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A B S T R A C T

For modeling dynamic systems, various graphical modeling formalisms exist. In partic-
ular, rule-based graph transformation formalisms have proven to be adequate, both to
capture system behavior and system adaptations. For some graph transformation-based
formalisms there already exist well-established tools, enabling modelers to analyze im-
portant semantical properties of considered transformation systems. Yet, there are many
further adaptations and variants of such formalisms which, on the one hand, ease their
application in certain contexts but, on the other hand, require new analysis techniques
and tools. To avoid the implementation of further formalism-specific analysis tools for
all these formalism variants, it would be helpful to develop and use a formal mapping
of the considered formalisms to a kernel formalism for which analysis techniques and
tools do already exist.

Therefore, in this thesis, for a broad class of transformation-based modeling forma-
lisms, we have introduced a technique to relate two formalisms with respect to their
semantical properties of interest. The provided connection enables the usage of the anal-
ysis methods and tools available for the target formalism also for the source formalism.
As a class of considered formalisms we have chosen M-adhesive transformation systems
based on M-adhesive categories, which share common technical properties and include
many relevant notions used for the modeling of system behavior and adaptation. The
investigated semantical properties include behavioral equivalence, (local) confluence, ter-
mination, functional behavior as well as parallel and sequential independence of trans-
formations.

To establish the described formal relationship between different M-adhesive transfor-
mation systems, we have developed an abstract framework of M-functors. This frame-
work is introduced first for transformation systems containing only rules without nested
application conditions and is then extended to rules with nested application conditions.
This extension is non-trivial concerning the technical aspects and is most important for
transformation systems in practice.

The developed abstract framework is instantiated for two relevant modeling forma-
lisms. We related both, hypergraph transformation systems and Petri net transformation
systems with individual tokens with typed attributed graph transformation systems. The
instantiation is executed by providing concrete M-functors from the M-adhesive category
of the source transformation system to the M-adhesive category of the target transforma-
tion system and by verifying sufficient technical properties required by the developed
theory for the involved categories and the constructed concrete M-functors. The common
target transformation system of typed attributed graphs is a reasonable choice since, for
example, the well-established tool Agg, purpose-built for typed attributed graph transfor-
mation systems, allows for modeling, simulation, and, in particular, critical pair analysis,
which is the first step towards the confluence analysis.
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Z U S A M M E N FA S S U N G

Komplexe dynamische Systeme können unter Einsatz von graphischen Formalismen ad-
äquat modelliert werden. Insbesondere regelbasierte Graphtransformationsformalismen
werden erfolgreich eingesetzt, um sowohl das Systemverhalten als auch Systemverände-
rungen zu erfassen. Für einige Graphtransformationsformalismen wurden bereits Werk-
zeuge zur Analyse von semantischen Eigenschaften entwickelt. Weiterführende Entwick-
lungen von Graphtransformationsformalismen vereinfachen einerseits ihre Anwendung
in verschiedenen Kontexten, erfordern jedoch andererseits neue Analysetechniken und
Analysewerkzeuge. Um die Entwicklung von solchen zusätzlichen formalismusspezifi-
schen Werkzeugen zu vermeiden, ist die Erforschung und Bereitstellung von formalen
Abbildungen solcher Formalismen in einen Kernformalismus mit bereits existierender
adäquater Werkzeugunterstützung hilfreich.

In dieser Arbeit haben wir für eine große Klasse von transformationsbasierten Mo-
dellierungsformalismen eine Technik entwickelt, um Instanzen von zwei Formalismen
(einem Quell- und einem Zielformalismus) miteinander in Beziehung zu setzen. Diese
Beziehung garantiert, dass bestimmte relevante semantische Eigenschaften der Instanz
des Zielformalismus (wie Verhaltensäquivalenz, (lokale) Konfluenz, Terminierung, funk-
tionales Verhalten sowie parallele und sequentielle Unabhängigkeit von Transformatio-
nen) auch von der Instanz des Quellformalismus erfüllt werden. Die entwickelte Tech-
nik ermöglicht somit den Einsatz der Analysewerkzeuge des Zielformalismus auch für
Instanzen des Quellformalismus. Mit unserer entwickelten Technik setzen wir Forma-
lismen aus der wohletablierten Klasse von M-adhäsiven Transformationssystemen in
Beziehung, einer Klasse von Formalismen die zahlreiche relevante graphische Model-
lierungsformalismen umfasst. Diese Formalismen basieren auf M-adhäsiven Kategorien,
die durch eine Liste von fundamentalen technischen Eigenschaften charakterisiert sind
und relevante Begrifflichkeiten für die Modellierung und Analyse von Systemverhalten
und Systemveränderungen bereitstellen.

Aus formaler Sicht stellen wir die Beziehung zwischen zwei M-adhäsiven Transforma-
tionssystemen mit Hilfe von sogenannten M-Funktoren her. Die hierfür benötigte Theo-
rie entwickeln wir im ersten Schritt für Transformationssysteme ohne verschachtelten
Anwendungsbedingungen und verallgemeinern diese nachfolgend für Transformations-
systeme mit verschachtelten Anwendungsbedingungen. Der Erweiterungsschritt ist for-
mal anspruchsvoll jedoch von großer praktischer Bedeutung, da die Verwendung von
verschachtelten Anwendungsbedingungen die Ausdrucksmächtigkeit der Transformati-
onssysteme erhöht und eine breite Verwendung bei der Modellierung findet.

Wir demonstrieren die Anwendbarkeit unseres auf der Ebene von M-adhäsiven Trans-
formationssystemen entwickelten abstrakten Ansatzes durch seine Instanziierung für
konkrete relevante Modellierungsformalismen. Wir setzen sowohl Hypergraphtransfor-
mationssysteme als auch Petri-Netz-Transformationssysteme mit individuellen Marken
jeweils mit den entsprechenden getypten attributierten Graphtransformationssystemen
in Beziehung. Für diese Instanziierung definieren wir zunächst jeweils einen konkre-
ten M-Funktor zwischen der M-adhäsiven Kategorie des Quelltransformationssystems
und der M-adhäsiven Kategorie des Zieltransformationssystems und verifizieren im An-
schluss, dass der definierte M-Funktor in Verbindung mit den involvierten M-adhäsiven
Kategorien die durch die Theorie vorgegebenen hinreichenden Bedingungen erfüllt.
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Part I

I N T R O D U C T I O N A N D F O U N D AT I O N S





1
I N T R O D U C T I O N

The modeling and formal analysis of dynamic systems is one of the big challenges in
computer science. In this thesis, we focus on transformation systems for different kinds
of formalisms and their analysis supported by tools on a formal foundation. Subse-
quently, we provide a brief overview of the considered setting with the problems and
objectives followed by our approach.

1.1 setting

The modeling of dynamic systems including their adaptation to a changing environment
occurs in various domains such as computer supported cooperative work, multi-agent
systems or mobile and distributed networks.

A broad range of, often graphical, formalisms have been developed in the past for
the modeling of such systems. Some well-known examples are different kinds of Petri
nets [252], automata [125], and statecharts [140]. Also, graph-based formalisms have been
developed for other purposes such as e.g. the definition of the abstract syntax of visual
models based on UML [236] and business process models using BPMN [237]. Each of the
mentioned formalisms defines a set of graphical models and, in most cases, behavioral
semantics by means of single step relations resulting in state spaces.

graph transformation approach

The adaptation of graph-based formalisms can be defined by applying transformation
rules on the models of these formalisms. Such adaptations are to be understood in
this context as local rule-based modifications defining additions and removals of sub-
structures and are central to the graph transformation approach. Graph transformation
systems and their semantical properties are intensively studied since the early 1970s [79].
The double pushout (DPO) approach to graph transformation (serving as a basis for our
approach) and how it is used to modify graphs and graph-like formalisms is introduced
in more detail in Chapter 2.

Graph transformation systems have been extended in various directions to facilitate
their modeling and analysis. For example, in a formalism of typed attributed graphs,
data has been integrated directly using attributes [88]. Another major step was the devel-
opment of conditional rule applicability [77] based on application conditions. Intuitively,
a rule is applicable if a certain pattern to be modified exists in the host graph that has to
satisfy, in addition, all the application conditions associated with this rule. Application
conditions for graph transformation rules were first introduced in [77], while negative
application conditions (short NACs), representable in a graphical way, were first con-
sidered in [139]. In the literature, there are different kinds of application conditions
as for instance NACs [139, 143], positive application conditions (short PACs) [87], and
nested application conditions [135, 136, 96]. Nested application conditions can contain a
combination of PACs and NACs as well as can include an arbitrary level of nesting. In
this thesis, we employ nested application conditions, which are equivalent to first-order
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4 introduction

logic on graphs and are strictly more expressive than NACs and PACs. It is well-known
that the usage of application conditions and explicit data in form of attributes does
not increase the expressive power of transformation systems (which are already Turing
powerful without these features) since both of these features can be encoded by adding
appropriate further structure to the rules and to the graphs. Still their usage is advanta-
geous since it results in simpler rules and smaller intermediate graph structures.

M-adhesive transformation systems

A unified theory for a broad class of transformation systems has been developed with
multiple intermediate steps ultimately leading to M-adhesive transformation systems
based on categorical constructions defining transformation at an abstract level (see Chap-
ter 2 for a more in depth coverage of earlier stages of development). An M-adhesive
transformation system consists of an M-adhesive category (a category with certain gen-
eral technical properties) along with a set of transformation rules and, for technical pur-
poses discussed in Section 2.2, a class M of monomorphisms [94]. The handling of the
DPO approach at the categorical level, encompassing the general technical properties,
has proved to be suitable to obtain various results such as the Local Church-Rosser,
Parallelism, Concurrency, Embedding, Extension, and Local Confluence Theorems [88].
The instantiation of M-adhesive transformation systems for concrete formalisms such as
transformation systems over e.g. (typed attributed) graphs, hypergraphs, and Petri nets
requires the verification of these general technical properties.

hypergraphs and hypergraph transformation systems

Hypergraphs generalize ordinary graphs by allowing each edge to have any finite num-
ber of sources and targets (instead of precisely one) additionally assuming an order on
these elements. Obviously, hypergraphs and ordinary graphs are equivalently expressive
because each ordinary graph is a hypergraph and each hypergraph can be encoded as an
ordinary graph (where the ordering is encoded in additional labels). Hypergraphs are
used in various settings in mathematics [9, 120, 253], biology [168, 113], and chemistry
[27, 178, 113]. In computer science, hypergraphs have been used e.g. for the modeling
of online social networks to describe the relations for friendship, cooperation, and busi-
ness contacts [226, 286, 225] or for the description of inter-networking systems containing
components and communication ports between them, which represent the environment
of the components [149, 148, 295].

Hypergraph transformation systems have been used in many application domains to
model the behavior of distributed or concurrent systems [271, 147, 295, 188], to model
machine learning processes [279], and, furthermore, hyperedge replacement systems, as
restricted form of hypergraph transformation systems, can be seen as graphical context-
free Chomsky grammars [181]. A more detailed discussion of the formal hypergraph
rewriting techniques is contained in Subsections 2.4.2 and 13.2.2.

petri nets and petri net transformation systems

The formalism of Petri nets is a model for the concurrent execution of systems allowing
for an efficient analysis of various important domain-specific semantical properties such
as deadlocks, livelocks, and invariants. The basic formalism of Petri nets handles data at
an abstract level since tokens in a common place are indistinguishable. Petri nets have
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been extended to model also data handling e.g. in colored Petri nets [161] and, on a
much more general level, in algebraic high-level nets (short AHL nets) [82, 153].

The reconfiguration of Petri nets, as for graphs, is of interest in various domains for the
controlled model adaptation as discussed before. A first approach to relate Petri nets and
graph transformation systems has been proposed by Kreowski in [180] where the firing
behavior of Petri nets marked by tokens attached to their places by edges is implemented
by certain graph transformation rules. In this unified setting as well as in the setting
where the tokens are indistinguishable, it is then possible to apply structure-changing
transformation rules to a Petri net enabling its stepwise reconfiguration [92, 260]. The
analysis of structural changes of Petri nets executed by means of transformations re-
sulted from these developments [20]. In this thesis, we rely on Petri nets with individual
tokens (short PTI nets), as they offer a possibility for token reconfiguration (by means
of transition firing) also at the abstract level of the DPO approach allowing for a unified
handling on the foundation of M-adhesive transformation systems. For a more detailed
discussion of Petri nets and their transformation see Subsections 2.4.3 and 13.2.3.

semantical properties

When applying modeling formalisms based on graph transformation, users are often
interested in the analysis of general and domain-specific semantical properties. The
possibility for an adequate tool support allowing for such analysis with minimal user
interaction is limited, however, by the inherent undecidability of many useful semantical
properties in Turing powerful formalisms such as transformation systems. Consequently,
analysis algorithms are often sound (every statement on the satisfaction is correct) and
incomplete (a statement is not always derived) for these formalisms.

In this thesis, we focus on the semantical properties that are widely accepted to be
relevant for a broad range of applications of transformation systems such as behavioral
equivalence, (local) confluence, termination, functional behavior as well as parallel and
sequential independence of transformations.

Rule-based transformation has always been concerned with the property of confluence
stating that the order of the rules to be applied is not relevant for an ultimately obtained
result. More formally, confluence is satisfied if for every given object of the underlying
category and every two sequences of transformations starting in this object, there are two
further sequences of transformations continuing the former sequences to a common ob-
ject of the underlying category. Such confluence analysis is relevant for many formalisms
allowing for parallel execution: considering the token game of Petri nets, conflicting fir-
ing of transitions is related. In fact, these domain-specific conflicts turn out to be conflicts
in the transformation-based setting of PTI nets as well when rules are used to encode the
firing behavior. Also, since graph transformation systems are inspired by term rewrit-
ing systems, the confluence property also ensures that it is possible for a given term
to compute an equivalent normal form in finite time without having to employ a cer-
tain derivation strategy [57]. Moreover, confluence guarantees the so-called functional
behavior in the sense that unique results are obtained by the computations. However,
unresolvable conflicts of rule applications (leading altogether to the non-confluence of
a system) indicate the existence of “true non-determinism” [144] in a system. In bigger
applications, analysis may reveal that isolated components exhibit functional behavior
(such as local computations in a distributed network). In these cases, the confluence of
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such components can be used to verify other relevant semantical properties of the entire
system.

Independent from the transformation setting, confluence is guaranteed for terminating
systems that are locally confluent in the sense that transformation sequences of length
one starting in a common object can be merged together [234]. In the context of graph
transformation, this result is useful since local confluence can be analyzed by means
of computation of so-called critical pairs and their subsequent analysis. Using critical
pair analysis, we can statically detect conflicts between transformation steps of similar
structure since, according to the Completeness of Critical Pairs Lemma [88], for each
pair of conflicting transformation steps there is a critical pair representing this conflict
in a minimal context (see Subsubsection 2.2.2.4 and Subsection 2.3.2 for a more in-depth
introduction including the analysis of critical pairs).

The semantical property of termination is, as stated above, relevant for the analysis
of confluence and functional behavior. Moreover, even in applications where functional
behavior is not required, the termination or even the non-termination (e.g. in perma-
nently running systems such as embedded systems) of a software component may be a
desirable property to be enforced and, hence, analyzed. The analysis of termination is, of
course, not limited to software components as it is also relevant in many other contexts
such as e.g. business processes and parsing of visual languages.

The semantical property of parallel and sequential independence has a technical na-
ture and is often considered in the context of local confluence analysis of transformation
systems where the independence of any two transformation steps ensures the local con-
fluence of the entire system. Moreover, this property helps to detect the conflicting and
causally dependent rule applications during the analysis of a transformation system. We
speak of parallel independence if two transformation steps can be applied in any order
yielding the same result, while we speak of sequential independence if two transforma-
tion steps in a transformation sequence can be exchanged without affecting the overall
result of the sequence [141, 88].

Behavioral equivalence has a different nature compared to the semantical properties
introduced above since it does not provide by its own a property to be analyzed. It
rather requires an additional system (e.g. a transformation system defining a certain
reachability graph) that serves as a specification for the system under analysis. Behav-
ioral equivalence then provides a definition of how these two systems are to be compared
for equivalent behavior. Furthermore, for many interpretations, more basic equivalence
properties can be derived from behavioral equivalence such as e.g. language equiva-
lence. In the context of graph transformation systems, behavioral equivalence expresses
for two systems intuitively that they can execute equivalent transformation steps from
related graphs of these two systems. For many other formalisms such as e.g. process
calculi that define system behavior based on transition systems, behavioral equivalence
has been formalized using the notion of bisimulation.

Note that for the concrete formalisms of hypergraphs and PTI nets we do not discuss
in this thesis further semantical properties specific to their application domains.

tools

There is a multitude of tools with varying sets of features for the modeling, simulation,
and analysis of different kinds of transformation systems.
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Since the confluence property is of great importance in the context of our approach, we
have chosen the tool Agg [292] for the application of our theory in this thesis. To the best
of our knowledge, Agg (a purpose-built tool for typed attributed graph transformation
systems) is the only graph transformation tool to this day supporting local confluence
analysis via critical pairs computation for typed attributed graph transformation sys-
tems with NACs and PACs [292, 121]. The spectrum of further tools with comparable
capabilities but different limitations is then discussed in detail in Chapter 13.

1.2 problems and objectives

Various formalisms defining a semantical behavior of a system lack formal-based tool
support for the analysis of semantical properties relevant for the system. In Figure 1

two systems, System 1 and System 2, are depicted. System 1 in the left column lacks
tool-based support for the verification of Property 1, while System 2 in the right column
can analyze Property 2 (corresponding to the Property 1 formulated in the language of
System 2) using an appropriate tool support (Tool 2). In the following, we focus on the re-
search question of how to use System 2 with Tool 2 on a formal level to analyze properties
of System 1.

In this thesis, we rely on M-adhesive transformation systems, which are a suitable
abstraction mechanism for the description of different formalisms in the context of the
DPO approach to graph transformation. For the considered formalisms, we allow for the
usage of nested application conditions.

Even for formalisms in the domain of M-adhesive transformation systems, there is
often no suitable formal-based tool support for semantical analysis. For example, for hy-
pergraph and Petri net transformation systems there are several general-purpose tools,
in which hypergraph and Petri net transformation systems can be encoded. Besides Agg,
e.g. the tools GROOVE [121], Henshin [69, 6], and SyGrAV [53, 290] offer the possibil-
ity to model hypergraphs and hypergraph transformation systems resp. Petri nets and
Petri net transformation systems by converting them in an informal way into the cor-
responding typed attributed graph representation used by these tools. The drawback
of this approach is the additional effort for the verification of the informal conversion
procedure. Such a conversion procedure must suitably preserve and reflect syntax and
semantics between two different formalisms. This idea was already used on an infor-
mal level for the implementation of net transformations in the RON-tool (a modeling,
simulation, and analysis tool for algebraic higher-order nets) [291, 19] ensuring that the
graph structure and the graph match morphisms for the translated rules calculated by
Agg correspond to valid net structures and valid net match morphisms. This informal
translation was the inspiration for our formal approach.

Besides the mentioned class of formalisms, we focus on semantical properties such
as behavioral equivalence, (local) confluence, termination, functional behavior as well as
parallel and sequential independence of transformations.

Our main objective is the development of a formal framework enabling tool-based support for
the analysis of semantical properties for a transformation system defined according to another
given formalism. This framework should (a) be verified on a formal level, (b) provide a
clean interface that can be used for a broad range of formalisms, and (c) be sufficiently
powerful to be able to transfer a reasonable set of semantical properties of interest. The
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F
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Figure 1: Abstract perspective on the research problem and the proposed solution

applicability of the framework must be evaluated by applying it to different instantia-
tions of M-adhesive transformation systems. Moreover, since further properties may be
important for certain domains in the future, the extendability of the framework regarding
the semantical properties to be analyzable must be guaranteed.

In the next section, we discuss in detail our approach to achieve the previously men-
tioned main objective.

1.3 proposed solution

As a solution for the stated research problem, we introduce a technique to relate different
formalisms with respect to semantical properties of interest. The connection provided
allows for the transfer of semantical properties among the involved formalisms and there-
fore enables the analysis techniques and tools available for the target formalism also for
the source formalism.

For an abstract perspective on our proposed solution, consider again Figure 1. In this
figure, as already mentioned before, System 1 lacks tool-based support (since no suit-
able Tool 1 is available) for the analysis of Property 1. Using our approach, we relate
System 1 with System 2 and Property 1 with Property 2 using a functor F. This relation-
ship between the systems and semantical properties then guarantees that the judgment
of Tool 2, which decides whether System 2 satisfies Property 2, implies the desired judg-
ment, namely, whether System 1 satisfies Property 1. Therefore, we bypass the missing
domain-specific tool-based support of System 1 using Tool 2 from a different domain. In
fact, System 1 and System 2 are behavioral equivalent in the sense of bisimilarity when
System 2 is constructed from System 1 using a functor F according to our approach.

In the following, we discuss our proposed solution (in terms of our formal approach),
i.e., the chosen systems, semantical properties, and tools as well as the elementary steps
of the proposed solution in more detail. For the systems considered, as already men-
tioned before, we restrict ourselves to the framework of M-adhesive transformation sys-
tems, which (a) cover a broad class of transformation systems and (b) restrict the transfor-
mation systems by requiring the satisfaction of certain general technical properties that
allow for the derivation of various reasonable results. To enhance the descriptive expres-
siveness of transformation systems, we allow for nested application conditions, which
control the applicability of transformation rules. In our abstract framework, we focus on
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semantical properties that are of general interest to many different transformation sys-
tems such as behavioral equivalence, (local) confluence, termination, functional behavior
as well as parallel and sequential independence of transformations. The analysis of such
semantical properties for a concrete formalism is then covered at the instantiation level
of our abstract framework.

In Part ii we develop our abstract formal framework as follows. As a first step, for two
given M-adhesive transformation systems AS1 = ((C1,M1),P), AS2 = ((C2,M2),F(P))1,
we define in our abstract framework M-functors F as functors of type C1 → C2 with two
further specific technical properties [207]. As usual, an M-functor defines a translation
of objects and morphisms from C1 to C2. The two additional technical properties of
an M-functor (see Definition 41) then guarantee that transformation steps from AS1 are
properly translated into the corresponding transformation steps in AS2. As a second
step, we determine additional sufficient properties (see Definition 42) to be satisfied
by an M-functor, guaranteeing the creation of transformation steps in AS1 from the
corresponding transformation steps in AS2 [207]. This extension is sufficient for the
transfer of behavior among the two considered transformation systems. As a third step,
we include the handling of nested application conditions [211]. The effect on the transfer
of direct transformations with nested application conditions results in further sufficient
properties to be satisfied by an M-functor. Finally, we consider the semantical property of
confluence to be analyzed and introduce further sufficient confluence-specific properties
that an M-functor has to fulfill. See also Figure 82 in the conclusion for an overview
showing for the semantical properties of interest the sufficient properties (also called
requirements in the following) they depend on.

Based on this fundamental framework, we consider previously mentioned semantical
properties to be analyzed such as (local) confluence, termination, functional behavior
as well as parallel and sequential independence of transformations. For each of these
semantical properties, we ensure that the framework is appropriate (by containing a
suitable set of sufficient properties) for the transfer of analysis results from System 2 to
System 1.

Our formal framework satisfies the general requirements stated in our main objective in Sec-
tion 1.2 since we have (a) verified our results rigorously, (b) provided a clean interface based on
the list of sufficient properties to be verified for the functor at hand, and (c) considered a reasonable
set of semantical properties. Also, based on our experience with the properties considered,
we are confident that further semantical properties can be integrated at acceptable cost
and effort.

In Parts iii and iv, we apply our abstract framework to two concrete formalisms en-
abling the formal-based tool analysis of the discussed semantical properties in two new
domains. In both cases, we employ the well-known tool Agg [292] because, to the best of
our knowledge, it is the only tool capable to compute critical pairs for typed attributed
graph transformation systems with NACs and PACs. Based on the computation of criti-
cal pairs, it is then possible to analyze (local) confluence of a considered transformation
system. However, for these two new domains, further tool-based analysis is desirable as
discussed in detail in Chapter 15.

1 An M-adhesive transformation system AS = ((C,M),P) consists of an M-adhesive category (C,M) where
C is an underlying category and M is a class of monomorphisms, and a set of transformation rules P. For
more details see Subsection 2.2.1.
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Firstly, in Part iii, we instantiate the M-functor F by providing the concrete functor
FHG. This functor translates hypergraphs and hypergraph morphisms from the category
HyperGraphs into typed attributed graphs and typed attributed graph morphisms from
the category AGraphsHGTG over the hypergraph specific type graph HGTG. We instan-
tiate all of the theorems on the transfer of analysis results by verifying that the functor
FHG satisfies the required sufficient properties mentioned before.

Secondly, in Part iv, we introduce another instantiation of our theoretical framework
allowing to relate PTI nets and typed attributed graphs. We consider the M-adhesive
transformation system of PTI nets where rule applications for transition firing with non-
injective match morphisms may produce semantically incorrect transformation steps
since tokens may be lost due to their merging. The restriction of the entire transfor-
mation system and, hence, of the underlying category to injective morphisms is out of
question since the resulting category would not be M-adhesive. Our solution, also in-
troduced in Part ii, is the definition of restricted M-functors and the adaptation of our
formal framework to this special case. The restricted M-functor FR : C1|M1

→ C2|M2

is then defined on all objects but only on injective morphisms, i.e., the fragment that is
used for the intended behavior of PTI net transformation systems. For this variant of the
abstract theory, we introduce the concrete restricted M-functor FPTI as an instantiation.
This functor translates PTI nets and their injective morphisms from the category PTINet
into the corresponding typed attributed graphs and their morphisms from the category
AGraphsPNTG over the Petri net specific type graph PNTG. As for the M-functor FHG,
we instantiate the abstract theoretical results by verifying the list of sufficient properties
adapted to the setting of restricted M-functors.

Finally, in Part v, we develop a functor decomposition strategy that is an alternative
strategy for the verification of sufficient properties required by the general theory of (re-
stricted) M-functors. This strategy is based on a decomposition of the considered functor
and divides the requirement verification process into two essential steps: (a) the defini-
tion of a category equivalence (directly based on the functor at hand) between the source
category of the functor and the subcategory of the target category containing only the
objects and morphisms that are images of the considered functor and (b) the verification
of the sufficient properties only for the inclusion functor between the considered sub-
category of the target category and the entire target category. For a restricted functor,
this strategy works analogously considering the restriction of the involved categories to
injective morphisms only. Concerning our application to the concrete functors FHG and
FPTI, this functor decomposition strategy simplifies the requirement verification task be-
cause the inclusion functors can be handled more easily also often allowing for proofs in
a categorical setting.

1.4 structure of the thesis

This thesis is structured as follows.
• Part i (Introduction and Foundations):

In the remainder of this part, we introduce in Chapter 2 foundations relevant for the
subsequent parts. In particular, we first recall in Section 2.1 the theory of algebraic
graph transformation. Then, in Section 2.2, we introduce M-adhesive transforma-
tion systems as a class of formalisms we are focusing on in our approach and, in
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addition, semantical properties that are relevant for analysis in the context of M-
adhesive transformation systems. Afterwards, in Section 2.3, we extend the trans-
formation approach to the handling of nested application conditions and, finally,
provide in Section 2.4 the concrete instantiations of M-adhesive transformation sys-
tems to typed attributed graph transformation systems, hypergraph transformation
systems, and PTI net transformation systems.

• Part ii (Behavior and Confl. Analysis of M-Adhesive Transformation Systems):
In this part, we introduce our theoretical approach to the transfer of behavior and
semantical properties of interest in the following multiple steps. Firstly, in Sec-
tion 3.1, we introduce our formal framework of (restricted) M-functors, provide
results for the transfer of direct transformations and sequences of direct transforma-
tions ensuring behavioral equivalence of the functor-related parts of the involved
transformation systems, and, subsequently, extend these results concerning the be-
havior transfer to transformations with nested application conditions. Secondly,
in Section 3.2, we use these foundations to transfer results on behavioral analysis
based on bisimulations. Thirdly, in Sections 4.1 and 4.2, we consider the transfer of
local confluence (including as a sufficient condition the transfer of parallel and se-
quential independence of transformations), one of the central semantical properties
to be transferred between two transformation systems, for the case without or with
nested application conditions, respectively. Finally, in Section 4.3, we discuss the
analysis of further semantical properties, namely, termination, functional behavior,
and confluence.

• Part iii (Application to Hypergraph Transformation Systems):
In this part, we instantiate the theoretical results from the previous part to hy-
pergraph transformation systems without and with nested application conditions
by introducing in Chapter 5 a concrete M-functor FHG, which translates hyper-
graphs into typed attributed graphs, and by ensuring in Chapters 6 and 7 that
FHG satisfies the requirements of the respective abstract theorems. This instantia-
tion allows in Chapter 6 for the application of the results on the transfer of (direct)
transformations and bisimilarity as well as in Chapter 7 for the application of the
results on the transfer of local confluence, parallel and sequential independence,
termination, confluence, and functional behavior to concrete hypergraph transfor-
mation systems without or with nested application conditions. Furthermore, in
Section 7.3, we provide a detailed description for an analysis process of a concrete
hypergraph transformation system using our theoretical framework instantiated for
the M-functor FHG and the tool Agg applied to the graph transformation system
that is the functorial translation of the given hypergraph transformation system.

• Part iv (Application to PTI Net Transformation Systems):
Similarly to the previous part, we provide an instantiation of the theoretical results
from Part ii to PTI net transformation systems by defining in Chapter 8 a restricted
M-functor FPTI, which translates PTI nets into typed attributed graphs. In Chap-
ters 9 and 10, we verify that FPTI satisfies the adapted requirements of the abstract
theorems from Part ii and enables, as for the M-functor FHG, the application of the
results on the transfer of (direct) transformations and bisimilarity (see Chapter 9)
as well as on the transfer of local confluence, parallel and sequential independence,
termination, confluence, and functional behavior (see Chapter 10) to concrete PTI
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net transformation systems without or with nested application conditions. Using
a different example, we also provide in Section 10.3 a description of an analysis
process for a concrete PTI net transformation system using again our theoretical
framework instantiated to the restricted M-functor FPTI and the tool Agg applied
to the graph transformation system that is the functorial translation of the given
PTI net transformation system.

• Part v (Functor Decomp. Strategy for Verification of Req. and Its Application):
In this part, we provide a functor decomposition strategy (which is based on the
decomposition of a given functor into a category equivalence and an inclusion
functor) for the verification of sufficient properties required by the theoretical re-
sults from Part ii. This strategy is introduced for M-functors (see Section 11.1) as
well as for restricted M-functors (see Section 11.2) and, subsequently, its applica-
tion is discussed for the concrete functors FHG and FPTI in Sections 12.1 and 12.2,
respectively.

• Part vi (Related Work, Conclusion, and Future Work):
The discussion of research related to our approach is given in Chapter 13. After-
wards, in Chapter 14, we conclude this thesis and propose in Chapter 15 possible
future research directions.

• Part vii (Appendices):
In the final part of this thesis, we include four appendices containing the follow-
ing additional material. Firstly, in Appendix A, we provide additional categorical
foundations consisting of definitions and proofs for technical characteristics used
throughout the thesis. Secondly, in Appendix B, we include the proofs for the
lemmas required for the main theorems that constitute our general approach pre-
sented in Part ii. Thirdly, in Appendix C, we present the proofs, on the one hand,
for technical characteristics concerning hypergraph transformation systems and, on
the other hand, for the instantiation of our theoretical results presented in Part ii to
hypergraph transformation systems according to Part iii. Finally, in Appendix D,
we proceed as for the M-functor FHG by considering the proofs for PTI net specific
technical details and the proofs ensuring a sound instantiation of our theoretical re-
sults introduced in Part ii to PTI net transformation systems as presented in Part iv.

1.5 publications

Several contributions presented in this thesis have been accepted at three peer-reviewed
workshops and the Science of Computer Programming journal. In all of these papers, I am
the first author. In the following, we give a short overview of the submissions and also
provide references to technical reports produced for these submissions.

• In our first PNGT paper [207, 208], we introduced our research problem along
with initial results from my diploma thesis [206]. We established the notion of (re-
stricted) M-functors between M-adhesive categories. We provided sufficient prop-
erties guaranteeing that such a (restricted) M-functor, when it is used to translate
an M-adhesive transformation systems into another, translates and creates (direct)
transformations, rule applicability as well as parallel and sequential independence
of transformations. We applied these general results by defining a concrete re-
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stricted M-functor FPTI, which translates PTI nets into typed attributed graphs,
and verified the outlined sufficient properties.

• In our second PNGT paper [209, 210], we extended our previous work by consid-
ering further semantical properties. In particular, we considered (local) confluence,
termination, and functional behavior and verified that our notion of (restricted)
M-functors is able to translate and create these properties in the desired way. To
achieve these foundational results, we adapted the list of sufficient properties in-
troduced in the previous paper. As before, we applied our theoretical results by
verifying that our restricted M-functor FPTI satisfies the list of adapted sufficient
properties.

• In our GTVMT paper [211, 212], we extended our work to the case of hypergraph
transformation systems. For this purpose, we provided the definition of the M-
functor FHG (which is not restricted to the translation of M-morphisms only as
it was for the case of the restricted M-functor FPTI) translating hypergraphs into
typed attributed graphs. Moreover, we verified that the M-functor FHG satisfies the
list of adapted sufficient properties enabling the application of theoretical results
on the transfer of local confluence to concrete hypergraph transformation systems.

• In our journal contribution [213], we extended our previous results on the analysis
of local confluence to the case of M-adhesive transformation systems containing
rules with nested application conditions. To apply these new results and to en-
able analysis using tools such as Agg, we verified that the again extended list of
sufficient properties is satisfied by the previously defined M-functor FHG.

Major contributions that have not been published earlier are the consideration of bisimu-
lation-based behavior analysis of M-adhesive transformation systems in Sections 3.2, 6.3,
and 9.3, the generalization of the termination, confluence, and functional behavior anal-
ysis to M-adhesive transformation systems with nested application conditions in Sec-
tion 4.3, the analysis of termination, confluence, and functional behavior of hypergraph
transformation systems without or with nested application conditions in Section 7.4, the
verification that the restricted M-functor FPTI satisfies the corresponding list of sufficient
properties enabling the local confluence analysis of PTI net transformation systems with
nested application conditions in Section 10.2, the analysis of termination, confluence, and
functional behavior of PTI net transformation systems with nested application conditions
in Section 10.4, and the functor decomposition strategy for requirement verification to-
gether with its application to the concrete functors FHG and FPTI in Chapter 11.





2
F O U N D AT I O N S

In Section 2.1, we recall the approach of algebraic graph transformation with its fun-
damental ideas and concepts. Afterwards, in Section 2.2, we review the framework
of M-adhesive transformation systems as a generalization of the graph transformation
approach and introduce several semantical properties relevant in this framework. Subse-
quently, in Section 2.3, we consider an extension of M-adhesive transformation systems
allowing to contain rules with nested application conditions and recall the adapted local
confluence analysis technique for such extended M-adhesive transformation systems. Fi-
nally, in Section 2.4, we formally introduce three concrete instantiations of M-adhesive
transformation systems, namely typed attributed graph transformation systems, hyper-
graph transformation systems, and PTI net transformation systems.

2.1 algebraic graph transformation approach

Various kinds of graphs can be used to adequately represent the states of many different
systems and also the abstract syntax of visual models [122]. Using graphs is often advan-
tageous since they can visualize complex situations on an intuitive level. To describe the
local evolution of a system, it is beneficial to be able to define suitable transformation
rules specifying the admissible local state modifications. Graph transformation systems
are given by such a set of transformation rules that are making use of a common type
graph. When a graph transformation system is additionally equipped with a start graph,
from which the system is initiated, we obtain a so-called graph grammar, which is quite
similar to a Chomsky grammar for formal languages [271, 72, 73, 85]. Graph gram-
mars and the computation of steps by graph transformation are intensively studied in
[271, 72, 73]. Different applications of graph transformation and alternative graph based
transformation approaches are discussed in detail in Chapter 13.

In this thesis, we are concerned with the algebraic approach [79, 76], which is based on
pushout constructions on the involved graphs modeling their gluing. The graphs here
can be seen as a special case of an algebra consisting of two basic sets of vertexes and
edges together with two operations source and target defined on these basic sets. Graph
morphisms can be considered in the context of the algebraic approach as special algebra
homomorphisms and a pushout construction on graphs corresponds to an algebraic quo-
tient algebra construction. Moreover, the usage of pushouts in the algebraic approach
allows for the definition of basic theoretical concepts and constructions as well as for
the handling of many semantical properties of interest in the context of category theory.
In this thesis, we are following the well-established double pushout (DPO) approach ex-
plained in detail e.g. in [88] rather than the single pushout (SPO) approach introduced
in [265, 200, 199]. For the comparison of both approaches consult e.g. [83] in the Volume
I of the Handbook of Graph Grammars [271].

As already pointed out before, the notion of graph transformation rules is one of the
central notions in the context of the graph transformation approach. A graph transfor-

15
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mation rule (also called a production) ρ is a span of injective morphisms l and r of the

form ρ = L
l← K

r→ R, where L is called a left-hand side (LHS) of the rule, R is called
a right-hand side (RHS) of the rule and K is the intersection of the left-hand and the
right-hand sides of the rule. For the general case of graphs, L and R represent the graph
patterns that should occur in the considered graph before resp. after the rule applica-
tion. Technically, if we apply a rule to some graph G, first the graph L \ l(K) has to be
deleted from G and afterwards a copy of the graph R \ r(K) has to be added to the result
graph, while the graph K (also called a gluing graph) has to be preserved when apply-
ing a rule. This described transformation procedure defining a graph transformation
step is formally introduced by the DPO approach, where a rule application is defined in
terms of category theory by a diagram consisting of two pushouts with total morphisms.
Graph transformation sequences are then computed by the iterative application of rules
to the graphs obtained from the previous transformation steps.

A graph transformation rule is applicable w.r.t. a given match morphism if the so-
called gluing condition is satisfied. This condition intuitively expresses that all dangling
edges1 must be removed and all non-injectively matched nodes and edges must be re-
moved or preserved by a rule application. To increase the descriptive expressiveness of
transformation rules, application conditions [77] are often beneficial. They are frequently
used for the restriction of rule applicability in graph transformation systems in a wide
variety of application areas.

Graphs, which are given by a set of edges, a set of vertexes, and the source and target
functions for the edges as already mentioned before, are a basic and sufficient formalism
for many applications. However, additional graph language constructs are desirable lead-
ing to high-level structures such as graphs with labels and/or attributes as well as certain
structures such as Petri nets, hypergraphs, UML class diagrams [236] etc. Transformation
of such high-level structures was introduced by Ehrig et al. in [80, 81] as the concept of
High-Level Replacement (HLR) systems in order to establish a common framework for
various kinds of graph and Petri net transformation systems. A general instance of the
HLR framework is the formalism of typed attributed graph transformation systems in-
troduced in [85] and described in-depth in [88], where attributes and different structural
conditions can be enforced on all occurring graphs.

There are many different tools supporting graph transformation. In the 1990s, typed at-
tributed graph transformation was successfully implemented using the Attributed Graph
Grammar language in the correspondent tool Agg (Attributed Graph Grammar System)
[292, 104, 287]. The development of the Agg-tool has started at the Technische Univer-
sität Berlin and continues to this day. Agg supports the specification of algebraic graph
transformation systems based on typed attributed graphs with node type inheritance as
well as on simple graph rules with nested application conditions and graph constraints
[272]. To the best of our knowledge, Agg is the only tool consequently implementing the
existing theoretical results for algebraic graph transformation and supporting different
analysis techniques for graph grammars containing rules with NACs and PACs, like, e.g.,
critical pair, dependency and termination analysis, graph parsing as well as consistency
and rule applicability checks on graphs [272]. According to [292, 141], Agg provides
several graphical editors to create and manipulate graph transformation systems, an in-
terpreter for system simulation as well as a debugger for system verification. The critical
pair resp. dependency analysis is offered through a graphical user interface, allowing
to browse through the computed critical pairs resp. dependencies. Furthermore, Agg

1 A dangling edge is an edge whose source or target vertex has been removed.
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Figure 2: Example view of Agg

supports termination analysis for typed attributed graph transformation systems with
injective rules, injective match morphisms and injective NACs using layers for rules and
graph types implemented by checking the so-called layering conditions, which are suffi-
cient criteria for termination. Finally, Agg provides Java code for the execution of graph
transformations that can be used by any graphical or non-graphical Java application.
Figure 2 above demonstrates an example view of the Agg graphical editor, where the
column to the left represents a tree view of the considered graph transformation system
including a type graph, a start graph and associated graph transformation rules. The
upper part of the picture shows a rule with a PAC and the lower view depicts the start
graph of the considered transformation system. Finally, the column to the right shows
the allowed node and edge types of the current transformation system. Since Agg is an
appropriate tool for local confluence analysis of typed attributed graph transformation
systems, we will use it in the following for the verification of our concrete application
examples.

Other examples for tools implementing different graph transformation approaches for
modeling and analysis reasons are discussed in detail in Chapter 13.
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2.2 M-adhesive transformation systems

In this section, we review basic concepts of M-adhesive transformation systems that are
important for our following considerations and give an intuitive as well as a formal in-
troduction to relevant semantical properties of M-adhesive transformation systems com-
menting their analysis possibilities.

Since we use the framework of M-adhesive transformation systems as a fundamental
basis for our approach, we assume the reader to be familiar with the concepts used in
[88] such as the basics of category theory and double pushout approach, graph transfor-
mation systems and High-Level Replacement systems with their semantical properties
etc., to be able to follow the formal parts introduced in this thesis.

2.2.1 Basic Concepts of M-Adhesive Transformation Systems

M-adhesive transformation systems are one of the categorical frameworks used for graph
transformation and High-Level Replacement (HLR) systems in the context of the double
pushout (DPO) approach. In this subsection, we recall the basic definitions from the
framework of M-adhesive transformation systems (see [94, 88]), which are based on
M-adhesive categories. The framework of M-adhesive transformation systems can be
instantiated for many practically relevant HLR systems such as various kinds of graphs
and Petri nets.

The concept of M-adhesive categories is based on certain HLR axioms, which are suf-
ficient to derive the main results of graph transformation and HLR systems theory such
as Local Church-Rosser, Concurrency, Parallelism, Embedding, Extension, Completeness
of Critical Pairs, and Local Confluence Theorems [88, 259]. These HLR axioms rely on
the existence of pushouts and pullbacks, where pushouts correspond in general to the
union of structures and pullbacks to their intersection, and state their compatibility [88].
The concept of M-adhesive categories generalizes that of weak adhesive HLR [88], adhe-
sive HLR [89], and adhesive categories [185]. In fact, the mentioned classes of categories
are constructed similarly using HLR axioms, which are getting strictly more restrictive
from left to right, thus adhesive categories are the most restrictive class and M-adhesive
categories are the least restrictive class of categories. For example, according to [88],
the category of sets is contained in each of the four classes, the categories of typed at-
tributed graphs and hypergraphs are adhesive HLR and hence also weak adhesive HLR
and M-adhesive, whereas several categories of Petri nets are not adhesive HLR, but weak
adhesive HLR and hence also M-adhesive.

We begin this subsection with the definition of M-adhesive categories. An M-adhesive
category is a short notation for a vertical weak adhesive HLR category introduced in [94].
More precisely, an M-adhesive category consists of a category C together with a class M

of monomorphisms2 as given in Definition 1 below. Choosing M to be a suitable subclass
of all monomorphisms together with the assumption that pushouts along M-morphisms
are vertical weak van Kampen (VK) squares (subsequently called M-VK-squares) allows
to capture, for example, typed attributed graphs and different kinds of Petri nets as
instantiations of M-adhesive categories.

2 Note that this does not mean that the category C is restricted to morphisms from M as well as that a class
M does not necessarily contain all monomorphisms.
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Definition 1 (M-Adhesive Category [94]).
An M-adhesive category (C,M) is a category C together with a class M of monomorphisms
satisfying the following properties:

• C has pushouts and pullbacks along M-morphisms3,
• a class M is closed under isomorphisms4, composition5, decomposition6, pushouts and pull-

backs7, and
• pushouts along M-morphisms are M-VK-squares (see the diagram below), i.e., the VK-

property holds for all commutative cubes, where the given pushout with m ∈ M is in the
bottom, the back faces are pullbacks and all vertical morphisms a,b, c and d are in M. The
VK-property states that the top face is a pushout iff the front faces are pullbacks.

A
B

C
D

A ′

B ′

C ′

D ′

m

a

b

c

d

A set of rules over an M-adhesive category according to the DPO approach constitutes
an M-adhesive transformation system [94]. In the following, we will use the notions rule
and production as synonym.

Definition 2 (M-Adhesive Transformation System [94]).
Consider an M-adhesive category (C,M). An M-adhesive transformation system AS =

((C,M),P)8 has in addition a set P of rules of the form ρ = (L
l←− K r−→ R) with l, r ∈M.

Applying a rule ρ to some given object G via a match morphism m, we execute a DPO
transformation step G

ρ,m
=⇒ H, also called direct transformation, leading to some target

object H. The left pushout of the DPO diagram describes the deletion of some elements
of G according to the considered rule ρ, while the right pushout describes the addition
of some elements to the structure resulting from the deletion. The formal definition of a
direct transformation is as follows.

Definition 3 (Direct Transformation [88]).
Consider an M-adhesive transformation system (C,M,P). A direct transformation G

ρ,m
=⇒H

via a rule ρ ∈ P and a match morphismm consists of two pushouts (1)
and (2) as shown in the diagram to the right, where n : R→ H is called
a comatch morphism of m. A rule ρ is applicable via m to G, if we
have a pushout complement D in (1) such that (1) becomes a pushout.
In this case, the target object H of the transformation can be construc-

L K R

G D H

(1) (2)

l r

m n

ted as the gluing of objects D and R via the interface object K.

3 Pushout (pullback) along M-morphisms means that at least one of the span (cospan) morphisms of the
pushout (pullback) diagram is in M.

4 M is closed under isomorphisms means that for f ∈M and an isomorphism i it holds that also i ◦ f and f ◦ i
are in M.

5 M is closed under composition means that for f,g ∈M it holds that also g ◦ f ∈M.
6 M is closed under decomposition means that for g ◦ f ∈M and g ∈M it holds that also f ∈M.
7 M is closed under pushouts (pullbacks) means that for a pushout (pullback) with one of the span (cospan)

morphisms in M, also the opposite morphism in the pushout (pullback) diagram is in M.
8 In the following, we flatten nested tuples to simplify the notation of M-adhesive transformation systems,

i.e., the tuple ((C,M),P) is written (C,M,P).
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To check whether a rule ρ is applicable to some object G via a match morphism m, we
recall in context of M-adhesive transformation systems the notion of initial pushouts [88],
which represents a universal characterization of the boundary and context constructions.
The aim of the initial pushout construction is to define for an arbitrary morphism f :

G → G ′ a boundary object B with the morphism b : B → G and the context object C
with the morphism c : C → G ′ such that the resulting diagram becomes a pushout (see
the diagram (1) in the definition below). Intuitively, the object G ′ in (1) is given as the
gluing of objects G and C along the boundary object B.

We need the concept of initial pushouts in the following chapters for the categorical
representation of the functorial properties and their proofs. Furthermore, the usage of
such general categorical formulations makes the proofs rather concise.

Definition 4 (Initial Pushout [88]).
Consider a morphism f : G → G ′ in an M-adhesive category (C,M)9. Then (1) is an initial
pushout (short IPO) over f with boundary object B, context object C, and b, c ∈ M if (1) is a
pushout and for every pushout (2) over f with h,h ′ ∈M it holds that there are unique morphisms
b∗ : B→ B ′ and c∗ : C→ C ′ in M such that h ◦ b∗ = b, h ′ ◦ c∗ = c and (3) is a pushout.

B G
B ′

C G ′

C ′

(1)(3)

=

=

b
b∗

g

h

c

c∗

g ′

h ′

f

B ′

(2)

G

C ′ G ′

h

g ′ f

h ′

The notion of initial pushouts allows for the formulation of the gluing condition for
rule applicability equivalently to its set-based formulation for graphs (see Definition 74

in Appendix A), but on the abstract level of M-adhesive transformation systems.

Definition 5 (Gluing Condition in M-Adhesive Transformation Systems [88]).
Consider an M-adhesive category (C,M). For each match m : L→ G with an initial pushout (1)
and b ∈ M, a rule ρ = (L

l←− K r−→ R) is applicable to an object G with a match morphism m :

L → G iff the following gluing condition is satisfied: There is
a morphism b ′ : B → K in M with l ◦ b ′ = b (i.e., (3) com-
mutes). Then the pushout complement D in (2) can be constructed
as a pushout of morphisms b ′ ∈ M and g : B → C leading to
morphisms h : C → D, k : K → D and an induced morphism
d : D→ G such that (2) is a pushout and (4) commutes.

B L K

C G D

(1) (2)

(3)

(4)

b l

g

b ′

c

h

k

d

m

9 In general, initial pushouts can also be used in the context of non-M-adhesive categories with distinguished
classes of monomorphisms.
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2.2.2 Relevant Semantical Properties in the Framework of M-Adhesive Transformation Systems

In this subsection, we shortly introduce several semantical properties that are relevant in
the context of M-adhesive transformation systems. In the following chapters, we intend
to develop new analysis methods for these semantical properties based on the functorial
property transfer between transformation systems with a similar structure.

2.2.2.1 Behavioral Equivalence

The abstract notion of behavioral equivalence is of great importance in the field of com-
puter science since many of its interpretations for concrete formalisms are designed to
relate systems of equivalent behavior, i.e., for a definition of behavior and a definition of
equivalence (both domain-specific to the concrete formalism) two systems can be com-
pared. An extension of behavioral equivalence is the behavioral congruence where the
equivalence must be closed under the application of formalism-specific contexts. The no-
tions of behavioral equivalence and behavioral congruence are, for example, heavily used
in the context of process calculi such as CCS [217] and the π-calculus [219]. Based on the
notion of borrowed contexts, a bisimulation has been defined for graph transformation
systems in [78] and a congruence result has been verified. Behavioral equivalences resp.
behavioral congruences allow for the replacement of one system by another in arbitrary
contexts. Furthermore, for many interpretations more basic equivalence properties can
be derived from behavioral equivalence such as e.g. language equivalence. For the set-
ting of graph transformation systems, our notion of behavioral equivalence preserves
important semantical properties as for example termination, confluence, and functional
behavior [209, 211]. In fact, the functorial behavior transfer introduced in Section 3.1 con-
structs a categorical equivalence (i.e., some form of an isomorphism on elements of the
considered categories) introduced in Chapter 11 that is sufficient for our interpretation
of behavioral equivalence.

The analysis of behavioral equivalence is undecidable for turing-complete formalisms
such as graph transformation systems. However, assuming finite reachability graphs,
domain-specific, not necessarily terminating, tools may be developed quite easily. Fi-
nally, also without tool support, in particular for arbitrary large or even infinite reacha-
bility graphs, the notion of bisimilarity [217] is often used (as in this thesis) to ensure or
even to define the desired form of behavioral equivalence (even if trace-based behavior
equivalence is desired, bisimulations may be used). Moreover, the domain-specific inter-
pretations of bisimulations define a natural proof technique for establishing the desired
behavioral equivalence. For analysis reasons, we introduce a definition of bisimulation
for graph transformation systems in Subsection 3.2.1 and ensure in Subsections 3.2.1 and
3.2.2 that our functorial behavior transfer is compatible with bisimilarity (in the sense
that objects of a source transformation system are bisimilar to their F-translated counter-
parts) and preserves bisimulations, respectively.

2.2.2.2 Termination

The semantical property of termination is important in many contexts in computer sci-
ence. Different from other semantical properties considered in this thesis, there is no
context independent answer to whether this property is to be enforced.

Many long running systems, such as embedded systems and arbitrary server processes,
are often assumed to be non-terminating, that is, the system should be operational with-
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out the need for any predefined time bound or termination condition. While even such
long running systems may be terminating, this is usually neither a decision of the system
nor the abortion due to a failure: the abortion is, assuming non-faultiness, initiated by
some superuser.

On the other hand, many classical software procedures are designed to compute a
(possibly) unique result. For these functional procedures the property of termination is
crucial as the desired final results are only obtained once the procedure terminates.

Both kinds of systems are, of course, not limited to software applications. Many trans-
formation systems have been used for the modeling of various processes including busi-
ness processes that also either require termination (finishing of a basic task) or require
non-termination (provision of a continuous service).

Irrespective of the kind of a system, if the expectation about termination is not satisfied
by the software or process at hand, the system needs to be adapted appropriately.

In the context of HLR systems both kinds of mentioned systems may be modeled
[144, 26] and therefore in applications of our theory termination is a semantical property
that may be enforced or prevented.

The possible non-determinism of rule applications and match morphism choices im-
plies often the non-termination of the whole transformation system [88]. In this case,
the termination can only be guaranteed by carefully designing the transformation rules
of the system. The subsequently introduced semantical property of functional behavior,
which is meant to ensure that unique results are always computed, also depends on the
property of termination [88].

Intuitively, a transformation G ∗⇒ H is called terminating if no rule ρ ∈ P in the M-
adhesive transformation system (C,M,P) is applicable to H anymore [88]. The formal
definition of termination is as follows.

Definition 6 (Termination of M-Adhesive Transformation Systems [88]).
An M-adhesive transformation system (C,M,P) is called terminating if there is no infinite
sequence G0

ρ1,m1=⇒ G1
ρ2,m2=⇒ G2

ρ3,m3=⇒ ... with ρ1, ρ2, ρ3, ... ∈ P and matches m1,m2,m3, ... ∈
MorC.

Many domain specific approaches for determining whether termination is satisfied
have been invented. For example, for finite state systems and systems that can be over-/
under-approximated by finite state systems the approach of model checking may be suf-
ficient to ensure termination/non-termination [10, 162]. In the domain of graph and
model transformation there are several well-established termination analysis techniques
like e.g. a classical termination approach constructing a monotonic function that mea-
sures graph properties and showing that a value of such a function decreases with every
rule application [57], a formulation of concrete criteria for termination like a number of
nodes and edges of certain types [8], a general termination approach based on measure-
ment functions [26], sufficient criteria guaranteeing the termination of transformation
systems specified by so-called layered graph grammars [25, 86, 194], a combination of
termination criteria by isolating deleting graph transformation rules [21, 22], a formula-
tion of a condition stating that a matrix obtained from a graph using a weighted type
graph decreases [30], a compositional approach where critical pair analysis is used to
determine that the composition of two terminating transformation systems is terminat-
ing [257], and a Petri net based analysis method providing a sufficient condition for the
termination problem [304].
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However, many formalisms are too powerful to be handled this way. That is, the prob-
lem of termination is undecidable for graph rewriting systems [256] and any equally
powerful formalisms including M-adhesive transformation systems. The domain spe-
cific approaches are often incomplete heuristic algorithms (for example, model checking
of infinite state systems may still detect terminating states) or the domains are sufficiently
weak w.r.t. their expressive power (for example, termination of primitive recursive func-
tions is immediate).

2.2.2.3 Confluence

Confluence is one of the most important semantical properties of rewriting systems stat-
ing that the system has functional behavior in the sense that two distinct transformation
sequences starting in the same object can be merged to a common result [88]. In a special
case, the confluence property is satisfied for a transformation system if each pair of its
rules is parallel independent (i.e., conflict-free) for all possible match morphisms [88].
While some relevant transformation systems are not confluent, they may contain frag-
ments that are confluent. In these cases, the confluence of such fragments can be used to
verify other relevant semantical properties of the whole system.

From the applicational point of view, the confluence property is important to use suc-
cessfully graph transformation techniques, for instance, for the automated translation
of UML models into semantic domains [144], for parsing of graph languages [108, 269],
for efficiently recognizing graph classes and executing graph algorithms by graph re-
duction [7, 23], for analyzing the deterministic behavior of programs in graph rewriting
languages [104, 283] and for solving the kernelization problem in the domain of the
parameterized algorithmics [97].

The notion of confluence is related to the notion of global determinism, meaning that
for each pair of terminating transformations with the same source object, the target ob-
jects are equal or isomorphic [88]. According to [88], every confluent graph transforma-
tion system is globally deterministic, while the single rule applications may be locally
non-deterministic. There are two possible reasons for local non-determinism. Firstly, lo-
cal non-determinism is given when at some point in a transformation sequence several
transformation rules are applicable to the target object of the previous transformation
step. In this case, one of the rules has to be chosen non-deterministically for application.
Secondly, local non-determinism occurs if a concrete rule can be applied to the consid-
ered object via several different valid match morphisms. In that case one of the valid
match morphisms has to be chosen non-deterministically.

A transformation system is confluent if, starting with some object G, whenever we can
transform G into the objects H1 and H2, we can subsequently transform these two objects
into the same object G ′ as given in the diagram below.

Definition 7 (Confluence of M-Adhesive Transformation Systems [88]).

An M-adhesive transformation system (C,M,P) is confluent if for all
transformations G ∗⇒ H1 and G ∗⇒ H2 there is an object G ′ together
with transformations H1

∗⇒ G ′ and H2
∗⇒ G ′.

G

H1

H2

G ′

∗

∗

∗

∗
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2.2.2.4 Local Confluence

In [234] Newman states that it is sufficient to verify a weaker form of confluence, called
local confluence (in which only distinct transformation steps have to be merged to a com-
mon result), to obtain confluence for terminating transformation systems. This local
confluence property stems originally from the domain of term rewriting and was consid-
ered in detail for hypergraph rewriting systems in [254] as well as for typed attributed
graph transformation systems in [144].

According to [88, 122], local confluence analysis can be furthermore used to verify
that in a system all conflicts of rule applications can be resolved. These conflicts can be
computed at design time by analyzing the rules of the considered transformation system.
A conflict arises, for instance, if one rule deletes an element that is used by another
rule. In this case, after the first rule deletes the element used by the second rule, the
second rule is not applicable anymore. Moreover, the local confluence analysis identifies
independent rule applications as well as determines the non-resolvable conflicting rule
applications.

According to [88], the local confluence property for an M-adhesive transformation
system is given as follows.

Definition 8 (Local Confluence of M-Adhesive Transformation Systems [88]).
An M-adhesive transformation system (C,M,P) is locally confluent
if for all pairs of direct transformations G ρ1,m1=⇒ H1 and G ρ2,m2=⇒ H2
there is an object G ′ together with transformations H1

∗⇒ G ′ and
H2

∗⇒ G ′.

G

H1

H2

G ′

ρ1,m1

ρ2,m2

∗

∗

There are two different ways for the verification of local confluence of two direct trans-
formations. We have a special case if two direct transformations G

ρ1,m1=⇒ H1 and G
ρ2,m2=⇒

H2 are parallel independent. In this case, we use the Local
Church-Rosser Theorem [88], which is an important result in the
context of the HLR systems theory, for the verification of local
confluence (see the diagram to the right). Thus, the parallel in-

G

H1

H2

G ′

ρ1,m1

ρ2,m2

ρ2,m ′2

ρ1,m ′1

dependence of all two direct transformations is a sufficient condition for local confluence.
The second case is a more general case, which is given if two direct transformations
G
ρ1,m1=⇒ H1 and G

ρ2,m2=⇒ H2 are not necessarily parallel independent. The verification
techniques for this case, based on the analysis of critical pairs, will be considered in
detail in the following.

The property of independence of transformation steps is one of the semantical proper-
ties, whose preservation and reflection will be considered in our results. This property
represents a technical characterization used in the Local Church-Rosser Theorem. Intu-
itively, the notion of independence for two transformation steps means that these steps
are neither in conflict nor causally dependent. We say that two transformation steps
are in conflict if they are dependent in the sense that one of the rules will disable the
other one by its application. Moreover, it is also possible that one of the transformation
steps can only be executed after the other has been executed before. In this situation,
we have that one step is causal dependent of another one. According to these two possi-
bilities, we distinguish in the following two kinds of independence, namely the parallel
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independence (absence of conflicts) and sequential independence (absence of causal de-
pendencies) [141, 88].

According to [88], the formal definition of the parallel and sequential independence is
as follows. Technically, this definition means that each of the considered rules does not
delete any element, which is a part of the match morphism of the other rule.

Definition 9 (Parallel and Sequential Independence of Direct Transformations [88]).
Consider an M-adhesive transformation system AS = (C,M,P).

• Two direct transformations G ρ1,m1=⇒ H1 and G ρ2,m2=⇒ H2 are called parallel independent
if there exist morphisms d12 : L1 → D2, d21 : L2 → D1

10 such that f1 ◦ d21 = m2 and
f2 ◦ d12 = m1 (i.e., (1) and (2) commute).

R1 K1 L1 L2 K2 R2

H1 D1 G D2 H2

(1)
=

(2)
=

m1 d12
m2

d21

l1

f1

l2

f2

• Two direct transformations G ρ1,m1=⇒ H
ρ2,m2=⇒ G ′ are called sequentially independent if

there exist morphisms d12 : R1 → D2, d21 : L2 → D1 such that g1 ◦ d21 = m2 and
f2 ◦ d12 = n1 (i.e., (3) and (4) commute).

L1 K1 R1 L2 K2 R2

G D1 H D2 G ′
(3)
=

(4)
=

n1 d12
m2

d21

r1

g1

l2

f2

For an example, showing parallel and sequential independent transformation steps,
see e.g. Example 3.17 from [88].

As already mentioned before, the Local Church-Rosser Theorem is based upon the
concepts of parallel and sequential independence. Intuitively, this theorem describes un-
der which conditions two rules with given match morphisms can be applied in arbitrary
order to the same object such that the corresponding transformation steps lead to the
same result. The proof for this theorem is given in [88].

Fact 1 (Local Church-Rosser Theorem [88]).
Given an M-adhesive transformation system AS = (C,M,P).

• Consider two parallel independent direct transformations G ρ1,m1=⇒ H1 and G ρ2,m2=⇒ H2.

Then there are an object G ′ and direct transformations H1
ρ2,m ′2=⇒ G ′ and H2

ρ1,m ′1=⇒ G ′ such

that G ρ1,m1=⇒ H1
ρ2,m ′2=⇒ G ′ and G ρ2,m2=⇒ H2

ρ1,m ′1=⇒ G ′ are sequentially independent.

• Consider two sequentially independent direct transformations G ρ1,m1=⇒ H1
ρ2,m ′2=⇒ G ′. Then

there are an object H2 and direct transformations G ρ2,m2=⇒ H2
ρ1,m ′1=⇒ G ′ such that G ρ1,m1=⇒

H1 and G ρ2,m2=⇒ H2 are parallel independent.

10 The potentially existing morphisms d12 and d21 are depicted by dashed arrows in the corresponding dia-
grams.
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G

H1

H2

G ′

ρ1,m1

ρ2,m2

ρ2,m ′2

ρ1,m ′1

As the next step we recall basic notions and concepts needed for the introduction of
the critical pair analysis [88, 292], which is a well-known static analysis technique for
the verification of local confluence of parallel dependent transformations. Critical pair
analysis stems originally from the area of term rewriting [25] and has been generalized to
graph rewriting in [254, 201]. Intuitively, the advantage of using critical pairs for checking
local confluence is that we do not have to investigate all possible pairs of rule applications,
which are parallel dependent, but only some minimal ones, which are constructed by
gluing the left-hand sides of each pair of rules.

