
Proceedings of the

Linux Audio Conference 2018

June 7th - 10th, 2018

c-base, in partnership with the
 Electronic Studio at TU Berlin

Berlin, Germany

Published by

Henrik von Coler

Frank Neumann

David Runge

http://lac.linuxaudio.org/2018

All copyrights remain with the authors. This work is licensed under the Creatice Commons

Licence CC BY-SA 4.0

Published online on the institutional repository of the TU Berlin:

DOI 10.14279/depositonce-7046

https://doi.org/10.14279/depositonce-7046

Credits

Layout: Frank Neumann

Typesetting: LATEX and pdfLaTeX

Logo Design: The Linuxaudio.org logo and its variations copyright ThorstenWilms c©2006,

imported into "LAC 2014" logo by Robin Gareus

Thanks to:

Martin Monperrus for his webpage "Creating proceedings from PDF files"

ii

Partners and Sponsors

Linuxaudio.org

Technische Universität Berlin c-base

Spektrum CCC Video Operation Center

MODDevices HEDD

Native Instruments Ableton

iii

iv

Foreword

Welcome everyone to LAC 2018 in Berlin!

This is the 15th edition of the Linux Audio Conference, or LAC, the international conference

with an informal, workshop-like atmosphere and a unique blend of scientific and technical

papers, tutorials, sound installations and concerts centering on the free GNU/Linux oper-

ating system and open source software for audio, multimedia andmusical applications.

We hope that you will enjoy the conference and have a pleasant stay in Berlin!

Henrik von Coler

Robin Gareus

David Runge

Daniel Swärd

Heiko Weinen

v

vi

Conference Organization Core Team

Henrik von Coler

Robin Gareus

David Runge

Daniel Swärd

Heiko Weinen

Conference Website and Design

David Runge

Paper Administration and Proceedings

Frank Neumann

Organization of music program, installations, and workshops

Henrik von Coler

David Runge

Concert Sound

Henrik von Coler

Jonas Margraf

Paul Schuladen

vii

Review Committee

Fons Adriaensen Huawei Research, Germany

Henrik von Coler Technische Universität Berlin, Germany

Götz Dipper ZKM, Karlsruhe, Germany

Robin Gareus Germany

Harry van Haaren OpenAV, Ireland

Joachim Heintz University for Music Drama andMedia Hanover, Germany

Björn Kessler RISM (Répertoire International des Sources Musicales), Germany

Romain Michon CCRMA, Stanford University, United States

Martin Rumori Institute of Electronic Music and Acoustics, Graz, Austria

Bruno Ruviaro Santa Clara University, United States

Steven Yi Independent, United States

IOhannes Zmölnig IEM, University of Music and Performing Arts (KUG), Graz, Austria

Music Jury

Andre Bartetzki

Henrik von Coler

Goetz Dipper

David Runge

viii

Workshops

Day 2

Joao Pais Introduction to pmpd

Marten Seedorf, Simon Steinhaus

The levTools – a modular toolset in purr

data for creating and teaching electronic

music

Louigi Verona Djing with FLOSS: Mixxx Workshop

Hermann Voßeler Inbuilt Musicality

Albert Gräf Getting Started with Purr Data

Day 3

Uroš Maravić, David Vagt One Hour Challenge

Will Godfrey Yoshimi Live

Filipe Coelho
Carla Plugin Host - Feature overview and

workflows

Joao Pais
Understanding and being creative with

Pure Data’s data structures

Day 4

Daniel James, Christopher Obbard
How to create real-time audio appliances

with Debian GNU/Linux

David Runge Pro-audio on Arch Linux (revisited)

Rui Nuno Capela QjackCtl Considered Harmful

Uroš Maravić, Tres Finocchiaro LMMS 1.2: Changes and Improvements

ix

Music Program

Opening Night

Louigi Verona Minimal House DJ Set

Superdirt Superdirt2

Tape Night

Massimo Vito Avantaggiato ATLAS OF UNCERTAINTY

Anna Terzaroli Dark Path #2

Magnus Johansson Iammix

Helene Hedsund Bus No. 1

Massimo Fragalà Memorie

Michele Del Prete Spycher

Andre Bartetzki SHIFT

Performance Night

Alex Hofmann COSMO

Claude Heiland-Allen mathr performs with Clive

José Rafael Subía Valdez Tessellations

Krzysztof Gawlas Pick It Up

Elektronisches Orchester Charlottenburg Rotation II

Installations and Demonstrations

Jaime E Oliver La Rosa Caracoles IV

Marcello Lussana Sentire

x

Table of Contents

• Using Perlin noise in sound synthesis 1

Artem Popov

• SpectMorph: Morphing the Timbre of Musical Instruments 5

Stefan Westerfeld

• RSVP, a preset system solution for Pure Data 13

José Rafael Subia Valdez

• Open Hardware Multichannel Sound Interface for Hearing Aid

Research on BeagleBone Black with openMHA: Cape4all 21

Tobias Herzke, Hendrik Kayser, Christopher Seifert, Paul Maanen,

Christopher Obbard, Guillermo Payá-Vayá, Holger Blume, Volker Hohmann

• MRuby-Zest: a Scriptable Audio GUI Framework 27

Mark McCurry

• Camomile: Creating audio plugins with Pure Data 33

Pierre Guillot

• Ableton Link – A technology to synchronize music software 39

Florian Goltz

• Software Architecture for a Multiple AVB Listener and Talker Scenario 43

Christoph Kuhr, Alexander Carôt

• Rtosc - Realtime Safe Open Sound Control Messaging 51

Mark McCurry

• Jacktools - Realtime Audio Processors as Python Classes 59

Fons Adriaensen

• Distributed time-centric APIs with CLAPI 65

Paul Weaver, David Honour

xi

xii

Using Perlin noise in sound synthesis

Artem POPOV
Gorno-Altaysk,

Russian Federation,
art@artfwo.net

Abstract

Perlin noise is a well known algorithm in computer
graphics and one of the first algorithms for gener-
ating procedural textures. It has been very widely
used in movies, games, demos, and landscape gen-
erators, but despite its popularity it has been sel-
dom used for creative purposes in the fields outside
computer graphics. This paper discusses using Per-
lin noise and fractional Brownian motion for sound
synthesis applications.

Keywords

Perlin noise, Simplex noise, fractional Brownian mo-
tion, sound synthesis

1 Introduction

Perlin noise, first described by Ken Perlin in his
ACM SIGGRAPH Computer Graphics article
“An image Synthesizer” [Perlin, 1985] has been
traditionally used for many applications in com-
puter graphics. The two-dimensional version of
Perlin noise is still widely used to generate tex-
tures resembling clouds, wood, and marble as
well as procedural height maps.

Figure 1: 2D Perlin noise as rendered by Gimp
plugin “Solid noise”

Despite its popularity, Perlin noise has been
seldom used for creative purposes in the fields
outside the world of computer graphics. For
music applications, Perlin noise has been occa-
sionally used for creating stochastic melodies or
as a modulation source.

This paper is focused on synthesizing single-
cycle waveforms with Perlin noise and its suc-
cessor, Simplex noise. An overview of both algo-
rithms is given followed by a description of frac-
tional Brownian motion and several techniques
for adding variations to noise-based waveforms.
Finally, the paper describes an implementation
of a synthesizer plugin using Perlin noise to cre-
ate musically useful timbres.

2 Perlin noise

Perlin noise is a gradient noise that is built
from a set of pseudo-random gradient vectors of
unit length evenly distributed in N-dimensional
space. Noise value in a given point is calculated
by computing the dot products of the surround-
ing vectors with corresponding distance vectors
to the given point and interpolating between
them using a smoothing function.
Sound is a one-dimensional signal, and for

the purpose of sound synthesis Perlin noise of
higher dimensions is not so interesting. While
it is possible to scan Perlin noise in 2D or 3D
space to get a 1-dimensional waveform, it’s nec-
essary to make sure the waveform can be seam-
lessly looped to produce a musically useful tim-
bre with zero DC offset.
For one-dimensional Perlin noise, the noise

value is interpolated between two values,
namely the values that would have been the
result if the closest linear slopes from the left
and from the right had been extrapolated to the
point in question [Gustavson, 2005]. Thus, the
noise value will always be equal to zero on in-
teger boundaries. By sampling the resulting 1-
dimensional noise function, it’s possible to gen-
erate a waveform that can be looped to produce
a pitched tone (Figure 2).

3 Simplex noise

Simplex noise is an improvement to the original
Perlin noise algorithm proposed by Ken Perlin

1

Figure 2: Perlin noise (left) and Simplex noise
(right) with the gradients used for interpolation

himself [Perlin, 2001]. The advantages of sim-
plex noise over Perlin noise include lower com-
putational complexity, no noticeable directional
artifacts, and a well-defined analytical deriva-
tive.

Simplex noise is created by splitting an N-
dimensional space into simplest shapes called
simplices. The value of the noise function is a
sum of contributions from each corner of the
simplex surrounding a given point [Gustavson,
2005].

In one-dimensional space, simplex noise uses
intervals of equal length as the simplices. For
a point in an interval, the contribution of
each surrounding vertex is determined using the
equation:

(1− d2)4 · (g · d) (1)

Where g is the value of the gradient in a given
vertex and d is the distance of the point to the
vertex.

Both Perlin noise and Simplex noise produce
very similar results (Fig. 2) and are basically
interchangeable in a sound synthesizer1. For
brevity, Perlin noise or noise will be used to
refer to both algorithms for the scope of this
paper, since Simplex noise is also invented by
Ken Perlin.

4 Fractional Brownian motion

Fractional Brownian motion (fBm), also called
fractal Brownian motion is a technique often
used with Perlin noise to add complexity and
detail to the generated textures.

Fractional Brownian motion is created by
summing several iterations of noise (octaves),

1In some cases Perlin noise adds additional low fre-
quency harmonics to the sound which may or may not
be desirable.

Figure 3: 3 octaves of Perlin noise (left) summed
to generate a fBm waveform (right)

while successively incrementing their frequen-
cies in regular steps by a factor called lacunarity
and decreasing the amplitude of the octaves by
a factor called persistence with each step [Vivo
and Lowe, 2015].

fBm(x) =
n
∑

i=0

pi · noise(2i · x) (2)

Lacunarity can have any value greater than 1,
but non-integral lacunarity values will result in
non-zero fBm values on the integer boundaries.
To keep the waveform seamless in a sound syn-
thesizer, lacunarity has be an integer number.
A reasonable choice for lacunarity is 2, since
bigger values result in a very quick buildup of
the upper harmonics (Eq. 2).
Fractional Brownian motion is often called

Perlin noise, actually being a fractal sum of sev-
eral octaves of noise. While typically the same
noise function is used for every octave, different
noise algorithms can be combined in the same
fashion to create multifractal or heterogeneous
fBm waveforms [Musgrave, 2002].

5 Waveform modifiers

5.1 Gradient rotation

One technique traditionally used to animate
Perlin noise is gradient rotation [Perlin and
Neyret, 2001]. When gradient vectors in 2- or
more dimensional space are rotated the noise is
varied while retaining its character and detail.
This technique has been used for simulating ad-
vected flow and other effects. A similar tech-
nique can be applied to 1-dimensional noise to
introduce subtle changes to the sound.
Rotating gradients is a computationally ex-

pensive operation and cannot be used with 1-
dimensional noise, since the noise is built from
linear gradients instead of directional vectors.

2

Figure 4: Gradient offsets applied to fBm (left)
modify the waveform (right) while preserving
the timbre

It is still possible to apply this technique to
1-dimensional noise by adding a variable offset
value to the gradients and symmetrically wrap-
ping it when the maximum allowed gradient
value (1) is reached.

g′ =

{

2− g, g > 1

−2− g, g < −1
(3)

In a sound synthesizer, gradient rotation does
not change the timbre significantly. It does alter
the amplitudes of the upper harmonics slightly
(Fig. 4), adding variations that can be used in
a polyphonic (poly-oscillator) synthesizer.

5.2 Domain warping

Another classic technique for adding variation
to Perlin noise is called domain warping. Warp-
ing simply means that the noise domain is dis-
torted with another function g(p) before the
noise function is evaluated.

Basically, noise(p) is replaced with
noise(g(p)). While g can be any function,
it’s often desirable to distort the image of
noise just a little bit with respect to its regular
behavior.

Then, it makes sense to have g(p) being just
the identity plus a small arbitrary distortion
h(p) [Qúılez, 2002]. In the most basic case the
distortion can be the noise itself (Eq. 4).

f(p) = noise(p+ noise(p)) (4)

For the purpose of sound synthesis it is bet-
ter to expose warping as an adjustable param-
eter. Warping modulation can be implemented
by adding a coefficient that is used to control
the warping depth (Eq. 5).

f(p) = noise(p+ noise(p) · w) (5)

Figure 5: Simplex noise (left) with domain
warping (right)

Figure 6: Andes, a JUCE-based synthesizer us-
ing Perlin noise

Since the domain of noise is distorted with
the noise itself, the symmetry of the waveform
will remain generally the same as seen on Fig. 5.

6 Implementation

The presented ideas have been implemented as
a basic synthesizer plugin called Andes (Fig-
ure 6). The plugin has been developed using the
JUCE2 framework and is currently available in
the form of VST, AU, and standalone program
for Windows, MacOS, and Linux3.
At the time of writing, Andes supports gradi-

ent rotation, basic warping, up to 16 octaves of
noise, and adjustable persistence, which allows
a usable range of unique sounds to be produced.
The sound of noise is susceptible to aliasing at
higher frequencies, but oversampling has not
been implemented so far.
The resulting sounds resemble early digital

synthesizers, but also have a unique character
to them and can be described as “distinctively
digital”.

2https://juce.com
3https://artfwo.github.io/andes/

3

6.1 Predictable randomness

A synthesizer plugin cannot have completely
randomly sounding timbres when the synthe-
sizer is used in certain contexts such as a multi-
track DAW project. The amplitude and tim-
bre of the synthesizer cannot change in un-
predictable ways to make sure the track won’t
break the mix.

Predictable randomness in Andes is achieved
by saving the random seed for generating gra-
dients in the plugin state (preset). The 32-bit
Mersenne Twister 19937 generator from C++
standard library is used explicitly to make sure
the random numbers generated from the same
seed will stay the same across different architec-
tures and platforms.

The set of gradients covering the entire al-
lowed range of octaves is created and stored in
memory every time the plugin is instantiated or
when a new seed is created using the plugin UI.

The additional advantage of using precom-
puted set of gradients is that computationally
expensive random number generation is moved
out of the audio processing code.

6.2 Output level normalization

A big issue with Perlin noise is normalizing the
output level to fixed values. This issue is cur-
rently not resolved in Andes, but a possible di-
rection to explore is early computing of peak
values during the stage of generating gradients.

6.3 Waveform symmetry

The symmetry of waveforms is another thing to
consider when developing a noise-based synthe-
sizer.

Current Andes implementation uses com-
pletely random gradients. The first noise oc-
tave is built from 3 gradients (at points 0, 1,
and 2). Sometimes, this results in cusps and
unwanted distortion when the both outermost
gradients are either positive or negative. Alter-
nating signs for even and odd gradients in the
gradient table can further improve the synthe-
sizer usability.

Setting signs for even and odd gradients ex-
plicitly can also help reduce the domain range
for the noise function.

7 Conclusions

Perlin noise, Fractional Brownian motion and
multifractal synthesis are interesting directions
to explore for sound applications. Although
Perlin noise can be used to make sounds, the
approach still remains to be improved. Noise

level normalization is one of the biggest issues
yet to be resolved.
The general idea of using unconventional, i.e.

graphics algorithms in sound and music presents
a lot of challenges, but also opens many different
possibilities in both the technical and aesthetic
aspects.

8 Acknowledgments

The author would like to thank Maria Pankova
for helping the idea of making a noise-based
synthesizer to emerge and for assistance with
maths in the early stages of Andes develop-
ment. Thanks also goes to Alexey Durachenko
for suggesting useful optimizations to the Sim-
plex noise implementation.

References

Stefan Gustavson. 2005. Simplex noise de-
mystified. http://staffwww.itn.liu.se/

~stegu/simplexnoise/simplexnoise.pdf.

F. Kenton Musgrave. 2002. Procedural frac-
tal terrains. In Texturing and Modeling: A
Procedural Approach, chapter 9.

Ken Perlin and Fabrice Neyret. 2001. Flow
noise. In Siggraph Technical Sketches and Ap-
plications, page 187, Aug.

Ken Perlin. 1985. An image synthesizer.
SIGGRAPH Comput. Graph., 19(3):287–296,
July.

Ken Perlin. 2001. Noise hardware. In
M. Olano, editor, Real-Time Shading ACM-
SIGGRAPH Course Notes, chapter 2.

Íñigo Qúılez. 2002. Domain warp-
ing. http://www.iquilezles.org/www/
articles/warp/warp.htm.

Patricio Gonzalez Vivo and Jen Lowe. 2015.
Fractal brownian motion. The Book of
Shaders, https://thebookofshaders.com/
13/.

4

SpectMorph: Morphing the Timbre of Musical Instruments

Stefan Westerfeld
Freiburg, Germany
stefan@space.twc.de

Abstract

SpectMorph is an open source software which per-
forms morphing of the timbre of musical instru-
ments. This allows creating sounds that smoothly
transition from the timbre of one instrument to the
timbre of another instrument. There are three steps
necessary to obtain the final sound. In the analy-
sis, we use the fourier transform to create models
of the spectrum of the input samples. During syn-
thesis a time domain signal can be obtained from
these data. An algorithm for morphing the spec-
tral models of multiple instruments is the core of
our method. Synthesis and morphing can be done
in real-time. After the description of the theoretical
background, we provide an overview of the features
of the SpectMorph plugin.

Keywords

Morphing, timbre, audio, spectral modelling

1 Introduction

The starting point for SpectMorph1, our mor-
phing software, are recordings of musical instru-
ments. Typically samples for many different
notes per instrument are used, to provide natu-
ral sound quality for different notes. From these
samples we build spectral models, which are a
description of the timbre of each instrument.

Once the analysis data is available, the soft-
ware can combine the timbre of multiple instru-
ments. A simple use case would be a smooth
transition from a pan flute to a trumpet sound.
Since we really combine spectral models, this
is usually better than crossfading the samples,
and does not have the undesirable phase cancel-
lation a direct time domain approach has.

Combining the sounds of instruments can be
done in different ways, and support for morph-
ing more than two instruments is implemented.
The software has been carefully optimized to
allow real-time usage. For Linux, the usual plu-
gin formats, LV2 and VST are supported, as

1http://www.spectmorph.org

well as a standalone JACK client and a plugin
for BEAST. The VST plugin is also available
for 64-bit Windows. At the time this paper was
written, a port for macOS is being developed,
but is not yet ready for end users.
Our goal is that musicians should be able to

work with whatever tools they usually use, and
the real-time morphing should integrate with
these tools.
In addition to this paper, [Westerfeld, 2017]

(german) provides a much more detailed de-
scription of how SpectMorph works.

2 Analysis of the Samples

In [Serra, 1989] and [Serra and Smith, 1990], the
authors present a method called spectral mod-
elling synthesis, which is the theoretical foun-
dation of our analysis step. This produces a
spectral model of the sound as sum of a de-
terministic (sine components) and a stochastic
(noise) part.

2.1 Splitting the Signal into Frames

The perceived timbre of samples of musical in-
struments slowly changes over time. Our goal
is to model the structure of the spectrum, as
a morphable representation of the timbre. To
capture the slow gradual change, the first anal-
ysis step is to split our input signals into frames
of constant length.
Typically we use overlapping frames of 40ms

duration, but for low notes the frames will be
longer. If we look at a plot of one single pan
flute frame as shown in figure 1, we can see that
the signal is almost periodic within these 40ms.
The next analysis step is designed to capture

this regularity by representing the frame signal
as sum of (periodic) sine functions.

2.2 Modelling the Frame as Sum of
Sine Waves

Since our signal is almost periodic, it can almost
be represented as a sum of a number of sine

5

−1

−0.5

 0

 0.5

 1

 0 5 10 15 20 25 30 35

V
a

lu
e

Time (ms)

Pan Flute 370 Hz, Single Frame

Figure 1: Single analysis frame of the pan flute

waves. In this analysis step, we try to find pa-
rameters to decompose the frame signal, called
x(t) into a periodic part d(t) and some non-
periodic rest e(t).

x(t) = d(t)+e(t) =
P
∑

p=1

Apcos

(

2π
Fp

Fs

+Φp

)

+e(t)

−70

−60

−50

−40

−30

−20

−10

 0

 0 1000 2000 3000 4000 5000 6000 7000

A
m

p
lit

u
d

e
 (

d
B

)

Frequency (Hz)

Spectrum of Input Signal

Figure 2: Spectrum of pan flute analysis frame

Figure 2 shows the spectrum of our pan flute
analysis frame. Each sine component corre-
sponds to one peak in the spectrum. In other
words, if we say that the sound is made up of
partials, we want to find the frequency Fp, am-
plitude Ap and phase Φp of each of these par-
tials, and in the next step deal with whatever
remains (e(t)).

To do this, we compute the (Hann-) win-
dowed fourier transform of each frame signal.
We zero-pad the input signal to get a higher
frequency resolution, and use a power-of-2 FFT
for efficiency reasons. The parameters for fre-
quency, amplitude and phase can be derived by

picking the peaks from the spectrum. A peak is
a local maximum in the spectrum, however only
some peaks are relevant (that is, correspond to
a sine component).

−80

−70

−60

−50

−40

−30

−20

−10

 0

−8 −6 −4 −2 0 2 4 6 8

A
m

p
lit

u
d

e
 (

d
B

)

Normalized Frequency

Hann−Window

Figure 3: Peak Width and Hann-Window
Transform

Since we have multiplied our input data with
a hann window before using the FFT, an ideal
sine component would look like figure 3 in the
spectrum. This would correspond to a peak
width of four. In practice a sine component will
never be completely ideal, and we also have to
consider that multiple sine components added
together interfere. Still, we found that checking
for a peak width2 of at least 2.9 provides a good
criterion for picking the relevant peaks on the
different instrument samples we tested.
As a second (global) criteria we compare the

magnitude of the peak with the biggest peak
that we found in all frames. If the relative
peak magnitude is less than -90 dB, we also
consider the peak irrelevant. Note that these
two criteria are intentionally chosen too permis-
sive (rather than too strict), because keeping
more peaks than necessary will not affect over-
all sound quality, whereas ignoring too many
peaks as irrelevant would.
Finally, each peak corresponds to a sine com-

ponent with a certain amplitude, frequency and
phase, found by interpolation of the three values
around the FFT bin with the peak maximum
(as for instance described in [Serra, 1989]). At
this point, the spectrum of the sum of all sine
signals will be very similar to the input spec-
trum. Figure 4 shows this spectrum. These

2The peak width is computed based on how many
bins the peak occupies from the local minimum before to
the local minimum after the center. This value is normal-
ized relative to frame length, fft size and zeropadding.

6

−70

−60

−50

−40

−30

−20

−10

 0

 0 1000 2000 3000 4000 5000 6000 7000

A
m

p
lit

u
d

e
 (

d
B

)

Frequency (Hz)

Spectrum of the determinisic part

Figure 4: Spectrum of the sum of the sine waves

partials make up most of the sound, and there-
fore are the most important part of the model
of the timbre. So a good answer to the question
how a pan flute sounds (at a certain point in
time), is: as a sum of a number of sine waves
with these frequencies, amplitudes and phases.

2.3 Modelling the Residual

The sine signals usually make up most of the
sound, but they cannot represent noisy aspects
of the sound. For instance, a flute sample will
have some breath or air noise, and a violin has
some noise created by the bow. So far, we have
only modelled the deterministic part d(t) of the
signal. To get the part of the signal that we did
not yet describe, we simply subtract the spec-
trum of the sum of all sine waves from the orig-
inal spectrum.

If our sine signal d(t) perfectly matches our
original signal x(t), nothing would remain.
However, if we missed something, the sub-
tracted spectrum will contain just the missing
part. For our pan flute frame, the residual spec-
trum is shown in figure 5.

As we have a model of the periodic part al-
ready, we assume that what remains is some
kind of noise. So to complete our timbre model,
we use 32 perceptually spaced frequency bands
and store just the average level of the noise that
we find in in each of these bands. The noisy part
of each frame is then stored, along with the sine
parameters, and provides a spectral model that
includes both, d(t) and e(t).

