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Abstract

Since prehistoric times, humans have used sketching to depict our visual world.
Even today, sketching is possibly the only rendering technique readily available
to all humans. To understand how humans sketch objects, we perform two
experiments. In the first experiment, we analyze the distribution of non-expert
sketches of everyday objects such as ‘teapot’ or ‘car’. We ask participants
to sketch objects of a given category and gather 20,000 unique sketches evenly
distributed over 250 object categories. The second experiment targets 3d shape
retrieval, and we gather 1,814 sketches that are related to the categories in an
existing dataset of 3d shapes. The sketches in both datasets turn out to be
generally quite abstract with large local and global deviations from the original
shape. Based on the first sketch dataset, we perform a perceptual study and
find that humans can correctly identify the object category of a sketch 73% of
the time.

We develop a targeted feature transform for sketches that is based on a bag-
of-features approach, yields a compact representation and comes with suitable
invariance properties. Using this representation, we develop the first compu-
tational recognition method for classifying human object sketches. We com-
pare human performance against the computational model for which we use
multi-class support vector machines, trained on the sketch dataset, to clas-
sify sketches. The resulting recognition method is able to identify unknown
sketches with 56% accuracy (chance is 0.4%). Using the computational model,
we demonstrate an interactive sketch recognition system.

Based on the second dataset, we develop a system for 3d object retrieval
using sketched feature lines as input. The system employs a view-based ap-
proach, matching the input against computer generated line drawings of the
objects, using the bag-of-features representation developed earlier. Moreover,
we demonstrate how to optimize the parameters of our, as well as other ap-
proaches, based on the gathered sketches. In the resulting comparison, we show
objectively that our approach performs significantly better than any other sys-
tem described so far.
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Zusammenfassung

Seit prähistorischen Zeiten verwenden Menschen Skizzen, um ihre visuelle Welt
zeichnerisch abzubilden. Auch heutzutage ist Skizzieren noch immer die ein-
zige Darstellungsmethode, die allen Menschen einfach zugänglich ist. Um her-
auszufinden, wie Menschen Objekte skizzieren, führen wir zwei Experimente
durch. Im ersten Experiment analysieren wir Skizzen alltäglicher Objekte, wie
“Teekanne” oder “Auto”. Hierzu bitten wir die Teilnehmer einer Studie solche
Objekte zu skizzieren. Insgesamt erhalten wir so einen Datensatz von 20.000
Skizzen, gleichmäßig verteilt auf 250 Kategorien. Das zweite Experiment be-
fasst sich mit der skizzenbasierten Suche von dreidimensionalen Modellen. Da-
zu sammeln wir 1.814 Skizzen von den Teilnehmern einer weiteren Studie. Die
Kategorien dieser Skizzen stammen aus einem existierenden Datensatz drei-
dimensionaler Modelle. Es zeigt sich, dass die Skizzen in beiden Datensätzen
relativ abstrakt gezeichnet sind und dabei mehrheitlich stark von der Geome-
trie des echten Objektes abweichen. Anhand des ersten Datensatzes führen wir
eine Wahrnehmungs-Studie durch und stellen fest, dass Menschen die Kategorie
einer Skizze in 73% der Fälle korrekt erkennen können.

Im Folgenden entwickeln wir spezielle Repräsentationen für Skizzen, die auf
dem sogenannten “Bag of Features”-Ansatz aufbauen, wenig Speicherplatz be-
nötigen und mit günstigen Invarianzeigenschaften ausgestattet sind. Aufbauend
auf dieser Repräsentation entwickeln wir Algorithmen zur maschinellen Erken-
nung von Skizzen. Wir verwenden hierzu Multi-Class Support Vector Machines,
die mittels des ersten Datensatzes trainiert werden. Die daraus resultierende
Erkennungsmethode für Objektskizzen weist eine Genauigkeit von 56% auf (Zu-
fall: 0,4%). Mithilfe dieses maschinellen Modells entwickeln wir ein interaktives
System zur Skizzenerkennung.

Basierend auf dem zweiten Datensatz entwickeln wir ein System zur skiz-
zenbasierten Suche von dreidimensionalen Modellen. Das System beruht auf
einem ansichts-basierten Ansatz, wobei die Skizze des Nutzers mit computer-
generierten Zeichnungen der 3D Modelle verglichen wird. Darüber hinaus de-
monstrieren wir, wie sowohl die Parameter unseres Systems, als auch die von
konkurrierenden Ansätzen anhand der Skizzen aus dem zweiten Datensatz op-
timiert werden können. In einem abschließenden Vergleich zeigen wir objektiv,
dass unser Ansatz deutlich bessere Ergebnisse erzielt als andere in der Literatur
bisher beschriebene Systeme.
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Chapter 1

Introduction

Sketching is a universal form of communication. Since prehistoric times people
have rendered the visual world in sketch-like petroglyphs or cave paintings to
communicate visual concepts; possibly across borders of culture, country and
time. For example, some of the cave paintings in Lascaux, France (see Fig-
ure 1.2) date back tens of thousands of years. To draw such sketches, ancient
artists often used two colors: red (made from iron oxide) and black (made
from charcoal), and they applied the paint using a brush or with a hollow
tube [Chalmin et al. 2003]. Such pictographs predate the appearance of lan-
guage by tens of thousands of years and today the ability to draw and recognize
sketched objects is ubiquitous. In fact, recent neuroscience work suggests that
simple, abstracted sketches activate our brain in similar ways to real stim-
uli [Walther et al. 2011].

Despite decades of graphics research, sketching is still the only mechanism
for most people to render visual content quickly and flexibly [Landay and My-
ers 2001]. However, there has never been a formal study of how people sketch
objects and how well such sketches can be recognized by humans and comput-
ers. We examine these topics for the first time and demonstrate applications
of computational sketch understanding.

We believe that the concepts introduced in this thesis are potentially widely
applicable: compared to spoken language, the visual concept encoded in a
sketch appears to be more universal across cultures and time. While the sketch
in Figure 1.2 is — even after tens of thousands of years — still easily recogniz-

Figure 1.1: We explore how humans sketch and recognize objects from 250
categories — such as the ones shown above. We then develop suitable repre-
sentations for such sketches and suggest methods for computational recognition.
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1. Introduction

a) horse b) antilope

c) peace dove d) camel e) horse

Figure 1.2: Top row: cave paintings from Lascaux, France, about 20,000 years
old. Bottom row: sketches by Pablo Picasso.

able as a ‘horse’, the same concept in an ancient language or even a modern
foreign language would be hardly understandable to a large fraction of the
human population.

1.1 Definition: Sketch

In this thesis we use the term ‘sketch’ to mean an abstract pictograph drawn
by a non-expert, see Figure 1.1 for several examples. We do not imply any
particular medium such as pencil and paper. Sketches are always binary and
do not contain any color. We deal with a very similar type of sketches as those
painted on the walls of ancient caves and explore if we can make computers
‘understand’ sketches of such everyday objects as ‘horse’, ‘tree’ and ‘house’ as
effortlessly as humans do. Although our methods of input are more modern
than those of the cave artists — we typically use a mouse or a touchscreen
device — our representation is carefully designed such that the resulting com-
putational recognition methods can successfully classify even the cave paintings
shown in Figure 1.2, as we demonstrate in Section 6.4.

1.2 Prior Research

There exists significant prior research on retrieving images or 3d models based
on sketches. The assumption in all of these works is that sketched objects
resemble their real-world counterparts in some well-engineered feature space.
But this fundamental assumption is often violated since most humans are not
faithful artists. Instead, people use shared, iconic representations of objects
(e.g., stick figures) or they make dramatic simplifications or exaggerations (e.g.,
pronounced ears on rabbits). Thus, to understand and recognize sketches, an
algorithm must learn from a training dataset of real sketches, not photos or 3d
models. Because people represent the same object using differing degrees of
realism and distinct drawing styles (see Figure 1.1), we gather large datasets
of sketches that adequately sample these variations.

2



1.3. Overview

There also exists prior research in sketch recognition which tries to identify
predefined glyphs in narrow domains such electronic circuit diagrams [Sezgin
and Davis 2008], molecular diagrams [Ouyang and Davis 2011] and musical
scores [Rebelo et al. 2010]. We instead identify objects such as ‘snowmen’,
‘ice cream cones’ and ‘giraffes’. This task is hard, because both shape and
proportions of a sketched object may be far from that of the corresponding
real object, and at the same time sketches are an impoverished visual repre-
sentation. Nevertheless, humans are amazingly accurate at interpreting such
sketches.

1.3 Overview

We first define a taxonomy of 250 object categories and acquire a large dataset
of human sketches for the categories using crowd-sourcing (Chapter 3). Based
on the dataset, we estimate how humans perform in recognizing the categories
for each sketch (Chapter 4). We also design two robust visual feature descrip-
tors for sketches (Chapter 5). These features permit not only the computational
recognition of sketches (Section 6.2) but also the unsupervised analysis of the
dataset (Section 6.3). While we achieve a high computational recognition accu-
racy of 56% (chance is 0.4%), our study also reveals that humans still perform
significantly better than computers at this task.

Our overall approach is broadly similar to recent work in the computer vi-
sion community in which large categorical databases of visual phenomena are
used to train recognition systems. High-profile examples of this include the
Caltech-256 database of object images [Griffin et al. 2007], the SUN database
of scenes [Xiao et al. 2010], and the LabelMe [Russell et al. 2008] and Pas-
cal VOC [Everingham et al. 2010] databases of spatially annotated objects in
scenes. The considerable effort that goes into building these databases has
allowed algorithms to learn increasingly effective classifiers and to compare
recognition systems on common benchmarks.

Although our pipeline is similar to many modern computer vision algo-
rithms, we are working in a new domain which requires a new, carefully tai-
lored representation. We also need to generate our data from scratch because
there are no preexisting large repositories of sketches as there are for images
(e.g., Flickr). For this reason, we utilize crowd-sourcing to create a database
of human object sketches and hope that it will be as useful to the community
as existing databases in other visual domains.

We then apply these concepts to sketch-based retrieval of 3d models. Work-
ing with large collections of 3d models requires fast content-based retrieval tech-
niques, especially since public collections are often insufficiently annotated. In
this case a keyword based search alone is not promising. While research on
example-based retrieval — where users provide a full model as the query —
has recently found a lot of interest in the community [Tangelder and Veltkamp
2008], its practical application is difficult, since a suitable example often is not
at hand. As an alternative, sketch-based retrieval has been proposed [Löffler
2000; Funkhouser et al. 2003; Chen et al. 2003; Yoon et al. 2010; Shao et al.
2011], where users sketch the desired model as seen from one or more view-
points. We consider sketch-based retrieval to be even more challenging than
example-based retrieval as the query contains only partial information about

3



1. Introduction

the projection of the shape. Most humans have limited drawing skills, and lines
may deviate significantly from that projection. These properties of the input
directly translate into four desiderata of sketch-based shape retrieval systems:
partial matching of feature lines of the shape in all potential viewing directions
to the sketch, tolerating global and local deformation; and, clearly, the retrieval
performance has to scale to large collections. We present, to our knowledge,
the first approach that addresses all of these desiderata.

The approach is based on the visual analysis of meshes: we sample the
set of likely view directions, generate line drawings with state of the art line
rendering techniques, and encode the line drawings with a bag-of-features ap-
proach. This choice is directly related to the requirements. First, rather than
trying to match projected lines to shape features in 3d, we exploit current
line art rendering techniques. They have reached a mature state, in which al-
most all lines drawn by humans are also generated by algorithms [Cole et al.
2008]. Second, bag-of-features approaches, which are well known in the image
retrieval community [Sivic and Zisserman 2003], use local image descriptors
that are independent of location. This is ideal, as it immediately enables par-
tial matching and is resilient to global deformations. We achieve additional
resilience to local deformations by quantization of the local image descriptors
(identifying so-called “visual words”) and matching based on histograms. This
data reduction leads, third, to the desired fast query times.

Overall, this leads to a system with high quality retrieval performance as we
demonstrate in our objective evaluation. We also demonstrate the power of our
system in Figure 7.1 where we gather all objects for a complete scene in about
two minutes. However, we also find that the real-world dataset of sketches
gathered in the experiment is challenging for current systems. In particular,
our dataset reveals that allowing only closed contour curves for retrieval [Chen
et al. 2003] oversimplifies reality: a large majority of our participants’ sketches
contain a substantial amount of interior lines. The insights gained from an
analysis of our dataset open up several promising areas of further research
which we identify in Chapter 8.

We hope that the use of sketching as a visual input modality opens up com-
puting technology to a significantly larger user base than text input alone. This
thesis is a first step toward this goal and we release the datasets to encourage
future research in this domain.

1.4 Contributions

We present the first exploration of human object sketches, with applications
to computational sketch recognition and sketch-based 3d shape retrieval. Our
main contributions are:

• Two large large datasets of sketches. We describe crowd-sourcing
experiments to gather two large datasets of human object sketches. The
first dataset of 1,814 sketches is designed to be used for 3d shape retrieval.
Each sketch in the dataset is associated with an existing category of a
given collection of 3d shapes [Shilane et al. 2004]. The second dataset of
20,000 sketches spans 250 object categories. We release both datasets to
encourage future research in this domain.

4



1.5. Outline

• An analysis of human sketch recognition performance. Based on
the dataset of 20,000 sketches we perform a crowd-sourcing experiment
to analyze how well humans recognize sketches. We find that 73.1% of
all sketches are correctly recognized.

• Two feature transforms optimized for sketches. Both transforms
are tuned to efficiently comparing two abstract human-drawn sketches.
The first transform is based on a bank of Gabor filters for orientation
estimation while the second transform uses a simpler Gaussian derivative
filter for that task. We show objectively that both descriptors outperform
other existing transformations.

• A method for computational sketch recognition. We introduce
the first approach for computational recognition of general human object
sketches. We demonstrate a computational recognition accuracy of 56%
on the dataset of 250 object categories.

• A novel approach for sketch-based 3d shape retrieval. The ap-
proach is based on the visual analysis of meshes. We sample the set
of likely view directions, generate line drawings with state of the art
line rendering techniques, and encode the line drawings using the feature
transforms introduced in this thesis. We describe a general approach
to determine optimal parameters for such feature transformations and
demonstrate that even existing systems can be improved using this ap-
proach. We also introduce a large-scale benchmark for sketch-based re-
trieval systems that is based on the real-world dataset of 1,814 sketches
gathered in our perceptual experiment.

1.5 Outline

Chapter 1 We introduce key research questions addressed in this thesis and
provide high level background information. We summarize our scientific con-
tributions, outline the thesis and list our publications related to this thesis.

Chapter 2 We overview related work in the areas of sketch-based image and
shape retrieval as well as sketch recognition.

Chapter 3 We describe the experimental setup used to gather two large
datasets of human object sketches. We analyze properties of these datasets
in a first attempt to understand how humans sketch objects. The datasets as
well as the insights gained from their analysis form the basis of all following
experiments.

Chapter 4 Based on the dataset of human object sketches from the previous
chapter, we describe a large-scale experiment in which we analyze how well
humans recognize the correct category of such sketches.

Chapter 5 We describe two novel feature transforms suitable for efficiently
and effectively determining similarity between two sketches. The representa-
tions are designed according to the insights gained in Chapter 4.

5



1. Introduction

Chapter 6 We study computational sketch recognition of everyday objects,
based on the dataset of 20,000 sketches (Chapter 3). To achieve generaliza-
tion to unseen instances, we use state of the art supervised machine learning
techniques for this task, operating in the feature space introduced in Chapter 5.

Chapter 7 We propose a novel approach for sketch-based 3d shape retrieval
that is based on the visual analysis of meshes: we sample the set of likely
view directions, generate line drawings with state of the art line rendering
techniques, and encode the line drawings using the representation introduced
in Chapter 5. We show how to optimize all retrieval pipeline parameters to
achieve optimal retrieval results and objectively demonstrate that the proposed
approach outperforms existing approaches from the literature.

Chapter 8 We conclude our thesis, discuss limitations and applications and
give directions for future work.

1.6 Publications

The results presented in this thesis have been published as follows:

• The part on sketch-based shape retrieval has been published and pre-
sented as Sketch-Based Shape Retrieval [Eitz et al. 2012b] at SIGGRAPH
2012 in Los Angeles, USA. This work has been done in collaboration with
Ronald Richter, Kristian Hildebrand and Marc Alexa from TU Berlin,
Germany and Tamy Boubekeur from Telecom ParisTech, France.

• The part on sketch recognition has been published and presented as How
Do Humans Sketch Objects? [Eitz et al. 2012a] at SIGGRAPH 2012 in Los
Angeles, USA. This work has been done in collaboration with James Hays
from Brown University, USA and Marc Alexa from TU Berlin, Germany.

• Part of the related work section on sketch-based image retrieval (Sec-
tion 2.2) is based on Sketch-Based Image Retrieval: Benchmark and
Bag-of-Features Descriptors [Eitz et al. 2011a].
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Chapter 2

Related Work

“An image is worth a thousand words” perfectly expresses the key insight behind
sketch-based retrieval and recognition methods: instead of using a few abstract
keywords, users depict their search intent visually as a sketch. While for a
keyword-based approach the burden of abstracting the visual search intent into
a small set of keywords is on the user, sketch-based input is more direct. As
a result, sketch-based interfaces are potentially easier to use for humans, but
pose a greater computational challenge as computers now have to ‘understand’
and ‘interpret’ a user’s query. Unfortunately, the general population is not
proficient in faithfully depicting the real world using sketches, which makes
this task extremely difficult for computers.

In this chapter, we review relevant prior work that is based on human-
drawn sketches as input. Techniques in this domain are often closely related to
prior work in text retrieval, content-based image retrieval as well as computer
vision and machine learning based object recognition methods. We point out
important connections to those areas where necessary but otherwise limit a
more detailed review to methods that have been specifically designed for sketch
input. Besides the references in this chapter, we provide most references to
other relevant literature in context. For example, methods for quantizing local
features given a visual vocabulary are reviewed in Section 5.6 that covers this
topic.

2.1 History

The SketchPad system [Sutherland 1964] is the very first system that allows
users to directly draw shapes on a computer using a pointing device. Before
that, users had to manually type a shape’s coordinates as text. Sutherland pi-
oneers all essential human-computer interaction techniques that are now ubiq-
uitous in any vector based drawing tool: creating lines (and other shapes) by
graphically defining their start- and endpoint, modifying the properties of such
shapes as well as copying, pasting and deleting previously created elements by
means of pointing and “clicking”.
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Figure 2.1: SketchPad system operated by Ivan Sutherland creating a drawing
of a bridge. Image taken from Sutherland [1964].