We begin with the notions of E−M-factorization and E ′−M ′ pair factorization, which
are essential for the construction of critical pairs and their embedding into direct trans-
formations. We use the notion of E−M-factorization, given for example in [88], to be
able to decompose a given morphism f : A → B into two morphisms e : A → C and
m : C→ B with specific properties.

Definition 10 (E−M-Factorization [88]).
Consider a category C and morphisms f : A→ B, e : A→ C, m : C→ B. Then C has an
E−M-factorization for given morphism classes E and M if for each
morphism f there is a decomposition, unique up to isomorphism,
f = m ◦ e with e ∈ E and m ∈ M. Usually, E is a subclass of
epimorphisms and M is a subclass of monomorphisms.

A B

C

=

f

e m

An E ′ −M ′ pair factorization provides the smallest overlapping of two objects em-
bedded into a given context. In many applications the class E ′ is the class of all jointly
surjective morphisms and M ′ the class of all injective morphisms.

Definition 11 (E ′-Instance, E ′ −M ′ Pair Factorization [88]).
Consider a category C with a class of jointly epimorphic morphisms E ′ (see Definition 71 in
Appendix A) and a class of monomorphisms M ′.

• We call a pair of morphisms (o1,o2) ∈ E ′ an E ′-instance.
• A category C has an E ′−M ′ pair factorization if for each pair of morphisms m1 : L1→G

andm2 : L2 → G there exist unique up to isomorphism object K and morphisms o1 : L1 →
K, o2 : L2 → K, m : K → G with (o1,o2) ∈ E ′ and m ∈ M ′ such that m ◦ oi = mi
for i ∈ {1, 2}. In this case, we say that ((o1,o2),m) is an E ′ −M ′ pair factorization of
(m1,m2).

L2L1

K

G

o2o1

m
m2m1
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Remark 1 (E ′ −M Pair Factorization).
Note that in our applications the monomorphism class M ′i contains always all monomorphisms
from Mi for i ∈ {1, 2}. For this reason, we use in the following the adapted notion of E ′ −M ′

pair factorization, which we call E ′ −M pair factorization, when providing new or customized
definitions and results. However, we still use the notion of E ′ −M ′ pair factorization when
repeating definitions and results from the literature.

In general, we can construct an E ′ −M pair factorization from an E−M-factorization
and binary coproducts11. This construction is described in detail in the lemma below.

Lemma 1 (E ′ −M Pair Factorization Based on E−M-Factorization).
Consider a category C with E−M-factorizations, as given in Definition 10, and binary coprod-
ucts. Let furthermore (m1 : L1 → G,m2 : L2 → G) be a morphism pair with the common
codomain, (L1+L2, i1 : L1 → L1+L2, i2 : L2 → L1+L2) be a binary coproduct of (L1,L2) with
induced coproduct morphism f : L1+L2 → G and L1+L2

e→ K
m→ G be an E−M-factorization

of the morphism f as given in Definition 11. Then ((o1,o2),m) with o1 = e ◦ i1 and o2 = e ◦ i2
is an E ′ −M pair factorization of (m1,m2).

L1

L1+L2

L2

K

G

i1

i2
e

f

o1

o2

m

m1

m2

Proof.
The detailed proof for this lemma is given in Appendix A on page 269. �

The critical pair analysis is based upon the notion of critical pairs. Critical pairs repre-
sent precisely all potential conflicts of rule applications. A critical pair P1

ρ1,o1⇐= K
ρ2,o2=⇒ P2

is a pair of parallel dependent transformations with a minimal overlapping K of the left-
hand sides of the rules. The formal definition of a critical pair is given in the following.

Definition 12 (Critical Pair [88]).
Consider an E ′ −M ′ pair factorization. A pair P1

ρ1,o1⇐= K
ρ2,o2=⇒ P2 of direct transformations is

called a critical pair if it is parallel dependent and minimal in the sense that the pair (o1,o2) of
match morphisms o1 : L1 → K and o2 : L2 → K is in E ′.

R1 K1 L1 L2 K2 R2

P1 N1 K N2 P2

o1 o2

11 Coproducts can be constructed from initial objects and pushouts. For the categories considered subsequently,
we assume the existence of initial objects.
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Another important well-known result, that we use in our approach, is the Completeness
of Critical Pairs Lemma [88]. This lemma, stating that each pair of parallel dependent
direct transformations embeds a critical pair, justifies why it is sufficient to consider the
local confluence property only for certain parallel dependent rule applications, which
are minimal in the sense of critical pairs.

Fact 2 (Completeness of Critical Pairs Lemma [88]).
Consider an M-adhesive transformation system (C,M,P) with an E ′ −M ′ pair factorization,
where the M−M ′ pushout-pullback decomposition property12 holds.13 The critical pairs are then
complete, i.e., for each pair of parallel dependent direct transformations H1

ρ1,m1⇐= G
ρ2,m2=⇒ H2

there is a critical pair P1
ρ1,o1⇐= K

ρ2,o2=⇒ P2 with extension diagrams14 (1), (2) and m ∈M ′.

P1 K P2

H1 G H2

(1) (2)

ρ1,o1 ρ2,o2

ρ1,m1 ρ2,m2

m

According to [88], the Completeness of Critical Pairs Lemma already implies the local
confluence for a transformation system containing no critical pairs. Otherwise, we have
to show the additional strict confluence property given in Definition 14 for all critical
pairs of the considered transformation system. Strictness means intuitively that the max-
imal substructure of K, that is preserved by the critical pair, has also to be preserved
by the merging transformation steps P1

∗⇒ K ′ and P2
∗⇒ K ′ (see the diagram in Defi-

nition 14). In order to formulate the strict confluence property, we use the notion of a
derived span der(t) = (G0 ← D→ Gn) for some transformation t : G0

∗⇒ Gn connecting
the first and the last objects of the transformation [88]. The formal definition of a derived
span is as follows.

Definition 13 (Derived Span [88]).
Consider an M-adhesive transformation system (C,M,P).

• The derived span of an identical transformation t : G id⇒ G is defined by der(t) = (G ←
G→ G) with identical morphisms.

• The derived span of a direct transformation G ρ,m
=⇒ H is the span (G ← D → H) of the

corresponding double pushout (see the diagram in Definition 3).
• For a transformation t : G0

∗⇒ Gn ⇒ Gn+1 the derived span is the composition via the

pullback (1) of the derived spans der(G0
∗⇒ Gn) = (G0

d0← D ′
d1→ Gn) and der(Gn ⇒

12 The M−M ′ pushout-pullback decomposition property is a technical property needed for decomposition
of pushouts consisting of a pullback and special morphisms in M and M’. For a formal definition of the
M−M ′ pushout-pullback decomposition property see Definition 72 in Appendix A.

13 In our applications the monomorphism class M ′ contains always all monomorphisms from M, as already
mentioned in Remark 1, which leads to the trivial satisfaction of the M−M ′ pushout-pullback decomposi-
tion property.

14 According to [88], an extension diagram describes how transformations K
ρ1,o1
=⇒ P1 and K

ρ2,o2
=⇒ P2 can

be extended to transformations G
ρ1,m1
=⇒ H1 and G

ρ2,m2
=⇒ H2, respectively, via an extension morphism

m : K→ Gmapping K toG. For a formal definition of an extension diagram see Definition 73 in Appendix A.
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Gn+1) = (Gn
fn← Dn

gn→ Gn+1). This construction leads to the derived span der(t) =

(G0
d0◦d2←− D

gn◦d3−→ Gn+1) shown below.

G0 D ′

D

Dn Gn+1

Gn

(1)
d0

d1 fn

gn

d2 d3

Definition 14 (Strict Confluence of Critical Pairs [88]).
Consider an M-adhesive transformation system (C,M,P). A critical pair P1

ρ1,o1⇐= K
ρ2,o2=⇒ P2 is

called strictly confluent if we have the following:
• Confluence: The critical pair P1

ρ1,o1⇐= K
ρ2,o2=⇒ P2 of direct transformations is confluent,

i.e., there exist an object K ′ and transformations P1
∗⇒ K ′ and P2

∗⇒ K ′ with derived spans
der(Pi

∗⇒ K ′) = (Pi
vi+2←− Ni+2

wi+2−→ K ′) for i ∈ {1, 2}.
• Strictness: Let der(K ρi,oi=⇒ Pi) = (K

vi← Ni
wi→ Pi) for i ∈ {1, 2} and let N be the pullback

object of the pullback (1). Then there exist morphisms z3 and z4 such that (2), (3), and (4)

commute.

K

N1 N2

N

(1)

P1 P2(2) (3)

N3 N4

K ′

(4)

ρ1,o1 ρ2,o2

∗ ∗

v1 v2

z1 z2

∃z3 ∃z4

w1

v3

w2

v4

w3 w4

As already mentioned before, in order to show local confluence of an M-adhesive
transformation system, it is sufficient to show the strict confluence of all its critical pairs
(see the Local Confluence Theorem and Critical Pair Lemma from [88] below and [255],
where Plump has shown that it does not suffice to verify only the Confluence condition for
all critical pairs without the proof of their Strictness condition.)

Fact 3 (Local Confluence Theorem and Critical Pair Lemma [88]).
An M-adhesive transformation system is locally confluent if all its critical pairs are strictly con-
fluent.

For concrete M-adhesive transformation systems the graph transformation tool Agg

[292] can be used for conflict detection. Subsequently, Agg allows for the semiautomatic
proof of the Confluence condition for the computed critical pairs. However, the analysis of



30 foundations

the Strictness condition is not supported by Agg yet and has to be done manually outside
of that tool environment.

2.2.2.5 Functional Behavior

As pointed out in [88], a transformation sequence G ∗⇒ H can be seen in general as a
computation leading to some result H if the considered sequence is terminating. But,
due to the non-determinism of rule applications and match morphism choices, another
terminating transformation sequence starting with the same object G can lead to a differ-
ent result as the object H. This case cannot occur if the considered transformation system
is confluent, i.e., for a confluent transformation system we have that the result of differ-
ent terminating transformation sequences starting with the same object is unique up to
isomorphism. This semantical property is called functional behavior [88] and is very
advantageous in the domains of graph and model transformation [144, 269, 7, 104, 283].

Besides single-process systems, for which functional behavior is desirable, it is impor-
tant to realize that many parallel programs compute functions collaboratively requiring
often functional behavior as well. Furthermore, submodules contained in the system at
hand may have functional behavior, while the overall system is inherently not observing
functional behavior on purpose.

According to [88], a locally confluent and terminating transformation system is conflu-
ent and has functional behavior as given in the following remark.

Remark 2 (Functional Behavior of M-Adhesive Transformation Systems [88]).
Consider a terminating and locally confluent M-adhesive transformation system AS = (C,M,P).
Then AS is confluent and has functional behavior in the following sense:

• For each object G there is an object H together with a terminating transformation G ∗⇒ H

in AS, and H is unique up to isomorphism.
• Each pair of transformations G ∗⇒ H1 and G ∗⇒ H2 can be extended to terminating

transformations G ∗⇒ H1
∗⇒ H and G ∗⇒ H2

∗⇒ H with the same object H.
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2.3 advanced concepts for rule-based transformations and their

analysis

The aim of this section is to give an overview for already existing notions and general
results concerning transformations with nested application conditions and local conflu-
ence analysis for this kind of transformations. In the following chapters, we build our
new theory for verification of local confluence based on so-called M-functors using these
existing notions and results.

2.3.1 Transformations with Nested Application Conditions

Application conditions were first introduced in [77] and can be used in a big variety of
application areas to strengthen the descriptive expressiveness of transformation systems
by restricting the application of rules based on more complex conditions on the current
structure.

Different kinds of application conditions were already studied in detail e.g. in [77,
139, 84, 135, 88, 136]. Application conditions can be nested, may contain Boolean expres-
sions [135, 136] and are expressively equivalent to first-order formulas on graphs [51] as
shown in [136, 270]. We generally use the term “nested application condition” whenever
we refer to the most general case.

Nested application conditions in this thesis are defined in terms of application condi-
tions for rules in [135, 136]. We use this kind of nested application conditions to restrict
the applicability of rules to some given object. For this reason we equip the left hand
side or right hand side of a rule with some nested application condition. If the match
morphism to some given object G satisfies this nested application condition, we have
that the considered rule is applicable to the object G. The formal definition of a nested
application condition is given in the following.

Definition 15 (Nested Application Condition [135]).
A nested application condition acP over an object P15 is inductively defined as follows:

• true is an application condition over the object P.
• For every morphism a : P → C and every nested application condition acC over the object
C, ∃(a,acC) is a nested application condition over the object P.

• A nested application condition can also be a Boolean formula over nested application con-
ditions. This means that also ¬acP,

∧
i∈I acP,i, and

∨
i∈I acP,i are nested application

conditions over the object P with nested application condition acP,i and i ∈ I for some
index set I.

For better understanding of the notion introduced above, we give an example for a
nested application condition on graphs also used in [280].

Example 1 (Nested Application Condition [280]).
Consider the nested application condition acP from Figure 3, where all morphisms are inclusions.
acP means that the source of every b-edge has a b-self-loop and must be followed by some c-edge
such that subsequently there is a path in the reverse direction visiting the source and the target
of the first b-edge with precisely one c-edge and one b-edge in an arbitrary order. We denote this
nested application condition by acP = ∃(a1, true) ∧ ∃(a2, ∃(a3, true)∨ ∃(a4, true)).

15 For our considerations, P is usually the left-hand side of a rule.
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Figure 3: Nested application condition acP

acP.P

=

C/acC

G

a

p q ∈M

Figure 4: Diagram for satisfaction of a nested application condition acP = ∃(a,acC)

A rule with nested application condition is applicable to some given object only if the
considered match morphism satisfies the nested application condition. As a next step, we
define according to [135], whether a morphism satisfies a nested application condition.

Definition 16 (Satisfaction of Nested Application Conditions [135]).
We define inductively when a morphism p : P → G16 satisfies a nested application condition acP
over an object P:

• Every morphism satisfies the nested application condition true.
• A morphism p : P → G satisfies a nested application condition ∃(a,acC), written p |=

∃(a,acC), if there exists an M-morphism q such that q ◦ a = p and q |= acC (see
Figure 4)17.

• p |= ¬acP means that p 6|= acP.
• p |=

∧
i∈I acP,i means that for all i ∈ I it holds p |= acP,i for some index set I.

• p |=
∨
i∈I acP,i means that for some i ∈ I it holds p |= acP,i for some index set I.

We demonstrate in the following example the satisfaction of a nested application con-
dition acP from Example 1 by some morphism p.

Example 2 (Satisfaction of Nested Application Conditions [280]).
The inclusion p : P → GA from Figure 5 satisfies acP from the Example 1. This holds, because
there are inclusions qi : Ci → GA such that qi ◦ ai = p for i ∈ {1, 2} and q1 |= true, q2 |=

∃(a3, true) ∨ ∃(a4, true) since there is the inclusion q3 : C3 → GA such that q3 ◦ a3 = q2
and q3 |= true.

Remark 3 (Negative and Positive Application Conditions [213]).
Nested application conditions as described before represent a generalization of negative and posi-
tive application conditions (short NACs and PACs) introduced in [143, 139] and [87], respectively.
A NAC (resp. PAC) over some object P is defined in terms of a morphism a : P → C (see Fig-
ure 4) and is denoted by ¬∃a (resp. ∃a). A NAC ¬∃a (resp. PAC ∃a) is satisfied by a morphism
p : P → G if there is no M-morphism q : C → G (resp. there is an M-morphism q : C → G)
making the diagram in Figure 4 commute.

16 For our considerations, p corresponds usually to a match morphism m : L→ G.
17 The notation acP.P in Figure 4 indicates that acP is a nested application condition over the object P.
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Figure 5: Satisfaction of the nested application condition acP

K

acL

Rp :
O
L

G D H

(1) (2)

rl

m m∗

Figure 6: Rule and transformation with a nested application condition acL

The following definitions from [96] introduce the notions of rules and direct transfor-
mations with nested application conditions as well as the notion of nested application
condition disregarding (short AC-disregarding) transformations, which has rather a tech-
nical nature.

Definition 17 (Rule with Nested Application Conditions [96]).
A rule ρ = (p,acL) consists of a plain rule p = (L← K→ R) with l : K→ L, r : K→ R in M

and a nested application condition acL over an object L (see Figure 6).

Definition 18 (Applicability of Rules with Nested Application Conditions [96]).
A rule ρ = (p,acL) is applicable to some object G with a match morphism m : L → G if there
is a pushout complement D in pushout (1) (see Figure 6) and m |= acL.

Definition 19 (Direct Transformation with Nested Application Conditions [96]).
A direct transformation G

ρ,m
=⇒ H consists of two pushouts (1) and (2), called double pushout

(short DPO), with a match m : L → G and a comatch m∗ : R → H such that m |= acL (see
Figure 6).

Definition 20 (AC-Disregarding (Direct) Transformation [96]).
• An AC-disregarding direct transformation G

ρ,m
=⇒ H consists of a DPO (1)+ (2), where

the match m : L→ G does not necessarily need to satisfy acL (see Figure 6).
• An AC-disregarding transformation G0

∗⇒ Gn is a sequence of AC-disregarding direct
transformations.

Nested application conditions can be shifted over morphisms [95], as given in the fol-
lowing remark. The result of the shifting is then the adapted nested application condition
over the codomain object of the morphism, over which the nested application condition
was shifted.
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Remark 4 (Shift of Nested Application Conditions over Morphisms [95]).
We use the Shift-transformation for shifting of nested application conditions over a morphism
b. The Shift-transformation is inductively defined as follows:

• For acP = true: Shift(b,acP) = true,
• For acP = ∃(a,acC):

– Shift(b,acP) =
∨

(a ′,b ′)∈F ∃(a ′, Shift(b ′,acC))
if F = {(a ′,b ′) ∈ E ′ | b ′ ∈M ∧ a ′ ◦ b = b ′ ◦ a} 6= ∅18,

– Shift(b,acP) = false if F = ∅,
• For acP = ¬ac ′P: Shift(b,acP) = ¬(Shift(b,ac ′P)),
• For acP =

∧
i∈I acP,i: Shift(b,acP) =

∧
i∈I(Shift(b,acP,i)),

• For acP =
∨
i∈I acP,i: Shift(b,acP) =

∨
i∈I(Shift(b,acP,i)),

where F is the possibly infinite index set, b ′ is an inclusion, E ′ is a class of jointly epimorphic
morphisms, and acPi is a nested application condition with i ∈ I for some index set I.

acP.P

acC.C

P ′

C ′

=

b

a

b ′

a ′

acP.P P ′/Shift(b,acP)

H

b

n ◦ b n

Moreover, as shown in [95], for each M-adhesive category (C,M) with the transformation
Shift, as given before, and an E ′-M ′ pair factorization, where M ′ is a monomorphism subclass of
M, it holds that the Shift-transformation and the satisfaction relation are compatible, technically
formulated as follows:

∀acP, ∀b : P → P ′,n : P ′ → H. (n ◦ b |= acP)⇔ (n |= Shift(b,acP))

For an example, how the Shift-transformation can be applied, see Figure 15 in Exam-
ple 8 from Subsection 2.4.2.

As a next step, we recall the notions of plain derived rule, derived nested application
condition and derived rule of a transformation t : G0

∗⇒ Gn from [96], which we need
later to define a special kind of compatibility of AC-disregarding transformations, the so-
called AC-compatibility, as well as to specify the shifting of nested application conditions
over rules. A plain derived rule ρ(t) is a single rule from G0 to Gn containing all changes
that should be done during the transformation t. A derived nested application condition
ac(t) combines all nested application conditions of the transformation t into a single
nested application condition over the object G0. Finally, a derived rule consists of the
corresponding plain derived rule and derived nested application condition of t.

Definition 21 (Plain Derived Rule [96]).
For a transformation t : G0

∗⇒ Gn, the plain derived rule p(t) is defined by the span G0 ←
D0 → G1 for n = 1 and by iterated pullback construction leading to the span G0 ← D→ Gn for
n > 2 as depicted in the diagram below with dotted arrows, where all morphisms are inclusions.

18 Intuitively, the index set F (containing the pairs of morphisms (a ′,b ′) leading to graphs C ′) can be un-
derstood as a case distinction of situations given by overlappings of C and P ′ (see the diagram to the left
in Remark 4), where both nested application conditions expressed by ∃(a, true) and ∃(b, true) are satisfied.
Note that the shifting is applied recursively.
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D

Gn−1D ′ DnG0 Gn

(PB)

= =

Definition 22 (Derived Nested Application Condition [96]).
Consider an AC-disregarding transformation t : G0

∗⇒ Gn. The derived nested application
condition ac(t) over the object G0 is inductively defined as follows:

• For t of length 0 with G0 ∼= G ′0 and G ′0 from the extension diagram given in Definition 73
in Appendix A, let ac(t) = true.

• For t : G0
ρ1,m1=⇒ G1, let ac(t) = Shift(m1,acL1) (see the diagram (1) below).

• For t : G0
∗⇒ Gn ⇒ Gn+1 with n > 1, let ac(t) = ac(G0

∗⇒ Gn)

∧ L(p∗n,ac(Gn ⇒ Gn+1)) where p∗n = (G0 ← D→ Gn) is the plain derived rule
p(G0

∗⇒ Gn) and ac(Gn ⇒ Gn+1) = Shift(mn+1,acLn+1) (see the diagram (2) below).

acL1
O
L1 K1 R1

G0 D0 G1

(1)

p1 :

m1

acL1
O

acLn+1
O

L1 K1 R1 Ln+1 Kn+1 Rn+1

G1
∗

=⇒

(2)

G0 D0 Gn Dn+1 Gn+1

p∗n

m1
mn+1

Definition 23 (Derived Rule [96]).
The derived rule of an AC-disregarding transformation t : G0

∗⇒ Gn has the form ρ(t) =

(p(t),ac(t)) where p(t) is the plain derived rule and ac(t) is the derived nested application
condition of t.

We need also a possibility to shift nested application conditions over rules to be able
to compute an application condition of a transformation sequence. This kind of shifting
is called L-transformation and is used to shift application conditions of a rule from its
right-hand side to its left-hand side and vice versa [95].

Remark 5 (Shift of Nested Application Conditions over Rules [95]).
We use the L-transformation for shifting of nested application conditions over rules. The L-
transformation is inductively defined as follows:

• For acR = true: L(ρ,acR) = true,
• For acR = ∃(a,acH):
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– L(ρ,acR) = ∃(b, L(ρ∗,acH)) if (r,a) has a pushout complement in (1) and ρ∗ =

(G← D→ H) is the derived rule by constructing the pushout (2),
– L(ρ,acR) = false otherwise,

• For acR = ¬ac ′R: L(ρ,acR) = ¬(L(ρ,ac ′R)),
• For acR =

∧
i∈I acR,i: L(ρ,acR) =

∧
i∈I(L(ρ,acR,i)),

• For acR =
∨
i∈I acR,i: L(ρ,acR) =

∨
i∈I(L(ρ,acR,i)),

where l, r, l∗, r∗ are inclusions and I is some index set.

acR
O

L(ρ∗,acH)
M

acH
M

L K R

G D H

(1)

ρ∗ :

ρ :

(2)b a

l r

r∗l∗

acL
O

R(ρ∗,acG)
M
acG

M

L K R

G D H

(2)

ρ∗ :

ρ :

(1)a b

l r

r∗l∗

The shifting of nested application conditions by R-transformations from left to right is defined
symmetrically corresponding to the diagram above to the right.

Moreover, for every nested application condition acR (acL) over the object R (L) of a derived
rule ρ, the L-transformation (R-transformation) transforms acR (acL) via ρ into the correspond-
ing nested application condition L(ρ,acR) (R(ρ,acL)) over the object L (R) such that we have for
every direct transformation G ρ,m

=⇒ H that m |= L(ρ,acR) ⇔ m∗ |= acR (m∗ |= R(ρ,acL) ⇔
m |= acL) for the corresponding comatch m∗.

(R(ρ,acL))
acR

O

(acL)

L(ρ,acR)
O

L K R

G D H

ρ :

m m∗

For an example showing the shifting of a nested application condition over a rule see
e.g. Example 3 from [95].

2.3.2 Local Confluence Analysis for Transformations with Nested Application Conditions

An appropriate theory allowing the verification of local confluence for M-adhesive trans-
formation systems containing rules with nested application conditions was already in-
troduced in [96]. In this subsection, we recall some fundamental concepts of this theory
needed in the following to build up our theoretical results concerning local confluence
analysis based on functorial property transfer.

For the verification of local confluence for transformations with nested application
conditions, we distinguish, similar to the plain case, two different ways. We use the Local
Church-Rosser Theorem adapted to the case of transformations with nested application
conditions given in Fact 4 for merging of parallel independent transformation steps as
is already shown in [95], while we apply the adapted critical pair analysis from [96] for
pairs of direct transformations, which are parallel dependent.
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We consider again two kinds of independence property, namely the parallel and the
sequential independence of transformation steps. As introduced before, we speak of
parallel independence if two transformation steps can be applied in any order yielding
the same result, while we speak of sequential independence if two transformation steps
in a transformation sequence can be exchanged without affecting the overall result of this
sequence [141, 88]. Intuitively, the definition of parallel and sequential independence of
transformation steps with nested application conditions [98] means not only that each
rule does not delete any element which is a part of the match morphism of the other
rule, but also that after the application of one of the rules, the application condition of
the other rule is still satisfiable.

Definition 24 (Parallel and Sequential Independence of Direct Transformations with
Nested Application Conditions [98]).
Consider an M-adhesive transformation system AS = (C,M,P).

• Two direct transformations H1
ρ1,m1⇐= G

ρ2,m2=⇒ H2 with nested application conditions are
parallel independent if there exist morphisms d12 : L1 → D2, d21 : L2 → D1 such that
(1) and (2) commute and c2 ◦ d12 |= acL1 , c1 ◦ d21 |= acL2 .

acL1
O

acL2
O

R1 K1 L1 L2 K2 R2

H1 D1 G D2 H2
(1)(2)

d12d21
m1 m2

k1c1 c2k2

• Two direct transformations G ρ1,m1⇐= H1
ρ2,m2=⇒ H2 with nested application conditions are

sequentially independent if there exist morphisms d12 : R1 → D2, d21 : L2 → D1 such
that (3) and (4) commute and c2 ◦ d12 |= R(ρ1,acL1), k1 ◦ d21 |= acL2 .

acL1
O

acL2
O

L1 K1 R1 L2 K2 R2

G D1 H1 D2 H2
(3)(4)

d12d21
m1

n1 m2

c1k1 c2k2

For an example showing two parallel independent transformations for rules with
nested application conditions see e.g. Example 4 from [95].

The corresponding Local Church-Rosser Theorem for transformation steps with nested
application conditions is then formulated according to [95] as follows.

Fact 4 (Local Church-Rosser Theorem for Transformations with Nested Application Con-
ditions [95]).
Given an M-adhesive transformation system AS = (C,M,P) where P are rules with nested
application conditions.

• Consider two parallel independent direct transformations with nested application conditions
G
ρ1,m1=⇒ H1 and G ρ2,m2=⇒ H2. Then there are an object G ′ and direct transformations

H1
ρ2,m ′2=⇒ G ′ and H2

ρ1,m ′1=⇒ G ′ such that G ρ1,m1=⇒ H1
ρ2,m ′2=⇒ G ′ and G ρ2,m2=⇒ H2

ρ1,m ′1=⇒ G ′

are sequentially independent.
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• Consider two sequentially independent direct transformations with nested application con-

ditions G ρ1,m1=⇒ H1
ρ2,m ′2=⇒ G ′. Then there are an object H2 and direct transformations

G
ρ2,m2=⇒ H2

ρ1,m ′1=⇒ G ′ such that G ρ1,m1=⇒ H1 and G ρ2,m2=⇒ H2 are parallel independent.

G

H1

H2

G ′

ρ1,m1

ρ2,m2

ρ2,m ′2

ρ1,m ′1

To be able to consider critical pairs of transformations with nested application condi-
tions, we first need to define the notion of a weak critical pair leading to the specific
nested application conditions, called extension and conflict inducing nested application
conditions. According to [96], the notion of a weak critical pair of transformations with
nested application conditions gives us intuitively all minimal contexts of all pairs of
AC-disregarding rule applications. This is necessary since all pairs of rule applications
are potentially not confluent, even if they are parallel independent for the case if we
disregard nested application conditions.

Definition 25 (Weak Critical Pair of Transformations with Nested Application Condi-
tions [96]).
Consider derived rules ρ1 and ρ2 with nested application conditions acL1 and acL2 over their
corresponding left-hand sides. A weak critical pair of ρ1 and ρ2 is a pair P1

ρ1,o1⇐= K
ρ2,o2=⇒ P2

of AC-disregarding transformations, where the pair of morphisms (o1,o2) is in E ′1. Every weak
critical pair induces nested application conditions acK and ac∗K on K defined by

acK = Shift(o1,acL1)∧ Shift(o2,acL2),

called extension nested application condition, and

ac∗K = ¬(ac∗K,d21 ∧ ac
∗
K,d12),

called conflict-inducing nested application condition, with ac∗K,d12 and ac∗K,d21 given as
follows:

if (∃d12 : L1 → N2. v2 ◦ d12 = o1) then

ac∗K,d12 = L(p∗2, Shift(w2 ◦ d12,acL1)) else ac∗K,d12 = false,

if (∃d21 : L2 → N1. v1 ◦ d21 = o2) then

ac∗K,d21 = L(p∗1, Shift(w1 ◦ d21,acL2)) else ac∗K,d21 = false,

where the plain derived rules p∗1 = (K
v1← N1

w1→ P1) and p∗2 = (K
v2← N2

w2→ P2) are defined by
the corresponding double pushouts (see the diagram below).

acL1
O

acL2
O

acK
O

ac∗K

M

p1 :

p∗1 :

: p2

: p∗2

R1 K1 L1 L2 K2 R2

P1 N1 K N2 P2

d12d21
o1 o2

v1w1 w2v2
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We use extension and conflict-inducing nested application conditions in the sense of
[96] to characterize possible conflicts for the application of rules with nested applica-
tion conditions. The satisfaction of an extension nested application condition (acK)
means that by extension of K to some context G, the matches m ◦ oi for i ∈ {1, 2}
satisfy their associated nested application conditions acL1 and acL2 . Furthermore, if
we obtain by the described extension two parallel independent direct transformations
H1

ρ1,m◦o1⇐= G
ρ2,m◦o2=⇒ H2 for the case if we disregard nested application conditions, then

the corresponding conflict-inducing nested application condition (ac∗K) leads to the par-
allel dependency of H1

ρ1,m◦o1⇐= G
ρ2,m◦o2=⇒ H2 in the case if we consider nested application

conditions. The existence of the morphisms d12 or d21 means then that one of the two
considered transformation rules is not applicable anymore when considering the nested
application conditions acL1 and acL2 . The reason for this is that the nested applica-
tion condition ac∗K is not satisfiable by any embedding morphism m when determining
whether this weak critical pair is also a critical pair according to the following definition.

Definition 26 (Critical Pair of Transformations with Nested Application Conditions
[96]).
Consider derived rules ρ1 and ρ2 with nested application conditions acL1 and acL2 over their
corresponding left-hand sides. A critical pair of ρ1 and ρ2 is a weak critical pair P1

ρ1,o1⇐= K
ρ2,o2=⇒

P2 with induced extension and conflict-inducing nested application conditions on K, acK and
ac∗K, respectively, if there exists a morphism m : K → G in M such that m |= acK ∧ ac∗K and
mi = m ◦ oi for i ∈ {1, 2} satisfies the gluing condition, i.e., mi has a pushout complement Di
with respect to the plain derived rule pi.

acL1
O

acL2
O

acK ∧ ac∗K

O

R1 K1 L1 L2 K2 R2

P1 N1 K N2 P2

H1 D1 G D2 H2

w1 v1

m

o1 o2

v2 w2

m1 m2

From [96] we know that a weak critical pair is also a critical pair if and only if we
can extend it to a pair of parallel dependent transformations with nested application
conditions, i.e., a weak critical pair P1

ρ1,o1⇐= K
ρ2,o2=⇒ P2 disregards nested application

conditions while the extension to H1
ρ1,m1⇐= G

ρ2,m2=⇒ H2 satisfies acL1 of ρ1 and acL2
of ρ2. Moreover, it holds according to [96] that critical pairs as introduced before are
complete, i.e., each of them can be embedded in at least one span of parallel dependent
transformations.

In the following, we introduce the general notion of compatibility of nested application
conditions as well as the special kind of such compatibility, the AC-compatibility, that we
especially need to be able to define the so-called strict AC-confluence of critical pairs [96].
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The strict AC-confluence is the corresponding notion of strict confluence adapted to the
case of transformations with nested application conditions.

Definition 27 (Compatibility of Nested Application Conditions).
Two nested application conditions are compatible if for every match morphism that satisfies acP
we have that this match morphism also satisfies ac ′P, i.e.,

(acP ⇒ ac ′P)⇔ ∀p : P → G.((p |= acP)⇒ (p |= ac ′P))

Definition 28 (AC-Compatibility of AC-Disregarding Transformations [96]).
Consider a critical pair P1

ρ1,o1⇐= K
ρ2,o2=⇒ P2 of derived rules ρ1 and ρ2 with induced extension

and conflict-inducing nested application conditions on K, acK and ac∗K, respectively. Then the
AC-compatibility is defined by the following implication

(acK ∧ ac∗K)⇒ (ac(t1)∧ ac(t2))

where ti , K
ρi,oi=⇒ Pi

t ′i ∗=⇒ K ′ are extended AC-disregarding transformations with derived nested
application conditions ac(ti) on K for i ∈ {1, 2}.

K

P1

P2

K ′

∗

∗

ρ1,o1

ρ2,o2

t ′1

t ′2

The following definition recalls the notion of strict AC-confluence, which is based
on the plain case of strict confluence given in Definition 14 and is important for the
verification of local confluence for transformations with nested application conditions
according to [96].

Definition 29 (Strict AC-Confluence of Critical Pairs [96]).
A critical pair P1

ρ1,o1⇐= K
ρ2,o2=⇒ P2 of derived rules ρ1 and ρ2 with induced extension and conflict-

inducing nested application conditions on K, acK and ac∗K, respectively, is called strictly AC-
confluent, if it is plain strictly confluent, i.e., strictly confluent in the sense of [88] (as recalled
in Definition 14) with AC-disregarding transformations t ′1 and t ′2 such that the extended AC-

disregarding transformations ti , K
ρi,oi=⇒ Pi

t ′i ∗=⇒ K ′ with derived nested application conditions
ac(ti) on K for i ∈ {1, 2} are AC-compatible.

An example for constructing a critical pair in the category of hypergraphs and showing
its strict AC-confluence is given in Example 8 in Subsection 2.4.2.

We use the adapted Local Confluence Theorem given in the following to analyze
whether an M-adhesive transformation system is locally confluent for the case of trans-
formations with nested application conditions. The proof for this theorem is given in [96].

Fact 5 (Local Confluence Theorem for Transformation Systems with Nested Application
Conditions [96]).
An M-adhesive transformation system with nested application conditions is locally confluent if
all its critical pairs are strictly AC-confluent.
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2.4 concrete instantiations of M-adhesive transformation systems

In this section, we recall several well-known instantiations for the framework of M-
adhesive transformation systems, to which we apply in the following our new analysis
approach. For our applications, we are interested especially in the transformation sys-
tems over typed attributed graphs, hypergraphs and a special kind of Petri nets, called
Petri nets with individual tokens (short PTI nets).

2.4.1 Typed Attributed Graph Transformation Systems

Graphs are a well suitable formalism for various application domains. Different kinds of
graphs are used for the representation of a particular state of a system and the abstract
syntax of visual models [122]. Thereby graphs can be used on the type resp. on the
instance level to define types of graph elements resp. the instances of these types. A
given type graph determines the structure as well as the node and edge types allowed
to occur in the graphs at the instance level. Moreover, for many modeling purposes it
should be possible to equip the nodes and/or edges of graphs with attributes.

Another application domain is the modeling and verification of graph based algo-
rithms using graph programs, as introduced in [137, 283, 258], allowing to reason about
graph algorithms, expressed on the domain of graphs directly, without introducing syn-
tactical programming languages to this problem. Furthermore, graph-based techniques
are successfully used e.g. for modeling of inter-networking systems [295] as well as for
the development of knowledge-based design tools [282].

The modification of system states is mostly defined as rules of a certain form, de-
scribing pre- and post-conditions for the modifications to be applied. For systems,
where states are modeled using a graph formalism, these rules are graph transforma-
tion rules belonging to the same graph formalism. As already discussed in Section 2.1,
graph transformation is often used as a modeling technique in software engineering
and as a metalanguage to specify and implement visual modeling techniques such as
UML [144]. Other applications include, for example, parsing of visual languages [25]
and the automated transfer of visual models into code or into different semantical do-
mains [102, 303, 183]. The approach presented in this thesis also provides a semantics for
hypergraph and PTI net transformation systems by translating them on functorial way
into the semantical domain of typed attributed graph transformation systems.

There are several approaches formalizing (typed) attributed graphs. For instance, in
[202] Löwe et al. represent the graph part of an attributed graph as an algebra that
extends the given data type algebra. In [258] Plump and Steinert define attributed graphs
using labeled graphs and transform them by application of rule schemata dealing with
calculations on labels. In [144] resp. [88] a typed attributed graph with node resp. with
node and edge attribution is seen as a pair consisting of a graph and a data algebra,
whose values are contained as nodes in the graph. Finally, the so-called symbolic graph
transformation approach [240] allows for the separation of the graph and the algebra
parts of typed attributed graphs. In this thesis, we follow the approach introduced
in [88].

The aforementioned graph formalisms consist not only of definitions for the descrip-
tion of static graphs belonging to that formalism. They are also equipped with defini-
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Σ−nat sorts : nat

opns : z :→ nat

succ : nat→ nat

NAT NATnat = N

znat = 0 ∈N

succnat : N →N x 7→ x+ 1

Figure 7: Data type signature Σ−nat and algebra NAT

tions for the transformation of the included graphs based on the DPO [88] resp. SPO
[265, 200, 199] approach.

In this subsection, we introduce first two different kinds of graphs, namely, E-graphs
and attributed graphs, leading together to the notion of typed attributed graphs. After-
wards, we review the M-adhesive category (AGraphsATG,M) of typed attributed graphs
with the class M of all injective typed attributed graph morphisms with isomorphism on
the data type part, which is shown to be adhesive HLR and hence also M-adhesive in [88].
The customized categories of typed attributed graphs AGraphsHGTG resp. AGraphsPNTG

with the special hypergraph resp. PTI net attributed type graphs HGTG resp. PNTG, we
will use in the following chapters as the image categories for the definition of M-functors
FHG resp. FPTI. Finally, we recall the definitions of boundary and context objects in
AGraphsATG leading to the initial pushout construction in (AGraphsATG,M).

According to [88], the basis for modeling of attributed graphs with attributes for nodes
and edges is a definition of E-graphs, which are used to determine for each edge and
node occurring in concrete instances the possibly assigned attributes. An E-graph con-
sists of two different kinds of nodes (graph and data nodes) and three different kinds of
edges (graph edges as well as edges for node and edge attribution). The formal definition of
E-graphs and the corresponding morphisms is given in the following.

Definition 30 (E-Graphs and E-Graph Morphisms [88]).
Consider a signature E declaring the sets and functions shown in the diagram below.

• An E-graph G is defined as

G = (VGG ,VGD = N,EGG,EGNA,EGEA, (sGj , tGj )j∈{G,NA,EA}
) where

– VGG resp. VGD are sets of graph resp. data nodes of G,
– EGG, EGNA, EGEA are sets of graph edges as well as node attribute and edge attribute

edges of G,
– sGj , tGj for j ∈ {G,NA,EA} are the corresponding source and target functions for the

edges.

EG VG

ENA

VD

EEA

sG

tG sNA

tNA

sEA

tEA

• Consider two E-graphs G1 and G2 with Gk = (VGkG ,VGkD = N,EGkG ,EGkNA,EGkEA,
(sGkj , tGkj )

j∈{G,NA,EA}
) for k ∈ {1, 2}. An E-graph morphism f : G1 → G2 is a tuple

(fVG , fVD , fEG , fENA , fEEA)
19 with fVi : V

G1
i → VG2i and fEj : E

G1
j → EG2j for i ∈ {G,D}

and j ∈ {G,NA,EA} such that f commutes with all source and target functions, i.e.,

19 For clarity of the diagram below, the typed attributed graph morphism components are depicted with
dashed arrows.
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– fVD ◦ tG1EA = tG2EA ◦ fEEA ,

– tG2NA ◦ fENA = fVD ◦ tG1NA,

– sG2NA ◦ fENA = fVG ◦ sG1NA,

– sG2EA ◦ fEEA = fEG ◦ sG1EA,

– sG2G ◦ fEG = fVG ◦ sG1G ,

– tG2G ◦ fEG = fVG ◦ tG1G .

EG1G VG1G

EG1NA

VG1D

EG1EA

sG1G

tG1G sG1NA

tG1NA

sG1EA

tG1EA

EG2G VG2G

EG2NA

VG2D

EG2EA

sG2G

tG2G sG2NA

tG2NA

sG2EA

tG2EA

fEG fVG

fENA

fVD

fEEA

• All E-graphs as objects and all E-graph morphisms between them define the category of
E-graphs EGraphs.

In order to define attributed graphs with attributes for nodes and edges, we need
according to [88] an extension of E-graphs to attributed graphs by combining an E-graph
with an algebra over a given data signature. The data sets of the algebra, which are
defined for the sort symbols of the given signature, can then be used for node and edge
attribution. In the following, we consider for our purpose only the signature Σ−nat and
the corresponding algebra NAT given in Figure 7.

Definition 31 (Attributed Graphs and Attributed Graph Morphisms [88]).
• An attributed graph is a pair (G,D) of an E-graph G over the signature E and a Σ−nat

algebra D, where in the following we only use D = TΣ−nat ∼= NAT (with the term algebra
TΣ−nat and the ordinary natural numbers algebra NAT from Figure 7) for the occurring
attribute values.

• For two attributed graphs AG1 = (G1,D1) and AG2 = (G2,D2), an attributed graph
morphism f : AG1 → AG2 is a pair f = (fG, fD) with an E-graph morphism fG :

G1 → G2 and an algebra homomorphism fD : D1 → D2 such that the diagram (1)

below commutes with inclusions fi : Dinat → VGiD for i ∈ {1, 2} and an identity morphism
fD,nat : D

1
nat → D2nat.

D1nat D2nat

VG1D VG2D

(1)

fD,nat

f2

fG,VD

f1

• All attributed graphs as objects and all attributed graph morphisms between them define
the category of attributed graphs AGraphs.

According to [88], the notion of attributed graphs combined with the typing concept
leads to the notion of typed attributed graphs, where attributed graphs are typed over an
attributed type graph ATG. The formal definitions of ATG and typed attributed graphs
over ATG with the corresponding morphisms are given below.

Definition 32 (Attributed Type Graph ATG [88]).
An attributed type graph ATG = (TG, Dfin) consists of a type graph TG and the final Σ−nat
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algebra Dfin
20. ATG is attributed over the final Σ−nat algebra Dfin and defines the set of all

possible types that can be used.

Definition 33 (Typed Attributed Graphs over Type Graph ATG and Typed Attributed
Graph Morphisms [88]).
Consider an attributed type graph ATG as given in Definition 32 above.

• A typed attributed graph is a pair (AG, type) of an attributed graph AG = (G,D),
where G is an E-graph and D is the Σ−nat algebra NAT (see Figure 7), and an AGraphs-
morphism type : AG→ ATG.

• For two typed attributed graphs TAG1 = (AG1, type1) and TAG2 = (AG2, type2), a
typed attributed graph morphism f ′ : TAG1 → TAG2 is an attributed graph morphism
f : AG1 → AG2 such that the compatibility with typing morphisms holds, i.e., type2 ◦ f =
type1 (see the diagram below).

AG1

=
AG2

ATG

f

type1 type2

• All typed attributed graphs as objects and all typed attributed graph morphisms between
them define the category of typed attributed graphs AGraphsATG.

To be able to use AGraphsATG over specific attributed type graphs as the target cat-
egory for our functor constructions in the following chapters, we need the category
AGraphsATG together with the suitable class of monomorphisms to be M-adhesive. Ac-
cording to [88], this is the case as given in the following remark.

Remark 6 ((AGraphsATG,M) is an M-adhesive Category).
According to [88], the category (AGraphsATG,M) of typed attributed graphs with the class
M of all injective typed attributed graph morphisms with isomorphism on the data type part is
adhesive HLR and hence also M-adhesive, where pushouts and pullbacks along M-morphisms are
constructed componentwise in the graph part.

Considering special cases of (AGraphsATG,M) from our applications with ATG =

HGTG for the description of hypergraphs (see Figure 29) resp. ATG = PNTG for the de-
scription of PTI nets (see Figure 64), some examples for the typed attributed graph repre-
sentation and typed attributed graph morphisms are given in Figure 34 resp. Figure 68

21.
Furthermore, two examples for the corresponding type-morphism components typeVG

and typeEG are given in Figure 31 and Figure 66 for AGraphsHGTG and AGraphsPNTG,
respectively, where typeVG and typeEG map each component of the given graphs to their
corresponding components in the type graph. Finally, Figure 34 and Figure 68 show ex-
amples for pushouts and pullbacks22 in AGraphsHGTG and AGraphsPNTG, respectively.

For rule-based transformation of typed attributed graphs we use again the DPO ap-
proach introduced in detail in [88]. As already discussed before, in order to apply a
rule via a match morphism to some typed attributed graph, we have to check whether
the gluing condition is satisfied. The gluing condition can be formulated on the abstract
level of M-adhesive transformation systems using initial pushouts as already introduced

20 In general, Dfin is a final algebra over a given data signature.
21 The meaning of the depicted elements of the two special type graphs will be explained in detail in Sec-

tions 5.1 and 8.1.
22 Both diagrams are pushouts and pullbacks at once.
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in Section 2.2. According to [88], the M-adhesive category (AGraphsATG,M) has initial
pushouts, which can be constructed using the boundary and context objects given in
Facts 6 and 7, respectively.

Fact 6 (Boundary Object in (AGraphsATG,M) [88]).
Consider a typed attributed graph morphism f ′ : L ′ → G ′. According to [88] (see Definition 10.5
there 23), the boundary object B ′ = ((B ′0, NAT), typeB ′) with the boundary points B ′0 is given
by the intersection of suitable attributed subgraphs B ′′ of L ′:

B ′0 = (V
B ′0
G ,VB

′
0

D = N,EB
′
0

G ,EB
′
0

NA,EB
′
0

EA, (sB
′
0

j , tB
′
0

j )
j∈{G,NA,EA}

) defined by

B ′0 =
⋂

{B ′′ ⊆ L ′ | VL ′D = VB
′′

D ∧ V
B ′′0
G ⊆ VB ′′G ∧ E

B ′′0
G ⊆ EB

′′
G ∧ E

B ′′0
NA ⊆ EB

′′
NA ∧ E

B ′′0
EA ⊆ EB

′′
EA}.

The components of B ′′0 = (V
B ′′0
G ,VB

′′
0

D = N,EB
′′
0

G ,EB
′′
0

NA,EB
′′
0

EA, (sB
′′
0

j , tB
′′
0

j )
j∈{G,NA,EA}

) are built up
by the dangling and identification points as follows:

V
B ′′0
G = {a ∈ VL ′G | [∃a ′ ∈ EG ′NA\f ′ENA(E

L ′
NA). f

′
VG

(a) = sG
′

NA(a
′)]

∨ [∃a ′ ∈ EG ′G \f ′EG(E
L ′
G ). f ′VG(a) = s

G ′
G (a ′)∨ f ′VG(a) = t

G ′
G (a ′)]

∨ [∃a ′ ∈ VL ′G . a 6= a ′ ∧ f ′VG(a) = f
′
VG

(a ′)]},

E
B ′′0
G = {a ∈ EL ′G | [∃a ′ ∈ EG ′EA\f ′EEA(E

L ′
EA). f

′
EG

(a) = sG
′

EA(a
′)]

∨ [∃a ′ ∈ EL ′G . a 6= a ′ ∧ f ′EG(a) = f
′
EG

(a ′)]},

E
B ′′0
NA = {a ∈ EL ′NA | ∃a ′ ∈ EL ′NA. a 6= a ′ ∧ f ′ENA(a) = f

′
ENA

(a ′)},

E
B ′′0
EA = {a ∈ EL ′EA | ∃a ′ ∈ EL ′EA. a 6= a ′ ∧ f ′EEA(a) = f

′
EEA

(a ′)},

s
B ′′0
G , tB

′′
0

G : E
B ′′0
G → V

B ′′0
G are restrictions of sL

′
G , tL

′
G : EL

′
G → VL

′
G ,

s
B ′′0
NA : E

B ′′0
NA → V

B ′′0
G is a restriction of sL

′
NA : EL

′
NA → VL

′
G ,

t
B ′′0
NA : E

B ′′0
NA → V

B ′′0
D is a restriction of tL

′
NA : EL

′
NA → VL

′
D ,

s
B ′′0
EA : E

B ′′0
EA → E

B ′′0
G is a restriction of sL

′
EA : EL

′
EA → EL

′
G ,

t
B ′′0
EA : E

B ′′0
EA → V

B ′′0
D is a restriction of tL

′
EA : EL

′
EA → VL

′
D ,

and b ′ : B ′ → L ′ is an inclusion.

B ′ L ′

G ′

b ′

f ′

Fact 7 (Context Object in (AGraphsATG,M) [88]).
Consider a typed attributed graph morphism f ′ : L ′ → G ′ and the boundary object B ′ constructed
according to Fact 6 above. The context object C ′ is a typed attributed subgraph of G ′ defined as
follows:

C ′ = ((C ′0, NAT), typeC ′) with

C ′0 = (V
C ′0
G ,VC

′
0

D = N,EC
′
0

G ,EC
′
0

NA,EC
′
0

EA, (sC
′
0

j , tC
′
0

j )
j∈{G,NA,EA}

) where

23 In Fact 6 we corrected some typing errors concerning indices of the morphism f ′ in the end part of some

conditions of components VB
′′
0

G and EB
′′
0

G .
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V
C ′0
G = (VG

′
G \f ′VG(V

L ′
G ))∪ f ′VG(V

B ′
G ),

V
C ′0
D = VG

′
D ,

E
C ′0
G = (EG

′
G \f ′EG(E

L ′
G ))∪ f ′EG(E

B ′
G ),

E
C ′0
NA = (EG

′
NA\f

′
ENA

(EL
′
NA))∪ f ′ENA(E

B ′
NA),

E
C ′0
EA = (EG

′
EA\f

′
EEA

(EL
′
EA))∪ f ′EEA(E

B ′
EA),

s
C ′0
G , tC

′
0

G : E
C ′0
G → V

C ′0
G are restrictions of sG

′
G , tG

′
G : EG

′
G → VG

′
G ,

s
C ′0
NA : E

C ′0
NA → V

C ′0
G is a restriction of sG

′
NA : EG

′
NA → VG

′
G ,

t
C ′0
NA : E

C ′0
NA → V

C ′0
D is a restriction of tG

′
NA : EG

′
NA → VG

′
D ,

s
C ′0
EA : E

C ′0
EA → E

C ′0
G is a restriction of sG

′
EA : EG

′
EA → EG

′
G ,

t
C ′0
EA : E

C ′0
EA → V

C ′0
D is a restriction of tG

′
EA : EG

′
EA → VG

′
D ,

and c ′ : C ′ → G ′ is an inclusion.

B ′ L ′

C ′ G ′

b ′

f ′

c ′

The following fact from [88] summarizes the construction of initial pushouts in the
category (AGraphsATG,M). For the proof of the fact see [88].

Fact 8 (Initial Pushout in (AGraphsATG,M) [88]).
Consider a typed attributed graph morphism f ′ : L ′ → G ′. The diagram (1) given below with the
boundary object B ′ constructed according to Fact 6, the context object C ′ constructed according
to Fact 7, inclusions b ′ : B ′ → L ′, c ′ : C ′ → G ′ and the morphism g ′ : B ′ → C ′ given by
g ′j(x) = (f ′j ◦ b ′j)(x) for j ∈ {VG,VD,EG,ENA,EEA} is well-defined and is an initial pushout
over f ′ in (AGraphsATG,M).

B ′ L ′

C ′ G ′

(1)

b ′

c ′

f ′g ′

Two examples for the initial pushout construction in the customized M-adhesive typed
attributed graph categories (AGraphsHGTG,M2) resp. (AGraphsPNTG,M2)

24 are given
in Figure 40 resp. Figure 73, where the outer diagram to the right consisting of typed
attributed graphs B ′, FHG(L) resp. FPTI(L), FHG(G) resp. FPTI(G), C ′ and morphisms be-
tween them forms an initial pushout in (AGraphsHGTG,M2) resp. (AGraphsPNTG,M2).

24 The M-adhesive categories (AGraphsHGTG,M2) and (AGraphsPNTG,M2) are subcategories of
(AGraphsATG,M) for the monomorphism subclass M = M2 of all injective typed attributed graph mor-
phisms with identical algebra homomorphism.
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2.4.2 Hypergraph Transformation Systems

Hypergraphs are a widely used graph-based formalism introduced for the modeling
of various kinds of systems. The formalism of hypergraphs is quite versatile and its
main strength is its built-in capability of succinctly representing relationships between
an unbounded number of nodes, that is, an edge (also called a hyperedge) in a hypergraph
connects an unbounded number of source nodes with an unbounded number of target
nodes. In this sense, hypergraphs where each edge connects precisely one source node
with one target node can be understood as ordinary graphs.

There are many areas where hypergraphs can be successfully deployed. Hypergraphs
have shown to be appropriate e.g. for the evaluation of functional expressions where
they allow a function with n arguments to be modeled by a hyperedge with one source
node and n target nodes [253]. Moreover, hypergraphs are a suitable formalism for the
modeling of inter-networking systems, where components of a system are represented by
hyperedges and hypergraph nodes representing communication ports between different
components model the network environment of these components [149, 148, 295]. In this
case, the fact that a node is shared by several hyperedges means that the involved compo-
nents have a possibility to interact using the network communication infrastructure [295].
In [196] hypergraphs have been used in the context of declustering problems for the im-
plementation of I/O parallelization algorithms in the context of parallel databases and
high performance systems, while in [120] hypergraphs have been employed for the anal-
ysis of relational databases. Furthermore, in [37, 40] hypergraphs have been deployed in
the context of service-oriented architecture for business processes for modeling services,
their mutual dependencies as well as their resource and capacity requirements.

Hypergraph transformation systems have been used in many application domains to
model the behavior of distributed or concurrent systems [271, 147, 295, 188], to model
machine learning processes [279], and, furthermore, hyperedge replacement systems,
as a restricted form of hypergraph transformation systems, can be seen as graphical
context-free Chomsky grammars [181]. In the domain of Architectural Design Rewriting
(short ADR) [33, 34], hypergraphs and hypergraph rewriting rules are extensively used
to model the dynamism of architectural designs. In the context of Synchronized Hyperedge
Replacement (short SHR) [39, 54], frequently deployed for the modeling of software archi-
tectures and distributed systems (encodes amongst others the π-calculus [147], Ambient
and Klaim [295] as well as Fusion [188]), hypergraphs and their transformations are used
for modeling systems and their behavior. In [163] a formalism, in fact a process calculus,
for the stochastic modeling and simulation of biochemical reactions is introduced. This
formalism extends the κ-calculus based on the idea of hyperedge replacement. Further
application areas of hypergraphs and hypergraph transformations are already pointed
out in the introduction.

In this subsection, we recall the concept of hypergraphs, discuss some of their charac-
terization properties, review the M-adhesive category (HyperGraphs,M) of hypergraphs
with the class M of all injective hypergraph morphisms, which is shown to be M-adhesive
in [88], and consider such constructions on hypergraphs as pushouts, pullbacks, and ini-
tial pushouts. Finally, in the end of this subsection, we give an example for a small
hypergraph transformation system, which we will use in the following as a running ex-
ample for the application of our new theoretical results to hypergraph transformation
systems.
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Definition 34 (Hypergraphs and Hypergraph Morphisms [88]).
• A hypergraph G is defined as G = (VG,EG, sG, tG) where

– VG is a set of hypergraph nodes,
– EG is a set of hyperedges, and
– sG, tG : EG → V∗G are functions assigning the string sG(e) of source nodes resp.
tG(e) of target nodes to each hyperedge e.

• Consider hypergraphs G = (VG,EG, sG, tG) and H = (VH,EH, sH, tH). A hypergraph
morphism f : G → H is given by a tuple of functions f = (fV : VG → VH, fE : EG →
EH) such that the diagram below commutes with source and target functions, i.e.,

sH ◦ fE = f∗V ◦ sG and tH ◦ fE = f∗V ◦ tG
where the function f∗V : V∗G → V∗H maps λ 7→ λ and x1 . . . xn 7→ fV(x1) . . . fV(xn) for
the empty word λ.

EG

=

V∗G

EH V∗H

sG

tG
fE f∗V

sH

tH

Note that we use a more general kind of hypergraphs with source and target functions,
where hyperedges with incoming and outgoing arcs are allowed. From the theoretical
point of view, it is not necessary to distinguish the source and the target functions. It is
sufficient to assign one sequence of nodes to each hyperedge, which can be already done
considering only one corresponding function. But, from the applicational point of view,
for usage of labeled hypergraphs in some of our examples, it makes sense to distinguish
the source and the target functions. Therefore, we use the definition of hypergraphs as
given above.

An example for the hypergraph representation and the meaning of hypergraph mor-
phisms is given in the following.

Example 3 (Hypergraphs and Hypergraph Morphisms).
The picture below shows a hypergraph G with hypergraph nodes v0 and v1 and a hyperedge
e0. As usual in the hypergraph notation, only the target nodes of a hyperedge are connected by
arrows. We call the connectors between hypergraph nodes and hyperedges "hyperedge tentacles".
The numbers on hyperedge tentacles denote the position of the node in the corresponding source
resp. target string of the considered hyperedge.

G : v1e0v0
1

21

Consider another hypergraph H. The intuitive mapping f1 : G → H, as depicted in the picture
below with dashed arrows, is no hypergraph morphism since the hyperedge e0 in both cases
has different strings of target nodes: tG(e0) = v1·v1 6= v1 = tH(e0), which is not valid for
hypergraph morphisms.

G :

H :

v1

v1

e0

e0

v0

v0

1

21

1 1

f1Vf1Ef1V
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Consider another hypergraph D. The intuitive mapping f2 : G → D, as depicted in the picture
below with dotted arrows, is a valid hypergraph morphism since the compatibility of f2 with
source and target functions sG, sD, tG, tD holds:

sD(f2E(e0)) = sD(e0) = v0 = f
∗
2V(v0) = f

∗
2V(sG(e0))

tD(f2E(e0)) = tD(e0) = v1·v1 = f∗2V(v1 · v1) = f∗2V(tG(e0))

G :

D :

v1

v1

e0

e0

v0

v0

e1

1

21

1 1

2

1 1

f2Vf2Ef2V

Note that the mapping f1 : G → H given above would be a correct typed attributed graph mor-
phism. Therefore, it is not advisable to use an intuitive translation of hypergraphs and hypergraph
morphisms into typed attributed graphs and typed attributed graph morphisms by just represent-
ing hypergraph nodes and hyperedges by different types of graph nodes and hyperedge tentacles
by graph edges. In this case, there is a risk that the graph morphisms, which have to be considered,
do not correspond to the valid hypergraph morphisms.

To ensure the validity of hypergraph morphisms in our applications, we use the follow-
ing characterization, which is easily implementable for a tool-supported identification.

Lemma 2 (Characterization of Hypergraph Morphisms).
1. Consider a hypergraph morphism f = (fV : VG → VH, fE : EG → EH) according to

Definition 34. Then the following two properties hold:
a) The number of incoming resp. outgoing arrows for each edge remains equal, i.e.,

i. ∀e ∈ EG, ∀n ∈N. (|sG(e)|=n)⇔ (|sH(fE(e))|=n),
ii. ∀e ∈ EG, ∀n ∈N. (|tG(e)|=n)⇔ (|tH(fE(e))|=n) and

b) The morphism preserves/reflects the source and target components of every edge, i.e.,
i. ∀v ∈ VG, ∀e ∈ EG, ∀n 6 |sG(e)|. (snG(e)=v)⇒ (snH(fE(e))=fV(v)),

ii. ∀v ∈ VG, ∀e ∈ EG, ∀n 6 |sG(e)|.
(snG(e)=v)⇐ (snH(fE(e))=fV(v) if fV is injective),

iii. ∀v ∈ VG, ∀e ∈ EG, ∀n 6 |tG(e)|. (tnG(e)=v)⇒ (tnH(fE(e))=fV(v)),
iv. ∀v ∈ VG, ∀e ∈ EG, ∀n 6 |tG(e)|.

(tnG(e)=v)⇐ (tnH(fE(e))=fV(v) if fV is injective).
2. According to Definition 34, f = (fV : VG → VH, fE : EG → EH) is a hypergraph

morphism if the properties 1(b)i and 1(b)iii hold.

Proof.
The detailed proof for this lemma is given in Appendix C on page 311. �

Hypergraph objects and morphisms as given in Definition 34 lead to the definition of
the category HyperGraphs.

Definition 35 (Category HyperGraphs [88]).
All hypergraphs as objects and all hypergraph morphisms between them define the category of
hypergraphs denoted as HyperGraphs.
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Remark 7 ((HyperGraphs,M) is an M-adhesive Category).
According to [88, 94], the category (HyperGraphs,M) of hypergraphs with the class M of
all injective hypergraph morphisms is an adhesive HLR and hence also an M-adhesive category,
where pushouts and pullbacks are constructed componentwise (see the following definitions and
examples in Figure 8 and Figure 9) and there exist initial pushouts as follows from Lemma 7 (see
an example in Figure 10).

In the following, we recall the definition of hypergraph pushouts, which we adopt
from [253] in slightly different notation. Subsequently, we show in Lemma 3 that the
considered construction leads to a valid pushout diagram in the category HyperGraphs.

Definition 36 (Construction of Hypergraph Pushouts).
Let b : A → B and c : A → C be hypergraph morphisms. Define D = (VD,ED, sD, tD) from
the diagram below as follows:

A

(PO)

B

C D

b

c g

f

• (VD, fV ,gV) is a pushout in Sets of (bV , cV) with VD = (VB ]VC)|≡V , ∀v ∈ VC. fV(v)
= [v]≡V , and ∀v ∈ VB. gV(v) = [v]≡V where ≡V is the smallest equivalence relation with
∀n ∈ VA. (bV(n), cV(n)) ∈≡V .

• (ED, fE,gE) is a pushout in Sets of (bE, cE) with ED = (EB ]EC)|≡E , ∀e ∈ EC. fE(e) =
[e]≡E , and ∀e ∈ EB. gE(e) = [e]≡E where ≡E is the smallest equivalence relation with
∀m ∈ EA. (bE(m), cE(m)) ∈≡E.

• ∀e ∈ ED. sD(e) =

{
f∗V(sC(e

′)) if e = [e ′] ∧ e ′ ∈ EC,

g∗V(sB(e
′)) if e = [e ′] ∧ e ′ ∈ EB

• ∀e ∈ ED. tD(e) =

{
f∗V(tC(e

′)) if e = [e ′] ∧ e ′ ∈ EC,

g∗V(tB(e
′)) if e = [e ′] ∧ e ′ ∈ EB

EA V∗A EB V∗B

EC V∗C ED V∗D

sA

tA

sB

tB

sC

tC

sD

tD

cE c∗V gE g∗V

bE b∗V

fE f∗V
Lemma 3 (Pushout in HyperGraphs).
Consider the pushout construction from Definition 36. Then the diagram given below is a hyper-
graph pushout.

