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Abstract

Model reduction of components and assemblies made of composite mate-
rials as part of complex technical systems to simulate the overall dynamic
behaviour

The composite components and model order reduction (MOR) methods are widely used to

improve the weight/strength ratio and the computational time respectively in different areas of

the industry. The objective of this research is to evaluate the dynamic behaviour applying a

MOR method in a composite component assembly. A new mixed numerical-experimental tech-

nique (MNET) is developed to obtain accurate stiffness parameters in a composite component

and then the Craig-Bampton model order reduction (CBMOR) method is applied in terms of a

substructure/super element technique using the automatic multi-layer substructuring (AMLS)

method. The MNET consists of a correlation between a composite component assembly using

experimental measurements and a 2D finite element (FE) model using an equivalent single

layer (ESL) homogenized laminate theory including transverse shear effects (discrete Mindlin

Kirchhoff triangle (DMKT)). Curve-fitting algorithms are used to improve the accuracy of the

correlation. The correlation is performed based on the modal assurance criterion (MAC) and

the updating is calculated with a design of experiments (DOE). A DOE is a regression analysis

used to obtain a simple mathematical model (transfer function/surface response) to update the

stiffness parameters. The dynamic behaviour consists of the application of a CBMOR and

AMLS methods to the FE model in the previous part. Different modal assurance criteria were

applied to correlate experimental measurements versus the dynamic behaviour response of the

FE models. For comparative purposes the stiffness parameters obtained in MATLAB-SDTools

with the new MNET were used in MSC/NASTRAN, ABAQUS, and few mode shape expansion

techniques respectively to validate the results. Based on the results, it can be concluded that

the stiffness parameters obtained with the new MNET were fundamental for the validation,

updating and accuracy applying the CBMOR and AMLS methods in a composite component.

Keywords: Craig-Bampton, AMLS, CFRP, DOE, MAC, COMACs, MNET, composites.





Abstract

Modellreduktion bei Verbundwerkstoffkomponenten und -baugruppen als
Teil komplexer technischer Systeme zur Simulation des dynamischen
Gesamtverhaltens

Komponenten aus Verbundwerkstoffen und Methoden zur Modellreduktion finden breite An-

wendung in verschiedenen Bereichen der Industrie, um das Verhältnis zwischen Gewicht

und Festigkeit zu verbessern beziehungsweise die Berechnungszeit zu verkürzen. Ziel der

vorliegenden Arbeit ist die Auswertung des dynamischen Verhaltens einer Verbundwerk-

stoffkomponente unter Anwendung eines Modellreduktionsverfahrens. Eine neue gemischte

numerisch-experimentelle Methode zur Ermittlung akkurater Steifigkeitsparameter sowie der

Einsatz des Craig-Bampton-Verfahrens in Form einer Substruktur-/Superelement-Technik unter

Verwendung der automatischen Multi-Layer-Substruktur-Methode. Der gemischte numerisch-

experimentele Methode besteht aus einem Zusammenhang zwischen experimentellen Messun-

gen an einer Baugruppe aus Verbundwerkstoffkomponenten und einem 2D-Finite-Elemente-

Modell unter Anwendung einer homogenisierten äquivalenten Single-Layer-Laminattheorie

einschließlich transversaler Schereffekte (diskretes Mindlin-Kirchhoff-Dreieck). Mithilfe von

Kurvenanpassungsalgorithmen wird die Genauigkeit der Korrelation erhöht. Die Korrela-

tion erfolgt auf der Grundlage des MAC-Kriteriums (Modal Assurance Criterion) und die

Modelloptimierung wird durch eine Versuchsplanung ermittelt, eine Regressionsanalyse zur

Erlangung eines einfachen mathematischen Modells (Übertragungsfunktion/ Systemantwort

der Oberfläche) für die Aktualisierung der Steifigkeitsparameter. Der dynamischen Verhaltens

besteht aus der Anwendung des Craig-Bampton-Verfahrens und der automatischen Multi-Layer-

Substruktur-Methode auf das existierende FE-Modell. Für die Anpassung des dynamischen

Verhaltens des FE-Modells an die experimentellen Messungen werden verschiedene COMAC-

Kriterien (Coordinate Modal Assurance Criteria) benutzt. Zu Vergleichszwecken und zur

Validierung der Ergebnisse werden die mit der neuen Methode in MATLAB-SDTools erhal-

tenen Steifigkeitsparameter in MSC/NASTRAN, ABAQUS beziehungsweise mit weiteren



xii

Schwingungsformausbreitungstechniken verwendet. Auf Grundlage der Ergebnisse lässt sich

folgern, dass die mit der neuen Methode ermittelten Parameter von wesentlicher Bedeutung

für die Validierung, Optimierung und Genauigkeit bei der Anwendung des Craig-Bampton-

Verfahrens und der automatischen Multi-Layer-Substruktur-Methode auf eine Verbundwerkstof-

fkomponente sind.

Keywords: Craig-Bampton, AMLS, CFRP, FEM, DOE, MAC, COMACs, MNET, Ver-

bundwerkstoffe.
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Introduction

Motivation

Nowadays composite materials, like carbon fibre reinforcement polymers (CFRP), are increas-

ingly used in mechanical structures substituting the conventional materials more and more with

the advantage of their strength and lightness in the aerospace industry [1]- [2]. The dynamic

Fig. 1 Composite component assemblies in Airbus 380 from [3].

analysis of these structures using the finite element method (FEM)1 is essential to fulfill the

time, cost and quality requirement process management in many companies. The FEM is a

1The first achievements of the FEM are reported in the works of Courant [5], Argyris and Kelsey [6] and Turner
et al. [7] for the analysis of structures.
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powerful numerical method used to perform analysis of a wide variety of complex and large

component structures made of composite and conventional materials, (see Fig. 1).

Furthermore, the FEM can be used to solve large and complex components with component

mode synthesis (CMS) introduced by Hurty [8], Craig and Bampton [9], MacNeal [11] and

Rubin [12]. The CMS is divided in two parts: the finite element model order reduction (MOR)

method and the dynamic substructuring. The MOR method consists of the generation of

a compact set of equations of motion (reduced order model (ROM)) that possesses similar

vibration characteristics with less degrees of freedom (DOF) compared to the full model. The

dynamic substructuring consists of the division of the total structure into components or simple

parts to find a solution on the interfaces of the combined domains. This division of the structure

or domain decomposition2 is controlled with interfaces and allowed to determine easily the

dynamic behaviour of assembled structures.

The CMS method is well established in literature for conventional materials to obtain a

good approximation using FEM [8]-[12]. However, the application of CMS on composite

components is not well documented. Just a few results are found in the literature where CMS

is applied to CFRP plates [4]. On one hand it seems to be a lack of adequate methodology to

estimate directly the constitutive properties precisely (stiffness parameters), and on the other

hand the selection of a CMS method based on the accuracy and performance is essential. The

precision of the stiffness parameters and CMS is fundamental in this research and is one of the

most challenging problems applied to CFRP components.

A number of indirect methods for material identification of CFRP, called mixed-numerical

experimental techniques (MNET), are introduced to determine the stiffness parameters in

mechanical structures [167]-[168]. Two main characteristics are reported in the literature using

MNET: a regression analysis or transfer function based on experimental measurements of the

CFRP structure to identify the stiffness parameters, and the application of a numerical method

based on the FEM to correlate with the experimental measurements [13]- [48].

It is important to notice that recently MNET studies have reported high precision results

using thick and thin CFRP plates by [32], [43], [44] and [45] including transverse shear effects.

The MNET study using a design of experiments (DOE) by Rikards et al. in [32] is highlighted

over other MNET studies because the DOE can be performed without knowing the form of

the optimum regression equation. More recently, Cugnoni et al. [43], [44] and Matter et al.

2The domain decomposition is considered a kind of dynamic substructuring where the subdomains are the
components of the total structure [121] [198].
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[45] implemented an algorithm based on the modal assurance criterion (MAC) in order to

update and optimize the stiffness parameters in CFRP plates with sufficient accuracy. The high

precision results reported by Cugnoni and Matter were dependent on the selection of the theories

including transverse shear effects3[43]- [84],[94] - [96], Poisson’s ratio values [44], the quality

of the experimental measurements and the regression analysis [45]. All these characteristics

have determined the accuracy and optimization of the structure response in CFRP plates and

should be taken into consideration to apply MOR methods in a CFRP component. Furthermore,

in all the reviewed MNET bibliography there is not mentioned the evaluation of Poisson’s ratio

(ν12,ν13,ν23) values during the volume phase transformation of polymer gels4 in CFRP.

Firstly, it is proposed in this research to establish a MNET methodology to determine the

stiffness parameters in a CFRP assembly to achieve sufficient accuracy in the non-reduced finite

element (FE) model and secondly to perform a CMS with automatic multi-layer substructuring

(AMLS) in terms of substructure/super-element technique. There is no literature that reports a

multidisciplinary approach using a MNET methodology and the CMS with AMLS methods in

terms of substructure/super-element technique applied to CFRP components. So, this thesis

is motivated by the need to develop a MNET methodology to obtain the stiffness parameters

based on the composite’s characteristics and the parameters that affect the dynamic behavior.

After obtaining the stiffness parameters, the application of the CMS method to CFRP can be

included as an integral part with conventional materials in aeronautical applications.

Background of work

Model order reduction (MOR) methods

There is a great interest in applying MOR methods, especially the CMS method, to composite

components in the aerospace and aeronautic industry.

The origin of the MOR development dates back to the first condensation MOR method for

components and assemblies proposed by Guyan [108] and Irons [109]. This condensation MOR

3An excellent review of transverse shear effects in CFRP materials is elaborated by Carrera in [94] - [96].
4CFRP materials, including fibrous composites, have directional elastic properties where ν12,ν13,ν23 can be

close to zero or negative, leading to unusual or extreme behaviour (such as improved shear stiffness, self-adapting

vibrational damping and shock absorption) as well as coupling between stretch and shear or bend and twist [97].
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is also known as STATIC condensation or Guyan method. The Guyan method is distinguished

because the inertial terms contributing to the dynamic behaviour are ignored.

The condensation methods taking into account the inertial terms and the characteristics of

the Guyan method are known as dynamic methods. These methods were developed by Leung

[110], O’Callahan, Avitabile and Riemer [111], Kammer [112], and are known as Improved

Reduction System (IRS), System Equivalent Reduction Expansion Process (SEREP) and similar

to SEREP respectively5. However, a great success in the field of dynamic MOR is considered to

be the CMS by Hurty [8] and Craig and Bampton [9], mentioned previously in the introduction.

The CMS method belongs to the category of substructure techniques and offers an advantage

in the field of MOR over the other developed MOR methods: the model is divided into sub-

structures and each substructure is solved with the CMS methodology. The CMS methodology

is also known as Craig-Bampton model order reduction (CBMOR) method [9].

A detailed overview about most of all the CMS techniques using the CBMOR method, can

be found in [113], [114] and [115] to obtain and improve reduced finite element models by

reducing the orders of mass and stiffness matrices (less DOF).

Cunedioǧlu et al. [116] suggested the need to classify the state-of-the-art MOR methods

in four groups by their characteristics: direct reduction, modal methods, reduction with Ritz

vectors and the CMS. The author highlighted, according to this classification, that the last two

groups yielded the best results. The Ritz vectors improve the accuracy-cost ratio and the CMS

combines the first three classes of methods [116], [117].

In addition Cunedioǧlu et al. have published in [4] one of the first papers applying MOR

methods based on CMS and quasi-static mode synthesis (QSM1 and QSM2) to cantilever

beams elaborated with composite materials. The best achievement is reported using the QSM2

method. The author analyzed additionally the effects on the natural frequencies modifying the

parameters such as fibre orientation, stacking sequence and ply thickness in the full model.

Balmès has reported a fundamental property of the MOR method based on the Rayleigh-

Ritz method: The reduced model gives exact approximations if the results match in the range

of the reduction basis [117]. Balmès has achieved important contributions applying a MOR

method with Ritz vector basis using singular value decomposition (SVD) based on the strain and

kinetic energy norms [117]. The SVD is a classical mathematical tool used to select important

directions in a given subspace.

5Introduction by Koutsovasilis [114].
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Thus, Balmès has documented that a Ritz vector basis can be used to compute the modes

for various values of the specified parameters [118] in order to create a parametric family of

reduced models with enough sensitivity, (see [119] and [120]). In addition Balmès has achieved

a generalised interface using the CMS [118], [121], automatic multi-layer substructuring

[201] (AMLS) and residual iteration [213] methods in [106]. A review is presented about

the relationships between the MOR methods and Ritz vectors (including the CMS) regarding

the optimization and accuracy of the reduced model in terms of substructure/super-element

technique [118], AMLS and mode shape expansion techniques [122], [123], [124].

Moreover, other class of dynamic substructuring method in the frequency domain using

measured data of the uncouples systems is named frequency-based substructuring (FBS) [200].

The FBS method presents an advantage over the other condensation algorithms because it is

used the frequency response functions (FRF). The FRFs represent the physical behaviour of the

structure whereas they cannot be described by CMS approaches. However, the FBS method is

difficult to apply because it is needed an identification technique (curve-fitting algorithms) to

determine the mass, damping and stiffness matrices of the components involving experimental

data. This combination of theoretical results and experimental measurements are referred to in

the literature as hybrid analysis [200].

Thus, it is documented that the CMS method with Ritz vector basis offers the best accuracy-

cost ratio applied to conventional materials and the hybrid analysis gives the advantage of

experimental substructuring using experimental measurements. Therefore, to achieve the

required level of accuracy applying MOR methods to a CFRP component, it is proposed to use

the CMS with Ritz vector basis and several mode shape expansion (MSE) techniques including

experimental measurements once it is obtained the stiffness parameters with the MNET in order

to fulfill the objetive of this work. The CMS and MSE including experimental measurements

in terms of MOR are implemented in MATLAB-SDTools [106] by Balmès et al. and these

methods will be applied to compare and validate the results.

Validation of model order reduction methods

Several studies in literature using the FEM and MOR method have reported the validation

using quality assurance criteria with conventional materials [113], [114] and [115] to verify

large structures with complicated geometries and multiple materials. The need to use different

quality assurance criteria is critical to predict and validate the structural behaviour in composite
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components. Most of these criteria are used to check quantitative and qualitative results of the

full and reduced models.

The MAC was developed by Allemang [125] and it is one of the most common criteria

used to correlate experimental modal analysis and FE models (as well as ROM). The MAC

is defined as a scalar constant that provides a measure of consistency between modal vector

evaluations [125]. A MAC value of 100% means a perfect correlation. If this value decreases

below 80%, the correlation results must be checked. The MAC characteristics are most sensitive

to the largest differences than the smallest differences between comparative values. The need to

identify the differences of the comparative values with enough sensitivity applying the MAC

has developed and implemented several quality assurance criteria per DOF.

The MAC per pair-sensor (MACco) criterion consists in the sequential order of sensors

that contribute most to the poor correlation [126]. This modal correlation criterion (MCC) is

known by different names: the MAC coordinate criterion [106] or the MAC variation technique

[127]. The MAC per coordinates (MACco) implemented in [106] is used to lead to the best

mean MAC for the paired modes selected. It is possible to obtain a direct indication using the

MACco where there is located the poorest correlation per sensor/DOF.

The quality assurance criteria per DOF are known as the coordinate modal assurance

criterion (COMAC) developed by Lieven and Ewins [128], the enhanced coordinate modal

assurance criterion (eCOMAC) by Hunt [129] and the scale coordinate modal assurance criterion

(COMAC-S) [106] applying the modal scale factor (MSF) respectively. The application of the

MSF is reported in the literature for a variety of different analysis by Hatch [130], Schwarz

[187], Allemang [125], Catbas [132], Ewins [131] and Balmés [106]. The different COMACs

are known as an extension of the MAC to identify the differences between DOF locations

that contribute negatively to a low MAC value [129]. In contrast to the MAC values, if lower

COMAC, eCOMAC and COMAC-S values are obtained, then a better agreement per DOF will

be achieved.

The COMAC is a sensitive method for detecting large and small motion of DOF. This

particularity makes the interpretation of the COMAC difficult [129]. The application of the

eCOMAC is used to overcome this particularity. Furthermore, a common problem with

experimental modal vectors is the calibration scaling errors and/or sensor orientation mistakes

[129]. The preferred usage of COMAC-S is when the spatial correlation of the implicit modal

shapes require that mode shapes are similarly scaled [132]. For example, the particularity

of the COMAC-S, applied by Hatch et al. [130], consists of a pre-scale second set of mode
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shapes using the modal scale factor [125] (MSF) before being processed by the COMAC. Two

requierements must be fulfilled in the application of these criteria: modes have to be normalized

and there must be phase correlation between pairs of modes [129]. The application of these

criteria implemented in [106] is proposed to confirm the use of the mode shape information in

the identification process to improve the stiffness parameters in a composite component as well

as to validate the MNET methodology.

As was introduced, one way to check quantitative and qualitative results of the full and

reduced models is to compare different MAC and different COMACs. Another way to check

the quality of the results is to use MSE techniques. The use of MSE techniques has become

a good practice when the experimental components are large and complex, see [122], [123]

and [124]. Several MSE techniques with basis on Ritz vectors have been developed by Balmès

et al. [122], [123]. Those MSE techniques are: Guyan [108], SEREP [111], MODAL [112]

and DYNAMIC [134], minimum residual dynamic expansion (MDRE) [135] and its extension

using least square quadratic inequality (LSQI) [136] known as minimum residual dynamic

expansion (MDRE-WE) with experimental results (called MRE-QI or MDRE-WE), see [122]

and [123]. The last MSE technique using least square quadratic inequality (LSQI) or square

quadratic inequality constraint methods has the best performance and can reliably predict mode

shapes based on the MOR methods, even in very adverse situations according to Levine in

[124]. Other reports proposed to use MSE techniques to enhance structural modifications, (see

[137], [138]).

Thus, it is proposed in this thesis to apply the above quality modal assurance criteria and

MSE techniques implemented in MATLAB-SDTools [106] to verify the dynamic behaviour

accuracy of the FE models applied to a CFRP component.

Mixed numerical-experimental technique (MNET) applied to

laminated composites

As it is mentioned in the introduction, several MNETs have been developed for identification of

stiffness parameters in composites [13]- [48]. The MNET is based on the application of inverse

methods combining experimental global results with computed FEM results. Many stiffness

properties of multilayered rectangular plates have been investigated using experimental modal

tests carried out using an impulse hammer, a loudspeaker, a scanner laser Doppler vibrometer
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(SLDV), different shell theories and FEM by Sol [13], 1986; De Wilde [14] , 1987; Pedersen

[15], 1989; De Wilde [16], 1991; Frederiksen, [18], 1992; Mota Soares et al. [22], 1993; Sol et

al. [26] , 1993; Grediac and Vautrin [24], 1993; Link and Zou [27], 1994; Araujo, [29], 1996;

Frederiksen, [19], 1997; Rikards [39], 2000; Araujo, [31], 2001; Cugnoni, [43], 2004; Cugnoni,

[44], 2007; Matter [45], 2007; Van den Abeele et al. [46], 2010; Badshah, [47], 2013; and

Gahnmi, [48], 2013.

Relatively accurate results have been obtained for the elasticity and in-plane moduli with the

classical laminate theory (CLT) [13]-[15], but a lack of precision is accomplished on the in-plane

Poisson’s ratio. A number of improvements of the previous approaches are performed by [16]-

[31] in order to identify the elastic properties in composite plates. De Wilde [16] has presented

a work using Bayesians estimation instead of optimization techniques for symmetric single

material laminates. Frederiksen [18] used for thick plates a higher-order theory associated to the

numerical model based on the Rayleigh-Ritz approach for symmetrical layups and specimens

made of a single material. Mota et al. [22] have obtained accurate identification results for the

tensile and in-plane modulus. However, poor estimations are obtained if the plate is relatively

thin using the Mindlin plate theory.

Lai and Ip [28] have presented a method using Bayesians and the Kirchhoff plate theory.

This method has been validated satisfactorily on symmetric single material laminates. Further-

more, Araujo et al. [29] have used the FEM and a high-order displacement field to identify

the mechanical properties of specimens made up of several materials and general stacking

sequences.

Another method based on response surfaces (regression analysis) was used by Rikards and

coworkers [32]-[39]. This technique, called plannig of experiments, was used successfully to

identify elastic properties in unidirectional laminates based on a design of experiments (DOE)

using the PLANEX and RESINT programs. The DOE is highlighted in the industry over other

regression analysis because with the DOE can be obtained the best mathematical model even

though the form is not known. This iterative process to optimize the results is also known as

updating, (see Alsharif et al. [40] and Xiaoping et al. [41]).

Futhermore, the use of model updating techniques was also presented by Cunha and Piranda

[42] applied to sandwich structures for the identification of mechanical properties of laminates.

However, the evaluation of in-plane Poisson’s ratio in the above studies was still deficient even

though more accurate estimations of the composite stiffness parameters were obtained.
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More recently, Cugnoni et al. [43] have presented an improvement of the stiffness parameters

using a MNET based on the the first-order shear deformation theory (FSDT) and the higher-

order shear deformation theory (HSDT) evaluating the dynamic response of thick and thin

multilayered composite laminated shells. These theories belonged to the hierarchy of equivalent

single-layer (ESL) models. The results shown that can be identified the in-plane Young’s

modulus and shear modulus as well as the in-plane Poisson’s ratio with a high precision using

the FSDT and HSDT element formulations for thin shells. Both theories highlighted the

application of the global sensitive response and accuracy. However, a deterioration in the global

response is presented using the FSDT when it increases the shell thickness-to-span ratio.

Furthermore, Cugnoni et al. in [44] have developed a MNET for characterizing the constitu-

tive properties of thick and thin composite plates based on the extracted mode shapes and the

corresponding natural frequencies of the structure. The author has estimated the elastic proper-

ties with a nonlinear-least-squares algorithm based on the MAC. This approach of combining

frequency and mode based error norms, allows an accurate identification of Young’s modulus,

shear modulus and Poisson’s ratio using a AS4/PEKK homogenized orthotropic plate element

on moderated thick and thin plates.

Matter et al. [45] have presented an improvement and extension to modal analysis of an

existing multilayered composite shell finite element using a non-contact experimental device, a

p-order shear deformation theory (PSDT) and the MAC. Contrary to early MNET optimization

procedures, the proposed MNET by Matters takes into account not only the subset of lowest

natural frequencies as optimization criterion, but also the corresponding mode shapes and the

nodal lines of these modes [45]. This MNET emphasized the accuracy of the elastic parameters

into two stages instead of one stage compared to the traditional MNET identification methods

to show the high sensitivity on the mode shapes and weak sensitivity in the natural frequencies.

The improvement of the accuracy is done refining the estimation of the elastic parameters

(firstly Young’s modulus and shear modulus and secondly Poisson’s ratio) and performing a

multi-degree-of-freedom curve-fitting strategy in order to extract the modal parameters in the

composite component.

Van den Abeele et al. [46] have presented an optimization method using the Kirchhoff-Love

equations based on in-plane orthotropic elastic constants in sandwich structures with steel skins.

Whereas Badshah [47] has presented a MNET to identify elastic behaviour of Aluminum Foam

based on the MAC using ANSYS Parametric Design Language APDL. Gahnmi et al. [48]

have focused on the identification of the stiffness parameters using solid elements in a thin
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multilayer composite plate based on a new response surface method procedure using an analysis

of variance (ANOVA) and a DOE.

Therefore, the best achievements, identifying the material properties of composite plates

based on the MNET literature, were obtained when:

• The experimental measurements possess a good quality to predict the dynamic behaviour

in composite components [13]- [48], [130], [139], [142] regarding the accelerometers

due to the non-contacting nature [140] with their advantages and disadvantages [141].

• The achievements in mechanical structures to validate their dynamic behaviour were

carried out with highly accurate theoretical models using FEM [80], [83], [92].

• The best MNET achievements have shown that the in-plane Young’s modulus and shear

modulus as well as the in-plane Poisson’s ratio can be identified with high precision using

the FSDT and HSDT for thin and thick shells, applying MAC and curve-fitting algorithms

by [43], [44] and [45].

• Different layer-wise models (LWM) including shear effects were used to improve the

response of the global deflections and natural frequencies [77], [76], [84], [94], [96] in

composite materials; however, the computer cost is prohibitive.

• Although the FSDT element formulation is quite acceptable to study the global response

of high shear deformable thin and thick composite structures, they were not adequate for

forecasting local stress-strain characteristics [93]-[96].

• A design of experiments (DOE) was used as a regression analysis to obtain a simple

mathematical model for structural optimization problems. The DOE has played an

important role in new product designs, manufacturing process development and process

improvement in the last 25 years [145].

Taking into consideration the above improvement of achievements using MNET to identify

the stiffness parameters of composite components, the proposal of the new MNET will be based

on:

1. Triangle elements: Most of the shell structures can be discretized as quadrilateral or

triangle elements (plane or curve). The triangle elements are generally preferred due to

its advantage in modeling shell geometries [76], [79], [84], [104] beside the accuracy,
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reliability and efficiency studied by many researchers in the last 40 years [80], [83], and

[92].

2. FSDT: In major commercial codes, the FSDT is implemented in element formulations

using the FEM, such as the CTRIA3 element in MSC/NASTRAN to include the transverse

shear effects in a laminated composite shell ply-by-ply (PCOMP entry) by setting up the

thickness, the orthotropic (MAT8 entry) or anisotropic (MAT2) material properties and

the relative orientation of each individual lamina [90], [103], [148], [150].

3. Curve-fitting algorithms: The application of identification de rèsidus complexes (IDRC)

and identification de rèsidus multiples (IDRM) pole/residues curve-fitting algorithms

developed by Balmès [152] is proposed for the new MNET for its efficiency in the identi-

fication of the modal parameters [154]-[155]. These algorithms are implemented in [106]

and will generate a parametric model as approximations of unconstrained pole/residues

to identify stiffnes parameters in the composite component. The use of these algorithms

should give an enhancement of the robustness of the new MNET identification process

applied to a CFRP assembly. Furthermore, the IDRM and IDRC curve-fitting algorithms

will be used to perform the correlation of the reduced order model applying the CBMOR

method and different MSE techniques to a composite component after updating the elastic

parameters in the full model versus the experimental measurements. The application of

these algorithms is a fundamental difference compared with other MNET developments.

4. DOE: The accuracy and reliability of the DOE are characterized by a minimum of standard

deviation based on the numbers of terms in the regression equation. The reliability of

the regression equation means that the standard deviations for the reference points and

any other points are approximately the same. Most of the existing methods of regression

analysis are based on the principle that the form of the equation is known and the problem

is to find the coefficients of the equations [32]. The differences between the DOE applied

by Rikards in [32] using the PLANEX program respect to the DOE proposed in this

thesis consist of the methodology to identify the main effects per stiffness parameters,

an interaction matrix between stiffness parameters, estimated effects and coefficients per

stiffness parameter and the transfer function/surface response using the MINITAB 15

program. The DOE methodology implemented in MINITAB 15 will help to identify

efficiently the effects and interactions of the stiffness parameters in the CFRP and the

transfer funtion using the ANOVA.
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Lastly, but no less important point, is the Poisson ratio during the phase transformations

in polymer gels, see [97], such as the RTM6 used for the elaboration of CFRP. The phase

transformations in polymer gels usually entail a change in structure [156]. This physical

characteristic typically occurs if the polymer gel versus temperature associated with a volume

phase transition is close to a critical point [157]. Similar behaviour is reported for different

polymer gel concentrations when the phase transition temperatures changed [158]. Some

authors have achieved low Poisson’s ratio values [159] or even negative [31], [160] and [161] in

CFRP. Some rather surprising Poisson’s ratio results obtained by Herakovich in [98] using two-

dimensional lamination theory combined with the appropriate three-dimensional anisotropic

constitutive equation: lateral Poisson’s ratio obtained were greater than one and negative through-

the-thickness. The negative Poisson’s ratio for angle-ply laminates with fiber orientations

between 15◦ and 40◦ was due to the high degree of normal-shear coupling and the constraining

influence of adjacent layers. Such Poisson’s ratio values have provided a distinctive signature

for phase transitions, whatever the type of material. It is proposed to analize the Poisson’s ratio

value as part of the MNET analysis using the DOE, beside the conventional Poisson’s ratio.

Approach of the new MNET to apply CBMOR method with

Ritz vector basis

The new MNET framework approach is proposed in the flowchart, (see Fig. 2), to apply and

validate a CBMOR method for a CFRP component. A brief description of each step is given

below.

1. Creation of finite element (FE) Model: The elaboration of the full FE model is the first

step. Two full FE models are created in ABAQUS 6.9 using an orthotropic triangular

S3 elements: one FE model with coarse mesh and another with fine mesh. The full FE

model with the coarse mesh is used to obtain the coordinates of the nodes in order to

perform the experimental measurement analysis (EMA) using the SLDV. The full FE

model with the fine mesh is used to perform the correlation. The FE models are exported

into MATLAB-SDTools.

2. Export the FE model and perform of experimental measurements: Once the FE

model is generated with coarse mesh, it is exported to perform the experimental measure-

ments using a SLDV and it obtains a UFF58 file format. The UFF58 file is exported into
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Fig. 2 MNET and Craig-Bampton model order reduction method flowchart
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MATLAB using the SDTool-box [106] to perform a curve-fitting. The FE model with

fine mesh is also exported into SDTools, using FEMLINK [106].

3. Correlation of the FE model: The IDRC and IDRM algorithms are used to perfom the

curve-fitting. The correlation of the experimental measurements and the full FE model is

performed using the MAC implemented in [106]. The modal analysis of the FE model is

performed using the fe_eig command implemented in SDTools.

4. Updating stiffness parameters: The updating of the stiffness parameters in the full FE

model is performed using the DOE based on the MAC values. A transfer function and

surface response are obtained based on a number of stiffness parameters.

5. Validation of the FE model: The verification of the full FE model quality is done

using different MAC, MACco, COMAC, eCOMAC, COMAC-S and MSE techniques

implemented in the SDTools-box [106]. For comparative purposes the FE model with

fine mesh is exported to MSC/NASTRAN [148] with PCOMP and MAT8 cards.

6. Model Order Reduction/Mode shape expansion: Once the stiffness parameters of the

full FE model are updated then the model order reduction is performed based on the

CBMOR and AMLS methods using Ritz basis in terms of substructures/super-element

technique implemented in [106]. Several MSE techniques are also perfomed based on

the updated stiffness parameters and experimental measurements to validate the results.

7. Validation of Model Order Reduction: The quality of the ROM is also verified applying

different modal assurance criteria used in the validation of the full FE model.

Goal of the thesis

The aim of this thesis is to evaluate the dynamic behaviour applying a MOR method in a

composite component divided into two specific parts: a multidisciplinary MNET methodology

to obtain accurate stiffness parameters and the application of the CBMOR and AMLS methods

based on the Ritz vector basis in terms of substructure/super element technique. On one hand

the main difference of this research respect to the state-of-the-art consists to document that the

principal properties and limitations, using condensation algorithms, are basically caused by

reduction in the number of DOF’s or the modal range included and on the other hand those
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Fig. 3 RTM Composite component assembly

numbers depends strongly of the stiffness parameters of the composite structure using FRF’s

such as in the FBS method to represent the physical behaviour of the structure whereas cannot

be described by CMS approaches. The Author of this thesis could not find a similar approach

or report in the literature based on the stiffness parameters obtained with a new MNET and

then to apply MOR method to a composite component assembly. Moreover, a regression

analysis using a DOE as part of the MNET is performed based on the MAC values to update the

stiffness parameters in a full FE model including transverse shear effects with enough accuracy.

The correlation of the full FE and reduced models versus the experimental measurements

is performed using MAC, different coordinate modal assurance criteria (MACco, COMAC,

eCOMAC, COMAC-S), and the IDRC and IDRM curve-fitting algorithms. Furthermore,

the MSE techniques based on MOR methods are performed to validate the impact of the

updated stiffness parameters obtained with the new MNET using the K-MAC and M-MAC for

comparative purposes applying different condensation algorithms. The MSE techniques are

well established for more conventional materials and structures based on STATIC or Guyan

condensation, MODAL transformations, SEREP, DYNAMIC, CMS and FBS or hybrid methods.

The MNET should be applicable to problems of engineering interest in German industry that
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requiere MOR method in terms of substructure/super-element technique for composite as

well as conventional components. This research will concentrate on a composite component

provided by the DLR Braunschweig, (see Figs. 3 and 4). The composite structure is made

up of three parts. The first component is made of Huntsman Ly 564 + Hexcel Gewebe

G0926 (High Tenacity-Faser, HTA) with dimensions of 0.390m×0.810m×0.007m, (see Fig.

3). The second shell that connects the two principal parts, (see Fig. 4), has dimensions of

0.710m×0.030m×0.0035m. Finally, there is the C-section Hexcel resin transfer moulding

(RTM6) + Saertex Multi-Axial-Gelege (MAG) with a intermediate modulus (IM7-Faser) with

dimensions of 0.710m×0.030m×0.0035m. All the parts have symmetric layer distribution

[45/−45/45/−45/]S.

Fig. 4 Composite component assembly detail.

Thesis outline

The work presented in this thesis is divided into three parts. Part I deals with the theory behind

the numerical-experimental techniques, 2D FE model with orthotropic proporties, curve-fitting

algorithms, design of experiments, the different well established modal assurance criteria,

the CMS based on the Ritz vectors basis, the AMLS and MSE techniques. In Part II the
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techniques and methods from Part I are applied to the composite component. In Part III there

are recommendations and conclusions for further work. Each part consists of several chapters.

Part I - Introduction to mixed numerical-experimental technique (MNET)

and component mode synthesis (CMS)

Chapter 1 gives a general framework of the mixed numerical-experimental techniques. Subsec-

tion 2.1 addresses the type of CFRP used with MNET, subsection 1.1.1 gives a general theory

framework of the modal analysis theory, frequency response function method 1.1.2, the fast

Fourier transform 1.1.3, parametric identification using pole/residues based on the IDRC and

IDRM curve-fitting algorithms 1.1.4. The subsection 1.2 introduces the numerical simulation of

CFRP using the finite element method based on the first-order shear deformation theory (FSDT)

[83]. Subsection 1.4 gives a general framework of the design of experiments implemented in

MINITAB 15.

Chapter 2 introduces different quality modal assurance methods employed with a full FE

model or ROM such as: MAC, MACco, COMAC, eCOMAC and COMAC-S.

Chapter 3 gives a general framework about model order reduction (MOR) with Ritz vectors,

the classical CMS bases as approximation of the frequency response, automatic generation of

interfaces known in literature as AMLS and MSE techniques.

Part II - Application of the Craig-Bampton model order reduction to a

CFRP component using a MNET

Chapter 4 gives a description of the MNET to obtain the stiffness parameters of the composite

component provided by the DLR Braunschweig. Firstly, an experimental modal analysis is

performed based on a SLDV. Secondly, the curve-fitting is obtained using the IDRC and IDRM

algorithms implemented in SDTools. Thirdly, numerical modal analysis is performed based on

the pshell element formulation with PCOMP and MAT8 card definition implemented in SDTools.

Fourthly, the full FE model is updated applying the DOE using the MAC. The best stiffness

parameters are obtained with the MNET for the established parameters E1,E2,G12,G23,G13

and ν12.

Chapter 5 shows how the stiffness parameters obtained in Chapter 4 of the full FE are

validated applying the MAC and different COMACs. For comparison purposes the full FEM
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model in SDTools is exported using FEMLINK and solved in MSC/NASTRAN SOL 103 and

ABAQUS 6.9. The validation of the exported FE models is performed also with the same MAC,

COMAC, eCOMAC, COMAC-S and MACco criteria.

In Chapter 6 the modeling of the substructures is established based on the Craig-Bampton

model order reduction and AMLS methodology using the Rayleigh-Ritz vector basis using

single value decomposition established in the structural dynamic toolbox for MATLAB. The

updated full FE model, obtained in the Chapter 4, is divided in two super-elements and the

CBMOR method is performed according the appropiate [T ] matrix used in [106]. The reduced

model using the CBMOR method is validated using the same modal assurance criteria and

different COMACs applied to the full FE models. Furthermore, the influence of the stiffness

parameters obtained with the MNET is analyzed applying several MSE techniques in terms of

MOR methods based on the stiffness- and mass-weighted criteria (K-MAC and M-MAC) using

the MAC.

Part III - Conclusion and recommendations

Chapter 7 gives a number of recommendations for future work such as: evaluation of Poisson’s

ratio (ν12, ν13, ν23) of a RTM6 polymer gel versus temperature associated with a volume phase

transition close to a critical point used with CFRP, the application of others ESL and LWM

models, the analysis of fatigue and fracture of CFRP (for example the Puck criterion) using the

MNET, comparison of results using other discrete Mindlin Kirchhoff triangle (DMKT) element

including transverse shear effects, comparison of results using the enhanced AMLS method and

the application of other curve-fitting algorithms with experimental modal analysis.
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Chapter 1

General concept of MNET

1.1 Introduction

Traditionally, the general concept of numerical methods is usually formulated to identify

directly1 the physical properties (such as Young’s modulus, shear modulus and Poisson’s ratio)

of mechanical parts, (see Fig. 1.1). The application of several numerical methods is used to

obtain directly these physical properties and analize the mechanical performance. However,

there is an increasing interest to obtain indirectly the physical properties of CFRP using

MNETs [13]-[48]. The reason to use a MNET is justified in the literature when it is limited

the application of standard testing methods to determine directly the constitutive physical

properties. Typical examples applying MNET are found in many industrial processes such as:

deep drawing, extrusion, cutting, blanking and forging processes [167]. The MNET can be also

used in different fields such as biological materials [168], rocks and soils [169].

Applied inputs

Model Parameters

Simulation
Numerical Model

Responses

Fig. 1.1 The direct problem [170].

The purpose of using a MNET is not the numerical method that has to be solved to obtain the

model parameters. The model parameters are obtained using the responses of an experimental

1The numerical method is also called direct problem [170].
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system to a particular input in order to find in an interactive way the solution using a numerical

method. However, the numerical method used with MNET plays a critical role to identify the

model parameters of CFRP, (see Fig. 1.2), with advantages and disadvantages discussed in

[168] and [171]. Thus, the MNET approach can be only used when there is a simple relationship

between the measured quantities and the physical properties of interest [170]. Due to these

characteristics, the MNET is also known as inverse problem [167].

Applied inputs

Model Parameters

Simulation
Numerical Model

Responses

Fig. 1.2 The inverse problem [170].

The general concept of MNET applied to different CFRP plates and shells, (see Fig. 1.3),

is divided mainly into five stages, based on the improvements archived in the literature, see

[32]-[39], [43], [44], [45] and [48]. These stages are:

1. Type of CFRP.

2. Experimental modal analysis (EMA).

3. Curve-fitting approximation of the resulting responses using algorithms.

4. Simulation of a numerical model in order to obtain the stiffness parameters.

5. Updating of the stiffness parameters applying a DOE, genetic algorithms, minimizing the

error approach using computational modal predictions and corresponding experimental

data using the modal assurance criterion (MAC).

Firstly, the CFRP component described in the Introduction generally consists of two parts:

textile reinforcements and polymer matrix. The textile reinforcements includes woven fabric2

produced by the interlacing of warp (0◦) and weft (90◦) fibres in a regular pattern or wave style,

(see Fig. 1.4). Common CFRP woven fabric elaborated with yarns are preferred with minimal

or nominally zero twist (tows) in the aerospace industry. The polymer matrices, such as epoxies

2A woven fabric is a planar textile structure produced by interlacing two or more sets of yarns, fibres, rovings

or filaments where the elements pass each other usually at right angles and one set of elements is parallel to the

fabric axis [173].
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Experimental
Modal Analysis

(SLDV)

Thick, thin
plates, shells

and Sandwiches

Physical Properties

Resulting
responses

Simulation
Numerical

Model

Frequency

Damping

Mode Shape

Applied
Inputs

Stiffness

Damping

Mass

Updating

sensors:

shaker-transducer
loudspeaker-microphone

Fig. 1.3 General concept of MNET applied to CFRP [170].

and polyesters, are usually the resin systems. The polymer matrix has desirable properties such

as: easily formed into complex shapes as well as transmit the load to the textile reinforcements

[173].

Three types of CFRP can be distinguished using MNET: thin, thick and honeycomb (sand-

wich). A state-of-the-art of different thin composite plates3, thick composite plates4 and

sandwiches5 textile reinforcements is discussed by Khan in [173] and by Knipprath in [172],

Balvers [176] and Tochukwu [177] respectively.

(a) Plain weave fabric. (b) Twill weave fabric (c) Satin weave fabric

Fig. 1.4 Woven Fabrics [173]

3Thin-plate formulation is defined as plane structural elements with small thickness compared to the planar
dimension elaborated with woven fabrics, plane wave, twill weave, satin weave, non-crimp fabrics (NCF) [173].

4Thick-plate formulation is defined as plane structural elements with bigger thickness compared to the planar
dimension. Balvers [176] provided a state-of-the-art study of the importance of ‘thick’ advanced composite
structures.

5Sandwich panels consisting of pairs of light, stiff, strong faces separated by low density cores are introduced
by Tochukwu, see [177]. The sandwich materials offer exceptional structural load support, especially in bending.
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Secondly, the EMA is a process of determining the modal parameters (natural frequencies,

damping factors and modal vectors), based on the modal analysis theory [143], illustrated in

section 1.1.1. A common reason to use EMA data is to verify the results of an analytical or

a FEM numerical approach interpolating frequency response functions (FRF)6. The use of

FRFs is introduced in section 1.1.2 as an input for the estimation of the modal parameters. The

use of fast Fourier transform (FFT) and digital signal analizer (DSA) are fundamental steps

to acquiere and record the FRF that isolates the inherent dynamic properties of a mechanical

structure introduced in section 1.1.3. Traditionally these procedures are divided into three steps:

the excitation of the structure, measuring the response motion and post-process of the FRF.

Thirdly, the goal of using the curve-fitting algorithms, illustrated in section 1.1.4, is to

produce an accurate estimation of the modal parameters of a CFRP component obtained with

FRF. The FRFs obtained are used to provide a way to compare the test and the FE model (during

the experimental approach and during the model updating process) [178].

Fourthly, the simulation of numerical methods using FEM to obtain the mechanical be-

haviour of CFRP flat or doubly curved laminate shells components is described normally using

different equivalent single-layer (ESL) laminate theory. One of the relevant ESL laminate theo-

ries based on the accuracy, computational cost and simplicity is the first-order shear deformation

theory (FSDT). An extense research using the FSDT is documented in bibliography for the

possibility of including transverse shear effects [76], [83], [84], [99], [104]. In essence, the

FSDT approach introduced in section 1.2 of this work can be applied using a discrete shear

triangle (DST) elements formulation developed by Lardeur [84] and Batoz [104] for CFRP also

known as discrete Mindlin Kirchhoff triangle elements [76] (DMKT) with transverse shear

effects included.

Fifthly, several methods can be found in the bibliography [13]-[48] to update the stiffness

parameters of CFRP using MNET (genetic algorithms, DOE). The DOE [145] is a senstivity

analysis tool widely used in the industry to identify the critical parameters of the mechanical

components, illustrated in section 1.4. These critical parameters can be used to control the

target of FE models using experimental measurements. The MAC is a well-established modal

correlation criteria (MCC) to verify FE models versus experimental measurements. There

are other MCC such as different coordinate modal assurance criteria to verify the identified

parameters of the FE model.

6The acquisition and interpolation of the FRF play an important role into the MNET to validate the application
of CMS using a CFRP assembly.
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Finally, once the MNET is established to control the stiffness parameters of a CFRP, part of

the objetive of this work will be to verify the application of a MOR using super-elements to a

CFRP. The super-elements can be created from CMS in MOR literature. A super-element is a

reduced model that is included in another global model as an element. The approximation of

reduced models using super-elements is evaluated in further sections and chapters using the

same experimental measurements.

1.1.1 Modal Analysis Theory

The single DOF system can be used as a basic model in time and frequency domains to estimate

modal parameters summarised by Giorelli in [178] and reworked in this section. Cases with

multiple DOF can be viewed simply as a linear superposition of a single DOF system in [131],

[182] and [183]. The general mathematical representation of a single DOF system, represented

schematically, (see Fig. 1.5), is given by equation (1.1) where [M], [C] and [K] are the mass,

damping and stiffness matrices ẍ(t), ẋ(t),x(t) are the acceleration, velocity and displacement

vectors respectively. The F(t) is the function that respresents the excitation applied to the

Fig. 1.5 Single Degree of Freedom (SDOF) System [178].

system [178]:

[M]{ẍ(t)}+[C]{ẋ(t)}+[K]{x(t)}= {F(t)} (1.1)

Setting F(t) equal to zero, the general solution of the Eq. (1.1) is

x(t) = Aeλ1t +Beλ2t (1.2)
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where A and B are constant and the values of λ1 and λ2, for an underdamped system, are given

by

λr = σr + jωr (1.3)

where σr is the damping factor and ωr is the damped natural frequency7. The fraction of

critical damping for most real structures is rarely greater than 10%, if there is not presented

active damping systems. In such an underdamped system, λ1 and λ2 roots are always complex

conjugates. The roots are referred to as the poles of the system. The two coefficients, A and B,

are also complex conjugates of one another. Equation (1.1) is the time-domain representation

of the system, see Fig. 1.5. An equivalent equation can be determined for the frequency domain.

The frequency representation has the advantage of converting a differential into an algebraic

equation. This is accomplished by taking the Fourier transform8 of Eq. (1.1). Thus, it becomes

[178]:

[−ω2[M]+ j[C]ω +[K]]X(ω) = F(ω) (1.4)

then if

B(ω) =−ω[M]+ j[C]ω +[K] (1.5)

and substituting the Eq. (1.5) into (1.4), it is transformed into

B(ω)X(ω) = F(ω). (1.6)

Eq. (1.6) is an equivalent representation of Eq. (1.1) in the Fourier domain. The system

response X(ω) is directly related to the system forcing function F(ω) through the quantity

B(ω). If the system forcing F(ω) and its response X(ω) are known, B(ω) can be obtained by

[178]:

B(ω) =
F(ω)

X(ω)
(1.7)

7The units of both factors are specified in radians per time-unit.
8The Fourier transform of a function x(t) is denoted by X(ω) which transform the variable x(t) from a function

of time into a function of frequency ω [178].
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Reordering this equation is obtained

X(ω) =
F(ω)

B(ω)
(1.8)

and establishing H(ω) = 1
B(ω) Eq. (1.8) is transformed into

X(ω) = H(ω)F(ω). (1.9)

The H(ω) is known as the FRF of the system. The FRFs, H(ω), are defined as the ratio of the

transformed excitation [131]:

H(ω) =
X(ω)

F(ω)
. (1.10)

where H(ω) is the identified (predicted) FRF transfer function matrix, H(ω) the measured

FRF transfer function matrix, X(ω) the Fourier spectrum of response and F(ω) is the Fourier

spectrum of excitation force. The FRF in Eq. (1.10) is the inverse of the dynamic stiffness

matrix

H(ω) =
[
−ω2[M]+ [C]ω +[K]

]−1
(1.11)

where the mass [M], damping [C] and stiffness [K] matrices in Eq. (1.11) are dependent

on physical parameters such as material’s density, Young’s modulus and shear modulus and

Poisson’s ratio. Experimentally, the values of the transfer function are measured only along

the jω-axis in the s− plane, that is (s = jω). Thus, H(ω) can be rewritten as a function of the

complex poles;

H(ω) =
1

( jω −λ1)( jω −λ ∗
2 )

(1.12)

where λ1 = σ1 + jω1 is the complex pole and λ2 its complex conjugate. The FRFs, H(ω), are

complex-valued functions of a real-valued independent variable (ω) that can be identified by a

pair of curves (real and imaginary parts) [178], (see Fig. 1.6).
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Fig. 1.6 FRF real and imaginary parts.

1.1.2 Frequency Response Function (FRF) Method

The interpolation between the experimental measurements uses FRF. The FRFs allow the

comparison of the experimental modal data and it is a common approach to estimate modal

parameters (frequency, damping, and mode shape), see [182], [183] and [184]. The FRFs were

defined as the quotient between the input and output Fourier transforms, see Eq. (1.10), and

it can be used as an input to interpolate the estimation of modal parameters of the FEM or

experimental data [185], (see Fig. 1.7). Furthermore, it is also possible to use FRFs comparing

experimental modal parameters and FE model to update the stiffness parameters of a FE model

[152]. The FRFs are measured throughout the structure using an excitation sensor at a single

or at multiple points. This excitation can be narrowband or broadband. Multiple independent

modal vectors can be obtained using FRFs. These modal vectors are estimated from multiple

rows or columns of the FRF matrix. A complete set of frequency response measurements would

form a square matrix of size n, where the rows correspond to response points and the column

to excitation points, see Eq. (1.13). The frequency response matrix of a linear system has an

additional important property. If the system behaves linear, the frequency response matrix is

always symmetric due to the Maxwell’s Reciprocity Theorem [186]. For example, referring to

the matrix in Eq. (1.13):







X1( jω)

X2( jω)
...

Xn( jω)







=









H1,1( jω) H1,2( jω) . . . H1,n( jω)

H2,1( jω) H2,2( jω) . . . H2,n( jω)
...

...
. . .

...

Hn,1( jω) Hn,2( jω) . . . Hn,n( jω)















F1( jω)

F2( jω)
...

Fn( jω)







, (1.13)



1.1 Introduction 11

if H1,2( jω) = H2,1( jω), this property is helpful to provide the linearity assumption. By

comparing two reciprocal measurements at various pairs of points and observing the differences

between them, the degree of linearity of the system can be estimated [178].

