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“hunc igitur terrorem animi tenebrasque necessest
non radii solis neque lucida tela diei
discutiant sed naturae species ratioque.”

—Lucretius, De Rerum Natura





ABSTRACT

Long-range van der Waals (vdW) interactions play a fundamental role in the structure
and stability of many systems, ranging from small dimers to complex hybrid inorgan-
ic/organic systems (HIOS). However, how strong is the effect of vdW interactions on
the electronic properties of molecules and extended systems? It is often argued that the
vdW energy has a small, or even negligible, direct influence on the electron density, n(r),
and derived electronic properties, since the vdW energy represents only a tiny fraction
(0.001%) of the total electronic energy.

To answer the question posed above, we developed and employed a fully self-
consistent (SC) implementation of the density-dependent interatomic vdW functional
of Tkatchenko and Scheffler and its extension to surfaces. Not surprisingly, vdW
self-consistency leads to tiny modifications of the structure, stability, and electronic
properties of molecular dimers and crystals. However, sizable effects are found in
the electronic properties of large molecular complexes. Moreover, unexpectedly large
changes in the binding energies, distances and electrostatic moments are detected for
highly polarizable alkali metal dimers. Most importantly, vdW interactions produced
complex and sizable electronic charge redistribution in the vicinity of metallic surfaces
and at organic/metal interfaces.

As a result, for several coinage metal (111) surfaces, self-consistency induces modifi-
cations in the surface dipole, leading to an increase of up to 0.30 eV in the computed
workfunctions. Furthermore, in the case of HIOS, SC vdW entails modifications of up
to 0.22 eV in the shift of the interface workfunction, a property induced by molecular
adsorption. The underlying mechanism responsible for the workfunction modifications
stems from an interplay between two effects driven by SC vdW interactions: (i) the
modification of the interface dipole, and (ii) a reduction in the charge transfer between
the molecule and the surface.

In conclusion, the analysis of SC vdW effects performed in this work demonstrates
the importance of vdW interactions on the electronic properties of different classes of
systems, with self-consistency systematically improving the agreement between the
theoretical predictions and the experimental measurements. Overall, our study reveals a
nontrivial connection between electrostatics and long-range electron correlation effects.





ZUSAMMENFASSUNG

Langreichweitige van der Waals (vdW) Wechselwirkungen spielen eine fundamentale
Rolle in der strukturellen Stabilität vieler Systeme – von kleinen Dimeren bis hin zu kom-
plexen hybriden anorganisch/organischen Systemen (HIOS). Wie stark ist allerdings der
Effekt der vdW Wechselwirkung auf die elektronischen Eigenschaften von Molekülen
und ausgedehnten Systemen? Da die vdW Energie nur einen Bruchteil (0.001%) der
elektronischen Gesamtenergie darstellt wird oft argumentiert, dass sie einen kleinen
oder gar vernachlässigbaren unmittelbaren Einfluss auf die Elektronendichte n(r) und
die davon abgeleiteten elektronischen Eigenschaften hat.

Um die oben gestellte Frage zu beantworten, haben wir eine vollständig selbstkonsis-
tente (SC) Implementierung des dichteabhängigen, interatomaren vdW Funktionals von
Tkatchenko und Scheffler und dessen Erweiterung auf Oberflächen entwickelt und ver-
wendet. Wie zu erwarten, führte die vdW-Selbstkonsistenz nur zu kleinen Veränderun-
gen in Struktur, Stabilität und elektronischen Eigenschaften von molekularen Dimeren
und Kristallen. Jedoch konnten wir deutlichere Effekte in der elektronischen Struktur
von großen molekularen Komplexen feststellen. Unerwartet große Abweichungen traten
bei den Bindungsenergien und -längen, sowie den elektrostatischen Momenten stark
polarisierbarer Alkalimetall-Dimere auf. Die wichtigsten Unterschiede durch die vdW
Wechselwirkungen ließen sich jedoch anhand beträchtlicher Umverteilungen der Elek-
tronendichte an metallischen Oberflächen und organisch/metallischen Grenzflächen
beobachten.

Als Resultat finden wir für diverse Coinage Metal (111) Oberflächen, dass die Selb-
stkonsistenz Veränderungen des Oberflächendipols induziert, welche zu einer Erhöhung
von bis zu 0.3 eV in den berechneten Austrittsarbeiten führt. Weiterhin finden wir für
den Fall von HIOS, dass SC vdW zu Verschiebungen in der Grenzflächen-Austrittsarbeit
von bis zu 0.22 eV führt – eine Eigenschaft, die durch molekulare Adsorption verursacht
wird. Der zugrundeliegende Mechanismus, welcher verantwortlich für die Veränderun-
gen in der Austrittsarbeit ist, stammt vom Zusammenwirken zweier Effekte der SC
vdW Wechselwirkungen: (i) die Veränderung der Grenzflächen-Dipole und (ii) eine
Reduzierung des Ladungstransfers zwischen Molekül und Oberfläche.

Im Ergebnis zeigt unsere hier dargestellte Analyse der SC vdW Effekte die Wichtigkeit
der vdW Wechselwirkungen für die elektronischen Eigenschaften anhand unterschiedlicher
Arten von Systemen, welche mit Hilfe der Selbstkonsistenz systematisch die Übere-
instimmung zwischen theoretischen Vorhersagen und experimentellen Messungen
verbessern konnte. Insgesamt stellt unsere Studie einen nicht-trivialen Zusammenhang
zwischen der Elektrostatik und langreichweitigen Elektronenkorrelationen fest.
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INTRODUCTION

Since the earliest observations of natural phenomena, one of the central ambitions in
science has been understanding the fundamental laws that describe interactions in
matter. In the XVIII and XIX centuries, thanks to the technological progress, numerous
scientists dedicated much effort in investigating ensembles of many interacting particles,
including gases and liquids. As a result of these investigations it emerged that besides
local strong bondings, referred nowadays as covalent interactions, all particles can
experience long-ranged forces, the so-called non-covalent interactions. One of the most
important contributions in this regard was done by J. D. van der Waals, who proposed
in 1873 his well-known equation for gases and liquids, which corrects the ideal gas
law by accounting for excluded volume and attraction between the different particles.
Thanks to his seminal work, his name is commonly used as a synonym for non-covalent
interactions.

Van der Waals (vdW) interactions are ubiquitous and play a prominent role in a
broad spectrum of phenomena occurring at very different scales: from polymorphism
in molecular crystals [1], heterogeneous catalysis [2] and drug-protein binding [3] and
even cohesion in soft asteroids [4]. In the context of surface science, central to the
present work, vdW forces can strongly influence adsorption/desorption processes,
controlling both static and dynamical properties of substrate-adsorbate complexes [5–
10]. Notably, this work has been done at the Fritz Haber institute, which is named
after one of the pioneers of surface science. The discoveries of Fritz Haber in catalysis
were rewarded with the Nobel prize in 1918 and lead to the Haber-Bosch process, still
largely used to date for the industrial production of ammonia (fertilizers and explosives).
Later, the study of processes occurring at surfaces has been developed tremendously
over about a century. Nowadays, much effort is dedicated to characterize and design
the structure and the properties of interfaces. These systems can possess a range
of electronic properties that the individual components forming the interface do not
exhibit [11]. Some of the most promising applications include multi-layered materials
and nanomaterials for electrochemical energy conversion and storage as solar-energy
devices, sensors, heterogeneous catalysis, light emitting devices and materials with
specific properties as flexible LCD, high-strength fibers or flame retardant coatings.
The interface properties are the result of a complex interplay between covalent bonds,
charge transfer processes, vdW forces, hydrogen bonds and Pauli repulsion. Therefore,

1



2 Introduction

controlling and manipulating the functionalities at the interface represent formidable
challenges, investigated both theoretically and experimentally.

In this context, it becomes clear that a thorough comprehension of the subtle laws
that govern vdW interactions is necessary in order to model and predict structures
and properties of a wide range of systems. The first microscopic understanding of
non-covalent forces dates back to the seminal work of F. London, around 1930, and was
made possible by the advent of quantum mechanics. In particular, the vdW attraction
between isotropic well-separated fragments was explained as stemming from correlated
quantum mechanical fluctuations of the electronic charge, resulting in mutually induced
electric multipoles. This approach provided a solid justification to the well knownC6/R

6

power law expression for intermolecular dispersion interactions, earlier postulated by
van der Waals. However, we note that despite the large progress made in many-body
theories and the simplicity of London’s formulation, developing an efficient electronic
structure method that is able to capture both covalent and non-covalent interactions still
remains one of the main challenges of present-day parameter-free atomistic modeling.

Density-functional theory (DFT) is the method of choice for the theoretical descrip-
tion of ground-state cohesive and electronic properties of atoms, molecules, bulks and
adsorption phenomena. DFT offers the advantages of a first-principle quantum me-
chanical theory (ab initio) with a good compromise between accuracy and efficiency. On
the whole, DFT represents the most popular electronic structure method and the suc-
cess of this theory significantly contributed to the development of quantum chemistry
and theoretical condensed matter physics. In principle, DFT is an exact theory for the
ground-state electron density and energy. In practice, however, approximations need
to be employed for quantum-mechanical exchange-correlation effects via the so-called
density functional approximations (DFAs). Thus, the accuracy and the efficiency of DFT
largely depends on the chosen DFA.

The most popular DFAs are constructed from the local electron density (and its
gradient). Therefore, they are unable to capture non-local interactions, such as the
long-ranged vdW interactions. Many remedies have been proposed to include the
vdW interactions within the DFT framework. In this work we employed the scheme of
Tkatchenko and Scheffler (TS), in combination with semi-local DFAs. The TS functional
includes hybridization and other semi-local effects induced on atoms by the chemical
environment. Moreover, many-body effects arising in solids can be effectively included
into the TS functional via two extensions that model i) ionic solids and semiconductors
and ii) metal surfaces and adsorption of atoms/molecules on surfaces (vdWsurf ).

In the literature the importance of vdW effects in the cohesive forces between atoms
and molecules has been extensively addressed. Moreover, electronic structure calcula-
tions have unraveled the qualitative and quantitative role of vdW interactions in the
structure and stability of solids and interfaces. In this regard, the TS functional con-
tributed in determining that vdW interactions can indeed affect the cohesive properties
of solids such as lattice constants, bulk moduli and cohesive energies. However, a thor-
ough analysis of the role of vdW interactions on the electronic properties of molecules
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and extended systems has still not been performed to date.
Typically, long-range vdW energies represent a crucial, but tiny fraction (∼ 0.001%)

of the electronic energy. Hence, the influence of vdW interactions on the electronic
properties is often assumed to be rather small, if not negligible. For this reason, vdW
interactions are usually incorporated as a perturbative correction to the total DFT energy.
In other words, the vdW energy is added after the convergence of the electron density,
obtained via the self-consistent (SC) procedure. On the other hand, in a fully SC scheme,
the electronic vdW potential would be directly part of the DFT effective potential. In this
way, at convergence, the effects of vdW interactions would be automatically included
into the total energy, the electron density and electronic properties.

In this work, we present a fully SC implementation of the TS and the vdWsurf

functionals. The effects of a SC treatment of vdW interactions on the electronic properties
are assessed for a wide range of different systems: from dimers (e.g. diatomic dimers,
water dimer) to complex hybrid inorganic/organic systems, passing through large
molecular systems and metal surfaces. Not surprisingly, vdW interactions induce only
small changes in the cohesive and electronic properties of molecular dimers and crystals.
However, self-consistency turns out to be very important for highly polarizable systems,
metallic surfaces and hybrid organic/inorganic systems.

This dissertation is structured as follows. The first part summarizes the theoretical
background, underlying the electronic structure methods related to this work. Particular
attention will be dedicated to DFT and the most popular DFAs. The second chapter
contains an overview of the various pairwise approaches for including vdW interactions
into DFT. A part of this chapter is dedicated to the modeling of vdW interactions in
metals and for adsorption phenomena. This part will focus on the possible treatments
of the many-body effects coming from the substrate and between the substrate and
an adsorbed atom. Among all the vdW-inclusive methods presented, the TS and the
vdWsurf functionals will be discussed in greater detail.

The third chapter is dedicated to the self-consistent implementation of the TS method.
First, the electronic structure code used in this work, FHI-aims, is presented and de-
scribed. In this way the reader is introduced to some technical aspects that will be useful
to understand better the SC implementation. As a second step, the SC equations are
derived analytically from the TS energy formula. In the last part, the SC implementation
is described in detail, along with the procedure performed to reduce the computational
cost and possible future optimizations. Finally, the computational efficiency is bench-
marked, considering the implementation before and after the optimization procedure.
Comparisons with other DFT functionals are also shown.

In the fourth chapter we discuss applications of the self-consistent TS and vdWsurf

methods. In the fist section non-periodic systems are analyzed, including small rare-gas
dimers, benzene dimers, C60 fullerene, large DNA-protein complexes. The chapter starts
with the analysis of SC effects on the binding energies and on the different components
of the total energy. After that, the effects in the electron density are discussed and
compared with high-level quantum-chemical calculations. The special case of the alkali-
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metal dimers is considered in the final part. These small systems are largely bound by
vdW interactions and turned out to be particularly sensitive to SC effects.

The last two sections are dedicated to metal surfaces and hybrid organic/inorganic
systems. The SC effects on the electron density are shown, along with the ensuing
modifications in the electronic properties. The hybrid systems present a particularly
interesting interplay of different effects. We will discuss each one of these systems
through a detailed study of the electron density modifications. The population analysis
of the molecular orbitals is also presented.

The dissertation is concluded with a summary of the results obtained so far and an
outlook with the ideas for future studies and the remaining challenges.



Part I

The Many-Body Problem
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1 THEORETICAL BACKGROUND

1.1 INTRODUCTORY REMARKS

This chapter introduces the basic concepts, notations and approximations underlying
the ab initio (non empirical) electronic structure methods employed throughout this
Thesis. The formalism presented here constitutes the backbone to tackle the many-body
problem and is a necessary prerequisite before moving to the detailed description of
the various methodologies. After a general discussion of the many body problem we
will explain and motivate a central approximation in condensed matter physics and
quantum chemistry, implying that all the methods presented here treat the electrons as
quantum objects and focus on the solution of electronic problem, whereas the nuclei are
treated as classical particles and can be considered fixed in a given configuration with
respect to the electron motion.

The second part of this chapter describes wavefunction-based methods, starting with
the formalism behind the Hartree-Fock (HF) approximation and building the hierarchy
of quantum-chemical methods up to the formally exact solution of the electron many-
body problem. In passing, several different techniques used to approximate the exact
solution of the many-body problem will be discussed as well. Then, we will introduce
the theoretical method of central importance in this thesis: the density-functional theory
(DFT). Similarly to the HF approximation, DFT will be discussed starting with the
original ideas and concepts and ending with the most popular approximations and
extensions. In principle DFT is an exact theory, however we will see that for practical
calculations it is necessary to employ many different approximations. In the last section
of this chapter, the concept of Green’s function will be introduced, along with Green’s
function based electronic structure methods.

The exact solution of the many-body problem, within the approximation of a finite
basis set 1, is computationally prohibitive and can be applied only to a restricted set
of very simple and small systems. Therefore, all the electronic structure methods
that will be presented in this work lead to approximate results. For example, the
missing contribution to the total energy in the Hartree-Fock approximation is called the
correlation energy. Formally, correlation is present in DFT, but its exact form is unknown,
hence it is approximated with density functional approximations (DFA). A variety of

1The exact analytic solution of the Scrödinger equation is available only for a one-electron system.

7
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procedures are available for computing approximations of the correlation energy and
improving upon the HF and the DFT methods. For instance, the post-HF method of
configuration interaction takes into account excited electronic configurations, built upon
the HF ground-state. Another widely used technique is the many-body perturbation
theory, which can be employed in both the Hartree-Fock and DFT frameworks. Very
briefly, the perturbation theory treats the missing correlation part as a perturbative term
in the total Hamiltonian and allows to analytically expand the correlation energy as an
infinite series, which is truncated for practical calculations. Naturally, the computational
cost of the approximation rapidly increases with respect to the number of terms retained
in the series. On the other hand, the accuracy in perturbation theory is not improved
systematically with additional terms, but converges with an oscillatory behavior.

In this work we will focus on a specific part of the correlation: the long-range
correlation interactions, also referred to as van der Waals energy. Within the DFT
framework, the long-range correlation interactions are absent in most of the popular
DFA. To remedy this situation two different paths can be followed: i) an ad hoc correction
of the total energy or ii) the introduction of a new term in the Hamiltonian, i.e. a
modification of the DFA. The former solution, called a posteriori, is applied at the end of a
calculation and guarantees a modest computational cost. However, such corrections are
limited only to the total energy. The argument commonly used to justify this approach
is that the long-range correlation contributions are quantitatively small, hence they are
typically considered not important for the electronic properties. On the other hand,
the long-range correlation interactions can be added as a part of the DFA, consistently
throughout the electronic structure calculation. In this way the long-range correlation
is directly included into all quantities and properties in a self-consistent way. The
comparison between the a posteriori and the self-consistent approaches, is one of the
main goals of this work.

1.2 THE MANY-BODY HAMILTONIAN

The Hamiltonian (H ) of a piece of matter composed by electrons and nuclei, in the
absence of an external electromagnetic field, can be written as

H = Te + Tn + Ve−e + Vn−n + Ve−n , (1.1)

where Te and Tn are the electronic and nuclear kinetic energy operators. Ve−e and Vn−n
are the electron–electron and nuclear–nuclear Coulomb repulsion, and the last term,
Ve−n, is the electron–nuclear Coulomb attraction. Neglecting relativistic effects 2, the

2The equation in the fully relativistic case is the Dirac equation.
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Hamiltonian (1.1) can be explicitly written as:

H = −
Ne∑
i

~2

2me
∇2
i −

Nn∑
I

~2

2MI
∇2
I + (1.2)

+
1

2

Ne∑
i 6=j

e2

|ri − rj |
+

1

2

Nn∑
I 6=J

ZIZJe
2

|RI −RJ |
−

Ne∑
i

Nn∑
I

ZIe
2

|ri −RI |
,

where the indices i, j refer to electrons and I, J to nuclei. MI is the nuclear mass, ZI
the nuclear charge. Ne and Nn are the total number of electrons and nuclei respectively,
the two expressions containing the electron–electron and nuclear–nuclear interactions
do not to consider the self-interaction terms i = j and I = J . Here and in the rest of
this chapter we adopt Gaussian units for notational simplicity. The eigenfunctions of
the Hamiltonian with time-independent potential are obtained via the solution of the
time-independent Schrödinger equation:

H |Θ〉 = E |Θ〉 , (1.3)

where E is the total energy of the system and Θ is the many-body wavefunction, which
depends on both electronic and nuclear coordinates, Θ = Θ({ri}, {RI}). In this general
formulation of the many-body problem each nucleus and each electron is free to move
in all three spatial directions and the solution of Equation 1.3 implies a problem of
3Ne + 3Nn (4Ne considering the spin variables) degrees of freedom. If follows that
a feasible solution of the many-body Hamiltonian implies the introduction of some
approximations, as the Born-Oppenheimer approximation, discussed in the next section.

1.3 THE BORN-OPPENHEIMER APPROXIMATION

A key approximation is the Born-Oppenheimer (BO) or adiabatic approximation, de-
veloped by Max Born and J. Robert Oppenheimer in 1927 [12]. The BO provides a
great simplification of the Schrödinger equation (see Equation 1.3) by separating the
dynamics of electrons and nuclei. This approximation is based on the fact that the
nuclei are much heavier than the electrons and the ratio me/Mn is very small. It fol-
lows that, in the so-called “adiabatic” procedure, the electrons are considered to move
much faster than the nuclei and their dynamics can be decoupled and studied for fixed
nuclear positions. In other words, the nuclear positions RI become parameters, and
the electronic Hamiltonian can be separated from the general one (see Equation 1.2). A
second advantage is that the nuclear–nuclear Coulomb repulsion Vn−n is a constant for
any given configuration. The solutions of the electronic problem are eigenvalues that
depends on the positions R of the nuclei. Subsequently, each solution is used inside an
eigenvalue equation for the nuclei, which contains also the nuclear kinetic term and the
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nucleus–nucleus repulsion 3.
In practice, the total wavefunction can be factorized into a nuclear κ and an electronic

part Ψ:
|Θ〉 = |κ〉 ⊗ |Ψ〉 , (1.4)

where the nuclear part depends on the set of nuclear positions {RI}, while the electronic
wavefuncion depends on both ({RI}, {ri}). In the same spirit, the total Hamiltonian 1.1
can be partitioned in two parts

H = He + Tn + Vn−n , (1.5)

where He refers to the electronic part

He = Te + Ve−e + Ve−n . (1.6)

Here the assumption is that the nuclear kinetic term is removed from the electronic
Hamiltonian and the nuclear coordinates enter He as parameters, i.e. the electronic
eigenvalue equations are solved for a set of clamped nuclear positions. Considering ν
electronic eigenfunctions for He, the Schrödinger equation for the electronic part reads

He|Ψν(r,R)〉 = Eν(R)|Ψν(r,R)〉 , with ν = 1, . . . , N . (1.7)

The assumption of “clamped-nuclei” is justified by considering that the mass ratio
between nuclei and electrons is on the order of 104, therefore the nuclear kinetic energy—
given by p2/2m—is usually much smaller than the electronic one. As a second step, the
solution of Equation 1.7 yields to the Schrödinger equation for the nuclear motion

[Tn + Vn−n + Eν(R)]|κν(R)〉 = ETot
ν |κν(R)〉 , (1.8)

where the sum over the eigenvalues ETot
ν is the total energy of the system and includes

the contributions from electrons and nuclei.
We can now investigate the validity of the BO approximation. Considering the total

Hamiltonian in Equation 1.5, and a multiplication from the left side by 〈Ψν′(r,R)|, the
expression becomes:[

〈Ψν′(r,R)|Tn|Ψν(r,R)〉+ Vn−n + Eν(R)
]
|κν(R)〉 = ETot

ν |κν(R)〉 , (1.9)

where we have used the property

〈Ψν′(r,R)|Ψν(r,R)〉 = δν′ν (1.10)

3The nucleus–nucleus repulsion can be formally included into the electronic Hamiltonian. In this way the
nuclear eigenvalue equation is written with the electronic eigenvalue and the nuclear kinetic term. For this
reason the nuclear eigenvalue equation is historically referred as nuclear motion or nuclear dynamics, even
though it is a time-independent equation.
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and the result of Equation 1.7. It is clear that the coupling involves the nuclear kinetic
term, often referred as vibronic coupling term. Now, the product rule can be used to
expand the coupling term:

〈Ψν′(r,R)|Tn|Ψν(r,R)〉 = δν′νTn + (1.11)

+

Nn∑
I

~2

2MI

[
2〈Ψν′(r,R)|∇I |Ψν(r,R)〉∇I + 〈Ψν′(r,R)|∇2

I |Ψν(r,R)〉
]
.

It follows that, within the BO approximation, the second and third term are assumed
to be zero. In this way, the uncoupled set of eigenvalue equations of the form of Equa-
tion 1.8 is recovered. The off-diagonal elements of the second and third terms involve
interactions between different electronic states and are called non-adiabatic, while the
diagonal elements are adiabatic. In general, the typical contribution of the kinetic term
∇2
IΨν(r,R) is of the same order as ∇2

iΨν(r,R). Consequently ~2/(2MI)∇2
IΨν(r,R) ≈

p2
e/(2MI) = (me/MI)Te. The same procedure can be applied to ∇I and the small ratio
me/MI justifies the BO assumption. We consider now, for simplicity, only the adia-
batic term that contains the gradient, the second term in Equation 1.11. The following
passages can be easily applied also to the third term, with the same qualitative conclu-
sions. First, the expression can be written in terms of the electronic Hamiltonian and
eigenvalues

〈Ψν′(r,R)|∇I |Ψν(r,R)〉 =
〈Ψν′(r,R)|

[
∇I , He

]
|Ψν(r,R)〉

Eν(R)− Eν′(R)
. (1.12)

Second, the matrix element at the numerator can be evaluated by expanding the com-
mutator and performing the derivation:

〈Ψν′(r,R)|∇IHe

∣∣Ψν(r,R)〉 = iZIe
2
Ne∑
i

(ri −RI)

|ri −RI |3
. (1.13)

Since this element is finite, the coupled nuclear kinetic term becomes large only when
the denominator in Equation 1.12 tends to zero, i.e. when the two electronic eigenvalues
assume similar values, Eν(R) ' Eν′(R). Considering now the BO potential energy
surface, defined as EBO

ν (R) = Vn−n + Eν(R), it follows that the BO approximation is
valid when the potential surfaces are well separated:

EBO
0 (R)� EBO

1 (R)� · · · � EBO
N (R) , for all R (1.14)

From these observations it is evident that the BO approximation breaks down in case of
crossing between electronic states. For example, considering organic molecules and UV
photoabsorption, a conical intersection between the ground and the excited state can be
present, depending on the shape of the molecule. In this case, the activated molecule
produces an ultrafast non-adiabatic internal conversion [13], without the emission of
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radiation. Other important physical phenomena, as the Jahn-Teller distortion (degenera-
cies of the electronic ground-state) or the non-adiabatic electron–phonon coupling can,
for example, lead to a modification of the band gap or affect transport and vibrational
properties, as in the case of graphene [14]. Nevertheless, the BO approximation holds in
many cases, in particular for systems composed by elements with large atomic numbers.
Intuitively, this conclusion can be argued by looking the small ratio me/MI . However,
considering for example metallic systems, phenomena beyond the BO approximation,
as phonon-mediated superconductivity, can occur [14]. All the results presented in this
thesis are obtained within the BO approximation, with the nuclei fixed at the equilibrium
configuration.



2 THE HARTREE-FOCK METHOD AND

BEYOND

The quest for the solution of the interacting many-body electronic Hamiltonian dates
back to the end of the 1920. At that time many efforts were concentrated towards the
description of the energy levels of materials in order to reproduce, for example, X-ray
spectra. Potential terms with empirical parameters were commonly used to represent
the experimental data. Hartree, on the other hand, proposed to tackle the many-body
problem with a trial wave function (ansatz) and to solve the Schrödinger equation from
first principles. The aim of this chapter is to give a general overview of the seminal
approach of Hartree and Fock (HF), used to describe the ground-state of the many-
electron systems, as well as the methods built upon the HF theory in order to improve
its performances. The HF method represents a fundamental starting point for many
methodologies used nowadays. Some of the concepts and tools introduced here, as the
variational approach, the self-consistent procedure and the one-electron approximation,
are general ingredients in the framework of many-body theory. They are employed in
the formulation of the density-functional theory too, the electronic structure method
used in this thesis. We suggest the interested reader that more complete and detailed
explanations on the subject can be found in solid-state physics and quantum chemistry
books as Grosso and Pastori Parravicini [15] or Szabo and Ostlund [16]. In order to
keep the formulas as simple as possible, from now on we will adopt atomic units,
e2 = me = ~ = 1, instead of the SI units.

We consider now the (electronic) Hamiltonian defined in Equation 1.6, which results
in the N -electron eigenvalue problem

HeΨ(r1σ1, . . . , rNσN ) = EΨ(r1σ1, . . . , rNσN ) , (2.1)

where domain and codomain of the Hamiltonian is the Hilbert space product of R3

spaces (times two dimensional Hilbert spaces for the spin). The variables riσi are the
spatial and spin variables of the i-th electron, with ri ∈ R3.

13
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Compute the
potential (vH)
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Figure 2.1: Flowchart diagram representing the important steps of the Hartree self-
consistent-field procedure.

2.1 THE HARTREE APPROXIMATION

In 1927, one year after the formulation of the Schrödinger equation, Hartree introduced
an ab initio electronic structure method to solve the many-body problem. The central
idea is to approximate the many-body wavefunction with a product of single-electron
wavefunctions. Starting with a trial many-body wavefunction it is possible to mini-
mize the energy of the system by varying the orbitals (see Appendix A). This iterative
procedure is called Hartree method or self-consistent field (SCF) method.

Consider a set of orthonormal spin-orbitals {ψi(rσ)}, where ψi(rσ) = φi(r)χi(σ)

is the product between the spatial orbital and the spin part. In the Hartree theory,
the ground-state wavefunction is expressed as a simple product of N one-electron
spin-orbitals [17] in the form

ΨH
0 (r1σ1, . . . , rNσN ) = ψ1(r1σ1) . . . ψN (rNσN ) , with the norm ‖ΨH

0 ‖ = 1 , (2.2)

where the wavefunction is an element of the N -particle Hilbert spaceHN = H⊗· · ·⊗H,
the tensor product of N Hilbert spaces. Throughout this thesis, we use short-hand
notations where space and spin variables can be omitted. To avoid confusion, we will
adopt a consistent notation, for instance ψi will always refer to spin-orbitals, while
the orbital and the spin parts are φ and χ, with the corresponding arguments r and
σ. The Hartree product neglects the correlation in the position of the electrons, in
fact the probability of the total wavefunction is equal to the product of single particle
wavefunctions. The indistinguishability (antisymmetry) of the electrons is another
missing ingredient in the Hartree approximation and the Pauli exclusion principle has
to be introduced ad hoc, avoiding multiple occupancy for any given spin-orbital.

However, the Hartree method is historically important because it introduces the idea
to use the variational principle to obtain a set of eigenvalue equations, paving the way
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for the ab initio methodologies. The Hartree eigenvalue equation has the form

[h(r) + vH(r)]ψi(rσ) = εiψi(rσ) , (2.3)

where h(r) is the one-particle operator and describes the kinetic energy and the potential
energy due to the nuclei, for a single electron. The second term, vH(r), called here the
Hartree potential, describes the electron–electron Coulomb interactions

vH(r) =

occ∑
j=1

∫
φ∗j (r

′)φj(r
′)

|r− r′|
dr′ , with density n(r′) =

occ∑
j=1

|φj(r′)|2 . (2.4)

From this last term, it follows that the Hartree approximation consists of an electron
moving in the effective field that corresponds to the Coulomb potential, generated by
the charge of all the other N − 1 electrons. To obtain the N -particle eigenfunction, one
needs to find a set of single particle states ψi(rσ) that solves the eigenvalue problem in
Equation 2.3. The non-linearity of the Hartree equation implies an iterative solution,
called self-consistent-field (SCF), summarized in Figure 2.1. Convergence is reached
when the resulting eigenfunctions correspond to the spin-orbitals used in the previous
calculation. In practice, a smooth convergence is guaranteed using various techniques.
For example, the new guess is a mixture of old and new eigenfunction, in this way large
wavefunction fluctuations are avoided. Solving the Hartree eigenvalue equation is an ab
initio calculation, where no approximations are introduced in the electronic Hamiltonian
or during the self-consistent iterations. In general, the one-particle wavefunctions of
a system present complex shapes and can be described with an expansion in terms of
well known functions, as the atomic orbitals. Naturally, the choice of the basis functions
affects the computational efficiency and the accuracy of the final results. The idea is to
use different mathematical functions, for example the Gaussian function (in combination
with spherical harmonics), to describe the basis set needed (s, p, . . .). Of course, an
increasing number of functions (larger basis set) would increase the computational cost.

2.2 THE HARTREE-FOCK EQUATIONS

Even though the Hartree method used the Pauli exclusion principle to avoid the presence
of two electrons in the same quantum state, it neglects the correct statistics for Fermionic
particles. The correction of the Hartree approximation with the inclusion of the Fermi-
Dirac statistics has been provided in 1930 in the works of Fock [18] and Slater [19]. Both
scientists, independently, succeed to introduce the spin variable and the Pauli exclusion
principle. They used an explicitly antisymmetric wavefunction, a Slater determinant.
Given a system of N -electrons and a set {ψi} of N one-particle wavefunctions, the Slater
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determinant can be written as

Ψ(r1σ1, . . . , rnσn) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1σ1) ψ2(r1σ1) · · · ψN (r1σ1)

ψ1(r2σ2) ψ2(r2σ2) · · · ψN (r2σ2)

ψ1(r3σ3) ψ2(r3σ3) · · · ψN (r3σ3)
...

. . .
...

ψ1(rNσN ) · · · ψN (rNσN )

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.5)

It is convenient to introduce the following short-hand notations to write the many-body
wavefunction in a compact form

Ψ = A{ψ1ψ2 . . . ψN} =
1√
N !

det{ψ1ψ2 . . . ψN} , (2.6)

where A is the antisymmetrization operator. An important property of the determi-
nantal wavefunction is that the motion of electrons with parallel spin is correlated,
thus the Slater determinant introduces exchange-correlation effects. Also, the Pauli
exclusion principle is satisfied and no more than one electron can occupy a spin-orbital.
Having two electrons with the same spin-orbital, would lead to two equal columns in
Equation 2.5, making the determinant zero.

In the Hartree-Fock method the ground-state of the many-body system is described
with a single Slater determinant. Starting with a determinant state Ψ, the expectation
value E = 〈Ψ|He|Ψ〉 can be minimized, according to the variational principle. The
minimum value corresponds to the ground-state energy,

E0 = inf
Ψ
〈Ψ|He|Ψ〉 = 〈Ψ0|He|Ψ0〉 , ‖Ψ‖ = 1 , (2.7)

with the normalization of single particle orbitals used as a constraint, see Appendix A
and Ψ0 is the HF ground-state wavefunction.

Considering now the electronic Hamiltonian, we can separate the terms into a one-
electron and two-electrons operators, the first one includes the kinetic energy and the
electron–nucleus Coulomb attraction

O1 =
∑
i

h(i) =

Ne∑
i

[
− 1

2
∇2
i −

Nn∑
I

ZI
|ri −RI |

]
. (2.8)

The second operator takes into account the electron–electron interactions

O2 =
1

2

Ne∑
i 6=j

1

|ri − rj |
, (2.9)

where the summation goes over both indices. This definition is equivalent to the integral
definition of the Coulomb potential, seen for the Hartree term in Equation 2.4. The
indices are not to be confused with the wavefunction indices, but are associated with the
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two dummy (integration) variables, which span all over the 3D space. The expectation
value of the ground-state E0 = 〈Ψ0|He|Ψ0〉 = 〈Ψ0|(O1 +O2)|Ψ0〉, keeping in mind the
form of the wavefunction as defined in Equation 2.5, can be written as

E
(HF)
0 =

(occ)∑
i

〈ψi|h|ψi〉+
1

2

(occ)∑
ij

[
〈ψiψj |

1

r12
|ψiψj〉 − 〈ψiψj |

1

r12
|ψjψi〉

]
. (2.10)

For the first operator, the expectation value computed with an antisymmetrized wave-
function corresponds to a sum of one-electron expectation values. The same result is
obtained when a simple product of one particle spin-orbitals is used, as in the Hartree
method, see Equation 2.2. On the other hand, the two-electron operator, acting on
a Slater determinant produces two terms: a “classical” Coulomb repulsion and an
exchange contribution. Because of the exchange operator, the ground-state energy ob-
tained with a Slater determinant is always lower (or equal) than the one obtained with a
simple Hartree product of the same spin-orbitals. The lower energy is linked to the fact
that, with the exchange contribution, the electrons with parallel spin are correlated and
kept separated in space.

Following the variational principle, we want to minimize E = E({ψi}). This task
can be achieved using the standard method of Lagrange multipliers, subject to the
condition that the spin-orbitals are orthonormal and employing the functional variation
technique, see Appendix A.2. In practice, an infinitesimal variation of theN spin-orbitals
is performed ψi → ψi + δψi and, to guarantee the stationary condition, the Lagrange
multipliers must be set to be equal to zero. The result of the functional variation is a set
of N non-linear integro-differential equations

F(r)ψi(rσ) =

[
h(r) + vH(r)− vex(r)

]
ψi(rσ) = εiψi(rσ) , i = 1, 2, . . . , N , (2.11)

where F is called the Fock operator, h(r) and vH(r) are defined in Equation 2.8 and
Equation 2.4 respectively. The last term, vex(r), is an integral operator called the exact-
exchange operator, or simply “exchange” in HF context, and defined as

vex(r)ψi(rσi) =

occ∑
j

[∫
ψ∗j (r′σj)ψi(r

′σj)

|r− r′|
dr′

]
ψj(rσi) . (2.12)

It is evident that the exchange operator lacks a simple classical interpretation and
involves the substitution of the electrons in r and r′ between ψi and ψj . In other words,
the value of the operator, acting on ψi, depends on the value of ψi in every point in
space, not only in ψi(r), as in the case of the Hartree potential. Since there is no spin
dependency in the definition in Equation 2.12, the integral over the spin variables can
be carried out easily. The spin function χi(σ) can assume the value spin up α or spin
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εN
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ε1
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...
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|N−1Ψm〉
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Figure 2.2: From left to right: schematic representation of the N -electron ground-state
(on the left), compared with two examples of ionized states and one excited state. Second
column from left: one electron is removed from the occupied spin-orbital ψm. Third
column from left: one extra electron is added to a virtual spin-orbital ψµ. The last
case, the column on the right, represents an excited state, where the electron in ψm is
promoted to an empty orbital ψµ.

down β, with the orthonormality condition

〈α(σ)|α(σ)〉 = 1 and 〈α(σ)|β(σ)〉 = 0 . (2.13)

Considering now that the exchange term involves an overlap between two different
wavefunctions, the integral is non-zero only if ψi and ψj have the same spin part.

Usually, the Hartree and the exchange potentials provide sizable contributions to
the total energy, for this reason they both enter the self-consistent cycle (see Figure 2.1),
unified under the name of HF potential: vHF(r). On the other hand, in some approxima-
tions, it is a common strategy to compute certain terms after convergence (a posteriori)
and add their contributions to the converged total energy. In this way the energy is cor-
rected with a modest computational cost. An example will be presented in the context of
the coupled cluster method, beyond HF, see Section 2.5.1. The coupled cluster provides
a series of terms, computed with excited determinants, which are computationally very
demanding. In practical application, the couple cluster is truncated to a certain order
and the last term is usually computed a posteriori. Typically, this approximation is justi-
fied when the correction term is quantitatively small. Nevertheless, its validity needs to
be tested in practice, case by case. A central part of this thesis will focus exactly on this
subject, in relation to vdW interactions within the density-functional theory framework.
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2.3 GROUND-STATE AND IONIZATION ENERGIES

The Hartree-Fock eigenvalue equations must be solved self-consistently to obtain the
set of eigenvalues εi and single-particle spin-orbitals ψi. In principle, the Fock operator
admits an infinite number of solutions and an eigenvalue is assigned to each one.
Among all the possible solutions, the N spin-orbitals with the lowest energy form the
HF ground-state |Ψ0〉, represented in the left column of Figure 2.2. Considering a single
spin-orbital that belongs to the ground-state, the corresponding eigenvalue can be found
with the product of Equation 2.11 with another spin-orbital

εi = 〈ψj |F|ψi〉 = εiδij . (2.14)

Therefore, the Fock operator has a diagonal representation on the basis of the eigenfunc-
tion and the diagonal elements are the single particle orbital energies.

The expression for the ground-state total energy, obtained directly from the total
Hamiltonian, is written in Equation 2.10 and contains the factor 1

2 , which is absent in the
HF eigenvalue equations. For this reason, the sum of all the orbital energies εi is not the
ground-state energy. The HF total energy, written in term of the eigenvalues, is given by

E
(HF)
0 =

(occ)∑
i

εi −
1

2

(occ)∑
ij

[
〈ψiψj |

1

r12
|ψiψj〉 − 〈ψiψj |

1

r12
|ψjψi〉

]
. (2.15)

The explanation can be found in the eigenvalue equation, where the single particle ψi
interacts—through the two-body operator—with all the remaining N − 1 particles. If we
consider a second spin-orbital ψj , the interaction is still between the j-th spin-orbital and
all the other wavefunctions. But in this way, the two-body interaction between electron
i and j is counted twice. For this reason the expression in Equation 2.15 “corrects” the
sum over the single-particle eigenvalues with a subtraction of 1

2 of the Coulomb and
exchange contributions.

KOOPMANS’ THEOREM

The physical meaning of the single-particle eigenvalues is attained by considering
ionization phenomena. First we consider |N−1Ψm〉, represented graphically in Figure 2.2.
This is the ground-state determinant where an electron in the occupied state ψm is
removed and brought to infinity, i.e. no residual interactions remain between the
lone electron and |N−1Ψm〉. Before proceeding we assumed ideal ionization processes
only, where the electronic orbitals are kept in the frozen-orbital approximation, i.e. the
remaining N − 1 orbitals of the ion are identical with those of the N -electron state.
The HF energies are computed using Equation 2.10 and 〈N−1Ψm|He|N−1Ψm〉 for the
ground-state and the (N − 1)-electron determinant respectively. The energy necessary
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to remove the electron from the ground-state, called ionization potential, is defined as

IP = E
(HF)
0 (N − 1)− E(HF)

0 (N) = −εm . (2.16)

Thus, the energy needed for the ionization process is simply the HF energy (with
opposite sign) associated with the removed electron. Usually, the orbital energies εm are
negative, meaning that the IP is positive and a certain amount of energy is required to
remove the electron from the ground-state.

Similarly as above, we consider |N+1Ψµ〉, a (N + 1)-electron single determinant
(Figure 2.2, third column). In this case, the energy required to add an extra electron in
ψµ is called electron affinity and is given by

EA = E
(HF)
0 (N)− E(HF)

0 (N + 1) = −εµ , (2.17)

where a positive EA (negative εµ) indicates that the (N + 1)-electron system is more
stable than |Ψ0〉.

With the two results discussed above, a physical interpretation can be given to the
Lagrange multipliers εi, summarized in the Koopmans’ theorem.

Theorem 1 (Koopmans’ Theorem) The energy required to remove/add an electron from/to
the spin-orbital ψm is the opposite of the Hartree-Fock eigenvalue εm.

In practice, the “frozen-orbital” approximation neglects the optimization of the determi-
nants, that lowers the total electronic energy. Consequently, Koopmans’ calculations
tend to overestimate the ionization potentials and produce too negative electronic affini-
ties. Another shortcoming is the lack of correlation effects, which are absent in the HF
approximation of single determinant wavefunction and will be an important matter
of the next chapters. The correlation energies increase with the number of electrons,
leading to error cancellations for ionization potentials, but add to the error for electron
affinity.

In concluding this part, we consider a last case (sketched in Figure 2.2, last column)
where an electron is transferred from the spin-orbital ψm to the unoccupied orbital
ψµ. The transition energy ∆E between the ground and the excited state is computed
similarly to IP and EA,

∆E = 〈ψµm|He|Ψµ
m〉 − 〈Ψ0|He|Ψ0〉 =

= εµ − εm −
[
〈ψµψm|

1

r12
|ψµψm〉 − 〈ψµψm|

1

r12
|ψmψµ〉

]
. (2.18)

Therefore, to promote an electron from ψm to ψµ, one needs an energy equal to the dif-
ference between the two corresponding eigenvalues, minus the Coulomb and exchange
energy between the “new” electron in ψµ and the “missing” one in ψm.
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2.4 SUMMARY

Before proceeding to introduce methodologies beyond HF, it is useful to summarize
here the advantages and the limitations of the aforementioned theory. Briefly speaking—
besides the accuracy of the method in some cases—HF provides, in general, qualitatively
useful results for a large number of problems. Also, the method presents an efficient
scaling between O(N4) and O(N3), where N is a measure of the size of the system
(the number of electrons or the basis functions). From a conceptual point of view, HF
calculations represent an upper bound to the exact energies, with a “clean” separation
between the exchange and the correlation effects. Moreover, the technical tools employed
to solve the many-body problem are of a general utility in many other fields.

In the following chapters we will discuss the principal techniques used to go beyond
the HF theory, however it is worth mentioning that, even at the level of HF calculations,
approximations and technical elaborations are needed to perform actual calculations.
One example of approximation is the Slater approximation, where the exchange integral
is replaced with a local potential and the Fock operator becomes an ordinary differential
operator. Second, a popular way to obtain a numerical solution is the method of
Roothaan. In this method, each HF orbital is expanded into a (finite) sum of basis
functions. Thus, the eigenvalue equations are converted into algebraic equations in the
expansion coefficients, to be solved by matrix techniques. Clearly, the number and the
type of basis influence the quality of the final result.

Finally, the determinant used to describe the ground-state can be built with restricted
or unrestricted spin-orbitals. In the former case, a spatial orbital is restricted to be
the same for each pair of spin functions (α, β), i.e. all electrons are paired in N/2

doubly occupied spatial orbitals. Intuitively, this choice is suitable to describe closed-
shell determinants. With open-shell configurations, the situation often becomes more
complicated and several spin-configurations produce very close energy levels. In these
cases, one can resort to unrestricted determinants: the spatial orbitals are different for
different spins. Usually, the unrestricted determinants are used to describe cases as
radicals with one unpaired electron or in dissociation processes. During the dissociation
of H2, for example, the correct configuration at large distance should have one electron
per atom, while the restricted configuration fixes the two electrons in the same spatial
distribution.

2.5 CONFIGURATION INTERACTION

One solution to go beyond the Hartree-Fock method is to consider more than a single
Slater determinant. Given a system of N -electrons and 2K spin-orbitals, it is possible to
construct

(
2K
N

)
different determinants. The name Configuration Interaction (CI) refers to

the fact that each determinant corresponds to a specific electronic configuration. The
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correlation energy is defined as

E = E0 + Ecorr , (2.19)

where E is the exact ground-state energy and E0 is the HF result. Following this separa-
tion, it is intuitive to write the CI wavefunction as an expansion of Slater determinant
starting with the HF wave function Ψ0, formed with the N lowest spin-orbitals. The
other terms are the excited determinants of Ψ0 and, in case of a complete basis, the
resulting wavefunction would be the exact solution, giving not only the exact ground-
state energy, but also the excited states energies. We can write the form of the full-CI
wavefunction as

|Ψ〉 = c0|Ψ0〉+
µ∑
m

cµm|Ψµ
m〉+

(
1

2!

)2∑
mn
µν

cµνmn|Ψµν
mn〉+

(
1

3!

)2∑
mnl
µνι

cµνιmnl|Ψ
µνι
mnl〉+· · · , (2.20)

the first excited determinant is the singly excited term, in which the spin orbital ψm is
replaced by ψµ. Similarly, |Ψµν

mn〉 denotes doubly excited determinants and so on. The
factor (1/n!)2 takes care of the permutation of the indices and ensures that the n-tuply
excited determinants are counted just once. For N electrons and 2K spin-orbitals there
are

(
N
n

)(
2K−N
n

)
n-tuply excited determinants, clearly indicating that the number of

the excited determinants is extremely large even for small systems. One of the main
advantage of the full-CI wavefunction is the flexibility, due to the presence of many
determinants, which allows to describe changes in the electronic configuration. In case
of dissociations, for example, a wavefunction as in Equation 2.20 contains the ground-
state and the excited determinants. Thus, it is able to describe the change from bonding
to antibonding orbitals as the distance increases.