A

(1)

B

C D

b

c g

f
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1 : v ′0 2 : v ′1

3 : e ′0

47 : v ′2 6 : e ′1 5 : v ′3

G2

1
2

1

1 1

1 : v0 2 : v1

3 : e0

4 : v3 7 : v4 6 : e1

5 : v2

G1

1
2

1

1

1

1 : v ′′0 25 : v ′′1

3 : e ′′0

4 : v ′′2

6 : e ′′1

7 : v ′′3

G3

1

2

1

1

1

1 :
[
v ′0
]

25 :
[
v ′1
]

3 :
[
e ′0
]

47 :
[
v ′2
]

6 :
[
e ′1
]

G4

1

2

1

1

1

(PO)

f

g ′′g

f ′′

Figure 8: Pushout in HyperGraphs

Proof.
The detailed proof of this lemma is given in Appendix C on page 312. �

An example for the concrete pushout construction is given below, where the graphical
representation of the constructed pushout object G4 is given in Figure 8.

Example 4 (Construction of Hypergraph Pushouts).
Consider hypergraphs G1, G2, G3 and hypergraph morphisms f : G1 → G2, g : G1 → G3 as
given in Figure 8. We construct the hypergraph G4 = (VG4 ,EG4 , sG4 , tG4) together with the
hypergraph morphisms f ′′ : G3 → G4 with f ′′ = (f ′′V : VG3 → VG4 , f

′′
E : EG3 → EG4) and

g ′′ : G2 → G4 with g ′′ = (g ′′V : VG2 → VG4 ,g
′′
E : EG2 → EG4) according to Definition 36.

• VG4 = (VG2 ] VG3)|≡V =
{[
v ′0
]

,
[
v ′1
]

,
[
v ′2
]}

where ≡V is the smallest equivalence
relation with ∀v ∈ VG1 . (fV(v),gV(v)) ∈≡V . The corresponding morphisms for the
node-components are given by f ′′V =

{
(v ′′0 ,

[
v ′0
]
), (v ′′1 ,

[
v ′1
]
), (v ′′2 ,

[
v ′2
]
), (v ′′3 ,

[
v ′2
]
)
}

and
g ′′V =

{
(v ′0,

[
v ′0
]
), (v ′1,

[
v ′1
]
), (v ′2,

[
v ′2
]
), (v ′3,

[
v ′1
]
)
}

.
• EG4 = (EG2 ]EG3)|≡E =

{[
e ′0
]

,
[
e ′1
]}

where ≡E is the smallest equivalence relation with
∀e ∈ EG1 . (fE(e),gE(e)) ∈≡E. The corresponding morphisms for the edge-components
are given by f ′′E =

{
(e ′′0 ,

[
e ′0
]
), (e ′′1 ,

[
e ′1
]
)
}

and g ′′E =
{
(e ′0,

[
e ′0
]
), (e ′1,

[
e ′1
]
)
}

.
• sG4(

[
e ′0
]
) = g ′′∗V(sG2(e

′
0)) = g

′′∗
V(v
′
0·v ′1) =

[
v ′0
]
·
[
v ′1
]

• sG4(
[
e ′1
]
) = g ′′∗V(sG2(e

′
1)) = g

′′∗
V(v
′
2) =

[
v ′2
]

• tG4(
[
e ′0
]
) = g ′′∗V(tG2(e

′
0)) = g

′′∗
V(v
′
2) =

[
v ′2
]

• tG4(
[
e ′1
]
) = g ′′∗V(tG2(e

′
1)) = g

′′∗
V(v
′
3) =

[
v ′1
]

In the next step, we recall the definition of hypergraph pullbacks given in [169]. The
subsequent Lemma 4 states that the construction described in Definition 37 results in a
valid hypergraph pullback.
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Definition 37 (Construction of Hypergraph Pullbacks [169]).
Let g : B→ D and f : C→ D be hypergraph morphisms. Define A = (VA,EA, sA, tA) from the
diagram below as follows:

A

(PB)

B

C D

b

c g

f

• (VA,bV , cV) is a pullback in Sets of (fV ,gV) with VA = {(v1, v2) ∈ VB×VC | gV(v1) =

fV(v2)}, ∀(v1, v2) ∈ VA. bV(v1, v2) = v1 and ∀(v1, v2) ∈ VA. cV(v1, v2) = v2.
• (EA,bE, cE) is a pullback in Sets of (fE,gE) with EA = {(e1, e2) ∈ EB × EC | gE(e1) =

fE(e2)}, ∀(e1, e2) ∈ EA. bE(e1, e2) = e1 and ∀(e1, e2) ∈ EA. cE(e1, e2) = e2.
• ∀(e1, e2) ∈ EA. sA(e1, e2) = (v1, v ′1) . . . (vn, v ′n) for sB(e1) = v1 . . . vn, sC(e2) =

v ′1 . . . v
′
n, and n ∈N.

• ∀(e1, e2) ∈ EA. tA(e1, e2) = (v1, v ′1) . . . (vn, v ′n) for tB(e1) = v1 . . . vn, tC(e2) =

v ′1 . . . v
′
n, and n ∈N.

EA V∗A EB V∗B

EC V∗C ED V∗D

sA

tA

sB

tB

sC

tC

sD

tD

cE c∗V gE g∗V

bE b∗V

fE f∗V

Lemma 4 (Pullback in HyperGraphs).
Consider the pullback construction from Definition 37. Then the diagram given below is a hyper-
graph pullback.

A

(1)

B

C D

b

c g

f

Proof.
The detailed proof of this lemma is given in Appendix C on page 314. �

In the following example, we construct a pullback in the category HyperGraphs ac-
cording to Definition 37. The graphical representation of the constructed pullback object
G1 is given in Figure 9.

Example 5 (Construction of Hypergraph Pullbacks).
Consider hypergraphs G2, G3, G4 and hypergraph morphisms f : G3 → G4, g : G2 → G4 as
given in Figure 9. We construct the hypergraph G1 = (VG1 ,EG1 , sG1 , tG1) together with the
hypergraph morphisms f ′′ : G1 → G2 with f ′′ = (f ′′V : VG1 → VG2 , f

′′
E : EG1 → EG2) and

g ′′ : G1 → G3 with g ′′ = (g ′′V : VG1 → VG3 ,g
′′
E : EG1 → EG3) according to Definition 37.
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1 : v ′0 2 : v ′1

3 : e ′0

47 : v ′2 6 : e ′1 5 : v ′3
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4 : (v ′2, v ′′2 ) 7 : (v ′2, v ′′3 ) 6 : (e ′1, e ′′1 )
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G1

1
2

1

1

1

1 : v ′′0 25 : v ′′1

3 : e ′′0

4 : v ′′2

6 : e ′′1

7 : v ′′3

G3

1

2

1

1

1

1 : v0 25 : v1

3 : e0

47 : v2

6 : e1

G4

1

2

1

1

1

(PB)

f ′′

g

g ′′

f

Figure 9: Pullback in HyperGraphs

• VG1 = {(v1, v2) ∈ VG2×VG3 | gV(v1) = fV(v2)} = {(v ′0, v ′′0 ), (v
′
2, v ′′2 ), (v

′
2, v ′′3 ), (v

′
1, v ′′1 ),

(v ′3, v ′′1 )}. The corresponding morphisms for the node-components are given by f ′′V =

{((v ′0, v ′′0 ), v
′
0), ((v

′
2, v ′′2 ), v

′
2), ((v

′
2, v ′′3 ), v

′
2), ((v

′
1, v ′′1 ), v

′
1), ((v

′
3, v ′′1 ), v

′
3)} and g ′′V =

{((v ′0, v ′′0 ), v
′′
0 ), ((v

′
2, v ′′2 ), v

′′
2 ), ((v

′
2, v ′′3 ), v

′′
3 ), ((v

′
1, v ′′1 ), v

′′
1 ), ((v

′
3, v ′′1 ), v

′′
1 )}.

• EG1 = {(e1, e2) ∈ EG2 × EG3 | gE(e1) = fE(e2)} = {(e ′0, e ′′0 ), (e
′
1, e ′′1 )}. The correspond-

ing morphisms for the edge-components are given by f ′′E = {((e ′0, e ′′0 ), e
′
0), ((e

′
1, e ′′1 ), e

′
1)}

and g ′′E = {((e ′0, e ′′0 ), e
′′
0 ), ((e

′
1, e ′′1 ), e

′′
1 )}.

• sG1(e
′
0, e ′′0 ) = (v ′0, v ′′0 )·(v ′1, v ′′1 ) for sG2(e

′
0) = v

′
0·v ′1 and sG3(e

′′
0 ) = v

′′
0 ·v ′′1

• sG1(e
′
1, e ′′1 ) = (v ′2, v ′′3 ) for sG2(e

′
1) = v

′
2 and sG3(e

′′
1 ) = v

′′
3

• tG1(e
′
0, e ′′0 ) = (v ′2, v ′′2 ) for tG2(e

′
0) = v

′
2 and tG3(e

′′
0 ) = v

′′
2

• tG1(e
′
1, e ′′1 ) = (v ′3, v ′′1 ) for tG2(e

′
1) = v

′
3 and tG3(e

′′
1 ) = v

′′
1

For rule-based transformation of hypergraphs, we use the classical DPO approach
with hypergraph transformation rules defined as spans of injective hypergraph mor-
phisms [253]. To ensure the rule applicability for hypergraph transformations, we use
again the notion of initial pushouts. Similar to initial pushouts in the category of graphs
(see the end of Subsection 2.4.1), we also have initial pushouts in the M-adhesive category
(HyperGraphs,M) using the boundary construction based on dangling and identifica-
tion points (see Lemma 7). The detailed constructions of the boundary and the context ob-
jects over a general morphism f : L→ G for the M-adhesive category (HyperGraphs,M)

are given in Lemmas 5 and 6 below.

Lemma 5 (Boundary Object in (HyperGraphs,M)).
Consider two hypergraphs L = (VL,EL, sL, tL) and G = (VG,EG, sG, tG). The boundary object
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B ⊆ L of the initial pushout over a general morphism f : L → G in the M-adhesive category
(HyperGraphs,M) can be constructed as follows with an inclusion b : B→ L:

B = (VB,EB, sB, tB) where

VB = DPV ∪ IPV ∪ IPVE with dangling points

DPV = {v ∈ VL | ∃e ∈ EG\fE(EL).(fV(v) e sG(e)) ∨ (fV(v) e tG(e))}

where x e w⇔ ∃w1,w2. w = w1·x·w2 and identification points

IPV =
{
v ∈ VL | ∃v ′ 6= v.v ′ ∈ VL ∧ fV(v) = fV(v

′)
}

,

IPVE = {v ∈ VL | ∃e ∈ IPE. v e sL(e) ∨ v e tL(e)} 25,

EB = IPE =
{
e ∈ EL | ∃e ′ 6= e.e ′ ∈ EL ∧ fE(e) = fE(e

′)
}

,

sB(e) = sL(e),

tB(e) = tL(e).

B L

G

b

f

Proof.
The detailed proof of this lemma is given in Appendix C on page 316. �

Lemma 6 (Context Object in (HyperGraphs,M)).
Consider a hypergraph morphism f : L → G and the boundary object B constructed according
to Lemma 5 above. Then the context object C can be constructed in the M-adhesive category
(HyperGraphs,M) as follows with inclusion c : C→ G:

C = (VC,EC, sC, tC) with

VC = (VG\fV(VL))∪ fV(bV(VB)),
EC = (EG\fE(EL))∪ fE(bE(EB)),
sC(e) = sG(e),

tC(e) = tG(e).

B L

C G

b

f

c

Proof.
The detailed proof of this lemma is given in Appendix C on page 316. �

Lemma 7 (Initial Pushout in (HyperGraphs,M)).
Consider a hypergraph morphism f : L → G, a boundary object B constructed according to
Lemma 5, a context object C constructed according to Lemma 6, and inclusions b : B → L,
c : C→ G. Then the diagram (1) given below is an initial pushout in (HyperGraphs,M) with
the hypergraph morphism g : B→ C defined as g = f|B

26.

B

(1)

L

C G

b

g f

c

25 Note that IPVE is needed in order to make sure that the boundary object B is a well-defined hypergraph to
avoid an intersection construction for B.

26 Since b and c are inclusions, the morphism g can be constructed as the restriction of f to the domain of g.
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Figure 10: Initial Pushout in (HyperGraphs,M)

Proof.
The detailed proof of this lemma is given in Appendix C on page 318. �

In the example below, we construct an initial pushout in the M-adhesive category
(HyperGraphs,M) according to Lemmas 5, 6, and 7. Its graphical representation is
given in Figure 10.

Example 6 (Construction of Initial Pushouts in (HyperGraphs,M)).
Consider hypergraphs L, G, and a hypergraph morphism f : L → G as given in Figure 10. We
construct the boundary object B = (VB,EB, sB, tB) with the hypergraph morphism b : B → L

according to Lemma 5, the context object C = (VC,EC, sC, tC) with the hypergraph morphism
c : C→ G according to Lemma 6 and the hypergraph morphism g : B→ C according to Lemma 7
as follows:

• B = (VB,EB, sB, tB) with

VB = DPV ∪ IPV ∪ IPVE = ∅ ∪ {v3, v4}∪ ∅ = {v3, v4},

EB = IPE = ∅,
sB = tB = ∅, and

b = (bV : VB → VL,bE : EB → EL) = ({(v3, v3), (v4, v4)}, ∅).

• C = (VC,EC, sC, tC) with

VC = ({v ′0, v ′1, v ′2, v ′3} \ fV({v0, v1, v2, v3, v4}))∪ fV(bV({v3, v4})) = {v ′2}

EC = ({e ′0, e ′1} \ fE({e0, e1}))∪ fE(bE(∅)) = ∅
sC = tC = ∅, and

c = (cV : VC → VG, cE : EC → EG) = ({(v ′2, v ′2)}, ∅).

• g = (gV : VB → VC,gE : EB → EC) = f|B = ({(v3, v ′2), (v4, v ′2)}, ∅)
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Figure 11: Hypergraph defining a network with distributed processes

We now introduce our running example, which we want to analyze later on for the case
of hypergraph transformation systems without or with nested application conditions by
applying the theoretical results of our approach. Note that for this example, we use
hypergraphs extended by a labeling function for hyperedges. Objects in this slightly
extended category have the form: G = (VG,EG, sG, tG, lG) with the labeling function
lG : EG → A where A is some alphabet.

Example 7 (Mobile Processes [211, 213]).
We consider a simple distributed system with mobility, inspired by [12], with servers connected by
channels, and processes moving through the network and running on the servers. In our system
model, servers, connections and processes are represented as labeled hyperedges. The meaning of
the hyperedge labels is as follows: P denotes a process before it is executed, S stands for server,
and C for connection. A running process is represented by label R. Note that, on the one hand,
we simplify the network model in [12] by disregarding firewalls and secure servers; on the other
hand, we allow for connections between three servers modeled by hyperedges with three tentacles,
and we distinguish between traveling processes P and running processes R.

The hypergraph in Figure 11 models a network with four servers, different kinds of connections
between them, and three processes. A process P is located at a server S when the process hyperedge
is connected to the source node of the server hyperedge.

The behavior of the system is modeled by the hypergraph transformation rules in Figure 12
for the case if we consider this system without any additional constraints expressed by nested
application conditions. Rules enterServer [leaveServer] allow a process to enter [leave] a
server location. Both rules are inverse to each other (indicated by the double arrow). Rules
crossC [backC] model the traveling of a process via a connection. We have different rules for
process traveling, depending on the kind of connection hyperedge that is crossed. When a process
finally has found a suitable server, it switches into the running state by applying the rule runP.
A process that has finished its execution, is removed from the system by the rule removeR.

To give later an example for local confluence analysis of hypergraph transformation systems
containing rules with nested application conditions, we extend the rules enterServer, runP and
removeR by nested application conditions. The changed rules are given in Figure 13. In the
extended scenario, we assume for the sake of the example that a server can locate at most two
processes, which is modeled as a negative application condition (NAC) for the rule enterServer.
Furthermore, rules runP and removeR require by their positive application conditions (PACs) that
the process is located at a server.

After our running example for a hypergraph transformation system is introduced, we
give an additional example for understanding the strict AC-confluence of a critical pair
in the context of the Mobile Processes scenario.
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Figure 12: Hypergraph transformation rules without nested application conditions modeling the
behavior of the Mobile Processes scenario

Figure 13: Hypergraph transformation rules with nested application conditions modeling the
behavior of the extended Mobile Processes scenario

Example 8 (Strict AC-Confluence of a Critical Pair in the Context of the Mobile Pro-
cesses Scenario [213]).
In this example, we construct a critical pair of rules runP and enterServer (see Figure 13) and
show that this critical pair is strictly AC-confluent according to Definition 29. We choose this crit-
ical pair as an example for showing strict AC-confluence since it represents the most interesting
case combining rules with a NAC and a PAC.27

We proceed as follows. First, we construct a weak critical pair of both rules, i.e., a pair of AC-
disregarding transformations with jointly surjective hypergraph morphisms o1 and o2 as given in
Figure 14. Note that this weak critical pair satisfies the given NAC but does not satisfy the PAC.

27 In Section 7.3, where we later describe the Agg-based local confluence analysis of our concrete hypergraph
transformation system with NACs and PACs, we can exclude all FHG-reachable critical pairs of the rules
FHG(runP) and FHG(enterServer) from the detailed strict AC(FHG)-confluence analysis, because the cor-
responding overlapping graphs cannot be reached from the translated start hypergraph, which means that
these FHG-reachable critical pairs are incompatible with some invariant of the original hypergraph transfor-
mation system.
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Figure 14: Weak critical pair of rules runP and enterServer

Figure 15: Extension application condition acK = acK1 ∧ acK2 induced by the weak critical pair
of rules runP and enterServer

The weak critical pair in Figure 14 induces the following extension and conflict-inducing appli-
cation conditions acK and ac∗K on K according to Definition 25:

• acK = Shift(o1,ac-LrunP)∧ Shift(o2,ac-LenterServer) = acK1 ∧ acK2 and
• ac∗K = ¬(ac∗K,d21 ∧ ac

∗
K,d12) = ¬(false ∧ false) = true 28

The extension application condition acK consists of the application conditions acK1 and acK2
marked by dashed rectangles in Figure 15, which we obtain by shifting of ac-LrunP and
ac-LenterServer (see parts marked by dashed rectangles in Figure 14) along morphisms o1 and o2
to object K. The conflict-inducing application condition ac∗K is true, because there are no mor-
phisms d12 : LrunP → N2 and d21 : LenterServer → N1 (depicted by scratched dashed arrows in
Figure 14) making the corresponding triangles commute.

The considered weak critical pair is a critical pair, because it can be embedded into a pair of
AC-regarding transformations H1

runP,m1⇐===== G
enterServer,m2=========⇒ H2 (see Figure 16) such that the

embedding morphismm : K→ G satisfies acK∧ac∗K and the match morphismsm1 : LrunP → G,
m2 : LenterServer → G make the corresponding triangles between LrunP, K, and G resp. between
LenterServer, K, and G commute.

Figure 17 shows that the embedding morphism m : K→ G satisfies the application conditions
acK1 , acK2 and hence also acK, because there is an injective hypergraph morphism q1 : PAC1 →
G making the triangle (1) commute and there is no injective hypergraph morphism q2 : NAC1 →
G (depicted by the scratched dashed arrow) making the triangle (2) commute. Moreover, m |=

ac∗K since every morphism satisfies true. Thus, we obtain that P1
runP,o1⇐==== K

enterServer,o2=========⇒ P2 is
a critical pair.

28 ac∗K = true, because the morphisms d12 and d21 do not exist. Consideration of inverse rules will lead to the
existence of d12 and d21.
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Figure 16: Critical pair of rules runP and enterServer

Figure 17: Embedding morphism m : K → G satisfies acK induced by the weak critical pair of
rules runP and enterServer

As the next step we have to check whether the critical pair constructed before is strictly AC-
confluent, i.e., the merging transformation steps t ′1, t ′2 are strictly confluent for the case if we
disregard application conditions as well as the extended AC-disregarding transformations t1 ,

K
runP,o1====⇒ P1

t ′1 ∗=⇒ K ′, t2 , K
enterServer,o2=========⇒ P2

t ′2 ∗=⇒ K ′ are AC-compatible.

K

P1

P2

K ′

∗

∗

runP,o1

enterServer,o2

t ′1
t ′2

In Figure 1829, we can see that the transformation steps K runP,o1====⇒ P1 and K enterServer,o2=========⇒ P2
can be joined together to the hypergraph P1. This is possible, because after applying the rule
enterServer, we can reverse the effect by applying the corresponding inverse rule leaveServer
getting again the hypergraph K; applying then the rule runP, we obtain a hypergraph, which
is isomorphic to the hypergraph P1. Additionally, the maximal substructure of K (consisting of
the two nodes 1 and 2 with a server between them), that is preserved by the critical pair, is also
preserved by the merging steps described before. Therefore, the strictness condition holds as well.

29 Note that the inner square in Figure 18 including the critical pair is AC-disregarding, but the outer square
with G, H1, and H2 is AC-regarding.
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Figure 18: Plain strict confluence of the critical pair of rules runP and enterServer

Now it remains to show that the extended transformations t1 and t2 are AC-compatible, i.e.,
(acK ∧ ac∗K) ⇒ (ac(t1)∧ ac(t2)). For this reason, we calculate the derived application condi-
tions ac(t1) and ac(t2) obtaining the following:

ac(t1) = ac(K
runP,o1====⇒ P1) = acK1 ,

ac(t2) = ac(K
enterServer,o2=========⇒ P2

leaveServer,o3=========⇒ K
runP,o1====⇒ P1) = acK2 ∧ true∧ acK1 ,

⇒ ac(t1)∧ ac(t2) = acK1 ∧ acK2

Since we already know that acK ∧ ac∗K = acK1 ∧ acK2 , we obtain the AC-compatibility for t1
and t2, because (acK1 ∧ acK2) ⇒ (acK1 ∧ acK2). Thus, we have that the constructed critical
pair P1

runP,o1⇐==== K enterServer,o2=========⇒ P2 is strictly AC-confluent.
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2.4.3 PTI Net Transformation Systems

Petri nets, initially introduced in 1962 by Carl Adam Petri [252], are a formal speci-
fication language useful for modeling concurrent, distributed, parallel, asynchronous,
non-deterministic and stochastic systems [268] supporting powerful techniques for qual-
itative and quantitative analysis [232]. The formalism of Petri nets combines a well-
founded mathematical theory with a graphical representation of the dynamic system
behavior. A strength of the Petri net approach is its intuitive visual notation and the
variety of implemented analysis techniques considering, e.g., reachability, liveness, and
safeness properties. According to [308], there are many examples for application of dif-
ferent kinds of Petri nets to model a variety of dynamic event-driven and concurrent
systems such as computer networks [205], communication systems [214, 307], real-time
computing systems [294], workflows [299, 195], and logistic networks [301].

The formalism of Reconfigurable Petri Nets [154, 260] generalized to the notion of
Petri net transformation systems [90, 92, 80, 81, 246] allows to combine formal modeling
of dynamic systems and controlled model adaptation. The main idea is the stepwise
development of Place/Transition nets (short P/T nets) by applying net transformation
rules [90, 92, 260]. This approach makes Petri nets more expressive and allows addition-
ally to the well-known “token game” for a formal description and analysis of structural
changes [90, 92, 260]. The application areas for the Petri net transformation systems
formalism comprise for instance medical information systems [103], train control sys-
tems [247], logistics [90], emergency scenarios [92], reconfigurable manufacturing sys-
tems [164], complex dynamic structures [130] and component technology [243].

We introduce in this subsection Petri nets with individual tokens (short PTI nets) as a
slightly different formalization of classical P/T nets. Intuitively, each PTI net is explicitly
equipped with a marking included into the structure of the net, which is no longer de-
fined as a sum of a monoid, but as a set of individuals. Then, considering a PTI net as
a graph-like structure, the marking (i.e., the tokens assigned to places) is also a subject
of transformation rules. We use PTI nets instead of the classical P/T net formalism, be-
cause they allow for two kinds of transformations on such nets using the DPO approach,
namely, transformations of the net structure as well as marking-changing transforma-
tions of the net modeling its firing behavior. Unfortunately, the marking-changing trans-
formations are not possible without restrictions for the reconfigurable Place/Transition
systems (short P/T systems)30 [223]. The reason for this problem is that the category
(PTSys,Minj) of P/T systems together with the class Minj of all injective morphisms al-
lowing to increase the number of tokens on corresponding places is not M-adhesive. The
adapted category (PTSys,Mstrict) of P/T systems together with the class Mstrict of all in-
jective morphisms where the number of tokens on the corresponding places stays equal
is indeed M-adhesive, but is inconvenient regarding the usability of the transformation
approach. Therefore the usage of PTI net transformation systems strictly increases the ex-
pressiveness compared to the classical reconfigurable P/T systems formalism. Moreover,
considering tokens as individuals makes the formalism of PTI nets even more similar
to typed attributed graphs, which gives a possibility to simulate and analyze Petri net
transformations by existing graph transformation tools like Agg [20, 206, 285]. The prac-

30 A reconfigurable P/T system consists of a marked P/T net (also called P/T system) and a set of net trans-
formation rules [153].
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ticability of the Petri net transformation approach with individual tokens is shown in
[105, 223, 116] introducing case studies on applications to communication spaces and
communication platforms.

For a classical P/T net N, we adapt the approach of Meseguer and Montanari [216]
using free commutative monoids P⊕ over P, where N = (P, T ,pre,post) with places P,
transitions T , pre- and post-domain functions pre,post : T → P⊕, and markings M ∈ P⊕.
A Petri net with individual tokens [224] consists of a classical P/T net together with a
set I of individual tokens and a marking function m : I → P assigning each token to
the corresponding place in the net. Therefore, two (or more) different individual tokens
x,y ∈ I may be on the same place, i.e., m(x) = m(y), while in the standard “collective
token approach” the marking M ∈ P⊕ tells us only how many tokens we have on each
place, but we are not able to distinguish between two tokens on the same place.

Different notions of individuality have been introduced in [266, 300] where tokens
are equipped with additional information influencing the firing of transitions. This ad-
ditional information is used to distinguish tokens, to store relevant data, or to store
information about the history of a token. This concept of high-level tokens with an ad-
ditional inner structure is orthogonal to the PTI net concept since PTI nets only extend
the standard Petri net formalism by explicit inclusion of a marking into the structure of
the net. These orthogonal approaches are combined in Algebraic High-Level nets (short
AHL nets) where tokens are individual tokens representing data elements from a given
algebra.

Note that in the following we are interested primarily in structure changing transfor-
mations of PTI nets in the context of our running example. However, our theoretical
results concerning the functorial behavior transfer (see Subsection 3.1.1) are also applica-
ble to marking changing transformations of PTI nets considered in detail in [224].

We start this subsection with the introduction of some important definitions and con-
cepts concerning PTI nets, which together with the corresponding morphisms form the
category PTINet. This category completed by the class M of all injective PTI net mor-
phisms is an M-adhesive category, as is already shown in [224]. We use the category
(PTINet,M) in the following chapters as the source category for the construction of the
concrete restricted M-functor FPTI translating PTI nets into the corresponding typed at-
tributed graphs. Furthermore, we consider in this subsection two kinds of boundary
construction for PTI nets (depending on the considered morphism class) leading to an
initial pushout in (PTINet,M) as well as give examples for a PTI net pushout, pullback
and initial pushout. Finally, in the end of this subsection, we give an example for a PTI
net transformation system, which we will use in the following as a running example for
the application of our theoretical results to PTI net transformation systems.

According to [224], PTI nets and morphisms between them are defined as follows.

Definition 38 (PTI Nets and PTI Net Morphisms [224]).
• A Petri net with individual tokens NI = (P, T ,pre,post, I,m) is given by a classical

P/T net N = (P, T ,pre : T → P⊕,post : T → P⊕) where P⊕ is the free commutative
monoid over P, I is a (possibly infinite) set of individual tokens, and m : I→ P is the mark-
ing function assigning to each individual token x ∈ I the corresponding place m(x) ∈ P.
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• A PTI net morphism f : NI1 → NI2 is given by a triple of functions f = (fP : P1 →
P2, fT : T1 → T2, fI : I1 → I2)

31 such that the following diagrams commute with pre and
post, respectively.

T1

=

P⊕1

T2 P⊕2

pre1

post1
fT f⊕P

pre2

post2

I1

=

P1

I2 P2

m1

fI fP

m2

The following example introduces the graphical representation of PTI nets as well as
demonstrates a valid morphism between two PTI nets.

Example 9 (PTI Nets and PTI Net Morphisms).
In the picture below to the left, a PTI net L is given with places p1,p2, transition t1 and individual
tokens a,b colored in black. The marking function mL : IL → PL assigns both individual tokens
to the place p1, i.e., mL(a) = mL(b) = p1. As usual for P/T nets, the numbers on arrows
between places and transitions denote how many individual tokens on places in the pre-domain
of some transition are needed to fire this transition, while the numbers between transitions and
places determine the number of tokens, which will be produced on the corresponding places in the
post-domain of the considered transition after its firing.
Consider another PTI net G given in the picture below to the right. The mapping f : L → G

as depicted in the picture below with dashed arrows is a valid PTI net morphism, because the
compatibility of f with pre- and post-domain functions as well as with the marking function
holds:

f⊕P (preL(t1)) = f
⊕
P (2p1) = 2p

′
1 = preG(t

′
1) = preG(fT (t1))

f⊕P (postL(t1)) = f
⊕
P (p2) = p

′
2 = postG(t

′
1) = postG(fT (t1))

fP(mL(a)) = fP(p1) = p
′
1 = mG(a

′) = mG(fI(a))

fP(mL(b)) = fP(p1) = p
′
1 = mG(b

′) = mG(fI(b))

a b

p1

t1

p2

L 2

1

a ′ b ′ c ′

p ′1

t ′1

p ′2 t ′2 p ′3

d ′

G

2

1

1 1

fP

fP

fT

fI

fI

31 Note, that we do not require for general PTI net morphisms to have an injective fI component, in order
to have pushouts and pullbacks in the category of PTI nets and to be able to show that this category is
M-adhesive. Nevertheless, we use the restriction to the injective fI component in the following for match
and rule morphisms. Furthermore, as given in Remark 8, token-injective PTI net morphisms preserve firing
steps of PTI nets, which can be expressed by rule application in the framework of DPO approach.
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The firing behavior of PTI nets is defined for marked Petri nets, also called Petri systems,
as firing steps (see [224]). Since tokens can be distinguished, a possible firing step for a
transition have to be considered in the context of a token selection. The token selection
gives us explicitly sets of tokens that should be consumed and produced in the firing
step.

Definition 39 (Firing Behavior of PTI Nets [224]).
A transition t ∈ T in a PTI netNI = (P, T ,pre,post, I,m) is enabled under a token selection
(M,m,N,n) where

• M ⊆ I is a set of tokens to be consumed by the firing step,
• m : I→ P is a marking function of NI,
• N is a set of tokens to be produced by the firing step such that holds (I\M)∩N = ∅,
• n : N→ P is a token mapping after firing the transition t,

if it meets the following token selection condition:[∑
i∈M

m(i) = pre(t)

]
∧

[∑
i∈N

n(i) = post(t)

]

If an enabled transition t fires, the follower marking (I ′,m ′) is given by I ′ = (I\M) ∪N and
m ′ : I ′ → P with

m ′(x) =

m(x) if x ∈ I\M
n(x) if x ∈ N

leading to the new PTI net NI ′ = (P, T ,pre,post, I ′,m ′) in the firing step NI 〉−t→ NI ′ via the
token selection (M,m,N,n).

An example for firing a transition is given in the following.

Example 10 (Firing of Transitions in PTI Nets).
Consider the PTI net L given in the left picture in Example 9. The transition t1 of L is obviously
enabled under the token selection (ML,mL,NL,nL) = ({a,b}, {(a,p1), (b,p1)}, {c}, {(c,p2)}).
The follower marking after firing the transition t1 is (I ′L ′ ,m

′
L ′) = ({c}, {(c,p2)}). Thus, the PTI

net L ′ = (PL ′ , TL ′ ,preL ′ ,postL ′ , I ′L ′ ,m
′
L ′) given in the picture below is the result of the firing

step L 〉−t1−→ L ′.

c

p1

t1

p2

L ′ 2

1

PTI net objects and morphisms, as given in Definition 38 above, form the category
PTINet.



2.4 concrete instantiations of M-adhesive transformation systems 65

Definition 40 (Category PTINet [224]).
All PTI nets as objects and all PTI net morphisms between them define the category of Petri
nets with individual tokens PTINet.

The following remark summarizes several important results, which hold for the cate-
gory PTINet.

Remark 8 (Relevant Facts about the Category of PTI Nets).
1. It is shown in [224] that token-injective PTI net morphisms preserve firing steps of PTI

nets, i.e., for each PTI net morphism f : NI1 → NI2 with injective fI-component and each

firing step NI1 〉−
t→ NI ′1 there is a firing step NI2 〉−

fT (t)−−−−→ NI ′2 and a PTI net morphism
f ′ : NI ′1 → NI ′2.

NI1 NI ′1

NI2 NI ′2

t

f
fT (t)

f ′

2. The behavior described before leads to the fact that firing of transitions can be expressed by
rule application.

3. It is shown in [224] that (PTINet,M) with the class M of all injective PTI net morphisms
is an M-adhesive category (see Theorem 5.2 there) where pushouts and pullbacks are con-
structed componentwise32 (see Facts 2.4 and 2.5 there). The diagram in Figure 19 in the
end of this subsection is an example for a pushout and pullback in the category PTINet.

As introduced in [224], we use the DPO approach for rule-based transformation of PTI
nets. PTI net transformation rules are spans of injective PTI net morphisms. Similar to
the case of hypergraphs, the applicability of PTI net transformation rules at some match
can be characterized by initial pushouts in the M-adhesive category (PTINet,M).

In order to construct an initial pushout over a match morphism in (PTINet,M), we
give a definition of a boundary object over a general match morphism f : L → G and
afterwards adapt this definition to the case of a match morphism from M. According
to [224], the boundary object in (PTINet,M) is a minimal subnet containing all places,
transitions, and individual tokens that must not be deleted by the application of a rule
such that there is a pushout complement. The boundary object over a general match
morphism f : L→ G in (PTINet,M) is given as follows.

Fact 9 (Boundary Object over a General Match Morphism in (PTINet,M) [224]).
Consider two PTI nets L = (PL, TL,preL,postL, IL,mL) and G = (PG, TG,preG,postG, IG,
mG). The boundary object B of an initial pushout over a general match morphism f : L → G

in the category (PTINet,M) can be constructed according to [224] as follows:

B = (PB, TB,preB,postB, IB,mB) where

PB = DPT ∪DPI ∪ IPP ∪ IPI ∪ PIPT ∪ PIPI
with dangling points

DPT = {p ∈ PL | ∃t ∈ TG\fT (TL).fP(p) ∈ (•t∪ t•)} ,

DPI = {p ∈ PL | ∃x ∈ IG\fI(IL).fP(p) = mG(x)} with mG : IG → PG,

32 Note that only pullbacks along injective PTI net morphisms are constructed componentwise in (PTINet,M).
Pullbacks over non-injective morphisms should be constructed according to Fact A.24 in [88].
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and identification points

IPP =
{
p ∈ PL | ∃p ′ 6= p.p ′ ∈ PL ∧ fP(p) = fP(p ′)

}
,

IPI =
{
x ∈ IL | ∃x ′ 6= x.x ′ ∈ IL ∧ fI(x) = fI(x ′)

}
,

PIPT = {p ∈ PL | ∃t ∈ IPT .p ∈ (•t∪ t•)} ,

PIPI = {p ∈ PL | ∃x ∈ IPI.p = mL(x)} with mL : IL → PL,

TB = IPT =
{
t ∈ TL | ∃t ′ 6= t.t ′ ∈ TL ∧ fT (t) = fT (t ′)

}
,

preB(t) = preL(t),

postB(t) = postL(t),

IB = IPI,

mB(x) = mL(x),

and b : B→ L is an inclusion.

B L

G

b

f

For our applications, we only consider the restriction of the category PTINet to M-
morphisms, denoted as PTINet|M33, in order to define in Section 8.2 the restricted M-
functor FPTI. The mentioned restriction is necessary since FPTI is not well-defined on
general morphisms. But we use the M-adhesive category (PTINet,M) in order to have
pushouts because the category (PTINet|M,M) is not M-adhesive due to the well-known
fact that the induced morphism of M-morphisms in a pushout diagram is in general not
necessarily an M-morphism.

Considering this restriction, we give a simplified construction of a boundary object
in the setting of M-morphisms. Obviously, the constructions in Fact 9 and Remark 9

coincide for M-morphisms.

Remark 9 (Boundary Object over an Injective Match Morphism in (PTINet,M)).
According to Fact 9 above, the boundary object B of an initial pushout over an injective match
morphism f : L → G in the category (PTINet,M) is given by the corresponding PTI net with
empty identification points, i.e., IPP = IPT = IPI = ∅, which also implies that PIPT = PIPI = ∅
and TB = IB = ∅. This simplifies the construction of the boundary object B in the following way:

B = (PB, TB,preB,postB, IB,mB) where

PB = DPT ∪DPI with

DPT = {p ∈ PL | ∃t ∈ TG\fT (TL). fP(p) ∈ (•t∪ t•)},
DPI = {p ∈ PL | ∃x ∈ IG\fI(IL). fP(p) = mG(x)} with mG : IG → PG,

TB = ∅, IB = ∅, preB = postB = mB = ∅,
and b : B→ L is an inclusion.

33 For the purpose of the restricted M-functor definition in Part iv, we denote the class of all injective PTI net
morphisms by M1 instead of M to emphasize that the category PTINet|M1

is the source category of the
restricted M-functor.
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After the suitable boundary object is constructed, we now recall in the following fact
the general construction of a context object in the category (PTINet,M) given in [224].

Fact 10 (Context Object in (PTINet,M) [224]).
Consider a PTI net match morphism f : L → G and the boundary object B over f constructed
according to Fact 9 above. The context object C is then defined as follows:

C = (PC, TC,preC,postC, IC,mC) where

PC = (PG\fP(PL))∪ fP(bP(PB)),
TC = (TG\fT (TL))∪ fT (bT (TB)),
IC = (IG\fI(IL))∪ fI(bI(IB)),
preC(t) = preG(t),

postC(t) = postG(t),

mC(x) = mG(x),

and c : C→ G is an inclusion.

B L

C G

b

f

c

We use in the following also the fact that the diagram constructed over an injective
morphism f : L → G with boundary and context objects, defined as described before,
results in an initial pushout over f, which is obviously a special case of Fact 2.10 from
[224] for the case of general morphisms.

Fact 11 (Initial Pushout over an Injective Match Morphism in (PTINet,M) [224]).
Consider a PTI net morphism f : L → G in M, a boundary object B constructed according
to Remark 9, a context object C constructed according to Fact 10, and inclusions b : B → L,
c : C → G. Then the diagram (1) given below is an initial pushout in (PTINet,M) with PTI
net morphism g : B→ C defined as g = f|B

34.

B

(1)

L

C G

b

g f

c

In the example below we construct an initial pushout in the category (PTINet,M)

according to Remark 9 and Facts 10, 11. Graphically this initial pushout is given in
Figure 19.

Example 11 (Construction of Initial Pushouts over Injective Match Morphisms in
(PTINet,M)).
Consider PTI nets L, G and an injective PTI net morphism f : L→ G as given in Figure 19. We
construct the boundary object B = (PB, TB,preB,postB, IB,mB) with the PTI net morphism
b : B → L according to Remark 9, the context object C = (PC, TC,preC,postC, IC,mC) with
the PTI net morphism c : C → G according to Fact 10 and the PTI net morphism g : B → C

according to Fact 11 as follows:
• B = (PB, TB,preB,postB, IB,mB) with

PB = DPT ∪DPI = {p2}∪ {p1,p2} = {p1,p2},

34 Since b and c are inclusions, the morphism g can be constructed as the restriction of f to the domain of g.
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1 : a 2 : b4 : p1

5 : t1

6 : p2L

2

1

4 : p1 6 : p2 B

3 : c ′4 : p ′1

6 : p ′2 8 : t ′2 9 : p ′3

7 : d ′

C

1 1

1 : a ′

2 : b ′

3 : c ′4 : p ′1

5 : t ′1

6 : p ′2 8 : t ′2 9 : p ′37 : d ′

G

2

1

1 1

b

f

g
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Figure 19: Pushout, pullback, and initial pushout in (PTINet,M)

TB = ∅,
preB = postB = ∅,
IB = ∅,
mB = ∅, and

b = (bP : PB → PL,bT : TB → TL,bI : IB → IL) = ({(p1,p1), (p2,p2)}, ∅, ∅).

• C = (PC, TC,preC,postC, IC,mC) with

PC = ({p ′1,p ′2,p ′3} \ fP({p1,p2}))∪ fP(bP({p1,p2})) = {p ′1,p ′2,p ′3},

TC = ({t ′1, t ′2} \ fT ({t1}))∪ fT (bT (∅)) = {t ′2},

preC(t
′
2) = preG(t

′
2) = p

′
2,

postC(t
′
2) = postG(t

′
2) = p

′
3,

IC = ({a ′,b ′, c ′,d ′} \ fI({a,b}))∪ fI(bI(∅)) = {c ′,d ′},

mC(c
′) = mG(c

′) = p ′1, mC(d ′) = mG(d ′) = p ′2, and

c = (cP : PC → PG, cT : TC → TG, cI : IC → IG)

= ({(p ′1,p ′1), (p
′
2,p ′2), (p

′
3,p ′3)}, {(t

′
2, t ′2)}, {(c

′, c ′), (d ′,d ′)}).

• g = (gP : PB → PC,gT : TB → TC,gI : IB → IC) = f|B = ({(p1,p ′1), (p2,p ′2)}, ∅, ∅)

We now introduce our running example of a concrete PTI net transformation system,
for which we want to analyze the confluence property later on by applying the corre-
sponding theoretical results of our approach.
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Example 12 (Mobile Dining Philosophers [207]).
This example is a cutout of the ”House of Philosophers” model introduced in [153]. We consider
only the restaurant part of the house of philosophers with only one table. Philosophers can take
place at the table or leave the table. To introduce a philosopher at the table, the sitting arrange-
ment has to be changed. The activities of philosophers are defined as by the classical ”Dining
Philosophers” model [58] where five philosophers sit at a round table with plates of spaghetti (see
the picture below). Between each two adjacent philosophers there is a fork lying on the table. The
philosophers must in turn think and eat spaghetti. To start eating, a philosopher needs two forks
to be available, one to the left and one to the right directly next to his plate. Each fork can be used
by only one philosopher at the same time. After a philosopher finishes eating spaghetti, he puts
both forks down, so that they become available to other philosophers.

In the mentioned cutout, called Mobile Dining Philosophers, we model the dynamic change of
the seating arrangement at a table using PTI net transformation rules. The firing of the PTI
net transitions models the traditional behavior of the philosophers, switching between thinking
and eating. The PTI net Ginit given in Figure 20 depicts five philosophers sitting at a table and
five forks lying between the philosophers on the table. A philosopher is represented by a subnet
consisting of places thi, eai and transitions ti, t ′i with the corresponding edges between them for
i ∈ {1, 2, 3, 4, 5}. Each philosopher is initially in the thinking state, which is indicated by a token
on each thi place. If two lfi places in the direct neighborhood of one of the philosophers are marked
with a token (e.g. lf1 and lf2 for the philosopher 1) and this philosopher is currently in a thinking
state, then the philosopher can take both forks and change into the eating state represented by firing
the corresponding ti transition. After the philosopher finishes eating, the t ′i transition can be fired
such that the philosopher puts down both forks by marking the corresponding two fork places lfi in
his neighborhood and returns back into the thinking state by marking the corresponding thinking
place thi.

The structural changes of the net occurring when a philosopher joins or leaves a table are
modeled by the corresponding PTI net transformation rules JoinTable and LeaveTable depicted in
Figure 21 considering first the case of rules without nested application conditions. The upper part
of Figure 21 shows the PTI net transformation rule JoinTable for reconfiguring the table when
another philosopher joins it, which is realized by integrating the subnet representing a philosopher
with his own fork into the current table structure. The transformation rule LeaveTable, depicted
in the lower part of Figure 21, represents the situation when one philosopher decides to leave the
table. In this case, the philosopher subnet with the corresponding fork is removed from the current
table structure. Obviously, the transformation rule LeaveTable is inverse to the rule JoinTable,
i.e., left-hand and right-hand sides of the rules are interchanged.
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Figure 20: PTI net modeling five philosophers sitting at a table
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Figure 21: PTI net transformation rules without nested application conditions modeling the be-
havior of the Mobile Dining Philosophers scenario

To give later an example for local confluence analysis of PTI net transformation systems con-
taining rules with nested application conditions, we extend the rule LeaveTable by an application
condition. Using this application condition, given by a disjunction of two PACs, we ensure that
a philosopher can leave the table only if there are at least two other philosophers sitting at the
table. The adapted rule is given in Figure 22. Since the left hand side already ensures that three
philosophers are sitting at the table, these two additional PACs do not alter the behavior of the
transformation system for the start PTI net at hand. We do not use alternative reasonable nested
application conditions restricting the behavior of the Mobile Dining Philosophers scenario since
their usage would result in diagrams too large for presentation purposes. However, the provided
example is adequate for showing the impact on the (local) confluence analysis of PTI net transfor-
mation systems containing rules with nested application conditions presented in Part iv.
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After our running example for a concrete PTI net transformation system is introduced,
we give an additional example for the strict AC-confluence of critical pairs in the context
of PTI net transformation systems.

Example 13 (Strict AC-Confluence of a Critical Pair in the Context of Mobile Dining
Philosophers Scenario).
In this example, we construct a critical pair of the rule LeaveTable (see Figure 22) with itself and
show that this critical pair is strictly AC-confluent according to Definition 29. First, we construct
a weak critical pair, i.e., a pair of AC-disregarding transformations with jointly surjective PTI net
morphisms o1 and o2 with o1 = o2 as given in Figure 23. The spans K ← N1 → P1 and
K ← N2 → P2 in the lower part of the Figure 23 represent the two conflicting rule applications
of the rule LeaveTable where one rule application deletes all transitions that are used by the other
rule application and creates the corresponding new ones. Note that this weak critical pair does
not satisfy the given nested application conditions, because there are no injective morphisms from
PAC1 to K or PAC2 to K making the corresponding triangles between L2 = L ′2, PAC1, and K
or between L2 = L ′2, PAC2, and K commute.

The weak critical pair in Figure 23 induces the following extension and conflict-inducing appli-
cation conditions acK and ac∗K on K according to Definition 25:

• acK = Shift(o1,ac-L2)∧ Shift(o2,ac-L ′2) = acK1 ∧ acK2 and
• ac∗K = ¬(ac∗K,d21 ∧ ac

∗
K,d12) = ¬(false ∧ false) = true

The extension application condition acK consists of the application conditions acK1 and acK2
with acK1 = acK2 marked by the outer gray rectangle in Figure 24, which we obtain by shifting
of ac-L2 and ac-L ′2 (see the parts marked by dashed rectangles in Figure 23) along morphisms
o1 and o2 to object K. The conflict-inducing application condition ac∗K is true, because there
are no morphisms d12 : L2 → N2 and d21 : L ′2 → N1 (depicted by scratched dashed arrows in
Figure 23) making the corresponding triangles commute.

The considered weak critical pair is a critical pair, because it can be embedded into a pair of

AC-regarding transformations H1
LeaveTable,m1⇐======== G

LeaveTable,m2========⇒ H2 (see Figure 25), so that the
embedding morphism m : K → G satisfies acK ∧ ac∗K and the match morphisms m1 : L2 → G,
m2 : L ′2 → G make the corresponding triangles between L2, K, and G resp. between L ′2, K, and
G commute.

Figure 26 shows that the embedding morphism m : K → G satisfies application conditions
acK1 = acK2 and hence also acK, because there is an injective PTI net morphism q1 : PAC ′1 → G

making the triangle (1) commute. Note that there is no injective PTI net morphism q2 : PAC ′2 →
G making the triangle (2) commute, but this does not arise a problem since for the satisfaction
of an application condition consisting of two application conditions connected by the disjunction
operator, it suffices that at least one of these conditions is satisfied (see Definition 16). Moreover,

m |= ac∗K since every morphism satisfies true. Thus we get that P1
LeaveTable,o1⇐======== K

LeaveTable,o2========⇒
P2 is a critical pair.

As the next step we have to check whether the critical pair constructed before is strictly AC-
confluent, i.e., the merging transformation steps t ′1, t ′2 are strictly confluent for the case if we
disregard application conditions as well as the extended AC-disregarding transformations t1 ,

K
LeaveTable,o1========⇒ P1

t ′1 ∗=⇒ K ′, t2 , K
LeaveTable,o2========⇒ P2

t ′2 ∗=⇒ K ′ are AC-compatible.
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In Figure 2735, we can see that the transformation steps K LeaveTable,o1========⇒ P1 and K LeaveTable,o2========⇒
P2 can be joined together to the PTI net K ′, because after applying the rule LeaveTable, we can
execute the identity transformation Id on the PTI nets P1 and P2 merging the both transformation
steps together to the object K ′ that is isomorphic to the PTI nets P1 and P2. Additionally, the
maximal substructure of K (corresponding to the PTI net N1 from Figure 23), that is preserved

by the critical pair, is also preserved by the merging identity transformations P1
Id,o ′1==⇒ K ′ and

P2
Id,o ′2==⇒ K ′. Therefore, the strictness condition holds as well.

Now it remains to show that the extended transformations t1 and t2 are AC-compatible, i.e.,
(acK ∧ ac∗K) ⇒ (ac(t1)∧ ac(t2)). For this reason we calculate the derived application condi-
tions ac(t1) and ac(t2) obtaining the following:

ac(t1) = ac(K
LeaveTable,o1========⇒ P1

Id,o ′1==⇒ K ′) = acK1 ∧ true,

ac(t2) = ac(K
LeaveTable,o2========⇒ P2

Id,o ′2==⇒ K ′) = acK2 ∧ true,

⇒ ac(t1)∧ ac(t2) = acK1 ∧ acK2

Since we already know that acK ∧ ac∗K = acK1 ∧ acK2 , we obtain the AC-compatibility for t1
and t2, because (acK1 ∧ acK2) ⇒ (acK1 ∧ acK2). Thus we have that the constructed critical

pair P1
LeaveTable,o1⇐======== K LeaveTable,o2========⇒ P2 is strictly AC-confluent.

35 Note that the inner square in Figure 27 including the critical pair is AC-disregarding, but the outer square
with G, H1, and H2 is AC-regarding.
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In this chapter, we introduce our framework of M-functors that provides a foundation
for the analysis of the system behavior and several relevant semantical properties of M-
adhesive transformation systems. In Section 3.1, we give a characterization of M-functors
by means of their sufficient technical properties ensuring that the objects related by an M-
functor behave equivalently with respect to the transformation steps defined according
to the rules of the respective transformation systems. This semantical compatibility of M-
functors with the DPO-based transformation step relation is the key aspect for the behav-
ior transfer. In Section 3.2, to capture the understanding of behavioral equivalence, we
introduce two notions of bisimilarity and cover thereby the transfer of the multi-step be-
havior among the given transformation systems in a different way compared to before in
Section 3.1. Using our first notion of bisimilarity, we verify that the objects of the source
transformation system are indeed bisimilar to their functor-translated counterparts in
the target transformation system, i.e., behavioral equivalent, as expected. Furthermore,
using our second notion of bisimilarity, we show that M-functors are also compatible
with the multi-step behavior in the sense that bisimulations in the source transformation
system of an M-functor coincide with the corresponding translated bisimulations in the
target transformation system. We consider bisimilarity in the context of these two no-
tions because it is a reasonable choice for interactive systems where equivalent objects
have equivalent enabled transformation steps that also preserve equivalence.

3.1 functorial behavior transfer between M-adhesive transformation

systems

In this section, we introduce the notion of M-functors between M-adhesive categories that
translate objects and morphisms from its source category into the corresponding objects
and morphisms of its target category as well as consider how to use the framework
of M-functors to analyze the behavior of M-adhesive transformation systems without
or with nested application conditions. The behavior of an M-adhesive transformation
system is given by the possible transformation steps that can be executed following the
DPO approach. As shown in the following, we can conclude under certain assumptions
that the transformation steps, which are possible in the source transformation system
of an M-functor, are also possible in its target transformation system and vice versa,
which altogether implies the behavioral equivalence of the functor-related parts of the
source and the target transformation systems. Furthermore, for the case of M-adhesive
transformation systems in which the restriction of the morphisms of the category to only
injective morphisms is required and where therefore the definition of general M-functors
is not possible, we adapt the introduced general theory to this special case defining an
M-functor on M-morphisms only. We call this adapted kind of M-functors the restricted
M-functors.

For the case of transformation systems containing rules with nested application con-
ditions, a transformation step can be executed only if the application conditions of the

81
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corresponding rule are satisfied. Considering this fact, we guarantee in the context of
our framework that if a match morphism satisfies some nested application condition
enabling a rule application then also the corresponding, by an M-functor translated,
match morphism satisfies the corresponding translated nested application condition and
vice versa. Using this property, we can apply our framework also to the transformation
systems containing rules with nested application conditions.

3.1.1 Translation and Creation of Transformations without Nested Application Conditions using
M-Functors

In order to obtain the desired semantical correspondence between two transformation
systems, we need to ensure that the systems together with their operational behavior
(or behavior for short) and relevant semantical properties are properly translated and
reflected (the latter is also called created in the following). In this subsection, we establish
a formal relationship between two corresponding M-adhesive transformation systems. In
particular, to ensure behavioral equivalence discussed before, we want to translate rule
applicability and (direct) transformations of the first M-adhesive transformation system
into the corresponding rule applicability and (direct) transformations of the second M-
adhesive transformation system and, vice versa, we want to create rule applicability
and (direct) transformations in the first M-adhesive transformation system from those
in the second M-adhesive transformation system. Note that in this subsection, we first
consider the case of transformations with arbitrary match morphisms, which we call
general match morphisms from here on, and formulate all results only for this general case,
while, afterwards, we discuss the differences as well as give some adapted definitions
and results for the transformations with M-match morphisms only.

We use the notion of an M-functor [207] to define a formal relationship between two
different M-adhesive transformation systems.

Definition 41 (M-Functor [207]).
Consider M-adhesive transformation systems AS1 = (C1,M1,P) and AS2 = (C2,M2,F(P)).1

A functor F : (C1,M1) → (C2,M2) between two M-adhesive categories is called M-functor if
F(M1) ⊆M2 and F preserves pushouts along M-morphisms2.

M-functors are assumed to satisfy the following basic technical properties, which are
required among others to derive the main results of this thesis.

Definition 42 (Properties of M-Functors [207]).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)) and an
M-functor F : (C1,M1)→ (C2,M2).

1. F creates morphisms if for each general morphism m ′ : F(L)→ F(G) in MorC2 there is
exactly one general morphism m : L→ G in MorC1 such that F(m) = m ′.

2. F preserves initial pushouts if for each initial pushout (1) in (C1,M1) over a general
match morphism m : L → G also (2) is an initial pushout in (C2,M2) over the general
match morphism F(m) : F(L)→ F(G).

1 By definition, each M-functor F translates each rule ρ = (L
l← K

r→ R) of the source M-adhesive transforma-

tion system with l, r ∈ M1 into F(ρ) = (F(L)
F(l)← F(K)

F(r)→ F(R)) in the target M-adhesive transformation
system with F(l),F(r) ∈M2.

2 Pushout along M-morphisms means that at least one of the span morphisms of the pushout diagram is
in M.
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The technical property of morphism creation guarantees further beneficial technical
properties used throughout the thesis, namely, that F creates identities and isomor-
phisms as well as that F is injective on objects and morphisms as stated in the following
three lemmas.

Lemma 8 (F Creates Identities and Isomorphisms).
Consider M-adhesive categories (C1,M1) and (C2,M2). Then an M-functor F : (C1,M1) →
(C2,M2) creates identities and isomorphisms if F creates morphisms.

Proof.
The detailed proof for this lemma is given in Appendix B on page 275. �

Lemma 9 (F is Injective on Objects).
Consider M-adhesive categories (C1,M1) and (C2,M2). Then an M-functor F : (C1,M1) →
(C2,M2) is injective on objects, i.e.,

∀H1,H2 ∈ ObC1 . (F(H1) = F(H2))⇒ (H1 = H2)

if F creates morphisms.

Proof.
The detailed proof for this lemma is given in Appendix B on page 276. �

Lemma 10 (F is Injective on Morphisms).
Consider M-adhesive categories (C1,M1) and (C2,M2). Then an M-functor F : (C1,M1) →
(C2,M2) is injective on morphisms, i.e.,

∀(F(m),F(n) : F(G)→ F(H)) ∈MorC2 . (F(m) = F(n))⇒ (m = n)

if F creates morphisms.

Proof.
The detailed proof for this lemma is given in Appendix B on page 276. �

Subsequently, we define when an M-functor translates and creates the operational
behavior between the involved M-adhesive transformation systems. This operational
behavior is given as usual by direct transformations and transformations, i.e., sequences
of direct transformations written G ∗⇒ H.

Definition 43 (Translation and Creation of Rule Applicability and Direct Transforma-
tions with General Match Morphisms [206]).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), and
an M-functor F : (C1,M1)→ (C2,M2).

• F translates applicability of a rule ρ = (L
l←− K r−→ R) in P to some object G in ObC1

if the applicability of ρ to G at some general match morphism m : L → G implies the

applicability of F(ρ) = (F(L)
F(l)←−−− F(K)

F(r)−−−→ F(R)) to F(G) at the general match
morphism F(m) : F(L)→ F(G).



84 behavior analysis of M-adhesive transformation systems using M-functors

• F translates direct transformations if for each direct transformation G ρ,m
=⇒ H in AS1

given by DPO (1) + (2) with a general match morphism m : L → G there is a direct

transformation F(G)
F(ρ),F(m)

=⇒ F(H) in AS2 given by DPO (3) + (4) with the general
match morphism F(m) : F(L)→ F(G).

L K R

G D H

(1) (2)

l r

m ⇒
F(L) F(K) F(R)

F(G) F(D) F(H)

(3) (4)

F(l) F(r)

F(m)

• F creates applicability of a rule ρ = (L
l←− K r−→ R) in P to some object G in ObC1 if

the applicability of F(ρ) = (F(L)
F(l)←−−− F(K)

F(r)−−−→ F(R)) to F(G) at some general match
morphism m ′ : F(L) → F(G) implies the applicability of ρ to G at the general match
morphism m : L→ G and F(m) = m ′.

• F creates direct transformations if for each direct transformation F(G)
F(ρ),m ′
=⇒ H ′ in

AS2 given by DPO (1 ′) + (2 ′) with a general match morphism m ′ : F(L) → F(G) there
is a direct transformation G ρ,m

=⇒ H in AS1 given by DPO (3 ′) + (4 ′) with the general
match morphism m : L → G such that F(m) = m ′ and F(H) ∼= H ′3 leading to the direct

transformation F(G)
F(ρ),F(m)

=⇒ F(H) in AS2.

F(L) F(K) F(R)

F(G) F(D) H ′ ∼= F(H)

(1 ′) (2 ′)

F(l) F(r)

m ′ = F(m) ⇒
L K R

G D H

(3 ′) (4 ′)

l r

m

Consider an M-adhesive transformation system AS1 = (C1,M1,P). As already men-
tioned before, we want to translate rule applicability and (direct) transformations from
AS1 to AS2 = (C2,M2,F(P)) with translated rules F(P) and, vice versa, to create rule
applicability and (direct) transformations in AS1 from those in AS2. This can be han-
dled by the following theorem already introduced and shown in [207]. Note that for the
source and the target transformation systems of an M-functor F, Theorem 1 guarantees
the behavioral equivalence of their functor-related parts.

Theorem 1 (Translation and Creation of Rule Applicability and (Direct) Transforma-
tions for Rules without Nested Application Conditions [207]).
Consider M-adhesive transformation systems AS1 = (C1,M1,P) and AS2 = (C2,M2,F(P)).
Each M-functor F : (C1,M1) → (C2,M2) translates rule applicability and (direct) transforma-
tions. Vice versa, F creates rule applicability and (direct) transformations if (C1,M1) has initial
pushouts and F creates morphisms as well as preserves initial pushouts.

Proof.
• Translation:

– F translates rule applicability:
Consider additionally a rule ρ = (L

l←− K r−→ R) ∈ P1, which is applicable to some
object G in AS1 at a general match morphism m : L → G. Since ρ is applicable
to G in AS1 by assumption, there is a pushout complement D in a pushout (1).
This implies that there is the pushout complement F(D) in pushout (3), because F

preserves pushouts along M-morphisms. Thus, we obtain that the rule F(ρ) ∈ P2

3 A ∼= B means that there is an isomorphism i : A→ B.
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with F(ρ) = (F(L)
F(l)←−−− F(K)

F(r)−−−→ F(R)) is applicable to F(G) in AS2 at the
general match morphism F(m) : F(L)→ F(G).

– F translates direct transformations:
The fact that (2) is a pushout in C1 implies directly that (4) is a pushout in C2,
because F preserves pushouts along M-morphisms. Furthermore, the direct transfor-
mation G ρ,m

=⇒ H with a general match morphism m in AS1 implies the existence of

the corresponding direct transformation F(G)
F(ρ),F(m)

=⇒ F(H) with a general match
morphism F(m) : F(L) → F(G) in AS2. Thus, we have by Definition 43 that F

translates AS1-transformations into the corresponding AS2-transformations.

L K R

G D H

(1) (2)

l r

m ⇒
F(L) F(K) F(R)

F(G) F(D) F(H)

(3) (4)

F(l) F(r)

F(m)

• Creation:
– F creates rule applicability:

Consider additionally a rule F(ρ) = (F(L)
F(l)←−−− F(K)

F(r)−−−→ F(R)) ∈ P2, which is
applicable to some object F(G) in AS2 at a general match morphism m ′ : F(L) →
F(G). Since F creates morphisms by assumption, we have a unique general match
morphism m : L → G with F(m) = m ′. Let (1) be an initial pushout over m in
(C1,M1). By assumption on F, (2) is an initial pushout over F(m) and (4), (5)
are pushouts in (C2,M2). This means that all requirements for the applicability
of the rule F(ρ) to the object F(G) at the match morphism m ′ = F(m) are satisfied.
According to Definition 5, this implies the existence of a morphism b ′′ : F(B)→ F(K)

in M2 with F(l) ◦ b ′′ = F(b). Since F creates morphisms by assumption, there is
a unique morphism b ′ : B → K with F(b ′) = b ′′. Moreover, the uniqueness of
morphism creation implies that l ◦ b ′ = b and hence b ′ ∈ M1 by decomposition
property of M1. Therefore, the gluing condition is satisfied and we have applicability
of the rule ρ to the object G at the general match morphism m : L→ G and a pushout
complement D in pushout (3).