Herot [1976] takes this one step further and proposes the first system that
detects lines, corners and over-tracing in freehand sketches. Herot proposes to
fit splines to the user input, detect corners as the minima of the pen speed
function and use latching to overcome slight inaccuracies in a user’s sketch.

These techniques for sketch input and “understanding” introduced by Suther-
land and Herot have found such widespread adoption that they are nowadays
taken for granted. Indeed, all sketches we use in this thesis have been created
using software that relies on these concepts. In this thesis, we try take sketch
understanding an additional level further: given a freehand sketch, we develop
methods to recognize what kind of object such a sketch depicts (e.g., ‘house’,
‘airplane’).

Query-by-Pictorial-Example [Chang and Fu 1980a] is an early predecessor
of modern sketch-based retrieval approaches. Images are analyzed and split
into components such as lines or circles [Chang and Fu 1980b]. Based on
this representation a relational query language allows users to select areas or
point out parts of an existing image to serve as a query example [Chang and Fu
1980a]. From this point on, the field split into several subareas, all dealing with
slightly different constraints: general shape matching systems [Loncaric 1998],
where shapes are not necessarily sketches in the sense of this thesis, image
retrieval approaches that sometimes incorporate shape features [Tangelder and
Veltkamp 2008] and explicit sketch recognition approaches that recognize users’
freehand sketches with the ultimate goal of creating an “Electronic Cocktail
Napkin” [Gross 1996].

Most modern sketch-based approaches are built on three main concepts:
a) representation of a sketch, typically as a compact feature vector in high-
dimensional space; b) similarity measure defined over the feature vectors; and
c) search/classification algorithms to find/classify a sketch. Most algorithms
are built around novel ideas/variations in one or more of these areas to achieve
the desired system properties. For example, in our thesis, we develop new
representations for sketches but use standard distance metrics. Finally, we
employ search and classification techniques that work well with our data-driven
approach.
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Figure 2.2: Example sketch-based image retrieval results from Eitz et al.
[2010]. Top left corner: query sketch; top row: semantically meaningful re-
sults; bottom row: semantically unexpected results.

2.2 Sketch-Based Image Retrieval

For most image collections, queries are often expressed as keywords (or by
other means than the images themselves), requiring the images to be tagged.
In view of the ever increasing size of image databases, the assumption of an
appropriate and complete set of tags might be invalid, and content-based search
techniques become vital. Different types of content-based image queries have
been suggested and analyzed: example images [Flickner et al. 1995]; rough,
blurry drawings of the desired colors [Jacobs et al. 1995; Wang et al. 1997];
simple outline sketches [Kato et al. 1992; Chan et al. 1997; Matusiak et al. 1998];
and combinations or extensions thereof [Jain and Vailaya 1996; Di Sciascio et al.
1999].

Outline sketches are typically easier and faster to generate than a complete
color description of the scene. And they can be generated for arbitrary desired
images, while example images may or may not be at hand when searching. In
addition, input devices change in favor of sketching as touch-enabled devices
become more common. In other words, sketch-based image retrieval (SBIR)
is a relevant means of querying large image databases (see Figure 2.2 for an
example), content-based video retrieval [Collomosse et al. 2009] or even as a
query language for geographic information systems [Egenhofer 1997].

Several approaches for SBIR have been suggested, with earlier approaches
often casting the problem as computationally expensive template matching
[Del Bimbo and Pala 1997; Anelli et al. 2007] or string matching approaches
[Chang et al. 1987; Lopresti and Tomkins 1995; Lopresti et al. 1996]. However,
to achieve interactive query response when using large, potentially Internet-
scale image collections, it is impossible to compare the sketch to all images in
the database directly. Instead, descriptors are extracted in a pre-process and
stored in a data structure for fast access.

Very commonly, the descriptors are interpreted as points in high-dimensional
space and finding close matches means searching for nearest neighbors in this
space. Moreover, image descriptors can be roughly classified into global vs.
local descriptors: global descriptors encode specific features of the whole image
that suffice to describe the “gist” of a scene [Oliva and Torralba 2001], while
many local descriptors need to be extracted for a single image, with each de-
scriptor describing only a small spatially localized region of the image [Lowe
2004]. While the use of local descriptors is a common approach in example-
based image retrieval [Squire et al. 1999; Sivic and Zisserman 2003; Jégou et al.
2008; Wu et al. 2009], most SBIR systems up to now still employ global de-
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scriptors and thus inherit their drawbacks, mainly being not invariant to affine
transformations and/or local deformations of a sketch [Kumar Rajendran and
Chang 2000; Ip et al. 2001; Chalechale et al. 2004a,b; Eitz et al. 2009, 2010;
Springmann et al. 2010]. Recently, approaches that encode a sketch as a set of
local patches became popular as those naturally come with desirable invariance
properties and lend themselves to fast matching [Eitz et al. 2011a; Hu et al.
2011; Bozas and Izquierdo 2012].

An important design feature for any descriptor based retrieval system is
that the distance metric in feature space correlates with perceptual similarity.
To gauge this perceptual similarity, ground truth information from user studies
is needed. Interestingly, Forsyth [2002] criticizes the design of many existing
image retrieval systems for not meeting real users’ needs when they are based
on image collections that are comprehensively tagged but are typically unre-
alistically small. Also, most SBIR systems rely on pre-processing the images
to extract a sketch-like representation, often by using the Canny filter [Canny
1986]. Instead, several alternatives could potentially lead to better results, such
as learning where humans draw edges [Martin et al. 2004], using filters that
generate more human-like results [Kang et al. 2007] or simply post-processing
the extracted lines [Barla et al. 2005; Hurtut et al. 2008].

Instead of an example image as in content-based retrieval [Datta et al.
2008], user input for sketch-based retrieval is a simple binary sketch — exactly
the setting we consider throughout this thesis. Most existing approaches do
not learn from example sketches and thus generally do not achieve semantic
understanding of a sketch. Retrieval results are purely based on geometric
similarity between the sketch and the image content [Chalechale et al. 2005;
Hu et al. 2010; Eitz et al. 2011a; Shrivastava et al. 2011; Cao et al. 2011].
This can help make retrieval efficient as it often can be cast as a nearest-
neighbor problem [Samet 2006]. However, retrieving perceptually meaningful
results can be difficult as users generally draw sketches in an abstract way
that is geometrically far from the real photographs or models (though still
recognizable for humans as we demonstrate later in this thesis).

Image Synthesis

Several image synthesis systems build upon the recent progress in sketch-based
retrieval and allow users to create novel, realistic imagery using sketched ex-
emplars [Diakopoulos et al. 2004]. Synthesis systems that are based on user
sketches alone have to rely on huge amounts of data to offset the problem of
geometric dissimilarity between sketches and image content [Eitz et al. 2011b]
or require users to augment the sketches with text labels [Chen et al. 2009].
Using template matching to identify face parts, Dixon et al. [2010] propose a
system that helps users get proportions right when sketching portraits. Lee
et al. [2011] build upon this idea and generalize real-time feedback assisted
sketching to a few dozen object categories. Their approach uses fast near-
est neighbor matching to find geometrically similar objects [Zitnick 2010] and
blends those object edges into rough shadow guidelines. As with other sketch-
based retrieval systems, users must draw edges faithfully for the retrieval to
work in the presence of many object categories — poor artists see no benefit
from the system.
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2.3 Sketch-Based Shape Retrieval

There exists a huge amount of work on example-based model retrieval, where
the input is a 3d shape and the goal is to return similar 3d shapes from a
large collection [Tangelder and Veltkamp 2008]. The basic idea in most of
these works is to represent shapes in an appropriate feature space. Compari-
son between shapes is performed in this space given a suitable distance metric.
Applications vary widely from Computer Graphics needs [Funkhouser et al.
2003] to retrieving 3d representations of molecules [Ankerst et al. 1999]. A
typical challenge for all approaches is to make the shape signature invariant
to orientation and scale of a shape [Osada et al. 2002] or even non-rigid trans-
formations [Bronstein et al. 2011]. A wide variety of approaches exist: while
Elad et al. [2002] use a global shape descriptor and a distance metric dynami-
cally learned from user feedback, others decompose a shape into a set of views
and perform image-based matching on the views [Chen et al. 2003; Furuya and
Ohbuchi 2009].

In contrast to content-based 3d shape retrieval, the input to a sketch-based
approach is typically only a single human-drawn sketch, depicting the desired
object as seen from a particular viewpoint. Such a sketch contains considerably
less information than the full model: it describes the model only from a single
viewpoint, and it is often abstract and geometrically imprecise. This makes
sketch-based 3d shape retrieval a hard (and potentially ambiguous) problem.
Up to recently, sketch-based retrieval is often only studied in the context of
an example-based retrieval engine [Funkhouser et al. 2003; Chen et al. 2003].
As a consequence, to our knowledge, no benchmark has been established that
would allow objective comparison of sketch-based retrieval systems. We hope
to alleviate this problem with the benchmark presented in Section 7.8.

One of the earliest references to sketch-based shape retrieval is given by Löf-
fler [2000] who describes a system that lets users refine an initial keyword-based
search using a sketch of the desired view. Funkhouser et al. [2003] describe an
image based approach. In a pre-processing phase they extract boundary con-
tours from 13 orthographic view directions for each model. They represent
each view by a global — but rotation invariant — boundary descriptor and
compute best matching models by comparing the corresponding view descrip-
tors to the boundary descriptor computed from the input sketch(es). Chen
et al. [2003] describe a system for example-based retrieval that also supports
query by sketch. They densely sample view directions to form a “lightfield
descriptor”. This descriptor however is only defined for closed contour curves,
which, as we demonstrate later, is not how humans sketch for shape retrieval.
Daras and Axenopolous [2010] describe a unified framework that supports both
sketch-based as well as example-based retrieval. They extract 32 views from
each model and compute three 2d rotation invariant shape descriptors per view.
While a qualitative evaluation demonstrates good retrieval results, they do not
perform a quantitative evaluation for sketch-based retrieval. Yoon et al. [2010]
propose measuring orientation of sketch lines using a diffusion tensor — as the
final descriptor they propose an orientation histogram that globally encodes
each view of a model. Finally, Napoléon and Sahbi [2010] introduce a “2d pho-
tography to 3d object” retrieval framework that lets users to retrieve 3d models
from one or more photographs/sketches.
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Domain Specific Specializations

When designing engineering parts, models are often described by three orthog-
onal 2d views. Consequently, Pu et al. [2005] extract six views by projection
onto the faces of the model’s bounding box. They encode each view image
by the distribution of pairwise Euclidean distances between densely sampled
random points on the feature lines and employ a Euclidean distance metric to
compare histograms of this distribution. Hou and Ramani [2006; 2007] extend
this approach: instead of relying on a single feature they learn a classifier based
on three shape descriptors. Their system follows a two-tier retrieval approach:
first, it displays best matching classes of models and then sorts the models
within each class according to similarity with the query.

Sketch-Based Shape Synthesis

Retrieval can possibly only work when the desired object is actually contained
in the collection. If this is not the case, the same sketch input (one or multiple
views) could be used to infer the 3d model from the sketches instead [Igarashi
et al. 1999; Nealen et al. 2007; Olsen et al. 2009]. This is an extremely difficult
and typically under-constrained problem and an alternative can be to compose
the desired model from existing parts: users query a collection for parts or
even create a complete scene from existing objects, using only rough sketching
strokes. Shin and Igarashi [2007] propose a system for interactively composing
3d scenes using existing models. They query models using a sketch-based
interface based on contours generated from 16 reference views and encode each
view using a Centroid Fourier Descriptor. Lee and Funkhouser [2008] extend
this approach to create novel models from parts of existing models: a single
sketch indicates both shape and placement of a part.

2.4 Sketch Recognition

Rough unfinished sketches can spark creativity in designers. Also, the rough
nature of such sketches clearly implies that a drawing is not yet exact and the
final details still need to be worked out (for example, exact sizes in architectural
sketches). The goal of sketch recognition is to produce an “Electronic Cocktail
Napkin” [Gross 1996] that combines the ease of creating a rough sketch using
pen and paper with the possibility to modify, save and simulate offered by
a digital representation. Ideally, users could simply draw a rough freehand
sketch and the computer would understand the underlying structure without
requiring any additional input.

Sketch recognition has been successfully applied to a variety of problems in
domains such as electric circuit diagrams, musical scores, math sketches and
molecular diagrams (Figure 2.4). Compared to the sketches we analyze in this
thesis, such sketches exhibit a well-defined structure and this structure can
be exploited to achieve good recognition results [Davis 2007; Hammond et al.
2008; Johnson et al. 2009].
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Figure 2.3: Set of 16 gestures. Image taken from Wobbrock et al. [2007].

Primitive Recognition

One of the fundamental problems in sketch recognition is to recognize primi-
tives such as lines, circles or arrows. Such primitives either occur as “building
blocks” of larger freehand sketches or as self-contained gestures employed in
user interfaces (for example, drawing a “circle” gesture invokes a certain action
such as reloading a website). Recognizing primitives in freehand sketches is
generally harder than recognizing gestures as it additionally involves some sort
of segmentation of a larger sketch into its elements.

Gesture recognizers are typically designed to recognize a small set of single-
stroke gestures such as the ones shown in Figure 2.3. Approaches include
representing a stroke as a feature vector and performing linear classification
[Rubine 1991] or nearest neighbor classification [Li 2010]; template matching
on a bitmap representation [Kara and Stahovich 2005]; as well as the “$1
recognizer” that has been specifically designed to be implementable using as
little math as possible [Wobbrock et al. 2007]. Hand-tuned rules for a small set
of primitives (line, polyline, circle ellipse, arc, curve, spiral and helix) result in
close to perfect recognition results [Paulson and Hammond 2008].

Symbols commonly used in diagrams (e.g., arrow, transistor) are more com-
plex and typically require multiple strokes to be drawn. One of the main
challenges for multi-stroke recognizers is to achieve invariance to the temporal
order in which strokes are drawn as well as invariance to rotation and scale
of a symbol. Lee et al. [2007] represent symbols as graphs where the basic
elements (lines and arcs) form the nodes and the edges represent the pairwise
relationship between nodes. Invariance is achieved by casting the classification
as a graph matching problem. The $N recognizer [Anthony and Wobbrock
2010] extends the $1 recognizer [Wobbrock et al. 2007] to multi-stroke recogni-
tion but shares the same design goals: simplicity, ease of implementation and
trainability using a single example gesture.
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a) b)

c) d)

Figure 2.4: Structured domains for sketch recognition: a) electronic circuit
diagrams [Sezgin and Davis 2008]; b) molecular diagrams [Ouyang and Davis
2011]; c) math diagrams [LaViola Jr. and Zeleznik 2004], d) musical score [Re-
belo et al. 2010]. Images taken from the respective publications.

Higher-level Sketch Recognition

Recognition of higher-level structure from freehand sketches (e.g., diagrams,
user interface elements, molecules) is often based on inferring their large-scale
structure given a parsed set of primitive objects (bottom-up approach). For
example, the SILK system [Landay and Myers 2001] for sketching interactive
user interface prototypes relies on Rubine’s primitive recognizer [Rubine 1991].
Sezgin et al. [2001] propose a system that segments an arbitrary freehand sketch
into low-level geometric descriptions (lines, circles, rectangles, etc.) as an “early
processing” step required before true “sketch understanding” can be achieved.
Such a representation can then be used to beautify sketches such that wiggly
sketches lines become straight digitized lines or constraints between primitives
can be enforced [Igarashi et al. 1997; Cheema et al. 2012].

Specializing sketch recognition to specific domains can yield impressive
recognition results. Typical domains of interest include: UML diagrams [Ham-
mond and Davis 2002], circuit diagrams [Sezgin and Davis 2007] as well as
molecular diagrams [Ouyang and Davis 2011]. Sezgin et al. [2008] also explore
if multi-scale temporal information alone can be used to recognize sketched
circuit diagrams. They learn temporal ordering of strokes from a manually an-
notated training dataset gathered from 8 participants and exploit this to train a
model for classification. They find that their multi-scale temporal model yields
statistically significant better recognition accuracy than a stroke-based base-
line model but (by definition) fails in case the temporal order of two unrelated
shapes happens to be similar.

Also, several “meta frameworks” for sketch recognition have been proposed
that in turn can be customized to achieve certain recognition tasks [Alvarado
et al. 2002; Alvarado and Davis 2004; Hammond and Davis 2005].

Sharon et al. [2006] propose to learn a “constellation model” per category.
Such a model is defined by a probability distribution over location and size
of parts bounding boxes and a probability distribution over distances between
pairwise parts. This yields a pretty general model that can be applied to any
sketches that consist of a predictable, fixed number of parts (e.g., faces).

One recent approach (adopted in this thesis) is to represent sketches using
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image-based features (rather than a set of geometric rules that describe strokes
and their relationships) [Oltmans 2007; Ouyang and Davis 2011] or even as a
combination of image-based and temporal features [Arandjelović and Sezgin
2011]. Sketches are often represented as graphical models to deal with un-
certainty in recognizing parts and to incorporate context information into the
recognition process [Qi et al. 2005; Sezgin and Davis 2008; Ouyang and Davis
2011; Arandjelović and Sezgin 2011]. Higher level applications building on ex-
isting sketch recognition work include systems for animating math and physics
diagrams [LaViola Jr. and Zeleznik 2004; Cheema and LaViola 2012].

Compared to the sketches analyzed in previous work, the sketches we deal
with in this thesis have considerably less structure and we wish to discern
sketches from a large number of categories. This makes the problem very dif-
ficult and requires developing suitable representations for such unstructured
data as well as learning from large, real-world datasets.
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Chapter 3

Sketch Datasets

In order to understand how humans sketch objects we perform two large-scale
experiments in each of which we gather a large dataset of human sketches.
We later apply the insights gained from analyzing these datasets to facilitate
computational recognition of human object sketches and improve sketch-based
3d shape retrieval. Ideally, these datasets should adequately sample the variety
in drawing styles found in human sketches, which we expect to be potentially
quite large. We focus on sketches from the general population as opposed to
sketches from artists only, as done in previous related experiments [Cole et al.
2008]. As a result, in our experiments, we sample a large number of sketches
(tens of thousands) from a large number of different individuals (hundreds).

We gather two distinct sketch datasets: while the first one is very general,
spanning a wide range of categories, the second dataset is tailored to sketch-
based 3d shape retrieval.

• The first sketch dataset is very general, with each sketch associated to
one of 250 object categories such as ‘teapot’, ‘car’ or ‘horse’. We use
this dataset to analyze how humans sketch objects, to analyze how well
humans recognize each other’s sketches and finally, to train supervised
machine-learning algorithms for computational sketch recognition.

