of perceptual tasks in robot manipulation can be ful-
filled if the solution leverages the structure of the problem.

Be Versatile: Perceive in Unstructured Environments (CH3)

We started this thesis arguing that the difficulties for perception for robotics increase when
the robot needs to acquire task-relevant information in unstructured environments. The rea-
son is that these environments are uncontrolled, dynamic and very different from one another.
The robot needs to perceive in the large variety of environments we would like it to help us.

Increasing the versatility of the robot perceptual systems to different environments and
tasks reduces the specificity of assumptions we can make about the environment. But as we
have shown in this thesis, there is always some structural properties that are general to many
environments, like the ones we exploit in our approach (OP1-OP4).

Summary: To design versatile perceptual systems for robots to manipulate in unstructured
environments we need to identify the regularities of the perceptual problem and propose
methods to exploit them.
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8.2 The Future of the Four Perceptual Opportunities Leveraged in This
Thesis

The field of artificial and robot perception has changed drastically in the last years. Machine
learning techniques are gaining importance in perceptual systems, replacing engineered mod-
els by statistics obtained from the data. This trend has gained momentum especially since
the revival of artificial neural networks. Neural networks of many layers (known as deep neu-
ral networks, DNNs) have shown that they can extract regularities from a large amount of
data thanks to the improvement in algorithms and computation, e.g. by the use of graphics
processing units (GPUs) for training.

Solutions based on DNNs have reached new levels of performance in perceptual tasks like
image classification, speech recognition, or even when applied to problems like reinforcement
learning. The question is then, is a large amount of training data and artificial neural net-
works all we need to solve perception for robot manipulation? Is there any future for solutions
exploiting the four problem regularities we employed in this thesis? We will conclude this
thesis by discussing these important questions.

The use of neural networks does not eliminate the dependency on interactions to reveal
information that cannot be perceived passively (OP1). However, we envisage a future where
perceptual systems like the ones presented in this thesis provide labeled data about interac-
tions that can be used to train a neural network. For example, labeled images of articulated
objects and their properties (kinematics, dynamics) could allow a robot to learn to predict
these properties without interactions, in a similar way as humans can predict the structure
of a door or a laptop after interacting with some of them. Such a procedural approach using
a model based system to generate data for a DNN has been successfully applied by Schmidt
et al. (2017) to address the data association problem.

We already argued that one of the problems of machine learning approaches, and especially
of DNNs, is that they require a large amount of training data, and that the research com-
munity is trying to reduce this dependency encoding physical priors (OP2) into the network
structure. The question is not if physical priors are useful, but rather how to leverage them in
artificial neural networks. This is currently an open question in artificial perception.

There are already neural network architectures that try to exploit the temporal structure
of the perceptual problem (OP3). This is the goal of recurrent neural networks (RNNs) that
feed the output as an additional input. Solutions based on RNNs have shown improvements in
some areas of perception like semantic labeling (Xiang & Fox, 2017).

In this thesis we proposed to factorize complex perceptual problems into subtasks, and
interconnect the subtasks so that they can leverage their interdependencies. This modular
approach is opposed to the monolithic structure of DNN solutions. However, some recent ap-
proaches have shown that the factorization and interconnection idea can be applied to neural
network architectures (Kosiorek et al., 2017). Researchers are developing new algorithmic
approaches to modularize and compose DNNs in a way that leverages the interdependencies
between subunits (Sabour et al., 2017).

8.3 Epilogue

Robot perception should not focus on generating complex and complete models of the envi-
ronment, but on extracting the information that is relevant for the task (Aloimonos, 1990,
Ballard, 1991). Based on this information robots could reach new levels of autonomy and
versatility to manipulate in human environments. As Rodney Brooks said:
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If we were only able to provide the visual capabilities of a 2-year old child, robots
would quickly get a lot better. (Tobe, 2015)

But we have seen that robot perception is still a hard task, even for highly constrained
tasks and environments as the Amazon Picking Challenge (Correll et al., 2016). We think that
increasing the perceptual capabilities of robots is possible by leveraging the right problem
structure. In this thesis we identify four problem regularities that apply to many robot per-
ceptual tasks and environments, and presented an approach to leverage them. We believe that
the conceptual and technical contributions of this thesis could help to build robust and versa-
tile robot perceptual systems that will support and enhance their manipulation capabilities.
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control approach for opening doors and drawers under uncertainties. IEEE Transactions on Robotics,
32.

Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. International Journal
of Computer Vision, 1(4), 321–331.

Kato, Z. & Pong, T.-C. (2001). A markov random field image segmentation model using combined
color and texture features. In Computer Analysis of Images and Patterns (pp. 547–554).: Springer.

Katz, D. & Brock, O. (2007). Interactive perception: Closing the gap between action and perception.
In IEEE International Conference on Robotics and Automotion (ICRA). Workshop: From features
to actions-Unifying perspectives in computational and robot vision.

Katz, D. & Brock, O. (2008). Manipulating articulated objects with interactive perception. In
Proceedings of the IEEE International Conference on Robotics and Automotion (ICRA) (pp. 272–
277).

Katz, D. & Brock, O. (2011a). A factorization approach to manipulation in unstructured environ-
ments. In Proceedings of the International Symposium on Robotics Research (ISRR) (pp. 285–300).
Springer.

Katz, D. & Brock, O. (2011b). Interactive segmentation of articulated objects in 3D. In IEEE
International Conference on Robotics and Automation (ICRA). Workshop on Mobile Manipulation:
Integrating Perception and Manipulation.

Katz, D., Kazemi, M., Bagnell, J., & Stentz, A. (2013a). Interactive segmentation, tracking, and
kinematic modeling of unknown 3d articulated objects. In Proceedings of the IEEE International
Conference on Robotics and Automotion (ICRA) (pp. 5003–5010).

Katz, D., Kazemi, M., Bagnell, J. A., & Stentz, A. (2013b). Interactive segmentation, tracking,
and kinematic modeling of unknown articulated objects. In Proceedings of the IEEE International
Conference on Robotics and Automotion (ICRA) (pp. 5003–5010).

Katz, D., Orthey, A., & Brock, O. (2014). Interactive perception of articulated objects. In O. Khatib,
V. Kumar, & G. Sukhatme (Eds.), Experimental Robotics, volume 79 of Springer Tracts in Advanced
Robotics (pp. 301–315). Springer Berlin Heidelberg.

Katz, D., Venkatraman, A., Kazemi, M., Bagnell, J. A., & Stentz, A. (2013c). Perceiving, learning,
and exploiting object affordances for autonomous pile manipulation. In Proceedings of Robotics:
Science and Systems (RSS) Berlin, Germany.

Kemp, C. C., Edsinger, A., & Torres-Jara, E. (2007). Challenges for robot manipulation in human
environments [grand challenges of robotics]. IEEE Robotics and Automation Magazine, 14(1), 20–29.

Kenney, J., Buckley, T., & Brock, O. (2009). Interactive segmentation for manipulation in unstruc-
tured environments. In Proceedings of the IEEE International Conference on Robotics and Automotion
(ICRA) (pp. 1377–1382).

Kerl, C., Sturm, J., & Cremers, D. (2013). Dense visual slam for RGB-D cameras. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2100–2106).

Khatib, O. (1987). A unified approach for motion and force control of robot manipulators: The
operational space formulation. IEEE Journal of Robotics and Automation, 3(1), 43–53.

Khoshelham, K. & Elberink, S. O. (2012). Accuracy and resolution of kinect depth data for indoor
mapping applications. Sensors, 12(2), 1437–1454.

Knill, D. C. & Richards, W. (1996). Perception as Bayesian inference. Cambridge University Press.

154



References

Kosiorek, A., Bewley, A., & Posner, I. (2017). Hierarchical attentive recurrent tracking. In Advances
in Neural Information Processing Systems (NIPS) (pp. 3055–3063).

Koval, M. C., Dogar, M. R., Pollard, N. S., & Srinivasa, S. (2013). Pose estimation for contact
manipulation with manifold particle filters. In Proceedings of the IEEE International Conference on
Robotics and Automotion (ICRA) (pp. 4541–4548). Karlsruhe, Germany.

Koval, M. C., Pollard, N. S., & Srinivasa, S. S. (2015). Pose estimation for planar contact manipula-
tion with manifold particle filters. The International Journal of Robotics Research, 34(7), 922–945.

Kragic, D., Björkman, M., Christensen, H. I., & Eklundh, J. O. (2005). Vision for robotic object
manipulation in domestic settings. Robotics and Autonomous Systems, 52(1), 85–100.

Krainin, M., Henry, P., Ren, X., & Fox, D. (2011). Manipulator and object tracking for in-hand 3D
object modeling. The International Journal of Robotics Research, 17.
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