2.4 Issues with Transients

The analysis algorithm described so far pro-
duces very good results for many different input
signals. However, if the signal contains tran-
sients, the quality can be low at the time of the

−70

−60

−50

−40

−30

−20

−10

 0

 0 1000 2000 3000 4000 5000 6000 7000

A
m

p
lit

u
d

e
 (

d
B

)

Frequency (Hz)

Spectrum of the residual

Figure 5: Spectrum of the residual

transient. Transients are fast changes in the sig-
nal. For instance for a piano attack sound, there
is silence, and then suddenly there is a loud sig-
nal. This attack happens much faster than the
size of one frame. But we only store parame-
ters per frame, so the sharp attack of the orig-
inal signal gets blurred over one analysis (and
later synthesis) frame. The piano resynthesis
will have a much softer attack than the origi-
nal.
So far, we have not found a good strategy for

handling transients. As a brief example con-
sider the following method: do analysis as men-
tioned before, but for frames with transients,
keep original sample data. While this is not too
complicated to implement, and while this defi-
nitely will improve the quality (and preserve the
sharp attack of a piano), the problem is that for
these frames we would not be able to do proper
morphing, as the description of the signal is no
longer parametric in a form that allows combin-
ing multiple input signals.
Ideally, we would have an analysis strategy

that preserves transients, but in a way that
still allows morphing. Fortunately, even with-
out special casing transients, there are many
instrument sounds that only change slowly so
that there are no quality issues caused by tran-
sients.

3 Synthesis

The goal of the synthesis is to compute a time
domain signal from a sequence of spectral mod-
els. These spectral models consist of a set of
sine frequencies, amplitudes and phases, and 32
noise bands. Similar to the analysis step, syn-
thesis takes place in synthesis frames, which are
overlapping, and added together to produce a

7

time domain signal.

3.1 Additive Synthesis and Inverse
FFT

Since we want to use the synthesis in real-time,
performance is important. Although we could
theoretically simply add up all sine waves of
each frame, to get d(t), this could easily result
in 100 or more sine computations and additions
per output sample value. Instead, we compute
the spectrum of the frame by adding one peak
per sine component, and then use an inverse
FFT, as described in [Rodet and Depalle, 1992].

The computation of the noise part of the out-
put consists in setting up a spectrum of suitably
chosen random values according to the 32 per-
ceptual bands, and performing an inverse FFT.
In SpectMorph, the sine and noise part are com-
puted together, so we only need one single in-
verse FFT per synthesis frame.

3.2 Reconstruction of the Phase

Before, we used frequencies Fp, amplitudes Ap

and phases Φp to describe the sine components
that are part of one analysis frame. A more or
less technical detail is that we can (and have
to) avoid using the phase Φp completely during
synthesis. This is also described in [McAulay
and Quatieri, 1984] and [Serra, 1989].

To compute a phase value for a sine compo-
nent that is to be synthesized in the current syn-
thesis frame, we look at the last synthesis frame.
If a component with similar frequency3 can be
found in the last synthesis frame, then the phase
in this synthesis frame is chosen to continue the
sine component of the previous frame. This
avoids interference and possible cancellation of
sine components of adjacent synthesis frames,
while only using Fp and Ap for synthesis.

Any sine component in the current frame that
was not found in the last synthesis frame starts
with a phase of zero.

4 Morphing

4.1 Input and Output Parameters

Once we have transformed our samples to
spectral models during analysis, the input for
the morphing algorithm is the description of
two spectral models, each with the parameters
shown in table 1. The two input frames are
from two sources, source A and source B, so we
use superscript α and β for the parameters, for

3We consider two frequencies to be similar, if the fre-
quency difference is less than than 5%.

Parameters

Frequencies F1, . . . , FP

Amplitudes A1, . . . , AP

Noisebands NOISE0, . . . , NOISE31

Table 1: Spectral Model Parameters for one
Frame

instance Fα
1

(first frequency of source A) or Aβ
1

(first amplitude of source B).
From this input, the morphing stage should

produce one single spectral model with frequen-
cies, amplitudes and noise band values. A pa-
rameter λ ∈ [0, 1] controls the morphing. A
value of λ = 0 means that only source A is au-
dible, λ = 1 means that only source B is audible,
λ = 0.5 corresponds to a 50%/50% mix, and so
forth.

4.2 The Stochastic Part

Since the computation of the stochastic part
(noise part of the signal) is simple, we start with
this. The 32 noise band parameters of the out-
put can be computed as

NOISEb = (1− λ) ·NOISEα
b

+ λ ·NOISE
β
b , for b ∈ [0, 31]

For λ = 0, only the noise component of source
A is used. For λ = 1, only the noise component
of source B is used. If λ is between 0 and 1, the
amplitude of the corresponding noise bands is
interpolated linearly.

4.3 Matching corresponding Partials

Figure 6 is one example for the positions of the
partials of a frame from source A and a frame
from source B. To be able to perform the mor-
phing, the first step is to find matching compo-
nents. If partials match, they are assigned to
each other. However each entry is at most used
once, no partial is assigned to more than one
entry.
To get good results, our algorithm starts with

the louder partials. Since they will be clearly
audible in the output, it is important that they
get a close match.
We also use a frequency similarity criteria.

Let G be the fundamental frequency of the note,
we ensure that

δ = |F β
q − Fα

p | ≤
G

2

8

Fα
1

Fα
2

Fα
3

Fα
4

F
β
1

F
β
2

F
β
3

F
β
4

Source A Source B

Figure 6: Matching Partials of the two input
frames from Source A and Source B

which means that partials can only be assigned
if they are closer to each other than half the
fundamental frequency.

At the end of this stage, some partials are as-

signed to each other (like Fα
1

and F
β
1
), whereas

other partials remain without a matching fre-
quency in the other frame (like Fα

2
).

4.4 Computing the Amplitudes

Once we have assigned the partials of the frames
from source A and source B to each other, the
output amplitudes can be found using

A = (1− λ) ·Aα
p + λ ·Aβ

q

for partials p and q which have been assigned in
the previous step.

For partials that remain without matching
entry in the other frame, we simply use zero
as amplitude for the interpolation.

We also implement an alternative way of deal-
ing with amplitudes, which should be closer
to how human loudness perception works: dB-
linear amplitude interpolation. To do this, the
amplitudes are converted to dB before the inter-
polation step, and converted back afterwards.

4.5 Computing the Frequencies

After the previous description of how noise band
parameters and amplitudes are computed, the
first idea would be to use the same strategy here,
so

F = (1− λ) · Fα
p + λ · F β

q

and keep the frequency exactly as it is for par-
tials that have not been assigned.
However, this leads to one undesirable effect:

for partials from the analysis stage that are not
very loud, it does not matter much if their fre-
quency is wrong. They are inaudible anyway.
If such a partial gets assigned to a very loud

partial, the output frequency can easily get
wrong, for if for instance λ = 0.5, half of the
frequency output value F is determined by the
almost inaudible partial.
So in practice, if partials do not have the same

volume, we ensure that the louder partial has
more influence on the output frequency.

Let Aα
p be the louder partial (Aα

p ≥ A
β
q), then

we use as frequency:

F = Fα
p +mλ(F β

q − Fα
p)

where m is a factor that depends on both am-
plitudes:

m =
A

β
q

Aα
p

If both amplitudes are equal, so that m = 1, we
get the same result as the approach at the start
of the section.

F = Fα
p + 1λ(F β

q − Fα
p) = (1− λ)Fα

p + λF β
q

If one amplitude is a lot louder than the other,
we have m ≈ 0:

F ≈ Fα
p + 0λ(F β

q − Fα
p) = Fα

p

So if a stable (louder) partial is combined with
an almost inaudible partial, the factor m will
ensure that the louder partial almost completely
determines the frequency.

4.6 Grid Morphing

For grid morphing, instruments are placed on
grid points of an WxH (width W , height H)
grid. The simple case is that we have a 2x2
grid, with four instruments A, B, C and D. In
this setup, we now have two control parameters
that correspond to the X- and Y-position on the
plane.

9

A B

C D

AB

CD

R

X

X

Y

Figure 7: Grid Morphing of four Instruments

Our job is to compute a resulting output
sound R as result of setting our X- and Y-
position. This is shown in figure 7. To compute
R we proceed as follows: as a first step we com-
bine instrument A and B with the control value
X, which produces sound AB. Then we com-
bine instrument C and D, again with control
value X to get CD.

As last step we can combine AB and CD with
the control value Y to R. To summarize this
algorithm: we can morph of four instruments on
a plane using the morphing of two input frames,
which we already described. To do it, we simply
use this algorithm three times.

5 Plugin Features

In the last sections we’ve given the theoretical
background how SpectMorph works internally.
We’ll now summarize some of the relevant topics
for end users, which will usually use one of the
SpectMorph plugins, LV2, VST or BEAST (or
the JACK client).

5.1 Standard Instrument Set

As we’ve seen, SpectMorph itself is based on
sample data. It can morph instrument sounds,
but only after an instrument has been described
as a set of samples, and analysis of these samples
was performed. Typically we need one sample
per semi-tone, or at least one sample every few
semi-tones, in order to produce good reproduc-
tion quality. The tools required to build instru-
ments from samples are distributed as a part
of SpectMorph. However, it is a bit of work to
create your own instruments.
To address this issue, SpectMorph currently

ships with 14 ready-to-use instruments, like
trumpet, oboe, pan-flute, saxophone and so on.

All of the samples we used were free. Many were
taken from the Iowa Musical Instruments Sam-
ples4, we also recorded some samples ourselves,
and added some instruments from the Fluid R3
SoundFont5.

5.2 Using Morphing

The user interface of SpectMorph supports the
two use cases mentioned before. The simple
case involves combining two instruments us-
ing morphing, in the UI this is called ”Lin-
ear Morph”. For a linear morph, the user can
choose the instruments from a list of instru-
ments, usually from the standard instrument
set. In the simplest case, an UI slider is used
to control the morphing, so dragging the slider
will gradually change the sound from the first
to the second instrument.
Grid morphing as mentioned previously is

also supported, which allows using an X/Y con-
trol pad to control the position on the grid with
the mouse.

5.3 Automation / Control

If users create music using the plugin in se-
quencers, it is often desirable to exactly specify
how the morphing should be performed, along-
side with the notes to be played (rather than
controlling the morphing with the mouse like it
could be done during live performances). So we
support automating the control value, so that
the timbre can be controlled by the sequencer.
For X/Y morphing, two control values can be
used, to automate the position on the plane.
Besides these possibilities, SpectMorph im-

plements an LFO operator (low frequency oscil-
lator), which will change the control value pe-
riodically. This feature is also useful for live
performances, to get interesting slowly chang-
ing sounds.

5.4 After Morphing

So far, we’ve described how a sound is produced,
usually combining two or more standard instru-
ments using some control values. This can be
used as it is, or be modified with some optional
additional steps before the output sound is gen-
erated.
One refinement is the unison effect, which

adds up a few detuned copies of the spectral

4http://theremin.music.uiowa.edu/MIS.html -
public domain license

5packaged by many linux distributions, for instance
ubuntu: https://launchpad.net/ubuntu/xenial/
+package/fluid-soundfont-gm - MIT license

10

model of the sound. This makes the sound more
fat, and can be seen as imitation of multiple mu-
sicians playing the same notes using the same
instrument.

Another refinement is using an ADSR enve-
lope, which adds a custom volume envelope, re-
placing the natural volume envelope the sound
has. Finally we implemented support for porta-
mento and vibrato.

Although these optional post-morphing oper-
ations, that modify the output sound, can pro-
duce interesting possibilities, it is also obvious
that using such post-morphing refinements has
a cost: the sound will no longer be as natural
as possible. For instance, giving a trumpet a
quick exponential volume decay is a new vari-
ant of the sound, but it will sound less like a
trumpet.

6 Conclusions

The algorithms presented in this paper, imple-
mented in SpectMorph, produce realistic re-
production of instruments, based on building
spectral models of samples. For many musi-
cal instruments, such as bassoon, trumpet, sax-
ophone, oboe and so forth, the quality of the
analysis step will be very high.

There are however some cases, in which the
spectral modelling approach does not work well.
Whenever the peaks in the spectrum are too
close, the peak finding algorithm will not work
properly. While spectral models for natural
sounds usually provide good quality, typical
synthetic sounds, such as a synthetic saw waves
with unison cannot be analyzed properly.

We already discussed that there are issues
with transients, such as the sharp attack of a
piano, in section 2.4. For all sounds where the
analysis step provides good quality, the morph-
ing steps described in section 4 provide realis-
tic transitions between the timbre of the instru-
ments. This provides composers with a way of
creating sounds that is not available with sam-
plers or synthesizers.

In SpectMorph, much care has been taken to
ensure not only good quality of the sounds, but
also fast computation. Morphing and synthesis
are reasonably fast so that high polyphony is
available during real-time usage.

The SpectMorph LV2/VST/BEAST plugin
(and the JACK client) supports creating new
sounds by morphing existing ones, and includes
many standard instruments. The plugin inte-
grates into whatever sequencer or live perfor-

mance environment the composer wants to use,
and provides flexible ways of controlling the
morphing parameters, as well as post-morphing
refinements.

References

Robert J. McAulay and Thomas F. Quatieri.
1984. Magnitude-only reconstruction using
a sinusoidal speech model. In Proceedings
IEEE International Conference on Acoustics,
Speech, and Signal Processing, pages 27.6.1–
27.6.4.

X. Rodet and P. Depalle. 1992. Spectral en-
velopes and inverse FFT synthesis. In Audio
Engineering Society Convention 93.

Xavier Serra and Julius O. Smith. 1990.
Spectral modeling synthesis: A sound anal-
ysis/synthesis system based on a determinis-
tic plus stochastic decomposition. Computer
Music Journal, 14(4):12–24.

Xavier Serra. 1989. A system for sound
analysis/transformation/synthesis based on a
deterministic plus stochastic decomposition.
Dissertation STAN-M-58, Center for Com-
puter Research in Music and Acoustics, Stan-
ford University.

Stefan Westerfeld. 2017. Morph-
ing der Klangfarbe von Musikinstru-
menten durch Spektralmodellierung.
http://edoc.sub.uni-hamburg.de/
informatik/volltexte/2018/236/.

11

12

RSVP, a preset system solution for Pure Data

José Rafael SUBIA VALDEZ
Edinburgh University

Alison House
Edinburgh
EH8 9DF
Scotland

Rafael.Subia@ed.ac.uk

Abstract

This paper describes the logic and process behind
the development of the RSVP preset library for the
Pure Data programming environment. The library
aims to tackle the lack of a native preset system in
Pure Data. Projects like Kollabs1, CREAM2, ss-
sad3 and others, have produced different solutions
for this issue. However, after experimenting with
these, it became clear that a different approach was
required to fit personal needs. This led to the cre-
ation of the RSVP library which will be described
in detail. During the development of this project, a
feature request for PD was identified, and that will
also be shared here. This paper will offer a detailed
description of how the system works, but will not go
into extensive Pure Data patch descriptions. Instead
it will focus on how the code is structured and will
describe how the system functions with the users’
own projects.

Keywords

state-saving, GUI, interpolation, external, abstrac-
tion

1 Introduction

The flexibility that Pure Data [Puckette, 1996]
has as a programming environment is immense;
the fact that a Graphical User Interface or
“GUI” is part off its workflow concept is very
interesting as a programming language. Pure
Data, and its “prettier sibling”, MAX [Zicarelli,
1990], allow users to program in a different style
than Supercollider [McCartney, 1996] or ChucK
[Wang and Cook, 2002] to name a few. PD
incorporates the idea of “connection” that is
well known among musicians with stage experi-
ence. However, it does not contain an easy and
rapid preset mechanism such as the one found
in MAX. Having to tackle this issue led to the
development of other ways of interacting with
a patch. Consequently, this required the use

1https://github.com/m---w/kollabs
2https://github.com/CICM/CreamLibrary
3http://puredata.info/downloads/sssad

of some interesting tricks to overcome the lack
of this particular feature. Nevertheless, a preset
system is very helpful for musical purposes even
if not used extensively.

Figure 1: Patch of Tessellations for alto sax and
computer, developed with RSVP

Over the years, different techniques imple-
mented by other users were tested and incor-
porated in complex patches produced for per-
sonal use. There are some complete and power-
ful libraries like Kollabs [Weger, 2014], that al-
low different types of interpolation between cur-
rent and to-recall values. The CREAM [Guillot,
2014] library and its GUI programmed as exter-
nals, also offers interesting interpolations, even
working with its c.breakpoints4 object. The de-
sign is very similar to the one in MAX, including
the commands on the c.preset such as “shift +
mouse-click” to save a preset and “mouse-click”
to recall it.

4c.breakpoints is a GUI external that allows the cre-
ation of different breakpoint functions

13

However, the method developed by ro-
drigo@anorg.net5 was the closest to the type
of preset management envisioned. This solu-
tion used the pool6 object to recall data into
the patch. Although it had no interpolation
methods, and needed to be used in “looped”
(see Fig. 2) connection with the GUI, its struc-
ture was a great starting point for this project.
Still, these discoveries were never completely
adequate, as they are workarounds to a prob-
lem that ideally should be solved in the source
code itself.

Moreover, the testing and experimentation of
the different solutions was done when imple-
menting them in specific projects. The judge-
ment made on each was based entirely on par-
ticular situations. This means that these li-
braries could be better implemented or may run
“smoother” if the programming had been done
on a faster system or with more time available.
Issues based on installation and implementa-
tion, fast editing as well as CPU or GPU con-
sumption in the equipment available, played an
important part on the amount of usage they re-
ceived. Consequently missing key features were
identified and it was decided that a new and
custom solution was required. This resulted in
the creation of the RSVP library.

Figure 2: looped connection that some preset
managers offer

2 How it works

The main idea when designing RSVP was to de-
velop a “light and flexible (as possible)” library
to meet general needs. The library had to eas-
ily be incorporated in projects by avoiding the

5only remaining information found on the author
6https://grrrr.org/research/software/pool/

“looped” connections (see Fig. 2), it had to im-
plement a way to edit presets from within the
patch and include a basic interpolation method
between values. Another goal was to include a
single click call and recall strategy with a sim-
plified interface. This way the user would not
have to struggle with loading and naming files,
as well as opening n number of subpatches of
settings. To accomplish this, the project was
divided in three main parts:

• GUI/single click saving

• Rapid patching

• Managing the presets with automatic cre-
ation/loading of files containing the data

2.1 GUI/single click saving

The design of GUI objects, which contain the
ability to store and recall presets, must be based
on the easy creation of the objects and easy re-
call of the presets. Thus it was decided to link
the Data and the GUI, as opposed to Kollabs,
which is based on the principle that separates
the GUI from the data processing [Weger, 2014].
A mechanism of state saving based on native
vanilla GUI objects was programmed by creat-
ing a wrapper around these. The wrapper would
save the state of a variable when it received a
global “save preset” type message or bang that
would register the value into a coll 7 object with
the unique ID of the abstraction that generated
it. This would simplify the recording of the data
by the values inside coll, and allow easy recall-
ing of the values by routing it to the abstraction
based on an “ID” given when created.

2.2 Unique ID (keep score of data with
iemguts)

A fundamental component for the development
of RSVP was the iemguts8 library and the stat9

object. After experimenting with dollarsign-
zero10 to create unique IDs, it was understood
that dollarsign-zero number is only unique for
each session; once the file is closed and opened
again, that unique number changes. Conse-
quently, it would make the already saved data
useless if saved in a previous session. Using the
canvasname external of the iemguts library, al-
lows the query of window names and arguments,

7https://puredata.info/downloads/cyclone
8https://puredata.info/downloads/iemguts
9https://puredata.info/downloads/hcs

10A mechanism to create a unique ID inside Pure Data
to help with the creation of abstractions

14

and enables the creation of unique IDs to save
the data. The canvasname external provides
the name of the parent patch, and by using
canvasargs and providing the necessary infor-
mation, it is possible to have multiple instances
called (see Fig. 3). On the other hand, the can-
vasindex external provides a way to keep count
of the number of instances. This is crucial for
the deletion of GUI abstractions and the syn-
chronisation of all the Data to be stored inside
the coll.

Figure 3: use of canvasname & canvasargs in
RSVP

The system works by adding the name of the
parent patch to the initial unique name created,
either by hand or using the GUI-creator that
comes with RSVP. If there is no parent patch, a
unique name is expected but not necessary, al-
though that code, if no unique name is provided,
will not work correctly if multiple instances of
it are used in the same patch. The unique name
(using dollarsign number/local variable) allows
the correct use of multiple copies of code in a
patch. By using this standard method to handle
the appointment of IDs, RSVP allows flexibil-
ity to use presets in different ways, including
nesting or multiple instances.

2.3 Track of Instances and Deletions

One of the biggest challenges of creating a li-
brary that records states, is to correctly map
values if an instance of the object recorded is
deleted. Many basic preset solutions made with
Pd involve the use of an array to record values.
Although this is a very fast and efficient way to
build a preset system, this method does not take
object deletion into account. When objects are
deleted, the array is resorted and those deleted

are “popped” out, causing the values in the ar-
ray to shift their positions thus corrupting the
data. In order to solve this, it was decided to im-
plement a way in which all values are recorded
every time a preset is saved. Consequently, the
list of values in the coll object with values of the
new object IDs created in the patch is updated,
without any that may have been deleted.
RSVP builds a unique message in Pure Data

-with all the variables recorded- that is later
pushed into a preset slot in the coll object. This
is achieved by using the “add2” message to a
blank message box that receives all the values
when the “SaveMaster” message sent from the
PresetManager abstraction is received in each
RSVP object. The challenge in this part of the
program is to know when to push the message
into the coll. To accomplish this, the canvasin-
dex from iemguts library is extremely impor-
tant. The object keeps track of all the number
of RSVP abstractions being used. In this way,
the patch knows when all values have reached
the empty message as its length must be dou-
ble the number of instances. Consequently, the
message can be pushed into the coll object in
the PresetManager. The presets are saved in a
text file in the same directory where the preset
manager is being called from. It creates a text
file with the SUFFIX “-preset” added.

2.4 Recalling

Every GUI abstraction accepts only values that
correspond to the ID tag given for the pre-
set. The sym-route11 abstraction routes mes-
sages like the built-in route object, but accepts
symbols instead of floats as the type of data to
process. This abstraction receives each pair of
values from the coll object when a preset is re-
called. The value is routed properly when the
ID values match and advances to the interpola-
tion stage achieved with the line object.

3 GUI Abstractions

The RSVP library mirrors all vanilla GUI ob-
jects plus the breakpoints12 and the knob13 ex-
ternals. With this selection, most needs of a
typical simple patch are covered. Every ab-
straction has the functionalities of the origi-
nal “wrapped” object plus an interpolation time
that will be sent from the PresetManager. Their
names also try to resemble the object native to

11This abstraction was coded by Thomas Grill
12Part of the tof library
13Part of the flatgui library

15

Figure 4: GUIs available in RSVP

vanilla in order to create the objects more easily
(see Fig. 4). The suffix “ pre” to the available
objects creates the wrapped version with the
exception of the breakpoints and knob object,
which are part of other libraries and are abbre-
viated to brp pre and knb pre respectively.

3.1 The Breakpoints Abstraction

The breakpoints abstraction brought some com-
plications to the saving and recalling technique
that was being implemented. While the Pre-
setManager handles pairs of messages formed
by the abstraction’s unique ID and the value,
the breakpoints object allows the creation of
an envelope with a list of values. By adding a
coll object to the brp pre abstraction, lists can
be stored and saved independently thus allow-
ing the storage and recalling of objects that use
more than one value The values of the internal
coll are stored in a different text file with the
file extension “.brp”.

3.2 The Miscellaneous Abstraction

In addition to the GUIs offered, RSVP includes
a “msc pre” abstraction which can be used to
save different values in a sub preset and be re-
called by the PresetManager. This abstraction
allows the use of RSVP to write other types
of data in case the native RSVP abstractions
cannot fulfil certain needs. The msc pre ab-
straction was initially created to store variable
amounts of points of the breakpoints abstrac-
tion explained above. It was later duplicated
as an independent abstraction to offer a way
of recalling data in objects not native to RSVP.
The “msc pre” abstraction creates an additional
textfile, with the file extension “.msc”, that
records the presets assigned specifically to this
abstraction.

The abstraction is linked to the PresetMan-
ager by receiving the number of the internal
preset to recall, in the same way as the brp pre

abstraction. The main purpose for the creation
of this abstraction is offer the possibility of a
modular preset systems, but it also allows the
use of the library with other abstractions or ex-
ternals from different developers. In the exam-
ple (see Fig. 5), the msc pre object is used with
the matrixctrl14 object. Different ways of using
the library with the msc pre abstraction and a
new “local” feature, are currently being tested
and are discussed further on this paper.