– F creates direct transformations:

Consider the direct transformation F(G)
F(ρ),m ′
=⇒ H ′ given by pushouts (4) and (5)

with a general match morphism m ′ in AS2. We have already constructed the pushout
(3) in C1 and can construct the pushout (6) along the morphism r ∈ M1 lead-
ing to a direct transformation G ρ,m

=⇒ H with a general match morphism m in AS1.
Since F preserves pushouts along M-morphisms and pushout complements in C2 are
unique up to isomorphism, we have that F(D) ∼= D ′, F(H) ∼= H ′ and hence also

F(G)
F(ρ),F(m)

=⇒ F(H) with the general match morphism F(m) is a direct transforma-
tion in AS2. Thus, we have by Definition 43 that F creates AS1-transformations from
the corresponding AS2-transformations.
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L K RB

C G D H

(3) (6)(1)

l r

m

b ′

g

b

⇐
F(L) F(K) F(R)F(B)

F(C) F(G) D ′ H ′

(4) (5)(2)

F(l) F(r)

m ′

b ′′

F(b)

F(g)

�

The result from Theorem 1 holds also for sequences of direct transformations. This
can be easily shown by induction over the length of a transformation sequence where
Theorem 1 is used to show the induction step.

If we want to consider only (direct) transformations with injective match morphisms,
as it is reasonable in the case of PTI net transformations in our application, then it suf-
fices to define the M-functor F on injective morphisms only. We call this special kind of
an M-functor a restricted M-functor [207] and denote it in the following by FR. Moreover,
the mentioned restriction is necessary if the non-restricted functor is not well-defined for
non-injective morphisms. Subsequently, we discuss the adaptation of all notions, con-
structions, and results already considered in this subsection to the case of transforma-
tions with M-match morphisms. We apply this adapted theory in Part iv to the functor
between the categories of PTI nets and typed attributed graphs.

According to [207], the formal definition of a restricted M-functor is as follows.

Definition 44 (Restricted M-Functor [207]).
Consider M-adhesive transformation systems AS1 = (C1,M1,P) and AS2 = (C2,M2,FR(P)).
A functor FR : C1|M1

→ C2|M2
between two M-adhesive categories (C1,M1) and (C2,M2)

with Ci|Mi
the restriction of Ci to Mi-morphisms for i ∈ {1, 2} is called a restricted M-functor

if FR(M1) ⊆ M2 and FR translates pushouts of M1-morphisms4 in (C1,M1) into pushouts of
M2-morphisms in (C2,M2).

The following two definitions are very similar to the Definitions 42 and 43 already
introduced in this subsection. Nevertheless, we include these definitions to clarify the
arising differences compared to the general case.

Definition 45 (Properties of Restricted M-Functors [206]).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,FR(P)), and
a restricted M-functor FR : C1|M1

→ C2|M2
.

1. FR creates M-morphisms if for each M2-morphism m ′ : FR(L) → FR(G) in MorC2
there exists exactly one M1-morphism m : L→ G in MorC1 such that FR(m) = m ′.

2. FR preserves initial pushouts over M-morphisms if for each initial pushout (1) in
(C1,M1) over an M1-morphismm : L→ G also (2) is an initial pushout in (C2,M2) over
an M2-morphism FR(m) : FR(L)→ FR(G).

B

(1)

L

C G

b

m

c

⇒

IPO in (C1,M1) IPO in (C2,M2)

FR(B)

(2)

FR(L)

FR(C) FR(G)

FR(b)

FR(m)

FR(c)

4 Pushout of M-morphisms means that both of the span morphisms of the pushout diagram are in M.
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Definition 46 (Translation and Creation of Rule Applicability and Direct Transforma-
tions with M-Match Morphisms [206]).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,FR(P)), and
a restricted M-functor FR : C1|M1

→ C2|M2
.

• FR translates applicability of a rule ρ = (L
l←− K r−→ R) in P to some object G in ObC1 if

the applicability of ρ to G at some M-match morphism m : L→ G implies the applicability

of FR(ρ) = (FR(L)
FR(l)←−−− FR(K)

FR(r)−−−−→ FR(R)) to FR(G) at the M-match morphism
FR(m) : FR(L)→ FR(G).

• FR translates direct transformations if for each direct transformation G ρ,m
=⇒ H in AS1

given by DPO (1) + (2) with an M-match morphism m : L → G there is a direct trans-

formation FR(G)
FR(ρ),FR(m)

=⇒ FR(H) in AS2 given by DPO (3) + (4) with the M-match
morphism FR(m) : FR(L)→ FR(G).

L K R

G D H

(1) (2)

l r

m ⇒
FR(L) FR(K) FR(R)

FR(G) FR(D) FR(H)

(3) (4)

FR(l) FR(r)

FR(m)

• FR creates applicability of a rule ρ = (L
l←− K r−→ R) in P to some object G in ObC1 if

the applicability of FR(ρ) = (FR(L)
FR(l)←−−− FR(K)

FR(r)−−−−→ FR(R)) to FR(G) at some M-
match morphism m ′ : FR(L) → FR(G) implies the applicability of ρ to G at the M-match
morphism m : L→ G and FR(m) = m ′.

• FR creates direct transformations if for each direct transformation FR(G)
FR(ρ),m ′
=⇒ H ′

in AS2 given by DPO (1 ′) + (2 ′) with an M-match morphism m ′ : FR(L)→ FR(G) there
is a direct transformation G ρ,m

=⇒ H in AS1 given by DPO (3 ′) + (4 ′) with the M-match
morphism m : L → G such that FR(m) = m ′ and FR(H) ∼= H ′ leading to the direct

transformation FR(G)
FR(ρ),FR(m)

=⇒ FR(H) in AS2.

FR(L) FR(K) FR(R)

FR(G) FR(D) H ′ ∼= FR(H)

(1 ′) (2 ′)

FR(l) FR(r)

m ′ = FR(m) ⇒
L K R

G D H

(3 ′) (4 ′)

l r

m

The following theorem adapts Theorem 1 to the case of transformations with M-match
morphisms ensuring the behavioral equivalence of the functor-related parts of the source
and the target transformation systems of a restricted M-functor. Each restricted M-
functor must satisfy the adapted requirements to be able to translate and create rule
applicability and (direct) transformations.

Theorem 2 (Translation and Creation of Rule Applicability and (Direct) Transforma-
tions with M-Match Morphisms for Rules without Nested Application Conditions [207]).
Consider M-adhesive transformation systems AS1 = (C1,M1,P) and AS2 = (C2,M2,FR(P)).
Each restricted M-functor FR : C1|M1

→ C2|M2
translates rule applicability and (direct) trans-

formations. Vice versa, FR creates rule applicability and (direct) transformations if (C1,M1)

has initial pushouts and FR creates M-morphisms as well as preserves initial pushouts over M-
morphisms.
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Proof.
The proof for this theorem works analogously to the proof of Theorem 1. For more details see [206].

�

To summarize the additional properties of restricted M-functors, we introduce the
following remark.

Remark 10 (Additional Properties Holding for Restricted M-Functors).
The properties given in Lemmas 8 - 10 hold also for restricted M-functors. The proofs for these
adapted properties work analogously using as assumptions the corresponding restricted M-functor
properties given in Definition 45. Note that we cannot replace the M-adhesive categories (Ci,Mi)

for i ∈ {1, 2} by (Ci|Mi
,Mi), because (Ci|Mi

,Mi) are in general not M-adhesive.

In the following chapters, we are introducing various definitions and results for the
general setting of M-functors, which could be often formulated identically for the setting
of restricted M-functors. For brevity and readability, we omit the explicit inclusion of all
these similar definitions and results. Where necessary, we point out how the correspond-
ing definitions and results for the setting of restricted M-functors deviate.
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3.1.2 Translation and Creation of Transformations with Nested Application Conditions using
M-Functors

In this subsection, we extend our theoretical results on the translation and creation of rule
applicability and (direct) transformations introduced in the previous subsection to the
case of transformation systems with nested application conditions enabling their functo-
rial behavior transfer. In particular, we first define how nested application conditions can
be translated using M-functors as well as recall how the satisfaction relation is defined
for translated nested application conditions. Afterwards, we show that a nested appli-
cation condition is satisfied by some morphism in the source transformation system of
the considered M-functor if and only if the corresponding translated nested application
condition is satisfied by the corresponding translated morphism in the target transforma-
tion system. This result is important for the extension of Theorem 1 to transformations
with nested application conditions, which we present in the end of this subsection in
Theorem 3.

As the first step, we define how nested application conditions can be translated by
an M-functor as well as adapt the notion of satisfaction to the case of translated nested
application conditions.

Definition 47 (Translated Nested Application Condition [213]).
Consider an M-functor F : (C1,M1) → (C2,M2). A nested application condition acP over an
object P can be translated by F into a nested application condition F(acP) over an object F(P)
as follows:

• F(true) = true for acP = true,
• F(∃(a,acC)) = ∃(F(a),F(acC)) for acP = ∃(a,acC),
• F(¬acP) = ¬(F(acP)),
• F(

∧
i∈I acP,i) =

∧
i∈I F(acP,i) where acP,i is a nested application condition with i ∈ I

for some index set I,
• F(

∨
i∈I acP,i) =

∨
i∈I F(acP,i) where acP,i is a nested application condition with i ∈ I

for some index set I.

Remark 11 (Satisfaction of Translated Nested Application Conditions [213]).
Consider an M-functor F : (C1,M1) → (C2,M2). A translated nested application condition
F(acP) is a nested application condition over an object F(P). Hence the satisfaction relation is
defined as follows:

• Every morphism in C2 satisfies F(true).
• A morphism p ′ : F(P) → G ′ satisfies a nested application condition ∃(F(a),F(acC))

where F(acC) is a nested application condition over an object F(C) if there is a morphism
q ′ : F(C)→ G ′ in M2 such that q ′ ◦F(a) = p ′ and q ′ |= F(acC) (see Figure 28).

• p ′ |= ¬F(acP) means that p ′ 6|= F(acP).
• p ′ |=

∧
i∈I F(acP,i) means that for all i ∈ I it holds that p ′ |= F(acP,i).

• p ′ |=
∨
i∈I F(acP,i) means that for some i ∈ I it holds that p ′ |= F(acP,i).

An example for a concrete translated nested application condition and its satisfaction
is given in Example 14 in Figure 36 (see Section 6.1) where the NAC of the hypergraph
transformation rule enterServer (see Figure 13) is translated by the M-functor FHG in-
troduced in Definition 63 leading to the NAC of the translated rule FHG(enterServer)

depicted in Figure 39.
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F(acP).F(P)

=

F(C)/F(acC)

G ′

F(a)

p ′ q ′ ∈M2

Figure 28: Diagram for satisfaction of a nested application condition F(acP) = ∃(F(a),F(acC)).

The following lemma states that we can translate and create the satisfaction of nested
application conditions using M-functors. This is important for the translation and cre-
ation of direct transformations since the nested application conditions related to the rules
of the source transformation system must restrict the rule applications equivalently to
the corresponding translated rules in the target transformation system.

Lemma 11 (Satisfaction of Nested Application Conditions [213]).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), and
an M-functor F : (C1,M1) → (C2,M2) that creates (M-)morphisms5. Then a morphism p :

P → G satisfies a nested application condition acP in AS1 iff the corresponding morphism
F(p) : F(P)→ F(G) satisfies the nested application condition F(acP) in AS2.

Proof.
This lemma can be proved by induction over the depth of a nested application condition. For
detailed proof see Appendix B on page 276. �

Now we can extend Theorem 1 to the translation and creation of transformations for
rules with nested application conditions according to the following theorem. This exten-
sion allows for the functorial behavior transfer in this generalized setting.

Theorem 3 (Translation and Creation of Rule Applicability and (Direct) Transforma-
tions for Rules with Nested Application Conditions).
Consider M-adhesive transformation systems AS1 = (C1,M1,P) and AS2 = (C2,M2,F(P))
containing rules with nested application conditions. Each M-functor F : (C1,M1) → (C2,M2)

translates rule applicability and (direct) transformations. Vice versa, F creates rule applicability
and (direct) transformations if (C1,M1) has initial pushouts and F creates (M-)morphisms as
well as preserves initial pushouts.

Proof.
• Translation:

– F translates rule applicability:
Assume that a rule ρ = (p = (L

l←− K r−→ R),acL) ∈ P is applicable to some object
G in AS1 at some general match morphism m : L → G. This implies that there is
a pushout complement D such that (1) is a pushout and m satisfies the nested appli-
cation condition acL according to Definition 18. Since F preserves pushouts along
M-morphisms, there is the pushout complement F(D) such that (2) is a pushout.
Furthermore, according to Lemma 11, we have that the translated general match mor-
phism F(m) : F(L) → F(G) satisfies the corresponding translated nested applica-

tion condition F(acL). Hence, the rule F(ρ) = (F(p) = (F(L)
F(l)← F(K)

F(r)→

5 F creates (M-)morphisms means that F creates both morphisms and M-morphisms. Note that if we formu-
late this lemma for a restricted M-functor, it suffices to require that FR creates M-morphisms only.
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F(R)),F(acL)) ∈ F(P) with translated nested application condition F(acL) is appli-
cable at the translated general match morphism F(m).

acL.L K R

G D

(1)

l r

m ⇒
F(acL).F(L) F(K) F(R)

F(G) F(D)

(2)

F(l) F(r)

F(m)

– F translates direct transformations:
As the next step, we construct pushout (3) over the morphisms k : K → D and
r : K→ R leading together with pushout (1) to the direct transformation G ρ,m

=⇒ H in
AS1. Since F preserves pushouts along M-morphisms, we have that (4) is a pushout

as well. Hence, we get by DPO (2) + (4) the direct transformation F(G)
F(ρ),F(m)

=⇒
F(H) in AS2. Thus, we have by Definition 43 that F translates direct transforma-
tions.

acL.L K R

G D H

(1) (3)

l r

m
k ⇒

F(acL).F(L) F(K) F(R)

F(G) F(D) F(H)

(2) (4)

F(l) F(r)

F(m)
F(k)

• Creation:
– F creates rule applicability:

Assume that a translated rule F(ρ) = (F(p) = (F(L)
F(l)← F(K)

F(r)→ F(R)),F(acL))
∈ F(P) is applicable to some object F(G) in AS2 at some general match morphism
m ′ : F(L) → F(G). Since F creates morphisms by assumption, we have a unique
general match morphism m : L → G such that F(m) = m ′. Let (1) be an initial
pushout over m in (C1,M1). By assumption on F, (2) is an initial pushout over
F(m) and (4), (5) are pushouts in (C2,M2). Then we have according to Definition 5
that there is a morphism b ′′ : F(B)→ F(K) in M2 with F(l) ◦b ′′ = F(b). Moreover,
since F(ρ) is applicable to F(G) at the general match morphism m ′, we know that
m ′ satisfies the translated nested application condition F(acL) and D ′ is a pushout
complement in pushout (4) (see Definition 18). Since F creates morphisms by as-
sumption, there is a unique morphism b ′ : B → K with F(b ′) = b ′′. Moreover,
the uniqueness of morphism creation implies that l ◦ b ′ = b and hence b ′ ∈ M1

by decomposition property of M1. Therefore, the gluing condition for the plain case
is satisfied and we have a pushout complement D in pushout (3). Now, applying
Lemma 11, we obtain additionally that the general match morphism m satisfies the
nested application condition acL, because F creates (M-)morphisms by assumption.
Hence, using Definition 18, we have that the rule ρ is applicable to the object G at the
general match morphism m, which implies that F creates rule applicability.

O
acL

L K RB

C G D

(3)(1)

l r

m

b ′

b

⇐
O

F(acL)

F(L) F(K) F(R)F(B)

F(C) F(G) D ′ H ′

(4) (5)(2)

F(l) F(r)

m ′

b ′′

F(b)
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– F creates direct transformations:

Consider now the direct transformation F(G)
F(ρ),F(m)

=⇒ H ′ in AS2 given by DPO
(4) + (5) with F(m) and F(ρ) as considered before. We have already constructed
pushout (3) in (C1,M1) and can construct pushout (6) along the morphisms k :

K → D and r : K → R leading to a direct transformation G ρ,m
=⇒ H with the general

match morphismm. Since F preserves pushouts along M-morphisms and pushouts as
well as pushout complements in (C2,M2) are unique up to isomorphism, we have that

F(D) ∼= D ′, F(H) ∼= H ′ leading to the direct transformation F(G)
F(ρ),F(m)

=⇒ F(H)

inAS2. Thus, we obtain that F creates direct transformations using Definition 43 and
the fact that the general match morphism m satisfies the nested application condition
acL as shown in the previous part of the proof.

O
acL

L K RB

C G D H

(3) (6)(1)

l r

m

b ′

k

b

⇐
O

F(acL)

F(L) F(K) F(R)F(B)

F(C) F(G) D ′ H ′

F(D) F(H)

(4) (5)(2)

∼ ∼

F(l) F(r)

m ′

b ′′

F(k)

F(b)

�

The result from Theorem 3 holds also for sequences of direct transformations. This
can be easily shown by induction over the length of a transformation sequence where
Theorem 3 is used to show the induction step.

The following remark summarizes how Theorem 3 can be applied to transformations
with M-match morphisms.

Remark 12 (Translation and Creation of Rule Applicability and (Direct) Transforma-
tions with M-Match Morphisms for Rules with Nested Application Conditions).
Note that Theorem 3 is formulated and shown for the case of transformations with general match
morphisms. Nevertheless, this theorem holds also for transformations with M-match morphisms
requiring the existence of initial pushouts in (C1,M1) as well as the creation of M-morphisms
and preservation of initial pushouts over M-morphisms by a restricted M-functor instead of the
assumptions listed in Theorem 3.
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3.2 bisimulation-based behavior analysis of M-adhesive

transformation systems

In this section, we relate the behavioral equivalence in terms of Theorems 1, 2, and 3

from the previous section to the notion of bisimilarity [217]. In contrast to the approach
introduced in the previous section, where we compared the multi-step behaviors of the
two systems by comparing their possible sequences of direct transformations, the notion
of bisimilarity compares additionally the interactive behavior of the involved systems
by relating their enabled steps throughout the execution. We fill the gap between the
approach introduced in the previous section and the notion of bisimilarity to enable fur-
ther development of our theory and to emphasize the general applicability of our theory
developed so far. We achieve this by, firstly, introducing the definition of bisimilarity
in our framework of M-adhesive transformation systems and by, secondly, relating the
results from the previous section to the introduced notion of bisimilarity focusing on
two application scenarios. We are interested in two different kinds of bisimilarity: inter-
transformation-system bisimilarity and intra-transformation-system bisimilarity. For a
given M-functor F, we speak of an inter-transformation-system bisimilarity if an object
X of the source transformation system and its functor-translated counterpart, the object
F(X), are behavioral equivalent (i.e., the M-Functor F induces a unique bisimulation
between objects of the source transformation system and the corresponding F-images
contained in the target transformation system where transformation rules are related
via F). Moreover, considering a given M-functor F, we have an intra-transformation-
system bisimilarity if it holds that two objects X and Y behave in the source transfor-
mation system equivalently if and only if their functor-translated counterparts F(X) and
F(Y) behave equivalently also in the target transformation system.

In the following two subsections, we introduce the notion of bisimilarity in the con-
text of M-adhesive transformation systems without or with nested application condi-
tions as well as characterize how bisimilarity is induced by means of an M-functor (see
Subsection 3.2.1) and how an M-functor translates and creates bisimulations among the
involved M-adhesive transformation systems (see Subsection 3.2.2).

3.2.1 F-Bisimilarity

In this subsection, we introduce the notions of R-simulations and R-bisimulations along
with some basic properties, before formally verifying that M-functors transfer the behav-
ior of M-adhesive transformation systems with respect to our notion of bisimulation.

We begin this subsection with the technical notion of isomorphism closure. We need
this notion in the context of category theory where objects are related to each other
up to isomorphism. Formally, this means that if two objects are in the relation A and
additionally there are two objects isomorphic to the given objects, then the isomorphic
objects are in the isomorphism closure of A.

Definition 48 (Isomorphism Closure).
Consider categories C1 and C2 and a binary relation A ⊆ ObC1 ×ObC2 . Then the isomorphism
closure of A is given by IC(A) = {(G,G ′) | ∃(G,G ′) ∈ A. G ∼= G ∧ G ′ ∼= G

′
}.

G

G

G
′

G ′

∼ ∼

IC(A)

A
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We build on the well-known definitions of simulation and bisimulation from [217] to
be able to compare the behavior of different M-adhesive transformation systems without
or with nested application conditions.

Definition 49 (R-Simulation, R-Similarity [217]).
Consider M-adhesive transformation systems AS1 = (C1,M1,P1), AS2 = (C2,M2,P2), a rule
relation R ⊆ P1 × P2, and objects G1 ∈ ObC1 , G2 ∈ ObC2 .

• A binary relation SR ⊆ ObC1 × ObC2 is an R-simulation iff for each pair of objects
(G1,G2) ∈ SR whenever a transformation step G1

ρ1,m1=⇒ H1 is possible in AS1 with
a rule ρ1 ∈ P1 and a match morphism m1, there is an object H2 ∈ ObC2 such that a
transformation step G2

ρ2,m2=⇒ H2 is possible in AS2 and (H1,H2) ∈ SR with ρ2 ∈ P2,
(ρ1, ρ2) ∈ R, and a match morphism m2.

• G1 R-simulates G2, written G1 �R G2, iff there is an R-simulation SR ⊆ ObC1 ×ObC2

such that (G1,G2) ∈ SR.
• The binary relation �R ⊆ ObC1 ×ObC2 is also called R-similarity.

G1

H1

G2

H2

G1 �R G2

ρ1
R←→ ρ2

ρ1,m1 ρ2,m2

SR

SR

Definition 50 (R-Bisimulation, R-Bisimilarity [217]).
Consider M-adhesive transformation systems AS1 = (C1,M1,P1), AS2 = (C2,M2,P2), and
objects G1 ∈ ObC1 , G2 ∈ ObC2 .

• A binary relation BR ⊆ ObC1 ×ObC2 is called R-bisimulation iff BR is an R-simulation
and B−1

R is an R−1-simulation according to Definition 49.
• G1 and G2 are R-bisimilar, written G1 ∼R G2, iff there is an R-bisimulation BR ⊆
ObC1 ×ObC2 such that (G1,G2) ∈ BR.

• The binary relation ∼R ⊆ ObC1 ×ObC2 is also called R-bisimilarity.

As usual for category theory, we consider objects occurring in R-simulations resp. R-
bisimulations up to isomorphism. This corresponds in general to the notion of simula-
tion/bisimulation up to isomorphism.

Lemma 12 (R-Simulations are Closed under Isomorphism Closure).
Consider M-adhesive transformation systems AS1 = (C1,M1,P1), AS2 = (C2,M2,P2), a rule
relation R ⊆ P1 × P2, and an R-simulation SR ⊆ ObC1 ×ObC2 . Then the isomorphism closure
IC(SR) ⊆ ObC1 ×ObC2 of SR is an R-simulation.

Proof.
The detailed proof for this lemma is given in Appendix B on page 279. �
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Lemma 13 (R-Bisimulations are Closed under Isomorphism Closure).
Consider M-adhesive transformation systems AS1 = (C1,M1,P1), AS2 = (C2,M2,P2), a rule
relation R ⊆ P1× P2, and an R-bisimulation BR ⊆ ObC1 ×ObC2 . Then the isomorphism closure
IC(BR) ⊆ ObC1 ×ObC2 of BR is an R-bisimulation.

Proof.
The detailed proof for this lemma is given in Appendix B on page 280. �

When considering M-adhesive transformation systems AS1 = (C1,M1,P), AS2 =

(C2,M2,F(P)), and an M-functor F : (C1,M1) → (C2,M2) between the underlying M-
adhesive categories in this thesis, the rule relation R from Definition 49 identifies the
rules according to the functorial translation, i.e., R = {(ρ,F(ρ)) | ρ ∈ P}. Thus, we use in
this situation the terms F-simulation (F-similarity) resp. F-bisimulation (F-bisimilarity)
instead of R-simulation (R-similarity) resp. R-bisimulation (R-bisimilarity).

The following theorem states for transformation systems without or with nested ap-
plication conditions that every transformation step in the source transformation system
of an M-functor can be F-simulated by the corresponding translated transformation step
in the target transformation system and vice versa using an F-bisimulation. This F-
bisimulation corresponds to the notion of the inter-transformation-system bisimulation
discussed before relating objects from two different M-adhesive transformation systems
and ensures the behavioral equivalence of the functor-related parts of the involved trans-
formation systems.

Theorem 4 (F-Bisimilarity of M-Adhesive Transformation Systems).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), and
an M-functor F : (C1,M1) → (C2,M2) that creates (direct) transformations according to Theo-
rem 3 and (M-)morphisms6. Then for every objectG ∈ ObC1 inAS1 it holds thatG is F-bisimilar
to the corresponding object F(G) ∈ ObC2 in AS2, written G ∼F F(G).

Proof.
We have to show that G ∼F F(G), which means according to Definition 50 that there is a
relation BF ⊆ ObC1 ×ObC2 such that BF is an F-simulation, B−1

F ⊆ ObC2 ×ObC1 is an F−1-
simulation, and (G,F(G)) ∈ BF.
Define BF = {(G,F(G)) | G ∈ ObC1}. Furthermore, according to the definition of BF, we ob-
viously have that (G,F(G)) ∈ BF. It remains to show that BF and B−1

F are F- resp. F−1-
simulations.

• Part 1 (BF is an F-simulation):
Assume that (G,F(G)) ∈ BF. According to Definition 49, (G,F(G)) ∈ BF must imply
that

∀H ∈ ObC1 , ρ ∈ P,m : L→ G. ((G
ρ,m
=⇒ H)

⇒ (∃H ′ ∈ ObC2 ,m
′ : F(L)→ F(G). (F(G)

F(ρ),m ′
=⇒ H ′ ∧ (H,H ′) ∈ BF))).

Assume the premise of the statement and fix H ∈ ObC1 , ρ ∈ P, m ∈MorC1 . Since F pre-
serves commuting diagrams by general functor property and pushouts along M-morphisms

by the M-functor property, we have the transformation step F(G)
F(ρ),F(m)

=⇒ F(H) in AS2
(for the case if the considered transformation step in AS1 contains a nested application

6 Note that if we formulate this theorem for a restricted M-functor, we require that FR creates (direct) trans-
formations according to Remark 12 and M-morphisms according to Definition 45. The proof for the adapted
theorem works analogously to that of the current theorem.
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condition acL satisfied by the match morphism m by assumption, we additionally obtain
by Lemma 11 that also the translated match morphism F(m) satisfies the corresponding
translated nested application condition F(acL)). Thus, there are an object H ′ = F(H)

with the transformation step F(G)
F(ρ),F(m)

=⇒ F(H) and the match morphism m ′ = F(m).
Furthermore, (H,F(H)) ∈ BF according to the definition of BF given above. This implies
that BF is an F-simulation.

G

H

F(G)

H ′ = F(H)

ρ,m F(ρ),m ′ = F(m)

BF

BF

• Part 2 (B−1
F is an F−1-simulation):

Assume that (F(G),G) ∈ B−1
F . According to Definition 49, (F(G),G) ∈ B−1

F must imply
that

∀H ′ ∈ ObC2 ,F(ρ) ∈ F(P),m ′ : F(L)→ F(G). ((F(G)
F(ρ),m ′
=⇒ H ′)

⇒ (∃H ∈ ObC1 ,m : L→ G. (G
ρ,m
=⇒ H ∧ (H ′,H) ∈ B−1

F ))).

Assume the premise of the statement and fixH ′ ∈ ObC2 , F(ρ) ∈ F(P),m ′ ∈MorC2 . Since
F creates morphisms by assumption, we have the unique match morphism m : L→ G such
that F(m) = m ′. Since F creates (direct) transformations by assumption, the correspond-
ing rule ρ ∈ P is applicable to the match morphism m leading to the transformation step
G
ρ,m
=⇒ H in AS1 such that it additionally holds that F(H) ∼= H ′. This fact implies that

there exists the transformation step F(G)
F(ρ),F(m)

=⇒ F(H) in AS2, because transforma-
tion steps are unique up to isomorphism (for the case if the considered transformation step
in AS2 contains a nested application condition F(acL) satisfied by the match morphism
F(m) = m ′ by assumption, we additionally obtain by Lemma 11 that also the match
morphism m satisfies the corresponding nested application condition acL). Furthermore,
(F(H),H) ∈ B−1

F according to the definition of BF given above. This implies that B−1
F is

an F−1-simulation.

F(G)

H ′ ∼= F(H)

G

H

F(ρ),m ′ = F(m) ρ,m

B−1
F

B−1
F

�

3.2.2 F-Transfer of Bisimilarity

In this subsection, we consider how we can relate intra-transformation-system bisim-
ulations, i.e., bisimulations on ObC1-objects with bisimulations on ObC2-objects using
M-functors. In the previous subsection, we considered bisimulations between objects of
different categories without transferring them, whereas we focus on translation and cre-
ation of bisimulations in this subsection. The translation and creation of a bisimulation
using an M-functor is only possible if the objects related in the bisimulation belong to
the same category.
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As the first step, we show that we can translate R-bisimilarity of ObC1-objects using
an M-functor F into F(R)-bisimilarity of the corresponding translated ObC2-objects, and
vice versa, we can create R-bisimilarity of ObC1-objects from the corresponding F(R)-
bisimilarity of the translated ObC2-objects.

Lemma 14 (F-Image Restricted F-Transfer of R-Bisimilarity).
Consider M-adhesive transformation systems AS1 = (C1,M1,P1), AS2 = (C1,M1,P2), AS3 =
(C2,M2,F(P1)), AS4 = (C2,M2,F(P2)), rule relation R ⊆ P1 × P2, and an M-functor F :

(C1,M1)→ (C2,M2) that creates (direct) transformations according to Theorem 3 and (M-)mor-
phisms7. Then F translates and creates F-image restricted R-bisimilarity of objects, i.e., BR ⊆
ObC1 ×ObC1 is an R-bisimulation iff F(BR) ⊆ ObC2 ×ObC2 is an F(R)-bisimulation.

Proof.
The detailed proof for this lemma is given in Appendix B on page 280. �

As the second step, we state in the following lemma that F(R)-bisimulations may be
reduced to smaller F(R)-bisimulations by removing all non-F-images. This reduction is
possible, because non-F-images cannot be reached from F-images applying translated
transformation rules.

Lemma 15 (R-Bisimulation is Preserved under F-Image Restriction).
Consider M-adhesive transformation systems AS1 = (C1,M1,P1), AS2 = (C1,M1,P2), AS3 =
(C2,M2,F(P1)), AS4 = (C2,M2,F(P2)), and an M-functor F : (C1,M1) → (C2,M2) that
creates (direct) transformations according to Theorem 3 and (M-)morphisms7. Consider further-
more a rule relation R ⊆ P1 × P2 as well as an F(R)-bisimulation B ′

F(R) ⊆ ObC2 ×ObC2 that
is closed under isomorphisms, i.e., IC(B ′

F(R)) = B ′
F(R). Then BF(R) ⊆ ObC2 ×ObC2 with

BF(R) = B
′
F(R) ∩ (F(ObC1)× F(ObC1)) is also an F(R)-bisimulation.

Proof.
The detailed proof for this lemma is given in Appendix B on page 283. �

Based on the two previous lemmas, we state that bisimilarity of ObC1-objects, on the
one hand, and ObC2-objects, on the other hand, can be translated and created using
M-functors.

Theorem 5 (F-Transfer of R-Bisimilarity).
Consider M-adhesive transformation systems AS1 = (C1,M1,P1), AS2 = (C1,M1,P2), AS3 =
(C2,M2,F(P1)), AS4 = (C2,M2,F(P2)), a rule relation R ⊆ P1 × P2, and an M-functor
F : (C1,M1) → (C2,M2) that creates (direct) transformations according to Theorem 3 and
(M-)morphisms7. Then for arbitrary objects G,G ′ ∈ ObC1 it holds that G is R-bisimilar to G ′ iff
F(G) is F(R)-bisimilar to F(G ′), written (G ∼R G

′)⇔ (F(G) ∼F(R) F(G
′)).

Proof.
• (⇒) :

Fix G,G ′ ∈ ObC1 and assume that G ∼R G
′. This means according to Definition 50 that

there is an R-bisimulation BR ⊆ ObC1 ×ObC1 such that (G,G ′) ∈ BR. This implies by
application of F that (F(G),F(G ′)) ∈ F(BR) and F(BR) ⊆ ObC2 ×ObC2 is an F(R)-

7 Note that if we formulate this lemma (theorem) for a restricted M-functor, we require that FR creates (direct)
transformations according to Remark 12 and M-morphisms according to Definition 45. The proof for the
adapted lemma (theorem) works analogously to that of the current lemma (theorem).
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bisimulation according to Lemma 14. Now applying Definition 50 again, we obtain that
F(G) ∼F(R) F(G

′).
• (⇐) :

Fix G,G ′ ∈ ObC1 and assume that F(G) ∼F(R) F(G ′). According to Definition 50, we
have that there is an F(R)-bisimulation B ′

F(R) ⊆ ObC2 ×ObC2 such that (F(G),F(G ′)) ∈
B ′
F(R). But it holds as well that (F(G),F(G ′)) ∈ BF(R) with BF(R) = IC(B ′

F(R)) ∩
(F(ObC1)× F(ObC1)) where IC(B ′

F(R))
8 is the isomorphism closure of B ′

F(R) according
to Definition 48 and we have that BF(R) is an F(R)-bisimulation according to Lemmas 13
and 15. Since the pairs in BF(R) contain only F-images, we have that there is the R-
bisimulation BR ⊆ ObC1 ×ObC1 with BR = {(G,G ′) | (F(G),F(G ′)) ∈ BF(R)} such that
F(BR) = BF(R) by application of Lemma 14. Since (F(G),F(G ′)) ∈ F(BR), we know
that there are G,G ′ ∈ ObC1 such that (F(G),F(G ′)) = (F(G),F(G ′)) and (G,G ′) ∈ BR.
Thus, it obviously holds that F(G) = F(G) and F(G ′) = F(G ′). Using now the fact
that F creates morphisms (and thus also identities implying the injectivity of F on objects
according to Lemmas 8 and 9) by assumption, we obtain that also G = G and G ′ = G ′

implying that (G,G ′) ∈ BR. Hence, by application of Definition 50 we have that G ∼R G
′.
�

We refer the readers interested in an example for the introduced concepts to Sec-
tion 6.3 where we give an example demonstrating FHG-bisimilarity and FHG-transfer
of R-bisimilarity for concrete hypergraph transformation systems.

8 Isomorphism closure IC(B ′
F(R)) of B ′

F(R) guarantees here that BF(R) is an F(R)-bisimulation by Lemma 15.
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In this chapter, we address the theoretical framework that allows us to analyze local
confluence and termination of M-adhesive transformation systems and hence also their
confluence. In particular, we want to discuss under which requirements local confluence
and termination can be translated by an M-functor F : (C1,M1) → (C2,M2) from a
transformation system AS1 = (C1,M1,P) to another one AS2 = (C2,M2,F(P)) with
translated productions F(P) and, vice versa, under which requirements local confluence
and termination of AS1 can be created from the local confluence and termination of AS2
using F. Considering both directions, we speak of the F-transfer of local confluence and
termination leading altogether to the F-transfer of confluence.

We discuss in Section 4.1 the F-transfer of local confluence for the case of transforma-
tions without nested application conditions, called in the following the plain case, while
the translation and creation of local confluence with nested application conditions is then
presented in Section 4.2. Finally, in Section 4.3, we introduce the analysis approach for
termination and confluence of M-adhesive transformation systems (implying also their
functional behavior) using the functorial transfer of these semantical properties.

4.1 F-transfer of local confluence for transformations without

nested application conditions

As already described in Subsubsection 2.2.2.4, a transformation system is locally conflu-
ent if starting with some object G whenever we can transform G into the objects H1 and
H2 applying some rules ρ1 and ρ2, respectively, we can subsequently transform these
two objects in one or more steps into the same object X.

In the following theorem, we show that the local confluence of a target transformation
system can be deduced from the local confluence of the source transformation system
and, vice versa, using M-functors.

Theorem 6 (Translation and Creation of Local Confluence for Transformations without
Nested Application Conditions [209]).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), and
an M-functor F : (C1,M1) → (C2,M2) that translates and creates (direct) transformations
according to Theorem 1 as well as creates morphisms1. Then AS1 is locally confluent for all
transformation spans H1

ρ1,m1⇐= G
ρ2,m2=⇒ H2 iff AS2 is locally confluent for all translated trans-

formation spans F(H1)
F(ρ1),F(m1)⇐= F(G)

F(ρ2),F(m2)
=⇒ F(H2).

1 Note that if we formulate this theorem for a restricted M-functor, we require that FR translates and creates
(direct) transformations according to Theorem 2 and creates M-morphisms according to Definition 45. The
proof for the adapted theorem works analogously to that of the current theorem.

99



100 confl . analysis of M-adhesive transformation systems using M-functors

Proof.
• Translation:

Assume local confluence of H1
ρ1,m1⇐= G

ρ2,m2=⇒ H2 in AS1. Then there exist an object X
and transformations H1

∗⇒ X, H2
∗⇒ X via P. Due to the assumption that F translates

(direct) transformations, there exist the object X ′ = F(X) and transformations F(H1)
∗⇒

F(X), F(H2)
∗⇒ F(X) via F(P). Hence, the translated transformation span F(H1)

F(ρ1),F(m1)⇐= F(G)
F(ρ2),F(m2)

=⇒ F(H2) is locally confluent in AS2.

G

H1

H2

X

ρ1,m1

ρ2,m2

∗

∗
F(G)

F(H1)

F(H2)

X ′ = F(X)

F(ρ1),F(m1)

F(ρ2),F(m2)

∗

∗

• Creation:
Assume local confluence of F(H1)

F(ρ1),F(m1)⇐= F(G)
F(ρ2),F(m2)

=⇒ F(H2) in AS2. Then
there exist an object X ′ and transformations F(H1)

∗⇒ X ′, F(H2)
∗⇒ X ′ via F(P). Due

to the assumption that F creates (direct) transformations, there exist objects X1, X2 and
transformations H1

∗⇒ X1, H2
∗⇒ X2 via P with F(X1) ∼= X ′ ∼= F(X2). Thus, it

holds that F(X1) ∼= F(X2) and the assumption that F creates morphisms (and hence also
isomorphisms) implies that X1 ∼= X2. Therefore, we obtain that H1

ρ1,m1⇐= G
ρ2,m2=⇒ H2 is

locally confluent in AS1.

G

H1

H2

X1 ∼= X2

ρ1,m1

ρ2,m2

∗

∗

F(G)

F(H1)

F(H2)

F(X1) ∼= X ′ ∼= F(X2)

F(ρ1),F(m1)

F(ρ2),F(m2)

∗

∗

�

The theorem above requires for the creation part that all translated transformation
spans are locally confluent. However, the current tool support by Agg only tackles the
problem of determining whether all possible transformation spans of the considered
transformation system are locally confluent. In the rest of this section, we are describing
a procedure, which is capable of determining local confluence for translated transforma-
tion spans only. This procedure is built along the lines of the standard analysis approach
and consists of testing whether all feasible critical pairs of a transformation system are
strictly confluent.

An obvious sufficient condition for local confluence is the parallel independence of
all pairs of direct transformation steps. The parallel independence together with the
sequential independence, which is related to parallel independence according to the
Local Church-Rosser Theorem, can be translated and created by an M-functor as follows.

Theorem 7 (Translation and Creation of Parallel and Sequential Independence of Trans-
formations without Nested Application Conditions [207]).
Consider M-adhesive transformation systems AS1 = (C1,M1,P) and AS2 = (C2,M2,F(P)).
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An M-functor F : (C1,M1) → (C2,M2) translates and creates parallel and sequential indepen-
dence of transformations if F creates morphisms2.

Proof.
• F translates parallel (sequential) independence of transformations:

Assume that direct transformations G ρ1,m1=⇒ H1 and G ρ2,m2=⇒ H2 are parallel independent
in AS1 with the match morphisms m1 : L1 → G, m2 : L2 → G and rules ρ1, ρ2 ∈ P. This
means, according to Definition 9, that there are morphisms d12 : L1 → D2, d21 : L2 → D1
inMorC1 such that triangles (1) and (2) commute. Since F preserves commuting diagrams
by the general functor property, we have that triangles (3) and (4) commute as well, imply-
ing the parallel independence of the corresponding translated direct transformations in AS2
by Definition 9. Thus, we have that F translates parallel independence of transformations.
The proof for the case of sequential independence works analogously.

• F creates parallel (sequential) independence of transformations:

Consider two parallel independent transformations F(G)
F(ρ1),F(m1)

=⇒ F(H1) and F(G)
F(ρ2),F(m2)

=⇒ F(H2) in AS2 with the match morphisms F(m1) : F(L1) → F(G), F(m2) :
F(L2) → F(G) and rules F(ρ1),F(ρ2) ∈ F(P). According to Definition 9, this means
that we have morphisms d ′12 : F(L1) → F(D2), d ′21 : F(L2) → F(D1) in MorC2 such
that triangles (3), (4) commute. This leads to the corresponding unique morphisms d12 :

L1 → D2 and d21 : L2 → D1 in MorC1 making triangles (1) and (2) commute, because
F creates morphisms uniquely and preserves composition. Thus, according to Definition 9,
we have parallel independence of transformations G ρ1,m1=⇒ H1 and G ρ2,m2=⇒ H2 in AS1
with the match morphisms m1 and m2.
The proof for the case of sequential independence works analogously.

R1 K1 L1 L2 K2 R2

H1 D1 G D2 H2
(1) (2)

d12d21

F(R1) F(K1) F(L1) F(L2) F(K2) F(R2)

F(H1) F(D1) F(G) F(D2) F(H2)
(3) (4)

d ′12d ′21

�

As the next step, we introduce an additional requirement, namely the compatibility of
an M-functor F : (C1,M1)→ (C2,M2) with pair factorization, needed for one of our main
conceptual results concerning the functorial transfer of local confluence for transforma-
tion systems with possibly parallel dependent transformation steps. This requirement
states that (Ci,Mi) has E ′i −Mi pair factorization based on Ei −Mi-factorization for
i ∈ {1, 2} as well as that F preserves E ′ −M pair factorization. In more detail, (Ci,Mi)

has E ′i −Mi pair factorization if each morphism pair (m1 : L1 → G,m2 : L2 → G)

2 Note that if we formulate this theorem for a restricted M-functor, we require that FR creates M-morphisms
as given in Definition 45. The proof for the adapted theorem works analogously to that of the current
theorem.
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with the common codomain can be decomposed uniquely up to isomorphism to (m1 =

m ◦ o1,m2 = m ◦ o2) with a pair (o1,o2) of jointly epimorphic morphisms and m ∈ Mi.
The formal definition for the compatibility of an M-functor with pair factorization is
given in the following.

Definition 51 (F is Compatible with Pair Factorization [210]).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), and
an M-functor F : (C1,M1)→ (C2,M2). Then we say that F is compatible with pair factoriza-
tion if (C1,M1) has E ′1−M1 pair factorization, (C2,M2) has E ′2−M2 pair factorization, and F

preserves E ′−M pair factorization, i.e., for each E ′1−M1 pair factorization (m1 = m◦o1,m2 =
m ◦ o2) in (C1,M1) also (F(m1) = F(m) ◦ F(o1),F(m2) = F(m) ◦ F(o2)) is an E ′2 −M2

pair factorization in (C2,M2) (see the diagram below).

L2L1

K

G

o2o1

m

m2m1

F(L2)F(L1)

F(K)

F(G)

F(o2)F(o1)

F(m)

F(m2)F(m1)

For the case if M ′1 * M1, we have to require in Definition 51 an additional M1 −M ′1
pushout-pullback decomposition property (see Definition 72) for AS1. But note that this
case does not apply in our applications.

The following lemma lists the properties that are required for the preservation of an
E ′ −M pair factorization by an M-functor.

Lemma 16 (F Preserves E ′ −M Pair Factorization).
Consider M-adhesive categories (Ci,Mi) with binary coproducts and Ei −Mi-factorizations for
i ∈ {1, 2} as well as an M-functor F : (C1,M1) → (C2,M2). Then F preserves E ′ −M pair
factorization based on an E−M-factorization if F preserves coproducts and epimorphisms.

Proof.
The detailed proof for this lemma is given in Appendix B on page 284. �

The following remark captures the special cases for the usage of compatibility of M-
functors with pair factorization in the context of this thesis.

Remark 13 (Compatibility of Restricted M-Functors with Pair Factorization).
Note that in Sections 10.1 and 12.2, we use Definition 51 and Lemmas 1, 16 also for restricted
M-functors as well as for restricted functors defined between the categories of transformation
systems, which are not necessarily M-adhesive.

In general, we do not have to analyze all possible critical pairs of F(P) in the target
transformation system, but just those, which are images of transformation steps in the
source transformation system. We call this special kind of critical pairs F-reachable critical
pairs. Considering F-reachable critical pairs only simplifies the analysis, because, in
general, there are possibly critical pairs of F(P), which are not F-reachable. Intuitively,
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an F-reachable critical pair is a critical pair in the target transformation system where all
objects and morphisms are F-images.

Definition 52 (F-Reachable Critical Pair [209]).
Consider an M-functor F : (C1,M1)→ (C2,M2). An F-reachable critical pair of rules F(ρ1)
and F(ρ2) is a critical pair in AS2 of the form

F(R1) F(K1) F(L1) F(L2) F(K2) F(R2)

F(P1) F(N1) F(K) F(N2) F(P2)

F(o1) F(o2)

F(l1)F(r1)

F(v1)F(w1)

F(l2) F(r2)

F(w2)F(v2)

where all morphisms of the type F(A)→ F(B) have the form F(f) for some f : A→ B.

An example for an F-reachable critical pair in the context of the concrete M-functor
FHG, translating hypergraphs into the corresponding typed attributed graphs according
to Definition 63, is given in Figure 56 in Section 7.3.

We use the following lemma to ensure that a critical pair of translated transformation
steps is F-reachable. Intuitively, we already have an F-reachable critical pair if we know
that the overlapping of the left-hand sides of the translated rules is an F-image.

Lemma 17 (F-Reachable Critical Pairs).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), and
an M-functor F : (C1,M1) → (C2,M2) that creates (direct) transformations according to The-
orem 1 and morphisms3. Then each critical pair of rules F(ρ1) and F(ρ2) with overlapping
K ∼= F(K) in AS2 is already F-reachable (up to isomorphism).

F(R1) F(K1) F(L1) F(L2) F(K2) F(R2)

P1 N1 K N2 P2

o1 o2

F(l1)F(r1)

v1w1

F(l2) F(r2)

w2v2

Proof.
The detailed proof for this lemma is given in Appendix B on page 285. �

The following lemma states that for each translated pair of parallel dependent trans-
formation steps there is the corresponding embedded F-reachable critical pair.

Lemma 18 (Completeness of F-Reachable Critical Pairs).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), an
M-functor F : (C1,M1) → (C2,M2) that is compatible with pair factorization, and a translated

parallel dependent transformation span F(H1)
F(ρ1),F(m1)⇐= F(G)

F(ρ2),F(m2)
=⇒ F(H2). Then

there is an F-reachable critical pair F(P1)
F(ρ1),F(o1)⇐= F(K)

F(ρ2),F(o2)
=⇒ F(P2) of rules F(ρ1),

F(ρ2) and an embedding given below.

3 Note that if we formulate this lemma for a restricted M-functor, we require that FR creates (direct) transfor-
mations according to Theorem 2 and M-morphisms according to Definition 45. The proof for the adapted
lemma works analogously to that of the current lemma.
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F(P1) F(K) F(P2)

F(H1) F(G) F(H2)

(1) (2)

F(ρ1),F(o1) F(ρ2),F(o2)

F(ρ1),F(m1) F(ρ2),F(m2)

F(m)

Proof.
The detailed proof for this lemma is given in Appendix B on page 286. �

Now we formulate and prove our next important theoretical result concerning the
creation of local confluence based on F-reachable critical pairs for the case of transforma-
tions without nested application conditions.

Theorem 8 (Creation of Local Confluence Based on F-Reachable Critical Pairs for Rules
without Nested Application Conditions [209, 213]).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), and
an M-functor F : (C1,M1) → (C2,M2) that creates (direct) transformations according to The-
orem 1 and morphisms as well as is compatible with pair factorization4. Then AS1 is locally
confluent for all transformation spans H1

ρ1,m1⇐= G
ρ2,m2=⇒ H2 if all F-reachable critical pairs of

F(ρ1) and F(ρ2) in AS2 are strictly confluent.

Proof.
If two transformations F(H1)

F(ρ1),F(m1)⇐= F(G)
F(ρ2),F(m2)

=⇒ F(H2) are parallel independent
then we have local confluence by Local Church-Rosser Theorem (see Fact 1).
Otherwise, we can construct for each pair of transformationsH1

ρ1,m1⇐= G
ρ2,m2=⇒ H2 in AS1 with a

critical pair P1
ρ1,o1⇐= K

ρ2,o2=⇒ P2 the translated pair F(H1)
F(ρ1),F(m1)⇐= F(G)

F(ρ2),F(m2)
=⇒ F(H2)

in AS2 with the corresponding F-reachable critical pair F(P1)
F(ρ1),F(o1)⇐= F(K)

F(ρ2),F(o2)
=⇒

F(P2) using Lemma 18. This F-reachable critical pair is by assumption strictly confluent leading
to F(P1)

∗⇒ X
′ ∗⇐ F(P2) and the strict confluence implies the existence of X ′ in C2 with

F(H1)
∗⇒ X ′

∗⇐ F(H2) using the proof of the Local Confluence Theorem (see Fact 1). This fact

implies local confluence of F(H1)
F(ρ1),F(m1)⇐= F(G)

F(ρ2),F(m2)
=⇒ F(H2) and hence also that AS2

is locally confluent for all translated transformation spans F(H1)
F(ρ1),F(m1)⇐= F(G)

F(ρ2),F(m2)
=⇒

F(H2). Now, using Theorem 6, we obtain that also AS1 is locally confluent for all transformation
spans H1

ρ1,m1⇐= G
ρ2,m2=⇒ H2, which was to be shown.

F(H1)

F(G)

F(K)

F(H2)F(P1) F(P2)

X
′

X ′

F(ρ1),F(m1) F(ρ2),F(m2)

F(ρ1),F(o1) F(ρ2),F(o2)

∗ ∗

∗ ∗

�

4 Note that if we formulate this theorem for a restricted M-functor, we require that FR creates (direct) transfor-
mations according to Theorem 2 and M-morphisms according to Definition 45. The requirement concerning
the compatibility of F with pair factorization remains unchanged, but refers now to the restricted M-functor.
The proof for the adapted theorem works analogously to that of the current theorem.
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4.2 F -transfer of local confluence for transformations with nested

application conditions

In this section, we focus on the development of theoretical results allowing us to verify on
functorial way local confluence of M-adhesive transformation systems containing rules
with nested application conditions. As the first step, we extend several essential notions
from Subsection 2.3.1 defining them on F-images of an M-functor. Subsequently, we
introduce the notions of F-reachable (weak) critical pairs and different kinds of compat-
ibility of M-functors with nested application conditions, which form the foundation for
our intermediate results, like F-transfer of strict confluence, preservation of F-reachable
(weak) critical pairs, compatibility of M-functors with Shift- and L-transformations as
well as dependencies between different kinds of compatibilities with nested application
conditions, which altogether allow us to formulate and to prove our main theoretical
result of this section concerning F-transfer of local confluence for transformations with
nested application conditions.

The first theorem, which we consider in this section, concerns, similarly to Section 4.1,
how we can deduce on functorial way the local confluence of a target M-adhesive trans-
formation system from the local confluence of the source M-adhesive transformation
system and vice versa for the case of transformations with nested application conditions.

Theorem 9 (Translation and Creation of Local Confluence for Transformations with
Nested Application Conditions).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), where
P are rules with nested application conditions, and an M-functor F : (C1,M1) → (C2,M2)

that translates and creates (direct) transformations with nested application conditions according
to Theorem 3 as well as creates (M-)morphisms5. Then AS1 is locally confluent for all transfor-
mation spans H1

ρ1,m1⇐= G
ρ2,m2=⇒ H2 iff AS2 is locally confluent for all translated transformation

spans F(H1)
F(ρ1),F(m1)⇐= F(G)

F(ρ2),F(m2)
=⇒ F(H2).

Proof.
The proof for this theorem works analogously to the proof of Theorem 6. �

Similarly to Section 4.1, we describe in the following a procedure, which is capable of
determining local confluence for the translated transformation spans with nested appli-
cation conditions using the standard analysis approach introduced in [96] involving the
strict confluence and AC-compatibility checks of all feasible critical pairs.

For the special case if all direct transformations of a considered M-adhesive transforma-
tion system are pairwise parallel independent, we can verify the F-transfer of local con-
fluence using the Local Church-Rosser Theorem for transformations with nested applica-
tion conditions (see Fact 4) together with the following theorem dealing amongst others
with translation and creation of parallel independence of transformations. Also the se-
quential independence of transformations with nested application conditions, which is

5 Note that if we formulate this theorem for a restricted M-functor, we require that FR translates and cre-
ates (direct) transformations with nested application conditions according to Remark 12 and creates M-
morphisms according to Definition 45. The proof for the adapted theorem works analogously to that of the
current theorem.
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related to parallel independence according to the Local Church-Rosser Theorem, can be
translated and created using M-functors.

Theorem 10 (Translation and Creation of Parallel and Sequential Independence of Trans-
formations with Nested Application Conditions).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)) where
P are rules with nested application conditions. Then an M-functor F : (C1,M1) → (C2,M2)

translates and creates parallel and sequential independence of transformations if F creates (M-)
morphisms6.

Proof.
• F translates parallel (sequential) independence of transformations:

Assume that direct transformations G ρ1,m1=⇒ H1 and G ρ2,m2=⇒ H2 are parallel independent
in AS1 with the match morphisms m1 : L1 → G, m2 : L2 → G and rules ρ1 = (p1 =

(L1 ← K1 → R1),acL1), ρ2 = (p2 = (L2 ← K2 → R2),acL2). This means according to
Definition 24 that there are the morphisms d12 : L1 → D2, d21 : L2 → D1 in MorC1 such
that the triangles (1) and (2) commute and it holds that c2 ◦d12 |= acL1 , c1 ◦d21 |= acL2 .
Since F preserves commuting diagrams by the general functor property, we have that the
triangles (3) and (4) commute as well. It remains to show that F(c2) ◦F(d12) |= F(acL1)

and F(c1) ◦ F(d21) |= F(acL2) for the translated nested application conditions F(acL1)

and F(acL2). It holds the following:

(c2 ◦ d12 |= acL1) ∧ (c1 ◦ d21 |= acL2)
Lem. 11⇒ (F(c2 ◦ d12) |= F(acL1)) ∧ (F(c1 ◦ d21) |= F(acL2))

funct. prop.⇒ (F(c2) ◦F(d12) |= F(acL1)) ∧ (F(c1) ◦F(d21) |= F(acL2))

Thus, we have by Definition 24 that F translates parallel independence of transformations.
The proof for the sequential independence works analogously.

acL1
O

acL2
O

R1 K1 L1 L2 K2 R2

H1 D1 G D2 H2
(1)(2)

d12d21
m1 m2

c1 c2

F(acL1)

O
F(acL2)

O
F(R1) F(K1) F(L1) F(L2) F(K2) F(R2)

F(H1) F(D1) F(G) F(D2) F(H2)
(3)(4)

F(d12)F(d21)

F(m1) F(m2)

F(c1) F(c2)

• F creates parallel (sequential) independence of transformations:

Consider two parallel independent transformations F(G)
F(ρ1),F(m1)

=⇒ F(H1) and

F(G)
F(ρ2),F(m2)

=⇒ F(H2) in AS2 with the match morphisms F(m1) : F(L1) → F(G),
F(m2) : F(L2) → F(G) and translated rules F(ρ1) = (F(p1) = (F(L1) ← F(K1) →

6 Note that if we formulate this theorem for a restricted M-functor, we require that FR creates M-morphisms
according to Definition 45. The proof for the adapted theorem works analogously to that of the current
theorem.
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F(R1)),F(acL1)), F(ρ2) = (F(p2) = (F(L2) ← F(K2) → F(R2)),F(acL2)). Accord-
ing to Definition 24 this means that we have the morphisms d ′12 : F(L1) → F(D2),
d ′21 : F(L2)→ F(D1) in MorC2 such that the triangles (3), (4) commute and it addition-
ally holds that F(c2) ◦ d ′12 |= F(acL1), F(c1) ◦ d ′21 |= F(acL2) for the translated nested
application conditions F(acL1) and F(acL2). This leads to the corresponding unique mor-
phisms d12 : L1 → D2 and d21 : L2 → D1 in MorC1 making the triangles (1) and (2)

commute, because F creates morphisms uniquely and preserves composition. It remains
now to show that (c2 ◦ d12 |= acL1) and (c1 ◦ d21 |= acL2). Since d ′12 = F(d12) and
d ′21 = F(d21) by the morphism creation property, we have the following:

(F(c2) ◦F(d12) |= F(acL1)) ∧ (F(c1) ◦F(d21) |= F(acL2))

funct. prop.⇒ (F(c2 ◦ d12) |= F(acL1)) ∧ (F(c1 ◦ d21) |= F(acL2))

Lem. 11⇒ (c2 ◦ d12 |= acL1) ∧ (c1 ◦ d21 |= acL2)

Thus, according to Definition 24, we have the parallel independence of transformations
G
ρ1,m1=⇒ H1 and G ρ2,m2=⇒ H2 in AS1 with the match morphisms m1 and m2.

The proof for the case of sequential independence works analogously.
F(acL1)

O
F(acL2)

O
F(R1) F(K1) F(L1) F(L2) F(K2) F(R2)

F(H1) F(D1) F(G) F(D2) F(H2)
(3)(4)

d ′12d ′21
F(m1) F(m2)

F(c1) F(c2)

acL1
O

acL2
O

R1 K1 L1 L2 K2 R2

H1 D1 G D2 H2
(1)(2)

d12d21
m1 m2

c1 c2
�

In this section, we use the special kind of derived rules and derived nested application
conditions of transformations translated by an M-functor F. This kind of rules and nested
application conditions extends the corresponding notions from [96] recalled in Subsec-
tion 2.3.1 and is defined on the corresponding F-images. A translated plain derived rule
p(F(t)) is a single rule from F(G0) to F(Gn) containing all changes that should be done
during the translated transformation F(t). A translated derived nested application condi-
tion ac(F(t)) combines all nested application conditions of the translated transformation
F(t) into a single nested application condition over the object F(G0). Finally, a translated
derived rule ρ(F(t)) consists of a translated plain derived rule and a translated derived
nested application condition of F(t).

Definition 53 (Translated Plain Derived Rule).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), where
P are rules with nested application conditions, and an M-functor F : (C1,M1) → (C2,M2)

that preserves pullbacks of M-morphisms7. For a transformation F(t) : F(G0)
∗⇒ F(Gn), the

translated plain derived rule p(F(t)) is defined by the span F(G0) ← F(D0) → F(G1) for

7 Pullback of M-morphisms means that both cospan morphisms of the pullback diagram are in M.
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n = 1 and by iterated pullback construction leading to the span F(G0) ← F(D) → F(Gn) for
n > 2 as depicted in the diagram below with dotted arrows where all morphisms are inclusions.

F(D)

F(Gn−1)F(D ′) F(Dn)F(G0) F(Gn)

(PB)

= =

Definition 54 (Translated Derived Nested Application Condition).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), where
P are rules with nested application conditions, an M-functor F : (C1,M1) → (C2,M2) that
preserves pullbacks of M-morphisms, and a translated AC-disregarding transformation F(t) :

F(G0)
∗⇒ F(Gn). The translated derived nested application condition ac(F(t)) over the

object F(G0) is inductively defined as follows:
• For F(t) of length 0 with F(G0) ∼= F(G ′0) and F(G ′0) from the extension diagram given in

Definition 73 in Appendix A, let ac(F(t)) = true.

• For F(t) : F(G0)
F(ρ1),F(m1)

=⇒ F(G1), let ac(F(t)) = Shift(F(m1),F(acL1)) (see the
picture (1) below).

• For F(t) : F(G0)
∗⇒ F(Gn)⇒ F(Gn+1) with n > 1, let

ac(F(t)) = ac(F(G0)
∗⇒ F(Gn))∧ L(F(p∗n),ac(F(Gn)⇒ F(Gn+1))) where

F(p∗n) = (F(G0)← F(D)→ F(Gn)) is the translated plain derived rule
p(F(G0)

∗⇒ F(Gn)) and ac(F(Gn) ⇒ F(Gn+1)) = Shift(F(mn+1),F(acLn+1)) (see
the picture (2) below).

F(acL1)

O
F(L1) F(K1) F(R1)

F(G0) F(D0) F(G1)

(1)

F(p1) :

F(m1)

F(acL1)

O
F(acLn+1)

O
F(L1) F(K1) F(R1) F(Ln+1) F(Kn+1) F(Rn+1)

F(G1) ∗
=⇒

(2)

F(G0) F(D0) F(Gn) F(Dn+1) F(Gn+1)

F(p∗n)

F(m1)
F(mn+1)

Definition 55 (Translated Derived Rule).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), where
P are rules with nested application conditions, and an M-functor F : (C1,M1) → (C2,M2)

that preserves pullbacks of M-morphisms. The translated derived rule of a translated AC-
disregarding transformation F(t) : F(G0)

∗⇒ F(Gn) has the form ρ(F(t)) = (p(F(t)),ac(F(t)))
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where p(F(t)) is the translated plain derived rule and ac(F(t)) is the translated derived nested
application condition of F(t).

In the following, we adapt the notions of a weak critical pair and a critical pair with
nested application conditions introduced in Subsection 2.3.2 to the case of F-reachable
critical pairs. We will use these notions later on to define which requirements have to
be satisfied to obtain the local confluence property for translated transformations with
nested application conditions.

Definition 56 (F-Reachable Weak Critical Pair of Transformations with Nested Appli-
cation Conditions [213]).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), where
P are rules with nested application conditions, an M-functor F : (C1,M1) → (C2,M2) that
preserves pullbacks of M-morphisms, and translated derived rules F(ρ1) = (F(p1),F(acL1)),
F(ρ2) = (F(p2),F(acL2)) where F(p1), F(p2) are translated plain derived rules and F(acL1),
F(acL2) are translated nested application conditions. An F-reachable weak critical pair of

rules F(ρ1) and F(ρ2) is a pair F(P1)
F(ρ1),F(o1)⇐= F(K)

F(ρ2),F(o2)
=⇒ F(P2) of AC-disregarding

transformations in AS2 where all objects are of the form F(X) for some X ∈ ObjC1 , all morphisms
of the type F(A) → F(B) are of the form F(f) for some morphism f : A → B, and the pair of
morphisms (F(o1),F(o2)) is in E ′2.