• The second dataset of sketches is designed to be used for 3d shape re-
trieval. Each sketch in the dataset is associated with an existing category
of a given collection of 3d shapes [Shilane et al. 2004]. This association
is a crucial property of this dataset as it lets us define a benchmark for
3d shape retrieval: when querying with a sketch from a given category,
we expect that a “good” system only returns 3d shapes belonging to the
same category as the query sketch.

We use the same experimental setup to gather both sketch datasets, which
we describe in the following section.
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context around object not allowed! not easily recognizable!

text labels not allowed! large black areas not allowed!
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Figure 3.1: Instructional examples shown to workers on Mechanical Turk. In
each field: desired sketching style (left), undesired sketching style (right).

3.1 Experimental Setup

We ask participants to draw one sketch at a time given a random category
name (such as ‘airplane’ or ‘teapot’). For each sketch, participants start with
an empty canvas and have up to 30 minutes to create the final version of the
sketch. We keep our instructions as simple as possible and ask participants to

“sketch an image [...] that is clearly recognizable to other humans
as belonging to the following category: [...].”

We also ask users to draw outlines only and not use context around the actual
object. We provide visual examples that illustrate these requirements, see Fig-
ure 3.1. We provide undo, redo, clear, and delete buttons for our stroke-based
sketching canvas so that participants can easily familiarize themselves with the
tool while drawing their first sketch. After finishing a sketch participants can
move on and draw another sketch given a new category. In addition to the
spatial parameters of the sketched strokes we store their temporal order.

Crowd-sourcing

As we wish to sample a large number of sketches from a large number of partic-
ipants, we rely on crowd-sourcing to generate our sketch dataset. We use Ama-
zon Mechanical Turk (AMT) which is a web-based market where requesters can
offer paid “Human Intelligence Tasks” (HITs) to a pool of non-expert workers.
In order to ensure a diverse set of sketches within each category, we limit the
number of sketches a worker could draw to one per category.

Our sketching task appears to be quite popular on Mechanical Turk — we
received a great deal of positive feedback, the time to complete all HITs was
low, and very few sketches were unusable, adversarial, or automated responses.

3.2 A Large Dataset of Human Object Sketches

In this section we describe the collection of a dataset of 20,000 human object
sketches. This categorical database is the basis for all learning, evaluation, and
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applications later in this thesis. We define the following set of criteria for the
object categories in the sketch dataset:

Exhaustive The categories exhaustively cover most objects that we commonly
encounter in everyday life. We want a broad taxonomy of object cate-
gories in order to make the results interesting and useful in practice and
to avoid superficially simplifying the recognition task.

Recognizable The categories are recognizable from their shape alone and do
not require context for recognition.

Specific Finally, the categories are specific enough to have relatively few vi-
sual manifestations. ‘Animal’ or ‘musical instrument’ would not be good
object categories as they have many subcategories.

Defining a Taxonomy of 250 Object Categories

In order to identify common objects, we start by extracting the 1,000 most
frequent labels from the LabelMe [Russell et al. 2008] dataset. We manually
remove duplicates (e.g., car side vs. car front) as well as labels that do not follow
our criteria. This gives us an initial set of categories. We augment this with
categories from the Princeton Shape Benchmark [Shilane et al. 2004] and the
Caltech 256 dataset [Griffin et al. 2007]. Finally, we add categories by asking
members of our lab to suggest object categories that are not yet in the list.
Our current set of 250 categories is quite exhaustive as we find it increasingly
difficult to come up with additional categories that adhere to the desiderata
outlined above. We list the complete set of categories in Table 3.1.

Collecting 20,000 Sketches

We use Amazon Mechanical Turk with the experimental setup described in
Section 3.1. In order to prepare for workers that do not strictly follow our
criteria, we request more than the desired 20,00 sketches: we submit 90×250 =
22,500 HITs, requesting 90 sketches for each of the 250 categories.

As with any crowd-sourced data collection effort, steps must be taken to en-
sure that data collected from non-expert, untrained users is of sufficient quality.
We manually inspect and clean the complete dataset using a simple interac-
tive tool we implemented for this purpose (see Figure 3.2). The tool displays
all sketches within a given category on a large screen which lets us identify
incorrect ones at a glance. We remove sketches that are clearly in the wrong
category (for example, an ‘airplane’ in the ‘teapot’ category), exhibit offensive
content or otherwise do not follow the requirements defined in Section 3.1 and
Section 3.2 (typically excessive context). We do not remove sketches just be-
cause they are poorly drawn. As a result of this procedure, we remove about
6.3% of the sketches. We truncate the dataset to contain exactly 80 sketches
per category yielding our final dataset of 20,000 sketches. We make the cate-
gories uniformly sized to simplify training and testing (e.g., we avoid the need
to correct for bias toward the larger classes when learning a classifier).
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a)

b)

c)

d)

e)

Figure 3.2: Screenshot of interactive tool for sketch dataset verification for
category ‘bench’. The highlighted sketches are marked for removal: a), b), e)
wrong category; c) unrecognizable; d) hatching strokes.

Analysis of Sketches

In total, we receive sketches from 1,350 unique participants who spent a total
of 741 hours to draw all sketches. The median drawing time per sketch is 86
seconds with the 10th and 90th percentile at 31 and 280 seconds, respectively.
The participants draw a total of 351,060 strokes with each sketch containing a
median number of 13 strokes.

We find that the first few strokes of a sketch are on average considerably
longer than the remaining ones, see Figure 3.3. This suggests that humans
tend to follow a coarse-to-fine drawing strategy, first outlining the shape using
longer strokes and then adding detail at the end of the sketching process.
We also find that drawing time can vary considerably between and within
categories: the median drawing time for ‘cloud’ is the lowest overall with 30.5
seconds, while the highest overall is for ‘tiger’ (244 seconds). We show a more
detailed illustration of the time spent per category in Figure 3.4. In many
cases, the sketches in a category with shorter drawing times correspond to
simplified, stylized and abstract depictions of the objects (see Figure 3.4 bottom
row), while sketches with higher drawing times often appear more realistic (see
Figure 3.4 top row).

3.3 A Large Dataset of Sketches for 3d Shape Retrieval

In the second experiment we try to provide insight into the following problem:
how would an average user of a 3d retrieval system sketch the query? Most
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airplane alarm clock angel ant apple
arm armchair ashtray axe backpack
banana barn baseball bat basket bathtub
bear (animal) bed bee beer-mug bell
bench bicycle binoculars blimp book
bookshelf boomerang bottle opener bowl brain
bread bridge bulldozer bus bush
butterfly cabinet cactus cake calculator
camel camera candle cannon canoe
car (sedan) carrot castle cat cell phone
chair chandelier church cigarette cloud
comb computer monitor computer-mouse couch cow
crab crane (machine) crocodile crown cup
diamond dog dolphin donut door
door handle dragon duck ear elephant
envelope eye eyeglasses face fan
feather fire hydrant fish flashlight floor lamp
flower with stem flying bird flying saucer foot fork
frog frying-pan giraffe grapes grenade
guitar hamburger hammer hand harp
hat head head-phones hedgehog helicopter
helmet horse hot air balloon hot-dog hourglass
house human-skeleton ice-cream-cone ipod kangaroo
key keyboard knife ladder laptop
leaf lightbulb lighter lion lobster
loudspeaker mailbox megaphone mermaid microphone
microscope monkey moon mosquito motorbike
mouse (animal) mouth mug mushroom nose
octopus owl palm tree panda paper clip
parachute parking meter parrot pear pen
penguin person sitting person walking piano pickup truck
pig pigeon pineapple pipe pizza
potted plant power outlet present pretzel pumpkin
purse rabbit race car radio rainbow
revolver rifle rollerblades rooster sailboat
santa claus satellite satellite dish saxophone scissors
scorpion screwdriver sea turtle seagull shark
sheep ship shoe shovel skateboard
skull skyscraper snail snake snowboard
snowman socks space shuttle speed-boat spider
sponge bob spoon squirrel standing bird stapler
strawberry streetlight submarine suitcase sun
suv swan sword syringe t-shirt
table tablelamp teacup teapot teddy-bear
telephone tennis-racket tent tiger tire
toilet tomato tooth toothbrush tractor
traffic light train tree trombone trousers
truck trumpet tv umbrella van
vase violin walkie talkie wheel wheelbarrow
windmill wine-bottle wineglass wrist-watch zebra

Table 3.1: 250 object categories used for sketch recognition experiment.
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Figure 3.3: Stroke length in sketches over drawing time: initial strokes are
significantly longer than later in the sketching process. On the x-axis, time is
normalized for each sketch.
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Figure 3.4: Distribution of sketching time. Categories are sorted by their
median sketching time. The top and bottom rows show examples of sketches
with particularly long or short sketching times, respectively.

related studies we are aware of gather input from artists [Cole et al. 2008] or
contain a significantly smaller number of sketches [Funkhouser et al. 2003].

Methodology

We ask participants to create an input query sketch given the name of a cate-
gory only (e.g., ‘airplane’), without providing an example rendering. This setup
is designed to closely resemble how novel users would use a retrieval system.
We expect users to only have a rough model of what they wish to find in mind
rather than having an example 3d model at hand that the drawing could be
based on. We emphasize that the sketch should be clearly recognizable for
other humans.

We perform the experiment on Amazon Mechanical Turk using the ex-
perimental setup described in Section 3.1. We ask for all categories that are
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Figure 3.5: Subsets of the sketches gathered for the sketch-based 3d shape
retrieval benchmark. Each sketch corresponds to a specific category (first col-
umn) from the Princeton Shape Benchmark [Shilane et al. 2004]. Last column:
examples of corresponding 3d shapes from the same category. Note that we did
not show the 3d renderings to the participants of the experiment.

defined in the Princeton Shape Benchmark (PSB) [Shilane et al. 2004] and
gather sketches for all models in the PSB (i.e. 1,814 sketches). There is no
direct association between sketches and models but rather between sketch cat-
egory and model category. For example, the PSB contains 35 models for the
category ‘helicopter’ and we also gather 35 sketches falling into this category.
We later exploit this association to define a benchmark for 3d shape retrieval.

Analysis of Sketches

The majority of sketches makes use of more complex lines than just simple
silhouettes and virtually no sketch consists of simple closed boundary curves,
see for example the sketches in Figure 3.5. This clearly motivates developing
systems for 3d shape retrieval that support arbitrarily complex sketches such
as the one presented in Chapter 7.

Also, as expected, sketches show strong abstraction, local and global defor-
mations with respect to the real shape, as well as perspective errors. We can
confirm the result from Funkhouser et al. [2003]: users mostly sketch objects
from a simple side or frontal view. Simple objects such as a table however often
tend to be drawn in perspective (82.6% in our experiments), although typically
with significant perspective error.
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Chapter 4

Human Sketch Recognition

We analyze human sketch recognition performance based on the dataset of
20,000 object sketches gathered in Chapter 3. Our basic questions are the
following: given a sketch, what is the accuracy with which humans correctly
identify its category? Are some categories easier or more difficult to discern
than others? To provide answers to these questions, we perform a second
large-scale, crowd-sourced study (again using Amazon Mechanical Turk) in
which we ask participants to identify the category of query sketches. This test
provides us with an important human baseline which we later compare against
our computational recognition method. We invite the reader to try this test
on the sketches shown in Figure 1.1: can you correctly identify all categories
and solve the riddle hidden in this figure?

4.1 Experimental Setup

Given a random sketch, we ask participants to select the best fitting category
from the set of 250 object categories. We give workers unlimited time, although
workers are naturally incentivized to work quickly for greater pay. To avoid
the frustration of scrolling through a list of 250 categories for each query, we
roughly follow Xiao et al. [2010] and organize the categories in an intuitive
3-level hierarchy, containing 6 top-level and 27 second-level categories such as
‘animals’, ‘buildings’ and ‘musical instruments’. The hierarchy we use is over
complete where appropriate (a given category can appear in more than one
second-level category) in order to make finding the desired category as easy as
possible. For example, ‘apple’ appears both in the second-level category ‘food’
and ‘plants’. We list the complete hierarchy in Table 4.2.

We submit a total of 5,000 HITs to Mechanical Turk, each containing a
unique subset of four sketches from the total set of 20,000 sketches. In each
HIT we ask workers to sequentially identify four sketches from random cat-
egories. This gives us one human classification result for each of the 20,000
sketches. We include several sketches per HIT to prevent workers from skip-
ping tasks that contain ‘difficult’ sketches based on AMT preview functions as
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4. Human Sketch Recognition

Figure 4.1: Hierarchical selection menu for human sketch recognition exper-
iment. Left: sketch to be classified. Right: hierarchical selection menu from
which participants have to choose the “correct” category for the sketch.
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Figure 4.2: Scatter plot of per-worker sketch recognition performance. Solid
(green) dots represent single, unique workers and give their average classifica-
tion accuracy (y-axis) at the number of sketches they classified (x-axis). Out-
lined (blue) dots represent overall average accuracy of all workers that have
worked on more than the number of sketches indicated on the x-axis.

this would artificially inflate the accuracy of certain workers. In order to mea-
sure performance from many participants, we limit the maximum paid HITs
to 100 per worker, i.e. 400 sketches. (However, three workers did 101, 101 and
119 HITs, respectively. This causes the drop in accuracy in Figure 4.2).

4.2 Human Classification Results

Humans recognize on average 73.1% percent of all sketches correctly. We ob-
serve a large variance over the categories: while all participants correctly iden-
tified all instances of ‘t-shirt’, the ‘seagull’ category was only recognized 2.5%
of the time. We visualize the categories with highest human recognition perfor-
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t-shirt snake comb flower eyeglasses

100% 99% 99% 99%  98%

elephant

 98%
leaf

98%

sun

98%

wrist-watch pineapple trousers ladder

96% 96% 96% 96%
apple airplane butterfly umbrella chair key

96% 96% 96% 96% 95% 95%

Figure 4.3: Representative sketches from 18 categories with highest human
category recognition rate (bottom right corner of each cell, in percent).

seagull panda armchair tire ashtray

2.5% 11% 13% 21%  24%

snowboard

 25%
flying bird

47%

bear

44%

chair wheel cigarette skateboard

89% 44% 30% 32%
standing bird teddy bear couch donut bowl knife

24% 30% 3% 16% 15% 7%
pigeon

14% 8% 1% 6% 11% 3%

dog bench fan bathtub canoe

Figure 4.4: Top row: six most difficult classes for human recognition. E.g.,
only 2.5% of all seagull sketches are correctly identified as such by humans.
Instead, humans often mistake sketches belonging to the classes shown in the
rows below as seagulls. Out of all sketches confused with seagull, 47% belong to
flying bird, 24% to standing bird and 14% to pigeon. The remaining 15% (not
shown in this figure) are distributed over various other classes.

mance in Figure 4.3 and those with lowest performance in Figure 4.4 (along with
the most confusing categories). Human errors are usually confusions between
semantically similar categories (e.g., ‘panda’ and ‘bear’), although geometric
similarity accounts for some errors (e.g., ‘tire’ and ‘donut’).

If we assume that it takes participants a while to learn our taxonomy and
hierarchy of objects, we would expect that workers who have done more HITs
are more accurate. However, this effect is not very pronounced in our exper-
iments — if we remove all results from workers that have done less than 40
sketches, the accuracy of the remaining workers rises slightly to 73.9%. This
suggests that there are no strong learning effects for this task. We visualize the
accuracy of each single worker as well as the overall accuracy when gradually
removing workers that have classified less than a certain number of sketches
in Figure 4.2.
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4. Human Sketch Recognition

Table 4.1: Hierarchy of categories for human sketch recognition experiment.

animals animal (air) bee, butterfly, dragon, duck, feather,
flying bird, mosquito, owl, parrot, pi-
geon, standing bird, swan

animal (ground, a–m) ant, bear, camel, cat, cow, crocodile,
dog, dragon, elephant, frog, giraffe,
hedgehog, horse, kangaroo, lion, mon-
key, mouse

animal (ground, n–z) panda, penguin, pig, rabbit, rooster,
scorpion, sea turtle, sheep, snail,
snake, spider, squirrel, standing bird,
teddy-bear, tiger, zebra

animal (water) crab, crocodile, dolphin, duck, fish,
frog, lobster, octopus, penguin, sea
turtle, seagull, shark, swan

buildings, home, office around the house bench, door, door handle, fire hy-
drant, ladder, mailbox, satellite dish,
wheelbarrow

bathroom bathtub, comb, toilet, toothbrush

buildings barn, bridge, castle, church, house,
skyscraper, tent, windmill

electronics, computers alarm clock, calculator, camera, cell
phone, computer monitor, computer-
mouse, fan, head-phones, ipod, key-
board, laptop, lightbulb, power outlet,
radio, telephone, tv, walkie talkie

furniture, decor (a–c) armchair, ashtray, basket, bed, bench,
bookshelf, cabinet, candle, chair,
chandelier, couch

furniture, decor (d–z) door, door handle, fan, floor lamp,
hourglass, lightbulb, power outlet, ta-
ble, tablelamp, vase

hand tools axe, bottle opener, flashlight, ham-
mer, ladder, scissors, screwdriver,
shovel, syringe

kitchen, dining basket, beer-mug, bottle opener, bowl,
candle, cup, fork, frying-pan, knife,
lighter, mug, spoon, teacup, teapot,
wine-bottle, wineglass

office, work calculator, computer monitor,
computer-mouse, envelope, key,
microscope, paper clip, pen, stapler,
syringe, telephone

leisure, personal items clothing hat, helmet, shoe, socks, t-shirt,
trousers

fun book, cigarette, feather, pipe (for
smoking), present, snowman, sponge
bob

musical instruments bell, guitar, harp, piano, saxophone,
trombone, trumpet, violin

personal accessoires backpack, binoculars, cigarette, comb,
crown, diamond, eyeglasses, key,
lighter, pen, purse, suitcase, umbrella,
wrist-watch

sports backpack, baseball bat, bicycle, binoc-
ulars, boomerang, canoe, parachute,
rollerblades, skateboard, snowboard,
tennis-racket, tent
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4.3. Discussion

nature, body, food food (a–i) apple, banana, bread, cake, carrot, crab,
donut, fish, grapes, hamburger, hot-dog,
ice-cream-cone

food (j–z) lobster, mushroom, pear, pineapple,
pizza, pretzel, strawberry, tomato

human body arm, brain, ear, eye, face, foot, hand,
head, human-skeleton, mouth, nose, per-
son sitting, person walking, skull, tooth

plants apple, banana, bush, cactus, carrot,
flower with stem, grapes, leaf, mushroom,
palm tree, potted plant, pumpkin, tree

the skies cloud, moon, rainbow, sun

sound, figures, weapons human-like figure angel, mermaid, santa claus, snowman,
sponge bob, teddy-bear

sound bell, head-phones, ipod, loudspeaker,
megaphone, microphone, radio

weapons axe, cannon, grenade, knife, revolver, ri-
fle, sword

vehicles, traffic traffic parking meter, streetlight, tire, traffic
light, wheel

vehicle (air) airplane, blimp, flying saucer, helicopter,
hot air balloon, satellite, space shuttle

vehicle (ground) bicycle, bulldozer, bus, car (sedan), crane
(machine), motorbike, pickup truck, race
car, suv, tire, tractor, train, truck, van,
wheel, wheelbarrow

vehicle (water) canoe, sailboat, ship, speed-boat, subma-
rine

4.3 Discussion

Overall, we find that humans identify the categories of 73.1% of 20,000 sketches
correctly. We also find that some categories in our set are particularly hard to
discern (e.g., ‘seagull’ vs. ‘pigeon’). This can be due to a number of reasons:
in the first experiment (Section 3.2), when asking workers to draw sketches,
these sketches can be of arbitrarily poor artistic value making differentiation
between two categories indeed virtually impossible. Second, we hypothesize
that workers are sometimes “lazy” and happily accept the first choice in the hi-
erarchical selection menu (Figure 4.1) that appears reasonable without looking
for further, potentially more appropriate options.