The full-CI wavefunction is not normalized to one, in fact the product 〈Ψ|Ψ〉 =

1 +
∑µ
m(cµm)2 + · · · contains the sum of the coefficients. However, it has the property of

intermediate normalization, taking the HF ground-state,

〈Ψ0|Ψ〉 = 1 . (2.21)

Now, the exact eigenvalue equation is written as

He|Ψ〉 = E|Ψ〉 , (2.22)

the solution of the full-CI problem is obtained considering the expression above, multi-
plied by 〈Ψ0| and all the excited determinants 〈Ψµ

m|, 〈Ψµν
mn|, etc. These are the elements

of the hermitian full-CI matrix. The diagonalization procedure assigns a value for each
coefficient of Equation 2.20.

Remembering that the correlation energy is defined as the difference between the
exact solution and the HF ground-state energy, we can now write the expression for
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Ecorr and multiply the eigenvalue equation by 〈Ψ0|:

〈Ψ0|H − E0|Ψ〉 = Ecorr〈Ψ0|Ψ〉 . (2.23)

The left part can be easily simplified using the definition of intermediate normaliza-
tion. The coupling between a Slater determinant and the full-CI expansion is constrained
by the nature of the Fock operator. Mathematically, the mixing between determinants
that differ by one or two columns is the only non-zero element. In particular, for the HF
determinant, only the mixing with doubly excited states is admitted, see Theorem 2.

Theorem 2 (Brillouin’s Theorem) The singly excited determinants will not interact with the
Hartree-Fock determinant.

Therefore, almost all the products on the left side of Equation 2.23 vanish, only one term
is kept (

1

2!

)2∑
mn
µν

cµνmn〈Ψ0|He|Ψµν
mn〉 = Ecorr , (2.24)

suggesting that the correlation energy is determined only by the double excitations of
the HF determinant. However, a careful observation reveals that the coefficients {cµνmn}
depend on other excitations, involving a large set of coupled equations.

The full-CI presents a scaling between O(N2i+2) and O(N i+2), where N is the num-
ber of orbitals and i is the excitation level. Therefore, the solution of the exact problem
is computationally extremely demanding, being impractical for all but small molecules.
Several approaches can be used to extend the applicability of the method. For example,
the convergence can be reached more rapidly if the basis set used is the set of natu-
ral orbitals [20]. One can also use a limited number of configurations and optimize
simultaneously both the expansion coefficients and the orbitals, this is the multiconfigu-
ration self-consistent field (MCSCF), a truncated CI method particularly useful when the
ground-state is described by nearly degenerate determinants. Another approximation
is to neglect the core electrons and focus on the optimization of the valence states, as
in the case of the generalized valence bond (GVB) method. In a more intuitive way,
it is possible to simply truncate the full-CI expansion for the wavefunction, as for the
doubly excited CI (DCI). The truncated CI expansions retain the variational property
of the original formulation and can be used as a systematic procedure for improving
the HF results. However, the size consistency is lost, meaning that the total energy
of N noninteracting fragments is not the sum of N isolated fragment contributions.
Unfortunately, the errors due to the lack of size consistency aggravate as the size of the
system increases, with the surprising limit of zero correlation energy per monomer as
N →∞, reducing the practical applicability of these approximations.
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COUPLED CLUSTER

Another way to simplify the full-CI problem is via the coupled-pair approximations
(CCA). As a first example, it is possible to write the total correlation energy as a sum of
pair energies [21]. The full-CI wavefunction is reduced to a pair function with energy
equal to the HF energy plus the pair correlation energy. Since the contributions of the
electron pairs are considered separately, the method is called independent electron pair
approximation (IEPA). Although the resulting pair energies are computed through the
variational procedure, the method is not variational, i.e. the total correlation energy
could be lower than the “true” energy. Unfortunately, the variational property is lost
for all the pair approximations, including the coupled cluster method. The coupled
cluster method gained popularity because the very accurate results are joined by an
affordable computational price. Initially developed for nuclear physics studies in the
1950s [22], the coupled cluster approximation has been reformulated and popularized
in quantum chemistry by Čižek in 1966 first and later together with Paldus [23, 24]. The
idea of the CCA is to compute interactions among clusters of electrons and include the
coupling between these clusters. This concept is motivated from the practical result that
electron pair interactions are very important. Moreover, a large part of the contributions
of quadruple excitations comes from the product of doubly excited determinants. The
cluster interactions are introduced in term of the cluster operator that generates one-,
two-electron, etc., clusters

T = T1 + T2 + T3 + · · ·+ TN , (2.25)

where N is the total number of the electrons. The action of T on the starting wavefunc-
tion of noncoupled electrons yields the various clusters

T1|Ψ0〉 =
∑
mµ

cµm|Ψµ
m〉 , (2.26a)

T2|Ψ0〉 =
1

4

∑
mn
µν

cµνmn|Ψµν
mn〉 , (2.26b)

... .

The full-CI wavefunction can be rewritten in term of the cluster operator, if T is expressed
as the argument of an exponential and a Taylor expansion of T is performed

eT |Ψ0〉 =

(
1 + T +

T 2

2!
+
T 3

3!
+ · · ·

)
|Ψ0〉 . (2.27)
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We can now substitute the definition of T , given in Equation 2.25, into the expression
above and group the terms of each excitation

C0 = 1 (2.28a)

C1 = T1 , (2.28b)

C2 = T2 +
1

2!
T 2

1 , (2.28c)

C3 = T3 +
1

3!
T 3

1 + T1T2 , (2.28d)

C4 = T4 +
1

4!
T 4

1 +
1

2!
T 2

2 + T3T1 +
1

2!
T 2

1 T2 . (2.28e)

The sum of all the Ci operators, acting on |Ψ0〉, would give the exact |Ψ〉. In other words,
the action of C0 on |Ψ0〉 leaves the HF determinant unaffected, while C1 gives the singly
excited determinants, C2 takes care of the doubly excited and so on. It is interesting to
observe that, starting with C2, the excited determinants are computed not only with
“direct” contributions, i.e. T with the same index of C, but also some products of T
with lower indices are included, e.g. T 2

1 in Equation 2.28c, the so-called disjoint clusters.
As in the case of the CI methods, the set of coupled equations is obtained from the
Schrödinger equation multiplied by the wavefunction

〈Ψ0|e−THee
T |Ψ0〉 = E . (2.29)

The advantage of the coupled cluster formulation is that the operator T can be trun-
cated to a certain order, using physical assumptions, without losing the property of
size consistency. For example, looking at C4, the quadruple excitations given by T4

represent the case of four simultaneous excitations and are expected to be quite small.
In comparison to that, the term T 2

2 —a product of two disjoint clusters—is responsible
for the interactions between two pairs of electrons and is usually considered to be
the dominant one. Therefore, if we truncate at T2 the coupled cluster expansion, the
resulting wavefunction would contain not only the doubly excited determinant, but also
contributions to higher excitations given by the products of disjoint clusters. Notably,
the product of two T2 is not a single quadruple excitation, but gives 18 distinct terms,
counting all the possible permutations of the two coefficients of the doubles. It is the
presence of these disjoint excitations that make CCA more complex than the truncated
CI methodologies and guarantees the size consistency.

The name of a particular coupled cluster method is related to the index of the Ti
considered in the truncation. Coupled cluster single, doubles (CCSD) scales as O(N6)

and is the most popular variant, being the coupled cluster with triples (CCSDT) already
computationally prohibitive. An alternative version is the single and doubles with
the perturbative correction of the triples in the total energy, CCSD(T). This method is
considered the “gold standard” of quantum chemistry because of the very accurate
results, within the so-called chemical accuracy of 1 Kcal/mol (43 meV), for the correlation
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energy of molecules [25]. The scaling of CCSD(T) is O(N6), as in the case of CCSD, plus
the O(N7) scaling for the non-iterative step.

2.6 PERTURBATION THEORY

The time-independent perturbation theory formalism is the basis for a post-Hartree-Fock
method, different than CI, that allows to express the correlation energy as a sum of
contributions of increasing complexity, eventually converging to the exact correlation.
Unfortunately, as in the case of coupled-pair methods, this procedure is not variational
and the approximations could give a correlation energy larger than the exact value.
However, it has the advantage of being size-consistent at each step, giving the possibility
to explore each order of the perturbation and to recursively increase the complexity.

The original formulation of perturbation theory in quantum mechanics was given by
Schrödinger in 1926, inspired by works of Lord Rayleigh, and is commonly referred as
RSPT. It is in 1955 that Brueckner explored the size consistency of the method and in 1957
Goldstone, adapting the diagrammatic formalism introduced by Feynman, assessed
the validity of the size consistency for all orders. Using a diagrammatic representation
of the different terms, he could prove, in the linked-cluster theorem [26], that all the
disconnected diagrams always cancel. The graphic representation of Goldstone opened
the way for a new set of approximations that sum up specific diagrams, going through
all orders, instead of focusing on the truncation to a specific perturbative order.

In general, the total Hamiltonian for a system of N particles can be expressed as a
sum of an unperturbed term H0—whose eigenvalues and eigenfunctions are supposed
to be known—plus a potential. The exact many-body problem is represented by the
eigenvalue equation

H|Ψ〉 = (H0 + V)|Ψ〉 = E|Ψ〉 , (2.30)

where the wavefunction of H0, that corresponds to the ground-state energy, is written
as |0〉. The intermediate normalization condition is considered here, as seen in Equa-
tion 2.21. The idea is to start with the known solution for H0 and to improve step by step
the eigenfunctions and the eigenvalues aiming to solve Equation 2.30. The procedure
can be done if the additional term V is treated as a weak perturbation potential, that can
be gradually turned on. This mean that the Hamiltonian is written as

H = H0 + λV , (2.31)

where the parameter λ ranges from 0 to 1, i.e. from no perturbation to the fully perturbed
case. Now, the eigenvalues of the exact solution can be expanded in a Taylor series in
λ, E = E(0) + λE(1) + λ2E(2) + · · · and a similar expansion is performed also for the
eigenfunction. The superscript index refers to the degree of the perturbation. The first
step is to use the two Taylor expansions in the eigenvalue equation (with λV) and equate
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the terms with the same degree of λ

H0|0〉 = E(0)|0〉 , (2.32a)

H0|Ψ(1)〉+ V|0〉 = E(0)|Ψ(1)〉+ E(1)|0〉 , (2.32b)

H0|Ψ(2)〉+ V|Ψ(1)〉 = E(0)|Ψ(2)〉+ E(1)|Ψ(1)〉+ E(2)|0〉 , (2.32c)

... .

Each equation above defines the wavefunction at a specific order. As a second step, mul-
tiplying these equation by 〈0|, remembering the intermediate normalization condition,
allows to find an expression for the energy at each order

E(0) = 〈0|H0|0〉 , (2.33a)

E(1) = 〈0|V|0〉 , (2.33b)

E(2) = 〈0|V|Ψ(1)〉 , (2.33c)

... .

From this set we see that the the first order correction of the energy is given solely
by |0〉. In other words, the effect of the perturbation Hamiltonian is evaluated, as a
first correction, considering the system fixed in the unperturbed ground-state. In order
to evaluate the successive terms, one can express the perturbed wavefunctions as an
expansion in terms of the eigenfunctions of H0, which are a complete and orthogonal set
of wavefunctions, with the condition that the zeroth-order energy level is not degenerate

|Ψ(1)〉 =
∑
k 6=0

|k〉〈k|Ψ(1)〉 . (2.34)

With the condition k 6= 0 the term |0〉 is excluded, since the product with the ground-
state wavefunction vanishes. At this point it is possible to substitute the expansion
written above in Equation 2.32b, to multiply by 〈k| and to use the expression for 〈k|Ψ(1)〉
inside Equation 2.33c in order to obtain the second-order energy

E(2) =
∑
k 6=0

|〈0|V|k〉|2

E(0) − E(0)
k

, (2.35)

where the eigenvalue of H0 corresponding to |k〉 is written as E(0)
k . This procedure can

be iterated to obtain the nth-order expression for both the energy and the wavefunction.
The theory described above is of general validity and the mathematical derivation holds,
with some extra precautions, also in case of two or more degenerate eigenvalues of H0.
We present now a special case of RSPT that links this formalism with the HF theory.
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µ m ν n + µ ν

m n

Figure 2.3: MP2 correlation energy represented with Goldstone diagrams. The direct
Coulomb term is on the left, the exchange term is drawn on the right. The lines going
up are associated with holes and the occupied orbital energies. The lines going down
are associated with electrons and their unoccupied orbital energies. The bare Coulomb
interaction is depicted by dotted horizontal lines.

MØLLER-PLESSET PERTURBATION THEORY

The RSPT can be used in the context of HF theory to calculate the correlation energy,
defined as the difference between the exact energy and the ground-state HF energy, see
Equation 2.19. This particular version of RSPT was proposed in 1934 by C. Møller and
M. S. Plesset and is called Møller-Plesset Perturbation Theory (MP) [27]. In this context,
H0 is the HF Hamiltonian (He) and the unperturbed wavefunction |0〉 is now the HF
wavefunction |Ψ0〉. The perturbation potential is defined as

V =
∑
i<j

1

|ri − rj |
−
∑
i

[vH(ri)− vex(ri)] , (2.36)

where the second sum is the Hartree-Fock potential (vHF(ri)), exactly the same potential
ofH0. From the definition of unperturbed energy, as written in Equation 2.33a, it appears
that E(0) is just the sum over all the HF eigenvalues εi. The perturbation potential enters
in the first-order correction. The two sums contain a two-electron operator and give
two equal contributions (with opposite sign), namely the Coulomb repulsion and the
exchange contribution, as seen in Equation 2.10. The only differences are the opposite
sign and the factor 1/2 in front of the first sum and absent in the case of vHF(ri). It
follows that the two terms can be simplified, giving

E(1) = −1

2

∑
m,n

[
〈ψmψn|

1

r12
|ψmψn〉 − 〈ψmψn|

1

r12
|ψnψm〉

]
. (2.37)

As a result, the total energy up to the first-order perturbation corresponds to the HF
ground-state energy, seen in Equation 2.15, E(0) + E(1) = E

(HF)
0 .

To improve the description already obtained within the HF approximation, one needs
to consider, at least, the second-order perturbation correction. This method takes the
name of MP2. An expression for |k〉, the eigenfunctions of H0 used in the expansion in
Equation 2.34, is necessary to compute the second-order correction of the correlation
energy. The natural choice is represented by the excited determinants of the HF ground-
state. This feature connects the perturbation theory with CI—more specifically, with
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coupled pair and cluster approximations—in various way, some of them will be com-
mented in the following. In order to determine the excited determinants participating in
Equation 2.33c, the Brillouin theorem (Theorem 2) is used to exclude the singly excited
determinants. Moreover, all determinants with more than two excitations do not mix
with the ground-state |Ψ0〉, because of the two-particle nature of the operator V . Among
all possible excited-state configurations, for the MP2 approximation, the doubly excited
determinants |Ψµν

mn〉 are the only determinants considered. The eigenvalues of H0 asso-
ciated to these excited determinants are just the HF ground-state energy minus/plus
the energies of the occupied/virtual spin orbitals. Now we have all the ingredients to
write the expression for the correlation energy expanded at the second-order

E(2) =
∑
m<n
µ<ν

∣∣∣〈ψmψn| 1
r12
|ψµψν〉 − 〈ψmψn| 1

r12
|ψνψµ〉

∣∣∣2
εm + εn − εµ − εν

, (2.38)

where the first term is the direct Coulomb repulsion and the second term is the exchange.
These two terms are represented with two second-order Goldstone diagrams shown in
Figure 2.3, called direct and exchange diagrams, respectively.

With respect to coupled-pair methods, the MP family of approximations have the
advantage of scaling more efficiently. In particular, MP2 has a “modest” scaling of
O(N5), that increases to O(N6) and O(N7) if we consider the third and fourth-order
corrections, indicated by MP3 and MP4 respectively. In this sense, the MP2 expression
can be rewritten as a sum of pair energies, where the pairs are the two electrons (m,n) in
occupied orbitals. Therefore, there exists a link with the independent pair approximation,
an approximation to the full-CI problem mentioned in Section 2.5.1. In detail, the
MP2 expression is identical to the first-order pair energy1 obtained with the IEPA.
Furthermore, as mentioned above, the Goldstone diagrammatic techniques can be used
to select and sum only particular types of diagrams. This allows us to recover, for
example, the random-phase approximation (RPA), a very popular approach widely
used for computing the correlation energy. The RPA can be interpreted starting from
different theoretical frameworks. In the specific case of perturbation theory, it is obtained
by considering the direct term in the MP2 approximation, see Figure 2.3, and summing
up to infinity all the ring insets [28]. The RPA approximation is tightly related to
density-functional theory and will be discussed in the next chapter.

1Meaning that the eigenvalue of the full Hamiltonian, given by the excited pair, is approximated as a
difference between ground-state orbital energies.





3 DENSITY-FUNCTIONAL THEORY

In the previous chapter we presented the family of wave-function-based methods, where
the solution of the many-body problem is given by developing a controlled hierarchy of
approximations to the exact ground-state wavefunction Ψ(r1σ1, . . . , rNσN ), a function
of 3N spatial coordinates, plus the spin. An alternative and popular approach is to
recast the Schrödinger equation in terms of the electron density distribution n(r), a
much simpler function that has only 3 degrees of freedom. This idea dates back to
the late 20s and is well known with the name of density-functional theory (DFT). The
first clean mathematical proof of DFT has been provided by Hohenberg, Kohn, and
Sham. Their seminal works significantly contributed to popularize DFT. At the time
of writing, DFT represents the most popular ab initio method in quantum chemistry,
with an incredibly wide range of applications and an increasing presence in scientific
publications [29, 30]. An idea about the importance of DFT in modern science can be
grasped by looking at Figure 3.1, where are reported the numbers of papers and patents
that involve DFT, thorough the last 25 years. This impressive growth confirms the
success of DFT, already rewarded with the 1998 Nobel prize in Chemistry, given to
Walter Kohn, “for his development of the density-functional theory”. The prize was shared
with a theoretical chemist, Sir John Anthony Pople, “for his development of computational
methods in quantum chemistry”.

The key of the success of DFT resides in its favorable combination of accuracy and
affordable computational cost. Within DFT, the reformulation of the many-body prob-
lem is not only conceptual, but also computational. In fact, in practice, the complex
many-body effects are described solely by one term, called exchange-correlation (XC)
energy. Formally, knowing the “real” form of the exchange-correlation term would
determine the electron density and the ground-state of the system exactly. Unfortunately,
as one can imagine, the form of such complex term is unknown and can only be con-
structed approximately. It follows that, many approximations have been proposed for
the exchange-correlation functional to improve the general applicability of DFT, as for ex-
ample to describe the long-range van der Waals interactions, and/or to treat particularly
challenging phenomena as electronic energy level alignment, electron transport, strong
correlation, etc. This subject attracted many efforts through the years, starting at the
foundation of DFT, and still represents the main goal in current developments [31, 32].

In the following, the reader will be introduced to the fundamental concepts of DFT,

31
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Figure 3.1: Number of articles and patents, in material science, that include the term
“density functional theory”. Source: Editorial, Nature Materials (2016) [29].

as well as the most used exchange-correlation functionals. Among all sources used,
the matter below is based mainly on the texts by Parr and Yang [33] and Engel and
Dreizler [34]. We suggest the reader to refer to these books and also to the classic
book by Dreizler and Gross [35] to have a broader overview on DFT in all its flavors.
The density-functional theory is particularly important for this thesis, in fact the large
majority of the results presented here are indeed DFT calculations. Moreover, the van
der Waals interactions, our central topic, are implemented within the DFT framework,
as an extension of standard exchange-correlation functionals.

3.1 THE THOMAS-FERMI MODEL

In this chapter we present the seminal idea of Thomas and Fermi, which is considered
the precursor to DFT. They represented the ground-state electron energy as a functional
of the density

E0 = E[n0(r)] . (3.1)

From now on, the explicit dependency of the electron density on the coordinates will be
omitted, unless necessary. The first model of Thomas and Fermi (TF) [36, 37] originates
in 1927 and is based on the homogeneous electron gas (HEG). In this system the nuclei
are replaced with a positive background charge density, which interacts with itself and
the electrons. The electrons are approximated with a uniform distribution within small
volumes (locally) and interact via the electrostatic repulsion term. The kinetic energy for
the electrons is thus approximated as the one of the non-interacting electron gas. The
space is divided in 3D cubic boxes with volume V and side L and periodic boundary
conditions. With these assumptions one can write the normalized single-particle plane
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wave as

ψk(r) =
eikr√
V
, k =

2π

L
l , with li = 0,±1,±2, . . . , (3.2)

where the index l includes all the periodic repetitions of the box. In the ground-state of
the Fermi gas (free electron model), all the energetic levels are filled with both spin up
and down. For this reason the spin part is omitted in the wavefunction above, keeping
in mind that a summation/integration over space must include the factor 2, for the spin
part.

Following the original TF formulation, the ground-state density (n0) can be computed
with an integration over the k-space or using the equivalent formulation in terms of the
energy

n0 =

(
L

2π

)3
2

L3

∫ kF

0

4πk2dk =

∫ EF

0

g(E)dE =

∫ EF

0

√
2E

π2
dE , (3.3)

where the first integral is performed using spherical coordinates, while g(E) = 1
V
dN
dE

is the density of states. In the same spirit, it is possible to evaluate the kinetic energy
density

te[n] =

∫ EF

0

g(E)EdE =
3

10
(3π2)2/3n

5/3
0 = Ckn

5/3
0 , (3.4)

withCk = 2.871 Hartree. The energy is now written in terms of the ground-state electron
density. In the TF approximation, the energy density expression for the inhomogeneous
system is replaced by the expression obtained above, valid for the HEG. Thus, the
electronic properties are functionals of the electron density, which is evaluated locally,
resulting in

TTF
e [n] = Ck

∫
n(r)5/3dr . (3.5)

This expression anticipates the concept of local-density approximation (LDA), the first
exchange-correlation functional developed in DFT and one of the most important.

The total energy is computed, in general, using the definition of electronic Hamilto-
nian given in Equation 1.6. However, within the TF model, the exchange and correlation
contributions are not taken into account. Only the classical Coulomb potential is consid-
ered,

ETF[n] = TTF
e [n] +

1

2

∫ ∫
n(r)n(r′)

|r− r′|
dr dr′ +

∫
n(r) vext(r) dr . (3.6)

The last term in the equation above introduces the external potential that, together with
the electron density, form the term Ve−n. This new notation separates conceptually
the functional of the electron density from the contribution coming from the nuclei, a
function of the coordinates. Once the energy functional is known, assuming that the
electron density minimizes it, one can proceed to derive the Euler-Lagrange equation,
as previously seen in Section 2.2:

µTF =
δETF[n]

δn(r)
=

5

3
Ckn

2/3(r) + vext(r) +

∫
n(r′)

|r− r′|
dr′ , N [n] =

∫
n(r)dr . (3.7)
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The total number of electrons N is used as a constraint and µTF is the Lagrange mul-
tiplier. This equation can be solved with the help of the constraint and the resulting
electron density is inserted in Equation 3.6 to compute the TF total energy.

The first and most important step towards an improvement of this model is the
inclusion of the exchange term. In 1930, Dirac followed the path of the TF model and
derived [38] the exchange energy expression for the HEG in a cubic box,

ED
x [n] = −Cx

∫
n4/3(r)dr , (3.8)

with Cx = 0.739 Hartree. This expression is added to the total energy functional in
Equation 3.6 and the sum takes the name of Thomas-Fermi-Dirac functional: ETFD[n] =

ETF[n] + ED
x [n].

A further improvement of the TF model is the von Weizsäcker functional for the ki-
netic energy, formulated in 1935. In the presence of a potential, observed von Weizsäcker,
the single particle wavefunction can be considered real. The general expression for the
kinetic energy is rewritten in term of the total density. Subsequently, the divergence
theorem (or Green-Gauss theorem) is applied to the second term of Te[n] and it can be
demonstrated [39] that such surface contributions vanish, since the real orbital decays
exponentially, as |r| → +∞,

Te[n] =
1

8

∫
|∇n(r)|2

n(r)
dr− 1

4

∫
∇2n(r)dr =⇒ T vW

e [n] =
1

8

∫
|∇n(r)|2

n(r)
dr . (3.9)

The von Weizsäcker density functional is the exact non-interacting Te[n] functional in
the case of single particle and spin-saturated pair of particles. Moreover, the T vW

e [n]

functional represents an important step beyond the TF model because it introduces the
idea to use the gradient of n(r) in order to improve the description of inhomogeneous
systems.

Despite the attractiveness of a theory that reduces the many-body problem to a
three-dimensional quantity, the TF-based models have been largely superseded. Many
ingredients are still missing for accurate calculations and the model suffers severe
approximations, for example the atomic shell structure is lost with a representation
of the kinetic energy in terms of the density. We will introduce now, starting with
the mathematical justification, another density-based theory: the DFT. In this case, the
practical advantages stated above are joined with accurate results. The key concepts
that led to the success of DFT will be the matter of the next sections.

3.2 THE HOHENBERG-KOHN THEOREM

Let us consider an N -electron system with the electronic Hamiltonian of Equation 1.6,
where the electronic–nuclear interactions are now called external potential: He = T +

Ve−e + Vext. This Hamiltonian admits a ground-state Ψ0, assumed to be nondegenerate



3.2 The Hohenberg-Kohn Theorem 35

vext(r)

v′ext(r)

v̄ext(r)

n′(r)

n(r)

n̄(r)

VN NN

Figure 3.2: Representation of the Hohenberg-Kohn theorem. The set of external po-
tentials and the set of electron densities are indicated with VN and NN respectively.
Different external potentials must correspond to distinct ground-state densities and vice
versa.

for simplicity. The ground-state is linked to the electron density and the external
potential via the relations

n0(r) = N

∫
|Ψ0(r, r2, . . . , rN )|2dr2 . . . drN , 〈Ψ0|Vext|Ψ0〉 =

∫
n0(r)vext(r)dr ,

(3.10)
where we omitted the spin dependency, unnecessary in the present formulation. The ex-
ternal potential determines the ground-state wavefunction, together with the constraint
N , hence the electron density is a functional of vext(r). In 1964 Hohenberg and Kohn
demonstrated [40] that the opposite conclusion is also valid, a cornerstone of DFT.

Theorem 3 (Hohenberg-Kohn (HK) Theorem) There is a one-to-one correspondence be-
tween the ground-state electron density of a N -electron system and the external potential acting
on it [15].

The schematic representation, a bijective map 1, is given in Figure 3.2. The demonstration
is formulated as a reductio ad absurdum. In short, the hypothesis of two different external
potentials with the same electron density can be confuted using the minimum property
of the ground-state energy. In summary, we started knowing the relation vext(r) ⇒
Ψ0[vext] ⇒ n0(r) and now, thanks to the HK theorem, this relation can be inverted.
The resulting map is injective up to a phase factor for the wavefunction and up to
a constant for the external potential. An extended formulation of the HK theorem
and the minimization procedure is given in Appendix B.1. In detail, the HK theorem
links the ground-state wavefunction with a v-representable electron density. The v-
representability guarantees the existence of an external potential associated with the
ground-state electron density. The extensions of the HK theorem and the v-representability
1The map is bijective under the assumption of non degenerate ground-state. To include the degenerate case

one needs to split the set of electron densities into an union of subsets. The density is a linear combination of
degenerate ground-state densities.
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are deeply discussed in the specialized literature [41], an introduction to the matter is
given in the present Thesis in Appendix B.2. We invite the reader to refer to the books
proposed at the beginning of this section for a more exhaustive documentation.

The most important consequence of the HK theorem is the existence of a variational
principle for the energy that concerns the density.

Corollary 3.1 The minimum of the total energy functional occurs when the electron density
corresponds to the exact ground-state density of the system.

The HK theorem can be used to demonstrated the statement above. We define the
energy of a system of N interacting electrons in a given nuclear external potential vext

as a functional of the electron density

E[n] = 〈Ψ|He|Ψ〉 = T [n] + Ve−e[n] + Vn−e[n] = F [n] +

∫
vext(r)n(r)dr , (3.11)

where the dependence on vext(r) is made explicit in the last passage and the electron
density is allowed to vary. We note that the functional F [n] is independent of the
external potential and is a universal functional of the density. If we consider a trial
density n̄(r), HK theorem links to it a potential v̄ext and a wavefunction Ψ̄. Clearly,
the energy functional written above satisfies the inequality E[n̄] = 〈Ψ̄|He|Ψ̄〉 > E[n0],
where n0(r) is the ground-state density.

In summary, a parallel with the variational principle for wavefunctions is traced,
see Equation 2.7. Also, the Euler-Lagrange equation employed in the TF model (Equa-
tion 3.7) is now fully justified. The variational principle allows us to find the ground-state
density via the stationary condition. The variation of E[n], with the total number of
particles N as a constraint, is set to zero, giving the Euler-Lagrange equation

µ =
∂E[n]

∂n(r)
=
∂F [n]

∂n(r)
+ vext(r) , (3.12)

where µ is the Lagrange multiplier. At this point, DFT is effectively a theory that reduces
the N -body problem to the problem of finding a 3-dimensional function. It is important
to stress that no approximations were introduced till now in the formulation of the
theory, i.e. a hypothetical solution of Equation 3.12 would give the exact ground-state
density of the system. Unfortunately, this task is far from being trivial, as the “true”
form of F [n] is unknown. In the following section, the difficulties concerning F [n] will
be tackled with the approach of Kohn and Sham. They successfully opened DFT for
practical applications and their method represents the most widely used variant of DFT.

3.3 THE KOHN-SHAM EQUATIONS

The aforementioned formulation of DFT needs to be expanded with a specific shape
for the kinetic energy term, following what has been done in the Thomas-Fermi model
using the HEG. Unfortunately, the kinetic functional of the density is unknown and the
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HEG represents a model with dubious applicability to real systems, where the electron
density is nonuniform. To treat inhomogeneous systems of interacting electrons, one
year after the original formulation of DFT, Kohn and Sham (KS) proposed in their
seminal paper [42] to map the system of interacting electrons onto an auxiliary system of
non-interacting electrons with the same ground-state density. For such fictitious system
of N electrons, the density is given as a sum of single particle orbitals, called KS orbitals
ψi(r, σ):

n(r) =

N∑
i

∑
σ

ψ∗i (r, σ)ψi(r, σ) , (3.13)

where the ground-state wavefunction is, exactly as in the Hartree-Fock case (Equa-
tion 2.6), a Slater determinant of the N orbitals of lowest energy, Ψ0 = A{ψ1 ψ2 . . . ψN}.
It is important to mention that the HK theorem applies to any electron system, therefore
the existence of an external potential v0

ext, that produces the ground-state density n0

for non-interacting electrons, is guaranteed. Since the ground-state density n0 and the
density of the system of interacting electrons are taken to be equal, the decomposition
into orbitals is valid also for the interacting system, even though the ground-state is not
a Slater determinant of the orbitals.

With the decomposition of the density into a sum of single particle orbitals, shown in
Equation 3.13, the total energy can be rewritten in term of one particle and two particles
operators, see Equation 2.8 and 2.9. The one electron operator includes the kinetic
energy for the non-interacting system and the electron–nucleus attraction, while the
two-body operator corresponds to the Hartree term

T0[n] + Vext[n] =
∑
i

〈ψi| −
1

2
∇2 + vext(r)|ψi〉 , (3.14a)

VH[n] =
1

2

∑
i,j

〈ψiψj |
1

r12
|ψiψj〉 =

1

2

∫ ∫
n(r)n(r′)

|r− r′|
dr dr′ . (3.14b)

The HK total energy functional in Equation 3.11 is rewritten as

E[n] = T0[n] + VH[n] + Exc[n] +

∫
vext(r)n(r)dr , (3.15)

where the first three terms on the right side correspond to the functional F [n]. The com-
plexity of the many-body problem is now described by one single term: the exchange-
correlation functional, defined as

Exc[n] = T [n]− T0[n] + Ve−e[n]− VH[n] . (3.16)

Conceptually, the minimum of the energy functional above still represents the exact
ground-state energy. Unfortunately, as one can easily imagine, the shape of Exc[n]

is unknown and several different guesses have been proposed through the years in
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order to improve the accuracy of DFT calculations 2. The goal of finding the exact XC
functional is far from being accomplished, however great progress has been made and
DFT is now successfully applicable to a broad variety of different systems. The next
section will be dedicated to introduce the most popular and used XC functionals.

The reformulation of the HK energy functional in terms of single-particle orbitals
allows us to employ the method of the Lagrange multipliers to find the ground-state
energy. The variation of the density is now translated into a variation of the orbitals and
can be formally carried out exactly, as in the case of the Hartree (or Hartree-Fock) method
(see Equation 2.3 and 2.11). The Lagrange function is built using the orthonormalization
of the wavefunction as a constraint, more details can be found in Appendix A.2. Then
the variation of the function leads to the KS eigenvalue equations(

−1

2
∇2 + vH(r) + vxc(r) + vext(r)

)
ψi(r, σ) = εiψi(r, σ) , (3.17)

where the terms on the left side are obtained analytically with a derivation of the
functional expression with respect to the electron density

∂VH[n]

∂n(r)
= vH(r) =

∫
n(r′)

|r− r′|
dr′ ,

∂Exc[n]

∂n(r)
= vxc(r) . (3.18)

In the literature, the three potentials on the left side of the KS equation are often collected
in one single term, called Kohn-Sham potential or effective potential,

veff(r) = vH(r) + vxc(r) + vext(r) . (3.19)

The solution of the KS integro-differential eigenvalue equations is pursued in a self-
consistent way. Usually, an initial guess for n(r) is used to calculate the corresponding
effective potential. Once the eigenvalue problem is solved for the orbitals ψi, a new
electron density is constructed. This procedure is repeated until convergence is reached,
i.e. the minimum value of the energy is approached sufficiently closely. Following the
same steps of the HF theory (Section 2.15), the eigenvalues can be used to compute
the total energy. The expression for the kinetic energy can be written in terms of the
eigenvalues using Equation 3.17, however during the variational procedure, the factor
1
2 in front of the Hartree term is lost, see Equation 3.18. For this reason, when the
eigenvalues are inserted in the total energy functional, the external potential cancels out,
while the Hartree term remains (with opposite sign), together with the XC functional

E[n] =
∑
i

εi −
1

2

∫ ∫
n(r)n(r′)

|r− r′|
dr dr′ + Exc[n]−

∫
vxc(r)n(r)dr . (3.20)

From the eigenvalue equation written above, we note that the original formulation
“orbital-free” of DFT, with a single equation for the density, is now significantly mod-

2Formally DFT is an exact theory.
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ified. Indeed, the need to treat accurately the kinetic term brought us a set of N
eigenvalue equations, corresponding to the N single-particle orbitals. On the other side,
the KS eigenvalue problem is still computationally analogous to the Hartree theory and
scales formally as O(N3) 3, better than the HF method, even though it contains (some)
exchange and correlation effects.

As a conclusion of this section, before proceeding to introduce the reader to the most
important XC functionals, it is worth to mention some extra technicalities. First, the
single-particle orbitals that compose the ground-state electron density are, in principle,
purely mathematical Lagrange multipliers. The physical meaning of the eigenvalues
was provided by Janak in 1978 [43]. In Janak’s theorem the eigenvalue is the derivative
of the total energy with respect to the occupation of a state. As a result, the highest
eigenvalue is associated to the energy necessary to add/extract one electron. This is in
contrast with Koopmans’ theorem for the HF orbitals, where an electron can be removed
from/added to any orbital and the eigenvalues are related to the adiabatic ionization
energies of the system. In practice, however, Janak’s theorem is commonly used for
arbitrary levels. Secondly, the present theory holds in case of spin-polarized systems.
The operators are spin independent and the total electron density is just the sum of the
two densities corresponding to the two spins: n(r) = nα(r) + nβ(r). In case of restricted
closed-shell calculations, the density is simply two times the sum over the orbitals
n(r) = 2

∑N/2
i |φi(r)|2. Each energy eigenvalue is two-fold degenerate, meaning that

for one spatial part there are two spins. In the ground-state, the singly occupied spatial
orbitals, typically only one, are the highest occupied. The extension to spin-polarized
functional is known for all the terms, including exact-exchange [44], written with the
two spin channels as Ex[nα, nβ ]. The only term that can present a non-straightforward
spin dependence is the (approximate) correlation functional. For this part, a general
remedy is absent and the modifications necessary to introduce the spin variable depend
on the particular functional.

Finally, we remind here that DFT is, by construction, an exact theory, thus the exact
form of the XC functional can be formally derived. One way that can be used to obtain
the exact XC part is through the adiabatic-connection (AC) procedure, in which the
DFT formalism introduced above is derived starting from a system of non-interacting
electrons and gradually turning on the Coulomb interaction [45]. The AC procedure
is combined with the fluctuation-dissipation theorem (FD) and provides the ACFD
formula, an expression for the exact XC functional in terms of the response functions
of the system. This result can be used to study the approximations behind a particular
XC functional and represents the starting point to improve its performances. The RPA,
already introduced in the context of many-body perturbation theory, can be derived
starting with the AC formalism. The ACFD formula can be conveniently partitioned,
dividing the EXX part from the exact Ec[n] functional. For this reason, the ACFD
formula will be mentioned also in the context of long-range correlation interactions

3In the following part of this chapter we will see that this scaling is not valid for advanced XC functionals.
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(van der Waals), in Section 5.4 and 5.5. The ACFD theory is discussed in more detail in
Appendix B.3. An alternative way to the AC procedure to derive the exact XC functional
is the Kohn-Sham perturbation theory [46] (KSPT). Here, the Hamiltonian contains a
perturbative term with the contributions of the fully interacting system. Formally, the
AC and the KSPT lead to the same result, with the difference that in the latter case
the electron density varies with the perturbation. On the other hand, within the AC
formalism, the density is kept equal to the density n0(r) of the non-interacting system.

3.4 EXACT-EXCHANGE

Intuitively, the first step beyond the standard formulation of the KS problem, is the in-
clusion of the exact-exchange (EXX) effects in the total energy functional (Equation 3.15).
In analogy with the step made to go from the Hartree to the Hartree-Fock theory. The
exact-exchange (Equation 2.12) is defined as

EEXX
x [n] = −1

2

∫ ∫
nx(r, r′)nx(r′, r)

|r− r′|
drdr′ , (3.21a)

where nx(r′, r) =

N∑
j

∑
σ

ψ∗j (r′, σ)ψj(r, σ) . (3.21b)

Thus, the XC functional is formally split in two parts and the inclusion of the term
above would leave only the correlation as the unknown term. Naturally, the EXX has to
be included self-consistently, i.e. the potential obtained from the functional derivative
(see Equation 3.18) appears in the set of KS eigenvalue equations. Following the same
procedure of the Hartree part, but with opposite sign, the EXX is thus contained in the
ground-state total energy, see Equation 3.20.

The DFT theory with EXX scales, with respect to the number of particles, as the
Hartree-Fock method, with the important difference that DFT includes some correlation
effects. We remark here that the EXX term is non-local, thus the solution of the DFT many-
body problem becomes much more demanding than the previous formulation. However,
the combination of optimized implementations and modern computing resources have
extended the applicability of EXX to very large systems.

THE SELF-INTERACTION ERROR

The exchange term represents an important contribution in all systems. In particular,
the correct decay of the electrostatic potential, felt by an electron, should be 1/r, while in
the absence of exchange effects such potential would decay exponentially with distance.
This well-known issue is one of the consequences of the “self-interaction” error (SIE)
in DFT, i.e. the interaction of an electron with the field it generates. The SIE was early
noticed by Amaldi and Fermi in 1934 during the development of the Thomas-Fermi
theory. It originates from the fact that the Coulomb potential is approximated with the
Hartree term, while the “exact” formulation should include the exchange term too. One
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can easily see that the SIE is present even in the case of a single-electron system. In
this case the Hartree term produces the spurious interaction of an electron with itself.
For a one-electron system or a fully occupied orbital the requirement to solve the SIE is
that the Hartree direct contributions and the XC energy cancel each other [47]. Namely,
VH[niσ] + Ex[niσ, 0] = 0 and Ec[niσ, 0] = 0, where only one spin channel is present.
Therefore, the inclusion of EXX term would solve completely the SIE. Nevertheless, for
practical usage, approximations of the EXX term are typically employed in order to have
faster calculations.

3.5 APPROXIMATE EXCHANGE-CORRELATION

FUNCTIONALS

The problem of finding an accurate form for the unknown XC functional, defined in
Equation 3.16, has been a central topic in DFT since its foundation. First, the straight-
forward inclusion of exact-exchange is not recommended, since it increases drastically
the computational time, bringing a non-local term inside the KS eigenvalue equations.
Second, the correlation term accounts for the fact that the electrons are not indepen-
dent. From a parallel with the HF theory, the correlation can be defined as the energy
contributions that are found when going beyond the HF solution. Unfortunately, the
exact expression is unknown for Ec[n]. Here, the most popular and successful approxi-
mations to the exact XC functional are discussed. In this survey, the different models
are presented in order of increasing complexity, following the Jacob’s ladder of den-
sity functional approximations [48], which ideally ends with the “heaven of chemical
accuracy”.

THE LOCAL-DENSITY APPROXIMATION

In 1965 Kohn and Sham proposed the local-density approximation (LDA) to treat
systems with slowly varying electron density. The idea goes back to the TF model
and consists in approximating the density of an inhomogeneous electron gas as locally
homogeneous, i.e. at every point r the XC density is considered to be the density of the
HEG. Within the LDA, the XC functional is approximated in the form

ELDA
xc [n] =

∫
εxc(n(r))n(r)dr , (3.22)

where εxc(n(r)) is “the exchange and correlation energy per electron of a uniform electron gas
of density n(r)”. The XC potential, a fundamental ingredient of the KS equations, can be
easily computed

vLDA
xc (r) =

δELDA
xc [n]

δn(r)
= εxc(n(r)) + n(r)

dεxc(n(r))

dn(r)
. (3.23)
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The two terms above not only enter as a part of the effective potential (3.17), but have
also an important role in determining the total ground-state energy. In particular, when
vLDA

xc (r) is substituted into Equation 3.20, the first term simplifies with the XC energy
ELDA

xc [n], leaving the integral of the second term as the only XC contribution to the total
energy.

It is useful to partition the LDA energy density into a sum of an exchange and a
correlation part, εxc(n(r)) = εx(n(r)) + εc(n(r)). The expression for the exchange part,
which is the exchange of the HEG, is taken from the contribution of Dirac to the TF
theory [38], see Equation 3.8, and corresponds to εx(n(r)) = −Cxn1/3(r). The form
of the correlation part, on the other hand, is in general unknown. Numerical results,
obtained with Quantum Monte Carlo calculations, were employed to parametrize
εc(n(r)) [49, 50].

The local spin-density approximation (LSDA) represents the generalization of LDA
to include electron spin. The exchange part is known analytically and can be easily
extended to spin-polarized systems, as already mentioned in concluding Section 3.3.
The spin-dependency of the correlation energy is introduced via a parametrization [49],
interpolating a function of the spin, as the relative spin-polarization.

The LDA turned out to be much more accurate than could be expected from its
initial approximations and is not confined to systems with approximately uniform
electron density, as bulk metals. Even in atoms and molecules, the results obtained
with LDA are comparable with HF, which is computationally much more demanding.
In solids and surfaces, LDA give the best results and sometimes predicts accurate
geometries and elastic properties. Since LDA is built upon a very simple approximation,
these surprisingly good performances are attributed to an error compensation between
the exchange and the correlation part. The shortcomings of LDA can be found, for
example, by looking at atomization energies of molecules, where LDA overbinds by
about 1 eV [51]. Typically, LDA overestimates also the bond strength in solids, producing
an underestimation of the bond lengths. With these conclusions, extensions of the LDA
functional become advisable, beyond the simple dependency on the local electron
density.

THE GENERALIZED GRADIENT APPROXIMATION

The simplest extension of LDA to inhomogeneous systems are the generalized gradient-
approximated (GGA) functionals. This family of XC functionals, also called semi-local
functionals, emerged during the mid 1980s and, as the name suggests, they include
the gradient of the electron density ∇n(r) to account for non-locality. The semi-local
appellation comes from the fact that the non locality is only partially captured by the
density gradient. The GGA XC functionals are written as a function of the density and
its gradient

EGGA
xc [n] =

∫
f(n,∇n)dr =

∫
εxc(n(r))Fxc(n(r),∇n(r))n(r)dr , (3.24)
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where the GGA functional is expressed in term of εxc(n(r)), the LDA exchange-correlation
energy per particle, and Fxc, a dimensionless enhancement factor that carries the in-
formation about the density gradient. Much work has been done in the past years
on the development and parametrization of a number of GGA functionals. The most
widespread and successful GGA functional is the one of Perdew, Burke and Ernzerhof
(PBE) [52]. In general, the GGA functional parametrization is subjected to several exact
conditions, as the sum rules for both the exchange end the correlation part. The PBE
functional follows the construction of the functional of Perdew and Wang, PW91 [53].
The latter is designed to satisfy as many conditions as possible, but presents a long
derivation and a complex and overparametrized analytical form which can lead to spu-
rious fluctuations of the potential. On the contrary, PBE satisfies only the energetically
significant conditions. PBE is a non-empirical functional, in the sense that all parameters
are fundamental constants, without a dependency on experimental data.

The GGA functionals provide satisfactory results when applied to study the struc-
ture of molecules, although they significantly underestimate the binding of weakly
bonded systems. In particular, the PBE bond lengths for diatomic molecules are in excel-
lent agreement with the experimental results. The atomization energies are generally
improved with respect to LDA, even though in the worst cases, the functional overbind-
s/underbinds by about 1 eV [54]. For solids, PBE is found to improve significantly the
LDA cohesive energies and to describe well the lattice constants, but the functional
presents a tendency to underbind [55], the opposite trend of LDA. Consequently, the
bulk moduli are underestimated, matching the level of accuracy of LDA. In summary,
the GGA functionals produce better results than LDA, with a similar computational cost.
Unfortunately, the improvement is not uniform and some of the limitations of LDA are
still present, as the SIE.

HYBRID FUNCTIONALS

The idea behind a hybrid functional was proposed by Becke in 1993 [56] and consists of
mixing a fraction of exact-exchange energy with the exchange (and the correlation) of a
semi-local functional. The general form of a hybrid functional is written as

Ehybrid
xc [n] = αEx[n] + (1− α)EGGA

x [n] + EGGA
c [n] , (3.25)

where the mixing is regulated by the coefficient α. Clearly, the limiting value of α = 0

would recover the original GGA functional, on the other hand α = 1 would employ
100% of EXX, limiting the GGA contribution only to the correlation part. Usually, the
hybrids employ an α < 1.