Differential Equations
[M]{ẍ(t)}+[C]{ẋ(t)}+[K]{x(t)} = F(t)

System Matrix
[−[M]ω2+ j[C]ω+[K]]X(ω)=F(ω)

FRF Method
X(ω) =[H(ω)]F(ω)

Modal
Parameters

Modal
Parameters

Analytical

Experimental

Laplace Transform

Eigensolution

Curve-Fitting

Matrix Inverse

Fig. 1.7 Sources of modal parameters [185].

The frequency response matrix is the classical format to store non-parametric FRF [106].

Moreover, the FRFs corresponding to parametric representations of sets of transfer functions

can be generated in the form of a ratio of polynomials [106]. Thus, the characterization of

properties of parametric representations to check the quality of FRF measurements is obtained

applying the Fast Fourier Transform (FFT) algorithm to accomplish a comprehensive modal

analysis. The FFT is a fundamental procedure that isolates the inherent dynamic properties of a

mechanical structures [131] introduced in the next subsection.

1.1.3 The Fast Fourier Transform (FFT) algorithm and Dynamic Signal

Analyzer (DSA)

The acquisition of FRFs for the formulation of a modal model involves the use of a spectrum

analyser signal processor that allows recording a signal in time and frequency domains. Modern

Dynamic Signal Analyzer (DSA) or Frequency Spectrum Analyzer (FSA) are digital signal

processors, which transform the signal data using of very efficient algorithm, the FFT algorithm

published by J.W. Cooley and J.W. Tuckey [189]. The FFT algorithm is the basis of the
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formulation of any frequency-domain function in modern acquisition systems based on the

Fourier analysis theory [190], [191]. In terms of an integral Fourier transform, a function must

exist always, at any time, in a continuous sense in order to be evaluated, or "transformed". In a

real measurement situation, data are available in a discrete sense over a limited time period.

Therefore, the FFT is based on a set of assumptions concerning this discrete sequence of values.

Those assumptions can be reduced down to one or two situations that must be met by every

signal processed by the FFT algorithm:

1. The transient signal must be captured completely within the time record.

2. The signal must be composed only of harmonics of time record (i.e., it must be an exact

periodic record in the time record).

If one of these assumptions is not met by any experimental measurements processed by the

FFT algorithm, then the resulting spectrum will contain bias errors accordingly. The accurate

measurement of FRFs depends significantly on the errors involved with the digital signal pro-

cessing. In order to take full advantage of experimental data in the correlation of experimental

procedures with numerical approaches, the errors in measurement, generally designated as

noise, must be reduced to acceptable levels. The acceptable levels of noise in FFT analyzers

requieres a careful selection of the measurement settings for the averaging, triggering und

window parameters9, see Chapter 4.2.

Furthermore, the measurement capability of the DSA is built around a tri-spectrum average

loop. This loop assumes that two or more time domain signals are simultaneously digitized and

recorded. A variety of FRF measurements are calculated from these loops using the tri-spectrum

estimates [185]. One of the advantages using the loop averaging is to remove random noise and

randomly excited non-linealilty’s from the XPS of each signal pair. This low noise measurement

of the effective linear vibration of the structure is useful for the EMA [185].

The tri-spectrum average loop is calculated using an auto Power Spectrum (APS) for each

channel and the Cross Power Spectrum (XPS) between the two channels10. The APS and

XPS spectrum responses are formed by taking the product of the response spectrum matrix

[Gx,x( jω)] = [X( jω)][X( jω)]T and the force spectrum matrix. [G f , f ( jω)] = [F( jω)][F( jω)]T ,

9Each of these measurements settings is merely a convenient grouping of many individual errors that cause a
specific kind of inaccuracy in the frequency response function estimate [178].

10The diagonal elements of the response and force spectrum matrices are called APS and the non-diagonal
elements are called XPS [187].
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where [F( jω)] and [X( jω)] were defined in the previous section. The response spectrum matrix

is formed by taking the product of Eq. (1.14):

[Gx,x( jω)] = [H( jω)][G f , f ( jω)][H( jω)]T . (1.14)

Every row and column of the response spectrum matrix contains the spectrum of each measured

response multiplied by the conjugate spectrum of a reference response. A row or column of the

response spectrum matrix can be curve-fitted to estimate modal parameters, if the excitation

force spectrum matrix can be assumed to be "relatively flat" over the frequency range of the

modes of interest [185]. Thus, once the acquisition of FRFs is performed, a curve-fitting method

applying Pole/Residue parametrization can be used to estimate the modal parameters introduced

in the next section.

1.1.4 Curve Fitting of Modal Parameters using Pole/Residue Parametriza-

tion

The goal of using the curve-fitting algorithms is to produce an accurate estimation of the modal

parameters of the CFRP component using the FRF according the materials and manufacturing

process selected . The majority of modern EMA using DSA relies upon the application of curve-

fitting technique (algorithms) to estimate the modal parameters to a set of FRF measurements

with enough accuracy, (see Fig. 1.7). As it was pointed in the Introduction, the accuracy of

the FRF measurements is a crucial factor when judging the estimation of a modal parameter

applying the curve-fitting process. There are several methods that can be used to estimate the

modal parameters highly influenced by the experimental data based on one mode at a time

(SDOF) or more modes at a time (MDOF, global and multi-reference) [185]. The global curve-

fitting expression called the rational fraction polynomial (RFP) or partial fraction expansion

(PFE) is received with great interest and attention for its simplicity and easy implemention in

personal computers (PC) [192] for the last 20 years [193], [194]. The RFP expression not only

can be used to estimate the modal parameters, but also yields the numerators and denominator

polynomial coefficients as well the poles and zeros. The RFP form of poles and residues,

illustrated in Eq. (1.15), offers advantages over other forms [185]:

H(s) =
modes

∑
k=1

(
[Rk]

s−λ1
+

[R∗
k ]

s−λ ∗
2

)

. (1.15)
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The residue matrix11 [Rk] is defined as the constant numerators of the transfer function matrix,

"modes" is the number of modes of vibration, and λr is the pole location. The first advantage

using the RFP form is related that it can be applied directly to an FRF measurement over any

frequency range. The second advantage is related to the possibility to identify the pole in the

vicinity of a resonance peak. The third advantage is related to the identification of repeated

roots for the nature of the CFRP assembly component. The last advantage is related into the

application of CMS methods. Hundreds of studies related to CMS methods have shown, that

for analytical models the representation of the residual flexibility is generally necessary and

sufficient to obtain a good representation of the low frequency dynamics [152].

The RFP form in Eq. (1.15) is typically used when the modal data is obtained from

experimental transfer function measurements (introduced as FRF). Traditionally the relationship

between residues and mode shapes are expressed in terms of FRFs. Thus, the identification

of experimental measurements is determined obtaining modes whose poles are located in the

test frequency range selected using transfer functions. A characteristic of the transfer functions

IDRC and IDRM used in this work are the residual terms [E(s)] and [F(s)] defined in [152].

The contributions of the residual terms [E(s)] and [F(s)] in the transfer functions are used to

evaluate the high and low frequency mode terms respectively. The residual terms are known

also as residual modes or residual vectors [152] and it is documented in literature the advantages

of the application of the residual terms in the accuracy [153]. Thus, the estimation of the

poles depends linearly on the residual terms [R j(λr),E(s),F(s)] solving the linear least squares

problem associated with the frequency domain output error illustrated in Eq. (1.16).

[Rk(λr),E(s),F(s)] =arg min |[H(s)]test −H(s)|2

=arg min

∣
∣
∣
∣
∣
[H(s)]test −

modes

∑
k=1

(
[Rk]

s−λ1
+

[R∗
k ]

s−λ ∗
2

)

+[E(s)]+
[F(s)]

s2

∣
∣
∣
∣
∣

2

(1.16)

where the residue matrix [Rk] = {cφ j}{φ T
j b} is given by the product of a column observ-

ability {cφ j} and row controllability {φ T
j b}. The residue matrix [Rk] is often expressed as

[A j] = {φ j}{L j} in the structural dynamics community, where [A j] is commonly called modal

participation factor, {φ j} is the modeshape and {L j} is the controllability [126]. Assuming

11The residue matrix is formed by an outer product of the mode shape multiply by itself and a scale constant
Ak, [Rk] = Ak{uk}{uk}T . Estimation of the residues for a specific response means calculating the amplitude and

phase of the roots estimated. All parameters are included in the calculation of residues [178].



1.1 Introduction 15

that the complex poles come in conjugate pairs and the residue matrices too, the normal mode

residue with symmetric pole structure can be defined as a rational fraction expression (to

determine the damping ratios that are different for each pole using the normal mode model

format proposed by Balmès in [106]) of the form:

H(s) =
N

∑
j=1

{[c]φ j}{φ T
j [b]}

s2 +2ζ jω js+ω2
j

=
N

∑
j=1

[Tj]

s2 +2ζ jω js+ω2
j

(1.17)

where the contribution of each mode is characterized by the pole frequency ω j, damping ratio

ζ j, and the residue matrix [Tj]. The matrix [Tj] is equal to the product of the normal mode

output shape matrix {[c]φ j} by the normal mode input shape matrix {φ T
j [b]}. The matrix [b] is

called the input shape matrix and the matrix [c] is called the output shape matrix. The use of

normal modes12 defined by the spectral decomposition of elastic structures is fundamental in

modal analysis. The representation of models using the normal mode format is established using

several assumptions13, illustrated in Eq. (1.18) in modal coordinates {p(s)}= [φ ]−1{q(s)}
[
[I]s2 +[Γ]s+[Ω2]

]
{p(s)}= {φ T

j [b]}{u(s)}
{y(s)}= {[c]φ j}{p(s)}

(1.18)

where the mass matrix [M] is a unity matrix [I], the modal damping [Γ] is non-diagonal and the

modal stiffness matrix and [Ω2] (normal mode frequency squared) is diagonal, (s) is the Laplace

variable, {u(s)} are the inputs describing the time/frequency dependence, {y(s)} is the physical

outputs, {[c]φ j} is the modal output shape matrix, and {φ T
j [b]} the modal input shape matrix

[180], [181]. For lightly damped structures, imposing diagonal modal damping assumption,

may simplify the identification [106]. Most accurate viscous damping models are obtained

with a full damping matrix [Γ]. If [Γ] is assumed diagonal for a modally damped model, the

normal mode model can be rewritten in the RFP form and it is sufficient to represent dissipation

effects at the system level. Traditionally, the modal damping was associated to the proportional

damping model introduced by Lord Rayleigh. This association assumed the usefulness of a

12The associated modes are called complex modes by opposition to normal modes which are associated with
elastic models of structures and are always real value [106].

13It is assumed that there is a viscously damped model of the form described by second order models, see Eq.
(3.2), where the normal modes are defined as solutions of the associated undamped eigenvalue problem verifying
two orthogonality conditions [106][152].
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global damped model with a dynamic stiffness of the form

[Z(s)] =
[
[M](s)2 +(α[M]+β [K])(s)+ [K]

]
(1.19)

This leads to a modally damped normal mode model where the mass α and stiffness β coeffi-

cients are adjusted to represent physical damping mechanisms over narrow frequency bands

[106]. The modal damping matrix proposed by Balmes is defined as

Γ =

[
. . .

α +βω2
j . . .

]

(1.20)

which leads to damping ratios

2ζ j =
α

ω j
+βω j (1.21)

where, mass coefficient α leads to high damping ratios in the low frequency range and stiffness

coefficients β leads to a damping ratio linearly increasing with the frequency. Normally the

non-zero tems of the matrix [Γ] are expressed in terms of damping ratios [Γ] = 2ζ jω j. Thus,

the proportional model using damping ratio is defined as a scalar uniform damping ratio for

each of the pole frequencies ω j [106].

1.2 Fundamentals of numerical simulation of CFRP using

finite element method (FEM)

The increasing use of anisotropic materials and multilayer CFRP components with a large ratio

between bending and shear rigidities has encouraged many researchers and developers to adopt

and implement the numerical simulations using FEM for the development of powerful MNET

routines. There are hundreds of papers and theses documenting different numerical simulation

approaches based on the plane state of stresses, accuracy, computational cost and simplicity

using the FEM. The FEM is a commonly used technique in the analysis of CFRP, particularly

useful to compute the dynamic behaviour. Most of CFRP are typically stacking of several thin

layers and experience a plane state of stresses. It is well known that the stacking of several

orthotropic layers in CFRP leads to inhomogeneous stiffness properties through thickness [98].
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The fundamentals of the numerical simulation of CFRP used in this work are presented in

this section and it is divided in three parts: the theory of linear elasticity, the first-order shear

deformation laminated plate theory (FSDT) and the fundamentals of the FEM.

1.2.1 Governing equations of linear elasticity

The main objetive of the theory of elasticity is to find the unknown deformation field and the

corresponding strains and stresses [83]. The deformation problem can be described using a

solid body applying kinematic equations and static boundary conditions, (see Fig. 1.8). It is

Fig. 1.8 Solid body, kinematic and static boundary conditions(improve Fig).

assumed that the relation between strains and stresses is linear and the displacements are small.

Thus, the governing equations of the linear elasticity are described using the constitutive laws,

the equilibrium and kinematic equations. Traditionally, the equlibrium equation is expressed in

Cartesian coordinates and formulated with the second Newton’s law on an infinitesimal volume

in the three dimensions, x1, x2, x3, (see Fig. 1.9). The equilibrium equations can be written

Fig. 1.9 Stress components on an infinitesimal volume element.

using a tensor notation i, j = 1,2,3 in the reference system as

σi j + fi = ρ üi (1.22)



18 General concept of MNET

Where σi j, fi, ρ and üi denotes the Cauchy stress tensor, body forces, the material density and

the displacements respectively (the dots denote the time derivative traditionally expressed as

acceleration). The kinematic equations relate the displacements with the strains, see Eqs. (1.23)

and (1.24). The strains εkl can be expressed as a function of the displacements k, l = 1,2,3 as.

εkl =
1
2
(uk,l +ul,k) (1.23)

The stress-strain relation of a material is given by the generalised Hooke’s law (when a linear

elastic behaviour is assumed) and it can be expressed with a 4th-order tensor Ci, j,k,l described

by 81 coefficients

σi j =Ci, j,k,lεkl where i, j,k, l = 1,2,3 (1.24)

where {σ} and {ε} are the the stress and strain vector components respectively. The equilibrium

and the kinematic equations as well as the constitutive law can be integrated into the equation

of motion in order to solve it for the unknown displacements ui

1
2

Ci jkl(uk,l +ul,k)+ fi = ρ üi (1.25)

Considering a static problem, the time dependent term ρ üi is equal to zero. The governing

equations can be expressed into matrix notation where the stresses σ , strains ε and displacements

u can be formulated as arrays and the Hooke’s law as a stiffness matrix [C], see Eq. (1.26).

The general expression in matrix notation within the framework of the linear elasticity of an

anisotropic material which has no planes of symmetry is given by Eq. (1.26)







σ1

σ2

σ3

τ23

τ31

τ12







=














C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66




















ε1

ε2

ε3

γ23

γ31

γ12







. (1.26)

If any material symmetry exists, the number of independent properties decreases. This is done

taking advantage of the stress tensor symmetry, the strain tensor symmetry and the deformation

energy U [83]. These symmetry assumptions reduce the original 81 coefficients of the Hooke’s

law to 21 and is the most general framework of the linear elasticity. Thus, the stresses, strains
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Table 1.1 Indexing of tensors and matrix formulations

Stresses Strains

matrix tensor matrix tensor

σ1 σ11 ε1 ε11

σ2 σ22 ε2 ε22

σ3 σ33 ε3 ε33

σ4 τ23 ε4 γ23 = 2ε23

σ5 τ13 ε5 γ13 = 2ε13

σ6 τ12 ε5 γ12 = 2ε12

and the [C] arrays in Eq. (1.26) can be expressed using the Hooke’s law {σi}= [C]{εi}, where

{σi} {εi} are the normal stress and strain components in the i-direction while {τi j} and {γi j}
are the shear stress and shear strain in the i j-plane.

Cortho =














C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66














(1.27)

The material constants in an orthotropic material are reduced to nine coefficients. The constitute

matrix of an orthotropic material notes that there is not a coupling between the shear and

normal components within the principal coordinates, see Eq. (1.27). The existence of two

orthogonal symmetry planes in a orthotropic material automatically implies the presence of

a third symmetry plane, orthogonal to the first two. A special orthotropic material with three

orthogonal symmetry planes is called orthotropic elasticity in plane stress [83], see ABAQUS

v13 analysis user guide section 22.2.1. It is important to mention that the relationship between

the indexing of the tensor and the matrix formulation is different. Considering the symmetry of

material properties using the Hooke’s law, the tensor shear strains have to be multiplied with a

factor of two in order to fulfill the equivalence of more common engineering shear strains {γi j}.

This relationship is given in Table 1.1.

Moreover, the displacement vector {u}= {u,v,w}T contains the entries of the displacement

{ui} in the Cartesian coordinate directions (x1, x2, x3). These coordinates can alternatively be
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expressed with (x, y, z). The kinematic equations can be expressed in a matrix notation defining

a differential matrix operator L. This differential operator L is used to map the displacements

{u} on the strains {ε} with a simple matrix multiplication {ε}= [L]{u}. The matrix notations

of this multiplication are expressed in Eq. (1.28).







ε1

ε2

ε3

γ23

γ31

γ12







=














∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂ z

0 ∂
∂ z

∂
∂y

∂
∂ z

0 ∂
∂x

∂
∂y

∂
∂x

0




















u

v

w







= [L]{u} (1.28)

where {u}, {v}, and {w} contain the entries for the displacement components expressed in the

coordinate directions (x, y), and (z), respectively. The differential operator [L] can be also used

in the equilibrium Eq. (1.22)

[L]T σ + fi = ρ üi (1.29)

The combination of the equilibrium Eq. (1.29), the kinematic Eq. (1.28) and the constitutive

law Eq. (1.26) for the static problem leads to a simplified partial differential equation for the

unknown displacements {u}
[L]T [C][L]{u}+ fi = 0 (1.30)

The aim of the linear elasticity is to find the displacement solution {u} of the static problem

considering stress and displacement boundary conditions. For simple geometries, a displacement

solution {u} can be found analytically. However, in general, non closed-form solutions using the

FEM are available for problems with complex domain geometries and inhomogeneous material

distributions. The evaluation of complex domain geometries using the FEM is straightforward

using the theory of thin plates relating the force, moments and shear resultants to the strain of a

laminate through a lamina-wise thickness integration.

1.2.2 First-order shear deformation laminated plate theory (FSDT)

In the classical laminated shell theory, which forms the simplest ESL approach, problems

are based on the Kirchhoff hypothesis, which amounts to neglecting both transverse shear

deformation and transverse normal effects. In the first-order shear deformation laminated plate
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theory (FSDT), the Kirchhoff hypothesis is relaxed considering that the transverse normals

do not remain perpendicular to the midsurface after the deformation [83]. The FSDT thin

plate theory is needed in this work to evaluate the correlation accuracy of modal experimental

measurements and the advantageous effect of curvature utilized in a composite shell structure

since the longitudinal elastic modulus is much higher than the shear and the transversal moduli,

hence the use of a shear deformation laminate theory is recommended. To quantify a stress state

distribution of the laminate, the components have to be evaluated layer by layer, assuming that

each layer is orthotropic with respect to its material symmetry lines and obeys Hooke’s law. The

stiffness homogenization using the FSDT follow precisely the assumption of Reissner-Mindlin

[60]-[62] and Kirchhoff-Love plate theories [86], based on:

1. The laminate is assumed to be thin compared to the other dimensions and its thickness is

constant.

2. The transverse normals do not experience elongation.

3. A plane stress state is assumed {σ3}= 0.

4. Rotation of the transverse normals of the undeformed middle plane remains straight but

not necessarily orthogonal to the middle plane after deformation.

5. The single layers are linear elastic and bonded perfectly.

6. Deformations are small.

The 1, 2, 5 and 6 assumptions allow the displacement field to be defined over the whole plate.

Assumtions 3 and 4 affect the stress-strain relationship. The rotation of the normal in each of

the two vertical planes xz and yz is obtained as the sum of two terms: 1) the adequate slope of

the plate middle plane, and 2) an additional rotation φ (introduced in the next sections) resulting

from the lack of orthogonality of the normal with the middle plane after deformation. This is a

substantial difference between Reissner–Mindlin and Kirchhoff plate theories [99].

1.2.3 Plane-stress state and stiffness transformation

The stiffness matrix of an orthotropic layer is defined with the expression Eq. (1.27). This

stiffness matrix [Ci j] of an orthotropic material can be also written in terms of compliances
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relating strains and stresses as function of the engineering constants defined by







ε1

ε2

ε3

γ23

γ31

γ12







=














S11 S12 S13 0 0 0

S12 S22 S23 0 0 0

S13 S23 S33 0 0 0

0 0 0 S44 0 0

0 0 0 0 S55 0

0 0 0 0 0 S66




















σ1

σ2

σ3

τ23

τ31

τ12







(1.31)

where [Si j] are the material compliance parameters [Ci j] = [Si j]
−1 given in terms of the engi-

neering constants as

S11 =
1

E1
, S12 =− ν12

E1
, S13 =−ν31

E1

S22 =
1

E2
, S23 =− ν23

E2
, S33 =

1
E3

S44 =
1

G23
, S55 =

1
G31

S66 =
1

G12

(1.32)

The measured engineering constants can be directly used in Eq. (1.31) as function of nine

engineering independent constants such as the Young’s modulus, Poisson’s ratio and the shear

modulus. Assumming a plane where the material properties are the equal in all directions,

the number of coefficients can be reduced to five (transversely isotropic case) introducing

the plane stress state assumption {σ3} = 0. It is possible to reduce the [S] matrix of an

orthotropic material with orthotropic axis (x, y, z) satisfying the condition of plane anisotropy

in a relationship between the non–zero stresses and strains into a 3×3 an 2×2 matrices. Thus

the stiffness matrix [Ci j] can be reduced to the so-called reduced matrix [Qi j]
(k) as:







σ1

σ2

τ12







(k)

=






Q11 Q12 0

Q21 Q22 0

0 0 Q66






(k)




ε1

ε2

γ12







(k)

= [Qb]
(k)







ε1

ε2

γ12







(k)

(1.33)

and another for the transverse shear stresses (off-plane ).

{

τ23

τ31

}(k)

=

[

Q44 0

0 Q55

](k){

γ23

γ31

}(k)

= [Qs]
(k)

{

γ23

γ31

}(k)

(1.34)
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where [Qi j]
(k) is called the plane stress-reduced stiffness and it is related to the engineering

constanst as follows.

Q
(k)
11 =

E
(k)
1

1−ν
(k)
12 ν

(k)
21

, Q
(k)
12 =

ν
(k)
12 E

(k)
2

1−ν
(k)
12 ν

(k)
21

, Q
(k)
22 =

E
(k)
2

1−ν
(k)
12 ν

(k)
21

Q
(k)
44 = G23, Q

(k)
55 =G

(k)
31 , Q

(k)
66 = G

(k)
12

(1.35)

Note that the CFRP, see Fig. 4, is a stack-up made of several plain wave layers14, see Figs.

1.13, with their material axes oriented arbitrarily with respect to the laminate coordinates, the

constitutive equations of each layer must be transformed to the laminate coordinates (x, y, z)

[83]. A relation that transforms the stresses and strains from the material coordinate system to

the global coordinate system is needed. This is achieved by applying a rotation matrices [Tb] for

the in-plane components (bending) and a rotation matrix [Ts] for the off-plane (transverse shear)

, see Eq. (1.36). Fig. 1.10 illustrates the laminate transformation of the coordinates (1, 2) to

Fig. 1.10 Material principal and global coordinate system [31].

the global coordinates (x, y) by a given angle θ . Note that the reduced stiffnesses involve six

independent engineering constants E1, E2, ν12, G12, G23, G13 [76], [84], [104].

[Tb] =






cos2 θ sin2 θ 2sinθ cosθ

sin2 θ cos2 θ −2sinθ cosθ

−sinθ cosθ sinθ cosθ cos2 θ − sin2 θ




 , [Ts] =

[

cosθ −sinθ

sinθ cosθ

]

(1.36)

The materials stresses and strains are mapped directly using the matrices [Ti] for the in- and

off-plane respectively, illustrated in Eq. (1.37)







σ1

σ2

τ12







(k)

= [Tb]







σx

σy

τxy







(k)

,

{

τ23

τ13

}(k)

= [Ts]

{

τyz

τxz

}(k)

(1.37)

14Stack-up of layers is modeled and evaluated in this work based the CLT and FSDT by assigning a composite
(e.g. PCOMP) and orthotropic material , (e.g. MAT8-NASTRAN) properties to it, see Appendixes D, E and F.
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According the Table 1.1, the enginnering shear strains {γi j} are 2 times the tensorial shear

strains, where results the following relation







ε1

ε2
1
2γ12







(k)

= [Tb]







εx

εy

1
2γxy







(k)

,

{
1
2γ23
1
2γ13

}(k)

= [Ts]

{
1
2γyz

1
2γxz

}(k)

(1.38)

In order to work directly with the engineering strains without a pre-factor, Reuter [82] introduced

a simple matrix, that reduces to a minimum the potential of mistakes. The Reuter matrix can be

divided into two parts (in- and off-planes), introducing the stress plane assumption {σ3}= 0,

the engineering strains can be transformed using the Reuter matrix, see Eq. (1.39)

Rb =






1 0 0

0 1 0

0 0 2




 in-plane , Rs =

[

2 0

0 2

]

off-plane. (1.39)

The in-plane part can be expressed as







εx

εy

γxy







(k)

= [Rb]
−1 [Tb] [Rb]







ε1

ε2

γ12







(k)

. (1.40)

A similar assumption can be done for using the off-plane part of the Reuter matrix, the

engineering strains can be transformed, illustrated in Eq. (1.41).

{

γyz

γxz

}(k)

= [Rs]
−1 [Ts] [Rs]

{

γ23

γ13

}(k)

(1.41)

The global stresses and strains can be mapped to the material principal stresses and strains

performing a multiplication with the inverse rotation of matrix [Tb]
−1 and [Ts]

−1. The inverse of

these matrices must be used if it is desired to transform from (1−2) coordinate system to the

(x− y) coordinate system. The conection between the strains and stresses in global coordinates

is defined on the new matrix called the lamina stiffness (sometimes called reduced stiffness
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matrix [Q̄i j]. The [Q̄i j] matrix is therefore a function of [Qi], [Ri] and [Ti]







σx

σy

τxy







(k)

=






Q̄11 Q̄12 0

Q̄21 Q̄22 0

0 0 Q̄66






(k)




εx

εy

γxy







(k)

=
[
Q̄b

]







εx

εy

γxy







(k)

(1.42)

{

τyz

τxz

}(k)

=

[

Q̄44 0

0 Q̄55

](k){

γyz

γxz

}(k)

=
[
Q̄s

]

{

γyz

γxz

}(k)

(1.43)

The transformed [Q̄i j] can be derived using the equations (1.33), (1.38) and (1.40)

Q̄11 = Q11 cos4 θ +2(Q12 +2Q66)sin2 θ cos2 θ +Q22 sin4 θ (1.44)

Q̄12 = (Q11 +Q22 −4Q66)sin2 θ cos2 θ +Q12(sin4 θ + cos4 θ) (1.45)

Q̄22 = Q11 sin4 θ +2(Q12 +4Q66) sin2 θ cos2 θ +Q22 cos4 θ (1.46)

Q̄66 = (Q11 +Q22 −2Q66)sin2 θ cos2 θ +Q66(sin4 θ + cos4 θ) (1.47)

Q̄44 = Q44 cos2 θ +Q55 sin2 θ (1.48)

Q̄55 = Q55 cos2 θ +Q44 sin2 θ (1.49)

The reduced stiffness matrix [Q̄i j] has to be evaluated for every laminate layer in order to

homogenize the material data of the entire staking of the CFRP.

1.2.4 Stiffness homogenization

The displacement field of the FSDT theory is of the form

u(x,y,z) = u0(x,y)+ zφx(x,y)

v(x,y,z) = v0(x,y)+ zφy(x,y)

w(x,y,z) = w0(x,y)

(1.50)

where u0,v0 and w0 denotes the displacements of the middle plane and the transverse displace-

ment, φx = −∂w0
∂x

and φy = −∂w0
∂y

are the rotations of the normal to the undeformed middle

surface, (see Fig. 1.11). The strain vector is obtained from the expressions of 3D elasticity

theory assuming the plane stress assumption {σ3}= 0. Using the kinematic relation Eq. (1.23),
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Fig. 1.11 Undeformed and deformed kinematics of a FSDT [83].

the strain expressions of 3D elasticity derives into







εx

εy

γxy

−−
γyz

γxz







=







∂u0
∂x

+ 1
2

(
∂wo

∂x

)2

∂v0
∂y

+ 1
2

(
∂wo

∂y

)2

∂u0
∂y

+ ∂v
∂x

+ ∂w0
∂x

∂w0
∂y

−−−−−−−−−
∂w0
∂y

+φy

∂w0
∂x

+φx







+ z







∂φx

∂x
∂φy

∂y
∂φx

∂y
+

∂φy

∂x

−−−−
0

0







=







ε0

−−
γ0







+ z







κ

−−
γ1







(1.51)

where

ε0 =







ε0
x

ε0
y

γ0
xy







,κ =







κx

κy

κxy







, and γ0 =

{

γyz

γxz

}

(1.52)

{ε0},{κ} and {γ0},{γ1} are the generalised (resultant) strain vectors due to membrane, bending

or curvature and transverse shear deformation effects, respectively. Note that the strains

{εx},{εy},{γxy} are linear through the laminate thickness while the transverse shear strains

{γyz},{γxz} are constant through the thickness of the laminate in the FSDT. It is well known

that the stiffness distribution thought the thickness (layer-wise configuration) is discontinuous,

which results in a discontinuous stress distribution [83]. For that reason, the components needed

to be evaluated for each layer to quantify a stress state in the laminate. The quantification is

performed with a line load units that includes all layers classified in three groups: the force per

unit length {Ni} that integrates the stress components over the thickness, the moment per unit

length {Mi} that integrates the stress components multiplied by the stacking position z and the

transverse shear stresses {Si j} over the thickness, (see Fig. 1.12).
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Fig. 1.12 Loads of a FSDT.







Nx

Ny

Nxy







=
∫ h

2

− h
2







σx

σy

γxy







dz =
N

∑
K=1

[Q̄i j]
(k)

∫ zk+1

zk

(ε0 + zκ)dz (1.53)







Mx

My

Mxy







=
∫ h

2

− h
2







σx

σy

γxy







z dz =
N

∑
K=1

[Q̄i j]
(k)

∫ zk+1

zk

(ε0 + zκ)zdz (1.54)

{

Syz

Sxz

}

=
∫ h

2

− h
2

{

γyz

γxz

}

dz = K
N

∑
K=1

[Q̄i j]
(k)

∫ zk+1

zk

(γ0)dz (1.55)

Due to the stiffness it is constant along the laminate, (see Fig.1.13), the integration can be

Fig. 1.13 General layup of a laminated composite material.

replaced with a summation of the integrals of each layer using the transform reduced matrix

[Q̄i j]. Taking advantage of the transformed reduced stiffness matrix [Q̄i j], the forces and the

moments per unit length can be expressed as a function of the membrane strains {ε0}, curvatures

{κ} and transverse strains {γ0}. Matrices [Ai j], [Bi j], [Di j] and [S̄i j] can be obtained. The [Ai j]

matrix connects the membrane strains {ε0} with the force per unit length {Ni} and it is called
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extensional stiffness, the [Di j] matrix connects the plate curvature {κ} with the moments per

unit length {Mi} and it is called the bending stiffness, the [Bi j] matrix couple the membrane

and bending component and it is called the bending extensional coupling stiffness, describing

a coupling between bending and extensional stiffness. Finally the [S̄i j] matrix connects the

transverse shear strains {γ0} over the thickness and K is the shear correction factor15, usually

taken as 5
6 .

[Ai j] =
N

∑
K=1

[Q̄i j]
(k)(zk+1 − zk), i, j = 1,2,6

[Bi j] =
1
2

N

∑
K=1

[Q̄i j]
(k)(z2

k+1 − z2
k), i, j = 1,2,6

[Di j] =
1
3

N

∑
K=1

[Q̄i j]
(k)(z3

k+1 − z3
k), i, j = 1,2,6

[S̄i j] = K
N

∑
K=1

[Q̄i j]
(k)(zk+1 − zk), i, j = 4,5

(1.56)

In case of a symmetric laminate problem, there is no coupling between bending and membrane

effects and the [Bi j] matrix vanishes. These matrices are known as the [ABD− S̄] matrix and

they are the main achievement of the homogenization process. Thus, the stress, moment and

shear resultans can be written in matrix form as







Ni

Mi

Si j







=






A B 0

B D 0

0 0 S̃












ε0

κ

γ0







(1.57)

where the reduced stiffness matrices [Q̄i j] is represented in the [ABD− S̄] matrix and it is

possible to map the global strains taking advantage of its inverse needed for the strengh analysis.

1.3 The finite element method (FEM)

A short overview of the FEM is given based on the textbook of Reddy [83]. The FEM is a

numerical method for solving differential equations widely used to solve physical problems.

Three key steps are needed using FEM applicable to any continuum mechanical problem:

15The use of the K factor tries to overcome the physical incorrect assumption of the FSDT, that the shear
distribution across the the thickness is constant. In composite laminated beams and plates, the transverse shear
stresses vary at least quadratically through the layer thickness [83].
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idealization, discretization and solution (post-processing) , (see Fig. 1.14), introduced in the

next subsections.

(a) Physical CFRP
component (b) Idealization (c) Discrete model (d) Discrete solution

Fig. 1.14 Solving a physical problem with the finite element method.

1.3.1 Idealization

The idealization consists of transforming the physical model into a mathematical model. This

"transformation" is done assuming a certain amount of simplifications in the mathematical

model. The mathematical representation of the CFRP component will be contructed making

assumptions such as:

1. Linear behaviour.

2. Orthotropically elastic material behaviour.

3. Homogeneous layers.

4. A perfect bounding of the layers.

5. The three components are considered coupled (no contacts) but divided in groups of

elements to specified the geometric characteristics of the CFRP.

The mathematical model can be obtained by expressing the equilibrium using the principle

of virtual displacements [83] based on the equation of motion of Lagrangian mechanics16.

Applying this principle, for any small virtual displacement imposed to the body, the Lagrangian

L is defined as:

L = T −Π = T − (U −W ) (1.58)

16The Lagrangian equation is defined as d
dt

(
∂L
∂ ẋ

)

− ∂L
∂x

= 0, where L is the Lagrangian and x the generalised

coordinates.
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where T represents the kinetic energy and Π the potential energy. Hamilton’s principle is used

as a formalism to represent an elastic body with the equation17:

δ

∫ h2

h1

[T − (U −W )]dt = δ

∫ h2

h1

Ldt = 0 (1.59)

where the potential energy Π is the sum of the deformation energy U and the potential of the

external forces W . The Lagrangian mechanics tranform the equation of motion to its weak

form needed for the finite element formulation, see Eq. (1.59). It is a requirement of the linear

elasticity problem that the displacements u are small. Thus, the kinetic energy can be formulated

as the integral over the domain Ω of the density ρ and the scalar product of the velocities18 u̇.

T =
1
2

∫

Ω
ρ u̇T u̇dΩ (1.60)

The domain integral of the scalar product of stresses σ and strains ε is defined as the deformation

energy U .

U =
1
2

∫

Ω
εT σdΩ (1.61)

Finally, the potential of the external forces W is the sum of the body forces fi and the surface

stresses σ̂ . The surface stresses need to be integrated over the surface Γ.

W =
∫

Ω
f T
i udΩ+

∫

Γ
σ̂T udΓ (1.62)

The Lagrangian L is calculated for the entire domain Ω.

1.3.2 Discretization

The domain must be discretized into smaller sub-domains Ωe in order to get the FEM triangle

formulation namely the finite elements, see [84], [76], [104]. The integrations are substituted

with a summation of the integrals over the sub-domains Ωe. Furthermore, it is needed to define

local approximations functions [Ne], called also shape functions. These functions map the finite

element nodal displacements q̃ and represent the DOF of the continuous displacements u. The

17The calculus of variation shows that solving the Lagrange equations is equivalent to finding the solution of the
Hamilton’s principle.

18The velocities can be approximated with displacement time derivatives u̇.
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nodal velocities ˙̃q and the accelerations ¨̃q can be obtained similarly.

u ≈ [Ne]
T

q̃, u̇ ≈ [Ne]
T ˙̃q, ü ≈ [Ne]

T ¨̃q (1.63)

Using the kinematic Eq. (1.28), the strains ε can be expressed as a function for the nodal point

displacements q̃.

ε = [L]u = [L] [Ne]
T

q̃ = [B] q̃ (1.64)

The strain-displacement matrix [B] is built using the differential operator [L] and the shape

functions [Ne]. The discrete form of the total Lagrangian for the discretized system is expressed

as

L = ∑
nelem

1
2

∫

Ωe

ρ ˙̃qT [Ne] [Ne]
T ˙̃qdΩe

]

− ∑
nelem

1
2

∫

Ωe

q̃T [B]T [C][B]q̃dΩe

]

+ ∑
nelem

∫

Ωe

f T [Ne]
T

q̃dΩe

]

+ ∑
nelem

∫

Γe

σT [Ne]
T

q̃dΓe

] (1.65)

The evaluation of discrete form leads to the equation of motion, where the unknown nodal

displacements q̃ are expressed as generalised coordinates.

∑
nelem

[∫

Ωe

ρ [Ne] [Ne]
T ¨̃qdΩe

]

+ ∑
nelem

[∫

Ωe

[B]T [C][B]q̃dΩe

]

− ∑
nelem

[∫

Ωe

f [Ne]dΩe

]

− ∑
nelem

[∫

Γe

σ̂ [Ne]dΓe

]

= 0
(1.66)

Rearranging the terms, the terms without dependence on the nodal displacements q̃ are moved

to the right hand side

∑
nelem

[∫

Ωe

ρ [Ne] [Ne]
T

dΩe

]

¨̃q+ ∑
nelem

[∫

Ωe

[B]T [C][B]dΩe

]

q̃

= ∑
nelem

[∫

Ωe

f [Ne]dΩe

]

− ∑
nelem

[∫

Γe

σ̂ [Ne]dΓe

] (1.67)

The terms in the left side represent the global stiffness matrix [K] and the global mass matrix

[M]. The terms in the right side represent the load vector {r}. With these terms, the basic

problem of the FEM for the linear elastic case can be written as

[M] ¨̃q+[K] q̃ = {r} (1.68)
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Assuming a static problem the accelerations ¨̃q vanish so

[K] q̃ = {r} (1.69)

The equation of motion (1.68) can be used for the determination of the harmonic eigenfrequen-

cies of the structural system if it is assumed that the load vector {r} is zero taking advantage of

the harmonic solution approach.

1.3.3 Solution

Assuming that the load vector {r} is zero, the equation can be transformed into an eigenvalue

problem with the unknown eigenvalues λ and eigenvectors φ (λ is equal to the squared of the

angular frequency ω and φ represents the modeshapes).

q̃ = φsin(ωt)

¨̃q =−ω2φsin(ωt)
(1.70)

The combination of the equation of motion (1.69) and the harmonic approach (1.70) leads to

the eigenvalue problem for the harmonic vibration (without damping).

(
[K]−ω2 [M]

)
φ = 0 (1.71)

By defining a diagonal matrix that group all the eigenvalues and combine all the eigen vectors in

one mode shape matrix is called normal modes analysis in FEM terminology. The normal modes

are defined as solutions of associated undamped eigenvalue problem represented by Eq. (1.71).

The normal modes are based on the inertial properties represented by the mass matrix [M] and

the elastic properties represented by the stiffness matrix [K]. In the above matrices, there are

N independent eigenvectors φ forming a matrix noted as [φ ] and eigenvalues ω2 forming a

diagonal matrix noted as [ω2]. The solution of the eigenvalue problem of Eq. (1.71), is a full

set of N normal modes [φ ] that verify two orthogonality conditions with respect to the mass and

stiffness matrices

[φ ]T [M] [φ ] =

[
. . .

µ. . .

]

and [φ ]T [K] [φ ] =

[
. . .

µω2
. . .

]

, (1.72)
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where [µ] is a diagonal matix of modal masses, and [φ ] indicates the mode shapes associated

with unity mass ([µ] = [I]) [106]. In this work the normal mode shapes are assumed to be mass

normalized.

1.4 Design of Experiments (DOE)

A B C

(a) Main effects

AB AC BC

(b) Two-factor interactions

ABC + runs ABC - runs

(c) Three-factor interactions

Fig. 1.15 DOE geometric representation. In each case, high levels are highlighted in blue, low
levels in red [145].

The design of experiments [145] (DOE) (also called factorial designs) is a regression

analysis widely used in the industry (experimental research) to find which are the critical
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parameters and control them to improve the quality of the products. Experimental research is

generally expensive, time consuming, and it involves studying the effects of two or more factors.

It is possible applying a factorial design to investigate all possible combinations of the levels

of the factors defined, (see Fig. 1.15). However, one needs to pay attention to the selection of

factors due to the cost and time of the experiments19. Thus, one of the most important reasons

in the literature to apply a DOE is to reduced the number of experimental tests and obtained

a transfer function. Another reason for using the DOE is an easy integration of experimental

measurements and the FEM. There are other factors involved in the elaboration of CFRP beyond

of the analysis of this work [172], [173], that can be also studied using a DOE [174], [175].

The integration of the experimental measurements and the FEM with the DOE is used

in the literature to simulate the changes of physical parameters (factors). Exhaustive MNET

literature reviewed about identification of mechanical properties of CFRP revealed that physical

parameters, such as Poisson’s ratio (νi j), Young’s modulus (Ei) and shear modulus (Gi j), depend

on manufacturing process and the material selected (carbon, glass, epoxy) [13]- [48], [97].

Most of the literature reported the use different FE models and methodologies to update the

physical parameters. For example, Rikards in [33] has applied the DOE using FEM to obtain

physical parameters in different CFRP types, see [32], [34]-[39].

A full factorial design is constituted combining all possible number of "levels" and a number

of "factors". These levels are called "low" (in red) and "high" (in blue) and denotes them "-"

and "+" . The effect of the factor is defined as the change in response produced by a change in

the level of the factor. This is frequently called main effect20 because it refers to the primary

factors of interest in the experiment. Furthermore, in some experiments, one may find that the

difference in response between levels of one factor is not the same at all levels of the other

factors. When this occurs, there is an interaction between the factors [145]. It is possible to

analyze the main effects and the interactions between factors of the experimental results to

achive one or more of the following objetives [146]:

• Estimation of the optimum condition for a defined interval.

• Estimation of the contribution of individual parameters and interactions.

• Estimate the response under optimum condition.

19The total number of experiments requiered for a full factorial design will increase exponentially as more
possible updating parameters are taking into account.

20The main effect of a factor can be thought as the difference between the average response at the low level
minus the average response of the high level.
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Thus, the estimation of the contribution of individual parameters and interactions for a defined

interval in this thesis is established to obtain a response function (ŷ) defined by the individual

parameters or factors (x′s), coefficients bi and the error εerror, see Eq. (1.73)

ŷ = b0 +
k

∑
i=0

b1x1 +
k

∑
i=0

b2x2 ++
k

∑
i=0

b12x1x2 + · · ·+ εerror (1.73)

Eq. (1.73) can be written in matrix notation substituting xi by the parameters identified in the

FSDT as the factors of the function, see Eq. (1.74).

Y = Xb+ ε (1.74)

where

Y =









y1

y2
...

y3









,X =









1 x11 x12 . . . x1k

1 x21 x22 . . . x2k

...
...

...
...

1 x11 x12 . . . x1k









b =









b1

b2
...

b3









, and ε =









εerror1

εerror2
...

εerror3









, (1.75)

[Y ] will be defined as the MAC response, [X ] is a n× p matrix of independent variables (defined

as A,B,C,D,E,F in Table 1.2), b is the vector of regression coefficients and εerror is a vector of

random errors. The MAC is introduced in the next Chapter addressed as the modal correlation

of experimental and simulation FE models based on defined parameters x.

Moreover, once the parameters are defined, the DOE is analyzed mainly into three phases,

which encompasses all the experimental and FEM work. These phases are:

• Planning phase

• Analysis phase

• Results phase

The planning phase is the most important part of the DOE. It is needed to create an

orthogonal array to accomodate the effects of several factors that affect the MAC response of

the CFRP. In the literature, these factors are related to physical parameters of the CFRP that

needed to be verified quantitative and qualitative using FE models.
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Table 1.2 Levels per factors used with different MNET

Factor Name
Level

Units
Low High

A E1 - + GPa
B E2 - + GPa
C G12 - + GPa
D G23 - + GPa
E G13 - + GPa
F ν12 - + —

Thus, six parameters with two levels (low and high levels) are proposed as a factors, (see

Table 1.2), to perform a 26 full factorial in this phase. The Table 1.3 presents the array to

follow based on the levels per factors proposed in Table 1.2. The interaction signs are obtained

multiplying the signs of each interaction displayed in Table 1.3 until the third interaction for

reasons of size of the array. Thus, the first value of the AB column is equal to + and it is

obtained multiplying the A− and the B− signs. The rest of the signs are obtained in the same

way and so on for the higher interactions. The MAC averages (low and high values) values are

calculated using interaction signs and the MAC response to obtain the coefficients, see bottom

part of the table. These coefficients values are calculated using MINITAB and they are used to

elaborate the main interaction effects plots. It is a requierement that the low and high levels are

orthogonal respect to each other keeping the same proportion between the factors. These values

will depend on the nominal values selected to perform the DOE. For example, if the nominal

value is 5, the low and high limits will be 2.5 and 7.5.

The analysis phase is basically constituted into several statistical decision approaches: the

distribution significance, the analysis of varianza (ANOVA) and the coefficient R-Sq (ratio of

the variation of each variable). Based on these approaches can be distinguished the coefficients

to construct the transfer function in two steps.

Firstly, the distribution significance analysis of the MAC is evaluated for a confidence level

of 95%, that is for significance level of α=0.05 for a single population proportion. Alpha α is

the maximum acceptable probability of being wrong if the alternative hypothesis is selected

[147]. The MAC results Y are analysed based on analysis of averages21(µ = ∑
N
i=1

Yi

N
) , the

21The µ is a measure of central tendency. It is the mean or average of all values in the population [147].
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standard deviation22 s = ∑
N
i=1

(Yi−µ)2

N
, Sum-of-Squares of the squared Deviations (SST)=∑s2

and the variance s2 = SST
DF

of the factors that influence the MAC, where N is the number of

"runs" and ”DF” = the degree of freedom =n−1 [145].

Secondly, the ANOVA test compares the averages (it is also called misleading) that influence

the MAC. A P-value ≤0.05 will highlight in the ANOVA the significance of the main parameters

and it’s interactions. It is possible with the ANOVA to identify the variance between factors

and it’s interactions. The coefficients and the errors are obtained based on statistical-decision

approaches checking the distribution significance (normality) of data using the Anderson-

Darling test using MINITAB 15. The ANOVA will be performed using the the MAC response

obtained based on the orthogonal array, see Table 1.3. Different graphs are used to analyze the

factors and interaction that influence the MAC (main effects plots, interaction effects, contour

and surface plots).

Finally, the results phase consists of assemblying the transfer function and it is achived

using the coefficients obtained by the determination of R-Sq. The coefficient of determination

R-Sq is defined as the ratio of the variation of each variable to the total variation (variation

of the Mean Sum of Squares (MSS)). The coefficient R-Sq is also known as a measure of the

degree of fit. If the R-Sq approaches 100 %, a better total variation of the MAC response is

obtained, see Chapter 4, Table 4.9.

22The σ is a measure of dispersion or variability, see Table B.1. With smaller values of σ , all values in the
population lie closer to the mean [147].
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Table 1.3 Design of experiments 26- Orthogonal array

Factor A B C D E F AB AC BC ABC Response
Run (n) MAC

1 - - - - - - + + + -
2 + - - - - - - - + +
3 - + - - - - - + - +
4 + + - - - - + - - -
5 - - + - - - + - - +
6 + - + - - - - + - -
7 - + + - - - - - + -
8 + + + - - - + + + +
9 - - - + - - + + + -

10 + - - + - - - - + +
11 - + - + - - - + - +
12 + + - + - - + - - -
13 - - + + - - + - - +
14 + - + + - - - + - -
15 - + + + - - - - + -
16 + + + + - - + + + +
17 - - - - + - + + + -
18 + - - - + - - - + +
19 - + - - + - - + - +
20 + + - - + - + - - -
21 - - + - + - + - - +
22 + - + - + - - + - -
23 - + + - + - - - + -
24 + + + - + - + + + +
25 - - - + + - + + + -
26 + - - + + - - - + +
27 - + - + + - - + - +
28 + + - + + - + - - -
29 - - + + + - + - - +
30 + - + + + - - + - -
31 - + + + + - - - + -
32 + + + + + - + + + +
33 - - - - - + + + + -
34 + - - - - + - - + +
35 - + - - - + - + - +
36 + + - - - + + - - -
37 - - + - - + + - - +
38 + - + - - + - + - -
39 - + + - - + - - + -
40 + + + - - + + + + +
41 - - - + - + + + + -
42 + - - + - + - - + +
43 - + - + - + - + - +
44 + + - + - + + - - - -
45 - - + + - + + - - +
46 + - + + - + - + - -
47 - + + + - + - - + -
48 + + + + - + + + + +
49 - - - - + + + + + -
50 + - - - + + - - + +
51 - + - - + + - + - +
52 + + - - + + + - - -
53 - - + - + + + - - +
54 + - + - + + - + - -
55 - + + - + + - - + -
56 + + + - + + + + + +
57 - - - + + + + + + -
58 + - - + + + - - + +
59 - + - + + + - + - +
60 + + - + + + + - - -
61 - - + + + + + - - +
62 + - + + + + - + - -
63 - + + + + + - - + -
64 + + + + + + + + + +

MACAveat f actorhigh =∑ f actorA+/n f actorA+

MACAveat f actorlow =∑ f actorA−/n f actorA−
Effects = MACAveat f actorhigh −MACAveat f actorlow

Coefficients = E f f ects/2



Chapter 2

Modal correlation criteria (MCC)

2.1 Modal Assurance Criterion (MAC)

Fig. 2.1 Modal assurance criterion.