In the experiments we ran on AMT, we did not provide direct incentives
for workers to achieve maximum recognition rate. Rather, the incentive was
to complete the task as quickly as possible. In conclusion, we thus hypothesize
that the human sketch recognition rate of 73.1% is a lower bound to the actual
maximally possible recognition rate.

29





Chapter 5

Sketch Representation

We describe two novel methods for computing a sketch representation suitable
for efficiently and effectively determining similarity between two sketches. One
would expect that a “good” feature transform produces similar features (un-
der a given distance metric) when two sketches are perceptually close. From
analyzing the sketch datasets in Chapter 3 we know that humans use a large
variety of sketching styles even within a single category. The challenge is to
define a sketch representation that ideally is invariant to the variety of styles
within categories but produces clearly distinct features for sketches from dif-
ferent categories. Finally, given the representation, assessing similarity should
be simple and computationally efficient in order to facilitate interactivity in
applications. This excludes alternative approaches which use a simpler repre-
sentation in combination with a more involved distance metric [Rubner et al.
2000]. Instead, in this thesis, we opt to utilize the former method (complex fea-
ture transform with a simpler metric) as this lets us shift most of the required
computational resources into an offline pre-processing step, making the simi-
larity query performed at runtime very efficient. As a result, all applications
proposed in this thesis are interactive.

A sketch’s (possibly downscaled) bitmap representation can be seen as a
simple feature transform. Such a feature transform is known (for the case of
natural images) to work well when the number of images in the dataset lies in
the order of tens of millions [Torralba et al. 2008a]. For our much smaller collec-
tions, such a representation works poorly in our experiments (see Figure A.1).
Instead we adopt methods from computer vision and represent sketches using
local feature vectors that encode distributions of image properties [Squire et al.
2000; Sivic and Zisserman 2003]. Specifically, both representations encode the
distribution of line orientation within a small local region of a sketch. The bin-
ning process during construction of the local distribution histograms facilitates
better invariance to slight offsets in orientation compared to directly encoding
pixel values. The representations differ only in how orientation is estimated
but share the remaining feature construction pipeline.
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5. Sketch Representation

5.1 Overview

In the remainder of this thesis, we use the following notational conventions:
k denotes a scalar value, h a column vector, S a matrix and V a set. We
consider a sketch S as a bitmap image, with S ∈ Rm×n. While the datasets
from Chapter 3 are inherently vector-valued, a bitmap-based approach is more
general: vector representations are easily rasterized into a bitmap but existing
bitmap representations cannot be easily converted into a vector representation.
We later exploit this generality of our approach to perform computational
sketch recognition on ancient cave paintings (Figure 6.8).

An ideal sketch representation for our purposes is invariant to irrelevant
features (e.g., scale, translation and local deformations), discriminative between
categories, and compact. More formally, we are looking for a feature space
transform that maps a sketch bitmap to a lower-dimensional representation x ∈
Rd, i.e. a mapping f : Rm×n → Rd with (typically) d� mn. In the remainder
of this thesis we call the resulting representation x either a feature vector or
a descriptor. Ideally, the mapping f preserves the information necessary for x
to be distinguished from all sketches in other categories.

Our representations build on local image descriptors that encode image con-
tent within small local regions of a sketch. To balance accuracy and efficiency,
local image regions are commonly represented as descriptors that encode only
the information that is essential for retrieval or recognition (rather than using
the original bitmap data within that area). Successful representations often
capitalize on the distribution of the value of interest, such as the SIFT and
SURF descriptor [Lowe 2004; Bay et al. 2006]. Another popular approach for
designing a descriptor is to perform a change of basis, such that the original
data can be faithfully represented using only a sparse set of basis elements.
The Fourier basis as well as the Wavelet basis [Jacobs et al. 1995] are likely
the most commonly used basis transformations. These transformations are not
optimal for our type of data, i.e. elongated lines on a constant background.
The Curvelet basis is the maximally sparse representation for such data [Can-
dès and Donoho 1999] and, consequently, we design our representations based
on ideas taken from this transformation. In the context of feature representa-
tion, we relax the requirement of the transformation being a basis (we never
want to reconstruct the sketch from its descriptor). We thus approximate ideas
from the Curvelet transform — using filters that respond only to image ele-
ments with given frequency and orientation — to yield our new feature space
transform based on Gaussian derivative filters and Gabor filters.

In the following sections, we describe those two novel feature transforms.
They are both explicitly designed for sketches and exhibit the desired invari-
ance properties. For both transforms, we achieve global scale and translation
invariance by isotropically rescaling each sketch such that the longest side of
its bounding box has a fixed length (scale invariance) and centering each in a
256× 256 image (global translation invariance).

Both transforms first estimate orientations of sketch lines (Section 5.2 and
Section 5.3) and then encode a sketch as a set of local features, each of which
encodes a sketch’s content within a (small) rectangular region (Section 5.4).
Those local feature definitions form the basis for the final quantization step
that is shared by both transforms (Section 5.6). This quantization step has
seen a lot of success in the computer vision literature to generate (parts of the)
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5.2. SHOG: Local Histograms of Oriented Gradients
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Figure 5.1: Gaussian derivative filter ∂G(x, y)/∂x using σ = 1: a) spatial
domain, b) frequency domain.

features for tasks such as object based image retrieval [Sivic and Zisserman
2003; Nister and Stewenius 2006; Chum et al. 2007], object recognition [Zhang
et al. 2007; Ommer and Buhmann 2010] and scene recognition [Xiao et al. 2010]
and proves to be valuable for sketch recognition as well.

5.2 SHOG: Local Histograms of Oriented Gradients

We define a feature transform that estimates orientation of sketch lines based
on the results of applying a 2d Gaussian derivative filter to the sketch (see Fig-
ure 5.1). The idea is to convolve the sketch with the x and y partial derivatives
of a Gaussian to get a reliable estimate of the gradient of the sketch. Using
the gradient, we can eventually compute orientations.

A 2d normalized Gaussian filter is defined as

G(x, y) =
1

2πσ2
exp(−x

2 + y2

2σ2
) (5.1)

and its partial derivatives as

∂G(x, y)/∂x = −x/σ2G(x, y) (5.2)

∂G(x, y)/∂y = −y/σ2G(x, y) (5.3)

We write gxy = ∇Sxy for the gradient of S at coordinate (x, y) and oxy ∈
[0, π) for its orientation. We compute the gradient of a sketch by convolution
(denoted by ∗) with the two partial Gaussian derivatives filter:

gxy =

(
∂G(x, y)/∂x ∗ S
∂G(x, y)/∂y ∗ S

)
(5.4)

We now compute orientation oxy ∈ [0, π) as

oxy = arccos [(gy/‖g‖) sgn (gx)] (5.5)

We skip computing orientations for coordinates where ‖g‖ = 0. We coarsely
bin ‖g‖ into k orientation bins according to o, linearly interpolating into the
neighboring bins to avoid sharp energy changes at bin borders. We define
neighborhood circularly, such that a fraction of the energy that is added to the
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Figure 5.2: Gabor filter: a) spatial domain, b) frequency domain. Parame-
ters: σx = 5, σy = 10, ω0 = 0.1,Θ = π/4

last orientation bin is also added to the first orientation bin. This results in k
orientational response images Ri, each encoding the fraction of orientational
energy of sketch lines at a given discrete orientation value and pixel coordinate.

5.3 GALIF: Gabor Local Line-Based Feature

The GALIF feature transform performs orientation estimation using a bank
of Gabor filters [Gabor 1946]. A Gabor filter bank is known to be optimal
in the sense of achieving maximal joint resolution in the 2d spatial as well
as 2d frequency domain [Daugman 1985]. Intuitively speaking, a Gabor filter
is optimal to locate a feature with high spatial precision while at the same
time exactly measuring its orientation/frequency. There is strong experimental
evidence that receptive fields in the visual system of mammalians are well
described by 2d Gabor filters with appropriate parameters [Jones and Palmer
1987] and Daugman [1985] concludes that

“There is a division of labor among simple cells for the resolution
of information along the different axes of information hyperspace,
some cells, for example, favoring orientation selectivity at the ex-
pense of spatial resolution in one direction, and so on.”

Gabor-like basis functions also naturally emerge when sparse coding natural
images [Olsen et al. 2009]. This motivates mimicking nature and developing a
feature transform based on Gabor filters for encoding human sketches. Instead
of fixing the parameters of the underlying filter bank a priori, we optimize them
for the task at hand (see Section 7.9).

Gabor Filter

A Gabor filter in the frequency domain is defined as:

g(u, v) = exp
(
−2π2

(
(uΘ − ω0)2σ2

x + v2
Θσ

2
y

))
(5.6)

where (uΘ, vΘ) = RΘ (u, v)
T is the standard coordinate system rotated by angle

Θ. A Gabor filter can be tuned according to several parameters:
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5.4. Extracting Local Features

ω0 : peak response frequency
Θ : filter orientation
σx : frequency bandwidth
σy : angular bandwidth

We visualize such a filter with its corresponding parameters in Figure 5.2.
Note that in the frequency domain the filter is simply a Gaussian (Figure 5.2).
Multiplication with the sketch in the frequency domain “masks” all content
that does not have the filter’s frequency and orientation. The filter responds
only to a subset of the lines in a sketch. The feature transform we propose is
based on a set of Gabor filters (filter bank) that all share the same parameters,
except orientation.

Orientation-Selective Filter Bank

To compute our feature space transform, we define a filter bank of Gabor
functions gi with k different orientations (and all other parameters fixed). We
then convolve the sketch with the Gabor functions from the filter bank to yield
a set of filter response images

Ri = ‖idft(gi ∗ dft(I))‖ (5.7)

where I is the input sketch, ∗ denotes point-wise multiplication and idft and
dft denote the inverse/forward discrete Fourier transform (see Figure 5.3a,b for
a visualization).

Note that σy determines the amount of overlap between filters gi — de-
pending on the number of orientations in the filter bank. We do not manually
fix this value but instead optimize it in Section 7.9 such that we achieve op-
timal retrieval results. Given the number of orientations k we define the Θ’s
used for the filterbank as Θ ∈ {0, π/k, . . . , (k − 1)π/k}.

5.4 Extracting Local Features

Both the SHOG and GALIF feature transform result in a set of response im-
ages Ri that encode how much energy a pixel contains at a certain discrete
orientation. The two feature transforms differ in how these orientation images
are computed, but given the response images they share the same remaining
local feature extraction pipeline.

Given a coordinate in image space we consider a regular decomposition of
the response images’ area around this coordinate into n×n cells Cst. In prelim-
inary experiments, we found this approach to work at least as well as random
sampling which in turn has proven superior to keypoint detection [Nowak et al.
2006]. We call the area around a keypoint a “local image patch” and call n the
“number of tiles” (see Figure 5.3b,c). We say (x, y) ∈ Cst if the pixel with coor-
dinates x and y is contained in the cell with index (s, t). To achieve invariance
of image size, we define the area covered by a local patch (we call this feature
size) relative to image area: a feature size of 0.075 means that the local patch
covers 7.5% of the image area.
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Figure 5.3: GALIF feature extraction pipeline: a) we convolve the input sketch
I with a filter bank of differently oriented Gabor filters gi to yield b) response
images Ri. The average responses c) within cells of a local patch form d) a
local feature vector F . The Gabor filters are shown in the spatial domain for
visualization purposes.

We now define a local descriptor d as a k × n × n feature vector. In each
dimension, d stores the average filter response within a cell Cst for orientation i:

d(s, t, i) =
∑

(x,y)∈Cst

Ri(x, y). (5.8)

When inserting a value into d, we perform bilinear interpolation in the spatial
domain.

We discard features that do not contain sketch lines and finally normalize
such that ‖d‖2 = 1. This results in a representation that is closely related
to the one used for SIFT [Lowe 2004] but stores orientations only [Eitz et al.
2011a]. We visualize the complete local feature extraction pipeline for the
GALIF descriptor in Figure 5.3. The pipeline for the SHOG descriptor is
similar, only computation of the response images differs.

A typical local feature vector resulting from this pipeline is 64-dimensional,
using 4×4 spatial bins and 4 orientational bins. We evaluate how varying these
parameters influences retrieval performance in Section 7.9.

Local Feature Size and Sampling

While in computer vision applications the size of local patches used to analyze
photographs is often quite small (e.g., 16 × 16 pixels [Lazebnik et al. 2006]),
sketches contain little information at that scale and larger patch sizes are re-
quired for an effective representation. In our case, we typically use local patches
covering an area of around 5% to 25% of the size of S.

We use 32 × 32 = 1, 024 regularly spaced sample points in S and extract
a local feature d for each point. The resulting representation is a so-called
bag-of-features D = {di} where a sketch is represented as a large number of
local features di that encode local orientation estimates but do not carry any
information about their spatial location in the sketch.
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Figure 5.4: 1d example of fast histogram construction. The total energy in
histogram bin i corresponds to (f ? t)(xi) where xi is the center of bin i.

Accelerating Feature Extraction

Due to the relatively large patch sizes we use, the regions covered by the local
features significantly overlap and each single pixel gets binned into about 100
distinct histograms. As this requires many image/histogram accesses, this
operation can be quite slow.

We speed up building the local descriptors by observing that the total
energy accumulated in a single spatial histogram bin (using linear interpolation)
is proportional to the convolution of the local image area with a 2d tent function
having an extent of two times bin-width. We illustrate this property for the
1d case in Figure 5.4. As a consequence, before creating spatial histograms,
we first convolve the response images R1...k with the corresponding function
(which we in turn speed up using the FFT). Filling a histogram bin is now
reduced to a single lookup of the response at the center of each bin. This
lets us efficiently extract a large number of local histograms which will be an
important property later in this thesis.

In the following, we build a more compact representation by quantizing
local features against a visual vocabulary [Zhu et al. 2000; Sivic and Zisserman
2003].

5.5 Building a Visual Vocabulary

The space of possible local features is huge. For example, a 64-dimensional
feature vector has 25664 unique instances (each dimension encoded using eight
bits). However, the space of natural features (i.e. those appearing in actual
human sketches) is presumably much more sparsely populated. Additionally,
many of the natural local features form perceptually similar clusters. This is a
result of human invariance to certain image properties making image patches
corresponding to slightly different features vectors appear visually identical.

These two properties (sparseness and perceptual similarity) are exploited
when constructing a visual vocabulary. Intuitively speaking, a visual vocab-
ulary is the visual equivalent to a vocabulary in a natural language: the ele-
ments (visual words) correspond to words in a language and we can (hopefully)
discriminatively represent any sketch using just these visual words. A visual
vocabulary is always a model of the space of local features and as such, very
naturally, information is lost. In the ideal case, when the information lost cor-
responds exactly to the invariance properties of the human visual system, this
information loss can even be desirable.
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5. Sketch Representation

The key idea for constructing such a visual vocabulary is to identify a suf-
ficiently small set of visual words that reasonably represent the original local
features sampled from a training dataset [Sivic and Zisserman 2003]. Identify-
ing good representatives is typically achieved by some sort of clustering. Visual
words are typically sampled from the local feature space (i.e. in the case of a
64-dimensional space a visual word is 64-dimensional as well) and are typically
selected as instances from a training dataset of local features.

It is often difficult to formalize criteria for constructing an optimal visual
vocabulary as its quality can typically only be measure indirectly in terms of
its influence on retrieval performance or classification accuracy. Consequently,
a variety of strategies for constructing visual vocabularies have been proposed,
for example based on k-means clustering [Leung and Malik 2001; Sivic and
Zisserman 2003; Csurka et al. 2004; Wu et al. 2009], more general Gaussian
mixture models [Winn et al. 2005; Li et al. 2011; Chatfield et al. 2011] or based
on a vocabulary tree generated using hierarchical k-means clustering [Nister
and Stewenius 2006; Agarwal et al. 2009]. Given an existing vocabulary, Cai et
al. [2010] show how to learn optimized weights for codebooks such that images
within a category achieve a larger similarity measure than across categories.

A final, additional criteria for constructing visual vocabularies is computa-
tional efficiency, which can become an important factor when computing large
vocabularies from large training datasets [Nister and Stewenius 2006; Philbin
et al. 2007; Boix et al. 2012; Avrithis and Kalantidis 2012].

Our Approach

We follow the baseline approach of [Sivic and Zisserman 2003]: using a training
set of n local descriptors {d} randomly sampled from our dataset of sketches,
we construct a visual vocabulary using k-means clustering [Lloyd 1982], which
partitions the descriptors into k disjunct clusters Ci. More specifically, we
define our visual vocabulary V = {µi} to be the set of vectors resulting from
minimizing

V = arg min
{µi}

k∑
i=1

∑
dj∈Ci

‖dj − µi‖
2 (5.9)

with
µi = 1/ |Ci|

∑
dj∈Ci

dj . (5.10)

Each cluster center µi forms one visual word and those are the basis for com-
puting the final representation of a sketch which we describe in the following
section.