In the original idea of Becke, 50% of EXX was mixed with an equal 50% of XC
contribution from LDA [56]. Successively, the method has been refined with a more
complex mixing. Namely, the exchange is a mix of HF, LDA and the GGA functional
called Becke88 [57]. The correlation part is obtained using the LDA correlation and the
GGA functional of Lee, Yang and Parr [58], the two parts are weighted differently. This
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is the popular B3LYP [59], a hybrid functional in which the amount of HF exchange,
LDA exchange and the gradient correction to the correlation energy depend on a three
parameters fit. The fit is introduced to reproduce important quantities as atomization
energies, ionization potentials, etc., of the molecular G2 test set of Pople. B3LYP has
been extremely successful in predicting a wide range of molecular properties, as the
atomization energies. However, the accuracy of the results can be attributed also to a
systematical cancellation of errors. In fact B3LYP tends to overestimate both exchange
and correlation energies of atoms and molecules [60]. The functional is widely used in
the chemistry community and a uniform improvement of its performances is a challenge
for the present development of DFT functionals [32]. Because of the additional empirical
parameters, that involve experimental data, the B3LYP is a semi-empirical functional.
Another drawback is the increased computational cost, that restricts the applicability of
the functional, when employed to study extended systems.

A second very popular hybrid functional is PBE0 [61, 62], where the XC functional is
obtained using Equation 3.25 with a mixing coefficient α = 1/4, i.e. 25% of EXX. This
functional considerably improves the atomization energies of molecules with respect
to PBE [54]. However, the binding distances display a comparable accuracy and the
computational cost of a PBE0 calculation can be significantly higher than PBE, due
to the fraction of EXX. For solids, PBE still represents a better method for computing
the cohesive energies, while PBE0 improves the equilibrium lattice constants and the
bulk moduli [63, 64]. Another type of hybrid functionals that emerged recently are the
screened hybrids, as the HSE03 [65], proposed by Heyd, Scuseria and Ernzerhof in 2003.
Here, the Coulomb interaction is partitioned into a short range (SR) part and a long range
(LR) part. The inverse screening length ω, called also the range-separation parameter,
is introduced to control the extent of the two parts. The error function is then used
to determine the range separation. The partitioning is applied to the exchange terms
in Equation 3.25. The purpose of this procedure is to approximate the EXX, the term
responsible for a large part of the computational cost. EXX is a complex term to calculate
because of the non-local and long-range contributions, therefore, for extended systems
as solids, EXX limits the applicability of the hybrid functionals [65]. Considering, for
example, the screened-hybrid functional HSE, the complicated long-range part of the
EXX is neglected. To balance this choice, the long-range exchange of PBE is considered
without the weight factor α. The expression for the HSE functional is

EHSE
xc [n] = αESR(ω)

x [n] + (1− α)EPBE,SR(ω)
x [n] + EPBE,LR(ω)

x [n] + EPBE
c [n] , (3.26)

where the last term is the full PBE correlation. A popular version of the HSE functional
is the HSE06 [66], a revision of the HSE03, where α = 1/4 and ω = 11 Bohr−1. The
screened-hybrid functionals have been employed extensively in the last years, resulting
in performances similar to the hybrid functionals [63–66], but with a sensible reduction—
about ten times less—of the computational cost. Considering solid systems, in particular
semiconductors, HSE06 improves the PBE description of cohesive energies and band
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gaps. On the other hand, in the case of metals, PBE performs much better than HSE06,
which shows an overestimation of the cohesive energies (as with LDA), due to the
presence of EXX [67]. The effects of EXX are reflected into the electronic properties too,
lowering the molecular LUMO and increasing the band gap in semiconductors. For the
same reason, the metallic bands are shifted down, in particular the fully occupied ones.
As a consequence, other electronic properties can be affected, as the workfunctions, that
are typically lowered [68]. All these effects are important in case of surfaces interacting
with adsorbed molecules. For such complex systems, HSE06 performs well, similarly
to PBE0, outperforming B3LYP. However, in comparison with PBE, which is devoid
of such complex non-local and long-range contributions, the hybrid functionals can
improve the adsorption distances, but can also lead to the wrong absorption site order
and tend to overestimate the adsorption energies [68, 69].

THE META-GENERALIZED GRADIENT APPROXIMATION

The third rung of Jacob’s Ladder of DFT is obtained by adding contributions beyond
the density and the first-order density gradient, used in the GGA functionals. These
functionals are called meta-GGA (MGGA) and contain higher-order density gradient, as
well as other semi-local terms. The general form of a MGGA functional is

EMGGA
xc [n] =

∫
εMGGA
xc (n(r),∇n(r), τ(r), µ(r), . . . , γ(r))n(r) dr , (3.27)

where the terms after the gradient of the density are other semi-local terms that could
be used in MGGAs. Among all terms, the first one, τ(r), is the non-interacting kinetic
energy density, see the first term in Equation 3.14a. It has been demonstrated that, in
the context of MMGA, τ(r) and the Laplacian of the density (∇2n(r)) carry the same
contributions [70]. The construction of a MGGA functional is, in principle, subject to the
same conditions of the GGA family. In addition to that, the presence of new terms leads
to additional constraints. In particular, the presence of τ(r) adds the dependency on the
kinetic energy density into the enhancement factor. This can be conveniently used to
recover some conditions, as the limit of HEG in case of slowly varying density, absent in
most semi-empirical functionals.

A well-known MGGA is the functional of Tao, Perdew, Staroverov and Scuseria
(TPSS) [71], a non-empirical functional designed for both molecules and solids, which
includes the contributions of the kinetic energy density. The TPSS functional provides
results comparable with PBE0 [71], with the advantage of being easily evaluated for
solids. The atomization energies and the properties of solids, as the lattice constants
and the bulk moduli, can be improved with respect to GGAs. On the other hand, the
cohesive energies of solids present the same accuracy of PBE [55]. Another example of
MGGA is the M06-L [72, 73] functional, which has been widely employed, together with
its numerous extensions [74]. The exchange part of the M06-L is based on the exchange
energy density of both LDA and PBE, with the addition of mixing factors that depend
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on the kinetic energy density τ(r). The uniform electron gas correlation energy density,
modulated with functions of τ(r), is used to compute the correlation part. Several
parameters are used in the M06-L functional and are optimized by fitting the data of
a training set [72]. This functional yields good atomization energies, as well as bond
lengths and cohesive energies of semiconductors and transition metals [73, 74]. In this
regard, M06-L outperforms other meta-GGA and hybrid-GGA functionals, as B3LYP. The
M06-L functional can be modified with the addition of the non-local HF exchange and a
reparametrization of the M06-L exchange-correlation part, leading to the M06-HF [75]
functional. The M06-HF is free of self-interaction error at long distances, i.e. the correct
long-range asymptotic trend 1/r is guaranteed. MO6-HF established good performances
in modeling the excited electronic states of well separated fragments [75]. Particularly
successful results are found for charge-transfer states. However, the inclusion of the non-
local exchange part increases the computational costs and limits the applicability of the
functional. As a last example, we mention the recently developed strongly-constrained
and appropriately normed semi-local density functional (SCAN) [76]. This meta-GGA
obeys all the possible exact constraints and has been normed on rare-gas atoms and non-
bonded interactions. The computational cost of SCAN, applied to molecular systems, is
slightly higher than PBE. SCAN provides nearly exact results for rare-gas atoms and
very good binding energies for various sets of interacting molecules, outperforming PBE
and other computationally more expensive meta-GGA functionals [76]. For example,
PBE yields a MAE for the S22 database of ∼ 120 meV, while SCAN is below 40 meV.
Moreover, SCAN describes well the energetics of both covalent and metallic solids and
is also able to capture the vdW interactions [77]. This functional predicts, for example,
the correct energetic ordering of the four low-energy water hexamers, with binding
energies in good agreement with CCSD(T) calculations.

Despite the numerous and different XC functionals presented in the last two sections,
a clear and uniform solution that improves the GGAs is absent. The overall good
performances of GGAs, as PBE, still represent an attractive choice, especially because the
modest computational cost, that allows to study very large systems, is joined with overall
satisfactory results. On the other side, the approximations of GGAs XC functionals can
lead to large errors. The SIE (Section 3.4.1) is probably the most important limitation,
responsible for large errors in the electronic structure of systems with interactions
between localized and delocalized states, as with rare earth metals. Also, the inclusion
of EXX can be important in determining the band gap, affecting properties as the charge
transfer between two fragments or between a surface and an adsorbate. Resorting to
more complex functionals might help in some situations, as discussed above, but a
general remedy for a systematic improvement is absent. First, the computational cost of
a functional usually grows with its complexity. Second, several XC functionals beyond
GGAs are parametrized with respect to reference experimental data. Thus, they can
provide excellent results for specific classes of systems, but lack of a broad transferability.
Moreover, it is important to keep in mind that the starting point of all the XC functionals
presented above is the electron gas of slowly varying density. Therefore, the XC effects
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cannot be correctly predicted where this assumption is essentially wrong. One well-
known example are the van der Waals interactions between two non-overlapping
fragments [78].

3.6 THE RANDOM-PHASE APPROXIMATION

The good performances and the computational efficiency of some of the aforementioned
XC functionals, as LDA or PBE, are the major contributions to the success of DFT as
a prominent modeling method to investigate the electronic structure. Nevertheless,
these functionals are built upon semi-local approximations, which have many known
limitations. On the opposite, one can start the quest for the ideal functional by consider-
ing the formally exact expression for the exchange-correlation functional. This is the
ACFD formula, discussed at the end of Section 3.3 (details in Appendix B.3). Alterna-
tively, as also mentioned in the last part of Section 3.3, the formally exact representation
of the many-body problem can be achieved from KSPT. However, within the ACFD
formalism the ground-state electron density is kept constant along the adiabatic path,
from the KS system to the fully interacting one. The exact XC expression can be for-
mulated in term of the exchange-correlation hole (or also the pair-correlation function)
that contains the fluctuation of the electron density δn̂(r) around the expectation value
n(r). The density fluctuations are then linked to the linear density response function
χ(r, r′, ω) of the system, which represents the response of the density at point r′ due
the presence of an electron at point r. Such connection is obtained through the zero-
temperature fluctuation-dissipation theorem (FDT), a technique developed in statistical
physics. Finally, the combination of these two steps, gives the adiabatic-connection
fluctuation-dissipation (ACFD) expression for the XC energy,

Exc =
1

2

∫ ∫
v(r, r′)dr dr′

∫ 1

0

[
− 1

π

∫ +∞

0

χλ(r, r′, iω)− δ(r− r′)n(r)dω

]
dλ , (3.28)

where v(r, r′) = 1
|r−r′| and χλ(r, r′, iω) is the imaginary part of the response function of

the λ-scaled system. In this way the XC functional is rewritten in terms of the response
function. The density response function χλ is related to the non-interacting response
function χ0(r, r′, ω) via the self-consistent Dyson-like screening equation

χλ(r, r′, iω) = χ0(r, r′, iω) +

+

∫ ∫
χ0(r, r1, iω) [λv(r1, r2) + fxc

λ (r1, r2, iω)]χλ(r, r′, iω)dr1dr2 , (3.29)

where fxc is the exchange-correlation kernel, an unknown quantity which needs to be
approximated.

Although exact, the ACFD formula depends on the response function along the
adiabatic path (χλ), which is unknown. Therefore, at this stage, approximations of the
response function should be introduced. In this context, the simple choice of setting
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the XC kernel to zero, fxc
λ = 0, leads to the random-phase-approximation (RPA), the

fifth rung of the Jacob’s ladder. This idea was developed since the 1950s, in the field
of quantum electrodynamics, in a series of seminal works of Bohm, Pines, Gell-Mann
and Brueckner. RPA can be obtained, as already mentioned at the end of Section 2.6.1,
using the RSPT or also with an approximation of the coupled-cluster method. The
different derivations, along with the one mentioned above and related to DFT, give an
idea about the versatility of this approximation. The RPA, employed within the DFT
framework [79–81], offers several important features: i) the EXX is included, solving
the SIE, ii) the screening is taken into account, iii) is a parameter-free approximation,
iv) the energy is fully non-local and includes long-range van der Waals interactions
between non-overlapped electron densities in a seamless way. In order to obtain the RPA
expression from Equation 3.28, the XC energy is conveniently separated into an exchange
part, written in terms of the non-interacting response function, and a correlation part.
Naturally, the exchange corresponds to EXX, written in Equation 3.21. The Dyson-like
equation without the XC kernel, is then inserted into the correlation part, which contains
both χλ and χ0. Finally, the integral over λ can be performed analytically, giving [28, 82]

ERPA
c =

1

2π

∫ ∫
drdr′

∫ +∞

0

[ln (1− χ0(r, r′, iω)v(r, r′)) + χ0(r, r′, iω)v(r, r′)] dω .

(3.30)
The form of the response function χ0 for the system of non-interacting particles (λ = 0)
is usually computed by considering the occupied and the unoccupied KS orbitals {ψi},
as well as their orbital energies

χ0(r, r′, iω) =
∑
ij

∑
σ,σ′

(fi − fj)ψ∗i (r, σ)ψ∗j (r′, σ′)ψi(r
′, σ′)ψj(r, σ)

εi − εj − iω
, (3.31)

where fi are the occupation factors.
The RPA performance has been extensively benchmarked for molecular systems,

investigating not only the atomization energies [83, 84], but also other properties as the
dissociation [85]. Specialized reviews on RPA are available, in which the theoretical
background is presented along with exhaustive results and comparisons with other XC
schemes. We refer, in particular, to the work of Ren et al. [28]. The RPA applied to solids,
both semiconductors and metals, as well as surfaces, leads to remarkably good lattice
constants and bulk moduli [86], improving the results of conventional semi-local XC
functionals. Notably, excellent results are obtained for weakly bonded systems, like
graphite [87], where the binding energy and the interplanar spacing predicted with RPA
agree very well with the experimental data. Considering other weakly bonded systems,
RPA yields good performances for the S22 database [88], a set that contains a variety
of noncovalent interactions. Here, the RPA binding energies are underestimated 4, but
improve significantly the performances of PBE or PBE0 [89], two functionals without
vdW interactions. In general, the improvement over semi-local functionals is not guar-

4The reference values for the binding energies of the S22 database are obtained with the CCSD(T) method.
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anteed in case of atomization energies [83], as well as cohesive energies [86], where
RPA systematically yields underestimated values. This issue, known as “The RPA
atomization energy puzzle”, is mainly attributed to the fact that RPA is not accurate for
short-range correlation. For this reason, several extensions have been proposed, e.g. the
RPA+ [90]. In this scheme the correlation of a chosen semi-local functional is subtracted
to the correlation of RPA, computed within that functional, in order to evaluate the miss-
ing short-range correlation in ERPA

c . A second variation of standard RPA is obtained
with the inclusion of the second-order screened exchange SOSEX [91], an infinite sum
of diagrams that compensate for part of the short-range correlation problem of RPA.
Another term that can be added is the single excitation (SE) [89], which is absent by
construction in HF theory, but needs to be considered in DFT. Finally, we mention that
approaches beyond the RPA approximation (fxc

λ = 0), have been considered as well [92].
Unfortunately, these remedies, although they improve certain properties, lead to a
non-uniform behavior. For example, SOSEX improves the description of atomization
energies, but worsens the dissociation of diatomic molecules [93].

In conclusion, RPA and its different flavors represent a very strong and reliable
methodology that can be applied to systems of about hundred atoms. The technique
provides high accuracy, without relying on some fortuitous cancellations between
different errors, as can happen in some non-local XC functionals. Current studies are
focusing on reducing the scaling of RPA and/or producing RPA-based schemes with
good performances and a modest computational cost. On the other hand, even in the
most efficient implementations, the correlation part of RPA, written in Equation 3.30,
presents a O(N4) scaling. This factor needs to be added on top of the HF or DFT
calculation, which is coupled with RPA. Moreover, there are other limitations due to
practical constraints. First, RPA forces have been recently implemented in few electronic
structure codes. However, their high computational complexity limits the geometry
optimization to small systems. For this reason, it is a common practice to relax the
geometries with other XC functionals. Second, RPA calculations are performed in a
post-process way. In practice, the KS single-particle orbitals, obtained from a converged
DFT calculation, are the input for a one-shot RPA calculation. Although self-consistent
implementations are available, the numerical cost of such calculations is still prohibitive.
Overall, the most popular and successful XC functionals remain competitive because of
the possibility to treat large systems with a moderate cost.

As discussed above, RPA describes very well weakly bonded systems and captures
vdW interactions. Inspired by this, many vdW-enabled functionals are essentially based
on the RPA. One example is the van der Waals density functionals (vdW-DFs), discussed
in Section 5.4. However, these functionals differ in their way to construct the response
function.
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3.7 GREEN’S FUNCTIONS

The many-body problem can be reformulated using the concepts of Green’s function
and self energy. This section is dedicated in particular to the GW method, a set of self-
consistent equations employed to evaluate these two objects. The Green’s function G is,
in general, a solution to a linear ordinary differential equation. In particular, considering
a differential operator L, a Green function is the solution of the equation L(G) = δs,
for each point (or point-like) source s. Then, the convolution of the Green’s function
G with the source f , gives u, the solution of the inhomogeneous differential equation
L(u) = f . Even though Green’s function methods are not strictly related to this work,
later on we are going to present calculations obtained with the GW method. A brief
introduction here would facilitate their analysis and comprehension. The overview on
Green’s functions given here is meant to provide to the reader the fundamental concepts
and tools of this reformulation of the many-body problem, a popular alternative to the
wavefunction- or density-based methodologies, illustrated in the previous chapters.
More complete and rigorous treatments on this matter are found in textbooks specialized
in many-particle physics, as the one of Fetter and Walecka [94]. We will also discuss, in
the final part of this section, the tight connection between RPA and GW .

In many-body-theory, the single particle Green’s function, called also propagator,
describes the probability amplitude of the propagation of a particle in an N -particles
system. The Green’s functions are written in terms of annihilation ψ and creation ψ†

operators, within the second quantization formalism. Let Ψ0 be the ground-state of a
N -electron system with Hamiltonian H , the single-particle Green’s function is defined
as

iG(rσt, r′σ′t′) := 〈Ψ0|T
[
ψ(rσt)ψ†(r′σ′t′)

]
|Ψ0〉 , (3.32)

where T is the time-ordering operator: if t > t′ the ordering ψ ψ† is kept, while if t < t′

a permutation is performed, with sign −1 to account for the fermionic nature of the
particles. The creation and annihilation operators depend on time and are written here
in the Heisenberg representation. The time-ordering can be written in terms of the
Heaviside step functions Θ(t− t′) and Θ(t′− t), instead of using the more compact form
given above. At this point, it is possible to insert between ψ and ψ† the complete set
of eigenstates in the Fock space of the Hamiltonian H . The presence of creation and
annihilation operators changes the inserted eigenstate by either adding or removing
a particle. The completeness relation of the Fock space allows to simplify to zero the
products between two different eigenstates. Consequently, apart from Ψ0, only two
eigenstates survive, associated with N ± 1 Hilbert spaces. At this point one can consider
the explicit form of ψ and ψ† and write the eigenvalues associated to the Hilbert spaces,
present in Equation 3.32. The Fourier transform of such expression gives an alternative
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form of the single particle Greens’ function, called Lehmann representation [95],

G(rσ, r′σ′, ω) =
∑
n

〈Ψ0|ψ(r)|ΨN+1
n 〉〈ΨN+1

n |ψ†(r)|Ψ0〉
ω − EN+1

n + E0 + iη
+

+
∑
n

〈Ψ0|ψ†(r)|ΨN−1
n 〉〈ΨN−1

n |ψ(r)|Ψ0〉
ω + EN−1

n − E0 − iη
, (3.33)

following the definition of Fourier transform of Θ(t), η has to be considered in the limit
η → 0+. The denominators in Equation 3.33 shows that the poles of the Green’s function
correspond to the energy differences between the ground-state energyE0 and the energy
of N ± 1 electronic states. The four brackets contain a creation or annihilation operator
and are called Lehmann amplitudes. They describe the probability amplitude related
to the addition/removal of one electron to/from the ground-state of the N -particle
system. The Lehmann (or spectral) representation is important also because connects
the Green’s function with measurable physical properties. For example, the spectral
function is just the integrated imaginary part of the (contracted) Green’s function. With
the photoemission spectrum, one can obtain information about excitation processes,
the energy of collective and quasi-particle excitations and their lifetime. The latter
corresponds to the inverse of the broadening of the quasi-particle state.

Given a N -body system interacting with the electronic Hamiltonian He, it is possible
to evaluate the equation of motion of the interacting Green’s function. This procedure is
known since early 50s and leads to the Schwinger-Dyson equations, the equivalent in
quantum-field theories of the Euler-Lagrange equation. Since the Hamiltonian involves
one and two bodies, the equation of motion contains both one- and two-particle Green’s
functions (G2). This formulation can be simplified and the two-particle Green’s function
is removed with the introduction of an additional quantity, the self-energy (Σ). Briefly,
the term that containsG2 and the Coulomb potential is substituted with another one that
depends on G0(rσt, r′σ′t′) and Σ (with the Hartree potential). The self-energy contains
the many-body interactions expanded as an infinite series of several different diagrams,
connected through unperturbed Green’s functions G0.

In this sense, this formalism traces a parallel with the perturbation theory, seen
in section 2.6. We saw that in the RSPT the various interactions can be represented
with Goldstone diagrams, as in the example of the MP2 approximation. Here, the
Feynman diagrams [96] are employed to represent the self-energy processes. These
famous diagrams can describe several different interactions and are widely used, for
example, in quantum electrodynamics (QED). In the particular case of the many-body
Hamiltonian with interactions between identical particles via a two-body potential, all
diagrams are constructed using two basic components: arrows and wavy lines. The
former indicates an unperturbed Green’s function, the latter represents the electrostatic
interaction. Among all diagrams, the disconnected ones cancel out as a consequence
of the Wick’s theorem [94]. We avoid now to go into further details about the rules of
construction and evaluation of the Feynman diagrams.
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At this point G, the Green’s function of the interacting systems, is expressed in terms
the unperturbed Green’s function and the self-energy Σ, which contains all possible
diagrams. As an alternative formulation, the self-energy can be expanded as an infinite
sum of the same set of diagrams, the proper self-energy (Σ∗), connected through non-
interacting Green’s functions. In this way, G can be computed with the Dyson equation

G(x, x′) = G0(x, x′) +

∫ ∫
G0(x, x1)Σ∗(x1, x

′
1)G(x′1, x

′)dx1dx
′
1 , (3.34)

where the substitution x = (rσ, t) was used to simplify the notation. The integral is
performed over space and time. One can notice that G is now present also on the
right side of the equation. The validity of the Dyson equation written above can be
verified by substituting the expression of G in the term on the right side. This leads
to infinite repetitions of proper self-energy terms, connected through G0, that sum up
to Σ. Suppose now that, for a given system, the exact Green’s functions is known,
then the total energy can be computed. The formula for the total energy is not unique.
However, it is possible to obtain a particularly useful expression that requires only the
single-particle Green’s function: the Galitskii-Migdal formula.

As one can easily guess, the exact analytical form of the (proper) self-energy is un-
known. In 1965 Hedin proposed a recipe that allows the formally exact evaluation of G
and Σ [97]. In practice, G depends on Σ and the latter is linked to the screened Coulomb
potential and the vertex function. Another quantity, the polarization function, enters the
definition of screened Coulomb potential. These five functions are determined with five
corresponding equations—called Hedin equations—and are connected together with
a complex interdependence. In other words, they are a set of self-consistent integro-
differential equations. The solution of the problem is approached with an iterative
calculation, starting with the non-interacting Green’s function and computing the five
equations following a cycle, called Hedin’s pentagon. The criterion for convergence can
be, for example, the total energy of the system.

THE GW APPROXIMATION

The GW approximation consists in taking a particular approximation of the vertex
function that effectively excludes its presence in the set of SC equations. Also, this
approximation greatly simplifies the mathematical expression of the remaining four
Hedin equations. The name of the approximation comes from the fact that the self-
energy is defined as the product of G and the screened Coulomb term W . As mentioned
before, the converged G can be obtained from the Hedin equation with a SC procedure,
starting with the guess G0. This method, known as self-consistent GW (sc-GW ), has
been tested on diatomic or small molecular systems with overall good performances.
For example, for ground-state properties, as bond lengths and binding energies, sc-GW
compares well with high accuracy methods as the RPA [98]. However, one should
consider that sc-GW calculations describe also excited states and are computationally
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much more demanding than a perturbative correction of the total energy, as in most of
RPA approaches. Moreover, we have already mentioned, that some DFT XC functionals
can capture quite well these ground-state properties (Section 3.5). It follows that sc-GW
is not the preferred choice, if confined to these applications. On the other hand, a sc-GW
implementation can express its full potential when is applied to study the changes
in the electron density and the modifications of the electronic properties of ground-
and excited-states. Moreover, a self-consistent implementation offers other important
features. For example, sc-GW is independent of the initial reference, i.e. the starting
guess of the SC calculation, which is often taken from a DFT calculation. An extended
discussion about both the technical elements and the possible applications of sc-GW
can be found in the doctoral thesis of Dr. Caruso [99].

A common practice is to reduce the theoretical consistency of the method and simply
perform a one-shot calculation using the GW approximation. One starts with the guess
G0 and performs one single cycle to solve the remaining three Hedin equations. This
method, called G0W0, turned out to be starting-point dependent, in contrast with sc-
GW . Consequently, the accuracy of the results relies on the quality of the initial guess.
Some hybrid XC functionals are able to provide remarkably good reference state for the
perturbativeG0W0 approach, giving results even better than sc-GW [100]. In conclusion,
the GW method offers good performances with the attractive feature of a description
of the excited-states. However, it is still too demanding and applications to large and
complex systems are impractical.

GW AND RPA

In terms of Feynman diagrams, the GW approximation consists in the sum of ring dia-
grams up to infinite order, equivalent to the definition of RPA. However, the comparison
between the diagrammatic representations of the two methods should be taken with
care, in fact the evaluation of the Goldstone and the Feynman diagrams follows different
rules. The expression for the total XC energy, obtained with the ACFD procedure, is
written in Equation 3.28 and contains the response function χλ(r, r′, iω). This expression
can be reformulated in terms of Green’s function. For example, the non-interacting
response function can be computed as the integral of two non-interacting G0. After
some manipulations, the integrand of Exc is rewritten as the product between the in-
teracting Green’s function and the proper self-energy G(rσ, r′σ′, iω)Σ∗(r′σ′, rσ, iω) or
equivalently G0(rσ, r′σ′, iω)Σ(r′σ′, rσ, iω). The imaginary part of the frequency is con-
sidered. The RPA formula—see Equation 3.30 for the correlation part—was obtained in
Section 3.6 by setting the kernel of the response function equal to zero, fxc

λ =0. Here, the
equivalent energy expression is obtained by considering the non-interacting Green’s
function and the GW approximation of the self-energy [28, 101]

ERPA
xc =

∫ ∫
drdr′

∑
σ,σ′

∫ 1

0

dλ

2πλ

∫ +∞

0

[
G0(rσ, r′σ′, iω)ΣGW (r′σ′, rσ, iω, λ)

]
dω , (3.35)
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where the proper self-energy depends also on λ, the adiabatic parameter. The energy
above contains both EXX and the RPA correlation energy. These two contributions are
usually written separately, in this case ΣGWc refers only to the correlation part of the
self-energy. By looking at Equation 3.35, one can see that the RPA XC energy is retrieved
by considering the GW series of diagrams and omitting the dependency of the Green’s
function on λ. The energy formula in Equation 3.35 gives the perturbative XC correction
energy. This term must be added to the other components of the total energy, obtained
using a non-interacting Hamiltonian, such as with HF or KS-DFT. Self-consistent RPA
calculations are obtained with a minimization of the total energy functional with respect
to the non-interacting input, G0, built using the KS orbitals. On the other hand, if the
energy in Equation 3.35 is computed with the Green’s function G and the proper self-
energy (both depend on λ), then the sc-GW total energy can be rescued. The interacting
Green’s function is obtained via the Dyson equation, see Equation 3.34, starting from
G0. The total energy functional is then minimized with respect to G and the converged
value differs from the one of RPA.
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4 VAN DER WAALS INTERACTIONS IN

ATOMS AND MOLECULES

As evidenced in Chapter 3, the semi-local approximations underlying current state-of-
the-art density functionals allow for a very favorable compromise between achievable
accuracy and overall computational cost. At variance with high level quantum chemical
approaches or RPA, semi-local DFT methods exhibit quasi-linear scaling with respect to
the number of electrons, and are nowadays routinely applied to large scale systems, up
to a few thousands atoms. A price to pay for the high efficiency of semi-local DFAs, how-
ever, is the lack of non-covalent vdW interactions. In fact, by construction, semi-local XC
approximations can hardly capture correlation contributions between non-overlapping
electron density fragments. The inherently non-local electronic correlation effects re-
sponsible for long-ranged vdW forces therefore demand an alternative description,
beyond conventional nearsighted approaches.

The existence of non-covalent attractive forces acting between atoms and molecules at
large distance is known since the pioneering work of J. D. van der Waals. By observing
consistent experimental deviations from the ideal gas law, van der Waals proposed a
modified equation of state, accounting for the excluded atomic volume and including an
effective attractive interparticle potential. This attractive contribution was empirically
shown to scale like R−6 in terms of the interparticle distance R, compatibly with the
well-known Lennard-Jones expression. The physical origin of vdW forces, however,
was explained starting in the second part of the 20’s with the work of London, after the
advent of quantum mechanics. The seminal work of London opened de facto a novel
research field, and strongly influenced the later developments of such diverse areas as
surface science, biophysics and nanoscience. Major contributions to this field came in the
following decades also from other scientists—among the others Heitler, Wang, Casimir,
Polder and Lifshitz—who explored dispersion interactions between atoms, molecules,
surfaces and macroscopic systems, opening the way to the modern understanding
of vdW forces. Clearly, the accurate treatment of dispersion forces is an extremely
challenging task, which ideally requires the knowledge of all correlation effects arising
in many-particle systems. In this context, the inclusion of vdW interactions within the
DFA framework is highly desirable. This corresponds to augmenting approximate XC
functionals via inherently non-local terms, as proposed by several authors in the last
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years. In this Chapter we will present some of the most successful schemes, starting from
the seminal formula proposed by London. More elaborate methods will be subsequently
introduced, finally including those many-body effects that turn out to be crucial for a
chemically accurate description of large-scale systems.

As first understood by London in the 30’s, dispersion forces have a quantum me-
chanical origin, and arise from instantaneous fluctuations of the electronic clouds that
surround atoms and molecules. For this reason, dispersion interactions are ubiquitous,
and arise even in charge neutral systems in the absence of permanent electric mul-
tipoles [102], where classical electrodynamic interactions are vanishing. The general
equations that describes intermolecular interactions for well-separated fragments can
be straightforwardly derived from Rayleigh-Schrödinger perturbation theory (see Sec-
tion 2.6). Considering two molecules/fragments A and B, the interaction energy at the
second perturbative order contains three different terms, namely

Eint = E
(1)
el + E

(2)
ind + E

(2)
disp . (4.1)

Here the first contribution describes the classical multipole–multipole electrostatic
energy. The second and third terms, instead, represent the induced (Debye) interaction
and London dispersion. Their expression is analogous to the second-order correction to
the HF energy (Equation 2.38)

E
(2)
ind + E

(2)
disp = −

∑
m,n

∣∣∣〈ΨA
0 ΨB

0 | 1
r12
|ΨA
mΨB

n 〉
∣∣∣2

EAm + EBn − EA0 − EB0
, (4.2)

where ΨA
0 is the ground-state of the molecule A, ΨA

m refers to the m-th excited state, and
EAm is the corresponding eigenenergy.

The induced interaction energy is the part of Equation 4.2 that describes the interac-
tion between a molecule A characterized by a permanent electric dipole (or multipole)
in its ground-state, ρA0 (1) = 〈ΨA

0 (1)|ΨA
0 (1)〉 and a second non-polar molecule B. The

static electric field generated by the dipole (or multipoles) of atom A, causes a transi-
tion to an excited state ρBn0(2) = 〈ΨB

n (2)|ΨB
0 (2)〉 (polarization) in B, resulting in a net

attractive force. Without loss of generality, in this example the molecule A is kept in its
ground-state, and the sum over its indexm is suppressed. The denominator is simplified
accordingly and only the difference (EBn − EB0 ) survives.

We consider now the interactions between molecules at large distances. The energy
can be conveniently represented by exploiting a multipolar expansion of the Coulomb
potential, given in powers of 1/R. For instance, the dipole-dipole induction interaction
is obtained by substituting in Equation 4.2 the Coulomb interaction with the electro-
static potential of two interacting permanent dipoles. The resulting contribution is just
the dipole–induced dipole interaction energy, averaged over space. Clearly, since all
configurations are equally probable, a straightforward average over all possible dipole
orientations would give a vanishing overall interaction. For this reason the probability of
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each dipole orientation should be weighted according to the corresponding Boltzmann
factor. In the limit of low energy, the average energy squared, i.e. the numerator of the
above, reads: 〈E2

d–d〉 = 2
3 |d

B
n0| |dA0 |R−6, where d is the dipole moment.

The second term in Equation 4.2 is the dispersion contribution. This is defined as
the interaction between mutually induced charge fluctuations arising from the instanta-
neous quantum mechanical excitations of the valence electrons. At large distances, the
dispersion interaction can again be expressed via a multipolar expansion, as a series in
inverse powers of R:

EvdW = −
∞∑
n=6

Cn
Rn

, with only even values ofn . (4.3)

The first term of the series, proportional to 1/R6, corresponds to the induced dipole–
induced dipole interaction, and typically represents the leading contribution. The two
following terms decay as 1/R8 and 1/R10. The former describes the mutually induced
dipole–quadrupole interaction, while quadrupole–quadrupole and dipole–octopole
interactions are accounted for in the latter. We note that the first term of the dispersion
interactions is always proportional to 1/R6 for finite size fragments, which indicates
the inherently quantum mechanical nature of dispersion. By considering for instance
two molecules with no permanent dipole and quadrupole, the leading term in the
electrostatic interaction will be at least the octopole–octopole (∝ 1/R7). Similarly, the
first non-zero term for induction interactions will be the dipole–octopole, which is
proportional to 1/R10. In contrast, the transient quantum-mechanical fluctuations of
the electron density will always induce a ∝ 1/R6 dipole–dipole interaction, regardless
of the symmetry. We note in passing that it is also possible to express the dispersion
interactions between separate fragments (Equation 4.2) with a perturbative expansion
beyond the second order. For instance, the third order of the perturbation series relates
three fragments through a ∼ R−9 power law expression, the so-called Axilrod–Teller–
Muto term [103].

Coming back to the second order term of the dispersion interactions, it is interesting
to express the leading dipole-dipole contribution in terms of the dipole matrix elements
dn0, in analogy to induction interactions. By assuming that the fragments A and B are
isotropic, one derives the following formula

E
(2)
disp = −C6,AB

R6
, with C6,AB =

2

3

∑
m 6=0
n 6=0

|dAm0|2 |dBn0|2

ωAm0 + ωBn0

, (4.4)

where ωAm0 = EAm−EA0 is the transition frequency. From this expression (in the isotropic
approximation), we observe that the key quantities for the computation of E(2)

disp are
the excitation energies and the dipole oscillator strengths associated to transitions
of the type 0 → m. Since the evaluation of C6,AB would require the knowledge of
both ground and excited states, a straightforward application of the above formula



60 Van der Waals Interactions in Atoms and Molecules

could be rather cumbersome in practical calculations. A more viable expression for
the computation of the C6 Hamacker constants is the Casimir-Polder formula [104].
The dynamic polarizabilities are used here to express the C6 coefficients as a frequency
integral 1

C6,AB =
3

π

∫ ∞
0

αA(iω)αB(iω)dω , with α(iω) =
∑
m 6=0

2

3

ωm0|dm0|2

(ω2
m0 + ω2)

. (4.5)

The dynamic polarizabilities used in this definition are averaged and can be measured
in experiments. Hence, this last formulation is much more versatile, and it is frequently
employed as a starting point for the development of vdW functionals.

Before introducing some of the most popular vdW-corrected DFT-methods, we sug-
gest the reader to refer to specialized literature [105–107], for a general and complete
overview about intermolecular and vdW interactions.

4.1 PAIRWISE METHODS

The first term (n = 6) in Equation 4.3 represents the starting point for all the pairwise
vdW methods, where the total vdW energy is expressed as a sum over interatomic
contributions andR is the distance between the two atoms. This is probably the simplest
approach to describe the correct long-range asymptotic interaction for well separated
particles. Within this framework, the vdW energy is simply added to the DFT energy

Etot = EDFA + EvdW , (4.6)

where EDFA is the KS-DFT energy computed with the underlying approximate XC
density functional. Pairwise methods differ one from the other in the approximations
adopted to compute the C6 coefficients. Also, each vdW scheme needs to be smoothly
merged with the chosen XC functional and the divergence of EvdW for R → 0 has to
be cured. These requirements can be handled in different ways. In this work we will
largely employ the approach of Tkatchenko and Scheffler [108] (TS) to correct standard
DFT XC functionals for the missing vdW interactions (vdWTS).

In pairwise approaches the vdW energy is expressed according to the formula

EvdW = −1

2

∑
A

∑
B

C6,AB

R6
AB

fdamp(RAB , R
0
AB) , (4.7)

where the indices A and B refer to two atoms and the sums involve the total number of
atoms in the system. The interatomic distance between the atoms is RAB , while C6,AB

is the dispersion coefficient of the pair. The last term, fdamp(RAB , R
0
AB), is the damping

function, introduced to avoid the divergence of R−6
AB for small interatomic distances.

In addition, the damping couples the long-range vdW energy to a given semi-local

1The identity 1
a+b

= 2
π

∫∞
0

ab
(a2+x2) (b2+x2)

dx, with a, b > 0 is used to rewrite the frequencies.
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XC functional via the correlation length, R0
AB , defined as the sum of the atomic vdW

radii. The success of pairwise methods in the last years can largely be attributed to
the pioneering work of Grimme and coworkers, who introduced the popular methods
called DFT-D and DFT-D2 [109, 110]. In the DFT-D the damping function is a Fermi-type
function. The C6 coefficients are obtained assuming the additivity property and taking
the average over the possible hybridization states of an atom, using accurate reference
values [111]. The DFT-D2 coefficients are re-parametrized based on atomic ionization
potentials and static dipole polarizabilities. In this way the number of parameters
of the DFT-D method is reduced and the whole procedure loses part of its original
empiricism. However, the very low computational cost and the accuracy for small
molecules—between 10% and 30% of the interaction energy—are accompanied by two
main disadvantages: i) the coefficients are kept fixed, independently of the chemical
environment and ii) fitted parameters are present both in the C6 coefficients and in the
damping function.

The DFT-D3 method of Grimme [112] extends the previous functionals introducing
the coordination number. The coefficients are computed with ab initio time-dependent
DFT (TDDFT) calculations for each pair, taking into account the different hybridization
states. Then the covalent radii are used to obtain the pair coordination numbers in the
system. The referenceC6 of the pair is finally interpolated depending on the coordination
numbers, providing the response of the atomic charge due to the environment that
surrounds the atom. In the DFT-D3 method the damping function has been revised too
and the vdW radii are used as cutoff parameters for the dispersion energy. A set of 174
pair coefficients of common molecules has been used to test the DFT-D3 method, giving
a mean absolute relative error (MARE) of 8.4%.

An alternative approach that includes the dependence of the environment is the
exchange-dipole moment (XDM) method proposed by Becke and Johnson [113–115].
In the XDM method the instantaneous dipole is computed as an asymmetry of the
exchange hole, based on HF or KS orbitals and the electron density of the system. The
C6 coefficients are obtained combining the estimated dipoles with tabulated values
for the isotropic polarizabilities. Finally the vdW energy is computed according to
Equation 4.7. The Becke-Johnson scheme captures the effects of the environment directly,
via the exchange hole. This method has the advantage of being free from empirical
parameters and fitted coefficients. However, the quality of the results is greatly affected
by the actual calculation of the exchange hole, which depends on the input orbitals. In
this regard, HF orbitals turned out to be preferable [113] over LDA or GGA KS orbitals
because of the lack of long-range effects of the latter. Consequently, the method requires
a CPU time comparable to an HF calculation or to hybrid functionals. The method
gives good performances for the molecular C6 coefficients, with a MARE of 12.5%. An
improvement of the performances of the Becke-Johnson scheme has been obtained with
the inclusion of a damping function, based on atomic correlation energies, in the energy
formula. The MARE is reduced to 11.1% for the C6 coefficients of 174 complexes [114].

The last method that we mention here will be described in detail in the next section
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and is the one proposed in 2009 by Tkatchenko and Scheffler [108]. In the TS method,
the total vdW energy depends on the electron density n(r) via the Hirshfeld weight
(w(r)) [116], used to partition the total electron density into atomic components. The
C6 coefficients and the vdW radii are environment-dependent and scale accordingly to
the Hirshfeld weight. Moreover, the TS functional is a proper functional of the electron
density, which is a fundamental prerequisite for the self-consistent implementation,
as we will see in the next chapter. The damping function depends only on a single
parameter, which is adjusted depending on the XC functional used. The TS method is
also very efficient, since all the quantities needed for the TS vdW energy are already
computed in a regular DFT calculation. In addition, the TS shows good performances
with a MARE of 5.5% for the C6 coefficients of 1225 intermolecular complexes.

4.2 THE TKATCHENKO-SCHEFFLER VAN DER WAALS

FUNCTIONAL

The energy of the functional of Tkatchenko and Scheffler is a sum over pairwise inter-
atomic C6/R

6 terms computed as in the formula written in Equation 4.7. The method
is built starting with the exact expression for the isotropic C6 that describes the vdW
interactions between two well-separated fragments: the Casimir-Polder formula, al-
ready introduced in Equation 4.5. In order to facilitate the reading of the following
mathematical passages, we rewrite that definition of C6 coefficient

C6,AB =
3

π

∫ ∞
0

αA(iω)αb(iω)dω , (4.8)

where αA(iω) is the average dynamic polarizability for atom A. As a second step, the
polarizability is approximated by retaining only the leading term of the Padé [117] series

α1
A(ω) =

α0
A

1− (ω/ωA)2
, (4.9)

where α0
A is the static polarizability and ωA is an effective excitation frequency. The

frequency αA(iω) in the Casimir-Polder formula can be replaced with the frequency
α1
A(ω) (evaluated in the imaginary plane) and the integral is solved analytically. The C6

coefficient for a pair AB is given by

C6,AB =
3

2
α0
Aα

0
B

ωAωB
(ωA + ωB)

. (4.10)

Now, if we consider A = B, the effective excitation frequency of A is expressed in terms
of the static polarizability and the homonuclear C6,AA coefficient

ωA =
4

3

C6,AA

(α0
A)

2 . (4.11)
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The corresponding expression for ωB is obtained in the same way. Then, both ωA and
ωB are substituted into the definition of C6,AB in Equation 4.10. In this way we can
write a formula for the pair coefficient that depends only on homonuclear parameters

C6,AB =
2C6,AAC6,BB(

α0
B

α0
A
C6,AA +

α0
A

α0
B
C6,BB

) . (4.12)

With this simple expression, the C6 coefficients can be accurately computed using the
free-atom parameters, α0

A and C6,AA. In the TS scheme, these homonuclear values
are taken from high-level self-interaction corrected TDDFT reference data [118], which
provide an accuracy better than 3% for nonmetallic atoms.

THE HIRSHFELD WEIGHT

The free-atom parameters can be adapted to model an atom inside a molecule or solid,
making the TS an environment-dependent method. First, the free-atom quantities
introduced earlier (static polarizability, C6 and vdW radius) are explicitly renamed here
as “free” quantities, while “eff” will refer to the effective quantities of an atom inside a
molecule. Second, the volume depends linearly on the polarizability [119], where k is
the proportional coefficient: kfree

A αfree
A = V free

A . In the TS the factor used to rescale the
parameters is the ratio between the effective volume of an atom inside a molecule and
its free value. The electron density of the system and the Hirshfeld partitioning of the
density [116] are employed to compute the effective volume

keff
A αeff

A

kfree
A αfree

A

=
VA[n(r)]

V free
A

=

∫
r3 wA(r)n(r)dr∫
r3 nfree

A (r)dr
= γA[n(r)] , (4.13)

in which the free atom spherically averaged reference density is nfree
A (r) and r = |r−RA|

is the distance between the (nucleus of) atom A and the point r. Of course the electron
density n(r) is taken from DFT calculations. The Hirshfeld partitioning weight of the
total charge density into atomic component is defined as

wA(r) =
nfree
A (r)∑N

i=1 n
free
i (r)

, (4.14)

where the sum goes over all atoms in the system. The domain of the integrals in
Equation 4.13 can be defined as ΩA := {r | nfree

A (r) ≥ εthreshold
A }. In practice, the integrals

over the volume are performed by running over all grid points, r ∈ [Grid points], see
last paragraph of Section 6.2. The ratio in Equation 4.13, shortly indicated with γA[n(r)],
takes into account hybridization, Pauli repulsion, and other semi-local XC effects in the
construction of these effective quantities for a given “atom-in-a-molecule”. Therefore,
the inclusion of the electron density allows this method to effectively go beyond the
pairwise approximation. Also, the direct dependence on the electron density allows the
analytical derivation of the KS potential, employed in the self-consistent implementation,
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see Chapter 7.
Additional approximations in the TS method regard the ratio between the free and

effective proportional coefficients and the excitation frequencies, that are assumed to be
unity. Thus, the effective quantities are determined from the free ones as

α0,eff
A = γA[n(r)]α0,free

A , (4.15)

Ceff
6,AA = (γA[n(r)])2 Cfree

6,AA , (4.16)

R0,eff
A = (γA[n(r)])1/3R0,free

A , (4.17)

where the rescaling factors are just different powers of γA[n(r)]. The great accuracy of the
intermolecular C6 dispersion coefficients, obtained with the TS scheme, validates the as-
sumptions mentioned above, which break down only with the H2 molecule. A database
of 1225 C6 for the interaction between atoms and molecules has been considered and
the TS scheme provides a MARE of 5.5%.

THE DAMPING FUNCTION

The sum of pairwise C6/R
6
AB terms clearly diverges for small interatomic distances.

For this reason the vdW energy formula written in Equation 4.7 includes a damping
function fdamp(RAB , R

0
AB). Another motivation for using the damping is to minimize

the overlap between the short-range correlation contributions of the semi-local XC
functional and the ones of the vdW functional. Therefore, the damping function should
assume the two liming values of one at large distances and zero at short distances.
Several different functions are available in the literature, in the specific case of the TS
method a Fermi-type function is chosen

fABdamp(RAB , R
0
AB [n(r)]) =

1

1 + exp[−d( RAB

sRR
0,eff
AB [n(r)]

− 1)]
, (4.18)

where RAB is the interatomic distance and R0,eff
AB = R0,eff

A +R0,eff
B is the sum of the vdW

radii associated with atoms A and B. Each vdW radius depends on the electron density
through the Hirshfeld volume, as written in Equation 4.17. The simplest definition
of vdW radius is to take half of the equilibrium distance of rare-gas dimers. For the
other elements the definition can be extended by taking as a reference the rare-gas atom
in the same row of the periodic table of elements. More precisely, the reference is the
electron density contour of this rare-gas atom, evaluated at its vdW radius. Then, the
vdW radius of the atom in question is defined as the distance where its electron density
contour is equal to the reference.