There are two general categories of modal correlation criterion (MCC), eigenfrequencies and

eigenvectors. The modal assurance criterion [125] (MAC) is one of the most useful comparison

methods, which relies on the eigenvector information.
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The MAC is a known vector correlation criterion between the experimental and the FE

model or between two FE models. In the case of experimental-FE model correlation, the

measurements can be approximated through a polynomial function1.

The MAC quantifies how well two vectors correspond, where {c jφid} is the jth mode

shape at sensors and {c jφk} is the jth analytical mode shape, see Eq. (2.1), provided that the

observability law for the selection of DOF’s is not violated. A scalar value from 0 to 1 is

obtained per pair, (see Fig. 2.1). When the values are 1 (or 100), there is a correlation and when

the computation yields are 0, there is no correlation at all.

There are two explanations for high MAC values, a mathematical and a physical explanation.

Matematically seen, both vectors have the same direction in a N-dimensional space, irrespective

of their amplitudes [106]. Looked at physically, both vectors describe the same mode shape.

The MAC can be computed for any set of (complex or real) vectors. It is often used to perform

a corrrelation to identify the accuracy (eigengrequencies and mode shapes) of a experimental

modal analysis versus a finite element simulation. The application of the MAC can be also used

to peform orthogonality (XOR) and cross-orthogonality matrices verification. The XOR matrix

indicates the goodness of the mass distribution of the FE model. The cross-orthogonality MAC

matrix identifies the accuracy of the reduced mode shapes using experimental measurements.

MAC =
|∑l

j=1

{
c jφid

}H {
c jφk

}
|2

|∑l
j=1

{
c jφid

}H {
c jφid

}
||∑l

j=1

{
c jφk

}H {
c jφk

}
|

(2.1)

2.1.1 Modal Assurance Criterion per pair-sensor (MACco)

The MAC per pair-sensor (MACco) criterion consists in the sequential order of sensors per

paired mode (It is defined 153 Y-sensors perperdicular to the experimental measurements in this

work) that contribute most to the poor correlation. This MCC is known with different names:

the MAC coordinate criterion [106] or the MAC validation technique [127]. It is an iterative

algorithm that takes modes in {c jφid}, {c jφk} and computes the paired MAC with one sensor

"removed" that contributed to low MAC values [126]. The MACco algorithm’s is leading to the

best mean MAC for the paired modes and is a direct indication of where the poorest correlation

is located [106]. The MACco is interpreted in the same way as the MAC, where 1 indicates a

good correlation and 0 indicates null correlation. However, it is possible to observe the main

difference between the traditional MAC and the MACco in the number of pair modes by the

1The polynomial function or FFT, was introduced in Chapter 1.
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Fig. 2.2 Modal assurance criterion validation technique [106] plot.

number of sensors used, (see "x" axis of Fig. 2.1), respect to the pairing criterion, (see "x" axis

of the Fig. 2.2). The "mean MAC" displayed in Fig. 2.2 is obtained calculating the mean of the

MAC per pair mode-sensor requested in the analysis. Tables with the data can be obtained and

will be provided. A block diagram of the algorithm implemented in [106] is illustrated in Fig.

2.3.

Fig. 2.3 Modal assurance criterion per pair mode [126] algorithm.
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Fig. 2.4 Different COMAC’s criterion: COMAC (blue), eCOMAC(brown), COMAC-S(green).

2.1.2 Coordinate Modal Assurance Criterion (COMAC)

The coordinate modal assurance criterion (COMAC) is an extension of the MAC developed

by Lieven and Ewins [128]. The implementation of the COMAC technique requires two stages

of calculation. In the first stage, the modes from the two sets are matched using a MAC. After

constructing the set NM of mode pairs to be correlated, the second stage of COMAC is the

calculation of correlation values at each coordinate, over all the correlated mode pairs [132],

see Eq. (2.2):

COMACl = 1− ∑
NM
j |

{
clφ jA

}{
clφ jB

}
|2

∑
NM
j |

{
clφ jA

}
|2 ∑

NM
j |

{
clφ jB

}
|2

, (2.2)

where {clφ jA} is the jth at sensors and {clφ jB} is the jth in the analytical mode shape selected.

It is important to note that the modes have to be normalized as this gives equal weighting to all

modes. Unfortunately, the standard COMAC, as developed by Lieven and Ewins [128], cannot

identify differences which occur due to fairly common problems appearing during modal testing.

These problems include incorrect orientation of accelerometers and transducer scale factor

errors [129]. Additionally, the COMAC is equally sensitive to large motion DOF and small

motion DOF, which can make COMAC results more difficult to interpret. COMAC values

closer to zero per DOF will have a higher agreement, (see Fig. 2.4).
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2.1.3 Scale Coordinate Modal Assurance Criterion (COMAC-S)

The definition of COMAC is applied assuming that the modes are similarly scaled. The scale

COMAC is computed with shapes in set B scaled using the Modal Scale Factor2 [106] (MSF),

see Eq. (2.3). The MSF provides a qualitative way of comparing two modal vector sets (entries).

The vector entries are the coefficients of the two sets of matched modal vectors at a defined

location. Using the MSF is also possible for providing an indication of the type of error vector

superimposed on the modal vector. This criterion has been perfomed by Balmés [106], Ewins

[131], Catbas [132], Allemang [133] and Schwarz [187] for a variety of different analysis for

comparison with experimental data, including structural modifications using FRFs, CMS and

MSE techniques [187].

COMAC−Sl = 1− ∑
NM
j |

{
clφ jA

}{
cl φ̃ jB

}
|2

∑
NM
j |

{
clφ jA

}
|2 ∑

NM
j |

{
cl φ̃ jB

}
|2

{
cl φ̃ jB

}
=
{

clφ jB

}
MSF =

{
clφ jB

}
{

clφ jB

}T {
clφ jA

}

{
clφ jB

}T {
clφ jB

}

(2.3)

The COMAC-S criterion sets the scaling of vectors in set B to minimize the quadratic norm

of the difference between {clφ jA} and {cl φ̃ jB} [106]. Scaling assumes that each experimental

mode shape is already correlated with an analytical shape. When two modal vectors are scaled

similarly, elements of each vector can be averaged, differentiated or sorted to provide a best

estimate of the modal vector [133]. Thus, the lower values of the COMAC-S obtained also

represent a higher agreement per DOF.

2.1.4 Enhanced Coordinate Modal Assurance Criterion (eCOMAC)

The formulation of an enhanced COMAC, introduced by Hunt [129], overcome some of the

limitations of the standard COMAC expressed as:

eCOMACl =
∑

NM
j ||

{
cl φ̂ jA

}
−
{

cl φ̃ jB

}
||

2NM
(2.4)

2The function of the MSF is to provide a means of normalizing all estimates of the same model vector, taking
into account magnitude and phase differences [133].
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The comparison is done using mode shapes that are vector nomalized to 1 and there must be

phase correlation between pair modes, see Eq. (2.5)

{
cl φ̂ jA

}
=

{
cφ jA

}

||cφ jA||
(2.5)

This can be accomplished by examining the high coefficient DOF in the mode pairs or by using

the MSF to determine if the normalization mode should be multiplied by -1. The use of the

eCOMAC requieres this extra step in mode shape nomalization, namely a check for phase

consistency between each mode pair using the MSF [129]. This unit normalization and correct

phasing, are being interpreted in the same way as the COMAC. The eCOMAC values are

obtained from 0 to 1 similarly as the COMAC, where a value closer to zero per DOF will have

a higher correlation agreement, (see Fig. 2.4). Furthermore, Hunt reported in [129] that the

eCOMAC can sucessfully identify measurement errors such as scaling and polarity. This is

because the eCOMAC is less sensitive to errors at small motion of degrees of freedom and it is

considered more robust than the standard COMAC [129]. Thus, the lower COMAC, eCOMAC

and COMAC-S values are obtained, a higher agreement per DOF is represented according to

each formulation.



Chapter 3

Component model synthesis theory with

Rayleigh-Ritz vectors

3.1 Introduction

Many techniques have been proposed to obtain reduced order finite element models (known as

model order reduction (MOR) methods) by reducing the order of mass and stiffness matrices

of structures made of conventional materials [8], [9], [112]-[127], [134]-[138], [217]-[223].

The substitution of conventional materials by composite materials in the aeronautic, space and

automotive industry is becoming increasingly important today for the production of industrial

high-performance components [1]- [2]. The state-of-the-art MOR techniques are classified in

four groups [116]: direct reduction, modal methods, reduction with Rayleigh-Ritz vectors, and

the component mode synthesis (CMS). According to this classification, the last two groups

yield the best results. The Rayleigh-Ritz vectors improve the accuracy-cost ratio and the CMS

combines the first three classes of methods.

The Rayleigh-Ritz reduction approach is applied as a basis [TR]N×n in [118] by Balmès, so

that finite element DOF {q}N×1 are written as a combination {qR}n×1 of the basis n Rayleigh-

Ritz vectors as

{q}N×1 = [TR]N×n{qR}n×1 (3.1)
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where the DOFs of a reduced model cannot be expressed as displacement of a particular mesh

point, but rather in the contribution of the global shape responses. The DOFs of a reduced

model can be defined as a classical denomination of generalised DOFs [121].

Fig. 3.1 Interface representation, coupling strategies [203].

Furthermore, an extensive bibliography can be found about the research of CMS, see [113],

[114], [116], [217]-[223], or substructuring [8]-[12], [199] studied since the 1970s. The CMS

method belongs to the category of sub-structuring techniques introduced in Chapter 1: the

model is split up into sub-structures and for each sub-structure the reduction approach is applied.

Two conditions must be satified using assembling sub-structures:

• Interface displacements of the substructures must be the same and zero work of interfaces

forces.

• The forces connecting the substructures’ interfaces DOF must be in equilibrium using

elements to compute the energy.

Figure 3.1 shows the two main strategies used to account for the component coupling: displace-

ment or energy.

The displacement strategy, represented in Figure 3.1a, assumes the continuity of displace-

ment and zero work of interfaces forces. Both substructures must share the same set of interface

DOF as well as compatibility and equilibrium needed to be satisfied. This strategy is commonly

labeled as a primal1 method and is the classical framework of CMS [203].

The energy strategy, commonly labeld dual2 methods represented in Figure 3.1b, uses

elements to compute the energy associated with relative displacement of disjoint components.

1By choosing a unique set of DOF, one set of interface DOF is eliminated. Both substructures thus share the
same set of interface DOF and compatibility and equilibrium are both a priori satisfied [198].

2The connection forces on both sides of the interface must be in equilibrium. One way of enforcing this is by
choosing an unique set of interface forces, which will a priori satisfy the equilibrium condition [198].
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Other energy strategy method used loads to couple components discussed in [199], that does

not correspond to dual methods [203].

Hence the MOR method based on the Rayleigh-Ritz approach is used to improve the

accuracy-time ratio in civil and aeronautical engineering applications in many areas of structural

dynamics [9], [116], [120], [121], [123]. A number of articles and theses published by Balmès et

al. regarding CMS, the optimization of reduction bases and MSE techniques using the Rayleigh-

Ritz vectors constitute the theoretical basis and design advanced methods implemented in

MATLAB-SDTools, see [117], [118]-[123], [137], [152]-[155], [180], [203]-[214]. Thus, it

is necessary to study the feasibility and efficiency of using the CMS with the Rayleigh-Ritz

reduction basis in order to describe the dynamic behavior of a composite structure.

3.2 Model order reduction with Rayleigh-Ritz vectors

It is typical for coupled problems with model substructuring [117], [118], [120] and [121] to

have an accurate second order representation expressed in the form:

[
[M]s2 +[C]s+[K]

]
{q(s)}= [b]{u(s)}
{y(s)}= [c]{q(s)}

(3.2)

where (s) is the Laplace variable, [M], [C], [K] are mass, damping and stiffness matrices re-

spectively, {q(s)} are generalised degrees of freedom (DOFs), [b] and [c] are input and output

matrices, respectively, {u(s)} are the inputs describing the time/frequency dependence and

{y(s)} are the physical outputs. Notice that the representation form between Eq. (1.68) ex-

pressed in Chapter 2 and Eq. (3.2) is different. The general form description in Eq. (3.2) is

commonly in the control theory (state-space models are composed of two set of equations) but

rarely used in mechanical applications [106]. With this description, two - not very classical

and yet important - assumptions are made [118]:

1. The descomposition of discretized loads F(s) as the product of the fixed input shape

matrix specifying the spatial localization of loads [b] and inputs {u(s)}

2. The definition of physical outputs {y(s)} is a linear combination of DOF’s {q(s)}:



48 Component model synthesis theory with Rayleigh-Ritz vectors

The Ritz-Galerkin displacement methods seek approximations of the response within a subspace

characterized by matrix [T ] associated with generalised DOF’s {qR}, see [117]

{q(s)}= [T]{qR} (3.3)

where {q(s)} is the original set of DOF and {qR} is the reduced set of DOF, susbtituting

Eq. (3.3) into Eq. (3.2) leading to an overdetermined set of equations. The Rayleigh-Ritz

approximation assumes that the virtual work of displacements in the dual space generated by

[T ]T is also zero, thus leading to a reduced model:

(
[T]T [M][T]s2 +[T]T [C][T]s+[T]T [K][T]

)
{qR(s)}= [T]T [b]{u(s)}
{y(s)}= [c][T]{qR(s)}

(3.4)

3.3 Component Mode Syntesis concepts

3.3.1 Classical Component Mode Synthesis (CMS) bases as approxima-

tion of the frequency response

The method was first developed by Walter Hurty in 1964 [8] and later expanded by Roy

Craig and Mervyn Bampton [9] in 1968. Component Mode Synthesis (CMS) and model

order reduction methods provide for the means for building appropiate [T ] bases (the subspace

spanned rectangular matrix). There are many ways of providing classical bases [10]. Their

validity is associated with two assumptions [118]: the model needs to be valid over a restricted

frequency band and the number of inputs is limited. One needs to translate this hypothesis into

the requirement to include mode shapes and static responses into [T ] basis. Most of the literature

on CMS implies the fundamental assumption for coupling, which states that the displacement is

continuous at the interfaces. Considering the response of an elastic structure to applied loads

F(s) = [b]{u(s)} without damping [C], the exact response at a given frequency [H(s)] is given

by:

[H(s)] = [c]
(
[M]s2 +[K]

)−1
[b] = [c] [Z(s)]−1 [b] (3.5)

where [Z(s)] is the dynamic stiffness. If there is no external excitation:

[
Z(λ j)

]−1{
φ j

}
= {0} (3.6)
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and the solutions are known as free modes of the structure, where λ j is jth eigenvalue of the

matrix and {φ j} is jth eigenvector. A reduction model should include these shapes to allow for

an accurate representation of the resonances, which are associated with the singularities of the

dynamic stiffness. A point of particular interest is the static response at (s = 0). The associated

deformation is:

{q(s = 0)}= [Z(0)]−1 [b]{u(0)}= [Ts]{u(0)} (3.7)

The columns of [Ts] are also called attachment modes [10]. In the case of free floating structures

(structures with rigid modes), [Z(0)] is singular and one defines attachment modes as responses

of all except for the rigid modes. The bases combining free modes and attachment modes

are valid over a certain frequency range (truncation of the series of free modes) and certain

inputs characterized by [b]. One, thus, considers the response of the structure with enforced

displacements on a subset of DOFs. Division of the DOFs in two groups - active or interface

DOFs denoted by i in the subscript, and complementary, denoted by c in the subscript, leads to:

[

[Zii(s)] [Zic(s)]

[Zci(s)] [Zcc(s)]

]{

< {qi(s)}>
qc(s)

}

=

{

Ri(s)

< {0}>

}

(3.8)

where < {qi(s)}> and < {0}> denotes a defined quantity. The exact solution to this problem

is:

{q}= [T (s)]{qi}=
[

[I]

−[Zcc]
−1 [Zci]

]

{qi} . (3.9)

The subspace found here is frequency dependent and can only be used in very restricted

applications [123]. A classical approximation is to evaluate the static (s = 0) value in this

subspace for the active or interface DOFs denoted by ci in the subscript, and complementar, cc

in the subscript:

[T ] =

[

[I]

[−Kcc(s)]
−1 [Kci]

]

. (3.10)

Reduction on this basis is known as static or Guyan condensation [108]. The columns of [T ] are

called constraint modes [10]. They correspond to unit displacements of the DOF of the interface.

Significant deviations can be expected when [Zcc(s)]
−1 differs from [Zcc(0)]−1 = [Kcc]

−1. Such
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difference is significant for singularities of [Zcc(s)]
−1 which are computed by the eigenvalue

problem

[

[0] [0]

[0]
[
Zcc(ω j)

]

]{

{0}
φ j,c

}

= 0 (3.11)

The use of a basis combining constraint, Eq. (3.10) and fixed attachment modes, Eq. (3.11), is

proposed in [9]. It yields the Craig-Bampton method:

[T ] =

[

[I] [0]

[−Kcc]
−1 [Kci] [φNM,c]

]

, (3.12)

where [φNM,c] is the interior part of the matrix of kept fixed-interfaces modes. There are many

results reported by Balmès et al. [117], [118]-[123] obtained by the Craig-Bampton model

order reduction (CBMOR) and the Rayleigh-Ritz vectors approach in order to solve coupled

problems related to model sub-structuring (also known as CMS). One should be aware of the

fact that the use of Rayleigh-Ritz vectors leads to dense matrices, as opposed to not reduced FE

models characterized by a sparse form of the matrices.

3.3.2 Application of substructures (super-elements) to a CFRP

Substructuring is a procedure that condenses a group of finite elements into one element. It

implies that the whole structure is divided into smaller structures and the resulting elements are

referred to as super-elements. In the considered case (see Fig. 3.2), the CFRP is divided into

Fig. 3.2 CMS applied to our composite component assembly divided in two sub-structures. (I)
Interface, Zi for complementary DOF of structures 1 and 2
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(a) Sub-structure 1 (b) Sub-structure 2

Fig. 3.3 Sub-structuring.

two sub-structures, namely 1 and 2, (see Fig. 3.3). Each sub-structure is considered to have

two separate types of DOF, interface DOF, denominated by the subscript i, representing the

structure DOF interface, and complementary DOF, denominated by the subscript c, representing

the structure DOF outside the interface. The displacement vector of component 1, q1, can

be described considering splitting DOF in two groups, the DOF interface {qi1}N1i×1 and the

complementary DOF {qc1}N1c×1 . The sub-structure 2 can be handled in the same way splitting

q2 into {qi2}N2i×1 and {qc2}N2c×1 . The principle of the method is to consider disjoint components

and seek a reduction that reproduces full system modes exactly, see [212]. Reduction bases

defined by a block are then written as [203]:

{q}N1c+N2c×1 = [T ]{qR}n1c+n2c×1 =

[

[Tc1] 0

0 [Tc2]

]{

qR1

qR2

}

(3.13)

and the dynamic stiffness can be separated as the sum of independent component contributions

Zi and an interface coupling matrix ZI [203]

[Z](N1c+N2c)×(N1c+N2c)
= [Zel]+ [ZI] =

[

[Z1] 0

0 [Z2]

]

+

[

[ZI11 ] [ZI12 ]

[ZI21 ] [ZI22 ]

]

. (3.14)

The physical coupling of the CFRP assembly is based on the super-element strategy dividing the

full FE model by element groups established in [106]. The continuity is obviously always verified

in this formulation since Eq. (3.13) expresses motion using the full FE model coordinates. The
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(a) Stiffness Matrix (b) Mass Matrix

Fig. 3.4 Reduced matrix topologies of a CFRP using Rayleigh-Ritz vectors.

reduced dynamic stiffness matrix [ZR] is written as

[ZR](n1c+n2c)×(n1c+n2c)
=

[

[Tc1]
T [Z1] [Tc1] 0

0 [Tc2]
T [Z2] [Tc2]

]

+

[

[Tc1]
T [ZI11] [Tc1] [Tc1]

T [ZI12] [Tc2]

[Tc2]
T [ZI21] [Tc1] [Tc2]

T [ZI22] [Tc2]

]

(3.15)

where the elastic dynamic stiffness considers each component independently and contains the

dynamic stiffness of each component. The topology of the interaction matrix (block diagonal)

represents the component coupling associated to each interface DOF [203]. The block diagonal

(see Fig. 3.4) can be well illustrated using the defined substructures of FE model. In constrast

with the Craig-Bampton3, the method established by Balmes [117] in SDTools only needs

to focus on selecting retained shapes. Reduction bases [Tci]Ni×ni
can be generated using the

restriction of the system modes on each component, [Φci]. In that case the reduced system will

give the exact result. The subspaces generated by each component are effectively coherent with

the assembled system subspace and all interface motion is well described since all the desired

motion is retained in the basis [203].

3.3.3 Using component modes as DOF

A richer component description can be obtained using the modes of the components [121] with

[Tci]Ni×ni
=
[
φ|ci

]
(3.16)

3The Craig-Bampton needed complete interface description to enforce continuity.
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one has







[Tc1]
T [Z1] [Tc1] =

[
φ j1

]T
[Z1]

[
φ j1

]
=

[
. . .ω2

j1...

]

[Tc2]
T [Z2] [Tc2] =

[
φ j2

]T
[Z2]

[
φ j2

]
=

[
. . .ω2

j2...

] (3.17)

and the coupled system equations

[ZR](n1c+n2c)×(n1c+n2c)
=









[
. . .ω2

j1...

]

0

0

[
. . .ω2

j2...

]









+

[

[Tc1]
T [ZI11] [Tc1] [Tc1]

T [ZI12] [Tc2]

[Tc2]
T [ZI21] [Tc1] [Tc2]

T [ZI22] [Tc2]

]

(3.18)

The space of the full system real modes [Φ] provides a subspace containing all relevant

information for the interface movements. From a single component point of view, the basis of

real free/free is complemented by the trace of the real system modes on the component, noted

Φ|ci, see Eq. (3.16). Computing the full modes of the assembled system at a nominal state is

deemed accesible, using Automated-multi level solvers4 (AMLS) developed by Kaplan [201]

and Bennighof et al. [208]. The additional information introduced mainly concerns that the

component interaction with others and thus provide and adequate subspace containing the

component free/free modes and all the relevant interface movements. For component i, the

reduction basis is written as

[Tci]Ni×ni
=
[
φci Φ|ci

]

Orth.
(3.19)

To avoid redundant data, Eq. (3.19) specifies an orthogonalization at the component level with

respect to mass and stiffness, so that







[Tci]
T [Ki] [Tci] =

[
. . .ω2

i, j...

]

[Tci]
T [Mi] [Tci] =

[
. . .

I. . .

] (3.20)

4The AMLS method is based on domain decomposition and parallel resolution and allow computation of
systems of over a few million DOF on workstations in a reasonable time [203].
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Since the orthogonalization is performed at the component scale, the component free/free

modes verify Eq. (3.20) by definition. Only the contribution of the enrichment modes is made

orthogonal to the component modes. The topology of the assembly matrices is then optimal

with the system mass matrix being the identity [I ] and the elastic stiffness being diagonal with

the square of free/free component [ω2
i, j]. The interaction matrix only shows a full block for

interacting components, (see Fig. 3.4). The first remarkable feature of the reduced system is

that it produces features with exactly the same modes as the full one - to numerical precision.

Indeed, the assembled real modes information have been used explicitly and can therefore

be recovered. The second interesting feature is that modified components, than can be well

represented by the nominal components modes, can be well predicted by the same reduced

model but the problem here is much smaller than with the Craig-Bampton approach since

the interface sizes are associated with the number of system and component modes and thus

unrelated to the number of DOF in the interface topology.

The main drawback is that while the interaction matrix still features a block topology,

non-null reduced blocks are somehow full. The generation of full blocks is inevitable using

Rayleigh-Ritz vectors [203].

3.3.4 Automatic generation of interfaces

The principal idea of the CMS is to partition the problem in simply entities that is much less

costly combined with the coupling problem that need to be controlled at the same time5. The

automatic generation of interfaces involving computational efficiency and recursive partition

matrix has become popular in the application of reduced-order models using CMS (such as

CBMOR) applying the automated multi-level substructuring (AMLS) method initiated by the

research of Kaplan et al. [201] and Bennighof et al. [208]. In the original CBMOR and AMLS

methods a transformation matrix is constructed retaining the dominant substructure modes.

Using the transformation matrix original FE modes can be transformed into reduced FE models

obtaining residual substructure modes. If the residual mode effect is considered the accuracy of

the reduced model can be improved that means the original global modes can be more precisely

approximated [118], [209], [213]. The AMLS algorithm implemented in [106] is integrated

with an error estimation of the discrete model (substructures) using error residual associated

with the full FE model solution developed by Bobillot [213] and a singular value decomposition

5Traditionally the solution of linear system methods require the computation of an LDU decomposition [203].
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(SVD) [117] method developed by Balmès6. Its application is presented by Vermot in [203], see

Appendix A and B, and it is therefore not reproduced here in details. The CBMOR and AMLS

methods are implemented in the major commercial codes (NASTRAN, ABAQUS, ANSYS)

applied to high performance computing (HPC) with few associated publications [202]. The

accuracy approximation of the reduced models using the original CBMOR and AMLS methods

has encourage a Kim et al. [209] to develop an enhanced AMLS method.

Thus, the main idea using CMS and AMLS methods is then to partition the problem in a

series of smaller and much less costly uncoupled problems, combined with a coupling problem

whose cost needs to be controlled. Partitioning is thus the generation of interfaces between

subdomains [203].

Partitions of the FE model are controlled though the generation of interfaces between the

components. The partition of the FE model can be achived in two ways: working in the

finite element mesh or in the system stiffness matrix. The second way is preferable as the

target application for automatic partitioning concerns applications like the AMLS. The system

partition is performed thanks to a front elimination tree7. Front elimination trees are based

on a graph theory. Several techniques exist, see [204] and [205]. They are based on graphs

associated with the stiffness matrix for which vertices are the DOF and the edges correspond to

non-zero coupling terms between two DOF[s]. The procedure then seeks a way of minimizing

connections and finding a single root. Three canonical ways of graph partitioning exist, briefly

detailed in [204]. The first way is based on level set order techniques (Cuthill-McKee algorithm),

which basically ranges partitions as a leveled neighborhood from an initial vertex. Moreover,

the improvement of computer performance helped the emergence of other techniques based on

graph dissection, and in particular bisection. These techniques are the base of the minimum

degreee algorithm which was widely used in the last decade [203]. The second way is based

on spectral bisection. This procedure can be computed iteratively on the subparts, yielding the

recursive spectral bisection method and it is known for producing high quality partitions [206].

The third one is a bisection method based on graph transversing. The bisection method used a

coarsened graph to compute and refine in subgraphs afterwards. It proved to be very efficient and

it is the based technique of the METIS library [206]. The SPOOLES library [207] is linked in a

6The residual interaction method have been shown to be very efficient for computation of normal and complex
modes [213]. The SVD is a classical mathematical tool used to select important directions in a given subspace
[118].

7Front elimination method is classically used to factor matrices since it optimizes storage space, operations and
subsequent fill in patterns [203]
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Fig. 3.5 Composite component partition, corresponding elimination tree and reorder matrix

robust manner to SDTools and provides similar methods. Its most interesting implementation is

the use of a hybrid approach exploiting either nested dissection or multisection. Multisection is

a generalization of bisection, which will either start with an initial multisector as the root, or

perform local multisections from a bisected graph [203]. Partitioning can be well illustrated in

application of the full FE model divided by groups. Figure 3.5 shows the CFRP component

mesh divided into two parts (red nodes represent the interface). The model matrices can then

be reordered by blocks to follow the tree ordering, yielding specific matrix topologies. The

result of matrix partitioning can be represented in the form of an elimination tree [203]. Each

of the two vertices stands for a substructure, i.e. a subset of DOFs of the original model. The

vertice can be sorted in two categories: leaf vertices and separator vertices. The two leaves

displayed in Figure 3.5 are substructures without any child and can be compared to usual CMS

substructures (1 and 2 in the example, level 1). The root (3) (top level 0, no parent vertices)

is a separator, and play a role of the leaves interfaces. The separators are considered as actual

substructures with proper DOF sets [203].

3.3.5 Formulation of an iterative CMS

A short overview corresponding of the iterative CMS formulation nomenclature in the classical

SDT notation is given. The content in italics in this section is mainly based on the textbook of

Vermot [203] and the rest of it is reworked. The goal is to find a basis in which the stiffness

matrix [K] is block diagonal, using a classical [LDLT ] decomposition. All coupling terms then

go to the mass matrix [M] which is used for the eigenvalue solution. The [K] and [M] matrices

needed to be block partitioned, by one of the methods introduced in section 3.3.4, expressed as:

[K] =
[
Ki j

]

1≤i, j≤N
(3.21)
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A LU decomposition of [K] is needed to obtain a block diagonal stiffness matrix [D], (see [204]),

such as

[K] =
[
LDLT

]
(3.22)

where [L] is a lower block triangular matrix and [D] is block diagonal. [L] can be used to

project the mass matrix into [M̂]. The [L] and [D] terms can be identified as part of the product

[LDLT ], writing
[
Ki j

]
=
[
LDLT

]

i j
= ∑

0<k≤min(i, j)

LikDkkLT
jk (3.23)

and
[
Mi j

]
=
[
LM̂LT

]

i j
= ∑

k≤i

Lik ∑
p≤ j

M̂kpLT
jp (3.24)

Many terms can be simplified in Eqs. (3.23) and (3.24). The conditions on intermediary

indices can be written as functions of Parent and Children groups, respectively written for node

i,Pi and Ci. These notations follow the tree representations from Figure 3.5. An iterative

identification per block from leaf to root is then possible from [L] and [D], yielding

Li j =







[
K̂ ji

]
[Dii]

−1 if j ∈ Pi;

I if i = j;

0 otherwise.

(3.25)

for i ̸= j and thanks to the base matrices topology

[
K̂i j

]
=
[
Ki j

]
− ∑

k∈Ci

K̂ikLT
jk (3.26)

and

[Dii] = [Kii]− ∑
k∈Ci

Li jD j jL
T
i j (3.27)

It can be noticed that intermediate stiffness coupling elements K̂ appear in the process, although

simplified in the resulting [D] matrix. Mass matrix terms can eventually be obtained by

projection or also iteratively identified as

[
M̂i j

]
=
[
Mi j

]
− ∑

k∈Ci

∑
p∈C j∪{ j}

LikM̂kpLT
jp − ∑

k∈C j

LiiM̂ikLT
jk (3.28)
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Equations (3.25)- (3.28) allow the computation of all terms of the projected matrices. In the

classical SDTools notations corresponding to the CMS nomenclature, one identifies the matrix

[T̃i j] as a recursive projection of [L]

[
T̃i j

]
=







− [Dii]
−1 [

K̂i j

]
if j ∈ Pi;

I if i = j;

0 otherwise.

(3.29)

In the following, matrices and vectors superscripted with a tilde indicate recursively written

bases. The recursive notion is kept for the presentation as it is the base of the algorithms

classically presented in the literature. The composite example given in the Figure 3.5, shows in

particular that each leaf is connected to its parent by one side and the root by the other side.

The restitution is then formulated in a recursive way, which can be written as

qi = q̃i + ∑
j∈Pi

[
T̃i j

]
q j (3.30)

A recursive definition of the restituted projection basis can be expressed as

[
Ti j

]
=
[
T̃i j

]
+ ∑

k∈P j

T̃ikTk j (3.31)

Fig. 3 of the composite component provided in Chapter 1 helps as an illustration. To recover

the full displacement on leaf vertex #1, the restitution must already been proceeded for the root

vertex #3. The leaf displacement depends on the displacement on the separator#3. Recursively,

the displacement of #2 depends on #3 as well, which generates cross coupling terms.







q3 = q̃3

q1 = q̃1 + T̃13 q3

(3.32)

As a result the full restitution on q1 is

q1 = q̃1 + T̃13q̃3 (3.33)
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At this stage, an iterative Guyan condensation has been performed for a structure decomposed

into sub-domains. One seeks then a reduction basis diagonalizing the stiffness matrix, whose

topology follows the initial stiffness topology.

[T ] =
[
Ti j

]

1≤i, j≤N
(3.34)

where [Ti j] ̸= [0] i f j ∈ Pi and j > i. Using equation (3.31) to represent the full condesation

basis, the system reduction can be represented as

[TR] = [T ] [Φ] (3.35)

where [Φ] represents the modes φi of each vertex on which all lower level condensations have

been performed, which can be represented as

[TR] =












I . . . T1i . . . T1N

...
. . .

...
. . .

...

0 . . . I . . . TiN

...
. . .

...
. . .

...

0 . . . 0 . . . I























φ1 . . . 0 . . . 0
...

. . .
...

. . .
...

0 . . . φi . . . 0
...

. . .
...

. . .
...

0 . . . 0 . . . φN












(3.36)

The matrices obtained by the reduction phase are much smaller in size than the initial ones.

Thus, the reduced stiffness matrix [K ] obtained is diagonal, with







[Kii] = [φi]
T [Dii] [φi] =

[
. . .ω2

i...

]

[
Ki j

]
= 0 i ̸= j

(3.37)

The mass matrix diagonal blocks [M ] are diagonal thanks to a reduction basis normalization

per substructure. Coupling blocks are usually full and are not simplified for the projection. The

final system size is directly the sum of each reduction basis size,







[Mii] = [φi]
T
[
M̂ii

]
[φi] = [I ]

[
Mi j

]
= [φi]

T
[
M̂i j

]
[φi] full if j ∈ Pi

(3.38)
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The only solution to reduce coupling computation times is to perform substructure reduction

before coupling. An information loss thus occurs, whose control is not as easy as seemed

in the first developments of Kaplan [201], and still as an open reseach field. A practical

implementation of sequencing the operations leads to several algorithm philosophies classically

Lazy ones or Greedy ones [201]. Thus, the global procedure used in this section is split in 7

phases. The implementation is described in the Appendix A, from step 16 to 20 as following :

1. Input: M,K,DOF

2. Graph partitioning and matrix reordering

3. Multi-level static condensation

4. Matrices projection

5. Resolution

6. Restitution

7. Output: SEi, [M ], [K ], [φ j], [ω j], [T ]

The graph partitioning is performed by groups of elements. The recursive projection basis of

[T ] = [T̃ ]−1 is applied and it is the base of all AMLS variants. The matrix projection is critical

as the mass projection cost is very sensitive to the implementation. The reduction bases are

eventually computed in this step. The resolution in step 5 is performed using a standard Lanczos

algorithm. The solution is then restituted and the outputs are obtained [213].

3.4 Introduction to mode shape expansion technique using

MOR methods

The concept of model reduction and MSE techniques play a significant role, especially when

comparing a large analytical set of DOF with relatively small experimental measurements8.

Techniques of model reduction that are well established for more conventional materials and

structures as MODAL transformations [111], [112], STATIC or Guyan condensation [108],

CMS [9] and FBS [200] methods have been used extensively in the past, and are still very

popular in engineering in order to reduce the complexity and the size of computational models.

8The experimental measurements are critical for the success of any structural dynamic analysis and contain
characteristics that cannot be obtained analytically [137].
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Traditionally, interface model reductions [118] are used to estimate the motion at interfaces

DOFs by the motion of sensors using EMA, where the EMA plays a significant role in the

correlation and updating of analytical models in terms of FRFs. Many approaches to correlate

analytical modeling require the measurements of FRFs to be available at the full set of finite

element DOF. Likewise, model updating at the set of tested DOF requires the large model to be

reduced to a much smaller size but without distortion of the reduced model.

Coupled or paired predictions can also be estimated using MSE techniques. They can

basically be distinguished by two groups to characterise paired predictions in structures: un-

modified structures, see [215] for more details, and modified structures illustrated in [137]. The

difference between the two groups is basically that the first group needs to impose some of the

measurement points on the interface and in the second it is not needed.

The methodology presented by Balmès, Corus in [138] and by Billet [137] combines

techniques offering the advantages of the second group of paired predictions consisting of:

a local FE model, classical theory of structural modification by pairing it with mode shape

expansion and CMS with interface model reduction method (subspace selection). The use of

different mode shape interpolations is distinguished by using or not using modifications as an

indicator for the validity of coupled predictions in [118], [138], [137], [211]. This combination

of experimental measurements and theoretical results were referred to in the introduction as

hybrid analysis, and it will be evaluated in this work using different condensation algorithms

established in [106] to estimate the responses of all DOF of the interface of the CFRP component

defined by the motion of sensors applying MSE methods. The mode shape interpolation

algorithms are based on: STATIC [108], SEREP [111], MODAL [112], DYNAMIC [134],

MDRE [135] and MDRE-WE [136] detailed in [118], [121]-[124], [137], [138], [154] and

[213]. Thus, these advance interpolation methods can be performed to determine the paired

predictions in the CFRP component for unmeasured DOFs in a CFRP component based on

the experimental measurements (FRF), the curve-fitting performed with the IDRC and IDRM

algorithms, and the updated stiffness parameters of the full FE model obtained with the MNET

for comparative purposes versus the CBMOR.

3.4.1 Theoretical background

Initially, the theoretical background of the MSE methodologies combining different techniques

was established as a close loop prediction problem for structural modifications. The knowledge
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of the close loop prediction problem between the physical and the analytical model is used in the

industry applying experimental measurements, and the finite element method (FEM) to reduce

the cost of prototypes components [137]. A number of steps are described in [137] such as:

experimental measurements, form of the lineal differential equation, dealing with continuous

interfaces and the evaluation of the error. Some of these steps were introduced in Chapters 1

and 3 and they are adapted from [137] for the objective of this work. A brief description is

introduced in the following subsections.

3.4.2 Experimental measurements

The experimental measurements described by the FRF, H(ω) were defined as the ratio of

the transformed excitation in Eq. (1.10). Thus, the FRF of Eq. (1.10) is the receptance

matrix obtained in Eq. (1.11), where the mass [M], damping [C] and stiffness [K] matrices are

dependent on physical parameters such as material’s density, Young’s and shear moduli and

Poisson ratio. Moreover, the IDRC and IDRM algorithms were established to perform the

curve-fitting to obtain the modal parameters in Chapter 1.

3.4.3 Form of the linear differential equation

It is considered only second order models of the form, (previously introduced in section 3.2 and

reintroduced in this section to perform MSE)

[
[M]s2 +[C]s+[K]

]

B
{qB(s)}= [bIB]{uIB(s)}
{yIB(s)}= [cIB]{qB(s)}

(3.39)

where (s) is the Laplace variable, [M], [C], [K] are the mass, damping and stiffness matrices,

respectively, {qB(s)} are the generalised degrees of freedom (DOFs) of the base, [bIB] and [cIB]

are the input and output matrices of the base interface, respectively, {uIB(s)} are the inputs

describing the time/frequency dependence, and {yIB(s)} are the physical outputs of the base

interface defined in [118], [121]-[124], [137], [138], [154] and [213]. Note that the input/output

shape matrix formalism decouples the choice of DOF {qB(s)} from the choice of {uIB(s)} and

{yIB(s)} [137]. The [bIB] and [cIB] are Boolean matrices of the base interface of the full FE

models with compatible interface meshes. Considering the response of an elastic structure to
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applied loads F(s) = [bIB]{uIB(s)}, the exact response at a given frequency [H(s)] is given by:

[H(s)] = [cIB]
[
[M]s2 +[C]s+[K]

]−1
B

[bIB] = [cIB] [ZB(s)]
−1 [bIB], (3.40)

where [Z(s)] is the dynamic stiffness. The interest of writing the transformation of the DOFs

in this way, per Balmès, Corus and Billet, is the easy translation of [bIB] and [cIB] denoted by

IB in the subscript. For the coupled prediction in the CFRP component one assumes that the

modification of the stiffness parameters can be modeled with the FE model in the base interface

(denoted as IM subscript and M superscript). Thus, one can write the modification of the model

in the form [ [
ZM

II (s)
] [

ZM
IC(s)

]

[
ZM

CI(s)
] [

ZM
CC(s)

]

]{

{yIM(s)}
qC(s)

}

=

{

{uIM(s)}
{0}

}

, (3.41)

where the interface of DOFs explicitly appears as DOFs of the model, see [121]. The Division

of the DOFs is divided into two groups.– active or interface DOFs denoted by I in the subscript,

complementary, denoted by C in the subscript – observed in Eqs. (3.41) and (3.42). Using

the framework of Ritz methods, the coupled prediction is obtained by imposing displacement

continuity on the base interface ({yIB(s)}= {yIM(s)}), and projecting the associated model

on loads dual to the displacement subspace admissible under the continuity constrain. The

projection thus combines continuity and dynamic equilibrium loads ({uIB(s)} = {uIM(s)}).
The base model given by Eq. (3.39) and a modification described by Eq. (3.41) in [137] leads

to

[

[ZB(s)] 0

0
[
ZM

CC(s)
]

]

+

[

bIB(s)

0

]

[
ZM

II (s)
][

cIB 0
]

+

[

bIB(s)

0

]
[

0 ZM
IC(s)

]

+

[

0

ZM
IC(s)

]
[

cIB 0
]
{

qB(s)

qC(s)

}

= F(s)

(3.42)

For {qB(s)} and {qC(s)} corresponding to FEM DOFs, [bIB] and [cIB] are the input and output

Boolean matrices of the base interface respectively. Equation (3.42) corresponds to the standard

assembly process established in [137]. For the applications considered in [106], the {qB(s)}
are defined in modal coordinates and {qC(s)} corresponds to fixed interface modes of a Craig-

Bampton model [137].
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Table 3.1 Operator [TG] using different model order reduction methods applied to mode shape
expansion methods.

MODAL/SEREP {qI(s)}=[cIT ][TG]MODAL/SEREP{yT (s)}
STATIC {qI(s)}=[cIT ][TG]GUYAN{yT (s)}
DYNAMIC {qI(s)}=[cIT ][TG]DY NAMIC{yT (s)}
MDRE {qI(s)}=[cIT ][TG]MDRE{yT (s)}
MDRE-WE {qI(s)}=[cIT ][TG]MDRE−WE{yT (s)}

3.4.4 Dealing with continuous interfaces

The incompatibiliy between the discretisation of the FE model {yI(s)} and the experimental

measurements {yT (s)} is documented in [137]. A highlight of this methodology assumes that

exists a constant coefficient linear combination [cIT ] relating the interface {yI(s)} and the test

displacements {yT (s)} for the coupled response.

{yI(s)} ≈ [cIT ]{yT(s)}. (3.43)

This relation imposes a strong constraint on the interface kinematics since {yI(s)} must be

approximated by a subspace of basis [TG] that dimension is smaller than the number of sensors

used. The choice of this subspace [TG], and the justification of its ability to represent the coupled

response, is a key aspect proposed in [137]. The construction of a reduced interface model ([TG]

subspace) is a classical extension of CMS addressed in the literature [117], [118]-[123] using

a Craig-Bampton type reduction of the modification where the constraint modes are replaced

by the low order modes of the model statically condensed on its interface [137], as originally

proposed in [9].

For this study, the updated FE model elaborated with triangle elements [76], [84], [104]

[149] is used to deal with the incompatibility of the interface between the FE model and the

experimental measurements. The main purpose of using this updated FE model is to allow

the interpolation of test motion at an arbitrary number of DOF of the interface to analyze the

influence of the subspace-basis [TG] based on MOR methods in the CFRP component, (see

Table 3.1). The subspace [TG] is defined on the DOFs of a local part of the updated FE model

[cIL] including or not the modification, (see Fig. 3.6).

The extraction of the interface of motion {yI(s)} using the updated FE model is thus written

as

{yI(s)}= [cIT ][TG]{yG(s)}. (3.44)
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An observation matrix [TG] can be constructed relating the {qL(s)} (DOFs of the updated FE

model) with measurements {yT (s)}= [cT L]{qL(s)}= [cT G]{yG(s)}= [cT L][TG]{yG(s)}, (see

[122] for possible methods). The estimation of the generalised motion of the interface {yG(s)},

denoted by G in the subscript, can be established as

{yG(s)}= [cGB]{qB(s)}. (3.45)

The standard approach to estimate the full response using different subspace-based expan-

sion methods in [123] and [137] is then obtained by minimising test error (distance between

the test data and the associated response for the expanded shape). The minimum is generally

obtained by solving the least squares problem as

{yG(s)}= Arg min
︸ ︷︷ ︸

{yG}

|| [cT G]{yG(s)}− [cT B]{qB(s)}||2 (3.46)

Fig. 3.6 MSE process.
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whose solution is given by

[cGB] = [cT
TGcTG]

−1[cT
TGcTB] (3.47)

which leads to the observation Eq. (3.43) with [cIT ] = [cIL][TG][cGB].

The given assumption (3.44), the second block row of Eq. (3.41), describes the motion of

the modification

[ZCC]{qC(s)}=−[ZM
CI(s)][TG]{yG(s)}. (3.48)

For the first block row it is assumed that the generalised loads are defined by projection on the

subspace [TG] of the form in

{uGM}= [cIG]
T [ZM

IC(s)]{qC(s)}+[cIG]
T [ZM

II (s)][cIG]{yG(s)}. (3.49)

The coupled response is obtained assuming dynamic equilibrium of generalised loads {uGB}=
{uGM} established in [137].

3.4.5 Evaluation of the error

It is necessary one way to evaluate the predictions based on many assumptions by introducing

error evaluation tools [137]. The evaluation of the error in the correlation in this study is analyzed

applying a modal assurance criteria (MAC) based on the eigenfrequencies and eigenvectors

divided into four parts. In the first part, the MAC of experimental measurements versus the

updated stiffness parameters of the full FE model is analyzed. The MAC is one of the most

useful comparison methods that relies on the eigenvector information, see Eq. (2.1).

In the second part, the MSE methods are calculated to estimate the interface motion {yI(s)}
using the experimental measurements, curve-fitting performed with the IDRC and IDRM

algorithms, set-up of sensors, and full FE model results.

In the third part, once {c jφid} and {c jφk} are defined at sensors, it is proposed to obtain

the stiffness and mass-weighted criterias, K-MAC and M-MAC, (see Eqs. (3.50) and (3.51)

respectively), also called cross-generalised mass (CGM) and the less used cross-generalised

stiffness (CGK) to observe the influence of the MOR using MSE methods. The K-MAC and
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M-MAC values closer to 1 or 100 represent a higher agreement, and these values are being

interpreted in the same way as the MAC [106].

MAC−K =
|∑l

j=1

{
c jφid

}H
[K]

{
c jφk

}
|2

|∑l
j=1

{
c jφid

}H
[K]

{
c jφid

}
||∑l

j=1

{
c jφk

}H
[K]

{
c jφk

}
|

(3.50)

MAC−M =
|∑l

j=1

{
c jφid

}H
[M]

{
c jφk

}
|2

|∑l
j=1

{
c jφid

}H
[M]

{
c jφid

}
||∑l

j=1

{
c jφk

}H
[M]

{
c jφk

}
|

(3.51)

The implementation of these criteria supports the original methods for reducing the mass on

the sensor set that used vectors defined at DOFs implemented in [106] based on the mass and

stiffness matrices of the full FE model.

The fourth part is evaluated once the stiffness parameters are updated with the MNET

to observe the impact of the stiffness and mass matrices in the interface motion applying

subspace-based expansion methods using the K-MAC and M- MAC criteria.
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Chapter 4

Application of a MNET to a CFRP

component

4.1 Introduction

Five ideas were illustrated in this work to verify the feasibility to use the CMS applied to CFRP

establishing a MNET.

Firstly, the CFRP component is analyzed and tested in its free/free configuration using a

SLDV. The accuracy of the FRFs generated with EMA are critical to understand the behaviour

between the properties of the CFRP component illustrated in this Chapter, (see section 4.2), and

the forthcoming full and reduced FE models.

Secondly, in section 4.3, the curve-fitting or parameter estimation of the experimental CFRP

component is performed using the pole/residue parametrization [152] through the IDRC and

IDRM algorithms. This step is particularly critical if one wants to compare the full FE and

reduced models with the experimental results using the natural frequencies and normal mode

shapes. The curve-fitting of the experimental results, introduced in section 1.1.4, enables a

quantitative comparison between the experimental measurements and the FEM models denoted

as normal modes analysis in FEM terminology.

Thirdly, the idea of the MNET approach is divided in two parts. In the first part is analyzed

the stiffness parameters obtained with different MNET methodologies to use as a initial stiffness

parameters including Poisson’s ratio values during phase transformation in polymer gels,

see section 4.4. The evaluation of these initial stiffness parameters versus the curve-fitting
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performed is needed to assess the level of correlation between the experimental model and

a numerical FEM result. A normal mode analysis is performed using the FEM to obtain the

natural frequencies and normal mode shapes of these initial parameters. The application of

the FEM allows to obtain an accurate result of the stiffness parameters that affect the dynamic

behaviour of the CFRP. A convergency analysis is performed to select the FE model. The

pshell, CTRIA3, and S3 element formulations [106], [148], and [151] are used for comparative

purposes.

The second part consists of performing a DOE with the best MAC results of the initial

stiffness parameters evaluated to improve the MAC results updating the stiffness parameters,

see section 4.5. In this part is analyzed how the stiffness parameters affect the MAC response

(main effects and interaction of the stiffness parameters). A convenient correlation (also called

normalization) is deemed adequeate if the orthogonallity (XOR) and cross-orthogonallity using

the MAC of the diagonal term matrices meet > 0.90 and the off-diagonal terms < 0.10. The

XOR and the MAC provide similar information about the experimental accuracy. The XOR

matrix indicates the goodness of the mass distribution in the full and reduced FE models

[178]. The MAC can also be used to indicate the accuracy of the mode shapes of reduced FE

model using the CBMOR method or a mode shape expansion technique based on Ritz vectors.