5.6 Quantizing Features

Given a visual vocabulary, the local features extracted from a sketch are quan-
tized against the vocabulary, identifying the visual words contained in the
sketch. Given this information, a sketch is encoded as its frequency histogram
of visual words [Sivic and Zisserman 2003], potentially applying some spa-
tial pooling strategies to add back spatial information into the representation
[Lazebnik et al. 2006].
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5.6. Quantizing Features

Quantization of a local feature is typically achieved using hard assignment
to the best-matching nearest neighbor in the visual vocabulary [Sivic and Zis-
serman 2003], using probabilistic distance measures [van Gemert et al. 2008,
2010; Philbin et al. 2008; Chatfield et al. 2011; Li et al. 2011] or, more re-
cently, using sparse coding approaches where each local feature is represented
as a sparse linear combination of visual words [Yang et al. 2009, 2010b,a; Boix
et al. 2012]

We adopt those strategies and represent a sketch as a frequency histogram
of visual words h — this is the final representation we use throughout this
thesis. As a baseline we use a standard histogram of visual words using a
“hard” assignment of local features to visual words [Sivic and Zisserman 2003].
We compare this to using “soft” kernel-codebook coding for constructing the
histograms [van Gemert et al. 2008; Philbin et al. 2008; Chatfield et al. 2011].

Hard Quantization

We represent a sketch as histogram of visual word frequency. We compute
visual words by hard assignment (quantization) to an entry in the visual vo-
cabulary V. We quantize a local feature d ∈ D by finding the entry in the visual
vocabulary with smallest Euclidean distance, representing it as the index q(d)
of the closest visual word [Sivic and Zisserman 2003].

In particular, we define the entries hj of the final histogram of visual words
h as:

hj = |{q(d) = j}| . (5.11)

where q(d) is a scalar function that returns the index of the closest cluster
center µ in the visual vocabulary:

q(d) = arg min
j

∥∥µj − d
∥∥ . (5.12)

Soft Quantization

The idea behind kernel codebook coding (we also call this soft quantization in
this thesis) is that a feature vector may be equally close to multiple visual words
but this information cannot be captured in the case of hard quantization [van
Gemert et al. 2008; Philbin et al. 2008; Chatfield et al. 2011; Liu et al. 2011].
Following these ideas we use a kernelized distance between descriptors that
encodes weighted distances to all visual words — with a rapid falloff for distant
visual words. More specifically, we define our histogram h as:

h(D) =
1

|D|
∑
di∈D

q(di)/ ‖q(di)‖1 (5.13)

where q(d) is a vector-valued quantization function that quantizes a local de-
scriptor d against the visual vocabulary V:

q(d) = [K(d,µ1), . . . ,K(d,µk)]
T
. (5.14)

We use a Gaussian kernel to measure distances between samples, i.e.

K(d,µ) = exp(−‖d− µ‖2 /2σ2). (5.15)
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5. Sketch Representation

Note that in Equation 5.13 we normalize h by the number of samples. As a
result, the representation is not sensitive to the total amount of local features in
a sketch, but rather to local structure and orientation of lines. We use σ = 0.1
in our experiments.

5.7 Discussion

Both feature transforms are intimately related: they both rely on the concept
of estimating orientation of sketched feature lines and encoding the distribution
of orientation within small local regions. The feature transforms differ in how
the orientation estimation is performed, i.e. using a Gaussian derivative filter
in case of the SHOG descriptor and a bank of Gabor filters in case of the
GALIF feature. While the SHOG transform is governed by only a single filter
parameter (standard deviation of the Gaussian filter), the GALIF transform
offers more flexibility and us such allows us to carefully tune its parameters to
achieve optimal results for sketches. We carefully evaluate in Chapter 7 if this
additional flexibility can be exploited to yield a superior representation.

Interestingly, higher order Gaussian derivative filters appear visually quite
similar to Gabor kernels (with important theoretical differences) [ter Haar Romeny
2003]. We only use a first order Gaussian derivative filter for the SHOG trans-
form but will analyze later if this is already enough to yield a good represen-
tation. The GALIF feature transform is related to the successful global GIST
descriptor [Oliva and Torralba 2001]: it also uses a bank of Gabor filters to
estimate content orientation at a certain frequency but at a single frequency
only and encodes the result using a large number of local descriptors rather
than a single global one.
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Chapter 6

Computational Sketch Recognition

Sketching as a means of human communication is astonishingly universal across
culture and time: even after tens of thousands of years, we can still easily
recognize the ancient cave paintings depicted in Figure 1.2. Sketching is also
universally used as a means to quickly visualize design ideas, for example, in
the movie, automotive and fashion industry as well as in architecture.

A natural question arises from this: can we make computers understand
sketches as reliably and effortlessly as humans do? This task is extremely
challenging as sketching skills vary a lot among the general population. Some
drawings can be extremely abstract and far from the original (see Chapter 3).
Additionally, instances of the same object can be visually quite dissimilar but
need to be reliably identified as belonging to the same category.

In the existing literature, computational sketch recognition has so far only
been studied in very structured domains such as electric circuit diagrams [Sez-
gin and Davis 2008] or molecular diagrams [Ouyang and Davis 2011] where
impressive recognition results have been achieved. Instead, we are interested
in making computers understand unstructured sketches of ideally any objects
from our visual world such as ‘cars’, ‘tables’ and ‘horses’.

In case reliable computational sketch recognition at the level of human
accuracy was possible this would enable a multitude of applications:

• Sketching as a means of interacting with computers for hundreds of mil-
lions of illiterate people.

• Improved sketch-based visual search [Chalechale et al. 2005; Eitz et al.
2011a] in cases where shape is more descriptive than keywords.

• Image synthesis applications such as Sketch2Photo [Chen et al. 2009],
PhotoSketcher [Eitz et al. 2011b] ShadowDraw [Lee et al. 2011] and Help-
ingHand [Lu et al. 2012] could potentially benefit from semantic under-
standing of a sketch to achieve better synthesis results.

• Semantic understanding could lead to better sketch-based 3d modeling
tools [Igarashi et al. 1999; Karpenko and Hughes 2006; Nealen et al. 2007],
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6. Computational Sketch Recognition

for example by using the automatically computed semantic information
to search for priors for the model being created.

6.1 Models

To achieve generalization to unseen instances, we opt to use state of the art su-
pervised machine learning techniques to learn models for computational sketch
recognition. As a baseline technique, we employ standard k-nearest-neighbor
(kNN) classification which is fast, easy to implement, and does not require an
explicit training step. We compare this to multi-class support vector machines
(SVM), a popular and effective supervised learning technique [Schölkopf and
Smola 2002]. All classification algorithms are trained using the dataset from
Chapter 3 and operate in the feature space described in Chapter 5.

Nearest-Neighbor Classification

Given a histogram h we find its k nearest neighbors (kNN) in feature space
using a distance function d. We classify h as belonging to the category that
the majority of k nearest neighbors belongs to [Cover and Hart 1967]. In case
of ties (i.e. when two or more classes receive exactly the same number of votes)
we classify h according to its nearest neighbor from the tied groups. The kNN
approach is particularly fast, as it does not require an initial training step.

SVM Classification

We train binary SVM classifiers [Schölkopf and Smola 2002] to make the fol-
lowing decision: does a sketch belong to category i or does it rather belong to
any of the remaining categories? We say cat(h) = i to denote that the sketch
corresponding to histogram h belongs to category i. More specifically, for each
category i we learn a classifier function

ci(h) =
∑
j

αi
jK(sij ,h) + bi (6.1)

with support vectors sj , weights αj and bias b determined during the SVM
training phase. In particular, we use the SMO algorithm for training SVMs
[Platt 1998]. As before, K(·, ·) is a kernel (in our experiments, Gaussian) that
measures similarity between a support vector and the histogram h that we wish
to classify. Given a training dataset, we use the sketches from category i as
the positive examples and all the remaining sketches as the negative examples.

SVMs are inherently binary classifiers but we wish to distinguish 250 cate-
gories from each other. We train 250 classifiers — one for each category, each
able to discern its category from the union of the remaining categories (one-
vs-all approach). To decide cat(h) we classify a sketch as belonging to the
category that yields the largest classification response, i.e.

cat(h) = arg max
i=1,...,250

ci(h). (6.2)
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6.2. Recognition Experiments

6.2 Recognition Experiments

In this section we determine the best parameters for computational sketch
recognition. In all cases, we train on a subset of the sketches while evaluating on
a disjunct testing set (cross-validation). We always use 3-fold cross-validation:
we partition the respective dataset into three parts, use two parts for training
and the remaining part for testing. We use stratified sampling when creating
the folds to ensure that each subset contains (approximately) the same number
of category instances. We report performance of a model using its accuracy,
averaged over all three folds, i.e. the ratio of correctly classified samples to the
total number of positive samples.

Dataset & Features

We use the complete 250 category dataset described in Chapter 3 and rasterize
each sketch into a grayscale bitmap of size 256 × 256. We extract 28 × 28 =
784 local features sampled on a regular grid from each sketch. We use both
the SHOG feature transform (Section 5.2) and the GALIF feature transform
(Section 5.3) and later evaluate which one is most suitable for the recognition
task.

To create a visual vocabulary, we need to learn from a large number of sam-
ples. For computational reasons, we generate the visual vocabulary V (Equa-
tion 5.9) from a randomly sampled subset of all 20,000 × 784 local features
(we use n = 1,000,000 features). We set the number of visual words in the
vocabulary to 500 as a coarse evaluation indicates good classification rates at
a moderate cost for quantization.

We use hard quantization (Equation 5.11) as well as soft quantization
(Equation 5.13) to compute a histogram of visual words from the local fea-
tures of a sketch and later evaluate which one works best for the task at hand.
Independently of the feature transform (SHOG vs. GALIF) and quantization
method (hard vs. soft), the final representation of a sketch always is a 500-
dimensional histogram of visual words. Before training (and classification), we
normalize the data such that the features are centered at their mean and have
unit standard deviation.

Model Search

Classification performance of both the kNN as well as the SVM classifier can be
quite sensitive to user-chosen model parameters. Therefore we first identify the
best performing model parameters for each case. We perform a standard grid
search over the 2d space of model parameters. For kNN we use k ∈ {1, . . . , 5}
(number of nearest neighbors used for classification) and distance measures d =
{l1, l2, cosine, correlation}. For SVM we use γ ∈ {10, . . . , 100} (the Gaussian
kernel parameter) and C ∈ {1, . . . , 100} (the regularization constant), both
with logarithmic spacing. We use a 1/4 subsample of the whole dataset to
speed-up the search for SVM, for kNN we use the full dataset. Given the
dataset, we measure average accuracy from 3-fold cross validation.

It turns out that both models are indeed quite sensitive to the parameters
chosen: the kNN model with hard quantization performs best when using a
cosine distance metric combined with 5 nearest neighbors to vote for the best
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Figure 6.1: Accuracy of kNN/SVM recognition models using SHOG descriptor
(a – d) and GALIF descriptor (e – f) over a range of model parameters. Note
that for the kNN models we use the full dataset for 3-fold cross-validation, while
for the SVM model we use a 25% subset due to performance reasons.
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6.2. Recognition Experiments

Table 6.1: Best parameters for kNN/SVM computational sketch recognition
models. Note that in this table the SVM model appears to achieve slightly lower
performance than the kNN model because only 1/4 the amount of training data
is used (due to computational reasons).

kNN SVM

k metric accuracy γ C accuracy

SHOG soft 4 l1 0.45 17.8 3.2 0.43
hard 5 cosine 0.38 17.8 10 0.41

GALIF soft 5 l1 0.46 17.8 3.2 0.43
hard 5 cosine 0.40 17.8 1 0.41

category (Figure 6.1a,e). In contrast to that, when using soft quantization, an
l1 distance metric performs significantly better than any other option we tested
for both the SHOG and GALIF descriptor (see Figure 6.1,b,f).

In the case of SVMs, we achieve highest accuracy for γ = 17.8, C = 3.8 and
soft quantization. The SVM model with hard quantization behaves similarly
to changes in parameters as the model using soft quantization, although overall
performance is significantly lower (see Figure 6.1c,g).

The behavior of both the kNN as well as SVM model over the range of
parameters is pretty consistent for both the SHOG as well as GALIF descriptor.
The GALIF descriptor achieves slightly higher overall recognition accuracy in
case of a kNN model while results are virtually identical for a SVM model.
We list the resulting best model parameters in Table 6.1 and use those in the
remainder of this thesis.

Influence of Training Set Size

To identify how the amount of training data influences classification accuracy,
we split the whole dataset into increasingly larger sub-datasets (8, 16, . . . , 80
sketches per category). For each of those sub-datasets, we measure average
3-fold cross-validation accuracy.

We perform the evaluation over dataset size for any combination of clas-
sification model (kNN vs. SVM); feature transform (GALIF vs. SHOG) and
quantization method (hard vs. soft). This results in a total of eight curves
which we visualize in Figure 6.2.

It turns out that computational classification accuracy highly depends on
the number of training instances available. This is to be expected as the
sketches in many categories are highly diverse (see for example the sketches
in the layouts shown in Figure 6.6). The performance gain for larger training
set sizes becomes smaller as we approach the full size of our dataset. This sug-
gests that the dataset is large enough to capture most of the variance within
each category.

Human vs. Computational Classification

A manual inspection of the computational as well as human classification re-
sults reveals that the confusions humans make are often of hierarchical nature:

45



6. Computational Sketch Recognition

0 10 20 30 40 50 60 70 80
0.2

0.25

0.3

0.35

0.4

0.45
0.5

0.55
0.6

ac
cu

ra
cy

dataset size (per category)

kNN soft
kNN hard
SVM soft
SVM hard

a) SHOG b) GALIF

0 10 20 30 40 50 60 70 80
dataset size (per category)

kNN soft
kNN hard
SVM soft
SVM hard

Figure 6.2: Influence of training set size on computational sketch classifica-
tion accuracy for SHOG descriptor (Section 5.2) and GALIF descriptor (Sec-
tion 5.3). All models use best parameters determined using grid search (see
Table 6.1). ‘hard’ and ‘soft’ refer to one nearest-neighbor (Equation 5.11) and
kernel-codebook quantization (Equation 5.13) methods, respectively.

Table 6.2: Average 3-fold cross-validation accuracy of sketch classification
models trained using best performing model parameters (see Table 6.1) using
the full dataset of 20,000 sketches. Due to 3-fold cross-validation the actual
dataset size for training is 13,333 sketches.

SHOG GALIF

hard soft hard soft

kNN 0.38 0.45 0.40 0.46
SVM 0.54 0.56 0.55 0.57

for example, ‘bear’ and ‘teddy bear’ are often confused with ‘panda’ (see Fig-
ure 4.4). We hypothesize that the participants in our experiment were satisfied
once they found a category that matches reasonably well, and may not have
noticed the presence of semantically similar categories in our taxonomy. And,
indeed, computational classification can perform better in such cases: for ‘arm-
chair’ and ‘suv’ the computational model achieves significantly higher accuracy
than humans. To visualize such cases, we show the difference between human
and computational confusion in Figure 6.3 (for the set of categories with overall
lowest human recognition performance).

In Figure 6.4 we compare human to computational sketch recognition accu-
racy for the five sketches with best and the five sketches with lowest computa-
tional recognition accuracy, respectively. We observe that human sketch recog-
nition accuracy can be significantly higher than computational sketch recogni-
tion accuracy for some categories (e.g., 79% vs. 7% for ‘monkey’; 81% vs. 7%
for ‘dog’). This suggests that the quality of the sketch dataset (Chapter 3) is
high enough such that sketches from these categories are indeed discernible for
humans. However, these categories are very challenging for our current models,
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Figure 6.3: Confusion matrix for selected categories showing difference be-
tween human and computational classification performance. Positive (red) en-
tries mean humans are better. We hide the zero-level for clarity.

easy 

computer: 96% 96% 96% 96% 96% 
human: 96% 100% 96% 95% 73% 

difficult 

computer: 7% 7% 11% 11% 14% 
human: 79% 81% 35% 51% 31%

Figure 6.4: Human vs. computational sketch recognition performance. Top
row: sketches with highest computational recognition accuracy. Bottom row:
sketches with lowest overall computation recognition accuracy.

which suggests that even better computational models and features are needed
to achieve accuracy comparable to the human level. Computational classifi-
cation — in the case of a failure — sometimes makes predictions that are far
off from what a human would possibly predict. It seems that despite the large
dataset humans are still much better at generalizing from a smaller number of
samples.
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Computational Classification Summary

Our experiments with computational classification clearly demonstrate that an
SVM model with kernel codebook coding for constructing the histograms is
superior to other methods. A kNN classification performs significantly worse
for this task. Also, for both models and feature transforms, soft quantization
performs significantly better than hard quantization (the difference between
both quantization methods is more pronounced for the kNN model). In the
remainder of this thesis, we exclusively utilize the best performing computa-
tional model (RBF SVM with kernel codebook coding) to implement several
applications.

6.3 Unsupervised Dataset Analysis

In this section we perform an automatic, unsupervised analysis of the sketch
dataset making use of the feature space developed in Chapter 5. In this feature
space each sketch is represented as a 500-dimensional frequency histogram of
visual words h using soft quantization (see Equation 5.13). We would like to
provide answers to the following questions:

• What is the distribution of sketches in the proposed feature space? Ide-
ally, we would find clusters of sketches in this space that clearly represent
our categories, i.e. we would hope to find that features within a category
are close to each other while having large distances to all other features.

• Can we identify iconic sketches that are good representatives of a cate-
gory? Such iconic representatives could “enable effective summarization,
visualization, and browsing” [Raguram and Lazebnik 2008].

• Can we visualize the distribution of sketches in feature space? This would
help build an intuition about the representative power of the feature
transforms developed in Chapter 5.

Mean-Shift Clustering

The feature space we operate in is sparsely populated (only 20,000 points in a
high-dimensional space). This makes clustering in this space a difficult prob-
lem. Efficient methods such as k-means clustering do not give meaningful
clusters as they use rigid, simple distance metrics and require us to define the
number of clusters beforehand. Instead, we use variable-bandwidth mean-shift
clustering with locality sensitive hashing to speed up the underlying nearest-
neighbor search problem [Georgescu et al. 2003]. Adaptive mean-shift estimates
a density function in feature space for each histogram h as:

f(h) =
1

n

n∑
i=1

1

bdi
K
(
‖h− hi‖2 /b2i

)
,

where bi is the bandwidth associated with each point andK is again a Gaussian
kernel. Given this definition, we compute the modes, i.e. the maxima of f by
using an iterative gradient ascent approach. As is standard, we assign all
features h that are mean-shifted close to the same maximum to a common
cluster.
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b) present c) hot-dog d) lion e) potted plant

f) mouse (2 clusters)

a) motorbike

g) flying bird (2 clusters) h) radio (2 clusters)

Figure 6.5: A sample of the representative sketches automatically computed
for each category. Bottom row: categories that produce multiple clusters and
thus more than one representative.