In this damping function both d and sR are empirical parameters that need to be
determined. The parameter d affects the steepness of the damping. Even though it
affects negligibly the results, the value d = 20, that corresponds roughly to the average
of possible values, has been tested to be the most appropriate. The parameter sR
scales the vdW radii and regulates the extent of the vdW correction for a given XC
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functional. In the TS scheme, the parameter is obtained for each functional by fitting
the S22 database [88], which contains binding energies of weakly bonded systems. The
reference values are computed with the coupled-cluster method with single, double and
triple excitations CCSD(T) (see Chapter 2.5.1). The value of sR associated with the PBE
functional, the most frequently used XC functional in this thesis, is sR = 0.94.





5 VAN DER WAALS INTERACTIONS

BEYOND PAIRWISE ADDITIVITY

The vdW methods reviewed in the previous chapter are based on pairwise additivity
and represent very efficient solutions for including the missing vdW contributions in the
context of semi-local DFA. In addition, some of these methods capture effects beyond
the pairwise approximation, such as the electronic hybridization of atoms in molecules,
included in the TS [108] (and in the Becke-Johnson [114]) method via the Hirshfeld
atomic partitioning weight. Nonetheless, all these pairwise methods are unable to
capture the inherently many-body nature of vdW interactions, which can result in a
strongly collective electronic response (screening).

Many-body vdW effects are commonly regarded as unimportant in small molecular
systems. However, recent studies proved that a description of vdW interactions be-
yond the pairwise limit can have a key role, for example, in the structure, stability, and
response properties of molecular crystals at finite temperature and pressure [120]. More-
over, many-body effects are essential in order to achieve chemical accuracy (1 Kcal/mol)
for the binding energies of molecular crystals [121], organic molecules [3], or even
supramolecular systems (host–guest complexes) [121]. Many-body vdW effects were
also found to have a significant role in determining the cohesive properties of solids
such as semiconductors and ionic solids [122], or even metals [123]. Moreover, recent
calculations confirmed that the many-body effects can have very important role in the
adsorption of atoms/molecules on metal surfaces [124, 125]. Also, the collective charge
fluctuation modes of the substrate can couple to strongly non-additive vdW contribu-
tions at the molecular level, leading to a modification of the molecular polarizability as
a function of the size of the molecule [8].

In principle, an accurate approach that describes vdW interactions beyond the pair-
wise approximation is the RPA, reported in Equation 3.28. As an example, the DFT
functional EXX+cRPA combines exact-exchange and RPA correlation (see Equation 3.30).
The EXX+cRPA method, when applied to solids, leads to accurate lattice constants and
bulk moduli [9]. However, RPA results can exhibit non-trivial dependence on the input
orbitals. The EXX+cRPA method is computationally very expensive and its applicability
is currently limited to small and medium sized systems (< 100 atoms) [9]. Finally,
numerical convergence can represent an issue in EXX+RPA, and the computation of
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atomic forces appears rather complex. These issues are strongly alleviated in vdW-
inclusive DFT methods. Moreover, recent benchmarking for hybrid molecules adsorbed
on metals demonstrated that vdW-augmented DFT methods can provide very accurate
equilibrium geometries and adsorption energies, outperforming EXX+cRPA [126, 127].
In addition to that, RPA implementations are, up to now, non self-consistent, i.e. the
effects of RPA correlation on the electronic properties of the systems are totally neglected.
As an alternative to the demanding RPA and RPA-based methods, one could extend the
more efficient pairwise methods by including those many-body screening effects present
in solids. For instance, the TS vdW functional was recently extended (see Section 4.2)
to model ionic solids and semiconductors [122]. In practice, the polarizabilities (and
the C6 coefficients) are re-computed using the Clausius-Mossotti (CM) equation, which
relates the polarizability to the dielectric function of the solid. In this way, the long-
range electrostatic screening is effectively included into the TS functional. A complete
description of the procedure can be found in the Ph.D thesis of Dr. Guo-Xu Zhang [128].
This method has been applied to several solids, as Si, GaAs and NaCl, providing sub-
stantial improvement over PBE (and HSE06) cohesive energies, lattice constants and
bulk moduli [122].

A particularly relevant approach for this thesis is the extension of the TS pairwise
vdW functional, presented in Section 4.2, to model bulk metals and adsorption of
atoms/molecules on metallic surfaces, namely the vdWsurf method [123]. To introduce
this method, we will first focus on the vdW interactions arising in metals. Subsequently,
we will introduce the theory developed by Lifshitz and by Zaremba and Kohn, which
models the vdW interactions between an atom and a metallic surface. Finally, we will
describe in detail the vdWsurf method. In concluding this section, an overview will
be given about the derivation of many-body vdW interactions within the adiabatic-
connection fluctuation-dissipation (ACFD) theorem formalism (see Appendix B.3) 1,
along with a brief description of the most popular vdW methodologies derived from it.

5.1 VAN DER WAALS INTERACTIONS IN METALS

The effects of vdW interactions between atoms in noble metals is a long-standing
problem. Although the importance of vdW contributions to the cohesive energy is now
broadly recognized, the quantitative estimates of their magnitude strongly depend on
the adopted theoretical approach, and can typically vary from a few percent [122] up
to above one third of the total cohesive energy [129–131]. In the seminal work of Rehr,
Zaremba, and Kohn [130] on the vdW cohesive interactions in coinage metals, the ionic
polarizabilities due to core states are disentangled from the response of delocalized
s electrons, treated as a homogeneous electron gas. This choice yields a dynamically
screened interaction between the ions, whose polarizabilities are modeled via the Lorenz-
Lorenz relation.
1This theorem is introduced in the context of DFT in Section 3.6 and described in detail in Appendix B.3.
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The starting point is the application of perturbation theory to treat the interactions
between the ions and the electron gas, and between the ions only. Let us consider the
case of two ions a and b separated by a distance R, immersed in a HEG (e). The total
Hamiltonian is written as

H = H0 +H1 , (5.1)

where the unperturbed Hamiltonian H0 includes the two independent ionic contribu-
tions, plus a term describing the uncoupled HEG. The perturbationH1, instead, contains
the couplings between the ions and between the ions and the HEG

H1 = Hab +Hae +Hbe +Hee . (5.2)

Many-body perturbation theory [94] is then applied to evaluate the effective interaction
energy between ions a and b. In the perturbative expansion only a limited set of diagrams
is retained, namely the ones corresponding to the second order correlation between the
ions, and the electrodynamic screening of inter-ionic interaction due to the surrounding
electron gas. The corresponding expression for the dispersion energy is given by

Edisp(R) = −
∫ ∞

0

dω

2π

∫ ∫
χa(q,q′, iω)V (q′, iω)χb(q

′,q, iω)V (q, iω)
dq

(2π)3

dq′

(2π)3
,

(5.3)
where χi(q,q′, iω) is the Fourier transform of the density-density response function.
The contribution of electron–electron interactions in Equation 5.3 is given by V (q, iω),
which represents the frequency-dependent screened interactions of the form

V (q, iω) =
v(q)

ε(q, iω)
, (5.4)

where the numerator is the Fourier transform of the electrostatic Coulomb potential
and the denominator is the dielectric function of the HEG, evaluated with the proper
polarization insertion [94].

The time-ordered density-density response is now approximated by its leading order
term, which is proportional to the ionic polarizability αi(iω),

χi(q,q
′, iω) ' −qq′ ei(q−q

′)Riαi(iω) . (5.5)

Within this approximation only the dipole-dipole contribution of the response function
are considered. This approximate expression for χi(q,q′, iω) is inserted into Equation 5.3
leading to the following expression for the dipole-dipole dispersion energy:

Edisp(R) ' −
∫ ∞

0

αa(iω)αb(iω)

[(
∂2V (R, iω)

∂R2

)
+

2

R2

(
∂V (R, iω)

∂R

)2
]
dω

2π
. (5.6)
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Here the screened Coulomb interaction V (R, iω) is the Fourier transform of Equation 5.4,

V (R, iω) =

∫
4π

q2

eiqR

ε(q, iω)

dq

(2π)3
=

2

π

∫
sin(qR)

qR

1

ε(q, iω)
dq . (5.7)

Notably, in the limit of very dilute electron gas (or very large frequencies), the dielectric
function tends to 1, (absence of screening). Consequently, the expression in brackets in
Equation 5.6 reduces to 6/R6 and the dispersion energy Edisp(R) tends to the pairwise
formula for the vdW interactions between atoms and molecules, see Equation 4.4.

The first ingredient needed to evaluate Equation 5.6 is the screened Coulomb in-
teraction, evaluated numerically with RPA calculations. The second ingredient is the
frequency-dependent polarizability of the ions. Optical data have been employed to
extract the values of αi(iω) in noble metals from the long-wavelength limit of the di-
electric function, by subtraction of the free electron contribution. Local field effects are
taken into account by approximating the ionic polarizabilities with a Lorenz-Lorenz
relation, where the magnitude of the ionic polarizabilities is large at low frequency, and
decreases monotonically as a function of ω. An important observation is that the HEG
screening is mostly relevant for small values of q, hence it can be well approximated
by taking the limit ε(q → 0, iω) = 1 + ω2

p/ω
2 2. The effect of the conduction-electron

screening provides a reduction of a factor 2–3 in the dispersion interactions with respect
to calculations with zero screening.

Using this approach, many-body dispersion interactions were evaluated for Cu, Ag
and Au via Equation 5.6 and with the inclusion of higher-order terms in the expansion
of the response function (Equation 5.5), beyond the dipole-dipole approximation. The
contributions of higher-order terms were found to be roughly 20% of the leading dipole-
dipole term. The calculated dispersion energies are 0.21, 0.42 and 0.63 eV respectively for
Cu, Ag and Au [130]. These values corresponds to 6%, 14% and 17% of the total cohesive
energy of Cu, Ag and Au, which clearly proves the importance of vdW interactions in
the structural stability of coinage metals.

5.2 ATOM-SURFACE VAN DER WAALS INTERACTIONS

This section is dedicated to the theory of dispersion interactions between a neutral atom
and a solid surface, also adopted in the vdWsurf method [123]. In particular we will focus
on the microscopic formulation first introduced by Lifshitz [132] and later developed
by Zaremba and Kohn [133], generally known under the name of Lifshitz-Zaremba-
Kohn theory (LZK). In the discussion below we will follow the formulation of the LZK
theory proposed by the latter authors. The geometry under consideration is depicted
in Figure 5.1. This corresponds to the physical adsorption of a small particle having
negligible charge overlap with the underlying surface. Since relativistic effects become
important only for a very large atom–surface distance, they can be safely neglected here.

2The plasma frequency is defined as ωp = (4πn)1/2, where n is the electron density.
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d d/2

RaS

zZ0

0

Substrate

Z

Figure 5.1: Sketched representation of the surface–atom system. The origin of coordi-
nates is the center of the topmost metal layer, z is the axis perpendicular to the metallic
surface. The distance atom-solid is indicated by RaS .

The atom-surface system represented in Figure 5.1 is described by the following
Hamiltonian

H = Ha +HS + VaS , (5.8)

where the Hamiltonians of the isolated atom and the solid are Ha and HS respectively,
while the third term, VaS , is the Coulomb interaction between the two subsystems. At
this point the Coulomb interaction between the electron density of the atom and the
solid is treated via a second order perturbative approach (see Equation 4.2). In analogy
to Equation 5.3, the interaction energy can be expressed in terms of the density-density
response functions, making use of the identity utilized in passing from Equation 4.4 to
Equation 4.5 (see the footnote),

E
(2)
disp = −

∫ ∫
dr dr′

∫ ∫
v(R + x− r) v(R + x′ − r′) dx dx′

×
∫ +∞

0

χR
a (x,x′, iω)χR

S (r, r′, iω)
dω

2π
. (5.9)

The coordinate R indicates the position of the atomic nucleus and corresponds to
R = (0, 0, Z) in Figure 5.1, while R + x refers to the position of the measured electron
density. The Coulomb potentials can be expressed using the two-dimensional Fourier
transform.

v(R + x− r) =
∑
q

2π

q
eiq(R+x−r) e−q|Rz+xz−rz| , (5.10)

where the wave vector q = (qx, qy, 0) is a 2D vector in the plane of the surface. Each
one of the scalar products between the real space vectors and q in the first exponential
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generates two terms, corresponding to the x and y directions along the surface plane.
Having assumed no overlap between the atom and the solid, the Coulomb potential
decays exponentially away from the surface.

At this point Equation 5.9 can be rewritten by expanding the exponentials of the two
Coulomb potentials and defining the complex wave vector k = q + iqẑ

E
(2)
disp =

∫ +∞

0

dω

2π

∑
q,q′

(
2π

q

)(
2π

q

)
e−Z(q+q′)eiR(q−q′)A(x,x′, iω)S(r, r′, iω) . (5.11)

Here A(x,x′, iω) contains the response function of the adatom, together with the related
exponentials and the double integration, while S(r, r′, iω) is the analogous surface
term. The periodicity of the surface allows to express q′ as q′ = q + G, where G is the
reciprocal lattice vector in the plane of the surface. For G 6= 0, the first exponential in
Equation 5.11 rapidly decays away from the surface, i.e. for large Z. The summation over
q′ can thus be restricted to the first Brillouin zone, where G = 0. With the substitution
q′ = q in Equation 5.11 the first exponential reads exp (−2qZ) and effectively cuts off
the q summation at q ∼ 1/Z. The second exponential, instead, reduces to 1 given that
the corresponding exponent is equal to zero.

The exponentials in the integral over the atomic coordinates, included intoA(x,x′, iω),
can be expanded if Z is much larger than the size of the adsorbate, leading to

A(x,x′, iω) =

∫ ∫
eikx e−ik

∗x′χR
a (x,x′, iω) dx dx′ = 2q2α(iω) +O(q4) , (5.12)

where α is the frequency-dependent atomic polarizability. Higher order terms with even
powers of q correspond to higher-multipole polarizabilities. On the other hand, the first
order expansion brings a factor q2 in Equation 5.11 which cancels out the two q factors
coming from of the two Coulomb potentials.

The factor S(r, r′, iω) is now written by separating the integral over z and z′ from the
two 2D integrals over the surface

S(r, r′, iω) =

∫ ∫
eqz eqz

′
χR
S (z, z′,q,q′, iω) dz dz′ . (5.13)

Remembering that the first exponential in Equation 5.11 cuts off the summation over q, it
follows that S(r, r′, iω) should be evaluated at small q. Before expanding Equation 5.13,
we note that the response function of the surface describes the electron density induced
by an external perturbation. More precisely, the induced density can be seen as the
response to an external time-dependent charge distribution of the form next(r, t) =

δ(z − Z)e(iqr)e(ωt). This induced electron density, averaged over the surface of the solid
(G = 0), is expressed as a 2D Fourier transform of the product between the Coulomb



5.2 Atom-Surface van der Waals interactions 73

potential and the response function χR
S (z, z′,q,q′, iω) 3.

S(r, r′, iω) =
q

2π

∫
eqzδn(z,q, iω) dz . (5.14)

The equation above is just as an integral of the surface charge density with an exponential
weight factor. The quantity δn(z,q, iω) represents the screening charge due to the non-
local response of the bulk and is expected to be localized near the surface. We can now
perform the expansion of Equation 5.14 for small q, retaining only the first order (q = 0).
At this point, the integral in Equation 5.14 would provide the total screening charge
of the surface and can be related to the current in the bulk via the continuity equation.
Using this relation, the quantity δn(z,q, iω) is finally expressed in terms of the dielectric
function of the solid ∫ +∞

−∞
eqzδn(z, iω) dz =

εS(iω)− 1

εS(iω) + 1
, (5.15)

where ε(iω) = 1 + 4πσ(iω)/ω and σ(iω) is the bulk conductivity.
The results in Equation 5.15, Equation 5.14 and Equation 5.12 are now combined into

the expression for the dispersion energy, Equation 5.11 (where the sum over q is turned
into an integral in polar coordinates). After the integration, the complete formula for
the dispersion energy reads

E
(2)
disp = −C

aS
3

Z3
− CaS4

Z4
+O(Z−5) , (5.16)

where the coefficient in the first term is

CaS3 =
1

4π

∫ +∞

0

α(iω)

[
εS(iω)− 1

εS(iω) + 1

]
dω (5.17)

and depends on the dipole polarizability of the adsorbed atom and the dielectric function
of the solid. In order to obtain terms after the leading one in Equation 5.16, one needs
to consider more terms in the expansion of δn(z,q, iω) (see Equation 5.14), beyond the
first one. Unfortunately, the direct application of Equation 5.16 is not possible without a
specific origin of coordinates. The information necessary to establish the reference plane
is contained in the second term, of order Z−4, which is the dominant correction. With
some algebraic manipulation of the coordinates, the correction Z−4 can be absorbed in
the first term of Equation 5.16. Finally, the dispersion energy can be approximated as

E
(2)
disp ' −

CaS3

(Z − Z0)3
+O(Z−5) , (5.18)

where the position of the reference plane is

Z0 ≡
CaS4

3CaS3

. (5.19)

3An identity taken from the linear response theory, see for example Reference [94].
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Table 5.1: The free vdW parameters, obtained with the vdWTS method, are compared
with the screened parameters of the vdWsurm scheme. The lattice constants a0 are
obtained by coupling the vdWTS method with the PBE functional. The C6 are in
[hartree Bohr6], the vdW radii are in [Bohr], the polarizabilities are in [Bohr3] and the
lattice constants are in [Å]. All the values are taken from Reference [134].

Free atom Screened
Substrate C6 R0 α a0 C6 R0 α a0

Cu 253 3.76 42.0 3.543 59 2.40 10.9 3.572
Rh 469 3.95 56.1 3.773 84 2.42 13.0 3.765
Pd 158 3.66 23.7 3.913 102 3.07 13.9 3.949
Ag 339 3.82 50.6 4.071 122 2.57 15.4 4.007
Ir 359 4.00 42.5 3.844 98 2.71 13.2 3.873
Pt 347 3.92 39.7 3.939 120 2.80 14.5 3.979
Au 298 3.86 36.5 4.116 134 2.91 15.6 4.163

Notably, this approximation can fail for very small atom-surface distances. However in
the typical case of physisorption the distance is large enough (∼ 3 Å) and these equations
are safely applicable. The jellium model can be applied to noble metals, yielding to
an approximated reference plane (in the limit of high frequency) of d/2, where d is the
interlayer distance, see Figure 5.1. This position of Z0 is modified when local-field effects
become large in the dielectric function. Therefore, the magnitude of the many-body
effects in the potential between the atom and the surface can be evaluated by looking at
the deviations in the approximation Z0 = d/2.

5.3 MODELING ADSORPTION PHENOMENA WITH THE

TKATCHENKO-SCHEFFLER FUNCTIONAL

The LZK theory, discussed in the previous section, provides a definition of the C3

coefficient, written in Equation 5.17. This result is of fundamental importance for the
extension of the TS pairwise method to model adsorption on periodic surfaces. In fact,
it is possible to relate the definition of the C6 coefficient, used in pairwise methods, to
the C3 coefficient for the atom-surface vdW interaction. In 1937 Hamaker calculated
the interaction between an atom a and a substrate S as an integration of the pairwise
London formula (see Equation 4.3) over the volume of the solid Ω [135],

E
(2)
disp = −

∫
Ω

Cas6

R6
nS dV , (5.20)

where dV is the volume element of solid and nS is the number of atoms per volume in
the bulk. From now on we will use the capital S to indicate the substrate. On the other
hand, the lowercase s, as written in the C6 in Equation 5.20, refers to a single atom of
the substrate. The above formula can be equated to the known LZK expression for the
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atom-surface dispersion energy, written in Equation 5.18. The equivalence is satisfied
by setting the relation [135, 136]

CaS3 =
π

6
nS C

as
6 , (5.21)

where the surface is taken as an ideally half-spaced solid with constant density nS .
The relation in Equation 5.21 can be derived by considering the dielectric function of

the solid (Equation 5.17) with the approximated of the Clausius-Mossotti (CM) relation
(or Lorenz-Lorenz relation)

εCM
S (iω)− 1

εCM
S (iω) + 2

=
4

3
π ns αs(iω) = α∗s(iω) , (5.22)

where εCM
S (iω) is the CM approximation of the dielectric function. The approximation

is exact in case of cubic symmetry and if the constituents of the solid can be treated
as point dipoles, i.e. with no overlap between the electronic charge distributions. In
this case the total electric field, related to the dielectric function, is generated by i) the
external source and ii) a macroscopic field due to the polarization of the solid, thus
including the many-body effects of electromagnetic screening. The definition of ε(iω)

as a function of α∗s(iω), obtained from Equation 5.22, is then inserted into the CaS3 (iω)

expression, see Equation 5.17. Finally, the relation between Cas6 and CaS3 (Equation 5.21)
is obtained by expanding α∗s(iω) and retaining only the leading term [136]. We note that
the second term in the expansion corresponds to the three-body dipole interactions, i.e.
the Axilrod-Teller-Muto term [103].

We can now proceed to implement the LZK theory into the Tkatchenko-Scheffler
vdW functionals (Section 4.2) with the following steps:

• For a specific solid S, the dielectric function εS(iω) is extracted from reflection
electron energy-loss spectroscopy (REELS) experiments4.The absorption spectra
is used to obtain the imaginary part of the dielectric function. The real part is
subsequently computed with a Kramers-Kronig transformation.

• The dielectric function is inserted into Equation 5.17, together with the polar-
izability of the adsorbed atom αa(iω), to obtain the CaS3 coefficient. Here the
polarizability corresponds to the static polarizability, already introduced in the TS
scheme (α0

a) in Equation 4.9.

• The relation in Equation 5.21 is employed and the heteronuclear Cas6 coefficient is
finally obtained.

• The heteronuclear coefficient is expressed in terms of homonuclear C6 coefficients

4It is also possible to compute the dielectric function with first-principles calculations. Accurate DFT results
reported a good agreement with REELS experimental data.
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and polarizabilities (Equation 4.12), we report here the expression

C6,as =
2C6,aaC6,ss

α0
s

α0
a
C6,aa +

α0
a

α0
s
C6,ss

. (5.23)

• The equation above presents two unknown parameters: the polarizability and the
homonuclear coefficient of the substrate, α0

s and C6,ss. It is sufficient to employ
two different adsorbed atoms with the same substrate to have a solvable set of
two equations with two unknown parameters.

• The value of α0
s is used to obtain the vdW radius for the atom-in-a-solid R0

s =

(α0
s/α

0,free
s )(1/3)R0,free

s , where the superscript “free” indicates that the quantity has
been computed for the free atom.

This new set of parameters C6,ss, α0
s and R0

s for the atom-in-a-solid are used as input
parameters in the TS vdW functional. Therefore, all the ingredients of the original TS
functional are also used here. The only difference is that the effective quantities, which
include the effects of polarization via the Hirshfeld weight (see Section 4.2.1), are built
from the LZK parameters and not from the free atom reference. This extension of the
TS is referred to as DFA+vdWsurf method. The DFA+vdWsurf method has been applied
to a set of seven metal surfaces, using different kind of adsorbed atoms, such as H,
C, Ne, Ar, Kr. The set of vdW parameters that include the screening for an atom-in-a-
solid are reported in Table 5.1. From the comparison with the free-atom values, also
reported in Table 5.1, it is evident that the inclusion of the collective response of the
solid in the parameters cannot be neglected. The screened C6 coefficients, for instance,
display large reductions. In particular, the effective C6 for Rhodium is reduced by a
factor of 5.5 with respect to the Cfree

6 . More modest C6 modifications, however, are
found for some other metals, such as Au or Pd where the reduction factor is 2.2 and
1.55 respectively. The different magnitude in the renormalization of the parameters
suggests that screening effects are strongly sensitive to the type of substrate. For what
concerns the lattice constants, the values reported in Table 5.1 are obtained by coupling
the vdWsurf to the PBE functional. We remark that PBE reduces to LDA in the limit of
homogeneous electron densities. Thus, it can provide a quite accurate description of
metallic electrons. As a consequence, PBE+vdWsurf can lead to a partial double counting
of the interactions between electrons in the metal. This can lead, in some cases, to a tiny
increase of the lattice constants with respect to the PBE ones [134]. Unfortunately, these
overestimations can not be easily quantified and the inclusion of the full ions–metallic
electrons interactions into the microscopic polarizability is a necessary step to improve
the present model. We note here that the inclusion of the vdWTS energy on top of PBE
always improve the lattice constants computed with PBE alone. These results might
appear surprising if we consider that the vdWTS do not include any screening between
the ions in a metal. However, the good performances of the vdWTS are the consequence
of error cancellations between the overestimated C6 coefficients and the large values for
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the vdW radii [134].
An extensive and detailed description of the vdW interactions in metals and for ad-

sorption phenomena on metal surfaces can be found in the Ph.D thesis of Dr. Ruiz [137].
In that work both technical aspects and numerical results for fourteen metallic sub-
strates are reported. Also, the DFA+vdWsurf method is applied to study the adsorption
of an atom/molecule on a metal surface, with a particular attention to PTCDA (see
Section 10.4) on coinage metals. The DFA+vdWsurf method has been successfully
employed to study a large number of different adsorbates on a variety of metallic sur-
faces [10, 123, 134, 138–140]. The adsorbates include small rare-gas atoms as the Xenon
atom, small-medium sized organic molecules as benzene or azobenzene, as well as large
molecules as PTCDA or the C60 buckyball. A broad review with several examples and
a thorough discussion about the performances and the possible improvements of the
DFA+vdWsurf method is available in Reference [127].

5.4 THE NON-LOCAL DENSITY FUNCTIONALS

In this section we give an overview of the so-called non-local vdW functionals. This
family of popular vdW functionals originated from the vdW density functional (vdW-
DF) of Dion et al. [141], however the seminal idea dates back to the work of Langreth and
Lundqvist [142]. The vdW-DF will be used in this thesis and compared to the pairwise
DFA+vdWTS functional.

In vdW-DF the XC energy is given by

EvdW−DF
xc [n] = EGGA

x [n] + ELDA
c [n] + Enl

c [n] , (5.24)

where, originally, the GGA exchange energy is taken from revPBE [143]. The non-local
correlation energy functional Enl

c [n] is defined by introducing a two-point dependency
on the electron density, which motivates the name “non-local”:

Enl
c =

1

2

∫ ∫
n(r)Φ(r, r′)n(r′)drdr′ . (5.25)

Here Φ(r, r′) is the so-called non-local kernel, that reproduces the asymptotic behavior
Φ(r, r′) ∼ R−6 for R→∞. The double integral in Equation 5.25 has a higher computa-
tional cost compared with discrete post-processing pairwise methods. This drawback
will be discussed in relation to calculations of metallic bulks and surfaces, see Section 7.3.

The starting point of vdW-DF is the exact ACFD equation, see Equation 3.28 (and
Appendix B.3). In the vdW-DF, the ACFD formula is split into local and non-local
contributions for the correlation energy. As a first step, the local part of the correlation is
defined as the LDA correlation term, as written in Equation 5.24. Therefore, the non-
local correlation should take into account the remaining piece of the correlation energy.
Three approximations are then introduced in order to correct LDA correlation with a
non-local dispersion contribution: 1) The first approximation of vdW-DF enters when
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the integration over the adiabatic factor λ is carried out. That is, the interacting response
function χλ in the ACFD formula is substituted with the response function of the full
electric potential (λ = 1). This is the so-called full potential approximation [142]. In this
way, the integration over the switching parameter λ can be performed analytically. The
quantity Enl

c [n] is written as

Enl
c =

∫ ∞
0

Tr [ln (1− V (r− r′)χ(r, r′, iω))− ln ε(r, r′.iω)] dω , (5.26)

where the response function used here can be expressed in terms of the dielectric
constant ε. We consider now two separate fragments that are pushed close together. As
the distance between them reduces, the density of the system is expected to become more
and more uniform. At the same time, the effects of non-local correlation should gradually
decrease to zero. This limit is included by construction in the vdW-DF functional. In
fact, for a uniform system the relationship between χ and ε becomes ε = 1− V χ and the
integral in Equation 5.26 vanishes. Also, a seamless connection with the LDA correlation
is guaranteed, avoiding double counting. 2) The second approximation consists in a
second order expansion of the term S ≡ 1 − ε−1 [141]. 3) Other approximations are
necessary to write a form for the factor S (or χ). In the vdW-DF a plasmon-pole model
was employed [141]. After some algebra, the functional in Equation 5.26 is finally
rewritten as Equation 5.25. The non-local kernel is a function of the position, the density
and the gradient of the density, evaluated simultaneously for two points (r and r′).

The vdW-DF has been applied to a variety of systems where dispersion is an im-
portant component of the total energy. From the results it emerged that the functional
tends to overestimate the long-range correlation, as we will see also in this thesis, in Sec-
tion 8.2. For example, the vdW-DF yields a MAE for the S22 database of ∼ 60 meV [88],
outside the chemical accuracy of ∼ 43 meV. These outcomes stimulated new proposals
for improving the performances of the vdW-DF. Among the various ideas there are func-
tionals with a modified version of the exchange functional, usually derived from PBE
and/or revPBE. A popular variation is the vdW-DF2 [144], which employs an accurate
semi-local exchange functional (PW86) in combination with a gradient correction in
the kernel. The results for the S22 database show a significant reduction of the MAE
and the chemical accuracy is reached for dispersion-dominated complexes [144]. Other
examples are optPBE and optB88, where the exchange functional is a mixture of PBE
and revPBE for the former, while the B88 functional is employed for the latter. The
parameters of the exchange part were also optimized by fitting on the S22 database.
We note here that, by construction, vdW-DF is not compatible with EXX and the use of
hybrid functionals typically results into large overbind and less accurate values.

In concluding, we mention that other non-local functionals that substantially differ
from vdW-DF are also available. One example is the non-local functional of Vydrov
and van Voorhis, the VV10 (and VV09) [145]. The idea of the VV10 is to compute the
kernel after a range separation between short- and long-range contributions, resulting
in a rather simple mathematical expression. By controlling the two components via a



5.5 Summary 79

range-separating function, the VV10 functional can be coupled to other XC functionals.
Moreover, the VV10 contains empirical parameters that are fitted to a set of reference
C6 coefficients. A detailed description of the different non-local vdW functionals and
their performances is far beyond the scope of this work and we suggest the interested
reader to refer to specific works, as the one in Reference [146]. In additioon to that,
more general reviews are available, that describe the most popular vdW methodologies
proposed in the literature [147, 148].

5.5 SUMMARY

This chapter introduced the “classical” description of vdW interactions as the dispersion
energy that is generated by the interaction between induced dipoles or multipoles.
Following the idea of London, the dispersion interactions for non-overlapping fragments
are defined as a sum of pairwise contributions. The leading term is the induced dipole–
induced dipole contribution, computed within second order perturbation theory and a
multipolar expansion of the Coulomb potential (dipole approximation). Approaches
of increasing complexity are subsequently introduced in order to treat bulk periodic
metals and physical adsorption. We note that, in principle, the vdW dispersion energy
stems from the retarded electromagnetic interaction acting between the atoms, and its
exact description would require a full many-body quantum mechanical approach. Due
to the complexity of the problem, however, some simplifying approximations should be
introduced.

In first place, we consider systems where the distance between the interacting bod-
ies is sufficiently limited that the electromagnetic field can be treated as non-retarded.
Second, in the case of physical adsorption we restrict to interacting fragments with
non-overlapping electronic wavefunctions. At this point the problem of two interacting
bodies can be treated within the LZK approach, as described by Equation 5.9. The
equation depends on the Coulomb potential V , and the electron density-density re-
sponse χ. Notably, by considering the leading order of a multipole expansion of the
Coulomb potential, the classical London expression (E(2)

disp,AB = −C6,AB/R
6
AB) for the

vdW energy is recovered.
The sum of pairwise contributions can be applied to a variety of systems. Great

efforts were made in order to derive analytical expressions for the pairwise vdW energy
of macroscopic objects with well-defined shapes, as thick/thin slabs, spheres, cylinders
and many more. The typical strategy is to substitute the summation by a continuous
space integration. In this way it is possible to obtain the analytical dependence of the
vdW energy on the separation distance D between macroscopic fragments. A very large
set of examples of this kind can be found in the book of A. Parsegian [107]. As clearly
discussed in Section 5.1 and 5.2, the pairwise methods are unable to capture many-body
effects, that stem from the screening of the Coulomb interaction between the fragments.

The dispersion interaction is part of the correlation energy and the exact form of
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the latter is provided by the ACFD formula 5, see Equation 3.28. Therefore, the ACFD
formula represents the proper starting point for vdW methods that includes many-body
effects. In this regard, we discussed the derivation of the non-local vdW methods,
such as vdW-DF, from the ACFD formula. Another popular approach is the RPA, see
Equation 3.30, which provides an elegant expression for the many-body correlation
energy. The RPA has been applied to several systems and the asymptotic behavior
of the correlation energy has been compared to the “standard” results, obtained with
pairwise methodologies [149, 150]. Deviations from the pairwise power laws are found,
for example, for metallic and semi-metallic systems. In particular, large deviations from
the standard asymptotics were observed in low-dimensional nanoscale systems, such as
parallel metallic wires, carbon nanotubes or thin slabs.

We note here that within the ACFD framework one can also derive the LZK for-
mula for atoms adsorbed on a metallic substrates. In Section 5.2 we have followed
the “classical” derivation, which starts from a second-order perturbative approach for
substrate-adsorbate coupling. As an alternative, one can start from the ACFD formula
and follow the same steps used for deriving the RPA. In this way the dispersion energy
is written in terms of the response function. Moreover, the total response function
of the system can be factorized as a tensor product of two susceptibilities (χ12 and
χ21), relative to the two non-overlapping fragments. Perturbative diagrams can be
summed up for intra-fragment interactions, leading to a renormalization of χ12 and
χ21. The two interacting susceptibilities, accounting for intra-fragment many-body
effects, can finally be coupled via the interfragment Coulomb interaction. At second
perturbative order in the inter-fragment Coulomb coupling —valid for sufficiently large
interfragment separations—, the LZK is recovered. In conclusion, the ACFD formula
provides a universal theoretical framework for the description of many-body long-range
correlation interactions. The ACFD expression is not only exact, but it also allows for
an insightful derivation of approximate methods, from pairwise approaches (second
order perturbative approximation) and LZK theory (second order coupling between full
many-body fragment susceptibilities), up to RPA (infinite summation of ring diagrams)
and alternative many-body techniques.

5The ACFD formula is an exact expression for both the exchange-correlation part of the energy. The two
components can be separated into two independent parts.
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6 ELECTRONIC STRUCTURE METHODS

Now that the reader is more familiar with van der Waals interactions and the TS func-
tional in particular, we can approach the core of the present thesis. This chapter is de-
voted to describe the details of the self-consistent (SC) implementation of the TS scheme
in the Fritz-Haber-Institut ab initio molecular simulation package (FHI-aims) [151]. Here,
we will present step-by-step the analytical derivation of the vdW potential. The working
equations for the SC implementation will be shown and compared with the correspond-
ing a posteriori scheme, in which the vdW interactions are treated in a non-self-consistent
manner. Finally, the performance and the efficiency of the new implementation will
be discussed using different test systems and convergence settings. However, before
proceeding directly to the SC implementation, now we introduce the reader to the basic
concepts of a real-space code with local orbitals, such as the FHI-aims. This will clarify
the subsequent technical discussion of the implementation. It will help, in particular,
to explain the reasons behind the efficiency/inefficiency and to illustrate the pathway
for possible improvements and/or approximations. In passing, we will also discuss
the comparison with another very popular family of electronic structure codes, which
employ plane-waves basis sets.

Many different codes exist for performing electronic structure calculations. Each
code provides a variety of computational methods (see some examples in Chapter 2 and
Chapter 3) and presents specific characteristics, efficiency and accuracy. We can loosely
distinguish two families depending on the basis set that is employed: plane-wave
(necessarily combined with the pseudopotential approximation) and atom-centered
orbital (typically all-electron) codes. To clarify the division above let us consider, as
an example, the case of DFT. We saw in Chapter 3 that the solution of the many-
body problem corresponds to the solution of the KS eigenvalue equations, written in
Equation 3.17, (t0 + veff)ψi(r) = εiψi(r) , ∀particle i. To solve this set of single-particle
equations, it is a common practice to use basis functions to expand the single-particle
orbitals

ψi =

Nb∑
n

cniφn(r) , (6.1)

where the spin-polarized index is omitted in this chapter for a simplified notation.
A basis set enables the reformulation of the differential equations into a generalized
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eigenvalue problem
Nb∑
n

hmncni = εi

Nb∑
n

smncni , (6.2)

where the matrix element of the Hamiltonian is hmn = 〈φm|t0 + veff |ψn〉, while smn =

〈φm|φn〉 is the overlap matrix element. The choice of the basis set determines some
important properties of the code. The Gaussian basis set, for instance, are atom-centered
orbitals with an analytical form. Any large enough gaussian basis is almost complete
and can be used for different electronic structure methods. For this reasons they have
been extensively used in the quantum-chemistry community—along with Slater-type
orbitals—and are able to describe accurately the non-local correlation effects. The
analytical form has the advantage to simplify the integrals in Cartesian coordinates. On
the other hand, a large number of basis functions is often needed to obtain accurate
results, leading to a slow convergence in term of total number of basis functions.

The plane-wave basis set is popular in solid-state physics and offers the advantage
of describing the periodicity of the system by construction. This feature is reflected in
particularly fast computation with plane-wave codes when studying periodic systems.
However, since the plane-waves are defined all over space, this methodology is not
particularly indicated for low dimensional systems, as surfaces, where the vacuum
represents a large part of the unit cell. With plane-wave basis, the description of an
atom becomes problematic in the region close to the nucleus, where the wave-functions
present rapid oscillations. The orbitals that describe core electrons are in general very
similar to the ones of the isolated atom. Therefore, a common procedure is to avoid an
explicit description of core electrons and use effective core potentials, called pseudopo-
tentials. The pseudopotential is associated to single-particle pseudo-wavefunctions that
should replace the core states with smooth functions. Since the valence electrons feel
the pseudopotential, the valence states result consequently modified in the vicinity of
the nucleus. Beyond a certain cutoff, that separates the core from the valence states,
the pseudopotential and the pseudo-wavefunctions become identical to the “original”
all-electron potential and wavefunctions. The pseudopotentials allow to use a reduced
number of basis functions, but extra care should be taken when partitioning the core
and the valence region, in particular for heavier atoms.

6.1 NUMERIC ATOM-CENTERED ORBITALS

Since the large majority of the results presented in this work are obtained with the
aforementioned FHI-aims code, we will focus mainly on this code in the following
discussion. An extended discussion about all the technical details of the FHI-aims code
is reported in Reference [151]. FHI-aims is an all-electron code that employs a numeric
atom-centered orbitals (NAOs) of the form

φi(r) =
ui(r)

r
Ylm(Ω) , (6.3)
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where the function ui(r) has radial symmetry and is numerically tabulated. The angular
part is given by the complex spherical harmonics Ylm(Ω) , divided into real parts
(m = 0, . . . , l) and imaginary parts (m = −l, . . . ,−1). Similar to other atomic basis
sets, the NAOs are centered on nuclei and have the advantage of retaining chemical
bonding information of the system with an appropriate description of the atomic core
electrons. The particular form of the NAOs allows to include the radial functions
of free-atom orbitals and to describe well the inner electrons, near the nuclei. The
flexibility of the radial function ui(r) comes from the fact that it can be constructed using
a Schrödinger-like radial equation[

−1

2

d2

dr2
+
l(l + 1)

r2
+ vi(r) + vcut(r)

]
ui(r) = εiui(r) , (6.4)

where l is the angular quantum number. The potential vi(r) defines the shape of ui(r).
The term vcut(r) is the confining potential, which guarantees a smooth decay to zero of
the radial functions ui(r) outside a certain radius.

The analytical shape of the confining potential is not unique. Care must be taken to
ensure, along with a smooth decay, the absence of discontinuities in the function and its
derivatives. The confining potential in FHI-aims is given by

vcut(r) =


0 r ≤ ronset ,

s
(r−rcut)2

exp( w
r−ronset ) ronset < r < rcut ,

+∞ r ≥ rcut ,

(6.5)

in which s is a global scaling parameter. The difference w = rcut − ronset sets the width
of the region in which the potential is defined and not divergent. The choice of these
parameters is critical for both the accuracy of the results and the numerical efficiency
of the code. In fact, if one chooses a very small ronset, the radial functions would be
confined in a very small region around the atom, leading to unphysical results. On the
other side, a small ronset and a large width would produce extended radial functions
with very slow decay. This can significantly affect the CPU time, especially in case of
densely packed solids. The values for a “safe” vcut(r) are tabulated1 and correspond to
ronset = 4.0 Å and a width w = 2.0 Å. As a general prescription, the potential cut-off can
be responsible for changes in the properties, apart from the total energies. Therefore,
the value of vcut(r) should always be tested to ensure an accurate convergence in all
situations. In this work we will consider several different systems and present a study
of their electronic properties. Our results will be supported by convergence tests, in
particular for what concerns the confining potential.
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Figure 6.1: Top left: PBE and PBE0 binding energy of the water dimer as a function of
the basis set. Top right: time employed for each dimer calculation. The values reported
are the average time per self-consistent cycle, obtained with the code running with
twelve processors in parallel. Bottom left: structure of the water dimer with a sketch of
the atom-centered grids for the real space numerical integration. Bottom right: PBE and
PBE0 total energy of a water molecule as a function of the basis set.

6.2 FHI-AIMS SETTINGS

The radial NAOs are obtained for each species with an iterative procedure that allows
to gradually increase the accuracy. First, the so-called minimal basis set is constructed.
It consists of the orbitals of the spherically symmetric free atoms and is obtained by
setting the radial potential in Equation 6.4 equal to the free atomic potential. The
minimal NAOs are exact for free atoms and provide both core and valence functions,
which can be transferred to bonded systems. For the valence electrons, the minimal
basis set describes well the regions close to the nuclei, because the nuclear potential
dominates and the shape of the orbitals are similar to the free-atom case. Second, for
each element a closed-shell optimization target is chosen, typically a dimer. The pool
of candidate functions is tested and only the radial function that improve the most the
total energy is retained. This procedure is then iterated until no further improvement
is found. Of course, several variations can be applied to the schematic procedure
described above, as the introduction of additional candidates in the initial pool, beyond

1We report here the two values suggested and tabulated as the default choice for the tight settings, the set of
parameters typically considered to provide reliable accuracy.
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the minimal basis set. The radial functions, selected in this way, are grouped together in
tiers of different angular momenta and distributed with the FHI-aims code. Naturally,
the first tier improves significantly the minimal basis set and the correction reduces
quantitatively as the rank of the tier increases. An example is shown in Figure 6.1 top-
left panel, where the binding energy of the water dimer is computed with PBE and PBE0
functionals and plotted in function of the different tiers basis sets, see Appendix C.1
for the computational details. The cost of each calculation is plotted in the top-right
panel of Figure 6.1. Unfortunately, it is a general fact that the speed of the calculations
is reduced as the basis set increases. In this particular case, the PBE over-converged
calculation with tier3 is about five times longer than the one with the minimal basis set.
For PBE0 the scaling is much worse and the difference becomes more than fifty times.
In conclusion, higher tiers should be used only when really necessary. For example,
tier1 is very likely to be enough in case of geometry optimizations, where the number
of self-consistent calculations is definitely large. Then, for carefully converged total
energies, one should consider tier2 or beyond.

An important quantity in a DFT calculation is the electrostatic (Hartree) potential. In
FHI-aims, the charge density is partitioned on the atoms and decomposed in a multipole
expansion. The multipole components are regulated by the parameter l that indicates
the highest angular momentum. This parameter is very important for the computational
efficiency of the code and should be carefully chosen. From the practical experience it
emerged that a value of l = 4 is usually enough to give meV/atom-converged energy
differences [151]. In the tight settings a value of l = 6 is used. The potential vH(r) is then
evaluated on a dense logarithmic grid. Outside the cut-off that limits the atom-centered
electron density, the Hartree potential decays analytically as ∝ r−(l+1). Therefore, the
high multipole components decay very fast to zero at large distances. The long-range
electrostatic potential (small l) can be efficiently computed, for periodic systems, using
Ewald’s method. The Hartree potential is split into a short-ranged part and a smooth
long-ranged part. Then, the long-range part is evaluated in reciprocal space, using
Fourier transforms.

The numerical integrations are evaluated in FHI-aims in a real-space mesh, that is
created by overlapping atom-centered grids. The space around each atom is divided
in shells, which are sampled with a certain amount of points, as sketched on top of the
water dimer geometry in the bottom-left panel of Figure 6.1. The radial and angular
integration points are created along with their respective tabulated integration weights.
In practice, a Lebedev grid [152] is used to distribute the points on spherical shells. In
the code, the number of shells and their density can be fully controlled, as well as the
number of angular grid points distributed in a specific region. We note that inner shells
requires fewer points than those, more extended in space, that are located far away from
the nuclei.
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6.3 ADDITIONAL FEATURES

In FHI-aims the spherical atoms are modeled including their valence functions in the
basis set. However, the situation is different in all other possible cases, as non-spherical
atoms, molecules, etc. Consequently, during the variational procedure, the basis set
of a fragment can contribute to improve the energy of other fragments. This artificial
effect is known as the basis set superposition error (BSSE) and leads to a lowering
of the atomization or binding energies. One way to evaluate and correct the BSSE is
the counterpoise (CP) correction: energy calculations are performed for each isolated
fragment, with and without the basis set of the other fragments. The difference between
the two values is the CP correction for the fragment. Once the CP energy value is known,
it is possible to correct the BSSE by subtracting this number to the binding energy. In
the FHI-aims, the magnitude of the BSSE has been extensively studied in relation to the
number of basis functions. In conclusion, the BSSE turned out to be negligible for well
converged energy calculations, in most DFT functionals. Already with a moderate basis
size, as tier2, the BSSE becomes basically irrelevant. Exceptions exist, in particular for
explicitly correlated methods [153], e.g. MP2.