Moreover, different modal correlation criteria (COMAC, COMAC-S, eCOMAC, MACco) are

used to validate the MAC correlation.

Fourthly, once is obtained and validated the stiffness parameters of the full FE model with

the established MNET, (see Chapter 5), the idea is to perform a model reduction in terms of

CBMOR of a full FE component model on the basis of the exact system modes using Ritz

vectors1. The Ritz vectors improve the accuracy-cost ratio and the CBMOR method based

on the Rayleigh-Ritz approach is used to improve the accuracy-time ratio. This CBMOR was

previously used in [203] and [212] to generate extremely compact models that have similar

modes, illustrated in Chapter 6. Thus, the components and interface models are then generated

into SDTools [106] using super-element utilities to manage further computations [118], [154].

Extensions of CMS to reduce the error in the reduced model proposed by Kaplan [201] and

Bennighof [208] are implemented in [106] applying the automatic multi-level substructuring

1Application of the Craig-Bampton model order reduction and AMLS methods based on the Rayleigh-Ritz
vector approach [106], [117], [118].
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(AMLS) for frequency response analysis of structures implemented in MATLAB2 based on the

updated stiffness parameters of the CFRP.

The final idea is associated with the ability to use the different modal assurance criteria

and modeshape expansion [122], [123], [124], [137], [138] and [211] to estimate the quality of

the updated stiffness parameters in the full and reduced FE models based on the observation

of particular measurements at sensors. A number of mode shape expansion techniques are

applied based on the basis of reduction methods introduced in [118], [122], [123] and [137] to

validate the updated material properties obtained with the MNET consisting of: experimental

measurements, a local FE model, classical theory of structural modification by coupling it with

mode shape expansion and CMS with interface model reduction method (subspace selection).

4.2 Experimental measurements of a CFRP component

All the experimental measurements are performed with the scanning Laser Doppler Vibrometer

(SLDV) constituted by: Polytec controller OFV-5000 with junction box, LASER head scanhead

PSV400, shaker LDS V406, power-amplifier LDS PA100, Stinger with length of 65mm and

a force transducer Dytran 1051V3 (Sensitivity: 81.32N/V) for both the signal generation and

data acquisition, as shown in Fig. 4.1. The SLDV offers unique advantages compared to using

traditional surface mounted accelerometers [140] [141], such as high-precision definition of

the measurement points [142] [143]. It is a complete and compact system including a sensor

head, a PC with DSP boards and Windows NT-based application software packages [139]. The

SLDV employs a laser to sweep over the structure continuously while measuring, capturing

the response of the structure from a moving measurement point. Various methods have been

devised to determine mode shapes of the structure everywhere along the scan path measurement

[139]. The SLDV and shaker-transducer can be used to estimate the modal parameters of a

structure (defined by the natural frequency, the modal damping and the mode shape for each

mode) [140]. Moreover, the hammer-microphone [31], and the loudspeaker- microphone [43],

[44], [45] can be also used with the SLDV to estimate modal parameters. Several studies are

achieved with very close results to theoretical predictions using a SLDV with conventional as

well as non-conventional materials [29], [131] and [215] .

2The implementation of AMLS in MATLAB is included in the SDTools license adquired for the TU-Berlin. In
Appendix 3 is archived an example in ABAQUS using substructures without AMLS as part of the research for
comparative purposes.
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Fig. 4.1 Experimental set up.

Generally, the estimation of the modal parameters using an SLDV can be established in

three steps: structure excitation, measuring the response motion in the response points and post

processing the vibration data [178]. These three steps are introduced in the next sections.

Step 1: Structure excitation

Three basic assumptions are established to excite the structure: the excitation must be linear,

time-invariant and observable [178]. For a structure being linear3 means, that the response of

the structure to any combination of forces, simultaneously applied, is the sum of the individual

responses to each of the forces acting alone [178].

The time-invariant assumption is related to the modal parameters. These modal parameters

are constants4 to be determined. Assuming a structure to be observable means, that the input-

3The linear assumption has three implications for FRF. Firstly, the FRFs are not dependent on the type of
excitation waveform used to excite the structure. Secondly, measured FRFs are independent of the excitation level.
The last implication of linearity on FRFs is related to the reciprocity. This implies that the FRFs measured between
two DOFs are independent of the ones that are used for excitation or response [178].

4A system that is not time-invariant has components whose mass, stiffness or damping depends on factors that
may vary with time [178].
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output measurements have to contain enough information to generate an adequate behaviour

model of the structure [178]. Furthermore, another assumption that might have to be made,

concerns repeated roots5. The experimental set up and parameter estimation algorithm chosen

may allow the determination of repeated roots upon a limited ability to gather and process data

respectively [178]. Another key test configuration factor is the type of support of the CFRP

structure to be tested: "free" or "grounded" conditions. Free boundary condition6 is particularly

important in this study to validate the stiffness matrix of a CFRP component. Free boundary

condition means that the structure is not attached to the ground and is freely suspended in space.

The CFRP component should not contain any grounding effects over all the structure. The

reason for this is that it is very difficult to provide a sufficient enough rigid base or fixturing

mechanism in order to attach the object to be tested. In other words, it is difficult to approximate

the grounded condition without taking the extraordinary precautions that make this condition

impractical to implement in a variety of applications. Whereas the grounded condition is

difficult to approximate, it is feasible to provide a test article with a suspension system that

closely approximates the free condition. This can be archived by suspending the structures from

very soft elastic cords [178].

Measurements in modal testing are usually made under controlled conditions. A shaker

LDS V406 and a stinger with length of 65mm and a force transducer Dytran 1051V3 are used

to excite the structure that produce a sinusoidal vibration velocity7 signal on the line of sight of

the SLDV (out-of-plane), (see Fig. 4.1). The input (excitation) force is measured using a force

transducer with a stinger in combination with a charge to CCLD converter in order to record

the excitation in the transverse direction. The shaker can be found at node 17, (see Figs. 4.2a

and 4.2b) that is located in the left bottom corner. The reason to use a stinger is to ensure that

the shaker will only impart force to the structure along the axis of the stinger [178].

5Repeated roots refer to the situation where one complex root or eigenvalue occurs more than once in the

characteristic equation. Each root with the same value has an independent modal vector or eigenvector. This

situation, which is critical in developing a truly complete modal model, can only be detected by the use of multiple

inputs or references. However, sometimes the occurrence of repeated roots is in theory easily predictable and it

can be assumed, even if it is not being measured and included in the modal parameters estimation process [178].
6In this condition the structure will exhibit rigid body modes, which are merely determined by its mass and

inertia properties and where there is not bending or torsion at all. Theoretically, any structure will disclose six
rigid modes and each of these modes has a natural frequency of zero Hz [178].

7The sinusoidal vibration velocity is defined on the SLDV as vz(s, t) = Va(s)cosωt +Vb(s)sinωt where vz

is the vibration velocity of a point in direction z, perpendicular to the surface nominally in the plane x− y, at
frequency ω , s is the distance of the point along a scan line and Va and Vb are in-phase and quadrature coefficients
relative usually an input force signal [143].
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(a) Shaker-transducer view 1 (b) Shaker-transducer view 2

Fig. 4.2 Single-point excitation technique

The excitation signal selected is a periodic chirp averaged8. A number of excitation

signals exists for making shaker measurements with fast Fourier transform analyzers (FFT).

Reflective foil is used to acquire the response measurement location, including the driving

point measurement9 introduced in measuring the response motion, (see Figs. 4.3 and 4.4,

respectively).

Step 2: Measuring the response motion

Once the structure is excited with the shaker, input and output quantities need to be measured

with the transducer10. The maximum vibration level expected during the test should not exceed

one third of the transducer shock limit [178]. The quality of the FRF responses is a crucial

factor for the final outcome in this study. The response motion of the EMA is defined on the

whole surface forming a geometric grid11 constituted of 153 sensor points along the surface

8Periodic chirp average is calculated by squaring all the values, adding the squares together, dividing by the
number of measurements (ten, in this case), and taking the square root of the results.

9If the response and direction of the measurement point coincided with the excitation point and direction, it is
often called a driving point measurement [178].

10The force induced by the shaker is measured by a force transducer. The transducers needed to be selected to
record force and motion. The piezoelectric type is the most widely in modal testing. Piezoelectric transducers are
electromechanical sensors that generate an electrical output when are subjeted to vibration, in general, they have
wide and dynamic operational ranges and good linearity. Sensitivity is measured in terms of voltage/force in force
transducers, typically, with units of (V/lbf) or (mV/N), and it is measured in terms of voltage/acceleration (mV/g)
in accelerometers [178].

11The grid of points is also known as test-analysis model (TAM).
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(a) Foil over the CFRP and cords set up

(b) Test-analysis Model
(TAM) 153 Y-Sensors

Fig. 4.3 Test set up
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Fig. 4.4 SLDV and Driving point measurement set up (green square).
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displayed in Figs. (4.3a) and (4.3b), respectively. The measured points consist of a series of

vibration measurement data responses [143], generally measured FRF, that can be scanned at

each single point, (see Fig. 4.4). Even when the system has been proven to behave linearly and

the excitation applied and supporting system selected are appropiate to avoid the measurement

error, still some noise will be present in the measurement process. Noise is a general designation

describing the difference between the true value and the estimated value of the response. A more

exact designation is to view noise as the total error comprised of two terms, variance12 and

bias13. Each of these classifications is merely a convenient grouping of many individual errors

that cause a specific kind of inaccuracy in the frequency response function estimate [178].

Step 3: Post-processing the vibration data

The post-processing of the modal parameters throughout this work is performed from a set of

FRF measurements obtained with the SLDV, (see Fig. 4.5). The FRFs describe the input-output

relationship between two single response DOFs on the structure as a function of frequency

[179]. Commonly, modal parameters are identified by curve-fitting using a set of FRFs. In

general, curve-fitting is a process of matching a mathematical expression to a set of empirical

data points. This is usually done in two steps where the system poles, damping and modal

participation factors are estimated in the first step and the mode shapes in the second using a

DSA. The DSA based on FFT analysis often have limitations of inadequate frequency resolution.

This is especially true if multiple resonances occur at natural frequencies that are very close to

each other. This problem arises because of the constrains imposed by the limited number of

discrete points available, the maximum frequency range to be covered, and/or the length of time

sample necessary to gather the data. To improve frequency resolution, the time length of the

data record must be increased until the desired Fourier series frequency is achieved. Since most

FFT analyzers calculate a fixed number of Fourier series frequencies, the only means by which

higher resolution can be attained is to reduce the number of closely spaced set of Fourier series

frequencies in the interval of interest [178].

12The variance portion of the error essentially is Gaussian distributed and can be reduced by any form of
synchronization in the measurement process. In the presence variance or random errors, the average response
value in the limit, approaches the expected response value [178].

13The bias or distortion portion of the error causes the expected value of the estimated function to be different
from the true value. In the presence of bias error, the average response value, in the limit, does not approach the
expected respose value. Many bias errors can be removed or reduced in magnitude because their form and source
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Fig. 4.5 Rigid Body Modes in the Composite Component Assembly are close to zero Hz

In other words, the common solution for finer frequency resolution is to "zoom in" on the

frequency range of interest and to concentrate all the spectral lines into a narrow band. When

using zoom to measure FRF in a narrow frequency range, it is important to ensure that there is

as little vibration energy as possible outside the frequency range of interest [178].

The first step in determining if zooming is needed is to collect broadband FRF measurements

that cover the entire frequency range of interest [178]. Subsequently and depending on the

natural frequency density observed, zoomed FRF measurements are collected with the SLDV,

(see Table 4.1). The post processing of FRFs obtained by curve-fitting is evaluated into two

parts: firstly evaluating the correlation between the full FEM model versus the EMA and then

evaluating the correlation between a reduced model applying the Craig-Bampton model order

reduction14(MOR) method versus the EMA.

4.2.1 Rigid Body Modes

In section 4.2 the experimental measurement set up was illustrated and discussed the way of

selecting the support system for the composite component assembly. The free condition was

preferred over the grounded condition. It was stated that a very soft system of suspension

will limit the structure rigid body modes to occur at very low frequencies relative to those at

are predictable. Several approaches are available to reduce the error involved in frequency response functions
measurements in FFT analyzer [178].

14The concept of reduced model using the Craig-Bampton model order reduction method was introduced in
Chapter 3.
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Table 4.1 Modal data acquisition parameters with a SLVD.

Frequency Span (Hz)
0-1000 0-1600 30-400 30-800

DOF Measured (TAM DOF) 152 152 153 153
Frequency Span Length (Hz) 1000 1600 370 770

Lines of resolution 6400 6400 6400 6400
Window Function Type Rectangular Rectangular Rectangular Rectangular

Average Type Complex Complex Complex Complex
Number of Average per FRF 10 10 10 10

the first bending modes. "Very low" in this context means that the highest rigid body mode

frequency must be 15% less than the lowest bending mode [178]. The composite component

was suspended on very soft elastic cords in order to closely approximate the free condition.

The assumption of linearity for the composite component was confirmed and the structure was

also assumed to be observable and time-invariant. Fig. 4.5 shows the FRF in which the natural

frequency of the first bending mode was detected. This measured response indicates that this

bending mode occurs at approximately 49 Hz. Fig. 4.5, also reveals that the FRF peaks before

20 Hertz correspond to rigid body modes. Therefore, it can be certained that the soft elastic

cords selected do not interfere with the overall test article structural characteristics [178].

4.2.2 Narrowband and Broadband Measurements

Broadband measurements of different frequency spans (fourth spans) were performed using the

SLDV. The acquisition parameters of each frequency span performed in this study are displayed

in Table 4.1. The response of the data points for each measurement was measured and acquired

at 153 different locations (17×9), including the input location itself or reference distributed

over the composite component curve surface, (see Fig. 4.3). A total of 1481 responses per

sensor were taken of the composite structure standing in front of SLDV obtained a total of

226,593 data points.

Each recorded response for a particular location and direction was the product of an average

of the response measurements for the same location and direction. The responses were measured

by the direct reflection of the LASER beam using a reflective tape stick to the surface of the
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specimen, showing evidence of some noise (describing by variance15 and bias16) in certain

nodes, such as the 5y sensor around 400Hz and 700 Hz in the frequency range until 1000 Hz,

(see Fig. 4.6a), but the results were quite satisfactory in a narrowband from 30 Hz to 400 Hz,

(see Fig. 4.6b). The FRF of the sensor 5y is presented in Figs. 4.6a and 4.6b, respectively,

for comparative purposes between frequencies spans. The division of the frequency range

into two narrower spans, one from 30 Hz to 400Hz and the other from 400 Hz to 800 Hz,

was performed in order to capture all the target modes with sufficient resolution (reduced

errors). The narrowband measurements revealed that a lower frequency resolution is desirable

particularly in the 30-400 Hz frequency range illustrated in Fig. 4.6b. The identified poles and

mode shapes are illustrated in Fig. 4.7 measuring velocity responses. The mesh covered the

whole composite’s surface.

The number of spectral lines for the measurements collected in each narrower spans (6,400

FRF) among other data adquisition parameters such as the type of average, number of average

per FRF type and window function type, see Table 4.1. Each of the 6,400 FRF measured was

obtained averaging the response estimated. The type of average used was complex. Signal

averaging can significantly reduce errors of variance and it is probably the most general

technique in the reduction of errors in FRF measurements. By averaging several frequency-

domain records together, statistical reliability can be increased and spurious random noise

can be removed or reduced from the signals [178]. There are a number of different window

functions available. The rectangular window (used for windowing) gives the best approximation

to the desired frequency response in a least square sense. The rectangular window gives the

minimum integrated squared error from the ideal response [178]. Thus, the frequency response

functions collected in the format UFF5817 based on the modal data adquisition parameters

established can then be used as an input for a modal paramenter estimation process applying

curve-fitting algorithms in the next section.

15In the presence of variance or random errors, the averaged response value, in the limit, approaches the expected
value [178].

16The bias or distortion portion of the error causes the expected value of the estimated function to be different
from the true value [178].

17UFF is the industry standart format for storage geometry, DOF information and measurements, supporting
both, ASCII and binary formats. Originally developed by the Structural Dynamic Research Corporation in the late
1960s, they facilitate the data transfer between test measurements and dedicate engineering software programs
[144].
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Table 4.2 Experimental modes - frequency span from 30-400 Hz.

# Mode Frequency (Hz) ζ

(Hz) %
1 49.2 0.308
2 92.3 0.510
3 93.3 0.327
4 146.0 1.000
5 160.1 0.831
6 164.1 0.525
7 226.4 0.362
8 243.3 0.277
9 307.1 0.337
10 313.0 0.500
11 324.3 0.600
12 329.6 0.900

# Mode Frequency (Hz) ζ

(Hz) %
1 49.24257 0.257
2 92.26513 0.254
3 93.75552 0.425
4 145.28942 0.643
5 160.05492 0.989
6 164.17756 0.563
7 226.35654 0.292
8 243.39876 0.278
9 307.32632 0.364
10 314.17947 0.489
11 324.83236 0.488
12 329.66575 0.430

Notes: Comparison of curve-fitting left) Vibrolaser VL Win 3.2.56 software, right) IDRC and IDRM
algorithms.

4.3 Identification of a pole/residue form with IDRC and IDRM

algorithms

Once all the FRFs of the frequency span were obtained, the next step is to perform the curve-

fitting. The FRFs were first observed with the Vibrolaser version VL Win 3.2.56 software. The

identified poles were directly obtained from the measured FRFs as well as the damping values

for each mode. The comparison of frequencies values and damping ratios can be observed in

Table 4.2 using the Vibrolaser VL Win 3.2.56 software and the IDRC and IDRM algorithms.

The EMA results generated with the SLDV were saved in UFF58 format and imported into

MATLAB-SDTools, see Appendix A, step 3. Furthermore, a curve-fitting using the IDRC and

IDRM algorithms is performed to extract the modal parameters of the measured FRF data.

The creation of an initial model is the first step using the IDRC algorithm. A first approxi-

mation of the poles is provided with the frequency values obtained with the Vibrolaser VL Win

3.2.56 software. The objective of the identification of an "optimal" pole/residue model (second

step) is to obtain all physical modes in the bandwith, and only those (no computational modes).

Generally, identification algorithms can be used to generate the initial pole, but it leads to the

necessity to eliminate computational poles.
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(a) Mode 1=49.24 Hz. (b) Mode 2=92.27 Hz. (c) Mode 3=93.76 Hz.

(d) Mode 4 = 145.3 Hz. (e) Mode 5=160.1 Hz. (f) Mode 6=164.2 Hz.

(g) Mode 7=226.4 Hz. (h) Mode 8=243.4 Hz. (i) Mode 9=307.3 Hz.

(j) Mode 10=314.2 Hz. (k) Mode 11=324.8 Hz. (l) Mode 12=329.7 Hz.

Fig. 4.7 CFRP component assembly experimental measurements free-free.
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Once the "optimal" pole/residual of the form Eq. (1.16) has been identified, the systems can

be considered linear and diagonalizable (third step) and the residue flexibility [E(s)] gives a

sufficient representation of the poles (IDRM approach).

The first 12th mode shapes are obtained and illustrated in Fig. 4.7 associated to the fre-

quencies and damping in Table 4.2. Some differences can be also appreciated in the pole and

damping results applying each curve-fiting algorithm tool in the Table 4.2. A bandwidth of 2%

is used in order to localize the eigenfrequencies. Traditional single pole methods18 generally

give very satisfactory results, but often leave out some modes (local modes or closely space

model). Furthermore, a Nyquist analysis plot is performed to check the quality of the results

obtained applying the algorithms, (see Fig. 4.8). The Nyquist is a vector response plot used

to gain insight into the variance of a measurement (Repeatability check). If the circle appears

very distorted for a measurement with few averages per FRF in the broadband span (10 in each

span), see Figs. 4.8b,d,f,h, it is necessary to decrease the frequency range until get a satisfactory

smooth out results in most of the results, see Figs. 4.8a,c,e,g. These distortions (deficiencies) to

estimate the modal parameters of the CFRP is a trade-off of time that needs to be considered

in this research associated to the modal data adquisition parameters that will impact the final

stiffness parameters of the CFRP assemblied with epoxy resin.

These distortions with 10 averages per FRF between the experimental measurements versus

the curve-fitting in some sensors (such as in sensor 5y, see Fig. 4.8a) in the narrowband span

might be associated to the anisotropy of the stiffness parameters by the difference in temperature

along the CFRP during the manufacturing process in the autoclave or by some inconsistencies

in the assembly by the epoxy resin between the three componenets that can not be captured

with the curve-fitting with 10 averages. Furthermore, bigger distortions may also indicate that

the current measured data are not adecuate or exhaustive to properly construct the analytical

function involved in the calculation of residues. In other words, the dissimilarities obtained

from 5y to 97y sensors between 30 Hz and 150 Hz in the narrowband span may be sufficient

to consistently characterize a CFRP structure in order to obtain the final stiffness parameters

based on the set of modal data acquisition parameters. Thus, the Nyquist of the sensors 6y,12y

and 23y is illustrated in Fig. 4.8 showing the resolution and evidence the quite satisfactory

measurement results (blue line) as well the curve-fitting approximation (green line) in the

fequency span from 30 Hz to 400 Hz. However, the results obtained on sensor 5y for the same

frequency span indicates deficiencies observed in the broadband from 0 Hz to 1000 Hz. The

18Circle fitting (Nyquist) and narrow band-single model SIMO models
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Nyquist, FRFs (blue line) and the curve-fitting (green line) of sensors 5y,6y,12y and 23y are

illustrated in Figs. 4.8, 4.9 and 4.10 respectively to visualize graphically the quality of the

approximation of the sensors.

Thus, the Nyquist comparision of the illustrated sensors indicates differences in the residue

calculations in some sensors in the central part of the assembly (from 5y to 98y) according

the poles and damping obtained based on the IDRC and IDRM algorithms displayed in Table

4.2. The difference or distortions obtained with each curve-fitting approximation is essential to

improve the approximation of the poles and phase of the measured FRFs in the next sections,

(see Fig. 4.9). It is worth nothing that the accuracy of the parameters obtained by curve-

fitting the experimental data is only as good as the data used in the procedure [178]. Once

the frequencies and damping portions of the roots have been computed, the residues for a

function with a particular response and reference set can be calculated. Estimation of residues

for a specific response and reference means calculating the amplitud and the phase of the roots

estimated previously. All the modal data adqusition parameters are included in the calculation

of the residues.

The curve-fitting performed using the IDRC and IDRM algorithms on sensors 12y and 23y

presents sufficient accuracy in the frequency span from 30 Hz to 400 Hz in the amplitud and

phase as well as in the rest of the sensons (from 99y to 213y) applying the pole/residue form,

(see Figs. 4.9 and 4.10). However, deficiencies are observed from sensor 5y to 98y between

30 Hz and 150 Hz, (see Fig. 4.9). It is not observed deficiencies in the accuracy on sensors

(from 99y to 213y) in the amplitud and phase based on the poles and damping according the

modal data adquisition parameters defined in Table 4.2. The results obtained applying the

parametric19 IDRC and IDRM algorithms display that the eigenfrequencies (or poles) are close

to those obtained with the Vibrolaser software. Thus, the curve-fitting algorithms implemented

in [106] can be used to find the poles and identify the modal parameter problems up to three

steps: creation of an initial model, the identification of an "optimal" pole/residue model of the

form Eq. (1.16) by tuning the initial estimate, and the consideration of lineality to determine

the approximation of the identified model that verifies other desired properties [152].

19The identified parametric model of the form Eq. (1.16) is obtained verifying constrains of minimality,
reciprocity, properness or proportional damping. The minimality corresponds to the constraint of the rank of
the residue matrix found for the single poles. For reciprocal models, the residue matrix must be symmetric. An
approximation is thus found by taking the symmetric part of the identified matrix and using a singular value
decomposition to simultaneously enforce minimality and reciprocity. Properness allows the separation of mass,
damping and stiffness properties [106].
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(a) Nyquist 5-y sensor (b) Nyquist 5-y sensor

(c) Nyquist 6-y sensor (d) Nyquist 6-y sensor

(e) Nyquist 12-y sensor (f) Nyquist 12-y sensor

(g) Nyquist 23-y sensor (h) Nyquist 23-y sensor

Fig. 4.8 Nyquist of frequency span 30-400 Hz. (a,c,e,g) frequency span 0-1000 Hz. (b,d,f,h) at
different sensors.
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4.4 Initial material properties of the CFRP component to

perform a MAC

One of the characteristics of the MNET is to establish the initial stiffness parameters to perform

the MAC. These initial stiffness parameters will provide MAC results that will be useful to

establish an analysis range in the DOE. The reasons not to use the raw material test specimen

as initial stiffness parameters or the CLT are ilustrated on the correlation results obtained, see

Appendix E. Thus, it is needed to organize and analyze some potential stiffness parameters

that influenced the MAC of the CFRP. The organization part of the potential causes can be

performed using a fishbone, (see Fig. 4.11). Based on this diagram can be elaborated a Table that

classified these potential causes that affect the MAC (MNET, stiffness parameters, experimental

measurements, types of CFRP, carbon/epoxy and glass/epoxy, by author, method, experimental

method used). The Table 4.3 is elaborated with some of the state-of-the-art stiffness parameters

found in the literature using MNETs in order to analyze these initial parameters in the proposed

MNET methodology. A high anisotropy can be observed in some CFRP in the Young’s modulus

and shear modulus, see [29] and [43]. It is also observed that most of the methods obtained six

stiffness parameters E1,E2,G12,G13,G23,ν12 . The evaluation of these six parameters will be

performed using orthotropic shell element based on the FSDT in order to improve the accuracy

in the results, as was introduced in Chapter 1. Note that Poisson’s ratio reported in [31], [45],

[43] are not the typical values found in the literature (for example, low and negative values).

The consideration of low and negative Poisson’s ratio values for the evaluation of the stiffness

parameters is nowadays an open field [97], [166]. Some studies can be found about Poisson’s

ratio values during phase transformation in a polymer gels [156]. This concept is introduced in

the next subsection to be taken into consideration in the analysis of the stiffness parameters.

Thus, using the number of stiffness parameters defined in the Table 4.3 and the curve-fitting

obtained can be perfomed a MAC to establish the initial stiffness parameters in a FE model.

4.4.1 Poisson’s ratio during phase transformation in a polymers gel

Traditional Poisson’s ratio values of 0.3-0.5 are reported in the literature to correlate CFRP

with EMA. Recently, studies have been associated to unusual or extreme behaviour in material

properties of anisotropic materials with low and negative Poisson’s ratio values, including

polymer gels, like the Hunstman Ly 564, used to elaborate CFRP, see [97], [156], [160].
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Fig. 4.12 Bulk modulus (B), shear modulus (G) and Poisson’s ratio (ν) of a polymer gel versus
temperature associated with a volume phase transition close to a critical point measured optically
[97].

Reviewing in general the MNET bibliography applied to CFRP, Araujo et al. in [31] and

Cugnoni et al. in [43] reported also negative (-0.036) and low (0.08) Poisson ratio values

respectively. The atypical Poisson’s ratio obtained in [31], [43] and the low and negative

Poisson’s ratio values of polymer gels are documented in [97], [156] and [158]. The low and

negative Poisson ratio values of polymer gels during the phase transformation documented by

Hirotsu in [156] might be one of the reasons that influence the final stiffness parameters of

CFRP documented in [31], [43], [45], [97], [98], [159]-[165] also related as a sensitive indicator

of (fatigue) damage in fibre-reinforced plastics [166]. Similar behaviour is reported for different

gel concentrations [156], [158], [160]. The Poisson ratio is related to the Young’s modulus and

shear modulus, which describes the change in size and shape respectively in CFRP. Poisson’s

ratio behaviour during phase transformation in a polymer gel is related also to the temperature

associated with a volume phase transition [97], (see Fig. 4.12).

Thus, the Huntsman (Araldyte) Ly 564, see Appendix D, is a polymer gel for liquid

moulding applications and it is used in this work for the elaboration of the CFRP component.

A typical process temperature profile can be applied to a Huntsman (Araldyte) Ly 564 using

RTM6 illustrated in Fig. 4.13 for cure cycle design. There are different temperature profiles

documented in the literature that can be applied for cure cycle designs, that might affect the

Poisson ratio during the manufacturing process.

Furthermore, it is documented in the literature that the characterization of Poisson’s ratio can

be controlled by the appropriate selection of the substrate parameters such as fiber orientation,
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Fig. 4.13 Cure cycle for RTM6 as provided by the manufacturer [172].

volume fraction, fiber spacing, layer sequence and the type of conventional cure cycle that

contribute to process-induced reduced residual strains20 [100].

For example, the cure cycle with an intermediate dwell the infusion tool should be heated

up to 120°C. After the infusion is completed, the tool is heated up further and held at 160°C

for 75 minute to cure the resin. This process is followed by a post-cure cycle where the CFRP

component is removed from the mould and held at 180°C for 120 minute [172].

Moreover, an analysis presented by Herakovich in [98] using two-dimensional lamination

theory combined with the appropriate three-dimensional anisotropic constitutive equation

reported some rather surprising results for range of values through-the-thickness of the effective

Poisson’s ratio (νxz) versus angle-ply laminates. Results for graphite-epoxy show that the

effective Poisson’s ratio through-the-thickness can be ranged from a high of 0.49 for a laminate

layer distribution of [90] to a minimum negative value of -0.21 for a laminate layer distribution

of [±25]. Based on the different temperature profiles used to elaborate CFRP and variables

involved in the manufacturing can be suggested to evaluate low or negative Poisson’s ratio values

because of the phase transformation in gels used in the elaboration of composite components,

(see Fig. 4.12). The evaluation of the initial stiffness parameters reported will establish the

range of the analysis and the accuracy. These initial values are selected from the Table 4.3

and then are evaluated in the next section using the MAC applying FEM. In the next section is

established the preparation of a FE model.

20Traditional analyses of process-induced strains in thin laminates are based on the mismatch in coefficient of
thermal expansions (CTEs) between adjacent plies, homogeneous temperature difference between ambient and
cure temperature, and no stress development prior to the end of the cure [176].
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(a) Part 1. (b) Part 2. (c) Part 3. (d) CFRP Assembly.

Fig. 4.14 FE model groups.

Fig. 4.15 Convergency analysis

4.4.2 Finite element model preparation and normal mode solution

Firstly, the CFRP was measured and then a FE model was elaborated in ABAQUS using

primarily S3 triangle shell elements in the mesh, (see Fig. 4.14). The triangle elements defined

(discretization introduced in Chapter 1) in SDTools are called ’pshell’ and in MSC/NASTRAN

CTRIA3 [148]. All the elements according the help documentation have similar properties [76],

[84], [104], [149].

An appropiate assessment was perfomed to evaluate the mesh density (lineal) of the FE

model using the pshell elements, (see Fig. 4.15).

Normal modes are computed using the FE model to obtain the natural frequencies and

normal mode shapes of a CFRP structure. It verifies the orthogonality condition.

The model 3 is selected based on the frequency difference lower than 2.5 % in respect to the

model 2 until 800 Hz (mode 29th) displayed in Table B.2. The model is divided in three parts,

(see Fig. 4.14), for convienience to modify the physical parameters per group of elements.
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Table 4.4 Test article and FE model weight comparison

Component Test Article (Kg) FE model (Kg)
Difference

Kg %

CFRP 2.1 2.2 0.1 4.7619%

The model illustrated in Fig. 4.14, is composed by triangle shell elements with a fairly

regular shape and pattern. Traditionaly in modal analysis using FE model assemblies, the

components are coupled using rigid body elements (RBE) or couplings as a boundary conditions

to perform a modal analysis in the assembly. In this work, the FE model is prepared as a

continuous body between the three components for convienience to simplify the FE model.

After the FE model is developed, a number of validity checks were performed on the model

prior to conduct the modal analysis [178]. These checks are listed below.

1. Units

2. Mass comparison

3. Layer Stack-up

4. Material and element properties

5. Input and output coodinate systems

Table 4.4 reports the mass comparison between the complete model and the test article. The

validation of the weight in the FE model is calculated comparing the weight of the real weight

of the CFRP using a scale.

The small difference of the weight (4.7619 %) between the CFRP component versus the

analytical FE model might be related to the small difference in the density values considered in

each FE component respect to the technical data, see Appendix D. The characteristics of the

FE model, number of nodes, elements and DOF per part, are displayed in Table 4.5 and in Fig.

4.14.

The layer stack-up is established and verified the thickness of each group defined according

each element formulation. The density of each part is defined in Table 4.7.
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Table 4.5 FE model element, node and DOF, see Fig. 4.14

Component Element Type Number of Elements Number of Nodes

Part 1 pshell 7,200 3,840
Part 2 pshell 2,016 1,105
Part 3 pshell 3,024 1,615

Assembly 12,240 6,283
Total DOF 37,698

4.4.3 Application of MAC and other correlation criteria using the initial

material properties

The MAC is perfomed using the curve-fitting results obtained in section 4.3 and the normal

modes analysis of the FE model. The curve-fitting results are saved in UFF58 format and are

imported into MATLAB-SDTools to perfom the MAC correlation. The results of the FE model

are obtained in MATLAB format (.m). The MAC evaluation of the initial material properties

(stiffness parameters) is divided in four proposals due to the non-uniformity of the material

properties summarized in Table 4.3.

(a) Proposal 1, material properties of part 1, E1 =
E2 =114. GPa and G12 = G13 = G23 =25. GPa,
ν = 0.3, ρ = 2600Kg/m−3 and for Part 2 and Part
3 see Table 4.7.

(b) Proposal 2, material properties of part 1,
E1 = E2 =91.9. GPa and G12 = G13 =3.5 GPa,
G23 =2.5GPa, ν = 0.3, ρ = 2600Kg/m−3 and
for Part 2 and Part 3 see Table 4.7.

Fig. 4.16 Initial material properties Proposals 1 and 2.
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The first Proposal is observed in Fig. 4.16a and it shows the MAC results using the material

properties obtained by Cugnoni [43]. The first two mode pairs showed a good agreement while

the rest of the pairs showed a poor correlation.

The second Proposal used the material properties obtained by Matter [45], (see Fig. 4.16b),

showing an improvement in most of the pair modes with respect to the previous. At this point,

the decrease of Ei as well as the Gi j showed an improvement of the MAC correlation. After

several iteractions, Proposal 3 is a combination of values based on the results of Ei obtained

by Rikards [32], the Gi j used in the Proposal 2 and the low Poisson’s ratio obtained by Araujo

[31].

The MAC results of Proposal 3 are displayed in Fig. 4.17a. It is clear that the results of

Proposal 3 displayed a significant improvement in the correlation using the values proposed

respect to the previous proposals. Proposal 4, (see Fig. 4.17b), is evaluated keeping the values

of the Fig. 4.17a and just changing the Poisson’s ratio to negative. For visualization purposes

using Fig. 4.12, it is observed the different MAC results associated to each stiffness parameter

considering different (low and negative) Poisson’s ratio values during the phase transformation

in Fig. 4.18 .

(a) Proposal 3, material properties of part 1,
E1 =35.65 GPa E2 =48.65 GPa and G12 =
G13 =3.5GPa, G23 =2.5GPa, ν = 0.015, ρ =
2600Kg/m−3 and for the Part 2 and Part 3 see
Table 4.7.

(b) Proposal 4, material properties of part 1,
E1 =35.65 GPa E2 =48.65 GPa and G12 =
G13 =3.5GPa, G23 =2.5GPa, ν =−0.015,ρ =
2600Kg/m−3 and for the Part 2 and Part 3 see
Table 4.7.

Fig. 4.17 Initial material properties Proposals 3 and 4.
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Thus, to establish the DOE one needs to define an interval per factor. These intervals are

defined in Table 4.6 for Part 1 based on the initial approximations (Proposal 3) multiplying all

the values by itself to obtain the upper limit. The group of material properties in Proposal 3

defined in Table 4.7 were selected based on the MAC results obtained to perform the DOE.

The initial material properties of Part 2 and Part 3 are also displayed in the Table 4.7. The

experimental measurements of the Part 2 and 3 are suggested to be performed in a future

research.

Fig. 4.18 Comparison of MAC results using different proposals of material values.

Notes: : a)Proposal 1(red), b)Proposal 2(magenta), c)Proposal 3(yellow), d)Proposal 4(green),
E = Young’s Modulus, G=Shear Modulus.

The orthogonal array of Part 1 is presented in Table 4.8 according the limits established in

Table 4.6. If the results at the end of the DOE are not satisfactory, a new DOE can be performed

using material properties evaluated in Fig. 4.17b.
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Table 4.6 Levels and intervals per factors used in the DOE for the first component- Part 1

Factor Name
Level

Units
Low High

A E1 35.65 71.3 GPa
B E2 48.65 97.3 GPa
C G12 3.5 7 GPa
D G23 2.5 5 GPa
E G13 3.5 7 GPa
F ν12 0.015 0.03 —

Other criteria can also be used to perform the DOE, such as MACco and COMAC. For

comparative purposes, the MACco and different COMACs are performed using the stiffness

parameters of Table 4.7 versus number of Y-sensors (x-axis) to emphasise the improvement in

the results after updating the stiffness parameters in forthcoming chapters, (see Figs. 4.19 and

4.20).

Fig. 4.19 MACco with material properties of Table 4.7 versus Y-sensors.
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Fig. 4.20 COMACs with material properties of Table 4.7 versus Y-sensors.

4.5 MNET using a Design of Experiments (DOE) - Full Fac-

torial Analysis

Different methodologies were introduced in previous chapters that constituted the stages of

the MNET to obtain the stiffness parameters. Two methodologies were identified (genetic

algorithms and DOE) to achieve the stiffness parameters using MNET, (see Fig. 4.11).

The DOE is selected to achieve an improvement in the MAC response. The initial stiffness

parameters in the Proposal 3 will be used to perform a correlation analysis based on the MAC

responses using the curve-fitting with the FE model. The stiffness parameters displayed in Table

4.6 will define the range to analyze. Furthermore, one can observe the stiffness parameters per

part of the CFRP in Table 4.7. It is important to mention that the stiffness parameters of the

Part 2 and Part 3 are obtained in a similar way as it is obtained in the Part 1 using the initial

stiffness parameters proposals. The DOE of Parts 2 and 3 is not included in this study, however,

an additional DOE can be performed for Part 2 and Part 3 using the stiffness parameters in

Table 4.7 once the experimental measurements of the respective parts are acquired. Using these

initial values, the DOE can be established in three steps:

1. Set up of the orthogonal array 26 in order to obtain the MAC.

2. Pearson analysis: Main effects, interactions, cube, contour and surface analysis.

3. ANOVA analysis and transfer function of the MAC.
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Table 4.7 Initial elastic mechanical properties.(*th=thickness)

Part 1(m) Modulus E(GPa) ν (-) Shear G(GPa) ρ (Kgm−3)

*th=0.0035 E1 35.65 0.015 G12 3.5 2600
E2 48.65 0.015 G23 2.5

G13 3.5
Part 2(m) Modulus E(GPa) ν (-) Shear G(GPa) ρ (Kgm−3)

*th=0.007 E1 71.3 0.02 G12 6 1500
E2 68.3 0.02 G23 5

G13 6
Part 3(m) Modulus E(GPa) ν(-) Shear G(GPa) ρ (Kgm−3)

*th=0.0035 E1 71.3 0.02 G12 6 1500
E2 68.3 0.02 G23 5

G13 6

4.5.1 Set up of the orthogonal array

The full factorial design or DOE is established as an array of combinations or runs based on the

number of parameters. Table 4.8 shows the array of a 26 = 64 runs and the MAC obtained for

each combination.

The order of the runs is randomized in order to avoid alias21. A MAC response value is

calculated based on each combination "low" and "high" values of the parameters established in

the Table 4.8.

The DOE is performed using each combination based on the array of 26 = 64 runs to obtain

the MAC response and the next step is to analyze the main effects and interaction of the stiffness

parameters that influence the MAC.

4.5.2 Main effects analysis.

Once are obtained the MAC values based on the array combination established in Table 4.8,

a main effects analysis can be peformed to indentify the critical parameters and interactions

using a Pearson correlation22. The Pearson correlation provides a measure of the linear relation

between the defined variables for a defined significance level (in this case of α=0.05). These

21The alias structure describes the confounding effects that occur in the design. It can also be defined as the
effects that cannot be estimated separately from each other [147].

22The Pearson correlation provides a range of values from -1 to +1, whereas a value of 0 is indicative of no
linear relationship between the variables. A correlation of -1 indicates a perfect negative linear relationship and a
+1 indicates a perfect positive linear relationship [147].
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Table 4.8 Design of experiments 26

Factor A B C D E F Response
Run order N center point Blocks MAC

64 1 1 1 71.30 97.30 7.0 5.0 7.0 0.030 87
30 2 1 1 71.30 48.65 7.0 5.0 7.0 0.015 83
41 3 1 1 35.65 48.65 3.5 5.0 3.5 0.030 77
5 4 1 1 35.65 48.65 7.0 2.5 3.5 0.015 82
15 5 1 1 35.65 97.30 7.0 5.0 3.5 0.015 80
25 6 1 1 35.65 48.65 3.5 5.0 7.0 0.015 77
35 7 1 1 35.65 97.30 3.5 2.5 3.5 0.030 83
48 8 1 1 71.30 97.30 7.0 5.0 3.5 0.030 80
51 9 1 1 35.65 97.30 3.5 2.5 7.0 0.030 83
55 10 1 1 35.65 97.30 7.0 2.5 7.0 0.030 80
16 11 1 1 71.30 97.30 7.0 5.0 3.5 0.015 87
36 12 1 1 71.30 97.30 3.5 2.5 3.5 0.030 80
53 13 1 1 35.65 48.65 7.0 2.5 7.0 0.030 82
6 14 1 1 71.30 48.65 7.0 2.5 3.5 0.015 83
29 15 1 1 35.65 48.65 7.0 5.0 7.0 0.015 82
7 16 1 1 35.65 97.30 7.0 2.5 3.5 0.015 80
20 17 1 1 71.30 97.30 3.5 2.5 7.0 0.015 80
61 18 1 1 35.65 48.65 7.0 5.0 7.0 0.030 82
18 19 1 1 71.30 48.65 3.5 2.5 7.0 0.015 76
58 20 1 1 71.30 48.65 3.5 5.0 7.0 0.030 77
22 21 1 1 71.30 48.65 7.0 2.5 7.0 0.015 83
42 22 1 1 71.30 48.65 3.5 5.0 3.5 0.030 77
3 23 1 1 35.65 97.30 3.5 2.5 3.5 0.015 84
59 24 1 1 35.65 97.30 3.5 5.0 7.0 0.030 83
46 25 1 1 71.30 48.65 7.0 5.0 3.5 0.030 83
11 26 1 1 35.65 97.30 3.5 5.0 3.5 0.015 84
10 27 1 1 71.30 48.65 3.5 5.0 3.5 0.015 76
27 28 1 1 35.65 97.30 3.5 5.0 7.0 0.015 84
1 29 1 1 35.65 48.65 3.5 2.5 3.5 0.015 77
62 30 1 1 71.30 48.65 7.0 5.0 7.0 0.030 83
47 31 1 1 35.65 97.30 7.0 5.0 3.5 0.030 80
24 32 1 1 71.30 97.30 7.0 2.5 7.0 0.015 87
23 33 1 1 35.65 97.30 7.0 2.5 7.0 0.015 80
19 34 1 1 35.65 97.30 3.5 2.5 7.0 0.015 84
37 35 1 1 35.65 48.65 7.0 2.5 3.5 0.030 82
33 36 1 1 35.65 48.65 3.5 2.5 3.5 0.030 77
28 37 1 1 71.30 97.30 3.5 5.0 7.0 0.015 80
50 38 1 1 71.30 48.65 3.5 2.5 7.0 0.030 77
60 39 1 1 71.30 97.30 3.5 5.0 7.0 0.030 80
40 40 1 1 71.30 97.30 7.0 2.5 3.5 0.030 87
56 41 1 1 71.30 97.30 7.0 2.5 7.0 0.030 87
34 42 1 1 71.30 48.65 3.5 2.5 3.5 0.030 77
21 43 1 1 35.65 48.65 7.0 2.5 7.0 0.015 82
14 44 1 1 71.30 48.65 7.0 5.0 3.5 0.015 83
39 45 1 1 35.65 97.30 7.0 2.5 3.5 0.030 80
17 46 1 1 35.65 48.65 3.5 2.5 7.0 0.015 77
43 47 1 1 35.65 97.30 3.5 5.0 3.5 0.030 83
12 48 1 1 71.30 97.30 3.5 5.0 3.5 0.015 80
45 49 1 1 35.65 48.65 7.0 5.0 3.5 0.030 82
8 50 1 1 71.30 97.30 7.0 2.5 3.5 0.015 87
2 51 1 1 71.30 48.65 3.5 2.5 3.5 0.015 76
26 52 1 1 71.30 48.65 3.5 5.0 7.0 0.015 76
4 53 1 1 71.30 97.30 3.5 2.5 3.5 0.015 80
31 54 1 1 35.65 97.30 7.0 5.0 7.0 0.015 80
52 55 1 1 71.30 97.30 3.5 2.5 7.0 0.030 80
44 56 1 1 71.30 97.30 3.5 5.0 3.5 0.030 80
63 57 1 1 35.65 97.30 7.0 5.0 7.0 0.030 80
38 58 1 1 71.30 48.65 7.0 2.5 3.5 0.030 83
32 59 1 1 71.30 97.30 7.0 5.0 7.0 0.015 87
54 60 1 1 71.30 48.65 7.0 2.5 7.0 0.030 83
13 61 1 1 35.65 48.65 7.0 5.0 3.5 0.015 82
49 62 1 1 35.65 48.65 3.5 2.5 7.0 0.030 77
9 63 1 1 35.65 48.65 3.5 5.0 3.5 0.015 77
57 64 1 1 35.65 48.65 3.5 5.0 7.0 0.030 77
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Fig. 4.21 Main Effects Mean MAC.

range of values (low and high) were established per parameter in the Table 4.6. Furthermore,

the interactions between the parameters can also be analyzed. One must notice that the range of

values was defined multiplying each of the parameters of Table 4.6 by 2. The multiplication

of parameters by 2 is known as orthogonality in the full factorial to keep the "balance" of the

design.

The effects of each parameter in the composite structure can be observed in Fig. 4.21. The

main effects are identified through the slope generated as a consequence of the MAC values

between the limits defined for each parameter – a bigger slope means a stronger parameter effect.

The Young’s modulus E1,E2 and the shear modulus G12 parameters have a strong influence

reflected in the slope.

The G13,G23 and Poisson’s ratio ν12 have a medium influence on the MAC. Furthermore,

Fig. 4.22 shows the interactions between the parameters. The interactions can be also identified

through the slope generated between the specified limits. The columns of the interaction plot

represent the response for a given factor (- or +) interaction. The rows represent the mean

MAC response for a given setting (- or +) of a given factor interaction. Parallel lines in an

interaction plot indicate no interaction. The greater the difference in slope between the lines,
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the higher the degree of interaction. Thus, the "high" values of the interval defined show a

positive impact in the MAC results in comparison with the "low" values. The interactions

E1 −E2,E1 −G12,E2 −G12 are indentified with the strongest influence according to the slope

between them and between all of the parameters, (see Fig. 4.22). Thus, the E1,E2 and G12

present a positive impact using the upper limit value improving the mean MAC value. However,

the interaction plot doesn’t alert the reader if the interaction is statistically significant. This

point will be overcome using the ANOVA analysis. Furthermore, a cube, contour and surface

analysis will provide a map with the trend for each interaction using the interval established.

Fig. 4.22 Full Interaction Mean MAC plot matrix.

4.5.3 Cube, Contour and Surface MAC analysis.

A cube plot, (see Fig. 4.23), can be used to show the relationships between the six factors with

a MAC response measure for 2-level factorial designs or Plackett-Burman designs. The factors

with the MAC response displayed in the cube plot represents what a factorial design looks like.

Viewing the factors with the MAC response one can observed the impact of the MAC values
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according to the factors. The contour, (see Figs. 4.24 and 4.25), and the surface plots, (see Figs.

4.26 and 4.27), are used to visualize and explore the potential interaction of all the parameters

versus the MAC response. The contour figures provide a 2-dimensional contour plot for the

lower and higher limits. These values are plotted on the x− and y− scales respectively and the

MAC response values represented by the contours. A contour plot is like a topographical map

in which x−,y−, and z− values are plotted instead of longitude, latitude, and elevation and are

connected by contour lines of constant MAC responses. One can observe an interchange of the

MAC response (minimum and maximum pattern) between Fig. 4.24, interaction G12 −E1 and

Fig. 4.25, interaction G12 −E1 for the specified low and high limits. Most of the contour plots

of MAC (lower an upper limits) show a rising ridge pattern.

Fig. 4.23 Cube MAC plot.
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Table 4.9 ANOVA results for MAC - Part 1

Source DF Seq-SS Adj-SS Adj-MS F P

Main Effects 6 335.34 335.34 55.8906 73.00 0.000
2-Way Interactions 15 218.23 218.23 14.5490 19.00 0.000
3-Way Interactions 20 82.56 82.56 4.1281 5.39 0.000

Residual Error 22 16.84 16.84 0.7656
Total 63 652.98

Notes: DF, degree of freedom, Seq SS, Sequential Sum of squares, Adj SS, Adjust sum of
squares, Adj MS, Adjust mean of squares, F=F-value, P=P-value.

S = 0.875 , R-Sq=97.42%, R-Sq(Adj)=92.61%

The contour plots are also useful to see the trend of the MAC for a particular factor between

lower and upper limits. The quasi-lineal behavior of the MAC value between interaction of

factors can be appreciated, for example Poisson∗E2 and G23 ∗G12. MAC surface plots, Figs.