F(acL1)
O

F(acL2)
O

acF(K)

O

ac∗
F(K)

M

F(p1) :

F(p∗1) :

: F(p2)

: F(p∗2)

F(R1) F(K1) F(L1) F(L2) F(K2) F(R2)

F(P1) F(N1) F(K) F(N2) F(P2)
d ′12d ′21

F(o1) F(o2)

F(v1)F(w1) F(w2)F(v2)

Every F-reachable weak critical pair induces nested application conditions acF(K) and ac∗
F(K)

on F(K) defined by

acF(K) = Shift(F(o1),F(acL1))∧ Shift(F(o2),F(acL2)),

called translated extension nested application condition, and

ac∗F(K) = ¬(ac∗F(K),d ′21
∧ ac∗F(K),d ′12

),

called translated conflict-inducing nested application condition with ac∗
F(K),d ′12

and
ac∗

F(K),d ′21
given as follows:

if (∃d ′12 : F(L1)→ F(N2). F(v2) ◦ d ′12 = F(o1)) then

ac∗F(K),d ′12
= L(F(p∗2), Shift(F(w2) ◦ d ′12,F(acL1))) else

ac∗F(K),d ′12
= false

if (∃d ′21 : F(L2)→ F(N1). F(v1) ◦ d ′21 = F(o2)) then

ac∗F(K),d ′21
= L(F(p∗1), Shift(F(w1) ◦ d ′21,F(acL2))) else

ac∗F(K),d ′21
= false
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where the translated plain derived rules F(p∗1) = (F(K)
F(v1)← F(N1)

F(w1)→ F(P1)) and F(p∗2) =

(F(K)
F(v2)← F(N2)

F(w2)→ F(P2)) are defined by the corresponding DPOs.

As the next step, we define an F-reachable critical pair extended to the case of trans-
formations with nested application conditions.

Definition 57 (F-Reachable Critical Pair of Transformations with Nested Application
Conditions [213]).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), where
P are rules with nested application conditions, an M-functor F : (C1,M1)→ (C2,M2) that pre-
serves pullbacks of M-morphisms, translated derived rules F(ρ1) = (F(p1),F(acL1)), F(ρ2) =
(F(p2),F(acL2)) where F(p1), F(p2) are translated plain derived rules and F(acL1), F(acL2)
are translated nested application conditions. An F-reachable critical pair of translated derived

rules F(ρ1) and F(ρ2) is an F-reachable weak critical pair F(P1)
F(ρ1),F(o1)⇐= F(K)

F(ρ2),F(o2)
=⇒

F(P2) with induced translated extension and conflict-inducing nested application conditions on
F(K), acF(K) and ac∗

F(K), respectively, if there is a morphism F(m) : F(K)→ F(G) ∈M2 such
that F(m) |= acF(K)∧ac

∗
F(K) and F(mi) = F(m) ◦F(oi) for i ∈ {1, 2} satisfies the gluing con-

dition, i.e., F(mi) has a pushout complement F(Di) with respect to the translated plain derived
rule F(pi).

F(acL1)

O
F(acL2)

O

acF(K) ∧ ac
∗
F(K)

O

F(R1) F(K1) F(L1) F(L2) F(K2) F(R2)

F(P1) F(N1) F(K) F(N2) F(P2)

F(H1) F(D1) F(G) F(D2) F(H2)

F(w1) F(v1)

F(m)

F(o1) F(o2)

F(v2) F(w2)

F(m1) F(m2)

The following lemma shows that two nested application conditions are compatible if
their translations by an M-functor are compatible.

Lemma 19 (Creation of Compatibility of Nested Application Conditions).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), where
P are rules with nested application conditions, and an M-functor F : (C1,M1)→ (C2,M2) that
creates (M-)morphisms8. Then F creates compatibility of nested application conditions, i.e.,

(F(acP)⇒ F(ac ′P)) implies (acP ⇒ ac ′P).

8 Note that if we formulate this lemma for a restricted M-functor, we require that FR creates M-morphisms
according to Definition 45. The proof for the adapted lemma works analogously to that of the current
lemma.
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Proof.
The detailed proof for this lemma is given in Appendix B on page 287. �

As the next step, we introduce the notion of F(AC)-compatibility, which corresponds
to the application of an M-functor F to the AC-compatibility given in Definition 28 in
Subsection 2.3.2.

Definition 58 (F(AC)-Compatibility of AC-Disregarding Transformations).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), where
P are rules with nested application conditions, an M-functor F : (C1,M1) → (C2,M2) that
preserves pullbacks of M-morphisms, and a critical pair P1

ρ1,o1⇐= K
ρ2,o2=⇒ P2 of derived rules ρ1

and ρ2 with induced extension and conflict-inducing nested application conditions on K, acK
and ac∗K, respectively. Then the F(AC)-compatibility is defined by the following implication

(F(acK)∧F(ac∗K))⇒ (F(ac(t1))∧F(ac(t2)))

where ti , K
ρi,oi=⇒ Pi

t ′i ∗=⇒ K ′ are extended AC-disregarding transformations with derived nested
application conditions ac(ti) on K for i ∈ {1, 2}.

K

P1

P2

K ′

∗

∗

ρ1,o1

ρ2,o2

t ′1

t ′2

The following lemma describes the dependency between the AC-compatibility and the
F(AC)-compatibility of AC-disregarding transformations.

Lemma 20 (F(AC)-Compatibility Implies AC-Compatibility).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), where
P are rules with nested application conditions, and an M-functor F : (C1,M1)→ (C2,M2) that
preserves pullbacks of M-morphisms and creates (M-)morphisms9. Then two AC-disregarding
transformations are AC-compatible if they are F(AC)-compatible.

Proof.
The detailed proof for this lemma is given in Appendix B on page 287. �

The next kind of compatibility, the AC(F)-compatibility, corresponds to the AC-compa-
tibility defined directly on the translated transformations in AS2.

Definition 59 (AC(F)-Compatibility of AC-Disregarding Transformations [213]).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), where
P are rules with nested application conditions, an M-functor F : (C1,M1) → (C2,M2) that

preserves pullbacks of M-morphisms, and an F-reachable critical pair F(P1)
F(ρ1),F(o1)⇐= F(K)

F(ρ2),F(o2)
=⇒ F(P2) of translated derived rules F(ρ1) and F(ρ2) with induced extension and

conflict-inducing nested application conditions on F(K), acF(K) and ac∗
F(K), respectively. Then

the AC(F)-compatibility is defined by the following implication

(acF(K) ∧ ac
∗
F(K))⇒ (ac(F(t1))∧ ac(F(t2)))
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where F(ti) , F(K)
F(ρi),F(oi)

=⇒ F(Pi)
F(t ′i) ∗=⇒ F(K ′) are translated extended AC-disregarding

transformations with translated derived nested application conditions ac(F(ti)) on F(K) for
i ∈ {1, 2}.

F(K)

F(P1)

F(P2)

F(K ′)

∗

∗

F(ρ1),F(o1)

F(ρ2),F(o2)

F(t ′1)

F(t ′2)

In the following, we adapt the Definition 29 introducing the strict AC-confluence of
critical pairs to the case of F-reachable critical pairs. We use this property later on to for-
mulate our main result of this section concerning the creation of local confluence based
on F-reachable critical pairs for transformations with nested application conditions.

Definition 60 (Strict AC(F)-Confluence of Critical Pairs [213]).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), where
P are rules with nested application conditions, and an M-functor F : (C1,M1)→ (C2,M2) that

preserves pullbacks of M-morphisms. An F-reachable critical pair F(P1)
F(ρ1),F(o1)⇐= F(K)

F(ρ2),F(o2)
=⇒ F(P2) of translated derived rules F(ρ1) and F(ρ2) with induced translated extension

and conflict-inducing nested application conditions on F(K), acF(K) and ac∗
F(K), respectively, is

called strictly AC(F)-confluent if this pair is plain strictly confluent, i.e., strictly confluent in
the sense of Definition 14 with AC-disregarding transformations F(t ′1) and F(t ′2) such that the

extended AC-disregarding transformations F(ti) , F(K)
F(ρi),F(oi)

=⇒ F(Pi)
F(t ′i) ∗=⇒ F(K ′) with

translated derived nested application conditions ac(F(ti)) on F(K) for i ∈ {1, 2} are AC(F)-
compatible.

An example for constructing a concrete F-reachable critical pair with nested applica-
tion conditions in the category of typed attributed graphs over the hypergraph specific
type graph HGTG and showing its strict AC(F)-confluence is given in Example 16.

The following lemma states that M-functors preserve and create the plain strict con-
fluence diagrams under certain assumptions. We need this property to be able to prove
our central theorem of this section concerning the creation of local confluence based on
F-reachable critical pairs for rules with nested application conditions.

Lemma 21 (Preservation and Creation of Plain Strict Confluence).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), where
P are rules with nested application conditions, an M-functor F : (C1,M1) → (C2,M2) that
preserves pullbacks of M-morphisms as well as creates morphisms9, and local confluence diagrams
(1) in AS1 and (2) in AS2 with F(1) = (2). Then the diagram (1) is plain strictly confluent iff
the diagram (2) is plain strictly confluent.

9 Note that if we formulate this lemma for a restricted M-functor, we require that FR creates M-morphisms
according to Definition 45. The requirement concerning the preservation of pullbacks of M-morphisms
remains unchanged, but refers now to the restricted M-functor. The proof for the adapted lemma works
analogously to that of the current lemma.
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K

N1 N2

N

(PB)

P1 P2(3) (4)

N3 N4

K ′

(5)

(1)

ρ1,o1 ρ2,o2

∗ ∗

v1 v2

z1 z2

z3 z4

w1

v3

w2

v4

w3 w4

F(K)

F(N1) F(N2)

F(N)

(PB)

F(P1) F(P2)(6) (7)

F(N3) F(N4)

F(K ′)

(8)

(2)

F(ρ1),F(o1) F(ρ2),F(o2)

∗ ∗

F(v1) F(v2)

F(z1) F(z2)

F(z3) F(z4)

F(w1)

F(v3)

F(w2)

F(v4)

F(w3) F(w4)

Proof.
The detailed proof for this lemma is given in Appendix B on page 288. �

The definition below introduces two additional technical properties that we need in
the following to be able to show the compatibility of an M-functor with the Shift-
transformation (see Lemma 22). Intuitively these two technical properties mean that
pairs of jointly epimorphic morphisms can be transferred between two M-adhesive trans-
formation systems.

Definition 61 (Preservation and Creation of E ′-Instances).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P))10

where P are rules with nested application conditions, an M-functor F : (C1,M1) → (C2,M2),
E ′1-M1, E ′2-M2 pair factorizations, a class E ′2 = F(E ′1) containing all F-images of E ′1-instances,
and morphisms a : P → C, b : P → P ′ in MorC1 . Then

1. F translates E ′1-instances (a ′,b ′) into E ′2-instances (a ′′,b ′′) (or shortly F preserves
E ′-instances) if the following holds:

∀(a ′,b ′) ∈ E ′1. ∃(a ′′,b ′′) ∈ E ′2. a ′′ = F(a ′) ∧ b ′′ = F(b ′)

10 In general, Definition 61 can also be used in the context of non-M-adhesive transformation systems with
distinguished classes of monomorphisms.
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2. F creates E ′1-instances (a ′,b ′) from E
′
2-instances (a ′′,b ′′) (or shortly F creates E ′-

instances) if for all spans (C a← P
b→ P ′) it holds:

∀(a ′′,b ′′) ∈ E
′
2. (2) commutes ∧ b ′′ ∈M2 ⇒

∃(a ′,b ′) ∈ E ′1. a ′′ = F(a ′)∧ b ′′ = F(b ′)∧ (1) commutes ∧ b ′ ∈M1.

P

C

P ′

C ′

(1)

b

a

b ′

a ′

F(P)

F(C)

F(P ′)

C ′′= F(C ′)

(2)

F(b)

F(a)

b ′′ = F(b ′)

a ′′ = F(a ′)

We need the following two compatibility properties to show later on the dependency
between F(AC)-compatibility and AC(F)-compatibility. To ensure the compatibility of
F with the Shift-transformation, we must interpret the class E ′, occurring in the def-
inition of Shift (see Remark 4), by F(E ′1) for the target transformation system of the
M-functor. This guarantees that equivalent nested application conditions are computed
by the Shift-transformations for the source and the target transformation systems of the
M-functor. Taking the set of all jointly epimorphic morphisms for the target transfor-
mation system would lead to possibly larger nested application conditions in particular
for the case of nested application conditions of the form acP = ∃(a,acC), because the
Shift-transformation would also include the cases where a nested application condition
is shifted using non-F-images a ′, b ′ (see Remark 4).

Lemma 22 (F is Compatible with Shift-Transformation).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), where
P are rules with nested application conditions, and an M-functor F : (C1,M1)→ (C2,M2) that
preserves and creates E ′-instances according to Definition 61. Then F is compatible with the
Shift-transformation, i.e.,

∀acP,b : P → P ′. F(Shift(b,acP)) = Shift(F(b),F(acP)).

Proof.
This lemma can be proved by induction over the depth of a nested application condition. For
detailed proof see Appendix B on page 289. �

Lemma 23 (F is Compatible with L-Transformation).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), where
P are rules with nested application conditions, and an M-functor F : (C1,M1)→ (C2,M2) that
translates and creates rule applicability according to Theorem 3 as well as preserves pullbacks of
M-morphisms11. Then F is compatible with the L-transformation, i.e.,

∀acR, ρ ∈ P ∪ P∗. F(L(ρ,acR)) = L(F(ρ),F(acR))

11 Note that if we formulate this lemma for a restricted M-functor, we require that FR translates and creates
rule applicability for the case of M-matches according to Remark 12. The requirement concerning the
preservation of pullbacks of M-morphisms remains unchanged, but refers now to the restricted M-functor.
The proof for the adapted lemma works analogously to that of the current lemma.
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where P∗ is a set of derived rules in AS1.

Proof.
This lemma can be proved by induction over the depth of a nested application condition. For
detailed proof see Appendix B on page 291. �

In the next lemma we describe the dependency between F(AC)-compatibility and
AC(F)-compatibility of AC-disregarding transformations.

Lemma 24 (AC(F)-Compatibility Implies F(AC)-Compatibility).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), where
P are rules with nested application conditions, and an M-functor F : (C1,M1)→ (C2,M2) that
creates morphisms and is compatible with Shift- and L-transformations according to Lemmas 22
and 2312. Then two AC-disregarding transformations P1

ρ1,o1⇐= K
ρ2,o2=⇒ P2 are F(AC)-compatible

if their corresponding translations by the M-functor F are AC(F)-compatible.

K

P1

P2

K ′

∗

∗

ρ1,o1

ρ2,o2

t ′1

t ′2

t1

t2
F(K)

F(P1)

F(P2)

F(K ′)

∗

∗

F(ρ1),F(o1)

F(ρ2),F(o2)

F(t ′1)

F(t ′2)

F(t1)

F(t2)

Proof.
The detailed proof for this lemma is given in Appendix B on page 293. �

Using the dependency between F(AC)-compatibility and AC(F)-compatibility toge-
ther with the fact that F(AC)-compatibility implies AC-compatibility according to Lem-
ma 20, we can show in the subsequent Lemma 25 that the AC(F)-compatibility of AC-
disregarding transformations in the target transformation system of an M-functor leads
to the corresponding AC-compatibility of transformations in the source transformation
system. We use this property later on to prove our main theoretical result of this section.

Lemma 25 (AC(F)-Compatibility Implies AC-Compatibility [213]).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), where
P are rules with nested application conditions, and an M-functor F : (C1,M1) → (C2,M2)

that creates (M-)morphisms and is compatible with Shift- and L-transformations according to
Lemmas 22 and 2312. Then two AC-disregarding transformations P1

ρ1,o1⇐= K
ρ2,o2=⇒ P2 are AC-

compatible if their corresponding translations by the M-functor F are AC(F)-compatible.

K

P1

P2

K ′

∗

∗

ρ1,o1

ρ2,o2

t ′1

t ′2

t1

t2
F(K)

F(P1)

F(P2)

F(K ′)

∗

∗

F(ρ1),F(o1)

F(ρ2),F(o2)

F(t ′1)

F(t ′2)

F(t1)

F(t2)
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Proof.
The detailed proof for this lemma is given in Appendix B on page 298. �

The lemma, given in the following, states that an M-functor F preserves both, weak
critical pairs and critical pairs, under certain assumptions.

Lemma 26 (Preservation of (Weak) Critical Pairs [213]).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), where
P are rules with nested application conditions, a (weak) critical pair P1

ρ1,o1⇐= K
ρ2,o2=⇒ P2 in AS1,

and an M-functor F : (C1,M1)→ (C2,M2) that creates (M-)morphisms and is compatible with

E ′−M pair factorization as well as with Shift- and L-transformations13. Then F(P1)
F(ρ1),F(o1)⇐=

F(K)
F(ρ2),F(o2)

=⇒ F(P2) is the corresponding F-reachable (weak) critical pair in AS2.

Proof.
The detailed proof for this lemma is given in Appendix B on page 298. �

In the following theorem, which is our main theoretical result of this section, we de-
duce local confluence of the source transformation system of an M-functor from the strict
AC(F)-confluence of the corresponding F-reachable critical pairs in the target transfor-
mation system. Examples for using this theorem for the local confluence analysis of a
concrete hypergraph resp. PTI net transformation system via critical pairs with nested
application conditions are given in Sections 7.3 and 10.3, respectively.

Theorem 11 (Creation of Local Confluence Based on F-Reachable Critical Pairs for Rules
with Nested Application Conditions [213]).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), where
P are rules with nested application conditions, and an M-functor F : (C1,M1) → (C2,M2)

that is compatible with E ′ −M pair factorization as well as Shift- and L-transformations and
creates (direct) transformations according to Theorem 3 and (M-)morphisms14. Then the M-
adhesive transformation system AS1 is locally confluent for all pairs of direct transformations
H1

ρ1,m1⇐= G
ρ2,m2=⇒ H2 with nested application conditions if all F-reachable critical pairs with

nested application conditions of F(ρ1) and F(ρ2) are strictly AC(F)-confluent.

Proof.
In order to show local confluence for AS1, it suffices to show by Fact 5 that all its critical pairs
are strictly AC-confluent. This means according to Definition 29 that all critical pairs of ρ1

12 Note that if we formulate this lemma for a restricted M-functor, we require that FR creates M-morphisms
according to Definition 45. The requirements concerning the compatibility of F with Shift- and L-
transformations remain unchanged, but refer now to the restricted M-functor. The proof for the adapted
lemma works analogously to that of the current lemma.

13 Note that if we formulate this lemma for a restricted M-functor, we require that FR creates M-morphisms ac-
cording to Definition 45. The requirements concerning the compatibility of F with E ′ −M pair factorization
as well as with Shift- and L-transformations remain unchanged, but refer now to the restricted M-functor.
The proof for the adapted lemma works analogously to that of the current lemma.

14 Note that if we formulate this theorem for a restricted M-functor, we require that FR creates (direct) transfor-
mations according to Remark 12 and M-morphisms according to Definition 45. The requirements concerning
the compatibility of F with E ′ −M pair factorization as well as with Shift- and L-transformations remain
unchanged, but refer now to the restricted M-functor. The proof for the adapted theorem works analogously
to that of the current theorem.
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and ρ2 in AS1 are plain strictly confluent and AC-compatible, i.e., consider any critical pair
P1

ρ1,o1⇐= K
ρ2,o2=⇒ P2 in AS1, then we have to show the plain strict confluence of diagram (1)

given below as well as the AC-compatibility of the extended AC-disregarding transformations

ti , K
ρi,oi=⇒ Pi

t ′i ∗=⇒ K ′ with the derived nested application conditions ac(ti) on K for i ∈ {1, 2}
given by the following implication: (acK ∧ ac∗K)⇒ (ac(t1)∧ ac(t2)) (see Definition 28).

K

P1

P2

(1) K ′

∗

∗

ρ1,o1

ρ2,o2

t ′1

t ′2

Fix a critical pair P1
ρ1,o1⇐= K

ρ2,o2=⇒ P2 of ρ1 and ρ2 in AS1, then by Lemma 26 F(P1)
F(ρ1),F(o1)⇐=

F(K)
F(ρ2),F(o2)

=⇒ F(P2) is an F-reachable critical pair of F(ρ1) and F(ρ2) in AS2. By as-
sumption of the current theorem, this F-reachable critical pair is strictly AC(F)-confluent. This
means according to Definition 60 that we have the plain strict confluence diagram (2a) as
given below with the AC(F)-compatibility of the extended AC-disregarding transformations

F(ti) , F(K)
F(ρi),F(oi)

=⇒ F(Pi)
F(t ′i) ∗=⇒ X for i ∈ {1, 2}. From the diagram (2a) we obtain

the plain strict confluence diagram of the form (2b), because F creates transformations and mor-
phisms (and hence also isomorphisms) by assumption, such that the AC(F)-compatibility de-
scribed by the following implication holds: (acF(K)∧ac

∗
F(K))⇒ (ac(F(t1))∧ac(F(t2))) with

the extended AC-disregarding transformations F(ti) , F(K)
F(ρi),F(oi)

=⇒ F(Pi)
F(t ′i) ∗=⇒ F(K ′)

and the derived nested application conditions ac(F(ti)) on F(K) for i ∈ {1, 2}.

F(K)

F(P1)

F(P2)

(2a) X

∗

∗

F(ρ1),F(o1)

F(ρ2),F(o2)

F(t ′1)

F(t ′2)
F(K)

F(P1)

F(P2)

(2b) F(K ′)

∗

∗

F(ρ1),F(o1)

F(ρ2),F(o2)

F(t ′1)

F(t ′2)

Now, applying Lemma 21, we obtain that the diagram (1) is also a plain strict confluence dia-
gram. Furthermore, by application of Lemma 25, the AC(F)-compatibility of the extended AC-

disregarding transformations F(ti) , F(K)
F(ρi),F(oi)

=⇒ F(Pi)
F(t ′i) ∗=⇒ F(K ′) from the diagram

(2b) implies the AC-compatibility of the corresponding extended AC-disregarding transforma-

tions ti , K
ρi,oi=⇒ Pi

t ′i ∗=⇒ K ′ from the diagram (1) (in both cases for i ∈ {1, 2}), which was to be
shown. �
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4.3 F -transfer of termination, confluence , and functional behavior

In this section, we provide the general theory helping us to verify semantical properties
like termination, confluence, and functional behavior using M-functors for M-adhesive
transformation systems containing rules without or with nested application conditions.
Firstly, we introduce the notion of F-termination needed for the termination analysis
of the target transformation system of an M-functor. Secondly, we show that we can
derive the F-termination of a target transformation system of an M-functor from the
termination of its source transformation system and vice versa. Finally, we state under
which requirements the source transformation system of an M-functor is confluent and
has functional behavior.

For the target transformation system of an M-functor, we consider the notion of F-
termination. A transformation system is F-terminating if there is no infinite sequence
such that the start object of the considered sequence is an F-image. We need this restric-
tion, because the F-termination requires termination for sequences starting with some
translated object F(G0) instead of a general object G ′0.

Definition 62 (F-Termination of a Translated M-Adhesive Transformation System [209]).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), and
an M-functor F : (C1,M1) → (C2,M2). A translated M-adhesive transformation system AS2

is called F-terminating if there is no infinite sequence F(G0)
F(ρ1),m ′1=⇒ G ′1

F(ρ2),m ′2=⇒ G ′2
F(ρ3),m ′3=⇒

. . . with F(ρ1),F(ρ2),F(ρ3), · · · ∈ F(P) and match morphisms m ′1,m ′2,m ′3, · · · ∈MorC2 .

M-functors transfer termination according to the following theorem.

Theorem 12 (F-Transfer of Termination [209]).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), and
an M-functor F : (C1,M1) → (C2,M2) that translates and creates (direct) transformations15

according to Theorem 1. Then an M-adhesive transformation system AS1 is terminating iff the
corresponding translated M-adhesive transformation system AS2 is F-terminating.

Proof (by Contraposition).

Consider a non-terminating sequence F(G0)
F(ρ1),m ′1=⇒ G ′1

F(ρ2),m ′2=⇒ G ′2
F(ρ3),m ′3=⇒ . . . in AS2 (see

the right part of the diagram below). We generate stepwise a non-terminating sequence G0
ρ1,m1=⇒

G1
ρ2,m2=⇒ G2

ρ3,m3=⇒ . . . in AS1 (see the left part of the diagram below) with m ′i = F(mi) and
G ′j = F(Gj) for i ∈ {1, 2, 3}, j ∈ {1, 2} by pointwise application of the assumption that the given
M-functor creates direct transformations.
Analogously, for a given non-terminating sequence G0

ρ1,m1=⇒ G1
ρ2,m2=⇒ G2

ρ3,m3=⇒ . . . in AS1
(see the left part of the diagram below), we generate stepwise a non-terminating sequence F(G0)
F(ρ1),F(m1)

=⇒ F(G1)
F(ρ2),F(m2)

=⇒ F(G2)
F(ρ3),F(m3)

=⇒ . . . in AS2 (see the right part of the diagram
below) by pointwise application of the assumption that the given M-functor translates direct
transformations.

15 Note that if we formulate this theorem for a restricted M-functor, we require that FR translates and creates
(direct) transformations according to Theorem 2. The proof for the adapted theorem works analogously to
that of the current theorem.
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G0

G1

G2

...

F(G0)

G ′1= F(G1)

G ′2= F(G2)

...

F

F

F

ρ1,m1

ρ2,m2

ρ3,m3

F(ρ1),m ′1 = F(m1)

F(ρ2),m ′2 = F(m2)

F(ρ3),m ′3 = F(m3)

�

The following remark summarizes, which technical properties are required to be able
to extend the Theorem 12 to transformations with nested application conditions.

Remark 14 (F-Transfer of Termination for the Case of Transformations with Nested
Application Conditions).
We can extend Theorem 12, formulated for rules without nested application conditions, to the case
of transformations with nested application conditions requiring that an M-functor F translates
and creates (direct) transformations with nested application conditions according to Theorem 316.
The proof for this extension works analogously to the proof of Theorem 12.

As we already know from Subsubsection 2.2.2.3, a terminating transformation system
is called confluent if the application of its rules in any order yields a result, which is
unique up to isomorphism. The rules of a confluent transformation system are stable
in the sense that they provide a unique starting point for further computations. In the
next step we combine the results concerning the creation of local confluence and the
F-transfer of termination, which are needed to deduce the creation of confluence and
functional behavior. For this reason we formulate and prove the following theorem.

Theorem 13 (F-Transfer of Confluence and Functional Behavior [209]).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)), and
an M-functor F : (C1,M1) → (C2,M2) that translates and creates (direct) transformations
according to Theorem 1 as well as creates morphisms17. Then AS1 is locally confluent and ter-
minating iff AS2 is locally confluent for all translated transformation spans and F-terminating.
Moreover, AS1 is confluent and has functional behavior if AS2 is locally confluent for all trans-
lated transformation spans and F-terminating.

Proof.
Assume that AS1 is locally confluent and terminating. Using Theorems 6 and 12 we obtain that
also AS2 is locally confluent for all translated transformation spans and F-terminating.
Analogously, assume that AS2 is locally confluent for all translated transformation spans and
F-terminating. Using Theorems 6 and 12 we obtain that also AS1 is locally confluent and

16 Note that considering a restricted M-functor, we require for the mentioned theorem extension that FR
translates and creates (direct) transformations with nested application conditions according to Remark 12.
The corresponding proof works then analogously to that of the mentioned theorem extension.

17 Note that if we formulate this theorem for a restricted M-functor, we require that FR translates and creates
(direct) transformations according to Theorem 2 and creates M-morphisms according to Definition 45. The
proof for the adapted theorem works analogously to that of the current theorem.
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terminating. Furthermore, local confluence and termination of AS1 imply according to Remark 2
that AS1 is confluent and has functional behavior. �

The Theorem 13 can be adapted to transformations with nested application conditions
as described in the following remark.

Remark 15 (F-Transfer of Confluence and Functional Behavior for the Case of Transfor-
mations with Nested Application Conditions).
We can extend Theorem 13, formulated for rules without nested application conditions, to the case
of transformations with nested application conditions requiring that an M-functor F translates
and creates (direct) transformations with nested application conditions according to Theorem 3 as
well as creates (M-)morphisms18. The proof for this extension works analogously to the proof of
Theorem 13 using Theorem 9 and Remark 14.

18 Note that considering a restricted M-functor, we require for the mentioned theorem extension that FR
translates and creates (direct) transformations with nested application conditions according to Remark 12

and creates M-morphisms according to Definition 45. The corresponding proof works then analogously to
that of the mentioned theorem extension.
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F U N C T O R B E T W E E N C AT E G O R I E S O F H Y P E R G R A P H S A N D
T Y P E D AT T R I B U T E D G R A P H S

In this and the next two chapters, we focus on the application of the general approach
from Chapters 3 and 4 to the M-adhesive categories of hypergraphs and typed attributed
graphs presented in Subsections 2.4.2 and 2.4.1, respectively. In Section 5.1 we introduce
the subcategory AGraphsHGTG of typed attributed graphs over the specific typed at-
tributed graph HGTG allowing us to represent hypergraphs as typed attributed graphs.
We use subsequently this subcategory in Section 5.2 as the target category for the functor
construction that defines the translation of objects and morphisms from the M-adhesive
category of hypergraphs (HyperGraphs,M1) into the corresponding objects and mor-
phisms from the M-adhesive category of typed attributed graphs (AGraphsHGTG,M2)

where M1 and M2 denote the classes of all injective morphisms from the categories
HyperGraphs and AGraphsHGTG, respectively.

5.1 typed attributed graphs over the hypergraph type graph HGTG

In this section, we introduce the category of typed attributed graphs, which we call
AGraphsHGTG, constructed over the specific typed attributed graph HGTG allowing for
the hypergraph representation. For our functor construction, we use the subcategory
AGraphsN

HGTG of AGraphsHGTG where all objects are restricted to the data type NAT,
VGD = N, and all data type morphisms as well as VD-components of the E-graph mor-
phisms are restricted to identities. Morphisms in AGraphsN

HGTG are defined component-
wise and are type-compatible.

The construction of pushouts and pullbacks in AGraphsN
HGTG can be obtained compo-

nentwise, as in AGraphsHGTG, with the identical data type component.
As already mentioned in Subsection 2.4.1, the category (AGraphsATG,M) is M-adhe-

sive for each type graph ATG where M-morphisms are injective with the isomorphic
data type part. Hence also the special case of (AGraphsATG,M) with ATG = HGTG and
the subclass M = M2 of all injective typed attributed graph morphisms is M-adhesive.
Moreover, the fact that (AGraphsHGTG,M2) is an M-adhesive category implies that also
(AGraphsN

HGTG,MN
2 ) is an M-adhesive category with the class M2 restricted to MN

2 with
the identical data type component.

The initial object ∅N in AGraphsN
HGTG is empty excepting the data type part and ∅N =

FHG(∅) where ∅ is an initial hypergraph. In the following, we use the short notation
(AGraphsHGTG,M2) for the M-adhesive category of typed attributed graphs over HGTG
instead of the long notation (AGraphsN

HGTG,MN
2 ).

We want to express hypergraphs as typed attributed graphs to be able to analyze them
using the tool Agg. For this reason we use the hypergraph specific type graph HGTG,
which suites well for description of hypergraphs. HGTG is shown in Figure 29 as an
E-graph on the left (where nodes and edges correspond to the graph nodes (VG) and
graph edges (EG), respectively, dashed nodes are the data nodes (VD), and dashed edges
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Node

Edge nat

node2edge

edge2node number

number
in

out

Node

Edge

in : nat

out : nat

node2edge

number : nat

edge2node

number : nat

Figure 29: Attributed type graph HGTG

represent the edges for node and edge attribution) and in its short attributed notation on
the right.

The meaning of every depicted element of HGTG is as follows. Nodes of the types
Node and Edge represent hypergraph nodes and hyperedges, respectively. Edges of the
types node2edge, edge2node represent hyperedge tentacles and are attributed by a number
number, which contains the position of a node in the source resp. target string of the
considered hyperedge. Nodes of the type Edge have two attributes in and out giving
the number of nodes in the pre- and postdomain of a hyperedge, which are needed to
ensure the preservation of an Edge node’s environment using typed attributed graph
morphisms. All node and edge attributes are typed over natural numbers represented
by the data node nat.

5.2 translation of hypergraphs into typed attributed graphs

We start this section with the formal definition of the functor FHG : HyperGraphs →
AGraphsHGTG. For this purpose, we have to define FHG on objects and morphisms.

Definition 63 (Functor FHG [211]).
Consider hypergraphs G = (VG,EG, sG, tG) and Gi = (VGi ,EGi , sGi , tGi) for i ∈ {1, 2}.

• Translation of objects:
We define the object FHG(G) = ((G ′, NAT), type)1 in AGraphsHGTG with a morphism
type : (G ′, NAT)→ (HGTG,Dfin) and an E-graphG ′ = (VG

′
G ,VG

′
D = N,EG

′
G ,EG

′
NA,EG

′
EA,

(sG
′

j , tG
′

j )
j∈{G,NA,EA}

) as follows where we use the following abbreviations: node2edge ,

n2e, edge2node , e2n, number , num.:

VG
′

G = VG ] EG (graph nodes),

EG
′

G = EG
′

n2e ] EG
′

e2n (graph edges) with

EG
′

n2e = {((v, e),n) ∈ (VG × EG)×N | snG(e) = v} ,

EG
′

e2n = {((e, v),n) ∈ (EG × VG)×N | tnG(e) = v}

where snG(e) (t
n
G(e)) is the n-th node in the string sG(e) (tG(e)),

EG
′

NA = EG
′

in ] EG
′

out (node attribute edges) with

EG
′

in = {(e,n, in) | (e,n) ∈ EG ×N ∧ |sG(e)| = n} ,

EG
′

out = {(e,n, out) | (e,n) ∈ EG ×N ∧ |tG(e)| = n}

1 In the following, we also use the short notation FHG(G) = G
′.



5.2 translation of hypergraphs into typed attributed graphs 125

where |w| is the length of the word w,

EG
′

EA = EG
′

s ] EG
′

t (edge attribute edges) with

EG
′

s = {(n, (v, e)) ∈N× (VG × EG) | snG(e) = v} 2,

EG
′

t = {(n, (e, v)) ∈N× (EG × VG) | tnG(e) = v} 2,

(and the corresponding source and target functions)

sG
′

G , tG
′

G : EG
′

G → VG
′

G defined by sG
′

G ((x,y),n) = x, tG
′

G ((x,y),n) = y,

sG
′

NA : EG
′

NA → VG
′

G defined by sG
′

NA(e,n, x) = e,

tG
′

NA : EG
′

NA →N defined by tG
′

NA(e,n, x) = n,

sG
′

EA : EG
′

EA → EG
′

G defined by sG
′

EA(n, (x,y)) = ((x,y),n),

tG
′

EA : EG
′

EA →N defined by tG
′

EA(n, (x,y)) = n.

To simplify the notation, we flatten nested tuples most of the time, i.e., the tuple ((x,y), z)
is written (x,y, z).
The AGraphsHGTG-morphism type : (G ′, NAT) → (HGTG,Dfin) is given by the final
morphism of data types from NAT to the final algebra Dfin and typeG ′ : G ′ → HGTG is
given by the E-graph morphism typeG ′ = (typeVG , typeVD , typeEG , typeENA , typeEEA) where

typeVG : VG
′

G → VHGTG
G with x 7→ Node (if x ∈ VG), x 7→ Edge (if x ∈ EG),

typeVD : N → Dfin,nat with x 7→ nat ( if x ∈N),

typeEG : EG
′

G → EHGTG
G with x 7→ y for x ∈ EG ′y and y ∈ {n2e, e2n} ,

typeENA : EG
′

NA → EHGTG
NA with x 7→ y for x ∈ EG ′y and y ∈ {in, out} ,

typeEEA : EG
′

EA → EHGTG
EA with x 7→ num.

• Translation of morphisms:
For an arbitrary hypergraph morphism f : G1 → G2 with f = (fV : VG1 → VG2 , fE :

EG1 → EG2), we define FHG(f) : FHG(G1)→ FHG(G2) with FHG(Gi) = (VGiG , N,EGiG ,
EGiNA,EGiEA, (sGij , tGij )j∈{G,NA,EA}) for i ∈ {1, 2} by FHG(f) = f

′ = (f ′VG , f ′VD=idN, f ′EG ,
f ′ENA , f ′EEA) where

f ′VG : VG1G → VG2G with VGiG = VGi ] EGi for i ∈ {1, 2} is given by f ′VG = fV]fE,

f ′EG : EG1G → EG2G with EGiG = EGin2e ] E
Gi
e2n for i ∈ {1, 2} is given by

f ′EG(v, e,n) = (fV(v), fE(e),n) for (v, e,n) ∈ EG1n2e,

f ′EG(e, v,n) = (fE(e), fV(v),n) for (e, v,n) ∈ EG1e2n,

f ′ENA : EG1NA → EG2NA with EGiNA = EGiin ] E
Gi
out for i ∈ {1, 2} is given by

f ′ENA(e,n, x) = (fE(e),n, x) for (e,n, x) ∈ EG1in ] E
G1
out and x ∈ {in, out} ,

f ′EEA : EG1EA → EG2EA with EGiEA = EGis ] EGit for i ∈ {1, 2} is given by

f ′EEA(n, v, e) = (n, fV(v), fE(e)) for (n, v, e) ∈ EG1s and n ∈N,

f ′EEA(n, e, v) = (n, fE(e), fV(v)) for (n, e, v) ∈ EG1t and n ∈N.

2 Where EG
′

s
∼= EG

′

n2e and EG
′

t
∼= EG

′

e2n.
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v0 v1

e0 e1

v2 v3

G 1
2

1

2

1 1

v0 : Node v1 : Node

FHG(G)

e0 : Edge

in = 2

out = 1

e1 : Edge

in = 1

out = 2

v2 : Node v3 : Node

(e0, v2, 1):e2n

num = 1

(v3, e1, 1):n2e

num = 1

(v0, e0, 1):n2e

num = 1

(v1, e0, 2):n2e

num = 2

(e1, v1, 1):e2n

num = 1

(e1, v1, 2):e2n

num = 2

Figure 30: Hypergraph G and its corresponding typed attributed graph FHG(G)

Figure 31: Example for the AGraphsHGTG-morphism type components typeVG and typeEG

An example for using the functor FHG on objects is shown in Figure 30 where the
typed attributed graph to the right is the translation of the corresponding hypergraph
to the left. As usual in the hypergraph notation, only the target nodes of a hyperedge
are marked by arrows. Another example for the translation of objects by FHG is given in
Figure 34 where four depicted typed attributed graphs result from the translation of the
corresponding hypergraphs in Figure 33.

An example for the type-morphism components typeVG and typeEG (depicted by dashed
arrows) is given in Figure 31. We do not show the other three type-morphism components
typeVD , typeENA , and typeEEA in order to improve the clarity of the illustration.

An example for the morphism translation by FHG is shown in Figure 32. For more
examples of the morphism translation see again Figure 33 and Figure 34 where the
morphisms in Figure 34 are translations of the corresponding morphisms in Figure 33.
It is important to ensure that the translation of morphisms, defined in the way described
before, is well-defined for all hypergraph morphisms f : G1 → G2. The formulation of
the sufficient properties for the well-definedness of the morphism translation is the aim
of the next lemma.
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v0:Node

v1:Node

FHG(G1)

e0:Edge
in=2
out=1

v3:Node v4:Node

e1:Edge
in=1
out=1

v2:Node

(v0, e0, 1):n2e
num=1

(v1, e0, 2):n2e
num=2

(e0, v3, 1):e2n
num=1

(v4, e1, 1):n2e
num=1

(e1, v2, 1):e2n
num=1

v ′0:Node v ′1,2:Node

FHG(G2)

e ′0:Edge
in=2
out=1

v ′3:Node v ′4:Node
e ′1:Edge
in=1
out=1

(v ′0, e ′0, 1):n2e
num=1

(v ′1,2, e ′0, 2):n2e
num=2

(e ′0, v ′3, 1):e2n
num=1

(v ′4, e ′1, 1):n2e
num=1

(e ′1, v ′1,2, 1):e2n
num=1

v ′0 v ′1,2

e ′0

v ′3

e ′1

v ′4

G2

1 2

1

1

1

v0 v1

e0

v3 v4 e1

v2

G1

1 2

1

1

1

FHG

FHG(g)
g

FHG

Figure 32: Translation of a hypergraph morphism g into the corresponding typed attributed
graph morphism FHG(g)

Lemma 27 (Well-Definedness of Hypergraph Morphism Translation).
Consider M-adhesive categories (HyperGraphs,M1), (AGraphsHGTG,M2), and the functor
FHG : HyperGraphs → AGraphsHGTG from Definition 63. Then for each hypergraph mor-
phism f : G1 → G2 the corresponding typed attributed graph morphism FHG(f) : FHG(G1) →
FHG(G2) is well-defined in AGraphsHGTG. Moreover, FHG preserves compositionality, injective
morphisms, inclusions, and identities.

Proof.
The detailed proof for this lemma is given in Appendix C on page 322 showing the following steps:

1. The components of FHG(f) are well-defined w.r.t. the codomain.
2. The components of FHG(f) are compatible with the source and target functions.
3. The components of FHG(f) are compatible with the typing morphisms.
4. Compositionality axiom holds for FHG.
5. f ∈M1 (inclusion, identity) implies that FHG(f) ∈M2 (inclusion, identity).

�

Using Lemma 27 we obtain that FHG is a functor, because FHG is well-defined as well
as preserves identities and composition.
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In this chapter, we show that we can apply the theoretical results concerning transla-
tion and creation of rule applicability without or with nested application conditions, (di-
rect) transformations, parallel and sequential independence of transformations as well
as F-bisimilarity and F-transfer of bisimilarity to the concrete functor FHG between the
categories of hypergraphs and typed attributed graphs. For this reason, we show in
Section 6.1 that FHG is an M-functor as well as in Sections 6.2 and 6.3 that the remain-
ing requirements of the theoretical results from Chapter 3 are satisfied by FHG leading
altogether to the instantiation of the mentioned theoretical results for hypergraph trans-
formation systems. Moreover, the instantiation of these results guarantees the behavioral
equivalence of the FHG-related parts of the source and the target transformation systems.

6.1 translation of hypergraph transformations

Our first step in this section is to show the preservation of pushouts along injective mor-
phisms by the functor FHG. Using this result together with the preservation of injective
morphisms by FHG, which was already shown in Lemma 27 in the previous chapter, we
obtain that FHG is an M-functor and thus we can show that FHG translates applicability
of hypergraph rules without or with nested application conditions, (direct) hypergraph
transformations as well as parallel and sequential independence of hypergraph transfor-
mations by application of the general theory.

We can apply the results of our general theory to FHG only if FHG is an M-functor. The
remaining technical property that has to be shown for FHG to become an M-functor, is
the preservation of pushouts along injective morphisms, which intuitively means that if
we have a pushout along injective hypergraph morphisms in the category HyperGraphs
then, applying FHG to this diagram, we obtain a pushout along injective typed attributed
graph morphisms in the category AGraphsHGTG. As we already know from Defini-
tion 41, each functor, which is an M-functor, has to satisfy this technical property.

Lemma 28 (FHG Preserves Pushouts along Injective Morphisms [211]).
Consider M-adhesive categories (HyperGraphs,M1), (AGraphsHGTG,M2), functor FHG :

HyperGraphs→ AGraphsHGTG introduced in Definition 63, hypergraphsGi for i ∈ {0, 1, 2, 3}
with hypergraph morphisms b = (bV ,bE), c = (cV , cE), g = (gV ,gE), h = (hV ,hE), and
typed attributed graphs FHG(Gi) for i ∈ {0, 1, 2, 3} with typed attributed graph morphisms
FHG(b) = b ′ = (b ′VG ,b ′VD ,b ′EG ,b ′ENA ,b ′EEA), FHG(c) = c ′ = (c ′VG , c ′VD , c ′EG , c ′ENA , c ′EEA),
FHG(g) = g ′ = (g ′VG ,g ′VD ,g ′EG ,g ′ENA ,g ′EEA), FHG(h) = h ′ = (h ′VG ,h ′VD ,h ′EG ,h ′ENA ,h ′EEA).
If (1) is a pushout in HyperGraphs with b ∈ M1 then we have that (2) is a pushout in
AGraphsHGTG with FHG(b) ∈M2.
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1 : v ′0 2 : v ′1

3 : e ′0

4 : v ′2 8 : e ′1 7 : v ′3

6 : e ′25 : v ′4

G ′2

1

2

1

1 1

1

1

1 : v0 2 : v1

3 : e0

4 : v3 7 : v4 6 : e1

5 : v2

G1

1

2

1

1

1

1 : v ′′0 25 : v ′′1

3 : e ′′0

4 : v ′′2

6 : e ′′1

7 : v ′′3

G3

1

2

1

1

1

1 : v ′0 25 : v ′1

3 : e ′0

4 : v ′2 8 : e ′1 7 : v ′3

6 : e ′2

G ′4

1

2

1

11

1

1

(PO)

h ∈M1

kg

l

Figure 33: Pushout in HyperGraphs with an injective hypergraph morphism h : G1 → G ′2

G0

(1)

G1

G2 G3

b

c g

h

FHG(G0)

(2)

FHG(G1)

FHG(G2) FHG(G3)

FHG(b)=b
′

FHG(c)=c
′ FHG(g)=g

′

FHG(h)=h
′

Proof.
The detailed proof of this lemma is given in Appendix C on page 328. �

An example for the translation of pushouts along injective hypergraph morphisms is
given in Figure 33 and Figure 34 where a pushout in HyperGraphs is given in Figure 33

and the corresponding translated pushout in AGraphsHGTG is given in Figure 34.
After the validation of the sufficient property for the translation of rule applicability,

(direct) hypergraph transformations as well as parallel and sequential independence, we
now formulate and prove our next theorem, which is one of the main results concerning
our hypergraph application. This theorem states intuitively that transformation steps,
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(1) v ′0:Node (2) v ′1:Node

FHG(G
′
2)

(3) e ′0:Edge

in=2

out=1

(4) v ′2:Node

(8) e ′1:Edge

in=1

out=1

(7) v ′3:Node

(6) e ′2:Edge

in=1

out=1

(5) v ′4:Node

(v ′0, e ′0, 1):n2e

num=1

(v ′1, e ′0, 2):n2e

num=2

(e ′0, v ′2, 1):e2n

num=1

(v ′2, e ′1, 1):n2e

num=1

(e ′1, v ′3, 1):e2n

num=1

(v ′3, e ′2, 1):n2e

num=1

(e ′2, v ′4, 1):e2n

num=1

(1) v ′0:Node

(25) v ′1:Node

FHG(G
′
4)

(3) e ′0:Edge

in=2

out=1

(4) v ′2:Node

(8) e ′1:Edge

in=1

out=1

(7) v ′3:Node

(6) e ′2:Edge

in=1

out=1

(v ′0, e ′0, 1):n2e

num=1

(v ′1, e ′0, 2):n2e

num=2
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Figure 34: Translated pushout in AGraphsHGTG with an injective typed attributed graph mor-
phism FHG(h) : FHG(G1)→ FHG(G
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2)
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which are possible in a hypergraph transformation system, are also possible in the corre-
sponding typed attributed graph transformation system using our concrete functor FHG.
Note that the following theorem is applicable to hypergraph transformation systems
containing rules without or with nested application conditions.

Theorem 14 (Translation of Hypergraph Transformations into Typed Attributed Graph
Transformations [211]).
Consider M-adhesive transformation systems (HyperGraphs,M1,P) and (AGraphsHGTG,M2,
FHG(P)). The functor FHG : HyperGraphs → AGraphsHGTG introduced in Definition 63
translates applicability of hypergraph rules without or with nested application conditions, con-
struction of (direct) hypergraph transformations as well as parallel and sequential independence
of hypergraph transformations.

Proof.
In order to use the results from Theorems 1 and 7 for the case of transformations without nested
application conditions as well as Theorems 3 and 10 for the case of transformations with nested
application conditions, we only have to show that FHG is an M-functor according to Definition 41.
In fact, we have FHG(M1) ⊆M2, i.e., FHG preserves injectivity of morphisms by Lemma 27 and
FHG preserves pushouts along injective hypergraph morphisms according to Lemma 28. �

In the following, we show for our running example how hypergraph transformation
rules can be translated into the corresponding typed attributed graph rules using the
M-functor FHG as well as give an example for a translated transformation step and satis-
faction of a translated nested application condition.

Example 14 (Hypergraph Transformations Translated by FHG).
In this example, we consider again the hypergraph transformation system describing a simple
distributed system with mobility already introduced in Example 7.

Since the M-functor FHG introduced in Definition 63 is not capable to handle the hyperedge
labels used in the context of the example, we have first to extend FHG to the translation of the
hyperedge labels into the String attributes of the corresponding hyperedge node representation.

In Figure 38 and Figure 39 the transformation rules from Example 7 translated by FHG are
given for the hypergraph transformation system without and with nested application conditions,
respectively. Note that for better readability we indicate in both figures only the edge attribute
num on graph edges avoiding to include the typing of the edge as well. Furthermore, Figure 37
shows a translated transformation step for the application of the translated rule FHG(enterServer),
while the corresponding hypergraph transformation step for the application of a hypergraph trans-
formation rule enterServer is given in Figure 35.

Moreover, in Figure 36 we give an example for satisfaction of the NAC of the translated rule
FHG(enterServer) from Figure 39. In the upper part of the picture the considered NAC is given
where FHG(LenterServer) represents the left-hand side of the translated rule FHG(enterServer),
while the lower part of the figure depicts the translated graph for that we want to check the
satisfaction. As we already know from Subsection 3.1.2, a translated NAC is satisfied when
there is no injective morphism from the NAC into the corresponding translated graph making
the arising triangle commute. Obviously, this is the case for our example, because there is no
morphism q ′ : FHG(C)→ FHG(G) (depicted by the scratched dashed arrow) making the depicted
triangle commute. Hence, we have that the match morphism FHG(m) : FHG(LenterServer) →
FHG(G) satisfies the NAC of the rule FHG(enterServer).
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Figure 35: Hypergraph transformation step for the application of the rule enterServer

Figure 36: Satisfaction of the translated NAC of the rule FHG(enterServer)
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Figure 37: Translated transformation step for the application of the rule FHG(enterServer)
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Figure 38: Translated transformation rules without nested application conditions of the Mobile
Processes system
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Figure 39: Translated transformation rules with nested application conditions of the extended
Mobile Processes system
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6.2 creation of hypergraph transformations

In this section, we are going to verify sufficient properties, which allow for application of
the creation part of Theorems 1 and 3 to the M-functor FHG introduced in Definition 63.
We show as the first step that FHG creates morphisms and injective morphisms, followed
by the proof that FHG preserves initial pushouts. Subsequently, we formulate and prove
our next important result concerning the hypergraph application stating that FHG creates
applicability of hypergraph rules without or with nested application conditions, (direct)
hypergraph transformations as well as parallel and sequential independence of hyper-
graph transformations.

The first of the sufficient properties, which we want to show, is the ability of FHG to
create morphisms. The proof for the uniqueness of morphism creation is based on the
additional technical property introduced and shown in the following lemma. This lemma
intuitively means that each typed attributed graph morphism f ′ : FHG(G1) → FHG(G2)

is uniquely determined by its VG-component f ′VG : VG1G → VG2G .

Lemma 29 (Uniquely Determined FHG-Images [211]).
Consider M-adhesive categories (HyperGraphs,M1), (AGraphsHGTG,M2), M-functor FHG :

HyperGraphs→ AGraphsHGTG from Definition 63, typed attributed graphs FHG(G1),
FHG(G2), and a morphism f ′ : FHG(G1) → FHG(G2) with f ′VD = idN. Then we have that
f ′ is uniquely determined by the VG-component f ′VG : VG1G → VG2G with VGiG = VGi ] EGi for
i ∈ {1, 2}.

Proof.
The detailed proof of this lemma is given in Appendix C on page 332.

�

In the next lemma we state and prove that the M-functor FHG creates morphisms. This
is the case if morphisms are created uniquely and are well-defined.

Lemma 30 (FHG Creates Morphisms [211]).
Consider M-adhesive categories (HyperGraphs,M1) and (AGraphsHGTG,M2), typed attribu-
ted graphs FHG(G1) and FHG(G2) as well as a morphism f ′ : FHG(G1)→ FHG(G2) that is com-
patible with typing morphisms. Then the M-functor FHG : HyperGraphs → AGraphsHGTG

creates a unique morphism f : G1 → G2 such that FHG(f) = f
′ or formally written:

∃!f : G1 → G2. FHG(f) = f
′.

Proof.
The detailed proof of this lemma is given in Appendix C on page 333. �

For the case if we consider transformations with nested application conditions, we
need additionally to show that FHG creates injective hypergraph morphisms.

Lemma 31 (FHG Creates Injective Morphisms [213]).
Consider M-adhesive categories (HyperGraphs,M1), (AGraphsHGTG,M2), typed attributed
graphs FHG(G1),FHG(G2), and an injective typed attributed graph morphism f ′ : FHG(G1) →
FHG(G2) that is compatible with typing morphisms. Then the M-functor FHG : HyperGraphs
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→ AGraphsHGTG creates a unique injective hypergraph morphism f : G1 → G2 such that
FHG(f) = f

′ or formally written:

∃!f : G1 → G2 in M1. FHG(f) = f
′.

Proof.
The detailed proof of this lemma is given in Appendix C on page 335. �

To prove the property that FHG preserves initial pushouts, we have to construct two
special boundary objects FHG(B) and B ′ in the category of typed attributed graphs.
FHG(B) is an FHG-translation of a boundary object in the category of hypergraphs, while
B ′ is a boundary object in the category of typed attributed graphs over the hypergraph
specific type graph HGTG constructed similar to Fact 6. In the following Lemmas 32 and
33, we introduce both mentioned boundary object constructions.

Lemma 32 (Application of FHG to a Hypergraph Boundary Object B over a Morphism
f : L→ G).
Consider M-adhesive categories (HyperGraphs,M1), (AGraphsHGTG,M2), a boundary object
B = (VB,EB, sB, tB) over a given morphism f : L → G in (HyperGraphs,M1) constructed
according to Lemma 5, and the M-functor FHG : HyperGraphs → AGraphsHGTG from Def-
inition 63. Then the application of FHG to the boundary object B results in the following typed
attributed graph:

FHG(B) = B
∗ = ((B∗0, NAT), typeB∗) with

B∗0 = (V
B∗0
G ,VB

∗
0

D = N,EB
∗
0

G ,EB
∗
0

NA,EB
∗
0

EA, (sB
∗
0

j , tB
∗
0

j )
j∈{G,NA,EA}

) where

V
B∗0
G = VB ] EB = IPV ∪ IPVE ∪DPV ∪ IPE,

E
B∗0
G = E

B∗0
n2e ] E

B∗0
e2n with

E
B∗0
n2e = {((v, e),n) ∈ (VB × EB)×N | snB(e) = v} ,

E
B∗0
e2n = {((e, v),n) ∈ (EB × VB)×N | tnB(e) = v} ,

E
B∗0
NA = E

B∗0
in ] E

B∗0
out with

E
B∗0
in = {(e,n, in) | (e,n) ∈ EB ×N ∧ |sB(e)| = n} ,

E
B∗0
out = {(e,n, out) | (e,n) ∈ EB ×N ∧ |tB(e)| = n} ,

E
B∗0
EA = E

B∗0
s ] EB

∗
0
t with

E
B∗0
s = {(n, (v, e)) ∈N× (VB × EB) | snB(e) = v} ,

E
B∗0
t = {(n, (e, v)) ∈N× (EB × VB) | tnB(e) = v} ,

s
B∗0
G : E

B∗0
G → V

B∗0
G defined by s

B∗0
G ((x,y),n) = x,

t
B∗0
G : E

B∗0
G → V

B∗0
G defined by t

B∗0
G ((x,y),n) = y,

s
B∗0
NA : E

B∗0
NA → V

B∗0
G defined by s

B∗0
NA(e,n, x) = e,

t
B∗0
NA : E

B∗0
NA →N defined by t

B∗0
NA(e,n, x) = n,

s
B∗0
EA : E

B∗0
EA → E

B∗0
G defined by s

B∗0
EA(n, (x,y)) = ((x,y),n),
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t
B∗0
EA : E

B∗0
EA →N defined by t

B∗0
EA(n, (x,y)) = n,

and FHG(b) : FHG(B)→ FHG(L) is an inclusion.

B∗ = FHG(B) FHG(L)

FHG(G)

FHG(b)

FHG(f)

Proof.
The detailed proof of this lemma is given in Appendix C on page 336. �

Lemma 33 (Boundary Object in (AGraphsHGTG,M2) over a Morphism f ′ : L ′ → G ′).
Consider a typed attributed graph morphism f ′ : L ′ → G ′. The boundary object B ′ is given by
B ′ = ((B ′0, NAT), typeB ′) with the boundary points

B ′0 = (V
B ′0
G ,VB

′
0

D = N,EB
′
0

G ,EB
′
0

NA,EB
′
0

EA, (sB
′
0

j , tB
′
0

j )
j∈{G,NA,EA}

).

The components of B ′0 are given by the dangling and identification points as follows:

B ′ L ′

G ′

b ′

f ′

E
B ′0
NA = IPENA = {a ∈ EL ′NA | ∃a ′ 6= a. a ′ ∈ EL ′NA ∧ f ′ENA(a) = f

′
ENA

(a ′)},

E
B ′0
EA = IPEEA = {a ∈ EL ′EA | ∃a ′ 6= a. a ′ ∈ EL ′EA ∧ f ′EEA(a) = f

′
EEA

(a ′)},

E
B ′0
G = DPEG ∪ IPEG ∪ sL

′
EA(IPEEA) with

DPEG = {a ∈ EL ′G | ∃a ′ ∈ EG ′EA\f ′EEA(E
L ′
EA). f

′
EG

(a) = sG
′

EA(a
′)},

IPEG = {a ∈ EL ′G | ∃a ′ 6= a. a ′ ∈ EL ′G ∧ f ′EG(a) = f
′
EG

(a ′)},

V
B ′0
G = DPVG ∪ IPVG ∪ sL

′
G (E

B ′0
G )∪ tL ′G (E

B ′0
G )∪ sL ′NA(IPENA) with

DPVG = {a ∈ VL ′G | [∃a ′ ∈ EG ′NA\f ′ENA(E
L ′
NA). f

′
VG

(a) = sG
′

NA(a
′)]

∨ [∃a ′ ∈ EG ′G \f ′EG(E
L ′
G ). f ′VG(a) = s

G ′
G (a ′)∨ f ′VG(a) = t

G ′
G (a ′)]},

IPVG = {a ∈ VL ′G | ∃a ′ 6= a. a ′ ∈ VL ′G ∧ f ′VG(a) = f
′
VG

(a ′)},

s
B ′0
G , tB

′
0

G : E
B ′0
G → V

B ′0
G are restrictions of sL

′
G , tL

′
G : EL

′
G → VL

′
G ,

s
B ′0
NA : E

B ′0
NA → V

B ′0
G is a restriction of sL

′
NA : EL

′
NA → VL

′
G ,

t
B ′0
NA : E

B ′0
NA →N is a restriction of tL

′
NA : EL

′
NA →N,

s
B ′0
EA : E

B ′0
EA → E

B ′0
G is a restriction of sL

′
EA : EL

′
EA → EL

′
G ,

t
B ′0
EA : E

B ′0
EA →N is a restriction of tL

′
EA : EL

′
EA →N,

and b ′ : B ′ → L ′ is an inclusion.
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EL
′
G VL

′
G

EL
′
NA

VL
′
D

EL
′
EA

sL
′
G

tL
′
G sL

′
NA

tL
′
NA

sL
′
EA

tL
′
EA

EG
′

G VG
′

G

EG
′

NA

VG
′

D

EG
′

EA

sG
′

G

tG
′

G

sG
′

NA

tG
′

NA

sG
′

EA

tG
′

EA

f ′EG f ′VG

f ′ENA

f ′VD

f ′EEA

Proof.
The detailed proof of this lemma is given in Appendix C on page 337. �

Note that for the construction of a context object C ′ in (AGraphsHGTG,M2) we use the
general construction that is already introduced in Fact 7 in Subsection 2.4.1.

In Figure 40 we can see, on the one hand, an example for the application of FHG

to the hypergraph boundary object B according to Lemma 32 given by VB
∗
0

G = {v3, v4}
and, on the other hand, an example for the construction of the boundary object B ′ in
(AGraphsHGTG,M2) over a general morphism f ′ : L ′ → G ′ according to Lemma 33 given
by VB

′
0

G = {v3, v4}. Figure 40 shows furthermore an example for the construction of the
context object C ′ in (AGraphsHGTG,M2) according to Fact 7 (concerning the boundary
object B ′ constructed according to Lemma 33) with VC

′
0

G = {v ′2}.
After both sufficient boundary object constructions are introduced in Lemmas 32 and

33, we can verify that FHG preserves initial pushouts as given in the following lemma.

Lemma 34 (FHG Preserves Initial Pushouts [211]).
Consider M-adhesive categories (HyperGraphs,M1), (AGraphsHGTG,M2), M-functor FHG :

HyperGraphs → AGraphsHGTG from Definition 63, and let (1) be an initial pushout over
f : L → G in (HyperGraphs,M1). Then (2) is an initial pushout over FHG(f) : FHG(L) →
FHG(G) in (AGraphsHGTG,M2).

B

(1)

L

C G

b

f ⇒
FHG(B)

(2)

FHG(L)

FHG(C) FHG(G)

FHG(b)

FHG(f)

Proof.
The detailed proof of this lemma is given in Appendix C on page 338. �
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Figure 40: Preservation of initial pushouts in (AGraphsHGTG,M2)



142 behavior analysis of hypergraph transformation systems

An example for the preservation of initial pushouts by FHG is given in Figure 40 where
(1) is an initial pushout in the category of hypergraphs, (2) is the induced pushout over
the morphism FHG(f) : FHG(L) → FHG(G), and the initial pushout in the category of
typed attributed graphs over FHG(f) is given by the outer diagram with corners B ′, C ′,
FHG(L), and FHG(G). Since i ′ : B ′ → FHG(B) and j ′ : C ′ → FHG(C) are isomorphisms,
the diagram (2) is an initial pushout over the injective morphism FHG(f).

After the satisfaction of all sufficient properties for the creation of rule applicability,
(direct) hypergraph transformations as well as parallel and sequential independence of
hypergraph transformations is verified, we formulate and prove in the following one of
our next main theorems for the hypergraph application. This theorem states intuitively
that transformation steps, which are possible in a transformation system translated by
FHG, are also possible in the original hypergraph transformation system. Note that the
following theorem is applicable to hypergraph transformation systems containing rules
without or with nested application conditions.

Theorem 15 (Creation of Hypergraph Transformations from Typed Attributed Graph
Transformations [211]).
Consider M-adhesive transformation systems (HyperGraphs,M1,P) and (AGraphsHGTG,M2,
FHG(P)). The functor FHG : HyperGraphs→ AGraphsHGTG from Definition 63 creates appli-
cability of hypergraph rules without or with nested application conditions, construction of (direct)
hypergraph transformations as well as parallel and sequential independence of hypergraph trans-
formations.

Proof.
In order to use the results from Theorems 1 and 7 for the case of transformations without nested
application conditions as well as Theorems 3 and 10 for the case of transformations with nested
application conditions, we have to show that FHG is an M-functor according to Definition 41,
FHG creates morphisms as well as injective morphisms, and FHG preserves initial pushouts. Fur-
thermore, it is required that the category (HyperGraphs,M1) has initial pushouts, which is
satisfied according to Lemma 7 in Subsection 2.4.2. In fact, we have that FHG(M1) ⊆ M2, i.e.,
FHG preserves injectivity of morphisms by Lemma 27 and FHG preserves pushouts along injec-
tive morphisms according to Lemma 28. Moreover, creation of morphisms by FHG is shown in
Lemma 30, creation of injective morphisms by FHG is shown in Lemma 31, and preservation of
initial pushouts by FHG is shown in Lemma 34. �

For an example of the creation of hypergraph transformation steps consider again Fig-
ure 35 and Figure 37 from the last section. For the translated transformation step given
in Figure 37, the result of the creation is the hypergraph transformation step depicted in
Figure 35.