The expansion of two-particle operators, as the Coulomb operator, in a single-particle
basis is evaluated with four-center two-electron integrals. The Coulomb integral is
written, using the decomposition of Equation 6.1, as

〈ij| 1

|r− r′|
|kl〉 =

∫ ∫
φ∗i (r)φ∗j (r

′)φk(r)φl(r
′)

|r− r′|
drdr′ . (6.6)

The exchange part is just the expression above with the sign minus and the two indices
k and l interchanged. Once the integrals are computed, the single-particle orbitals are
obtained using the expansion coefficients. Unfortunately, the CPU time necessary to
compute the four-center integrals represents a large part of the total workload. Also,
the memory required to store these integral can be a major bottleneck, with a scaling of
O(N4), where N is the number of basis functions employed. The four-center integrals
are relatively easy to compute with Gaussian basis functions. In fact, the product of
two Gaussians centered in two different points has an analytic expression: it is just
another Gaussian centered at a third point. In this way the four-center integrals are
reduced to two-center integrals. In the case of FHI-aims, where NAOs are used, no
analytical expression is available. Different methods have been proposed to reduce the
numerical cost of the four-center integrals. The resolution of identity (RI), implemented
in FHI-aims [153], reduces the four-center integrals to a series of two- and three-center
integrals. Within the RI, the atomic basis functions φi(r)φk(r) are written in term of an
auxiliary basis:

φi(r)φk(r) '
Naux∑
µ=1

CµikPµ(r) , (6.7)

where {Pµ} is the set of functions, called auxiliary basis functions (ABF), and Cµik are the
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expansion coefficients. In the limit of a complete auxiliary basis, the expression above
would be an equality. However, the auxiliary basis is invariably incomplete and this is
essential for obtaining increased computational efficiency. In other words, the number
of ABFs, Naux, can be kept always smaller than the number of NAO pairs, which scales
as O(N2). On the other hand, the size of the basis set guarantees low errors in the
expansion. A typical number for the ABFs is ∼ 3–6 times the NAOs [153].

The four-center integral in Equation 6.6 is now rewritten in terms of the ABFs

〈ij| 1

|r− r′|
|kl〉 '

Naux∑
µν

CµikVµνC
ν
jl , (6.8)

where Vµν is the Coulomb potential, a two-center integral that involves two ABFs. From
this definition, the method takes the name of “RI-V”. Finally, the expansion coefficients
can be determined in several ways. An option is to minimize the expansion error of
the ABFs with respect to the NAOs. Here, the RI error of the four-center integrals is
minimized, yielding to three-center Coulomb integrals that contain both NAOs (two
functions per integral) and ABFs (one function per integral). A complete overview about
the RI-V implementation in FHI-aims is available in Reference [153].

In concluding this chapter we mention that an all-electron self-consistent calculation
embodies a series of operations that can considerably affect the computational efficiency.
The improvement of the efficiency of electronic structure codes is a topic of great interest.
In particular, an appropriate implementation leads to an applicability extended to large
systems (hundred of atoms) along with an efficient computational cost. In FHI-aims, the
key objects are the NAOs and the real-space grid, where all the operations are performed.
Consider, for instance, the setup of the electron density, an operation required at each
self-consistent cycle. The density is defined using pairs of orbitals and running over
all the grid, giving a O(N3) scaling. Another important passage is the integration
of the Hamiltonian, that gives the same O(N3) scale. Therefore, the computational
efficiency depends on the shape and the total number number of NAOs as well as on
the partitioning grid. The NAO, defined in Equation 6.3, can be taken in a localized
form, using a cutoff potential, see Equation 6.5. We already mention that the real-space
grid is composed of overlapping atom-centered grids, with shell-like distribution of
points. At this stage, the quantity of interest is obtained with an integral over a discrete
set of points, considering also that a weight function is assigned to each atom-center
grid. However, several algorithms of different complexity can be used to efficiently
partition the grid into batches, that are as localized as possible. This allows to split
the original loop over the grid points into several smaller parallel jobs. Finally, the
division in batches, together with the NAOs localization, yields to a small number
of non-zero basis functions in each batch, speeding up the loops and the operations
between matrices. All the details about the optimization of the scaling in FHI-aims are
available in Reference [154]. In conclusion, a linear scaling O(N) is achieved for several
grid-based operations, resulting in a nearly linear total scaling.





7 SELF-CONSISTENT

TKATCHENKO-SCHEFFLER VAN DER

WAALS FUNCTIONAL

In this Chapter we discuss the details of our self-consistent (SC) implementation of the
Tkatchenko-Scheffler van der Waals functional into the FHI-aims code. The first step is
the introduction of the working equations, then the analytical derivation of the vdW
potential will be presented. The chapter is concluded with illustrative convergence tests,
analysis and optimizations of the computational efficiency of the SC implementation
and comparisons between different XC functionals.

Before the actual implementation, we recall briefly some formulas that will be used
in the following. The interatomic vdW functional of Tkatchenko and Scheffler [108] (TS)
has already been described to the reader in Section 4.2. The total vdW energy formula
with the effective quantities is written as

EvdWTS [n(r)] = −1

2

∑
A,B

EABvdWTS [n(r)] = −1

2

∑
A,B

fABdamp[n(r)]Ceff6,AB [n(r)]R−6
AB , (7.1)

in which the electron density enters the equation through the ratio γ[n(r)] between
effective and free volume, see Equation 4.13.

The C6,AB coefficient of a pair of atoms contains the polarizabilities and the homonu-
clear coefficients, redefined for the effective quantities in Equation 4.15 and Equation 4.16,
respectively. We substitute those definitions into Equation 4.12 to compute the effective
coefficient for each pair. After some algebraic manipulation, the factors γA[n(r)] and
γB [n(r)] are regrouped and simplified,

Ceff6,AB [n(r)] =
2Ceff6,AA[n(r)]Ceff6,BB [n(r)]

α0,eff
B [n(r)]

α0,eff
A [n(r)]

Ceff6,AA[n(r)] +
α0,eff

A [n(r)]

α0,eff
B [n(r)]

Ceff6,BB [n(r)]
=

=
2Cfree6,AAC

free
6,BB γA[n(r)] γB [n(r)]

α0,free
B

α0,free
A

Cfree6,AA +
α0,free

A

α0,free
B

Cfree6,BB

= Cfree6,AB γA[n(r)] γB [n(r)] . (7.2)

Now the dependency on the electron density is found only in two factors at the numera-
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Figure 7.1: Schematic representation of the DFT self-consistent procedure with the four
main steps. The figure also shows that the vdW potential is introduced at the beginning,
where the cycle is initialized. Instead, the post-process operations are performed at the
end.

tor, corresponding to the volume ratio of atoms A and B.
The Fermi-type damping function is defined in Equation 4.18. For each given pair,

the damping depends on the electron density via the sum of the two effective vdW radii,
R0,eff
AB [n(r)] = R0,eff

A [n(r)] +R0,eff
B [n(r)] . The effective vdW radius is obtained using

γ[n(r)]1/3 as multiplicative factor of the free value, as written in Equation 4.17.

7.1 KOHN-SHAM EQUATIONS WITH VAN DER WAALS

INTERACTIONS

The long-range vdW energy typically represents only a small part (0.001%) of the total
DFT energy. Hence, the influence of vdW on the electron density n(r) and electronic
properties, such as multipolar moments and orbital energy levels, is generally assumed
to be rather small, if not negligible. For this reason, the majority of the popular vdW
functionals employed within the framework of density-functional theory (DFT), are
commonly approximated by an a posteriori perturbation (post-process correction) of
the total energy. We have already mentioned this approach, for example, when talking
about the coupled cluster approximation in Section 2.5.1. The CCSD(T) method is a
famous variation that includes the triples wavefunction as a perturbative correction.

In practice, a DFT calculation is performed with a given XC functional and is iterated
until convergence. The self-consistent solution gives a ground-state electron density
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n0(r) and a total energy, functional of the density, E[n0(r)], see Equation 3.20. Then, in
order to evaluate the TS vdW energy, the Hirshfeld ratio (Equation 4.13) is computed
with the (converged) ground-state electron density. The effective quantities are obtained
and used into the vdW energy formula (Equation 7.1), leading to the vdW energy
EvdWTS [n0(r)]. Finally, the DFT calculation is “corrected” adding the contribution that
accounts for the missing long-range correlation to the total DFT energy value

Etot[n0(r)] = E[n0(r)] + EvdWTS [n0(r)] . (7.3)

Clearly, within an a posteriori scheme, the trivial modification of the standard DFT
total energy formula is accompanied by a computationally very efficient “one-shot”
correction, performed at the end of the calculation. However, only the total energy
is modified by vdW interactions and no information is left about the effects on the
electronic properties.

On the other hand, within a fully self-consistent scheme the contributions of the
vdW functional would be directly added into the self-consistent KS equations through
the vdW potential, i.e. the functional derivative of the vdW energy with respect to the
electron density. The potential is added to the effective potential, see Equation 3.17,
leading to modified ground-state eigenfunctions and eigenvalues. In Figure 7.1 is
drawn a representation of the DFT self-consistent cycle showing at which point the
vdW potential is inserted. Consequently, a SC scheme affects not only the total energy,
but also the electron density n(r) and the electronic properties. Beside that, the SC
approach represents, from a theoretical point of view, the rigorous way of implementing
a functional into DFT and can be used to validate the a posteriori results. The SC version
of the TS functional will be referred from now on as vdWTS

sc .
Before proceeding into the description of the vdWTS

sc , it is important to mention that
several self-consistent vdW-inclusive functionals have been already presented in the
literature. One example is the non-local vdW-DF family of functionals [141, 142, 155–
157], a result of the Chalmers/Rutgers collaboration, see Section 5.4. For this vdW
functional, the potential is derived analytically [155], as in our case. The vdW-DF SC
implementation has been tested on different systems, from small molecular dimers and
rare gas dimers to bulk silicon and molecules adsorbed on metal surfaces [155, 158].
Another SC implementation is available for the density-dependent dispersion correction
(dDsC) of Steinmann and Corminboeuf [159, 160]. Also in this case the potential is
analytical and the SC implementation was employed to study small molecular sys-
tems [161]. These studies indicate that self-consistency is responsible for small effects on
the electron density and tiny modifications of the structure and stability [155, 158, 161].
However, SC vdW is expected to produce tiny modifications in the structure of small
molecular systems, while an exhaustive investigation of the effects of self-consistency
on the electron density and properties is still absent up to date. In this work we will
apply our SC implementation to a large variety of systems, with particular interest in
vdW bounded molecular complexes or larger and more challenging systems as metallic
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surfaces and organic/inorganic interfaces.

THE SELF-CONSISTENT EQUATIONS

We consider a set of N interacting particles and the associated HK energy functional,
rewritten making explicit the XC energy term, see Equation 3.15. In principle, the
long-range correlation interactions are absent in standard XC functionals and the term
EvdWTS [n] should be added to the HK functional. Formally, the vdW functional is a part
of the given XC functional,

E′xc[n] = Exc[n] + EvdWTS [n] , (7.4)

defined (in Equation 3.16) as the sum of the kinetic energy and the Coulomb potential,
minus the kinetic term of the non-interacting system and the Hartree potential. The
derivation of the KS eigenvalue equations can follow step-by-step the derivation per-
formed in standard DFT, with the difference that we have now the long-range correlation
term, besides the semi-local one. The variational method for N single-particle orbitals is
now applied. Requiring the stationary of E[n] with respect to variations of ψi, i.e. the
variation of the energy equals zero, leads to the set of N one-electron equations[

−1

2
∇2 + v′eff(r)

]
ψi(r) = εiψi(r) , (7.5)

which need to be solved iteratively. As previously seen in Equation 3.17, the first term
corresponds to the variation of T0[n], the kinetic energy of N non-interacting particles.
The effective potential, v′eff(r), sums all other contributions and is defined as

v′eff(r) = vH(r) + vext(r) + v′xc(r) , (7.6)

where the first term is the Hartree potential and the second is the electron–nuclei
electrostatic potential. The third term contains the potential of the standard exchange-
correlation term, plus a new term: the vdW potential,

v′xc(r) = vxc(r) + vvdWTS(r) =
∂Exc[n]

∂n(r)
+
∂EvdWTS [n]

∂n(r)
. (7.7)

The vdW potential is thus obtained via the derivative of the vdW energy with respect
to the electron density. The derivation has been performed analytically for the TS
formula in Equation 7.1. All the terms will be shown afterward, in the next section
(Section 7.1.2). The solution of a set of N equations with a modified effective potential,
as the one in Equation 7.6, brings a different set of eigenvalues {ψi} and eigenfunctions
{εi}, compared to those obtained with the effective potential without vvdWTS(r). Since
the electron density is defined from the eigenfunctions as n(r) =

∑
i fiψ

∗
i (r)ψi(r), it

results directly modified by the “new” vdW term.
The total energy expression, previously introduced in Equation 3.20, is now adapted
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to the SC vdWTS implementation and takes the form

E[n] =
∑
i

fiεi −
1

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′ + Exc[n]−

∫
vxc(r)n(r)dr+

+ EvdWTS [n]−
∫
vvdWTS(r)n(r)dr + En−n , (7.8)

in which the first line was also present in the “original” formula. However, the first term
contains the eigenvalues and is directly affected by the modification of the KS eigenvalue
equations (Equation 7.5). The second term, the Hartree potential (or electrostatics),
together with the two XC terms are affected by vdW interactions via modifications in the
electron density n(r). The first two terms in the second line are the vdWTS energy and
the integrated vdW potential, respectively. These two additional contributions appear
only in the SC implementation of the vdWTS functional and exhibit similarity with the
two XC terms. At last we find the nucleus–nucleus Coulomb repulsion, which is not
dependent on the electron density and is left unaffected. It is important to remember
that this expression is not only valid for the ground-state (converged) energy, but needs
to be computed at each self-consistent cycle, as sketched in Figure 7.1. From the same
figure, one can clearly see the differences with the simpler a posteriori vdW correction.
The latter is performed just once, on top of the converged value and contains only the
total vdW energy, without the integrated potential term, as written in Equation 7.3.

In practice, in the FHI-aims, during the iterative procedure, the energy is computed
with a more efficient method, which involves the eigenvalues, obtained from the solution
of KS equations, and the electron density of the previous SC cycle. Apart from the sum
of the eigenvalues, all other quantities are already prepared at the beginning of the cycle.
With this alternative formula, called Harris functional and discussed in more detail in
Appendix C.2, the evaluation of the total energy becomes much faster. The convergence
is checked by measuring the variation of the Harris energy between two successive
iterations.

Self-Consistent van der Waals Forces

Beside the SC implementation of the vdW energy into the DFT, it is possible to derive
and implement self-consistently the vdW forces too. At the present stage, the forces are
computed using the formula ∂EABvdWTS [n]/∂RAB and are associated with the a posteriori
implementation. Looking at the TS formula in Equation 7.1, the partial derivative above
is performed by deriving the two factors that contain the interatomic distance: R−6

AB and
the damping function. In principle, for a “complete” derivation of the forces, one should
consider the total derivative with respect to a nuclear displacement of atom A along the
x-direction, dEKS+vdWTS [n]/dRxA. Following this derivation, one finds the contribution
coming from the partial derivative with respect to RxA, plus two extra terms. These two
terms, called also Pulay forces, are the derivative of the orbitals, see Equation 6.1, with
respect to the nuclear coordinate. One term comes from the derivative of the coefficients
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and the other of the basis set. Under the condition of self-consistent energy and with
an ideally complete basis set, the Hellmann-Feynman [162, 163] (H-F) theorem can be
applied, leading to the simple formula for the forces: ∂EKS+vdWTS [n]/∂RxA, without
involving the basis functions. Moreover, the TS vdW scheme introduces other factors
that depend on the atomic position via the Hirshfeld partitioning of the density, written
in Equation 4.13. In this regard, one should differentiate γA[n] and γB [n] with respect
to RA to obtain new terms, in addition to the partial derivatives. Nevertheless, the
derivatives of the Hirshfeld volume are much smaller than the partial derivatives and are
thus neglected. Also, in the a posteriori scheme, the derivatives of the basis set should be
both present, but they effectively cancel each others. In conclusion, the implementation
of the vdW forces with the partial derivatives (called H-F forces) and no Pulay forces is
well suited within the a posteriori scheme.

At self-consistency, the energy is minimized with respect to the electron density, i.e.
by solving the eigenvalue problem in Equation 6.2. It follows that the derivatives of
the coefficients with respect to the nuclear coordinates are zero by definition. On the
contrary, the derivative of the basis set would be zero only with a complete basis or
if the dependence on the atomic positions is absent. Of course, a true completeness is
never achieved in practical calculations. However, to cancel the Pulay terms, it is only
necessary that the incompleteness is equal for all atomic positions. This condition is
matched, for instance, using plane-wave. Thus, the Pulay forces vanish for the plane-
waves basis set. We consider now the SC implementation of the TS energy in FHI-aims.
In this case, only the derivative of the coefficients with respect to the atomic position
vanishes. Therefore, the simple H-F forces can not be implemented alone, but the implicit
derivative of the basis set should be included as well. A more complex implementation is
always associated with a reduced computational efficiency, which needs to be summed
on top of the cost of the self-consistent energy. The appeal of the SC forces is reduced
also because the effects of self-consistency on the structure of materials is expected to be
very small. In this thesis we will go through this claim and prove, for example, that the
a posteriori cohesive energy calculations are indeed almost indistinguishable from the
SC ones. In conclusion, due to the additional computational cost and the small effects,
the TS SC forces are not (yet) available in FHI-aims.

THE TKATCHENKO-SCHEFFLER VDW POTENTIAL

This section contains the analytical derivation of the vdW potential for the TS functional.
Here, we follow the derivation by Robert A. DiStasio Jr., which has been originally
implemented in the plane-wave pseudopotential code Quantum ESPRESSO [164, 165].
After introducing the basic equations, we will focus on the implementation into the
all-electron code FHI-aims [151], which has been employed for all the calculations
presented in this work.

As pointed out in Equation 7.7, the vdW potential is the derivative of the energy with
respect to the electron density. Therefore, we consider now the derivative of Equation 7.1,
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the TS energy formula

vvdWTS [n(r)] =
∂EvdWTS [n]

∂n(r)
= −1

2

∑
AB

[(
δCeff6,AB [n(r)]

δn(r)

)
R−6
ABf

AB
damp[n(r)]+

+Ceff6,AB [n(r)]R−6
AB

(
δfABdamp[n(r)]

δn(r)

)]
. (7.9)

Before analyzing the derivative of the two terms, we note that in the TS formula the
electron density affects only the effective volume. Thus, the core quantity necessary
for computing the vdW potential is the functional derivative of the factor γ[n(r)], see
Equation 4.13. In particular, the analytical expression is obtained by deriving the
Hirshfeld volume VA[n(r)] with respect to the electron density:

δγA[n(r)]

δn(r)
=

1

V freeA

δVA[n(r)]

δn(r)
=

1

V freeA

r3wA(r) . (7.10)

This result allows us to write the functional derivatives of all the three effective quanti-
ties: the polarizability, the homonuclear C6 coefficient and the vdW radius, written in
Equation 4.15, Equation 4.16 and Equation 4.17, respectively,

δα0,eff
A [n(r)]

δn(r)
=
α0,free
A

V freeA

r3wA(r) =

(
α0,eff
A [n(r)]

VA[n(r)]

)
r3wA(r) , (7.11)

δCeff6,AA[n(r)]

δn(r)
=

(
2VA[n(r)]Cfree6,AA

(V freeA )2

)
r3wA(r) =

(
2Ceff6,AA[n(r)]

VA[n(r)]

)
r3wA(r) , (7.12)

δR0,eff
A [n(r)]

δn(r)
=

(
R0,free
A

3(VA[n(r)])2/3(V freeA )1/3

)
r3wA(r) =

(
R0,eff
A [n(r)]

3VA[n(r)]

)
r3wA(r) .

(7.13)

With these expressions in hand, we can now proceed to tackle the two derivatives in
Equation 7.9 and write the analytical formula of vvdWTS [n(r)].

The effective C6 coefficient for a pair of atoms is defined in a convenient form in
Equation 7.2. The derivative of that expression is computed using the product rule for
the derivatives of the two γ[n(r)], see Equation 7.10,

δCeff6,AB [n(r)]

δn(r)
= Cfree6,AB [n(r)]

(
δγA[n(r)]

δn(r)
γB [n(r)] + γA[n(r)]

δγB [n(r)]

δn(r)

)
=

= Cfree6,AB [n(r)]

[(
r3wA(r)

V freeA

)(
VB [n(r)]

V freeB

)
+

(
VA[n(r)]

V freeA

)(
r3wB(r)

V freeB

)]
. (7.14)

Alternatively, one can obtain the same result by using the derivative of the effective po-
larizability and homonuclear C6 coefficient, written in Equation 7.11 and Equation 7.12.
Then substitute those expressions, for a pair of atoms, into the “original” definition of
Ceff6,AB , given in Equation 4.12. With the derivative of Ceff6,AB , the first term of the vdW
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potential is now completely defined.
The second term contains the derivative of the damping function, fABdamp(RAB , R

0
AB [n(r]),

which depends on n(r) via R0,eff
AB [n(r)] = R0,eff

A [n(r)] +R0,eff
B [n(r)], the effective vdW

radii of atoms A and B. Therefore, the derivative is computed using the chain rule for
the composition of two functions,

δfABdamp(RAB , R
0,eff
AB [n(r])

δn(r)
=

(
δfABdamp(RAB , R

0,eff
AB [n(r])

δR0,eff
A [n(r)]

)(
δR0,eff

A [n(r)]

δn(r)

)
+

+

(
δfABdamp(RAB , R

0,eff
AB [n(r])

δR0,eff
B [n(r)]

)(
δR0,eff

B [n(r)]

δn(r)

)
=

=

(
δfABdamp(RAB , R

0,eff
AB [n(r])

δR0,eff
A [n(r)]

)[(
δR0,eff

A [n(r)]

δn(r)

)
+

(
δR0,eff

B [n(r)]

δn(r)

)]
. (7.15)

In the last passage we used the fact that the derivative of the damping function with
respect to R0,eff

A [n(r)] is identical to the one with respect to R0,eff
B [n(r)] by symmetry:(

δfABdamp(RAB , R
0,eff
AB [n(r])

δR0,eff
B [n(r)]

)
=

(
δfABdamp(RAB , R

0,eff
AB [n(r])

δR0,eff
A [n(r)]

)
. (7.16)

Let us consider the derivative of the damping function with respect to R0,eff
A [n(r)].

Using the definition of fABdamp(RAB , R
0,eff
AB [n(r]), given in Equation 4.18, we obtain

(
δfABdamp(RAB , R

0,eff
AB [n(r)])

δR0,eff
A [n(r)]

)
=

−dRAB exp[−d( RAB

sRR
0,eff
AB [n(r)]−1

)]

sR(R0,eff
AB [n(r)])2(1 + exp[−d( RAB

sRR
0,eff
AB [n(r)]−1

)])2
=

=
−dRAB exp[−d( RAB

sRR
0,eff
AB [n(r)]−1

)]

sR(R0,eff
AB [n(r)])2

(
fABdamp(RAB , R

0,eff
AB [n(r)])

)2

. (7.17)

The symmetry property can now be easily verified by repeating the steps above and
evaluating the derivative with respect toR0,eff

B [n(r)]. The second component of the total
derivative, the derivative of the effective radius with respect to the electron density, has
been already shown in Equation 7.13. Therefore, the second term of the vdW potential
is finally obtained with the combination of Equation 7.17 and Equation 7.13 (evaluated
for atom A and B), into Equation 7.15. The analytical derivation of the vdWTS potential
is now complete.

7.2 NUMERICAL IMPLEMENTATION

The technical details about the SC implementation of the vdWTS functional into the
code will be now discussed. First, FHI-aims is an all-electron code that uses a real-space
numerical integration. In other words, all quantities are obtained with an integration
performed over a set of points distributed in a real-space grid, as discussed in Section 6.2.
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Schematic Algorithm for the Potential vvdWTS(r)

A

Initialization of all terms that do not depend on the grid-points

Free and effective volumes
obtained from one integration

Loop over atom A and atom B
Pairs A–B

Unit cell replicas
kx, ky and kz

Pairs A–A′ and A–B′All quantities that depend on the
interatomic distance are stored

B

Loop over the real-space grid

The vdW potential for a point r is complete

Loop over
atom A

Hirshfeld
weight wA(r)

Unit cell replicas
kx, ky and kz

Loop over
atom B

Hirshfeld weight of
the periodic atoms

Figure 7.2: Schematic representation of the main steps employed in the algorithm of the
vdW potential. In part A, the initial integrated quantities are manipulated with a loop
over the atomic pairs (rectangle in red), and a loop over the periodic images of the unit
cell (ellipse in blue). At this stage, the atom-atom distance is computed for each pair
and all the terms that do not depend on the grid-points are build and stored in a table.
In part B, the black square bracket refers to the loop over the real-space integration
grid. This loop is necessary to evaluate the distance between a specific grid-point and
an atom and to compute its Hirshfeld partitioning weight wA(r). Rectangles (in red)
and ellipses (in blue), are associated respectively with loops over atoms and over the
periodic repetitions of the unit cell.
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Figure 7.3: Silver (111) surface with six metal layers. Left panel: PBE+vdWTS
sc binding

energy in function of periodic repetitions, per unit vector, of the unit cell. The inset
reports the value obtained with the (non-SC) PBE+vdWTS method. Right panel: the
time consumed for a calculation is plotted as a function of the periodic replica. The
values are the average time per self-consistent cycle. The horizontal line at the bottom
indicates the time spent for one cycle in the a posteriori calculation. All the computational
details are reported in Appendix C.3.

In our vdW potential, the integrals are used to compute only the quantities that depend
on the electron density n(r). The other quantities depend only on the type of atoms and
their total number and are kept fixed during the convergence. Meaning that, they can be
constructed with rather fast operations at the beginning of each calculation. By looking
at the equations that form the vdW potential, one can see that the Hirshfeld volume
needs to be computed through an integration over the grid points. Consequently, all
the effective quantities are obtained after this operation. Given a system of N atoms,
we consider the Hirshfeld ratio (Equation 4.13) for an atom A. Clearly, the electron
density enters the integral in the numerator. For this reason the effective volume must
be evaluated at each self-consistent cycle. On the other hand, the Hirshfeld weight and
the free volume carry a dependence on the grid points, but are derived from the “free”
non-interacting density nfree(r), i.e. the density of an atom considered as isolated. In
principle these terms can be computed with just one single integration performed at the
beginning, when the calculation is initialized. After that, they can be stored in a vector
with N entries, used to build the potential in each self-consistent cycle.

The vdW potential is, by construction, derived from the vdW energy, which is a
property of the whole system. On the contrary, the derivative of EvdWTS [n] with respect
to the electron density is evaluated at each point of the grid, as it is done for the electron
density itself. In practice, one loop over the grid is performed and a value of the potential
vvdWTS(r) is assigned for each grid-point. Since the potential is computed with pairs of
atoms, if follows that, for each grid-point a loop over all atomic pairs is performed. Of
course, one can easily see how this operation consumes most of the CPU time in our
implementation. There are many grid points (≈ 500 points per atom with light settings)
and a first and easiest optimization of the code is to avoid to recompute every time the
quantities that do not depend on the grid.

We start the routine with two vectors of N components, that contain the Hirshfeld
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free and effective volumes. Before entering the loop over the grid, all the quantities
that depend on the interatomic distance RAB can be computed and stored in a table of
NA×NB×kx×ky×kz components. The twoN corresponds to the pairs and the three k
are introduced in the periodic case for storing the atoms of the supercell. The schematic
representation of these passages is sketched in Figure 7.2, upper part (A). For what
concerns the derivative of the damping function, all terms in Equation 7.17 are available
and also part of Equation 7.13. The only missing parts are the two derivative of the
effective vdW radii, that contain the Hirshfeld partitioning weight, as well as the cube
of the distance r3. Both terms depend on the specific grid-point and must be computed
inside the loop over the grid, indicated in part B of Figure 7.2 with the external square
bracket. All terms are also available for the derivative of Ceff6,AB , in Equation 7.14, except
for the two terms: r3wA(r) and r3wB(r). These are coming from the two derivatives of
the Hirshfeld ratio, see Equation 7.10. Therefore, the loop over the points of the grid is
performed to compute the three ingredients left and combine them with the data stored
in the table. As drawn in Figure 7.2, this operations require additional loops over the
atoms and the periodic images of the unit cell. In summary, the introduction of a table
reduces the CPU time, but increases the required memory. However, considering all
the calculations performed during the extensive tests of the implementation, the higher
memory requirements were never found to be an issue.

A way of reducing the computational cost would be to employ a distance cut-off.
For instance, we can set a limit on the number of periodic repetitions of the unit cell.
Another cut-off can be used to decide the maximum allowed distance between two
atoms or between the grid-point and an atom. In the case of finite systems, no cut-off
has been introduced in our implementation of the vdW potential. On the other hand, in
order to treat periodic systems one needs to choose how many repetitions of the unit
cell are considered. In this regard, the vdW energy has to be computed at each cycle
and is converged using a supercell. In other words, the unit cell is replicated until the
contributions of an atom A (in the unit cell) interacting with its images A′ and other
atoms B′ become negligible. This happens because of the large distances between the
pairs. In our vdW potential, we use the same number of replica of the energy calculation.
Thus, the three loops with indices kx, ky and kz , see Figure 7.2 part A, replicate the unit
cell, reaching the supercell of the energy calculation. The second set of loops involving
the periodic repetition of the unit cell is located inside the loop over the grid, part B of
Figure 7.2.

Our first choice for the second loop over the periodic repetitions was to compute only
the contributions inside the unit cell and in the first replicas. This decision could appear
exaggerated, however one should remember that in this last step we compute only the
cube of the distance r3 and the Hirshfeld partitioning weights. The latter is a quantity
localized roughly in the vicinity of an atom, while the points of the grid are always
located inside the unit cell. Therefore, when is evaluated on the grid, the partitioning
weight of an atom that belongs to a periodic image of the unit cell decays very quickly to
zero. This conclusion has been assessed with actual calculations, as shown in Figure 7.3.
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There, we plot the cohesive energies of a six-layered Ag(111) surface in function of the
number of periodic repetitions. We choose the smallest possible unit cell, with one
single atom per layer, in order stress the approximation introduced above. In fact, the
atoms in the second repetitions, which are not considered in the cut-off, are separated
from the grid-points of about 3–6 Å only. In this particular system, the binding energy
is indeed slightly modified, by about 2 × 10−3 meV, when the second repetitions are
included. In conclusion, the choice to consider up to one repetition of the unit cell
shows its limitations only in the case of a very small unit cell. However, these systems
contain a small number of total atoms and the second replicas of the unit cell contribute
with a negligible correction of the energy. Moreover, additional repetitions of the unit
cell vectors, at this stage, would cause only a significant slow down of the overall
performance, without any effect on the energy. An idea can be grasped by considering
the right panel of Figure 7.3, where we report the average time per SC cycle, with
different repetitions of the unit cell. Even with such a small unit cell, the performance is
highly affected when large supercells are considered. It is also important to mention
that this particular example is a surface, hence the periodicity expands in two directions
only, kx and ky . The increasing of the CPU time for a 3D periodic system would be even
worse. In conclusion, the SC scheme has a computational cost, for very large periodic
systems, comparable to a DFT calculation with a GGA functional. The applicability of
the implementation presented above has the same limits of standard DFT, even though
an improvement of the efficiency would be highly desirable. This issue will be discussed
with more details in the next section, where we will present a new and improved version
of the implementation and compare it with the “standard” one.

7.3 OPTIMIZATION OF THE IMPLEMENTATION

A first modification of the implementation presented before is the introduction of a
“smart” cut-off for the periodic repetition of the unit cell. We are referring to the second
loop over the indices k, indicated in part B of Figure 7.2 (the ellipse). Even though our
tests confirmed that the effects of the cut-off are negligible for the energy, see Figure 7.3,
we decided to improve the previous choice (kx = ky = kz = 1) with a value that adjusts
itself, depending on the dimensions of the cell. The number of replicas is determined
by the ratio between a limiting value, set equal to 10 Ångstrom, and the vector of the
unit cell: k = 1 + 10/(Primitive vector). Naturally, when the vector is larger than 10
Ångstrom, only one replica is considered. This solution offers a safe remedy in case of
small unit cells and recovers the previous cut-off with large systems. Looking at the
Ag(111) surface, the example in Figure 7.3, the periodic repetitions obtained with the
new cut-off are kx = ky = 4 and kz = 1.

In the case of finite systems, the loops over the indices k, see the two ellipses in part
A and B of Figure 7.2, are simply removed from the algorithm. Moreover, the columns
of the table (where the quantities are stored) are now significantly reduced to only two
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Figure 7.4: Average time consumed for a self-consistent cycle of copper bulk, obtained
with different implementations of the TS functional. Top left and right: scaling of the
non-periodic in (a) and the periodic in (b) as the number of atoms increases. Bottom
left and right: periodic Cu bulk with a unit cell of 4 atoms in (c) and 32 atoms in (d),
which are sampled with an increasing number of k-points. The results obtained with SC
vdW-DF are reported in the two insets in panel (a) and (c). All the computational details
are available in Appendix C.3.

columns with N elements each. Another advantage is that the contribution of a given
pair of atoms can be conveniently partitioned back into atomic contributions. By looking
at Equation 7.14 and Equation 7.15 one can see that most of the terms referring to atomA

are uncoupled to atom B. Of course the interatomic distance depends on both A and B.
Also, in the derivative of the C6 coefficients, the Hirshfeld ratio of atom B is multiplied
by the free volume of atom A. However, as previously discussed,the dependence on
the grid-points is absent in these quantities. Therefore, the contribution of atom A to
vvdWTS(r), due to the interaction A–B, can be computed before the loop over the grid
and stored in a single vector of N components. This implies a reduction in the memory
usage, which is joined by a lower CPU time. In fact, the loop over the grid-points
contains a double loop over the pairs A–B, see the two rectangles in Figure 7.2 part B,
which is now reduced to a single loop over all atoms (without the factor 1/2 in front
of the potential). Unfortunately, in the case of periodic systems, these optimizations
are not available straightforwardly. Hence, the scaling of the method is for now visibly
worsened by the periodicity, with respect to non-periodic systems.

A reformulation of the original algorithm is necessary to enable the same simplifi-
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Figure 7.5: Silver surface (111). In the four plots are reported the performances of the a
posteriori TS scheme, along with the two SC implementations. Panel (a): non-periodic
systems with different number of atoms. Panel (b): periodic system tested with several
unit cells. Bottom panels: periodic surface with a unit cell of 3 atoms (c) and 27 atoms
(d). An increasing number of k-points is employed. In the insets are reported the
performances of SC vdW-DF. All the settings used in these simulations are available in
Appendix C.3.

cation for periodic systems. Instead of writing a table with NA × NB × kx × ky × kz
components, it is possible, with a reorganization and optimization of the loops, to store
all necessary quantities using “only” NB × kx × ky × kz elements. The reduced memory
consumption, due to the lower dimensionality of the table, is associated with a modifi-
cation in the algorithm. Looking at part B in Figure 7.2, the first loop over the atoms,
the rectangular box on the left, is simply removed from the code. Since we managed to
remove a factor of N , the CPU time employed for the SC scheme results visibly reduced,
in particular for systems with a large number of atoms. Most importantly, the table of
data stored in the memory is called at each loop over the grid (part B of Figure 7.2).
Calling a matrix of stored elements is an operation that can significantly slow down the
efficiency of an algorithm. In this regard, the optimized scheme yields a considerable
reduction of the total number of calls, which is the main reason behind the improved
computational performances.

As a first test we employed the copper bulk, considered with different number of
atoms in the unit cell and varying the samplings of the reciprocal space. The perfor-
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mance of the improved implementation (vdWTS
sc ) is compared with the one without any

optimization (vdWTS
sc–old) and with the standard a posterior approach (vdWTS). As we

can see from Figure 7.4 (a), simply increasing the number of atoms, with no periodicity,
drastically reduces the efficiency of the scheme. The CPU time of the original algorithm
in Figure 7.2 is, at least, 50% longer than a regular DFT calculation. For very large
systems, it becomes about four times more expensive than the a posteriori calculation.
The new implementation, instead, scales much better. The time needed for a calculation
with the PBE + vdWTS

sc functional ranges between 15 and 25% more than the one of
PBE + vdWTS. This improvement is the direct consequence of the simplification intro-
duced in the algorithm for finite systems, as described above. The second simplification
that we have introduced in the algorithm, valid for periodic systems, is tested in panel
(b) of Figure 7.4. The time for a self-consistent cycle is plotted as a function of the
number of atoms in the unit cell. Similarly as before, the scaling results much improved
with the new version of the code. Considering for instance the system with 108 atoms,
the time for a SC calculation is almost halved, becoming more than three times less, in
the last case tested.

In the bottom of Figure 7.4, both graphs report the CPU time per self-consistent cycle
as the number of k-points increases. The smallest unit cell, only 4 atoms, is considered
in panel (c). One can see that, in this case, the number of k-points is not affecting the
scaling of both SC implementations. The computational time of vdWTS

sc–old and vdWTS
sc

is practically the same and differs from the a posteriori calculations by roughly 15%,
independently of the number of k-points. In panel (d) the same test has been performed
using a larger unit cell, that contains 32 atoms. Also in this case, the scaling is not
significantly affected by the different number of k-points employed. However, the
number of atoms is now increased with respect to the previous system. This has the
effect of slowing down the non-optimized implementation, that costs roughly 20–30%

more than the PBE + vdWTS. The performance of vdWTS
sc fits in between the two other

schemes. The CPU time is up to 20% more than the a posteriori one, but this difference
stays below 15% in most cases. In figure (a) and (c) there is an inset reporting the time
taken by the SC vdW-DF, applied to the smallest system. Clearly, the absolute numbers
are much larger with respect to the TS ones, severely limiting the applicability of the
functional to large systems. Apart from that, the resulting scaling laws, restricted to
the data available, are similar to the ones found with the TS functional. For example,
considering the non-periodic cluster, going from 4 atoms to 32, increases the CPU time
by a factor of ∼ 6, while ∼ 5 was found with both the SC and non-SC version of the
TS. We note that the current implementation of the SC vdW-DF in FHI-aims is probably
suitable for optimizations, that would lead to faster performances.

The second test system is a metal surface: Ag(111). The surface has three metal layers
and is computed, as for bulk Cu, considering several unit cells with a different number
of atoms, see Figure 7.5 (a) and (b). In both non-periodic and periodic case, the scaling of
the optimized SC method follows quite closely the path of the non-SC scheme. Marked
differences emerge only for very large and periodic systems, see panel (b). For the
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non-periodic geometries in (a), the CPU time of vdWTS
sc is up to 20% more than the a

posteriori one. Nevertheless, this value is reached only with very large unit cells. On
the other hand, when vdWTS

sc–old is used, the time for a calculation increases, already for
medium-sized systems, by 80–100%.

We consider now the same unit cell, tested with different meshes of k-point. The
difference between the two SC implementations become significantly less marked. In
panel (c), the chosen unit cell contains only 3 atoms. We can see that the two schemes
are basically indistinguishable. We remind the reader that an equal CPU time is not
an obvious result since the cut-off in the vdWTS

sc includes, for this particular system, 4

repetitions of the unit cell along two directions (x and y). On the other hand, only one
replica per unit vector is considered in the vdWTS

sc–old scheme. The situation changes
in panel (d), where we employed a unit cell composed by 27 atoms. The number
of repetitions with vdWTS

sc is reduced to kx = ky = 2. In this case, a factor of N
(spared with vdWTS

sc ) has a sensible weight on the total algorithm and a clear difference
emerges between the two schemes. The optimized SC implementation is located roughly
in between vdWTS

sc–old and vdWTS. Initially, self-consistency increases the time of a
calculation of about 10–25%, while after the optimization the algorithm reduces the
workload to a factor of 5–10%.

In conclusion, the algorithm employed in the vdWTS
sc implementation delivers satis-

factory computational performances and can be coupled with standard XC functionals,
as PBE or PBE0, without limiting the applicability of DFT. Apart from the necessary
cut-off, that regulates the number of periodic repetitions, the SC equations have been
implemented without any approximation so far. In this regard, it is possible to further
speed up the efficiency of the algorithm adding, for example, a cut-off that sets the
maximum allowed distance between a grid-point and an atom. This type of cut-off
would enter the computationally expensive loop over the grid, see part B of Figure 7.2,
leading to further improvements in the efficiency of vdWTS

sc . However, the idea of
approximating the interactions with a cut-off on the distance might cause some under-
estimation of the vdW contributions, which are long-ranged by definition. The risk of
altered results and the necessity of careful extra tests is not balanced with an urgent
need of a more efficient implementation. For these reasons, we have decided to avoid
any additional cut-off in the present version of the vdWTS

sc . From now on, every time the
TS SC implementation will be mentioned, we will automatically refer to the optimized
vdWTS

sc version, unless stated otherwise.
Another way to speed up the implementation, only in the case of surfaces, would

be to avoid the periodic replicas along the direction of the vacuum slab. Usually, a
very large vacuum is employed to effectively reduce these unphysical interactions to
zero. Hence it would be faster to introduce an approximation ad hoc simply to avoid to
compute and store these data. A simple implementation of this feature can be done with
the introduction of a flag, which indicates the presence of a surface and the orientation
of the vacuum.
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8 MOLECULAR COMPLEXES

Here we present the results of the DFA + vdWTS
sc method applied first to small dimers

such as noble-gas dimers and molecular complexes such as water dimer, carbon dimer,
naphthalene dimers among other systems. The acronym DFA stands for an approximate
XC density functional and refers here to PBE [52] in particular. The others XC functionals
used in this section, coupled with vdWTS

sc , are HF and PBE0 [62], see Section 3.5.2 and
Section 3.5.3. The vdWTS has been successfully tested and applied to a large range
of molecular systems, starting at the point of its formulation [108], with extensive
benchmarks and applications [166, 167]. Therefore, such large set of data available and
already established for the a posteriori TS, represents the natural starting point for our
comparison using the new SC scheme. Subsequently we will investigate the role of
vdWTS on the electron density n(r) and the electronic properties. The main findings
reported in this section are taken from reference [168].

8.1 TOTAL ENERGY

First, we consider the binding energies of two sets of systems, the S22 [88] database and
the S66 [169] database. The S22 contains complexes of different interaction strengths,
from hydrogen-bonded to weakly dispersion-bonded. The S66 provides a variety of
systems relevant to organic molecules and biomolecules. The binding energy (Eb), for a

Table 8.1: Mean absolute error (MAE) and mean absolute percentage error (MAPE) for
the S22 [88] and S66 [169] databases, tested with the PBE and PBE0 functionals. Both the
SC and non-SC flavors of the TS are coupled with the two XC functionals. Extra details
are available in Appendix D.1.

S22 MAE [meV] S22 MAPE S66 MAE [meV] S66 MAPE
PBE 115.94 57.80 93.79 57.23

PBE+vdWTS 12.90 9.81 21.60 13.24
PBE+vdWTS

sc 12.96 9.85 21.64 13.25

PBE0 106.32 55.22 89.56 55.85
PBE0+vdWTS 14.21 8.02 18.64 10.38
PBE0+vdWTS

sc 14.25 8.05 18.68 10.40
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Figure 8.1: Binding energy curves computed with PBE, PBE+vdWTS and PBE+vdWTS
sc .

Panel (a): Argon dimer. Panel (b): water dimer. Panel (c): Xenon dimer. Panel (d):
naphthalene dimer considered with the cross-shaped configuration (c-dimer). The insets
represent the structures used. The distance d between the two atoms/molecules is
sketched with a black dashed line.

system composed of N molecules, is computed with the formula

Eb = Etot −
N∑
i=1

Ei , (8.1)

where Etot is the energy of the whole systems and Ei is the energy of a single fragment.
From the results, summarized in Table 8.1, one can see that the TS method brings a great
improvement in the performances of both the PBE and the PBE0 functionals. On the
other hand, the inclusion of self-consistency provides only tiny modifications of the
a posteriori binding energies, leaving the results practically unaffected. The interested
reader can consult, in Appendix D.1, the complete set of numbers for the S22 database
and verify the conclusion above.

Other tests systems have been employed to check whether self-consistency has any
effect on the binding energies or not. We analyzed, for example, noble-gas dimers
and molecular dimers. The binding energy Eb has been investigated not only at the
equilibrium distance deq, but also a large number of different configurations are con-
sidered, ranging from small to very large interatomic/intermolecular distances. Four
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Figure 8.2: Naphthalene c-dimer: different components of the total energy, plotted as a
function of the intermolecular distance d. In the panels are compared the results of the
PBE+vdWTS and the PBE+vdWTS

sc schemes. The potential is by definition available only
with the SC vdW functional. The vertical (blue) dashed lines indicate the equilibrium
distance. All values are in [eV].

selected systems, are reported in Figure 8.1. Two noble-gas dimers, Ar and Xe, are
in panel (a) and (c). The noble-gas dimers have been studied also with PBE0 and HF,
see Appendix D.1. These systems are characterized by a weak bonding and the vdW
correlation is responsible for almost the total binding energy in the long-range part
of the curve. The water dimer, plotted in panel (b), shows a much larger Eb. For this
system the H · · ·O hydrogen bond determines the binding and is well captured by PBE
alone. The last system is slightly larger, two naphthalene molecules with parallel and
crossed-shaped orientation, also called c-dimer. Since the naphthalene molecule contains
two aromatic rings, the c-dimer is a non-covalent π-stack dimer. From the graph we
can see that the binding is obtained only with the inclusion of dispersion interactions.
Several different stable configurations can be formed with two naphthalene molecules.
Two of these are plotted in Figure D.2. In the t-dimer, for instance, one molecule is
rotated by 90◦ and the rings are not parallel. The consequence is a reduced Eb and a
much larger equilibrium distance, with respect to other naphthalene dimers. Overall,
for all the systems in Figure 8.1, the SC results overlap very well with the a posteriori
binding energy curves. The very small differences in the binding energy ∆Eb between
the two approaches are always below 1 meV. In detail, ∆Eb spans from a negligible
0.001% for the Argon dimer, to about 0.1% (∼ 0.5 meV).

Since the a posteriori vdW correction is not affecting the electron density, the values of
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the energy components—with the exception of EvdWTS—obtained with PBE+vdWTS

and PBE are exactly the same by definition. On the other hand, the total energy formula
with SC vdW effects, written in Equation 7.8, suggests that the contributions of vdW
interactions should be included in all the different terms, through the electron density
and the eigenvalues. An idea of that can be grasped by looking in Figure 8.2, where
we consider the naphthalene c-dimer and plotted the different components of the
binding energy. At first glance, one can see that the curves obtained with PBE+vdWTS

and PBE+vdWTS
sc are not completely overlapping. However, the SC and non-SC vdW

energies (EvdW), shown in Figure 8.2, display a perfect agreement. We remind the reader
that, in the case of vdWTS

sc , an additional term exists: the integrated vdW potential
(VvdW), which is the sixth term in Equation 7.8. From Figure 8.2 it emerges that VvdW is
positive and counterbalances the vdW energy in the total energy formula, see the last
two electronic terms in Equation 7.8. On the other hand, the a posteriori total energy,
written in Equation 4.6, contains just the vdW energy. It follows that the “direct” vdW
contributions to the energy of a system are different in the two schemes. In particular,
considering the naphthalene c-dimer at the equilibrium distance, the VvdW term reduces
the binding by 0.9 eV. For what concerns the other terms, self-consistency decreases
the kinetic energy of about 1.75 eV (∼ 20%), while the electrostatic energy increases by
1 eV (∼ 11%), see top-left panels in Figure 8.2. Smaller changes are also found in the
XC energy and the integrated potential, shown in the top-right panels of Figure 8.2.
All these different modifications of the energy components are summed up in the total
energy and cancel out. It is indeed this balance that yields to a total negligible difference
in the binding energies, which is, for the c-dimer, below 1 meV. In the same figure, on
the bottom-right side are reported the changes in the HOMO and the LUMO. Also in
this case, the effects of SC vdW are different for the two orbitals and change accordingly
to the intermolecular distance. At the equilibrium distance, vdWTS

sc reduces the HOMO
by 25 meV and the LUMO by 28 meV. The two modifications compensate, and the
HOMO-LUMO gap is only 3 meV larger.

