
Forschungsberichte
der Fakultät IV – Elektrotechnik und Informatik

Analysis of Hypergraph
Transformation Systems

Extended Version

Maria Maximova,
Hartmut Ehrig,
Claudia Ermel

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany

mascham@cs.tu-berlin.de,
ehrig@cs.tu-berlin.de,

claudia.ermel@tu-berlin.de

Bericht-Nr. 2013 - 02
ISSN 1436-9915

in AGG based on M-Functors:

Analysis of Hypergraph Transformation Systems

in AGG based on M-Functors:

Extended Version

Maria Maximova, Hartmut Ehrig and Claudia Ermel

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany

mascham@cs.tu-berlin.de, ehrig@cs.tu-berlin.de, claudia.ermel@tu-berlin.de

Abstract. Hypergraph transformation systems are examples ofM-adhesive trans-
formation systems based on M-adhesive categories. For typed attributed graph
transformation systems, the tool environment Agg allows the modelling, the sim-
ulation and the analysis of graph transformations. A corresponding tool for anal-
ysis of hypergraph transformation systems does not exist up to now. The purpose
of this paper is to establish a formal relationship between the correspondingM-
adhesive transformation systems, which allows us the translation of hypergraph
transformations into typed attributed graph transformations with equivalent be-
havior, and, vice versa, the creation of hypergraph transformations from typed
attributed graph transformations. This formal relationship is based on the gen-
eral theory ofM-functors between differentM-adhesive transformation systems.
We construct a functor between the M-adhesive categories of hypergraphs and
of typed attributed graphs, and show that our construction yields anM-functor
with suitable properties. We then use existing results for M-functors to show
that analysis results for hypergraph transformation systems can be obtained us-
ing Agg by analysis of the translated typed attributed graph transformation
system. This is shown in general and for a concrete example.
Keywords: M-adhesive transformation system, graph transformation, hyper-
graph transformation, M-adhesive category, M-functor, critical pair analysis,
Agg

1 Introduction

In the theory of graph transformation, various related approaches exist. Hyper-
graphs have shown to be appropriate e.g. for evaluation of functional expressions
since they allow a function with n arguments to be modelled by an hyperedge
with one source node and n target nodes [11]. Other applications are distributed
systems [1] and diagram representation [10].

1

Hypergraph transformation is related to algebraic graph transformation [3], where
structural changes are modelled in the double-pushout (DPO) approach for the
category of (typed, attributed) graphs, which has been generalised toM-adhesive
categories, relying on a class M of monomorphisms. The DPO approach is a
suitable description of transformations leading to results like the Local Church-
Rosser, Parallelism, Concurrency, and Local Confluence Theorems [3]. The well-
established tool Agg [12] supports modelling and analysis of (typed, attributed)
graph transformation systems. However, up to now there exists no tool support
for directly analysing confluence of hypergraph transformation systems.
In our previous paper [7], we have proposed formal criteria ensuring a semantical
correspondence of reconfigurable Petri nets and their corresponding representa-
tions as graph transformation systems. The aim of our previous work was to
establish a formal basis allowing us to translate Petri net transformations into
graph transformations and, vice versa, to create Petri net transformations from
graph transformations such that the behavior of Petri net transformations can
be simulated by simulating their translation using the graph transformation tool
Agg.
In [7], we established the new framework ofM-functors F : (C1,M1)→ (C2,M2)
between M-adhesive categories. This framework allows to translate transforma-
tions in (C1,M1) into corresponding transformations in (C2,M2) and, vice versa,
to create transformations in (C1,M1) from those in (C2,M2).
Building on this previous work, we have extended this framework in [8] to al-
low the analysis of interesting properties like termination, local confluence and
functional behavior, in addition to parallel and sequential independence, using
the corresponding results and analysis tools like Agg for graph transformation
systems.
Hence, in this paper we define anM-functor FHG : (C1,M1)→ (C2,M2), where
(C1,M1) are hypergraphs and (C2,M2) typed attributed graphs. In our main
results, we show that the functor FHG satisfies all the properties required by
the general framework to guarantee the transfer, i.e., translation and creation
of transformations and local confluence. This allows us in particular to apply
the well-known critical pair analysis for typed attributed graph transformations
supported by the Agg-tool [12] to analyse these properties for hypergraph trans-
formations. In contrast to previous instantiations ofM-functors in [7], we do not
have to restrict our functor to injective morphisms.
This technical report is an extended version of our paper [9]. It is structured
as follows: Section 2 introduces the basic notions of M-adhesive transformation
systems and M-functors to define a formal relationship between two different
M-adhesive categories. In Section 3, we construct the functor FHG between hy-
pergraph and typed attributed graph transformation systems, and show that this
functor satisfies the properties of M-functors and some additional properties

2

that are required in the general theory. In Section 4, we study the F -transfer of
local confluence by analysing F -reachable critical pairs and show that the M-
functor FHG from Section 3 satisfies the required properties. The result is used
in Section 5 to analyse a hypergraph transformation system using Agg on the
functorial translation of the system. In Section 6, we compare our approach to re-
lated work, conclude the paper and give an outlook to future research directions.
Detailed proofs are given in Appendix A.

2 M-Adhesive Categories, Transformation Systems,
M-Functors

In this section we concentrate on some basic concepts and results that are impor-
tant for our approach and which we review from our previous paper [7]. Our con-
siderations are based on the framework ofM-adhesive categories. AnM-adhesive
category [4], consists of a category C together with a classM of monomorphisms
such that the following properties hold: C has pushouts (POs) and pullbacks
(PBs) along M-morphisms, M is closed under isomorphisms, composition, de-
composition, POs and PBs, and POs along M-morphisms are M-VK-squares
(see Figure 1), i.e., the VK-property holds for all commutative cubes, where the
given PO with m ∈ M is in the bottom, the back faces are PBs and all vertical
morphisms a, b, c and d are inM. The VK-property means that the top face is a
PO iff the front faces are PBs.

A
B

C
D

A′

B′

C′

D′

m

a

b

c

d

Fig. 1.M-VK-square

The concept of M-adhesive categories generalises that of adhesive [6], adhesive
HLR, and weak adhesive HLR categories [3]. The categories of typed attributed
graphs, hypergraphs and several categories of Petri nets are weak adhesive HLR
(see [3]) and hence also M-adhesive. A set of transformation rules in an M-
adhesive category constitutes an M-adhesive transformation system [4].

Definition 1 (M-Adhesive Transformation System).
Given an M-adhesive category (C,M), an M-adhesive transformation system

3

AS = (C,M, P) has a set P of productions of the form ρ = (L
l←− K

r−→ R) with

l, r ∈ M. A direct transformation G
ρ,m
=⇒ H via ρ and match m consists of two

pushouts according to the DPO approach [3].

We use the notion of an M-functor [7] to define a formal relationship between
two different M-adhesive transformation systems.

Definition 2 (M-Functor).
A functor F : (C1,M1) → (C2,M2) between M-adhesive categories is called
M-functor if F(M1) ⊆M2 and F preserves pushouts along M-morphisms.

Given an M-adhesive transformation system AS1 = (C1,M1, P1), we want to
translate transformations from AS1 to AS2 = (C2,M2, P2) with translated pro-
ductions P2 = F(P1) and, vice versa, we want to create transformations in AS1

from the corresponding transformations in AS2. This can be handled by Theo-
rem 1 below, shown in [7].
By definition, each M-functor F : (C1,M1) → (C2,M2) translates each pro-

duction ρ = (L
l← K

r→ R) in P1 with l, r ∈ M1 into F(ρ) = (F(L)
F(l)←

F(K)
F(r)→ F(R)) in P2 = F(P1) with F(l),F(r) ∈ M2 and each direct trans-

formation G
ρ,m
=⇒ H in AS1 given by DPO (1) + (2) into a direct transformation

F(G)
F(ρ),F(m)

=⇒ F(H) in AS2 given by DPO (3) + (4).