6.3 FHG-transfer of bisimilarity for hypergraph transformation

systems

In this section, we instantiate our general theoretical results on bisimulation between M-
adhesive transformation systems to our concrete setting of hypergraph transformation
systems. That is, we show that the requirements of the respective Theorems 4 and 5 from
Section 3.2 are satisfied by the concrete M-functor FHG and the categories of hypergraphs
and typed attributed graphs. The proof then depends on the various lemmas introduced
in earlier sections.
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Theorem 16 (FHG-Bisimilarity and FHG-Transfer of R-Bisimilarity).
Consider M-adhesive transformation systems AS1 = (HyperGraphs,M1,P1), AS2 =
(AGraphsHGTG,M2,FHG(P1)), AS3 = (HyperGraphs,M1,P2), AS4 =
(AGraphsHGTG,M2,FHG(P2)), a rule relation R ⊆ P1 × P2, and the functor FHG :

HyperGraphs → AGraphsHGTG introduced in Definition 63. Then the following two state-
ments hold:

• Let G be a hypergraph from AS1. Then G is FHG-bisimilar to the corresponding typed
attributed graph FHG(G) in AS2, written G ∼FHG FHG(G).

• Let G be a hypergraph from AS1 and G ′ be a hypergraph from AS3. Then G is R-
bisimilar to G ′ iff FHG(G) is FHG(R)-bisimilar to FHG(G

′), written (G ∼R G ′) ⇔
(FHG(G) ∼FHG(R) FHG(G

′)).

Proof.
In order to use the results from Theorems 4 and 5 for the case of transformation steps without
or with nested application conditions, we have to show that FHG is an M-functor according
to Definition 41, FHG creates morphisms as well as injective morphisms, and FHG preserves
initial pushouts. Furthermore, it is required that the category (HyperGraphs,M1) has initial
pushouts, which is satisfied according to Lemma 7 in Subsection 2.4.2. In fact, we have that
FHG(M1) ⊆ M2, i.e., FHG preserves injectivity of morphisms by Lemma 27 and FHG preserves
pushouts along injective morphisms according to Lemma 28. Moreover, creation of morphisms by
FHG is shown in Lemma 30, creation of injective morphisms by FHG is shown in Lemma 31, and
preservation of initial pushouts by FHG is shown in Lemma 34. �

In the following, we give an example demonstrating FHG-bisimilarity and FHG-transfer
of R-bisimilarity for concrete hypergraph transformation systems. We are not considering
here our running example on mobile processes since the example used in the following
is more appropriate to cover both bisimilarity concepts at once. Nevertheless, for our
Mobile Processes example it obviously holds that for each hypergraph derivable by rule
application in the original hypergraph transformation system, there is an FHG-bisimilar
typed attributed graph in the corresponding typed attributed graph transformation sys-
tem implying the behavioral equivalence of the FHG-related parts of the involved source
and target transformation systems.

Example 15 (Coffee-Tea Machines).
We consider a classical example of two coffee-tea machines that are functioning differently. Both of
the considered machines are equipped with a coin box, in which it is necessary to drop one coin to
be able to order a tea or two coins to be able to order a coffee. Furthermore, it is intended for both
machines that it is not possible to drop more than two coins successively into a machine without
making an order. We represent the possible internal steps of each machine by the corresponding
transformation rules. The general behavior of the two machines is as follows: The decision to order
tea resp. coffee for the first machine occurs after the dropping of one or two coins into the machine.
If only one coin is dropped, only a tea order is possible. By dropping one coin more, it is possible
to order a coffee, while a tea order is not possible anymore. For the second machine the beverage
decision is made non-deterministically by the machine when the first coin is dropped into the
machine. After the decision was made, no switching is possible anymore. If the machine decided
to allow a tea order, the machine is waiting for the order to take place just after the dropping of the
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Figure 41: Hypergraph transformation rules modeling the behavior of the Coffee-Tea system CT1

Figure 42: Hypergraph transformation rules modeling the behavior of the Coffee-Tea system CT2

first coin, otherwise the machine is waiting for the dropping of the second coin, before allowing
the ordering of a coffee.

Formally, we model the behavior of the mentioned coffee-tea machines by two different Coffee-
Tea transformation systems CT1 = (HyperGraphs,M1,P1), CT2 = (HyperGraphs,M ′1,P2)
with M1 = M ′1 a class of all injective hypergraph morphisms and sets of hypergraph transfor-
mation rules P1, P2. In our machine models, a coin box, coins as well as a decision for a tea
resp. coffee order are represented as labeled hyperedges. The meaning of the hyperedge labels is as
follows: CT stands for a coin box, C denotes a single coin, a decision for a tea order is represented
by the label T , while a decision to order a coffee is represented by the label K.

The behavior of both transformation systems is modeled by the corresponding hypergraph trans-
formation rules given in Figure 41 and Figure 42 for CT1 and CT2, respectively. The transforma-
tion rules of the first coffee-tea machine mean the following: The rule dropCoin represents the
dropping of a coin into the machine, allowed only if less than two coins are already inside. This
restriction is modeled as a NAC for the rule dropCoin. The rules orderTea and orderCoffee
allow to order the desired beverage. Note that the tea order is not possible anymore if already two
coins are inside the machine, which is given by a NAC for the rule orderTea.
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Figure 43: A hypergraph representing the initial state of the Coffee-Tea systems CT1 and CT2

For the second coffee-tea machine we have the following rules: The rules dropCoinT and
dropCoinC model, on the one hand, the dropping of one coin into the machine and mark, on the
other hand, a beverage decision made non-deterministically by the machine associating hyperedges
labeled by T resp. K to the coin box. Both rules are applicable only if no earlier beverage decision
already exists. This restriction is given as a conjunction of NAC1 and NAC2 for both mentioned
rules. The rule dropCoin allows for the dropping of the second coin if the machine decided
previously to allow a coffee order. Also for the second machine the dropping of the second coin
is only possible if less than two coins are already contained in the coin box, which is modeled by
NAC3 for the rule dropCoin. The rules orderTea and orderCoffee allow similar to the first
machine for the ordering of the preselected beverage.

Let the hypergraph consisting only of a hyperedge labeled by CB as given in Figure 43 be the
initial state for both transformation systems (G for CT1 and G ′ for CT2). Now we want to check
whether G is R-bisimilar to G ′ with R = {(dropCoin,dropCoinT), (dropCoin,dropCoinC),
(dropCoin,dropCoin), (orderTea,orderTea), (orderCoffee,orderCoffee)}. Consider ad-
ditionally the M-functor FHG : HyperGraphs → AGraphsHGTG from Definition 63. Using
FHG we can translate the hypergraph transformation systems CT1, CT2 into the typed attributed
graph transformation systemsCT3 = (AGraphsHGTG,M2,FHG(P1)), CT4 = (AGraphsHGTG,
M ′2,FHG(P2)) with translated rules FHG(P1), FHG(P2) depicted in an abbreviated form1 in Fig-
ure 44 and Figure 45, respectively. Furthermore, we can translate the start hypergraphs G and G ′

into the corresponding start typed attributed graphs FHG(G), FHG(G
′) such that we additionally

have that G is FHG-bisimilar to FHG(G) and G ′ is FHG-bisimilar to FHG(G
′) by Theorem 4.

As the next step we want to check whether the typed attributed graphs FHG(G) and FHG(G
′)

are FHG(R)-bisimilar. From Figure 46, which shows an abbreviated form1 of the reachability
graphs of CT3 and CT4 depicting all possible transformation steps of CT3 and CT4 beginning with
the start graphs FHG(G) and FHG(G

′), respectively, we can see that FHG(G) and FHG(G
′) are

not FHG(R)-bisimilar. This is the case since in every FHG(R)-bisimulation containing (FHG(G),
FHG(G

′)) the first FHG(dropCoin)-step of FHG(G) is simulated by an FHG(dropCoinT)- or
FHG(dropCoinC)-step of FHG(G

′); if it is simulated by the FHG(dropCoinT)-step, then af-
terwards the second FHG(dropCoin)-step of FHG(G) cannot be simulated by FHG(G

′) any-
more. If the first FHG(dropCoin)-step of FHG(G) is simulated by the FHG(dropCoinC)-step of
FHG(G

′), then afterwards the FHG(orderTea)-step of FHG(G) cannot be simulated by FHG(G
′)

anymore. Therefore, there is no FHG(R)-bisimulation containing (FHG(G),FHG(G
′)). Now us-

ing the contraposition of Theorem 5, we can deduce that hypergraphsG andG ′ are not R-bisimilar
as well.

1 In Figure 44, Figure 45, and Figure 46 we omit the edge typing and attribution for better readability.
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Figure 44: Typed attributed graph transformation rules modeling the behavior of the Coffee-Tea
system CT3
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Figure 45: Typed attributed graph transformation rules modeling the behavior of the Coffee-Tea
system CT4
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Figure 46: Reachability graphs of CT3 (given to the left) and CT4 (given to the right)



7
C O N F L U E N C E A N A LY S I S O F H Y P E R G R A P H T R A N S F O R M AT I O N
S Y S T E M S

In this chapter, we consider how we can apply theoretical results from Sections 4.1 and
4.2 to our concrete M-functor FHG between categories of hypergraphs and typed at-
tributed graphs to obtain local confluence analysis results for hypergraph transformation
systems. In Section 7.1 we concern local confluence analysis of hypergraph transforma-
tion systems without nested application conditions, while in Section 7.2 we focus on
local confluence analysis of hypergraph transformation systems containing rules with
nested application conditions. Subsequently, in Section 7.3, we verify local confluence
of a concrete small hypergraph transformation system introduced in Example 7 using
the Agg-tool and our theoretical results from Sections 7.1 and 7.2. Finally, in Section 7.4
we consider termination, confluence, and functional behavior analysis for hypergraph
transformation systems without or with nested application conditions.

7.1 local confluence of hypergraph transformation systems without

nested application conditions

In this section, we consider in detail how we can analyze local confluence of hypergraph
transformation systems using our framework of M-functors and the corresponding the-
oretical results concerning the functorial transfer of local confluence for transformations
without nested application conditions, which we have already introduced in Section 4.1.

In the following we formulate and show several technical basics and results, which we
need to be able to prove the main applicational result of this section concerning the local
confluence analysis of hypergraph transformation systems. The most important technical
requirement, which we need for this reason, is given in Lemma 38 where we show that
the M-functor FHG is compatible with pair factorization. According to Definition 51, this
means that the source and the target categories of FHG have E ′ −M pair factorizations
and FHG translates an E ′1 −M1 pair factorization in HyperGraphs into an E ′2 −M2 pair
factorization in AGraphsHGTG.

Since for the source and the target categories of FHG holds that Mi = M ′i for i ∈ {1, 2},
we trivially have that the M−M ′ pushout-pullback decomposition property introduced
in Definition 72 (see Appendix A) and needed for the completeness of critical pairs (see
Fact 2) is fulfilled and we do not need to assume the satisfaction of this property in
the subsequent results. Moreover, we use in the following the notion of E ′ −M pair
factorization instead of the common E ′ −M ′ pair factorization as already mentioned in
Remark 1.

As the first step we show that the source and the target categories of the M-functor
FHG have the corresponding E ′ −M pair factorizations. According to Remark 5.26 from
[88, p. 122], there is a general construction for an E ′ −M ′ pair factorization based on
coproducts and E −M-factorization, which can be applied to hypergraphs and typed
attributed graphs. In our concrete context this requires that the categories HyperGraphs

149
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and AGraphsHGTG have coproducts and E−M-factorizations. Since the empty hyper-
graph ∅ resp. almost empty typed attributed graph FHG(∅) (see more details in Sec-
tion 5.1) are initial in the categories HyperGraphs resp. AGraphsHGTG and we have
pushouts in both categories, we also have coproducts in both categories constructed
componentwise as disjoint union. Moreover, as we already know from [88], the cate-
gory AGraphsATG and hence also AGraphsHGTG has E2 −M2-factorization where M2

is the class of all injective typed attributed graph morphisms and E2 is the class of all
surjective typed attributed graph morphisms. Note that for typed attributed graphs all
morphisms are identical in the VD-component and the data type N. The correspond-
ing E1 −M1-factorization for hypergraphs can be constructed as given in the following
lemma.

Lemma 35 (E−M-Factorization in HyperGraphs).
The M-adhesive category (HyperGraphs,M1) has an E1 −M1-factorization according to Defi-
nition 10 where M1 is the class of all injective hypergraph morphisms and E1 is the class of all
surjective hypergraph morphisms.

Proof.
The detailed proof of this lemma is given in Appendix C on page 342. �

To show the compatibility of FHG with pair factorization, we need to know additionally
to the existence of coproducts and E−M-factorizations in both categories that FHG also
preserves coproducts and E−M-factorizations. The first of these two properties is shown
in the lemma below.

Lemma 36 (FHG Preserves Coproducts).
Consider a hypergraph A, a family of hypergraphs (Aj)j∈I, a family of hypergraph morphisms
(ij : Aj → A)j∈I, a coproduct (A, (ij)j∈I) of (Aj)j∈I in HyperGraphs, and the M-functor
FHG : HyperGraphs → AGraphsHGTG from Definition 63. Then (FHG(A), (FHG(ij))j∈I) is
a coproduct of (FHG(Aj))j∈I in AGraphsHGTG.

Aj A

B

FHG=⇒

ij

fj
f

FHG(Aj) FHG(A)

FHG(B)

FHG(ij)

FHG(fj)
FHG(f)

Proof.
The detailed proof of this lemma is given in Appendix C on page 344. �

Note that in our approach we use the preservation of coproducts for the binary case
only as given in Figure 47 to construct the corresponding E ′ −M pair factorizations for
source and target categories of the considered M-functor.

The second property, which remains to be shown, is that FHG preserves E−M-factori-
zations. For this purpose, we have to verify that FHG preserves injective and surjective
morphisms. Since FHG is an M-functor, we already have that FHG preserves injective
morphisms as shown in Lemma 27. The preservation of surjective morphisms is shown
in the lemma below.

Lemma 37 (FHG Preserves Surjective Morphisms [211]).
Consider two hypergraphs H1 = (V1,E1, s1, t1), H2 = (V2,E2, s2, t2), a surjective hypergraph
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A2A1 A1+A2

A

FHG=⇒

i2i1

f

f2f1

FHG(A2)FHG(A1) FHG(A1+A2)

FHG(A)

FHG(i2)FHG(i1)

FHG(f)

FHG(f2)FHG(f1)

Figure 47: Preservation of binary coproducts by the M-functor FHG

morphism f : H1 → H2 with f = (fV : V1 → V2, fE : E1 → E2), and the M-functor
FHG : HyperGraphs → AGraphsHGTG from Definition 63. Then the corresponding typed
attributed graph morphism FHG(f) : FHG(H1)→ FHG(H2) with FHG(f) = f

′ = (f ′VG : VG1G →
VG2G , f ′VD : N → N, f ′EG : EG1G → EG2G , f ′ENA : EG1NA → EG2NA, f ′EEA : EG1EA → EG2EA) is also
surjective.

Proof.
The detailed proof of this lemma is given in Appendix C on page 345. �

In the following lemma, we summarize the results from the previous three lemmas
and show that the M-functor FHG is compatible with pair factorization. This technical
property is required to obtain local confluence of hypergraph transformation systems
based on FHG-reachable critical pairs.

Lemma 38 (FHG is Compatible with Pair Factorization [211]).
Consider M-adhesive transformation systems AS1 = (HyperGraphs,M1,P), AS2 =
(AGraphsHGTG,M2,FHG(P)), and the M-functor FHG : HyperGraphs → AGraphsHGTG

from Definition 63. Then FHG is compatible with pair factorization.

Proof.
The detailed proof of this lemma is given in Appendix C on page 346. �

Now we apply the result concerning the creation of local confluence based on F-
reachable critical pairs from Theorem 8 to the concrete M-functor FHG. This is one
of our main applicational results allowing us to analyze local confluence of hypergraph
transformation systems by analyzing their translated representations as typed attributed
graph transformation systems using the Agg-tool.

Theorem 17 (Local Confluence of Hypergraph Transformation Systems without Nested
Application Conditions [211] ).
Consider a hypergraph transformation system (HyperGraphs,M1,P), a typed attributed graph
transformation system (AGraphsHGTG,M2,FHG(P)), and the M-functor FHG : HyperGraphs
→ AGraphsHGTG from Definition 63. (HyperGraphs,M1,P) is locally confluent for all trans-
formation spans H1

ρ1,m1⇐= G
ρ2,m2=⇒ H2 if all FHG-reachable critical pairs of FHG(ρ1) and

FHG(ρ2) are strictly confluent.

Proof.
In Lemma 30 resp. Theorem 15 we have already shown that FHG creates morphisms resp. (direct)
transformations. Moreover, according to Lemma 38 FHG is compatible with pair factorization,
which altogether allows us to apply Theorem 8 with F = FHG. �
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7.2 local confluence of hypergraph transformation systems with

nested application conditions

This section is build up similarly to the previous section concerning this time the verifica-
tion of local confluence for hypergraph transformation systems with nested application
conditions. We are going to verify sufficient properties like translation and creation of
jointly surjective morphisms as well as preservation of pullbacks of injective morphisms,
which allow us to apply Theorem 11 concerning the creation of local confluence based on
F-reachable critical pairs for rules with nested application conditions to the M-functor
FHG from Definition 63.

We begin this section with the following two lemmas, in which we show that the
M-functor FHG between the categories of hypergraphs and typed attributed graphs pre-
serves and creates E ′-instances or, more precisely for the case of hypergraph and typed
attributed graph transformations, jointly surjective morphisms. We need these proper-
ties to obtain the compatibility of FHG with Shift-transformation, which is one of the
requirements of Theorem 11.

Lemma 39 (FHG Translates Jointly Surjective Morphisms).
Consider E ′1-M1 pair factorization in (HyperGraphs,M1) and E ′2-M2 pair factorization in
(AGraphsHGTG,M2). Then the M-functor FHG : (HyperGraphs,M1)→ (AGraphsHGTG,
M2) from Definition 63 translates jointly surjective hypergraph morphisms (a ′,b ′) into the
corresponding jointly surjective typed attributed graph morphisms (a ′′,b ′′) with a ′′ = FHG(a

′)

and b ′′ = FHG(b
′).

C

P ′

C ′
b ′

a ′

FHG(C)

FHG(P
′)

C ′′= FHG(C
′)

b ′′ = FHG(b
′)

a ′′ = FHG(a
′)

Proof.
The detailed proof of this lemma is given in Appendix C on page 347. �

Lemma 40 (FHG Creates Jointly Surjective Morphisms).
Consider E ′1-M1 pair factorization in (HyperGraphs,M1), E ′2-M2 pair factorization in
(AGraphsHGTG,M2), and hypergraph morphisms a : P → C, b : P → P ′. Then the M-functor
FHG : (HyperGraphs,M1) → (AGraphsHGTG,M2) from Definition 63 creates jointly surjec-
tive hypergraph morphisms (a ′,b ′) from the corresponding typed attributed graph morphisms
(a ′′,b ′′) in E

′
2 = FHG(E

′
1) if for all spans (C

a← P
b→ P ′) holds that the diagram (1) below

commutes, FHG(a
′) = a ′′, FHG(b

′) = b ′′, and the injectivity of b ′′ implies the injectivity of b ′.

P

C

P ′

C ′

(1)

b

a

b ′

a ′

FHG(P)

FHG(C)

FHG(P
′)

C ′′= FHG(C
′)

(2)

FHG(b)

FHG(a)

b ′′ = FHG(b
′)

a ′′ = FHG(a
′)
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Proof.
The detailed proof of this lemma is given in Appendix C on page 348. �

The next technical property, which must hold for the application of our theoretical
approach to the M-functor FHG, is the preservation of hypergraph pullbacks of injective
morphisms. This property has to be satisfied to be able to deal with translated derived
rules as introduced in Definition 55.

Lemma 41 (FHG Preserves Pullbacks of Injective Morphisms [213]).
Consider M-adhesive categories (HyperGraphs,M1), (AGraphsHGTG,M2), the M-functor
FHG : HyperGraphs → AGraphsHGTG from Definition 63, hypergraphs Gi for i ∈ {0, 1, 2, 3}
with hypergraph morphisms b = (bV ,bE), c = (cV , cE), g = (gV ,gE), h = (hV ,hE), and
typed attributed graphs FHG(Gi) for i ∈ {0, 1, 2, 3} with typed attributed graph morphisms
FHG(b) = b ′ = (b ′VG ,b ′VD ,b ′EG ,b ′ENA ,b ′EEA), FHG(c) = c ′ = (c ′VG , c ′VD , c ′EG , c ′ENA , c ′EEA),
FHG(g) = g ′ = (g ′VG ,g ′VD ,g ′EG ,g ′ENA ,g ′EEA), FHG(h) = h ′ = (h ′VG ,h ′VD ,h ′EG ,h ′ENA ,h ′EEA).
If (1) is a pullback in HyperGraphs with g,h ∈ M1 then we have that (2) is a pullback in
AGraphsHGTG with FHG(g),FHG(h) ∈M2.

G0

(1)

G1

G2 G3

b

c g

h

FHG(G0)

(2)

FHG(G1)

FHG(G2) FHG(G3)

FHG(b)=b
′

FHG(c)=c
′ FHG(g)=g

′

FHG(h)=h
′

Proof.
The detailed proof of this lemma is given in Appendix C on page 348. �

After all needed requirements are shown to be satisfied, we can now apply the result
concerning the creation of local confluence based on F-reachable critical pairs for the
case of transformations with nested application conditions from Theorem 11 to the M-
functor FHG. This result extends the corresponding result from the previous section and
allows us to analyze local confluence of hypergraph transformation systems containing
rules with nested application conditions by analyzing their corresponding translated
representations as typed attributed graph transformation systems using the Agg-tool.

Theorem 18 (Local Confluence of Hypergraph Transformation Systems with Nested Ap-
plication Conditions [213] ).
Consider a hypergraph transformation system (HyperGraphs,M1,P), a typed attributed graph
transformation system (AGraphsHGTG,M2,FHG(P)) where P are rules with nested application
conditions, and the M-functor FHG : HyperGraphs → AGraphsHGTG from Definition 63.
Then (HyperGraphs,M1,P) is locally confluent for all transformation spans H1

ρ1,m1⇐= G
ρ2,m2=⇒

H2 with nested application conditions if all FHG-reachable critical pairs with nested application
conditions of FHG(ρ1) and FHG(ρ2) are strictly AC(FHG)-confluent.

Proof.
In Lemma 30 resp. Theorem 15 we have shown that FHG creates morphisms resp. (direct) trans-
formations and rule applicability. According to Lemma 31 resp. Lemma 38, we have that FHG
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creates injective morphisms resp. FHG is compatible with pair factorization. Moreover, by Theo-
rem 14 resp. Lemma 41 it holds that FHG translates rule applicability resp. preserves pullbacks of
injective morphisms. Finally, in Lemma 39 resp. Lemma 40 we have shown that FHG translates
resp. creates jointly surjective morphisms. This altogether allows us to apply Theorem 11 with
F = FHG. �

The following example shows how we can construct a concrete FHG-reachable critical
pair and how we can check whether this FHG-reachable critical pair is strictly AC(FHG)-
confluent.

Example 16 (Strict AC(FHG)-Confluence of an FHG-Reachable Critical Pair in the Con-
text of Mobile Processes Scenario [213]).

Consider an F-reachable weak critical pair F(P1)
F(runP),F(o1)⇐========= F(K)

F(enterServer),F(o2)
=============⇒ F(P2)

for the weak critical pair P1
runP,o1⇐==== K enterServer,o2=========⇒ P2 from Example 81 with acF(K) = F(acK),

ac∗
F(K) = F(ac∗K), and F = FHG. Then we have the following translated extension and conflict-

inducing application conditions:

• acF(K) = F(acK) = F(acK1 ∧ acK2)
Def. 47
= F(acK1)∧F(acK2)

• ac∗
F(K) = F(ac∗K) = F(true)

Def. 47
= true

Similar to Example 8, F(P1)
F(runP),F(o1)⇐========= F(K)

F(enterServer),F(o2)
=============⇒ F(P2) can be extended by

the embedding morphism F(m) : F(K)→ F(G) with F(m) |= acF(K)∧ac
∗
F(K) and a translated

pair of AC-regarding transformations F(H1)
F(runP),F(m1)⇐========= F(G)

F(enterServer),F(m2)
==============⇒ F(H2).

Thus, we have that F(P1)
F(runP),F(o1)⇐========= F(K)

F(enterServer),F(o2)
=============⇒ F(P2) is an F-reachable

critical pair.

F(P1) F(K) F(P2)

F(H1) F(G) F(H2)

F(runP),F(o1) F(enterServer),F(o2)

F(runP),F(m1) F(enterServer),F(m2)

F(m)

Now we want to show that F(P1)
F(runP),F(o1)⇐========= F(K)

F(enterServer),F(o2)
=============⇒ F(P2) is strictly

AC(F)-confluent according to Definition 60. We have the plain strict confluence similarly to
Example 8 as given in the diagram below

F(P1)

F(K)

F(K)

F(P2)

F(runP),F(o1)

F(leaveServer),F(o3)

F(enterServer),F(o2)

F(runP),F(o1)

1 Note that in Section 7.3 where we describe the Agg-based local confluence analysis of our concrete hyper-
graph transformation system with NACs and PACs, we can exclude all FHG-reachable critical pairs of the
rules FHG(runP) and FHG(enterServer) from the detailed strict AC(FHG)-confluence analysis because the
corresponding overlapping graphs cannot be reached from the translated start hypergraph, which means
that these FHG-reachable critical pairs are incompatible with some invariant of the original hypergraph
transformation system. In this example, we nevertheless consider the strict AC(FHG)-confluence of the FHG-

reachable critical pair F(P1)
F(runP),F(o1)⇐========== F(K)

F(enterServer),F(o2)
===============⇒ F(P2) as an analytic continuation of

Example 8.
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and the AC(F)-compatibility, i.e., (acF(K)∧ac
∗
F(K))⇒ (ac(F(t1))∧ac(F(t2))) since acF(K)

∧ ac∗
F(K) = F(acK1)∧F(acK2) (as shown above) implies ac(F(t1))∧ ac(F(t2)) = F(acK1)

∧F(acK2) as shown below.

ac(F(t1)) = ac(F(K)
F(runP),F(o1)
=========⇒ F(P1)) = F(acK1),

ac(F(t2)) = ac(F(K)
F(enterServer),F(o2)
=============⇒ F(P2)

F(leaveServer),F(o3)
=============⇒ F(K)

F(runP),F(o1)
=========⇒ F(P1)) = F(acK2)∧F(true)∧F(acK1), and

ac(F(t1))∧ ac(F(t2)) = F(acK1)∧F(acK2)

7.3 agg-based local confluence analysis of hypergraph

transformation systems

In this section, we introduce our workflow for the analysis of local confluence and apply
it to our concrete hypergraph transformation systems without and with nested appli-
cation conditions from Example 7. This workflow, which integrates the application of
our theoretical results from Sections 4.1 and 7.1 for the case of rules without nested ap-
plication conditions and the theoretical results from Sections 4.2 and 7.2 for the case of
rules with nested application conditions, is partially supported by the Agg-tool, which is
used for critical pair computation. Note that our approach is tool independent, which
means that other tools that are capable to compute and possibly analyze critical pairs
(for rules without or with nested application conditions) can be used equivalently. Subse-
quently, we are only using the Agg-tool for critical pair computation since other existing
tools that are capable to compute critical pairs like Henshin [69, 6], VERIGRAPH [305] or
SyGrAV [53, 290] do not allow the involved rules to make use of NACs and PACs so far.

In the following we consider the two hypergraph transformation systems without and
with nested application conditions that were already introduced in Example 7. This ex-
ample, inspired by [12], deals with simple distributed systems with mobility containing
servers connected by channels as well as processes moving through the network and
running on the servers before being removed after their termination. The rules of the
hypergraph transformation system without nested application conditions are given in
Figure 12 and the rules of the hypergraph transformation system with nested application
conditions are given in Figure 13.

To be able to use our theoretical results for the local confluence analysis of these hyper-
graph transformation systems, we have to extend the M-functor FHG from Definition 63

to the translation of the hyperedge labels into String attributes of the corresponding
hyperedge node representation as already done in Example 14. However, all technical
properties shown in Subsection 2.4.2 and Sections 6.1, 6.2, 7.1, 7.2 also hold for the M-
adhesive category of labeled hypergraphs and the extended M-functor FHG

2.
In fact, we consider in the following four different scenarios for which the correspond-

ing workflows share common steps (see Figure 48). Firstly, we distinguish between
hypergraph transformation systems without and with nested application conditions. We

2 Note that this holds also for the variants of hypergraphs with labeled nodes and/or labeled hyperedges.
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Hypergraph trans-
formation system

without nested ap-
plication conditions

Hypergraph gram-
mar without

nested applica-
tion conditions

Hypergraph trans-
formation system
with nested appli-
cation conditions

Hypergraph gram-
mar with nested ap-
plication conditionsSteps

Start

Translate hypergraph transformation rules

Translate start
hypergraph

Translate start
hypergraph

Adapt Agg inter-
nal type graph

Adapt Agg inter-
nal type graph

Compute critical pairs

State and check
invariants

State and check
invariants

Check for FHG-reachability of critical pairs

Check for strict confluence of FHG-reachable critical pairs

Check for AC(FHG)-compatibility of ex-
tended AC-disregarding transformations

End

1

2

3

4

5

Figure 48: Workflow for local confluence analysis of hypergraph transformation systems and
hypergraph grammars without or with nested application conditions

start with the workflow for hypergraph transformation systems without nested applica-
tion conditions and then address the differences for the case in which nested application
conditions are used. Secondly, while the theory introduced in this thesis is tailored to
transformation systems, it is beneficial to also consider the case where the transforma-
tion system is given with a start structure at hand. In the hypergraph context, such
combinations of a hypergraph transformation system and a start hypergraph are called
hypergraph grammars [88]. Using straightforward adaptations of our theory we can
analyze semantical properties also for hypergraph grammars. The core idea is then to
analyze these properties not for all hypergraphs that are derivable within the hyper-
graph transformation system but only for those that are reachable from the given start
hypergraph by rule application. The discussion of how the possible usage of a start
hypergraph affects our workflow is included along the way.

Our proposed workflow for the local confluence analysis of a hypergraph transforma-
tion system without nested application conditions consists of the following four steps
while the workflow for the analysis of a hypergraph grammar contains one additional
intermediate step (see the third step below). Firstly, we apply the M-functor FHG from
Definition 63 to the considered hypergraph transformation system (or to the considered
hypergraph grammar) obtaining the corresponding typed attributed graph transforma-
tion system (or the corresponding typed attributed graph grammar). Secondly, we com-
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pute all critical pairs of the translated transformation rules using the Agg-tool. In the
case of a translated hypergraph grammar we apply invariants during the critical pair
computation that are given by the restriction of the Agg internal type graph using mul-
tiplicities to specify translated hypergraphs that are provably not reachable from the
translated start hypergraph by rule application and that are therefore irrelevant in the
context of the analysis of the considered hypergraph grammar. Note that the invariants
defined by the restriction of the Agg internal type graph are in general not sufficient to
ensure that all computed overlapping graphs are relevant for the further analysis. Hence,
for translated hypergraph grammars the satisfaction of additional invariants is checked
in the next step to improve the over-approximation of relevant critical pairs. Thirdly,
only in the case of a translated hypergraph grammar, we again apply invariants (given
e.g. by nested graph conditions [135]) that can be established by invariant verification
techniques as e.g. proposed in [66, 67] to exclude further computed critical pairs whose
overlapping graphs are provably not reachable from the translated start hypergraph by
rule application. Fourthly, we select those computed critical pairs that are FHG-reachable.
This elimination of non-FHG-reachable critical pairs is required by our theory (see The-
orem 17) where critical pairs must not be considered in the further analysis when their
overlapping graphs do not correspond to some translated valid hypergraph. Finally, we
determine whether all these FHG-reachable critical pairs are strictly confluent, which is
also partially supported by Agg

3. If all computed FHG-reachable critical pairs (that are
additionally compatible with invariants for the case of a translated hypergraph gram-
mar) are strictly confluent, we obtain local confluence of the considered hypergraph
transformation system (or of the corresponding hypergraph grammar) by application of
Theorem 17

4.
However, the computation of critical pairs using tools, such as Agg in our case, may

take too much time, take too much memory, result in too many critical pairs or even not
terminate at all. The restriction then to the corresponding hypergraph grammar and the
usage of invariants (as discussed in detail above in the second and in the third step of
the workflow) can typically result in a decrease of resource requirements for critical pair
computation and fewer computed critical pairs.

We now apply our workflow to the hypergraph transformation system without nested
application conditions from Example 7 and, by additionally using the start hypergraph
from Figure 11, to the corresponding hypergraph grammar.

Firstly, we translate the hypergraph transformation rules given in Figure 12 according
to Example 14 (see Figure 38 there) together with the start hypergraph from Figure 11

obtaining the corresponding start typed attributed graph.
Secondly, we apply Agg on the obtained set of translated transformation rules to com-

pute all critical pairs of the translated transformation system. The table in Figure 49

shows the number of critical pairs that were computed by Agg for each possible pair of
translated transformation rules.

3 Let K be a minimal overlapping of the left-hand sides of two conflicting rules computed by Agg. Let
P1 ⇐ K ⇒ P2 be the corresponding critical pair. Then using Agg we can apply the rules of the considered
transformation system to P1 and P2 trying to merge them to a unique (up to isomorphism) common result
graph. The strictness condition is then to be checked manually.

4 Note that when considering a hypergraph grammar we expect that a result similar to Theorem 17 is also
valid.
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Figure 49: Computed critical pairs for the Mobile Processes system without considering any
additional invariants

Figure 50: Agg type graph extended by multiplicities for the Mobile Processes system

Trying to reduce the number of computed critical pairs to a minimum for our exam-
ple, we focused our considerations on the corresponding translated hypergraph grammar
and stated, based on the translated transformation rules and the translated start hyper-
graph, some useful invariants. In particular, we determined invariants in the form of
multiplicities for edges5 that we integrated into the Agg internal type graph (see Fig-
ure 50). Using these invariants during the critical pairs computation by Agg, we consid-
erably reduced the number of computed critical pairs as given in Figure 51. The validity
of the stated invariants can be easily verified by inspection of the translated rules from
Figure 38 and the start hypergraph from Figure 11 translated by FHG. However, such
suitable type graph restrictions do not exist for every hypergraph grammar.

Thirdly, to exclude further computed critical pairs from the subsequent analysis, we
apply additional invariants to our translated hypergraph grammar. These invariants can
be stated e.g. using nested graph conditions [135] and invariant verification techniques

5 For the Agg type graph given in Figure 50, the multiplicity 0..1 near to the graph node of the type Node
expresses that in the context of our example the graph nodes of the type Edge are allowed to have 0 or 1
incoming edges while the multiplicity 1..2 means that the graph nodes of the type Edge can have 1 or 2
outgoing edges. Similarly, the multiplicity 0..1 near to the graph node of the type Edge expresses that the
graph nodes of the type Node are allowed to have 0 or 1 outgoing edges while the multiplicity 0..5 means
that the graph nodes of the type Node can have 0 to 5 incoming edges.
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Figure 51: Computed critical pairs for the Mobile Processes system considering the Agg type
graph with multiplicities

Figure 52: A critical pair computed by Agg for the rule pair (FHG(runP), FHG(enterServer))
non-reachable from the translated start hypergraph by rule application

such as [66, 67] may be used to check whether the translated transformation system
together with the translated start hypergraph satisfy these invariants. Then, based on the
stated invariants, we can detect (for example using tools such as AutoGraph [278]) critical
pairs whose overlapping graphs cannot be contained in a graph that is reachable from
the start graph of the translated transformation system by rule application. Moreover, for
full automation of the invariant checking procedure we can simply attempt to verify that
a given overlapping graph of a critical pair is a pattern that is invariantly not contained in
any graph that is reachable from the translated start hypergraph and exclude this critical
pair from further analysis if the invariant check confirms this conjecture. However, we
believe that using small subgraphs of overlapping graphs for the invariants may be more
appropriate to reduce computation costs for the invariant check and may also allow to
exclude multiple critical pairs at once. An example for such an excluded critical pair is
given in Figure 52. Therein the rules FHG(runP) and FHG(enterServer) are shown on
the left and the corresponding overlapping graph is shown on the right. The overlapping
graph depicts the situation where a process is located between two different servers,
which is not possible according to the network given in Figure 11 and also cannot be
reached by rule application.
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Figure 53: A non-FHG-reachable critical pair computed by Agg for the rule pair (FHG(runP),
FHG(leaveServer))

Figure 54: An FHG-reachable critical pair computed by Agg for the rule pair (FHG(enterServer),
FHG(crossC))

Fourthly, we exclude from the further analysis those computed critical pairs that have
overlapping graphs that are not FHG-reachable. This step is of great importance because
critical pairs that are not FHG-reachable do not need to be strictly confluent according to
Theorem 17. An example for a non-FHG-reachable critical pair that is constructed for the
rule pair (FHG(runP), FHG(leaveServer)) is shown in Figure 53. The depicted delete-
use-conflict6 shows a non-FHG-reachable overlapping graph where a Server hyperedge
2 has two outgoing edges 5 and 9 connecting it to two different nodes. For this situation,
an original hypergraph does not exist since the attributes in=1 and out=1 mean that the
considered Server hyperedge of an original hypergraph must have exactly one incoming
and one outgoing edge.

However, the critical pairs for the rules FHG(enterServer) and FHG(crossC) as well
as FHG(runP) and FHG(leaveServer) given in Agg-notation in Figure 54 and Figure 55,
respectively, are examples for computed critical pairs that are FHG-reachable (and, in
the case of the corresponding translated hypergraph grammar, also compatible with the
invariants). The conflicts are delete-use-conflicts, which are obviously caused when a
process can “choose” between two possibilities to proceed.

6 We have a delete-use-conflict if one rule application deletes graph elements that are included in the match
morphism of another rule application.
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Figure 55: An FHG-reachable critical pair computed by Agg for the rule pair (FHG(runP),
FHG(leaveServer))

Finally, following our workflow, we verify the strict confluence of the remaining critical
pairs to obtain that the considered hypergraph transformation system (or the correspond-
ing hypergraph grammar) is locally confluent by applying Theorem 17. Obviously, rules
for process traveling via connections and rules for passing a server can be executed in
any order. Furthermore, a step modeling the leaving of a server and a step modeling the
execution of a process can be joined again by performing entering a server and then exe-
cuting the process. The corresponding strictness conditions for all FHG-reachable critical
pairs (additionally compatible with invariants for the case of the hypergraph grammar)
can then be shown by constructing the corresponding strictness diagrams according to
Definition 14. Thus, our considered hypergraph transformation system (as well as the
corresponding hypergraph grammar) without nested application conditions is locally con-
fluent according to Theorem 17.

To give an example for the verification of strict confluence for a concrete FHG-reachable
critical pair, let us consider the FHG-reachable critical pair of rules FHG(enterServer)

and FHG(crossC) (see Figure 56 depicting the corresponding FHG-reachable critical pair
diagram according to Definition 52). This FHG-reachable critical pair is strictly confluent
because after applying either rule we can reverse the effect by applying the correspond-
ing inverse rule and hence have at least one graph that can be derived to join the differ-
ent results. The application of the rules in the mentioned order is depicted in Figure 57,
which additionally shows that the corresponding strictness condition is satisfied. The

spans FHG(P1)
FHG(w1)←− FHG(N1)

FHG(v1)−→ FHG(K) and FHG(K)
FHG(v2)←− FHG(N2)

FHG(w2)−→
FHG(P2) in the upper half of the diagram represent the two conflicting rule applications
of rules FHG(enterServer) and FHG(crossC). The graph FHG(N) in the center of the
diagram is the largest subgraph of the computed overlapping graph FHG(K) that is pre-
served by the critical pair. In the lower half of the diagram, we can see how the two trans-

formation steps FHG(K)
FHG(enterServer),FHG(o1)

=⇒ FHG(P1) and FHG(K)
FHG(crossC),FHG(o2)

=⇒
FHG(P2) can be merged by applying the rule FHG(leaveServer) at an adequate match to
the graph FHG(P1) on the left and the rule FHG(backC) at an adequate match to the graph
FHG(P2) on the right. The strictness condition is satisfied because FHG(N) is preserved
by the merging transformation steps FHG(P1)⇒ FHG(K

′) and FHG(P2)⇒ FHG(K
′).
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Figure 56: A critical pair diagram depicting the FHG-reachable critical pair for the rule pair
(FHG(enterServer), FHG(crossC))
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Figure 57: Strictness diagram for the rule pair (FHG(enterServer), FHG(crossC))
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Figure 58: Computed critical pairs for the extended Mobile Processes system without considering
any additional invariants

The corresponding workflow (see Figure 48) for local confluence analysis of a hyper-
graph transformation system (or a hypergraph grammar) with nested application con-
ditions is very similar to that of the plain case described before. The main difference
consists in the fact that we have to show in the last step of the workflow, in addition to
the strict confluence of all computed FHG-reachable critical pairs (that are assumed to
be additionally compatible with invariants for the case of a translated hypergraph gram-
mar), also the AC(FHG)-compatibility of the corresponding extended AC-disregarding
transformations according to Definition 60. All other analysis steps from the workflow in-
troduced before remain unchanged. If all computed FHG-reachable critical pairs (that are
additionally compatible with invariants for the case of a translated hypergraph grammar)
are strictly AC(FHG)-confluent, then we obtain local confluence of the considered hyper-
graph transformation system (or of the considered hypergraph grammar) with nested
application conditions by application of Theorem 18

7.
In the following, we apply our workflow to the extended Mobile Processes scenario

where the rules of the corresponding hypergraph transformation system are equipped
with NACs and PACs as given in Figure 13 in Example 7 (the start hypergraph from
Figure 11 remains unchanged).

Firstly, as for the plain case, we translate the transformation rules with NACs and PACs
according to Example 14 (see Figure 39 there) and, for the case of the corresponding
hypergraph grammar, also the start hypergraph given in Figure 11 using the M-functor
FHG.

Secondly, we compute all critical pairs using Agg. The resulting table in Figure 58

shows the number of critical pairs computed by Agg for each pair of translated transfor-
mation rules. Considering again the corresponding translated hypergraph grammar, we
can decrease the number of computed critical pairs by using the Agg internal type graph
with multiplicities (given in Figure 50) as can be seen in the table in Figure 59.

Thirdly, trying to exclude further computed critical pairs from the subsequent anal-
ysis, we state additional invariants and check, similarly to the plain case, whether the
considered translated hypergraph grammar with NACs and PACs satisfies them. Using

7 Note that when considering a hypergraph grammar we expect that a result similar to Theorem 18 is also
valid.
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Figure 59: Computed critical pairs for the extended Mobile Processes system considering the Agg

type graph with multiplicities

Figure 60: A critical pair computed by Agg for the rule pair (FHG(crossC), FHG(enterServer))
with application conditions non-reachable from the translated start hypergraph by rule applica-
tion

then tools as e.g. AutoGraph [278], we can identify computed critical pairs whose over-
lapping graphs cannot be contained in a graph that is reachable from the start graph of
the translated transformation system by rule application. An example for such a critical
pair is given in Figure 60. The depicted produce-forbid-conflict arises if the application
of one rule (here FHG(crossC)) generates graph elements (here the Process hyperedge
1 marked in bold together with the edge 7) in a way that a graph structure would occur
that is prohibited by a NAC of another rule (here the rule FHG(enterServer) that would
not be applicable anymore since two Process hyperedges 1 and 11 are already connected
to the node 4). The overlapping graph given in Figure 60 on the right includes a sub-
graph (containing the Connection hyperedge 2, the node 4, the Server hyperedge 10 as
well as the edges 5 and 14 between them) that is not a part of the start hypergraph from
Figure 11 translated by FHG and that can also not be reached from this translated start
hypergraph by rule application.

Fourthly, we select those computed critical pairs that are FHG-reachable, i.e., we only
retain those critical pairs whose overlapping graphs correspond to valid hypergraphs
translated by FHG. Non-FHG-reachable critical pairs, as e.g. a critical pair constructed for
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Figure 61: A non-FHG-reachable critical pair computed by Agg for the rule pair
(FHG(leaveServer), FHG(runP)) with application conditions

Figure 62: An FHG-reachable critical pair computed by Agg for the rule pair (FHG(leaveServer),
FHG(runP)) with application conditions

the rule pair (FHG(leaveServer), FHG(runP)) given in Figure 61, must be excluded from
the further strict AC(FHG)-confluence analysis according to Theorem 18. The illustrated
delete-need-conflict8 for this critical pair shows, similarly to the plain case, a non-FHG-
reachable overlapping graph where a Server hyperedge 2 has two outgoing edges 5
and 9 connecting it to two different nodes. For this situation, an original hypergraph
does not exist because of the explanations for the plain case.

The critical pairs for the application of rules FHG(leaveServer) and FHG(runP) as
well as FHG(enterServer) and FHG(backC1), which are given in Agg-notation in Fig-
ure 62 and Figure 63, respectively, are examples of computed critical pairs that are FHG-
reachable (and, in the case of the corresponding translated hypergraph grammar, also
compatible with the invariants). The first conflict given in Figure 62 is a delete-need-
conflict, which arises when the application of one rule (here FHG(leaveServer)) deletes
graph elements (here the Process hyperedge 1 marked in bold together with the edge 6)
in a way that a PAC of another rule (here the PAC of FHG(runP)) cannot be matched
into the remaining graph structure anymore. The second conflict given in Figure 63 is
a delete-use-conflict, which is caused when a process can “choose” between entering a
server or passing a branched connection backwards.

8 We have a delete-need-conflict if one rule application deletes graph elements in a way that a PAC of another
rule cannot be matched into the remaining graph structure anymore.
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Figure 63: An FHG-reachable critical pair computed by Agg for the rule pair (FHG(enterServer),
FHG(backC1)) with application conditions

Finally, by showing the strict AC(FHG)-confluence (i.e., plain strict confluence and
AC(FHG)-compatibility) of all remaining critical pairs (which are FHG-reachable and, in
the case of the corresponding translated hypergraph grammar, also compatible with the
invariants) we conclude also for the extended Mobile Processes system that it is locally
confluent by applying Theorem 18. We obtain the plain strict confluence of the remaining
critical pairs similarly to the case without nested application conditions as explained
before. Thereby we adopt the strict confluence analysis results from the plain case for
all remaining critical pairs of rules containing no application conditions and analyze in a
similar way the plain strict confluence of all critical pairs for the additional delete-need-
and produce-forbid-conflicts. The AC(FHG)-compatibility of the remaining critical pairs
can then be shown similarly to Example 16. For presentation purposes we avoid giving
more detailed explanations and pictures concerning the check of the strictness condition
and the AC(FHG)-compatibility of the remaining critical pairs.
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7.4 termination, confluence , and functional behavior of hypergraph

transformation systems

In this section, we apply termination, confluence, and functional behavior results from
Section 4.3 to the M-functor FHG between the categories of hypergraphs and typed at-
tributed graphs. Furthermore, we discuss for our Mobile Processes systems introduced
in Example 7 whether the mentioned semantical properties hold.

According to Theorems 12, 13 and Remarks 14, 15, the analysis results for termination,
confluence, and functional behavior of hypergraph transformation systems without or
with nested application conditions can be directly derived using the requirements that
were already shown to hold for the M-functor FHG when we considered the functorial
transfer of behavior and local confluence for hypergraph transformation systems. We
formulate and show the mentioned results in the following two theorems.

Theorem 19 (FHG-Transfer of Termination).
Consider a hypergraph transformation system (HyperGraphs,M1,P), a typed attributed graph
transformation system (AGraphsHGTG,M2,FHG(P)) where P are rules without or with nested
application conditions, and the M-functor FHG : HyperGraphs → AGraphsHGTG from Def-
inition 63. Then (HyperGraphs,M1,P) is terminating iff (AGraphsHGTG,M2,FHG(P)) is
FHG-terminating.

Proof.
In order to use the results from Theorem 12 and Remark 14 for the case of transformations without
or with nested application conditions, we have to show that FHG translates and creates (direct)
transformations without or with nested application conditions according to Theorems 1 and 3, i.e.,
we have to show that (HyperGraphs,M1) has initial pushouts, FHG is an M-functor according
to Definition 41 as well as that FHG creates injective and general morphisms and preserves initial
pushouts. In fact, we have that FHG(M1) ⊆ M2, i.e., FHG preserves injectivity of morphisms
by Lemma 27 and FHG preserves pushouts along injective morphisms according to Lemma 28.
Moreover, according to Lemma 7 the category (HyperGraphs,M1) has initial pushouts. Finally,
creation of general morphisms by FHG is shown in Lemma 30, creation of injective morphisms by
FHG is verified in Lemma 31, and preservation of initial pushouts follows from Lemma 34. �

Theorem 20 (FHG-Transfer of Confluence and Functional Behavior).
Consider a hypergraph transformation system (HyperGraphs,M1,P), a typed attributed graph
transformation system (AGraphsHGTG,M2,FHG(P)) where P are rules without or with nested
application conditions, and the M-functor FHG : HyperGraphs→ AGraphsHGTG from Defini-
tion 63. Then (HyperGraphs,M1,P) is locally confluent and terminating iff (AGraphsHGTG,
M2,FHG(P)) is locally confluent for all translated transformation spans and FHG-terminating.
Moreover, (HyperGraphs,M1,P) is confluent and has functional behavior if (AGraphsHGTG,
M2,FHG(P)) is locally confluent for all translated transformation spans and FHG-terminating.

Proof.
In order to use the results from Theorem 13 and Remark 15 for the case of transformations without
or with nested application conditions, we have again to show that FHG translates and creates
(direct) transformations without or with nested application conditions according to Theorems 1
and 3. This can be done equivalently to the proof of Theorem 19. �
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After we have shown that the general results of our approach concerning termination,
confluence, and functional behavior are applicable to the M-functor FHG, we now want
to analyze, using these results, whether the mentioned semantical properties hold for
our Mobile Processes systems from Example 7.

As already discussed at the end of the previous section, both hypergraph transfor-
mation systems from our running example (as well as the corresponding hypergraph
grammars, i.e., hypergraph transformation systems with the start hypergraph at hand
given in Figure 11) are locally confluent.

Considering the sets of translated transformation rules given in Figure 38 and Fig-
ure 39 for the case of transformation systems without application conditions or with
NACs and PACs, respectively, (and additionally considering the start hypergraph trans-
lated by FHG for the case of the corresponding hypergraph grammars) we can easily
see that the translated hypergraph transformation systems (as well as the corresponding
translated hypergraph grammars) are not FHG-terminating because the rules for moving
a process over a connection or over a server and back can be applied alternately un-
limited often, which implies that also the original hypergraph transformation systems
(as well as the corresponding hypergraph grammars) are not terminating according to
Theorem 19

9.
Hence, while we believe that the hypergraph transformation systems from our run-

ning example are confluent but have no functional behavior, this cannot be obtained
using Theorem 20. The considered hypergraph transformation systems are confluent
because, on the one hand, inverse rules can be applied for moving processes through
the network and, on the other hand, the rules for process running and removal applied
in one of the two transformation sequences can then also be applied equivalently in
the other transformation sequence, which implies altogether that a common hypergraph
for joining two transformation sequences starting with the same hypergraph is always
derivable. Moreover, both hypergraph transformation systems have no functional be-
havior because, when considering e.g. a network without servers but with a process
attached, the process can permanently move through the network but is never removed
(as this requires a server) implying that there is no finite transformation sequence to a
unique hypergraph, to which no transformation rules are applicable anymore.

However, when considering for both hypergraph transformation systems the corre-
sponding hypergraph grammars, we can easily see that, in addition to the confluence
that holds according to the explanations above, the hypergraph grammars turn out also
to have functional behavior because a unique hypergraph can be obtained, to which no
transformation rules are applicable anymore, by removing the processes (at some selec-
tion of servers) resulting in the hypergraph that only contains the network structure.
Though, this analysis result still cannot be obtained using Theorem 20

9.
For our Mobile Processes example we do not use Agg for the automated verification of

the termination property because Agg is only capable to analyze termination for typed
graph transformation systems with injective rules, injective match morphisms, and injec-
tive NACs.

9 Note that when considering a hypergraph grammar, we expect that the results similar to Theorems 19 and
20 are also valid.
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This chapter is structured similar to Chapter 5. We show that we can apply the gen-
eral approach from Chapters 3 and 4 to the M-adhesive categories of Petri nets with
individual tokens and typed attributed graphs introduced in Subsections 2.4.3 and 2.4.1,
respectively. In Section 8.1 we consider the subcategory of typed attributed graphs over
the specific typed attributed graph PNTG allowing us to represent PTI nets as typed
attributed graphs. We use subsequently this subcategory in Section 8.2 as the target cate-
gory for the construction of a restricted functor where we define the translation of objects
and morphisms from the category of PTI nets PTINet into the corresponding objects
and morphisms of the category of typed attributed graphs over the specific attributed
type graph PNTG AGraphsPNTG. We can only construct a functor FPTI : PTINet|M1

→
AGraphsPNTG|M2

between the categories restricted to M-morphisms (with the class of all
injective PTINet-morphisms M1 and the class of all injective AGraphsPNTG-morphisms
M2) but not a functor FPTI : (PTINet,M1) → (AGraphsPNTG,M2) because FPTI is not
well-defined on non-injective morphisms (see the counterexample in Figure 67 where
FPTI(f) does not preserve attributes in and wpre).

Note that we do not use Petri nets with “classical initial markings”, known as Petri
net systems [267], because the corresponding M-adhesive category requires a class M

leading to Petri net rules that are marking preserving, which is not adequate to model
firing steps as direct transformations.

8.1 typed attributed graphs over the pti net type graph PNTG

In this section, we introduce the category of typed attributed graphs, which we call
AGraphsPNTG, constructed over the specific typed attributed graph PNTG (see Figure 64)
allowing for the representation of Petri nets with individual tokens as E-graphs. Thereby
nodes and edges correspond to the graph nodes (VG) and graph edges (EG), respectively,
dashed nodes are the data nodes (VD), and dashed edges represent the edges for node
and edge attribution. The E-graph of PNTG is shown in Figure 64 to the left and its
attributed notation to the right.

For the construction of our restricted functor we use the subcategory AGraphsN
PNTG

of AGraphsPNTG where all objects are restricted to the data type NAT, VGD = N, and all
data type morphisms as well as VD-components of the E-graph morphisms are restricted
to identities. Morphisms in AGraphsN

PNTG are defined componentwise and are type-
compatible.

The construction of pushouts and pullbacks in AGraphsN
PNTG can be obtained compo-

nentwise, as in AGraphsPNTG, with the identical data type component.
As already mentioned in Subsection 2.4.1, the category (AGraphsATG,M) is M-adhe-

sive for each type graph ATG where M-morphisms are injective with the isomorphic
data type part. Hence also the special case of (AGraphsATG,M) with ATG = PNTG and

173
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Place Token
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Place Token
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in : nat
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weightpost : nat

token2place

Figure 64: Attributed type graph PNTG

the subclass M = M2 of all injective typed attributed graph morphisms is M-adhesive.
Moreover, the fact that (AGraphsPNTG,M2) is an M-adhesive category implies that also
(AGraphsN

PNTG,MN
2 ) is an M-adhesive category with the class M2 restricted to MN

2 with
the identical data type component.

The initial object ∅N in AGraphsN
PNTG is empty excepting the data type part and

∅N = FPTI(∅) where ∅ is an initial PTI net. In the following, we use the short nota-
tion (AGraphsPNTG,M2) for the M-adhesive category of typed attributed graphs over
PNTG instead of the long notation (AGraphsN

PNTG,MN
2 ).

All graphs over PNTG are considered as a graph representation of PTI nets. Thus, all
possible components of PTI nets have to be included in PNTG. The meaning of every
depicted element of PNTG is as follows. The nodes Place, Trans, and Token represent the
elements of PTI nets that can be depicted as nodes in typed attributed graphs and hence
give the possible node typing. The edges place2trans, trans2place, and token2place repre-
sent all kinds of edges that are valid in PTI nets and describe therefore the possible edge
typing. The edges place2trans and trans2place have the attributes weightpre and weightpost

that contain weights for edges in the pre- and postdomain of transitions in the corre-
sponding PTI net. The node Trans has the attributes in and out that describe a number of
edges in the pre- and postdomain of transitions in the corresponding PTI net. The node
nat is a data node that defines the type for the attributes and corresponds to the single
sort symbol in the signature Σ−nat (see Figure 7).

8.2 translation of pti nets into typed attributed graphs

We begin this section with the definition of the restricted functor FPTI : PTINet|M1
→

AGraphsPNTG|M2
on objects and restricted morphisms. This functor definition shows

how PTI nets can be translated properly into the corresponding typed attributed graphs
over the attributed type graph PNTG.

Definition 64 (Restricted Functor FPTI [207]).
Consider PTI nets NI = (P, T ,pre,post, I,m) and NIi = (Pi, Ti,prei,posti, Ii,mi) for i ∈
{1, 2}.

• Translation of objects:
We define the object FPTI(NI) = ((G, NAT), type)1 in AGraphsPNTG with the morphism
type : (G, NAT)→ (PNTG,Dfin) and the E-graph G = (VGG ,VGD = N,EGG,EGNA,EGEA,
(sGj , tGj )j∈{G,NA,EA}

) as follows where we use the following abbreviations:

1 In the following, we also use the short notation FPTI(NI) = G.
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token2place , to2p, place2trans , p2t, trans2place , t2p, weightpre , wpre,
weightpost , wpost, pre(t)(p) = nP ∈N for pre(t) =

∑
p∈P nP · p ∈ P⊕, and

post(t)(p) = nP ∈N for post(t) =
∑
p∈P nP · p ∈ P⊕2:

VGG = P ] T ] I (graph nodes),

EGG = EGto2p ] EGp2t ] EGt2p (graph edges) with

EGto2p = {(x,p) ∈ I× P | m(x) = p} ,

EGp2t = {(p, t) ∈ P× T | pre(t)(p) > 0} ,

EGt2p = {(t,p) ∈ T × P | post(t)(p) > 0} ,

EGNA = EGin ] EGout (node attribute edges) with

EGin = {(t,n, in) | (t,n) ∈ T ×N ∧ | • t| = n} ,

EGout = {(t,n, out) | (t,n) ∈ T ×N ∧ |t • | = n}
where •t and t• are the pre- and postdomains of t ∈ T with cardinalities

| • t| and |t • |, respectively,

EGEA = EGwpre ] EGwpost (edge attribute edges) with

EGwpre =
{
((p, t),n) ∈ EGp2t ×N | pre(t)(p) = n

}
,

EGwpost =
{
((t,p),n) ∈ EGt2p ×N | post(t)(p) = n

}
,

(and the corresponding source and target functions)

sGG, tGG : EGG → VGG defined by sGG(a,b) = a, tGG(a,b) = b,

sGNA : EGNA → VGG defined by sGNA(t,n, x) = t,

tGNA : EGNA →N defined by tGNA(t,n, x) = n,

sGEA : EGEA → EGG defined by sGEA((x,y),n) = (x,y),

tGEA : EGEA →N defined by tGEA((x,y),n) = n.

To simplify the notation, we flatten nested tuples most of the time, i.e., the tuple ((x,y), z)
is written (x,y, z).
The AGraphsPNTG-morphism type : (G, NAT) → (PNTG,Dfin) is given by the final
morphism of the data types from NAT to the final algebra Dfin and typeG : G → PNTG is
given by the E-graph morphism typeG = (typeVG , typeVD , typeEG , typeENA , typeEEA) where

typeVG : VGG → VPNTG
G with x 7→ Place (if x ∈ P), x 7→ Trans (if x ∈ T),

x 7→ Token (if x ∈ I),
typeVD : N → Dfin,nat with x 7→ nat ( if x ∈N),

typeEG : EGG → EPNTG
G with x 7→ y for x ∈ EGy and y ∈ {to2p,p2t, t2p},

typeENA : EGNA → EPNTG
NA with x 7→ y for x ∈ EGy and y ∈ {in, out},

typeEEA : EGEA → EPNTG
EA with x 7→ y for x ∈ EGy and y ∈ {wpre,wpost}.

• Translation of morphisms:
For an arbitrary PTI net morphism f : NI1 → NI2 with f = (fP : P1 → P2, fT : T1 →

2 pre(t)(p) resp. post(t)(p) denotes the weight nP of an edge in the predomain resp. postdomain of a
transition connecting a place p with a transition t. pre(t) =

∑
p∈P nP · p ∈ P⊕ resp. post(t) =

∑
p∈P nP ·

p ∈ P⊕ is then a free commutative monoid giving a sum of weights of edges in the predomain resp.
postdomain of a transition t.
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a b
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Figure 65: PTI net L and its corresponding typed attributed graph FPTI(L)

T2, fI : I1 → I2) ∈ M1, i.e., fP, fT , fI are injective, we define FPTI(f) : FPTI(NI1) →
FPTI(NI2) with FPTI(NIi) = (ViG, N,EiG,EiNA,EiEA, (sij, tij)j∈{G,NA,EA}

) for i ∈
{1, 2} by FPTI(f) = f

′ = (f ′VG , f ′VD=idN, f ′EG , f ′ENA , f ′EEA) where

f ′VG : V1G → V2G with ViG = Pi ] Ti ] Ii for i ∈ {1, 2} is given by

f ′VG = fP ] fT ] fI,
f ′EG : E1G → E2G with EiG = Eito2p ] Eip2t ] Eit2p for i ∈ {1, 2} is given by

f ′EG(x,p) = (fI(x), fP(p)) for (x,p) ∈ E1to2p,

f ′EG(p, t) = (fP(p), fT (t)) for (p, t) ∈ E1p2t,
f ′EG(t,p) = (fT (t), fP(p)) for (t,p) ∈ E1t2p,

f ′ENA : E1NA → E2NA with EiNA = Eiin ] Eiout for i ∈ {1, 2} is given by

f ′ENA(t,n, x) = (fT (t),n, x) for (t,n, x) ∈ E1in ] E1out and x ∈ {in, out},

f ′EEA : E1EA → E2EA with EiEA = Eiwpre ] Eiwpost for i ∈ {1, 2} is given by

f ′EEA(p, t,n) = (fP(p), fT (t),n) for (p, t,n) ∈ E1wpre and n ∈N,

f ′EEA(t,p,n) = (fT (t), fP(p),n) for (t,p,n) ∈ E1wpost and n ∈N.

An example for using the restricted functor FPTI on objects is shown in Figure 65 where
the typed attributed graph FPTI(L) to the right is the translation of the corresponding PTI
net L to the left. Another example for the translation of objects is given in Figure 68 where
four depicted typed attributed graphs result from the translation of the corresponding
PTI nets in Figure 19.

An example for the type-morphism components typeVG and typeEG (depicted by dashed
arrows) is given in Figure 66. We do not show the other three type-morphism components
typeVD , typeENA , and typeEEA in order to improve the clarity of the illustration.