Figure 5: RSVP msc pre object working with
jmmmp’s matrixctrl

4 Usage

4.1 Rapid Patching with the Help of
the GUI-creator Abstraction

Initially, the intention was to hack Pd’s Tcl/TK
frontend and link the “put” action of the
main menu to the creation of every GUI that
comes with RSVP. Eventually, it was concluded
that developing a Dynamic Patching abstrac-
tion named GUI-creator, would be the best so-
lution15 to develop the idea quickly (the initial
idea is still being researched with the use of the
Tcl/Tk plugin API).
The abstraction creates the RSVP GUIs with

the click of a button. It takes care of the sequen-
tial SUFFIX that is entered for the unique ID
and allows for the quick creation of abstractions

14puredata.info/downloads/jmmmp
15I decided to wait until having good results once

RSVP was finished to start thinking on further devel-
opments.

16

if developing something that needs a matrix of
knobs or toggles16, for example.

Figure 6: GUI-creator assigns the ID and incre-
ments the SUFFIX as it creates objects

An interesting problem surfaced while devel-
oping the GUI-creator abstraction. In situa-
tions when the user deletes the GUI-creator (it
is intended to be deleted after use), and for some
reason needs to add more RSVP objects with
it. The GUI-creator first queries how many
instances of that object already had been cre-
ated previously and then continues to increment
the SUFFIX number from that value on (see
Fig. 6). To provide the abstraction with this
number, the same abstraction creates a text file
and stores the number and type of RSVP ab-
stractions it creates. This record is used to ini-
tiate a new count, starting from this number
plus one, when a new instance of GUI-creator
is called.

The GUI-creator abstraction, only needs to
keep count of instances created. If the num-
ber of instances recorded is different than the
number present in the patch, then an instance
or instances of RSVP abstractions were created
but later deleted. In this case the value in the
SUFFIX is more than the true number of RSVP
objects used. However, RSVP uses that number
as the SUFFIX of the ID allowing an infinite
amount of unique IDs by incrementing on the
previous known total.

RSVP works by keeping count only of in-
stances created and values saved the moment
a preset is recorded. The library was developed
around the idea of how to discard the data that
becomes obsolete when a preset is rewritten.
RSVP takes care of this by using the destructive
editing feature of the coll object to purge obso-
lete data. Furthermore, if obsolete data exists
because coll has not been updated and this data
is recalled, then the values are not processed as
there are no instances of the sym-route abstrac-
tion linked to that ID.

16Video Examples: http://www.jrsv.net/
pure-data-preset-system

4.2 PresetManager

The PresetManager is the module that controls
the state saving and the value recalling of the
stored data. The module consists of two main
parts that take care of the saving and recalling
of the values. The abstraction contains a GUI
with visual feedback when an action is taken.
It also allows the recording and recalling of any
given position in the coll and contains the inter-
polation time control in a number box. Finally,
the patch also allows the user to display the val-
ues for fast queries and/or editing in a “popup”
window (see Fig. 7),. The PresetManager will
save the contents of the coll object every time
the patch is saved.

Figure 7: PresetManager help file with the
popup winddow displaying the presets

4.3 Dealing with Multiple Instances

The user can call multiple instances of projects
using RSVP abstractions by allowing the cre-
ation of an instance ID. This works following the
way that Pd uses $0 and $n to create local and
global variables. This feature was created in
case the user needs two modules that use RSVP
in the same master patch. A similar type of
use can be observed in projects like Automaton-
ism[Eriksson, 2017] or Context [Goodacre, 2017]
that allow the creation of modular instruments
to connect as desired in a patch. RSVP takes
care of this by allowing an argument to set a
name on creation.

17

4.4 Customizing RSVP

The current version of RSVP works as a local
library inside a project. This means that the
folder containing RSVP should be copied and
placed in the main directory of the file being
used as a main patch. The reason for this is
that the library uses GUI objects that alter the
source code of the abstractions if modified; caus-
ing the GUI to change for all files calling the
library. For this reason, RSVP is intended to
work as a local library letting the users cus-
tomize the abstractions source code with the
colors and sizes set for each specific project.

The flexibility that RSVP offers is based on
the ability to modify the graphical properties
of the abstractions. The modifications are as
extensive as what a user can modify to the
wrapped GUI objects. Extending the objects
available is as easy as duplicating the source file
of the GUI and using it as a template to be mod-
ified. The user can then apply all changes and
save the personalised abstraction under a cus-
tom name or keep the changes to the original.
If the object uses a new name, it will still be
compatible with the RSVP preset system when
called.

4.5 Modularity: implementation of
“Local Presets”

The RSVP library offers different ways to have
local presets stored in modular projects. This
provides added flexibility as RSVP can be used
with the user’s own GUI design. With the use
of msc pre abstraction, it is easy to achieve any
type of modular state saving. To make this user
friendly, a “local” method inside msc pre and
brp pre (see Fig. 8) was programmed thus giv-
ing a straight forward way of using RSVP like
this. The objects can receive a message with
a “local” flag and the values 1 or 0 to turn
on/off the ability to read and write the values of
their local coll object. This means that the user
can program modules using their own GUIs and
write their local presets such as timbres of a syn-
thesizer in a msc pre that will not be controlled
by the PresetManager in the parent patch.

5 What is next? ...the “to-do” list

The RSVP library was created in such a way
that improvements could be made later accord-
ing to structural areas of the system. Differ-
ent ideas are already being tested, including the
possible switch from native GUI to native looka-
likes done with Data Structures. This move to

Figure 8: part of the patch that allows the re-
calling and recording of local presets

data structures might help develop a GUI with
design changes and more importantly, have the
data stored in the data structure itself.
Additional modifications are being considered

to parts of the library in charge of the data stor-
ing. The implementation of the text object in-
stead of the coll external in RSVP would make
the library close to being vanilla-friendly.
The last improvement currently considered

for the RSVP library is the implementation of
the propertybang object of the iemguts library.
By using this object, the library could be mod-
ified to run as a global library and be installed
as any other offered, making the customization
of the GUI easier to implement.

6 Envisaging a META section in the
“.pd” file

During development of RSVP, it became evi-
dent that having the information stored as sim-
ple text is very useful. Future development is
trying to use less files to store and recall in-
formation consequently centralizing everything
into a single file. Other ideas include saving
data inside the “.pd” file itself. This way the
RSVP data could be accessed using the text ob-
ject within the patch. Being able to store in
a META section, opens additional possibilities
for Pd users. Information such as credits, li-
censing and state saving could be stored with
the patch. Other options may include building
an abstraction by running a patch or a place to
store scripts for externals like py/pyext, pdlua
or pdlisp.
It is possible to read the Pd file as text in-

side Pd. Unfortunately, when Pd loads a file

18

with extra information on it, it produces warn-
ings every time text that is not part of a normal
Pd file is found. This means that any informa-
tion saved in the patch as simple text to the
“.pd” file is ignored. Using a simple text edi-
tor it is easy to write anything in the file and
successfully save it, however when the same file
is opened again in Pd, it will produce warnings
and ignore that information if saved from Pd.
This is why a META section for the file could
be implemented. One solution could have an
“EOF” (End of File) to stop Pd from reading
the information that is stored in a META sec-
tion.

The META section of the file would not be
read by Pd when loading. It would instead be
accessed as a plain text file inside Pd, with a
text object and a message/method META sent
to one of its inlets. Once the META section
is accessed, the user could read it line by line
and modify the information retrieved as needed.
This feature would allow projects like RSVP
and others to extend Pd to fulfil other needs
easily.

7 Conclusion

The RSVP library offers a rapid way of saving
different states in Pure Data. The design of the
library was based on other solutions, but there
was a desire to simplify and modify them to
better solve various needs in different musical
projects. RSVP offers a number of tools that
help with the creation and performance of Pd
patches and intends to have a solid, simple and
fast way of managing presets.

The advantage of using a wrapper in its de-
sign allows the system to be easily modified and
used in other versions of Pd. It can improve
tools that other flavors of Pure Data have and
gives space for quick development in modular
areas of the system.

While this project was an attempt to solve
something that Pd has been missing, it also
proved that Pure Data is a flexible system that
can take care of complex programming chal-
lenges like the one described. Nevertheless the
library still lacks key feayures such as different
types of interpollations and vanilla friendlier
code.

Unfortunatelly, RSVP cancells usefull func-
tionalities found in the “Properties” menu of
its native GUI Objects. It is crucial for further
development to address these setbacks and re-
instate this functionalities via the wrapper. Fi-

nally, the code needs to be optimized as there
are some processes that could be done more ef-
ficiently.
The RSVP library is in constant change and

currently in an Alpha Stage. Anyone is wel-
come to download and use it in projects, but
the developing changes according to user expe-
rience. Because RSVP is a local library, back-
wards compatibility is not a serious problem but
more testing is needed to offer proper support.
The library can be found in the URL address:

• https://github.com/JRSV/RSVP

Some videos introducing its features are
hosted on the following website

• http://www.jrsv.net/
pure-data-preset-system

8 Acknowledgements

RSVP uses third party libraries developed by
people from the community. I wish to ac-
knowledge the developers of libraries used in
this project and individuals that helped answer
questions on the pd mailing list and social me-
dia, including Matt Barber, Liam Goodacre and
Thomas Grill. RSVP uses the following libraries
that can be downloaded and added through the
“deken” manager:

• HCS

• iemguts

• iemlib

• flatgui

• cyclone

• tof

• zexy

RSVP was developed thanks to the support
of the University of Edinburgh in Scotland dur-
ing the course of my PhD. I wish to thank my
supervisor Dr. Michael Edwards for advice and
guidance.

References

Johan Eriksson. 2017. Automaton-
ism. https://www.automatonism.com/
the-software/.

Liam Goodacre. 2017. Context Sequencer.
https://contextsequencer.wordpress.
com.

19

Pierre Guillot. 2014. CreamLibrary: A set of
PD externals for those who like vanilla... but
also want some chocolate, coffee or caramel.
https://github.com/CICM/CreamLibrary.

James McCartney. 1996. SuperCollider
SuperCollider. https://supercollider.
github.io/.

Miller Puckette. 1996. Software by Miller
Puckette. http://msp.ucsd.edu/software.
html.

Ge Wang and Perry Cook. 2002.
ChucK => Strongly-timed, On-the-fly
Music Programming Language. url-
http://chuck.cs.princeton.edu/.

Marian Weger. 2014. Kollabs / DS -
a state-saving system with scene mor-
phing functionality for Pure Data.
https://iem.kug.ac.at/fileadmin/
media/iem/projects/2014/weger.pdf.

David Zicarelli. 1990. Max Software Tools for
Media | Cycling ’74. https://cycling74.
com/products/max/.

20

Open Hardware Multichannel Sound Interface for Hearing Aid
Research on BeagleBone Black with openMHA: Cape4all

Tobias Herzke1,4 and Hendrik Kayser1,2,4 and Christopher Seifert3,4

and Paul Maanen1,4 and Christopher Obbard5 and Guillermo Payá-Vayá3,4

and Holger Blume3,4 and Volker Hohmann1,2,4

1HörTech gGmbH, Marie-Curie-Str. 2, D-26129 Oldenburg, Germany
2Medical Physics, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany

3Institute of Microelectronic Systems, Leibniz Universität, D-30176 Hannover, Germany
4Cluster of Excellence “Hearing4all”
564 Studio Ltd, Isle of Wight, UK

info@openmha.org

Abstract

The paper describes a new multichannel sound inter-
face for the BeagleBone Black, Cape4all. The sound
interface has 6 input channels with optional micro-
phone pre-amplifiers and between 4 and 6 output
channels. The multichannel sound extension cape
for the BeagleBone Black is designed and produced.
An ALSA driver is written for it. It is used with
the openMHA hearing aid research software to per-
form hearing aid signal processing on the Beagle-
Bone Black with a customized Debian distribution
tailored to real-time audio signal processing.

Keywords

Hearing aids, audio signal processing, sound hard-
ware

1 Introduction

Hearing aids are the most common form of mit-
igation for mild and moderate hearing losses.
Hearing aids help the wearer to follow conversa-
tions and acoustic events in different situations.
In the complex acoustic environments that we
encounter in our daily life, information about
the acoustic scene is inferred at higher stages of
the human auditory system and exploited in the
brain for, e.g., speech understanding. A hearing
loss causes — in addition to reduced sensitivity
to soft sounds — a partial loss of this informa-
tion. Effective signal processing algorithms are
required for compensation. For this reason, im-
proving signal processing in hearing aids is an
active research topic.
Part of the work in hearing aid research is

to develop novel signal processing algorithms
that can be used in hearing aids to improve the
hearing experience for hard-of-hearing people.
Usually, simulations are run and evaluated in
terms of objective measures after such an algo-
rithm has been developed mathematically. Re-

sults from simulations do not necessarily reflect
the benefit of the algorithm a) when integrated
in a complete signal processing chain of a hear-
ing aid and b) in a real-world scenario. To assess
the usefulness of new hearing aid algorithms for
hearing-impaired people, new potential hearing
aid signal processing algorithms also have to be
tested with hearing impaired test subjects in re-
alistic situations. Running an algorithm under
test on an end-user hearing device is practically
infeasible as it requires access to a proprietary
system of a hearing aid manufacturer, and a
large effort for the down-to-hardware implemen-
tation is required on such devices. Instead, a
software platform can be used to simulate the
hearing aid processing chain. The open Mas-
ter Hearing Aid (openMHA, [HörTech gGmbH
and Universität Oldenburg, 2017], [Herzke et
al., 2017]) is such a platform. openMHA can
be utilized to conduct field tests of hearing aid
processing methods running on portable hard-
ware.

The following sections first introduce the
software and hardware platforms utilizable to
evaluate hearing aid algorithms with hearing-
impaired test subjects. We work out the need
for a custom multichannel sound interface for a
small, portable computer. The subsequent sec-
tions report on the hardware design process that
resulted in the Cape4all1 BeagleBone sound in-
terface, the sound driver development, and fi-
nally the possible usage of the sound interface
for hearing aid research.

1developed in the cluster of excellence “Hearing4all”

21

2 Software and Hardware Platform
for Hearing Aid Research

HörTech and the University of Oldenburg have
developed the openMHA [HörTech gGmbH and
Universität Oldenburg, 2017], [Herzke et al.,
2017] software platform for the development
and evaluation of hearing aid algorithms, where
individual hearing aid algorithms can be imple-
mented as plugins and loaded at run-time. The
platform provides a set of standard algorithms
to form a complete hearing aid. It can pro-
cess audio signal in real-time with a low delay
(<10ms) between sound input and sound out-
put. (The actual delay depends on the sound
hardware used for input and output, configura-
tion options like sampling rate and audio buffer
size, and also on delay introduced by some sig-
nal processing algorithms.)

In its current version 4.5.5, the openMHA
software platform can execute on computers
with Linux and Mac OS operating system, e.g.,
in a laboratory environment. Toolboxes for gen-
erating virtual sound environments in a labora-
tory exist (e.g. TASCAR [Grimm et al., 2015])
but the sound environment in a lab — and even
more the subject behavior in a lab environment
— will always differ from real environments en-
countered by hearing aid users in real life. To
test real-life situations, we have to go outside
and into real situations with hearing-impaired
users wearing a mobile computer that executes
the openMHA and provides the first chance to
test new algorithms in real-world situations. In
the past, we have used laptops for this purpose
but with the advent of small, ARM-based single
board computers like the Raspberry Pi, Beagle-
Bone, and several others these become an op-
tion for executing openMHA that imposes less
weight to carry around for the test subjects.
The processing power of these devices is sig-
nificantly lower than that of PCs and laptops,
which will always limit the extent and setup of
algorithms that can be executed on such a mo-
bile platform (compared to a PC).

openMHA is meant as a common platform to
be used by different hearing aid research labs
to combine their work. By providing a solid
base platform, we want to encourage researchers
to implement and publish their algorithms as
openMHA plugins so that work can be shared
and results can be reproduced by independent
labs.

For this purpose, openMHA includes a tool-
box library that already contains functions and

classes useful to more than one algorithm to
speed up implementation of new algorithms. As
a key to usability of the software in different
usage scenarios openMHA also includes several
manuals for different entry levels ranging from
plugin developments over application engineer-
ing based on available plugins and functionality
to the application of the software in the con-
text of audiological research and hearing aid fit-
ting controlled through a graphical user inter-
face (GUI). Step-by-step tutorials on the imple-
mentation of openMHA plugins as well as ex-
amples of configurations are provided to enable
an autonomous familiarization for new users.
Some hearing aid algorithms — such as direc-

tional microphones — need to process the sound
from more than one microphone per ear which
is why a multichannel sound card is generally
needed to capture the sound from all hearing
aid microphones. Professional sound cards can
be used for this purpose in stationary laboratory
setups. Bus-powered USB sound cards can be
used with laptops in mobile evaluation setups,
but the choice of bus-powered interfaces with
more than 2 input channels is limited. We have
observed that the total delay between input and
output sounds that can be achieved with USB
sound cards is always larger than what can be
achieved with similar sound cards with PCI or
Expresscard interface. This difference in delay
is in the order of 2ms, which will already affect
some hearing aid algorithms. We have also ob-
served that the delay may vary from one start
of the sound card to the next with USB sound
cards, in the range of 1ms, which is detrimen-
tal to some processing algorithms such as acous-
tic feedback reduction. (Feedback reduction al-
gorithms are an essential part of a hearing aid
processing chain and need the system to be as
invariant as possible to work effectively.) The
Inter-IC Sound (IIS or I2S) bus — transporting
sound data from the SoC2 to the audio codecs
with the AD/DA converters (and back) — is
accessible on expansion headers on many of the
single-board ARM computers, making it possi-
ble to create custom sound interface hardware.
Third parties already provide multichannel

sound interfaces for popular boards like the Bea-
gleBone Black and the Raspberry Pi. Of these
two devices, the BeagleBone Black has the ad-
vantage of hardware support for multichannel

2Abbreviation for System on a Chip, the combination
of a microprocessor and several peripherals (e.g. graphics
unit, sound interface) on a single chip.

22

audio input/output. See Section 3.1 for details.
One multichannel sound interface option for

the BeagleBone Black is the BELA cape [Moro
et al., 2016]. It provides stereo in/out and ad-
ditional 8 analogue data acquisition channels.
These additional 8 analogue data acquisition
channels can also be used to capture audio but
do not provide anti-aliasing filters, and achiev-
able sampling rates depend on the number of
channels in simultaneous use. The BELA cape
makes use of real-time hardware present on the
BeagleBone Black. Audio processing algorithms
can be compiled to execute on this real-time
hardware, process the input channel data, and
produce output channel data. Existing Linux
audio processing applications using ALSA3 or
JACK4[Davis, 2003] and common features of
the operating system cannot execute on this
real-time hardware.

Another multichannel audio interface devel-
oped for BeagleBone platforms is the CTAG
face 2|4 [Langer and Manzke, 2015], [Langer,
2015]. Its hardware design is available open-
source from GitHub and drivers have been in-
cluded in official BeagleBoard SD card images.
Providing capabilities for multichannel signal
processing this device is in principle suitable for
hearing aid processing on the BeagleBone Black.
A drawback that remains here is the necessity to
add external power supply for the microphones
connected to the device.

The Octo Audio Injector sound card http:
//www.audioinjector.net/rpi-octo-hat of-
fers 6 input channels and 8 output channels for
the Raspberry Pi. Although the Raspberry Pi
offers no hardware support for more than two
sound channels, this sound card manages to of-
fer enough input channels to connect 2 hear-
ing aids with 3 microphones each. A disadvan-
tage of this sound card for hearing aid research
is that additional external microphone pream-
plifiers are needed to raise the microphone sig-
nals to line level, which adds to the hardware
that test subjects would have to carry around.
An example setup for teaching hearing aid sig-
nal processing [Schädler, 2017], [Schädler et al.,
2018] uses the stereo version of this sound card

3Acronym for Advanced Linux Sound Architecture,
name for a system of Linux kernel sound card drivers
and user space API to exchange sound data with these
drivers.

4 Self-referencing acronym for JACK Audio Connec-
tion Kit, a user-space server application and library to
connect inputs and outputs of audio applications and
sound cards.

Figure 1: Cape4all with two hearing aids (each
containing three microphones) connected.

together with external microphone preampli-
fiers.

3 Development of the Cape4all
Multichannel Sound Interface for
Hearing Aid Research

We have a need for a compact multichannel
sound interface for a single-board ARM com-
puter with integrated microphone pre-amplifiers
for hearing aid research. Since such a multi-
channel sound interface was not available, we
decided to develop such a sound interface our-
selves.

3.1 Choice of ARM Board Basis for a
Multichannel Sound Card

In the ongoing developments of the Cluster of
Excellence ”Hearing4all”5 several audio inter-
faces were developed proving the inter IC sound
(IIS or I2S) in combination with the Analog
Devices ADAU1761 [Analog Devices Inc., 2009]
stereo audio codec useful [Seifert et al., 2015].
To gain multichannel capabilities, a time divi-
sion multiplex (TDM) scheme specified for I2S
is used. The chosen ADAU1761 codecs support
a TDM output scheme. To allow the usage in
combination with an ARM-based platform and
therefore with openMHA, the BeagleBone Black
with native I2S TDM support by the integrated
McASP6 interfaces was chosen.

3.2 Hardware Design

The Cape4all hardware was designed by the
Leibniz University Hannover based on [Seifert

5http://hearing4all.eu/
6Abbreviation for Multichannel Audio Serial Port.

23

et al., 2015].
In addittion to the I2S TDM output capa-

bilities the Analog Devices ADAU1761 audio
codecs have integrated microphone amplifiers.
Up to 3 microphones for each ear on a bilateral
fitting are assumed in the context of hearing
device development. Therefore, 3 stereo audio
codecs are integrated on the Cape4all PCB7 al-
lowing up to 6 input and output channels simul-
taneously. Due to the TDM scheme, only five
signal connections are required to transport and
synchronize all 3 codecs with 6 input and out-
put channels and the McASP interface of the
BeagleBone Black.

The board provides standard stereo jacks for
connecting off-the-shelf sound hardware as well
as pin headers for custom designs. 3 stereo
jacks are mounted on the board for the 6 in-
put channels, and 2 additional stereo jacks for
the first 4 output channels. The remaining out-
put channels are only accessible through the
pin headers. An on-board voltage regulator
provides microphone bias voltage which can be
switched on and off as needed and routed to
different connectors. The bias voltage can be
altered by exchanging on-board resistors. For
more details, see the reference manual pro-
vided with the hardware design files and the
driver as download from https://github.com/
HoerTech-gGmbH/Cape4all. Figure 1 shows
the hardware in use.

3.3 Hardware Tests and Design
Revisions

In the testing process of previously built au-
dio interface boards using the ADAU1761 stereo
audio codecs, it was revealed that the inter-
nal components of the codecs create bus col-
lision. The I2S TDM bus digital output pins of
the codecs do not provide high-resistance state,
driving the signal high or low preventing an-
other codec to put data on the same signal. The
documentation of the codecs did not give any
details helping to avoid the bus collision. In or-
der to avoid this, an OR-gate was added to the
board design to merge the signals of the codecs
to one signal. This solves the problem on volt-
age level but does not prevent timing collision
due to wrong configuration of the codec out-
puts. The correct codec configuration is ensured
by the ALSA driver (see Section 4). In normal
TDM configuration, filling 6 of the available 8
timeslots, all 3 audio codecs are working cor-

7Abbreviation for Printed Circuit Board.

rectly. For further details on I2S TDM signaling
see [Seifert et al., 2013].

3.4 Release as Open Hardware

The hardware design files are released un-
der the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 Inter-
national License on GitHub https:
//github.com/HoerTech-gGmbH/Cape4all.

4 Driver development

The ALSA sound driver for the Cape4all sound
interface was developed by 64 Studio.
As the Linux kernel already has support for

both the McASP Audio Serial Port [Pandey et
al., 2009] used on the BeagleBone Black and the
ADAU1761 codec [Clausen, 2014] used on the
Cape4all, the development by 64 Studio was to
create a glue-driver explaining to the SoC the
order the codecs are arranged on the Cape4all.
The driver registers the cape as effectively one
PCM device with three mixer sub-devices (cor-
responding to the three physical ADAU1761
codecs), each with their own set of controls in
the ALSA mixer. Also, the driver sets up the
codec’s clock-path, TDM slots and various other
default settings.
As the driver exposes the Cape4all as a regu-

lar ALSA device with three mixer sub-devices,
each with their own ALSA controls, application
software may communicate with these devices
without any modifications.

4.1 Limitations

The McASP used on the BeagleBone Black is
clocked from a 24.576MHz crystal. This limits
the available sample rates to be a whole divisor
of this clock, for instance 24 kHz or 48 kHz is
acceptable but 22.05 kHz or 44.1 kHz is not.
The ADAU1761 codecs do not directly sup-

port sharing 6 channels between 3 separate
codecs on a TDM bus. As a workaround, the
TDM mode for transferring 8 channels is used,
where 2 channels contain no data. A conse-
quence is that the sound card appears to have 8
channels in ALSA but only the first 6 channels,
corresponding to the physical channels, should
be used.