L K R

G D H

(1)
=

(2)
=

l r

m ⇒
F(L) F(K) F(R)

F(G) F(D) F(H)

(3)
=

(4)
=

F(l) F(r)

F(m)

Vice versa, we say F creates direct transformations, if for each direct transfor-

mation F(G)
F(ρ),m′
=⇒ H ′ in AS2 there is a direct transformation G

ρ,m
=⇒ H in AS1

with F(m) = m′ and F(H) ∼= H ′ leading to F(G)
F(ρ),F(m)

=⇒ F(H) in AS2. In the
following, we provide two conditions in order to show creation of direct trans-
formations and transformations, i.e., sequences of direct transformations written
G
∗⇒ H.

Theorem 1 (Translation and Creation of Transformations).
Each M-functor F : (C1,M1)→ (C2,M2) translates (direct) transformations.
Vice versa, F creates (direct) transformations if we have the following two con-
ditions:
– (F creates morphisms): For all m′ : F(L)→ F(G) in (C2,M2), there is

exactly one morphism m : L→ G with F(m) = m′.

4

– (F preserves initial pushouts): (C1,M1) has initial pushouts and for
each initial pushout (1) over m : L→ G, also (2) is initial pushout over F(m)
in (C2,M2).

B

(1)

L

C G

b

m ⇒
F(B)

(2)

F(L)

F(C) F(G)

F(b)

F(m)

The proof for Theorem 1 is given in [7]. Moreover, it is shown under the same
assumptions that F translates and creates parallel and sequential independence
of transformations. Concerning the definition and the role of initial pushouts for
the applicability of productions we refer to [3,7].

3 M-Functor from Hypergraphs to Typed Attributed
Graphs

Our aim is to construct a functor from hypergraphs to typed attributed graphs to
be able to analyse hypergraphs by anlysing typed attributed graphs according to
the general theory from [7] and [8]. For this purpose, we review on the one hand the
category (HyperGraphs,M1) of hypergraphs with the classM1 of all injective
hypergraph morphisms, which is shown to be M-adhesive in [3]. On the other
hand, we review the category of typed attributed graphs (AGraphsATG,M2)
with the classM2 of all injective typed attributed graph morphisms, which is also
shown to be M-adhesive in [3], and we define a suitable attributed hypergraph
type graph ATG = HGTG. Moreover, we construct a functor FHG between both
categories and show that the general result from Theorem 1 is applicable to this
functor.

Definition 3 (Category HyperGraphs [3]).
A hypergraph G is defined as G = (VG, EG, sG, tG), where VG is a set of hypergraph
nodes, EG is a set of hyperedges and sG, tG : EG → V ∗G are functions assigning
the string sG(e) of source nodes resp. tG(e) of target nodes to each hyperedge e.
Consider two hypergraphs G1 = (VG1 , EG1 , sG1 , tG1) and G2 =
(VG2 , EG2 , sG2 , tG2). A hypergraph morphism f : G1 → G2 is
given by a tuple of functions f = (fV : VG1 → VG2 , fE : EG1 →
EG2) such that the diagram to the right commutes with source
and target functions, i.e., sG2 ◦ fE = f ∗V ◦ sG1 and tG2 ◦ fE =
f ∗V ◦ tG1, where f ∗V : V ∗G1

→ V ∗G2
with λ 7→ λ and x1 . . . xn 7→

fV (x1) . . . fV (xn).

EG1

=

V ∗G1

EG2
V ∗G2

sG1

tG1

fE f ∗V
sG2

tG2

According to [3], the category (HyperGraphs,M1) of hypergraphs with a class
M1 of all injective morphisms is M-adhesive, where pushouts are constructed
componentwise.

5

Attributed graphs and morphisms between them form the
category AGraphs, where each object is a pair (G,D)
of an E-graph G with signature E (shown to the right)
and Σ-nat algebra D, where in the following we only use
D = TΣ-nat

∼= NAT (with the term algebra TΣ-nat and the
ordinary natural numbers algebra NAT). This means, G

EG VG

ENAVDEEA

sG

tG sNA

tNA

sEA

tEA

is given by G = (V G
G , V

G
D , E

G
G , E

G
NA, E

G
EA, (s

G
j , t

G
j)

j∈{G,NA,EA}), where V G
G resp. V G

D

are the graph resp. data nodes of G, EG
G , EG

NA resp. EG
EA are the graph edges

resp. node attribute and edge attribute edges of G and sGj , tGj are corresponding
source and target functions for the edges.
The notion of attributed graphs combined with the typing concept leads to the
well-known category of typed attributed graphs AGraphsATG, where attributed
graphs are typed over an attributed type graph ATG [3]. Here, we consider a
specific type graph HGTG to express hypergraphs as typed attributed graphs,
which is shown in Figure 2. 1

The meaning of every depicted element of HGTG is as follows: Nodes of type
Node and Edge represent hypergraph nodes and hyperedges. Edges of types n2e,
e2n represent hyperedge tentacles and are attributed by a number num which
contains the position of a node in the source (resp. target) string of the considered
hyperedge. Nodes of type Edge have two attributes in and out giving the number
of nodes in the pre- and postdomain of a hyperedge (to ensure the preservation of
an Edge node’s environment using typed attributed graph morphisms). All node
and edge attributes are typed over natural numbers.
We consider the category AGraphsHGTG with fixed data type NAT and identical
algebra homomorphism, which implies that the VD-component of morphisms is
the identity.
According to [3], the category (AGraphsATG,M) is M-adhesive for each type
graph ATG, where M-morphisms are injective with isomorphic data type part.

1 Node and edge attributes are depicted in compact notation as node/edge inscriptions together with their data
type.

Node

Edge

in : nat
out : nat

n2e

num : nat

e2n

num : nat

Fig. 2. Attributed type graph HGTG

6

Hence also the special case of (AGraphsATG,M) with ATG = HGTG is M-
adhesive. The subcategory (AGraphsHGTG,M2) with identical algebra homo-
morphism as considered above is also M-adhesive for the subclass M = M2 of
all injective typed attributed graph morphisms.
We are using the M-functor FHG : (HyperGraphs,M1)→ (AGraphsHGTG,
M2) defined below for the translation of HyperGraphs objects and morphisms
into the corresponding AGraphsHGTG objects and morphisms.

Definition 4 (FHG : (HyperGraphs,M1)→ (AGraphsHGTG,M2)).
Consider a hypergraph G = (VG, EG, sG, tG). We define the object FHG(G) =
((G′,NAT), type)2 in AGraphsHGTG with morphism type : (G′,NAT)→
(HGTG , Dfin) and E-graph G′ = (V G′

G , V G′
D = N, EG′

G , E
G′
NA, E

G′
EA,

(sG
′

j , t
G′
j)

j∈{G,NA,EA}) as follows:

V G′

G = VG] EG (graph nodes)

EG′

G = EG′

n2e] EG′

e2n (graph edges) with

EG′

n2e = {(v, e, n) ∈ VG × EG × N | snG(e) = v} ,
EG′

e2n = {(e, v, n) ∈ EG × VG × N | tnG(e) = v} ,
where snG(e) is the n-th node in the string sG(e) and similar for tnG(e),

EG′

NA = EG′

in] EG′

out (node attribute edges) with

EG′

in = {(e, n, in) | (e, n) ∈ EG × N ∧ |sG(e)| = n} ,
EG′

out = {(e, n, out) | (e, n) ∈ EG × N ∧ |tG(e)| = n} , where |w| is the

length of the string w,

EG′

EA = EG′

s] EG′

t (edge attribute edges) with

EG′

s = {(n, v, e) ∈ N× VG × EG | snG(e) = v} 3,
EG′

t = {(n, e, v) ∈ N× EG × VG | tnG(e) = v} 3,
(and the corresponding source and target functions:)

sG
′

G , t
G′

G : EG′

G → V G′

G defined by sG
′

G (x, y, n) = x, tG
′

G (x, y, n) = y,

sG
′

NA : EG′

NA → V G′

G defined by sG
′

NA(e, n, x) = e

tG
′

NA : EG′

NA → N defined by tG
′

NA(e, n, x) = n,

sG
′

EA : EG′

EA → EG′

G defined by sG
′

EA(n, x, y) = (x, y, n),

tG
′

EA : EG′

EA → N defined by tG
′

EA(n, x, y) = n.