The effects on the different components of the total energy are a general feature
of the SC vdW approach. A second example, the Xenon-Xenon dimer, is reported in
Figure D.3 (Appendix D.1) to support our discussion on the naphthalene c-dimer. We
focus now in particular on the difference between EvdW and VvdW, shown in Figure 8.3
for the argon, krypton and xenon dimers. Of course, for these systems the absolute
values are much smaller than the ones found with the naphthalene dimer. However, as
previously seen, the vdW potential is responsible for a reduction of Eb with a magnitude
comparable to EvdWTS . In conclusion, SC effects are found to be responsible for large
changes, typically on the order of 5%, in all the components of the total energy. Still, in
most cases, the sum of the different terms results in a negligible difference in ∆Eb, as
shown in Figure 8.1. In other words, these remarkable agreements fully validate the
a posteriori results for binding energies between relatively weakly polarizable atoms
and molecules and support the choice of such vdW scheme, which is computationally
cheaper than the SC one.
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During our extensive tests we encountered some specific classes of systems that
are particularly sensitive to SC effects. In the following sections we will analyze such
systems in detail. As for now, following up with finite systems, in Figure 8.4 are sketched
three different structures representing some systems with a non-negligible influence of
self-consistency in the vdW energy and in the electronic properties. In (1) there is the
Li(NH3)4Na molecule, which belongs to the so-called metal-ammonia alkalides. In this
family the number of NH3 groups can vary, as well as the type of alkali metal atoms
used, e.g. Li, Na and K. These molecules generally possess a considerable polarizability,
first hyperpolarizability and dipole moment [170], which is oriented along the z-axis
indicated in the figure, i.e. the direction that connects the two alkali metal atoms. In
the particular case of Li(NH3)4Na, self-consistency increases by 0.25 Debye (D) (∼ 3%)
the total dipole moment. Considering that the effect on the dipole moment is about
0.01–0.05 D for systems as the naphthalene t-dimer or the endohedral fullerenes, which
are fullerenes (C60, C70, etc.) with additional atoms (noble-gas or alkali-metal atoms)
or small molecules inserted within their spheres, the value found for Li(NH3)4Na is
noteworthy. We will see similar effects in Section 8.3, when we will discuss the “special”
case of the alkali metal dimers. The second system in Figure 8.4 is a complex with the
fullerene C60 [171] and the buckyball catcher [172]. This system is composed by 148
atoms (C and H) and presents a non-zero dipole moment along the vertical direction,
indicated as the z-axis in the figure. Here, self-consistency enhances the binding energy
by 5 meV and increases the dipole moment by 0.05 D, that corresponds to the 5.5% of
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Figure 8.4: Three examples of finite structures particularly sensitive to SC vdW effects.
The structure in (1) is the Li(NH3)4Na, a metal-ammonia alkalide. (2) The buckyball
catcher-C60 complex. (3) A DNA-ellipticine complex. The z-axis is drawn in the middle
of the figure.

the PBE value. In this system, two main factors contribute to increase the SC effects: the
anisotropy in the polarizability and the large number of atoms. Very similar results are
obtained with the Cyclo[n]paraphenylenes (abbreviated [n]CPP), where n indicates the
number of molecules, in complexes with fullerenes, as the C60 and C70. The system
(3) in Figure 8.4 contains an ellipticine molecule combined with two cytosine-guanine
base pairs (C-G) attached to their sugar-phosphate. Ellipticine is an alkaloid, first
synthesized in 1959 [173], which exhibits a particularly interesting anti-tumor activity.
For this reason, its interactions with DNA are of great importance and have been widely
investigated both experimentally and theoretically. The SC effects increase the binding
energy of the complex by 4 meV. The total dipole moment is reduced by 0.1 D (∼ 3%).
One component (along y, which corresponds roughly to an horizontal line in the figure)
is slightly increased, while two components (x and z) are reduced. In particular, the
dipole along the z-axis is reduced by 0.07 D (8%). Again, the complexity of the geometry
and the high number of atoms (157) are enhancing factors for the SC effects. Moreover,
in the systems (2) and (3), we found modifications in the quadrupole moment on the
order of 0.5–2 eÅ2, that correspond to 2–6% of the PBE values. These changes in the
electronic properties imply that self-consistency is directly affecting the electron density,
as we will analyze in more detail in the next section.

8.2 ELECTRON DENSITY REARRANGEMENTS

Even though the differences between vdWTS and vdWTS
sc in the cohesive energies of

small molecules are rather small, as clearly shown in the previous section, the modifica-



8.2 Electron Density Rearrangements 115

-5 0 5

z [Å]

-2

-1

0

1

∆
n 

x
10

-5
 [

e/
Å

]

Ar Ar

∆n
CCSD - HF

∆n
PBE+vdWsc

TS
 - PBE

∆n
HF+vdWsc

TS
 - HF

∆n
HF+scGW - HF

∆n
PBE+vdW-DF - PBE

Figure 8.5: Top: integrated electron
density differences ∆n(z) for the argon
dimer, taken at a distance of 7.5 Å. The
equilibrium distance is 3.8 Å. The posi-
tions of the Ar atoms are sketched in
the figure. The ∆nPBE+vdW-DF−PBE(z)
extends up to 2 × 10−5 and down
to −2.5 × 10−5. Right: 2D plot of
∆nPBE+vdWTS

sc −PBE(r) for the xenon
dimer, separated by an interatomic dis-
tance of 5.45 = deq + 1 Å. The scale is in
[e/Å3] and the isosurfaces correspond
to 1× 10−6 and ±2× 10−6 [e/Å3].

tions in the various energy components indicate that vdW self-consistency is affecting
the electronic properties. Aiming to understand the non-trivial modifications of the
electron density, we applied the SC scheme to several dimers, where the intermolecular
distance has been taken to be somewhat larger than the equilibrium one, in order to
highlight the role of long-range correlation effects. The density response due to SC vdW
is evaluated by taking the electron density difference ∆nM1−M2(r), where M1 and M2

refer to the two different electronic structure methods chosen, e.g. PBE+vdWTS
sc and PBE.

The density difference is subsequently integrated over the corresponding orthogonal
x-y planes

∆nM1−M2(z) =

∫ ∫
[nM1(r)− nM2(r)] dx dy , (8.2)
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Figure 8.6: Integrated electron density differences ∆n(z) for the methane (C4H4) dimer.
The carbon-carbon distance is 6.72 = deq + 3 Å. In figure the structure of the dimer is
sketched along with two isosurfaces produced from ∆nPBE+vdWTS

sc −PBE(r). The outer
contour delimits a region of electron density accumulation of 1× 10−7 [e/Å]. The inner
isosurface corresponds to a region of depletion of −1× 10−7 [e/Å]. The whole extension
of the curve ∆nPBE+vdW-DF−PBE(z) is from −14× 10−5 to 9× 10−5 e/Å. This figure is
taken from reference [168].

where z is defined as the direction that connects the centers of the two atoms/molecules
considered. The integral in Equation 8.2 conveniently reduces the (3D) density redistri-
bution due to SC effects to a 1D projection, function of the distance between the frag-
ments. The same formula can be applied to different functionals and quantum-chemical
methods. This results can be used as a reference or for comparisons. Our reference for
the long-range correlations effects on the density is the difference ∆nCCSD−HF(z), the
integrated electron density difference between the coupled-cluster single and double
excitations level of theory (CCSD) and the Hartree-Fock (HF) approximation [174]. We
remark that the energies are usually computed with the CCSD(T) method, which in-
cludes the contribution of the triples with a perturbative correction, see Section 2.5.1.
However, for what concerns the electron density and electronic properties, CCSD(T)
and CCSD are expected to be of similar accuracy.
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The first example is the argon dimer, taken at a distance of 7.5 Å. The performances of
different functionals are plotted in the left panel of Figure 8.5. In solid black line, is drawn
the reference curve ∆nCCSD−HF(z), which displays peaks of density accumulation on
both sides of each atoms, with higher concentrations in between the dimer. Our SC
functionals, coupled with PBE and HF, overall reproduce the reference curve. However,
the two peaks of density accumulation in between the two Ar atoms are only slightly
larger than the peripheral ones. This is due to the fact that, at the starting point, the
Ar atom is constructed spherically symmetric and the Hirshfeld partitioning of the
electron density can not describe anisotropic densities. A second observation is that
the two curves, ∆nPBE+vdWTS

sc −PBE(z) and ∆nHF+vdWTS
sc −HF(z), overlap perfectly. The

predominance of the vdWTS
sc contributions over the underlying XC functionals, at such

large interatomic distances, confirms the ability of the TS vdW method to capture long-
range correlation interactions. In the same figure is plotted the density rearrangement
obtained with the self-consistent GW (sc-GW ) method [175] (Section 3.7.1). The shape
of ∆nHF+scGW−HF(z) replicates the qualitative feature of the reference curve. Still,
the sc-GW method overestimates the accumulation/depletion peaks and the density
modifications decay faster than the reference CCSD method. In particular, in the center
of the picture, the ∆nHF+scGW−HF(z) is even below 0. The second SC functional used as
a comparison is the vdW-DF, see Section 5.4. The density difference of vdW-DF, coupled
with PBE, reproduces the shape of ∆nCCSD−HF(z). On the other hand, the functional
further increases the quantitative overestimation of the charge rearrangement found
with sc-GW . The reasons behind the different performances of the SC functionals will
be analyzed in detail in the last paragraph of this section.

All of the functionals used in Figure 8.5 show a redistribution of n(r) where the
region with the largest accumulation of density is located between the two atoms. This
concentration of charge, driven by long-range correlation effects, implies a modification
of the electrostatics between the two atoms. A second example, that supports this
conclusion, is reported in the right panel of Figure 8.5. We consider a 2D slice of
∆nPBE+vdWTS

sc −PBE(r), that cuts both atoms in half. Similarly as before, the distance
between the two atoms is one Ångstrom larger that deq. The n(r) is clearly delocalized,
by vdW interactions, with a dominant spherical shape around the atoms. Nevertheless,
in the middle of the figure, the electron density shows a larger concentration and the
shape of the external isosurface (1 × 10−6 e/Å3) clearly confirms this feature. This
accumulation of charge density induces an electrostatic attraction between a nucleus
and its own distorted electronic cloud, leading to an effective attraction between the
nuclei. Hence, the inclusion of SC vdW effects establishes a connection between the
London approach, in which the long-range correlation stems from the electrodynamic
coupling between fluctuating dipoles, with the Feynman picture of vdW interactions. In
the second part of his seminal paper about molecular forces [163], Feynman proposed a
“classical electrostatic” picture of the intermolecular forces. Then, in the last paragraph,
he extended this interpretation to vdW interactions too. We quote his words: “Van
der Waals’ forces can also be interpreted as arising from charge distributions with higher
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concentration between the nuclei”. Concluding that, it is not the interaction between the
induced electronic dipoles that yields to the vdW forces. Rather, each nucleus is attracted
towards the displaced center of charge of its own electrons.

In concluding this section we present a last example and discuss in more detail
the differences between the three SC approaches previously seen in Figure 8.5. We
choose the methane dimer, with a carbon-carbon distance, along the z-axis, of 6.72 Å.
This system is bigger than the Argon dimer and is expected to display quantitatively
larger correlation effect. Moreover, it is not spherically symmetric. For this dimer, we
computed ∆n(z) using the same functionals employed to study the Argon dimer. The
complete set of integrated density differences is plotted in Figure 8.6. Overall, the shape
of the reference curve, ∆nCCSD−HF(z), is qualitatively similar to the one of Figure 8.5,
with a predominant accumulation of charge density in between the two molecules.
Here, the absolute values are larger and the density rearrangement presents several
positive and negative peaks. The performances of the PBE and HF methods coupled
with our vdWTS

sc are indistinguishable and match almost exactly with the reference
curve ∆nCCSD−HF(z). The agreement is a strong indication that the vdWTS correction
to standard DFT XC functionals, more precisely the first term in Equation 7.9, is indeed
able to capture the long-range correlation effects on n(r) properly. On the other hand,
sc-GW captures the qualitative trend, but still exhibits quantitative differences with an
overestimation of the charge rearrangements and steeper peaks. While such differences
might be attributed to the overestimation of C6 coefficients at the sc-GW level of theory,
these discrepancies are indicative of the high level of accuracy that is required in order to
correctly capture the non-trivial density modifications induced by long-range correlation
effects. Similar to the sc-GW method, the SC vdW-DF functional also reproduces the
shape of the n(r) redistribution, as in the case of the Argon dimer, but yields much larger
charge rearrangements than the CCSD reference. Since the vdW-DF C6 coefficient for the
methane dimer is accurate [145], this overestimation must stem from the large-gradient
behavior of the vdW-DF kernel.

8.3 ALKALI-METAL DIMERS

In the analysis of SC vdW effects discussed above we concluded that, in general, the
effects on the binding energy between small organic molecules are negligible. However,
at the end of Section 8.1, we have introduced some small and mid-size organic molecules
which display larger SC vdW effects. In detail, small contributions to the energetics are
found (still below 1%), together with modifications of the electronic properties, as the
dipole and quadrupole moments (few %). Apart from those examples, the alkali-metal
dimers represent another family of systems in which the SC vdW effects are found to
be particularly large. These small systems (diatomic dimers) are characterized by a
very large vdW energy, which is a fundamental component of Eb. In fact, some of these
dimers, when calculated with HF or other hybrid XC functionals could be even un-
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Table 8.2: The equilibrium distance deq of the Cesium-Cesium dimer is reported together
with deq and the dipole moment of the Sodium-Cesium dimer. The HF method is
employed and also coupled with vdWTS and vdWTS

sc . The distances are in [Å], the
dipole moments are in Debye [D].

HF HF+vdWTS HF+vdWTS
sc Experiment

deq(Cs2) 5.02∗ 4.50 4.58 4.61-4.65a

deq(NaCs) 4.08∗ 4.33 4.24 3.85-4.00b

Dipole moment NaCs 6.18 5.44 4.75c

∗: Not “real” equilibrium distances, the binding energies are always positive.
a: Reference [176].
b: Reference [177, 178].
c: Reference [179].

bound, without the inclusion of long-range correlation interactions. From the electronic
structure point of view, these systems are very difficult to model accurately because
of i) the weak bonding between the two atoms due to the diffuse ns valence orbitals
and ii) the easily polarizable core of the atoms which yields to important intershell
correlation effects. Thus, the full spectra of electronic properties is hard to capture with
ab initio methodologies. This fact and the small size of the systems suggest to tackle
the alkali-metal dimers with very accurate schemes, as the configuration interaction
(see Section 2.5). Even for such small dimers, the core electrons can be too many (Cs
for instance) to be treated with full CI. In practice, pseudopotentials are employed to
simulate core-polarizations effects, while the valence electrons can be treated at the CI
level of theory [180–182]. In our case, we are interested in measuring how much the
electronic properties of these polarizable systems are affected by the “simple” inclusion
of long-range correlation interactions. The simulations have been performed with the
“really tight” settings, that include tier3, an angular momentum l = 8 and the cut-off
potential is taken with an over-converged ronset = 10 Å (5–6 is tight). Since the outer-
most electron shell of the alkali atoms can decay very slowly to zero, a particularly large
cut-off value is chosen to ensure extended radial functions. Refer to Section 6.1 and 6.2
for an overview of the settings available in FHI-aims.

First, we analyzed the binding energy curves, using the HF methods coupled with
our TS vdW in both the a posteriori and SC flavors. In Figure 8.7 we can see the binding
energies plotted as a function of the interatomic distance. Considering the left panel,
the equilibrium distance deq for Cs · · ·Cs obtained with HF+vdWTS

sc is 4.58 Å, a value
slightly different—0.08 Å larger—than the one given without the SC approach. The
binding distance obtained with HF+vdWTS

sc compares well with 4.61 Å, the results of
an accurate (all-electron) pseudopotential valence CI calculation with core-polarization
potential [181]. Also, the absolute value of the binding energy is not exactly coincident,
but SC vdW increases Eb by 12 meV (∼ 4.2%). The binding energy curves for Na · · ·Cs

are drawn in the right panel of the same figure. In this case, the inclusion of SC effects
reduces deq by the same 0.08 Å and adds 7 meV (4%) to the binding energy. In summary,
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Figure 8.7: Binding energy curves plotted as a function of the interatomic distance.
The functionals used are HF+vdWTS and HF+vdWTS

sc . Left panel: Cesium-Cesium
dimer (Cs2). Right panel: Sodium-Cesium dimer (NaCs). The two insets represent the
geometries used.

we found that self-consistency can indeed affect both the structures and the binding
energy of alkali dimers. For the two dimers considered here, the two modifications of
deq have opposite directions, nevertheless improve the non-SC results with respect to
the experimental data, as reported in Table 8.2.

As a second step, we look at the integrated density difference ∆n(z) (Equation 8.2)
to study the electron density rearrangements driven by the SC vdW interactions. The
density differences between HF with and without vdWTS

sc are plotted (solid lines) in
Figure 8.8 for Cs2 and NaCs. The dimers are now taken with the experimental binding
distances (see Table 8.2). The density of the dimer is significantly displaced when SC
vdW is taken into account and the effects of self-consistency on the binding energy are
even larger than before. Considering Cs · · ·Cs, HF+vdWTS

sc gives Eb = −0.305 eV, a
value 25 meV (9%) larger than the a posteriori one, while simple HF provides a positive
energy (no binding). A similar result is found for the heteronuclear Na · · ·Cs, where
SC vdW increases the Eb by 34 meV, which corresponds to ∼ 45% of the HF+vdWTS

value. Moreover, the quantitatively large density rearrangement of ∆n(z)HF+vdWTS
sc −HF

is a very strong indication of possible modifications of the electronic properties. In fact,
looking at the right panel in Figure 8.8, the density is redistributed to form a dipole in
the region between the two nuclei. Close to the Na atom there is an accumulation in
n(r), while a depletion is present in the vicinity of Cs. The consequence is a reduction of
0.74 D (∼ 12%) in the dipole moment of NaCs with respect to the value obtained with
HF alone. The resulting dipole of 5.44 D improves the agreement with the experimental
measurement of 4.75 D (Table 8.2).

The effects reported above are found also when the hybrid PBE functional is used
instead of the HF method. For example, the ∆n(z) obtained with PBEh(1)+vdWTS

sc is
drawn in the two panels of Figure 8.8 in dashed lines. The letter h in PBEh(1) stands
for “hybrid”, while (1) means that the mixing parameter is α = 1, see Section 3.5.3.
This functional corresponds to the hybrid with 100% of EXX included. In other words,
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the different nuclei.

it combines the HF exchange with the PBE semi-local correlation part. The shape of
the integrated density differences are comparable with the ones obtained with HF and
produce similar modifications in the binding energy and dipole moment. However, we
found that the inclusion of semi-local PBE correlation only worsens the agreement with
experiment for the electronic properties of these alkali-metal dimers. With this section
our study of SC effects in finite systems is concluded. The next parts will be dedicated
to condensed systems, including interfaces between molecules and metal surfaces.





9 METAL SURFACES

In this second part dedicated to the applications of the vdWTS
sc functional, the attention

is focused on extended systems, in particular metal (111) surfaces. The three indices
(111) are called Miller indices and denote the lattice plane used to cut the metal bulk to
form the surface. The combination (111) means that the x, y and z axis are intersected
by the cleavage plane at the same value. The direct application of the vdWTS scheme
would lead to large overestimation of the vdW interactions within the surface [134],
as well as the surface-adsorbate interactions, as shown for example with azobenzene
adsorbed on metal surfaces [183]. Therefore, to study these extended systems we
employed the extension of the vdWTS method to model adsorbates on surfaces [123]
(vdWsurf ), discussed in Section 5.2. From a practical point of view, in the vdWsurf

method the collective response of the substrate is included via a renormalization of the
vdW parameters. In other words, the SC implementation introduced in Section 7 still
holds and can be directly extended to the vdWsurf variant. Here we employ the screened
set of vdW parameters, summarized in Table 5.1 for several metallic substrates, instead
of the free-atom parameters. The PBE+vdWsurf method has been already applied to
several bulk metals to calculate the lattice constants. The overall performances are on
the same level or better than the PBE accuracy [134]. The metal (111) surfaces presented
in this work are build using the PBE+vdWsurf lattice constants. All the settings and the
details used to obtain the results presented in this section are reported in Appendix D.2.

In analogy to the analysis already shown for the Argon and the methane dimers in Sec-
tion 8.2, we consider the electron density difference integrated ∆nPBE+vdWsurf

sc −PBE(z)

for the (111) surfaces of the three most common coinage metals: Cu, Ag and Au. The
z-axis is defined here as the direction normal to the (111) surface. The first point to
highlight is that the modifications of n(r) for the three metal (111) surfaces, shown in
Figure 9.1, are about three orders of magnitude larger than those of molecular dimers,
see Figure 8.6. This feature is a strong indication of the importance of SC vdW effects
for these periodic systems.

For Cu(111) and Ag(111), self-consistency yields an accumulation of n(r) in between
the metal layers and in the vacuum region. On the contrary, for Au(111), self-consistency
produces an accumulation of n(r) at the metal layers and a net depletion in the interstitial
and vacuum regions. These two qualitatively opposite effects are caused by the balance
between the vdW radius R0 and the interatomic distance a0,111 of the metal surface in

123
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Figure 9.1: Integrated electron density differences ∆n(z) for the three coinage metal
(111) surfaces. The ∆n(z) is computed between the PBE+vdWTS

sc and the PBE methods
and is plotted along the z-direction, perpendicular to the (111) surfaces. The vertical
dashed line at z = 0 represent the position of the topmost metal layer. The vacuum is on
the left side. The metal surface is sketched in the background as a guide to the eye. This
figure is taken from Reference [168].

question.

• When R0 < a0,111, the dominant term in the vdW potential is the first one written
in Equation 7.9, i.e. the derivative of the C6 coefficients. In this case the density
is redistributed by spreading the electron density from the regions with a large
concentration, as the metal layers. This effect is similar to what has been previously
found for molecular dimers. In the case of Cu and Ag, the lattice constants are
a0 = 3.57 and 4.007 Bohr, see Table 5.1, that lead to an interatomic separation
within the (111) surface of a0,111 = a0/

√
2 = 2.52 and 2.83 Bohr, respectively. The

vdW radius for Cu is 2.40 Bohr, while 2.57 Bohr is the value for Ag. It follows that
both surfaces satisfy the inequality R0 < a0,111.

• When R0 ≥ a0,111, an opposite behavior is found. In this case the damping regime
plays a more important role. The second term of Equation 7.9 becomes larger and
eventually results in a switch of the accumulation and depletion regions. One can
see that this condition is satisfied by Au(111). In fact, the surface lattice constant is
a0,111 = 2.94 Bohr and the vdW radius is 2.91 Bohr.

Notably, the effects of the vdW potential on the electron density at large distances from
the metal surface, i.e. well into the vacuum region, recover the decay predicted by the
LZK theory [132, 133] (see Section 5.2) of 1/(R−R0)3, where R0 is the reference plane.
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Figure 9.2: General representation of the energy diagram of a semiconductor with
the approximation of flat bands to the surface. The important energy levels are the
maximum of the valence band (VBM), the minimum of the conduction band (CBM), the
Fermi energy EF and the vacuum level Vvac. Some electronic properties are measured
as energy differences between two of these levels. For example, the gap between the
VBM and the CBM is called energy gap (EG). The ionization energy (IE) is the difference
between the VBM and Vvac, while the electronic affinity is the difference between the
CBM and Vvac. The workfunction Φ is defined as the difference between the Fermi level
and the vacuum potential. For the systems of our interest, metal (111) surfaces, the
Fermi energy and the VBM overlap and the same definition of Φ holds.

9.1 WORKFUNCTIONS WITH VAN DER WAALS

INTERACTIONS

The SC effects are particularly pronounced at the metal layers and in the vacuum
region, as clearly depicted in Figure 9.1. This situation suggests that the vdW effects are
modifying, with sizable contributions, the dipole of these metals at the surface level. In
this regard, the workfunction (Φ) is an observable electronic property, directly related to
the surface dipole. The workfunction is defined as the minimum energy required to remove
an electron from the metal surface to the vacuum region. The definition of Φ is sketched
in Figure 9.2 for the general case of a semiconductor with the approximation of flat
bands at the surface level. Following the definition written above, the workfunction
corresponds to the difference between the energy of the vacuum level and the Fermi
energy (EF ). In semiconductors, the Fermi level, which depends on several factors
as the temperature and the doping, is generally unoccupied and the value of Φ has
to be probed in a statistical way [184]. The workfunction is generally determined via
photoemission spectroscopy experiments. The same definition of Φ is valid for metal
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Table 9.1: Workfunctions in [eV] of various metal (111) surfaces obtained from experi-
ment [185–187] and theory, using the PBE and PBE+vdWsurf

sc functionals. In the second
column the period in the periodic table of elements is associated to each metal. The
experimental methods used to obtain the workfunctions are denoted by PE (photoelec-
tric effect) or FE (field emission). Particularly large vdWsurf

sc effects are marked with
underlined values. This table is taken from Reference [168].

Metal (111) surface Period Experiment [Method] PBE PBE+vdWsurf
sc

Cu 4 4.94 [PE] 4.89 4.95
Rh 5 5.60 [PE] 5.26 5.55
Pd 5 5.60 [PE] 5.30 5.28
Ag 5 4.74 [PE] 4.44 4.74
Ir 6 5.76 [PE] 5.66 5.64
Pt 6 5.93 [FE] 5.76 5.73
Au 6 5.32 [PE] 5.18 5.14

surfaces too, with the simplification that the Fermi energy corresponds to the highest
energy available for an electron in the solid and marks the division between occupied
and unoccupied states. In other words, in metals the three energy differences IE, Φ and
EA coincide [184]. Looking at Figure 9.2, the workfunction can be seen as the smallest
energy barrier that prevents an electron from escaping the metal.

In practice, the workfunctions are computed with the formula

Φ = Vvac − EF , (9.1)

where Vvac is the electrostatic potential in the vacuum region. The second term, the
Fermi energy, is a bulk-related quantity and is the dominant term in the equation. The
other value, the potential in the vacuum, is the energy that an electron assumes when
is placed, at rest, in the vacuum region nearby the surface. Thus, the energy Vvac is a
surface-dependent quantity. It originates from a potential step at the surface level of the
system in question, driven by a redistribution of charges. This definition of Φ appears
to be closely related to the electron density redistributions shown in Figure 9.1, which
affect both the atoms belonging to the metal layers and the vacuum region. At this point,
one can expect that the effects of SC vdW could have a role in the determination of both
EF and Vvac.

We compute all the workfunctions presented in this work using the FHI-aims [151]
code. The values were carefully screened through a long process of convergence of i) the
number of k-points used to sample the reciprocal space, ii) the extension of the cut-off
potential, discussed in Section 6.1 and iii) the number of layers. As an example, the
convergence procedure for the three settings listed above is summarized in Figure 9.3.
The three coinage metal surfaces Cu(111), Ag(111) and Au(111) are considered, taken
with a (1× 1× 1) unit cell. The three panels in the first column show the convergence of
Φ with respect to an increasing density of k-points. The fastest convergence is obtained
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Figure 9.3: Convergence tests for the workfunctions of coppper, silver and gold (111)
surfaces. Each row corresponds to one metal surface, Cu(111) is on top, Ag(111) is in
the central row and Au(111) is found at the bottom. In the first column are plotted the
variation of Φ for the three metals due to an increasing mesh of k-points. The central
row shows the important role of the cut-off potential on the workfunctions. The values
of the parameter ronset, which regulates the cut-off potential, are in [Å]. The third row
reports the relation between the workfunctions and the number of metal layers used in
the unit cells.



128 Metal Surfaces

with Ag(111), starting with a grid of (40 × 40 × 1) k-points. The other two surfaces
are safely converged with a minimum of 60 points per side. Similarly, the panels in
the second column represent the variation of Φ with respect to the value ronset, which
regulates the extension of the cut-off potential. For the three systems, a minimum of
ronset = 5 Å is necessary to ensure converged workfunctions. In the column on the
right, we converged the workfunctions with respect to the number of metal layers. For
such small surfaces, the addition of one layer can significantly change the value of Φ, in
particular for surfaces with less than 5 layers. The fastest convergence is obtained for
Cu(111) with five metal layers, while the Ag(111) surface is converge starting with six
layers. Finally, after nine metal layers, also the workfunction of the gold (111) surface
reaches convergence.

Other important factors that can adjust, with small variations, the value of Φ are
the dimension of the unit cell, the number of layers relaxed during the optimization
procedure and the extension of the vacuum region. In this regard FHI-aims utilizes
atom-centered basis functions, that are absent in the space dedicated to the vacuum.
Consequently, one can extend the vacuum region as much as needed to avoid any
spurious interactions between a surface and its periodic repetitions above and below,
without affecting the CPU time of a calculation. On the other hand, since the structures
are periodic, the increasing of k-points and/or large unit cells can have a severe impact
on the computational performance of the code. We have already discussed these issues
in Section 7.3 and some examples of the increasing workload are reported in Figure 7.5.
In addition to that, we report in Figure D.4 the computational time as a function of the
cut-off potential. All the details about the structures and the computational settings
employed in this section are reported in Appendix D.3.

The workfunctions for seven different metal (111) surfaces are reported in Table 9.1.
Our results, obtained with PBE and PBE+vdWsurf

sc , are listed and compared with the
experimental data. Well converged Φ were computed using structures build with the
PBE+vdWsurf lattice constants, reported in Table 5.1. The vacuum level is always set to
values larger than 50 Å. The surfaces have a minimum of six metal layers, two of which
were allowed to relax during the geometry optimization, performed at the PBE+vdWsurf

level of theory 1. The zeroth-order regular approximation (ZORA) [188] is included
in our calculation to account for relativistic effects. The settings employed herein are
validated also by looking at the resulting PBE workfunctions, which display a good
agreement with previously obtained results [189, 190].

In order to analyze the different effects of self-consistency on the workfunctions, the
metal surfaces are now separated in two different groups, depending on their period
in the periodic table of elements. For those metals belonging to the fourth and fifth
periods, the vdWsurf

sc method increases the magnitude of Φ with respect to “standard”
PBE results. Overall, for these systems the contributions of self-consistency improve the
agreement with experiment, with particularly large changes found for both Rh and Ag.

1We have already discussed in Section 7.1.1 that the forces are available within the a posteriori vdW correction.
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Following the discussion on the density rearrangements, Rh(111) satisfies the condition
R0 < a0,111. As a consequence, the same qualitative behavior found for Cu and Ag,
shown in Figure 9.1, is found. Namely, the density n(r) accumulates in the vacuum and
in the space between the metal layers, while a depletion is found within the layers. The
effect is a lower Fermi energy, due to the attractive electrostatic interaction between the
metal layers and the interstitial regions. Besides, the spillage of electron density into the
vacuum increases the dipole at the surface level, thus increasing Vvac. These two effects
lead, combined, to an increase of the workfunctions for Cu, Rh and Ag, see Table 9.1.
For the most sensitive case, Ag(111), the Fermi energy is modified by 6% with respect
to the PBE value and Vvac by 40%. The combination of these two effects is a significant
increase of Φ of more than 0.30 eV (7.2%).

The exception in this group is Pd(111), wherein the SC effects are rather small and
in contrast with the other elements belonging to the fourth and fifth periods. In this
case the relation is R0 > a0,111 and a modest accumulation of n(r) is found at the metal
layers, similarly to the Au(111) situation, drawn in Figure 9.1. For this system, EF
slightly increases and a nearly negligible reduction of the PBE workfunction is found.
However, both the PBE and the PBE+vdWsurf

sc workfunctions are 0.3 eV lower than the
experimental data. We note here that Pd has a fully occupied valence electron shell:
[Kr]4d10. For such localized states, self-interaction error can become increasingly more
deleterious. For this reason, we computed the Φ using PBE0 [61, 62] and HSE06 [66]
hybrid functionals, described in Section 3.5.3, which add 25% of EXX. Indeed, the
inclusion of a fraction of EXX is reflected into a Φ increased by 0.2 eV with respect
to PBE, a value obtained with both functionals. Thus, the discrepancy between the
computed and the experimental values is now within 0.1 eV. In particular, the EXX
increases EF and decreases Vvac, but the modification of the Fermi energy is much more
pronounced, because of the relatively low density of states (DOS) at the Fermi level.
The other metals in the fourth and fifth periods present incomplete valence shells and
therefore significantly higher DOS at the Fermi level. The effect of hybrid functionals,
for these metals, is an increase of EF with a further underestimation of the PBE Φ with
respect to experiment. We note in passing that the hybrid functionals are known to
perform comparably or worse than PBE for metals [60], with a particular emphasis on
transition metals. The reason is probably due to an overestimation of the exchange
splitting in d-block elements, that leads, for instance, to an underestimation of the
atomization energies [63].

For the remaining three metals belonging to the sixth period (Ir, Pt and Au), the
workfunctions computed at the PBE lever are slightly reduced when vdWsurf

sc is included,
see Table 9.1. These three surfaces satisfy the relationR0 ≥ a0,111 and the rearrangements
of n(r) follow the behavior discussed above for Au and shown in Figure 9.1. Similarly
to Pd(111), we observe a slightly increased EF coupled with an increased Vvac. The
combination of these two effects is a reduction of the PBE workfunctions by 0.02–
0.04 eV (see Table 9.1). For these metal surfaces the workfunctions computed with the
hybrid functionals are comparable with those obtained with PBE. Therefore, the average
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discrepancy of 0.2 eV between theory and experiment still remains. However, we note
here that the hybrid XC functionals applied to Pt(111) seem to display a trend similar
to Pd(111). The performances of the hybrid XC functionals on the workfunctions of all
seven metal (111) surfaces presented in this section are reported in Table D.3. Since these
functionals are only a secondary topic in the present thesis, we left a brief discussion
about these results in the last part of Appendix D.3.

It is well known that effects beyond the scalar relativistic approximation become
increasingly more important in computing the electronic properties for such heavy
metals. In this regard, the spin-orbit coupling (SOC) is found to stabilize the Fermi level
of bulk Au by∼ 0.4 eV [191]. This effect will consequently lead to an increase of Φ in Au.
Therefore, we suggest, for an improved quantitative prediction of Φ in these surfaces, to
perform self-consistent calculations which include the van der Waals interactions and
full relativistic effects.

In concluding, the performances of PBE+vdWsurf
sc have been compared with another

SC vdW scheme, the vdW-DF, coupled with the PBE functional. The Cu, Ag and Au
(111) surfaces, tested with PBE+vdW-DF, lead to results similar to the ones found with
PBE+vdWsurf

sc . Namely, the workfunctions are increased upon the inclusion of SC vdW
effects. The values obtained with the vdW-DF method are 5.10, 4.78 and 5.40 for the
Cu, Ag and Au surfaces, respectively. These workfunctions are slightly overestimated
with respect to experiments. In this regard, they are consistent with our analysis of the
vdW-DF effects on the electron density of the Argon and the methane dimers (Figure 8.5
and 8.6). Overall, these findings assess a general validity to the results found with the
PBE+vdWsurf

sc method.



10 HYBRID INORGANIC-ORGANIC

SYSTEMS

This last section of results is dedicated to the application of the SC vdW approach to
hybrid inorganic/organic systems (HIOS). In optoelectronics, multi-layered materials
attracted much attention because of the wide range of promising practical applications,
for instance as components of transistors or light-emitting devices. A nanoscale interface,
created by joining two or more materials with different properties, involves complex
interactions between the different parts and may exhibit interesting phenomena, linked
to new functionality. Of course, these features are not present when the different compo-
nents are considered separately [11]. Among all the interfaces, the hybrid systems are
composed by an organic molecular monolayer/monolayers and an inorganic substrate.
Thus, with these systems it is possible to combine, for example, the high electrical
conductivity of a metal substrate with the tunable structure and electronic properties of
organic molecules. The resulting interfaces show interesting applications, for example
as diodes, switches, sensors, photovoltaic cells [192, 193].

From a practical point of view, these interfaces are complex and large systems. There-
fore, DFT is the favorite ab initio methodology to tackle HIOS because of i) its compu-
tational efficiency, which enables the study of relatively large compounds and ii) the
accuracy in the prediction of the electronic properties of these systems. Nevertheless, as
one can imagine, standard DFT XC functionals, as LDA or PBE, might be suitable for
treating large systems, but include only a semi-local dependency on the electron density.
In this regard, the absence of the long-range correlation interactions can be particularly
troublesome for some HIOS [139, 194]. In fact, the distance between the substrate and
the monolayer is often around 3 Å, the typical range of weakly bounded systems, at the
edge between chemisorption and physisorption. The PBE functional typically overes-
timates the binding distances (the distance between the molecule/monolayer and the
substrate) and underestimates the binding energies. The opposite behavior, with large
underestimation of the binding distances, is found with LDA [195, 196]. If follows that,
in order to predict the structure and the cohesive properties of these complex systems,
many efforts have been dedicated in the last years to include vdW interactions within
the DFT framework. Different methodologies were proposed (see Section 5), among all
functionals we have already mentioned the DFT-D of Grimme [110], the vdW-DF [141]

131
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and the TS [108], discussed respectively in Section 4.1, 5.4 and 4.2. These remedies
show a great improvement with respect to standard DFT functionals, when applied to
layered systems and molecules adsorbed on surfaces [196–201]. However, the results
tend to overestimate/underestimate either the binding distance or the energy. Even
very expensive calculations that employ EXX with the correlation at the RPA level of
theory (cRPA) can fail to reach a discrepancy in the binding distance within 0.1 Å with
respect to experimental data [126]. Hence, the accurate prediction of the structure and
the energetic of these systems remains an open challenge.

The vdW method employed to model the HIOS in this work is the vdWsurf [123],
the extension of the TS, described in Section 5.2. With this approach, the TS vdW
functional for intermolecular interactions is combined with the LZK theory [132, 133]
(see Section 5.2), which includes, in the vdW energy, the non-local collective response of
the substrate. This scheme has been applied to a large variety of HIOS, starting with
atoms, as Xenon, to molecules of different size, as benzene, azobenzene, naphthalene,
the C60 buckyball and many more [127, 134, 200]. The vdWsurf method, coupled with
PBE, leads to remarkably good results in comparison to experimental measurements.
Overall, the binding distances are found with a MAE of 0.06 Å and the adsorption
energies are within 0.16 eV [127]. These numbers represent, up to now, the benchmark
in the ab initio description of HIOS. The substrates used are mainly metal (111) surfaces,
but the functional shows the same level of performances also for adsorbates on (110)
and (100) metallic surfaces [140].

The correct prediction of the structure is a fundamental prerequisite in order to
characterize the properties of HIOS. This step is achieved in this work via structure
relaxations performed with the PBE+vdWsurf functional. At this point it is possible to go
beyond the cohesive properties and investigate the electronic structure and properties
of HIOS. The workfunction, for example, is an experimentally measurable quantity.
Hence the comparison between the simulated and the measured workfunction (or
workfunction shift) is an important reference to assess the accuracy of the electronic
structure calculations. Moreover, it is also possible to study the phenomena behind
the modifications of the electronic properties upon molecular adsorption. We will
apply this recipe to study the role of vdW interactions, included via vdWsurf

sc , in the
electronic properties of HIOS. The analysis of SC effects is motivated by the fact that
vdW interactions proved to be very important for the cohesive properties of HIOS and
for the workfunctions of some metal surfaces. In the literature there are already few SC
implementation available for HIOS, one example is the vdW-DF (see Section 5.4). This
functional has been employed with layered systems as NTCDA and PTCDA on gold
(111) surface [158], but no particular attention was given to SC effects. In conclusion, a
study regarding the specific role of long-range correlation interactions on the electronic
structure of HIOS is still absent up to date. In the next sections will study the SC effects
for a series of selected HIOS of increasing complexity and size. Following our previous
results for metal (111) surfaces (Table 9.1), the majority of the systems considered will
contain Ag(111), the surface with the largest SC effects. Our analysis starts with the
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Figure 10.1: Schematic representation of the shift of the workfunction driven by charge
transfer. In this figure the charge flows from the metal substrate to the molecule. On the
left side are represented the surface, with its initial Φ, and the molecule as two separate
systems. After contact, on the right side, the molecular LUMO is filled with electrons.
The consequence of this charge transfer is an induced interface dipole, which increases
the initial workfunction with a positive shift ∆Φ. The opposite situation, a transfer of
charge from the molecule to the substrate, would imply a negative ∆Φ.

investigation of electron density rearrangements, comparing PBE and PBE+vdWsurf
sc

functionals. Then, we will proceed to study the effects on the electronic properties, with
particular attentions devoted to the workfunctions.

10.1 THE WORKFUNCTION SHIFT

The interesting features of HIOS are due to the fact that when a molecule/monolayer
is adsorbed on a surface the electron density undergoes a complex rearrangement con-
nected to the formation of intrinsic dipoles and, consequently, to electrostatic interactions
at the interface. Therefore, for this class of systems, the potential importance in practical
applications is joined by the possibility to model the electronic properties, as the band
gap or the metal workfunction, in order to improve the performances [6, 202] and/or
expand the functionality in organic electronic devices [203]. In particular, depending on
the magnitude and the type of interfacial interactions, the workfunction of the surface,
defined in Equation 9.1, shifts (∆Φ). We can separate three main electrostatic effects
behind the shift of Φ:

• The Pauli push-back or pillow effect, i.e. the repulsion between the electrons
belonging to the metal surface and those of the adsorbed molecule.
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• The presence of a charge transfer between the surface and the monolayer. As
sketched in Figure 10.1, upon contact a flow of charge can travel from the substrate
to the molecule or vice versa. Of course, this means a rearrangement of n(r) that
produces a dipole at the interface.

• The intrinsic electronic dipole moment of the monolayer. Since the molecules often
become distorted upon adsorption, this term can be present even in molecules
which have no dipole in gas phase.

The first two effects are correlated and can also concur in the so-called Fermi-level
pinning or workfunction pinning phenomenon [204]. Considering a clean metal surface,
part of the electron density is located above the topmost metal layer. In Figure 9.1 we
show that SC vdW effects enhance this density for Cu and Ag (111) surfaces. When
a molecule is adsorbed, the pillow effect, the overlap between the molecular and the
metal wavefunctions, pushes back the electron density of the metal into the surface.
Thus, the Φ of the clean metal is reduced (negative ∆Φ). At this point, if the molecular
LUMO—which is renormalized accordingly to the interface dipole—is below the Fermi
energy of the surface, then a charge transfer is established from the metal to the molecule.
In this regime, the workfunction of the HIOS (Φ′) is pinned, independent of the distance
between surface and molecule [204, 205]. Even the inclusion of an extra dipole between
surface and monolayer leads only to a charge rearrangement at the interface that keeps
∆Φ constant. This happens because the charge transfer and the Pauli push-back balance
each other, until the LUMO can be filled. When the molecule is too close to the surface,
for example, the strong charge transfer fills the whole LUMO and ∆Φ is unpinned again.
Of course, the Fermi-pinning is not present without charge transfer.

The molecular geometries can distort during the adsorption process and provide
an additional molecular dipole, the third phenomenon that affects ∆Φ. The workfunc-
tion shift can be indeed modified by the molecular dipole too, beyond Fermi-pinning,
depending on the spatial location of the dipole. If the dipole is introduced above the
monolayer, i.e. above the region where the electron density can rearrange to keep the
workfunction pinned, it would create an additional potential step that contributes to the
final workfunction Φ′ [206].

The different types of substrates and molecules available open the possibility to create
a countless number of interfaces with many different properties. Moreover, the control
of the factors stated above allows to widely tune the electronic and optical properties
of hybrid systems. For example, a chemisorbed monolayer with a pronounced polar
orientation or a strong electron acceptor are usually associated with large ∆Φ, on the
order of 2–3 eV [207]. On the contrary, weakly bounded interfaces, as in the case of noble
gases, produce much less pronounced modifications of about 0.5 eV [208]. Naturally, a
fundamental factor is the type of substrate. The same monolayer adsorbed on a metal
surface and a semiconductor, can result in substantially different interactions at the inter-
face, with large differences (40%) in the two ∆Φ [209]. Also, the workfunction exhibits a
non-trivial relationship with structural modifications. For instance, the deposition of
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Table 10.1: Summary of binding distances, binding energies and workfunction shifts for
Benzene adsorbed on Cu(111) and Ag(111). The results listed here are obtained with
PBE+vdWsurf , PBE+vdWsurf

sc and from experiments. The average distance between the
carbon atoms and the topmost metal layer (dC) are reported in [Å]. The binding energies
Eb and the ∆Φ are in [eV].

Benzene/Cu(111) Benzene/Ag(111)
dC Eb ∆Φ dC Eb ∆Φ

PBE+vdWsurf 2.79a -0.79 -1.07 2.96a -0.74 -0.72
PBE+vdWsurf

sc 2.79 -0.79 -1.07 2.96 -0.73 -0.86
Experiment -0.71b -1.09c -0.69b -0.94d

a: Reference [134].
b: Reference [224].
c: Reference [225].
d: Reference [226].

a second monolayer, although visibly changes the geometry of this HIOS can result in
modest workfunction reductions (∼ 0.1 eV) [210].

The process of carefully tailoring the electrostatics at the interface includes a variety of
different techniques, from doping methods [211, 212] to charge carrier injector/acceptor
layers [213–215] and stacking layers [210, 216]. In summary, the characterization of
HIOS and the understanding of the main processes behind the electronic properties
represent formidable challenges, deeply investigated with both experimental [216–219]
and theoretical [199, 206, 220–223] approaches.

10.2 BENZENE ON METALS

As a first example, we start with a small molecule: Benzene (Bz) adsorbed on copper
and silver (111) surfaces. The Bz molecule is adsorbed in a flat configuration on both
Cu(111) and Ag(111) [226–229]. We consider the most stable structure, in which the
molecule is adsorbed on a bridge site and is 30◦ tilted with respect to the high symmetry
sites (bri30◦). Refer to Appendix D.5 for additional details about the geometry and the
settings employed. First, we compute the workfuncion shift of both structures using
PBE1 and PBE+vdWsurf

sc . From the results for Bz/Cu(111), summarized in Table 10.1, we
can conclude that the SC effects are not important in determining ∆Φ. Although PBE and
PBE+vdWsurf

sc produce the same ∆Φ, one should keep in mind that the workfunctions
of the clean substrate and the interface are different with the two functionals. The two
values for Cu(111) are in Table 9.1. For the systems Bz/Cu(111), PBE gives a Φ′ = 3.82 eV,
while 3.88 eV is found with SC effects. Both functionals agree well with the experimental
value Φ′ = 3.85 eV [225].