4.2 Release

The driver code is released as open source soft-
ware under the GNU General Public License,
Version 2 or later, in the same git repository
as the hardware design files on GitHub, https:
//github.com/HoerTech-gGmbH/Cape4all.

24

5 Usage

As Linux distributions created by SoC devel-
opment board manufacturers are typically not
being suited to audio signal processing and con-
tain a lot of applications that are not useful in
this context, a custom Debian distribution has
been prepared by 64 Studio. E.g. the JACK Au-
dio Server contained in this custom distribution
was built without DBUS support to allow the
system to run without a GUI and the final De-
bian system was tweaked by 64 Studio for basic
real-time performance. An image file contain-
ing this distribution is available for download
together with the hardware design. It contains
just the software needed to run openMHA, has
device-tree and custom Kernel built-in as well
as custom tweaks for increased real-time audio
performance.

These steps are needed to prepare a Beagle-
Bone Black for multichannel signal processing
with openMHA and Cape4all:

• Download and copy image to SD-card

• Download and compile openMHA on the
system

• Set up system for higher audio performance
according to manual provided

• Start JACK Audio Server with settings ac-
cording to the openMHA configuration to
be run

• Read example configuration provided with
openMHA and start processing

The openMHA processes can be accessed at
runtime through a TCP/IP connection. This
connection can be used to read out and change
parameters of the running system. By this
means it is possible to run a GUI on a laptop or
tablet computer that can be used to control the
processing parameters remotely. For details, re-
fer to the openMHA application manual.

6 Conclusions

Cape4all is a working, multichannel sound in-
terface for the BeagleBone Black with inte-
grated microphone pre-amplifiers which makes
it suitable for hearing aid research, where pre-
amplifiers are essential and where a small form
factor matters.

A working ALSA driver has been developed
that takes care of the proper initialization of
the codecs and the multichannel capabilities of

the BeagleBone Black and then drives the mul-
tichannel sound exchange between user space
applications and the codecs on the sound inter-
face.
Both, the hardware design files and the

driver, have been published with open licenses
on GitHub, https://github.com/HoerTech-
gGmbH/Cape4all.
In its current state, the Cape4all can be run

together with a JACK Audio Server on a Bea-
gleBone Black reliably with a 4ms buffer (128
samples per channel) at a 32 kHz sampling rate.
This is the state directly after driver develop-
ment before any optimization towards shorter
audio buffers has been performed. This current
state is an important step towards our goal of a
mobile hearing aid algorithm evaluation setup,
but it needs to be improved to achieve the tar-
get overall audio delay below 10ms between in-
put and output sounds, considering that some
of the algorithms will add a small algorithmic
delay. Therefore, we are going to further opti-
mize the driver in collaboration with 64 Studio
after the initial release to enable smaller audio
buffer sizes.

7 Acknowledgements

This work was supported by the German Re-
search Foundation (DFG) Cluster of Excellence
EXC 1077/1 ”Hearing4all”.
Research reported in this publication was

supported by the National Institute On Deaf-
ness And Other Communication Disorders of
the National Institutes of Health under Award
Numbers R01DC015429. The content is solely
the responsibility of the authors and does not
necessarily represent the official views of the Na-
tional Institutes of Health.

References

Analog Devices Inc. 2009. ADAU1761 –
SigmaDSP stereo, low power, 96 khz, 24-bit
audio codec with integrated PLL. http:
//www.analog.com/static/imported-
files/data_sheets/ADAU1761.pdf.

Lars-Peter Clausen. 2014. https:
//git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/tree/
sound/soc/codecs/adau17x1.c.

Paul Davis. 2003. Jack audio connection kit.
http://jackaudio.org/.

Giso Grimm, Joanna Luberadzka, Tobias
Herzke, and Volker Hohmann. 2015. Tool-

25

box for acoustic scene creation and rendering
(TASCAR) – render methods and research
applications. In Proceedings of the Linux Au-
dio Conference, pages 1–7, Mainz. Johannes
Gutenberg-Universität.

Tobias Herzke, Hendrik Kayser, Frasher
Loshaj, Giso Grimm, and Volker Hohmann.
2017. Open signal processing software plat-
form for hearing aid research (openMHA). In
Proceedings of the Linux Audio Conference,
pages 35–42, Saint-Étienne. Université Jean
Monnet.

HörTech gGmbH and Universität Oldenburg.
2017. openMHA web site on GitHub. http:
//www.openmha.org/.

Henrik Langer and Robert Manzke. 2015.
Linux-based low-latency multichannel
audio system (CTAG face2—4). http:
//www.creative-technologies.de/linux-
based-low-latency-multichannel-
audio-system-2/.

Henrik Langer. 2015. Linuxbasiertes
Mehrkanal-Audiosystem mit niedriger
Latenz.

Giulio Moro, Astrid Bin, Robert H Jack,
Christian Heinrichs, Andrew P McPherson,
et al. 2016. Making high-performance embed-
ded instruments with bela and pure data.

Nirmal Pandey, Suresh Rajashekara,
and Steve Chen. 2009. https:
//git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/tree/
sound/soc/davinci/davinci-mcasp.c.

Marc René Schädler, Hendrik Kayser, and
Tobias Herzke. 2018. Pi hearing aid. The
MagPi (Raspberry Pi Magazine), 67:34–35.

Marc René Schädler. 2017. openMHA on
Raspberry Pi. https://github.com/m-r-s/
hearingaid-prototype.

Christopher Seifert, Guillermo Payá-Vayá,
and Holger Blume. 2013. A multi-channel au-
dio extension board for binaural hearing aid
systems. In Proceedings of ICT. OPEN. Con-
ference ICT. OPEN, pages 33–37.

Christopher Seifert, Guillermo Payá-Vayá,
Holger Blume, Tobias Herzke, and Volker
Hohmann. 2015. A mobile SoC-based plat-
form for evaluating hearing aid algorithms
and architectures. In Consumer Electronics-
Berlin (ICCE-Berlin), 2015 IEEE 5th Inter-
national Conference on, pages 93–97. IEEE.

26

MRuby-Zest: a Scriptable Audio GUI Framework

Mark McCurry
DSP/ML Researcher

United States of America
mark.d.mccurry@gmail.com

Abstract

Audio tools face a set of uncommon user interface

design and implementation challenges. These con-

straints make high quality interfaces within the open

source realm particular difficult to execute on vol-

unteer time. The challenges include producing a

unique identity for the application, providing easy

to use controls for the parameters of the application,

and providing interesting ways to visualize the data

within the application. Additionally, existing toolk-

its produce technical issues when embedding within

plugin hosts. MRuby-Zest is a new toolkit that was

build while the ZynAddSubFX user interface was

rewritten. This toolkit possesses unique character-

istics within open source toolkits which target the

problems specific to audio applications.

Keywords

Interface Design, LV2, VST, Ruby

1 Introduction

MRuby-Zest was created to address long stand-
ing issues in the ZynAddSubFX[1] user inter-
face. The MRuby-Zest framework was built
with 5 characteristics in mind.

Scriptable: Implementation uses a first class
higher level language

Dynamically Resizable: Fluid layouts which
do not have any fixed sizes

Hot Reloadable: Reloads a modified imple-
mentation without restarting

Embeddable: Can be placed within another
UI without conflicts

Maintainable: Relatively simple to read and
write GUI code

Several examples of the toolkit can be seen in
Fig. 1, 2, 3, and 4.

Figure 1: Zyn-Fusion Add Synth

1.1 History

Historically the ZynAddSubFX interface was
written in FLTK[2] and the user interface pro-
cessed a number of usability issues as well as
look and feel consistency issues. Additionally
the multi-window FLTK design ZynAddSubFX
previously used did not embed cleanly into plu-
gin hosts. Mid 2014 a series of mockups by
posted online by Budislav Stepanov1. The
mockups provided an overhaul of the workflow
of the GUI, but it was a new design which did
not make use of any of the existing widgets, nor
widgets available in other toolkits. Since the
new interface was not small some tools would
be needed to increase the speed of development.

Figure 2: Zyn-Fusion Kit Editor

The first prototypes were written in the Qt
Meta Language (QML)[3; 4] QML is a domain

1http://www.kvraudio.com/forum/viewtopic.php?
f=47&t=412173

27

Figure 3: Zyn-Fusion Oscillator

specific language commonly used to describe a
group of components and properties within a
user interface. In addition to purely describing
components, QML can also define callbacks and
new functionality for widgets using a scripting
language. Within Qt, this scripting language is
javascript.

While prototyping ZynAddSubFX’s UI, the
prototype frequently ended up accessing the
C++ to QML layer of Qt which received
much less documentation than the pure QML
layer. Some of the logic/drawing routines for
the program ended up in C++ portion which
couldn’t be effectively hotloaded, which slowed
development. Additionally the barrier between
C++ and Qt’s javascript engine was non-trivial.
Overall, this process highlighted that for the
prototype and the version of QML used:

• QML’s javascript was not sufficiently flexi-
ble when extending widgets

• QML’s layout algorithms did not meet the
requirements of the new design

• None of the QML components were heav-
ily used beyond primitives (rectangles,
component-repeaters, etc)

Figure 4: Zyn-Fusion Pad Synth

QML at a high level was useful, concise,
and easy to dynamically manipulate. The in-
frastructure around it was limiting for the Zy-
nAddSubFX use case. So, at this stage of proto-
typing the question was posed: "Why does QML

need to be tied to Qt and the specific scripting
language of Javascript?"

QML within Qt was script-able, layout rou-
tines were flexible enough that resize-ability
wasn’t a major issue, and it was built with hot
loading in mind. Per embed-ability, Qt does
not embed well; specifically, loading two plugins
which use different Qt versions (e.g. Qt4/Qt5)
is known to cause issues with symbol name con-
flicts and global variable conflicts. When initial
prototyping was done with QML it was acknowl-
edged that eventually the project may need to
move away from Qt and MRuby-Zest was born.
MRuby-Zest took the QML language, replaced
the scripting language with Ruby, integrated it
with the nanovg OpenGL rendering library, and
began to leverage parameter metadata that Zy-
nAddSubFX produces via the rtosc library[5].

1.2 Prior Art

The problem of creating a good looking embed-
dable GUI isn’t a new task in the open source
audio realm. Audio plugins are a challenging
design space. Complex information needs to be
presented to a reasonably non-technical audi-
ence in a way that they can quickly understand
how to manipulate it. To facilitate this, an au-
dio plugin needs to differentiate itself from other
applications and provide a consistent and easy
to understand visual and interactive language
for the user to tune.

There’s certainly plenty of tools based upon
more standard toolkits like GTK or Qt. A
few of the open source audio plugin toolkits
include: AVTK[6], robtk[7], fffltk[8], DPF[9],
rutabaga[10], JUCE[11], and a few PUGL based
non-toolkit options also exist in some smaller
applications.

Compared to these toolkits, MRuby-Zest de-
sires to be generally built for larger more com-
plex applications as well as having a distinct
look and feel. Additionally the heavy use of
Ruby scripting makes MRuby-Zest more geared
towards rapid development of a large complex
interface.

2 Implementation

The MRuby-Zest framework is implemented
through a combination of different layers. This
includes QML parsing/processing, OSC commu-
nication, event handling, and the widget classes
themselves.

28

2.1 QML

QML is a domain specific language commonly
used to describe a group of components within
a user interface. More generally, QML defines
a tree of objects, methods on object instances,
a set of interrelated properties, and bindings
for the properties. Within Qt, QML runs on
Javascript on top of the normal tools that Qt
provides. MRuby-Zest’s QML uses Ruby for
scripting, but otherwise shares most structural
similarities.

Through the use of a dynamic language QML
gains a number of properties which make inter-
face development easier. First and foremost is
the conciseness of the language. Using C++ a
simple widget ends up being rather verbose:

Listing 1: C++ Widget

class SubWidget: public Rectangle
{

public:
SubWidget(void) {

fooVar = "foo";
barVar = true;
structure = new Structure;
model = new Model;
structure−>add_parent(this);
model−>add_parent(this);

}

~SubWidget(void)
{

delete structure;
delete model;

}

string fooVar;
bool barVar;
Structure ∗structure;
Model ∗model;

void fn(string args)
{

cout << args << endl;
structure−>method();

}
};

With ruby methods/callbacks QML would
look virtually the same. Indeed parsing all of
the QML I had written thus far didn’t depend
upon the scripting language at all. With ruby
it was possible to use QML to create something
like:

Listing 2: QML Widget

Rectangle {
id: window

property String fooVar: "foo"
property Bool barVar: true

Structure { id: structure }
Model { id: model }

function fn(args) {
puts args
structure.method()

}
}

And translate it to something similar to:

Listing 3: Ruby Widget Result

class Instance < Rectangle
attr_reader :structure, :model
attr_property(:fooVar, String)
attr_property(:barVar, Bool)

def initialize()
add_child(@structure =

Structure.new)
add_child(@model =

Model.new)
set_property(:fooVar, "foo")
set_property(:borVar, true)

end

def fn(args)
puts args
structure.method

end
end

While this transformation may seem triv-
ial, the organizational structure that QML’s Qt
Modeling Language provides is helpful at under-
standing complex widget hierarchies at a glance.

2.2 Hot-loading

When developing or maintaining a synth a con-
siderable amount of time is spent on improving
the user interface. GUI development can be slow
going work and compared to other tasks it can
be harder to obtain a fast feedback loop. Gen-
erally GUI development in these cases has the
loop of:

1. Build - Compile from source

2. Open - Launch the application

29

3. Navigate - Get to the part of the applica-
tion which is modified

4. Observe - See how the application behaves

5. Close - Close application

6. Modify - Change behavior

7. Repeat - From step 1 repeat

MRuby-Zest on the other hand makes it pos-
sible to load code into live instances of the user
interface. Hotloading code in MRuby-Zest is
possible since the vast majority of code can be
relatively simply converted to Ruby code and
loaded into the active Ruby VM during execu-
tion. Using hotloading the development loop
becomes:

1. Build - Compile from source

2. Open - Launch the application

3. Navigate - Get to the part of the applica-
tion which is modified

4. Observe - See how the application behaves

5. Modify - Change behavior

6. Repeat - From step 4 repeat until done

7. Close - Exit after desired behavior is ob-
tained

Reducing the feedback loop makes it much
easier to tune graphics, layout, and the feel of
input handling.

2.3 OSC Communications

Different GUI toolkits have different approaches
on communicating state to the rest of the ap-
plication outside of the interface (the back-
end). MRuby-Zest leverages Open Sound Con-
trol (OSC) to communicate to in-process and
out-of-process backends. This submodule is
known as the OSC-Bridge.

The OSC-Bridge controls communication to
the optionally-remote synthesis engine, and pro-
vides metadata for modeling parameters in the
user interface. The OSC interface specifies the
minimum value, maximum value, short names,
tooltips, and other information about param-
eters that can be accessed. Additionally, this
layer provides several mechanisms for tracking
and synchronizing the value of remote param-
eters. These mechanisms abstract away syn-
chronization mechanisms, simplifying the wid-
get programming.

2.4 Drawing model & events

MRuby-Zest is an OpenGL based toolkit which
uses PUGL[12] for platform specific event
handling and nanovg[13] for a drawing API.
OpenGL 2.1 (with the framebuffer extension)
was used to simplify embedding and enable com-
plex animations in future versions. NanoVG was
used to simplify drawing vector graphics, which
were necessary for simplified fluid resizing of the
GUI.

When drawing in the MRuby-Zest toolkit,
widgets are drawn depth first for each layer of
the user interface. These layers are:

• the background - where most widgets are
drawn

• the animation layer - simple drawings ex-
pected to update many times a second

• the overlay - drawing on top of the interface
(e.g. modals/dropdowns)

Overlay

Animation

Background

Figure 5: Framebuffer layers

Since the widgets define strict bounding boxes
for drawing, redrawing can be cheaply done.
First, the damaged part of the altered layer can
be masked. Then, all widgets which intersect
with the layer and damaged region are redraw.
Finally, the three framebuffer layers are redrawn
producing the final GUI.

On the event handling side, MRuby-Zest be-
haves fairly traditionally. At the time of writing
MRuby-Zest responds to:

• Key presses/releases

• Mouse presses/releases

• Mouse drags

• Mouse hovering

• Window resizing

30

2.5 Widgets

The current version of MRuby-Zest has 182 wid-
gets. These range from simple buttons, la-
bels, and boxes to complex views of parameters.
Two major types of widget that are available in
MRuby-Zest are layout widgets and parameter
controlling widgets.

In MRuby-Zest there are grid pack (Fig. 6),
module pack (Fig. 7), tab pack, vertically
packed, horizontally packed, and other lay-
out specific widgets. Historically the resizing
was taken care of by a constraint layout sys-
tem which solved a set of linear-equations via
GLPK[14], however this approach proved too
computationally expensive and was removed to
maintain a more consistent framerate.

Figure 6: Grid Layout

Figure 7: Control Rows Layout

There are also a wide array of options to rep-
resent parameters. This includes Knobs (Fig. 8),
sliders (Fig. 9), drop downs (Fig. 10), buttons,
plots (Fig. 11), text editors, piano keyboards,
and more.

Figure 8: Knob Widget

Figure 9: Horizontal Slider Widget

Figure 10: Drop down Widget

Figure 11: Envelopes/2D plotting Widget

3 Conclusion

Audio applications are a complex design and
programming domain. Existing toolkits pose
embedding challenges as well as difficulties
in rapid development. MRuby-Zest provides
one new approach to audio plugin GUI devel-
opment and is available at https://github/
mruby-zest/ under a mixed MIT and LGPL li-
cense. Using MRuby-Zest, the ZynAddSubFX
project has been able to build the new Zyn-
Fusion interface. This interface serves as a com-
plex example of the MRuby-Zest framework and
shows that the chosen approach can speed up
development on non-trivial designs.

References

[1] N. O. Paul, M. McCurry, et al., “Zy-
naddsubfx musical synthesizer.” http://
zynaddsubfx.sf.net/, 2018.

[2] B. Spitzak et al., “Fast light toolkit (fltk),”
1998.

[3] H. Nord, E. Chambe-Eng, et al., “Qt - soft-
ware toolkit.” http://qt.io/, 2018.

[4] Q. Contributors, “Qt - software
toolkit.” https://doc.qt.io/qt-5.
10/qtqml-index.html, 2018.

31

[5] M. McCurry, “rtosc - realtime safe
open sound control.” https://github.
com/fundamental/rtosc, 2018.

[6] H. van Haaren, “Avtk.” https://github.
com/openAVproductions/openAV-AVTK,
2018.

[7] R. Gareus, “robtk.” https://github.com/
x42/robtk, 2018.

[8] S. Jackson, “Infamous plugins.” https:
//github.com/ssj71/infamousPlugins,
2018.

[9] F. Coelho, “Dpf.” https://github.com/
DISTRHO/DPF, 2018.

[10] W. Light, “Rutabaga.” https://github.
com/wrl/rutabaga, 2018.

[11] “Juce.” https://juce.com/, 2018.

[12] D. Robillard, “Pugl - cross platform
windowing abstraction layer.” https://
drobilla.net/software/pugl, 2018.

[13] M. Mononen, “nanovg - canvas api
for opengl.” https://github.com/
memononen/nanovg, 2018.

[14] A. Makhorin, “Glpk linear programming kit
manual.” http://www.gnu.org/software/
glpk/glpk.html, 2014.

[15] Y. M. Matsumoto et al., “Mruby - embed-
dable ruby interpreter.” https://github.
com/mruby/mruby, 2018.

32

Camomile: Creating audio plugins with Pure Data

Pierre GUILLOT

CICM – EA1572
University Paris 8

Saint-Denis, France
guillotpierre6@gmail.com

Abstract

Camomile is an audio plugin with Pure Data
embedded for creating, with patches, original
and cross-platform audio plugins that work
with any digital audio workstation that
supports VST or Audio Unit formats. This
paper presents an overview of the current
functionalities of Camomile and the
possibilities offered by this tool. Following
this presentation, the main lines of future
development are exposed.

Keywords

Pure Data, Plugin, DAW, VST, Audio Unit

1 Introduction

Camomile1 is a free, open-source and cross-
platform audio plugin with Pure Data2 [1]
embedded, used to control patches inside a large
set of digital audio workstations – as long as they
support VST3 or Audio Unit4 formats.
Development for this tool started in spring 2015
with a view to address issues that are related to
pedagogical uses, experimental purposes and
creation contexts. To satisfy these objectives,
several approaches have been explored, resulting

1The plugin is available in the VST2, VST3 and
Audio Unit format for Linux, Windows and MacOS.
The binaries and sources are available on the Github
repository github.com/pierreguillot/camomile (accessed
January 2018). Since the version 1.0.0, the sources are
distributed under the license GNU GPLv3. The sources
of the anterior versions are distributed under the licence
BSD 3.

2Pure Data is a free and open-source software,
created by Miller Puckette at the University of
California, San Diego msp.ucsd.edu/software.html
(accessed January 2018).

3The digital audio plugin format VST (Virtual Studio
Technology) 2 et 3 are developed by the Steinberg
GmbH company steinberg.net (accessed January 2018).

4The digital audio plugin format Audio Unit is
d e v e l o p e d b y t h e A p p l e I n c . c o m p a n y
developer.apple.com/audio (accessed January 2018).

in many prototypes that have preceded the current
version of the plugin. This entire endeavour, the
many functional specifications that have been
defined, the major issues that have been
encountered – such as support for multiple
instances and multithreading in Pure Data, and
linking Pure Data with the plugin –, the different
solutions that have been proposed and the choices
that have been made are all presented in detailed
in [2]5. As most of the technical barriers have been
broken down, the main goal of this project is
currently to offer a tool that can compete with
standard plugins. Hence, following an overview of
the many features already offered by Camomile,
the paper exposes the remaining work that is
needed to complete this plugin, and the
perspectives of development.

In practice, Camomile can be viewed as a meta-
plugin: a plugin that generates other plugins. To
clarify this presentation, the term “meta-plugin”
will be used for this plugin – which embeds Pure
Data; while the resulting plugins, containing the
meta-plugin and patches, and can be used in
digital audio workstations will simply be called
“audio plugins”. Thus, this presentation of
Camomile is organised along two distinct but
complementary axes. The first axis is focused on
the creation of the audio plugin using the meta
plugin: defining its functionality, creating
patches, setting up features and so on. The second
axis focuses on using the audio plugins: support
by digital audio workstations, graphical interfaces
and so on. Nevertheless, to offer a clear
understanding of the defining aspects of each axis,
this presentation is inverted. First, audio plugins
usage is presented to highlight the features offered
to the final user. Secondly, a large set of the
features which can be implemented during the
creation process will be shown. Following this

5The publication also presents the context in which
this project took place and in particular the related
projects such as PdVST and PdLV2 but also the
parallel projects like PdDroidParty and PdParty [4].

33

components that are available in Pure Data (see
Figure 2). This window makes it possible to
represent the sound engine and interact with it, and
also to communicate with the plugin. As will be
shown later, the graphical user interfaces of the
patch can be associated to parameters or specific
actions like displaying a dialogue window to open
or save files.

Figure 3: Auxiliary window of a plugin named
Dummy illustrating the use of the console and the

different types of messages.

In the upper-left corner of the interface, a button
representing a chamomile flower is used to display
an auxiliary window with three tabs (see Figure 3).
The first tab corresponds to a console relatively
similar to the one offered by Pure Data. This
console receives the messages sent via the object
print, the internal warnings of Pure Data – when an
abstraction is not found for example – but also
additional information related to the operation of
the meta-plugin to facilitate debugging the patches.
The console also allows you to copy, delete and
filter messages according to their importance. The
second tab displays information defined by the
creator of the patch such as a description of the
operations and how to use the plugin but also
information related to credits or the plugin version.
Finally, the last tab displays information related to
Camomile, including legal information and credits
related to different dependencies such as Pure
Data, libPD11 [3] and JUCE12.

3 Creating plugins

Building a digital audio plugin with Camomile
requires proper communication between the patch
– the core of digital audio processing – and the
digital audio workstation through the meta-plugin.
For this purpose, Camomile offers several
interfaces to use and handle a wide range of the

11libpd is wrapper that turns Pure Data into an
embeddable audio library libpd.cc (accessed February
2018).