The AGraphsHGTG-morphism type : (G′,NAT) → (HGTG , Dfin) is given by
the final morphism of data types from NAT to the final algebra Dfin and typeG′ :

2 In the following, we also use the short notation FHG(G) = G′.

7

G′ → HGTG is given by E-graph morphism typeG′ = (typeVG
, typeVD

, typeEG
,

typeENA
, typeEEA

), where each component is mapped to the obvious type in the type
graph HGTG, e.g., typeVG

: V G′
G → V HGTG

G with x 7→ Node (if x ∈ VG), x 7→
Edge (if x ∈ EG).
For each hypergraph morphism f : G1 → G2 with f = (fV : VG1 → VG2 , fE :
EG1 → EG2), we define FHG(f) : FHG(G1) → FHG(G2), where in short nota-
tion FHG(Gi) = (V Gi

G ,N, EGi
G , EGi

NA, E
Gi
EA, (s

Gi
j , t

Gi
j)j∈{G,NA,EA}) with i ∈ {1, 2} by

FHG(f) = f ′ = (f ′VG , f
′
VD

= idN, f
′
EG
, f ′ENA

, f ′EEA
) with

f ′VG : V G1
G → V G2

G with V Gi
G = VGi

] EGi
for i ∈ {1, 2} by f ′VG = fV] fE

f ′EG
: EG1

G → EG2
G with EGi

G = EGi
n2e] E

Gi
e2n for i ∈ {1, 2} by

f ′EG
(v, e, n) = (fV (v), fE(e), n) for (v, e, n) ∈ EG1

n2e

f ′EG
(e, v, n) = (fE(e), fV (v), n) for (e, v, n) ∈ EG1

e2n

f ′ENA
: EG1

NA → EG2
NA with EGi

NA = EGi
in] E

Gi
out for i ∈ {1, 2} by

f ′ENA
(e, n, x) = (fE(e), n, x) for (e, n, x) ∈ EG1

in] E
G1
out ∧ x ∈ {in, out}

f ′EEA
: EG1

EA → EG2
EA with EGi

EA = EGi
s] E

Gi
t for i ∈ {1, 2} similar3 to

f ′EG
: EG1

G → EG2
G

An example for using the functor FHG on objects and morphisms is shown in
Figure 3, where the typed attributed graphs on the right together with the mor-
phism between them are the translation of the corresponding hypergraphs and
the morphism on the left. As usual in the hypergraph notation, only the target
nodes of a hyperedge are marked by arrows.
Note that FHG defined above is a well-defined M-functor in the sense of Def-
inition 4. This includes that the components of FHG(f) are well-defined w.r.t.
their codomain and that they are compatible with source and target functions as
well as typing morphisms. FHG is a functor, because FHG preserves identities and
composition. Moreover, FHG is anM-functor, because we have FHG(M1) ⊆M2,
i.e., FHG preserves injectivity of morphisms, and FHG preserves pushouts along
M-morphisms (see Lemma 1 in Appendix A).
Now we apply the translation and creation of (direct) transformations (see Theo-
rem 1) to the M-functor FHG : (HyperGraphs,M1)→ (AGraphsHGTG,M2)
leading to our new main technical result.

Theorem 2 (Translation and Creation of Transformations between Hy-
pergraphs and Typed Attributed Graphs).
The M-functor FHG : (HyperGraphs,M1) → (AGraphsHGTG,M2) trans-
lates and creates direct transformations and transformations.

3 where EG′
s
∼= EG′

n2e and EG′
t
∼= EG′

e2n.

8

v0:Node

v1:Node

FHG(G1)

e0:Edge
in=2
out=1

v3:Node v4:Node

e1:Edge
in=1
out=1

v2:Node

(v0, e0, 1):n2e
num=1

(v1, e0, 2):n2e
num=2

(e0, v3, 1):e2n
num=1

(v4, e1, 1):n2e
num=1

(e1, v2, 1):e2n
num=1

v′0:Node v′1,2:Node

FHG(G2)

e′0:Edge
in=2
out=1

v′3:Node v′4:Node
e′1:Edge
in=1
out=1

(v′0, e
′
0, 1):n2e

num=1
(v′1,2, e

′
0, 2):n2e

num=2

(e′0, v
′
3, 1):e2n

num=1

(v′4, e
′
1, 1):n2e

num=1

(e′1, v
′
1,2, 1):e2n

num=1

v′0 v′1,2

e′0

v′3

e′1

v′4

G2

1 2

1

1

1

v0 v1

e0

v3 v4 e1

v2

G1

1 2

1

1

1

FHG

FHG(g)
g

FHG

Fig. 3. Applying functor FHG to two hypergraphs and morphism between them

Proof Idea.
According to Theorem 1 we have to show that FHG creates morphisms and pre-
serves initial pushouts.
1. (FHG creates morphisms): Given a typed attributed graph morphism f ′ :
FHG(G1) → FHG(G2), there is a unique hypergraph morphism f : G1 → G2

with FHG(f) = f ′ defined by f = (fV , fE) with fV (v) = f ′VG(v) for v ∈ VG1 ⊆
V G1
G and fE(e) = f ′VG(e) for e ∈ EG1 ⊆ V G1

G , where V G1
G = VG1]EG1 is the VG-

component of FHG(G1). From the morphism property of f ′ we can show that
f is a hypergraph morphism with FHG(f) = f ′ and FHG(f) = FHG(g) implies
f = g and hence uniqueness. The proof is based on Lemma 2 in Appendix A
showing that each typed attributed graph morphism f ′ : FHG(G1)→ FHG(G2)
is uniquely determined by its VG-component f ′VG : V G1

G → V G2
G .

2. (FHG preserves initial pushouts): Preservation of initial pushouts means
that (Hyper-Graphs,M1) has initial pushouts, which become also initial
pushouts in (AGraphsHGTG,M2) as defined in [3] after application of FHG.
The construction of initial pushouts in (HyperGraphs,M1) and their preser-
vation is shown in Lemma 3 in Appendix A.

4 F-Transfer of Local Confluence

In this section, we review under which conditions local confluence can be trans-
lated by M-functor F : (C1,M1) → (C2,M2) from one transformation system
AS1 = (C1,M1, P) to another one AS2 = (C2,M2,F(P)) with translated pro-
ductions F(P) and, vice versa, under which conditions local confluence of AS1

can be created by F from local confluence of AS2 (see [8]). In this case, we speak
of F-transfer of local confluence.

9

According to [3], anM-adhesive transformation system (C,M, P) is locally con-
fluent, if for all direct transformations G⇒ H1 and G⇒ H2 there is an object X
together with transformations H1

∗⇒ X and H2
∗⇒ X. In the case of confluence

this property is required for transformations G
∗⇒ H1 and G

∗⇒ H2.
In [8] it is shown under the assumptions of Theorem 1 that AS1 is locally confluent

for all transformation spans H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2 iff AS2 is locally confluent for all

translated transformation spans F(H1)
F(ρ1),F(m1)⇐= F(G)

F(ρ2),F(m2)
=⇒ F(H2).

A well-known approach for the verification of local confluence is the analysis of
critical pairs. A critical pair P1

ρ1,o1⇐= K
ρ2,o2
=⇒ P2 is a pair of parallel dependent

transformations with a minimal overlapping K of the left-hand sides of the rules.