(4.26) and (4.27), show the variable surface response for the lower and higher limits values

respectively. The surface with the contour plots complement the visualization of the results.

The figures provide a 3D surface where the points have different responses, in some cases a

quadratic surface response, see the Poisson*G23 and E1 ∗G12 for lower and upper limits. If we

change the holding values, the MAC response surface changes.

4.5.4 ANOVA analysis

The analysis of variance (ANOVA) is used to determine the significance of the design parameters

that influence the MAC. This analysis is evaluated with a confidence level of 95% that is equal to

α=0.05. It can be observed from the results obtained in Table 4.9 dividing the sum of squares by

main effects or interactions can indentify the influence in the MAC response. The main effects

have a significant effect (51.36%) on the MAC response followed by the 2-Way Interactions

(33.42%), the 3-Way Interactions (12.64%) and the Residual Error (2.58%), respectively. When

the P-value is less than 0.05 then the paramenter or interaction can be considered as statistically

significant. With the ANOVA results obtained in Table 4.9, it is demostrated that the parameters,

second and third interactions in the model have a significant effect in the MAC response. The

influence of the interactions in the MAC response can be illustrated using the coefficient of

determination R-Sq defined as the ratio of the variation of the total variation. The approximation
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Table 4.10 Uncoded Coefficients for MAC - part 1

Term Coefficient P-value
Constant 43.2813 0

E1 0.134993 0.002
E2 0.571686 0
G12 5.375 0

G23 -0.875 0.328
G13 4.75 0.328
ν12 -145.833 0.328

E1 ∗E2 -0.00565767 0.024
E1 ∗G12 -0.030555 0

E1 ∗G23 0.0245442 0.328
E1 ∗G13 -0.0385694 0.328
E1 ∗ν12 7.83076 0.888

E2 ∗G12 -0.0987373 0

E2 ∗G23 0.0179856 0.328
E2 ∗G13 -0.0282631 0.328

E2 ∗ν12 0.25694 0.043

G12 ∗G23 0.25 0.328
G12 ∗G13 -0.392857 0.328
G12 ∗ν12 41.6667 0.328
G23 ∗G13 -0.55 0.328
G23 ∗ν12 58.3333 0.328
G13 ∗ν12 -91.6667 0.328

E1 ∗E2 ∗G12 0.00133848 0

E1 ∗E2 ∗G23 -2.02E-004 0.328
E1 ∗E2 ∗G13 0.000144144 0.328
E1 ∗E2 ∗ν12 -0.0336337 0.328

E1 ∗G12 ∗G23 -0.00280505 0.328
E1 ∗G12 ∗G13 0.00200361 0.328

E1 ∗G12 ∗ν12 -1.0018 0.043

E1 ∗G23 ∗G13 0.00280505 0.328
E1 ∗G23 ∗ν12 -0.654511 0.328
E1 ∗G13 ∗ν12 0.467508 0.328
E2 ∗G12 ∗G23 -0.0020555 0.328
E2 ∗G12 ∗G13 0.00146821 0.328
E2 ∗G12 ∗ν12 0.04894 0.888
E2 ∗G23 ∗G13 0.0020555 0.328
E2 ∗G23 ∗ν12 -0.479616 0.328
E2 ∗G13 ∗ν12 0.342583 0.328

G12 ∗G23 ∗G13 0.0285714 0.328
G12 ∗G23 ∗ν12 -6.66667 0.328
G12 ∗G13 ∗ν12 4.7619 0.328
G23 ∗G13 ∗ν12 6.66667 0.328
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of R-Sq to the unity means a better response model results and the degree of fits. The value of

R-Sq calculated for this model is 97.42%, including up to 3-Way Interactions, is very close to

the unit and it shows a good variability in the data based on the factors and their interactions

using the MAC values.

4.5.5 Transfer function of the MAC response

Once the ANOVA is perfomed, the transfer function can be obtained using the estimated

uncoded coefficients obtained with MINITAB. The uncoded coefficients are displayed in Table

4.10 based on the ANOVA analysis up to 3-Way Interactions, (see Table 4.9). It is important to

highlight the number of interactions needed in order to reduce the error in the transfer function.

The estimated uncoded coefficients are obtained considering until 3-interactions to reduce the

error in the transfer function, (see Table 4.9, R-Sq value23).

Y = MAC = 43.2813+(E1 ∗0.134993)+(E2 ∗0.571686)+(G12 ∗5.375) (4.1)

−(E1 ∗E2 ∗0.00565767)− (E1 ∗G12 ∗0.030555)− (E2 ∗G12 ∗0.0987373)

+(E2 ∗ν12 ∗0.25694)+(E1 ∗E2 ∗G12 ∗0.00133848) = 89.78

As was mentioned, one of the advantages of applying the DOE is to create a transfer function

Fig. 4.28 Solver function in Libreoffice

based on the uncoded coefficients obtained with the ANOVA using the MAC response of the

23The value of R-Sq decreases to 51.36% if it is only considering the main effects. The R-Sq improved to
84.78% considering the 2-Way Interactions. R-Sq is obtained dividing the Seq-SS of the main effects by the total,
see Table B.1.
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Table 4.11 Updated elastic mechanical properties.(*th=thickness)

Part 1(m) Modulus E(GPa) ν (-) Shear G(GPa) ρ (Kgm−3)

*th=0.0035 E1 71.3 0.03 G1 7 2600
E2 97.3 0.03 G2 5

G3 7
Part 2(m) Modulus E(GPa) ν (-) Shear G(GPa) ρ (Kgm−3)

*th=0.007 E1 71.3 0.02 G1 6 1500
E2 68.3 0.02 G2 5

G3 6
Part 3(m) Modulus E(GPa) ν(-) Shear G(GPa) ρ (Kgm−3)

*th=0.0035 E1 71.3 0.02 G1 6 1500
E2 68.3 0.02 G2 5

G3 6

elaborated array in Table 4.8. The transfer function in Eq. (4.1) is constructed using these

uncoded units24 obtained and displayed in Table 4.10.

The coefficient with P-value ≤ to 0.05 displayed in the Table 4.10 are selected because

of the most significant coefficients that affect the MAC response. Thus, the transfer function

in Eq. (4.1) contains only the coefficients that are significant including the third interaction

E1 ∗E2 ∗G12 obtained with the ANOVA using the stiffness parameters. One can notice that the

uncoded coefficient E1 ∗G12 ∗ν12 is not included in the transfer function even the P-value is

below to 0.05. It was decided not to include this coefficient in the transfer function because

the MAC value shows a negative impact versus the best possible MAC values displayed in the

DOE cube results, (see Fig. 4.23). Thus, the best MAC value is obtained with the "Solver"

function in ’Excel’ or ’Libreoffice calc’, (see Fig. 4.28) using the transfer function of Eq. (4.1)

based on the stiffness parameters E1, E2, G12 and ν12, the uncoded coefficients and the residual

error related in the ANOVA analysis. Moreover, the transfer function obtained shows that the

stiffness parameters, G13 and G23, are not significant according to the P-values obtained in the

Table 4.10. One of the reasons that these parameters are not included in the transfer function

could be due to the lineal assumption in the stiffness homogenization using the FSDT.

Thus, the MAC value obtained with the transfer function, (see Fig. 4.28), is used to evaluate

the sensibility of the Poisson’s ratio in the full FE model changing only the Poisson’s ratio.

A small difference in the MAC results (paired mode 4th) can be appreciated between the two

24The uncode units in a DOE are obtained by transforming the low factor levels to −1 and the high factor levels
to +1.
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models changing only the Poisson ratio (upper and lower limits), (see Fig. 4.29), using the

updated material properties displayed in Table 4.11. The evaluation of the sensibility of the

Poisson ratio value using the MAC suggests choosing the upper Poisson’s ratio value instead

of the lower value obtained with the transfer function. The evaluation of the sensitivity of the

Poisson’s ratio value using a ESL model versus a LWM can be performed in a future project to

compare the MAC response and the transfer functions

(a) Poisson ratio ν12=0.030. (b) Poisson ratio ν12=0.015.

Fig. 4.29 The Poisson ratio sensibility evaluation of material properties updated (Table 4.11)
using the MAC



Chapter 5

Validation of the CFRP component - FE

full model

5.1 Application of the MAC to validate updated stiffness pa-

rameters using the MNET

According to the improvement of the MAC results obtained updating the stiffness parameters

using the MNET in the previous chapter, the stiffness parameters will be validated using the

MAC, XOR, MACco and COMACs criteria as well as other finite elements and solvers.

The MAC and XOR can be used to analyze the accuracy of the mode shapes between

the experimental and theoretical models1. It is well known that the MAC and XOR provide

similar information, illustrated in Figs. 5.1 and 5.2. However, each orthogonality criteria tend

to indicate different things. It performs the MAC and XOR criteria to verify the approximation

of MATLAB-SDTools, MSC/NASTRAN and ABAQUS full FE models. The same number of

modes shapes (19 mode pairs ) is calculated in each full FE model.

The MAC analysis with the SDTools full FE model displays the best MAC results computed

with the updated stiffness parameters (over 80%) in most of the paired modes with the exception

of two paired modes 10th, and 11th. The MAC analysis with the MSC/NASTRAN full FE model

shows a similar MAC paired modes behaviour compared with the SDTools model (except the

mode pair 4th). The MAC analysis of the full FE performed with ABAQUS presents the lower

1Appendix E provides a MAC, MACco and frequencies, see Tables E.2 and E.3 comparison using the technical
data of the raw material C-faser-gewebe and the updated stiffness parameters vs experimental measurements.
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(a) SDTools-Experimental.

(b) MSC/NASTRAN-Experimental.

(c) ABAQUS-Experimental

Fig. 5.1 Comparison of MACs using the stiffness parameters of Table 4.11 vs. experimental
measurements
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correlation in respect to the other full FE models. The MAC analysis shows a high correlation

between the experimental measurements and full FE models (performed with SDTools and

MSC/NASTRAN) applying the stiffness parameters obtained with the DOE, (see Fig. 5.1). It

may be possible to obtain enhanced performance by choosing a thin or thick shell elements2.

However, the analysis with different types of elements is beyond the objective of this study.

The XOR criterion is performed to display the orthogonality’s quality of the experimental

and theoretical results in the low frequency range (up to 400 Hz) analyzed in Chapter 4 once it is

performed the MAC criterion. Fig. 5.2 shows the XOR of the experimental measurements and

the full FE models (MATLAB-SDTools, MSC/NASTRAN and ABAQUS models, respectively).

One can observe that the off-diagonal terms in the XOR and MAC of the full FE models versus

experimental measurements fulfill the criteria of ≤ than 10% with the exception of the XOR

of the MATLAB-SDTools FE model. Most of the diagonal values have the value of unity and

the off-diagonal terms have the value near zero. Analyzing the XOR and MAC results can be

concluded the good mass distribution with the XOR and the good accuracy between the mode

shapes with the MAC respectively.

In Fig. 5.3 one can observe some mode shapes of the full FE model. Furthermore, the nearly

double correlation in the experimental results identified in Fig. 5.2a suggests the presence of

the veering phenomena (bending and torsional mode at the same frequency) in the considered

composite component structure. This is reflected in the MAC values for the corresponding

experimental modes, (see Table 5.1). Noticed that in the XOR plots of the full FE models are

not identified the nearly double correlation for the coupling considerations, (see Figs. 5.2b,

5.2c and 5.2d), however, the nearly double veering phenomena can be observed applying

the MAC between the full FE models versus the experimental measurements. The Table

5.1 shows the MAC values (correlation) obtained for each case between the full FE models

versus the experimental results with the stiffness parameters obtained with the DOE based

on the curve-fitting performed in Chapter 4. The best eigenvector results are observed in the

MATLAB-SDTools FE model following by the MSC/NASTRAN FE model. Furthermore,

the best eigenfrequency values are observed in the MSC/NASTRAN model following by the

MATLAB-SDTools.

2The library is divided into three categories consisting of general-purpose, thin, and thick shell elements. Thin
shell elements provide solutions to shell problems that are adequately described by classical (Kirchhoff) shell
theory, thick shell elements yield solutions for structures that are best modeled by shear flexible (Mindlin) shell
theory, and general-purpose shell elements can provide solutions to both thin and thick shell problems [151], see
ABAQUS theory manual section 3.6.1.
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(a) XOR experimental model.

(b) XOR full SDTools model. (c) XOR MSC/NASTRAN model

(d) XOR ABAQUS

Fig. 5.2 Comparison of XORs using the stiffness parameters of Table 4.11
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(a) Mode 1=0 Hz. (b) Mode 2=0 Hz. (c) Mode 3=0.0003906Hz.

(d) Mode 4 = 0.4447 Hz. (e) Mode 5=1.2193 Hz. (f) Mode 6=1.9085 Hz.

(g) Mode 7=57.2179 Hz. (h) Mode 8=106.0160 Hz. (i) Mode 9=167.4985 Hz.

(j) Mode 10=168.1977 Hz. (k) Mode 11=234.9896 Hz. (l) Mode 12=236.8307 Hz.

(m) Mode 13=315.2561 Hz. (n) Mode 14=323.9288 Hz. (o) Mode 15=401.7151 Hz.

Fig. 5.3 Mode shapes-SDTools full FE model.
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The ABAQUS FE model presents the worst correlation respet to the other FE models using

the curve-fitting perfomed in Chapter 4. The first criterion of selection for the best FE model

between the three FE models is the best accuracy of the MAC values obtained (MATLAB-

SDTools FE model). The second criterion is the eigenfrequency difference obtained between

the FE models and the curve-fitting performed based on the experimental measurements.

Furthmore, the bigger eigenfrequency difference in the three FE models might be associated

to the anisotropy ratio using the CLT and FSDT illustrated in the Appendix E Tables E.2 and

E.3 respectively. Moreover, it is also documented in the literature that the application of the

Ritz vectors helps to predict the effect of modifications in structures. The integration interface

between the full FE model to perform the MNET is the third criterion. The fourth criterion is

application of the CBMOR based on Ritz vectors and the AMLS. Thus, the final criterion is

the implementation of this MNET methodolgy with MATLAB-SDTools FE model that offers

the best characteristic to apply, calculate, perfom and obtain the CBMOR method with enough

accuracy to a CFRP component based on the improvements documented in the literature.

Pierre [227] reported how localization and veering are related to two kinds of "coupling": the

physical coupling between the structural components, and the modal coupling set up between

the mode shapes through parameter perturbations. His studies show that, in structures with

close eigenvalues, such as motions in different dimensions uncouple (could be the case of the

CFRP assembly studied) result in both strong localization of modes and abrupt veering away of

the loci of the eigevalues when those are plotted against a parameter representing the system

disorder. There are only three types of structures made of conservative materials that have been

identified to exhibit veering3:

1. Symmetric or cyclic structures, where it is allowed through algebraic properties of the

group of symmetric properties,

2. Multi-dimensional substructures for which motions in different dimensions uncouple,

such as plates having bending and a torsional mode at the same frequency,

3. Structures with fully uncoupled substructures

The considered CFRP structure corresponds to the second type - multi-dimensional plate struc-

tures. Du Bois, Adhikari and Lieven [230] presented a detailed experimental and numerical

3Multiple modes allowing the eigenvalues to be equal and therefore modal crossing with instantaneous rotation
on mode shapes [227].
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investigation on veering and crossing phenomena applying model updating and modal correla-

tion algorithms4. In this study the MAC index is used before and after updating the material

properties. Veering phenomena can be identified using the MAC per paired modes, before and

after updating the material properties, (see Figs. 4.16, 4.17, 5.1 and 5.2). The study of the

presence of this phenomenon in the CFRP structure is beyond of the scope of this work.

5.1.1 Modal Assurance Criteria per pair-sensor (MACco)

Using the MACco criteria introduced in Chapter 2.1.1, it is possible to analyze the paired modes

per sensor that contribute to low MAC values, (see Fig. 5.4).

According to Table 5.2, the indices of the sensors used in the pairing mode show an

improvement per sensor followed by an improvement in the "mean MAC" and MAC paired

modes associated to each updated FE model. This Table is divided into four sections and

displays the ten worse MACco values per paired modes-sensors of each FE full model. The first

section of this Table is included and it is calculated using the stiffness parameters of Table 4.7

for comparative purposesis. The next three sections show the MACco results of each full FE

model with the updated stiffness parameters obtained with the DOE. The MATLAB-SDTools

full FE model presents the best MACco results where worse paired modes are identified at

pair numbers 16th and 17th at sensor 16y followed by the MSC/NASTRAN full FE model

with similar MACco results on the same paired modes-sensors. The ABAQUS full FE model

displays the worst MACco results with a decrease of the MACco values on paired modes 10th

and 13th. The sensor 16y displays the "worst" MACco results in all the full FE models. The

differences obtained using different FE models suggest the need to perform an assessment with

a different kind of elements.

Better MACco values can be observed in the rest of the sensors applying this criterion

once it is updated the stiffness parameters in the full FE models. Before updating the material

properties, the sensor 16y presents the worst correlation with a MAC correlation of 77%. After,

updating the material properties, the MACco displays a significant improvement per paired

mode-sensor in the different FE models (mean MAC of 87%, 83%, and 79% respectively). With

the exception of the sensor 104y,97y,131y,133y in the Table 5.2, the MACco values obtained

per paired mode-sensor of each full FE models are interchanged order of mean MAC value. For

example, the sensors 129y in the Table 5.2 displays a mean MAC of 78%, 90%, 86% and 81%,

4The impact of veering on model updating and modal correlation algorithms is highlighted as a discipline
concerned with the analysis of closely space modes [229].
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(a) MACco SDTools-Experimental.

(b) MSC/NASTRAN-Experimental.

(c) ABAQUS-Experimental

Fig. 5.4 Comparison of MACcos between FE models with material properties of Table 4.11 vs.
experimental measurements
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Table 5.2 MACco Table Full FE models vs. experimental measurements.

Pair number 7 8 9 10 11 12 13 14 15 16 17 18
EXPERIMENTAL 1 2 3 4 5 6 7 8 9 10 11 12
SDTools FEM (non-updated) 7 8 8 9 9 10 12 11 14 14 13 13
Sensor Mean MAC

All 77 99 97 90 58 87 73 65 63 73 61 72 86
16y 77 99 97 91 57 87 73 65 63 73 62 75 87
23y 78 99 97 92 62 88 71 69 59 72 63 74 86
21y 78 99 97 93 66 89 70 71 57 72 63 74 87

129y 78 99 97 93 65 89 70 70 58 72 65 75 88
96y 79 99 97 93 64 89 70 70 60 73 66 76 88
95y 79 99 97 94 64 89 71 70 60 73 66 77 88
17y 79 99 97 94 62 90 72 68 63 73 66 78 90

128y 80 99 97 94 61 89 73 68 63 73 68 79 90
133y 80 99 97 94 64 90 71 70 60 73 69 79 90
104y 80 99 97 95 66 90 71 70 61 74 69 79 90

EXPERIMENTAL 1 2 3 4 5 6 7 8 9 10 11 12
SDTools FEM(updated) 7 8 8 10 10 9 12 11 14 14 13 13

All 87 100 97 90 83 86 98 86 96 81 66 74 90
16y 88 100 97 91 83 86 98 86 96 82 67 76 90
96y 88 99 97 91 82 87 98 87 97 83 69 77 90
95y 88 100 97 91 82 87 98 88 97 84 70 78 90
23y 89 99 97 92 84 87 97 88 96 84 73 77 90

131y 89 100 97 93 85 88 97 89 96 85 73 77 90
17y 89 100 97 93 84 89 97 89 97 85 74 78 91
21y 90 100 97 94 85 89 97 89 97 85 76 78 91

129y 90 100 97 94 85 89 97 89 97 86 77 79 92
128y 90 100 97 94 84 89 97 89 97 86 79 80 92
97y 91 100 97 94 84 89 97 90 97 87 79 81 92

EXPERIMENTAL 1 2 3 4 5 6 7 8 9 10 11 12
MSC/NASTRAN FEM(updated) 7 8 8 9 9 10 11 12 14 14 13 13

All 83 100 97 90 74 90 93 81 84 76 59 71 84
16y 84 99 97 91 74 91 93 81 85 77 60 74 84
23y 84 99 97 92 77 91 92 82 83 76 63 73 84
96y 85 99 97 92 76 92 93 82 84 77 64 74 85
21y 85 99 97 93 79 92 92 83 83 77 65 74 85
95y 85 100 97 93 79 92 92 84 83 78 66 74 85
17y 86 100 97 93 77 93 93 83 85 78 67 76 87

129y 86 100 97 93 77 93 93 82 85 78 68 78 88
131y 86 100 97 94 77 93 93 83 86 79 69 78 88
128y 87 100 97 94 76 93 93 83 86 80 71 79 88
133y 87 100 97 95 79 93 93 84 85 80 72 78 88

EXPERIMENTAL 1 2 3 4 5 6 7 8 9 10 11 12
ABAQUS FEM(updated) 7 8 8 10 10 9 11 12 13 13 14 14

All 79 100 97 90 62 89 82 45 64 82 68 75 91
16y 79 99 97 91 61 89 82 45 64 83 70 76 91
96y 80 99 97 91 60 89 82 44 66 85 73 77 91
23y 80 99 97 92 65 90 81 45 64 85 74 77 91
21y 80 99 97 93 68 90 81 45 63 84 75 77 91
95y 81 99 97 93 68 91 81 45 64 86 76 77 91
17y 81 100 97 93 66 91 82 42 68 87 78 78 91

129y 81 100 97 93 65 91 82 41 68 87 80 79 92
131y 82 100 97 94 66 91 82 42 68 88 81 79 92
133y 82 100 97 95 69 92 81 43 67 88 81 79 92
128y 82 100 97 95 68 91 82 43 67 89 83 79 92
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respectively. It is necessary to highlight the updating values observed in the correlation for the

paired modes 1th,2th,3th,6th,8th and 12th are almost 1. Before the updating, the paired mode

9th had a value of 60%, (see Fig. 4.17a). The MACco results show an improvement per sensor

after updating the material properties in most of the mode pairs (up to 80%) with the exception

of the ABAQUS full FE model.

5.1.2 Coordinate Modal Assurance Criteria (COMAC)

After constructing the set of NM mode pairs, the next step is the calculation of the COMAC

values (in blue), over all the correlated mode pairs as given using the Eq. (2.2). The COMAC

values are calculated from zero to one where the value closer to zero per DOF will have the

higher agreement. Different COMAC results can be observed in Fig. 5.5 using different updated

full FE models (MATLAB, MSC/NASTRAN and ABAQUS respectively) in respect to the

number of Y-sensors (x-axis). The COMAC results display an improvement after updating the

stiffness parameters with similar pattern and values between FE models, (see Figs. 5.5a, 5.5b,

5.5c). The best COMAC result of the full FE models is obtained at sensors 107y=0.036 and the

worst COMAC result at sensor 201y=0.397, (see Fig. 5.5a). The COMAC values in Figs. 5.5b

and 5.5c displayed a slightly worse COMAC values in respect to Fig. 5.5a. The COMAC values

are consistented according to the MAC results obtained after updating the material properties.

5.1.3 Scale Coordinate Modal Assurance Criteria (COMAC-S)

The COMAC-S results are defined in green in respect to the other COMACs to compare the

different full FE models. The COMAC-S results show a similar pattern values between two

of the three models. The lowest COMAC-S values can be found in Fig. 5.5 showing an

improvement (higher agreement) per DOF according the formulation introduced in Chapter

3. It can be identified that the sensors in Fig. 5.5a and 5.5b display a similar values and

pattern (best COMAC-S results). The best COMAC-S results are obtained in the SDTools and

MSC/NASTRAN full FE models displayed at sensors 209y=0.019 and the worst on sensor

201y=0.366 respectively. The ABAQUS FE model displays the worse COMAC-S values in

respect to the other two FE models.
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(a) COMAC’s SDTools.

(b) COMAC’s MSC/NASTRAN.

(c) COMAC’s ABAQUS.

Fig. 5.5 Comparison of COMACs results between FE models with material properties of Table
4.11 vs. number of sensors.
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5.1.4 Enhanced Coordinate Modal Assurance Criteria (eCOMAC)

The eCOMAC results can be observed in brown from zero to one, whereas the value closer

to zero per DOF has a higher agreement. The eCOMAC results are interpreted in the same

way as the COMAC. The eCOMAC values are the lowest results per DOF of the three full FE

models versus the other COMACs with the exception of some sensors (17y,19y,23y,24y,100y),

(see Fig. 5.5). The best eCOMAC values are identified at sensors 57y,58y,63y=0.006, (see Fig.

5.5c). Furthermore, the best eCOMAC value in Fig. 5.6a is at sensor 83y=0.009 for comparative

purposes.

In Fig. 5.6 it can be observed clearly that the best eCOMAC results are obtained in the

ABAQUS FE model despite that the MAC results obtained are lower. The slightly enhanced

eCOMAC results in the ABAQUS model using the S3 elements are beyond of the scope of

this work. The lower eCOMAC results suggest an improvement that can be identified in

the differences per DOF in the composite component assembly with the updated stiffness

parameters.

It can be also appreciated that the eCOMAC is less sensitive to errors at small motion of

degrees of freedom for the three FE models and it is more robust than the standard COMAC. The

improvement using the COMACs criteria is established in the following order: the eCOMAC

results present the better values (the lowest), in second place is the COMAC-S results and in

the third position the COMAC using the updated material properties of CFRP.
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(a) eCOMAC’s SDTools.

(b) eCOMAC’s MSC/NASTRAN.

(c) eCOMAC’s ABAQUS.

Fig. 5.6 Comparison of eCOMACs results between FE models with material properties of Table
4.11 vs. number of sensors.



Chapter 6

Application of the CBMOR method using

Rayleigh-Ritz vector basis to a CFRP

6.1 Introduction

In the first part of this work it was established the feasibility of applying a MNET to obtain

the stiffness parameters of a CFRP. The MNET was performed in Chapter 4 to obtain the

stiffness parameters in the full FE model using a DOE [145]. Several tools implemented in

[106] were also used to validate the correlation in Chapter 5: experimental measurements,

curve-fitting algorithms [152], error estimations and residual iterations of substructure modes

[213], the subspace classification using singular value decomposition, and an iterative CMS

using Rayleigh-Ritz vectors (Craig-Bampton MOR [117] and the AMLS [201] methods).

In the second part of this work, once a satisfactory approximation was validated updating

the stiffness parameters of the CFRP assembly component using a MNET, the Craig-Bampton

MOR method with Rayleigh-Ritz vectors basis is applied using two criteria for the comparison

of results: frequency and mode shapes. Different MAC, MACco and COMACs criteria are

performed in simliar fashion as was archieved with the full model to know which particular

substructure modes are dominant in a certain global mode in Chapter 6. It used the same sensor

configuration in both comparisons, illustrated in Chapters 4, 5 and 6.
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6.2 Application of the CMS to a CFRP using the updated

stiffness parameters obtained applying a MNET

With the stiffness parameters obtained with the MNET, the next step is to apply the CMS to the

full FE model. The CMS is applied dividing the full FE model into two independent parts or

components using groups1, illustrated in Fig. 3.3. For each component is computed the same

number of retained constrain modes (also known as fixed interface modes). The components are

represented in a reduced model that is built up defining two super-elements. The super-element

1 , (see Fig. 3.3a), has 4,753 nodes and 9,219 elements, while super-element 2, (see Fig. 3.3b),

has 1,615 nodes and 3,026 elements. The defined super-elements share 123 nodes along the

common border with different DOF per node. An appropriate [T ] matrix, introduced in Chapter

3, is defined according to the CMS and AMLS methods.

A convergence study of the reduced model shows an increase with different numbers of

retained constrain modes (10, 20, 30, 40, 50). The method rapidly archieves accuracy of a

few percent in the frequency difference visible in Fig. 6.1a, however, convergence to a higher

accuracy requires a fixation of the interface modes with frequencies above the frequency band

of interest. The MAC of the full and reduced model is illustrated in Fig. 6.1b until fifty mode

pairs. The MAC values of each FE model are displayed in Table 6.1 respectively. The rigid

body modes are included in the correlation accuracy.

If the number of interface modes are increased, the number of DOF of the interface will also

increase and viceversa. The good initial accuracy using 20 fixed interface modes applying the

Craig-Bampton method is sufficient to describe the dynamic behaviour of the CFRP component.

Due to the number of mode pairs in the experimental measurements, 19 fixed interface modes

are kept. The matrix size is reduced by 98.5% from 37,698 DOF to 579 DOF. Results are

good for the stiffness matrix showing a decrease factor of 78.9% from 1,420,413 to 299,544.

The mass matrix shows a 78% decrease from 1,349,362 to 299,544. The orthogonallity and

cross-orthogonallity using the MAC can be used to analyze the accuracy of the mode shapes

using the CBMOR method. The first mode shapes of the reduced model versus the full FE

model are illustrated in Fig. 6.2. The mode shapes of the reduced model vs the full FE model

per group of super-element can be appreciated in Figs. 6.3 and 6.4. Another MAC is performed

changing the number of retained constrain modes per super-element of 7,17, 27, 37 and 47 to

compare the accuracy.

1Groups of elements can be defined in MSC/NASTRAN, ABAQUS or SDTools.
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(a)

(b)

Fig. 6.1 a) MAC convergence error b) MAC frequency error reduced FE vs. full FE model
(green bars MAC, blue bars frequency difference).
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Table 6.1 MAC between the full FE model vs. the reduced FE model with 50 modes per
super-elements (SE1 and SE2).

# Mode Full # Mode Reduced DF/FA MAC
(Hz) (Hz) %

1 0 2 9.1826e-05 Inf 88
2 0 1 0 NaN 99
3 4.5127e-4 3 3.7823e-4 -16.2 89
4 0.44472 4 0.44472 0.0 100
5 1.2193 5 1.2193 0.0 100
6 1.9085 6 1.9085 0.0 100
7 57.218 7 57.218 0.0 100
8 106.02 8 106.02 0.0 100
9 167.5 9 167.51 0.0 100
10 168.2 10 168.2 0.0 100
11 234.99 11 235.02 0.0 100
12 236.83 12 236.85 0.0 100
13 315.26 13 315.26 0.0 100
14 323.93 14 324.11 0.1 100
15 401.72 15 401.73 0.0 100
16 408.39 16 408.39 0.0 100
17 432.89 17 432.91 0.0 100
18 494.9 18 495.14 0.0 100
19 497.04 19 497.18 0.0 100
20 516.11 20 516.13 0.0 100
21 538.85 21 539.15 0.1 100
22 559.47 22 559.83 0.1 100
23 571.85 23 572.19 0.1 100
24 607.04 24 607.13 0.0 100
25 637.29 25 637.45 0.0 100
26 657.06 26 657.36 0.0 100
27 678.44 27 678.59 0.0 100
28 787.12 28 788.81 0.2 98
29 812.02 29 812.99 0.1 90
30 814.75 30 816.2 0.2 91
31 861.94 31 866.42 0.5 99
32 882.32 32 887.5 0.6 99
33 921.41 33 927.83 0.7 99
34 956.2 34 961 0.5 98
35 977.96 35 978.36 0.0 100
36 987.49 36 988.3 0.1 100
37 1012.4 37 1016.2 0.4 99
38 1044.4 38 1047 0.2 100
39 1051.5 39 1057.4 0.6 99
40 1085.8 40 1089.6 0.4 100
41 1121.7 41 1125.2 0.3 100
42 1145.6 32 887.5 -22.5 28
43 1157.1 42 1159.3 0.2 98
44 1159.7 43 1162.2 0.2 99
45 1182.8 45 1186.2 0.3 98
46 1190 46 1191.3 0.1 96
47 1206.5 47 1213.9 0.6 97
48 1213.5 48 1221.9 0.7 95
49 1223.2 50 1243 1.6 81
50 1234.2 49 1236.7 0.2 94
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(a) Mode 1 at 0 Hz,
Mode 1 at 0 Hz reduced

(b) Mode 2 at 0 Hz,
Mode 2 at 0 Hz reduced

(c) Mode 3 at 3.906e-4 Hz,
Mode 3 at 3.594e-4 Hz reduced

(d) Mode 4 at 0.4447 Hz,
Mode 4 at 0.4447 Hz reduced

(e) Mode 5 at 1.219 Hz,
Mode 5 at 1.219 Hz reduced

(f) Mode 6 at 1.9085 Hz,
Mode 6 at 1.9085 Hz reduced

(g) Mode 7 at 57.2179 Hz,
Mode 7 at 57.2183 Hz reduced

(h) Mode 8 at 106.0160 Hz,
Mode 8 at 106.2092 Hz reduced

(i) Mode 9 at 167.4985 Hz,
Mode 9 at 167.7910 Hz reduced

(j) Mode 10 at 168.1977 Hz,
Mode 10 at 168.2881 Hz reduced

(k) Mode 11 at 234.9896 Hz,
Mode 11 at 235.1202 Hz reduced

(l) Mode 12 at 236.8307 Hz,
Mode 12 at 236.9254 Hz reduced

Fig. 6.2 CBMOR reduced FE model (in green) vs. full FE model in MATLAB-SDTools (in
blue).
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(a) Mode 1 at 0 Hz,
Mode 1 at 0 Hz reduced

(b) Mode 2 at 0 Hz,
Mode 2 at 0 Hz reduced

(c) Mode 3 at 3.906e-4 Hz,
Mode 3 at 3.594e-4 Hz reduced

(d) Mode 4 at 0.4447 Hz,
Mode 4 at 0.4447 Hz reduced

(e) Mode 5 at 1.219 Hz,
Mode 5 at 1.219 Hz reduced

(f) Mode 6 at 1.9085 Hz,
Mode 6 at 1.9085 Hz reduced

(g) Mode 7 at 57.2179 Hz,
Mode 7 at 57.2183 Hz reduced

(h) Mode 8 at 106.0160 Hz,
Mode 8 at 106.2092 Hz reduced

(i) Mode 9 at 167.4985 Hz,
Mode 9 at 167.7910 Hz reduced

(j) Mode 10 at 168.1977 Hz,
Mode 10 at 168.2881 Hz reduced

(k) Mode 11 at 234.9896 Hz,
Mode 11 at 235.1202 Hz reduced

(l) Mode 12 at 236.8307 Hz,
Mode 12 at 236.9254 Hz reduced

Fig. 6.3 Superelement 1 (in green) vs. full FE model in MATLAB-SDTools (in blue).
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(a) Mode 1 at 0 Hz,
Mode 1 at 0 Hz reduced

(b) Mode 2 at 0 Hz,
Mode 2 at 0 Hz reduced

(c) Mode 3 at 3.906e-4 Hz,
Mode 3 at 3.594e-4 Hz reduced

(d) Mode 4 at 0.4447 Hz,
Mode 4 at 0.4447 Hz reduced

(e) Mode 5 at 1.219 Hz,
Mode 5 at 1.219 Hz reduced

(f) Mode 6 at 1.9085 Hz,
Mode 6 at 1.9085 Hz reduced

(g) Mode 7 at 57.2179 Hz,
Mode 7 at 57.2183 Hz reduced

(h) Mode 8 at 106.0160 Hz,
Mode 8 at 106.2092 Hz reduced

(i) Mode 9 at 167.4985 Hz,
Mode 9 at 167.7910 Hz reduced

(j) Mode 10 at 168.1977 Hz,
Mode 10 at 168.2881 Hz reduced

(k) Mode 11 at 234.9896 Hz,
Mode 11 at 235.1202 Hz reduced

(l) Mode 12 at 236.8307 Hz,
Mode 12 at 236.9254 Hz reduced

Fig. 6.4 Superelement 2 (in green) vs. full FE model in MATLAB-SDTools (in blue).
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The influence of the mode shapes per superlement is illustrated comparing the MAC results

of the reduced model with the full FE model in Fig. 6.5. It is clear the dependence of the

correlation accuracy using CMS, based on the retained constrain modes per super-element,

(see Figs. 6.5 and 6.6). The rigid body modes of the full and reduced models are included

in the correlation accuracy. Table 6.1 can be used for comparison purposes of low and high

frequencies and model shapes (for 50 pairs keeping the same number of fixed retained modes

per superelement). The worst frequency and eigenvector difference are found in the mode pair

42 ( 22.5% and 28 MAC value respectively). These worst frequency value could be related to

convergence error, the type of element formulation or the solver.

It is well known that the cross-orthogonallity and orthogonallity matrices provide similar

information about the experimental accuracy, and they tend to indicate different things. Fifty

and nineteen paired modes are illustrated in Fig. 6.6 (2D and 3D plots). The diagonal values of

the orthogonality and cross-orthogonality matrices have the value of unity and the off-diagonal

terms have the value around 30 in the full and reduced FE models using the pshell elements.

These differences are observed comparing the off-diagonal terms of the SDTools full and

reduced FE models in Fig. 6.6 versus the MSC/NASTRAN and ABAQUS full FE models, see

Fig. 5.2.

The orthogonality matrix indicates the goodness of the mass distribution in the full FE and

reduced model. Analyzing the orthogonallity and cross-orthogonallity matrices results, one

can conclude the good mass distribution (orthogonallity) and the good accuracy of the reduced

mode shapes (cross-orthogonallity). Several observations can be made:

1. The free interface method shows good agreement results in the lower frequency range. It

is believed that this is due to the fact that the rigid body modes are explicitly present in

the reduction basis2.

2. The CBMOR method shows excellent results based on the basis Rayleigh-Ritz vectors,

error estimations and residual iterations of substructure modes, the SVD and the AMLS.

3. The reduction basis is enhanced through the automatic generation interface, the SVD,

the error estimates and residual iterations of substructure modes and the Rayleigh-Ritz

vectors implemented in SDTools. It is possible to accurately describe a low and high

number of eigenmodes of the assembled system.

2Due to the rigid body modes having a significant influence in the low frequency range, the free interface
reduce model shows a very small error on the first eigenmodes and eigenfrequencies [198].
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(a) XOR full FE model - 50 paired modes. (b) XOR reduced FE model - 50 paired modes.

(c) XOR reduced FE model - 19 paired modes
(d) 3D MAC reduced vs. full model - 50 paired
modes

Fig. 6.6 XOR and MAC of the full and reduced models (MATLAB-SDTools).
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(a) (b)

Fig. 6.7 Comparison of MAC vs experimental measurements: a) SDTools Full model b) Reduced
model.

After performing the XOR and MAC analysis of the reduced versus the full FE models, a

MAC correlation can be performed between the experimental measurements and the reduced

model for the same frequency ranges up to 400 Hz based on the curve-fitting model generated

[106] [152]. Most of the paired modes show a good correlation between the reduced and full

models (MAC over 80%) with the exception of pairs 5th, 10th and 11th versus the experimental

measurements. The nearly double correlations identified in the full FE model versus the

experimental results suggesting the presence of the veering phenomenon (bending and torsional

mode at the same frequency), identified in Fig. 6.7a. Moreover, it is also identified the veering

phenomenon using the reduced FE model versus the experimental measurements, (see Fig.

6.7b). Table 6.2 shows the numerical MAC values versus the experimental measurements. It

can be noticed that the MAC of the reduced model using the CBMOR method is slightly worse

than the full model versus the experimental measurements in consistency with the literature.

6.2.1 Modal Assurance Criterion per pair-sensor (MACco) applied to a

CFRP component using CMS

After performing the MAC with the updated material properties, the application of the MAC per

paired-sensor (MACco) criterion can be also applied to the reduced FE model to comply with

the sequential order of sensors that contribute most to the poor correlation [106] for comparative

purposes.
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Table 6.2 MAC Table reduced FE model vs. experimental measurements.

ID Test ID CBMOR FEM DF/FA MAC
(Hz) (Hz) %

1 49.243 7 57.218 16.2 100
2 92.265 8 106.21 15.1 97
3 93.756 8 106.21 13.3 90
4 145.29 10 168.29 15.8 84
5 160.05 10 168.29 5.1 71
6 164.18 9 167.79 2.2 92
7 226.36 12 236.93 4.7 85
8 243.4 11 235.12 -3.4 97
9 307.33 14 326.82 5.9 80
10 314.18 14 326.82 4.0 65
11 324.83 13 315.33 -2.9 74
12 329.67 13 315.33 -4.3 89

Table 6.3 Comparative MACco Table reduce and full FE models vs. experimental measurements

Pair number 7 8 9 10 11 12 13 14 15 16 17 18
EXPERIMENTAL 1 2 3 4 5 6 7 8 9 10 11 12
SDTools reduced FE model 7 8 8 10 10 9 12 11 14 14 13 13
Y-Sensors Mean MAC

All 85 100 97 90 84 71 92 85 97 80 65 74 89
16y 86 100 97 91 85 71 92 86 97 81 67 76 89
95y 86 100 97 91 85 71 92 87 97 82 68 77 89
96y 87 100 97 91 85 71 92 88 97 83 69 77 89

131y 87 100 97 92 86 72 92 89 98 83 70 77 89
129y 87 100 97 92 86 71 92 88 98 84 71 79 90
23y 87 100 97 93 86 72 91 88 97 84 73 78 90
17y 88 100 97 93 85 73 91 88 97 84 74 79 91

128y 88 100 97 93 84 72 92 89 97 85 76 80 91
21y 88 100 97 94 84 73 91 89 97 85 77 80 91
97y 88 100 97 94 84 73 91 90 97 85 78 80 92

EXPERIMENTAL 1 2 3 4 5 6 7 8 9 10 11 12
SDTools full FE model (updated) 7 8 8 10 10 9 12 11 14 14 13 13
Y-Sensors Mean MAC

All 87 100 97 90 83 86 98 86 96 81 66 74 90
16y 88 100 97 91 83 86 98 86 96 82 67 76 90
96y 88 99 97 91 82 87 98 87 97 83 69 77 90
95y 88 100 97 91 82 87 98 88 97 84 70 78 90
23y 89 99 97 92 84 87 97 88 96 84 73 77 90

131y 89 100 97 93 85 88 97 89 96 85 73 77 90
17y 89 100 97 93 84 89 97 89 97 85 74 78 91
21y 90 100 97 94 85 89 97 89 97 85 76 78 91

129y 90 100 97 94 85 89 97 89 97 86 77 79 92
128y 90 100 97 94 84 89 97 89 97 86 79 80 92
97y 91 100 97 94 84 89 97 90 97 87 79 81 92
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This criterion is implemented by computing the MAC while ordering one sensor at a time

introduced in subsection 2.1.1. Applying the sensor order used with the full FE model, the

results will point to the best mean MAC using the CBMOR method versus the experimental

results. The MACco results of the reduced FE model versus the full FE model (paired modes per

sensor) present a slightly worst correlation values, illustrated in Table 6.3. It can be appreciated

that the worst MACco results per paired-sensor in the reduced FE model are identified in the

same sensors in respect to the full FE model, but in different order, (see Table 6.3 and Fig.

6.8 respectively). The worst paired modes obtained in the reduced FE model are observed in

the pair number 11th, 16th and 17th in respect to the full FE model. It can be observed also

that the pair number 11th shows a deterioration in the correlation in respect to the same pair

number of the full FE model. The MACco of the reduced model in general showed a slightly

worse results illustrated in Fig. E.3b. The values observed using the reduced FE model shows a

slight decrease in consistency with the literature (the ROM model presents slightly worse values

compared to the full FE model).

6.2.2 Coordinate Modal Assurance Criterion (COMAC)

The calculation of the COMAC values (in blue) at each sensor/coordinate over all the correlated

paired modes was given in Eq.(2.2). It is important to note that the modes are also normalized,

which gives equal weighting to all modes. The COMAC of the reduced FE model is also

calculated over a set of the same mode pairs computed using the CBMOR method (19 mode

pairs per superlement). The implementation of the COMAC technique with the reduced models

requires also two stages of calculation, as was done with the full FE model3. The COMAC

values of the reduced model shown similar values versus the full FE model displayed in the

Fig. 6.9. The best COMAC value in the reduced model is found at sensor 84y=0.052. The

worst value in the reduced model is also displayed at sensor 201y=0.423 as was identified in

the full FE model (equal to 0.397). The COMAC’s values obtained using the CBMOR method

showed a slightly difference versus the full FE models COMAC’s suggesting a good correlation,

illustrated in Fig. 6.9.

3In the first stage, the modes from the two sets were matched using the MAC. After constructing the set of
NM mode pairs, the second stage is the COMAC calculation of correlation values at each coordinate, over all the
correlated mode pairs.
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(a) COMAC’s SDTools versus number of sensors

(b) COMAC’s CBMOR versus number of sensors

Fig. 6.9 Comparison of COMAC’s results.

6.2.3 Scale Coordinate Modal Assurance Criterion (COMAC-S)

The COMAC-S results show a similar patterns between the full and the reduced FE models. The

COMAC-S is displayed in green in respect to the COMAC (in blue) and eCOMAC (in brown).

Fig. 6.9 presents the worst COMAC-S value is found at sensor 201y=0.388 compared to the

COMAC-S of the full FE model at the same sensor with a value of 0.366. The best COMAC-S

is found at sensor 114y=0.026. The similar COMAC and COMAC-S values obtained with the

CBMOR method show a good agreement per DOF according to each formulation.

6.2.4 Enhanced Coordinate Modal Assurance Criterion (eCOMAC)

The eCOMAC values of the reduced model are also identified in the CFRP component. The

eCOMAC values range from zero to one (in brown), where the value closer to zero per DOF
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will have the higher agreement. As was introduced, the formulation for an enhanced COMAC

will overcome some of the limitations of the standard COMAC.

(a) eCOMAC’s SDTools full FE model.

(b) eCOMAC’s Reduced FE model.

(c) eCOMAC’s ABAQUS full FE model.

Fig. 6.10 Comparison of eCOMAC’s vs. number of sensors

Lower eCOMAC values are obtained in most of the sensors of the reduced model re-

spect to the other two coordinate modal assurance criteria with the exception of the sensors
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17y,19y,23y,24y,100y, (see Fig. 6.10). The worst eCOMAC values of the reduced FE model is

found at sensor 24y=0.15 versus the eCOMAC values of the full FE model at sensor 24=0.176.

The better eCOMAC value of the reduced FE model is identified at sensor 83y=0.006 versus

the full FE models. However, the ABAQUS model displays similar eCOMAC values obtained

in the reduced model, (see Fig. 6.10). The lower eCOMAC results suggest an improvement

obtained per DOF in the composite component assembly with the updated stiffness parameters.

The eCOMAC values of the reduced model obtained are the best versus the eCOMAC results

obtained with the SDTools full FE model, (see Fig. 6.10).

6.3 Conclusions

These results lead to the following conclusions:

• The CBMOR method based on Rayleigh-Ritz vectors basis is performed as an accurate

and efficient description of the dynamic behaviour of the CFRP assembled system.

• The free-interface method shows results with good correlation in low-frequency ranges.

• The use of the CBMOR method, the AMLS, the SVD, the error estimations and residual

iterations of substructure modes leads to an improvement of the accuracy-time ratio to

find the ideal and accurate DOF interface reduction basis.

• The repeatability of the curve-veering phenomena using superelements is observed

applying the CBMOR method in the CFRP component.

• High accuracy of the results are obtained in the full and reduced models applying the

MAC, XOR, MACco, and COMACs criteria.

6.4 Application of mode shape expansion techniques to CFRP

6.4.1 MAC and verification of composite component assembly using mode

shape expansion methods

The mode shapes and eigenfrequencies of the different MSE methods are compared to a full

reference solution. The evaluation of the CFRP using MSE techniques can be performed com-

bining the experimental measurements, the curve-fitting and the updated stiffness parameters



148 Application of the CBMOR method using Rayleigh-Ritz vector basis to a CFRP

of the MATLAB-SDTools full FE model using the MAC performed in Chapters 4 and 5. The

different MSE are calculated (MODAL/SEREP, STATIC, DYNAMIC, MDRE, MDRE-WE)

using f e_exp command, (see Appendix A, from step 24 to 33).

The influence of the expansion methods in the correlation is observed calculating the K-

MAC and M-MAC based on the stiffness and mass matrices updated in the full FE model

respectively, (see Appendix A, step 29). The same number of paired modes are calculated (12

pairs) for all the MSE methods. An error of 0.1 is used in the interpolation of the MDRE-WE,

(see Appendix A, step 28). The K-MAC and M-MAC results can be compared using the

different MSE techniques, (see Tables 6.4 and 6.5 respectively). The best K-MAC results are

obtained applying the MODAL and MDRE-WE MSE methods displayed in Table 6.4. The

worst paired modes of the MODAL and MDRE-WE MSE methods are displayed at paired mode

10th (K-MAC of 79) and at paired mode 11th (K-MAC of 33), respectively. The other MSE

methods display a decrease of the K-MAC results in respect to the MODAL/SEREP and MDRE-

WE results. Moreover, in the column (DF/FA MSE %) of Tables 6.4 and 6.5 can be observed

that the differences of the eigenfrequencies between the experimental measurements and MSE

results are zero. The reason to have a null difference in the frequencies applying different MSE

is because it is used in the same pole identification obtained with the curve-fitting for all the

MSE methods defined in [106]. The M-MAC of all the MSE methods can be observed in Table

6.5. An improvement of the M-MAC results is observed in the MODAL/SEREP, DYNAMIC,

MDRE and MDRE-WE in respect to the K-MAC results at paired modes 6th −10th, 12th and

M-MAC at paired modes 2th − 6th, 8th − 10th, 12th respectively. This improvement in the

K-MAC and M-MAC can be implicated as the influence of the defined MOR methods applying

MSE in respect to the curve-fitting of the experimental measurements and the updated stiffness

parameters. With the exception of the STATIC MSE method where the inertial forces are not

included, a strong influence of the M-MAC results is observed in allmost of the subspace-basis

expansion methods. The STATIC MSE method presents the worst M-MAC results in agreement

with the literature, where the inertial terms contributing to the dynamic behaviour are ignored

or not considered applying STATIC condensation.