12JUCE is an application programming interface
oriented towards digital audio signal processing
distributed by ROLI company juce.com (accessed
January 2018).

usual features of digital audio plugins, such as
parameters management, reading information
from the play head, or creating the graphical user
interface. These interfaces cover two aspects of
plugin creation: properties definition for the
plugin – such as its ability to handle MIDI events
or the number and nature of its parameters – and
communication between the patch and the digital
audio workstation through the meta-plugin – so
that the digital audio workstation or the plugin can
interact with the patch and reciprocally the patch
with the digital audio workstation – for example,
to send and receive digital audio signals but also
MIDI events, or to control parameters.

3.1 Plugin properties definition

 To ensure optimal functioning within digital
audio workstations, audio plugin properties are
defined using a text file named after the meta-
plugin and the main patch13. This properties file
follows a syntax relatively similar to the FUDI14

protocol where each line corresponds to a new
statement and ends with a semicolon. So each
statement can be used to define or to complete a
feature or a property of the plugin. In order to
ensure the proper functioning of the plugin, the
console displays a warning if some properties
have been wrongly defined, duplicated or omitted.
Although in practice there is no hierarchy, these
properties of the plugins can be organised
according to categories.

First, properties are used to define general
information, which is needed to generate the audio
plugin and for it to function properly in digital
audio workstations; such as the type of the plugin
– to inform the user which meta-plugin to use for
generating the plugin15 – or the compatibility
number – that corresponds to the version of the
plugin with which the patch has been created and
that is used to ensure compatibility with the
patch16.

13The documentation offers a full explanation on
how to create and to use the properties file.

14FUDI is a network protocol invented by Miller
Puckette for Pure Dat a en.wikipedia.org/wiki/fudi
(accessed February 2018).

15The types can be effect or instrument and if the
meta-plugin is not coherent with the type defined in the
properties file, then the console displays a warning.

16 If the version of the meta-plugin used is inferior to
the compatibility version, then the console displays a
warning.

35

Properties can also be used to activate extra
functionalities that are originally deactivated for
reasons of efficiency, for example if the audio
plugin needs to handle MIDI events, play head
information, or key event.

An important part of the options is focused on
audio signal processing, like latency, which is
implied by the plugin when using an FFT for
example, or audio tail length – the time during
which the output still produce audio after the input
has been stopped – for reverberation effect for
example. But the main audio property defines the
audio buses supported by the plugin – the audio
input and output configurations. The different
audio plugin formats support dynamic audio buses
layout, as well as multichannel and side-chains.
Camomile offers a syntax that helps using these
features. Thereby, an audio plugin can support
several layouts of multichannel buses, for a sound
spatialisation plugin for example, or the enabling
or disabling of side-chains, for a compressor for
example, so the process of the patch can be
adapted depending on the buses layout submitted
by the digital audio workstation17 .

Another important aspect of an audio plugin is
related to the control protocol of its state by the
digital audio workstations using parameters. A
parameter represents one or several aspect of the
audio engine with a numerical value – that can be
saved, restored, automated, etc. by the digital
audio workstation. Camomile offers the possibility
to create highly-developed parameters with names,
labels, ranges of values, steps and so on to
improve their use, their representation and their
meaning.

At last, properties are used to define additional
attributes which are not necessary for the proper
functioning of the plugin, but which can be
essential to its ease of use, such as the description
displayed by the plugin in its tab on the auxiliary
window, the reference to an image file that the
plugin displays as background of the graphical
interface or an option to automatically reload the

17All the audio buses layouts supported by the audio
plugin must be defined at the first loading, so to support
dynamic changes but also some specificities such as
extra buses for side-chaining, this property must be pre-
defined. More complex cases, like when the additional
buses configurations depend on the main bus
configuration, still need to be investigated. Furthermore,
future versions could support a text description of the
buses, like quadraphonic or ambisonic, to improve the
specification of the configurations accepted by the
plugin.

patch when it has changed – useful during the
creation process.

3.2 Communication between the plugin and
the patch

Communication between the patch and the
digital audio workstation through the meta-plugin
is, for its part, ensured via a set of conventions
and practices. First of all, the messages sent and
received by the meta-plugin to and from the patch
are synchronised sequentially to the audio thread
depending on an order defined arbitrarily18.
Overall, the meta-plugin first sends its messages,
such as parameter values or MIDI events, then it
processes the patch's digital audio chain, and
finally it retrieves the messages sent from the
patch to its address19.

As defined by libpd, in a similar way to the
applications PdParty or PdDroidParty, most of the
communication can be handled within the patch
using native objects: the objects adc~ and the
dac~ for the audio signals20, the objects notein,
noteout, ctlin, ctlout and so on for the MIDI
events and the objects key, keyup and keyname for
the keyboard events. Furthermore, using a 'bus'
receiver makes it possible to retrieve information
about the current audio buses layout of the plugin
when the audio starts – for example, to adapt the
audio process. Using a 'play head' receiver during
processing can be used to retrieve information
such as tempo, time signature of the current bar,
current position of the play head and so on, which
could be indispensable for some synthesisers.

18Even if each Pure Data instance – each meta-plugin
– can run in a separate thread, an instance can only be
modified by only one thread, otherwise the behaviour
is undefined and so potentially different from the one
offered by the Pure Data application.

19The specific order of each message according to its
type is fully explained in the documentation.

20In order to use directly the patch as an abstraction
within the Pure data application, replacing the objects
adc~ and dac~ by the objects inlet~ and outlet~ has
been considered. Nevertheless, this solution didn't seem
desirable because it prevents to receive or to send the
audio signals from inside subpatches or abstractions
and it makes more complicated the dynamic patching
that could be useful to adapt the process to the audio
buses layouts submitted by the digital audio
workstations. Furthermore, the implementation of the
meta -p lugin becomes much more complex
implementation especially to manage the audio block
size in the main patch that would be no more
necessarily predefined.

36

4 Perspectives

First of all, some native features of Pure Data
relative to the graphical user interfaces are missing
or can be improved, such as the implementation of
the graphical object VU-meter or the improvement
of the rendering of the graphical object labels. In
order to get closer to standard plugins, it would be
interesting to investigate the use of external
images, which would replace drawing the
graphical objects – using an image for the
background of the object and one or more images
for the foreground depending on the type of
interface, it would be really easy to customise its
representation. Another approach to offer more
possibilities would be to implement the graphical
part of the data structure of Pure Data [5], to draw
and interact with more personal and original
interfaces.

Support for external libraries is also very in
demand by users. This feature could be a great
improvement, this way someone could use an
external as the audio processor of the plugin –
optimizing the processes – and the patch as the
interface with the meta-plugin and the digital audio
workstation. Unfortunately, dynamic library
loading seems to be restricted by the way Pure
Data is embedded inside the meta-plugin23 and by
the fact that some of them are not directly
compatible with multiple instance support24. Thus,
direct integration of the most widespread libraries
like the Cyclone [6]25 or the Zexy26 libraries inside
the plugin is considered. Nevertheless, this
requires checking the compatibility of all objects
and these dependencies could make Camomile
difficult to maintain27.

23The reason of this restriction still need to be
investigated.

24If a library goes beyond the 'public' API of Pure
Data and uses internal structures that deal with the
multiple instance support, some problems may occur.

25github.com/porres/pd-cyclone (accessed March
2018).

26The Zexy library is developed by IOhannes m
zmölnig puredata.info/downloads/zexy (accessed March
2018).

27Using a monolithic approach by including the
libraries [Bukvic & al., 2017] is one of the causes of the
abandonment of the Pure Data variant, Pd-extended,
puredata.info/downloads/pd-extended (accessed January
2018) originally maintained Hans Christoph Steiner.

Offering a version of the plugin in the LV228

format is also considered, however the differences
with the VST and Audio Units formats raise
compatibility problems that still need to be
explored.

5 Acknowledgements

The author would like to thank the whole
community of Pure Data and libpd developers,
especially Miller Puckette and Dan Wilcox, for
their advice and explanations as well as the users
of Camomile for their great feedback and
suggestions. The author would like to also
acknowledge the CICM and especially Alain
Bonardi and Eliott Paris for their interest in the
project, their comments and their advices.

References

[1] M. Puckette. 1997. Pure Data: Another
Integrated Computer Music Environment
Proceedings of the Second Intercollege
Computer Music Concerts, p . 3 7 - 4 1 ,
Tachikawa, Japan.

[2] P. Guillot. 2018. Camomile, Enjeux et
Développements d’un Plugiciel Audio
Embarquant Pure Data. Actes des Journées
d’Informatique Musicale, Amiens, France.

[3] P. Brinkmann, P. Kirn, R. Lawler, C.
McCormick, M. Roth and H.-C Steiner. 2011.
Embedding Pure Data with libpd. Proceedings
of the Pure Data Convention, Weimar,
Germany.

[4] D. Wilcox. 2016. PdParty: An iOS
Computer Music Platform using libpd.
Proceedings of the Pure Data Convention, New
York, USA.

[5] M. Puckette. 2007. Using Pd as a score
language. Proceedings of the International
Computer Music Conference, p. 184-187,
Göteborg, Sweden.

[6] A. Torres Porres, D. Kwan and M. Barber.
2016. Cloning Max/MSP Objects: A Proposal
for the Upgrade of Cyclone. Proceedings of the
Pure Data Convention, New York, USA.

[7] I. I. Bukvic, A. Gräf and J. Wilkes. 2017.
Meet the Cat: Pd-L2Ork and its New Cross-
Platform Version “Purr Data”. Proceedings of
the Linux Audio Conference, Saint-Étienne,
France.

28The LV2 format by D. Robillard is the successor of
the LADSPA plugin format lv2plug.in/ns (accessed
March 2018).

38

Ableton Link – A technology to synchronize music software

Florian Goltz
Ableton AG

Schönhauser Allee 6-7
10119 Berlin,

Germany

Abstract

Ableton Link is a technology that synchronizes mu-
sical beat, tempo, phase, and start/stop commands
across multiple applications running on one or more
devices. Unlike conventional musical synchronization
technologies, Link does not require master/client
roles. Automatic discovery on a local area network
enables a peer-to-peer system, which peers can join
or leave at any time without disrupting others. Mu-
sical information is shared equally among peers, so
any peer can start or stop while staying in time, or
change the tempo, which is followed by all other
peers.

Keywords

Audio, Network, Peer-to-peer, Time, Synchronization

1 Overview of Common Sync
Technologies

Synchronizing media devices has been a challeng-
ing task for a number of decades. This section
provides an overview on existing standards and
approaches. No single sync technology has been
able to establish itself as a universal standard.
Depending on the context and actual require-
ments of a scenario, one ore more of the existing
standards are used.

1.1 SMPTE

In 1967, the Society of Motion Picture and Tele-
vision Engineers released a standard for the syn-
chronization of media systems [Rees, 1997]. In
this standard, time is described as an absolute
value separated into hour, minute, second, and
frame. A master machine generates the clock sig-
nal and sends it to a variable number of clients.
The clock signal can be sent across a dedicated
channel or embedded as metadata within the
media. SMPTE is still widely used today for
synchronization of video and audio systems.

1.2 AES/EBU

The Audio Engineering Society and the Eu-
ropean Broadcasting Union published the

AES/EBU standard in 1985 [Laven, 2004]. It
provides the same information as SMPTE but
is optimized for audio equipment. AES/EBU
can use a wide variety of transports, from XLR
cables to S/PDIF.

1.3 MTC

Midi Time Code was released in 1987 and em-
beds the same data as AES/EBU, but is opti-
mized to be transported via MIDI sysex mes-
sages. [Meyer and Brooks, 1987]

1.4 MIDI Beat Clock

Unlike the above standards, MIDI Beat Clock
is a tempo-dependent signal. It consists of 24
pulses per quarter note. This is probably the
most widely used sync signal in music software
and hardware today.

1.5 JACK Transport

The Jack Audio Connection Kit Transport
API [JackAudio, 2014] allows sharing sample ac-
curate timecode between its clients. While Jack
itself acts as a timecode master for its clients,
Jack Transport allows all its clients to start and
stop transport or seek the timeline. Using Net-
Jack [Hohn et al., 2009], it is possible to connect
multiple clients on a local area network to a mas-
ter. This way transport controls can be shared
among multiple applications running in different
computers. NetJack however only allows audio
output on the master machine.

1.6 OSC Sync

An OSC-based synchronization scheme has been
proposed [Madgwick et al., 2015] which has a
master send clock messages on a regular basis.
This scheme targets networked use cases such as
laptop orchestras.

1.7 Summary

All of the above technologies share the common
approach of having a master provide a clock

39

signal to a number of clients, though the repre-
sentation of time varies. Setting up such systems
involves routing the signal from the master to
the clients and/or configuring the master and
clients to send and receive via the appropriate
channels. In a master/client system, the master
application is usually the only one that has con-
trol over tempo and transport state. As soon
as the master fails, or the channel breaks, the
clients are in an undefined state.

2 Link Design Criteria

Three criteria drove the development of Link:

• Remove the restrictions of a typical mas-
ter/client system.

• Remove the requirement for initial setup.

• Scale to a wide variety of music applications.

These goals are achieved by designing a peer-
to-peer system that sends multicast messages on
a local network. Parameters are controlled mu-
tually and all peers converge to the same shared
timing information. The timing information is
designed in such a way that peers with different
capabilities such as a one-bar-looper or a fully-
featured DAW can map the shared information
to their specific needs. If peers are connected to
a Local Area Network there is no further setup
required.

3 Multicast Discovery

Link peers communicate using UDP multicast
messages in a local area IP network. Each peer
regularly sends messages that contain its unique
peer ID and a snapshot of its current musical
time. This way all peers and their state is known
by each peer on the local network.

The incoming messages are processed by every
receiver according to the same set of rules. If a
receiver decides to adapt the timing information
it has received, it updates its timing information
and broadcasts accordingly. As a result of this
peer-to-peer messaging, all peers on a network
always converge to the same shared description
of the current musical time.

Link regularly scans the available network in-
terfaces on the host computer. When a new
interface is discovered, multicast messages are
sent and received on it as well. As a result, a
Link peer that is connected to multiple networks
can act as a relay: when the timing informa-
tion from incoming messages on one interface

host time

b
ea

t
ti

m
e

timeline A

timeline B

Figure 1: The new timeline B crosses the old
timeline A at the host time of the tempo change

is adapted, it is sent out on all available inter-
faces. This way, timing information is shared
with peers that are not directly connected.

4 Timeline

Link describes the timing information of the
session at a point in time as a tuple of three
values: the host time that the hardware provides,
a corresponding beat time, and a tempo that
describes the change of beat time over host time.
This tuple of values is referred to as a timeline.
The system’s beat time for a given host time
and vice-versa can be calculated with a simple
linear equation: BeatTime/HostTime = Tempo

When a peer intends to change the tempo
at a specific host time, it creates a new time-
line, describing a linear equation crossing the de-
sired time point, and shares it with the network.
When initializing Link, each peer creates such a
timeline and immediately shares it with the net-
work. This timeline then gets either adapted by
other peers on the network, or the peer adapts
a timeline it is receiving.

5 Host Time

Desktop operating systems usually provide calls
that allow applications to ask for the current host
time. Examples are clock gettime() [IEEE,
2008], mach absolute time() [Apple, 2005] or
QueryPerformanceCounter() [Microsoft, 2001].
The time stamps provided by those calls are
based on information that the CPU or special-
ized hardware provides. Their quality can differ
significantly in terms of accuracy and reliability.
Additionally, the speed of the clock may depend
on factors such as temperature and thus vary

40

host time

g�
�
�
�

h
o
st

ti
m

e

Figure 2: Measuring global host time against
local host time in bursts

over time.

To be able to derive the session’s beat time
from the current host time, it is important that a
peer has accurate knowledge of the system’s host
time. Some audio APIs provide accurate timing
information in the audio processing callback.
On other systems, it is necessary to query the
systems’ host time in the audio callback and filter
it to get reliable information. The reference time
Link uses is the ”host time at speaker”, which
refers to the time the audio is actually perceived
by the listener. To calculate this, software and
hardware latencies must be incorporated into
the host time provided by the system.

6 Global Host Time

Link establishes a reference host time that is
shared between all peers in a session. This is
referred to as the global host time. When a
peer initializes Link and starts the initial time-
line, its own host time is used as the reference.
Every peer joining the session uses ping-pong
messaging to calculate the offset of its own host
time against this reference time. The result of
this measurement, is a function that can con-
vert the local host time of the peer to the global
host time and vice versa. globalHostTime =
XForm.hostToGHost(localHostTime)

As soon as a peer knows the global host time,
it can function as a measurement endpoint for
other peers. As a result, the peer that originally
founded the session can leave, while the global
host time is still maintained. Peers regularly
measure their host time’s offset to the global
host time to compensate for speed variations.

0 1 16 2

beat time

Figure 3: Alignment of timelines with quanta of
4, 8 and 3 beats

7 Quantum

As mentioned above, one of the requirements for
Link is to scale to music applications with differ-
ent capabilities. This means it should work for
applications that have different representations
of musical time, e.g., loopers that only provide a
simple one bar loop, or full featured DAWs that
sequence a beat timeline and support different
musical measures.

Link takes the approach of allowing each
client to map the shared timeline to its own
purpose, e.g., a looper can map Link’s time-
line to a position within its loop by call-
ing phaseAtTime(localHostTime, quantum).
The quantum provided by the client describes
the alignment grid in beats. A looper with
a one bar loop in a 4/4 measure would pro-
vide a quantum of 4. Link also provides
beatAtTime(localHostTime, quantum) which
provides a monotonic timeline in a way that
would typically be used by a sequencer.

Link guarantees that clients using the same
quantum are phase synchronized. Peers with
different quanta can form a polyrhythmic Link
session, e.g., a peer using a quantum of 3 and
another peer using a quantum of 4 would be
share a downbeat every 12 beats.

8 Transactional API

Link provides lock-free capture() and commit()
functions to be used in the audio thread, and a
similar thread-safe pair of functions to be used
in other threads.

The capture functions provide a snapshot of
the Link session. This can be used to align the

41

client’s audio to the shared timeline. In case
the client wants to change the timeline, e.g., to
change the tempo, the captured state can be
modified and committed back to Link using the
commit function. The new state will then be
sent to the network and merged with the other
peers’ states.

9 Resources

Link is available as a header only C++11 li-
brary. It is dual licensed under the GNU-GPL
and a proprietary license. The source code
is currently available at http://github.com/
ableton/link. Explanation of the concepts
used in Link and technical documentation on the
API can be found at http://ableton.github.
io/link.

10 Conclusions

Existing technologies to synchronize music de-
vices, as described in Section 1, are all based
upon a master/client communication protocol.
It is the master’s responsibility to broadcast a
signal according to the specification. The clients
receiving the signal are dependent on the com-
munication channel not being interrupted.

Link introduces a different approach to syn-
chronize music devices. It creates a peer-to-peer
network where all peers share a global time refer-
ence and a beat timeline. Any peer can introduce
changes to the timeline in order to change the
state of the session. To establish and maintain
the shared state, it is important that all peers
follow the same set of rules. In this sense, Link
is not just a communication protocol, but a set
of rules for multiple actors to create a shared
musical session.

References

Apple. 2005. https://developer.apple.
com/library/content/qa/qa1398/_index.
html. Accessed: 2018-03-06.

Torben Hohn, Alexander Carôt, and Christian
Werner. 2009. Netjack - Remote music collab-
oration with electronic sequencers on the In-
ternet. LAC 2009, http://lac.linuxaudio.
org/2009/cdm/Saturday/22_Hohn/22.pdf.
Accessed: 2018-04-30.

IEEE. 2008. POSIX 1003.1-2008.
http://pubs.opengroup.org/onlinepubs/
9699919799/functions/clock_getres.
html. Accessed: 2018-03-06.

JackAudio. 2014. http://www.jackaudio.
org/files/docs/html/transport-design.
html. Accessed: 2018-04-30.

Philip Laven. 2004. Specification of the dig-
ital audio interface. https://tech.ebu.ch/
docs/tech/tech3250.pdf. Accessed: 2018-
03-06.

Sebastian Madgwick, Thomas Mitchell, Car-
los Barreto, and Adrian Freed. 2015. Sim-
ple synchronisation for Open Sound Con-
trol. http://eprints.uwe.ac.uk/26049/1/
03FinalSubmission.pdf. Accessed: 2018-03-
06.

Chris Meyer and Evan Brooks. 1987. MIDI
Time Code and cueing. https://web.
archive.org/web/20110629053759/http:
//web.media.mit.edu/˜meyers/mcgill/
multimedia/senior_project/MTC.html.
Accessed: 2018-03-06.

Microsoft. 2001. Acquiring high-resolution
time stamps. https://msdn.microsoft.
com/en-us/library/windows/desktop/
dn553408. Accessed: 2018-03-06.

Philip Rees. 1997. Synchronisation and
SMPTE timecode. http://www.philrees.
co.uk/articles/timecode.htm. Accessed:
2018-03-06.

42

Software Architecture for a Multiple AVB Listener and Talker
Scenario

Christoph Kuhr and Alexander Carôt

Department of Computer Sciences and Languages, Anhalt University of Applied Sciences

Lohmannstr. 23, 06366 Köthen,

Germany,

{christoph.kuhr, alexander.carot}@hs-anhalt.de

Abstract

This paper presents a design approach for an
AVB network segment deploying two differ-
ent types of AVB server for multiple paral-
lel streams. The first type is an UDP proxy
server and the second server type is a digital
signal processing server. The Linux real time
operating system configurations are discussed,
as well as the software architecture itself and
the integration of the Jack audio server. A
proper operation of the JACK server, along-
side two JACK clients, in this multiprocess-
ing environment could be shown, although a
persisting buffer leak prevents significant jitter
and latency measurements. A coarse assessment
shows however, that the operations are within
reasonable bounds.

Keywords

AVB, JACK, signal processing, public internet,
multimedia streaming

1 Introduction

1.1 Soundjack and fast-music

Soundjack [1] is a realtime communication soft-
ware that establishes up to five peer to peer
connections. This software was designed from
a musical point of view and first published in
in 2009 [2]. Playing live music via the public
internet is very sensitive to latencies. Thus, the
main goal of this application is the minimization
of latencies and jitter. The goal of the research
project fast-music, in cooperation with the two
companies GENUIN [3] and Symonics [4], is the
development of a rehearsal environment for con-
ducted orchestras via the public internet. 60
musicians and one conductor shall play together
live. Further field of research is the transmission
of low delay live video streams and motion cap-
turing of the conductor.

1.2 Concept for a Realtime Processing
Cloud

A specialized and scalable server infrastructure
is required to provide the realtime streaming re-
quirements of this research project. The ser-
vice time property of an Ethernet frame arriv-
ing on a serial network interface at the wide area
network (WAN) side of this server cloud, is of
paramount importance for the software design.
During the service time of a single UDP stream
datagram, no concurrent stream datagrams can
be received. Thus, the latencies of all streams
arriving on such an interface are accumulated.
In addition to connecting the 60 streams to

each other, the Soundjack cloud provides dig-
ital signal processing algorithms for audio and
video streams. Digital signal processing is com-
putationally expensive and may cause unwanted
latencies. Thus, a GPU based signal processing
in realtime will be investigated in this research
project as well. A basic and scalable concept
to address these two requirements is shown in
fig. 1.
Audio Video Bridging / Time-Sensitive Net-

working (AVB / TSN) enables computer net-
works to handle audio and video streams in real-
time. AVB is a set of IEEE 802.1 industry stan-
dards, operating on layer 2 of the OSI model [5].

• IEEE 802.1AS [6]
Timing and Synchronization for Time-
Sensitive Applications in Bridged Local
Area Networks

• IEEE 802.1Qat [7]
Virtual Bridged Local Area Networks -
Amendment 14: Stream Reservation Pro-
tocol (SRP)

• IEEE 802.1Qav [8]
Virtual Bridged Local Area Networks -
Amendment 12: Forwarding and Queueing
Enhancements for Time-Sensitive Streams

43

Figure 1: Soundjack Realtime Processing Cloud Concept

• IEEE 1722 [9]
IEEE Standard for Layer 2 Transport Pro-
tocol for Time-Sensitive Applications in
Bridged Local Area Networks

• IEEE 1722.1 [10]
IEEE Standard for Layer 2 Transport Pro-
tocol for Time-Sensitive Applications in
Bridged Local Area Networks

AVB extends a generic Ethernet computer
network by the means of synchronization, re-
source reservation and bandwidth shaping.
This way lower latencies and jitter, the avoid-
ance of packet bursts and bandwitdh shortage
are addressed.

AVB networks require special hardware for
timestamping Ethernet frames with seperate
bandwidth shaped transmission queues for AVB
traffic. The Intel corporation provides the I2XX
Series of NICs with the open source Open-AVB
[11] driver.