Definition 5 (F-Reachable Critical Pair).
Given an M-functor F : (C1,M1)→ (C2,M2). An F-reachable critical pair of
productions F(ρ1) and F(ρ2) is a critical pair in AS2 of the form

F(R1) F(K1) F(L1) F(L2) F(K2) F(R2)

F(P1) F(N1) F(K) F(N2) F(P2)

F(o1) F(o2)

F(l1)F(r1)

F(v1)F(w1)

F(l2) F(r2)

F(w2)F(v2)

where all morphisms of type F(A)→ F(B) are of the form F(f) for some mor-
phism f : A→ B.

Note that for determining F -reachability of a critical pair, it is sufficient to ensure
that the overlapping of F(L1) and F(L2) is an F -image [8].
For Theorem 3 below we require that F : (C1,M1) → (C2,M2) is compatible
with pair factorisation. This means, on the one hand, that (Ci,Mi) has pair fac-
torisation based on Ei−Mi-factorisation for i ∈ {1, 2}. For (C1,M1) this means
that each morphism pair (f1 : L1 → G, f2 : L2 → G) with common codomain
can be decomposed uniquely up to isomorphism as (f1 = m ◦ e1, f2 = m ◦ e2)
with a pair (e1, e2) of jointly epimorphic morphisms and m ∈ M1. On the other
hand, it means that F preserves pair factorisation, i.e., for each pair factorisation
(f1 = m ◦ e1, f2 = m ◦ e2) in (C1,M1) also (F(f1) = F(m) ◦ F(e1),F(f2) =
F(m) ◦ F(e2)) is a pair factorisation in (C2,M2).

Furthermore, we use the Local Confluence Theo-
rem [3] to analyse whether a given M-adhesive trans-
formation system is locally confluent. This is the case, if
all critical pairs P1

ρ1,o1⇐= K
ρ2,o2
=⇒ P2 of the given transfor-

mation system are strictly confluent. Strictness means
intuitively that the largest substructure of K that is
preserved by the critical pair is also preserved by the
merging transformation steps P1

∗⇒ K ′ and P2
∗⇒ K ′

(see the diagram to the right).

K

P1 P2

K ′

ρ1, o1 ρ2, o2

∗ ∗

10

The following Theorem 3, with the proof in [8], shows that AS1 is locally confluent
if all F -reachable critical pairs in AS2 are strictly confluent. This is important
if in AS2 critical pairs of typed attributed graph transformation systems have to
be considered, because they can be detected automatically using the tool Agg.

Theorem 3 (Creation of Local Confluence Based on F-Reachable Crit-
ical Pairs).
GivenM-adhesive transformation systems AS1 = (C1,M1, P), AS2 = (C2,M2,
F(P)) and an M-functor F : (C1,M1)→ (C2,M2) that creates (direct) trans-
formations and morphisms (see Theorem 1 in Section 2) and is compatible with
pair factorisation in the sense as discussed before. Then, AS1 is locally confluent
for all transformation spans H1

ρ1,m1⇐= G
ρ2,m2
=⇒ H2 if all F-reachable critical pairs

of F(ρ1) and F(ρ2) in AS2 are strictly confluent.

Now we apply the results concerning the creation of local confluence based on F -
reachable critical pairs to the concreteM-functor FHG : (HyperGraphs,M1)→
(AGraphsHGTG,M2). This is our main conceptual result, allowing us to use
Agg for the analysis of hypergraph transformation systems.

Theorem 4 (Local Confluence of Hypergraph Transformation Systems
with Analysis using AGG).
Consider the M-functor FHG : (HyperGraphs,M1) → (AGraphsHGTG,M2)
from Definition 4 in Section 3. A hypergraph transformation system is locally
confluent for all transformation spans H1

ρ1,m1⇐= G
ρ2,m2
=⇒ H2 if all FHG-reachable

critical pairs of FHG(ρ1) and FHG(ρ2) are strictly confluent.

Proof Idea.
In Theorem 2 (see Section 3), we have shown that FHG : (HyperGraphs,M1)→
(AGraphsHGTG,M2) is an M-functor, which creates (direct) transformations
and morphisms. Moreover, FHG is compatible with pair factorisation using the
E-M-factorisations (E1,M1) in (HyperGraphs,M1) and (E2,M2) in
(AGraphsHGTG,M2), where E1 and E2 are the classes of surjective morphisms.
In fact, FHG preserves coproducts and we have FHG(E1) ⊆ E2 such that we obtain
compatibility of FHG with pair factorisation according to Lemma 4 in Appendix
A. Altogether, this allows us to apply Theorem 3 with F = FHG.

Since AGraphsHGTG is the category of typed attributed graph transformation
systems, we can use the tool Agg for critical pair analysis, while it is sufficient
for our result to consider only FHG-reachable critical pairs (see Definition 5 in
this section).

11

5 Analysis of Hypergraph Transformation Systems based
on AGG

We consider a simple distributed system with mobility, inspired by [1], with
servers connected by channels, and processes moving through the network and
running on the servers.
Note that for this example, we use hypergraphs extended by a labelling function
for hyperedges. Objects in this slightly extended category have the form: G =
(VG, EG, sG, tG, lG) with the labelling function lG : EG → A, where A is some
alphabet. The corresponding M-functor additionally translates the hyperedge
labels into String attributes of the corresponding hyperedge node representation.
All properties shown in Section 3 and Section 4 do also hold for theM-adhesive
category of labelled hypergraphs and the extended M-functor FHG.4

In our distributed system model with mobility, servers, connections and processes
are represented as labelled hyperedges. The meaning of the hyperedge labels is
as follows: P denotes a process before it is executed, S stands for server, and
C for connection. A running process is represented by label R. Note that, on
the one hand, we simplify the network model in [1] by disregarding firewalls
and secure servers; on the other hand, we allow for connections between three
servers modelled by hyperedges with three tentacles, and we distinguish between
travelling processes P and running processes R.
The hypergraph in Figure 4 models a network with four servers, different kinds
of connections between them, and two processes. Nodes are depicted as black
bullets, while hyperedges are represented by labelled rectangles.

Fig. 4. Hypergraph defining a network with distributed processes

The behaviour of the system is modelled by the hypergraph transformation rules
in Figure 5. Rules enterServer [leaveServer] allow a process to enter [leave] a server
location. Both rules are inverse to each other (indicated by the double arrow).
Rules crossC [backC] model the travelling of a process via a connection. We have dif-
ferent rules for process travelling, depending on the kind of connection hyperedge
that is crossed. When a process finally has found a suitable server, it switches

4 Note that this holds also for the variants of hypergraphs with labelled nodes and/or labelled hyperedges.

12

into the state running by applying the rule runP. A process that has finished its
execution is removed from the system by the rule removeR.

Fig. 5. Hypergraph transformation rules modelling the behaviour of mobile processes

Applying theM-functor FHG from Definition 4 to this hypergraph transformation
system results in a typed attributed graph transformation system that can be
statically analysed using Agg. Figure 6 shows an FHG-reachable critical pair for
the application of rules enterServer and crossC (depicted in the left part) when their
left-hand sides overlap as indicated in the overlapping graph in the right part. The
conflict (a delete-use conflict) is obviously caused when a process can “choose”
either to enter a server location or to cross a connection channel in the network.

Fig. 6. A critical pair detected by Agg for the rule pair (enterServer, crossC)

This critical pair is locally confluent: after applying either rule, we can reverse the
effect by applying the corresponding inverse rule and hence have at least one graph
which can be derived to join the different results. We can even conclude that the

13

whole transformation system is locally confluent by applying Theorem 4, showing
strict confluence of all FHG-reachable critical pairs. Obviously, rules for process
travelling can be executed in any order; a step modelling forward travelling and
a step modelling the execution of a process can be joined again by performing
backward travelling and then executing the process.
Note that there are several non-FHG-reachable critical pairs that do not have
to be considered according to Theorem 4. Two examples for possible non-FHG-
reachable critical pairs constructed for the rule pair (runP, enterServer) are shown in
Figure 7.