Intra-Category Clustering Analysis

We perform a local analysis of our dataset by independently running adaptive
mean-shift clustering on the descriptors of each individual category. The result-
ing average number of clusters within our 250 categories is 1.39: the sketches
within most categories in our dataset are reasonably self-similar. We can, how-
ever, identify categories with several distinct clusters in feature-space — for
these categories people seem to have more than one iconic representation. We
visualize examples of such categories in the bottom row of Figure 6.5.

Iconic or Representative Sketches

We denote by Ci the set of all descriptors belonging to cluster i. To identify
iconic sketches that might be good representatives of a cluster and thus the
corresponding category, we propose the following strategy: a) compute the
average feature vector ai from all features in that cluster:

ai = 1/ |Ci|
∑
hj∈Ci

hj .

And b) given ai find the closest actual descriptor — our final representative ri
— in that cluster:

ri = arg min
hj∈Ci

‖hj − ai‖2 .

The sketches corresponding to the resulting ri’s are often clear representative
sketches of our categories and we show several examples in Figure 6.5.

Dimensionality Reduction

To visualize the distribution of sketches in the feature space we apply dimen-
sionality reduction to the feature vectors from each category. We seek to reduce
their dimensionality to two dimensions such that we can visualize their distri-
bution in 2d space, see Figure 6.6. Using standard techniques such as PCA
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or multi-dimensional scaling for dimensionality reduction results in crowded
plots: many data points fall close together in the mapped 2d space, resulting
in unhelpful layouts.

Van der Maaten and Hinton [2008] propose t-distributed stochastic neigh-
bor embedding (t-SNE), a dimensionality reduction technique that specifically
addresses this crowding problem: t-SNE computes a mapping of distances in
high-dimensional space to distances in low-dimensional space such that smaller
pairwise distances in high-dimensional space (which would produce the crowd-
ing problem) are mapped to larger distances in 2d while still preserving overall
global distances.

We apply t-SNE to the feature vectors from all categories separately. The
resulting layouts are an intuitive tool for quickly exploring the distinct types
of shapes and drawing styles used by humans to represent a category. Some
of the observed variations are continuous in nature (e.g. sketch complexity),
but others are surprisingly discrete — there tend to be one or two canonical
viewpoints or poses in a given category (see Figure 6.6 for several examples).

6.4 Applications

Computational sketch recognition lets us design several interesting applications.
We build upon on the multi-class support vector sketch recognition engine
(Section 6.1) using the SHOG feature transform and the corresponding best
model parameters (Table 6.1). We train the model on the full dataset of 20,000
sketches (Section 3.2).

Interactive Sketch Recognition

We propose an interactive sketch recognition engine that recognizes human ob-
ject sketches in real-time. After each stroke a user draws, we run the following
recognition pipeline:

1. Extract local features from the sketch (Section 5.4) and quantize them
against the visual vocabulary (Equation 5.13). This gives us a histogram
of visual words h.

2. Classify h using the SVM model (Equation 6.2).

3. Display the top-20 categories with highest scores (rather than simply
displaying the single best category).

The resulting application is highly interactive (about 100 ms for the com-
plete recognition pipeline on a modern computer). Users report that the ap-
plication is fun and intuitive to use. In case the classification is not as ex-
pected or the desired classification does not come up on rank one, we observe
that users explore small modifications of their sketch until the classification
is finally correct. Users are often amazed that even their very first sketch is
correctly recognized — our system supports a large variety of sketching styles
by learning from a large real-world set of sketches. As sketching is very nat-
ural to humans, there is basically no learning required to successfully use our
system. The interactive application works well with either a touchscreen (as
on a tablet) or with a mouse.
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a) fish b) flower with stem

c) wrist watch

d) sheep

e) bus

f) bear

g) fan

Figure 6.6: Automatic layout of sketches generated by applying t-SNE dimen-
sionality reduction [van der Maaten and Hinton 2008] to the feature vectors
within a category.
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b) semantic search
mug teacup

apple pumpkin

bowl beer-mug

a) interactive recognition

Figure 6.7: Applications enabled by semantic sketch recognition: a) stable
interactive recognition that reliably adapts its classification (left column) when
adding additional detail (right column). b) semantic sketch-based image search,
the only input is the sketch on the left.

Recognition is also reasonably stable: as soon as a sketch is close to com-
pletion, oversketching, additional strokes, and even a small number of random
background scribbles typically do not influence the recognition. On the other
hand, if there are only slight differences between two categories, a single stroke
can make all the difference: adding a handle to a mug reliably turns it into
a teacup, sketching vertical indentations on an apple turns it into a pumpkin
(see Figure 6.7).

Semantic Sketch-Based Image Retrieval

Compared to existing sketch-based retrieval approaches [Chalechale et al. 2005;
Eitz et al. 2011a; Shrivastava et al. 2011], we are now able to identify the se-
mantic meaning of what a user sketches — even if the sketch is geometrically far
from its corresponding real-world shape. This is a situation where traditional
sketch-based retrieval engines naturally have problems.

We propose the following extension to sketch-based image retrieval: a) per-
form classification on the user sketch and query a traditional keyword based
search engine using the determined category; b) (optionally) re-order the re-
sulting images according to their geometric similarity to the user sketch. For
step b) we can use any traditional sketch-based search engine. We demonstrate
step a) of this approach on a dataset of 125,000 images downloaded from Google
Images (for each category the top 500 images returned when searching for the
keyword), see Figure 6.7 for an example.

Recognizing Artistic and Historical Sketches

A challenging evaluation for recognition systems is whether the method can
generalize to styles not seen at training time. If sketch representations are
really a universal, shared vocabulary for humans then our algorithm should
be able to recognize existing pictographs from other domains. We present
a limited example of this by running our sketch recognition pipeline on two
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sheep

camel

horse

flying bird camel

Figure 6.8: Computational recognition of artistic/ancient sketches. Predic-
tions by our system are shown along with the corresponding input sketch (correct
predictions are marked with bold font).

famous sets of sketches — animal sketches by Pablo Picasso, and ancient cave
paintings from Lascaux, France (we converted the cave paintings into sketches
by manually tracing their feature lines). Our system predicts the dove, camel
and horse correctly, and the antelope, which is not part of our categories, is
classified as a sheep (see Figure 6.8).

6.5 Discussion

The feature space for sketches proposed in Chapter 5 builds upon the suc-
cessful bag-of-features model. However, this approach also comes with certain
limitations, which we discuss in this section.

Spatial Layout of Strokes

The features do not encode spatial location, although the meaning of cer-
tain features might be dependent on context in the sketch. We experimented
with the well known spatial pyramid representation [Lazebnik et al. 2006] (an
overcomplete hierarchy of bags-of-words) but it did not significantly improve
performance. We hypothesize that better representations of spatial informa-
tion would significantly improve performance, but those representations might
be distinct from the features developed for the image domain. We have not
analyzed if it is advantageous to make features rotation invariant. It appears
this would serve recognition at least for some categories, where sketches are
clearly rotated/reflected versions of each other, see for example Figure 6.6 and
Figure 6.9.

Temporal Information

The raw stroke-based sketch data contains information about the temporal or-
der in which humans have drawn those sketches. The order of strokes seems to
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a) tomato b) giraffe c) potted plant d) wineglass

e) airplane f) ant g) bear h) calculator

Figure 6.9: Temporal order of strokes averaged for all sketches within a cate-
gory. We color-code normalized time, blue: beginning, red: end. In the first row
we show examples that are recognizable even from the average which suggests
that humans are pretty consistent when drawing those objects. In the second
row we show examples that are difficult to recognize from the average because
a variety of different shapes/orientations is used to depict those objects.

be quite consistent for certain types of sketches, see Figure 6.9 for several exam-
ples. Recent research shows that a plausible order can even be automatically
generated [Fu et al. 2011]. In our current representation we do not exploit tem-
poral order of strokes. We have performed initial experiments with descriptors
that additionally encode temporal order but have so far only achieved small
improvements at the cost of a much higher-dimensional representation. Nev-
ertheless, we believe that this is an interesting and fruitful area for further
research. Note that our dataset can be directly exploited for such experiments
as it comes with full temporal information.

Sketch Representation

We have chosen to compute the bag-of-features from rasterized sketches. While
this is general and accurate, there is no generative process to map from the
features back to a sketch. A stroke-based model might be more natural and
facilitate easier synthesis applications such as simplification, beautification, and
even synthesis of novel sketches by mixing existing strokes.
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Chapter 7

Sketch-Based Shape Retrieval

A sketch-based interface for 3d shape retrieval can be essential in situations
where the desired shape is easy to sketch but difficult to describe. For example,
the exact shape of a 3d model of a vase (see Figure 7.2) is difficult to describe
using just a few keywords. Additionally, it is highly unlikely that a collection
is tagged so carefully that each model comes with keywords that accurately
describe its shape.

Our approach for sketch-based retrieval of 3d models is based purely on vi-
sual analysis of the meshes in a collection. This is motivated by the observation
that a large part of our perception of shapes stems from their salient features,
usually captured by dominant lines in their display [Hoffman and Singh 1997].
Recent research on such feature lines has shown that a) people mostly draw the
same lines when asked to depict a certain model, and b) the shape of an object
is well represented by the set of feature lines generated by recent line draw-
ing algorithms [Cole et al. 2009]. Consequently, we suggest an image based
approach for 3d shape retrieval that exploits the similarity between human
sketches and the results of state of the art line drawing algorithms. We make
use of successful techniques from other domains where appropriate and provide
the following novel contributions:

Figure 7.1: A complete scene with objects retrieved using our sketch-based
system in a total time of about two minutes.
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7. Sketch-Based Shape Retrieval

a)

b)

Figure 7.2: Examples of 3d objects that are difficult to describe using just a
few keywords but can be easily sketched: human figures (a) and vases (b). For
both examples it is highly unlikely that each model comes with keywords that
accurately describe its shape.

• A large-scale benchmark for sketch-based retrieval systems. The bench-
mark is based on a real-world dataset of 1,814 sketches gathered from a
large variety of participants in a perceptual experiment. We provide this
dataset as a free resource.

• New feature transforms based on Gaussian derivative filters/a bank of
Gabor filters that are tuned to the requirements of sketch-based shape
retrieval (see Chapter 5). These descriptor outperforms other existing
transformations.

• A general approach to determine optimal parameters for such feature
transformations. We demonstrate that even existing systems can be im-
proved using this approach.

Overall, this leads to a system with high quality retrieval performance as we
demonstrate in an objective evaluation using a large variety of real-world user
sketches. We also demonstrate the power of our system in Figure 7.1 where
we gather all objects for a complete scene in about two minutes. However, we
also find that the real-world dataset of sketches gathered in the experiment is
challenging for current systems. In particular, our dataset reveals that allowing
only closed contour curves for retrieval [Chen et al. 2003] oversimplifies reality:
a large majority of our participants’ sketches contain a substantial amount of
interior lines.

7.1 Overview

We build our retrieval engine upon a bag-of-features (BoF) model [Squire et al.
1999; Sivic and Zisserman 2003], which has become the method of choice for
affine invariant image retrieval. The basic idea of this approach is to compare
images based on a histogram of features. In Chapter 5 we define the represen-
tation we use in detail. For the reader’s convenience we summarize again an
outline of the required steps:

1. Select the location and size of features in the images.
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inverted
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visual 
vocabulary

online query
by sketching

user sketch

local descriptorsline renderings3d model
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for all 3d models
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quantize

quantize

local descriptors

Figure 7.3: Sketch-based 3d shape retrieval pipeline. Our retrieval engine, as
most modern visual search engines relies on features extracted from each shape
represented as a set of numerical values. Those descriptors are then compared
against the ones extracted from the query at search time.

2. Transform the pixel set of the feature into a (usually) smaller dimensional
feature vector.

3. Find the closest match of this vector in a set of predetermined clusters.

4. For the whole image, count the occurrences of cluster matches.

The histogram of cluster matches generates a signature for the image. Com-
pared to the full sketch this signature is low dimensional and facilitates fast
matching. The set of clusters is usually derived by clustering the feature vectors
found in the images of the database.

7.2 View-Based Matching

It is not immediately clear how to use this pipeline for the retrieval of 3d objects
based on queries sketched in 2d. Our main idea in this regard is to generate a
set of 2d sketch-like drawings from the objects for each object in the database.
We argue that there are several reasons to perform matching in 2d rather than
trying to directly align a user sketch to the 3d shape: the input to the system
is 2d and contains large errors which might not even be physically plausible in
3d. Additionally, most sketches depict shapes that are not exactly part of the
database, so a perfect alignment of a view to the sketch is impossible. Finally,
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a)

b)c)

a)

b)

c)

Figure 7.4: View generation pipeline. Left: we place virtual cameras a) – c)
on the bounding sphere of a mesh, looking into the center of the mesh (in prac-
tice we choose a much larger number). Right: this results in the corresponding
line-rendered views a) – c). Choosing random up-vectors for each camera re-
sults in similar views for nearby viewpoints (dots around camera a)), with each
having a different orientation (horses around rendering a)). This approximates
a globally rotation invariant representation.

there is experimental evidence that this resembles how humans recognize 3d
objects [Bülthoff and Edelman 1992].

Matching in 2d turns the problem into a comparison of a single query image
to several two-dimensional projections per object in the database. This general
approach still leaves several design choices for the different steps:

1. for an object, define the set of projection directions

2. for the projection, define a certain line drawing style

3. for a line drawing, define the set of sampling locations

4. for a drawing sample, define the feature transform

The first two items are only necessary in a preprocessing phase, in which we
generate the set of clusters from the database. The database forms a finitely
sized “visual vocabulary” V. This yields a representation for each projection
in the database by a distribution of “visual words” (see Chapter 5 for details
and Figure 7.3 for a visualization). In the query phase, we compute a similar
distribution for the input and compare it against the elements of the database.

In the following sections we describe several details of our search engine.
We lay out different choices for the design and make the final decision on the
best design choice later, based on an evaluation against the sketches gathered
in the experiment (Section 3.3).

7.3 Selecting Views

As we have no a priori knowledge about which viewpoint a user chooses when
sketching an object, it is vital that the underlying retrieval system encodes all
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Figure 7.5: Best-view selection: a) best view probability map predicted by the
SVM model, b) predicted best view, c) user sketch

potential viewpoints. To reduce the set of candidates to a feasible number,
we follow existing approaches [Chen et al. 2003] and only consider views that
result in the complete model being rendered to screen. Specifically, we consider
view directions towards the barycenter of the 3d shape which reduces their
definition to points on a sphere. We randomly choose a camera up-vector for
each viewpoint. Consequently, nearby view-points have different orientations
assigned to them. This approximates a globally rotation-invariant indexing of
the shapes. We visualize this pipeline in Figure 7.4. We evaluate two possible
strategies for selecting the viewpoints:

Uniformly Distributed Views

We generate d uniformly distributed directions on the unit sphere using k-means
clustering. Starting from a highly tessellated triangle mesh of a unit sphere
M = {V ,T }, with V a set of vertices and T a set of triangles, we select
a set S of d random seed vertices among V and perform Lloyd relaxations
iteratively. After convergence, we return the resulting Voronoi cell centers as
the view directions vi. We use d ∈ {7, 22, 52, 102, 202}. The number of samples
d is an important parameter and we determine its optimal value in Section 7.9.

Perceptually Best Views

While a uniform sampling does guarantee that we sample all possible view-
points, it is intuitively clear that humans do not draw them with equal prob-
ability — when sketching a cow, we would probably rather choose a side-view
than a viewpoint from the bottom. We ask if we can exploit this intuition com-
putationally: can we learn a model of viewpoint preference for sketch-based
shape retrieval? We would then only use those views to represent a 3d model
that are likely to be sketched by humans. Compared to a set of densely sampled
viewpoints, our hope is to achieve both faster and better retrieval results:

1. Less views would be needed to represent a shape, this could potentially
speed up the search.

2. We would learn a visual vocabulary only from views that are likely to be
sketched by users — this could lead to a higher quality visual vocabulary
only containing elements that actually get sketched.
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Recent work on viewpoint selection shows that human view preference can
be highly correlated with several simple measures, such as silhouette length
and projected area [Dutagaci et al. 2010; Secord et al. 2011]. We follow those
approaches and make use of the models in the training set of the Princeton
Shape Benchmark [Shilane et al. 2004] for all of which we manually define both
a best as well as a worst viewpoint. We extract the following three image based
measures [Secord et al. 2011] for each best and worst view in this training set:

• silhouette length in image space, relative to image area

• projected area relative to image area

• smoothness of depth distribution over the model.

For a given view, direct linear combinations of these values does not provide a
meaningful score, so we use a non-linear classification. More precisely, we learn
a “best view classifier” from the training set using support vector machines
(SVM) with radial-basis function kernels [Schölkopf and Smola 2002]. We use
5-fold cross-validation to determine best SVM model parameters before the
actual training step. This results in a general model of viewpoint preference
which we employ to predict good viewpoints for the meshes in the “test” set
of the PSB: we densely sample uniform view directions (using the k-means
method) and for each view direction vi predict its probability pi = p(vi) of
being a best view [Wu et al. 2004]. This results in a smooth scalar field over the
sphere (see Figure 7.5a) and we select best views as local maxima (determined
over the one-ring neighborhood) with pi > 0.5. We visualize such a prediction
in Figure 7.5.

7.4 Line Rendering

We use the generated uniform/predicted view directions vi as input for view-
dependent line drawing algorithms and render the views using the following
line types:

1. silhouettes, depicting the 2d closed boundary of the rendering

2. occluding silhouettes, depicting all points on the mesh where with nor-
mals orthogonal to the view direction

3. suggestive contours [DeCarlo et al. 2003], depicting lines where a con-
tour would appear after a small change in viewpoint. We use suggestive
contours exclusively together with occluding silhouettes.

4. Canny lines [Canny 1986] from the depth image

We illustrate those styles for a given model in Figure 7.6.