Two server types are required for the Sound-
jack cloud, an AVB proxy server and an AVB
processing server. Both server types are con-
nected to the same AVB network segment. Each
server is also connected to a non-AVB network
segment, together with a Soundjack session
server, which acts as an IEEE 1722.1 AVDECC
controller endpoint. IEEE 1722.1 AVDECC
traffic is not necessarily time-sensitive, thus a
non-AVB network segment is used for command
and control purposes. The Soundjack session
server also provides the online services to the
Soundjack client software and handles the con-
nection management of public internet streams,
establishes peer to peer and client-server con-
nections.

All AVB servers are registered for a me-
diaclock stream, which is supplied by an
XMOS/Atterotech development board [12].
The mediaclock stream maintains a constant

mediaclock to synchronize the packet transmis-
sion times of the AVB servers. Without such
a synchronization, each server would depend on
the precise clock of an audio interface hardware,
the CPU clock indicates too much jitter, which
in turn would also require a central synchroniza-
tion mechanism to provide a fully mediaclock-
synchronized network segment.

2 Software Requirements for a
Multiple AVB Listener and Talker

The AVB server software requires a proper con-
figuration of the operating system and the AVB
hardware support, to use the timestamping,
bandwidth reservation and shaping. A multi-
processing design, as shown in fig. 2, takes care
of all aspects required for multiple independent
AVB talkers and listeners.

2.1 Operating System

The ability of Linux to communicate with raw
sockets [13, p. 655] and also to be patched to
operate in realtime mode, makes it the operat-
ing system of our choice. We decided to use the
Linux Mint distribution release 18 Sarah, which
is based on Ubuntu/Debian. Linux Mint 18 uses
the Systemd init process, which makes it easier
to dynamically handle OS services.
AVB requires three background services. A

gPTP daemon, a MAAP daemon and a MRP
daemon. Each requires super user permissions
for raw socket communication.
In addition to the background services, a one-

time-task to unload the generic Intel e1000/IGB
kernel modul and replace it with the Open-AVB
AVB IGB kernel module is required. The AVB
talkers running on the system need the hard-
ware transmit queues of the Intel I210 Ethernet
NIC to be redirected to the bandwidth shaper
transmit queues, so that the I210 NIC might use
the FQTSS mechanism for enqueueing AVTP

44

Figure 2: General AVB Server Architecture (MRP, Talker and Listener Processes)

packets from the DMA memory.
The Open-AVB project provides Shell scripts

to setup those services.
The Linux kernel may be patched, con-

figured and compiled for realtime operation
[14]. A Linux realtime kernel with either the
SCHED FIFO or the SCHED RR scheduling
enabled, handles CPU tasks based on their pri-
orities. A task requesting the CPU, that is
scheduled by either scheduler, has a latency
solely depending on tasks with a higher or equal
priority. Examples for tasks that can still delay
the execution of high priority task are DMA bus
mastering, ACPI power management, CPU fre-
quency scaling and hyperthreading techniques
[15]. These interfering tasks have to be taken
into account and carefully tuned, when config-
uring a realtime Linux system such as:

• Using POSIX realtime mutexes instead of
spinlocks.

• Interrupt handlers are moved to the
userspace process.

• Avoid priority inversion by priority inheri-
tance.

Another scheduler was introduced
in the Linux kernel version 3.14 [16],
SCHED DEADLINE. SCHED DEADLINE
is based on the earliest deadline first (EDF)
scheduling enhanced by the constant bitrate
server algorithm (CBS). The EDF scheduling

with CBS was specifically developed for mul-
timedia applications [17] [18]. This scheduler
does not rely solely on the priority, but assigns
an absolute deadline and a budget to each task.
At each CPU cycle a specific budget is available
to the scheduler. If a task is out of budget it is
preempted to ensure the execution of another
task. With EDF scheduling however, it is
important to avoid deadlocks that result from
CPU over-utilization. The kernel has an inbuilt
mechanism to minimize the risk, by disabling
CPU affinity for EDF-scheduled tasks.

The kernel we use in this project is main-
stream release 4.8.6 with the realtime patch
4.8.6-rt5, which takes care of the above men-
tioned realtime mutexes, userspace interrupt
handlers and priority inheritance. Besides
patching the kernel for realtime operation, sev-
eral optimization steps are performed. Kernel
modules for unnesscary hardware support, e.g.
most network interface drivers and peripheral
device drivers were removed. Furthermore, the
kernel module for NVidia’s proprietary graphic
adpater and CUDA driver was patched to be
used with a realtime kernel.

The optimization of the OS mainly concerns
AVB. Since the AVB implementation requires
the Direct Memory Access (DMA) [19, p. 412]
memory for operation, it is required to use
the Memory Management Unit (MMU) in soft
mode in /etc/default/grub, so that direct

45

Figure 3: NCurses Shell User Interface

hardware addresses are used instead of a virtual
address space, when necessary. The parameter
iommu=soft prevents the usage of the IOMMU
when communicating with the IGB DMA mem-
ory, but allows the Focusrite Solo to use it.

GRUB_CMDLINE_LINUX_DEFAULT="text iommu=soft"

It is also necessary to take care of the prior-
ities for the interrupts, because it has a major
influence on the task scheduling. The most im-
portant interrupt is the one of the NIC provid-
ing the mediaclock stream followed by the inter-
rupts for the USB audio interface device. Linux
provides the /etc/default/rtirq script to en-
force those priorities, which are defined by the
order of the RTIRQ NAME LIST attributes.

RTIRQ_NAME_LIST="enp4s0 enp4s0-TxRx-0
enp4s0-TxRx-1 enp4s0-TxRx-2 enp4s0-TxRx-3
snd usb snd_usb_audio enp2s0 i8042"

Further optimizations, e.g. the deactivation
of the swappiness or configuring limits in a
range a user might operate in, aim to increase
the realtime responsiveness of the operating sys-
tem as a whole [20]. Finally, the system memory
is unlocked and realtime priority is assigned to
the user-space application.

2.2 Software Architecture

The AVB server software is running five pro-
cesses in parallel, to distribute processing time
more evenly over the available CPU cores. The
parent process forks four children and operates
afterwards as mediaclock receiver and AVTP
packet scheduler. The first child process is the
management process and runs the AVDECC
controller instance. All AVDECC operations
are sent via command queues to a talker or
listener instance, except the creation of talkers

and listeners themselves. The creation of talk-
ers and listeners is not covered by the AVDECC
standard, thus a vendor specific command and
response [10, p. 151] has been implemented.
Status variables and stream states are written to
and accessed by a POSIX shared memory seg-
ment. The management process also provides
a terminal user interface, as shown in fig. 3, to
monitor counters and states of the AVB streams
in realtime. Talker and listener endpoint thread
instances are created by the talker and the lis-
tener processes, respectively. The fifth process
is the MRP process, handling all of the stream
reservations of the endpoint instances. Figure 2
shows the general AVB server software architec-
ture.

A talker instance reads audio and video data
from some process and puts the data into the
payload of an AVTP packet, which is then
pushed to its circular buffer. The circular buffer
is subsequently and continuously read by the
AVTP packet scheduler. If the server is con-
figured as AVB proxy server, it receives UDP
streams from the assigned Soundjack client and
thus provides audio and video data. If the server
is configured as AVB processing server, audio
and video data is provided by a realtime signal
processing application.

A listener instance receives an AVTP stream
from the Linux kernel network API. AVTP
packets are filtered based on the destination
MAC address and the ether type field with a
Berkley Packet Filter (BPF) [21] [13, p. 705]
mask. AVTP packets that match the filter ex-
pression are pushed to the circular buffer of the
respective listener instance.

There are some aspects the software needs to
take care of to make use of the realtime ker-
nel. First of all, the memory required for dy-

46

Figure 4: JACK Server and Clients

namic allocations at runtime has to be locked
at application start. Otherwise, memory allo-
cations would always be freed after their use
and the application eventually crashes, due to
memory page faults [22]. Secondly, locks have
to be used to prevent the preemption of the task
in time critical segments of code. The software
also needs to be assigned a proper task prior-
ity, so that its scheduling takes place within the
required deadlines.

2.3 Server Configurations

In case of the AVB proxy server configura-
tion, the AVTP stream is converted to an UDP
stream that is returning to a Soundjack client.
In the case of the AVB processing server con-
figuration, the audio and video data is provided
to the realtime signal processing application.

2.3.1 AVB Proxy Server

IP packets are forwarded with best effort in the
public internet. The Soundjack cloud in con-
trast, provides a fully managed and controlled
AVB Ethernet network. The FQTSS amend-
ment to IEEE 802.1Q prevents bursty traffic by
the means of a credit-based bandwidth shaper,
inside of the Soundjack cloud network segment.
A proxy server is used as a wave trap to dev-
ide large and erratic UDP datagrams into more
and smaller AVTP packets, that maintain a con-
stant inter packet gap. With the credit-based
bandwidth shaper the AVTP packets can travel
inside the cloud network segment in a determin-
istic way.

The AVB proxy server accepts and returns
UDP streams from and to Soundjack users, that
have been assigned by the session server. To
keep the latency introduced by the service times
of the Ethernet NIC low, only eight streams are
assigned to an AVB proxy server.
The UDP streams received on the WAN inter-

face need to be transmitted in the AVB network
segment at a different bitrate with a different
payloading. A UDP datagram of a Soundjack
stream contains 256, 512 or 1024 Bytes of raw
audio. Lower amounts of bytes occur in cases of
compression according to the chosen compres-
sion ratios. The resulting AVTP stream is sent
from the AVB proxy server to the AVB pro-
cessing server, which processes the eight streams
and sends them back as AVTP packets with the
same, but processed payload. In the opposite
streaming direction, the AVB proxy waits untill
sufficient AVTP packets are in a listener’s cir-
cular buffer, constructs an UDP datagram and
sends it back to the client, where it came from.

2.3.2 AVB Processing Server

The AVB processing server receives the audio
and video streams from the AVB proxy server
with a constant packet rate of 8kHz. It ex-
ecutes signal processing applications for audio
and video data.
Conventional audio signal processing like

compression or equalization can be integrated
with existing Linux tools, such as JACK [23].
JACK provides a realtime processing environ-
ment that is required to execute some DSP al-

47

Figure 5: AVTP Stream Packets per Time

gorithms with LV2 plugins [24] or FAUST [25]
applications. The design of the JACK server
together with the two required JACK clients
is shown in fig. 4. Before the other processes
are forked, the main process starts the JACK
Server. A Focusrite Scarlett Solo Gen2 [26] is
used as audio interface hardware for the JACK
server. Until now, JACK is running out of sync
with the AVTP streams. After the forking of
the listener and the talker processes, each pro-
cess creates a JACK client. JACK ringbuffers
are used by either client to communicate with
the de-/packetizer threads respectively.

The JACK clients JACK ports are config-
ured by the AVDECC process by means of
the SET STREAM FORMAT [10, p.174] AEM
command. JACK ringbuffers are created ac-
cording to the channel count and sample for-
mat of the AEM command. This implies that
channel count and sample format can only be
changed before a AVB server session is estab-
lished.

The listener AVTP depacketizer threads push
audio samples from AVTP packets to the cor-
responding JACK ringbuffer, while the listener
parent process pops the audio samples from the
JACK ringbuffer and copies it to the JACK pro-
cess graph. Audio samples are copied from the
JACK process graph to the parent talker pro-
cess, which in turn pushes the audio samples
into the JACK ringbuffers of the talker AVTP
packetizer threads.

The signal processing applications are con-
nected to the talker and listener threads via
JACK connections to the respective JACK
clients.

Realtime audio production environments gen-

Figure 6: AVTP Stream Inter Packet Gap
Probability Distribution

erally do not use graphics cards, as long as they
are not involved in 3D rendering or video pro-
duction processes. Thus, the graphics card is
idle most of the time and can be utilized as
an audio co-processor. Graphics card technolo-
gies made a lot of progress over the past years,
which make modern graphics cards useable as
co-processors for realtime signal processing [27].
More complex algorithms for processing audio
and video data than the ones mentioned above
shall be processed with a graphics card. Fur-
ther applications such as a Viterbi decoder or
virtual soundscapes and environments however,
are still under development.

3 Evaluation and Discussion

For the evaluation of a general concept for a
signal processing infrastructure no signal pro-
cessing applications are applied yet, instead the
JACK server creates loopback connections to al-
low the round trip transportation latencies and
jitter to be tested. The current state of the AVB
server application has a buffer leak, which leads
to buffer overruns after ≈92 sec, as shown in
fig. 5. The curve bends and the gradient de-
creases after this point, i.e. the IPG increases.
This event marks the turning point between the
two peaks exhibited the probability distribution
of the transmitted AVTP packets shown in fig. 6
at 124µsec and 131µsec. Although the inter
packet gaps of the AVTP stream are within rea-
sonable bounds, the mean value of the PDF of
129.08µsec obviously cannot meet the defined
inter packet gap for a SRP class A domain of
125µsec. The source of the buffer leak could
not be determined yet.

48

Figure 7: UDP Rx and Tx Inter Packet Gap
Probability Distributions

An indicator for the source of the problem
is shown in fig. 5. This figure shows the total
amount of packets sent over time. The regions
with a non-zero gradient show the constant flow
of packets, while the gradients with value zero
indicate some interrupt of the packet flow. This
means that the talkers do not transmit for some
period of time, which corresponds to the obser-
vation that the SRP states of the used switch
ports toggle between listener ready and ask fail
states.

Hence, no significant jitter and latency mea-
surements could be done. Nonetheless, the mag-
nitude of the observed end-to-end jitter and la-
tency could be determined. The latency un-
der this circumstances changes drastically when
the buffers overrun from below 10msec to 300−
600msec. Figure 7 shows the jitter of the Sound-
jack clients transmit UDP stream (green distri-
bution) has a mean value of 5.35msec, which
corresponds to 256 audio samples per UDP
datagram. When leaving the Soundjack cloud,
the Soundjack clients receive stream (red dis-
tribution) has a mean value of 5.75msec and a
higher standard deviation.

The JACK server was running with 64 sam-
ples per period at 48kHz without causing xruns
during the measurements.

4 Conclusions

The integration of the JACK audio server along-
side two JACK clients into the multiprocessing
software architecture of the AVB server went
very well, although an already known but un-
documented bug with libjackserver and libjack
[28] required resolving. Only the feature to dy-

namically change the channel count of a Sound-
jack stream during the transmission had to be
deactivated.
A buffer leak that could not be resolved yet,
is accountable for an increasing round trip la-
tency. The jitter and latency of the end-to-end
UDP streams do not provide significant mea-
surements yet, but the observed transmission
behaviour is very close to the bounds defined in
the AVB standards.

5 Future Work

The ongoing work is related to the localiza-
tion of the buffer leak. Latencies and jitter can
only then be evaluated in scenarios, where ac-
tual signal processing applications are applied
to the audio streams. For the operation under
heavy load with all AVB endpoints registered,
the EDF scheduling has to be configured prop-
erly. It also might be neccessary to upgrade
hardware components such as the CPU, since
realtime computing by itself requires a lot of
CPU utilization and leads to overhead by pro-
cess context switching. Another item to be han-
dled in the furture is the synchronization of the
JACK server to the mediaclock stream.

6 Acknowledgements

fast-music is part of the fast-project cluster
(fast actuators sensors & transceivers), which is
funded by the BMBF (Bundesministerium für
Bildung und Forschung).

References

[1] (2018, Apr. 23) Soundjack - a realtime
communication solution. [Online]. Avail-
able: http://http://www.soundjack.eu

[2] A. Carôt, “Musical telepresence - a com-
prehensive analysis towards new cognitive
and technical approaches,” Ph.D. disserta-
tion, University of Lübeck, Germany, May
2009.

[3] (2018, Apr. 23) Genuin classics gbr,
genuin recording group gbr. 04105 Leipzig,
Germany. [Online]. Available: http://
genuin.de

[4] (2018, Apr. 23) Symonics gmbh. 72144
Dusslingen, Germany. [Online]. Available:
http://symonics.de

[5] H. Zimmermann, “Osi reference model -
the iso model of architecture for open sys-
tems interconnection,” in IEEE Transac-

49

tions on Communications, Vol. 28, No. 4,
Apr. 1980, pp. 425–432.

[6] Timing and Synchronization for Time-
Sensitive Applications in Bridged Local
Area Networks, IEEE Std. 802.1AS, Mar.
2011.

[7] Virtual Bridged Local Area Networks -
Amendment 14: Stream Reservation Pro-
tocol (SRP), IEEE Std. 802.1Qat-2010,
Sep. 2010.

[8] Virtual Bridged Local Area Networks -
Amendment 12: Forwarding and Queuing
Enhancements for Time-Sensitive Streams,
IEEE Std. 802.1Qav-2009, Jan. 2010.

[9] Layer 2 Transport Protocol for Time-
Sensitive Applications in Bridged Local
Area Networks, IEEE Std. 1722, May 2011.

[10] Device Discovery, Connection Manage-
ment, and Control Protocol for IEEE 1722
Based Devices, IEEE Std. 17 221, Aug.
2013.

[11] A. Alliance. (2018, Apr. 23) Openavnu
- an avnu sponsored repository for time
sensitive network (tsn and avb) technology.
[Online]. Available: https://github.com/
AVnu/OpenAvnu/

[12] (2018, Apr. 23) Xmos ltd. / attero tech
inc. [Online]. Available: http://www.
atterodesign.com/cobranet-oem-products/
xmos-avb-module/

[13] W. R. Stevens, B. Fenner, and A. M. Rud-
off, UNIX Network Programming, Vol. 1,
3rd ed. Pearson Education, 2003.

[14] J. Kacur, “Realtime kernel for audio and
visual applications,” in Proceedings of the
Linux Audio Conference 2010. Witten-
burg, DE: Red Hat, Apr. 2010.

[15] (2018, Apr. 23) Howto: Build
an rt-application. [Online]. Avail-
able: https://rt.wiki.kernel.org/index.
php/HOWTO: Build an RT-application

[16] (2018, Apr. 23) Linux program-
mer’s manual sched(7). [Online]. Avail-
able: http://man7.org/linux/man-pages/
man7/sched.7.html

[17] K. J. e. a. Ion Stoica, Hussein Abdel-
Wahab, “A proportional share resource
allocation algorithm for real-time, time-
shared systems,” in Proceedings of the
IEEE, 1996.

[18] G. B. Luca Abeni, “Integrating multimedia
applications in hard real-time systems,” in
Proceedings of the 19th Real-Time System
Symposium (RTSS 1998). Madrid, ESP:
Scuola Superiore S. Anna, Pisa, Dec. 4–13,
1998.

[19] J. Corbet, A. Rubini, and G. Kroah-
Hartman, Linux Device Drivers, 3rd Edi-
tion. O’Reilly Media, Inc., 2005.

[20] J. JONGEPIER, “Configuring your system
for realtime low latency audio processing,”
in Proceedings of the Linux Audio Con-
ference 2011. ICTE department Faculty
of Humanities, University of Amsterdam,
2011.

[21] S. McCanne and V. Jacobson, “The bsd
packet filter: A new architecture for user-
level packet capture,” in Presented at the
1993 Winter USENIX conference. San
Diego, CA: Lawrence Berkeley Laboratory,
One Cyclotron Road, Berkeley, CA, Jan.
25–29, 1993.

[22] (2018, Apr. 23) Dynamic memory
allocation example. [Online]. Avail-
able: https://rt.wiki.kernel.org/index.
php/Dynamic memory allocation example

[23] (2018, Apr. 23) Jack audio connection kit.
[Online]. Available: https://jackaudio.org

[24] (2018, Apr. 23) Lv2 - open standard
for audio plugins. [Online]. Available:
http://www.lv2plug.in

[25] (2018, Apr. 23) Faust programming
language. [Online]. Available: http:
//faust.grame.fr/

[26] (2018, Apr. 23) Focusrite audio en-
gineering ltd. United Kingdom. [On-
line]. Available: https://us.focusrite.com/
usb-audio-interfaces/scarlett-solo

[27] C. Kuhr and A. Carôt, “Evaluation of data
transfer methods for block-based realtime
audio processing with cuda,” in Proceed-
ings of the 10th Forum Media Technology
and 3rd All Around Audio Symposium. St.
Pölten, Austria: St Pölten University of
Applied Sciences, Nov. 71–76, 2017.

[28] C. Kuhr. (2018, Mar. 06) Undocumented
crash when using libjack and libjackserver
#331. [Online]. Available: https://github.
com/jackaudio/jack2/issues/331

50

Rtosc - Realtime Safe Open Sound Control Messaging

Mark McCurry
DSP/ML Researche

United States of America
mark.d.mccurry@gmail.com

Abstract

Audio applications which go beyond MIDI pro-
cessing often utilize OSC (Open Sound Control)
to communicate complex parameters and ad-
vanced operations. A variety of libraries offer
solutions to network transportation of OSC mes-
sages and provide approaches for pattern match-
ing the messages in dispatch. Dispatch, how-
ever, is performed inefficiently and manipulating
OSC messages is oftentimes not realtime safe.
Rtosc was written to quickly dispatch and ma-
nipulate large quantities of OSC messages in re-
altime constrained environments. The fast dis-
patch is possible due to the internal tree repre-
sentation as well as the use of perfect-minimal-
hashing within the pattern matching phase of
dispatch.

The primary user of rtosc is the Zy-
nAddSubFX project which uses OSC to map
3,805,225 parameters and routinely dispatches
bursts of up to 1,000 messages per second dur-
ing normal audio processing. For audio applica-
tions, rtosc provides a simple OSC serialization
toolset, the realtime safe dispatch mechanisms,
a ringbuffer implementation, and a rich meta-
data system for representing application/library
parameters. This combination is not available in
any other OSC library at the time of writing.

Keywords

Open Sound Control, Realtime, Intra-Process Com-

munications

1 Introduction

Rtosc is a library which provides an OSC
1.1[Freed and Schmeder, 2009] compliant se-
rialization/deserialization, along with a non-
compliant matching algorithm. The serial-
ization code was built with general realtime
safe use in mind. The matching and dis-
patch algorithms were designed for simplified
integration with existing realtime applications.

Rtosc is available under the MIT license at
https://github.com/fundamental/rtosc.

1.1 Motivation

Rtosc was originally motivated by the need of
a messaging protocol within the ZynAddSubFX
synthesizer [Paul et al., 2018]. A large number
of parameters were directly exposed to the GUI
in a manner which made lock-free audio gen-
eration difficult and overall make development
of new functionality a slow drawn-out process.
OSC has been a standard iter-process messag-
ing option since 2002[Wright, 2002], though it
was rarely used extensively inside of an applica-
tion. This characteristic took me by surprise due
to the simplicity of the OSC serialization which
made it well suited for use in a low computa-
tional/memory overhead messaging protocol.

The two primary issues with other implemen-
tations of OSC are that they typically used dy-
namic memory and they had slow dispatch pro-
cesses. The target for ZynAddSubFX involved
processing data on the non-realtime threads as
well as the realtime threads, so dispatch, read-
ing messages, and writing messages needed to
be done in an efficient realtime-safe manner.

1.2 Other Libraries

Currently there are a variety of OSC libraries
available. Common issues with the available
implementations at the time of initially writing
rtosc were that:

• Many OSC implementation are incomplete

• Almost all OSC implementations did not
focus on realtime safe implementation

• Almost all OSC implementations focus on
network based inter-app communication

• Some OSC implementations had difficult to
use APIs

Based upon their use of C/C++ and the
adoption across Linux audio, the most notable

51

comparable library is liblo. The liblo project
[Harris et al., 2018] has a solid reasonably
complete implementation with an easy to use
API. Other implementations such as oscpack
[Bencina, 2016] were examined in initial devel-
opment, however other C/C++ OSC implemen-
tations have limited adoption. Using ubuntu
package dependencies as a measure of adoption,
the liblo7 package has 42 directly dependent
packages (outside of liblo subpackages) and os-
cpack1 has zero external packages (outside of
dev/dbg subpackages).

While liblo has a number of excellent charac-
teristics, it focuses on non-realtime serialization,
dispatch, and networking tasks within OSC.
For example, message serialization will involve
memory allocation and deallocation from the
heap, which can take a highly variable amount
of time leading to possible time overruns, aka
xruns, if used in a realtime context. While liblo
acts as a point of comparison within this paper,
it is important to note that it targets a differ-
ent use-case with a number of tradeoffs, which
make it suitable for some applications and rtosc
for others.

2 C core

Rtosc is broken up into an easily embeddable C
core, as well as a set of higher level C++ utility
classes. The C core has a variety of methods
for encoding/decoding and message matching,
though to get started only three functions need
to be used:

• rtosc_message(buf, size, path, arg-types,
. . .)