Fig. 7. Two non-FHG-reachable critical pairs detected by Agg for rule pair (runP, enterServer)

The first delete-use-conflict (3) shows a non-FHG-reachable overlapping graph,
where a Server hyperedge has two outgoing edges connecting it to the same node.
For this situation, an original hypergraph does not exist, since the attributes
in=1 and out=1 mean that the original hypergraph has exactly one incoming and
one outgoing edge. A similar overlapping graph is shown for the second delete-
use-conflict (4), where also two outgoing edges exist, this time connecting the
hyperedge with two different nodes.

6 Related Work and Conclusion

In our previous paper [7] we have developed a general framework to establish a for-
mal relationship between different M-adhesive transformation systems, showing

14

under which conditions transformations can be translated and created between
different M-adhesive transformation systems. This result is based on suitable
properties of M-functors between the corresponding M-adhesive categories. In
this paper, we construct an M-functor from hypergraphs to typed attributed
graphs. We show in our main technical result in Theorem 2 (with non-trivial
proof in Appendix A) that the functor satisfies the required properties guaran-
teeing translation and creation of rule applications, as well as the transfer of local
confluence. Moreover, also termination and functional behavior can be transferred
according to [8]. This provides us with a general framework to analyse hyper-
graph transformation systems and allows us by Theorem 4 to use the critical
pair analysis of the Agg-tool [12] for typed attributed graphs to analyse conflu-
ence of hypergraph transformation systems. We demonstrate this by analysing a
hypergraph transformation system modelling a distributed system with mobile
processes.
A related approach to hypergraph analysis considers causal dependencies mod-
elled by approximated unfolding [1,2]. The thesis of D. Plump [11] contains al-
ready theoretical results about confluence of hypergraph transformation systems,
comprising a sufficient condition for local confluence based on critical pairs. But
to the best of our knowledge, a tool supporting directly critical pair analysis of
hypergraph transformation systems does not yet exist.
A suitable characterisation of F -reachable critical pairs would be helpful to reduce
the analysis effort, and is subject to future work. Furthermore, we will investigate
how (nested) application conditions [5] can be handled in this framework in or-
der to consider critical pairs and local confluence of M-adhesive transformation
systems with (nested) application conditions.

15

References

1. Baldan, P., Corradini, A., König, B.: Static analysis of distributed systems
with mobility specified by graph grammars—a case study. In: Ehrig, H.,
Krämer, B., Ertas, A. (eds.) Proc. of Int. Conf. on Integrated Design & Pro-
cess Technology. SDPS (2002)

2. Baldan, P., König, B.: Approximating the behaviour of graph transformation
systems. In: Int. Conf. on Graph Transformation. pp. 14–29. Springer (2002),
LNCS 2505

3. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Alge-
braic Graph Transformation. EATCS Monographs in Theor. Comp. Science,
Springer (2006)

4. Ehrig, H., Golas, U., Hermann, F.: Categorical Frameworks for Graph Trans-
formation and HLR Systems based on the DPO Approach. EATCS Bulletin
102, 111–121 (2010)

5. Habel, A., Pennemann, K.H.: Nested constraints and application conditions
for high-level structures. In: Kreowski, H.J., Montanari, U., Orejas, F., Rozen-
berg, G., Taentzer, G. (eds.) Formal Methods in Software and Systems Mod-
eling. LNCS, vol. 3393, pp. 294–308. Springer (2005)

6. Lack, S., Sobociński, P.: Adhesive Categories. In: Proc. FOSSACS’ 04. LNCS,
vol. 2987, pp. 273–288. Springer (2004)

7. Maximova, M., Ehrig, H., Ermel, C.: Formal relationship between Petri net
and graph transformation systems based on functors between M-adhesive
categories. In: Proc. of 4th Workshop on Petri Nets and Graph Transforma-
tion Systems. vol. 40. ECEASST (2011), http://journal.ub.tu-berlin.de/index.
php/eceasst/issue/archive

8. Maximova, M., Ehrig, H., Ermel, C.: Transfer of local confluence and ter-
mination between Petri net and graph transformation systems based on M-
functors. In: Proc. of 5th Workshop on Petri Nets and Graph Transformation
Systems. vol. 51, pp. 1–12. ECEASST (2012), http://journal.ub.tu-berlin.de/
index.php/eceasst/issue/archive

9. Maximova, M., Ehrig, H., Ermel, C.: Analysis of Hypergraph Transformation
Systems in AGG based onM-Functors. ECEASST (2013), http://journal.ub.
tu-berlin.de/index.php/eceasst/issue/archive, to appear

10. Minas, M.: Hypergraphs as a uniform diagram representation model. In: Proc.
6th Int. Workshop on Theory and Application of Graph Transformations
(TAGT’98). LNCS, vol. 1764, pp. 281–295. Springer (2000)

11. Plump, D.: Evaluation of functional expressions by hypergraph rewriting.
Ph.D. thesis, Universität Bremen, Fachbereich Mathematik und Informatik
(1993)

12. TFS-Group, TU Berlin: AGG (2012), http://www.tfs.tu-berlin.de/agg

16

http://journal.ub.tu-berlin.de/index.php/eceasst/issue/archive
http://journal.ub.tu-berlin.de/index.php/eceasst/issue/archive
http://journal.ub.tu-berlin.de/index.php/eceasst/issue/archive
http://journal.ub.tu-berlin.de/index.php/eceasst/issue/archive
http://journal.ub.tu-berlin.de/index.php/eceasst/issue/archive
http://journal.ub.tu-berlin.de/index.php/eceasst/issue/archive
http://www.tfs.tu-berlin.de/agg

A Proofs

In this appendix we give the proofs for Lemma 1-4, where Lemma 1-3 are required
to show that the M-functor FHG : (HyperGraphs,M1)→ (AGraphsHGTG,
M2) (see Definition 4 in Section 3) translates and creates (direct) transforma-
tions (see Theorem 2 in Section 3) and Lemma 4 we are using to show that FHG

creates local confluence based on FHG-reachable critical pairs (see Theorem 4 in
Section 4).
The following lemma shows that the functor FHG : (HyperGraphs,M1) →
(AGraphsHGTG,M2) preserves pushouts alongM-morphisms, which is a prop-
erty to be satisfied by each M-functor.

Lemma 1 (FHG Preserves Pushouts along M-Morphisms).
Consider hypergraphs Gi for i ∈ {0, 1, 2, 3} with hypergraph morphisms b =
(bV , bE), c = (cV , cE), g = (gV , gE), h = (hV , hE) and typed attributed graphs
FHG(Gi) for i ∈ {0, 1, 2, 3} with typed attributed graph morphisms FHG(b) = b′ =
(b′VG , b

′
VD
, b′EG

, b′ENA
, b′EEA

), FHG(c) = c′ = (c′VG , c
′
VD
, c′EG

, c′ENA
, c′EEA

), FHG(g) =
g′ = (g′VG , g

′
VD
, g′EG

, g′ENA
, g′EEA

), FHG(h) = h′ = (h′VG , h
′
VD
, h′EG

, h′ENA
, h′EEA

).
If (1) is a pushout in HyperGraphs with b ∈ M1, then we have that (2) is a
pushout in AGraphsHGTG with FHG(b) ∈M2.

G0

(1)

G1

G2 G3

b

c g

h

FHG(G0)

(2)

FHG(G1)

FHG(G2) FHG(G3)

FHG(b)=b′

FHG(c)=c′ FHG(g)=g′

FHG(h)=h′

Proof.
For the given morphism b ∈ M1 we have that FHG(b) = b′ ∈ M2, because FHG

preserves injectivity of morphisms.
Given: (1) is a pushout in HyperGraphs with b ∈M1, i.e., V - andE-components
of (1) are pushouts in Sets, because pushouts in HyperGraphs are constructed
componentwise.
To show: VG-, VD-, EG-, ENA- and EEA-components of (2) are pushouts in Sets
with FHG(b) = b′ ∈ M2, because pushouts in AGraphsHGTG are constructed
componentwise as well.
1. VG-component of (2) is a pushout in Sets

(see diagram (3)) with f ′VG = fV]fE for f ∈
{b, c, g, h}, because pushouts are compatible
with coproducts.