7.5 Sampling Local Features

Following Chapter 5 we encode each view image as a bag of small local image
patches transformed into an appropriate feature space (see Figure 5.3). As
the local features do not carry any spatial information, this representation is
commonly called a “bag-of-features”. We generate 32 × 32 = 1,024 key-points
evenly distributed over the image by sampling on a regular grid.
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a) b) c) d)

Figure 7.6: Comparison of different line rendering approaches: (a) silhouettes
(SH), (b) Canny lines from depth image (CFD), (c) occluding contours (OC)
and (d) and suggestive contours (SC)

7.6 Representation

We use the hard quantization strategy outlined in Section 5.6 to generate fre-
quency histograms of visual words as our final representation for a sketch. We
generate a visual vocabulary using k-means clustering (Equation 5.9). As the
training data, we randomly sample one million local features from all models
and views in order to cover a wide variety of possible local features. The set
of resulting cluster centroids forms the visual vocabulary where each entry (vi-
sual word) is a representative of the local features in its corresponding cluster.
The size of the visual vocabulary, i.e. the number of clusters, is an important
parameter that strongly influences retrieval performance and we determine its
optimal value in Section 7.9.

We represent each view as a histogram of visual word frequency. We quan-
tize all local features from a given sketch against the visual vocabulary, rep-
resenting them as the index of their closest visual word according to Equa-
tion 5.12. We define the entries of the final histogram of visual word represen-
tation h that encodes a view according to Equation 5.11. Each dimension j
in the feature vector corresponds to a visual word and encodes the number of
those words appearing in a sketch. This representation is typically very sparse,
as the number of distinct features occurring in a given sketch is usually much
lower than the size of the vocabulary. We store the resulting histogram in an
inverted index datastructure [Witten et al. 1999; Zobel and Moffat 2006] in
order to achieve quick lookups during the query stage.

7.7 Online Querying

At runtime, users draw a query sketch and submit it to the retrieval pipeline.
We perform the following steps on the query sketch: we first extract local de-
scriptors, quantize them against the visual vocabulary and finally represent the
sketch as a (sparse) histogram of visual word occurrences (those steps are iden-
tical to how views are represented in the offline indexing stage, see Figure 7.3).

Tf-idf weighting function The entries hj of a histogram do not necessarily
need to be raw word counts — and it is indeed common to represent hj as a
function of the “importance” of the jth word. We use the tf-idf model (term
frequency-inverse document frequency) [Salton and Buckley 1988; Witten et al.
1999] to define importance of a visual word. The idea is that a word is im-
portant if it appears often in a sketch (high term frequency) but at the same
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time less distinctive if is a common word in the collection (inverse document
frequency). We follow Sivic et al. [2003] and use the following tf-idf function
to compute term weights:

hj = (hj/
∑
i

hi) log(N/fj) (7.1)

where N denotes the total number of views in the collection and fj the fre-
quency of visual word j in the whole collection. We have also experimented
with simpler, computationally less expensive definitions, such as the constant
function (which amounts to simply counting the number of words that occur in
both documents) but found this formulation to achieve better retrieval results.

Similarity metric We employ a vector space model to define similarity be-
tween two visual word occurrence histograms [Salton et al. 1975; Witten et al.
1999]. Let h and h̄ be two histograms of visual words (representing two im-
ages). We define their similarity as

s(h, h̄) = 〈h, h̄〉/‖h‖‖h̄‖. (7.2)

Intuitively, two images are considered similar, if their histograms (seen as high-
dimensional vectors) point into the same direction. Note that the histograms
are normalized — this is important in order not to favor histograms with higher
word counts.

Retrieving models Given a histogram h computed from a user sketch, we
retrieve similar models in two steps: first, we find similar views, querying the
inverted index. This operation accounts to computing Equation 7.2 between
h and the views in the collection. This is fast, as only those views in the
index need to be checked that share visual words with h. The result is a set
of best-matching views and we return the set of models in the order of their
corresponding best matching views.

7.8 Benchmarking

Since each sketch is associated with one category from the PSB, benchmarking
a sketch-based system now becomes analogous to benchmarking an example-
based system using the PSB. For a query sketch from the experiments, we
count the number of retrieved models belonging to the same category as the
sketch. We use this data to compute precision and recall (as well as any other
metric). This is a standard procedure in information retrieval [Salton 1992]
and enables an objective comparison of retrieval engines. Since we use exactly
the classification from the PSB, we can directly use all evaluation tools that
come with the PSB.

Train/test dataset The PSB defines a split into training/test dataset (907/
907 models) and we accordingly split the benchmark sketch dataset into a
training/test dataset (907/907 sketches). Later, we use the training dataset
when optimizing system parameters, while evaluating on the test dataset.
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Overall, the sketch dataset we gathered defines a general and challenging
benchmark for SBSR systems which we hope will help make research results in
this field more comparable and thus encourage further research. We provide
the whole dataset as a free resource.

7.9 Optimizing Retrieval System Parameters

The parameter-space for the proposed shape retrieval pipeline (as well as for
other similar systems) has many dimensions, including: local feature size, visual
vocabulary size, number of view directions sampled for each model, line types
used to render the views as well as the parameters underlying the Gabor filter
bank employed in the GALIF feature transform. In particular, our system has
nine main parameters (see Table 7.1, Table 7.2, Table 7.3 and Table 7.4), each
of which can significantly influence retrieval performance.

A dense sampling of this parameter space to find the best parameter com-
bination is computationally prohibitive: sampling only 10 parameter values
along each dimension of the parameter space results in 109 combinations, each
of which takes 1 to 10 hours to evaluate on a modern multi-core machine.
Evaluating a single parameter combination requires running all steps illus-
trated in Figure 7.3 for both the views extracted from the models as well as
the sketches in the benchmark dataset.

In particular, for the model dataset those steps are: computing features
from the views, computing a visual vocabulary from a sample of those fea-
tures, quantizing the features to form visual word occurrence histograms and
computing an inverted index from those histograms. For the benchmark sketch
dataset those steps are the same except that we use the vocabulary computed
on the view dataset and we do not need to build an inverted index. Next, we
compute pairwise distances between the histograms of the benchmark dataset
and the histograms of the 3d shape collection. Finally, from the pairwise dis-
tances, we compute the desired “goodness” measure as well as precision/recall
curves.

However, the wrong choice for just a single parameter out of the nine main
parameters can significantly impact overall performance. While experienced
researchers often make surprisingly good guesses about “best” parameter values,
it remains impossible to optimize the combination of parameters by hand.

In the following section, we explain a simple iterative visualization strat-
egy to evaluate and optimize the retrieval pipeline. We perform the complete
optimization on the train dataset split. To measure system performance at a
parameter combination, we use the fraction of 1-nearest neighbors belonging
to the same class as the query sketch [Shilane et al. 2004], averaged over all
sketches in the benchmark dataset (i.e. a measure of 1 would be a perfect re-
sult). In other words, we average the success of the retrieval compared to the
human data (Section 3.3). This is supposed to make the retrieval perform close
to what humans expect. However, the optimization strategy outlined below is
clearly independent of this measure.

Optimization Strategy

We advocate a human guided visual gradient descent strategy. The idea is
to color-code the performance resulting from varying two parameters, while
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Table 7.1: Parameter search ranges for Gabor filter used in the GALIF de-
scriptor. For each parameter, we take six logarithmically spaced samples. This
results in 6× 6× 6 sample points for each of which we compute system perfor-
mance.

lw λ ω0

start : end 0.005 : 0.05 0.05 : 1 0.05 : 0.25

keeping all other parameters fixed. This color code allows us to pick good
combinations of the two parameters. Then these parameters are fixed and
others are varied. This goes on until no further improvement is visible.

We have found that humans are good in performing two tasks in this search
that computers so far usually fail in:

• Identifying interesting combinations of parameters. It turns out some
parameters are good to optimize together, while others are not. Knowing
the design of the system helps in identifying these groups.

• Avoid inspecting local minima or undefined/unsuccessful regions in the
parameter space. Since each evaluation of the system requires a long
time, going down the right path saves days to weeks in the search of the
best parameter combination, in our experience.

We group parameters into three independent groups:

filter parameters corresponding to the filter of the underlying image trans-
form, i.e. λ, lw, ω0 in the case of the GALIF descriptor (see Table 7.1)
and σ in the case of the SHOG descriptor (see Table 7.2).

intrinsic feature parameters that define the remaining core feature trans-
form parameters, i.e. number of orientations, number of tiles and feature
size (see Table 7.3). Those parameters are the same for both the GALIF
and SHOG descriptor.

extrinsic parameters that define the remaining retrieval system parameters
but are not directly related to the feature transform. We evaluate vocab-
ulary size, number of views per model and linetype used when rendering
a model during view generation (see Table 7.4). By definition, those
parameters are the same for both the GALIF and SHOG descriptor.

In the following, we use this strategy to optimize not only our system but
also all competitors. It turns out that some of the parameters given for these
systems in the respective publication are not optimal, showing that parameter
optimization is important, yet far from trivial.

7.10 Evaluation

Our strategy for evaluating feature transform and system parameters is the
same for both the GALIF and SHOG descriptor. We start by evaluating filter
parameters while fixing intrinsic descriptor parameters as well as extrinsic sys-
tem parameters to reasonable values determined using the informed best guess
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Table 7.2: Parameter search range for standard deviation σ of Gaussian
derivate filter used in the SHOG descriptor. We take twenty logarithmically
spaced samples.

values

standard deviation σ {.010, .015, .022, .033, .050, .074, .11, .16, .25, .37,
.55, .81, 1.2, 1.8, 2.7, 4.0, 6.0, 8.9, 13.4, 20.0}

Table 7.3: Parameter search ranges for intrinsic descriptor parameters. Pa-
rameters and ranges are the same for both the GALIF and SHOG descriptor.

values

#orientations {1, 2, 4, 8, 16}
#tiles {1, 2, 4, 8}

feature size {.01, .05, .1, .125, .15, .2, .25, .3, .4, .5}

Table 7.4: Parameter search ranges for extrinsic system parameters. Param-
eters and ranges are the same for both the GALIF and SHOG descriptor.

values

vocabulary size {50, 100, 500, 1000, 2500, 5000, 10000}
#views {7, 22, 52, 102, 202}

linetypes {sil, occ, suggcont, canny}

strategy. We show the fixed values of this first evaluation step in the second
column of Table 7.5 and Table 7.6.

Filter Parameters

While both the GALIF and SHOG descriptor share many parameters, the
main difference between both is the underlying filter for estimating orientation
of sketch lines.

GALIF: bandwidth and peak-frequency To make evaluation results in-
variant to the size of a sketch, we first define linewidth = σx/w where w denotes
the side-length of a sketch (in pixels) and λ = σx/σy. We evaluate over those
parameters instead of σx,y directly. As expected the GALIF descriptor is sensi-
tive to the correct choice of those parameters: line drawings naturally contain
mostly high-frequency content and the descriptor’s performance increases with
peak frequency ω0. The optimal setting for linewidth and λ is coupled to the
choice of the ω0 of the Gabor filter (see Figure A.2). The optimal combination
of parameter values turns out to be linewidth = 0.02, λ = 0.3 and ω0 = 0.13
(see also Table 7.5).

SHOG: standard deviation The SHOG filter is governed by a single pa-
rameter σ that defines the standard deviation of the Gaussian derivative filter.
This parameters determines how much high-frequency detail is filtered out “be-
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fore” computing partial derivatives. Intuitively, for the case of strictly binary
sketches, smoothing is necessary to achieve smoothly varying gradients orienta-
tions along the sketch lines. The evaluation shows that best results are achieved
for small parameter values, we achieve the best results for σ = 1.81 and observe
reduced performance for significantly larger values (see Figure A.6).

Intrinsic Feature Parameters

We now fix filter parameters for both the SHOG and GALIF descriptor to best
values determined in the first evaluation round (see third column of Table 7.5
and Table 7.6) and evaluate over the remaining intrinsic descriptor parameters.

Number of orientational filters We analyze using 1, 2, 4, 8 and 16 orien-
tations. Using less than 4 orientations results in significantly reduced retrieval
performance for both descriptors (see Figure A.3 and Figure A.7). In that case
the descriptor is no longer discriminative enough — it can only encode vertical
and horizontal lines.

In case of the GALIF descriptor, retrieval performance drops only slightly
when using more than four orientations (see Figure A.3) — but at the cost of
a much higher-dimensional descriptor.

In case of the SHOG descriptor, using 8 or 16 orientations results in signif-
icantly reduced retrieval performance (see Figure A.7). We offer the following
explanation: a larger number of orientations makes the feature transform sen-
sitive to small deviations in orientation of lines — this may be undesirable
because of human inaccuracy in drawing.

Overall, using 4 orientations consistently yields the best performing features
in our experiments.

Number of tiles We evaluate using 1, 2, 4, and 8 tiles to subdivide a local
image patch, see Figure A.3 and Figure A.7. Note: 2 tiles means the local
image area is subdivided into 2× 2 cells.

Results are consistent among both descriptors: using only 1 tile results in
poor performance. Each local feature is then encoded using only a single di-
mension per orientation — not enough to yield a discriminative feature vector.

Overall, we achieve best retrieval performance when using 4 tiles. Note
that the dimensionality of the descriptor grows quadratically with the number
of tiles and indeed, using 8 tiles results in reduced retrieval performance.

Local feature size We find that — compared to approaches working with
natural images — for both descriptors, we consistently achieve optimal results
when using relatively large local feature sizes. Performance is optimal between
feature size 0.1 and 0.3. Using a small feature size ≤ 0.05 significantly reduces
performance, as the information in a single feature is no longer discriminative
and typically encodes only single line segments (see Figure A.3 and Figure A.7).

We achieve overall highest performance for feature size 0.2 in case of the
GALIF descriptor and for feature size 0.125 in case of the SHOG descriptor.
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Extrinsic System Parameters

We now fix filter parameters and descriptor intrinsic parameters to best val-
ues determined previously (see Table 7.5 and Table 7.6, fourth column) and
optimize the remaining system parameters.

Vocabulary size When using 1,000 visual words or more, we consistently
achieve good retrieval performance for both descriptors (see Figure A.4 and
Figure A.7). Using more words can lead to better performance but there is
a tradeoff to be considered: using a larger vocabulary makes computing a de-
scriptor more expensive in two ways: a) it requires more time as we need to
quantize against a larger vocabulary — this can be undesirable for an inter-
active system. And b) the dimensionality of the descriptor becomes higher —
this is typically not so much of an issue as long as the descriptor is sparse.
We find that a good compromise between speed and performance is achieved
for a vocabulary size of 2,500 visual words, which also results in overall best
performance for both descriptors.

Number of sampled views Our analysis shows that the sampling of view
directions should be dense enough to capture enough data about the model —
using only 7 views per model severely reduces retrieval performance (see Fig-
ure A.4 and Figure A.7). A good sampling is reached for around 100 uniformly
distributed view directions, with the overall maximum at 202 views for both
descriptors. Our perceptual best view selection generates an average of 14.4
views per model, achieving similar results to using 22 regularly sampled views,
see Figure 7.7b.

Line types Our evaluation of line types used to render views shows that
occluding contours and suggestive contours perform better than outlines or
Canny lines from the depth image (see Figure A.4 and Figure A.7). Inter-
estingly, the additional information contained in suggestive contours does not
provide a significant boost compared to using occluding contours only.

Since most of the real-world sketches gathered in our experiment clearly
contain more types of lines rather than just silhouettes, this explains the re-
duced performance of silhouettes only and justifies our decision to develop a
system that can deal with arbitrary line-types.

Overall, we can report that the following parameters result in a system with
a good performance/speed ratio: vocabulary size: 1,000, number of views: 102,
line-type: suggestive contours. For those settings, our performance measure
(fraction of correct 1-nearest neighbors) is 0.288 (GALIF) and 0.278 (SHOG).

Optimizing Existing Approaches

Our parameter optimization strategy as well as the benchmark are very general:
we demonstrate this by optimizing parameters for two existing sketch-based
shape retrieval systems. Yoon et al. [2010] propose a global descriptor based
on the diffusion tensor. Their descriptor is governed by two parameters: 1)
number of histogram bins and 2) number of tiles. They propose using a single
tile with 18 histogram bins to encode a view. This is not ideal as visualized
in Figure A.5. Our optimization finds a more favorable parameter combination
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7. Sketch-Based Shape Retrieval

Table 7.5: Optimal parameter values for GALIF descriptor as determined by
evaluation strategy described in Section 7.9 over the parameter ranges listed
in Table 7.1, Table 7.3 and Table 7.4. Bold font denotes variable parameters
and the particular values are the resulting best parameter values determined
by evaluation. Standard font denotes fixed parameter values. The bottom row
shows retrieval performance for the given parameter combination.

filter intrinsic extrinsic

lw 0.02 0.02 0.02
λ 0.3 0.3 0.3
ω0 0.13 0.13 0.13

#orient 4 4 4
#tiles 4 4 4

feature size 0.125 0.2 0.125
#views 102 102 202

line type suggc suggc suggcont
vocabulary 1000 1000 2500

value 0.271 0.288 0.308

Table 7.6: Optimal parameter values for SHOG descriptor as determined by
evaluation strategy described in Section 7.9 over the parameter ranges listed
in Table 7.2, Table 7.3 and Table 7.4. Bold font denotes variable parameters
and the particular values are the resulting best parameter values determined
by evaluation. Standard font denotes fixed parameter values. The bottom row
shows retrieval performance for the given parameter combination.

filter intrinsic extrinsic

σ 1.81 1.81 1.81
#orient 4 4 4
#tiles 4 4 4

feature size 0.125 0.125 0.125
#views 102 102 202

line type suggc suggc suggcont
vocabulary 1000 1000 2500

value 0.292 0.278 0.313
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7.11. Learning Sketch-Based Shape Retrieval

with significantly higher retrieval performance (12 tiles with 4 bins each, re-
sulting in a 12×12×4-dimensional descriptor). We also analyzed the spherical
harmonics descriptor proposed by Funkhouser et al. [2003], which is defined by
two parameters: number of circular functions and number of coefficients. Our
evaluation shows that this descriptor performs best when using 8 functions and
16 coefficients — very close to the original parameters 16×32 (see Figure A.5).

7.11 Learning Sketch-Based Shape Retrieval

One of the main advantages of the kNN based sketch-based 3d shape retrieval
approach employed so far is that it is completely unsupervised: it does not
require any annotations or labels to come with the models. Retrieval is purely
data-driven, making this method applicable to arbitrary datasets. Additionally,
the kNN approach is efficient and fast and lets us handle large collections of
models in an interactive way.

Despite those apparent advantages, one natural question to ask is: can
we learn sketch-based shape retrieval in the sense that we learned to classify
sketches in Chapter 6? While this clearly requires an annotated training dataset
of sketches, it potentially could yield even better retrieval results than the
unsupervised approach discussed in this chapter.