• rtosc_argument_string(msg)

• rtosc_argument(msg, i)

rtosc_message() will build a OSC message in
a provided buffer and will encode all argument
types in the OSC 1.1 standard. The types in-
clude: i:int32, s:string, b:binary-blob, f :float32,
h:int64, t:timetag, d:float64, S:symbol, r:rgb,
m:4-byte-MIDI, c:int8, T:true, F:false, N:nil,
and I:Inf. rtosc_argument_string() will pro-
vide a list of types in an existing OSC message.
rtosc_argument() will return the i-th argument
through a union. The active union field can be
determined via rtosc_argument_string().

Listing 1: Core API example

char buffer[128];
const char ∗value;
//Construct a simple message
rtosc_message(buffer, sizeof(buffer),

"/test",
"s", //1 string arg
"Hello␣world");

//Say hello world
value = rtosc_argument(msg, 0).s;
printf("%s\n", value);

Outside of the simple serialization and dese-
rialization routines there are a number of addi-
tional functions

• rtosc_amessage(buf, size, path, arg-types,
args[])

• rtosc_message_length(msg, max_len)

• rtosc_itr_begin(msg)

• rtosc_itr_next(itr)

• rtosc_itr_end(itr)

rtosc_amessage() is the non-varargs
extension of rtosc_message(), which is
more suitable for non-C API bindings.
rtosc_message_length() parses a message
and verifies if a value message exists in the
buffer which is max_len or fewer bytes. The
rtosc_itr_* functions quickly iterate through
long lists of arguments in complex messages.

3 Message Processing

One of the primary goals of any messaging li-
brary is to eventually handle the content of a
message. Rtosc application focuses on a largely
bi-directional communication between multiple
different threads of execution. The four primary
responses to a dispatched message are:

• reply - send a message to the client that
sent the original message

• broadcast - send a message to all listening
clients

• forward - take the current message unmod-
ified and pass it to the next layer

• chain - send a new message to the next layer

Rtosc typically uses a REST-like API, so if
OSC application receives “/volume” it should
reply with the current volume. If “/volume
+12.4”(dB) is received, then the OSC applica-
tion is expected to set the internal volume to

52

+12.4 dB and then broadcast the response to all
applications listening to the state of the OSC
application in question.

This division between replies and broadcasts
makes it possible to attach several different in-
terfaces to a single stateful OSC application.
For example, in ZynAddSubFX its graphical
user interface will normally be communicating
over OSC. While the GUI is running a debug
interface, such as oscprompt1, can be simulta-
neously connected to the same instance without
generating any conflicts.

Chaining and forwarding messages come into
play when there are multiple locations a mes-
sage can be dispatched from. Since rtosc focuses
on the realtime dispatch of messages a common
configuration is that there is:

1. a dispatch layer on the non-realtime side
for handling non-realtime operations such
as file loading

2. a dispatch layer on the realtime side for
handling most operations and parameter
changes

3. a dispatch layer on the non-realtime side for
handling responses from the realtime dis-
patch tree

The first dispatch layer here may choose one
or more of several responses. On receiving a
message, it can reply back to the original source
of the OSC message, forward it onto the re-
altime side unchanged, or partially handle the
method and chain a new message which would
go to the realtime side rather than responding to
some external client. As these messages are fre-
quently being relayed between the realtime and
non-realtime layers, rtosc provides an implemen-
tation of a ringbuffer to manage the inter-thread
communications.

3.1 Dispatch

Dispatching messages to handlers is a non-
trivial portion of each OSC connected applica-
tion. At a high level dispatch is essentially:

handle(message):
for each callback in callback-list

if(match(message, callback.path))
callback(message)

OSC complicates this process with pattern
such as wildcards in messages. Rtosc, however,

1https://github.com/fundamental/oscprompt

targets higher speed matching on a large number
of callbacks, so patterns are not typically used
in messages, but are used in callback path de-
scriptions. Additionally, rtosc defines dispatch
in terms of tree layers.

Consider the OSC path tree shown in Fig. 1.
Paths like “/volume” or “/osc3/shape” can be
matched to specific callbacks. “osc#5/” indi-
cates a compound pattern consisting of the lit-
eral “osc”, a number “0”, “1”, “2”, “3”, “4”, and
a trailing “/”. Other paths can use optional ar-
gument constraints. For example, “detune::f” is
composed of the path literal “detune” and then
the argument specification “:”, “:f” indicates that
no arguments are accepted (“:”) as well as a sin-
gle float32 argument (“:f”).

/

volume

source

osc#5/

shape::i

detune::f

envelope/

attack::f

decay::f

Figure 1: Example Dispatch tree

Other OSC implementations, such as liblo,
tend to match an input message directly based
upon the full callback path. An example can
be matching a OSC message with path “/en-
velope/attack” or “/*/release” directly on pos-
sible destinations “/envelope/attack” or “/en-
velope/release”. Rtosc, on the other hand, fa-
vors separate callback definitions/dispatches for
each layer. Therefore one dispatch call would
try to match “envelope/attack” against “vol-
ume”, “source”, “osc#5/” and “envelope/”. Next
rtosc would match “attack” against “attack::f”
and “decay::f” in a second dispatch layer.

When subtrees are repeated this allows rtosc
to have a much more compact representation of
the dispatch tree as well as simplifying the diffi-
culty of dispatching at any level. In the case of
dispatching “/osc0/shape” (shown in red), the
envelope subtree is never dispatched and thus
no overhead is produced by the “attack::f” and
“decay::f” nodes.

53

3.2 Metadata

Moving further outside of the OSC specifica-
tion rtosc’s dispatch structure provides a way
to associate metadata with individual callbacks.
Rtosc’s metadata provides a list of properties
which have optional values. Some of the most
commonly used metadata properties and defini-
tions are:

documentation - longer descriptions based
upon the parameter

shortname - short name useful for labels in
user interfaces

min - minimum value

max - maximum value

default - default value when not modified by
user

parameter - signifies that this OSC address
corresponds to a value which can be read
or written to

enumerated - signifies that there are many
symbolic values which map onto a series of
integer values

map # - mapping of integer value onto a sym-
bolic name for it

scale - specifies the mapping of values to the
user perceived range of them (either “linear”
or “logarithmic”)

unit - states the units that a parameter is in
(e.g. Hz, dB, cents)

3.3 Simplified port specification

As callbacks and metadata tends to be re-
peated, a some syntatical sugar is available for
rtosc. Consider a relatively simple parameter
accessors/setter with a minimum and maximum
value. For a callback in rtosc’s tree an associ-
ated parameter name and metadata are defined
as shown in Listing 2.

Listing 2: Parameter set/get callback

{"foo::f", ":parameter\0"
":documentation\0"
"=Foo␣parameter\0", NULL,

[](const char ∗msg, RtData &data) {
Obj ∗obj = (Obj∗)data.obj;
if(rtosc_narguments(msg)) {

obj−>foo =
rtosc_argument(msg,0).f;

if(obj−>foo > 1.0)
obj−>foo = 1.0;

if(obj−>foo < −1.0)

obj−>foo = −1.0;
data.broadcast(data.loc, "f",

obj−>foo);
} else {

data.reply(data.loc, "f"
obj−>foo);

}
}}

The structure of different accessors are go-
ing to share a lot of similar code. Using some
macros provided by rtosc, it is possible to in-
stead write an abbreviated form:

Listing 3: Syntactic sugar callback

rParamF(foo, rLinear(−1.0, 1.0),
"foo␣parameter")

Similar functionality is available via
rParamI(), rToggle(), rOption(), and rAr-
rayF(), as well as a few other macros.

Additional utility macros are available for
metadata fields as well. One example is rOp-
tions() which is used to define densely packed
enums e.g. rOptions(Random, Freeverb, Band-
width) would define Random as value 0, Free-
verb as value 1, and Bandwidth as value 2.
rProp(a) defines a generic property ’a’ and adds
it to the metadata. rMap(a, b) defines a prop-
erty ’a’ which has a value ’b’.

4 Extensions via rtosc messaging &
metadata

The metadata associated with rtosc mapped pa-
rameters makes it possible to reflect upon the
application. While this isn’t the primary target
of rtosc, there are some notable applications of
the metadata so far.

4.1 Self-Documenting

One of the major impacts of having richly
documented callbacks is that the API is self-
documenting. Each individual OSC based ac-
tion or parameter can be externally documented
in terms of what arguments it requires, what
responses should be expected, and what it
maps to. At this moment, there are two
means of exporting the data: osc-doc and a
zyn-fusion specific JSON format. Osc-doc is
an XML documentation specification proposed
by https://github.com/7890/oscdoc and pro-
duces a searchable HTML representation of the
API similar to doxygen. For Zyn-Fusion a JSON
based variant of oscdoc was chosen to avoid the
overhead of an XML parser.

Even if the metadata isn’t exported to a new
format, the existing compiled C-string format

54

can be transferred to other applications. Os-
cprompt is one such application and it displays
metadata about OSC paths as well as the pos-
sible paths which can be tab completed using a
reflection based approach.

4.2 Automations/MIDI Learn Support

One use of the metadata exposed through rtosc
is a mapping from MIDI or plugin parameters
to internal OSC mapped parameters. Given an
OSC path (e.g. /part0/PVolume), it is possible
to extract the expected type for any OSC mes-
sages, the minimum value, the maximum value,
and the scaling (linear/logarithmic). Given the
metadata, it’s possible to define a reasonable de-
fault mapping and provide enough information
for the user to be able to change the mapping to
suit their desires. This functionality is currently
being explored within ZynAddSubFX’s use of
rtosc.

4.3 Undo/Redo support

Within the model that rtosc provides, each OSC
message will typically be an action, a state up-
date, or a state read. Since the stream of OSC
events contains the state updates that impact
the sound engine, the same OSC events can
be reused to encode state changes and denote
which ones of them are reversible. Rtosc of-
fers one system to capture undoable events and
step through their history via undo/redo steps.
This approach is similar to non-daw’s OSC cen-
tric editing ‘journal’, which stores the programs
state as a number of mutations via OSC mes-
sages [Liles, 2018].

5 Performance

Rtosc has the goal of providing the necessary
information while using a minimum amount of
resources. As such, it has been optimized rather
extensively and is a very fast tool for handling
OSC messages.

One easy point of comparison is against li-
blo. Liblo is one of the more commonly used
OSC implementations within the open source
realm; Though by design their API tends to end
up allocating memory and producing small data
structures. These data structures can produce a
notable amount of overhead in OSC heavy sys-
tems.

To best compare these two libraries, they were
both used to repeatedly encode or decode a mes-
sage with moderate complexity. The message
consisted of the path “/methodname” and argu-
ments: “sif” “this is a string”, 123, and 3.14. As

can be seen by table 1 rtosc is notably faster in
this scenario.

Table 1: Liblo comparison

Impl. per op ops per second speedup
Decoding an average message

liblo 218 ns 4,600,000 -
rtosc 53 ns 19,000,000 4.1x

Encoding an average message
liblo 383 ns 2,600,000 -
rtosc 125 ns 8,000,000 3.1x

Dispatch message on single layer
liblo 530 ns 1,900,000 -
rtosc 54 ns 19,000,000 10x

Rtosc is used in a few performance oriented
applications, one of which being the sonic-pi
project [Aaron, 2018]. Historically the sonic-pi
project used the osc-ruby implementation and
then upgraded to an internal subproject, sam-
sosc, which was one effort in producing an op-
timized OSC implementation. After neither op-
tion was satisfactory, the sonic-pi project inte-
grated rtosc via the fast_osc gem[Riley, 2017].
While this isn’t an entirely fair comparison, as
it crosses different implementation languages,
however it provides another picture into the vast
performance differences available in such small
libraries:

Table 2: Sonic-pi performance stats

Impl per op ops per second speedup
Encoding an average message

fast_osc 1.2 us 800,000 9.6x
samsosc 3.8 us 260,000 3.1x
osc-ruby 12 us 83,000 –

Decoding an average message
fast_osc 0.6 us 1,700,000 50x
samsosc 4.7 us 230,000 7.4x
osc-ruby 29 us 34,000 –

In this case, compared to existing options
rtosc proved to be significantly faster at read-
ing and writing messages even with the small
amount of overhead needed to interface the
Ruby and C code.

Beyond the stats recorded for single runs of
operations in rtosc, liblo, sonic-pi, etc there are
additional scaling behavior to consider. Rtosc’s
dispatch algorithm scales with the number of
subpaths, so using the above numbers it’s easy
to get a rough approximation for expected DSP
load from message dispatch. Message dispatch

55

time dt, is roughly a function of path length pl,
time per dispatch layer lt, and message decoding
time mt:

dt = pl × lt +mt (1)

and DSP load is a function of the rate of mes-
sages per second r and the expected average dis-
patch time per second dt:

dsp_load =
r

dt
× 100% (2)

Using the previously calculated timings we
can see that even for complex systems with large
numbers of messages the overhead of dispatch is
low.

Table 3: Projected messaging overhead

path length msg per second DSP load
5 100 0.0032 %
20 100 0.011 %
20 10000 1.1 %
10 100000 5.9 %

The following assumptions are used to make
the dispatch algorithm more scalable:

1. The tree structure of OSC paths is a way
to partition methods.

2. Arrays of parameter should be represented
by one port.

3. One OSC message should match one dis-
patch port.

4. More complex dispatch methods are prefer-
able to a more complex dispatcher.

Item 1 limits the number of matches that
need to be considered at each level. The sec-
ond converts /par0 /par1 /par2 ... /par99
into /par#100. Given the third assumption,
it is possible to use techniques such as perfect-
minimal hashing to reduce the search space fur-
ther. Perfect minimal hashing makes it possible
to change the matching algorithm for callbacks
C and message m from:

for c in C:
if c match m:

call(c,m)

into:

c = C[hash(m)]:
if c match m:

call(c,m)

For large collections of parameters, these
characteristics help speedup the algorithm im-
mensely. ZynAddSubFX has 3,805,225 unique
OSC paths, with an average depth of 6.11 with
a maximum depth of 8 subpaths. If perfect
hashing occurs at each level, then each input
message would on average take 6.11 matches on
subpaths, while a flat matching on all possible
paths would result in ∼ 1, 900, 000 matches with
considerably more complexity per match.

Rtosc’s approach does impose some restric-
tions on typical dispatch, however it scales based
upon the number of subpaths, or layers. Other
solutions will tend to scale based upon the num-
ber of possible paths. If the computational com-
plexity is extrapolated from the simple tests for
liblo this would result in an average message dis-
patch time on the order of 18.3 ms while rtosc’s
dispatch time would be around 380 ns. Equiv-
alently this means the maximum dispatches per
second would be ∼ 2.6 million for rtosc and ∼ 55
for liblo. ZynAddSubFX’s use of OSC illustrates
an extreme use case which rtosc is well suited
for.

6 Conclusions

Prior to rtosc, OSC was a frequently used stan-
dard for communication between applications or
devices, but library support was lacking for us-
ing OSC messages within a realtime safe appli-
cation. Rtosc provides a realtime safe imple-
mentation of OSC messages, message dispatch,
as well as several utilities applicable for audio
applications. The core interface is written in
portable zero-dependencies C code and as has
been shown by this paper is performant when
compared to other popular implementations. At
this moment, the primary users of rtosc are Zy-
nAddSubFX and sonic-pi, though the hope is
that other programs will utilize rtosc for efficient
and safe OSC message handling in the future.

References

Sam Aaron. 2018. Sonic-pi: The live coding
music synth for everyone. https://github.
com/samaaron/sonic-pi.

Ross Bencina. 2016. oscpack - open sound
control packet manipulation library. https:
//github.com/RossBencina/oscpack.

Adrian Freed and Andrew Schmeder. 2009.
Features and future of open sound control ver-
sion 1.1 for nime. In NIME, volume 4.

56

Steve Harris, Stephen Sinclair, et al. 2018.
liblo: Lightweight osc implementation. http:
//liblo.sourceforge.net.

Jonathan Moore Liles. 2018. Non daw. http:
//non.tuxfamily.org/.

Nasca Octavian Paul, Mark McCurry, et al.
2018. Zynaddsubfx musical synthesizer.
http://zynaddsubfx.sf.net/.

Xavier Riley. 2017. fast_osc: A ruby
wrapper around rtosc. https://github.com/
xavriley/fast_osc.

Matthew Wright. 2002. Open sound control
1.0 specification.

57

58

Jacktools - Realtime Audio Processors as Python Classes

Fons ADRIAENSEN,

Huawei German Research Center,
Riesstrasse 25,
80992 Munich,

Germany,
fons@linuxaudio.org, fons.adriaensen@tonmeister.de

Abstract

This paper introduces a set of real-time audio pro-
cessing blocks that can be used as components in
Python scripts. Each of them is both a Jack client
and a Python class. The full power of Python can
be used to control these modules, to combine them
into systems of arbitrary complexity, and to inter-
face them to anything that can be controlled from
Python. The rationale behind this approach, some
of the the implementations details, and possible ap-
plications are discussed.

Keywords

Jack, Python, Audio measurements, Modular audio
systems

1 Introduction

Jacktools is a set of real-time audio processing
blocks using Jack for audio input and output,
and wrapped as Python classes. Currently the
set can be divided into two types of function-
ality: the first is aimed at audio measurement
and more technical uses, while the second con-
tains things like an audio file player, gain con-
trols, equalisers, convolution matrices, etc. that
can be combined into general-purpose audio sys-
tems.

The origins of Jacktools go back several years,
when the author required a practical tool to test
real-time implementations of audio DSP algo-
rithms. What was needed was an easy way,
without having to use a compiled language or
write any low-level code, to

• generate complex and accurately defined
audio test signals,

• output these via Jack to the tested module,
at the same time capturing its outputs,

• analyse the captured signals and present
the results in a convenient way.

Python1, and in particular the numerical and

1https://www.python.org

scientific extensions (Numpy2, Scipy3, Mat-
plotlib4,. . .) provided the ideal environment for
signal generation and analysis, only the second
step was missing.

The result was JackSignal, a Python class that
maps Numpy arrays to Jack ports. It took some
research into Numpy’s internals and some care-
ful mixing of C and Python code, but in the end
the implementation turned out to be straight-
forward.

JackSignal proved to be a very powerful and
practical tool, and it also became clear that the
same idea of combining Jack and Python could
provide other useful things. The rest is history.

1.1 Overview

The complete Jacktools set contains at the
moment more than sixty modules. Many of
those implement proprietary algorithms devel-
oped in the context of the author’s employment
by Huawei Research, and unfortunately most of
these can’t be published.

As already mentioned, those that can be pro-
vided fall into two categories. Those intended
for audio measurement include:

JackSignal Play and capture signals from/to
Numpy arrays. Also provides looping and
external triggering.

JackNoise Generates accurate white and pink
noise.

JackNmeter Standard filters and detectors
for noise measurement.

JackIecfilt IEC class 1 octave band and third
octave band filters.

JackPll Phase locked loop, used to track low
level drifting signals in noise. Also provides

2http://www.numpy.org/
3https://www.scipy.org/
4https://matplotlib.org/

59

I,Q outputs of the phase detector as audio
signals.

In the general-purpose category we have:

JackPlayer Multichannel, resampling audio
file player. This will play anything that
libsndfile can read.

JackGainctl Dezippered multichannel gain
control, the DSP part of a fader.

JackParameq Multichannel parametric and
2nd order shelf equaliser.

JackKmeter Multichannel K-meter detector,
provides RMS and peak level measurement.

JackMatrix Scalar gain matrix, can be used
in many ways, e.g. signal distribution in
complex audio installations.

JackMatconv Convolution matrix optimised
for dense matrices of short convolutions, as
used for microphone and speaker array pro-
cessing.

JackZconvol General-purpose convolution
matrix based on the zita-convolver library.

JackPeaklim Multichannel look-ahead peak
limiter, similar to zita-dpl1.

JackAmbpan Up to 4th order Ambisonic pan-
ner.

JackAmbrot Up tp 4th order arbitrary axis
Ambisonic rotation.

’Multichannel’ here usually means ’up to 64
channels’. Also the various matrices can go up
to 64×64.
An Ambisonic decoder, networked audio mod-
ules (compatible with zita-njbridge) and more
dynamics processors are planned to be added.

1.2 Applications

The technical modules have been used to test
real-time DSP code, measure speaker directiv-
ity patterns, find matched sets of microphone
capsules, measure room acoustics, for long
term monitoring of environmental noise, and
many similar applications. The more general
modules have so far been used mainly at the
author’s workplace, to set up complex demon-
strations and listening tests using experimental
algorithms. As an example, one listening test
involved comparing three different Ambisonics
to binaural rendering algorithms, each of them
implemented as a Jacktools module, combined
with several room simulation methods, again

implemented in the same way. This required
head motion tracking, so all the rendering had
to be done in real time.

For both types of work, having everything
under control of an interpreted general-purpose
programming language such as Python has
significant advantages. It provides not only
whatever complex logic may be required, but
also access to all system services, external
hardware, databases, etc.

For measurements the complete process, in-
cluding any off-line numerical calculations
and up to the generation of a report can be
automated. For the listening tests it was an
easy exercise to create an ad-hoc graphical
user interface providing the participants with
exactly the amount of control and feedback
required while hiding all the parts that they
shouldn’t touch or even see.

Other possible applications come to mind, e.g.
artistic sound installations, and automated
broadcasting systems.

2 Interfacing C++ and Python

All the real-time code for Jacktools is written
in C++, so some way to interface this to the
Python world is needed.

2.1 High level tools

A wide range of tools for interfacing C or C++
and Python is available. They all have a dif-
ferent scope and use widely diverse methods to
achieve their aims.

Boost.Python 5 : ’A C++ library which
enables seamless interoperability between
C++ and the Python programming lan-
guage’.

SWIG 6 : (Simplified Wrapper and Interface
Generator) provides bindings for many lan-
guages, including Python, to C and C++.

Cython 7 : A compiler that extends the
Python language and allows simple inter-
facing with C code.

Of these, Boost.Python certainly provides the
highest level interface, offering a near transpar-
ent gateway between the two worlds, including

5https://www.boost.org/doc/libs/1_61_0/libs/
python/doc/html/index.html

6http://swig.org/
7http://cython.org/

60

even Numpy’s arrays (which have some peculiar
traits, see below). SWIG is considerably sim-
pler and more limited in scope, while Cython
takes a completely different approach by mixing
C-like and Python source code.

While Boost.Python would probably be able
to do everything required, it would also be
overkill for the relative simple functionality
needed for Jacktools. In particular, we do not
need nor actually want a one-to-one mapping
between C++ and Python classes. The Python
classes representing the various Jack clients only
need to expose the functionality of the real-time
code, not its implementation. Also, in Jack-
tools, the initiative is always at the Python side,
the only exception being the C++ code per-
forming a callback to a Python function, but
this only happens after that function has been
explicitly passed on by the Python code.

On the other hand, neither SWIG nor Cython
seemed to offer much support for handling
Numpy arrays nor for working with threads,
so this would have to be done manually any-
way. Given all this, the most suitable alter-
native seemed to use Python’s C API directly.
This had the added benefit of avoiding one more
dependency, as well as being a most interesting
exercise.

2.2 The Python C API

CPython, the only flavour of Python supported
by Jacktools (there are also Jython, IronPython
and PyPy, written resp. in Java, C# and a
subset of CPython) is itself written entirely in
C. All the C functions that create, destroy and
manipulate Python objects are exported, avail-
able for use in extension modules, and quite well
documented.

The C API 8, at a first look, seems quite over-
whelming and complicated, containing probably
thousands of functions. But it is not difficult to
use once a few fundamental concepts are under-
stood.

2.2.1 Reference counts

In Python everything is an object, and all ob-
jects are reference counted. Once the last ref-
erence to an object is deleted, the memory
taken by the object can be reclaimed by the
garbage collector which runs at unpredictable
times. Normally all of this happens behind the
scenes and automagically, which is one of the

8https://docs.python.org/3/c-api/index.html

reasons why Python is so easy to use, at least
regarding memory management.

When using the C API, the programmer has
to take care of the reference counts, using the
Py INCREF() and Py DECREF() functions.
Failure to do this correctly will lead to memory
leaks, or worse, stale pointers which will sooner
or later trigger a violent crash. The rules are
not difficult to understand, unless you want to
use things like circular references (which are not
used in Jacktools).

2.2.2 Numpy arrays

Numpy arrays are Python objects and are there-
fore reference counted, but they implement a
second level of reference counting internally.
This is because the actual data can be shared
between array objects. This happens e.g. when
an array is sliced, which is a very common thing
to do in Numpy. For example if given a two-
dimensional array A containing multichannel
audio samples, we can create a vector contain-
ing the samples for channel k by writing V =
A[:,k]. Numpy will do this without actually
copying the data, it just creates a new view on
A. That means that now two Numpy arrays, A
and V are sharing the same data. Numpy ar-
rays are implemented using the Python buffer
interface, also used by Python for other array-
like objects. It is here that the data sharing
is implemented. To get access to the buffer of
a Numpy array in C you need to call PyOb-
ject GetBuffer() and after use the buffer must
be released using PyBuffer Release(). These
two calls take care of the reference counting.