2. VD-component of (2) is obviously a pushout
in Sets with f ′VD = idN for f ∈ {b, c, g, h}.

V G0
G

(3)

V G1
G

V G2
G V G3

G

bV] bE

cV] cE gV] gE

hV] hE

17

3. For the EG-component we have to show that diagrams (5a) and similarly (5b)
are pushouts. Diagrams (5a) and (5b) commute, because for each product com-
ponent we have a pushout in Sets by assumption. So it remains to show that
(5a) and (5b) are pushouts, because products of pushouts are not necessarily
pushouts (the merging morphisms are in general not jointly surjective).

EG0
n2e

(5a)

EG1
n2e

EG2
n2e EG3

n2e

bV × bE × idN

cV × cE × idN
gV × gE × idN

hV × hE × idN

EG0
e2n

(5b)

EG1
e2n

EG2
e2n EG3

e2n

bE × bV × idN

cE × cV × idN
gE × gV × idN

hE × hV × idN

(a) For diagram (5a) we have to show that the diagram (5a′) is a pushout in
Sets with

Vi ⊗ Ei ⊗ N = {(v, e, n) ∈ Vi × Ei × N | sni (e) = v} for i ∈ {0, 1, 2, 3}
and fV ⊗ fE ⊗ idN for f ∈ {b, c, g, h} .

V0 ⊗ E0 ⊗ N

(5a′)

V1 ⊗ E1 ⊗ N

V2 ⊗ E2 ⊗ N V3 ⊗ E3 ⊗ N

bV ⊗ bE ⊗ idN

cV ⊗ cE ⊗ idN gV ⊗ gE ⊗ idN

hV ⊗ hE ⊗ idN

Since b, c, g, h are hypergraph morphisms, we have that all fV ⊗ fE ⊗ idN
morphisms for f ∈ {b, c, g, h} are well-defined. Furthermore, we have that
the components of (5a′) are pushouts and pullbacks in Sets, because b =
(bV , bE) ∈ M1 by assumption. Hence, also (5a′) is a pullback, because
pullbacks are compatible with products and it remains to show that (hV ⊗
hE ⊗ idN, gV ⊗ gE ⊗ idN) are jointly surjective.
Consider (v3, e3, n) ∈ V3⊗E3⊗N. The E-component of (5a′) is a pushout
in Sets s.t. we have e1 ∈ E1 with gE(e1) = e3 (or we have e2 ∈ E2 with
hE(e2) = e3). Without loss of generality we consider the first case. Let
v1 = sn1 (e1) for n ∈ N, then (gV ⊗ gE ⊗ idN)(v1, e1, n) = (v3, e3, n), because
g = (gV , gE) is a hypergraph morphism, i.e., the compatibility with the
corresponding source function holds s.t. we have sn3 (e3) = v3. Hence, (5a′)
and (5a) are pushouts.

(b) For diagram (5b) the proof is similar to the Case 3a switching the com-
ponents of the product.

4. For the ENA-component we have to show that diagrams (6a) and similarly
(6b) are pushouts for X = {in} and Y = {out}. Diagrams (6a) and (6b)
commute, because for each product component we have a pushout in Sets
by assumption. It can be shown similar to the Case 3 that (6a) and (6b) are
pushouts.

18

EG0
in

(6a)

EG1
in

EG2
in EG3

in

bE × idN × idX

cE × idN × idX
gE × idN × idX

hE × idN × idX

EG0
out

(6b)

EG1
out

EG2
out EG3

out

bE × idN × idY

cE × idN × idY
gE × idN × idY

hE × idN × idY

5. The proof for the EEA-component is similar to that of the EG-component in
the Case 3 by switching the components of the products.

According to the following lemma, each typed attributed graph morphism f ′ :
FHG(G1) → FHG(G2) is uniquely determined by its VG-component f ′VG : V G1

G →
V G2
G . We are using this property to show the uniqueness of morphism creation.

Lemma 2 (Uniquely Determined FHG-Images).
Consider a typed attributed graph morphism f ′ : FHG(G1)→ FHG(G2) with f ′VD =
idN.
Then we have that f ′ is uniquely determined by the component f ′VG : V G1

G → V G2
G

with V Gi
G = VGi

] EGi
for i ∈ {1, 2}.

Proof.
Given a typed attributed graph morphism f ′ : FHG(G1) → FHG(G2) with f ′ =
(f ′VG , f

′
VD

= idN, f
′
EG
, f ′ENA

, f ′EEA
) (see diagram below) and fV (v) = f ′VG(v) for

v ∈ VG1 , fE(e) = f ′VG(e) for e ∈ EG1 .

To show:

1. f ′EG
(v, e, n)=(fV (v), fE(e), n) for (v, e, n)∈EG1

n2e ,

2. f ′EG
(e, v, n)=(fE(e), fV (v), n) for (e, v, n)∈EG1

e2n ,

3. f ′ENA
(e, n, x)=(fE(e), n, x) for (e, n, x)∈EG1

in]E
G1
out ,

4. f ′EEA
(n, v, e)=(n, fV (v), fE(e)) for (n, v, e)∈EG1

s ,

5. f ′EEA
(n, e, v)=(n, fE(e), fV (v)) for (n, e, v)∈EG1

t .

EG1
G V G1

G

EG1
NA

V G1
D

EG1
EA

sG1
G

tG1
G sG1

NA

tG1
NA

sG1
EA

tG1
EA

EG2
G V G2

G

EG2
NA

V G2
D

EG2
EA

sG2
G

tG2
G sG2

NA

tG2
NA

sG2
EA

tG2
EA

f ′EG
f ′VG

f ′ENA

f ′VD

f ′EEA

Case 1:
Let f ′EG

(v, e, n) = (v′, e′, n′) with sG2
G (v′, e′, n′) = v′ and tG2

G (v′, e′, n′) = e′. Then

19

we have:

v′ = sG2
G (v′, e′, n′) = sG2

G (f ′EG
(v, e, n)) = f ′VG(sG1

G (v, e, n)) = f ′VG(v) = fV (v)

⇒ v′ = fV (v),

e′ = tG2
G (v′, e′, n′) = tG2

G (f ′EG
(v, e, n)) = f ′VG(tG1

G (v, e, n)) = f ′VG(e) = fE(e)

⇒ e′ = fE(e),

n = idN(tG1
EA(n, v, e)) = tG2

EA(f ′EEA
(n, v, e))

(∗)
= tG2

EA(n′, v′, e′) = n′ ⇒ n′ = n

⇒ f ′EG
(v, e, n) = (v′, e′, n′) = (fV (v), fE(e), n)

(∗) : sG2
EA(f ′EEA

(n, v, e)) = f ′EG
(sG1
EA(n, v, e)) = f ′EG

(v, e, n)

= (v′, e′, n′) = sG2
EA(n′, v′, e′)

⇒ f ′EEA
(n, v, e) = (n′, v′, e′) since sG2

EA is a bijection and therefore also an

injection

Cases 2-5: Similar to the Case 1.

The following lemma with its detailed proof states the fact that the M-functor
FHG : (HyperGraphs,M1) → (AGraphsHGTG,M2) given in Definition 4
in Section 3 preserves initial pushouts, i.e., (HyperGraphs,M1) has initial
pushouts, which become also initial pushouts in (AGraphsHGTG,M2) after ap-
plication of FHG.

Lemma 3 (Preservation of Initial Pushouts).
Let (1) be an initial pushout over f : L→ G in (HyperGraphs,M1). Then (2)
is an initial pushout over FHG(f) : FHG(L)→ FHG(G) in (AGraphsHGTG,M2).