The second case, Bz/Ag(111), displays a modification of the PBE ∆Φ, when SC
effects are included. With self-consistency, the PBE workfunction decreases by 0.14 eV,

1We remind the reader that, for what concerns the electronic properties, PBE and PBE+vdWsurf are the same
functional. Hence, we decided to use the simplest notation.
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Figure 10.2: Bz/Ag(111). PBE and PBE+vdWsurf
sc induced electron density integrated

and plotted as a function of z, the axis perpendicular to the metal surface. The vertical
dotted-dashed lines indicate the upper and lower limits of the silver slab. The vertical
dotted line refers to the position of the Bz molecule.

improving the agreement with the experimental data. In order to understand the reasons
behind this larger ∆Φ, we performed a in-depth analysis of the electronic structure. The
interface Bz/Ag(111) is characterized by a rather weak interaction between the surface
and the molecule. The binding distance (Table 10.1) is typical of a physisorption. Within
this type of bonding, no substantial charge transfer between the interface is expected
to take place. Therefore, the only physical phenomenon involved in the change of the
workfunction is Pauli push-back [230]. During the adsorption, the electron density of
the substrate and the one of the monolayer overlap. However, as the overlap increases,
a repulsion between the two electron densities arises because of the Pauli exclusion
principle. As a result, the electron density (in the vacuum) of the metal withdraws in
a region close to the surface, thus creating a dipole that points toward the surface and
reducing, consequently, the metal workfunction.

We define now the electron density modification induced by molecular adsorption as

∆nads(r) = n(r)system − (n(r)surf − n(r)mol) , (10.1)

where n(r)mol is the density of the isolated molecule or monolayer. The induced density
can be subsequently integrated over x–y planes

∆nads(z) =

∫ ∫
∆nads(r) dx dy , (10.2)

where z is defined as the axis perpendicular to the metal surface. The ∆nads(z) for
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Bz/Ag(111), computed with PBE and PBE+vdWsurf
sc , are plotted in Figure 10.2. In

both curves it is clearly visible that, when the molecule adsorbs, a dipole is formed
at the interface level. Also, the magnitude of the charge rearrangement is larger with
PBE+vdWsurf

sc (solid line). The inclusion of vdW interactions produce a delocalization
of electron density above the metal surface and around π-conjugated molecules. This
increases the overlap between electronic wavefunctions and triggers a larger Pauli push-
back effect. As a result, the dipole at the interface can be estimated to be 1.22 D with
PBE, which increases to 1.46 D when SC vdW effects are included. The consequence
is a reduction of nearly 20% (0.14 eV) of the PBE ∆Φ, reaching an agreement between
theory and experiment better than 0.1 eV. We also observe that the absence of charge
transfer is confirmed in Figure 10.2, where the density rearrangements are not involving
the density located at the level of the molecular plane.

The workfunction shifts reported in Table 10.1 are computed with the formula ∆Φ =

Φ′ − Φ. To further establish the role of SC vdW in HIOS, a simple electrostatic model
can be used to partition the workfunction shift into two separate contributions. First,
we define the delocalized charge as the integral of the induced density

Q(z) =

∫
∆nads(z) dz . (10.3)

Since the total charge is conserved, the full integral, performed along the z-axis of the
unit cell, should give zero. A positive value ofQ(z) is connected to a transfer of electrons
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from the molecule (right side) to the surface (left side). Considering the twoQ(z) plotted
in Figure 10.3, it appears that the inclusion of SC vdW (solid line) gives rise to a larger
rearrangement of charge with respect to PBE alone (dashed line), confirming the larger
Pauli push-back effect previously described. We can measure the magnitude of the
delocalized charge by considering the global maximum of the two Q(z). The values are
Qpeak = −0.106 e and −0.130 e, with an increasing of −0.024 e ( 22%) due to SC vdW.
The plateau in at the level of the Bz plane (dotted line), found in both schemes, indicates
qualitatively the absence of charge transfer.

A second integration of ∆nads(z) 2 is linked to a modification of the electrostatic
potential upon bond formation. In other words, the potential energy is obtained by
solving the Poisson equation in 1D (along the z direction)

d2

dz2
∆E(z)bond =

e

ε0
∆nads(z) , (10.4)

where the change in the potential energy is defined as: ∆Ebond = −e∆Vbond. The net
change in the potential energy (the full integral) represents the total change due to the
formation of dipoles at the interface, called bond dipole (BD). At this point we can
compute ∆Φ with an alternative definition

∆Φ = ∆Emol + BD , (10.5)

in which the first term refers to the molecular contribution. As previously mentioned
(Section 10.1), ∆Emol originates solely from the adsorption-induced geometric distortion
(bending and stretching phenomena) of the monolayer.

For Bz/Ag(111), we measured ∆Emol = 0.037 eV with no sensible modifications due
to SC vdW. The two curves corresponding to ∆Ebond are drawn in Figure 10.3. Clearly,
the potential energy is larger when SC effects are included, giving a BD= −0.90 eV.
This contribution, combined with the molecular dipole, produces a ∆Φ = 0.863 eV. On
the other hand, the change in the potential energy for PBE alone is −0.75 eV, −0.15 eV
less (∼ 20%), resulting in ∆Φ = 0.713 eV. The two workfunction shifts are in good
agreement with the number reported in Table 10.1 and reflect the difference between
the two approaches. Of course, the ∆Φ obtained with Equation 10.5 are affected by
numerical errors and should be regarded only as a test that confirms the validity of our
analysis on the electronic structure. The ∆nads(r) are obtained from DFT calculations
and saved in files as grid points. Therefore, the precision of the grid is very important
in determining the integrated quantities as Q(z) and ∆Ebond(z). For this reason, one
should always refer to the values reported in the tables, e.g. Table 10.1, as the “true” ∆Φ.
These numbers are computed within the FHI-aims code, which provides a much higher
accuracy than the numerical integration of a file wrote for visual purposes.

2First we compute Q(z), then we obtain ∆V (z)bond with the integration of Q(z).
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Table 10.2: Binding distance, binding energy and workfunction shift for DIP/Ag(111),
considered with two different monolayers. The PBE+vdWsurf and PBE+vdWsurf

sc results
are compared with experimental measurements. The distances are in [Å], the energies
and the workfunctions are in [eV].

Herringbone DIP/Ag(111) Brick-wall DIP/Ag(111)
dC Eb ∆Φ dC Eb ∆Φ

PBE+vdWsurf 2.99a -6.45 -0.16 3.00a -3.22 -0.18
PBE+vdWsurf

sc 2.99 -6.38 -0.38 3.00 -3.18 -0.39
Experiment 3.01a -0.44b 3.01 -0.44

a: Reference [138].
b: Private communication.

10.3 DIINDENOPERYLENE ON AG(111)

The analysis and the results presented above can be expanded by considering another
well characterized HIOS: Diindenoperylene (DIP) (C32H16) adsorbed on Ag(111). DIP is
a π-conjugated semiconductor and has a relatively simple chemical structure: is a planar
hydrocarbon. This molecule has excellent optoelectronic device performances [231, 232]
and, during the last years, it has been extensively studied in monolayer on coinage
metal surfaces [233–235]. The comparison between the equilibrium distance dC (defined
in Table 10.1) obtained with PBE+vdW surf and with X-ray standing waves experiments
(XSW) shows an almost perfect agreement [138]. The agreement in the structure is found
also for Cu(111) and Au(111). However, with these two substrates, the contributions of
SC vdW are basically absent, similarly to the example of Bz/Cu(111). For this reason,
from now on, we focus only on HIOS with silver as a substrate.

The “best match” with the experimental dC is obtained with two orientations of a
close-packed DIP monolayer, already observed in STM and LEED experiments [234]. In
the first case the monolayer is arranged in a herringbone shape with two molecules per
unit cell. The second structure is a brick-wall monolayer and only one DIP molecule
is included in the unit cell. More details about the geometries and the settings are
available in Appendix D.5. For what concerns Eb, self-consistency gives a tiny reduction,
of about 1.0–1.25%, of the PBE+vdWsurf values. The binding distances, reported in
Table 10.2, indicate a rather pronounced physisorption. Thus, vdW interactions are of
great importance for this structure. Since the two monolayers produce basically the
same results, we will describe here only the brick-wall arrangement.

DIP on Ag(111) differs from Bz/Ag(111), in fact the latter presents a net charge
transfer from the metal to the molecule, following the representation in Figure 10.1.
Within this regime, the Pauli push-back effect, that reduces the metal work function,
is counterbalanced by the charge transfer, see Figure 10.1. On the contrary, a flow of
charge from the HOMO of the molecule to the substrate would enhance the reduction of
the workfunction due to the pillow effect [236]. Specifically, in the case of DIP/Ag(111),
the charge transfer is modest and the ∆Φ remains negative, see the results reported in
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In the center a 2D isosurface of ∆n(r) is plotted. The regions with excess of electron
density are indicated in blue, the regions of depletion are in red. The limiting values
are set to ±2.0 × 10−4 e/Å3. The profile of the DIP molecule is sketched as a guide
to the eye. The difference between the induced electron densities integrated over x-y

planes, ∆n
PBE+vdWsurf

sc

ads (z)−∆nPBE
ads (z), is plotted on the right panel. The plot is vertically

aligned to match with the z coordinates of the figure in the central panel.

Table 10.2. Even though both functionals provide a negative workfunction shift, when
SC interactions are taken into account the shift increases by 0.21 eV, doubling the PBE
value, with a significant improvement in the agreement between theory and experiment.

This large change in ∆Φ is analyzed by looking at the difference in the induced
electron density between PBE+vdWsurf

sc and PBE: ∆n
PBE+vdWsurf

sc

ads (r) − ∆nPBE
ads (r). We

consider a 2D slice of the induced electron density, taken along an x-y plane that cuts
the unit cell (and the DIP molecule) in half, as indicated in the left panel of Figure 10.4.
The 2D plot of such density difference is in the central panel of Figure 10.4. From the
figure it emerges that self-consistency entails a depletion of density at the monolayer
plane and at the metal layers. Conversely, the accumulation regions are located mainly
at the interface and between the silver atoms. A quantitative inspection of these effects
is provided with the integrated density, defined in Equation 8.2. The integrated density
difference for DIP/Ag(111) is plotted in the right panel of Figure 10.4. The curve presents
the shape of a dipole, with the negative pole located at the interface and the positive
pole just above the topmost metal layer. Such density rearrangement is a clear indication
of the pillow effect that pushes the density closer to the surface, reducing the metal
workfunction. Having examined the electron density, we now show the total delocalized
charge Q(z), defined in Equation 10.3 as the integral of ∆nads(z). Since the rearranged
density is already discussed above, we avoid to show here the two ∆nads(z) and move



10.3 Diindenoperylene on Ag(111) 141

0 5 10
d [Å]

0

0.1

0.2

Q
 [

-e
]

DIP

Last Ag layerFirst Ag layer

Q PBE+vdWsc
surf

Q PBE

0

-0.2

-0.4

-0.6

∆
E

bo
nd

 [
eV

]
∆Ebond PBE+vdWsc

surf

∆Ebond PBE
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plotted together with the corresponding change of the potential energy ∆Ebond(z). The
vertical dotted-dashed lines indicate the upper and lower limits of the Ag(111) surface.
The vertical dotted line corresponds to the position of the DIP molecule.

directly to the analysis of the charge. Nevertheless, the plot of ∆nads(z) for DIP/Ag(111)
is reported and discussed in Appendix D.5.

The delocalized charge is drawn in Figure 10.5 for PBE+vdWsurf
sc and PBE alone,

in solid and dashed lines respectively. The two curves show large differences in the
region between the topmost metal layer and the monolayer plane, see in Figure 10.5 the
region between the vertical dotted-dashed line (on the right side) and the vertical dotted
line. Self-consistency enhances the charge redistribution at the interface of about 0.2 e.
The higher positive peak of Q(z), just above the Ag(111) surface, indicates the Pauli
push-back effect and is roughly 40% higher when SC vdW effects are included. From
the figure we can also grasp a qualitative estimation of the charge transfer by looking at
the downward slope of Q(z), located at the interface. Here, PBE+vdWsurf

sc presents a less
marked steepness and a higher local minimum with respect to the PBE curve, which
even reaches negative values. Therefore, from this analysis, it emerges that SC effects
increase the pillow effect and decrease the flux of charge from the metal to the molecule.

The change in the potential energy represents a quantitative estimation of the effects
of self-consistency and can be computed by solving the 1D Poisson equation (see
Equation 10.4). As expected, the ∆Ebond with SC effects, see the dotted line in Figure 10.5,
is larger than the one of PBE, drawn in dotted-dashed line. The result is a BD of−0.45 eV
and−0.23 eV for PBE with and without SC vdW, respectively. We note that the inclusion
of SC effects doubles the PBE value. The flat relaxed geometry of the monolayer provides
a small change in potential energy of ∆Emol = 0.042 eV found in both schemes. At this
point, the workfunction shift is computed via Equation 10.5. The sum of ∆Ebond and
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Figure 10.6: Molecular orbital density of states computed with PBE and PBE+vdWsurf
sc .

The orbitals plotted in the two panels correspond to the HOMO and LUMO molec-
ular levels of the adsorbate molecules. On the left panel are plotted the orbitals for
DIP/Ag(111). Bz/Ag(111) is considered on the right panel. The energy axis is rescaled
with respect to the Fermi energy, indicated with the vertical dotted lines.

∆Emol gives a large shift of −0.408 eV for PBE+vdWsurf
sc , while ∆Φ = −0.188 eV with

PBE alone. These values nicely confirm the results reported in Table 10.2 and obtained
from Equation 9.1.

We can give an estimation of charge loss/gain of the molecule adsorbed on the surface
by summing over all the occupied molecular orbitals. When the molecule is adsorbed,
the molecular orbitals (MOs) interact with the orbitals of the metal surface and can result
broadened and shifted, depending on the “strength” of the interaction. The MOs are
simulated by projecting the density of states (DOS) of the hybrid system onto the MOs of
the isolated molecule (taken in gas phase). This Mulliken-like population analysis [237]
allows to assess quantitatively the amount of electrons transferred to the molecule via
the projected DOS [238], called MODOS. The occupation of a single MODOS is obtained
with an integral over the energy that spans up to the Fermi energy. Subsequently, the
total occupation is simply the sum of all the occupied MODOS. Then, the charge transfer
is computed as the difference between the total occupation and the charge of the isolated
molecule. More details on the MODOS analysis are included in Appendix D.4.

Considering DIP/Ag(111), self-consistency halves the charge transfer, starting from
0.2 e with PBE to 0.09 e with PBE+vdWsurf

sc and a reduction of 0.11 e (55%). Moreover,
from the MODOS we can define the charge donation as the filling of the LUMO alone,
while the occupation of all other orbitals higher in energy—the other empty molecular or-
bitals of the molecule in gas phase—is called back donation. The effect of self-consistency
is to reduce the charge donation by 10% (0.06 e), as well as a quantitatively similar in-
creasing of back donation. A plot of the HOMO and LUMO of the adsorbate DIP
molecule is drawn in the left panel of Figure 10.6. The effect of self-consistency on the
HOMO is a simple rigid shift towards the Fermi energy, which has been rescaled in the
figure and corresponds to the value zero. On the other hand, the LUMO overlaps the
Fermi level, thus it is filled by the electrons of the substrate up to EF . This observation
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Table 10.3: PTCDA and CuPc adsorbed on silver (111) surface. The binding energies,
the binding distances and the workfunction shifts computed with PBE+vdWsurf and
PBE+vdWsurf

sc are reported and compared with the experimental data. The distances
between the topmost metal layer and the average position of the carbon atoms dC and
the nitrogen atoms dN are reported in [Å]. The binding energiesEb and the workfunction
shifts are in [eV].

PTCDA/Ag(111) CuPc/Ag(111)
dC Eb ∆Φ dC dN Eb ∆Φ

PBE+vdWsurf 2.84a -3.06 0.33 3.00 2.99 -4.085 -0.22
PBE+vdWsurf

sc 2.84 -3.00 0.11 3.00 2.99 -4.012 -0.41
Experiment 2.86b 0.06c-0.16d 3.08e 3.04e -0.44f

a: Reference [123]; b: Reference [239]; c: Reference [240]; d: Reference [241];
e: Reference [242]; f : Reference [210].

is true for both PBE and PBE+vdWsurf
sc and indicates the presence of a charge transfer

between the metal and the molecule. However, when SC vdW interactions are included
the LUMO is slightly distorted and the area available to be filled by the electrons of
the substrate (left of zero) is reduced, as shown in Figure 10.6. This effect is the reason
behind the reduction of 0.06 e in the charge donation. As a comparison, we plotted
on the right panel of Figure 10.6 the HOMO and LUMO of Bz adsorbed on Ag(111).
Clearly the HOMO and LUMO are separated by a gap and the Fermi level is located in
between the two orbitals. In this situation a transfer of charge between the substrate
and the organic molecule is substantially absent (∼ 0.01 e). Therefore, for Bz/Ag(111),
even though self-consistency induces modifications of the orbitals, in particular for the
LUMO, they have no relevant impact in the ground-state electronic properties.

10.4 PTCDA ON AG(111)

The study is now extended to another large and flat molecule, PTCDA (C24H8O6), which
shortly refers to Perylenetetracarboxylic dianhydride. The molecule forms a commensurate
monolayer on Ag(111), as observed in STM experiments [243, 244]. The unit cell contains
two molecules in a herringbone configuration and non-equivalent adsorption geome-
tries, see Figure D.8. The binding distance of the structure, relaxed with PBE+vdWsurf , is
reported in Table 10.3 and displays an almost perfect agreement with the data extracted
from XSW experiments [239]. Further details of the structure and the calculations pre-
sented here are available in Appendix D.5. The performances of PBE+vdWsurf with
PTCDA/Ag(111) are discussed in detail in the References [123, 127, 140].

The main difference between PTCDA and the DIP is the presence of the functional
group O=C−O−C=O on both sides of PTCDA. This leads to a different behavior with
respect, for example, to perylene-like molecules, that is enhancing the bonding with
the surface and the charge transfer [241, 245]. In this HIOS, a net charge transfer is
present, from the substrate to the molecules, as sketched in Figure 10.1. The magnitude
of the charge transfer is roughly three times larger than DIP/Ag(111). Consequently,
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Figure 10.7: PTCDA/Ag(111). In the figure are reported the charge rearrangements
upon molecular adsorption (Q(z)) and the corresponding variations of potential energy
(∆Ebond(z)) obtained with PBE and PBE+vdWsurf

sc . The two vertical dotted-dashed
lines indicate the bottommost and topmost metal layers, while the vertical dotted line
corresponds to the PTCDA monolayer.

the pillow effect is overturned and the pristine metal workfunction increases upon
molecular adsorption. The positive ∆Φ has been measured in experiments [240, 241], as
well as predicted in previous theoretical studies [199, 205, 223]. As seen before in the
case of DIP on Ag(111), the inclusion of vdW effects enhances the Pauli push-back and
damps the (large) charge transfer. Consequently, with PBE+vdWsurf

sc the positive shift
∆Φ is reduced to one third of the PBE value. The results are reported in Table 10.3. Once
again, the inclusion of vdW effects in the electronic properties significantly improves
the agreement with experiments.

The delocalized charge, Q(z), computed with PBE and PBE+vdWsurf
sc , is plotted in

Figure 10.7 together with the corresponding change in the potential energy ∆Ebond(z).
The Q(z) with SC vdW effects presents a higher peak located just above the topmost
metal layer, suggesting a larger Pauli push-back. At the same time, self-consistency
lessens the negative peak at the interface, a qualitative indication of the reduction in
the charge transfer. From the comparison between the Q(z) of DIP and PTCDA on
Ag(111), Figure 10.5 and 10.7 respectively, we can see that the overall shapes are rather
similar. However, with PTCDA/Ag(111) the magnitude of the displacements is larger.
In particular, the downward peak at the interface is much more pronounced and both
PBE and PBE+vdWsurf

sc produce a Q(z) that falls in the negative values. This feature is
a clear evidence of the large charge transfer of PTCDA/Ag(111). Similar conclusions
can be obtained from the analysis of ∆nads(z), which are reported and described in
Appendix D.5.

The effects of such large charge transfer can be seen in ∆Ebond(z), i.e. the integral
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Figure 10.8: 2D slice of induced electron density difference ∆n
PBE+vdWsurf

sc

ads (r) −
∆nPBE

ads (r). The regions of electron density accumulation are in blue, while red in-
dicates depletion. The slice is taken at the interface, between the metal and the
molecule. Left panel: Top view of CuPc on Ag(111). The limiting values are set to
±5.0× 10−4 e/Å3. Right panel: Top view of CuPc on Ag(100). The limiting values are
set to ±4.0× 10−4 e/Å3. In both figures the CuPc molecule is sketched as a guide to the
eye.

of Q(z), see Equation 10.4. In fact, the two ∆Ebond(z), plotted in Figure 10.7 for PBE
and PBE+vdWsurf

sc , remain in the bottom side of the plot, leading to a positive BD. The
shift in the workfunction can be computed via Equation 10.5, by adding to the BD the
contribution of the molecular dipole, which is −0.17 eV for both functionals. We note
in passing that the changes in the PTCDA geometry, during adsorption, produce a
∆Emol roughly four times larger than the one of DIP (0.042 eV). The resulting ∆Φ are
−0.17 + 0.48 = 0.31 eV for PBE and −0.17 + 0.26 = 0.09 eV for PBE+vdWsurf

sc , in good
agreement with the values reported in Table 10.3.

The quantitative estimation of the charge transfer, performed via the MODOS, reveals
that self-consistency entails a robust reduction of the transfer of charge of about 0.10 e

(15%) per molecule. The transfer is −0.68 e per molecule with PBE and reduces to
−0.58 e with PBE+vdWsurf

sc . In detail, charge donation, i.e. the filling of the LUMO,
is affected by a reduction of 0.054 e (3.7%). This charge is redirected as backdonation,
which displays an increase of 6%.

10.5 FURTHER EXAMPLES

In concluding the chapter of the applications we leave the reader with some extra ex-
amples of HIOS that have been successfully investigated with SC vdW interactions.
The first system contains a large and flat aromatic molecule of the family of metal-
phthalocyanines (MePc), CuPc, adsorbed on Ag(111) and Ag(100). This class of organic
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semiconductors is characterized by the presence of a metal atom in the center of the
molecule. The molecular geometry assumes a planar or non-planar configuration, de-
pending on the atomic species of the metal atom. It can also display different electronic
properties, e.g. the vertical dipole. Therefore, the substitution of the metal atom opens
many possibilities for a controlled and efficient tuning of the electronic properties. This
feature is combined with a high thermal stability of CuPc and makes these class of
molecules particularly interesting for applications in organic electronics such as in pho-
tovoltaic cells, sensors, LED. CuPc on coinage metal surfaces has been characterized
with several experimental techniques as STM, X-ray standing wave (XSW) and ultravio-
let photoelectron spectroscopy UPS [242, 246]. Recently, this molecule has been utilized
in a multi-component blend with perfluoropentacene (PFP) adsorbed on Cu and Ag
(111) surfaces. The study investigates the modification of the interfacial properties with
respect to the single-component system [210].

The CuPc molecule is weakly bonded on Ag(111) and the vdW dispersion interactions
are of primary importance for a correct description of the geometries. A confirmation of
this can be seen in Table 10.8, where both the binding distances dC and dN (computed
by taking the average position of the carbon and nitrogen atoms) are around 3.0 Å.
The values of dC and dN predicted by PBE+vdWsurf are in remarkably good agreement
with the experimental data. The inclusion of SC effects produces only a negligible
difference in the binding energy. However, a large density rearrangement is found. We
consider now, for CuPc/Ag(111), the density difference between the induced density
of PBE+vdWsurf

sc and the one of PBE. A 2D slice of this density difference, taken at the
interface, is plotted in the left panel of Figure 10.8. Clearly, self-consistency displays
collective, pronounced and complex redistributions at the organic/metal interface. The
depletion regions nicely overlap with the footprint of the CuPc molecule, while the
accumulation areas are found in proximity of the carbon rings and and around the
molecule. These effects are reflected in a reduction of the workfunction shift of −0.19 eV,
doubling the PBE value and significantly improving the agreement with experiment, see
Table 10.8. We have already seen before that self-consistency reduces the charge transfer
that flows from the substrate to the molecule. Here, the reduction is of about 0.14 e

(80%), going from the PBE value of 0.165 e to the PBE+vdWsurf
sc value of 0.025 e. The

MODOS analysis reveals that the LUMO is not the only orbital that crosses the Fermi
level, hence the reduction of the charge donation is rather modest (0.013 e, ∼ 3%). For
instance, the reduction of charge transfer in the filling of the second lowest unoccupied
orbital is two times larger, 0.028 e (11%). On the contrary, the backdonation increases of
about 0.123 e (51%).

Another example taken into consideration is CuPc on Ag(100). The 2D slice of density
difference is drawn on the right panel of Figure 10.8 and can be easily compared with
CuPc/Ag(111). Because of the different surface, the molecule adsorbs with the Cu
atom aligned above a silver top atom, while the hollow site is found for CuPc/Ag(111).
Therefore, in the case of CuPc/Ag(100) the density accumulates in the center of the
molecule and results depleted around the borders. Notably, for CuPc/Ag(100) the
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Table 10.4: Workfunctions Φ of the clean silver (100) surface (first column) and three
hybrid systems. The values obtained with the two functionals PBE and PBE+vdWsurf

sc

are reported along with the experimental measurements, obtained with ultraviolet
photoelectron spectroscopy (UPS). All the workfunctions are reported in [eV].

Ag(100) CuPc/Ag(100) PYTON/Ag(111) F4TCNQ/Ag(111)
PBE 4.30 4.16 4.82 5.046

PBE+vdWsurf
sc 4.59 4.37 4.897 5.112

Experiment 4.64a 4.88b 5.15c

a: Reference [185].
b: Reference [223].
c: Reference [247].

values of the density displacements are even larger than CuPc/Ag(111). Of course,
these effects on the electron density are reflected on the workfunction. Self-consistency
enhances the reduction of Φ of the pristine surface, leading to ∆Φ = −0.22 eV. A smaller
shift, ∆Φ = −0.14 eV, is found with PBE. The values of the workfunctions are reported in
Table 10.4, the shifts can be computed by subtracting the workfunction of the clean silver
(100) surface to the one of the hybrid system. It is worth mentioning that PBE predicts a
Φ = 4.30 eV for the workfunction of the clean Ag(100) surface. On the other hand, the
PBE+vdWsurf

sc value is Φ = 4.59 eV, once again in better agreement with the experimental
number of Φ = 4.64 eV. The charge transfer computed with PBE corresponds to 0.26 e.
On the other hand, a modest value of about 0.046 e is found with PBE+vdWsurf

sc , meaning
that a pronounced reduction of 0.213 e (∼ 82%) is driven by SC vdW effects. The LUMO
of CuPc/Ag(100) is not the only orbitals filled with the electrons from the substrate,
similarly to what found above for CuPc/Ag(111). It follows that the charge donation is
reduced by a tiny 0.01 e (∼ 1%). The second lowest unoccupied orbital presents, instead,
a larger reduction of 0.068 e (24%). The charge redirected as backdonation is about 0.2 e

(175%), a large contribution in the total reduction of charge transfer.
The last examples presented as a conclusion of this chapter are two prototypical

organic acceptor, F4TCNQ (3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane) and PY-
TON (4,5,9,10-pyrenetetraone, a pyrene with four oxygen atoms) adsorbed on Ag(111).
These two molecules have been studied, in both theory and experiments, adsorbed
on the three coinage metal (111) surfaces [223, 247, 248]. They are able to form hy-
brid systems with densely packed and ordered monolayers and are characterized by
a large charge transfer, that fills the empty molecular orbitals. Hence, the workfunc-
tion of the clean metal increases, as in the case of PTCDA/Ag(111). In particular,
F4TCNQ/Ag(111) presents a charge transfer approximately 2–3 times larger than the
one of PTCDA/Ag(111). The consequence is a high workfunction of the hybrid system,
as reported in Table 10.4. The shift measured in experiments is a large ∆Φ = 0.41 eV.
The PBE functional, coupled with SC vdW effects, provides a shift of ∆Φ = 0.372 eV,
which agrees well with the experimental value. In this regard, the inclusion of self-
consistency provides the same qualitative effects already seen with PTCDA/Ag(111),
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resulting in a reduction of the overestimated shift of PBE (∆Φ = 0.606 eV). In the last
case, PYTON/Ag(111), the workfunction shift of PBE (∆Φ = 0.38 eV) is almost three
times larger than the one obtained from experiments, ∆Φ = 0.14 eV. On the contrary,
the shift obtained with the PBE+vdWsurf

sc functional, ∆Φ = 0.157 eV, displays an almost
perfect agreement with the measured value.

Overall, the inclusion of vdW effects in the electronic structure of HIOS, in particular
with silver as a substrate, always brings an improvement in the description of the
electronic properties, with respect to the performances of the PBE functional alone. In
this chapter, we have employed several different examples to corroborate our results
and conclusions. The detailed analysis presented here provides a clear overview about
the fundamental contributions of vdW interactions in the regulation of the electronic
properties of HIOS. In particular, self-consistency is found to affect the different physical
phenomena that determine the value of the workfunction, an experimentally measurable
quantity. In conclusion, our study demonstrates that vdW interactions can be a key
factor for correctly predict and control the electronic properties of HIOS. As such, a
refined description of the electronic structure of hybrid systems is achieved only with
the inclusion of vdW interactions into standard XC functionals.
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The long-range correlation interactions are well known to be of fundamental importance
in the structure and in the cohesive energy of a wide variety of different systems.
However, little is know about their role on the electronic structure and properties
of materials. In this doctoral work we tackled this open question with a numerical
implementation of the self-consistent Tkatchenko-Scheffler method for including the
van der Waals interactions into the DFT framework.

The self-consistent equations reported here have been derived analytically. Their
implementation within the FHI-aims code has been presented and discussed, along
with the necessary technical details. Part of the thesis has been dedicated to the as-
sessment of the computational costs of self-consistency and the comparison with the
more conventional a posteriori correction of the total energy. In this regard, the aim of
our work has been focused on improving the efficiency of the implementation, without
introducing approximations or cut-offs. The successful optimization procedure leads,
in most of the cases, to a scaling comparable to the faster a posteriori scheme. The
scaling worsens and the calculations become computationally expensive only in case of
very large periodic systems with hundreds of atoms. Nevertheless, all the calculations
tested with the “fast” implementation could reach convergence. Completely different
performances were obtained with the unoptimized scheme, which presents much worse
scaling for both periodic and non-periodic systems as the number of atoms increases.
To further improve the efficiency of the code, one solution could be the introduction
of a cut-off that limits the distance of the interactions. However, since we are dealing
with long-range correlation effects, such approximations should be managed with care.
Moreover, we consider the present level of efficiency as satisfactory since it allows to
apply our implementation with the same size limit of a standard DFT functional.

With this tool in hand we have performed fully self-consistent calculations employing
a wide variety of systems of different complexity and size, starting from small dimers, as
rage-gas dimers, to large periodic systems, as molecules adsorbed on metal surfaces. The
accuracy of our results has been benchmarked and compared with the more conventional
a posteriori implementation as well as other popular approaches. From the comparisons
between our results and the “gold-standard” coupled-cluster calculations it emerges
that self-consistency provides a very accurate description of the effects of long-range
correlation interactions on the electron density. Notably, the analysis of the SC effects on
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rare-gas dimers and small molecular dimers allowed us to reconcile two different views
on vdW interactions: (i) Feynman’s view that claims that vdW stems from changes
in the local electron density and (ii) atoms separated by infinite barrier. In the former
picture, the vdW interactions are viewed as an electrostatic attraction between perturbed
electron densities. The latter is the more conventional London approach, in which vdW
interactions result from the electrodynamic coupling between fluctuating molecular
dipoles.

Overall, for the large majority of the cases tested, the SC cohesive energies display an
almost perfect agreement with the results of the a posteriori vdW scheme. The exceptions
include systems with high polarizability and/or low dimensionality. However, the
changes in the energy for large and periodic systems are still on the order of few
percentage points. On the other hand, for systems characterized by very large vdW
energy, as the alkali-metal dimers, self-consistency is found to affect the structural
properties, with changes in the equilibrium distances, improving the agreement with
the experimental data. In addition to that, SC effects can be responsible for exceptionally
large contributions (up to ∼ 40%) to the cohesive energies.

The displacements of the electron density, driven by vdW interactions, can lead to
substantial modifications in the electronic properties. Considering finite systems with
strong vdW effects, as the alkali-metal dimers, we found that the dipole moment is
increased/decreased by vdW interactions, with changes up to 10-15% of its value with-
out SC effects. For periodic transition metal surfaces, the inclusion of self-consistency
triggers a rearrangement of electron density which involves primarily the topmost metal
layer and the vacuum region above the surface. Consequently, the surface dipole of
these metal surfaces results significantly modified, leading to changes in the workfunc-
tion. In particular, vdW effects are found to change both i) the Fermi energy and ii) the
electrostatic potential in the vacuum region. The combination of these two effects is
reflected in large changes of the workfunctions, up to 0.2 eV (6%) for Ag(111), the most
sensitive case.

To further assess the general validity of our findings for molecules and metal surfaces,
in the last part of this thesis we extended the application of the SC implementation
to complex hybrid inorganic/organic systems. Similarly to what was found for metal
surfaces, vdW interactions are connected with sizable density rearrangements, character-
ized by particularly large effects between the last metal layer and the adsorbed molecule
or monolayer. The workfunctions of surfaces can be tuned by molecular adsorption
and they are connected with the density rearrangement at the interface. Therefore, the
electron density displacements induced by vdW interactions are reflected into modifica-
tions of the workfunction shifts. For all the systems presented in this work, the addition
of vdW interactions improves the agreement between the theoretical predictions and
the experimentally determined data. For the most sensitive cases, DIP and PYTON
on Ag(111), self-consistency entails a modification in the workfunction shift of about
0.22 eV, which consists in a reduction of the shift to one third of its value computed
without vdW effects.
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For hybrid inorganic/organic systems, unlike clean metal surfaces, the underlying
mechanism responsible for the workfunction modifications stems from an interplay
between two effects: i) The Pauli push-back, i.e. the repulsion between the electrons of
the metal surface and those of the adsorbed molecule, ii) The charge transfer between
the molecule and the surface. All the hybrid systems tested show that self-consistency
enhances the Pauli push-back and reduces the charge transfer. It is indeed the combina-
tion of these two opposite effects that leads to the large reductions of the workfunction
shifts mentioned above. Moreover, the quantitative analysis of the transfer of charge,
performed with a Mulliken-like population analysis, revealed that SC vdW can be
responsible for very large reductions of the charge transfer, up to 80% (∼ 0.2 e) for CuPc
on Ag(111) and Ag(100).

In summary, the extended analysis performed in this work discloses the important
role of vdW interactions on the electronic properties of molecules and materials. From
the results it emerged that the long-range correlation interactions are particularly im-
portant in systems with high polarizability density and in low dimensional materials.
Along with these findings, several possible extensions are available for future works to
further benchmark the role of vdW interactions.

First, in addition to the silver (111) surface, it is possible to employ other surfaces
as the (100) and the (110), similarly to the example of CuPc/Ag(100), presented in
Section 10.5. The PTCDA molecule, for example, has been already characterized on
these two surfaces with the PBE+vdWsurf functional [140]. The relaxed structures
yield binding distances in a very good agreement with the experimental numbers,
the differences—computed by taking the average distance of the carbon atoms—are
≤ 0.06 Å. Besides, different types of surfaces imply different coordination numbers and
bond lengths. As a consequence, depending on the surface, the PTCDA monolayer
displays different configurations. We already saw that PTCDA/Ag(111) is ordered in
a herringbone structure. In addition to that, PTCDA on Ag(100) presents a T-shaped
orientation (two molecules per unit cell), while PTCDA forms a brick-wall adsorption
pattern on Ag(110) (one molecule per unit cell). Therefore, these systems could be
conveniently employed to study the different effects of vdW interactions depending on
the type of surface and monolayer.

Another group of organic molecules on metal surfaces, not considered in this work,
is the one characterized by a charge transfer directed from the HOMO of the molecule
to the substrate. In these systems the workfunction of the interface typically displays
large reduction with respect to the one of the bare metal surface. These reductions are
the result of the combined effect of Pauli push-back and the charge transfer. In fact,
the presence of a flux of charge from the monolayer towards the metal surface would
enhance the reduction of Φ due to the Pauli push-back effect. A suitable candidate
for our implementation could be viologen adsorbed on coinage metal (111) surfaces.
This molecule has already been studied with the PW91 [249] XC functional1 and a

1The PW91 functional was the first successful GGA. The PBE functional is simplified version of the PW91.
The results of these two XC functionals should be very similar.
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loosely packed monolayer. The results indicate that the occupation of the HOMO of the
molecule is reduced roughly by 30-40% during the adsorption and the total ∆Φ are on
the order of −1.0 eV [236]. It would be very interesting, for example, to check whether
the effect of self-consistency enhances or lessens such charge transfer.

The results shown in our study for metal surfaces can be expanded by considering
other materials as a substrate, for instance ionic and semiconductor surfaces. In this
case the parameters of the vdW functional for the polarizabilities and the C6 coefficients
are obtained via the Clausius-Mossotti equation. With the CM equation the dielectric
function of a solid, computed with time-dependent density-functional theory (TDDFT)
calculations, is connected with its dynamic polarizability. This version of the TS vdW
functional has already been applied to ionic and semiconductor solids showing an
improvement in the cohesive properties as the bulk modulus, the lattice constant and
the cohesive energy, with respect to PBE and HSE06 results [122]. These promising
results are good motivations for further investigating the possible effects of vdW on the
electronic properties. Also, good performances with semiconductor surfaces would open
the possibility to test additional examples of complex hybrid systems as semiconductor-
semiconductor interfaces or hybrid systems with molecules adsorbed on semiconductors.
In this family of hybrids, unlike molecules on metals, the electronic properties are mainly
determined from the alignment between the conduction and the valence bands of the
semiconductor surface and the molecular HOMO and LUMO levels [209]. Preliminary
calculations on Si(111), reconstructed with the well-known (7 × 7) supercell, suggest
that self-consistency increases the workfunction of PBE and PBE0 of about 0.1 eV. The
final values are 4.63 eV for PBE+vdWTS

sc and 4.51 eV for PBE0+vdWTS
sc , showing a slight

improvement in the agreement with the experimental workfunction of 4.60 eV [185].
The next step will be the study of other semiconductor surfaces as the Si(100), which
reconstructs with a (2× 1) unit cell.

The vdW interactions have been included into the electronic properties via the TS
functional, which is based on a summation of pairwise contributions. The TS functional
captures effects beyond the pairwise additivity as the charge polarization for atoms-in-a-
molecule (Hirshfeld partitioning) and the collective electrodynamic response of the solid
(vdWsurf ). In this regard, the full treatment of the many-body effects represents the next
step for improving the accuracy in the description of the vdW effects. However, accurate
quantum-chemistry methods as the EXX+cRPA, where the correlation is computed at
the RPA level and summed to the exact-exchange, imply prohibitive computational
costs and are (still) too expensive to be applied to extended systems. The recently
developed DFT+MBD method [250] consists of a dipole approximation of the RPA
formula, which includes the long-range many-body effects as an infinite series. Within
the MBD methods the response function is approximated with atom-centered quantum
harmonic oscillators (QHO) interacting through a dipole-dipole potential. Under this
assumption the MBD is equivalent to RPA [251]. The MBD method has already been
successfully applied to adsorbates on metal surfaces, as Xe, benzene and PTCDA on
Ag(111) [124, 125]. The MBD typically reduces the adsorption energies of vdWsurf , which
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shows a tendency to overbind, yielding to an improvement in the adsorption energies
and geometries. Very recently, the MBD was made available also in a self-consistent
flavor, thus the role of the many-body effects can be tested on the electronic properties.
In this regard, we expect effects on the electronic properties of HIOS quantitatively
similar to the ones obtained with DFA+vdWsurf

sc calculations. The MBD method has
been developed to describe the correlation of finite gap materials. Without the addition
of delocalized oscillators for every atom, the localized QHO would not include the
delocalized plasmonic response of free electrons in the metal substrate. A solution to
induce the correct delocalization of the polarizability is to use the screened vdWsurf

parameters as a starting point in the calculation. Nevertheless, the challenge to include a
simultaneous description of localized and metallic states remains open for future works.

Before concluding we mention here a couple of possible future projects. 1) The vdW
interactions can display relativistic effects, for example in case of very large interatomic
distances, where the power law of the interaction exhibits a R−7 decay, instead of the
“usual” R−6 [252]. Once again, the role of these relativistic effects on the electron density
and properties could be investigated with a self-consistent implementation. 2) So far our
findings have been restricted to ground-state properties, but they are strongly suggestive
of the potential importance of long-range vdW effects in properties beyond the electronic
ground-state. In order to investigate electronic properties as the optical spectra one
could, for example, perform TDDFT calculations. However, the implementation of
the vdW effects into the TDDFT framework requires the second derivative of the vdW
potential with respect to the electron density. This derivation presents a rather simple
analytical form and all the different terms are already available in the code. In fact,
they are necessary components of the vdW potential. On the other hand, the second
derivative would introduce another space variable r′, in addition to r. This means
that, with a straightforward implementation, the number of loops used to compute the
potential would be doubled in this case. Therefore, this implementation would require
a clean optimization procedure to reach a reasonable efficiency and enhance its practical
applicability.

In conclusion, the implementation presented in this doctoral work represents an
efficient and accurate scheme which provides electronic structure calculations with
self-consistent vdW interactions. Our results demonstrated that self-consistency can
bring sizable effects on the binding energies and molecular multipoles for polarizable
fragments. Moreover, surface dipoles and workfunctions for inorganic substrates can
display large modifications due to vdW interactions, as well as interface dipoles and
charge transfer phenomena for hybrid inorganic/organic systems. Hence, a non-trivial
connection between electrostatics and long-range correlation effects was revealed.
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A VARIATIONAL METHOD

A.1 THE VARIATIONAL PRINCIPLE

Given a Hilbert space and a Hermitian operatorH and the corresponding eigenfunctions
and eigenvalues, considering discrete spectrum, the i-th equation is written as

H|Ψi〉 = Ei|Ψi〉 . (A.1)

with a set of exact solutions that follow the ordering

E0 ≤ E1 ≤ E3 ≤ · · · ≤ Ei ≤ · · · . (A.2)

The variational principle assures that the expectation value of an eigenstate is an upper
bound to the ground-state value

〈Ψj |H|Ψi〉 = Eiδi,j ≥ E0 , with the ortonormal relation 〈Ψj |Ψi〉 = δij . (A.3)

This conclusion can be proved, supposing that we know the eigenstate that corresponds
to E0, we consider a normalized wavefunction |Ψ〉

〈Ψ|H|Ψ〉 =
∑
i,j

〈Ψ|Ψi〉〈Ψi|H|Ψj〉〈Ψj |Ψ〉 =

=
∑
i

Ei|〈Ψi|Ψ〉|2 ≥
∑
i

E0|〈Ψi|Ψ〉|2 = E0 , (A.4)

where the equality is found only when Ψ0 is considered. In the passage from the first to
the second line, we used the completeness and orthonormal relations. The last passage
combines again these two relations and can be written out explicitly

〈Ψ|Ψ〉 = 1 =
∑
i,j

〈Ψ|Ψi〉〈Ψi|Ψj〉〈Ψj |Ψ〉 =

=
∑
i

〈Ψ|Ψi〉〈Ψi|Ψ〉 =
∑
i

|〈Ψ|Ψi〉|2 . (A.5)

From the variational principle it follows that a lower energy is associated with a better
wavefunction, or, in other words, that the energy associated with an approximate wave-
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function will always be too high. In the specific case of the wavefunction composed by a
single Slater determinant, we can vary the set of spin-orbitals {ψi} until the expectation
value in Equation A.3 reaches its minimum, which is higher or equal than the exact
ground-state energy.

A.2 LAGRANGE MULTIPLIERS

The minimization of the energy, a functional of the wavefunctions, is obtained within the
linear variational method, i.e. a small variation of the function produces a variation in
the energy too and the stationary point is imposed with the condition of a variation equal
to zero: δE = 0. The stationary condition is not automatically assumed to guarantee
a minimum. This needs to be verified, but is usually the normal outcome in practical
calculations.

The stationary point is obtained via the method of Lagrange functions L, defined in
this case as the difference between the energy—functional of the wavefunctions—and
the constraint of orthogonal and normalized wavefunctions

L = 〈Ψ|He|Ψ〉 − λ (〈Ψ|Ψ〉 − 1) , (A.6)

where λ is the Lagrange multiplier, whose physical meaning could be already guessed.
The value of the Lagrange multiplier is found by varying the Lagrange function and
equating the variation to zero. This condition means that the value of the Lagrange
multiplier is associated with the stationary point of the function 〈Ψ|He|Ψ〉.

In the specific case of the HF theory, the ground-state wavefunction is a Slater deter-
minant of N spin-orbitals and the constraint assumes the form∫

ψ∗i (r)ψj(r)dr = δij , (A.7)

where the Lagrange multipliers are now a sum of terms over the indices i, j. The
variation of the Lagrange function with respect to a spin orbital ψi leads to

δL =
∑
i

∫
δψ∗i (r)

[(
h(r) + vH(r)− vex(r)

)
ψi(r)−

∑
j

εijψj(r)

]
+ c.c = 0 . (A.8)

Given that the variation is arbitrary, the quantity in the square brackets should be
zero for all i. Thus we obtain the expression for the eigenvalue equation, written in
Equation 2.11 and the three terms between round brackets are just the Fock operator.
The only differences between the expression above and the canonical HF equations are
the Lagrange multipliers with two indices and the presence of the factor ψj , instead of
ψi. A unitary transformation is necessary to eliminate the mixing among spin-orbitals
and recover the “standard” eigenvalue equations.



B EXTRA DETAILS IN

DENSITY-FUNCTIONAL THEORY

B.1 HOHENBERG-KOHN VARIATIONAL PRINCIPLE

The central quantity in DFT is the electron density, defined in general as n : R3 → R. We
define the set of all the ground-state densities for a N -body system as

NN := {n | function of the ground-state Ψ[vext], vext ∈ VN} ,

where the external potentials admit a minimizer, or a ground-state wavefunction, for
the given Hamiltonian. The external potential, together with the number of particle
N , determines the Hamiltonian. Therefore each potential is associated with a different
electron density:

the map vext ∈ VN → n ∈ NN is injective .

Once the nuclear framework is fixed, the ground-state energy is minimized using the
wavefunctions Ψ[vext], see Equation 2.7.