Furthermore, MAC, XOR and MACco criteria are performed between the MSE results

and the curve-fitting of the experimental measurements in order to check orthogonality, cross

paired results and sensor correlation respectively, (see Figs. 6.11, 6.12 and 6.13). Figs. 6.11

and 6.12 displayed the first 12th MAC paired between the curve-fitting and each MSE results

obtained. The XOR analysis displayed values close to one for all MSE results. Performing
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Table 6.4 K-MAC mode shape expansion methods.

# : Test FE DF/FA MAC # DF/FA
K-MAC
for MOD

K-MAC
for STA

K-MAC
for DYN

K-MAC
MDRE

K-MAC
MDRE-WE

(Hz) (Hz) % MSE %
1 : 49.24 57.22 16.2 100 1 0.0 98 31 31 31 100
2 : 92.27 106.02 14.9 97 2 0.0 96 74 74 58 95
3 : 93.76 106.02 13.1 90 3 0.0 92 51 51 38 78
4 : 145.29 168.2 15.8 83 4 0.0 88 81 81 45 89
5 : 160.05 168.2 5.1 86 5 0.0 87 84 84 49 87
6 : 164.18 167.5 2.0 98 6 0.0 94 89 89 56 99
7 : 226.36 236.83 4.6 86 7 0.0 88 79 79 49 89
8 : 243.4 234.99 -3.5 96 8 0.0 96 89 90 65 97
9 : 307.33 323.93 5.4 81 9 0.0 88 81 81 60 87
10 : 314.18 323.93 3.1 66 10 0.0 79 65 66 45 76
11 : 324.83 315.26 -2.9 74 11 0.0 87 70 71 16 33
12 : 329.67 315.26 -4.4 90 12 0.0 93 87 88 39 89

Table 6.5 M-MAC mode shape expansion methods.

# : Test FE DF/FA MAC # DF/FA
M-MAC
for MOD

M-MAC
for STA

M-MAC
for DYN

M-MAC
MDRE

M-MAC
MDRE-WE

(Hz) (Hz) % MSE %
1 : 49.24 57.22 16.2 100 1 0.0 100 3 100 100 100
2 : 92.27 106.02 14.9 97 2 0.0 99 4 98 98 99
3 : 93.76 106.02 13.1 90 3 0.0 93 2 92 92 93
4 : 145.29 168.2 15.8 83 4 0.0 83 8 82 82 86
5 : 160.05 168.2 5.1 86 5 0.0 86 5 86 86 88
6 : 164.18 167.5 2.0 98 6 0.0 98 11 98 97 99
7 : 226.36 236.83 4.6 86 7 0.0 83 2 82 81 86
8 : 243.4 234.99 -3.5 96 8 0.0 96 86 96 96 98
9 : 307.33 323.93 5.4 81 9 0.0 82 5 80 78 83
10 : 314.18 323.93 3.1 66 10 0.0 69 2 65 64 70
11 : 324.83 315.26 -2.9 74 11 0.0 80 49 73 6 71
12 : 329.67 315.26 -4.4 90 12 0.0 90 2 89 83 91
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the XOR one can realised that some of the off-diagonal terms in all the MSE results do not

fulfill the criteria of ≤ than ten. The missing of this criteria ≤ than ten might be due to the

missing of the experimental measurements of the second component. Furthermore, some of

the double pairs obtained in the experimental measurements (curve-veering phenomenon) are

not displayed using the XOR of the different MOR subspace-basis calculated, (see Figs. 6.11f,

6.12a and 6.12d). The main differences applying the MSE techniques and the CBMOR method

are observed comparing the sequential order in the MAC paired modes, the MAC diagonal

terms equal to one and off-diagonal terms obtained versus the experimental measurements.

Furthermore, comparing the off-diagonal terms of the XOR using MSE versus the XOR obtained

with the CBMOR model is shown that some of the off-diagonal terms are not zero. The XOR

of the reduced FE model using CBMOR method presents better off-diagonal results.

Fig. 6.13 displays the MACco results between the curve-fitting of the experimental mesure-

ments and the MSE results obtained. Comparing these results with the CBMOR model one can

notice an improvement in the number of mode pairs (up 0.94 for the MODAL/SEREP and up to

0.999 for the MDRE-WE) respectively, (see Figs. 6.13a and 6.13e). Due to assumption in the

boundary conditions established in the SDTools4, the MACco results per paired-sensor display

values close to one in the STATIC, DYNAMIC and MDRE MSE methods, (see Figs. 6.13b,

6.13c and 6.13d respectively).

Comparing the eigenfrequencies and modeshapes obtained with the MSE techniques versus

the curve-fitting of the experimental measurements can be made a number of conclusions:

• The computation of the modes with non-contact sensors (SLDV) gives a good indication

of the type of motion in the frequency range 30 Hz to 400 Hz.

• The use of more than one expansion method leads to various estimates where good

predictions were obtained.

• The use of observation matrices with accurate stiffness parameters obtained with MNET

gives a fairly good theoretical basis to extend expansion methods to composite component

test configuration.

• Almost all MSE methods implemented in SDTools showed excellent results versus the

curve-fitting of the experimental measurements. Using the MAC criterion, most of the

4The assumption that dynamic loads used for the expansion are only applied at sensor locations is not

particularly realistic [122].
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(a) (b)

(c) (d)

(e) (f)

Fig. 6.11 Comparison of MAC and XOR: a) MSE MODAL/SEREP vs. exp., b) XOR
MODAL/SEREP, c) MSE STATIC vs. exp., d) XOR MSE, e) MSE DYNAMIC vs. exp.,
f) XOR MSE.
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(a) (b)

(c) (d)

Fig. 6.12 Comparison of MAC and XOR: a) MSE MDRE vs. exp., b) XOR MDRE, c) MSE
MDRE-WE vs. exp. d) XOR MDRE-WE.
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(a) MODAL/SEREP

(b) STATIC

(c) DYNAMIC

(d) MDRE

(e) MDRE-WE

Fig. 6.13 Comparison of MACco using mode shape expansion techniques versus exp.
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MSE techniques presented a good M-MAC results. Low M-MAC results obtained with

the STATIC MSE method might be due to the assumption of exclusion of the inertial

terms.

• These mode shape expansion methods proved to be useful in obtaining valid predictions

in a composite component.

• MODAL/SEREP, DYNAMIC, MDRE and MDRE-WE MSE methods tend to be sensible

using K-MAC and M-MAC in terms of the updated stiffness parameters.

• MODAL/SEREP, and MDRE-WE methods showed the best K-MAC results.

• MODAL/SEREP, DYNAMIC and MDRE-WE methods showed the best M-MAC results.

• The SLVD measurements performed, the curve-fitting and the type of element formulation

used in the FE full models as part of the MNET seem to show an important influence in

the MSE as well as CBMOR results.

• The results obtained in Table 6.5 suggest a good correlation combining local FE model,

classical theory of structural modification by coupling it with MSE technique and CMS

with interface model reduction method (subspace selection) implemented in SDTools

[106].

The results obtained suggest if the stiffness parameters used in the full FE model approach

are really close to the physical model, the MSE results will display an improvement in the

approximation. It is suggested, for further work to obtain the experimental measurements of

the second component to perfom a comparison the off-diagonal terms obtained in this work

applying MSE techniques implemented in [106].
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Conclusions and Recomendations





Chapter 7

Conclusions and Recommendations

7.1 Conclusion using the MNET and CBMOR with basis on

Rayleigh-Ritz vectors in a composite component assem-

bly

A new MNET methodology was established in order to apply a CBMOR with Rayleigh-Ritz

and AMLS methods in a composite component assembly introduced from Chapter 1 to 3. The

objective of this work was fulfilled establishing two parts: The accurate identification of the

stiffness parameters of a CFRP assembly and the feasibility to use the Craig-Bampton reduction

technique (CBMOR) and AMLS allowing the generation of compact reduced model applied to

a CFRP.

The experimental results performed in Chapter 4 with a SLDV and the curve-fitting per-

formed using the IDRM and IDRC algorithms showed high correlation quality results of the

measured FRFs. According to the curve-fitting, both algorithms are suitable to identify and

parametrize the modal parameters in the CFRP and played and essential role to perform to

obtain the modal parameters. The updating of the elastic material properties in the full FE

model was performed using a DOE as part of the MNET. The updated mass and stiffness

matrices in the full FE model have played an important role in this optimization procedure. The

low Poisson ratio value ν12, the moduli of elasticity E1, E2 and the shear modulus G12 are the

stiffness parameters with more influence using the DMKT elements according the uncoded

coefficients obtained with the ANOVA. These coefficients were used to generate the transfer
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function. The main and interaction effects and the contour and surface plots obtained with

the DOE are useful to visualize easily the impact and influence of the factors and interactions

involved in the study, (see Figs. 4.21 and 4.22, respectively).

In Chapter 5 the MAC and MACco results have shown a good correlation agreement on the

dynamic behaviour of the composite structure using orthotropic elements with PCOMP and

MAT8 cards and different solvers (MATLAB-SDTools, MSC/NASTRAN and ABAQUS). It is

well known that using thin elements may lead to the so-called phenomenon of shear lock-ing

and that the transverse shear strains become small or even negligible studied by Reddy [77],

[83]. The consequence of the shear lock-ing problem is that the stiffness matrix becomes

stiff, which yields to erroneous results. The shear lock-ing is avoided in this work using the

DMKT element with transverse shear effects included known as discrete shear triangular (DST)

[76], [84], [99]. One of the characteristics of the DST element formulation is that if the shear

effects are not significant, the DST element degenerate naturally to the DKT [84]. Another

characteristic of the DST element is remark by Lardeur et al. [84] and Pagano et al. [85] that

the transverse shear effects decrease with the increase of layers. The MAC and MACco values

obtained with the MNET methodology have shown an improvement per paired mode and per

paired-sensor respectively using the CTRIA3 and pshell elements based on the DMKT elements.

It can be observed satisfactory results using the MAC and MACco criteria considering the plane

and transverse shear effects according the number of layers defined using the finite elements

selected. More research needs to be perform with another CFRP or sandwich components using

the finite elements evaluated in this work to compare the performance and correlation with

experimental measurements.

The different COMAC values of the full FE models obtained have also shown a good

agreement on the phase correlation in respect to the experimental results. The material properties

updated using the MAC and MACco and verified with the COMAC’s values displayed high

sensitive results.

Furthermore, the reduced model obtained in Chapter 6 based on the Craig-Bampton MOR

and AMLS methods (the reduced model couples 2 substructures through 123 nodes and 579

DOF) has demonstrated a good agreement with the experimental results. The MAC values

obtained with the FE models as well with the experimental results suggest a presence of mode

veering phenomenon (bending and torsional mode at the same frequency in the considered

composite structure). The MAC results in the reduced FE model obtained display a slightly

improvement in some pair modes applying the CBMOR and AMLS methods. The different
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COMAC values of the reduced FE model obtained have also shown a good agreement on the

phase correlation in respect to the experimental results. The eCOMAC results in the reduced FE

model display the best COMAC’s results. The eCOMAC results with the ABAQUS FE model

display similar values versus the reduced FE model.

The MODAL/SEREP and MDRE-WE showed the best results compared with the other

MSE techniques based on the M-MAC obtained, (see Table 6.5).

In review, the correlation between the full FE model and ROM applying the CBMOR method

in respect to the experimental results is validated through the use of different MACs, COMACs,

MSE techniques, curve-fitting algorithms based on the updating of stiffness parameters applying

the new MNET methodology.

It can, therefore, be concluded that this study successfully developed and implemented a

MNET methodology to obtain the stiffness parameters that have enough accuracy to correlate

experimental results and the application of CBMOR method to a CFRP assembly.

The achievements using the MNET and MOR method in a composite component can be

summarized as follows:

• The proposed MNET using a DOE based on MAC and different COMACs, mode shape

expansion methods, SLDV and curve-fitting algorithms have confirmed the influence of

the stiffness parameters applying the CBMOR method to composite components.

• The application of the CBMOR with Rayleigh-Ritz basis, error estimations and residual

iterations of substructures modes, the SVD and AMLS methods can be used to describe

with enough accuracy the dynamic behaviour in a CFRP assembly.

• The experimental measurements results presented a good quality in low-frequency range

(30-400 Hz).

• The IDRM and IDRC algorithms based on the pole/residues parametrization are suitable

to validate and identify the modal parameters in a CFRP assembly.

• The use of CTRIA3 with PCOMP and MAT8 cards in MSC/NASTRAN and pshell in

MATLAB-SDTools for a dynamic analysis can be used to describe with enough precision

the stiffness parameters of a CFRP component in the frequency interval of interest (30-400

Hz) evaluating low Poisson’s ratio values.
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• The CTRIA3 element in MSC/NASTRAN and pshell in MATLAB-SDTools showed

good predictive capabilities versus the experimental measurements as well as high com-

putational efficiency using low Poisson’s ratio values. The S3 element in ABAQUS with

similar characteristics respect to the CTRIA3 element does not show the same results.

• The MNET established in this work is an efficient and robust tool that in combination

with the experimental measurements and the finite element method is possible to obtain

the stiffness parameters of a CFRP compared with the MNET established by Rikards et

al. in [32], [33] and [39] that selected just some experimental measurements.

• The sensitivity of the stiffness parameters was observed using the MAC from a pool of

candidates with respect to the available structural responses to identify the main, second

and third interaction effects of the stiffness parameters and the error in a transfer function

based on the ANOVA analysis.

• The analysis of variance (ANOVA) is a practical technique to determine the significance

of the design parameters of CFRP that influence the MAC.

• It is important to highlight the number of interactions needed in order to reduce the error

in the transfer function. This is not reported in the literature applying MNETs neither

MOR methods.

• The selected parameters represented in the different element formulations affect the

modal response significantly.

• The Young’s modulus, shear modulus and low Poisson’s ratio stiffness parameters eval-

uated were sufficient to have an accurate description of the dynamic behaviour of the

assembled composite component using the full FE models.

• The updated laminate elastic constants using the DOE show a similar values obtained in

the literature for high modulus carbon/epoxy.

• The results of the full and reduced FE models using the different MAC and COMACs

show an accurate description of the dynamic behaviour of the CFRP assembled.

• It is observed how the accuracy of stiffness parameters obtained with the MNET influ-

enced the different condensation algorithms implemented in the mode shape expansion

techniques (MODAL, SEREP, STATIC, MDRE, MDRE-WE).
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7.2 Suggestions for futher work using MNET and CBMOR

with composite component assemblies

Considering the promising results applying CBMOR and AMLS methods to a composite

component assembly working on a MNET methodology would lead to continue developing

new projects as follows:

• Perform a central composite design (CCD) using the DOE perfomed in this work for

building a second order (quadratic) model for the response variable (MAC) without

needing to use a complete three-level factorial experiment.

• Analyze the stiffness parameters based on the variables of the manufacuring process and

the selection of the carbon fiber material to monitor in real time the cure state of polymer

gels applying: light scattering (photon correlation) spectroscopy, ultrasonic dynamic

mechanical analysis (UDMA) dynamic mechanical thermal analysis (DMTA), Fourier

transform (FT-IR) spectroscopy, near infrared spectroscopy (NIR), RAMAN spectroscopy

and resonant utrasound spectroscopy (RUS).

• Evaluate other ESL and LWM using the new MNET methodology to apply the CBMOR

and AMLS methods.

• Compare results obtained using the CTRIA3 or pshell with other elements (for example

CQUAD4 or see Katili, 1993, A new discrete Kirchhoff-Mindlin element based on

Mindlin-Reissner plate theory and assumed shear strain fields: Part 1: An extended DKT

element for thick-plate bending analysis, International Journal for numerical methods in

engineering, 36, 1859-1883) and then apply the CBMOR method.

• Evaluate the behaviour of the DST element in CFRP using MNET where the level of

anisotropy is higher for comparative purposes.

• Extend the research of the veering phenomena identified with the DLR composite compo-

nent assembly.

• Evaluate correlation of stress/displacement, damping, delamination, fracture (Puck crite-

rion) and fatigue of composite materials using the DST element and MNET.
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• Evaluate the temperature dependence of the Poisson ratio on composite materials using

MNET.

• Perform and include the experimental measurements of the second component used in

this work to analyze the higher frequencies.

• Use other experimental identification algorithms including residual modes to compare

the MAC results.

• Perform a study using six-sigma in order to identify the critical steps in the manufacturing

process of composite components that influence the quality of the stiffness parameters to

control them.

• Compare results obtained with the CBMOR and AMLS methods of the CFRP in this

work versus the enhanced AMLS method developed by Jin-Gyun [209].
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Appendix A

Application of the Craig-Bampton MOR

method to CFRP

Commands

1. Open and xterm and run matlab

./matlab

2. load the SDTools environment and set the path for the work directory

cd ../toolbox/sdt

sdtcheck(’path’);

cd DLR

3. Read the UFF58 data and plot the model

UFS=ufread(’Scan_low.uff’);

modelexp=UFS(1);

cf=feplot(modelexp);

cf.def=UFS(2);

4. Plot the UFF58 data and load the curve-fitting file ’05082012low400_t93.mat’

idcom(UFS(2))

ci=iicom(’curveload’,’05082012low400_t93.mat’);
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5. On the "idcom properties" window select "Ident" and double click over the frequency in

order to visualize the results

6. Save the results in a set

defexp28=cf.def;

7. Create the TEST set of the sensors

TEST.Node = modelexp.Node;

TEST.Elt = modelexp.Elt;

TEST.tdof = defexp28.DOF(:,1);

8. Open the FEM model File->Open with the material properties updated using the DOE

model_trix6beste_last_01_24.mat

9. Plot the FEM model

cf=feplot(modelabaq);

10. Solve the FEM model (19 modes)

defabaq=fe_eig(modelabaq,[5 19 1e3 11]);

11. Plot the results

feplot(modelabaq,defabaq)

12. Define sensors - - -

cf=feplot(modelabaq);

cf.mdl=fe_case(cf.mdl,’sensdof’,’test’,TEST);

fecom(’curtab Cases’,’Test’);fecom(’ProViewOn’) %

% fe_sens(’basis estimate’,cf,’test’); % not needed for coincident mesh

fe_case(cf.mdl,’SensMatch’,’test’)

sens=fe_case(cf.mdl,’sens’);

13. Define MAC and MAC error of the TEST and full FEM model- - -

figure(1);clf;

subplot(211); %comment this line if you dont want subplots

ii_mac(defexp28,defabaq, ... % define data
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’sens’,sens, ... % define sensors

’labela’,’Test’,’labelb’,’FEM’, ...% set labels

’mac pair plot’); % desired plot for current axes

subplot(212);ii_mac(1,’mac error’);

14. Plot COMAC,ECOMAC and S-COMAC of the TEST and full FEM model- - -

ii_mac(1,’comac ’); %plots all comac’s in one graph

ii_mac(1,’comac n’); %plots only COMAC

ii_mac(1,’comac e’); %plots only ECOMAC

ii_mac(1,’comac s’); %plots only SCOMAC

15. Plot MACco of the TEST and full FEM model- - - and obtain the table with the data

ii_mac(1,’macco 153 plot’);

ii_mac(1,’macco 153 table’);

16. Builds CMS shapes with unit sensor response based on element groups defined in "mode-

labaq"

cf=feplot(modelabaq);

Sel={’Group 3:5’;

’Group 1:2’};

mSE=fesuper(’SESelAsSE-dispatch’,modelabaq,Sel);

feplot(mSE)

feutil(’infoelt’,mSE)

cf=feplot(mSE);mSE=cf.mdl;

fecom(cf,’curtabModel’)

17. Define the two superelements, the number of model to solve per superlement and assembly

them

SE1=stack_get(mSE,’SE’,’se1’,’getdata’);

SE1=stack_set(SE1,’info’,’EigOpt’,[5 19 1e3 11]);

SE1=fe_reduc(’CraigBampton -SE -UseDof’,SE1);

cf.Stack{’se1’}=SE1;

SE2=stack_get(mSE,’SE’,’se2’,’getdata’);

SE2=stack_set(SE2,’info’,’EigOpt’,[5 19 1e3 11]);
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SE2=fe_reduc(’CraigBampton -SE -UseDof’,SE2);

cf.Stack{’se2’}=SE2;

[m,k,mdof]=fe_mknl(cf.mdl);def=fe_eig({m,k,mdof},[5 19 1e3]);%

18. Solve the assembly reduced FEM model

defCB=fe_eig(cf.mdl,[5 19 1e3 11]); % reduced model

19. Defined the results of the full FEM model solved below to compare the results of the

reduced model

dfull=defabaq;

dfull.label=’Full’; def.label=’Reduced’;

cf.def(1)=dfull;

fesuper(’sedefinit’,cf.mdl); % reinit restitution info

cf.def(2)=fesuper(’sedef’,cf,def);

fecom(’;show2def;ch 7’);

20. Plot the MAC results of the full and reduced model

figure(3);

ii_mac(dfull,cf.def(2),’inda’,7:19,’macerrorplot’);

21. Plot the MAC results of the TEST and reduced model

figure(4);

ii_mac(defexp28,cf.def(2), ...

’sens’,sens, ... % define sensors

’labela’,’Test’,’labelb’,’FEM CB reduce’, ...% set labels

’mac pair plot’);

22. Plot COMAC,ECOMAC and S-COMAC of the TEST and reduced FEM model- - -

ii_mac(4,’comac’); %plots all

ii_mac(4,’comac n’); %plots only COMAC

ii_mac(4,’comac e’); %plots only ECOMAC

ii_mac(4,’comac s’); %plots only SCOMAC

23. Plot MACco of the TEST and reduced FEM model- - -

ii_mac(4,’macco 153 plot’);
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24. For a modal expansion on the basis of the full model, first 12 modes

cf=feplot(modelabaq);

cf.mdl=fe_case(cf.mdl,’sensdof’,’test’,TEST);

fecom(’curtab Cases’,’Test’);fecom(’ProViewOn’) %

% fe_sens(’basis estimate’,cf,’test’); % not needed for coincident mesh

fe_case(cf.mdl,’SensMatch’,’test’)

sens=fe_case(cf.mdl,’sens’);

figure(1);clf;

subplot(211); %comment this line if you dont want subplots

ii_mac(defexp28,defabaq, ... % define data

’sens’,sens, ... % define sensors

’labela’,’Test’,’labelb’,’FEM’, ...% set labels

’mac pair plot’); % desired plot for current axes

subplot(212);ii_mac(1,’mac error’);

dex1 = fe_exp(defexp28,sens,fe_def(’subdef’,defabaq,7:19));

MACPAIR=ii_mac(1,’macpair’); % get the MACPAIR data to allow sorting

cf.def(1)=dex1;

cf.def(2)=fe_def(’subdef’,defabaq,MACPAIR.indb);

fecom(’;sub1 1;sel1egid>0;show2def;ScaleMatch;ch1’);

25. For more robustness you will prefer a static expansion builds subspace of static shapes

with unit sensor response

TR=fe_exp(’static’,modelabaq,sens);

dex2=fe_exp(defexp28,sens,TR);

cf.def(1)=dex2;

26. Using a Reduced Basis Dynamic Expansion (RBDE) combining static and modal expan-

sion the results show an improvement.

modelabaq=stack_set(modelabaq,’info’,’EigOpt’,[5 19 1e2]);

modelabaq=fe_mknl(modelabaq);

TR=fe_exp(’mode+sens’,modelabaq,sens); % basis with modes & static

dex3 = fe_exp(’dynamic’,defexp28,sens,modelabaq,TR);

cf.def(1)=dex3; fecom(’;sel1egid>0;show2def;ch11’);
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27. You could also compute Minimum Dynamic Residual Expansion (MDRE) with

dex4 = fe_exp(’mdre’,defexp28,sens,modelabaq,TR);

28. And MDRE with measurement error (MDRE-WE) using

opt=struct(’type’,’mdrewe’,’gamma’,1,’MeasErr’,.1);

dex5 = fe_exp(’mdre’,defexp28,sens,modelabaq,TR,opt);

29. To visualize the influence of the expansion method on the quality of the correlation you

can take a look at the mass wheighted MAC

aa = ii_mac(1,’mac pair’);

dref = fe_def(’subdef’,defabaq,aa.indb);

a1=ii_mac(dref,dex1,modelabaq.K{strcmp(modelabaq.Klab,’m’)});

a2=ii_mac(dref,dex2,modelabaq.K{strcmp(modelabaq.Klab,’m’)});

a3=ii_mac(dref,dex3,modelabaq.K{strcmp(modelabaq.Klab,’m’)});

a4=ii_mac(dref,dex4,modelabaq.K{strcmp(modelabaq.Klab,’m’)});

a5=ii_mac(dref,dex5,modelabaq.K{strcmp(modelabaq.Klab,’m’)});

aa = [(1:size(defexp28.po,1))’ defexp28.po(:,1) dref.data(:,1) ...

(defexp28.po(:,1)./dref.data(:,1)-1)*100 ...

diag(aa.data(aa.inda,aa.indb)) ...

diag(a1.data) diag(a2.data) diag(a3.data) ...

diag(a4.data) diag(a5.data)];

fprintf(1,’ # : Test FE (Delta F , MAC, M-MAC for MOD, ...

STA, DYN, MDRE, MDRE-WE)\n’);

fprintf(1,’%2i : %6.2f %6.2f (%6.1f %%, %4.2f, %11.2f, %4.2f, ...

%4.2f , %4.2f, %4.2f)\n’,aa’)

30. To illustrate the MAC of the modal mode shape expansion method

figure(6);

ii_mac(defexp28,dex1, ...

’sens’,sens, ... % define sensors

’labela’,’Test’,’labelb’,’dex1’, ...% set labels

’mac pair plot’)

31. Plot MACco of the TEST and mode shape results based on the modal expansion - - -
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ii_mac(6,’macco 153 plot’);

32. To visualize the results of the MDRE W/E mode shape expansion method using the MAC

figure(7);

ii_mac(defexp28,dex5, ...

’sens’,sens, ... % define sensors

’labela’,’Test’,’labelb’,’dex5’, ...% set labels

’mac pair plot’)

33. Plot MACco of the TEST and mode shape results based on the MDRE W/E - - -

ii_mac(7,’macco 153 plot’);

34. To import the results from ABAQUS - - -

modelaS4=abaqus(’read’,fullfile(’DLR_last_50_S4.inp’)); % For reading

%the models elaborated with S4 elements of ABAQUS

resabaqusS4=abaqus(’read DLR_last_50_S4.fil’) % For reading results

cf=feplot(modelaS4);

cf.mdl=stack_set(cf.mdl,a.Stack);

cf.def=stack_get(resabaqusS4,’curve’,’Mode’,’get’);

% Displays the results

defnas=cf.def; % save the results in MATLAB to perform the MAC

35. To import the results from MSC/NASTRAN

modelnas=nasread(fullfile(’MODEL000.dat’)); % For reading the models

%elaborated with CTRIA3 elements of MSC/NASTRAN

cf=feplot(modelnas); % For reading results

resnastranCTRIA3=nasread(fullfile(’MODEL000.op2’));

cf.mdl=stack_set(cf.mdl,a.Stack);

cf.def=stack_get(resnastranCTRIA3,’curve’,’OUG(1)’,’get’)

% Displays the results

defnas=cf.def; % save the results in MATLAB to perform the MAC

36. To import the substructures (SE1) and (SE2) results from ABAQUS - - -

modelaS4SE1=abaqus(’read’,fullfile(’DLR_sub1_2.inp’)); % For reading
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% the models elaborated with S4 elements of ABAQUS

resabaqusSE1S4=abaqus(’read DLR_sub1_2.fil’) % For reading results

cf=feplot(modelaS4SE1);

cf.mdl=stack_set(cf.mdl,a.Stack);

cf.def=stack_get( resabaqusSE1S4,’curve’,’Mode’,’get’);

% Displays the results

defabaqusSE1=cf.def; % save the results in MATLAB to perform the MAC

modelaS4SE2=abaqus(’read’,fullfile(’DLR_sub2_2.inp’)); % For reading

% the models elaborated with S4 elements of ABAQUS

resabaqusSE2S4=abaqus(’read DLR_sub2_2.fil’) % For reading results

cf=feplot(modelaS4SE2);

cf.mdl=stack_set(cf.mdl,a.Stack);

cf.def=stack_get( resabaqusSE2S4,’curve’,’Mode’,’get’);

% Displays the results

defabaqusSE2=cf.def; % save the results in MATLAB to perform the MAC

37. To combine the results files (.odb) of SE1 and SE2 - - -

abaqus substructureCombine

baseodb=DLR_sub1_2.odb copyodb=DLR_sub2_2.odb
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Table B.1 Measures of variation

n MAC Mean Deviation Deviation Sample Population Sample Population
Squares Variance Variance Sdt deviation Sdt deviation

(Yi) x̄ = ∑
n
i=1

Yi
n

xi − x̄ (xi − x̄)2
s2 = ∑(xi−x̄)2

n−1 σ2 = ∑(xi−x̄)2

n
s =

√
s2 σ =

√
σ2

1 87 81.015625 -5.984375 35.8127441406 10.3648313492 10.2028808594 3.219445814 3.1941948687
2 83 81.015625 -1.984375 3.9377441406
3 77 81.015625 4.015625 16.1252441406
4 82 81.015625 -0.984375 0.9689941406
5 80 81.015625 1.015625 1.0314941406
6 77 81.015625 4.015625 16.1252441406
7 83 81.015625 -1.984375 3.9377441406
8 80 81.015625 1.015625 1.0314941406
9 83 81.015625 -1.984375 3.9377441406
10 80 81.015625 1.015625 1.0314941406
11 87 81.015625 -5.984375 35.8127441406
12 80 81.015625 1.015625 1.0314941406
13 82 81.015625 -0.984375 0.9689941406
14 83 81.015625 -1.984375 3.9377441406
15 82 81.015625 -0.984375 0.9689941406
16 80 81.015625 1.015625 1.0314941406
17 80 81.015625 1.015625 1.0314941406
18 82 81.015625 -0.984375 0.9689941406
19 76 81.015625 5.015625 25.1564941406
20 77 81.015625 4.015625 16.1252441406
21 83 81.015625 -1.984375 3.9377441406
22 77 81.015625 4.015625 16.1252441406
23 84 81.015625 -2.984375 8.9064941406
24 83 81.015625 -1.984375 3.9377441406
25 83 81.015625 -1.984375 3.9377441406
26 84 81.015625 -2.984375 8.9064941406
27 76 81.015625 5.015625 25.1564941406
28 84 81.015625 -2.984375 8.9064941406
29 77 81.015625 4.015625 16.1252441406
30 83 81.015625 -1.984375 3.9377441406
31 80 81.015625 1.015625 1.0314941406
32 87 81.015625 -5.984375 35.8127441406
33 80 81.015625 1.015625 1.0314941406
34 84 81.015625 -2.984375 8.9064941406
35 82 81.015625 -0.984375 0.9689941406
36 77 81.015625 4.015625 16.1252441406
37 80 81.015625 1.015625 1.0314941406
38 77 81.015625 4.015625 16.1252441406
39 80 81.015625 1.015625 1.0314941406
40 87 81.015625 -5.984375 35.8127441406
41 87 81.015625 -5.984375 35.8127441406
42 77 81.015625 4.015625 16.1252441406
43 82 81.015625 -0.984375 0.9689941406
44 83 81.015625 -1.984375 3.9377441406
45 80 81.015625 1.015625 1.0314941406
46 77 81.015625 4.015625 16.1252441406
47 83 81.015625 -1.984375 3.9377441406
48 80 81.015625 1.015625 1.0314941406
49 82 81.015625 -0.984375 0.9689941406
50 87 81.015625 -5.984375 35.8127441406
51 76 81.015625 5.015625 25.1564941406
52 76 81.015625 5.015625 25.1564941406
53 80 81.015625 1.015625 1.0314941406
54 80 81.015625 1.015625 1.0314941406
55 80 81.015625 1.015625 1.0314941406
56 80 81.015625 1.015625 1.0314941406
57 80 81.015625 1.015625 1.0314941406
58 83 81.015625 -1.984375 3.9377441406
59 87 81.015625 -5.984375 35.8127441406
60 83 81.015625 -1.984375 3.9377441406
61 82 81.015625 -0.984375 0.9689941406
62 77 81.015625 4.015625 16.1252441406
63 77 81.015625 4.015625 16.1252441406
64 77 81.015625 4.015625 16.1252441406

TOTAL Seq-SS= 652.984375
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Table B.2 Convergency study

Number of modes Model 1 Model 2 Model 3 Difference freq. between Model 2 and 3
(Hz) (Hz) (Hz) (Hz)

1 0 0 0 0
2 0 0 0 0
3 0.0012729527 0.0004512738 0.0003519775 -9.929623470819E-005
4 2.5650192583 0.4447173721 0.4447174399 6.78922330021869E-008
5 9.1855606633 1.2193482986 1.2193483154 1.67655800353828E-008
6 16.4788259642 1.9084835158 1.9084835855 6.97161202101171E-008
7 60.4085607205 57.2178522019 57.2181616045 0.0003094026
8 107.7434653919 106.0159913306 106.0184422224 0.0024508918
9 166.7078574294 167.4985180386 167.5218453579 0.0233273194
10 192.6007901701 168.1976908574 168.2031420071 0.0054511497
11 195.452878994 234.9896215835 235.0211598418 0.0315382584
12 207.4931981416 236.8306882202 236.8500881865 0.0193999663
13 229.1223916842 315.2561192208 315.2674816416 0.0113624208
14 243.1205995801 323.9287505984 324.3403208829 0.4115702845
15 300.4433670183 401.7150658411 401.7304660224 0.0154001814
16 345.6052106178 408.3878011355 408.3942114787 0.0064103432
17 384.3258236379 432.8885476722 432.9249702757 0.0364226035
18 397.5621368247 494.9042950249 495.4830440677 0.5787490428
19 414.7216741893 497.0441353055 497.3161125824 0.2719772769
20 426.3092317864 516.1119223113 516.1483706648 0.0364483535
21 484.3597917079 538.8484163481 539.1718926797 0.3234763316
22 497.9132277383 559.4688846108 559.8701067416 0.4012221308
23 502.4682935927 571.8477206668 572.5122739163 0.6645532495
24 550.5428900724 607.0379437768 607.1836493824 0.1457056056
25 587.2431759991 637.2919994683 637.4869340054 0.1949345371
26 599.5882173013 657.0620962248 658.1772876822 1.1151914573
27 612.0467461313 678.44378711 678.6585405308 0.2147534208
28 644.89596893 787.1232434896 789.5251746558 2.4019311662
29 659.4420887743 812.0220887311 813.7280456256 1.7059568945
30 681.2319790825 814.7483875678 855.8979941898 41.1496066219
31 701.4119773232 861.9419311451 867.716208024 5.7742768789
32 736.5842818786 882.3213852278 925.010342533 42.6889573052
33 762.3561437471 921.4069644664 967.7265909906 46.3196265242
34 793.8250416075 956.1984250517 978.1945915349 21.9961664831
35 803.9829606929 977.9572102022 987.6882273925 9.7310171903
36 814.2767883673 987.4871169665 997.1924163561 9.7052993896
37 848.2223485374 1012.3846260879 1044.8036854477 32.4190593598
38 913.2628353651 1044.4278431115 1061.0609559657 16.6331128543
39 920.0285070041 1051.4588840045 1096.8897475447 45.4308635402
40 939.1487940712 1085.7627404262 1124.1677418063 38.4050013801
41 1024.8452060772 1121.6546369128 1159.8478194585 38.1931825458
42 1056.9846787635 1145.5531350058 1163.1853289448 17.632193939
43 1077.0286817295 1157.0920876494 1172.3023246902 15.2102370407
44 1085.563416768 1159.7375423798 1187.6238635953 27.8863212155
45 1100.3969726275 1182.8260424836 1192.0208351697 9.1947926861
46 1110.0066767565 1190.0286307633 1213.9878414301 23.9592106668
47 1125.7039933897 1206.4925513149 1224.8275272976 18.3349759826
48 1134.94869145 1213.5287710594 1239.190996954 25.6622258946
49 1142.9358981706 1223.2325554209 1263.1736944486 39.9411390277
50 1162.1798118818 1234.1711859284 1298.4658344078 64.2946484793





Appendix C

Substructuring in ABAQUS and DOE

analysis of parameters

It initially was applied and generated to the substructures using ABAQUS, before applying the

CBMOR using Ritz vectors methodology developed by Balmès in MATLAB.

A DOE methodology was also used to obtain the qualitative and quantitative parameters of

the CFRP introduced in Chapter 2 using a MNET. The stages of the MNET study established in

this research were: experimental measurements, elaboration of FE models, DOE, and different

MCC. The same MNET methodology was used with the small difference that was performed as

(a) Full FE model S3. (b) Full FE model S4.

Fig. C.1 Initial FE models used to generate substructures.

additional step for the number of factors: a fractional factorial design [145]. This is the main
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difference between the study presented in this work using the CBMOR methodology established

in SDTools versus the CBMOR methodology established in ABAQUS in Appendix 3.

Fig. C.2 Parameters .

The experimental measurements used were established in section Chapter 4, see Fig. 4.3.

The number of sensors are displayed in Fig. C.3. Two FE models were elaborated using shells

elements (quadrilaterals and triangles), (see Fig. C.1 for comparative purposes).

Fig. C.3 FEM model and sensors.
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Fig. C.4 Full Interaction.

A total of 10 parameters were evaluated including some geometrical parts1. However, the

DOE array performed was a reduced full factorial 210−5 for the number of parameters to analyze

the CFRP using the CBMOR. The main advantage of the reduced full factorial is to reduce the

number of runs of the main parameters.

(a) Main Effects. (b) Full FE model S4.

Fig. C.5 Main effects and Surface response - nodes × substructure.

1The two thicknesses are displayed in Table 4.11. The lenght is related to the rib in the center of the CFRP. A
number of nodes and substructures are displayed in Fig. C.5a and included in the electronic files.
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(a) Two substructures and selected nodes . (b) Four substructures and selected nodes.

Fig. C.6 Nodes used in the substructures (in red and yellow) and substructures (grey and cyan)
analyzed with ABAQUS.

The main disadvantage was that some interactions can be mixed and it is not possible to

obtain an accurate approximation. Fig. C.5a shows the main effects are identified through the

slope generated due to the eigenfrequency values between the limits defined for each parameter

– a bigger slope means a strong parameter effect. The upper and lower limits are displayed in

Fig. C.2.

The results shown in Fig. C.5 (vertical left side) are eigenfrequencies. The Young’s modulus,

density, number of nodes and substructure parameters have a strong influence reflected in the

slope, (see Figs. C.4 and C.5a). Once we have selected the main parameters based on the

DOE-screening, can be obtained a surface response, (see Fig. C.5b), that help us find the best

model for the parameter limits selected. Several reduced full factorial were performed changing

the number of nodes and substructures to improve the MAC response. The MAC correlation

between the full FE model and experimental measurement was useful to validate the MOR

results, (see Fig. 5.1c).

The MAC results of the reduced model (substructure 1) evaluating S4 elements are displayed

in Fig. C.7 using the material properties of Table 4.11. It is possible to observe some mode

shapes of the superlements in Figs. C.8 and C.9 respectively. Due to the lower MAC values

obtained and the considerably time spend after several reduced full factorials using ABAQUS,

then was proposed to use other elements with similar finite element properties and AMLS

methodology introduced in Chapter 3 to compare results. The finite element properties of Table
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Table C.1 MAC results with material properties of Table 4.11 of SE1 vs. experimental measure-
ments.

EXPERIMENTAL SE1 ABAQUS DF/FA MAC
(Hz) (Hz) %

1 49.243 8 58.518 18.8 99
2 92.265 10 108.26 17.3 96
3 93.756 10 108.26 15.5 89
4 145.29 11 173 19.1 55
5 160.05 11 173 8.1 61
6 164.18 7 30.644 -81.3 75
7 226.36 13 249.62 10.3 57
8 243.4 13 249.62 2.6 42
9 307.33 16 321.53 4.6 34
10 314.18 12 176.55 -43.8 24
11 324.83 17 343.14 5.6 73
12 329.67 17 343.14 4.1 86

4.11 were obtained applying a DOE using pshell elements in MATLAB-SDTools. The change

of finite elements was essential to obtain improvement in the results. The same number of mode

pairs were calculated per substructure (19 mode pairs ) for illustrative purposes.

Fig. C.7 MAC of SE1 using substructuring in ABAQUS vs. experimental measurements.

The Table C.2 displays the results obtained per superlement and the combination of both

superelements for the coarse mesh. The combination of results was performed with the abaqus

substructureCombine command. The best response obtained with ABAQUS was calculated
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Table C.2 Eigenfrequencies results with material properties of Table 4.11 of SE1, SE2 and
combination.

SE1 SE2 SE1 + SE 2
(Hz) (Hz) (Hz)

1 0 0 0
2 0 0 0
3 0 0 0
4 2.96198E-04 2.34027E-04 4.71645E-05
5 7.91667E-04 2.76216E-04 9.75939E-05
6 1.00950E-03 3.17778E-04 1.24310E-04
7 30.644 246.03 59.501
8 58.518 290.76 109.53
9 88.115 418.54 124.09
10 108.26 452.94 176.38
11 173.00 644.52 204.92
12 176.55 889.65 241.88
13 249.62 946.22 243.77
14 285.85 1037.1 252.65
15 321.20 1171.0 258.02
16 321.53 1514.9 301.74
17 343.14 1687.5 343.88
18 423.18 1890.1 355.86
19 460.84 1960.7 371.83

with two super-elements and 43 nodes distributed in both superelements. In Fig. 5.1c one can

observe the MAC results increasing the number of nodes.
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(a) Mode 1=0 Hz. (b) Mode 2=0 Hz. (c) Mode 3=0 Hz.

(d) Mode 4 = 2.96198E-04 Hz. (e) Mode 5= 7.91667E-04 Hz. (f) Mode 6=1.00950E-03 Hz.

(g) Mode 7=30.644 Hz. (h) Mode 8=58.518 Hz. (i) Mode 9=88.115 Hz.

(j) Mode 10=108.26 Hz. (k) Mode 11=173.00 Hz. (l) Mode 12=176.55 Hz.

Fig. C.8 SE 1 free-free.
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(a) Mode 1=0 Hz. (b) Mode 2=0 Hz. (c) Mode 3=0 Hz.

(d) Mode 4 = 2.34027E-04 Hz. (e) Mode 5=2.76216E-04 Hz. (f) Mode 6=3.17778E-04 Hz.

(g) Mode 7=246.03 Hz. (h) Mode 8=290.76 Hz. (i) Mode 9=418.54 Hz.

(j) Mode 10=452.94 Hz. (k) Mode 11=644.52 Hz. (l) Mode 12=889.65 Hz.

Fig. C.9 SE 2 free-free.
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Product data of the raw materials used in

the elaboration of the CFRP

Link- Araldite Ly 564 / Aradur 2954 source:

http://www.mouldlife.net/ekmps/shops/mouldlife/resources/Other/araldite-ly564-aradur-2954-

eur-e-1-.pdf

Link- C-faser-Gewebe source:

http://www.hadeg-recycling.de/c-faser-gewebe.php

Link- IM7 HexTow source:

https://compositeenvisions.com/documents/tds/Model-f-1647-hexcel-im7-tds.pdf

Link- HexMC Moulding concept source:

http://info.lindberg-lund.no/produktblad/Tekniske datablad/HEXMC-M77-TD.pdf

Link- Saertex Multi-Axial-Gelege source:

http://alumag.com/wp-content/uploads/2013/11/RCOM11.2011SAERTEXLecture.pdf

http://www.mouldlife.net/ekmps/shops/mouldlife/resources/Other/araldite-ly564-aradur-2954-eur-e-1-.pdf
http://www.mouldlife.net/ekmps/shops/mouldlife/resources/Other/araldite-ly564-aradur-2954-eur-e-1-.pdf
http://www.hadeg-recycling.de/c-faser-gewebe.php
https://compositeenvisions.com/documents/tds/Model-f-1647-hexcel-im7-tds.pdf
http://info.lindberg-lund.no/produktblad/Tekniske_datablad/HEXMC-M77-TD.pdf
http://alumag.com/wp-content/uploads/2013/11/RCOM11.2011SAERTEXLecture.pdf
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Sensibility comparison using CLT and

FSDT vs. Exp. measurements

The Discrete Kirchhoff (DK) constraint, which refers to the satisfaction of the Kirchhoff

constraint at discrete points on the shell surface, is imposed in all thin shell elements in

ABAQUS. For element type STRI3 the constraint is imposed analytically and involves no

transverse shear strain energy calculation. Solutions obtained with these elements converge to

those corresponding to classical shell theory, see ABAQUS theory manual section 3.6.1 shell

element overview.

In Abaqus/Standard curved elements (STRI65, S8R5, S9R5) are preferable for modeling

bending of a thin curved shell. Element type STRI3 is a flat facet element. If this element

Table E.1 Raw elastic mechanical properties C-faser-gewebe, see Appendix D.(*th=thickness)

Part 1(m) Modulus E(GPa) ν (-) Shear G(GPa) ρ (Kgm−3)

*th=0.0035 E1 68.0 0.3 G1 5 2600
E2 68.0 0.3 G2 5

G3 5
Part 2(m) Modulus E(GPa) ν (-) Shear G(GPa) ρ (Kgm−3)

*th=0.007 E1 68.0 0.3 G1 5 1500
E2 68.0 0.3 G2 5

G3 5
Part 3(m) Modulus E(GPa) ν(-) Shear G(GPa) ρ (Kgm−3)

*th=0.0035 E1 68.0 0.3 G1 5 1500
E2 68.0 0.3 G2 5

G3 5
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(a) Updated stiffness parameters. (b) Raw stiffness parameters.

Fig. E.1 MAC sensibility comparison based on CLT(STRI3) vs. experimental measurements: a)
Updated stiffness parameters (see Table 4.11) b) Raw stiffness parameters (see Table E.1).

Table E.2 MAC sensibility comparison based on CLT(STRI3) vs. experimental measurements:
left side: Updated stiffness parameters (see Table 4.11) right side: Raw stiffness parameters
(see Table E.1).

CLT (STRI3) CLT(STRI3)
ID Test ID FE model DF/FA MAC ID FE model DF/FA MAC

(Hz) (Hz) % (Hz) %
1 49.243 7 60.581 23.0 99 7 51.613 4.8 99
2 92.265 8 109.23 18.4 97 8 93.691 1.5 97
3 93.756 8 109.23 16.5 90 8 93.691 -0.1 90
4 145.29 10 171.39 18.0 62 10 148.02 1.9 67
5 160.05 10 171.39 7.1 89 10 148.02 -7.5 90
6 164.18 9 158.99 -3.2 82 9 146.75 -10.6 86
7 226.36 12 239.04 5.6 42 12 208.66 -7.8 56
8 243.4 12 239.04 -1.8 60 11 203.72 -16.3 53
9 307.33 13 309.01 0.5 81 13 277.48 -9.7 75
10 314.18 13 309.01 -1.6 67 13 277.48 -11.7 59
11 324.83 14 317.63 -2.2 75 14 281.3 -13.4 72
12 329.67 14 317.63 -3.7 90 14 281.3 -14.7 84
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(a) Updated stiffness parameters. (b) Raw stiffness parameters.

Fig. E.2 MAC sensibility comparison based on FSDT(pshell) vs. experimental measurements:
a) Updated stiffness parameters (see Table 4.11) b) Raw stiffness parameters (see Table E.1).

Table E.3 MAC sensibility comparison based on FSDT(pshell) vs. experimental measurements:
left side: Updated stiffness parameters (see Table 4.11) right side: Raw stiffness parameters
(see Table E.1).

FSDT (pshell) FSDT(pshell)
ID Test ID FE model DF/FA MAC ID FE model DF/FA MAC

(Hz) (Hz) % (Hz) %
1 49.243 7 57.218 16.2 100 7 48.953 -0.6 99
2 92.265 8 106.02 14.9 97 8 91.379 -1.0 97
3 93.756 8 106.02 13.1 90 8 91.379 -2.5 90
4 145.29 10 168.2 15.8 83 9 145.95 0.5 67
5 160.05 10 168.2 5.1 86 9 145.95 -8.8 90
6 164.18 9 167.5 2.0 98 10 154.16 -6.1 85
7 226.36 12 236.83 4.6 86 11 207.34 -8.4 83
8 243.4 11 234.99 -3.5 96 12 208.53 -14.3 88
9 307.33 14 323.93 5.4 81 14 291.79 -5.1 74
10 314.18 14 323.93 3.1 66 14 291.79 -7.1 58
11 324.83 13 315.26 -2.9 74 13 281.28 -13.4 71
12 329.67 13 315.26 -4.4 90 13 281.28 -14.7 83
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is used to model bending of a curved shell, a dense mesh may be required to obtain accurate

results, see ABAQUS analysis user’s manual section 25.6.2 choosing a shell element.

It can be appreciated in Tables E.2 and E.3 the difference in frequency between the updated

and the raw stiffness parameters based on the laminate theory (CLT or FSDT) using the STRI3

elements in ABAQUS and the pshell in MATLAB-SDTools respectively. Using the raw stiffness

parametes for both laminate theory the difference between the experimental and analytical

eigenfrequencies obtained is not bigger than 5 %. However, it is observed that the difference

increase in the eigenfrequencies using the updated stiffness parameters in both laminate theories

represented in each element formulation according the ABAQUS theory manual section 3.6.1.

It is necesary to highlight the poor MAC correlation in paired modes 4th, 7th, 8th, and 10th using

the CLT theory with the raw or updated stiffness parameters, (see Fig. E.1).