Experiment

We try to answer this question by running the following experiment: we use the
SVM based computational sketch recognition pipeline discussed in Section 6.1
to learn a classification model of human object sketches, but this time using the
PSB sketch dataset (Section 3.3). Given the computational recognition model
and an unknown query sketch, we first classify the sketch and then return 3d
shapes according to the classification.

Again, we learn the model on a training dataset and evaluate on a distinct
test dataset. While the PSB comes with a predefined split into a training/test
dataset, one peculiarity of this split is that it is not stratified, i.e. not all cat-
egories that appear in the training dataset also occur in the test dataset. To
overcome this, we use a stratified split for this experiment, making sure that all
categories appear in both the test and training dataset, with equal numbers.
To compute a computational model, we use the descriptor parameters as well
as the best performing model parameters as determined in Section 6.2.

Compared to the kNN approach discussed earlier in this chapter, the views
and shapes are not requires to perform a query. Instead, we classify the query
sketch as belonging to one of the 161 categories contained in the PSB. As the
result of a query, we return one model per category exactly in the ranking
that the 161 one-vs-rest classifiers suggest. This in turn allows us to compute
precision/recall plots that are broadly comparable to the ones computed for
the unsupervised approach.

7.12 Results

In this section we compare our proposed system (using optimal parameters
as determined in Section 7.10) to previous work and analyze its properties
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a) Comparison methods
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Figure 7.7: Detailed evaluation of retrieval performance on test dataset (pre-
cision/recall, higher curves are better): a) comparison with previous work using
optimized system parameters; b) GALIF descriptor: influence of view gener-
ation methods; c) nearest neighbor retrieval — as in a) and b) — vs. SVM
classification. The NN SHOG hard curve is the best performing one from a).
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Figure 7.8: Examples of sketch-based query results using our system. For
each query sketch (top left of a cell), we show the top 19 results with a color
indicating their rank (blue being the highest, see a)). The “chair” example (g)
illustrates partial matching (i.e., tables are retrieved). The “man” example (f)
exhibits failure cases, with the highest ranked objects not matching the desired
object. Note that many of the remaining sketches are perfect matches, though.
Finally, we show an abstract query in h) that matches interior lines of the
retrieved umbrellas.
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7. Sketch-Based Shape Retrieval

— such as partial matching. We perform all evaluations on the test dataset
(see Section 3.3). For the learning based retrieval approach, the test dataset
differs from that used for the kNN approach as described Section 7.11.

Comparison to Other Systems

We compare our approach (based on the GALIF and SHOG descriptor) to
three other leading sketch-based retrieval systems [Funkhouser et al. 2003,
2004; Yoon et al. 2010]. We use standard precision/recall plots to visualize
our results (Figure 7.7). For each system we compute precision/recall values
averaged over all 907 sketches from the test dataset. To make the comparison
as fair as possible, we use the best parameters for each approach as determined
in Section 7.9. Additionally, we evaluate performance of the popular image de-
scriptor SIFT [Lowe 2004] on sketches. We use two variants: a) the complete
scale-space feature detection and extraction pipeline (SIFT) and b) a single-
scale grid sampled approach (SIFT Grid), using exactly the same sampling
parameters and feature size as for the GALIF descriptor.

Our proposed system clearly outperforms all existing approaches, see Fig-
ure 7.7. We additionally visualize the high quality of our results in Figure 7.8.
Note that some existing systems cannot handle interior lines in sketches [Chen
et al. 2003] and thus cannot be evaluated against the real-world sketches in
our benchmark. We believe that this is not a limitation of the benchmark, but
rather an indication that modern retrieval systems should not be artificially
limited to closed boundary curves as input.

Notably, using the SIFT scale-space keypoint detection to compute features
results in poor retrieval performance (see Figure 7.7): on average only few key-
points are detected, resulting in an imprecise representation of a sketch by
its histogram. However, several optimized parameters of the GALIF/SHOG
descriptors turn out to have a connection to the SIFT descriptor: both use
four tiles to subdivide a local patch. The optimal parameter of 4 orientations
also lets us draw an interesting connection: binary sketches contain only infor-
mation about the orientation of lines, while photographs (for which the SIFT
descriptor has been designed) contain directional information. In that sense
the optimal angular resolution for our descriptors turns out to be identical to
the 8 directions used in the SIFT descriptor.

Partial Matching

As we cannot expect users to sketch all of the lines appearing in a computer-
generated line-drawing, a retrieval system should be able to reliably retrieve a
model from only a subset of its representative lines (partial matching). Our
system naturally supports this without using computationally expensive sliding
window approaches. The feature transforms encode the distribution of visual
words in a sketch — and this is invariant to the position of the individual fea-
tures in a sketch. The similarity measure in Equation 7.2 essentially computes
a weighted count of the number of features that are shared across two sketches:
if one sketch contains only a subset of the strokes of the second sketch, the two
histograms are similar in the regions encoding the shared strokes and the sys-
tem returns a partial match. We demonstrate this partial matching behavior
in Figure 7.8.
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Supervised vs. Unsupervised Retrieval

Compared to the unsupervised kNN model, the SVM model achieves superior
results (see Figure 7.7) but, by definition, at the cost of requiring an annotated
dataset for training the computational model.

The precision/recall curves for both the soft quantized and hard quantized
variants of both descriptors do not differ significantly. This appears odd at
first, as we conclude in Section 6.2 that soft quantization works considerably
better than hard quantization for computational classification. However, the
training set size is rather small in case of the PSB (on average 5.6 instances
per class). For such small training set sizes, recognition accuracy for soft and
hard quantization is very similar (see also Figure 6.2).

Interactive Application

We run our retrieval engine in a graphical user interface: users sketch a shape,
hit the search button, and the display shows a collection of matching models.
The system’s retrieval speed (using all 1,814 models from the PSB) is currently
at only a few milliseconds for performing the search, meaning the system could
accommodate a significantly larger database.

7.13 Discussion

One interesting observation from evaluating the number of orientations used
for the GALIF descriptor vs. the SHOG descriptor is that for a larger number
of orientations (8 or 16) retrieval performance performance of the GALIF de-
scriptor stays about the same (see Figure A.3) while retrieval performance of
the SHOG descriptor significantly drops (see Figure A.7). Such a drop in per-
formance for a larger number of orientations is what we intuitively expect: we
lose invariance to slight differences in orientation of a line. The behavior of the
GALIF descriptor for a large number of orientations thus appears surprising
at first.

We can offer the following explanation: for the GALIF descriptor, the band-
widths of the underlying Gabor filter (see Equation 5.6) have been optimized
using a fixed parameter of four orientations (because we cannot not exhaus-
tively sample the complete parameter space as discussed in Section 7.9). This
results in a relatively large bandwidth parameter for the angular component
of the Gabor filter which we continue to use when using a larger number of
orientations. As a result, the filters in the orientational filter bank significantly
overlap and return very similar responses for neighboring filter orientations.
In other words: a GALIF feature vector computed using 16 orientations does
not contain significantly more information than the one with only four orienta-
tions. As a result, retrieval performance stays roughly the same. In both cases
however, it appears that the best number of orientations is four and there is
no benefit in using a larger number.

Limitations

Our approach depends on the quality of the representation that it uses to
generate line art — poor models pose a significant problem for line rendering
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7. Sketch-Based Shape Retrieval

techniques that depend on derivatives on the model. Many of the models
in the PSB are not connected, i.e. they are polygon soups. Our evaluation,
however, also shows that resorting to Canny lines on the depth map, which
gives good results on any polygonal model, results in retrieval performance
that is reasonably close to that of more sophisticated lines types. However, we
expect the gap between Canny lines and, e.g., suggestive contours to become
larger with increased quality of the underlying models.

Matching is based on geometric similarity, while humans might expect a
more semantic behavior of the system. We tend to quickly recognize the se-
mantic category (cow, airplane) that a sketch depicts — if the retrieved models
do not fall into this category, we would quickly dismiss those results as poor
— although geometrically the matches might actually be quite good. This be-
havior is also encoded in the benchmark we use: only matches within the same
category are counted, a geometrically identical match (and in this sense very
good match) from a different category is counted as a negative result.
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Chapter 8

Conclusions

This thesis describes the first large scale exploration of human object sketches.
We have collected two novel, large datasets of sketches for computational recog-
nition and 3d shape retrieval. We have publicly released both datasets in the
hope that they will be of help for the community to further improve sketch-
based human computer interaction.

We have used the first dataset to evaluate human sketch recognition ac-
curacy (73%). We have demonstrated that — given such a large dataset —
reasonable classification rates can be achieved for computational sketch recog-
nition (56%). We have used the second dataset to establish the first large-scale
benchmark for sketch-based 3d shape retrieval and proposed new methods for
sketch-based shape retrieval that outperform existing approaches.

To our knowledge, we are the first to collect a significant number of sketches
for the evaluation of shape retrieval performance. Our dataset is based on the
freely available and widely accepted set of models from the Princeton Shape
Benchmark [Shilane et al. 2004]. This makes our benchmark easily applicable
in any sketch-based shape retrieval project. We make the set of benchmark
sketches available as a free resource and hope that this helps making compar-
isons between approaches easier as well as more reliable.

Our dataset shows that artificially limiting the input to closed boundary
curves [Chen et al. 2003] is, quite simply, not how humans would like to draw
for shape retrieval. Although our evaluation shows that rendering additional
computer generated lines results only in a slight improvement of retrieval per-
formance, it is important that a system actually technically supports interior
lines.

Although the proposed approach achieves significantly better performance
than any of the previous approaches we evaluated, a brief look into the sketches
we have collected suggests that sketch-based shape retrieval for realistic inputs
is still a very hard problem. The main technical ingredients of our approach,
bag-of-features and the new descriptor for line-art renderings, relate to the
variance and deficiencies in this type of input. The underlying feature trans-
form is based on Gabor filters — as is the global GIST descriptor [Oliva and
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Torralba 2001, 2006] successfully employed in image retrieval. One of the main
differences is that we do not fix the filter bank parameters (as is the case for
the GIST descriptor) but rather learn optimal parameter values suitable for
sketches. This strategy is general and we are interested in seeing its applica-
tions in other domains as well.

Overall, the SHOG (Section 5.2) and GALIF (Section 5.3) feature trans-
forms turn out to achieve comparable performance levels. This is a bit sur-
prising at first, as the Gabor filter underlying the GALIF feature transform
is highly tunable, which we exploit to find its best performing parameters for
the overall feature transform (Section 7.9). However, higher order Gaussian
derivative filters start to appear very similar to Gabor kernels (with important
theoretical differences) [ter Haar Romeny 2003]. As we locally average over
the outputs of the filters to compute features and eventually quantize these,
small differences in filter output might not be crucially important. Rather, a
stable estimation of orientation is required, which both feature transforms are
certainly capable of.

We have not discussed the user interface we are using for shape retrieval as it
is not yet aiding the search interaction. There is clearly room for improvement,
such as optimizing the layout of the results or learning from individual users
or the user community as a whole. Different users might sketch different types
of lines which we could exploit to improve retrieval results. Despite these
possible ways of improving sketch-based shape retrieval, we agree with many
researchers that rather than using one search mode in isolation, combining
text-queries and context-based shape search with sketch-based search could be
a potentially fruitful direction for further research.

Finally we hope that better computational understanding of sketches will
lead to better computer accessibility. Virtually everybody is able to sketch a
face or recognize a sketched face. Writing and reading, which today are still
the standard way of communicating with computers, are much less widespread.
By some definitions, functional illiteracy, even in first-world countries, is up to
20% of adults. If computers were to understand sketches as we do, sketching
would give a much larger audience access to the data that has been gathered
digitally over the last decades.

8.1 Future Directions

Our work relies heavily on computer vision and machine learning techniques,
although applied to a novel domain. While we have introduced novel represen-
tations tailored to the requirements of this domain and shown that those out-
perform existing approaches, several existing techniques known to work well for
photographs could potentially be applicable (with modifications) for sketches
as well. We give an overview over promising techniques in the following section.

Representation, Classification and Search

When even more sketch data was available, potentially better and more com-
pact descriptors could be learned [Torralba et al. 2008b]. Other features than
just gradient orientation could be integrated into the representation [Bileschi
and Wolf 2007], pairs of local patches could form visual phrases [Zhang et al.
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2009; Chum and Matas 2010] and finding the most distinct subset of local
features could also be an option [Turcot and Lowe 2009]. As an alternative
to modifying the representation itself, employing better distance metrics could
also help improve performance [Wu and Rehg 2009]. If this is not possible,
learning an “optimal” distance metric from the data [Weinberger et al. 2006]
might be possible.

Both classification and 3d shape retrieval rely on an unordered bag-of-
features model. Putting back some spatial information into the representation
could potentially benefit classification and retrieval accuracy [Lazebnik et al.
2006; Viitaniemi and Laaksonen 2009; Cao et al. 2010; Jégou et al. 2010].

While we have shown that an SVM approach clearly outperforms kNN clas-
sification on the representation we use, Boiman et al. [2008] show that by per-
forming kNN in the unquantized space of local descriptors superior performance
can be achieved. Classification speed could be potentially improved by learning
hierarchical taxonomies [Griffin and Perona 2008] and better voting schemes
building on the output of the binary SVM classifiers could further improve clas-
sification accuracy [bo Duan and Keerthi 2005]. Finally, among the multitude
of classifiers available, we have evaluated two popular ones: a kNN classifier as
the baseline for its simplicity and SVMs which have found widespread adoption
and for which stable implementations are available. Nevertheless, many other
options are possible and might even yield better classification results. For a
recent overview see Domingos [2012].

For sketch-based shape retrieval, an inverted index might potentially not be
the ideal data structure in terms of retrieval speed, as the frequency histograms
it operators on are significantly less sparse than for classical text retrieval. For
sketches, the visual vocabulary is much smaller and contains significantly more
words for a query. As a result, other (approximate) nearest neighbor search
techniques might be useful to scale sketch-based shape retrieval to significantly
larger collections (millions of model, resulting in hundreds of millions of views)
[Weber et al. 1998; Liu et al. 2004; Samet 2006; Andoni and Indyk 2008; Muja
and Lowe 2009; Chum et al. 2008, 2009; Lee et al. 2010].

Sketch Synthesis

We feel that sketch synthesis is an interesting, unexplored problem. How could
the computer generate distinctive sketches that are immediately recognizable
by humans? If this question can be answered, many new applications could
benefit from the research we have started here. Additionally, if we had a
generative model of sketches, the insights learned from that could potentially
also be of value for better understanding the sketch recognition problem.

Sketch Simplification and Beautification

We also believe that the computational model could be useful for supervised
simplification and beautification of sketches. Simplification has been well-
studied in certain graphics domains such as 3d geometry [Garland and Heckbert
1997]. The general strategy for such techniques is to remove complexity (e.g.,
delete edges) while staying as close as possible to the original instance according
to some geometric error metric. Such unsupervised heuristics have no seman-
tic understanding of each instance and therefore will often make simplifications
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which are geometrically modest but perceptually jarring (e.g., smoothing away
the face of a statue). We believe that an ideal simplification algorithm would
consider the semantic meaning of each instance when deciding which simpli-
fications to perform. Specifically, we argue that in the case of a sketch, the
best strokes to remove are those that are not required for successful recogni-
tion. Strokes vital for recognition (e.g., the trunk of an elephant) should be
preserved.

Evaluation

Measuring performance and optimizing parameters of the sketch-based shape
retrieval system proposed in this thesis is based on the notion of precision/recall.
This is a widely accepted measure in information retrieval to evaluate such
systems [Salton 1992]. It is easy to implement, fast to evaluate and only re-
quires that each object in the dataset is assigned to one particular category.
Slaney [2011] argues that precision/recall might not be the “right” measure
for multimedia datasets: as collections grow larger (and thus contain millions
of potentially correct results for a given query), the notion of recall becomes
nonsensical. Defining precision as the ratio of results in the correct category
enforces a very strict binary success/failure measure on the search. Especially
in the case of fuzzy user sketches such a binary measure might be too strict.
A 3d model might be considered an incorrect result during evaluation — be-
cause it formally does not belong to the same category as the sketch — while
perceptually being very close to the shape. This suggests a need for “better”
evaluation methods, using measures that better take into account user prefer-
ence, perhaps similar to the click-through ratio employed in modern Internet
multimedia search engines [Slaney 2011].

A final open question is how universal sketching and sketch recognition is
among humans. Our sketches come from Amazon Mechanical Turk workers all
over the world, but it is certainly not a uniform sample of different cultures,
ages, genders and artistic expertise. How do these factors and many others
affect sketching? Are the stylizations different cultures use for a certain object
similar and even mutually recognizable?
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Appendix A

Parameter Space Evaluation

We show all descriptor parameter evaluation plots for the sketch-based shape
retrieval problem (Chapter 7) generated according to the optimization strategy
outlined in Section 7.9. The evaluation function in all plots is the ratio of
correct nearest neighbors (higher values are better). All plots use the same
scale to make them easily comparable with each other.
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Figure A.1: Retrieval performance evaluation of tinyimage descriptor (down-
scaled sketch image directly used as feature vector).

79
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Figure A.2: Retrieval performance evaluation of GALIF descriptor with re-
spect to its three intrinsic parameters that define the underlying Gabor filter.
X-axis: filter bandwidth λ; y-axis: linewidth; across plots: peak frequency ω0.
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Figure A.3: Retrieval performance evaluation of GALIF descriptor with re-
spect to its remaining three intrinsic parameters. X-axis: local feature size in
fraction of the total sketch area; x-axis: number of orientations in the local
histogram; across plots: number of tiles in a local feature.
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Figure A.4: Retrieval performance evaluation of GALIF descriptor with re-
spect to extrinsic parameters of the retrieval pipeline. X-axis: number of views
per 3d model; y-axis: vocabulary size for quantization; across plots: line-types
used to render a view.
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Figure A.5: Retrieval performance evaluation of competing approaches over
their respective free parameters. Left: diffusion tensor descriptor [Yoon et al.
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Figure A.6: Retrieval performance evaluation of SHOG descriptor with re-
spect to standard deviation σ of its underlying Gaussian derivatives filter. Note
the logarithmic scale on the x-axis.
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Figure A.7: Retrieval performance evaluation of SHOG descriptor with re-
spect to its remaining three intrinsic parameters. X-axis: local feature size in
fraction of the total sketch area; x-axis: number of orientations in the local
histogram; across plots: number of tiles in a local feature.
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Figure A.8: Retrieval performance evaluation of SHOG descriptor with re-
spect to extrinsic parameters of the retrieval pipeline. X-axis: number of views
per 3d model; y-axis: vocabulary size for quantization; across plots: line-types
used to render a view.
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