As already mentioned before, we can construct the functor FPTI : PTINet|M1
→

AGraphsPNTG|M2
between the categories restricted to M-morphisms, but not a functor
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Figure 66: Example for the AGraphsPNTG-morphism type components typeVG and typeEG

Figure 67: Counterexample for translation of general (non-injective) morphisms

FPTI : (PTINet,M1) → (AGraphsPNTG,M2), because FPTI is not well-defined on non-
injective morphisms. A counterexample for the translation of non-injective morphisms
is given in Figure 67 where on the graph side the attributes in and wpre are not preserved
by the morphism FPTI(f).

Examples for injective PTI net morphisms are shown in Figure 19, while the corre-
sponding morphisms translated by FPTI are given in Figure 68.

It is important to ensure that the translation of M-morphisms, defined in the way
described before, is well-defined for all PTI net morphisms f : NI1 → NI2. We summa-
rize the sufficient properties for the well-definedness of the morphism translation in the
following lemma.

Lemma 42 (Well-Definedness of PTI Net Morphism Translation [207]).
Consider M-adhesive categories (PTINet,M1), (AGraphsPNTG,M2), and the restricted functor
FPTI : PTINet|M1

→ AGraphsPNTG|M2
from Definition 64. Then for each PTI net morphism

f : NI1 → NI2 in M1 the corresponding morphism FPTI(f) : FPTI(NI1) → FPTI(NI2) is
well-defined in AGraphsPNTG with FPTI(f) ∈ M2. Moreover, FPTI preserves compositionality,
injectivity of morphisms, inclusions, and identities.
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Proof.
The detailed proof for this lemma is given in Appendix D on page 361 showing the following steps:

1. The components of FPTI(f) are well-defined w.r.t. the codomain.
2. The components of FPTI(f) are compatible with the source and target functions.
3. The components of FPTI(f) are compatible with the typing morphisms.
4. Compositionality axiom holds for FPTI.
5. f ∈M1 (inclusion, identity) implies that FPTI(f) ∈M2 (inclusion, identity).

�

Using Lemma 42 we obtain that FPTI is a functor, because FPTI is well-defined and
preserves identities and composition.
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Similarly to Chapter 3, we show in this chapter that we can apply the theoretical re-
sults for translation and creation of rule applicability without or with nested application
conditions, (direct) transformations, parallel and sequential independence of transforma-
tions as well as FR-bisimilarity and FR-transfer of bisimilarity to the concrete restricted
functor FPTI between the categories of Petri nets with individual tokens and typed at-
tributed graphs. Therefore, we show in Section 9.1 that FPTI is a restricted M-functor
as well as in Sections 9.2 and 9.3 that FPTI satisfies the remaining adapted requirements
of the theoretical results from Chapter 3, which altogether allows for the instantiation
of the mentioned theoretical results for PTI net transformation systems. Note that, as
for the functor FHG, using this instantiation, we obtain the behavioral equivalence of the
FPTI-related parts of the source and the target transformation systems.

9.1 translation of pti net transformations

As the first step we show in this section that the restricted functor FPTI preserves pushouts
of injective PTI net morphisms. Using this result together with the preservation of injec-
tive morphisms by FPTI, which was already shown in Lemma 42 in the previous chapter,
we obtain that FPTI is a restricted M-functor and thus we can show that FPTI translates
applicability of PTI net rules without or with nested application conditions, (direct) PTI
net transformations as well as parallel and sequential independence of PTI net transfor-
mations by application of the general theory.

The results of our general theory are applicable to FPTI only if FPTI is a restricted
M-functor. The requirement that remains to be shown for FPTI to become a restricted M-
functor, is the preservation of pushouts of injective morphisms. This technical property
intuitively means that if we have a pushout of injective PTI net morphisms in the category
PTINet then, applying FPTI to this diagram, we obtain a pushout of injective typed
attributed graph morphisms in the category AGraphsPNTG.

Lemma 43 (FPTI Preserves Pushouts of Injective Morphisms [207]).
Consider M-adhesive categories (PTINet,M1) and (AGraphsPNTG,M2), restricted functor
FPTI : PTINet|M1

→ AGraphsPNTG|M2
introduced in Definition 64, PTI nets NIi with PTI

net morphisms fi = (fiP, fiT , fiI), and typed attributed graphs FPTI(NIi) with typed attributed
graph morphisms FPTI(fi) = f ′i = (f ′iVG , f ′iVD , f ′iEG , f ′iENA , f ′iEEA) for i ∈ {0, 1, 2, 3}. If (1) is
a pushout in PTINet with fi ∈ M1 then we have that (2) is a pushout in AGraphsPNTG with
FPTI(fi) ∈M2 for i ∈ {0, 1, 2, 3}.

NI0

(1)

NI1

NI2 NI3

f1

f2 f4

f3

FPTI(NI0)

(2)

FPTI(NI1)

FPTI(NI2) FPTI(NI3)

FPTI(f1) = f
′
1

FPTI(f2) = f
′
2 FPTI(f4) = f

′
4

FPTI(f3) = f
′
3
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a:Token b:Token

FPTI(L)

p1:Place
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in=1

out=1
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(a,p1):to2p (b,p1):to2p

(p1, t1):p2t
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(t1,p2):t2p

wpost=1

a ′:Token b ′:Token

FPTI(G)

p ′1:Place

t ′1:Trans

in=1

out=1

p ′2:Place

(a ′,p ′1):to2p (b ′,p ′1):to2p

(p ′1, t ′1):p2t

wpre=2

(t ′1,p ′2):t2p

wpost=1

c ′:Token

d ′:Token p ′3:Place

t ′2:Trans

in=1

out=1

(c ′,p ′1):to2p

(d ′,p ′2):to2p
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(p ′2, t ′2):p2t
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p1:Place
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FPTI(B)

(PO)

FPTI(b)

FPTI(f)FPTI(a)
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Figure 68: Translated pushout in AGraphsPNTG with injective typed attributed graph morphisms
FPTI(a), FPTI(b), FPTI(c), and FPTI(f)

Proof.
The detailed proof for this lemma is given in Appendix D on page 366. �

An example for the translation of pushouts of injective morphisms is given in Figure 68

where the pushout in Figure 68 is the corresponding translation of the pushout in PTINet
given in Figure 19.

After the sufficient property for the translation of applicability of Petri net rules, (di-
rect) Petri net transformations, and parallel (sequential) independence is shown for FPTI,
we can now formulate and prove our first important result concerning the PTI net ap-
plication. The following theorem states intuitively that transformation steps, which are
possible in a PTI net transformation system, are also possible in the corresponding typed
attributed graph transformation system using our concrete restricted functor FPTI. Note
that the following theorem is applicable to PTI net transformation systems containing
rules without or with nested application conditions.
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Figure 69: PTI net transformation step for the application of the rule JoinTable

Theorem 21 (Translation of PTI Net Transformations into Typed Attributed Graph
Transformations [207]).
Consider M-adhesive transformation systems (PTINet,M1,P) and (AGraphsPNTG,M2,
FPTI(P)). The restricted functor FPTI : PTINet|M1

→ AGraphsPNTG|M2
introduced in Defi-

nition 64 translates applicability of PTI net rules without or with nested application conditions,
construction of (direct) PTI net transformations as well as parallel and sequential independence
of PTI net transformations.

Proof.
PTI net transformations are (direct) transformations with injective match morphisms only. In
order to use the results from Theorems 2 and 7 for the case of transformations without nested
application conditions as well as Remark 12 and Theorem 10 for the case of transformations with
nested application conditions, we only have to show that FPTI is a restricted M-functor according
to Definition 44. In fact, we have FPTI(M1) ⊆ M2, i.e., FPTI preserves injectivity of morphisms
by Lemma 42 and FPTI preserves pushouts of injective morphisms according to Lemma 43. �

Now we show for our running example how PTI net transformation rules can be
translated into the corresponding typed attributed graph rules using the restricted M-
functor FPTI as well as give an example for a translated transformation step.

Example 17 (PTI Net Transformations Translated by FPTI).
In this example, we use the PTI net transformation system introduced in Example 12 describing
the Mobile Dining Philosophers system.

In Figure 71 and Figure 72 the transformation rules from Example 12 translated by FPTI

are given for the PTI net transformation system without and with nested application conditions,
respectively. Note that for better readability we avoid to indicate the attributes and the typing of
the edges. Furthermore, Figure 70 shows a translated transformation step for the application of
the translated rule FPTI(JoinTable), while the corresponding PTI net transformation step for the
application of a PTI net transformation rule JoinTable is given in Figure 69.
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Figure 70: Translated transformation step for the application of the rule FPTI(JoinTable)
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Figure 71: Translated transformation rules without nested application conditions of the Mobile
Dining Philosophers system
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Figure 72: Translated transformation rules with PACs of the extended Mobile Dining Philosophers
system
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9.2 creation of pti net transformations

In this section, we are going to verify sufficient properties, which allow for application
of the creation part of Theorem 2 and Remark 10 to the restricted M-functor FPTI intro-
duced in Definition 64. As the first step we show that FPTI creates injective PTI net mor-
phisms. As the second step we verify that FPTI preserves initial pushouts over injective
morphisms. Finally, we conclude this section with our next important result concerning
the PTI net application stating that FPTI creates applicability of PTI net rules without or
with nested application conditions, (direct) PTI net transformations as well as parallel
and sequential independence of PTI net transformations.

As the first step, we show in this section that FPTI creates injective morphisms. The
proof for the uniqueness of morphism creation is based on the additional technical
property introduced and shown in the following lemma stating that each typed at-
tributed graph morphism f ′ : FPTI(NI1) → FPTI(NI2) is uniquely determined by its
VG-component f ′VG : V1G → V2G.

Lemma 44 (Uniquely Determined FPTI-Images).
Consider M-adhesive categories (PTINet,M1), (AGraphsPNTG,M2), restricted M-functor
FPTI : PTINet|M1

→ AGraphsPNTG|M2
from Definition 64, typed attributed graphs FPTI(NI1),

FPTI(NI2), and a morphism f ′ : FPTI(NI1) → FPTI(NI2) with f ′VD = idN. Then we have that
f ′ is uniquely determined by the VG-component f ′VG : V1G → V2G with ViG = Pi ] Ti ] Ii for
i ∈ {1, 2}.

Proof.
The detailed proof for this lemma is given in Appendix D on page 370. �

In the next lemma we show that the restricted M-functor FPTI creates injective mor-
phisms, i.e., FPTI creates injective morphisms uniquely and created morphisms are well-
defined.

Lemma 45 (FPTI Creates Injective Morphisms [207]).
Consider M-adhesive categories (PTINet,M1), (AGraphsPNTG,M2), typed attributed graphs
FPTI(NI1),FPTI(NI2), and an injective typed attributed graph morphism f ′ : FPTI(NI1) →
FPTI(NI2) that is compatible with typing morphisms. Then the restricted M-functor FPTI :

PTINet|M1
→ AGraphsPNTG|M2

creates a unique injective PTI net morphism f : NI1 → NI2
such that FPTI(f) = f

′ or formally written:

∃!f : NI1 → NI2 in M1. FPTI(f) = f
′.

Proof.
The detailed proof for this lemma is given in Appendix D on page 372. �

To be able to show later on that FPTI preserves initial pushouts, we have to construct
two special boundary objects FPTI(B) and B ′ in the category of typed attributed graphs.
FPTI(B) is an FPTI-translation of a boundary object in the category of PTI nets, while
B ′ is a boundary object in the category of typed attributed graphs over the PTI net
specific type graph PNTG constructed similar to Fact 6. In the following Lemmas 46 - 48,
we introduce the mentioned boundary object constructions considering in Lemma 46 a
boundary object in (PTINet,M1) translated by FPTI, in Lemma 47 a boundary object in
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(AGraphsPNTG,M2) constructed over an injective typed attributed graph morphism, and
in Lemma 48 a boundary object in (AGraphsPNTG,M2) constructed over an FPTI-image
of an injective PTI net morphism.

Lemma 46 (Application of FPTI to a PTI Net Boundary Object over an Injective Mor-
phism f : L→ G).
Consider M-adhesive categories (PTINet,M1), (AGraphsPNTG,M2), a boundary object B =

(PB, TB,preB,postB, IB,mB) over an injective morphism f : L → G in (PTINet,M1) con-
structed according to Remark 9, and the restricted M-functor FPTI : PTINet|M1

→
AGraphsPNTG|M2

from Definition 64. Then the application of FPTI to the boundary object B
results in the following typed attributed graph:

FPTI(B) = ((B0, NAT), typeFPTI(B)) with

B0 = (VB0G ,VB0D = N,EB0G ,EB0NA,EB0EA, (sB0j , tB0j )
j∈{G,NA,EA}

) where

VB0G = PB ] TB ] IB = DPT ∪DPI with

DPT =
{
p ∈ PL | ∃t ∈ TG\fT (TL). fP(p) ∈ (•t∪ t•)

}
,

DPI =
{
p ∈ PL | ∃x ∈ IG\fI(IL). fP(p) = mG(x)

}
,

EB0G = EB0to2p ] E
B0
t2p ] E

B0
p2t = ∅ since

EB0to2p =
{
(x,p) ∈ IB × PB | mB(x) = p

}
= ∅ using IB = ∅,

EB0t2p = ∅ using TB = ∅,
EB0p2t = ∅ using TB = ∅,

EB0NA = EB0in ] E
B0
out = ∅ using TB = ∅,

EB0EA = EB0wpre ] EB0wpost = ∅ since

EB0wpre = ∅ using EB0p2t = ∅,
EB0wpost = ∅ using EB0t2p = ∅,

and FPTI(b) : FPTI(B)→ FPTI(L) is an inclusion.

Proof.
The detailed proof for this lemma is given in Appendix D on page 376. �

Lemma 47 (Boundary Object in (AGraphsPNTG,M2) over an Injective Morphism
f ′ : L ′ → G ′).
Consider an injective typed attributed graph morphism f ′ : L ′ → G ′. Then the boundary object
B ′ is given by B ′ = ((B ′0, NAT), typeB

′
) with the boundary points B ′0 that correspond to the

dangling points1 and are defined as follows:

B ′0 = (V
B ′0
G ,VB

′
0

D = N,EB
′
0

G ,EB
′
0

NA,EB
′
0

EA, (sB
′
0

j , tB
′
0

j )
j∈{G,NA,EA}

) given by

B ′0 =
⋂

{B ′′ ⊆ L ′ | VL ′D = VB
′′

D ∧ V
B ′′0
G ⊆ VB ′′G ∧ E

B ′′0
G ⊆ EB

′′
G ∧ E

B ′′0
NA ⊆ EB

′′
NA ∧ E

B ′′0
EA ⊆ EB

′′
EA}.

1 We do not insist on the additional injectivity conditions for VB
′′
0

G and EB
′′
0

G since we already concern injective
morphisms.
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The components of B ′′0 = (V
B ′′0
G ,VB

′′
0

D = N,EB
′′
0

G ,EB
′′
0

NA,EB
′′
0

EA, (sB
′′
0

j , tB
′′
0

j )
j∈{G,NA,EA}

) are defined
as given below:

E
B ′′0
NA = E

B ′′0
EA = ∅,

V
B ′′0
G = {a ∈ VL ′G = PL ] TL ] IL |

[∃a ′ ∈ EG ′NA\f ′ENA(E
L ′
NA) = (EG

′
in ] EG

′
out)\f

′
ENA

(EL
′

in ] EL
′

out). f
′
VG

(a) = sG
′

NA(a
′)]

∨ [∃a ′ ∈ EG ′G \f ′EG(E
L ′
G ) = (EG

′
to2p ] EG

′
p2t ] EG

′
t2p)\f

′
EG

(EL
′
to2p ] EL

′
p2t ] EL

′
t2p).

f ′VG(a) = s
G ′
G (a ′)∨ f ′VG(a) = t

G ′
G (a ′)]},

E
B ′′0
G = {a ∈ EL ′G = EL

′
to2p ] EL

′
t2p ] EL

′
p2t |

∃a ′ ∈ EG ′EA\f ′EEA(E
L ′
EA) = (EG

′
wpre

] EG ′wpost)\f ′EEA(E
L ′
wpre

] EL ′wpost).
f ′EG(a) = s

G ′
EA(a

′)},

s
B ′′0
G , tB

′′
0

G : E
B ′′0
G → V

B ′′0
G are restrictions of sL

′
G , tL

′
G : EL

′
G → VL

′
G ,

and b ′ : B ′ → L ′ is an inclusion.

EB
′
G VB

′
G

∅
VB

′
D

∅

sB
′
G

tB
′
G ∅

∅

∅

∅

EL
′
G VL

′
G

EL
′
NA

VL
′
D

EL
′
EA

sL
′
G

tL
′
G

sL
′
NA

tL
′
NA

sL
′
EA

tL
′
EA

b ′EG b ′VG

∅

idN

∅

EG
′

G VG
′

G

EG
′

NA

VG
′

D

EG
′

EA

sG
′

G

tG
′

G
sG
′

NA

tG
′

NA

sG
′

EA

tG
′

EA

f ′EG f ′VG

f ′ENA

f ′VD

f ′EEA

Proof.
The detailed proof for this lemma is given in Appendix D on page 376. �

Lemma 48 (Boundary Object in (AGraphsPNTG,M2) over a Morphism f ′ = FPTI(f) :

FPTI(L)→ FPTI(G) for an Injective PTI Net Morphism f : L→ G).
Consider M-adhesive categories (PTINet,M1), (AGraphsPNTG,M2), an injective PTI net mor-
phism f : L → G, and the restricted M-functor FPTI : PTINet|M1

→ AGraphsPNTG|M2
from
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Definition 64. Then the boundary object B ′ of the initial pushout over a translated morphism
FPTI(f) : FPTI(L)→ FPTI(G) is constructed in (AGraphsPNTG,M2) as follows:

B ′ = ((B ′0, NAT), typeB
′
) is essentially given by the boundary points

B ′0 = (V
B ′0
G ,VB

′
0

D = N,EB
′
0

G ,EB
′
0

NA,EB
′
0

EA, (sB
′
0

j , tB
′
0

j )
j∈{G,NA,EA}

) with

E
B ′0
G = E

B ′0
NA = E

B ′0
EA = ∅,

V
B ′0
G = {a ∈ VL ′G = PL ] TL ] IL |

[ ∃a ′ ∈ EG ′NA\f ′ENA(E
L ′
NA) = (EG

′
in ] EG

′
out)\f

′
ENA

(EL
′

in ] EL
′

out).

f ′VG(a) = s
G ′
NA(a

′) ]

∨ [ ∃a ′ ∈ EG ′G \f ′EG(E
L ′
G ) = (EG

′
to2p ] EG

′
p2t ] EG

′
t2p)\f

′
EG

(EL
′
to2p ] EL

′
p2t ] EL

′
t2p).

f ′VG(a) = s
G ′
G (a ′)∨ f ′VG(a) = t

G ′
G (a ′) ]},

and b ′′ : B ′ → FPTI(L) is an inclusion.

B ′ FPTI(L) = L
′

FPTI(G) = G
′

b ′′

FPTI(f) = f
′

Proof.
The detailed proof for this lemma is given in Appendix D on page 377. �

Note that we do not provide alternative constructions for the context object C ′ in
(AGraphsPNTG,M2), because such constructions would not be simplified by assuming
that a morphism f ′ : L ′ → G ′ is injective or is an FPTI-image.

In Figure 73 we can see, on the one hand, an example for the application of FPTI

to the PTI net boundary object B according to Lemma 46 given by VB0G = {p1,p2}
and, on the other hand, an example for the construction of the boundary object B ′ in
(AGraphsPNTG,M2) over a morphism f ′ = FPTI(f) for an injective PTI net morphism
f : L→ G according to Lemma 48 given by VB

′
0

G = {p1,p2}. Figure 73 shows furthermore
an example for the construction of the context object C ′ in (AGraphsPNTG,M2) according
to Fact 7 (concerning the boundary object B ′ constructed according to Lemma 48) with
V
C ′0
G = {p ′1,p ′2,p ′3, t ′2, c ′,d ′}, EC

′
0

NA = {(t ′2, 1, in), (t ′2, 1, out)}, EC
′
0

EA = {(p ′2, t ′2, 1), (t ′2,p ′3, 1)},

E
C ′0
G = {(c ′,p ′1), (d

′,p ′2), (p
′
2, t ′2), (t

′
2,p ′3)}, and the corresponding source and target func-

tions.
As the next step we need to ensure that the diagram consisting of the boundary object

B ′ constructed according to Lemma 48, the context object C ′ constructed according to
Fact 7, and the objects FPTI(L), FPTI(G) of the translated injective morphism f ′ = FPTI(f)

is in fact an initial pushout in (AGraphsPNTG,M2).
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Figure 73: Preservation of initial pushouts in (AGraphsPNTG,M2)
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Lemma 49 (Initial Pushout in (AGraphsPNTG,M2) over a Morphism f ′ = FPTI(f) :

FPTI(L)→ FPTI(G) for an Injective PTI Net Morphism f : L→ G).
Consider M-adhesive categories (PTINet,M1), (AGraphsPNTG,M2), an injective PTI net mor-
phism f : L → G, and the restricted M-functor FPTI : PTINet|M1

→ AGraphsPNTG|M2
from

Definition 64. Then the diagram (1) given below with the boundary object B ′ constructed ac-
cording to Lemma 48, the context object C ′ constructed according to Fact 7, inclusions b ′ :
B ′ → L ′, c ′ : C ′ → G ′, and the morphism g ′ : B ′ → C ′ given by g ′j(x) = (f ′j ◦ b ′j)(x) for
j ∈ {VG,VD,EG,ENA,EEA} is an initial pushout in (AGraphsPNTG,M2) over f ′ = FPTI(f) :

FPTI(L)→ FPTI(G).

B ′ L ′

C ′ G ′

(1)

b ′

c ′

f ′ = FPTI(f)g ′

Proof.
The detailed proof for this lemma is given in Appendix D on page 378. �

After the sufficient boundary object constructions are introduced in Lemmas 46, 48

and the construction of initial pushouts over injective morphisms that are FPTI-images is
discussed in Lemma 49, we can verify that FPTI preserves initial pushouts over injective
morphisms.

Lemma 50 (FPTI Preserves Initial Pushouts over Injective Morphisms [207]).
Consider M-adhesive categories (PTINet,M1), (AGraphsPNTG,M2), the restricted M-functor
FPTI : PTINet|M1

→ AGraphsPNTG|M2
from Definition 64, and let (1) be an initial pushout

over an injective morphism f : L → G in (PTINet,M1). Then (2) is an initial pushout over an
injective morphism FPTI(f) : FPTI(L)→ FPTI(G) in (AGraphsPNTG,M2).

B

(1)

L

C G

b

f ⇒
FPTI(B)

(2)

FPTI(L)

FPTI(C) FPTI(G)

FPTI(b)

FPTI(f)

Proof.
The detailed proof for this lemma is given in Appendix D on page 379. �

An example for the preservation of initial pushouts by FPTI is given in Figure 73 where
(1) is an initial pushout over an injective morphism f : L → G in (PTINet,M1), (2) is
the induced pushout over the injective morphism FPTI(f) : FPTI(L) → FPTI(G), and the
initial pushout over FPTI(f) in (AGraphsPNTG,M2) is given by the outer diagram with
corners B ′, C ′, FPTI(L), and FPTI(G). Since i ′ : B ′ → FPTI(B) and j ′ : C ′ → FPTI(C) are
isomorphisms, the diagram (2) is an initial pushout over the injective morphism FPTI(f).

After all of the sufficient properties for the creation of rule applicability, (direct) PTI
net transformations as well as parallel and sequential independence of PTI net trans-
formations are shown to hold for the restricted M-functor FPTI, we now formulate and
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prove one of our next important theorems for the PTI net application. This theorem states
intuitively that transformation steps, which are possible in a transformation system trans-
lated by FPTI, are also possible in the original PTI net transformation system. Note that
the following theorem is applicable to PTI net transformation systems containing rules
without or with nested application conditions.

Theorem 22 (Creation of PTI Net Transformations from Typed Attributed Graph Trans-
formations [207]).
Consider M-adhesive transformation systems (PTINet,M1,P), (AGraphsPNTG,M2,FPTI(P)).
The restricted functor FPTI : PTINet|M1

→ AGraphsPNTG|M2
given in Definition 64 creates

applicability of PTI net rules, (direct) PTI net transformations as well as parallel and sequential
independence of PTI net transformations.

Proof.
PTI net transformations are (direct) transformations with injective match morphisms only. In
order to use the results from Theorems 2 and 7 for the case of transformations without nested
application conditions as well as Remark 12 and Theorem 10 for the case of transformations with
nested application conditions, we have to show that FPTI is a restricted M-functor according to
Definition 44, FPTI creates injective morphisms, and FPTI preserves initial pushouts over injective
morphisms. Furthermore, it is required that the category (PTINet,M1) has initial pushouts,
which is satisfied according to Fact 11 in Subsection 2.4.3. In fact, we have that FPTI(M1) ⊆M2,
i.e., FPTI preserves injectivity of morphisms by Lemma 42 and FPTI preserves pushouts of injective
morphisms according to Lemma 43. Moreover, the creation of injective morphisms by FPTI is
shown in Lemma 45 and the preservation of initial pushouts over injective morphisms by FPTI is
shown in Lemma 50. �

For an example of the creation of PTI net transformation steps consider again Fig-
ure 69 and Figure 70 from the last section. For the translated transformation step given
in Figure 70, the result of the creation is the PTI net transformation step depicted in
Figure 69.

9.3 FPTI-transfer of bisimilarity for pti net transformation systems

Similarly to Section 6.3, we instantiate in this section our general theoretical results on
bisimulation between M-adhesive transformation systems from Section 3.2 to our second
concrete application considering PTI net transformation systems. Basically, we ensure
that the adapted requirements from Theorems 4 and 5 are satisfied by the restricted M-
functor FPTI and the categories of PTI nets and typed attributed graphs. The proof of the
theorem depends on the various lemmas introduced in earlier sections.

Theorem 23 (FPTI-Bisimilarity and FPTI-Transfer of R-Bisimilarity).
Consider M-adhesive transformation systemsAS1 = (PTINet,M1,P1),AS2 = (AGraphsPNTG,
M2,FPTI(P1)), AS3 = (PTINet,M1,P2), AS4 = (AGraphsPNTG,M2,FPTI(P2)), a rule rela-
tion R ⊆ P1×P2, and the restricted functor FPTI : PTINet|M1

→ AGraphsPNTG|M2
introduced

in Definition 64. Then the following two statements hold:
• Let G be a PTI net from AS1. Then G is FPTI-bisimilar to the corresponding typed at-

tributed graph FPTI(G) in AS2, written G ∼FPTI FPTI(G).
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• Let G be a PTI net from AS1 and G ′ be a PTI net from AS3. Then G is R-bisimilar to G ′

iff FPTI(G) is FPTI(R)-bisimilar to FPTI(G
′), written (G ∼R G

′)⇔ (FPTI(G) ∼FPTI(R)

FPTI(G
′)).

Proof.
PTI net transformations are (direct) transformations with injective match morphisms only. In
order to use the results from Theorems 4 and 5 for the case of transformation steps without or with
nested application conditions, we have to show that FPTI is a restricted M-functor according to
Definition 44, FPTI creates injective morphisms, and FPTI preserves initial pushouts over injective
morphisms. Furthermore, it is required that the category (PTINet,M1) has initial pushouts,
which is satisfied according to Fact 11 in Subsection 2.4.3. In fact, we have that FPTI(M1) ⊆M2,
i.e., FPTI preserves injectivity of morphisms by Lemma 42 and FPTI preserves pushouts of injective
morphisms according to Lemma 43. Moreover, the creation of injective morphisms by FPTI is
shown in Lemma 45 and the preservation of initial pushouts over injective morphisms by FPTI is
shown in Lemma 50. �

For our running example on the Mobile Dining Philosophers problem, it is obvious
that for each PTI net derivable by rule application in the original PTI net transformation
system, there is an FPTI-bisimilar typed attributed graph in the corresponding typed
attributed graph transformation system implying altogether the behavioral equivalence
of the FPTI-related parts of the involved source and target transformation systems.

Note that we do not consider in this section a concrete example for FPTI-transfer of
R-bisimilarity but refer the reader to the corresponding example for hypergraph trans-
formation systems in Example 15.
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In this chapter, we consider similarly to the case of hypergraphs how we can apply theo-
retical results from Sections 4.1 and 4.2 to our concrete restricted M-functor FPTI between
categories of PTI nets and typed attributed graphs to obtain local confluence analysis re-
sults for PTI net transformation systems. In Section 10.1 we focus on local confluence
analysis of PTI net transformation systems without nested application conditions, while
in Section 10.2 we consider local confluence analysis of PTI net transformation systems
containing rules with nested application conditions. Afterwards in Section 10.3, we ver-
ify local confluence of a PTI net transformation system introduced in Example 12 using
the Agg-tool and our theoretical results from Sections 10.1 and 10.2. Finally, in Sec-
tion 10.4 we consider termination, confluence, and functional behavior analysis for PTI
net transformation systems without or with nested application conditions.

10.1 local confluence of pti net transformation systems without

nested application conditions

In this section, we consider in detail how we can analyze local confluence of PTI net trans-
formation systems using our framework of restricted M-functors and the corresponding
theoretical results concerning the functorial transfer of local confluence for transforma-
tions without nested application conditions introduced in Section 4.1.

In the following we formulate and prove several technical basics and results, which
we need to be able to prove the main applicational result of this section concerning
the local confluence analysis of PTI net transformation systems. The most important
technical requirement, which we need for this reason, is given in Lemma 54 where we
show that the restricted M-functor FPTI is compatible with pair factorization. According
to Definition 51, this means that the source and the target categories of FPTI have E ′ −M

pair factorizations and FPTI translates an E ′1 −M1 pair factorization in PTINet into an
E ′2 −M2 pair factorization in AGraphsPNTG.

Since for the source and the target categories of FPTI holds that Mi = M ′i for i ∈
{1, 2}, we have similarly to the case of hypergraphs that the M−M ′ pushout-pullback
decomposition property introduced in Definition 72 (see Appendix A) and needed for
the completeness of critical pairs (see Fact 2) is fulfilled and we do not need to assume
the satisfaction of this property in the subsequent results. Furthermore, we use here also
the notion of E ′ −M pair factorization instead of the common E ′ −M ′ pair factorization
as already described in Remark 1.

First we want to show that the source and the target categories of the restricted M-
functor FPTI have the corresponding E ′−M pair factorizations. As we already know from
Remark 5.26 in [88, p. 122], there is a general construction for an E ′ −M ′ pair factoriza-
tion based on coproducts and E−M-factorization, which can be applied to PTI nets and
typed attributed graphs. For the considered case this requires that the categories PTINet

193
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and AGraphsPNTG have coproducts and E−M-factorizations. Since the empty PTI net
∅ resp. almost empty typed attributed graph FPTI(∅) (see more details in Section 8.1)
are initial in the categories PTINet resp. AGraphsPNTG and we have pushouts in both
categories, we also have coproducts in both categories, which are constructed componen-
twise as disjoint union. Furthermore, according to [88], the category AGraphsATG and
hence also AGraphsPNTG has E2 −M2-factorization where M2 is the class of all injective
typed attributed graph morphisms and E2 is the class of all surjective typed attributed
graph morphisms. Note that for typed attributed graphs all morphisms are identical in
the VD-component and the data type N. The corresponding E1 −M1-factorization for
PTI nets can be constructed as given in the following lemma.

Lemma 51 (E−M-Factorization in PTINet).
The M-adhesive category (PTINet,M1) has an E1−M1-factorization according to Definition 10
where M1 is the class of all injective PTI net morphisms and E1 is the class of all surjective PTI
net morphisms.

Proof.
The detailed proof for this lemma is given in Appendix D on page 380. �

Similar to Section 7.1, we have to show in the next step that FPTI preserves coproducts
and E−M-factorizations. The first of these two properties is shown to hold in the lemma
below.

Lemma 52 (FPTI Preserves Coproducts).
Consider a PTI net A, a family of PTI nets (Aj)j∈I, a family of PTI net morphisms (ij :

Aj → A)j∈I, a coproduct (A, (ij)j∈I) of (Aj)j∈I in PTINet, and the restricted M-functor
FPTI : PTINet|M1

→ AGraphsPNTG|M2
from Definition 64. Then (FPTI(A), (FPTI(ij))j∈I)

is a coproduct of (FPTI(Aj))j∈I in AGraphsPNTG.

Aj A

B

FPTI=⇒

ij

fj
f

FPTI(Aj) FPTI(A)

FPTI(B)

FPTI(ij)

FPTI(fj)
FPTI(f)

Proof.
The detailed proof for this lemma is given in Appendix D on page 383. �

For the case of PTI net transformations, we are interested only in the preservation of
binary coproducts as given in Figure 74 to be able to construct the corresponding E ′−M

pair factorizations for the source and the target categories of the restricted M-functor
FPTI.

The second property, namely the preservation of E−M-factorizations by FPTI, is ful-
filled if FPTI preserves injective and surjective morphisms. Since FPTI is a restricted
M-functor, we already have that FPTI preserves injective morphisms by Lemma 42. It
remains to show that FPTI preserves surjective morphisms.

Lemma 53 (FPTI Preserves Surjective Morphisms).
Consider two PTI netsNI1 = (P1, T1,pre1,post1, I1,m1),NI2 = (P2, T2,pre2,post2, I2,m2),
a surjective PTI net morphism f : NI1 → NI2 with f = (fP : P1 → P2, fT : T1 → T2, fI :

I1 → I2), and the restricted M-functor FPTI : PTINet|M1
→ AGraphsPNTG|M2

. Then
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A2A1 A1+A2

A

FPTI=⇒

i2i1

f

f2f1

FPTI(A2)FPTI(A1) FPTI(A1+A2)

FPTI(A)

FPTI(i2)FPTI(i1)

FPTI(f)

FPTI(f2)FPTI(f1)

Figure 74: Preservation of binary coproducts by the restricted M-functor FPTI

the corresponding typed attributed graph morphism FPTI(f) : FPTI(NI1) → FPTI(NI2) with
FPTI(f) = f ′ = (f ′VG : V1G → V2G, f ′VD : N → N, f ′EG : E1G → E2G, f ′ENA : E1NA →
E2NA, f ′EEA : E1EA → E2EA) is also surjective.

Proof.
The detailed proof for this lemma is given in Appendix D on page 383. �

The following lemma summarizes the results from the previous three lemmas and
show that the restricted M-functor FPTI is compatible with pair factorization. This prop-
erty is required to obtain local confluence of PTI net transformation systems based on
FPTI-reachable critical pairs.

Lemma 54 (FPTI is Compatible with Pair Factorization).
Consider a PTI net transformation system (PTINet,M1,P), a typed attributed graph transforma-
tion system (AGraphsPNTG,M2,FPTI(P)), and the restricted M-functor FPTI : PTINet|M1

→
AGraphsPNTG|M2

from Definition 64. Then FPTI is compatible with pair factorization.

Proof.
The detailed proof for this lemma is given in Appendix D on page 385. �

Now we can apply the result concerning the creation of local confluence based on F-
reachable critical pairs from Theorem 8 to the restricted M-functor FPTI. This is one of
our main applicational results for PTI net transformation systems allowing us to verify
local confluence by analyzing the corresponding typed attributed graph transformation
systems using the Agg-tool.

Theorem 24 (Local Confluence of PTI Net Transformation Systems without Nested Ap-
plication Conditions [209]).
Consider a PTI net transformation system (PTINet,M1,P), a typed attributed graph transforma-
tion system (AGraphsPNTG,M2,FPTI(P)), and the restricted M-functor FPTI : PTINet|M1

→
AGraphsPNTG|M2

from Definition 64. Then (PTINet,M1,P) is locally confluent for all transfor-
mation spans H1

ρ1,m1⇐= G
ρ2,m2=⇒ H2 if all FPTI-reachable critical pairs of FPTI(ρ1) and FPTI(ρ2)

are strictly confluent.

Proof.
In Lemma 45 resp. Theorem 22 we have already shown that FPTI creates injective morphisms1

resp. (direct) transformations. Furthermore, according to Lemma 54 FPTI is compatible with pair
factorization, which altogether allows us to apply Theorem 8 with FR = FPTI. �

1 Since FPTI is an M-functor restricted to injective morphisms only, it suffices to show in this special case the
creation of injective morphisms by FPTI instead of the creation of general morphisms by FPTI to be able to
apply Theorem 8.
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10.2 local confluence of pti net transformation systems with nested

application conditions

This section considers the verification of local confluence for PTI net transformation sys-
tems with nested application conditions. Here we verify sufficient properties like trans-
lation and creation of jointly surjective morphisms as well as preservation of pullbacks
of injective morphisms allowing us to apply Theorem 11 concerning the creation of local
confluence based on F-reachable critical pairs for rules with nested application condi-
tions to the restricted M-functor FPTI from Definition 64.

As the first step we introduce two lemmas, in which we show that the restricted M-
functor FPTI between the categories of PTI nets and typed attributed graphs preserves
and creates E ′-instances or, more precisely for the case of PTI net and typed attributed
graph transformations, jointly surjective morphisms. We need these two technical prop-
erties to obtain the compatibility of FPTI with Shift-transformation, which is one of the
requirements of Theorem 11.

Lemma 55 (FPTI Translates Jointly Surjective Morphisms).
Consider E ′1-M1 pair factorization in (PTINet,M1) and E ′2-M2 pair factorization in
(AGraphsPNTG,M2). Then the restricted M-functor FPTI : PTINet|M1

→ AGraphsPNTG|M2

from Definition 64 translates jointly surjective PTI net morphisms (a ′,b ′) into the corresponding
jointly surjective typed attributed graph morphisms (a ′′,b ′′) with a ′′ = FPTI(a

′) and b ′′ =
FPTI(b

′).

C

P ′

C ′
b ′

a ′

FPTI(C)

FPTI(P
′)

C ′′= FPTI(C
′)

b ′′ = FPTI(b
′)

a ′′ = FPTI(a
′)

Proof.
The detailed proof for this lemma is given in Appendix D on page 386. �

Lemma 56 (FPTI Creates Jointly Surjective Morphisms).
Consider E ′1-M1 pair factorization in (PTINet,M1), E ′2-M2 pair factorization in
(AGraphsPNTG,M2), and PTI net morphisms a : P → C, b : P → P ′. Then the restricted
M-functor FPTI : PTINet|M1

→ AGraphsPNTG|M2
from Definition 64 creates jointly surjective

PTI net morphisms (a ′,b ′) from the corresponding typed attributed graph morphisms (a ′′,b ′′)

in E
′
2 = FPTI(E

′
1) if for all spans (C

a← P
b→ P ′) holds that the diagram (1) below commutes,

FPTI(a
′) = a ′′, FPTI(b

′) = b ′′, and the injectivity of b ′′ implies the injectivity of b ′.

P

C

P ′

C ′

(1)

b

a

b ′

a ′

FPTI(P)

FPTI(C)

FPTI(P
′)

C ′′= FPTI(C
′)

(2)

FPTI(b)

FPTI(a)

b ′′ = FPTI(b
′)

a ′′ = FPTI(a
′)

Proof.
The detailed proof for this lemma is given in Appendix D on page 387. �
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Another technical property, which must hold for the application of our theoretical re-
sults to the restricted M-functor FPTI, is the preservation of PTI net pullbacks of injective
morphisms. This property has to be satisfied to be able to deal with translated derived
rules as introduced in Definition 55.

Lemma 57 (FPTI Preserves Pullbacks of Injective Morphisms).
Consider a PTI net transformation system (PTINet,M1,P), a typed attributed graph transfor-
mation system (AGraphsPNTG,M2,FPTI(P)), the restricted M-functor FPTI : PTINet|M1

→
AGraphsPNTG|M2

, PTI nets NIi for i ∈ {0, 1, 2, 3} with PTI net morphisms b = (bP,bT ,bI),
c = (cP, cT , cI), g = (gP,gT ,gI), h = (hP,hT ,hI), and typed attributed graphs FPTI(NIi) for
i ∈ {0, 1, 2, 3} with typed attributed graph morphisms FPTI(b) = b

′ = (b ′VG ,b ′VD ,b ′EG ,b ′ENA ,
b ′EEA), FPTI(c) = c

′ = (c ′VG , c ′VD , c ′EG , c ′ENA , c ′EEA), FPTI(g) = g
′ = (g ′VG ,g ′VD ,g ′EG ,g ′ENA ,

g ′EEA), FPTI(h) = h ′ = (h ′VG ,h ′VD ,h ′EG ,h ′ENA ,h ′EEA). If (1) is a pullback in PTINet with
g,h ∈M1 then we have that (2) is a pullback in AGraphsPNTG with FPTI(g),FPTI(h) ∈M2.

NI0

(1)

NI1

NI2 NI3

b

c g

h

FPTI(NI0)

(2)

FPTI(NI1)

FPTI(NI2) FPTI(NI3)

FPTI(b)=b
′

FPTI(c)=c
′ FPTI(g)=g

′

FPTI(h)=h
′

Proof.
The detailed proof for this lemma is given in Appendix D on page 387. �

After all needed requirements are shown to be satisfied, we can now apply the result
from Theorem 11 to the restricted M-functor FPTI. This result extends the corresponding
result from the previous section and allows us to analyze local confluence of PTI net
transformation systems containing rules with nested application conditions.

Theorem 25 (Local Confluence of PTI Net Transformation Systems with Nested Appli-
cation Conditions).
Consider a PTI net transformation system (PTINet,M1,P), a typed attributed graph transforma-
tion system (AGraphsPNTG,M2,FPTI(P)) where P are rules with nested application conditions,
and the restricted M-functor FPTI : PTINet|M1

→ AGraphsPNTG|M2
from Definition 64. Then

(PTINet,M1,P) is locally confluent for all transformation spans H1
ρ1,m1⇐= G

ρ2,m2=⇒ H2 with
nested application conditions if all FPTI-reachable critical pairs with nested application conditions
of FPTI(ρ1) and FPTI(ρ2) are strictly AC(FPTI)-confluent.

Proof.
In Lemma 45 resp. Theorem 22, we have shown that FPTI creates injective morphisms2 resp.
(direct) transformations and rule applicability. According to Lemma 54, we have that FPTI is
compatible with pair factorization. Moreover, by Theorem 21 resp. Lemma 57 it holds that
FPTI translates rule applicability resp. preserves pullbacks of injective morphisms. Finally, in
Lemma 55 resp. Lemma 56 we have shown that FPTI translates resp. creates jointly surjective
morphisms. This altogether allows us to apply Theorem 11 with FR = FPTI. �

2 Since FPTI is an M-functor restricted to injective morphisms only, it suffices to show in this special case the
creation of injective morphisms by FPTI instead of the creation of general morphisms by FPTI to be able to
apply Theorem 11.
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In the following example we show how we can construct a concrete FPTI-reachable
critical pair and how we can check whether this FPTI-reachable critical pair is strictly
AC(FPTI)-confluent.

Example 18 (Strict AC(FPTI)-Confluence of an FPTI-Reachable Critical Pair in the Con-
text of Mobile Dining Philosophers Scenario).

Consider an F-reachable weak critical pair F(P1)
F(LeaveTable),F(o1)⇐============= F(K)

F(LeaveTable),F(o2)
=============⇒

F(P2) for the weak critical pair P1
LeaveTable,o1⇐======== K

LeaveTable,o2========⇒ P2 from Example 13 with
acF(K) = F(acK), ac∗F(K) = F(ac∗K), and F = FPTI. Then we have the following translated
extension and conflict-inducing application conditions:

• acF(K) = F(acK) = F(acK1 ∧ acK2)
Def. 47
= F(acK1)∧F(acK2)

• ac∗
F(K) = F(ac∗K) = F(true)

Def. 47
= true

Similar to Example 13, F(P1)
F(LeaveTable),F(o1)⇐============= F(K)

F(LeaveTable),F(o2)
=============⇒ F(P2) can be ex-

tended by the embedding morphism F(m) : F(K) → F(G) with F(m) |= acF(K) ∧ ac
∗
F(K) and

a translated pair of AC-regarding transformations F(H1)
F(LeaveTable),F(m1)⇐============= F(G)

F(LeaveTable),F(m2)
=============⇒ F(H2). Thus, we have that F(P1)

F(LeaveTable),F(o1)⇐============= F(K)
F(LeaveTable),F(o2)
=============⇒ F(P2) is an F-reachable critical pair.

F(P1) F(K) F(P2)

F(H1) F(G) F(H2)

F(LeaveTable),F(o1) F(LeaveTable),F(o2)

F(LeaveTable),F(m1) F(LeaveTable),F(m2)

F(m)

Now we want to show that F(P1)
F(LeaveTable),F(o1)⇐============= F(K)

F(LeaveTable),F(o2)
=============⇒ F(P2) is strictly

AC(F)-confluent according to Definition 60. We have the plain strict confluence similarly to
Example 13 as given in the diagram below

F(P1) = F(P2)

F(K)

F(K ′) ∼= (F(P1) = F(P2))

F(P2) = F(P1)

F(LeaveTable),F(o1)

Id,F(o ′2)

F(LeaveTable),F(o2)

Id,F(o ′1)

and the AC(F)-compatibility, i.e., (acF(K)∧ac
∗
F(K))⇒ (ac(F(t1))∧ac(F(t2))) since acF(K)

∧ ac∗
F(K) = F(acK1)∧F(acK2) (as shown above) implies ac(F(t1))∧ ac(F(t2)) = F(acK1)

∧F(acK2) as shown below.

ac(F(t1)) = ac(F(K)
F(LeaveTable),F(o1)
=============⇒ F(P1)

Id,F(o ′1)=====⇒ F(K ′)))

= F(acK1)∧F(true),

ac(F(t2)) = ac(F(K)
F(LeaveTable),F(o2)
=============⇒ F(P2)

Id,F(o ′2)=====⇒ F(K ′))

= F(acK2)∧F(true) and

ac(F(t1))∧ ac(F(t2)) = F(acK1)∧F(acK2)
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10.3 agg-based local confluence analysis of pti net transformation

systems

In this section, we discuss, similarly to Section 7.3, the workflow for the analysis of local
confluence by applying it to our concrete PTI net transformation systems without and
with nested application conditions from Example 12. This workflow, which integrates
the application of our theoretical results from Sections 4.1 and 10.1 for the case of rules
without nested application conditions and the theoretical results from Sections 4.2 and
10.2 for the case of rules with nested application conditions, is partially supported by
the Agg-tool, which is used for critical pair computation. Note that our approach is tool
independent, which means that other tools that are capable to compute and possibly an-
alyze critical pairs (for rules without or with nested application conditions) can be used
equivalently. However, in this section, we only exemplify our workflow by using Agg

for the critical pair computation since other existing tools that are capable to compute
critical pairs like Henshin [69, 6], VERIGRAPH [305] or SyGrAV [53, 290] do not allow the
involved rules to make use of NACs and PACs so far.

In the following we consider the two PTI net transformation systems without and
with nested application conditions that were already introduced in Example 12. This
example is a cutout of the “House of Philosophers” model introduced in [153] where
philosophers may leave or join a table. We have already given the rules of the Mobile
Dining Philosophers system without nested application conditions in Figure 21 and the
rules of the Mobile Dining Philosophers system with nested application conditions in
Figure 22 (where rules make use of PACs).

In fact, we consider in the following four different scenarios for which the correspond-
ing workflows share common steps (see Figure 75). Firstly, we distinguish between PTI
net transformation systems without and with nested application conditions. The latter
case, in which nested application conditions are used, is separately discussed at the end
of this section where we address the differences to the workflow for PTI net transfor-
mation systems without nested application conditions. Secondly, while the theory intro-
duced in this thesis is tailored to transformation systems, it is beneficial to also consider
the case where the transformation system is given with a start structure at hand. In the
PTI net context, such combinations of a PTI net transformation system and a start PTI
net are called PTI net grammars [88]. Using straightforward adaptations of our theory
we can analyze semantical properties also for PTI net grammars. The core idea is then to
analyze these properties not for all PTI nets that are derivable within the PTI net trans-
formation system but only for those that are reachable from the given start PTI net by
rule application. The discussion of how the possible usage of a start PTI net affects our
workflow is included along the way.

Our proposed workflow for the local confluence analysis of a PTI net transformation
system without nested application conditions consists of the following four steps while
the workflow for the analysis of the corresponding PTI net grammar contains one ad-
ditional intermediate step (see the third step below). Firstly, we apply the restricted M-
functor FPTI from Definition 64 to the considered PTI net transformation system (or to the
considered PTI net grammar) obtaining the corresponding typed attributed graph trans-
formation system (or the corresponding typed attributed graph grammar). Secondly, we
compute all critical pairs of the translated transformation rules using the Agg-tool. In the
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PTI net transfor-
mation system

without nested ap-
plication conditions

PTI net grammar
without nested ap-
plication conditions

PTI net transfor-
mation system

with nested appli-
cation conditions

PTI net grammar
with nested appli-
cation conditionsSteps

Start

Translate PTI net transformation rules

Translate
start PTI net

Translate
start PTI net

Adapt Agg inter-
nal type graph

Adapt Agg inter-
nal type graph

Compute critical pairs

State and check
invariants

State and check
invariants

Check for FPTI-reachability of critical pairs

Check for strict confluence of FPTI-reachable critical pairs

Check for AC(FPTI)-compatibility of ex-
tended AC-disregarding transformations

End

1

2

3

4

5

Figure 75: Workflow for local confluence analysis of PTI net transformation systems and PTI net
grammars without or with nested application conditions

case of a translated PTI net grammar we apply invariants during the critical pair compu-
tation that are given by the restriction of the Agg internal type graph using multiplicities
to specify translated PTI nets that are provably not reachable from the translated start
PTI net by rule application and that are therefore irrelevant in the context of the analysis
of the considered PTI net grammar. Note that the invariants defined by the restriction
of the Agg internal type graph are in general not sufficient to ensure that all computed
overlapping graphs are relevant for the further analysis. Hence, for translated PTI net
grammars the satisfaction of additional invariants is checked in the next step to improve
the over-approximation of relevant critical pairs. Thirdly, only in the case of a translated
PTI net grammar, we again apply invariants (given e.g. by nested graph conditions [135])
that can be established by invariant verification techniques as e.g. proposed in [66, 67]
to exclude further computed critical pairs whose overlapping graphs are provably not
reachable from the translated start PTI net by rule application. Fourthly, we select those
computed critical pairs that are FPTI-reachable. This elimination of non-FPTI-reachable
critical pairs is required by our theory (see Theorem 24) where critical pairs must not
be considered in the further analysis when their overlapping graphs do not correspond
to some translated valid PTI net. Finally, we determine whether all these FPTI-reachable
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critical pairs are strictly confluent, which is also partially supported by Agg
3. If all com-

puted FPTI-reachable critical pairs (that are additionally compatible with invariants for
the case of a translated PTI net grammar) are strictly confluent, we obtain local con-
fluence of the considered PTI net transformation system (or of the considered PTI net
grammar) by application of Theorem 24

4.
Note that tools employed, such as Agg in our case, may not succeed in computing

the critical pairs for concrete transformation systems when the provided resources are
insufficient relative to the size of the left-hand sides of the transformation rules. The
restriction then to the corresponding PTI net grammar and the usage of invariants (as
discussed in detail above in the second and the third steps of the workflow) can help to
successfully execute critical pair computation in some of these cases.

We now apply our workflow to the PTI net transformation system without nested
application conditions from Example 12 and, by additionally using the start PTI net
from Figure 20, to the corresponding PTI net grammar.

Firstly, we translate the PTI net transformation rules given in Figure 21 according to
Example 17 (see Figure 71 there) together with the start PTI net from Figure 20 obtaining
the corresponding start typed attributed graph.

Secondly, we apply Agg on the obtained set of translated transformation rules to com-
pute all critical pairs of the translated transformation system. However, for our concrete
PTI net transformation system Agg was unable to compute all critical pairs since the Agg

implementation of the critical pair computation needed more memory than was available
on our machine5.

Trying still to obtain some verification results for the considered PTI net transformation
system, we restricted our analysis to the corresponding translated PTI net grammar and
stated, based on the translated transformation rules and the translated start PTI net,
some useful invariants. We determined invariants in the form of multiplicities for edges6

that we integrated into the Agg internal type graph (see Figure 76). The validity of
the invariants stated by these multiplicities can be easily verified by inspection of the
translated rules from Figure 71 and the start PTI net from Figure 20 translated by FPTI.
However, such suitable type graph restrictions do not exist for every PTI net grammar.
Note that to improve the clarity of Agg illustrations we also used additional String

attributes for the graph nodes of types Place and Trans (see the type graph in Figure 76)
representing the names of the respective places and transitions used in Example 12 but

3 Let K be a minimal overlapping of the left-hand sides of two conflicting rules computed by Agg. Let
P1 ⇐ K ⇒ P2 be the corresponding critical pair. Then using Agg we can apply the rules of the considered
transformation system to P1 and P2 trying to merge them to a unique (up to isomorphism) common result
graph. The strictness condition is then to be checked manually.

4 Note that when considering a PTI net grammar we expect that a result similar to Theorem 24 is also valid.
5 Our machine (CPU: 2 × E5-2630 @ 2.3GHz × 6 cores × 2 threads, RAM: 384GB DDR3), which supports up

to 24 threads, was insufficient as the single thread used by Agg required more memory than available.
6 For the Agg type graph given in Figure 76, the multiplicity 1..2 associated to the t2p-edge expresses that in

the context of our example the graph nodes of the type Place are allowed to have 1 or 2 incoming t2p-edges
while the multiplicity 1..3 means that the graph nodes of the type Trans are allowed to have 1 to 3 outgoing
t2p-edges. Similarly, the multiplicity 1..2 associated to the p2t-edge expresses that the graph nodes of the
type Place can have 1 or 2 outgoing p2t-edges while the multiplicity 1..3 means that the graph nodes of
the type Trans can have 1 to 3 incoming p2t-edges. Finally, the multiplicity 0..1 associated to the to2p-edge
expresses that the graph nodes of the type Place are allowed to have 0 or 1 incoming to2p-edges while the
multiplicity 1 means that the graph nodes of the type Token must have exactly 1 outgoing edge.
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Figure 76: Agg type graph for the Mobile Dining Philosophers system extended by multiplicities

in the following we computed critical pairs without these additional attributes since they
would influence the critical pairs computed by Agg.

Unfortunately, the Agg-tool was also not capable to compute all critical pairs when
using the adapted type graph due to insufficient memory. On our machine Agg only suc-
ceeded in computing the critical pairs for the rule pair (FPTI(JoinTable),FPTI(JoinTable))
and, hence, our subsequent analysis must remain incomplete for the example at hand.
We continue our analysis by considering the 25 critical pairs that were computed by Agg

in about three days. Note that these 25 critical pairs computed for the translated PTI net
grammar are also critical pairs that would be expected to be computed for our translated
PTI net transformation system and, hence, in the following we discuss further analysis
steps also for the translated PTI net transformation system.

Thirdly, to exclude further computed critical pairs from the subsequent analysis, we
apply additional invariants to our translated PTI net grammar. These invariants can be
stated e.g. using nested graph conditions [135] and invariant verification techniques such
as [66, 67] may be used to check whether the translated transformation system together
with the translated start PTI net satisfy these invariants. Then, based on the stated
invariants, we can detect (for example using tools such as AutoGraph [278]) critical pairs
whose overlapping graphs cannot be contained in a graph that is reachable from the
start graph of the translated transformation system by rule application. Moreover, for
full automation of the invariant checking procedure we can simply attempt to verify that
a given overlapping graph of a critical pair is a pattern that is invariantly not contained
in any graph that is reachable from the translated start PTI net and exclude this critical
pair from further analysis if the invariant check confirms this conjecture. However, we
believe that using small subgraphs of overlapping graphs for the invariants may be more
appropriate to reduce computation costs for the invariant check and may also allow to
exclude multiple critical pairs at once.

For our considered translated PTI net grammar we determined that 21 of the above
mentioned 25 computed critical pairs have overlapping graphs that cannot be contained
in a graph that is reachable by rule application from the translated start PTI net. That
is, we found out that only four of the computed critical pairs are compatible with the
invariants and, thus, have to be evaluated for being FPTI-reachable in the next step.

An example for such an excluded critical pair is given in Figure 77. Therein the rule
FPTI(JoinTable) is depicted twice on the left and the overlapping of the left-hand sides
of the rules is depicted on the right. The overlapping graph that shows two standing
philosophers sharing a substructure (namely the place 5, the token 9, and the edge 22
between them) obviously cannot be contained in a graph that is reachable by rule appli-
cation from the translated start PTI net.
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Figure 77: A critical pair computed by Agg for the rule pair (FPTI(JoinTable),FPTI(JoinTable))
non-reachable from the translated start PTI net by rule application
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Figure 78: An FPTI-reachable critical pair computed by Agg for the rule pair
(FPTI(JoinTable),FPTI(JoinTable))
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Fourthly, we exclude from the further analysis those critical pairs that have overlapping
graphs that are not FPTI-reachable. This step is of great importance because critical pairs
that are not FPTI-reachable do not need to be strictly confluent according to Theorem 24.

Considering our translated PTI net transformation system (or equivalently the corre-
sponding translated PTI net grammar), we can see that non-FPTI-reachable critical pairs
for the pair of transformation rules (FPTI(JoinTable),FPTI(JoinTable)) occur for similar
reasons as in Figure 53 for the case of the translated hypergraph transformation system
where the in and out attributes of the Server hyperedge 2 are not valid w.r.t. the actual
number of incoming and outgoing edges in the computed overlapping graph. Therefore,
we do not give an example of such a non-FPTI-reachable critical pair explicitly here.

However, for the rule pair (FPTI(JoinTable),FPTI(JoinTable)) we obtained only one criti-
cal pair that is compatible with the invariants and FPTI-reachable, i.e., we excluded three
additional critical pairs from the further analysis in this step. This single remaining criti-
cal pair is given in Agg-notation in Figure 78. The conflict given by this critical pair is a
delete-use-conflict, which is obviously caused when two standing philosophers want to
take place between the same two philosophers already sitting at the table.

Finally, following our workflow, we verify the strict confluence of the remaining critical
pairs to obtain that the considered PTI net transformation system (or the corresponding
PTI net grammar) is locally confluent by applying Theorem 24. Considering the trans-
lated PTI net transformation system (or the translated PTI net grammar), it is obvious
that both rules (for joining and leaving a table) can be reversed by applying the corre-
sponding inverse rule, which implies that a common PTI net for joining two conflicting
rule applications is always derivable. Moreover, we expect that the strictness condition
can be verified for all FPTI-reachable critical pairs (additionally compatible with invari-
ants for the case of the PTI net grammar) by constructing the corresponding strictness
diagrams according to Definition 14. The construction of strictness diagrams is possible
since for every expected overlapping graph each application of one of the rules can be
reversed by an application of the corresponding inverse rule.

As an example for such a strict confluence analysis we consider the only remain-
ing critical pair of the rule pair (FPTI(JoinTable),FPTI(JoinTable)) from above (see Fig-
ure 79 depicting the corresponding FPTI-reachable critical pair diagram7 according to
Definition 52). This FPTI-reachable critical pair is strictly confluent since, following
another argumentation compared to the one above, after one of the standing philoso-
phers takes place between the two already sitting philosophers, the second standing
philosopher can always choose the “right” position at the table to take place such that
we obtain at least one graph that can be derived to join the different results. The
application of the rules in the mentioned order is depicted in Figure 80, which ad-
ditionally shows that the corresponding strictness condition is satisfied. The spans

FPTI(P1)
FPTI(w1)←− FPTI(N1)

FPTI(v1)−→ FPTI(K) and FPTI(K)
FPTI(v2)←− FPTI(N2)

FPTI(w2)−→ FPTI(P2)

in the upper half of the diagram represent the two conflicting rule applications of the
rule FPTI(JoinTable). The graph FPTI(N) in the center of the diagram is the largest sub-
graph of the computed overlapping graph FPTI(K) that is preserved by the critical pair.
In the lower half of the diagram we can see how the two direct graph transformations

FPTI(K)
FPTI(JoinTable),FPTI(o1)

=⇒ FPTI(P1) and FPTI(K)
FPTI(JoinTable),FPTI(o2)

=⇒ FPTI(P2) can be mer-

7 For better clarity of graph depiction we omit the edge typing (to2p,p2t, t2p) as well as the edge attributes
(wpre, wpost).
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ged by applying once more the rule FPTI(JoinTable) at an adequate match to the graphs
FPTI(P1) and FPTI(P2). The strictness condition is satisfied since FPTI(N) is preserved by
the merging transformation steps FPTI(P1)⇒ FPTI(K

′′) and FPTI(P2)⇒ FPTI(K
′′).

However, while we believe that the considered PTI net transformation system with-
out nested application conditions as well as the corresponding PTI net grammar are
locally confluent, we cannot conclude this from the presented considerations using The-
orem 24 because we only considered the critical pairs computed by Agg for the rule
pair (FPTI(JoinTable),FPTI(JoinTable)) of the translated PTI net grammar. As soon as the
critical pairs are computable by, for example, an enhanced version of Agg or another
tool, we can complete the above described inspection of critical pairs for other pairs of
transformation rules in the context of our translated PTI net transformation system (or
the corresponding PTI net grammar).

The corresponding workflow (see Figure 75) for local confluence analysis of a PTI net
transformation system (or a PTI net grammar) with nested application conditions is very
similar to that of the plain case described before. The main difference consists in the fact
that we have to show, in addition to the strict confluence of all computed FPTI-reachable
critical pairs (that are assumed to be additionally compatible with invariants for the case
of a translated PTI net grammar), also the AC(FPTI)-compatibility of the corresponding
extended AC-disregarding transformations according to Definition 60. All other analysis
steps from the workflow introduced before remain unchanged. If all computed FPTI-
reachable critical pairs (that are additionally compatible with invariants for the case of
a translated PTI net grammar) are strictly AC(FPTI)-confluent, then we obtain local con-
fluence of the considered PTI net transformation system (or of the considered PTI net
grammar) with nested application conditions by application of Theorem 25

8.
Unfortunately, as already explained before for the case of rules without nested applica-

tion conditions, Agg was not capable to compute the critical pairs for all pairs of transfor-
mation rules. Obviously, this problem may become even more severe when additionally
incorporating PACs. Indeed, Agg failed to compute critical pairs for any pair of trans-
formation rules (also when considering the corresponding translated PTI net grammar)
due to the size of the left-hand sides of the rules and the size of the added PACs, which
required too much memory during the computation of the overlapping graphs. Hence,
while we again believe that the considered PTI net transformation system with PACs as
well as the corresponding PTI net grammar are locally confluent, we cannot obtain this
using Theorem 25.

The considered example already demonstrates that more adequate tool support is re-
quired. This may be achieved by adaptation and optimization of historically grown tools
such as Agg or by the development of new tools where the algorithms given by our
theoretical results can be implemented in a clean environment using techniques such as
multi-threading.

8 Note that when considering a PTI net grammar we expect that a result similar to Theorem 25 is also valid.
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Figure 79: A critical pair diagram depicting the FPTI-reachable critical pair for the rule pair
(FPTI(JoinTable),FPTI(JoinTable))
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Figure 80: Strictness diagram for the rule pair (FPTI(JoinTable),FPTI(JoinTable))
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10.4 termination, confluence , and functional behavior of pti net

transformation systems

In this section, we show, similarly to Section 7.4, how we can analyze the semantical
properties of termination, confluence, and functional behavior for PTI net transformation
systems by applying the results from Section 4.3 to the restricted M-functor FPTI between
the categories of PTI nets and typed attributed graphs. Moreover, we discuss for our
Mobile Dining Philosophers systems introduced in Example 12 whether the mentioned
semantical properties hold.