Furthermore, it is observed an inverse behaviour in the eigenfrequencies with the CLT

and/or FSDT comparing the updated stiffness parameters obtained with the MNET versus the

raw stiffness parameters, see Tables E.2 and E.3. Thus, it is displayed and improvement in

the MAC correlation values based on the FSDT, see paired modes 4th, 7th, 8th, and 10th with

the updated stiffness parameters, however it is observed a bigger difference in the first fourth

eigenfrequencies. Based on the updated stiffness parameters versus raw stiffness parameters

comparing the CLT and FSDT, it is observed a good eigenfrequency in the first paired modes

using the CLT and a poor MAC correlation sensitivity in the paired modes 4th, and from 6th to

8th respect to the FSDT.
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Appendix F

Modeling of composite component

assembly (CFRP)

Composites can be modeled using single layer shells, multi-layer shells (continuum shells)

and/or solids. Majority of real life parts are modeled with single layer shells elements. Analysis

of composite shells is very similar to the solution of standard shell elements. A single shell

element is modeled as composite by assigning a composite property (e.g. PCOMP) to it [148].

PCOMP defines the structure properties of a composite lay-up which is then assigned to an

element. The ply is only defined for that particular property and there is not relationship of a

ply that is common across several properties [148].

Composite materials properties in general are modeled with an orthotropic material model

(e.g. MAT8- MSC/NASTRAN solver). The typical material model used for composites is

MAT8, which is planar orthotropic material [148].

The parameters for modeling composites defined in MAT8 consist of: the number of

plies, matrix and core (HOMOGENIZATION), the material coordinate system to establish the

reference for defining the ply angle, the element normal to establish the reference for defining

ply stacking and the individual laminate property (PCOMP) introduced in Chapter 1, section

1.2. PCOMP defines all the laminate properties like ply material, thickness (number of plies),

ply angle, orientation and also the stacking sequence and order in ONE property card defined.

Each ply is associated with a material property. The use of MAT1 or general anostropic MAT2

for ply properties is also available [148].

The definition of material properties, MAT8 in MATLAB-SDTools and MSC/NASTRAN is

established in the Table F.1.
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Table F.1 Ply-Based Laminate Modeling Concept

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
PCOMP PID Z0 NSM SB d TREF GE LAM

MID1 T1 THETA1 SOUT1 MID2 T2 THETA2 SOUT2
MID3 T3 THETA3 SOUT3 MID4 etc

The description of the composite card follows the NASTRAN’s PCOMP format as follow-

ing:

• ProID Type Z0 NSM SB d TREF GE f MatId1 T1 THETA1 SOUT1 ...

• ProID Type: f emat(
′pshell′,′ SI′,2)

• Z0: distance from the reference plane to the bottom surface default -(total thickness)/2

• NSM : non structural mass per unit area

• SB: allowable shear stress (unused)

• d: -1 no drilling stiffness, If d==0 d is set to 1. d>0 drilling DOF stiffness coefficient

• TREF: reference temperature (unused)

• GE: loss factor

• LAM: formulation

• MatID1: material idenfier for the layer (ply number)

• T1 : Layer thickness

• THETA1: Ply angle orientation

• SOUT1 layer options (unused)

• k : shear factor (default value is 5/6)

• 12I/T 3 : Ratio of bending moment of inertia to nominal T 3/12 (default 1)

Element’s normal direction defines the stacking sequence. Plies are listed from the bottom

surface upwards, with respect to the element’s normal direction.

The material orientation is important to estalish the reference for ply angles. Ply angles can

be specified relative to a:

• Element coordinate system,

• Vector projeted onto elements,
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Table F.2 Nastran Property 1 : LAMINATE Property

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
PCOMP 1 0 NSM SB d TREF GE LAM

+ 2 2.5E-4 -45 YES 2 2.5E-4 45. YES+
+ 2 2.5E-4 -45 YES 2 2.5E-4 45. YES+
+ 2 2.5E-4 -45 YES 2 2.5E-4 45. YES+
+ 2 2.5E-4 -45 YES 2 2.5E-4 45. YES

Table F.3 Nastran Property 2 : LAMINATE Property

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
PCOMP 2 0 NSM SB d TREF GE LAM

+ 2 4.E-4 -45 YES 2 4.E-4 45. YES+
+ 2 4.E-4 -45 YES 2 4.E-4 45. YES+
+ 2 4.E-4 -45 YES 2 4.E-4 45. YES+
+ 2 4.E-4 -45 YES 2 4.E-4 45. YES

Table F.4 Nastran Property 3 : LAMINATE Property

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
PCOMP 3 0 NSM SB d TREF GE LAM

+ 1 4.E-4 -45 YES 1 4.E-4 45. YES+
+ 1 4.E-4 -45 YES 1 4.E-4 45. YES+
+ 1 4.E-4 -45 YES 1 4.E-4 45. YES+
+ 1 4.E-4 -45 YES 1 4.E-4 45. YES

Table F.5 Nastran Property 4 : LAMINATE Property

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
PCOMP 4 0 NSM SB d TREF GE LAM

+ 3 4.375E-4 -45 YES 3 4.375E-4 45. YES+
+ 3 4.375E-4 -45 YES 3 4.375E-4 45. YES+
+ 3 4.375E-4 -45 YES 3 4.375E-4 45. YES+
+ 3 4.375E-4 -45 YES 3 4.375E-4 45. YES+
+ 3 4.375E-4 -45 YES 3 4.375E-4 45. YES+
+ 3 4.375E-4 -45 YES 3 4.375E-4 45. YES+
+ 3 4.375E-4 -45 YES 3 4.375E-4 45. YES+
+ 3 4.375E-4 -45 YES 3 4.375E-4 45. YES
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Table F.6 Nastran Property 5 : LAMINATE Property

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
PCOMP 5 0 NSM SB d TREF GE LAM

+ 3 4.375E-4 -45 YES 3 4.375E-4 45. YES+
+ 3 4.375E-4 -45 YES 3 4.375E-4 45. YES+
+ 3 4.375E-4 -45 YES 3 4.375E-4 45. YES+
+ 3 4.375E-4 -45 YES 3 4.375E-4 45. YES+
+ 3 4.375E-4 -45 YES 3 4.375E-4 45. YES+
+ 3 4.375E-4 -45 YES 3 4.375E-4 45. YES+
+ 3 4.375E-4 -45 YES 3 4.375E-4 45. YES+
+ 3 4.375E-4 -45 YES 3 4.375E-4 45. YES

Table F.7 Nastran Material 1 : 2D ORTHOTROPIC Material

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MAT8 1 7.13E+10 9.73E+10 0.03 7.E+9 5.E+9 7.E+9 2600. +MT 1
+MT 1 0 0 0 +MA 1
+MA 1

Table F.8 Nastran Material 2 : 2D ORTHOTROPIC Material

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MAT8 2 7.13E+10 6.83E+10 0.02 6.E+9 5.E+9 6.E+9 1500. +MT 2
+MT 2 0 0 0 +MA 2
+MA 2

Table F.9 Nastran Material 3 : 2D ORTHOTROPIC Material

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MAT8 3 7.13E+10 6.83E+10 0.02 6.E+9 5.E+9 6.E+9 1500. +MT 3
+MT 3 0 0 0 +MA 3
+MA 3
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• Coordinate system.

Since element coordinate system is strongly dependent upon the node numbering in individ-

ual elements, it is advisible to prescribe a coordinate system for composite elements and specify

ply angles relative to this system. Material orientation is very important because it defines the

direction for E1 and E2. It also establishes the reference for the definition of ply angle [148].

Fig. F.1 Material properties see Table F.7 with laminate properties see Table F.4.

Fig. F.2 Material properties see Table F.8 with laminate properties see Tables F.2 and F.4.

Fig. F.3 Material properties see Table F.9 with laminate properties see Tables F.5 and F.6.
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Abstract The Craig-Bampton model order reduction (CBMOR) method based on the 

Rayleigh-Ritz approach is applied to dynamic behavior simulation of a composite 

structure in order to verify the method's feasibility and accuracy. The principle of this 

method is to represent a coupled component model based on the mass, damping and 

stiffness matrices. The methodology consists of a finite element model based on the 

classical laminate theory (CLT), a design of experiment to improve the modal 

assurance criteria (MAC) and experimental results in order to validate the reduced 

model based on CBMOR method and substructures (super-elements). Experimental 

modal analysis has been performed using a scanner laser Doppler vibrometer (SLDV) 

in order to assess the quality of the finite element models. The MAC and cross 

orthogonality MAC (XOR) values are computed to verify the eigenfrequencies and 

eigenvectors. This approach demonstrates the feasibility of using CBMOR for 

composite structures. The example is prepared and solved with MSC/NASTRAN 

SOL103. The design of experiments (DOE) method has been applied in order to 

identify the critical parameters and thus obtain high MAC values.  

Key Words: SDTools-MATLAB, NASTRAN, Modal Analysis, Composites 

1. INTRODUCTION 

Many techniques have been proposed to obtain reduced order finite element models 

(known as model order reduction (MOR) methods) by reducing the order of mass and 

stiffness matrices of structures made of conventional materials [1-3]. The substitution of 

conventional materials by composite materials in the aeronautic, space and automotive 

industry is becoming increasingly important today for the production of industrial high-

performance components [11-13]. The state-of-the-art MOR techniques are classified in 
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four groups [19]: direct reduction, modal methods, reduction with Ritz vectors and the 

component mode synthesis (CMS). According to this classification, the last two groups 

yield the best results. The Ritz vectors improve the accuracy-cost ratio and the CMS 

combines the first three classes of methods. Hence the MOR method based on the 

Rayleigh-Ritz approach is used to improve the accuracy-time ratio in civil and 

aeronautical engineering applications in many areas of structural dynamics [6, 14, 19, 22, 

23]. Thus, it is necessary to study the feasibility and efficiency of using the CMS with the 

Rayleigh-Ritz reduction basis in order to describe the dynamic behavior of a composite 

structure [14, 19]. The sections 2-4 introduce to MOR based on the Ritz vectors, classical 

CMS and substructures, respectively. The classical laminate theory (CLT) is introduced in 

Section 5. Sections 6-8 demonstrate a sensitivity analysis performed by using different 

tools – design of experiment (DOE), finite element method (FEM) and modal assurance 

criteria (MAC). 

2. MODEL ORDER REDUCTION WITH RITZ VECTORS  

It is typical for coupled problems with model sub-structuring [6, 14, 22, 23] to have an 

accurate second order representation in the form:  

 
2([ ] [ ] [ ]){ } [ ]{ }

{ } [ ]{ }

M s C s K q b u

y c q

  


, (1) 

where s is the Laplace variable, [M], [C], [K] are mass, damping and stiffness matrices, 

respectively, {q} are generalized degrees of freedom (DOFs), [b] and [c] are input and 

output matrices, respectively, {u} are the inputs describing the time/frequency dependence, 

and {y} are the physical outputs. 

In this description, two - not very classical and yet important - assumptions are made:  

1) The decomposition of discretized loads F(s) as the product of the fixed input shape 

matrix specifying the spatial localization of loads [b] and inputs {u}. 

2) The definition of physical outputs {y} is a linear combination of DOFs {q}. 

The Ritz/Galerkin displacement methods seek approximations of the response within a 

subspace characterized by matrix [T] associated with generalized DOFs {qR}:  

 }]{[}{ RqTq  , (2) 

where {q} is the original set of DOF and {qR} is the reduced set of DOF, substituting Eq. 

(2) into Eq. (1) leading to an overdetermined set of equations. The Ritz approximation 

assumes that the virtual work of displacements in the dual subspace generated by [T]
 T

 is 

also zero, thus leading to a reduced model: 
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3. CLASSICAL CMS BASES AS APPROXIMATION OF THE FREQUENCY RESPONSE 

The method was first developed by Walter Hurty in 1964 [1] and later expanded by Roy 

Craig and Mervyn Bampton [2] in 1968. Component mode synthesis and model reduction 

methods provide for the means for building appropriate [T] bases (the subspace spanned 

rectangular matrix). There are many ways of proving classical bases [22]. Their validity is 

associated with two assumptions: the model needs to be valid over a restricted frequency 

band and the number of inputs is limited. One needs to translate this hypothesis into the 

requirement to include mode shapes and static responses into [T] basis. Most of the literature 

on CMS implies the fundamental assumption for coupling, which states that the 

displacement is continuous at the interfaces. Considering the response of an elastic structure 

to applied loads F(s)=[b]{u(s)}, the exact response at a given frequency [H(s)] is given by: 

 2 1 1[ ( )] [ ]{[ ] [ ]} [ ] [ ][ ( )] [ ]H s c M s K b c Z s b    , (4) 

where [Z(s)] is the dynamic stiffness. If there is no external excitation: 

 
1[ ( )] { } {0}j jZ    , (5) 

and the solutions are known as free modes of the structure, where j is  j
th

 eigenvalue of 

the matrix and {j} is j
th

 eigenvector. A reduction model should include these shapes to 

allow for an accurate representation of the resonances which are associated with the 

singularities of the dynamic stiffness. A point of particular interest is the static response at 

s=0. The associated deformation is: 

 1{ ( 0)} [ (0)] [ ]{ (0)} [ ]{ (0)}sq s Z b u T u   . (6) 

The columns of [Ts] are also called attachment modes [22]. For the case of free 

floating structures (structures with rigid modes), [Z(0)] is singular and one defines 

attachment modes as responses of all modes except for the rigid body modes. 

The bases combining free modes and attachment modes are valid over a certain frequency 

range (truncation of the series of free modes) and certain inputs characterized by [b].  

One, thus, considers the response of the structure with enforced displacements on a 

subset of DOFs. Division of the DOFs in two groups – active or interface DOFs denoted 

by I in the subscript, and complementary, denoted by C in the subscript, leads to: 

 
[ ( )] [ ( )] { ( )} ( )

,
[ ( )] [ ( )] ( ) {0}

II IC I I

CI CC C
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 (7) 

where <{qI(s)}> and <{0}> denotes a known quantity. The exact solution to this problem is: 

 
1

[ ]
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CC CI

I
q T s q q
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 
    

. (8) 

The subspace found here is frequency dependent and can only be used in very 

restricted applications [23]. A classical approximation is to evaluate the static (s=0) value 

in this subspace for the active or interface DOFs denoted by CI in the subscript, and 

complementary, CC in the subscript: 
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Reduction on this basis is known as static or Guyan condensation [4]. The columns of 

[T] are called constraint modes [22]. They correspond to unit displacements of the 

interface DOFs. Significant deviations can be expected when [ZCC(s)]
-1

 differs from 

[ZCC(0)]
-1

=[KCC]
-1

 Such difference is significant for singularities of [ZCC(s)]
-1

 which are 

computed by the eigenvalue problem: 
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The use of a basis combining constraint, Eq. (9), and fixed-interface modes, Eq. (10), 

is proposed in [2]. It yields the Craig-Bampton method: 
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where [NM,C] is the interior part of the matrix of kept fixed-interface modes. There are many 

results reported by Balmès et al. [6, 14, 15] obtained by the Craig-Bampton model order 

reduction (CBMOR) and the Rayleigh-Ritz vectors approach in order to solve coupled 

problems related to model sub-structuring  (also known as component mode synthesis).  

One should be aware of the fact that the use of Raleigh-Ritz vectors leads to dense matrices, as 

opposed to not reduced FEM models characterized by a sparse form of the matrices. 

4. SUBSTRUCTURES OR SUPER-ELEMENTS 

Sub-structuring is a procedure that condenses a group of finite elements into one 

element. It implies that the whole structure is divided into smaller structures (see Figs. 1 

and 2), and the resulting elements are referred to as super-elements. In the considered 

case (Fig. 1), the structure is divided into two substructures using 123 nodes at the 

interface. The model size is reduced from 37,698 DOF to 579 DOF.  

                 
 a) b) 

Fig. 1 Prototype and FEM model in NASTRAN and SDTools:  

a) Composite structure –  front and back; b) FEM model 



 Application of the Craig-Bampton Model Order Reductio Method to a Composite Structure: MAC and XOR  41 

The basic sub-structuring idea is to consider a part of the model separately and extract 

the degrees of freedom needed to connect this part to the rest of the model. Therefore, the 

result of sub-structuring is a collection of finite elements whose response is defined by the 

stiffness and mass of the retained degrees of freedom. The categories of modal truncation 

sub-structuring and static condensation approaches have been widely applied relying on the 

eigenfrequency information [3, 23]. 

       
 a) b)  

Fig. 2 Sub-structuring: a) Substructure 1; b) Substructure 2 

5. LAMINATE THEORY  

The classical laminate theory is applicable to linear and composite elastic materials [21] 

by means of the Discrete Kirchhoff Theory (DKT) elements [20]. The CLT has been used 

extensively to predict elastic behavior of the traditional fiber-reinforced polymers (FRP). 

FRP materials (carbon or glass FRP) are widely used in aerospace and construction 

applications. One important consideration is to have perfectly bonded layers with a uniform 

thickness (see Fig. 3). The mechanical properties measured in ply level experiments are used 

to populate the stiffness matrix for each ply. The stiffness matrices for the individual plies

are combined to form the laminate stiffness matrix – the ABC matrix: 
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The ABC matrix relates forces (Ni) and moments (Mi) to strains (i) and curvatures 

(i). The components of the ABC matrix are given in Eqs. (7-9), where N is the number of 

plies, Qk is the stiffness matrix of each ply, and Zk denotes the distance from the laminate's 

mid-plane to the edges of single plies: 
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N
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Fig. 3 Configuration of composite layers  

The prototype and the finite element (FE) model are shown in Fig. 1. The composite 

structure incorporates three parts (properties in Table 1). The first component is made of 

Hunts-man Ly 564 + Hexcel Gewebe G0926 (HTA-Faser) with dimensions of 0.390m  

0.810m (Fig. 2). The middle shell that connects the two principal parts (Fig. 2a) has 

dimensions of 0.710m  0.030m. Finally, there is the C-section Hexcel RTM6 + Saertex 

Multi-Axial-Gelege (MAG) with a IM7-Faser with dimensions of 0.710m  0.030m. All 

the parts have symmetric layer distribution [45/-45/45/-45/]S. 

6. DESIGN VIA FINITE ELEMENT ANALYSIS (FULL AND REDUCED MODEL)  

Our study is divided into two parts.  

The first part is a full modal analysis using the same model but with two different 

solvers for reference purposes. Two types of elements have been used: CTRIA3 shell 

(from MSC/NASTRAN) and PSHELL (from SDTools).  

The second part is setting the reduced model by using SDTools for MATLAB. The 

reduced model is built up defining two super-elements. Super-element 1 (Fig. 2a) has 4,753 

nodes and 9,219 elements, while super-element 2, (Fig. 2b) has 1,615 nodes and 3,026 

elements. The defined super-elements share 579 DOF distributed in 123 nodes along the 

common border with different DOF per node, according to the CMS that has defined an 

appropriate [T] matrix, used in [3]. We have calculated the same number of modes in each 

super-element and performed a cross orthogonality MAC (XOR) evaluation to verify the 

approximation of the MOR used in low (12 mode pairs) and/or high frequency range (29 

mode pairs) versus the full model. 

In order to estimate the main parameters (qualitative and quantitative) that affect our 

MOR based on the number of substructures and nodes, we have performed a DOE using 

first the full model and the experimental analysis. The DOE study is performed using the 

methodology implemented in Minitab 16 [7]. Fig. 4a shows the main effects of each 

parameter in the composite structure based on the physical characteristics selected. The 
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main effect is identified through the slope generated due to the eigenfrequency values 

between the limits defined for each parameter – a bigger slope means a strong parameter 

effect. Due to the number of parameters, it is necessary to perform first a DOE-screening 

with 2
10-5

=32 "runs" and then a full factorial with the identified principal parameters 

based on the DOE-screening. 

  
 a) b)  

Fig. 4 DOE: a) Parameters main effects, b) Surface response 

The results shown in Fig. 5a (vertical left side) are eigenfrequencies. The MAC 

correlation between the full model and experimental data help us validate the MOR 

results. The Young Modulus, density, number of nodes and substructure parameters have 

a strong influence reflected in the slope (Fig. 4b) and in the MAC values (section 7). 

Once we have selected the main parameters based on the DOE-screening, we perform a 

DOE full factorial 2
4
 and obtain a surface response (see Fig. 4b) that help us find the best 

model for the parameter limits selected. This process is known in literature as updating. 

Jing [8], Barner [9] and Xiaoping et al. [10] reported the use of design of experiments in 

order to quantify and qualify different key parameters in mechanical components 

(stresses, displacements, low and high cycle fatigue, and frequencies). The DOE is a 

sensitivity analysis tool used to estimate the critical input parameters. 

     

 a) b)  

Fig. 5 Cross orthogonality MAC reduced vs. full model: (a) low frequencies  

(b) higher frequencies (green bars MAC, blue bars frequency difference) 
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In Fig. 5, we can see the low and high mode pairs selected between the full and 

reduced model (12 and 29 mode pairs), respectively. The green bars show the eigenvector 

criteria and the blue bars the eigenfrequency difference between the reduced and the full 

model. The low frequencies show a larger difference in the 3
rd

, 4
th
 and 12

th
 mode pair. The 

largest difference in the frequencies is about 1.2% (low eigenfrequencies) between the full 

and reduced model. Increasing the number of pairs, the eigenfrequency difference increases 

up to 3% for 29 pairs. However, the mode pairs 3, 4 and 12 have improved suggesting that 

the accuracy using CBMOR method depends on the number of retained constraint modes. 

Most of the pair selections have a correlation above 90%, except for the 12
th
 mode pair in 

the low frequency range and the 23
rd

 and 24
th
 pair in a high frequency range. Table 2 shows 

the values comparing the full with a reduced model for low frequency. A 3D plot of the 

XOR for high frequency pairs is given in Fig. 6.   

Table 1 Orthotropic elastic mechanical properties per thickness 

Modulus Th1(m) E(GPa) (-) Shear G(GPa) ρ(Kgm-3) 

E1 0.035 71.3 0.3 G1 7.0 2600 

E2  97.3 0.3 G2 5.0  

    G3 7.0  

Modulus Th2(m) E(GPa) (-) Shear G(GPa) ρ(Kgm-3) 

E1 0.007 71.3 0.2 G1 6.0 1500 

E2  68.3 0.2 G2 5.0  

    G3 6.0  

Modulus Th3(m) E(GPa) (-) Shear G(GPa) ρ(Kgm-3) 

E1 0.035 71.3 0.2 G1 6.0 1500 

E2  68.3 0.2 G2 5.0  

    G3 6.0  

Table 2 MAC values: full versus CBROM reduced model 

 Full  Reduced DF/FA MAC 

7 57.218 7 57.218 0.0 100 

8 106.02 8 106.21 0.2 100 

9 167.50 9 167.79 0.2 93 

10 168.2 10 168.29 0.1 94 

11 234.99 11 235.12 0.1 100 

12 236.83 12 236.93 0.0 100 

13 315.26 13 315.33 0.0 100 

14 323.93 14 326.82 0.9 98 

15 401.72 15 401.77 0.0 100 

16 408.39 16 408.57 0.0 100 

17 432.89 17 433.39 0.1 99 

18 494.90 18 501.41 1.3 69 

The correlation of nearly double modes 9-10,11-12,13-14 and 15-16 in Table 2 

suggests the possibility of having bending and torsional modes at close frequencies in the 

composite structure (mode veering) [24]. Thus, a lower MAC value is expected in some 

mode pairs in the experimental validation. There are only three types of structures made of 
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the conventional materials that have been identified to exhibit veering: symmetric or 

cyclic structures, multi-dimensional structures such as plates having bending and torsion at 

close frequencies and structures with fully uncoupled substructures. The considered 

structure corresponds to the second type – multi-dimensional plate structures. 

7. MODAL ASSURANCE CRITERION (MAC) 

There are two general categories for correlation criteria: eigenfrequencies and 

eigenvectors [18]. The MAC is one of the most useful comparison methods that relies on the 

eigenvector information according to Eq. (10). The MAC is a known vector correlation 

between the experimental and the FE model. To approximate the measurements through a 

polynomial function, (Fig. 9), we use the frequency domain identification of structural 

dynamics applying the pole/residue parameterization [15]. 
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The MAC value of 100 % corresponds to an absolute correlation. The less this value 

becomes, the worse the eigenvector correlation is (cjid is the j
th

 mode shape at sensors 

and cjk is the j
th

 analytical mode shape), provided that the observability law for the 

selection of DOFs is not violated. A MAC coefficient of a magnitude larger or equal than 90% 

implies a satisfactory correlation. In Fig. 8, we observe some mode shapes of the reduced and full 

models. Figs. 10a, 10b, and 10c, show the MAC between the full and the experimental 

measurements in MATLAB, NASTRAN, and CBMOR model, respectively. The correlation 

is performed for a low frequency range (up to 400 Hz), based on the fitting model generated 

from the experimental measurements [3, 15]. 

 

Fig. 6 Cross orthogonality MAC (XOR): higher frequencies  reduced vs. full model 
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Fig. 7 FRF(blue) and fitting curve (green) of composite model at node 183y 

8. EXPERIMENTAL MODAL ANALYSIS 

All the measurements are performed with the Scanning Laser Doppler Vibrometer 

(SLDV) PSV 840 (Fig. 9a). It is a complete and compact system including a sensor head, 

a PC with DSP boards and Windows NT-based application software packages [16]. 

Discrete Fourier transform is applied to response x(t) and excitation f(t) to give X(ωi) and 

F(ωi), respectively [17]. The frequency response function (FRF), H(ωi), is defined as the 

ratio of the transformed excitation [18]: 
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where H(i) is the identified (predicted) FRF transfer function matrix , H(i) the measured 

FRF transfer function matrix, X(i) the Fourier spectrum of response, and F(i) is the 

Fourier spectrum of excitation force. The FRF in Eq. (11) is the inverse of the dynamic 

stiffness matrix: 

 2 1( ) [ [ ] [ ] [ ]]i i iH M C K       . (12) 

Mass [M], damping [C] and stiffness [K] matrices in Eq. (12) are dependent on physical 

parameters such as material's density, Young's and shear moduli and Poisson ratio. 
 

  

Fig. 8 CBMOR  (in green) vs full model in MATLAB (in blue) 

Mode 7 at 57.22 Hz, 

Mode 7 at 57.22 Hz reduced 

Mode 8 at 106 Hz, 

Mode 8 at 106.22 Hz reduced 

Mode 9 at 167.5 Hz, 

Mode 9 at 167.8 Hz reduced 

Mode 10 at 168.2 Hz, 

Mode 10 at 168.3 Hz reduced 
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 a) b) c) 

Fig. 9 Experiment: a) Experimental set-up; b) 153 Y-direction sensors; c) 153 sensors in 

the FEM model 

The SLDV employs a laser to sweep over the structure continuously while measuring, 

capturing the response of the structure from a moving measurement point. Various methods 

have been devised to determine the mode shapes of the structure everywhere along the scan 

path measurement [16]. A bandwidth of 2% is used in order to localize the eigenfrequencies. 

The composite structure has rather small internal damping and the experimental modal 

analysis below 400 Hz is performed. The structure is excited by means of a shaker at node 

17 (Fig. 9a and Fig. 9b) that is located in the right bottom corner. The input force is 

measured using a force transducer type 8200 in combination with a charge to CCLD 

converter Type 2646 in order to record the excitation in the transverse direction.  

The interpolation between the experimental measurements uses Frequency Response 

Functions (FRF) [15], (Fig. 7). The FRFs allow comparison of the experimental modal 

parameters (frequency, damping, and mode shape) with those of the FE model. The Fast Fourier 

Transform (FFT) is a fundamental procedure that isolates the inherent dynamic properties of a 

mechanical structure and in our case with respect to the full and reduced FE model. The MAC 

analysis (Fig.10) shows a high correlation between the full model, the reduced model and 

the experimental measurements. The nearly double correlation in the experimental results 

identified in Table 3 (previously identified applying the CBMOR method in Table 2), 

suggests the presence of the veering phenomena (bending and torsional mode at the same 

frequency) in the considered composite structure. This is reflected in the MAC values for 

the corresponding modes.  

    

 a) b) c) 

Fig. 10 Comparative MAC: a) SDtools-Exp, b) MSC/NASTRAN-Exp, c) CBMOR-Exp 
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Fig. 11 Experimental mode shapes 

Pierre [25] reported how localization and veering are related to two kinds of "coupling": 

the physical coupling between structural components, and the modal coupling set up 

between mode shapes through parameter perturbations.  

His studies show that, in structures with close eigenvalues, small structural irregularities 

(could be our case) result in both strong localization of modes and abrupt veering away of 

the loci of the eigenvalues when these are plotted against a parameter representing the 

system disorder. The study of the presence of this phenomenon in the composite structure is 

beyond the scope of this work. 

Table 3 shows the MAC values obtained for each case between the full and reduced 

model versus the experimental results. The mode shapes depicted in Fig. 11 are the 

experimental results. 

Table 3 Full and reduced FEM model results versus experimental results 

 Experimental  Full DF/FA MAC CBMOR DF/FA MAC 

1 49.243 7 57.218 16.2 100 57.218 16.2 100 

2 92.265 8 106.02 14.9 97 106.21 15.1 97 

3 93.756 8 106.02 13.1 90 106.21 13.3 90 

4 145.29 10 168.20 15.8 83 168.29 15.8 84 

5 160.05 10 168.20 5.1 86 168.29 5.1 71 

6 164.18 9 167.50 2.0 98 167.79 2.2 92 

7 226.36 12 236.83 4.6 86 236.93 4.7 85 

8 243.40 11 234.99 -3.5 96 235.12 -3.4 97 

9 307.33 14 323.93 5.4 81 326.82 5.4 80

10 314.18 14 323.93 3.1 66 326.82 4.0 65 

11 324.83 13 315.26 -2.9 74 315.33 -2.9 74 

12 329.67 13 315.26 -4.4 90 315.33 -4.3 89 
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9. CONCLUSIONS 

The results have shown a good correlation in dynamic behavior of the composite 

structure model using the DKT elements with different solvers. The MAC values with the 

full and reduced models have also shown a good agreement with the experimental results. In 

order to achieve high quality models that can adequately capture the dynamic behavior, the 

material properties are updated through the DOE and are crucial in the MOR correlation 

with the experimental results. The updated mass and stiffness matrices in the full model play 

an important roll in this procedure. Furthermore, the reduced model obtained by means of 

the Craig-Bampton MOR method (the reduced model couples 2 substructures through 123 

nodes and 579 DOF) has demonstrated a good agreement with the experimental results. The 

MAC values for the FEM models as well with the experimental results suggest a presence of 

mode veering phenomenon (bending and torsional mode at the same frequency in the 

considered composite structure). And finally, the experimental results using a SLDV as well 

as the identification of pole/residues used in [15], are suitable to validate the dynamic 

analysis using modal order reduction. It is improper to draw conclusions from a single 

example, but the obtained results using two different solvers are coherent. This conducted 

work obviously leaves much room for further research. Other modal assurance criteria need 

to be performed, such as coordinate modal assurance criteria (COMAC), enhanced modal 

assurance criteria (ECOMAC) and scale coordinate assurance criteria (S-COMAC) and also 

other model order reduction and/or mode shape expansion methods should be assessed.  
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PRIMENA CRAIG-BAMPTON REDUKCIJE MODELA NA 

STRUKTURU OD KOMPOZITNOG MATERIJALA: MAC I XOR 

Craig-Bampton metoda za redukciju modela (CBMOR) zasnovana na Rayleigh-Ritz pristupu je 

primenjena u simulaciji dinamičkog ponašanja kompozitnih struktura u cilju verifikacije izvodljivosti i 

tačnosti ove metode. Princip ove metode je da predstavi model spregnutih komponenti preko matrica 

inercije, prigušenja i krutosti. Metodologija uključuje model primenom konačnih elemenata (MKE) na 

osnovu klasične teorije laminata (CLT), zatim postavku eksperimenta sa ciljem poboljšanja vrednosti 

koeficijenata poređenja modova (MAC), kao i eksperimentalne rezultate sa ciljem validacije 

redukovanog modela primenom CBMOR metode i substruktura (superelemenata). Eksperimentalna 

modalna analiza je sprovedena korišćenjem laserskog Doplerovog vibrometra da bi se ocenio kvalitet 

MKE modela. MAC vrednosti za pripadajuće i nepripadajuće modove su sračunate da bi se 

verifikovale sopstvene frekvence i modovi. Ovaj postupak pokazuje izvodljivost primene CBMOR 

redukcije modela u slučaju kompozitnih struktura. Model je pripremljen i rešen primenom 

programskog paketa MSC/NASTRAN SOL103. Metodom dizajna eksperimenta identifikovani su 

kritični parametri, što je kasnije omogućilo dobijanje visokih MAC vrednosti.  

 

Ključne reči: SDTools-MATLAB, NASTRAN, modalna analiza, kompozitni materijali 
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Abstract: The Craig-Bampton model order reduction (CB-

MOR) method based on the Rayleigh-Ritz approach was

applied in a previous work to simulate dynamic behavior

of a composite structure (CFRP) using the modal assur-

ance criteria (MAC) and cross orthogonality (XOR) to vali-

date the correlation. Diferent coordinatemodal assurance

criteria are applied to complement and verify the eigen-

frequencies and eigenvectors obtained of the full and re-

duced models using substructures (super-elements). An

improvement is observed per pairedmode-sensor with the

MAC per coordinates criterion (MACco) in a CFRP once the

stifness parameters are updated in the full model apply-

ing a mix-numerical experimental technique (MNET) us-

ing a design of experiments (DOE). The coordinate modal

assurance criteria (COMAC) and the scale COMAC (COMAC-

S) results of the full models display the best results re-

spect to the reduced model. Furthermore, slight improve-

ment of the enhanced COMAC (eCOMAC) results are ob-

served in the reduced model despite having lower MAC

performance. This approach complements the results of

the previous work using several COMAC techniques, and

demostrates the feasibility to achieve low COMACs results

in the reduced inite element model once the stifness pa-

rameters of the full elementmodel are updated. The exam-

ple was prepared and solved with MSC/NASTRAN SOL103

and SDTools-MATLAB for comparative purposes.
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1 Introduction

Many techniques have been proposed to obtain reduced

order inite element models (known as model order reduc-

tion (MOR) methods) by reducing the order of mass and

stifness matrices of structures made of conventional [1ś

15] or carbon iber reinforced polymer (CFRP). The Craig-

Bampton model order reduction (CBMOR) method based

on the Rayleigh-Ritz approach implemented in [3] was

performed in [17] to simulate the dynamic behavior of a

CFRP. The simulation of the dynamics of the CFRP was di-

vided into two steps: a mix-numerical experimental tech-

nique [18, 19] (MNET) and the reduced model using the

CBMOR method. In the irst part several techniques were

combined using a design of experiments [22, 33] (DOE): ex-

perimental results [20], parametric curve-itting [10], com-

puted FEM results, and the modal assurance criteria [21]

(MAC) to obtain the stifness parameters in a composite as-

sembly (CFRP). The obtaining of the stifness parameters

of a CFRP is oneof themost challengingproblems in exper-

imental analysis. The second part was setting the reduced

model using the CBMOR, superelements, the automated

multi-level substructuring [14] (AMLS) and the residual it-

eration [13] methods implemented in SDTools [3] once the

stifness parameters were obtained. It is documented in

the literature that the combination of CBMOR, AMLS, and

residualmode efects can improve the accuracy of the orig-

inal transformation matrix [3, 7, 15]. This study is based

on the stifness parameters obtained in [17] with theMNET

and it is an extension to validate the MAC and XOR results

of the full and reduced models using diferent coordinate

modal assurance criterias. The application of these crite-

rias to a CFRP is not documented in the literature. The dif-

ferent modal assurance criterias used in this study are in-

troduced in sections 2-6, and are implemented in SDTools.

In section 7 the results are discussed.
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2 Modal Correlation Criterion

There are two general categories for correlation criteria:

the eigenfrequencies and eigenvectors [21]. The modal as-

surace criteria [23] (MAC) is one of themost useful compar-

ison methods that relies on the eigenvector information,

see Eq. (1):

MAC(i) =

⃒

⃒

⃒

⃒

⃒

︃

l︀

j=1

(cjϕid)
H(cjϕk)

︃
⃒

⃒

⃒

⃒

⃒

2

⃒

⃒

⃒

⃒

⃒

l︀

j=1

(cjϕid)H(cjϕid)

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

l︀

j=1

(cjϕk)H(cjϕk)

⃒

⃒

⃒

⃒

⃒

(1)

where cjϕid is the j
th mode shape at sensors and cjϕk is

the jth analytical mode shape. The MAC value of 1 corre-

sponds to an absolute correlation. The less this value be-

comes, the worst the eigenvector correlation will be. In the

modal community a MAC coeicient of a magnitude larger

or equal than 0.90 in the diagonal and less or equal than

0.05 in the of-diagonal implies a satisfactory correlation.

3 Coordinate modal assurance

criterion

The coordinatemodal assurance criteria (COMAC) is an ex-

tension of the MAC developed by Lieven and Ewins [24].

The implementation of the COMAC criterion requieres two

stages of calculation. In the irst stage, themodes from the

two sets arematchedusing theMAC.After constructing the

set of NM mode pairs to be correlated, the second stage

of the COMAC is the calculation of the correlation values

at each coordinate, over all the correlated pairs [25], see

Eq. (2):

COMAC(l) = 1 −

⃒

⃒

⃒

⃒

⃒

︃

NM︀

j=1

(clϕjA)(clϕjB)

︃
⃒

⃒

⃒

⃒

⃒

2

⃒

⃒

⃒

⃒

⃒

NM︀

j=1

(clϕjA)

⃒

⃒

⃒

⃒

⃒

2⃒
⃒

⃒

⃒

⃒

NM︀

j=1

(clϕjB)

⃒

⃒

⃒

⃒

⃒

2
(2)

where clϕjA is the jth mode shape at sensors and clϕjB is

the jth analytical mode shape selected. It is important to

note that the modes have to be normalized as this gives

equal weighting to all modes. Unfortunatly, the standard

COMAC cannot identify diferences that occur due to fairly

common ploblems during modal testing. These problems

include orientation of the accelerometers and transducers

scale factor errors [26]. Additionally, the COMAC is equally

sensitive to large and small motion of DOF, which can

make COMAC results more diicult to interpret. COMAC

values closer to zero per DOF represent a higher agree-

ment.

4 Scale coordinate modal

assurance criterion

The scale coordinate modal assurance criterion (COMAC-

S) is computedwith shapes in set B scaled using themodal

scale factor (MSF) [3, 23] (see Eq. (3)). The MSF provides a

qualitative way of comparing two modal vector sets. This

criterion has been used by Ewins [21], Allemang [23], Cat-

bas [25], and Balmés [3] for a variety of diferent analy-

ses including structural modiications and frequency re-

sponse function (FRF) synthesis for comparison with ex-

perimental data [32].

COMAC − S(l) = 1 −

⃒

⃒

⃒

⃒

⃒

︃

NM︀

j=1

(clϕjA)(clϕ̂jB)

︃
⃒

⃒

⃒

⃒

⃒

2

NM︀

j=1

⃒

⃒(clϕjA)
⃒

⃒

2
NM︀

j=1

⃒

⃒

⃒
(clϕ̂jB)

⃒

⃒

⃒

2

(clϕ̂jB) = (clϕjB)MSF = (clϕjB)
(clϕjB)

T
(clϕjA)

(clϕjB)
T
(clϕjB)

(3)

This COMAC-S criterion sets the scaling of vectors in

set B to minimize the quadratic norm of the diference be-

tween (clϕjA) and (clϕ̂jB) [3]. Scaling assumes that each

experimentalmode shape is already correlatedwith an an-

alytical shape. When two modal vectors are scaled simi-

larly, elements of each vector can be averaged, diferenti-

ated or sorted to provide an indication of the type of error

vector superimposed on the modal vector [27]. The lower

values of the COMAC-S represent also a higher agreement

per DOF.

5 Enhanced coordinate modal

assurance criterion

The formulation of the enhanced COMAC (eCOMAC), intro-

duced by Hunt [26], overcome some of the limitations of

the standard COMAC, expressed as:

eCOMAC(l) =

NM︀

j=1

⃦

⃦

⃦
(clϕ̃jA) − (clϕ̂jB)

⃦

⃦

⃦

2NM
(4)

The comparation is done using mode shapes that are

vector normalized to 1 and theremust be phase correlation
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between pair modes, see Eq. (5)

(clϕ̃jA) =
(clϕjA)
⃦

⃦clϕjA

⃦

⃦

(5)

This can be accomplished by examining the high coef-

icient DOF in the mode pairs or by using the MSF to deter-

mine if the normalization mode should be multiplied by −1.

The use of eCOMAC requires this extra step in mode shape

normalization, namely a check for phase consistency be-

tween each mode pair using the MSF [26]. The unit nor-

malization and correct phasing are interpreted in the same

way as the COMAC. The eCOMAC values are obtained from

zero to one, similar to COMAC, where a value closer to zero

per DOFwill have a higher correlation agreement. Further-

more, Hunt reported in [26] that the eCOMAC can success-

fully identify measurement errors such as scaling and po-

larity. This is because the eCOMAC is less sensitive to errors

at small motion of DOF and it is considered more robust

than the standard COMAC.

6 Modal assurance criteria per

pair-sensor (MACco)

The MAC per pair-sensor (MACco) criterion consists in

the sequential order of sensors that contribute most to

the poor correlation. The MACco is known with diferent

names in the literature: the MAC coordinate criterion [3]

or the MAC variation technique [28]. It is an iterative algo-

rithm that takes themodes in cjϕid and cjϕk and computes

the pairMACwith one sensor łremovedž that contribute to

low MAC values. The MACco algorithms leads to the best

mean MAC for the paired modes, and is a direct indication

of where the poorest correlation is located. In this work is

suggested the possibility of applying the MACco criterion

implemented in [3] to identify the improvement per pair-

sensor using the updated stifness parameters of the FE

model obtained in [17].

7 Results

A summary of the results in [17] is introduced to present

the initial COMAC results from this study. All the measure-

ments were performed with the Scanning Laser Doppler

Vibrometer (SLDV) PSV840 by suspending the CFRP com-

ponent from very soft cords (free condition), (see Fig. 1),

provided by the DLR Braunschweig. The shaker LDS V406

and the stinger with length of 65mm at node 17 are used to

(a)

(b)

(c)

Figure 1: Experiment: a) Experimental set-up; b) 153 Y-direction

sensors; c) 153 sensors in the FEM model [17].
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Figure 2: FRF (blue) and itting curve (green) of composite model at node 183y [17].

excite the structure that produce a sinusoidal vibration ve-

locity signal on the line of sight of the SLDV (out-of-plane).

The reason to use a stinger is to ensure that the shaker

will only impart force to the structure along the axis of the

stinger. The excitation signal selected is a periodic chirp

(with frequency span 30ś400Hz, 6400 lines of resolution,

with complex average type and number of average per Fre-

quency Response Function (FRF) equal to 10), and relec-

tive foil is used to acquire the responsemeasurement loca-

tion. The input force is measured using a force transducer

Dytran 1051V3 and power ampliier LDS PA 100 in order to

record the excitation in the transverse direction.

The interpolation between the experimental measure-

ments uses FRFs [10]. The FRF, (see Fig. 2), allowed us to

compare the experimental modal parameters (frequency,

damping, and mode shape) with the FE model. The Fast

Fourier Transform (FFT) is a fundamental procedure that

isolates the inherent dynamic properties of a mechanical

structure and in our case with respect to the full and re-

duce FE model performed in [17].

To approximate themeasurements (blue line) through

a polynomial function (green line), we used the frequency

domain identiication of structural dynamics applying the

pole/residue parameterization [10], (see Fig. 2). The corre-

lation results vs the experimental model was performed at

low frequency (up to 400 Hz), based on the curve-itting

generated from the experimental measurements [10]. A

bandwith of 2% is used to localize the eigenfrequencies.

The MAC analysis of the full and reduced FE mod-

els obtained in [17] can be observed in Fig. 3 (MATLAB,

NASTRAN, and CBMOR model respectively) versus the

experimental measurements. Two diferent elements and

solvers were used for reference purposes: CTRIA3 shell

(from MSC/NASTRAN) and pshell (from SDTools) [29, 30].

The same number of modes were calculated for both the

full and reduced FE models, using super-elements. Cross

orthogonality MAC (XOR) was performed to verify the ap-

proximation of the MOR in low frequency range (12 mode

pairs) versus the full model, see [17].

A good MAC correlation was obtained between the

three models and the MAC results displayed an agree-

ment with the literature (the MAC results in the reduced

FE model are slightly lower). These MAC results of the

full FE models were calculated with the stifness param-

eters obtained in [17] performing a DOE full factorial in

MINITAB [33]. The nearly double correlation in the ex-

perimetal results identiied in Fig. 3 and Table 1 for the full

and reduced models suggest the presence of the veering

phenomena [16, 31] (bending and torsional mode at the

same frequency) in our composite component assembly.

Thus, lower MAC results in 4, 9, 10 and 11 paired modes

(see Fig. 3b) and 5, 9, 10 and 11 paired modes (see Fig. 3c)

were archieved and identiied using the experimental re-

sults.

Furthermore, the reduced model was performed us-

ing CMS in terms of substructure /super-element tech-

nique, AMLS and residual iterationmethods implemented

in [3]. The reducedmodel was built up deining two super-

elements.
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(a)

(b) (c)

Figure 3: Comparative MAC: a) SDtools-Exp, b) MSC/NASTRAN-Exp, c) CBMOR-Exp [17].

Super-element 1 has 4,753 nodes and 9,219 elements,

while super-element 2, has 1,615 nodes and 3,026 ele-

ments. The deined super-elements shared 579 DOF dis-

tributed in 123 nodes along the commonborderwith difer-

ent DOF per node, according to the CMS that has deined

an appropriate [T] matrix [3]. Somemode shapes of the re-

duced and full models can be observed (see Fig. 4) as well

as experimental measurements (see Fig. 5).

After constructing the set of NM mode pairs, the next

step is the calculation of the COMACvalues over all the cor-

related mode pairs, as given in the Eq. (2). Diferent CO-

MAC results (in blue) can be visualized in Fig. 6 (MATLAB

(non-updated), MATLAB (updated), NASTRAN (updated),

and CBMOR model, respectively) with respect to the num-

ber of sensors (x-axis). Fig. 6a is included as a reference

to visualze the improvement between the FEmodels using

the diferent COMACs. The COMAC values are calculated

and displayed an improvement after updating the mate-

rial properties with similar pattern and values between FE

models, (see Figs. 6b, 6c, 6d). The best COMAC result of the

full FEmodels are obtained on sensor 107y=0.036 ,and the

worst result on sensor 201y=0.397 (see Fig. 6b). Further-
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Figure 4: Full model in MATLAB (in blue) vs CBMOR (in green) [17],

for values see Table 1.

Figure 5: Experimental mode shapes [17].

more, in the reduced FE model the best and worst COMAC

results are found on sensors 84y=0.052 and 201y=0.423 re-

spectively.

A pattern in the results can be visualized using the CO-

MAC criterion (see Fig. 6)with slight diferences (except for

the non-updated FE model). The COMAC-S results, for all

the FE models, display an improvement respect to the CO-

MAC values (green line). The best COMAC-S value is dis-

played in the full FEmodel in Fig. 6b on sensor 209y=0.019,

and the worst value on sensor 201y=0.366. In the reduced

FE model the best and the worst COMAC-S values are ob-

tained on sensors 114y=0.026 and 201y=0.388 respectively.

The eCOMAC results (in brown) of the full and reduced

FE models show a much lower values respect to the CO-

MAC and COMAC-S results. The eCOMAC criterion displays
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(a)

(b)

(c)

(d)

Y-SENSORS

Figure 6: Comparison of COMACs: a) SDtools-Exp (non-updated), b) SDtools-Exp(updated) c) MSC/NASTRAN-Exp (updated), d) CBMOR-Exp.
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Table 1: Full and reduced model results versus experimental results [17].

# Experimental # Full DF/FA MAC CBMOR DF/FA MAC

1 49.243 7 57.218 16.2 100 57.218 16.2 100

2 92.265 8 106.02 14.9 97 106.21 15.1 97

3 93.756 8 106.02 13.1 90 106.21 13.3 90

4 145.29 10 168.20 15.8 83 168.29 15.8 84

5 160.05 10 168.20 5.1 86 168.29 5.1 71

6 164.18 9 167.50 2.0 98 167.79 2.2 92

7 226.36 12 236.83 4.6 86 236.93 4.7 85

8 243.40 11 234.99 −3.5 96 235.12 −3.4 97

9 307.33 14 323.93 5.4 81 326.82 5.4 80

10 314.18 14 323.93 3.1 66 326.82 4.0 65

11 324.83 13 315.26 −2.9 74 315.33 −2.9 74

12 329.67 13 315.26 −4.4 90 315.33 −4.3 89

the best results with the exception of few sensors (16y-19y

and 21y-24y) for all the FE models. The updated full FE

model shown in Fig. 6b, displays the best eCOMACvalue at

sensor 83y (0.009), with the worst eCOMAC value found at

sensors 24y (0.176). Furthermore, in the reduced FE model

the worst and the best eCOMAC values are found in the

same sensors (24y=0.15 and 83y=0.006 respectively). It can

be appreciated that the eCOMAC in the reduced FE model

displays slightly enhanced results versus the full FE mod-

els (see Fig. 7). The lower eCOMAC values suggest a good

normalization and phase correlation between pair coordi-

nates of the full and reducedFEmodelwith the experimen-

tal results.

The lower COMACs values obtained with diferent cri-

terias suggest a good agreement of the full and reduced FE

models versus the experimentalmeasurements. It is neces-

sary tomention the good agreement between diferent CO-

MAC, COMAC-S and eCOMAC using two types of elements

and solvers.

Applying the MACco criterion it is possible to analyze

the paired mode per sensors ordered in ascending order

leading to the best łmean MACž for the paired modes, see

Fig. 8. The MACco criterion and COMAC criteria also dis-

play a signiicant improvement per mode paired-sensor,

which contribute tohighMACvaluesusing the stifnesspa-

rameters obtained in [17]. The łmean MACž (represented

as a solid line in blue in Fig. 8) is obtained by calculating

the mean of the MAC per mode paired-sensor selected of

each FE model. The x-axis of each graph in Fig. 8 repre-

sents the total number of sensors (153 sensors) used with

the MACco algorithm. Only the worst ten MAC results per

paired mode-sensor of each FE model are displayed in Ta-

bles 2 and 3.