B

(1)

L

C G

b

f ⇒
FHG(B)

(2)

FHG(L)

FHG(C) FHG(G)

FHG(b)

FHG(f)

Proof.
Similar to initial pushouts in (Graphs,M) (see [3]) we also have initial pushouts
in (HyperGraphs,M1) using a boundary construction based on dangling and
identification points.
We assume that (1) is an initial pushout in (HyperGraphs,M1) with boundary

20

B = (VB, EB, sB = sL, tB = tL) ⊆ L, where

VB = DPV ∪ IPV ∪ IPV E with dangling points

DPV = {v ∈ VL | ∃e ∈ EG\fE(EL).(fV (v) e sG(e)) ∨ (fV (v) e tG(e))} ,
where x e w ⇔ ∃w1, w2. w = w1·x·w2 and identification points

IPV = {v ∈ VL | ∃v′ 6= v.v′ ∈ VL ∧ fV (v) = fV (v′)} ,
IPV E = {v ∈ VL | ∃e ∈ IPE. v e sL(e) ∨ v e tL(e)} ,

EB = IPE = {e ∈ EL | ∃e′ 6= e.e′ ∈ EL ∧ fE(e) = fE(e′)}

Note that IPV E is needed in order to make sure that B is a well-defined hyper-
graph to avoid an intersection construction for B.

FHG(B) FHG(L) = L′
B′

FHG(C) FHG(G) = G′

C ′

(2)(4)

(5)

(6)

FHG(b)
i

b′

j

c′

FHG(f) = f ′

B′

(3)

FHG(L) = L′

C ′ FHG(G) = G′

b′

FHG(f) = f ′

c′

Since FHG preserves pushouts along M-morphisms (see Lemma 1 in this ap-
pendix) we have that (2) is a pushout in (AGraphsHGTG,M2) with FHG(b) ∈
M2.
Now we construct similar to [3] the initial pushout (3) over FHG(f) : FHG(L)→
FHG(G) in (AGraphsHGTG,M2) with inclusion b′ : B′ → FHG(L) and boundary

B′ = ((B′0,NAT), type), where the components ofB′0 = (V
B′0
G , V

B′0
D = N, EB′0

G , E
B′0
NA,

E
B′0
EA, (s

B′0
j , t

B′0
j)

j∈{G,NA,EA}) are defined as follows:

E
B′0
NA = IPENA

= {a ∈ EL′
NA = EL′

in] EL′
out | ∃a′ 6= a. a′ ∈ EL′

NA = EL′
in] EL′

out ∧
f ′ENA

(a) = f ′ENA
(a′)}, where f ′ENA

is defined as given in Definition 4,

E
B′0
EA = IPEEA

= {a ∈ EL′
EA = EL′

s] EL′
t | ∃a′ 6= a. a′ ∈ EL′

EA = EL′
s] EL′

t ∧
f ′EEA

(a) = f ′EEA
(a′)}, where f ′EEA

is defined as given in Definition 4,

V
B′0
G = DPVG ∪ IPVG ∪ sL

′
G (IPEG

) ∪ tL′G (IPEG
) ∪ sL′NA(IPENA

) with

DPVG ={a ∈ V L′

G = VL] EL | [∃a′ ∈ EG′

NA\f ′ENA
(EL′

NA) = (EG′

in] EG′

out)\
f ′ENA

(EL′

in] EL′

out). f
′
VG

(a) = sG
′

NA(a′)] ∨ [∃a′ ∈ EG′

G \f ′EG
(EL′

G) =

(EG′

n2e] EG′

e2n)\f ′EG
(EL′

n2e] EL′

e2n). f ′VG(a) = sG
′

G (a′) ∨ f ′VG(a) = tG
′

G (a′)]},
where f ′ENA

, f ′VG and f ′EG
are defined as given in Definition 4,

21

IPVG ={a ∈ V L′

G = VL] EL | ∃a′ 6= a. a′ ∈ V L′

G = VL] EL ∧ f ′VG(a) = f ′VG(a′)},
where f ′VG is defined as given in Definition 4,

E
B′0
G = DPEG

∪ IPEG
∪ sL′EA(IPEEA

) with

DPEG
={a ∈ EL′

G = EL′

n2e] EL′

e2n | ∃a′ ∈ EG′

EA\f ′EEA
(EL′

EA) = (EG′

s] EG′

t)\
f ′EEA

(EL′

s] EL′

t). f ′EG
(a) = sG

′

EA(a′)},
where f ′EEA

and f ′EG
are defined as given in Definition 4,

IPEG
={a ∈ EL′

G = EL′

n2e] EL′

e2n | ∃a′ 6= a. a′ ∈ EL′

G = EL′

n2e] EL′

e2n ∧ f ′EG
(a) =

f ′EG
(a′)}, where f ′EG

is defined as given in Definition 4,

and source/target functions in B′0 are restrictions of the corresponding functions
in FHG(L) = L′.

Initiality of (3) implies unique morphisms i : B′ → FHG(B) and j : C ′ → FHG(C)
such that (4) is a pushout in (AGraphsHGTG,M2) and (5), (6) commute with
i ∈M2.
Consider the typed attributed graph FHG(B) = B∗ = ((B∗0 ,NAT), type) with

B∗0 = (V
B∗0
G , V

B∗0
D = N, EB∗0

G , E
B∗0
NA, E

B∗0
EA, (s

B∗0
j , t

B∗0
j)

j∈{G,NA,EA}) defined according to

Definition 4 in Section 3.
It remains to show: i : B′ → FHG(B) is surjective, i.e., FHG(B) = B∗ ⊆ B′, i.e.,

V
B∗0
G ⊆ V

B′0
G ∧ E

B∗0
G ⊆ E

B′0
G ∧ E

B∗0
NA ⊆ E

B′0
NA ∧ E

B∗0
EA ⊆ E

B′0
EA.

In the following we prove only the first conjunct. The proofs for the other con-
juncts can be done in the similar way.

To show: V
B∗0
G ⊆ V

B′0
G .

From Definition 4 in Section 3 and constructions of B, B′ above we have:

V
B∗0
G = VB] EB = IPV ∪ IPV E ∪DPV ∪ IPE and

V
B′0
G = DPVG ∪ IPVG ∪ sL

′

G (IPEG
) ∪ tL′G (IPEG

) ∪ sL′NA(IPENA
)

1. Let v ∈ DPV . Then we consider two cases:
(a) v ∈ VL and ∃e ∈ EG\fE(EL). fV (v) e sG(e), i.e., ∃n ∈ N. fV (v) = snG(e).

It remains to show: v ∈ DPVG ⊆ V
B′0
G .

From v ∈ VL we get that v ∈ V L′
G . Furthermore, let a′ = (fV (v), e, n) ∈

EG′
n2e, because fV (v) = snG(e). Then we have:

f ′VG(v) = fV (v) = sG
′

G (a′) and e ∈ EG\fE(EL) ⇒ a′ = (fV (v), e, n) /∈
f ′EG

(EL′
G)

Constr. B′⇒ v ∈ DPVG ⊆ V
B′0
G .

22

(b) v ∈ VL and ∃e ∈ EG\fE(EL). fV (v) e tG(e), i.e., ∃n ∈ N. fV (v) = tnG(e):
Similar to the Case 1a above.

2. Let v ∈ IPV E. Then we consider two cases:
(a) v ∈ VL and ∃e ∈ IPE. v e sL(e), i.e., ∃n ∈ N. v = snL(e).

It remains to show: v ∈ sL′G (IPEG
) ⊆ V

B′0
G .