Now, the Hohenberg-Kohn theorem inverts the relation above. Thus, the external
potential is determined by the density,

the map n ∈ NN → vext ∈ VN is injective, vext is determined up to a constant .

As a consequence of the theorem, it is possible to express the ground-state energy as a
functional of the ground-state density. First, we can define the functional F [n] as

F : n ∈ NN → 〈Ψ|T + Ve−e|Ψ〉

and the total energy results

E[n] = F [n] +

∫
vext(r)n(r)dr . (B.1)

Finally, given an external potential, the ground-state total energy is the minimum of the
functional E[n],

E0 = E[n0] = min
n∈NN

{
F [n] +

∫
vext(r)n(r)dr

}
, (B.2)
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where the minimizer is the electron density. This is the Hohenberg-Kohn variational
principle, which grants the stationary condition for the ground-state energy. In other
words, the variation of the energy, subject to the constraint that the total number of
particles is N , is equal to zero. Therefore, it possible to use the Lagrange multipliers
technique in order to minimize the total energy

∂

{
E[n]− µ

[∫
n(r)dr−N

]}
= 0 , (B.3)

where µ is the Lagrange multiplier and the Euler-Lagrange equation is given by

µ =
∂E[n]

∂n(r)
=
∂F [n]

∂n(r)
+ vext(r) , (B.4)

recovering exactly the same result introduced at the end of Section 3.2.

B.2 CONSTRAINED SEARCH FORMULATION

The HK theorem establishes a one-to-one correspondence between the ground-state
electron density n0 and the ground-state wavefunction Ψ0. However, there can be
several different wavefunctions that produce n0. A way to distinguish the true ground-
state is given by the Levy-Lieb constrained-search formulation [253, 254].

Suppose that Ψn0
is associated with n0, but differs from the ground-state Ψ0. The

ground-state energy is the minimum value

E0 = 〈Ψ0|He|Ψ0〉 6 〈Ψn0
|He|Ψn0

〉 . (B.5)

The external potential is a simple function of the density,

〈Ψ0|T + Ve−e|Ψ0〉+
∫
vext(r)n0(r)dr 6 〈Ψn0 |T + Ve−e|Ψn0〉+

∫
vext(r)n0(r)dr , (B.6)

therefore the inequality simplifies. We observe also that the first term on the left side
corresponds to F [n0],

〈Ψ0|T + Ve−e|Ψ0〉 = F [n0] 6 〈Ψn0
|T + Ve−e|Ψn0

〉 , (B.7)

concluding that the functional is found with the minimization

F [n0] = min
Ψ→n0

〈Ψ|T + Ve−e|Ψ〉 , (B.8)

where the set of possible wavefunctions is restricted only to those wavefunctions that
are associated with n0, hence the name of the method. The constrained-search method
eliminates the problem of degenerate ground-state. In fact, considering a set of degen-
erate wavefunctions, with this method only the one that corresponds to n0 is selected.
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Also, this formulation extends the domain of definition for F [n] from v-representable to
N-representable, i.e. to any antisymmetric wavefunction for N electrons.

B.3 THE ADIABATIC-CONNECTION

FLUCTUATION-DISSIPATION THEOREM

In this section we will discuss the derivation of the adiabatic-connection fluctuation
dissipation (ACFD) formula, which represents the exact expression of the exchange-
correlation energy Exc[n]. From the ACFD result one can, for example, derive the
RPA XC energy formula, as shown in Section 3.28. We mention here that the exact
expression for Exc[n] can be derived with two different paths. Apart from the adiabatic-
connection it is possible to employ the perturbation theory in the context of Kohn-Sham
orbitals (KSPT) [34]. Briefly, a term in the Hamiltonian is written as the difference
between the full electron–electron interaction and the Hartree potential and is treated
as a perturbative term with a multiplicative coupling constant λ. In this way the value
λ = 0 gives the noninteracting Hamiltonian, while λ = 1 corresponds to the fully
interacting one. At this point the energy is written as a function of the parameter λ,
which can be removed from the Hamiltonian with a simple derivation with respect to λ
and the application of the H-F theorem for the normalized eigenfunctions. After that,
the integration over λ for the energy can be carried out straightforwardly and the fully
interacting energy E0(1) is expressed in terms of the response function of the electron
density. A very similar derivation is performed for the adiabatic-connection, as we will
see below. However the main difference is that, in the latter case, the whole Hamiltonian
is considered in passing from non-interacting to fully-interacting. On the contrary,
with the perturbative approach, only the part of the Hamiltonian responsible for the
electron–electron interaction is considered. The drawback is an electron density that
depends on λ, which means that the ground-state wavefunction is also varying. Hence,
the expression obtained with the KSPT is hardly applicable for practical calculations.

Before starting our short discussion on the ACFD theorem, we suggest the reader
that the present matter has been the subject of a number of thorough reviews. The
ACFD theorem, related to the exact expression of the EX functional, can be found in
textbooks [34] as well as in the literature [28, 45]. In the latter reference the ACFD
formula has been derived and used as a starting point to derive the RPA.

In the adiabatic-connection the total Hamiltonian contains the full electron–electron
Coulomb potential and another potential that depends on the switching factor λ. The
dependence of the ground-state energy on λ is obtained with the expression

E0(λ) = 〈Ψ0(λ)|H(λ)|Ψ0(λ)〉 = T [n] +

∫
vλ(r)n(r)dr + λW [n] , (B.9)

where Ψ0(λ) is the ground-state corresponding to H(λ). The assumption in the AC is
that the ground-state density is kept fixed during the adiabatic switching from λ = 0
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to λ = 1, i.e. it is always possible to find an external potential (vλ(r)) that guarantees a
constant n(r) for any value of λ ∈ [0, 1]. The external potential is defined as

vλ(r) =


veff(r) λ = 0 ,

unknown 0 < λ < 1 ,

vext(r) λ = 1 ,

(B.10)

in which veff(r) corresponds to the effective potential, defined in Equation 3.19 as the
sum of the Hartree, the external and the XC potentials. Naturally, the case λ = 0 gives
the standard DFT Hamiltonian with XC interactions. In the opposite case, with λ = 1,
the term W [n] provides the full electron–electron interaction.

The derivative of Equation B.9 leads to

d

dλ
E0(λ) = E0(1)− E0(0) =

∫ 1

0

〈Ψ0(λ)| d
dλ
H(λ)|Ψ0(λ)〉dλ , (B.11)

where the derivative of the ground-state wavefunction is zero because of the H-F
theorem (orthonormalization of the wavefunction). The derivative of the Hamiltonian
with respect to λ can be written as

E0(1) =E0(0) +

∫ 1

0

[∫
dvλ(r)

dλ
n(r) dr +W [n]

]
dλ =

=E0(0) +

∫
[vext(r)− veff(r)]n(r)dr +

∫ 1

0

W [n]dλ , (B.12)

in which the derivative of the kinetic term is zero. At this point we consider the three
terms inside veff(r) (Equation 3.19) and use the definition of the ground-state energy
for λ = 0, E0(0) = T0[n] + VH[n] + Vxc[n] +

∫
vext(r)n(r)dr, written in Equation 3.15.

On the other hand, the full interacting ground-state energy λ = 1 is expressed as,
E0(1) = T [n] + Ve−e[n] +

∫
vext(r)n(r)dr. After a simple manipulation of these two

terms inside Equation B.12, it is possible to express the exchange-correlation energy as

T [n]− T0[n] + Ve−e[n]− VH[n] = Vxc[n] =

∫ 1

0

W [n]dλ− VH[n] , (B.13)

see the definition of Exc[n] in Equation 3.16.
The integral of W [n], in the equation above, is now written in the expanded form and

reads∫ 1

0

W [n]dλ =
1

2

∫ ∫
w(r, r′)dr dr′

∫ 1

0

[
〈Ψ0(λ)|n(r)n(r′)|Ψ0(λ)〉 − n(r)δ(3)(r− r′)

]
dλ ,

(B.14)
where the interactionw(r, r′) has not been specified in detail. Before using the fluctuation-
dissipation theorem, we can employ the definition of VH[n] (see Equation 3.14b) into the
expression for the exact XC functional (Equation B.13) and obtain an expression for the
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exact XC function which is often found in the literature

Exc[n] =
1

2

∫ ∫
n(r)w(r, r′)n(r′)hxc(r, r′)drdr′ , (B.15)

where the last term is the so-called exchange-correlation hole

hxc(r, r′) =
〈Ψ0(λ)|n(r)n(r′)|Ψ0(λ)〉 − n(r)δ(3)(r− r′)

n(r)n(r′)
− 1 =

=
〈Ψ0(λ)|ñ(r)ñ(r′)|Ψ0(λ)〉

n(r)
− δ(r, r′) . (B.16)

The two lines above are equivalent expressions, but two different terms are highlighted.
In the first expression we used the pair-correlation function (minus one). In the second
line we have grouped into the brackets the density operator minus its expectation value,
〈Ψ0|ñ(r)|Ψ0〉 = 〈Ψ0|n(r)|Ψ0〉 − n(r), this is defined as the fluctuation of the density.

The fluctuation-dissipation theorem states that the response of a system (in thermody-
namic equilibrium) to a small external perturbation corresponds to the response to the
spontaneous internal fluctuation. Therefore, it is related to the fluctuation of the density
defined above. In short, the consequence of the theorem is that the density–density
fluctuations can be expressed in terms of the density–density response function

〈Ψ0|ñ(r)ñ(r′)|Ψ0〉 = − 1

π

∫ ∞
0

Imχ(r, r′, iω)dω , (B.17)

where χ(r, r′, iω) is the linear response function. The substitution of the response
function into Equation B.15 leads to the ACFD formula, written in Equation 3.28, and
can be used to derive the RPA equation for the (exchange-)correlation energy.





C FHI-AIMS CONVERGENCE TESTS

FOR BENCHMARK CALCULATIONS

C.1 BASIS SET CONVERGENCE

Here, the details about the settings used to compute the convergence of the binding
energy of the water dimer, presented in Figure 6.1, are given. The geometry is taken from
the Benchmark Energy & Geometry Database (BEGDB) [255]. The structure has been
obtained with an accurate coupled-cluster geometry optimization [88], which employs
the CCSD(T)/cc-pVQZ basis set. We used the same structure and the tight settings for all
the calculations. Apart from PBE and PBE0, also the LDA and HF methodologies have
been tested. The data for the water monomer total energy and CPU time are reported in
Figure C.1. The time reported in this plot is the average time per self-consistent cycle
of a water molecule, computed using twelve processors in parallel. From these results,
LDA turned out to be comparable with PBE, in term of computational efficiency, while
HF scales similarly to PBE0. This suggests that the exchange integrals are the dominant
part in the increasing of the CPU time associated with a large number of basis.

A second case tested is the ethene dimer (C2H4). The structure has been obtained
from the same source of the water dimer and is optimized with the CCSD(T)/cc-pVQZ
noCP basis set. The results for the binding energies of PBE and PBE0 are presented in
Figure C.2, left panel. Both functionals converge the binding energy quit fast, already
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Figure C.1: Left: LDA and HF total energy of a water molecule as a function of the basis
set. Right: time employed for each self-consistent calculation of the molecule.
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Figure C.2: Left: PBE and PBE0 binding energy of the ethene dimer as a function of the
basis set. Right: time employed for each dimer calculation, the performances of PBE
and PBE0 are joined here by HF and LDA.

at tier1 the two values overlap and are basically converged. This behavior can be
qualitatively explained by considering the number of basis at each step, which is double
the number of basis used in the case of the water dimer. This fact is combined with a
tiny binding energy, meaning weak intermolecular interactions. Therefore, the binding
energy is basically converged once the basis are enough to describe well the monomer.
The efficiency of the different methods is compared by computing the average time
needed for a single self-consistent cycle. The calculations were performed using twelve
parallel CPUs. Once again, PBE and LDA present basically the same values and scale
better that PBE0 and HF, as plotted in the right panel of Figure C.2. We note that the
PBE calculation with tier3 is roughly five times longer than the one with the minimal
basis. For PBE0 this factor is ninety.

C.2 HARRIS FUNCTIONAL

A simplified version of the density-functional scheme of KS was first used by Wendel
and Martin and then has been reintroduced independently by Harris, Matthew and
Foulkes [256]. This approach was developed in order to calculate an approximation of
the total energy and is applicable in case of weakly interacting system. The basic idea is
to calculate the total electron density, using a superimposition of frozen fragments. This
approximation is applicable successfully to those systems in which the electron density
of the coupled fragments is not deviating too markedly from a sum of isolated fragment
densities. Mathematically speaking one constructs the total density as:

n(r) = nf (r) + δn(r) , (C.1)

where nf (r) is given by a sum over the frozen fragments. In this way the resulting veff(r)

is different from the true self-consistent potential and this affects the total energy, giving
a dependency on nf (r). As one can easily see, the Harris scheme can be successfully
used in case of small δn(r).
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Apart from the original motivations, the total energy expression derived from the
Harris scheme, referred as Harris functional, can be conveniently used in a standard
DFT calculation, during the approach to self-consistency. In the AIMS code the Harris
functional is used to improve the efficiency of the total energy calculation and to speed
up the self-consistent convergence [151]. The code generates, via the self-consistent
iteration, a set of eigenvalues and eigenfunctions linked to the electron density. Then,
the total energy is computed with the Harris functional:

EµHarris[n] =
∑
i

fµi ε
µ
i −

1

2

∫
drn(µ−1)(r)v

(µ−1)
ext (r) +

+ Exc[n(µ−1)]−
∫
drn(µ−1)(r)vxc[n(µ−1)] + En−n , (C.2)

where µ refers to the electron density computed after the self-consistent cycle, while
(µ − 1) is the density used to set up the Hamiltonian, the output of the previous self-
consistent cycle. This scheme is faster than the regular energy expression, because in
each cycle the energy and potential terms are available anyway for (µ − 1). They are
necessary terms in order to build the quantities that are used as initial guess. Thanks
to Equation C.2, a second evaluation of such terms, this time for nµ(r), is avoided.
Moreover, it has been shown that Equation C.2 converges faster for large systems than
the original KS total energy form.

The Harris functional (Equation C.2) is naturally extended to our scheme for the
self-consistent vdW implementation. The final equation for the total energy is modified
with two additional terms +EvdWTS [n(µ−1)]−

∫
drn(µ−1)(r)vvdWTS [n(µ−1)].

C.3 THE IMPLEMENTATION: COMPUTATIONAL DETAILS

In this section are reported all the important settings used in our “test” calculations
of the vdW potential. The results and the performances of our implementation will
be frequently compared with the a posteriori scheme, as well as other DFT functionals.
The silver Ag(111) surface employed to obtain the data in Figure 7.3 is built with six
metal layers, a (1 × 1) unit cell with one atom per layer and a vacuum of 60 Å. The
calculations are obtained by coupling our vdWTS

sc functional with the one of Perdew,
Burke and Ernzerhof [52] (PBE). The reciprocal space is sampled with a Monkhorst-Pack
grid [257] of (20×20×1) k-points. We used the tight settings with a cut-off potential (see
Equation 6.5) of 5.0 Å. These settings guarantee converged quantities and correspond
to the ones employed in this thesis to study the electronic properties, beyond the total
energy. The cohesive (or binding) energy is computed with the formula

Eb = Etot −NEAtom , (C.3)

where N is the total number of atoms in the unit cell. The energy of the isolated atom is
considered in a finite system. Twelve processors running in parallel are used for all the



170 FHI-aims Convergence Tests for Benchmark Calculations

0 20 40 60 80 100

Number of k-points

0

50

100

150

T
im

e 
[s

]

vdW-DF=6540s

10 20 30 40 50

Number of k-points

-138.594

-138.593

-138.59

-138.588

E
b
 [

eV
]

PBE+vdW
TS

PBE+vdWsc-old

TS

PBE+vdWsc

TS

Figure C.3: In the figures are reported calculations of copper bulk made with the TS
a posteriori method and the two SC implementations. Panel left: the average time per
self-consistent cycle is plotted as a function of the k-points. This system contains 4 atoms
in the unit cell. The inset reports the vdW-DF CPU time for 100 k-points per unit vector.
Panel right: cohesive energies computed as a function of the number of k-points for a
system of 32 copper atoms.

calculations in Figure 7.3. The performances are measured as the ratio between the total
time spent for a converged calculation and the number of self-consistent cycles.

For what concerns the Cu bulk, the cells used in the two plots on top of Figure 7.4
contain an increasing number of atoms, obtained using different replicas of the unit
vectors. For the plot (a), 96 cores in parallel are employed. Top right panel: we used
192 cores and a mash of (2× 2× 2) k-points. The data in (c) is obtained with 64 cores.
The smallest possible unit cell (4 atoms) is considered, with different k-point grids. In
the bottom right panel we used 192 cores to study the unit cell obtained with the first
repetition of the unit vectors (32 atoms), evaluated with an increasing mash of k-points.
All calculations reported are obtained with the tight settings.

In Figure C.3 are reported two extra plots, in addition to Figure 7.4. The plot on the
left is the same as Figure 7.4 (c), but in this case we used 192 cores instead of 64. As a
consequence, the absolute numbers of all the three curves are now reduced by a factor
of 3, confirming that the SC scheme has no issue in the parallelization. The cohesive
energy, computed using the formula in Equation C.3, is reported in the second plot
(right). From this figure we can conclude that the a posteriori and the SC energy converge
similarly with respect to the number of k-points. The two SC schemes give the same
numbers, as it should be. From the figure we see that the energy produced with the
inclusion of self-consistency differs from the a posteriori one, the small variation is on the
order of 1–2 meV.

We list here the settings of the Ag(111) calculations shown in Section 7.3. The surface
is modeled with 3 metal layers and a vacuum of 60 Å in the z-axis. The tight settings
were employed in all calculations. The four graphs in Figure 7.5 are obtained using 64
cores. In panel (a) we used non-periodic systems with an increasing number of atoms.
In panel (b), the same cells of (a) are considered, but with the periodicity and a (5×5×1)

mesh of k-points. In (c) and (d) two surfaces with 3 and 27 atoms in the unit cell are
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Figure C.4: Silver surface (111) tested with the post-process and the two self-consistent
implementation of the TS scheme. Panel left: the average CPU time for a surface of 3
atoms in computed with an increasing number of k-points. The vdW-DF performance,
obtained with 5 k-points per direction, is reported in the inset. Panel right: the binding
energies of Cu(111) plotted against the number of k-points.

employed. The data in Figure C.4 are obtained with a cell of 12 atoms, computed with
64 cores. In the plots are reported the average time, left panel, and the binding energy,
right panel, with respect to the number of k-points. On the left we see that since the unit
cell is small (12 atoms) the two SC schemes perform very similarly, as in Figure 7.5 (c).
The binding energies, computed with Equation C.3, are reported in the panel on the
right. The values are well converged—beyond the meV—after 30 k-points per per unit
vector (z-direction excluded). The difference in the energy between the a posteriori and
the SC schemes is on the order of 35 meV, much more than what found for the Cu bulk,
see Figure C.3.





D DETAILED RESULTS AND SETTINGS

In this appendix are reported all the settings and the details used to perform the calcula-
tions reported in the Chapter Results IV. Along with tests calculations that benchmark
our convergence settings, we will report also additional calculations. These are not
included in the part of this thesis dedicated to applications, but can support the general
message. One should consider that the quest for finding sizable SC effects passed though
a large number of different systems, tested with various XC functionals, many of which
were actually found not relevant for the purpose of this work.

D.1 FINITE SYSTEMS

The tight settings were employed for all the FHI-aims calculations concerning the S22
and S66 databases and all the other calculations reported in Section 8.1 and 8.2. The
convergence criteria of 10−5 electrons for the electron density, 10−6 eV for the total
energy and 10−3 eV for the sum of eigenvalues. The converged criterion of 0.01 eV/Å
for the maximum final force was used for all structure relaxations. The relativistic effects
were included via the zeroth-order regular approximation (ZORA) [188]. The mean
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Figure D.1: Rare-gas dimers. The TS vdW method, taken in both a posteriori and SC
versions, is coupled with PBE0 (left panel) and HF (right panel) to compute the binding
energy curves for Argon, Krypton and Xenon dimers.
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Table D.1: S22 database computed with PBE and PBE plus the TS vdW correction in
both the SC and non-SC vdW flavors. The values are in [kcal/mol].

CCSD(T) PBE PBE+vdWTS PBE+vdWTS
sc

1 -3.150000 -2.819920 -3.250960 -3.251080
2 -5.070000 -4.939490 -5.242010 -5.242030
3 -18.810000 -18.278300 -19.445100 -19.445100
4 -16.110000 -14.810400 -16.106000 -16.106100
5 -20.690000 -18.590200 -20.644200 -20.645200
6 -17.000000 -15.394400 -17.931900 -17.933300
7 -16.740000 -14.397200 -17.298200 -17.299400
8 -0.530000 -0.095852 -0.814843 -0.815730
9 -1.480000 -0.324762 -1.836380 -1.836420
10 -1.450000 -0.050189 -1.649590 -1.650420
11 -2.620000 1.858110 -3.534770 -3.542190
12 -4.200000 0.694326 -4.442250 -4.447190
13 -9.740000 -2.731950 -9.835130 -9.840360
14 -4.590000 2.188720 -5.583660 -5.593560
15 -11.660000 -1.398930 -11.677800 -11.684200
16 -1.500000 -1.169980 -1.848230 -1.848390
17 -3.290000 -2.018250 -3.517010 -3.518180
18 -2.320000 -0.931321 -2.460420 -2.461510
19 -4.550000 -2.829110 -4.451890 -4.452680
20 -2.710000 -0.124476 -2.745070 -2.747260
21 -5.620000 -2.043700 -5.606420 -5.609750
22 -7.090000 -3.893230 -6.964010 -6.965100

Figure D.2: Binding energy curves of two naphthalene dimers, computed with PBE
with and without the inclusion of vdW interactions. The a posteriori and the SC results
are shown. On the left side, the two naphthalene molecules are taken with a parallel
orientation (p-dimer). On the right panel a perpendicular t-shaped configuration is
considered (t-dimer). The structures are sketched in the two insets.
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Table D.2: S22 database computed with PBE0 and PBE0 coupled with both the SC and
non-SC vdW TS method. The values are in [kcal/mol].

CCSD(T) PBE0 PBE0+vdWTS PBE0+vdWTS
sc

1 -3.150000 -2.740560 -3.123120 -3.123220
2 -5.070000 -4.942710 -5.205770 -5.205790
3 -18.810000 -19.028100 -20.066200 -20.066200
4 -16.110000 -15.374000 -16.552900 -16.553000
5 -20.690000 -19.285700 -21.206300 -21.207000
6 -17.000000 -15.465800 -17.844100 -17.845300
7 -16.740000 -14.601400 -17.309700 -17.310500
8 -0.530000 -0.041536 -0.736706 -0.737442
9 -1.480000 -0.339527 -1.705290 -1.705360

10 -1.450000 -0.092646 -1.567480 -1.568200
11 -2.620000 1.810910 -3.344130 -3.349560
12 -4.200000 0.543216 -4.222840 -4.225810
13 -9.740000 -3.289000 -9.873010 -9.876290
14 -4.590000 2.038000 -5.267700 -5.274020
15 -11.660000 -2.141110 -11.516300 -11.519800
16 -1.500000 -1.178840 -1.814900 -1.815070
17 -3.290000 -2.182600 -3.561090 -3.561990
18 -2.320000 -1.026590 -2.434880 -2.435810
19 -4.550000 -3.264170 -4.763310 -4.763870
20 -2.710000 -0.281028 -2.786200 -2.788200
21 -5.620000 -2.350710 -5.734840 -5.737370
22 -7.090000 -4.183680 -7.028120 -7.028930
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absolute error (MAE) is defined as

MAE =
1

n

n∑
i=1

|xi − yi| , (D.1)

where xi is the predicted value, yi is the reference and n is the total number of data. The
mean absolute percentage error (MAPE) is defined as

MAPE =
100

n

n∑
i=1

∣∣∣∣xi − yiyi

∣∣∣∣ , (D.2)

where xi is the predicted value, yi is the reference one.
The reference data in Table D.1 and D.2 are CCSD(T) calculations performed with

the limit of complete basis set (CBS) and counterpoise correction (see Section 6.3). The
geometries are relaxed using either the MP2 method with cc-pVTZ CP basis set or
CCSD(T) with cc-pVQZ noCP basis set. These basis set are developed by Dunning [258]
and coworkers. The “cc-p” at the beginning means correlation-consistent polarized,
while V stands for valence-only basis sets. Then, DZ, TZ and QZ refer respectively to
double-zeta, triple-zeta and quadruple-zeta. The term “aug” can be found in front of the
name and means an augmented version of the set with additional diffused functions.

The effects of self-consistency on the rare-gas dimers, already analyzed in Figure 8.1,
panels (a) and (c), have been investigated with PBE0 and HF, instead of PBE. The results
obtained with these XC functionals are plotted, for three dimers, in Figure D.1. With
these data, we confirm that self-consistency is responsible for negligible differences
in the binding energies of these small systems. A conclusion valid not only near the
equilibrium geometry, but also for distances in the long-range. In this regard, it should
be noted that, in particular with the HF functional, the differences in the energy increase
a little when large interatomic distances are explored. Considering for instance the Ar
dimer, the difference ∆Eb between HF+vdWTS and HF+vdWTS

sc is typically< 0.01 meV.
This number increases by five to ten times with an Ar · · ·Ar distance larger than 6–7 Å.

We report in Figure D.2 two possible configurations of the naphthalene dimer in addi-
tion to the one of Figure 8.1 (d). The effects of vdW on top of PBE improve the binding of
the systems, which are almost unbound without the inclusion of dispersion interactions.
However, in both cases, the effects of self-consistency are in perfect agreement with the
a posteriori curves. The tiny differences in the binding energies of the two vdW schemes
are around 0.1–0.5 meV. We include here the changes due to SC effects on the different
components of the energy of the Xenon dimer. The different components of the total
energy are plotted, as a function of the interatomic distance, in Figure D.3, where the
PBE+vdWTS

sc results are compared with the a posteriori ones. As we can see from the
figure, the changes previously shown in Figure 8.2 for the naphthalene c-dimer are also
visible here. This second example fully supports the analysis and the conclusions of
Section 8.1. Here, however, the differences are quantitative smaller. In particular, the ef-
fects of self-consistency are clearly present for the kinetic and electrostatic energy terms.
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Figure D.3: Xenon dimer: different components of the total energy, plotted as a func-
tion of the intermolecular distance d. In the panels are compared the results of the
PBE+vdWTS and the PBE+vdWTS

sc schemes. The potential is by definition available only
with the SC case. The blue dashed lines indicate the equilibrium distance (4.5 Å). All
values are in [eV].

Also, for the XC energy and integrated potential the differences between the a posteriori
and the SC curves are visible. As already mentioned in our analysis in Section 8.1, it is
the balance between the different components that sums up to a negligible difference
(∼ 0.001%) in the total binding energy between PBE+vdWTS

sc and PBE+vdWTS. On the
other hand, the HOMO and the LUMO appear to be not affected by SC vdW at all, a
result that suggests the absence of SC effects on the electronic properties for these small
dimers.

D.2 PERIODIC SYSTEMS

All the metal surfaces presented in Section 9 have been tested using different settings and
various possible geometries. The results can be sensitive, for example, to the dimension
of the unit cell, the number of metal layers and the number of layers allowed to relax.
From our experience we can conclude that well converged electronic properties are
obtained with (2×2×1) unit cells and six metal layers. Typically, only the two layers on
top are relaxed, while the other atoms are kept fixed in their initial positions. For what
concerns the k-point sampling, it clearly depends on the extension of the unit vectors,
i.e. the element and the number of replica of the unit cell. For a (1× 1× 1) unit cell we
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Figure D.4: The average time consumed in a self-consistent cycle is plotted against the
cut-off potential for the PBE+vdWsurf and the PBE+vdWsurf

sc schemes. The performances
for Cu, Ag and Au (111) surfaces are reported in the three panels from left to right. The
values of ronset appear on the x-axis and are in [Å] .

suggest to sample the reciprocal space with a mesh of (60 × 60 × 1) Monkhorst-Pack
grid [257] for a safely converged calculation. For the (2× 2× 1) cell the largest sampling
was (30 × 30 × 1) k-points. We employed the tight settings to compute the density
differences ∆n(r) and the electronic properties. In particular, the workfunctions are
greatly affected by the tails of electron density that extends in the vacuum region, above
the surface. For this reason, the surfaces are build with a “safe” value of minimum
50 Å of vacuum, i.e. the distance between the topmost metal layer and the periodic
repetition of the bottommost layer. Another very important parameter for capturing the
effects of the electron density tail into the vacuum is ronset. This parameter regulates the
cut-off potential, written Equation 6.5. The value of ronset has been carefully tested and
ronset = 5 Å turned out to be a safe choice for all the metals tested.

All the surfaces were built with the lattice constants determined from the PBE+vdWsurf

method [134]. The convergence criteria employed are 10−5 electrons for the electron
density, 10−3 eV and 10−6 eV respectively for the sum of eigenvalues and the total en-
ergy. A criterion of 10−2 eV/Å is used to converge the maximum final forces. The ZORA
approximation [188] is employed to include the relativistic effects in our calculations.

D.3 THE WORKFUNCTIONS

The workfunctions presented in this thesis are all computed by means of the FHI-
aims [151] code. In order to compute the electrostatic potential in the vacuum region
Vvac one needs to set a distance above the last metal layer. In the code, the vacuum
level is determined automatically from the geometry input. The vacuum is set as half of
the distance between the topmost metal layer and the bottommost metal layer of the
periodic repetition, above the vacuum. For this reason, it is highly recommendable to
use always large values of the vacuum in the unit cell. Also, a large vacuum avoids
situations where the surface interacts with its repetitions above and below, leading
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to unphysical results. In this regard, one perk of using numeric atom-centered basis
functions is that the vacuum space is basically computed for free, while plane waves are
defined over the entire 3D space.

Once the vacuum level is set, the electrostatic potential can be computed. The Hartree
potential is solved using Ewald’s method, i.e. the potential is split into a short-ranged
and a long-ranged part [151, 259]. Then, the former term can be computed in real space,
while the latter is conveniently treated in reciprocal space using a Fourier transform.
In this way the less favorable scaling due to the slow convergence of the long-ranged
contributions is eliminated. Moreover, it can happen that the two sides of a surface
present two different values of the long-range Hartree potential, for example in case
of non-symmetric slabs. Consequently, a dipole field is present between the slab and
its periodic repetitions above and below. If the discrepancy between the potentials of
the two sides is within 10%, this difference is renormalized with the introduction of an
electrostatic potential step. Similarly, the code corrects any small integration error in the
long-range Hartree potential. In fact, the charge components are evaluated on a finite
integration grids and can present numerical errors, in particular with light integration
grids.

The smallest unit cells (1× 1× 1), with one atom per metal layer, are used to obtain
the data reported in Figure 9.3. The vacuum has been set to 60 Å for six metal layers
and an additional “safe” value of 100 Å has been tested with surfaces made of 12 layers.
The two values are found to produce identical results. A total of 6 metal layers are
used to build the surfaces used in the first two columns of panels and all of them were
allowed to relax. A similar procedure, but with 12 layers, was used for the third column.
The k-point grid is set to (60× 60× 1), except of course for the first column, where the
k-points are tested. The cut-off potential is set with roneset = 5 Å, except in the second
row of panels where it is converged up to 8.

We have tested the computational performances of PBE+vdWsurf and PBE+vdWsurf
sc

in relation to the cut-off potential, similarly to what has been done for the number of
atoms and the number of k-points in Figure 7.4 and 7.5. In Figure D.4, the three coinage
metal surfaces Cu, Ag and Au (111) are considered. In the left panel, the example
of Cu(111) shows that the time for a calculation is already doubled when the value
reaches 5 Å, with respect to the initial value of 3 Å. Also, the scaling of PBE+vdWsurf

and PBE+vdWsurf
sc are very similar. The same conclusion is valid also for Ag(111). These

two systems show scaling curves with comparable steepness. On the other hand, in
the case of Au(111) a shallow scaling is found (the same scale of Ag(111) is used). For
instance, the initial CPU time at roneset = 3 is increased “only” by 50% when roneset = 7

is considered. This behavior originates from the fact that, in this last example, the light
basis set is used. In conclusion, the scaling of PBE with the a posteriori scheme has a very
similar slope in comparison to PBE+vdWsurf

sc . Moreover, the overall performance can be
greatly influenced by other factors, as the basis set.

From our experience, well converged values, in good agreement with experiments,
are obtained with (2 × 2 × 1), (3 × 3 × 1) or even larger unit cells, composed by a
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Table D.3: Workfunctions of seven pristine metal (111) surfaces computed with the
hybrid XC functionals PBE0 and HSE06. For the experimental measurements we refer
to Table 9.1. All the values are in [eV].

Cu Rh Pd Ag Ir Pt Au
PBE0 4.75 5.05 4.49 4.38 5.62 5.99 5.10

HSE06 4.80 5.12 4.51 4.42 4.64 5.98 5.14

minimum of six metal layers and a vacuum larger than 50 Å. Since the lattice constant
of each metal/element is different, one needs to find the k-point mesh suitable for these
structures with the help of convergence tests. Our suggestion is to consider, for cells
smaller than 5 Å, a grid of minimum (20 × 20 × 1) k-points. In any case, one should
test both small and large unit cells because the relaxation procedure can lead to slightly
different geometries and the value of Φ adjusts consequently. When large unit cells are
considered, the relaxation can be limited to the first two layers on top of the surface. For
what concerns the basis set, we managed to converge all surfaces, up to hundreds of
atoms, at the PBE+vdWsurf

sc level of theory and tight settings. Unfortunately, when PBE0
is considered, the workload increases substantially. Therefore, in order to converge
particularly troublesome systems, the light settings might be necessary. In any case,
fairly accurate workfunctions can be obtained with these settings, providing a ronset,
which regulates the cut-off potential, not smaller than 5 Å.

The workfunctions for the seven metal (111) surfaces reported in Table 9.1 are com-
puted with PBE with and without SC effects and compared with experiments. In
addition to that, we report in Table D.3 the corresponding values computed with
PBE0 [61, 62] and HSE06 [66], two hybrid XC functionals, described in Section 3.5.3. In
both functionals the correlation is provided by PBE, while the exchange is 75% PBE and
25% EXX (from HF). The HSE06 contains a cut-off that limits the long-range part of the
EXX, improving the CPU time, see Equation 3.26. From the table one can see that for
the metals of the third and fourth period, i.e. copper, rhodium and silver, the values
of Φ are reduced with respect to PBE, worsening the agreement with the experimental
data. The exception in this group is Pd(111), that belongs to the third period and whose
Φ is increased by ∼ 0.2 eV with both PBE0 and HSE06. This case has been already
discussed in Section 9.1. In our opinion, the peculiar fully-occupied shell structure of Pd
is particularly sensitive to the contribution of EXX. In fact, the Φ is improved when 25%

of EXX is taken into account. Two of the elements belonging to the fifth period, iridium
and gold, display little effects when the hybrid functionals are employed. The functional
PBE0 provides tiny modifications of Φ of about 0.06–0.04 eV with respect to the values of
PBE. Moreover, these little differences are reduced to 0.04–0.02 eV when HSE06 is used.
On the contrary, Pt(111) presents exceptionally large modifications. The PBE0 functional
increases the PBE Φ by 0.23 eV, resulting in a workfunction of Φ = 5.99 eV. Similarly,
the workfunction of HSE06 is 5.98 eV. These two values are in a better agreement with
the experimental Φ. A possible explanation for this exception could be similar to the
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one of Pd(111). Both elements belong to the sixth period. The role of EXX might be
important to model the two d and s external shells of Pt, which are both almost fully
occupied. Nevertheless, an exhaustive explanation can be provided only with a detailed
investigation of the role of EXX, along with the relativistic spin-orbit coupling, in the
electronic properties of heavy metals. To the best of our knowledge, such a study is still
absent in the literature.

We remark here that the workfunctions of the heavy metals (Ir, Pt and Au) presented
in Table D.3 were computed with light settings and lighter meshes of k-points with
respect to PBE+vdWsurf and PBE+vdWsurf

sc calculations. We kept however, for ronset, the
most important parameter, the converged value of 5 Å. Because of the high computa-
tional requirements of the hybrid XC functionals, these light settings are often employed
in the literature and considered as fairly accurate. It is a common argument that tighter
convergence criteria are usually associated with a slight decrease of the workfunctions.
Nevertheless, the authors recommend that, for a rigorous study, this empirical argument
should be proved case by case. Most importantly, the other results presented in this
work were obtained with tight settings and very accurate convergence procedures. For
this reasons, we suggest that the comparison of workfunctions obtained with different
settings should be taken with extra care.

D.4 POPULATION ANALYSIS

In this small section we provide the essential concepts behind the population analysis
of the MODOS, used to evaluate the transfer of charge, in HIOS, between the metal
substrate and the monolayer. The definition of density of states (DOS) in a normal
textbook is

g(E) =
1

V

dN

dE
, (D.3)

where V is the volume that contains the N -particles systems. This means that in an
energy interval dE the number of electron levels is g(E)dE. However, the practical
definition of DOS is

g(E) =
∑
i

〈φi|φi〉δ(E − εi) , (D.4)

in which εi is the eigenvalue associated to the eigenstate |φi〉. The DOS can be manip-
ulated to obtain the projected density of states, i.e. is the DOS projected onto a set of
orthonormal orbitals

gpn(E) =
∑
i

〈φi|n〉〈n|φi〉δ(E − εi) ,
∑
n

|n〉〈n| = 1 . (D.5)

For example one can project the DOS onto the orbitals of the isolated atomic species,
i.e. the angular-momentum resolved partial density of states (pDOS). This procedure
is based on the Mulliken analysis, which provide an estimation of partial atomic
charges [237]. Of course, the straightforward application of the equations written
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above would lead to a series of peaks associated to individual states. Mathematically,
this is due to the presence of the Dirac delta function δ(E − εi) in Equation D.4. This
issue is solved with the inclusion of a broadening of the eigenvalues. For example, a
Gaussian broadening,

δ(E − εi) =⇒∝ 1

σ
√
π

exp

[
(E − εi)2

σ2

]
, (D.6)

is usually employed to obtain smooth density of states.
The pDOS is not the only projection available. For example, the space-resolved

projection of the DOS is called local density of states (LDOS). In this thesis, we consider
a third projection to study the hybrid system, the molecular orbital density of states
(MODOS). In this case, the DOS is projected onto the molecular orbitals of the isolated
molecule, taken in gas phase. The occupation of a specific molecular orbital i is obtained
by integrating the corresponding MODOS, up to the Fermi energy

Oi =

∫ EF

−∞
MODOSi(E)dE . (D.7)

The total charge that fills the molecular orbitals is the sum over all the occupations Oi.
Therefore, the transfer of charge induced by the bonding between the molecule and the
substrate is just the difference between the occupation of the adsorbed molecule and the
occupation of the isolated one

QMODOS = −e

(
2
∑
i

Oi −Nmolecule

)
, (D.8)

in which the factor 2 takes care of the spin degeneracy and Nmolecule corresponds to the
total number of electrons of the isolated molecule. Moreover, the MODOS can be studied
similarly to the molecular orbitals. The position of the LUMO with respect to the Fermi
energy, for example, indicates whether there is a transfer of charge between molecule
and surface or not. Also, because of hybridization process and/or distortion of the
geometry during adsorption, the shape of the MODOS can differ from the Lorentzian
shape of the corresponding molecular orbital [223].

D.5 HYBRID SYSTEMS

A review about the adsorption on molecules on metal surfaces, which include the
structures proposed here and many more, is available in Reference [127]. The work
focuses on the role of the PBE+vdWsurf in the structure and energy of HIOS. The
geometries and the settings used in this thesis correspond to those reported in the
review.

The metal surfaces presented in this work are built using a periodic slab approach, the
lattice constants are computed at the PBE+vdWsurf level of theory [123]. The structures
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Figure D.5: Benzene on Cu(111), front view. The molecule is taken with the bri30◦

orientation. The (3 × 3) unit cell contains a single Bz molecule, the x and y axis are
sketched in the figure. The same unit cell and molecular configuration are considered
for Bz/Ag(111).

are relaxed using the PBE+vdWsurf scheme and the threshold for the convergence criteria
is set to 0.01 eVÅ−1 for the maximum final force. All the calculations are performed
with the ZORA to include scalar relativistic effects [188]. We set a convergence criteria
of 10−5 electrons for the electron density and 10−6 eV for the total energy of the system.
The unit cell and the sampling of the Brillouin zone for each HMOS will be specified
in the corresponding section. The binding distances, indicated with dC , are computed
from the relaxed configurations by taking the average position of the carbon atoms of
the molecule/monolayer with respect to the unrelaxed topmost metal layer. With this
definition we can compare our data with XSW experiments. The stability of a system is
obtained with the binding energy formula:

Eb = Esystem − (Esurf + Eads) , (D.9)

where Esystem indicates the energy of the whole compound, Esurf and Eads refer to the
clean metal surface and to the adsorbate molecule/monolayer, respectively.

BENZENE

The surfaces employed for the Benzene (Bz) molecule are built with a (3×3) unit cell and
six metal layers, a vacuum of 60 Å is used to ensure a negligible interaction between the
adsorbed molecules and the periodic images of the metal slab. For slab calculations we
implied a Monkhorst-Pack [257] grid with (6× 6× 1) k-points per unit cell. During the
relaxation the adsorbate and the two topmost metal layers are allowed to relax, while the
others are kept fixed in their initial positions. The unit cells contain a single Bz molecule
adsorbed on a site with an angle of 30◦ between the C-C and the closed-packed metal
rows, referred as bri30◦ orientation. This structure is represented in Figure D.5. The Bz
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Figure D.6: DIP on Ag(111), front view. The molecules are arranged in a herringbone
configuration. The vectors of the unit cell, along the x and y directions, are sketched in
the figure. Two molecules are included in the unit cell.

molecule is adsorbed in a flat configuration on both Cu(111) and Ag(111). Energetically,
the bri30◦ is the slightly more stable configuration for chemisorption [134] and is among
the most favorable adsorption sites for physisorbed systems (on Cu, Ag and Au) [260].

DIP ON AG(111)

Two unit cells are employed for this HIOS, built with a close-pack monolayer, based on
experimental measurements [234], displaced in a brick-wall and herringbone arrange-
ments. Both unit cells contain three metal layers, during the relaxation procedure only
the topmost metal layer and the molecules were allowed to relax, while the other two
layers remained fixed in their initial positions. The first structure is a

(
11 0
2 4

)
unit cell

with three metal layers and two DIP molecules in a herringbone superstructure. This
structure is represented in Figure D.6. The second is made with a

(
6 2
1 4

)
surface with

three metal layers and a single DIP molecule in a brick-wall arrangement. The geometry
of the unit cell is depicted in the left panel of Figure 10.4, front and side views. A
vacuum of 60Å has been used for both structures. The Brillouin zone of the herringbone
geometry is sampled with a (1× 3× 1) k-grid points, while a mesh of (2× 4× 1) is used
for the brick-wall.

The induced electron densities produced by PBE and PBE+vdWsurf
sc , integrated along

the z-direction, are compared in the left panel of Figure D.7. For the definition of
∆n(z) see Equation 10.1 and 10.2. The system DIP on Ag(111) presents, in addition
to the Pauli push-back, a charge transfer. For this reason, the plot in Figure D.7 is
more complex than the ∆n(z) of Bz/Ag(111), see Figure 10.2. First, we can see that,
when SC effects are included, the positive peak (accumulation of density) close to the
topmost metal layer increases. This accumulation in the vicinity of the substrate is
the typical feature of the pillow-effect. Second, self-consistency visibly reduces the



D.5 Hybrid Systems 185

0 5 10
z [Å]

-0.2

0

0.2

∆
n ad

s [
-e

/Å
]

First Ag layer

Last Ag layer

DIP

DIP/Ag(111)

0 5 10
z [Å]

-1

-0.5

0

0.5

1

First Ag layer

Last Ag layer PTCDA

PBE+vdWsc
surf

PBE

PTCDA/Ag(111)

Figure D.7: Integrated electron density induced by molecular adsorption. The curves
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sc for DIP on Ag(111) are plotted in the left panel.
The two ∆nads(z) for PTCDA on Ag(111) are reported in the right panel. The vertical
dotted-dashed lines correspond to the position of the first and the last metal layers,
while the vertical dotted line indicates the position of the monolayer.

other positive peak at the interface, located near the DIP monolayer, which is related
to the transfer of charge from the substrate to the molecules. It is worth mentioning
that the electron density redistribution affects the whole molecule, with a particularly
noticeable peak (depletion) at the molecular plane, indicated in Figure D.7 with the
vertical dotted line. The modification of the density related to the σ-levels, localized on
the rings of the DIP molecule, indicates a net metal-to-molecule charge transfer with
the σ-electrons involved in the bonding. As a comparison, we consider the case of
Bz/Ag(111) where the rather weak interaction between the substrate and the molecule
produces a depletion of electron density above and below the Bz molecules, affecting
the π-lobes of the molecule. In this case no charge transfer is established between the
two components of the interface and the density at the molecular plane is left practically
unaltered, as reported in Figure 10.2.

PTCDA ON AG(111)

PTCDA forms a commensurate monolayer structure on silver surfaces. The lateral or-
dering of the molecules in the monolayer depends on the orientation of the surface [140].
For PTCDA/Ag(111) we employed a

(
6 1
−3 5

)
unit cell in accordance with experimental

STM and LEED measurements [243, 244]. The unit cell contains a closed-pack monolayer
composed by two PTCDA molecules, oriented with a herringbone configuration. The
molecules present non-equivalent adsorption geometries and both are adsorbed on
bridge position. The structure is shown in Figure D.8 together with the x and y vectors
of the unit cell. The vacuum level is set to 60 Å. The silver surface is built with four metal
layers and a Monkhorst-Pack grid of (3× 2× 1) k-points is used to map the reciprocal
space.

The integrated induced electron density, ∆nads(z), reveals an overall shape very simi-
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Figure D.8: PTCDA on Ag(111), front view. The monolayer is organized in a herringbone
structure with two molecules per unit cell. The x and y vectors of the unit cell are
reported in the figure.

lar to DIP/Ag(111). The curves computed with PBE and PBE+vdWsurf
sc are plotted in the

right panel of Figure D.7 and display some differences in the interface region. The effect
of self-consistency is to increase the accumulation of electron density in the proximity of
the topmost metal layer, thus enhancing the Pauli push-back. At the same time, there
is a depletion of density close to the PTCDA monolayer, meaning less charge transfer
from the metal to the molecules. Notably, the values of the density depletion/accumu-
lation are roughly 2–3 times larger than the ones found for DIP/Ag(111), suggesting
a stronger interaction between the substrate and the monolayer. Probably, this is due
to the presence of the oxygens. Similarly to DIP/Ag(111), the existence of a transfer
of charge is highlighted also by the pronounced depletion of electron density at the
monolayer plane, which involves the σ-electrons of the PTCDA molecules.
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