Table 2 is divided into three sections, displaying the

MACco results of the non-updated and updated full FE

models respectively. The values of the łmean MACž can

be observed in Table 2 of each FE model. In Table 3 the

MACco results of the reducedmodel are displayed. In both

tables an improvement using the updated stifness param-

eters is observed. Before updating the material properties,

the sensors 16y displays the worst łmean MACž = 77. After

updating the stifness parameters, the sensors 16y shows a

considerable improvement when applying the MACco cri-

terion in the full and reduced models (łmean MACž of 88,

85 and 87 respectively). The worst paired mode per sen-

sor is identiied in the pair number 16 of each updated FE

model (MACper paired-sensor of 67, 60, 67 respectively) on

sensor 16y. The worst paired mode per sensor of the non-

updated FE model is identiied in the pair number 10 on

the sensor 16y with łmean MACž value of 58. With the ex-

ception of the sensors 104y and 133y in Tables 2 and 3, the

worst MACco results in the updated FE models are identi-

ied in the same sensors, (see Fig. 9), per paired mode on

the edge of the CFRP.

8 Conclusions

The results have shown a good correlation in dynamic be-

havior of the composite component assemblymodel using

the pshell and CTRIA3 elements applying diferent solvers

for comparative purposes in the FE models. The MAC val-

ues obtained (eigenfrequencies and eigenvectors) for the

full and reduced FE models versus the experimental mea-

surements in the previous work are consistent applying

diferent coordinate criteria (COMACs andMACco). The im-
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Table 2:MACco results - Full models versus experimental results.

Pair number 7 8 9 10 11 12 13 14 15 16 17 18

Experimental 1 2 3 4 5 6 7 8 9 10 11 12

SDTools FEM (non-updated) 7 8 8 9 9 10 12 11 14 14 13 13

Sensor Mean MAC

All 77 99 97 90 58 87 73 65 63 73 61 72 86

16y 77 99 97 91 57 87 73 65 63 73 62 75 87

23y 78 99 97 92 62 88 71 69 59 72 63 74 86

21y 78 99 97 93 66 89 70 71 57 72 63 74 87

129y 78 99 97 93 65 89 70 70 58 72 65 75 88

96y 79 99 97 93 64 89 70 70 60 73 66 76 88

95y 79 99 97 94 64 89 71 70 60 73 66 77 88

17y 79 99 97 94 62 90 72 68 63 73 66 78 90

128y 80 99 97 94 61 89 73 68 63 73 68 79 90

133y 80 99 97 94 64 90 71 70 60 73 69 79 90

104y 80 99 97 95 66 90 71 70 61 74 69 79 90

Experimental 1 2 3 4 5 6 7 8 9 10 11 12

SDTools FEM (updated) 7 8 8 10 10 9 12 11 14 14 13 13

Sensor Mean MAC

All 87 100 97 90 83 86 98 86 96 81 66 74 90

16y 88 100 97 91 83 86 98 86 96 82 67 76 90

96y 88 99 97 91 82 87 98 87 97 83 69 77 90

95y 88 100 97 91 82 87 98 88 97 84 70 78 90

23y 89 99 97 92 84 87 97 88 96 84 73 77 90

131y 89 100 97 93 85 88 97 89 96 85 73 77 90

17y 89 100 97 93 84 89 97 89 97 85 74 78 91

21y 90 100 97 94 85 89 97 89 97 85 76 78 91

129y 90 100 97 94 85 89 97 89 97 86 77 79 92

128y 90 100 97 94 84 89 97 89 97 86 79 80 92

97y 91 100 97 94 84 89 97 90 97 87 79 81 92

Experimental 1 2 3 4 5 6 7 8 9 10 11 12

MSC/NASTRAN FEM (updated) 7 8 8 9 9 10 11 12 14 14 13 13

Sensor Mean MAC

All 83 100 97 90 74 90 93 81 84 76 59 71 84

16y 84 99 97 91 74 91 93 81 85 77 60 74 84

23y 84 99 97 92 77 91 92 82 83 76 63 73 84

96y 85 99 97 92 76 92 93 82 84 77 64 74 85

21y 85 99 97 93 79 92 92 83 83 77 65 74 85

95y 85 100 97 93 79 92 92 84 83 78 66 74 85

17y 86 100 97 93 77 93 93 83 85 78 67 76 87

129y 86 100 97 93 77 93 93 82 85 78 68 78 88

131y 86 100 97 94 77 93 93 83 86 79 69 78 88

128y 87 100 97 94 76 93 93 83 86 80 71 79 88

133y 87 100 97 95 79 93 93 84 85 80 72 78 88
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(a)

(b)

(c)

Y-SENSORS

Figure 7: Comparison of eCOMACs: a) SDtools-Exp(updated) b) MSC/NASTRAN-Exp (updated), c) CBMOR-Exp.

provement of the COMACs results is observed in all the FE

models once the stifness parameters were updated. The

full FE model with pshell elements displays the best CO-

MAC, COMAC-S and MACco results between full FE mod-

els. The reduced model obtained by means of the Craig-

Bampton MOR method (the reduced model has 123 nodes

with 2 substructures and 579 DOF) has demonstrated a

good agreement with the experimental results using dif-

ferent COMACs. The eCOMAC values of the reduced model

present a slight enhancement in the results and are the

best values versus the eCOMAC results obtained in the

full models. The MACco results of the reduced FE model

also show a good agreement with the experimental mea-

surements with respect to the full FE model. The experi-

mental results performed with an SLDV and the identii-

cation of pole/residues used are suitable to validate the

dynamic analysis of CFRP using coordinate assurance cri-

teria applying modal order reduction. In order to achieve

high quality COMACs results in the FEmodels that can ad-

equately capture the dynamic behavior, thematerial prop-

erties were updated by applying a DOE and are crucial

in the MOR correlation with the experimental results. The
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(a)

(b)

(c)

(d)

Figure 8: Comparison of MACcos: a) SDtools-Exp (non-updated), b) SDtools-Exp (updated), c) MSC/NASTRAN-Exp (updated), d) CBMOR-Exp.
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Table 3:MACco results - Reduced model versus experimental results.

Pair number 7 8 9 10 11 12 13 14 15 16 17 18

Experimental 1 2 3 4 5 6 7 8 9 10 11 12

Reduced FE model CBMOR 7 8 8 10 10 9 12 11 14 14 13 13

Sensor Mean MAC

All 85 100 97 90 84 71 92 85 97 80 65 74 89

16y 86 100 97 91 85 71 92 86 97 81 67 76 89

95y 86 100 97 91 85 71 92 87 97 82 68 77 89

96y 87 100 97 91 85 71 92 88 97 83 69 77 89

131y 87 100 97 92 86 72 92 89 98 83 70 77 89

129y 87 100 97 92 86 71 92 88 98 84 71 79 89

23y 87 100 97 93 86 72 91 88 97 84 73 78 90

17y 88 100 97 93 85 73 91 88 97 84 74 79 91

128y 88 100 97 93 84 72 92 89 97 85 76 80 91

21y 88 100 97 94 84 73 91 89 97 85 77 80 91

97y 88 100 97 94 84 73 91 90 97 85 78 80 92

Figure 9: Identiication of the łworst Y-sensorsž (green) using

MACco.

COMACs and MACco results obtained in full and reduced

FE models based on the Rayleigh-Ritz approach to simu-

late dynamic behavior of a CFRP assembly suggest the fol-

lowing conclusions. A high accuracy in the updated stif-

ness parameters obtained that might be used to verify the

mechanical properties, such as the Poisson ratio, along

the measured CFRP. The updated mass and stifness ma-

trices in the full model played an important roll in the

MNET procedure to perform the CBMORmethod. The iden-

tiication of the veering phenomena in the CFRP compo-

nent assembly looked at the full and reduced FE models

using the MAC. The application of the MACco to identify

the improvement per pair-sensor once it was updated the

FE model. The validation of the correlation proved apply-

ing diferent COMACs based on the type of inite elements

used. Finally, the slightly improvement of the transforma-

tion matrix of the reduced model observed in the eCO-

MAC using superlements, the AMLS and residual iteration

methods implemented in SDTools that show a good nor-

malization and phase correlation with the experimental

results.

It is needed to perform an assesment with other el-

ements of similar characteristics for accuracy and sensi-

tivity purposes applied to diferent CFRP. Diferent mode

shape expansion methods of coupled predictions consist-

ing of local FE model, enhanced AMLS, classical theory of

structural modiication by coupling, and CMS with inter-

face model order reduction should be assessed for future

work to validate the MNET results.
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Abstract: The application of diferent mode-shape expan-

sion (MSE)methods to aCFRPbasedonmodel order reduc-

tion (MOR) and component mode synthesis (CMS) meth-

ods is evaluated combining the updated stifness param-

eters of the full FE model obtained with a mix-numerical

experimental technique (MNET) in a previous work. The

eigenvectors and eigenfrequencies of the diferent MSE

methods obtained are compared with respect to the ex-

perimental measurements and with a full FE model solu-

tions using the modal assurance criteria (MAC). Further-

more, the stifness andmass weighted coeicients (K-MAC

and M-MAC respectively) are calculated and compared to

observe the inluence of the diferent subspace based ex-

pansion methods applying the MAC criteria. The K-MAC

and M-MAC are basically the MAC coeicients weighted

by a partition of the global stifness and mass matrices re-

spectively. The best K-MAC and M-MAC results per paired

mode-sensor are observed in the subspace based expan-

sionMODAL/SEREP andMDRE-WEmethods using the up-

dated stifness parameters. A strong inluence of the sub-

space based onMORusingMSEmethods is observed in the

K-MAC and M-MAC criteria implemented in SDTools eval-

uating the stifness parameters in a contrieved example.

Keywords: Composites, Mode-shape expansion, GUYAN,

MODAL, SEREP, DYNAMIC, MDRE, MDRE-WE, MAC, K-

MAC, M-MAC

1 Introduction

The concept ofmode-shape expansion (MSE),model order

reduction (MOR) and component mode synthesis (CMS)

methods play a signiicant role in the dynamic analysis

*Corresponding Author: Humberto Peredo Fuentes: Institute

of Mechanics, Technical University Berlin, Strasse des 17. Juni 135,

10623 Berlin, Germany; Email: hperedo@mailbox.tu-berlin.de

of conventional materials or carbon iber reinforced poly-

mer (CFRP), especially comparing large analytical set of

degree of freedom (DOF) versus experimental models with

relatively small number of sensors [1ś34]. The experimen-

tal measurements (EM) are critical for the success of any

structural dynamic analysis and contain characteristics

that cannot be obtained analytically [1]. Traditionally, in-

terfacemodel reductions [1ś3, 5ś9, 29] are used to estimate

the motion at interfaces DOFs by the motion of sensors

using EM, where the EM played a signiicant role in the

correlation and updating of analytical models. Many ap-

proaches to correlate analytical models require measured

vectors to be available at the full set of inite element DOF.

Likewise, model updating in the set of tested DOF requires

the large model to be reduced to a much smaller size but

without distortion of the reduced model. Coupled predic-

tions can also be estimated using MSE methods [1]. Two

groups can basically be distinguished to characterize cou-

pled predictions: unmodiied structures, see [5] for fur-

ther details, andmodiied structures illustrated in [1ś3, 5ś

9, 29]. The diference between the two groups is basically

that the irst group needed to impose some of themeasure-

ment points on the interface while in the second group, it

is not needed. The methodology presented by Corus et al.

in [6] and Balmès [1ś3, 8, 9, 29] combined techniques of-

fering the advantages of the second group of coupled pre-

dictions consisting of: a local FEmodel, classical theory of

structural modiication by coupling it with MSE and CMS

with several interface MOR methods (subspace selection)

[1ś3, 8]. The use or not of modiications in this method-

ology [1] is distinguished as an indicator for the validity

of coupled predictions. The MSE methodology concept is

used in this work to estimate the responses of all degrees

of freedom of the interface of a CFRP component deined

by the motion of sensors evaluating the stifness param-

eters of a full inite element (FE) model obtained in [10].

The accuracy of the experimental measurements obtained

in [10] and veriied in [11] using discrete Kirchhof trian-

gular (DKT) elements including transversal shear efects

[26], also know as discrete shear triangular (DST) [27, 28]

and a reduced inite element model using superlements
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applying the Craig-Bampton model order reduction based

in Ritz vectors deined in [29]. Diferent advance interpo-

lation MSE methods implemented in [29] are performed to

determine the coupled predictions in the CFRP component

such as: MODAL [12], SEREP [13], STATIC (based on Guyan

reduction [14]), DYNAMIC [15],minimumresidual dynamic

expansion (MRDE) [16], and minimum residual dynamic

expansion with test-error (MRDE-WE) [17]. The MRDE and

MRDE-WE are also known as hybrid methods. The MSE

methods are calculatedusingEM, curve-itting algorithms,

and a FE model to obtain the interpolation results. Thus,

these advance MSE interpolation methods can be evalu-

ated to determine the paired accuracy predictions in the

CFRP component for unmeasured DOFs in a CFRP com-

ponent applying the modal assurance criterion [19] (MAC)

based on the EM, the curve-itting algorithms, and the up-

dated stifness parameters of the full FE model obtained

with a MNET. The impact of the accuracy in the results us-

ing MSE is documented in the literature for conventional

materials taking in consideration residual modes [18]. The

application of these MSE methods and it’s accuracy to a

CFRP is not documented in the literature. The inluence

of the MOR applying MSE methods implemented in [29] is

evaluated using the stifness andmassweighted criteria or

K-MAC and M-MAC (normalized stifness and mass cross-

orthogonality criteria respectively) based on the MAC. In

section 2, it is introduced a brief theoretical background of

this MSEmethodology developed by Corus and Balmès. In

section 3, the results are discussed based on the updated

stifness parameters obtained of the FE model versus the

modiication of these stifness parameters (contrieved ex-

ample). The conclusions are discussed in section 4.

2 Theoretical background

Initially, the theoretical background of the MSE method-

ologies combining diferent techniques introduced in [1,

2, 4, 6, 9, 29] was established as a close loop prediction

problem for structural modiications. The knowledge of

the close loop prediction problem between the physical

and the analytical model is used in the industry apply-

ing experimental measurements and the inite element

method (FEM) to reduce the cost of prototypes compo-

nents. A number of steps are described in [29] such as:

EM, curve-itting algorithms, laminate theory, form of the

lineal diferential equation, dealingwith continuous inter-

faces and the evaluationof the error. These steps are briely

introducedandadapted for the objective of thiswork in the

next sections.

2.1 Experimental measurements

The experimental measurements described by the fre-

quency response functions (FRF). H(ωi), is deined as the

ratio of the transformed excitation [19]:

H(ωi) =
X(ωi)

F(ωi)
, (1)

where H(ωi) is the measured (predicted) FRF transfer

function matrix, X(ωi) the Fourier spectrum of response,

and F(ωi) is the Fourier spectrum of excitation force. The

FRF in Eq. (1) is the inverse of the dynamic stifness:

H(ωi) =
︁

−ω2
i [M] + ωi[C] + [K]

︁−1
, (2)

where the mass [M], damping [C] and stifness [K] matri-

ces in Eq. (2) are dependent of physical parameters such

as material’s density, Young’s and shear moduli and Pois-

son’s ratio [10].

2.2 Curve-itting Algorithms

The goal of using the curve-itting algorithms is to produce

an accurate estimation of the modal parameters of the

CFRP component using the FRF. There are severalmethods

that can be used to estimate the modal parameters based

on one mode at a time (SDOF) or more modes at a time

(MDOF, global andmulti-reference) [30]. The global curve-

itting expression called the rational fraction polynomial

(RFP) or partial fraction expansion (PFE) is received with

great interest and attention for its simplicity and easy im-

plemention in personal computers (PC) [31] for the last 20

years [32ś34]. The RFP form of poles and residues, illus-

trated in Eq. (3), ofers advantages over other forms docu-

mented in literature [30, 31, 34].

H(s) =

modes︁

k=1

︂
[Rk]

s − λ1
+

[R*k]

s − λ*2

︂

(3)

The residue matrices [Rk] and [R
*
k] are deined as the con-

stant numerators of the transfer function matrix, "modes"

are the number of modes of vibration, λr is the pole

location and (s) is the Laplace variable. The RFP form

in Eq. (3) is typically used when the modal data is ob-

tained from experimental transfer functionmeasurements

(FRF’s). Traditionally the relationship between residues

and mode shapes are expressed in terms of FRF or modal

parameters. The identiication of experimental measure-

ments is determined obtaining modes whose poles are lo-

cated in the test frequency range selected. A characteris-

tic of the curve-itting algorithms identiication De Résidus

Unauthenticated

Download Date | 9/22/17 5:17 PM



Application of the mode-shape expansion methods to a composite structure | 201

Complexes (IDRC) and Identiication De Résidus Multiples

(IDRM) used in this work are the residual terms [Rk(λr)],

[E(s)] and [F(s)] deined in [21]. The contributions of the

residual terms in the transfer functions are used to evalu-

ate the high and low frequency mode terms respectively,

see Eq. (4).

H(s) =

modes︁

k=1

︂
[Rk]

s − λ1
+

[R*k]

s − λ*2

︂

+ [E(s)] +
[F(s)]

s2
(4)

The residual terms are known also a residual modes or

residual vectors [21] and it is documented the advantages

of the application of the residual terms in the literature

[18]. Thus, the estimation of the poles depends linearly

on the residual terms [Rk(λr), E(s), F(s)] solving the linear

least squares problem associated with the frequency do-

main output error illustrated in Eq. (5).

︀
Rk(λr), E(s), F(s)

︀
= arg min

⃒
⃒[H(s)]test − H(s)

⃒
⃒
2

(5)

where the residue matrix [Rk] = {cϕj}{ϕ
T
j b} is given by

the product of a column observability {cϕj} and row con-

trollability {ϕT
j b} deined in [21]. The residue matrix [Rk]

is often expressed as [Aj] = {ϕj}{Lj} in the structural dy-

namics community, where [Aj] is commonly called modal

participation factor, {ϕj} is the modeshape and {Lj} is the

controllability [29]. Assuming that the complexpoles come

in conjugate pairs and the residue matrices too, the nor-

mal mode residue with symmetric pole structure can be

deined as a rational fraction expression (to determine the

damping ratios that are diferent for each pole using the

normal mode model format proposed by Balmès in [21] of

the form:

H(s) =

N︁

j=1

{[c]ϕj}{ϕ
T
j [b]}

s2 + 2ζjωjs + ω
2
j

=

N︁

j=1

[Tj]

s2 + 2ζjωjs + ω
2
j

(6)

where the contribution of each mode is characterized by

the pole frequency ωj, damping ratio ζj, and the normal

mode residues matrix [Tj] with symmetric pole structure

[21]. The matrix [Tj] is equal to the product of the normal

mode output shapematrix {[c]ϕj} by the normal mode in-

put shape matrix {[b]ϕT
j }. The matrix [b] is called the in-

put shape matrix and the matrix [c] is called the output

shapematrix. This matrix description is established based

on several assumptions in [29] and it can be applied con-

sidering second order models of the form introduced in

subsection 2.4.

2.3 Laminate Theory

The classical laminate theory (CLT) and the irst-order

shear deformation laminate theory (FSDT) are applicable

to linear and composite elastic materials [26], by means of

the Discrete Mindlin Kirchhof Triangle (DMKT) elements

also known as Discrete Shear Triangle (DST) elements [27,

28]. One characteristic of these triangle elements is that

theMindlin/Reissner plate theory can be reduced theoreti-

cally to theKirchhofplate theory if the transverse shear ef-

fects are not important [28]. These laminate theories have

been used extensively to predict elastic behavior of the

traditional iber-reinforced polymers (FRP). FRP materials

(carbon or glass FRP) are widely used in aerospace and

construction applications. One important consideration is

to have perfectly bonded layers with a uniform thickness

(see Figure 1). The mechanical properties measured in ply

level experiments are used to populate the stifnessmatrix

for each ply. The stifness matrices for the individual plies

are combined to form the laminate stifnessmatrix ABD− S̃

in:
⎧

⎪⎨

⎪⎩

Ni

Mi

Sij

⎫

⎪⎬

⎪⎭

=

⎡

⎢
⎣

A B 0

B D 0

0 0 S̃

⎤

⎥
⎦

⎧

⎪⎨

⎪⎩

ϵi
κi
γij

⎫

⎪⎬

⎪⎭

. (7)

The ABD − S̃matrix in Eq. (7) relates forces (Ni), moments

Figure 1: Coniguration of composite layers [10].

(Mi) and shear stresses (Sij) to strains (ϵi), curvatures (κi)

and shear strains (γij). The components of the ABD − S̃

matrix are given in Eqs. (8)-(11), where N is the number of

plies, [Qk] is the stifnessmatrix of each ply, zk denotes the

distance from the laminate’smid-plane to the edges of sin-

gle plies, and K is the shear correction factor usually taken

as 5/6:

[A] =

N︁

K=1

[Q̄k]
(k)(zk+1 − zk), (8)
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[B] =
1

2

N︁

K=1

[Q̄k]
(k)(z2k+1 − z

2
k), (9)

[D] =
1

3

N︁

K=1

[Q̄k]
(k)(z3k+1 − z

3
k), (10)

[S̃] = K

N︁

K=1

[Q̄k]
(k)(zk+1 − zk), (11)

2.4 Form of the linear diferential equation

It is considered only second order models of the form, see

[10] and [29], and reintroduced in this section to perform

MSE to a composite component assembly) in Eq. (12):
︁

[M]s2 + [C]s + [K]
︁

B
{qB(s)} = [bIB]{uIB(s)} (12)

{yIB(s)} = [cIB]{qB(s)}

where (s) is the Laplace variable, [M], [C], [K] are themass,

damping and stifness matrices, respectively, {qB(s)} are

the generalised degrees of freedom (DOFs) of the base,

[bIB] and [cIB] are the input and output matrices of the

base interface, respectively, {uIB(s)} are the inputs de-

scribing the time/frequency dependence, and {yIB(s)} are

the physical outputs of the base interface deined in [1ś

3, 5ś9, 21, 29]. Note that the input/output shape matrix

formalism decouples the choice of DOF {qB(s)} from the

choice of {uIB(s)} and {yIB(s)} [1]. The [bIB] and [cIB] are

Boolean matrices of the base interface of the full FE mod-

els with compatible interface meshes. Considering the re-

sponse of an elastic structure to applied loads F(s) =

[bIB]{uIB(s)}, the exact response at a given frequency

[H(s)] is given in Eq. (13) by:

[H(s)] = [cIB]
︁

[M]s2 + [C]s + [K]
︁−1

B
[bIB] (13)

= [cIB]
︀
ZB(s)

︀−1
[bIB],

where [Z(s)] is the dynamic stifness. The interest of writ-

ing the transformation of the DOFs in this way, per Balmès

[3], Corus [6] and Billet [1], is the easy translation of [bIB]

and [cIB] denoted by IB in the subscript. For the cou-

pled prediction in the CFRP component one assumes that

the modiication of the stifness parameters can be mod-

eled with the FE model in the base interface (denoted as

IM subscript and M superscript). Thus, one can write the

modiication of the model in the form
⎡

⎣

︁

ZMII (s)
︁ ︁

ZMIC(s)
︁

︁

ZMCI(s)
︁ ︁

ZMCC(s)
︁

⎤

⎦

︃︀
yIM(s)

︀

qC(s)

︃

=

︃︀
uIM(s)

︀

{0}

︃

,

(14)

where the interface of DOFs explicitly appears as DOFs of

the model, see [9]. The Division of the DOFs is divided

into two groups: active or interface DOFs denoted by I

in the subscript, and complementary, denoted by C in

the subscript ś observed in Eqs. (14) and (15). Using the

framework of Ritz methods, the coupled prediction is ob-

tained by imposing displacement continuity on the base in-

terface ({yIB(s)} = {yIM(s)}), and projecting the associated

model on loads dual to the displacement subspace admissi-

ble under the continuity constrain. The projection thus com-

bines continuity and dynamic equilibrium loads ({uIB(s)} =

{uIM(s)}). The base model given by Eq. (12) and a modiica-

tion described by Eq. (14) in [1] leads to

︃︀
ZB(s)

︀
0

0
︁

ZMCC(s)
︁

︃

+

︃

bIB(s)

0

︃
︁

ZMII (s)
︁ ︁

cIB 0
︁

(15)

+

︃

bIB(s)

0

︃
︁

0 ZMIC(s)
︁

+

︃

0

ZMIC(s)

︃
︁

cIB 0
︁
︃

qB(s)

qC(s)

︃

= F(s)

For {qB(s)} and {qC(s)} corresponding to FEM DOFs, [bIB]

and [cIB] are the input and output Boolean matrices of the

base interface respectively. Equation (15) corresponds to

the standard assembly process established in [29]. For the

applications considered in [29], the {qB(s)} are deined in

modal coordinates and {qC(s)} corresponds to ixed inter-

face modes of a Craig-Bampton model [1].

2.5 Dealing with continuous interfaces

The incompatibiliy between the discretisation of the

FE model {yI(s)} and the experimental measurements

{yT(s)} is documented in [1]. A highlight of this methodol-

ogy assumes that exists a constant coeicient linear com-

bination [cIT ] relating the interface {yI(s)} and the test dis-

placements {yT(s)} for the coupled response in Eq. (16):

{yI(s)} ≈ [cIT ]{yT(s)}. (16)

This relation imposes a strong constraint on the inter-

face kinematics since {yI(s)} must be approximated by a

subspace of basis [TG] with a dimension that is smaller

than the number of sensors used. The choice of this sub-

space [TG], and the justiication of its ability to represent

the coupled response, is a key aspect proposed in [1]. The

construction of a reduced interface model ([TG] subspace)

is a classical extension of CMS addressed in the literature

[2, 4, 29] using a Craig-Bampton type reduction of themod-

iication where the constraint modes are replaced by the
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Figure 2:MSE process plot.

low order modes of the model statically condensed on its

interface [1], as originally proposed in [22].

For this study, the updated FE model elaborated with

triangle elements [26ś28] is used to deal with the incom-

patibility of the interface between the FE model and the

experimental measurements. The main purpose of using

this updated FE model is to allow the interpolation of test

motion at an arbitrary number of DOF of the interface to

analyze the inluence of the subspace-basis [TG] based on

MOR methods in the CFRP component, (see Table 1). The

subspace [TG] is deined on the DOFs of a local part of the

updated FE model [cIL] including or not the modiication,

(see Figure 2).

The extraction of the interface of motion {yI(s)} using

the updated FE model is thus written in Eq. (17) as

{yI(s)} = [cIT ][TG]{yG(s)}. (17)

An observation matrix [TG] can be constructed relating

the {qL(s)} (DOFs of the updated FE model) with mea-

Table 1: Operator [TG] using diferent model order reduction meth-

ods applied to mode shape expansion methods.

MODAL/SEREP {qI(s)}=[cIT ][TG]MODAL/SEREP{yT(s)}

STATIC {qI(s)}=[cIT ][TG]GUYAN{yT(s)}

DYNAMIC {qI(s)}=[cIT ][TG]DYNAMIC{yT(s)}

MDRE {qI(s)}=[cIT ][TG]MDRE{yT(s)}

MDRE-WE {qI(s)}=[cIT ][TG]MDRE−WE{yT(s)}

surements {yT(s)} = [cTL]{qL(s)} = [cTG]{yG(s)} =

[cTL][TG]{yG(s)}, (see [9] for possible methods). The esti-

mation of the generalised motion of the interface {yG(s)},

denoted by G in the subscript, can be established as:

{yG(s)} = [cGB]{qB(s)}. (18)

The standard approach to estimate the full response us-

ing diferent subspace-based expansionmethods [1] estab-

lished in [29] is then obtained by minimising the test er-

ror (distance between the test data and the associated re-
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sponse for the expanded shape). The minimum is gener-

ally obtained by solving the least squares problem as

{yG(s)} = Arg min
⏟  ⏞  

{yG}

|| [cTG]
︀
yG(s)

︀
− [cTB]

︀
qB(s)

︀
||2

(19)

whose solution is given by

[cGB] = [cTTGcTG]
−1[cTTGcTB] (20)

which leads to the observation Eq. (16) with [cIT ] =

[cIL][TG][cGB]. The given assumption (17), the second block

row of Eq. (14), describes the motion of the modiication

[ZCC]{qC(s)} = −[ZMCI(s)][TG]{yG(s)}. (21)

For the irst block row it is assumed that the generalised

loads are deined by projection on the subspace [TG] of the

form in

{uGM} = [cIG]
T [ZMIC(s)]{qC(s)} (22)

+ [cIG]
T [ZMII (s)][cIG]{yG(s)}.

The coupled response is obtained assuming dynamic equi-

librium of generalised loads {uGB} = {uGM} established in

[1].

2.6 Evaluation of the error using the Modal
Assurance Criterion (MAC)

Evaluation tools [1] are needed to evaluate the predictions

based onmany assumptions that introduce error. The eval-

uation of the error in the correlation in this study is an-

alyzed applying a modal assurance criteria (MAC) based

on the eigenfrequencies and eigenvectors divided into four

parts. There are two general categories for correlation cri-

teria: the eigenfrequencies and eigenvectors [19]. TheMAC

is one of the most useful comparison methods that relies

on the eigenvector information, see Eq. (23) :

MAC =
|
︀l

j=1

︀
cjϕid

︀H ︀
cjϕk

︀
|2

|
︀l

j=1

︀
cjϕid

︀H ︀
cjϕid

︀
||
︀l

j=1

︀
cjϕk

︀H ︀
cjϕk

︀
|
,

(23)

where cjϕid is the jth mode shape at sensors and cjϕk is

the jth analytical mode shape. The MAC value of 1 cor-

responds to an absolute correlation. The less this value

becomes, the worst the eigenvector correlation will be.

In the modal community a MAC coeicient of a magni-

tude larger or equal than 0.90 in the diagonal and less

or equal than 0.05 in the of-diagonal implies a satisfac-

tory correlation. In the irst part, the MAC of experimen-

tal measurements versus the updated stifness parameters

of the full FE model is analyzed. In the second part, the

MSE methods are calculated to estimate the interface mo-

tion {yI(s)} using the experimental measurements, curve-

itting performed with the IDRC and IDRM algorithms, set-

up of sensors and full FE model results. In the third part,

once {cjϕid} and {cjϕk} are deined at sensors, it is pro-

posed to obtain the stifness and mass-weighted criterias,

K-MAC and M-MAC, (see Eqs. (24) and (25) respectively),

also called cross-generalisedmass (CGM) and the less used

cross-generalised stifness (CGK) to observe the inluence

of the MOR using MSE methods.

The K-MAC=

|
︀l

j=1

︀
cjϕid

︀H
[K]

︀
cjϕk

︀
|2

|
︀l

j=1

︀
cjϕid

︀H
[K]

︀
cjϕid

︀
||
︀l

j=1

︀
cjϕk

︀H
[K]

︀
cjϕk

︀
|
,

(24)

and M-MAC=

|
︀l

j=1

︀
cjϕid

︀H
[M]

︀
cjϕk

︀
|2

|
︀l

j=1

︀
cjϕid

︀H
[M]

︀
cjϕid

︀
||
︀l

j=1

︀
cjϕk

︀H
[M]

︀
cjϕk

︀
|
,

(25)

values closer to 1 represent a higher agreement, and these

values are being interpreted in the same way as the MAC

[29].

The implementation of these criteria supports an orig-

inal method for reducing the mass on the sensor set that

used vectors deined at DOFs implemented in [29] based

on themass and stifnessmatrices of the full FEmodel. The

fourth part is evaluated modifying E1 and E2 equal to 97.3

GPa of all the parts deined in [10] to observe the impact

of the stifness and mass matrices in the interface motion

of the full FE model applying subspace based expansion

methods using theK-MACandM-MAC criteria based on the

MAC.

3 Results and Discussion

The composite structure incorporates three parts, see Fig-

ures 3 and 4. The irst component is made of Hunts-man
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Figure 3: RTM Composite component assembly [10]

Figure 4: Composite component assembly detail [10].

Figure 5: Experimental Set-up [11].

Ly 564 + Hexcel Gewebe G0926 (HTA-Faser) with dimen-

sions of 0.390m × 0.810m (Figure 3 front and back part).

Figure 6: 153 Y-direction sensors [10].

Figure 7: 153 Sensors in the FEM model [10].

Themiddle shell that connects the twoprincipal partswith

epoxic (Figure 4 has dimensions of 0.710m × 0.030m. Fi-

nally, there is the C-section Hexcel RTM6 + Saertex Multi-

Axial-Gelege (MAG) with a IM7-Faser with dimensions of

0.710m × 0.030m. All the parts have symmetric layer distri-

bution [45/ − 45/45/ − 45/]S. All the measurements were

performed with the Scanning Laser Doppler Vibrometer

(SLDV) PSV840 by suspending the CFRP component from

very soft cords (free condition), (see Figures 5-7).

The shaker LDS V406 and the stinger with length of

65 mm at node 17 are used to excite the structure that pro-

duce a sinusoidal vibration velocity signal on the line of

sight of theSLDV (out-of-plane). The reason touse a stinger

is to ensure that the shaker will only impart force to the

structure along the axis of the stinger. The excitation signal

selected is a periodic chirp (with frequency span 30-400
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Figure 8: FRF(blue) and itting curve (green) of composite model at

node 183y [10].

Hz, 6400 lines of resolution, with complex average type

and number of average per Frequency Response Function

(FRF) equal to 10) and relective foil is used to acquire the

response measurement location. The input force is mea-

sured using a force transducer Dytran 1051V3 and power

ampliier LDSPA 100 in order to record the excitation in the

transverse direction. The interpolation between the exper-

imentalmeasurements uses FRFs [21]. The FRF, (see Figure

8), allowed us to compare the experimental modal param-

eters (frequency, damping, and mode shape) with the FE

model. The Fast Fourier Transform (FFT) is a fundamen-

tal procedure that isolates the inherent dynamic proper-

ties of a mechanical structure and in our case with respect

to the full FE models. To approximate the measurements

(blue line) through a polynomial function (green line), it

was used the frequency domain identiication of struc-

tural dynamics applying the pole/residue parameteriza-

tion [21], (see Figure 8). The experimental measurements

were performed at low frequency (up to 400 Hz), and the

curve-itting generated from the experimental measure-

ments [10]. A bandwith of 2% is used to localize the eigen-

frequencies.

The CFRP provided by the DLR Braunschweig was

measured, elaborated the FEM model and imported into

SDTools using primarily triangular shells in the mesh

(pshell ). An appropiate assessment was perfomed to eval-

uate themeshdensity of the FEmodel. Normalmodeswere

computed using the FE model to obtain the natural fre-

quencies and normal mode shapes of a CFRP structure.

The model was divided in three parts, (see Figure 9), for

convienience to modify the physical parameters per group

of elements. The FE model is composed by triangular ele-

ments with a fairly regular shape and pattern.

A good practice in modal analysis using FE model as-

semblies is to couple the components using rigid body el-

ements (RBE) or couplings as a boundary conditions to

perform a modal analysis in the assembly. In this work,

the FE model is prepared as a continuous body between

Figure 9: FEM groups.

Figure 10:MAC: SDTools vs. Exp. [10]

.

the three components for convienience to simplify the FE

model. The number of nodes and elements per group are

listed in Table 3. After the FEmodelwas developed, a num-

ber of validity checks were performed on the model prior

to conduct the modal analysis. These check ups are units,

mass comparation, layer stack-up, material and element

properties and input and output coodinate systems.

TheMAC analysis of the full FEmodel can be observed

in Figure 10 (SDTools-MATLAB model versus the experi-

mental measurements). The same number of modes was

calculated in the full FEmodel. Itwasperformeda cross or-

thogonality MAC (XOR) to verify the approximation of the

full in low frequency range (12 mode pairs) versus the full

model, see [10]. A good MAC correlation was obtained be-

tween updated full FE model and the experimental mea-

surements in [10]. The nearly double correlation in the ex-

perimetal results identiied in Figure 10 for the full mod-

els suggest the presence of the veering phenomena [23ś

25] (bending and torsional mode at the same frequency)

in our composite component assembly. Thus, lower MAC

results in 4,9,10 and 11 paired modes (see Figure 10) were

archieved and identiied using the experimental results.
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Table 2: Comparative MAC: Updated full model (SDTools) and MSE results vs. experimental measurements.

ID Test

(Hz)

ID FE model

SDTools

(Hz)

DF/FA

%

MAC ID MAC

MODAL

/SEREP

MAC

STATIC

MAC

DYNAMIC

MAC

MDRE

MAC

MDRE-WE

1 49.243 7 57.218 16.2 100 1 100 100 100 100 100

2 92.265 8 106.02 14.9 97 2 99 100 100 100 99

3 93.756 8 106.02 13.1 90 3 98 100 100 100 99

4 145.29 10 168.2 15.8 83 4 99 100 100 100 99

5 160.05 10 168.2 5.1 86 5 100 100 100 100 99

6 164.18 9 167.5 2.0 98 6 100 100 100 100 99

7 226.36 12 236.83 4.6 86 7 99 100 100 100 99

8 243.4 11 234.99 −3.5 96 8 99 100 100 100 99

9 307.33 14 323.93 5.4 81 9 99 100 100 100 99

10 314.18 14 323.93 3.1 66 10 97 100 100 100 99

11 324.83 13 315.26 −2.9 74 11 94 100 100 100 99

12 329.67 13 315.26 −4.4 90 12 99 100 100 100 99

Table 3: FE model Ð elements, nodes and DOFs

Component Element

Type

Number of

Elements

Number of

Nodes

Part 1 pshell 7,200 3,840

Part 2 pshell 2,016 1,105

Part 3 pshell 3,024 1,615

Assembly 12,240 6,283

Total DOF 37,698

Figure 11:MAC: MSE MODAL/SEREP vs. Exp.

.

Furthermore, the diferent MSE are calculated

(MODAL / SEREP, STATIC, DYNAMIC, MDRE, MDRE-WE)

MAC MSE STATIC E

Figure 12:MAC: MSE STATIC vs. Exp.

based on the updated full FE model, the experimental

measurements and curve-itting according the method-

ology implemented in [29] using fe_exp command, (see

Figures 11-15). The same number of paired modes are cal-

culated (12 pairs) for all the MSE methods. An error of 0.1

is used in the interpolation of the MDRE-WE. In Figures

11-15, an improvement of the double correlation is iden-

tiied using the MSE methods versus the experimental

measurements.

The same number of DOF are obtained applying the

MSE interpolation based on MOR methods according the

number of DOF deined in the full model (37,698 DOF). In
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Table 4: Comparative MAC: Updated full model (SDTools) and K-MAC MSE results vs. experimental measurements.

ID Test

(Hz)

ID FE model

SDTools

(Hz)

DF/FA

%

MAC ID K-MAC

MODAL

/SEREP

K-MAC

STATIC

K-MAC

DYNAMIC

K-MAC

MDRE

K-MAC

MDRE-WE

1 49.243 7 57.218 16.2 100 1 98 31 31 31 100

2 92.265 8 106.02 14.9 97 2 96 74 74 58 95

3 93.756 8 106.02 13.1 90 3 92 51 51 38 78

4 145.29 10 168.2 15.8 83 4 88 81 81 45 89

5 160.05 10 168.2 5.1 86 5 87 84 84 49 87

6 164.18 9 167.5 2.0 98 6 94 89 89 56 99

7 226.36 12 236.83 4.6 86 7 88 79 79 49 89

8 243.4 11 234.99 −3.5 96 8 96 89 90 65 97

9 307.33 14 323.93 5.4 81 9 88 81 81 60 87

10 314.18 14 323.93 3.1 66 10 79 65 66 45 76

11 324.83 13 315.26 −2.9 74 11 87 70 71 16 33

12 329.67 13 315.26 −4.4 90 12 93 87 88 39 89

Table 5: Comparative MAC: Updated full model (SDTools) and M-MAC MSE results vs. experimental measurements.

ID Test

(Hz)

ID FE model

SDTools

(Hz)

DF/FA

%

MAC ID M-MAC

MODAL

/SEREP

M-MAC

STATIC

M-MAC

DYNAMIC

M-MAC

MDRE

M-MAC

MDRE-WE

1 49.243 7 57.218 16.2 100 1 100 3 100 100 100

2 92.265 8 106.02 14.9 97 2 99 4 98 98 99

3 93.756 8 106.02 13.1 90 3 93 2 92 92 93

4 145.29 10 168.2 15.8 83 4 83 8 82 82 86

5 160.05 10 168.2 5.1 86 5 86 5 86 86 88

6 164.18 9 167.5 2.0 98 6 98 11 98 97 99

7 226.36 12 236.83 4.6 86 7 83 2 82 81 86

8 243.4 11 234.99 −3.5 96 8 96 86 96 96 98

9 307.33 14 323.93 5.4 81 9 82 5 80 78 83

10 314.18 14 323.93 3.1 66 10 69 2 65 64 70

11 324.83 13 315.26 −2.9 74 11 80 49 73 60 71

12 329.67 13 315.26 −4.4 90 12 90 2 89 83 91

Table 2 can be observed the improvement of the MAC val-

ues in all the paired modes of the MSE based on MOR ver-

sus the experimental measurements. The MAC values of

the full FE model versus the experimental measurements

can be observed in the left part of the Table 2.

Furthermore, the inluence of the MOR methods us-

ing MSE can be analyzed obtaining the K-MAC and M-

MAC displayed in Tables 4 and 5 respectively. The best K-

MAC results are obtained applying the MODAL andMDRE-

WE MSE methods displayed in Table 4. The worst paired

modes of the MODAL andMDRE-WEMSEmethods are dis-

played at pairedmode 10 (K-MACof 79) and at pairedmode

11 (K-MAC of 33) respectively. The others MSEmethods dis-

play a decrease of the K-MAC respect to the MODAL and

MDRE-WE results. Furthermore, in Tables 2 to 5 are not

displayed the diferences of the eigenfrequencies between

the experimental measurements and MSE results because

there diferences are zero.

There is a null diference in the frequencies applying

diferent MSE because it is used the same pole identiica-

tion obtained with the curve-itting for all the MSE meth-

ods deined in [29]. The M-MAC of all the MSE methods

can be observed in Table 5. A strong inluence of the M-

MAC results is observed in the subspace based expansion

methods with the exception of the STATIC MSE method

(the STATICMOR is not taking in consideration the inertial

forces). Using the contrieved example (modifying only the

Young ’s modulus E1 and E2 for all the three parts in the
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Table 6: Comparative MAC: Contrieved full model (SDTools) and MSE results vs. experimental measurements.

ID Test

(Hz)

ID FE model

SDTools

(Hz)

DF/FA

%

MAC ID MAC

MODAL

/SEREP

MAC

STATIC

MAC

DYNAMIC

MAC

MDRE

MAC

MDRE-WE

1 49.243 7 64.497 31.0 100 1 100 100 100 100 100

2 92.265 8 117.86 27.7 97 2 99 100 100 100 99

3 93.756 8 117.86 25.7 90 3 98 100 100 100 99

4 145.29 10 184.66 27.1 61 4 99 100 100 100 99

5 160.05 10 184.66 15.4 88 5 100 100 100 100 99

6 164.18 9 177.54 8.1 81 6 100 100 100 100 99

7 226.36 12 257.19 13.6 47 7 99 100 100 100 99

8 243.4 11 257.19 5.7 55 8 99 100 100 100 99

9 307.33 14 344.15 12.0 66 9 99 100 100 100 99

10 314.18 14 344.15 9.5 49 10 97 100 100 100 99

11 324.83 13 340.81 4.9 64 11 94 100 100 100 99

12 329.67 13 340.81 3.4 73 12 99 100 100 100 99

Table 7: Comparative MAC: Contrieved full model (SDTools) and K-MAC MSE results vs. experimental measurements.

ID Test

(Hz)

ID FE model

SDTools

(Hz)

DF/FA

%

MAC ID K-MAC

MODAL

/SEREP

K-MAC

STATIC

K-MAC

DYNAMIC

K-MAC

MDRE

K-MAC

MDRE-WE

1 49.243 7 64.497 31.0 100 1 98 33 33 33 100

2 92.265 8 117.86 27.7 97 2 96 74 74 62 96

3 93.756 8 117.86 25.7 90 3 93 52 53 41 81

4 145.29 10 184.66 27.1 61 4 66 60 60 36 66

5 160.05 10 184.66 15.4 88 5 91 85 85 54 91

6 164.18 9 177.54 8.1 81 6 79 74 74 48 82

7 226.36 12 257.19 13.6 47 7 52 46 46 29 53

8 243.4 11 257.19 5.7 55 8 58 52 53 39 58

9 307.33 14 344.15 12.0 66 9 72 65 66 49 71

10 314.18 14 344.15 9.5 49 10 59 48 49 34 57

11 324.83 13 340.81 4.9 64 11 77 61 62 15 33

12 329.67 13 340.81 3.4 73 12 75 69 70 32 73

full FE model, E1 = E2= 97.3 GPa), a decrese of the eigen-

vectors per paired mode as well as of the eigenfrequencies

of the full FE model can be observed applying the MAC

in the paired modes 4,6-12 in Figure 16 and Table 6, col-

umn (DF/FA). Furthermore, the MAC obtained in Figure 16

is used to calculate the MSE results modifying the E1 and

E2 stifness parameters. A good eigenvector correlation be-

tween the MSE and the experimental measurements can

be observed between Tables 2 and 6 evaluating the stif-

ness parameters of the contrieved example respect to the

updated stifness parameters. Howerver, it can be identi-

ied the diference in the eigenvector correlation using the

contrieved stifness parameters. TheMAC results in Table 6

suggest a robustness in the interpolation using MSEmeth-

ods even though the MAC results of the contrieved full FE

model displayed poor results, see Figure 16. However, the

inluence of the MOR methods using MSE methods can be

analyzed using the K-MAC and M-MAC criteria. A negative

impact in K-MAC and M-MAC is displayed in Tables 7 and

8 respectively using the stifness parameters of the con-

trieved example. In Table 7 canbe observed that theK-MAC

results displayed a signiicative decrease in all the paired

modes applying the diferent MSE methods respect to the

K-MAC results displayed in Table 4. The STATIC, DYNAMIC

and MDRE MSE methods display similar K-MAC and M-

MAC values in the paired modes 1-3 in Tables 7 and 8 re-

spect to the same paired modes in Tables 4 and 5 respec-

tively. However, the rest of the paired modes obtained in
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Table 8: Compartive MAC: Contrieved full model (SDTools) and M-MAC MSE results vs. experimental measurements.

ID Test

(Hz)

ID FE model

SDTools

(Hz)

DF/FA

%

MAC ID M-MAC

MODAL

/SEREP

M-MAC

STATIC

M-MAC

DYNAMIC

M-MAC

MDRE

M-MAC

MDRE-WE

1 49.243 7 64.497 31.0 100 1 100 2 100 100 100

2 92.265 8 117.86 27.7 97 2 99 3 98 98 99

3 93.756 8 117.86 25.7 90 3 94 1 92 92 93

4 145.29 10 184.66 27.1 61 4 62 5 61 60 62

5 160.05 10 184.66 15.4 88 5 89 5 89 89 90

6 164.18 9 177.54 8.1 81 6 83 18 83 83 84

7 226.36 12 257.19 13.6 47 7 49 1 48 47 50

8 243.4 11 257.19 5.7 55 8 57 54 56 56 57

9 307.33 14 344.15 12.0 66 9 67 3 65 65 68

10 314.18 14 344.15 9.5 49 10 52 1 50 49 52

11 324.83 13 340.81 4.9 64 11 70 48 65 57 64

12 329.67 13 340.81 3.4 73 12 73 1 72 69 74

Figure 13:MAC: MSE DYNAMIC vs. Exp.

Tables 7 and 8 using the K-MAC and M-MAC applying dif-

ferent MSE methods display a deterioration respect to the

K-MAC and M-MAC results of Tables 4 and 5, with excep-

tion of the paired mode 5 with value of 91 in the K-MAC

applying the MODAL and MDRE-WE MSE methods.

3.1 Conclusions

The application of MSE based onMORmethods using CMS

to a CFRP component have shown good predictive capa-

bilities of the dynamic behaviour in a CFRP combining ex-

Figure 14:MAC: MSE MDRE vs. Exp.

perimental results, curve-itting and anupdated FEmodel.

The experimental measurements performed with a SLDV

and the identiication of pole/residues used in a previous

work are suitable to apply MSE methods to a CFRP ac-

cording the results. It was observed an improvement in

the MAC results between the experimental measurements

and the MSE methods using the updated or modifying the

stifness parameters of the full model(contrieved model).

However, the inluence of theMOR usingMSE can be iden-

tiied comparing of K-MAC and M-MAC results (eigenfre-

quencies and eigenvectors) based on the modiication of

the stifness parametes of the updated FE model. It is no-
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Figure 15:MAC: MSE MDRE-WE vs. Exp.

Figure 16:MAC: Contrieved vs. Exp.

ticed a strong inluence of the stifness parameters in the

K-MAC and M-MAC criteria using MSE methods to a CFRP

based on the MAC correlation between the experimental

measurements and the full FE model. The best K-MAC and

M-MAC results are observed using the MODAL/SEREP and

MDRE-WE MSE methods implemented in SDTools based

on the experimental measurements, curve-itting and up-

dated stifness parameters obtained in a previous work.

The strong inluence of the stifness parameters suggests

that the distorsion of the subspace based expansionmeth-

ods can be controlled applying the K- MAC and M-MAC us-

ing the MAC criteria. Furthermore, the general framework

methodology of Ritz vectors, the updated stifness param-

eters of the CFRP, the quality of experimental measure-

ments, the curve-itting algorithms based in the classical

Laplace method and the type of element selected played

an essential role in the dynamic correlation applyingMSE,

MOR and CMS methods to a CFRP.
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