Since every Numpy array can be just a slice of
another, nothing can be assumed regarding the
actual placement of data elements in memory.
For example, the samples in the vector V above
may not be in consecutive memory locations.
The buffer interface provides methods to find
out the exact layout of the data elements in a
Numpy array.

2.2.3 Threads

Python programs can be multi-threaded, but
the interpreter is single- threaded, so only one
thread can run at any time. This is imple-
mented using the Global Interpreter Lock aka
GIL. Multithreading in Python is cooperative:
the interpreter will release the lock every so
many bytecodes, giving other threads the op-
portunity to grab it and continue.

This has to be taken into account when using
the C API, in two ways. First, when the C

61

code is actually called from Python and wants
to call a blocking function, it must release the
GIL and take it again on return. Second, when
calling a Python function from C, the current
thread must acquire the lock before doing so
and release it when the callback returns. Apart
from that, threads created in C can co-exist
with Python without any problem.

3 Implementation

On the C++ side there is one base class Jclient
which contains almost all of the code required
to use Jack. It creates the Jack client and the
ports, sets the callbacks, obtains the sample rate
and period size, etc. It also handles the shut-
down callback, and cleans up things when the
client terminates. Finally it contains methods
to connect or disconnect ports.

Some of the function members of Jclient are
given a Python interface using the C API: this
includes calls to obtain the current process state
(more on this later), the Jack period and sam-
ple rate, and to manage ports and connections.

Each of the actual tools is a class derived from
Jclient, implementing the process callback and
any DSP code required, including methods to
set parameters and obtain results. These mem-
bers, and only these, are given a Python inter-
face using the C API.

On the Python side there is also a class named
Jclient, which is the base class for all the oth-
ers. It provides access to those methods of the
corresponding C++ class which have a Python
interface. The actual Jacktools classes derive
from this base class and again provide access
to those methods of their corresponding C++
class that have a Python interface.

So the actual Python classes are defined in
Python, and not in the C++ code. The C++
code only implements some methods which are
used by the Python classes. It would be possible
to define the Python classes directly in C++,
but the current method is simpler and requires
less code.

3.1 Connecting the two worlds

The remaining question is how the Python ob-
jects find their C++ counterpart when any of
their methods are called. The mechanism used
for this involves a Python class called PyCap-
sule which was first introduced in Python 3 and
later backported to Python 2. A PyCapsule ob-
ject is just a container for a C or C++ pointer.

It allows Python code to store such pointers and
hand them back to the C or C++ side whenever
necessary. That is also their only possible use,
as there is no way to interpret the contents of a
PyCapsule on the Python side.

When the user’s Python code creates e.g. a
JackGainctl object, its init () calls a C++
function that creates the corresponding C++
object and returns two PyCapsule objects, one
for the newly created C++ object and one for
its Jclient base object. The Python object
stores the first for later, and uses the second
to call its base class init (). This again stores
its PyCapsule for later use when calling C++
code.

The PyCapsule constructor on the C++ side
also takes a pointer to a function that will be
called when the last reference to the PyCapsule
is deleted. So when the Python JackGainctl is
deleted, this function is called and deletes the
corresponding C++ object.

3.2 Process states

As explained in the previous section, a C++ ob-
ject, which will be Jack client, is created when-
ever a corresponding Python object is created.
On the C++ side things can fail e.g. when the
Jack server isn’t running, or later if Jack ’zomb-
ifies’ the client. In those cases we still have a
Python object, but one that is not usable. To
handle this, all Jacktools classes share a com-
mon system which simply consists of maintain-
ing a current state. All Jacktools classes have
at least the following states:

PASSIVE : the object is an active Jack client,
but the process callback does not access
any ports. This allows to user to manu-
ally create ports. At the moment none of
the published classes is using this state, all
of them will create a fixed set of ports (de-
pending on the number of inputs and out-
puts requested) and initialise in one of the
two following states.

SILENCE : the object is an active Jack client,
but the process callback outputs silence on
all output ports. This state is typically
used to further configure a processor that
needs this, e.g. a convolution matrix. This
is also a safe state to make port connec-
tions.

PROCESS : the object is performing its nor-
mal function as a Jack client. Some classes

62

e.g. JackPlayer have additional active
states.

FAILED : the object will enter this state when
initialisation or becoming an active Jack
client fails.

ZOMBIE : the object will enter this state
when zombified by the Jack server.

In the latter two states the only remaining op-
tion is to delete the Python object, as it can not
recover from these states.

The state system allows complex systems to
start up cleanly without making unexpected
noises, or at least to fail in a controlled way.
It also allows applications that have to run
unattended to check things periodically and
take some recovery action when anything goes
wrong.

3.3 Documentation

All the Python code for Jacktools contains doc-
umentation in the form of ’docstrings’ which
can be read using Python’s built-in help system.
Also a collection of simple example applications
(some of them written for testing the Jacktools
classes themselves) is provided.

4 Conclusions

In the previous sections, the Jacktools set of
Jack clients implemented as Python classes has
been introduced. Some of the implementation
aspects and choices have been discussed. It is
hoped that this may be of interest not only to
potential users, but also to developers of audio
software that combines the powers of C, C++
and Python. In particular, in the author’s opin-
ion, exploring Python’s and Numpy’s C API has
been a very rewarding exercise.

The Jacktools code package will be made avail-
able shortly before the start of the conference.

63

64

Distributed time-centric APIs with CLAPI

Paul Weaver and David Honour
Concert Audio Technologies Ltd.

Reading, UK
{paul, david}@concertdaw.co.uk

Abstract

Distributed control of applications by multiple si-
multaneous devices has traditionally been achieved
via protocols such as MIDI or OSC. These simple
protocols require additional semantics, often com-
municated out of band, in order to construct mean-
ingful APIs.

We present the Concert Light-weight API
(CLAPI) framework: a session-based pub/sub API
framework that aims to simplify the definition and
usage of semantic, time-centric distributed controls.

Keywords

API, Distributed, Pub/Sub, Semantics, Introspec-
tion.

1 Introduction

The Concert Light-weight API framework
(CLAPI) is one component of our larger dis-
tributed DAW project. It grew from our need
to control an audio engine from a heterogeneous
mix of clients simultaneously, with event-driven
feedback of the evolving state of the system.

1.1 Open Sound Control

Our original efforts sought to build semantics
on top of Open Sound Control (OSC) [Wright,
2002]. We had hoped to use OSC to communi-
cate instructions and state across the network.
However, we ran into some issues with that ap-
proach:

• TCP/session-oriented support was lacklus-
tre. This caused problems, for example,
when considering TLS/authentication.

• Establishing bidirectional communication
was hard (only OSC servers can receive
messages), which would complicate NAT
traversal.

• The semantics around variable length lists
of values weren’t standardised (if they were
even present at all).

• Only OSC bundles could be timestamped
(c.f. individual messages) and bundles
could be nested. This meant we couldn’t
always derive timing information when re-
quired.

• Bundle nesting also meant we had trouble
building sensible error semantics.

• The dispatch rules provided by existing li-
braries weren’t particularly dynamic.

In other words, whilst OSC is a perfectly good
protocol, it did not fit our pattern of compo-
nent communication as well as we’d have hoped.
This led us to consider the problem domain
more broadly, and start experimenting with our
own API protocol/framework.

2 Network API Paradigms

Before we consider our specific API require-
ments, we will briefly discuss three approaches
for controlling remote systems. We consider
both user-facing controllers, such as hardware
devices or software GUIs, and autonomous sys-
tems connected to the network.

2.1 Fire and Forget

Conceptually, unidirectional protocols like OSC
and MIDI [MIDI manufacturers association,
1996] are very simple. Once a connection has
been established, control data is transmitted
from the client (the party triggering the opera-
tion) to the server (the party doing the work)
when an action is desired. For example, MIDI
sends explicit instructional events like “Note
On”, which can be fairly directly translated into
method calls on an instrument or captured by
a recording device for later playback.
OSC is similarly intended to be used in an

instruction-centric way, albeit that it is more
agnostic in its design (no specific instruction-
s/methods are defined in the protocol itself).
Its human-readable metadata also offer a sub-

65

stantially more direct representation of seman-
tic intent.

The unidirectionality of these protocols has
some implications. They do not, for instance,
provide a mechanism for applications to report
errors. This is assumed to be noticed “out of
band”, frequently by the user. This “fire and
forget” mentality implies, in the absence of such
feedback semantics, a controller/executor rela-
tionship between the components of the system.

There have been attempts to create feedback
semantics for these protocols [Portner, 2017],
but they are far from universally supported.

Unidirectionality has the additional conse-
quence that every receiver must handle (even
if only by discarding) the union of all possible
messages, due to the sender being unable to de-
termine the recipient’s capabilities.

2.2 Remote Procedure Calls and
Request/Response

The most common kind of network API
paradigm arranges the exchanges between client
and server like that of a local function call: a
request is made by the client to named method
(“endpoint”) on the server with some arguments
and a response is received synchronously after
the action is completed.

The most widespread example of this re-
quest/response pattern is HTTP [IETF, 1999],
and many remote procedure call (RPC) API
frameworks are based on top of it [Winer, 1999;
W3C, 2000]. However, HTTP itself is an RPC
protocol in its own right, with a fixed set of ac-
tions (HTTPmethods such as GET, POST etc.)
with their own arguments (headers), semantics
and responses (exit code and potential body).

Feedback to method is improved over unidi-
rectional communication as the client does not
have to assume that the invocation was suc-
cessful. This means that state can be kept in
sync without any out-of-band communication,
at the expense of more complicated client side
handling.

The Representational State Transfer (ReST)
philosophy [Fielding, 2000], of which HTTP is
an embodiment, attempts to limit the prolifera-
tion of ad-hoc methods by structuring requests
to the server in terms of resources, with a fixed
set of methods providing predictable behaviours
on those resources.

Formalisms like JSON schema [Andrews/I-
ETF, 2017], and HAL [Kelly, 2011], aim to aid
discoverability and introspection by building on

top of ReST principles.

2.3 Publish/Subscribe

Another form of API that has been gaining trac-
tion, particularly in distributed systems, is the
publication/subscription (pub/sub) model.

In APIs of this type clients (subscribers) com-
municate to providers (publishers) which data
they wish to be informed about. Any subse-
quent updates about the data are then sent to
the subscribers who have chosen to be notified.
Most commonly, pub/sub APIs are very scal-

able message queuing systems [ISO/IEC, 2014;
RabbitMq, 2018; MQTT, 1999; OASIS, 2015;
Hintjens et al., 2014a; Hintjens et al., 2014b],
and clients connect to an API broker, rather
than to the source of the data directly.

3 CLAPI’s Paradigm

We introduced each of the above network API
paradigms because CLAPI has a mixture of fea-
tures from all of them.
At its heart, CLAPI is an idempotent pub-

/sub API framework. Providers publish state
updates to an API broker (the “Relay”) and in-
terested clients subscribe to subsets of that state
to receive updates.
Unlike traditional message queues, the Relay

keeps a local cache of the application state in
memory, so that subscribers are notified of the
current state of data when they subscribe as
well as any future updates.
CLAPI, however, is not just a broadcast sys-

tem. Just as in traditional “fire and forget” sys-
tems, clients can push state update messages of
their own, and the Relay forwards them to the
provider of an API. Responses to these messages
are not received synchronously, as in regular
RPC, but rather through existing subscriptions.
These state update semantics give us a nice

mix of properties for building an event-driven
distributed application. Furthermore, CLAPI
incorporates discoverability, introspectability
and validation into the API framework from the
ground up.
In the next sections we detail the mechan-

ics of CLAPI and continue to contrast it with
the three prevailing paradigms we have covered
above.

4 Data model

The data communicated by CLAPI are con-
ceptually held in the leaf nodes of a tree and
are addressed by paths of names, such as

66

/api/version. The container nodes can also
be addressed, e.g. /api, and can be thought of
as containing data about the names and order-
ing of their children.

Each top level path (e.g. /api) is handled as
an isolated API namespace and is “owned” by a
single client, who is referred to as the provider
of that API. The provider may not subscribe
to their own API, but may subscribe to other
APIs over the same connection. Other clients
cannot directly modify the provider’s API, but
can publish update messages which are vali-
dated and forwarded to the provider only for
handling.

Before a provider can publish any data, it
must provide a collection of types that fully
specify the form of the data at every path. Un-
like most other API frameworks, this schema
is also event-driven and updates can be pub-
lished at any time. This allows providers, for
instance, to expose only session-loading controls
until a session is selected, or to defer providing
type information for a plugin until after it has
loaded.

4.1 Types of Time

There are two notions of time, often not ex-
plicitly distinguished, in session-based audio ap-
plications: wall-clock time and project time.
CLAPI distinguishes between them explicitly.

Wall-clock time is the time we experience—
the one shown by most clocks and watches.
It is monotonically increasing and cannot be
stopped.

Project time is the time between the start of
the recorded work and an event occurring. It
is mapped to wall-clock time by playback. This
is useful for talking about the relative positions
of events that will occur during playback (for
parameter automation, for instance).

The values at the leaves of a CLAPI tree can
change over project time, or they may be fixed.
If the data may change, we refer to the node as
a time series of time points. Time points consist
of a pair of time value and tuple of data values,
and are indexed in the series by UUID so that
we limit the impact of messages crossing on the
wire.

Times are stored in an NTP-inspired manner
as a pair of 64- and 32-bit unsigned integers
representing seconds past the Unix epoch and
the sub-second fraction respectively.

The structure of a CLAPI tree is fixed over
project time. Changes to both tree structure

Name Constraints
enum Option names (required)
time
word32 Bounds
word64 Bounds
int32 Bounds
int64 Bounds
string Regular expression
ref Type name (required)
list Item schema (required)
set Item schema (required)
ordSet Item schema (required)
maybe Item schema (required)

Table 1: Value schema types

and project-time data can be made at any point
in wall-clock time, and are always applied im-
mediately.

4.2 Schema

Leaf nodes in CLAPI are referred to as tuples,
and consist of either a single heterogeneously
typed tuple of values, or a time series thereof if
the value is to change over project time.
Container nodes can either be structs (with a

fixed set of heterogeneously-typed children) or
arrays (with a variable set of homogeneously-
typed children).
Because each of these entities has different

constraints, there are three kinds of type defini-
tion in CLAPI, as detailed below.

4.2.1 Tuples

The type definition for a tuple consists of a
documentation string, an ordered mapping of
field names to value schema and an interpola-
tion limit.
All documentation in CLAPI is intended for

human consumption when exploring an API,
and has no semantic meaning within the frame-
work.
Each value schema consists of the type of

value accompanied by any constraints on that
type. For example, it is possible to specify that
a value can be any 32-bit integer, or a list of
strings that conform to a particular regular ex-
pression. The supported value types and their
constraint options are shown in table 1. Note
that container schema like list are defined re-
cursively by constraining with an item schema
that is itself another entry from the table.
CLAPI can express interpolation between the

time-series data points in each tuple tree node.
This means that applications do not have to

67

send dense streams of data to produce smoothly
varying control values.

If the values in a tuple node can change over
time, each tuple of values in the project-time se-
ries is associated with interpolation parameters.
The permitted interpolations are:

Constant This tuple will remain as specified
until the next time point.

Linear This tuple is linearly interpolated to
the next time point.

Bezier This tuple is interpolated via a Bezier
spline (parameters supplied by the user) to
the next time point.

The interpolation limit, defined in the tuple
type definition, specifies what kinds of interpo-
lation parameters can be specified for each tu-
ple. If the values in the tuple will not change
over project time, the interpolation limit is
specified as uninterpolated. Otherwise, because
each of the above kinds of interpolation is more
expressive than those that precede it, the in-
terpolation limit simply takes the form of the
most expressive interpolation type allowed for
the tuple.

CLAPI does not attempt to restrict the choice
of interpolation limit according to value types—
it is perfectly possible for a provider to publish
an API that states it can do Bezier interpola-
tion on strings, and it’s the provider’s job to do
whatever would be expected of it in that situa-
tion.

4.2.2 Arrays

The type definition for an array consists of a
documentation string, and a type name and per-
mission information about the children of the
array. The type name specifies that any direct
child nodes of this container node will be of the
named type. We call the permission informa-
tion the liberty of the child nodes. It is selected
from the following enumeration:

Cannot The client cannot supply this data.
Should the client create a new array ele-
ment containing a path with this liberty,
the provider will generate a value for it.

May Paths with this liberty are editable.
Should the client create a new array ele-
ment containing a path with this liberty
without supplying a value the provider will
generate a default value.

Must Paths with this liberty are editable.
Should the client create a new array ele-
ment containing a path with this liberty
they must supply a value.

4.2.3 Structs

The type definition for a struct consists of a
documentation string and an ordered mapping
of child names to pairs of type name and lib-
erty. Structs in the tree must always contain
all their defined children. The liberty value,
however, allows for partial definition of struct
data by clients when inserting structs into ar-
ray containers, which providers must then fill
in. In other words, defining liberty values on
structs allows us to nest structured data within
arrays whilst keeping the semantics around de-
faults and read-only behaviour.

4.3 Attribution

Situational awareness is important in an appli-
cation with collaborative control. That is, we
want to know not only what changes have been
made, but by whom. CLAPI attaches an at-
tributee to each piece of data and each child in
arrays, in order to keep track of who is doing
what in the session.

4.4 Introspection

Because providers must publish a collection of
types that fully specify the type of every path in
their tree of data, and because the Relay pub-
lishes type information about the root node that
contains all the providers’ API namespaces, it is
possible to explore the entire CLAPI data space
beginning with a single subscription to the root
node.
This means that CLAPI APIs are both dis-

coverable and self-documenting, with a limited
and consistent set of semantics—desirable prop-
erties we detailed in our brief discussion of ReST
(section 2.2).
Type assignment messages are sent to clients

when they first subscribe to a path to prevent
them from having to infer the type of a path by
traversing down from the root node type.

4.5 Consistency

Data updates received by clients must always
lead to a self-consistent tree state. For example,
tuples must contain data of the correct type,
and data cannot be assigned to paths that are
not reported to be contained in a parent node.
Therefore, multiple changes may be commu-

nicated together and applied atomically. This

68

is similar to bundles in OSC. Because of the dy-
namism of our type system, it is often required
that type changes are accompanied by corre-
sponding data changes.

The kinds of operations that can be per-
formed in each set of changes differs with re-
spect to client role and communication direc-
tion, due to the restrictions laid out in section 4.
The kinds of information that can be transmit-
ted between each party are outlined in table 2.

Given these consistency restrictions, and our
general data type constraints, we include se-
mantics for error reporting in our message ex-
change. Error message strings are keyed in re-
lation to the API entity to which they pertain.
We call this key the error index and it can take
one of the following forms:

Global The error is not specific to any partic-
ular piece of data (e.g. an error decoding a
message).

Type The error is specific to a type (e.g. refer-
encing a type name that does not exist).

Path The error is specific to a path (e.g. at-
tempting to assign invalid project-time-
global data, or changing the child keys of a
struct).

TimePoint Indices of this type contain the
path and UUID for the point to which the
error pertains (e.g. attempting to assign in-
valid data to a specific point in a time se-
ries).

5 Other concerns

5.1 Time

Sometimes it is important for a client to know
when an event occurred even if that client
was not connected when that event happened.
CLAPI messages are timestamped to high preci-
sion so that the Relay may present its own API
with information about the time differences be-
tween clients.

5.2 Topology in Larger Deployments

API providers can subscribe to other APIs
within the same Relay, or even make connec-
tions to other Relays in order to collect infor-
mation about remote systems that they may
then choose to expose. This allows the for-
mation of substantially more complex topolo-
gies withut the requirement for consensus algo-
rithms in CLAPI.

6 Ecosystem

Our current implementation of CLAPI is writ-
ten in Haskell. We have written library code
that implements building blocks required to
write a CLAPI application [Concert Audio
Technologies, 2018b], including types for values,
definitions and messages, as well as serialisation.
We have implemented the Relay application us-
ing the library.
We have produced a dummy API provider in

Haskell for testing purposes. The audio engine
component of our application is currently writ-
ten in a mixture of C and Haskell, with the
Haskell portion providing the high-level API in-
teraction and control plane.
We are looking to provide a framework for

creating HTML5/WebSocket interactive fron-
tends for CLAPI applications. These take the
role of clients in the solution. This component
is in the early stages of development at the time
of writing [Concert Audio Technologies, 2018a].
We hope that the high degree of type intro-

spection possible with CLAPI can assist in cre-
ating a UI by allowing the dynamic generation
of widgets for controls. This should mean that
clients and providers do not need always to be
kept in tight version synchronisation. We aim to
blend this dynamism with some explicit layout
design in order to provide useful, customisable
interfaces.

7 Future

We are currently prototyping our distributed
DAW on top of the CLAPI framework. The
design of CLAPI is heavily influenced by what
we are trying to achieve in our application and
vice versa. As both the application and CLAPI
are still under very active development, we ap-
preciate that some details may change between
the time of writing and the conference.
We are curious as to whether the mixed-

paradigm approach and features like validation,
discoverability and introspection, which we have
tried to incorporate in the CLAPI framework,
are applicable to a wider range of applications
outside our problem domain. We’d also like to
explore further how these features impact the
design of applications, and whether there are
any technical considerations we may have over-
looked in CLAPI’s design.
Ultimately, we hope that CLAPI will be of

use to the community, either directly, or by
stimulating discussion about the kind of high-
level features we want in our APIs in the future.

69

Definitions Type Assignments Data Updates Errors
Relay→Client • • • •
Client→Relay •
Relay→Provider • •

Provider→Relay • • •

Table 2: Information each role can communicate to others in CLAPI

References

H. Andrews/IETF. 2017. Json schema
specification. http://json-schema.org/
specification.html.

Concert Audio Technologies. 2018a.
A Prototypical CLAPI web GUI.
https://github.com/foolswood/elmweb.

Concert Audio Technologies. 2018b. Clapi.
https://github.com/concert/clapi.

Roy Fielding. 2000. Architectural Styles and
the Design of Network-based Software Archi-
tectures. Ph.D. thesis, University of Califor-
nia, Irvine.

Pieter Hintjens et al. 2014a. Zeromq dis-
tributed messaging. http://zeromq.org/.

Pieter Hintjens et al. 2014b. Ze-
romq message transport protocol.
https://rfc.zeromq.org/spec:23/ZMTP.

IETF. 1999. Hypertext Trans-
fer Protocol 1.1 (RFC 2616).
https://tools.ietf.org/html/rfc2616.

ISO/IEC. 2014. ISO/IEC 19464
- Advanced Message Queuing Pro-
tocol (AMQP) v1.0 Specificiation.
https://www.iso.org/standard/
64955.html.

Mike Kelly. 2011. Hypertext application lan-
guage specification. http://stateless.co/
hal specification.html.

MIDI manufacturers associa-
tion. 1996. MIDI 1.0 standard.
https://www.midi.org/specifications/
item/the-midi-1-0-specification/.

MQTT. 1999. MQTT homepage.
http://mqtt.org/.

OASIS. 2015. Mqtt version 3.1.1 plus
errata 01. http://docs.oasis-open.org/
mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

Hanspeter Portner. 2017.
OSC additional semantics.
https://open-music-kontrollers.ch/
osc/about/.

RabbitMq. 2018. Rabbitmq
amqp implementation homepage.
https://www.rabbitmq.com/.

W3C. 2000. Simple object ac-
cess protocol 1.1 specification.
https://www.w3.org/TR/soap/.

Dave Winer. 1999. Xml-rpc specification.
http://xmlrpc.scripting.com/spec.html.

Matt Wright. 2002. Open
sound control 1.0 specification.
http://opensoundcontrol.org/spec-1 0.

70

	Cover
	Imprint
	Frontmatter
	Foreword
	Conference Organization
	Review Committee
	Workshops
	Music Program
	Table of Contents

	Using Perlin noise in sound synthesis
	SpectMorph: Morphing the Timbre of Musical Instruments
	RSVP, a preset system solution for Pure Data
	Open Hardware Multichannel Sound Interface for Hearing Aid Research on BeagleBone Black with openMHA: Cape4all
	MRuby-Zest: a Scriptable Audio GUI Framework
	Camomile: Creating audio plugins with Pure Data
	Ableton Link – A technology to synchronize music software
	Software Architecture for a Multiple AVB Listener and Talker Scenario
	Rtosc - Realtime Safe Open Sound Control Messaging
	Jacktools - Realtime Audio Processors as Python Classes
	Distributed time-centric APIs with CLAPI