From e ∈ IPE we get that ∃e′ 6= e. e′ ∈ EL ∧ fE(e) = fE(e′).
Let a = (v, e, n) ∈ EL′

n2e and we construct a′ 6= a with a′ = (v′, e′, n) ∈ EL′
n2e

s.t. v′ = snL(e′). Then we have:

fV (v) = fV (snL(e)) = [f ∗V (sL(e))]n = [sG(fE(e))]n
= [sG(fE(e′))]n = [f ∗V (sL(e′))]n = fV (snL(e′))

= fV (v′), where []n denotes n-th component of []

This implies:
f ′EG

(a) = f ′EG
(v, e, n) = (fV (v), fE(e), n) = (fV (v′), fE(e′), n)

= f ′EG
(v′, e′, n) = f ′EG

(a′)

Constr. B′⇒ a ∈ IPEG

⇒ v ∈ sL′G (IPEG
) with v = sL

′
G (a)

⇒ v ∈ sL′G (IPEG
) ⊆ V

B′0
G .

EL

=

V ∗L

EG V ∗G

sL

tL
fE f ∗V

sG

tG

(b) v ∈ VL and ∃e ∈ IPE. v e tL(e), i.e., ∃n ∈ N. v = tnL(e): Similar to the
Case 2a above.

3. Let v ∈ IPV . Then we have: v ∈ VL and ∃v′ 6= v. v′ ∈ VL ∧ fV (v) = fV (v′).

It remains to show: v ∈ IPVG ⊆ V
B′0
G .

From v, v′ ∈ VL we get that v, v′ ∈ V L′
G . Furthermore, we have:

fV (v) = fV (v′) ⇒ f ′VG(v) = fV (v) = fV (v′) = f ′VG(v′)
Constr. B′⇒ v ∈ IPVG ⊆

V
B′0
G .

4. Let e ∈ IPE. Then we have: e ∈ EL and ∃e′ 6= e. e′ ∈ EL ∧ fE(e) = fE(e′).

We can show that e ∈ IPVG ⊆ V
B′0
G similar to the Case 3 above.

This concludes the part of surjectivity of i : B′ → FHG(B). Now i is injective
and surjective, so we get that i is an isomorphism. Since (4) is a pushout, also
j : C ′ → FHG(C) is an isomorphism and hence (2) is isomorphic to (3). So we
get that also (2) is an initial pushout over FHG(f) : FHG(L)→ FHG(G).

According to the following lemma, theM-functor FHG : (HyperGraphs,M1)→
(AGraphsHGTG,M2) given in Definition 4 in Section 3 is compatible with pair
factorisation, which is needed to prove our main conceptual result (Theorem 4 in
Section 4).

Lemma 4 (FHG is Compatible with Pair Factorisation).
The M-functor FHG : (HyperGraphs,M1) → (AGraphsHGTG,M2) is com-
patible with pair factorisation, i.e., (HyperGraphs,M1) and (AGraphsHGTG,

23

M2) have pair factorisation and FHG preserves pair factorisation. In more detail,
FHG preserves pair factorisation if for each pair factorisation (f1 = m ◦ e1, f2 =
m ◦ e2) in (HyperGraphs,M1) also (FHG(f1) = FHG(m) ◦ FHG(e1),FHG(f2) =
FHG(m) ◦ FHG(e2)) is a pair factorisation in (AGraphsHGTG,M2) (see the di-
agram below).

Proof.
Pair factorisation of (f1 : L1 → G, f2 : L2 → G) based on E1 −M1-factorisation
(and coproducts) is given by (f1 = m ◦ e1, f2 = m ◦ e2), where f : L1+L2 → G
is the induced morphism of fi : Li → G for i ∈ {1, 2}, f = m ◦ e is an E1 −M1-
factorisation, and e1 = e ◦ i1, e2 = e ◦ i2 are defined via the coproduct morphisms
i1 : L1 → L1+L2 and i2 : L2 → L1+L2 in (HyperGraphs,M1). Similar we
obtain a pair factorisation in (AGraphsHGTG,M2), and E1, E2 are classes of
surjective morphisms leading to the classical Ei−Mi-factorisation for i ∈ {1, 2}.
In order to show that FHG is compatible with pair factorisation it remains to
show that FHG preserves pair factorisation, i.e., for each pair factorisation (f1 =
m◦ e1, f2 = m◦ e2) in (HyperGraphs,M1) also (FHG(f1) = FHG(m)◦FHG(e1),
FHG(f2) = FHG(m) ◦ FHG(e2)) is a pair factorisation in (AGraphsHGTG,M2).
But this can be concluded, if FHG preserves coproducts and satisfies FHG(E1) ⊆ E2
as well as FHG(M1) ⊆M2. The first property can be shown similar to Lemma 1 in
this appendix. FHG(E1) ⊆ E2 means that FHG preserves surjectivity of morphisms,
which is shown below, and FHG(M1) ⊆ M2 is valid, because FHG is an M-
functor.

L1

L1+L2

L2

K

G

i1

i2 e

f

e1

e2

m

f1

f2

FHG(L1)

FHG(L1+L2)=FHG(L1)+FHG(L2)

FHG(L2)

FHG(K)

FHG(G)

FHG(i1)

FHG(i2) FHG(e)

FHG(f)

FHG(e1)

FHG(e2)

FHG(m)

FHG(f1)

FHG(f2)

It remains to show that FHG preserves surjectivity of morphisms.
Let f = (fV , fE) be a surjective hypergraph morphism, i.e., ∀v′ ∈ VG2 . ∃v ∈
VG1 . v

′ = fV (v) and ∀e′ ∈ EG2 . ∃e ∈ EG1 . e
′ = fE(e).

We have to show that the corresponding typed attributed graph morphism FHG(f)
= f ′ = (f ′VG , f

′
VD
, f ′EG

, f ′ENA
, f ′EEA

) is also surjective.
1. To show: f ′VG is surjective, i.e., ∀x′ ∈ V G2

G . ∃x ∈ V G1
G . (x′ = fV (x)) ∨ (x′ =

fE(x)).
f ′VG : V G1

G → V G2
G with f ′VG = fV]fE for V Gi

G = VGi
]EGi

is surjective, because
the components fV and fE are surjective.

24

2. To show: f ′VD is surjective, i.e., ∀n′ ∈ N. ∃n ∈ N. n′ = idN(n). This holds
obviously.

3. To show: f ′EG
is surjective.

f ′EG
: EG1

G → EG2
G for EGi

G = EGi
n2e] E

Gi
e2n,

where EGi
n2e =

{
(v, e, n) ∈ (VGi

× EGi
)× N | snGi

(e) = v
}

and EGi
e2n =

{
(e, v, n) ∈ (EGi

× VGi
)× N | tnGi

(e) = v
}

.

EG1

=

V ∗G1

EG2
V ∗G2

sG1

tG1

fE f ∗V
sG2

tG2

(a) Let (v′, e′, n′) ∈ EG2
n2e with sn

′
G2

(e′) = v′.

It remains to show: ∃(v, e, n) ∈ EG1
n2e. f

′
EG

(v, e, n) = (v′, e′, n′).

Because of surjectivity of fE holds: ∃e ∈ EG1 . e
′ = fE(e) and let v = sn

′
G1

(e).

Then we get, that (v, e, n′) ∈ EG1
n2e, because sn

′
G1

(e) = v. Furthermore, we
have:

v′ = sn
′

G2
(e′)

fE surj.
= sn

′

G2
(fE(e)) = [sG2(fE(e))]n′ = [f ∗V (sG1(e))]n′

= fV (sn
′

G1
(e)) = fV (v), where []n denotes n-th component of []

This implies: f ′EG
(v, e, n′) = (fV (v), fE(e), n′) = (v′, e′, n′).

(b) Let (e′, v′, n′) ∈ EG2
e2n with tn

′
G2

(e′) = v′: Similar to the case above.
We can show that f ′ENA

and f ′EEA
are surjective similar to the Case 3.

25

	Analysis of Hypergraph Transformation Systems in AGG based on M-Functors: Extended Version
	Maria Maximova, Hartmut Ehrig and Claudia Ermel