According to Theorems 12, 13 and Remarks 14, 15, the analysis results for termination,
confluence, and functional behavior of PTI net transformation systems without or with
nested application conditions can be directly derived using the requirements that were
already shown to hold for the restricted M-functor FPTI when we considered the func-
torial transfer of behavior and local confluence for PTI net transformation systems. We
formulate and show the mentioned results in the following two theorems.

Theorem 26 (FPTI-Transfer of Termination).
Consider a PTI net transformation system (PTINet,M1,P), a typed attributed graph transfor-
mation system (AGraphsPNTG,M2,FPTI(P)) where P are rules without or with nested appli-
cation conditions, and the restricted M-functor FPTI : PTINet|M1

→ AGraphsPNTG|M2
from

Definition 64. Then (PTINet,M1,P) is terminating iff (AGraphsPNTG,M2,FPTI(P)) is FPTI-
terminating.

Proof.
In order to use the results from Theorem 12 and Remark 14 for the case of transformations without
or with nested application conditions, we have to show that FPTI translates and creates (direct)
transformations without or with nested application conditions for the case of M-match morphisms
according to Theorem 2 and Remark 12, i.e., we have to show that (PTINet,M1) has initial
pushouts, FPTI is a restricted M-functor according to Definition 44 as well as that FPTI creates
injective morphisms and preserves initial pushouts over injective morphisms. In fact, we have
that FPTI(M1) ⊆ M2, i.e., FPTI preserves injectivity of morphisms by Lemma 42 and FPTI pre-
serves pushouts of injective morphisms according to Lemma 43. Moreover, according to Fact 11
the category (PTINet,M1) has initial pushouts over injective morphisms. Finally, creation of
injective morphisms by FPTI is shown in Lemma 45 and preservation of initial pushouts over
injective morphisms follows from Lemma 50. �

Theorem 27 (FPTI-Transfer of Confluence and Functional Behavior).
Consider a PTI net transformation system (PTINet,M1,P), a typed attributed graph transforma-
tion system (AGraphsPNTG,M2,FPTI(P)) where P are rules without or with nested application
conditions, and the restricted M-functor FPTI : PTINet|M1

→ AGraphsPNTG|M2
from Defini-

tion 64. Then (PTINet,M1,P) is locally confluent and terminating iff (AGraphsPNTG,M2,
FPTI(P)) is locally confluent for all translated transformation spans and FPTI-terminating. More-
over, (PTINet,M1,P) is confluent and has functional behavior if (AGraphsPNTG,M2,FPTI(P))

is locally confluent for all translated transformation spans and FPTI-terminating.

Proof.
In order to use the results from Theorem 13 and Remark 15 for the case of transformations without
or with nested application conditions, we have again to show that FPTI translates and creates
(direct) transformations without or with nested application conditions for the case of M-match



210 confluence analysis of pti net transformation systems

morphisms according to Theorem 2 and Remark 12. This can be done equivalently to the proof of
Theorem 26. �

After we have shown that the general results of our approach concerning termination,
confluence, and functional behavior are applicable to the restricted M-functor FPTI, we
now want to analyze, using these results, whether the mentioned semantical properties
hold for our Mobile Dining Philosophers systems from Example 12.

Considering the sets of translated transformation rules given in Figure 71 and Fig-
ure 72 for the case of PTI net transformation systems without application conditions or
with PACs, respectively, (and additionally considering the start PTI net from Figure 20

translated by FPTI for the case of the corresponding PTI net grammars) we can easily see
that the resulting translated PTI net transformation systems (as well as the corresponding
translated PTI net grammars) are not FPTI-terminating because the rules for joining and
leaving a table can be applied alternately unlimited often, which implies that also the
original PTI net transformation systems (as well as the corresponding PTI net grammars)
are not terminating according to Theorem 26

9.
Furthermore, as discussed at the end of the previous section, we cannot make any

statement about the local confluence of the considered PTI net transformation systems
(as well as about the corresponding PTI net grammars) since Agg was not capable in any
case to compute critical pairs for all pairs of transformation rules.

Hence, while we believe that the PTI net transformation systems from Example 12

(as well as the corresponding PTI net grammars) are confluent but have no functional
behavior, this cannot be obtained using Theorem 27

9. The confluence property holds
for the considered PTI net transformation systems (as well as for the corresponding
PTI net grammars) because both rules (for joining and leaving a table) can be reversed
by applying the corresponding inverse rule, which implies that a common PTI net for
joining two transformation sequences starting with the same PTI net is always derivable.
Moreover, the considered PTI net transformation systems (as well as the corresponding
PTI net grammars) have no functional behavior because from at least one PTI net (e.g.
from the start PTI net given in Figure 20) there is no finite sequence to a unique PTI net,
to which no transformation rules are applicable anymore, since it is always possible for
a philosopher either to join or to leave the table.

We do not use Agg for the automated verification of the termination property for
our running example because, as already mentioned before for the case of hypergraph
transformation systems, Agg is only capable to analyze termination for typed graph
transformation systems with injective rules, injective match morphisms, and injective
NACs.

9 Note that when considering a PTI net grammar, we expect that the results similar to Theorems 26 and 27

are also valid.
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The analysis of semantical properties like behavioral equivalence, local confluence, termi-
nation, and functional behavior of M-adhesive transformation systems using (restricted)
M-functors is possible if the source and the target categories of the considered (restricted)
M-functors and the (restricted) M-functors themselves satisfy all of the requirements dis-
cussed in Chapters 3 and 4. To possibly reduce the complexity of proofs that show
the satisfaction of these requirements for concrete applications of our theoretical frame-
work, we propose in this chapter a functor decomposition strategy characterizing the
applicability of the developed general theory of (restricted) M-functors. Subsequently, in
Chapter 12 we use the introduced functor decomposition strategy to obtain the results
enabling the analysis of hypergraph and PTI net transformation systems as before.

When carefully comparing the respective proofs needed in the context of the functor
decomposition strategy presented subsequently and the proofs used in the context of the
regular strategy for the requirement verification presented in Part ii for the two concrete
functors FHG and FPTI, it turned out that except for a few properties (such as e.g. the
preservation of E ′-instances) the functor decomposition strategy required slightly shorter
proofs in total. Hence, we believe that the functor decomposition strategy is usually a
good choice for the requirement verification but it introduces some overhead that may
not be compensated for concrete functors where proofs are to be carried out at a low level
of abstraction or when fundamental properties on the source category of the considered
inclusion functor (such as e.g. the existence of pair factorization) have to be verified.

We begin this chapter with the introduction of several categorical notions that are
required for the formulation of the functor decomposition strategy. Afterwards, in Sec-
tion 11.1 we establish the functor decomposition strategy and adapt it subsequently in
Section 11.2 to the verification of the sufficient properties that are required by the general
theory of restricted M-functors.

As the first step, we recall the notions of functor transformation, functor equivalence,
category equivalence, and category isomorphism that are defined similarly to [1]. These
notions have a technical nature and are used in the following in the context of the functor
decomposition strategy for the requirement verification.

Definition 65 (Functor Transformation [1]).
Let C, D be categories and F,G : C → D be functors. A family of
morphisms (t(A))A∈ObC with t(A) : F(A) → G(A) in D is called
a functor transformation iff for arbitrary objects A,B ∈ ObC and a
morphism f : A → B it holds that G(f) ◦ t(A) = t(B) ◦ F(f) (see the
diagram on the right).

F(A) G(A)

F(B) G(B)

=F(f)

t(A)

G(f)

t(B)

Definition 66 (Functor Equivalence [1]).
Let C, D be categories, F,G : C → D be functors, and t = (t(A) : F(A) → G(A))A∈ObC be
a functor transformation. Then t : F ∼= G is called a functor equivalence iff for every object
A ∈ ObC it holds that t(A) : F(A)→ G(A) is an isomorphism in D.
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Definition 67 (Category Equivalence [1]).
Let C and D be categories. Then C and D are called equivalent iff there are functors F : C→ D,
G : D→ C and functor equivalences t1 : G ◦ F ∼= IdC, t2 : F ◦G ∼= IdD

1 with the corresponding
identity functors IdC : C→ C and IdD : D→ D.

Definition 68 (Category Isomorphism [1]).
Let C and D be categories. Then C and D are called isomorphic iff there are functors F : C→ D
and G : D→ C such that G ◦ F = IdC and F ◦G = IdD with the corresponding identity functors
IdC : C→ C and IdD : D→ D.

11.1 verification of requirements for the general theory of

M-functors

The main idea of the functor decomposition strategy that we propose here is to verify
the sufficient properties required by the general theory of M-functors not for the functor
F : (C1,M1)→ (C2,M2) but only for the corresponding inclusion functor from a certain
subcategory of the target category of F into the entire target category of F.

To obtain the inclusion functor for a functor F at hand, we first construct a suitable
category equivalence between the source category (C1,M1) and the subcategory (C ′2,M∗2)
of the target category of F (where M∗2 ⊆ M2), which contains the F-images only. The
corresponding monomorphism and epimorphism classes M∗2 and E∗2 of this subcategory
are given by M∗2 = F(M1) and E∗2 = F(E1), respectively. Then the functor F, for which we
want to verify the required properties, can be considered as a composition of a functor
FC : (C1,M1)→ (C ′2,M∗2) from the category equivalence and the corresponding inclusion
functor I : (C ′2,M∗2)→ (C2,M2) from the subcategory of the target category of F into the
entire target category of F.

Building up our functor decomposition strategy, we first show in this section that the
functor FC : (C1,M1)→ (C ′2,M∗2) from the category equivalence constructed as described
above satisfies the sufficient properties required by the general theory of M-functors.
Afterwards, we prove the fact that the functor composition, consisting of FC and the
corresponding inclusion functor I : (C ′2,M∗2)→ (C2,M2), preserves the satisfaction of the
required properties. Finally, we conclude from both shown results that a functor F given
by the composition of functors I ◦ FC satisfies the sufficient properties required by the
general theory of M-functors.

The following definition summarizes all sufficient technical properties that have to be
shown to hold for a given functor F to enable the applicability of all results of our general
theory of M-functors.

Definition 69 (Collection of Properties for M-Functors).
Let AS1 = (C1,P), AS2 = (C2,F(P)) be transformation systems with distinguished classes of
monomorphisms M1, M2, respectively, and F : (C1,M1) → (C2,M2) be a functor2. For the
application of the results of our general theory of M-functors to F, the following properties have
to be verified:

1. F preserves monomorphisms, i.e., F(M1) ⊆M2,

1 We also write F : C ∼→ D to indicate that the categories C and D are equivalent.
2 In general, we do not require that the source and the target categories of the considered functor F are

M-adhesive.
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2. F preserves pushouts along M-morphisms,
3. F creates morphisms,
4. F preserves initial pushouts,
5. F preserves epimorphisms, i.e., F(E1) ⊆ E2,
6. F preserves coproducts,
7. F creates M-morphisms,
8. F preserves pullbacks of M-morphisms,
9. F preserves E ′-instances,

10. F creates E ′-instances.
Note that, when considering transformation systems without nested application conditions, it
is sufficient to verify properties 1− 6 while for the case of transformation systems with nested
application conditions all ten properties have to be verified.

Now we construct a category equivalence between the source category of a considered
functor F and the subcategory of its target category containing F-images only (for objects
and morphisms). Our aim here is to show that the functor FC from the constructed
category equivalence satisfies the technical properties given in Definition 69.

Lemma 58 (FC Satisfies Required Properties).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)) such
that (C1,M1) has E ′1-M1 pair factorization and initial pushouts, a functor F : (C1,M1) →
(C2,M2), and functors FC : (C1,M1) → (C ′2,M∗2), F

−1
C : (C ′2,M∗2) → (C1,M1) building a

category equivalence FC : (C1,M1)
∼→ (C ′2,M∗2) where (C ′2,M∗2) is the subcategory of (C2,M2),

in which all non-F-images have been removed, and where the functor FC is the restriction of F.
Then the functor FC satisfies the properties listed in Definition 69.

Proof.
The detailed proof for this lemma is given in Appendix A on page 300. �

The next lemma shows that if each of the two functors, FC as considered before and the
inclusion functor I : (C ′2,M∗2)→ (C2,M2) from the subcategory of the target category of F
into the entire target category of F, satisfies the technical properties given in Definition 69,
then also their composition satisfies these properties.

Lemma 59 (I ◦FC Satisfies Required Properties).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)) such
that the underlying M-adhesive categories (Ci,Mi) have E ′i-Mi pair factorization for i ∈ {1, 2}
and (C1,M1) has initial pushouts, a functor F : (C1,M1) → (C2,M2), an inclusion functor I :
(C ′2,M∗2) → (C2,M2), and functors FC : (C1,M1) → (C ′2,M∗2), F

−1
C : (C ′2,M∗2) → (C1,M1)

building a category equivalence FC : (C1,M1)
∼→ (C ′2,M∗2) where (C ′2,M∗2) is the subcategory of

(C2,M2), in which all non-F-images have been removed. Then the functor composition I ◦ FC :

(C1,M1) → (C2,M2) satisfies the properties listed in Definition 69 if the functors I and FC
satisfy these properties.

Proof.
The detailed proof for this lemma is given in Appendix A on page 305. �

In the following theorem, we combine the results shown in the previous two lem-
mas by stating that a functor F that is defined as a composition of a functor FC :
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(C1,M1) → (C ′2,M∗2) from the category equivalence and the corresponding inclusion
functor I : (C ′2,M∗2)→ (C2,M2) satisfies the technical properties given in Definition 69 if
the inclusion functor I satisfies these properties.

Theorem 28 (F = I ◦FC Satisfies Required Properties).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)) such
that the underlying M-adhesive categories (Ci,Mi) have E ′i-Mi pair factorization for i ∈ {1, 2}
and (C1,M1) has initial pushouts, a functor F : (C1,M1)→ (C2,M2), functors FC : (C1,M1)

→ (C ′2,M∗2), F
−1
C : (C ′2,M∗2) → (C1,M1) building a category equivalence FC : (C1,M1)

∼→
(C ′2,M∗2) where (C ′2,M∗2) is the subcategory of (C2,M2), in which all non-F-images have been
removed, and an inclusion functor I : (C ′2,M∗2) → (C2,M2) satisfying the properties listed in
Definition 69. Then also (F = I ◦ FC) : (C1,M1) → (C2,M2) satisfies the properties listed in
Definition 69.

Proof.
According to Lemma 58, it holds that the functor FC from the category equivalence satisfies the
properties given in Definition 69. Moreover, by assumption we have that the inclusion functor I
satisfies these properties as well. Applying now Lemma 59, we obtain that also the composition
of both functors I ◦ FC satisfies the required properties. Furthermore, by assumption we have
that F = I ◦ FC and F is a functor, which implies that also F satisfies the properties given in
Definition 69. �

Now we summarize in the following remark, the stepwise workflow for the proposed
functor decomposition strategy enabling the requirement verification for concrete func-
tors at hand. As already pointed out before, we believe that this functor decomposition
strategy allows us to often reduce the verification effort and the complexity of the proofs
to be carried out for concrete applications of our theoretical framework.

Remark 16 (Functor Decomposition Strategy for Verification of Properties Required by
the General Theory of M-Functors).
Let (C1,M1,P), (C2,M2,F(P)) be M-adhesive transformation systems and F : (C1,M1) →
(C2,M2) be a functor. To obtain the analysis results for the source transformation system of the
considered functor, execute the following steps.

1. Define a subcategory (C ′2,M∗2) of (C2,M2) containing precisely the F-images with M∗2 =

F(M1).
2. Construct an equivalence of categories FC : (C1,M1)

∼→ (C ′2,M∗2).
3. Define an inclusion functor I : (C ′2,M∗2)→ (C2,M2).
4. Show the satisfaction of the properties required for the main results of our general theory of

M-functors (see Definition 69) not for the functor F : (C1,M1) → (C2,M2) but only for
the inclusion functor I : (C ′2,M∗2)→ (C2,M2).

11.2 verification of requirements for general theory of restricted

M-functors

Considering functors restricted to M-morphisms only, we can similarly formulate and
use a functor decomposition strategy for the requirement verification as introduced in
the previous section. To possibly reduce the complexity of proofs for concrete restricted
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functors, we want to verify in the context of the functor decomposition strategy the
properties that are required by the general theory of restricted M-functors not for the
restricted functor FR but only for the corresponding restricted inclusion functor from the
subcategory of the target category of FR into the entire target category of FR.

This section follows the same lines as the previous section. As the first step, we list
the sufficient properties that have to be satisfied to be able to use the general theoreti-
cal results for restricted M-functors. Afterwards, we adapt the functor decomposition
strategy, proposed in the previous section, to the framework of restricted M-functors. In
particular, we firstly construct for a given restricted functor FR : C1|M1

→ C2|M2
(that is

defined on M-morphisms only) a suitable category equivalence between the source cat-
egory C1|M1

and the subcategory C ′2|M∗2 of the target category of FR (where M∗2 ⊆ M2),
which precisely contains the FR-images. Secondly, we show that the restricted functor
FRC : C1|M1

→ C ′2|M∗2 from the constructed category equivalence satisfies the properties
required by the general theory of restricted M-functors. Thirdly, we verify that the satis-
faction of these required properties is preserved by the composition of restricted functors
FRC and IR (for the restricted inclusion functor IR from the subcategory of the target cate-
gory of FR into the entire target category of FR) if each of the restricted functors from the
composition satisfies these required properties. Finally, we show that the composition of
restricted functors FRC and IR, resulting in the considered restricted functor FR, satisfies
the required properties if the restricted inclusion functor IR satisfies these properties.

Our first step, as mentioned before, is to summarize in the following definition the
sufficient technical properties that have to be verified for a restricted functor FR to enable
the applicability of all results of our general theory of restricted M-functors.

Definition 70 (Collection of Properties for Restricted M-Functors).
Let AS1 = (C1,P), AS2 = (C2,FR(P)) be transformation systems with distinguished classes
of monomorphisms M1, M2, respectively, and FR : C1|M1

→ C2|M2
be a functor between two

categories restricted to M-morphisms only3. For the application of the results of our general theory
of restricted M-functors to FR, the following properties have to be verified:

1. FR preserves monomorphisms, i.e., FR(M1) ⊆M2,
2. FR preserves pushouts of M-morphisms,
3. FR creates M-morphisms,
4. FR preserves initial pushouts over M-morphisms,
5. FR preserves epimorphisms, i.e., FR(E1) ⊆ E2,
6. FR preserves coproducts of M-morphisms,
7. FR preserves pullbacks of M-morphisms,
8. FR preserves E ′-instances,
9. FR creates E ′-instances.

Note that, when considering transformation systems without nested application conditions, it
is sufficient to verify properties 1− 6 while for the case of transformation systems with nested
application conditions all nine properties have to be verified.

Similarly to the previous section, we now construct a category equivalence between
the source category of a considered restricted functor and the subcategory C ′2|M∗2 of its
target category containing FR-images only (for objects and morphisms) and show that

3 In general, we do not require that the source and the target categories of the considered restricted functor
FR are M-adhesive. For example, for the restricted functors FPTIC and IPTI in Section 12.2, we use the target
category of FPTIC and the source category of IPTI that are not M-adhesive.
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the restricted functor FRC from this category equivalence satisfies the required properties
listed in Definition 70. Note that the distinguished monomorphism class M∗2 of the
subcategory C ′2|M∗2 is given by M∗2 = FR(M1) and the distinguished epimorphism class
E∗2 of the subcategory is given by E∗2 = FR(E1).

Lemma 60 (FRC Satisfies Required Properties).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,FR(P))
such that (C1,M1) has E ′1-M1 pair factorization and initial pushouts, a restricted functor FR :

C1|M1
→ C2|M2

, and restricted functors FRC : C1|M1
→ C ′2|M∗2 , FR

−1
C : C ′2|M∗2 → C1|M1

building a category equivalence FRC : C1|M1

∼→ C ′2|M∗2 such that C ′2|M∗2 is the subcategory of
C2|M2

, in which all non-FR-images have been removed, and where the restricted functor FRC
is the restriction of FR. Then the restricted functor FRC satisfies the properties listed in Defini-
tion 70.

Proof.
The detailed proof for this lemma is given in Appendix A on page 308. �

Now we show for the restricted functors FRC : C1|M1
→ C ′2|M∗2 and IR : C ′2|M∗2 → C2|M2

(where IR is a restricted inclusion functor from the subcategory of the target category
of FR into the entire target category of FR) that if both of them satisfy the required
properties then so does also their composition.

Lemma 61 (IR ◦FRC Satisfies Required Properties).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,FR(P)) such
that the underlying M-adhesive categories (Ci,Mi) have E ′i-Mi pair factorization for i ∈ {1, 2}
and (C1,M1) has initial pushouts, a restricted functor FR : C1|M1

→ C2|M2
, a restricted

inclusion functor IR : C ′2|M∗2 → C2|M2
, and restricted functors FRC : C1|M1

→ C ′2|M∗2 ,
FR

−1
C : C ′2|M∗2 → C1|M1

building a category equivalence FRC : C1|M1

∼→ C ′2|M∗2 such that
C ′2|M∗2 is the subcategory of C2|M2

, in which all non-FR-images have been removed. Then the
functor composition IR ◦ FRC : C1|M1

→ C2|M2
satisfies the properties listed in Definition 70 if

the restricted functors IR and FRC satisfy these properties.

Proof.
The detailed proof for this lemma is given in Appendix A on page 308. �

The following theorem states that for a constructed category equivalence the restricted
functor FR, considered as a composition of the restricted functor FRC from the category
equivalence and the corresponding restricted inclusion functor IR, satisfies the properties
listed in Definition 70 if the restricted inclusion functor IR satisfies these properties.

Theorem 29 (FR = IR ◦FRC Satisfies Required Properties).
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,FR(P)) such
that the underlying M-adhesive categories (Ci,Mi) have E ′i-Mi pair factorization for i ∈ {1, 2}
and (C1,M1) has initial pushouts, a restricted functor FR : C1|M1

→ C2|M2
, restricted functors

FRC : C1|M1
→ C ′2|M∗2 , FR

−1
C : C ′2|M∗2 → C1|M1

building a category equivalence FRC :

C1|M1

∼→ C ′2|M∗2 such that C ′2|M∗2 is the subcategory of C2|M2
, in which all non-FR-images have

been removed, and a restricted inclusion functor IR : C ′2|M∗2 → C2|M2
satisfying the required

properties for restricted functors listed in Definition 70. Then also (FR = IR ◦ FRC) : C1|M1
→

C2|M2
satisfies the properties listed in Definition 70.
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Proof.
According to Lemma 60, it holds that the restricted functor FRC from the category equivalence
satisfies the properties listed in Definition 70. Moreover, by assumption we have that the restricted
inclusion functor IR satisfies these properties as well. Applying now Lemma 61, we obtain that
also the composition of both restricted functors IR ◦FRC satisfies the required properties. Further-
more, by assumption we have that FR = IR ◦ FRC and FR is a restricted functor, which implies
that also FR satisfies the properties listed in Definition 70. �

The workflow of the functor decomposition strategy for the requirement verification,
given in the following remark, summarizes the steps that have to be executed for concrete
restricted functors at hand.

Remark 17 (Functor Decomposition Strategy for Verification of Properties Required by
the General Theory of Restricted M-Functors).
Let AS1 = (C1,M1,P), AS2 = (C2,M2,FR(P)) be M-adhesive transformation systems and
FR : C1|M1

→ C2|M2
be a restricted functor. To obtain the analysis results for the source

transformation system of the considered restricted functor, execute the following steps.
1. Define a subcategory C ′2|M∗2 of C2|M2

containing precisely the FR-images with M∗2 =

FR(M1).
2. Construct an equivalence of categories FRC : C1|M1

∼→ C ′2|M∗2 .
3. Define a restricted inclusion functor IR : C ′2|M∗2 → C2|M2

.
4. Show the satisfaction of the properties required for the main results of our general theory

of restricted M-functors (see Definition 70) not for the restricted functor FR : C1|M1
→

C2|M2
but only for the restricted inclusion functor IR : C ′2|M∗2 → C2|M2

.

After we have established in this chapter the functor decomposition strategy for ver-
ification of properties required by the general theory of (restricted) M-functors, we ap-
ply this proposed strategy in the next chapter to our concrete (restricted) functors FHG

and FPTI.
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A P P L I C AT I O N O F F U N C T O R D E C O M P O S I T I O N S T R AT E G Y F O R
R E Q U I R E M E N T V E R I F I C AT I O N T O H Y P E R G R A P H A N D P T I N E T
T R A N S F O R M AT I O N S Y S T E M S

In this chapter, we apply the workflows for the requirement verification given in Re-
marks 16 and 17 to the concrete functors FHG and FPTI, respectively. As we already know,
both functors FHG and FPTI are injective by instantiation of Lemmas 9 and 10 but not sur-
jective because not every arbitrary typed attributed graph corresponds to some functor-
translated hypergraph or PTI net. This implies that the categories (HyperGraphs,M1)

and (AGraphsHGTG,M2) as well as PTINet|M1
and AGraphsPNTG|M2

are not equivalent.

12.1 application to hypergraph transformation systems

In this section, we apply the proposed functor decomposition strategy for the require-
ment verification to the functor FHG : (HyperGraphs,M1)→ (AGraphsHGTG,M2) intro-
duced in Definition 63. According to the workflow given in Remark 16, we define first
a suitable subcategory (SubAGraphsHGTG,M∗2) of (AGraphsHGTG,M2) containing all
FHG-images of hypergraphs as objects and all FHG-translated morphisms between these
hypergraphs as morphisms, i.e., ObSubAGraphsHGTG = FHG(ObHyperGraphs) and
MorSubAGraphsHGTG(FHG(A),FHG(B)) = FHG(MorHyperGraphs(A,B)) for arbitrary A,B ∈
ObHyperGraphs. Note that the class of monomorphisms M∗2 consists of all injective typed
attributed graph morphisms, which are FHG-images of injective hypergraph morphisms
from M1, and the class of epimorphisms E∗2 consists of all surjective typed attributed
graph morphisms, which are FHG-images of surjective hypergraph morphisms from E1.
Obviously, the described subcategory is a well-defined category. Furthermore, as we will
show later in the proof of Lemma 63, the subcategory (SubAGraphsHGTG,M∗2) has an
E ′′2 −M∗2 pair factorization with the class of jointly epimorphic typed attributed graph
morphisms E ′′2 = FHG(E

′
1) and M∗2 = FHG(M1).

After the suitable subcategory of typed attributed graphs (SubAGraphsHGTG,M∗2) is
defined, we construct FHGC : (HyperGraphs,M1)

∼→ (SubAGraphsHGTG,M∗2) and show
that FHGC is a category equivalence.

Lemma 62 (FHGC is a Category Equivalence).
The categories (HyperGraphs,M1) and (SubAGraphsHGTG,M∗2) are equivalent, i.e., there
exists a category equivalence FHGC : (HyperGraphs,M1)

∼→ (SubAGraphsHGTG,M∗2).

Proof.
The detailed proof of this lemma is given in Appendix C on page 351. �

Following our workflow, we define as the next step the corresponding inclusion functor
IHG : (SubAGraphsHGTG,M∗2) → (AGraphsHGTG,M2) by IHGOb : ObSubAGraphsHGTG →
ObAGraphsHGTG with IHGOb(A) = A and IHGMor :MorSubAGraphsHGTG(A,B)→
MorAGraphsHGTG(IHGOb(A), IHGOb(B)) with IHGMor(f) = f. In the subsequent lemma, we
show that IHG satisfies the required properties from Definition 69, which is the most chal-
lenging part when applying the proposed functor decomposition strategy to a concrete
functor.

221
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Lemma 63 (IHG Satisfies Required Properties).
Consider a transformation system (SubAGraphsHGTG,FHG(P))

1 with a distinguished class of
monomorphisms M∗2, an M-adhesive transformation system (AGraphsHGTG,M2,FHG(P)), and
a functor FHG : (HyperGraphs,M1) → (AGraphsHGTG,M2). Then the inclusion functor
IHG : (SubAGraphsHGTG,M∗2) → (AGraphsHGTG,M2) satisfies the properties listed in Defi-
nition 69.

Proof.
The detailed proof of this lemma is given in Appendix C on page 355. �

After all four steps specified by the workflow given in Remark 16 are executed, we
show in the following theorem that the proposed functor decomposition strategy is ap-
plicable to our concrete functor FHG : (HyperGraphs,M1)→ (AGraphsHGTG,M2).

Theorem 30 (FHG Satisfies Required Properties).
Consider M-adhesive transformation systems (HyperGraphs,M1,P) and (AGraphsHGTG,
M2,FHG(P)). The functor FHG : (HyperGraphs,M1) → (AGraphsHGTG,M2) from Defini-
tion 63 satisfies the properties listed in Definition 69, which enables the application of general
theory of M-functors to FHG.

Proof.
According to [88], there is a general construction for E ′ −M pair factorizations based on coprod-
ucts and E−M-factorizations, which can be applied to hypergraphs and typed attributed graphs.
Since the empty hypergraph resp. empty typed attributed graph are initial in HyperGraphs
resp. AGraphsHGTG and we have pushouts in both categories, we also have coproducts in both
categories, which are constructed componentwise as disjoint union. The construction of E-M-
factorizations for hypergraphs and typed attributed graphs is given in Lemma 35 and in [88],
respectively. Thus, HyperGraphs and AGraphsHGTG have the corresponding E ′ −M pair fac-
torizations. Moreover, as we have already shown in Lemma 62, FHGC : (HyperGraphs,M1)

∼→
(SubAGraphsHGTG,M∗2) is a category equivalence. Finally, the inclusion functor IHG :

(SubAGraphsHGTG,M∗2) → (AGraphsHGTG,M2) satisfies the properties listed in Defini-
tion 69 according to Lemma 63 and (HyperGraphs,M1) has initial pushouts according to
Lemma 7. Thus, FHG also satisfies the properties listed in Definition 69 by application of Theo-
rem 28. �

12.2 application to pti net transformation systems

In this section, we show, following the lines of the functor decomposition strategy for
the requirement verification proposed in Chapter 11, that the restricted functor FPTI

from Definition 64 satisfies the properties required by the general theory of restricted
M-functors.

According to the workflow given in Remark 17, we define as the first step a suitable
subcategory SubAGraphsPNTG|M∗2 of AGraphsPNTG|M2

that contains all FPTI-images of
PTI nets as objects and all FPTI-translated morphisms between these PTI nets as mor-
phisms, i.e., ObSubAGraphsPNTG|M∗

2

= FPTI(ObPTINet|M1
) and MorSubAGraphsPNTG|M∗

2

(FPTI(A),
FPTI(B)) = FPTI(MorPTINet|M1

(A,B)) for arbitrary A,B ∈ ObPTINet|M1
. The corresponding

classes of monomorphisms M∗2 and epimorphisms E∗2 consist of injective typed attributed
graph morphisms and surjective typed attributed graph morphisms, which are FPTI-
images of injective PTI net morphisms from M1 and surjective PTI net morphisms from
E1, respectively. For better readability we abbreviate SubAGraphsPNTG|M∗2 in the follow-

1 In general, we do not require that the source category of the inclusion functor IHG is M-adhesive.



12.2 application to pti net transformation systems 223

ing by SubAGraphsPNTG. Again, it is obvious that the subcategory introduced above is
a well-defined category. Moreover, as we will show later in the proof of Lemma 65, the
subcategory SubAGraphsPNTG has an E ′′2 −M∗2 pair factorization with the class of jointly
epimorphic typed attributed graph morphisms E ′′2 = FPTI(E

′
1) and M∗2 = FPTI(M1).

In the following lemma, we construct FPTIC : PTINet|M1

∼→ SubAGraphsPNTG and
show that FPTIC is a category equivalence.

Lemma 64 (FPTIC is a Category Equivalence).
The categories PTINet|M1

and SubAGraphsPNTG are equivalent, i.e., there exists a category
equivalence FPTIC : PTINet|M1

∼→ SubAGraphsPNTG.

Proof.
The detailed proof for this lemma is given in Appendix D on page 391. �

As the next step, we define the restricted inclusion functor IPTI : SubAGraphsPNTG →
AGraphsPNTG|M2

by IPTIOb : ObSubAGraphsPNTG → ObAGraphsPNTG|M2
with IPTIOb(A) = A

and IPTIMor : MorSubAGraphsPNTG(A,B) → MorAGraphsPNTG|M2
(IPTIOb(A), IPTIOb(B)) with

IPTIMor(f) = f. The following lemma shows then that IPTI satisfies the properties re-
quired by the general theory of restricted M-functors.

Lemma 65 (IPTI Satisfies Required Properties).
Consider a transformation system (SubAGraphsPNTG,FPTI(P))

2 with a distinguished class of
monomorphisms M∗2, an M-adhesive transformation system (AGraphsPNTG,M2,FPTI(P)), and
a restricted functor FPTI : PTINet|M1

→ AGraphsPNTG|M2
. Then the restricted inclusion

functor IPTI : SubAGraphsPNTG → AGraphsPNTG|M2
satisfies the properties listed in Defini-

tion 70.

Proof.
The detailed proof for this lemma is given in Appendix D on page 395. �

In the subsequent theorem we show that the functor decomposition strategy for the
requirement verification proposed in the previous chapter is applicable to our concrete
restricted functor FPTI.

Theorem 31 (FPTI Satisfies Required Properties).
Consider M-adhesive transformation systems (PTINet,M1,P) and (AGraphsPNTG,M2,
FPTI(P)). The restricted functor FPTI : PTINet|M1

→ AGraphsPNTG|M2
from Definition 64

satisfies the properties listed in Definition 70, which enables the application of general theory of
restricted M-functors to FPTI.

Proof.
According to [88], there is a general construction for E ′ −M pair factorizations based on coprod-
ucts and E −M-factorizations, which can be applied to PTI nets and typed attributed graphs.
Since the empty PTI net resp. empty typed attributed graph are initial in the categories PTINet
resp. AGraphsPNTG and we have pushouts in both categories, we also have coproducts in both
categories, which are constructed componentwise as disjoint union. The construction of E-M-
factorizations for PTI nets and typed attributed graphs is given in Lemma 51 and in [88], respec-
tively. Thus, PTINet and AGraphsPNTG have the corresponding E ′ −M pair factorizations.
Moreover, FPTIC : PTINet|M1

∼→ SubAGraphsPNTG is a category equivalence according to
Lemma 64. Finally, IPTI : SubAGraphsPNTG → AGraphsPNTG|M2

satisfies the properties
listed in Definition 70 according to Lemma 65 and (PTINet,M1) has initial pushouts according
to Fact 11. Thus, the restricted functor FPTI also satisfies the properties listed in Definition 70 by
application of Theorem 29. �

2 As already mentioned before, the source category of the restricted inclusion functor IPTI is not M-adhesive.
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13
R E L AT E D W O R K

In this chapter, we firstly provide a short overview of our research domain by recalling
past developments resulting in the foundations we built upon in this thesis. We focus
thereby, in particular, on the algebraic double pushout (DPO) approach and M-adhesive
transformation systems. Secondly, we consider formalisms used in the running exam-
ples of this thesis (namely, typed attributed graphs, hypergraphs, and Petri nets with
individual tokens (short PTI nets)) by discussing their applications for the modeling and
analysis of structure and behavior of systems. We also discuss tools supporting the tasks
of modeling and analysis in these settings. Finally, we relate our approach, on the one
hand, to the framework of institutions and institution morphisms for the transfer of prop-
erties among two formalisms and, on the other hand, to triple graph grammars that are
applied to relate models of different formalisms.

13.1 foundations for formal transformations

In this thesis, we are concerned with the algebraic transformation approach [79, 76],
which is based on pushout constructions on the involved structures modeling their glu-
ing. The usage of pushouts allows for the definition of basic theoretical concepts and
constructions as well as for the handling of many semantical properties of interest in the
context of category theory. We are following the well-established DPO approach [79, 76]
explained in detail e.g. in [88] rather than the single pushout (SPO) approach introduced
in [265, 200, 199].

As a basis for our approach, we rely on the well-known categorical framework of
M-adhesive transformation systems [94, 88], which evolved over time from earlier pre-
decessors. M-adhesive transformation systems can be instantiated for many practically
relevant formalisms such as a wide range of graphs and different kinds of Petri nets.

Initially, high-level replacement (HLR) systems were introduced in [80, 81] in order
to provide a uniform framework for the formal transformation of graphs and high-level
structures such as e.g. different kinds of Petri nets and algebraic specifications based
on the DPO approach. The definition of the underlying categories of HLR systems is
based on certain technical properties, called HLR axioms, which are sufficient to derive
the main results of graph transformation and HLR systems theory such as Local Church-
Rosser, Concurrency, Parallelism, Embedding, Extension, Completeness of Critical Pairs,
and Local Confluence Theorems [88, 259]. These HLR axioms rely on the existence
of pushouts and pullbacks and state their compatibility. The concept of M-adhesive
categories generalizes that of weak adhesive HLR [88], adhesive HLR [89], and adhesive
categories [185]. In fact, the mentioned classes of categories are constructed similarly
using HLR axioms, which are getting strictly more restrictive from left to right, thus
adhesive categories are the most restrictive class and M-adhesive categories are the least
restrictive class of categories. In the spirit of this general approach, we provide our
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results in this thesis by determining categorical characterizations of required properties
to be satisfied by concrete functors and their source and target categories.

Application conditions have been introduced to limit the applicability of rules in graph
transformation systems. Their expressiveness has been extended over time from nega-
tive application conditions [139] (short NACs) to the logic of nested application con-
ditions [136] used in this thesis, which is equivalent to first-order logic on graphs [270].
While nested application conditions only state local properties in the sense of [119], there
is ongoing work on extending the expressiveness of nested application conditions beyond
first-order logic [138, 261, 186] to express properties such as connectedness by path of
arbitrary length.

13.2 formalisms and tools for modeling and analysis of structure and

behavior

In this thesis, we apply our framework of M-functors to the formalisms of hypergraph
and PTI net transformation systems, which can be used in various application domains
for modeling and analysis of system structure and behavior. In both cases we translate
a source transformation system of the respective M-functor (i.e., a hypergraph transfor-
mation system resp. a PTI net transformation system) into the corresponding typed
attributed graph transformation system. In this section, we briefly discuss these three
mentioned formalisms regarding their role for the modeling and analysis of system struc-
ture and behavior. Furthermore, we provide for all three formalisms an overview of the
available tool support for modeling and analysis discussing the respective limitations for
the applicability to our analysis problems.

13.2.1 Graphs

We consider the formalism of graphs w.r.t. its suitability for the modeling of system struc-
ture in Subsubsection 13.2.1.1 as well as for the modeling and analysis of dynamic system
behavior by means of graph transformation systems in Subsubsection 13.2.1.2. Moreover,
we consider in Subsubsection 13.2.1.3 the available tool support for both, modeling and
analysis.

13.2.1.1 Modeling Structure using Graphs

Various kinds of graphs are used to represent the structure of systems in a broad range
of domains. For example, they are used for the modeling of inter-networking systems
[295], the development of knowledge-based design tools [282], and the abstract syntax
of visual models such as e.g. UML class diagrams [122]. Graphs are a favorable choice
due to their flexibility, due to their capability of representing relations adequately, and
due to their visual notation, which enables intuitive modeling. Also, local navigation in
a graph can be more efficient compared to relational models as demonstrated by graph
databases [233].

Typed attributed graphs have been considered in the past in various works using
different formalizations. In [202] the authors represent the graph part of a typed at-
tributed graph as an algebra that extends the given data type algebra. In [258] typed
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attributed graphs are defined using labeled graphs and transformed by application of
rule schemata dealing with calculations on labels. A typed attributed graph with node
and edge attribution is seen as a pair consisting of a graph and a data algebra, whose
values are contained as nodes in the graph in [88] whereas only node attribution is al-
lowed in [144]. Finally, the so-called symbolic graphs [240, 241] allow for the separation of
the graph and the algebra parts of typed attributed graphs. In this thesis, we use typed
attributed graphs based on E-graphs following the approach in [88] that supports the
node and the edge attribution.

13.2.1.2 Modeling and Analyzing Behavior of Graph Transformation Systems

Dynamic systems that exhibit or perform successive state changes can be described using
graph transformation systems. In graph transformation systems, the possible behavior
is defined in terms of a set of rules and their application describing admissible state
modifications. These rules, together with an initial graph from which the system is
initiated, determine a graph grammar, which is conceptually quite similar to Chomsky
grammars for formal languages [271, 72, 73, 85].

Various kinds of transformation rules, rule application procedures, and extensions of
graphs exist. The node-label controlled replacement approach [158, 160, 159, 101], in which
transformation steps replace single nodes by replacement graphs, and the hyperedge
replacement approach, which is designed for hypergraph transformation systems as dis-
cussed in more detail in the next section, are two examples of graph transformation
approaches. However, as already mentioned before, we are concerned with the algebraic
graph transformation approach, which allows for the handling of graph transformations
in the context of category theory. The DPO approach [79, 76] and the SPO approach
[265, 200, 199] are the two mostly used variants of the algebraic graph transformation
approach. The fundamental difference between both approaches is that the DPO ap-
proach makes use of two pushouts and total morphisms to define a transformation step,
whereas the SPO approach uses a single pushout with a partial rule morphism for this
purpose. For the detailed comparison of both approaches consult e.g. [83]. In this thesis,
we employ the algebraic DPO approach as a foundation for our work.

Single process algorithms as well as distributed multi-process algorithms can be en-
coded out of the box as graph transformation systems including the involved data struc-
tures using application specific algebraic structures [88] such as in [137, 283, 258]. Other
application areas of graph transformation systems are, amongst others, formal language
theory [179, 133], process algebras and mobile systems [24], database design [14, 115],
logical and functional programming [48, 284], compiler construction [151], model trans-
formation [99, 88], model versioning [165], requirements engineering [141], parsing of
visual languages [25], automated transfer of visual models into code or into different
semantical domains [102, 303, 183], software engineering [144, 88], and implementation
of visual modeling techniques such as UML [236].

While various semantical properties of transformation systems are to be analyzed in
these settings, we focus in this thesis, in particular, on the analysis of behavioral equiva-
lence, local confluence (including the analysis of parallel and sequential independence of
transformations), termination as well as on the thereof resulting analysis of confluence
and functional behavior. In the following, we briefly summarize established analysis
techniques for our semantical properties of interest.

For the analysis of behavioral equivalence based on bisimulations, the framework of
borrowed contexts from [262] (also see [263, 264] for earlier contributions) provides re-
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sults, constructions, and algorithmic procedures for deriving behavioral congruences.
Moreover, in [242], the adaptation of the before mentioned approach to symbolic graphs
is introduced to improve the handling of attributes in graph transformation systems.

There are two standard techniques to analyze local confluence of graph transformation
systems [88]. Firstly, the parallel independence of each two arbitrary transformation
steps of a system is a sufficient condition for local confluence of a system according
to the Local Church-Rosser Theorem. Secondly, the verification of local confluence can
proceed by computing all critical pairs (as supported by e.g. Agg) and by then analyzing
these critical pairs for strict confluence as discussed in detail in Subsubsection 2.2.2.4.

The problem of deciding termination for arbitrary graph transformation systems is
undecidable due to their expressiveness. Indeed, several general techniques to support
the process for finding a termination proof (or a proof for non-termination) for different
kinds of systems have been developed in the past in [57, 8, 25, 86, 26, 28, 21, 22, 29, 30,
257, 194]. These techniques vary in the required human involvement, i.e., in the degree
of their automation.

Finally, local confluence and termination analysis are sufficient according to [88] for
the verification of confluence and functional behavior of graph transformation systems.

For more details on the analysis techniques for our semantical properties of interest
consult Subsection 2.2.2.

13.2.1.3 Tools for Modeling and Analysis of Graph Transformation Systems

There exist various tools supporting modeling, simulation, and analysis of graph trans-
formation systems. In the following, we discuss a spectrum of such tools focusing on
their features. Note that we consider only those tools that offer analysis capabilities.

• Agg (Attributed Graph Grammar System) [292, 104, 287] is a general-purpose tool
supporting the specification of algebraic graph transformation systems based on
typed attributed graphs with node type inheritance, DPO rules, nested application
conditions, and graph constraints [272]. To the best of our knowledge, Agg is the
only tool directly implementing the existing theoretical constructions and analysis
results for the modeling and analysis of algebraic graph transformation systems
with NACs and PACs. For the modeling of graph transformation systems Agg

provides several graphical editors, an interpreter for system simulation, and a de-
bugger for system verification. For the analysis of graph transformation systems
Agg provides support for critical pair and termination analysis, conflict and depen-
dency detection between transformations, graph parsing as well as consistency and
rule applicability checks on graphs [272]. The critical pair and dependency analysis
is offered through a graphical user interface that allows for the inspection of the
computed critical pairs and dependencies, respectively. The termination analysis
for typed graph transformation systems with injective rules, injective match mor-
phisms, and injective NACs using layers for rules and graph types is implemented
by checking the so-called layering conditions, which are sufficient criteria for termina-
tion. Moreover, Agg provides Java code for the execution of graph transformations
that can be used by any graphical or non-graphical Java application.

• Henshin [69, 6, 187] is a model transformation and high-level graph rewriting tool
including as features specification capabilities for graph transformation systems in
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a graphical editor, an engine for critical pair computation, an engine for state space
generation, certain control structures on the set of rules, and a model checking
tool [157, 6]. Although, Henshin is, similarly to Agg, another general-purpose tool
for the modeling and analysis of graph transformation systems, compared to Agg,
Henshin employs for critical pair analysis only transformation rules that may not
have NACs and PACs as of now [187].

• VERIGRAPH [305] is a verification tool initially developed to support second or-
der rewriting and analysis. VERIGRAPH focuses on the DPO approach for typed
graphs and implements in the theory proximal manner critical pair/sequence anal-
ysis, concurrent rules, second order conflicts, interlevel conflicts, and rule transfor-
mations for typed graph transformation systems. Unfortunately, VERIGRAPH does
not support the handling of attributes as well as transformation systems containing
rules with any kind of application conditions as of now.

• SyGrAV (Symbolic Graph Analysis and Verification) [53, 290] supports static analy-
sis (including critical pair analysis with the resolution of found conflicts) of typed
attributed graph transformation systems using the approach of symbolic graphs
from [239]. However, as stated in [53] transformation rules used for critical pair
analysis may not have application conditions as of now.

• GROOVE (Graphs for Object-Oriented Verification) [298, 121] is a general-purpose
graph transformation tool based on typed labeled graphs. Its core functionality is
the state space generation. Based on the generated state space, the satisfaction of
LTL and CTL properties can be analyzed [157]. Other useful features supported by
GROOVE are the encoding of node attributes and the control language in combina-
tion with complex, recursive, and nested rule applications that also support NACs
and regular expressions identifying paths of edges [121].

• Augur2 [296, 176, 177, 13] supports the analysis of typed attributed graph transfor-
mation systems using over- and under-approximations of the state space. Under-
approximations permit the analysis of the existence of certain sequences of di-
rect transformations whereas over-approximations allow for the analysis of non-
existence of such sequences.

• Maude [44, 45] is a language and a tool supporting computations based on equa-
tional and rewriting logic. It implements different kinds of formalisms using a
powerful algebraic language. Rewriting rules in Maude directly support reconfig-
urations based on conditional term rewriting [34]. Maude offers a possibility for
termination checks in the Knuth-Bendix completion tool [63], critical pair analysis
using a Church-Rosser checker [65, 64], and the analysis of temporal graph prop-
erties [302]. However, to the best of our knowledge, the Church-Rosser checker,
which is only applicable to terminating order-sorted equational specifications [64,
65], does not support critical pair analysis combined with nested application con-
ditions [65, 45] as considered in this thesis and, in addition, is incomplete in the
sense that it cannot determine a definite answer in each case [64, 65].

In conclusion, until now only Agg supports the critical pair analysis for typed at-
tributed graph transformation systems with NACs and PACs. Other mentioned tools
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support different analysis problems (e.g. GROOVE and Augur2), conceptually different
input formalisms (e.g. Maude) or less expressive graph transformation formalisms (e.g.
Henshin, VERIGRAPH, and SyGrAV) as of now. However, Henshin, VERIGRAPH, and
SyGrAV are currently maintained more actively and may contain better custom support
for critical pair analysis in the future.

Besides incomplete symbolic techniques that are required for systems with infinite
state spaces, tools such as Henshin can be used to decide (non-)termination for graph
transformation systems with finite state spaces. Moreover, the tool Grez, described in [29],
supports an approach for termination analysis of graph transformation systems without
any kind of application conditions and without a distinguished initial graph. However,
we are not aware of tools besides Agg, Grez, and Maude that have a certain built-in
support for termination analysis of any kind of M-adhesive transformation systems or
their encodings.

Finally, considering the analysis of bisimilarity, to the best of our knowledge, there are
no tools for any kind of M-adhesive transformation systems as of now. On the one hand,
efficient algorithms for checking bisimilarity for arbitrary finite state systems have been
developed such as e.g. in [59], but these algorithms do not exploit domain knowledge
and are not capable of handling infinite state spaces. On the other hand, tools such
as ABC (Advanced Bisimulation Checker) [273] are domain specific (ABC handles the
open bisimilarity in the context of the π-calculus) and are therefore not applicable to M-
adhesive transformation systems. The development of efficient symbolic algorithms and
their tool support for checking our notions of bisimilarity is therefore left for future work.

13.2.2 Hypergraphs

While the formalism of graphs is versatile, additional language constructs are sometimes
desirable to express structure and rules more concisely. The transformation of such high-
level structures was introduced in [80, 81] using HLR systems as a common foundation.
We discuss with hypergraphs and Petri nets two kinds of high-level structures in more
detail in this and the next subsection.

As before, we consider in Subsubsection 13.2.2.1 the usage of hypergraphs for the mod-
eling of system structure as well as in Subsubsection 13.2.2.2 the modeling and analysis
of dynamic system behavior by means of hypergraph transformation systems. Further-
more, we consider in Subsubsection 13.2.2.3 the available tool support for modeling and
analysis of hypergraph transformation systems.

13.2.2.1 Modeling Structure using Hypergraphs

The formalism of hypergraphs is, compared to graphs, still versatile and is also widely
used for the modeling of various kinds of systems. Its main strength, compared to
graphs, is its built-in capability of succinctly representing relationships between an un-
bounded number of nodes, i.e., an edge (also called a hyperedge) in a hypergraph connects
an unbounded number of source nodes with an unbounded number of target nodes. In
this sense, hypergraphs where each edge connects precisely one source node with one
target node can be understood as ordinary graphs.

Hypergraphs are used in various fields of science such as mathematics [9, 114, 120, 253],
biology [168, 113], and chemistry [27, 178, 113, 120]. Moreover, in computer science
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they have been used, for example, in the domains of distributed systems [271, 12], inter-
networking systems [149, 148, 295], access control policies [174, 175, 173], Online Social
Networks (OSN) [226, 286, 225], services in service-oriented architectures for business
processes including their mutual dependencies as well as their resource and capacity
requirements [37, 40], declustering problems for the implementation of I/O paralleliza-
tion algorithms in the context of parallel databases and high performance systems [196],
designs in the context of knowledge-based design tools [131], analysis of relational
databases [120], knowledge representation systems (including e.g. the Semantic Web
[16] standards OWL-DL [52] and RDF [306]) [197, 166], parsing of graph languages [61],
and diagram representation and design [222, 220, 221].

13.2.2.2 Modeling and Analyzing Behavior of Hypergraph Transformation Systems

Some of the applications mentioned above pertain to systems given by hypergraphs
with dynamic behavior. To formalize such systems, hypergraph transformation systems
based on the algebraic DPO approach can be employed. However, the two other estab-
lished approaches of hyperedge replacement and synchronized hyperedge replacement,
which are discussed subsequently, are also capable to determine dynamic behavior of
hypergraph-based systems.

The hyperedge replacement approach [109, 250, 181, 134, 190, 60, 15, 49, 50, 100] allows for
the replacement of a single hyperedge by another hypergraph. According to [181], hy-
peredge replacement systems can be seen as graphical context-free Chomsky grammars.

The Synchronized Hyperedge Replacement (SHR) approach was introduced for the mod-
eling of distributed systems and software architectures dealing with different aspects
of network applications [149, 111, 295, 110, 189, 112, 39, 54]. The SHR approach com-
bines the ability to express various forms of synchronization and communication futures
(typical for process calculi) with a reasonable visual representation of system topology
(typical for graph models). It has been used to encode process calculi such as the π-
calculus [219, 147], the CSP process algebra [150], the Ambient calculus [295, 38], and
the Fusion calculus [188]. Moreover, in [117, 118] hypergraphs are also used as a fully
abstract denotational model of the π-calculus for the analysis of spatial logic satisfac-
tion. Finally, in [163] a process calculus for the stochastic modeling and simulation of
biochemical reactions is introduced. It extends the κ-calculus based on the idea of hyper-
edge replacement.

Hypergraph transformation systems have been used to model machine learning pro-
cesses [279], to formalize Architectural Design Rewriting (ADR) [149, 34, 33], to encode
architectural refactorings [132] for the architecture description language COOL [203] us-
ing the capability of hypergraphs to reflect hierarchical concepts, and to evaluate func-
tional expressions [253] where a function with n arguments is modeled by a hyperedge
with one source node and n target nodes.

Hypergraph transformation systems have been analyzed for the satisfaction of path
properties in [11, 13] using state space approximations, for confluence in [253] where a
sufficient condition for local confluence based on critical pairs has been given, and for ter-
mination in [257] where critical pair analysis is used to determine that the composition
of two terminating hypergraph transformation systems is terminating. Further analy-
sis techniques for our semantical properties of interest for hypergraph transformation
systems rely on the respective approaches for graph transformation systems discussed
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in Subsubsection 13.2.1.2 and are in general applied on an informal level by manually
encoding the analysis problems in the domain of graph transformation systems.

13.2.2.3 Tools for Modeling and Analysis of Hypergraph Transformation Systems

The tools Agg, Henshin, SyGrAV, GROOVE, Augur2, and Maude considered for graph
transformation systems can also be used in principle for the modeling and analysis of
hypergraph transformation systems. However, because these tools do not support hyper-
graph transformation systems directly, a formally verified translation of a hypergraph
transformation system into the input language of these tools is required in each case.
In this thesis, we have defined and verified such a suitable translation from hypergraph
transformation systems into typed attributed graph transformation systems by means of
our concrete M-functor FHG.

Since Agg is implemented in close relationship to the used theoretical foundations and
is powerful enough for our analysis reasons, we see Agg as a tool that can be most easily
extended in the future by the formally verified translation of the formalisms of interest.
This means that Agg can be extended to analyze local confluence and termination of
hypergraph transformation systems using an implementation of FHG to translate a given
hypergraph transformation system into the corresponding graph transformation system.
However, since Agg would still internally operate on typed attributed graphs when being
provided with a translated hypergraph transformation system, we must support in an
additional feature, following our formal approach, that during the verification process
Agg executes the analysis steps only for typed attributed graphs that are FHG-images.

With its current capabilities Agg has been used in [35] for the modeling and verification
of self repairing systems given as typed hypergraph grammars where a manual encoding
of a hypergraph transformation system has been used without its formal verification.

Maude is another example of a tool in which hypergraph transformation systems can
be analyzed for local confluence and termination by encoding them using (multi-)sets
and conditional (multiset) rewriting rules [31, 34].

All in all, the available tool support is not satisfactory since no direct support for the
analysis of hypergraph transformation systems exists as of now. The existing tools only
support the analysis of hypergraph transformation systems via ad hoc encodings that
lack formal treatment.

13.2.3 Petri nets

The formalism of Petri nets for the modeling and analysis of concurrent and distributed
systems is different from graphs and hypergraphs discussed before since it comes along
with its own semantics (the firing behavior). Subsequently, we first focus in Subsubsec-
tion 13.2.3.1 on the usage of Petri nets to model the concurrent system behavior. Note
that in this thesis, we are not interested in the analysis of the domain specific Petri net
properties. Afterwards, in Subsubsection 13.2.3.2, we discuss the rule-based reconfigura-
tion of Petri nets for the modeling and analysis of dynamic system behavior including
the special case of rule-based transition firing for PTI net transformation systems. Fi-
nally, we consider in Subsubsection 13.2.3.3 the available tool support for modeling and
analysis of Petri net transformation systems.
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13.2.3.1 Modeling Concurrent Behavior using Petri Nets

Petri nets [252] are a formal specification language useful for modeling concurrent, dis-
tributed, parallel, asynchronous, non-deterministic, and stochastic systems [268] sup-
porting powerful techniques for qualitative and quantitative analysis of domain specific
properties [232]. The formalism of Petri nets combines a well-founded mathematical
theory with a graphical representation of the dynamic system behavior by firing transi-
tions. A strength of the Petri net approach is its intuitive visual notation and the variety
of implemented analysis techniques considering e.g. reachability, liveness, and safety
properties.

There are many examples for the application of different kinds of Petri nets to model
a variety of dynamic event-driven and concurrent systems [308] such as computer net-
works [205], communication systems [214, 307], real-time computing systems [294], work-
flows [299, 195], and logistic networks [301].

In [216], Meseguer and Montanari represented Petri nets as graphs equipped with
operations for the composition of transitions. They introduced categories for Petri nets
with and without initial markings and functors expressing duality and invariants. Their
constructions provide a formal basis for expressing concurrency in terms of algebraic
structures over graphs and categories. Based on categorical Petri nets, in [62] Petri nets
are related to automata with concurrency relations by establishing a correspondence
between the associated categories.

13.2.3.2 Modeling and Analyzing Behavior of Petri Net Transformation Systems

The formalism of Reconfigurable Petri Nets [92, 154] generalized to the notion of Petri net
transformation systems [80, 81, 90, 246] allows to combine formal modeling of dynamic
systems and controlled model adaptation. The main idea is the stepwise development of
Place/Transition nets (short P/T nets) by applying net transformation rules [90, 92, 260].
This approach makes Petri nets more expressive and allows additionally to the firing
behavior for a formal description and analysis of structural changes [90, 92, 260].

The application areas for the formalism of Petri net transformation systems comprise
e.g. medical information systems [103], train control systems [247], logistics [90], emer-
gency scenarios [92], reconfigurable manufacturing systems [164], complex dynamic
structures [130], and component technology [243, 90].

The firing behavior of Petri nets was originally expressed using graph transformation
rules in [180]. To allow the modification of markings using transformation rules, it is
required that the tokens of the marking are included in the Petri net. This is achieved in
this thesis by using the formalism of PTI nets [224] (see [32] for a comparison with the
collective token approach) where a set of tokens is added to the Petri net in addition to
places and transitions and each token is mapped to one of the places. The practicability of
the PTI net transformation approach is shown in [105, 223, 116] introducing case studies
on applications to communication spaces and communication platforms.

Different notions of individuality have been introduced in [266, 300] where tokens
are equipped with additional information influencing the firing of transitions. This ad-
ditional information is used to distinguish tokens, to store relevant data, or to store
information about the history of a token. Such tokens do not amount any longer to
indistinguishable black tokens and are therefore called high-level tokens. The concept of
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high-level tokens with an additional inner structure is orthogonal to the PTI net concept
since PTI nets only extend the standard Petri net formalism by explicit inclusion of a
marking into the structure of the net. These two orthogonal approaches are combined
in Algebraic High-Level nets with individual tokens (short AHLI nets) where tokens are data
elements from a given algebra.

Reconfigurable Petri nets have been analyzed in [245] for the satisfaction of LTL prop-
erties using the tool ReConNet [248], which translates a given reconfigurable Petri net
into a Maude module with a bisimilar transition system. The resulting Maude module
can then be checked equivalently to the original reconfigurable Petri net for the satisfac-
tion of LTL properties using the LTLR model checker of Maude [245]. However, analysis
techniques for our semantical properties of interest for Petri net transformation systems
rely on the respective approaches for graph transformation systems discussed in Subsub-
section 13.2.1.2 and are in general applied on an informal level by manually encoding
the analysis problems in the domain of graph transformation systems.

13.2.3.3 Tools for Modeling and Analysis of Petri Net Transformation Systems

As for hypergraph transformation systems, the tools Agg, Henshin, SyGrAV, GROOVE,
Augur2, and Maude can be used in principle to model and analyze Petri net transforma-
tion systems by encoding them along the lines of the restricted M-functor FPTI provided
in this thesis (and in the case of Maude by using an appropriate domain specific encoding
for Petri net transformation systems).

Considering tokens as individuals makes the formalism of PTI nets similar to that of
typed attributed graphs giving a possibility for formal-based modeling and analysis of
PTI net transformation systems using existing graph transformation tools such as Agg

[206, 285, 20]. Subsequently, we focus on further tools that are more specific for Petri net
transformation systems.

The RON-tool (Reconfigurable Object Net Tool) [291] can be used for the modeling,
simulation, and analysis of a special kind of high-level nets called reconfigurable object
nets. Reconfigurable object nets [152, 19, 18, 106] are a simplified kind of higher-order
nets with two kinds of tokens, two kinds of places, and a complex firing behavior. The
RON-tool employs Agg [292] for the simulation [20] as well as for the critical pair and
independence analysis [18] of P/T net transformation systems by using an ad hoc trans-
lation of P/T net transformation systems into the corresponding typed attributed graph
transformation systems. In fact, the formalization of this translation was the initial mo-
tivation to develop the formal framework of this thesis. However, for continuing appli-
cability, a maintained software is desirable, implementing the translation of P/T nets
into the corresponding typed attributed graphs precisely as well as ensuring correctness,
usability, and full automation of the analysis process. Furthermore, there are several
restrictions on the kind of P/T net transformation systems that can be analyzed using
the RON-tool. The current version of the RON-tool supports the local confluence analysis
of P/T net transformation systems (following the collective token approach) containing
rules without any kind of application conditions or rules with NACs only, while no
analysis support is available for rules containing PACs or rules with nested application
conditions. For this reason, we do not use the RON-tool for analysis purposes in this
thesis and propose the development of suitable tool support.
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ReConNet (Reconfigurable Net) [248] is a tool that allows for the modeling, simulation,
and analysis of reconfigurable Petri nets. It uses as a technical basis for reconfigurable
Petri nets the so-called decorated Petri nets, i.e., P/T nets extended by additional annota-
tions like capacities, names for places and transitions as well as transition labels change-
able by firing the corresponding transitions [248]. The net transformation part of the
tool is based on the cospan approach (in which rules have the form L → K ← R [248]),
which is shown to be equivalent to the DPO approach in [93]. While ReConNet allows, as
discussed above, for the analysis of the satisfaction of LTL properties by translating the
reconfigurable Petri net at hand into a Maude module, on which the LTLR model checker
of Maude is then applied [245], it does only support net transformation rules with NACs
as of now [244].

MCReNet (Marked-Controlled Reconfigurable Nets) [198] is a tool for the modeling,
simulation, and analysis of concurrent systems specified by so-called marked-controlled
reconfigurable nets (short MCRNs). A configuration of a concurrent system is then repre-
sented by a Petri net, while configuration changes are defined by Petri net transformation
rules. The main intention of MCReNet is to translate an MCRN into an equivalent Petri
net (containing all possible configurations of the considered MCRN) to be able to ana-
lyze subsequently the structure as well as the dynamic behavior of the obtained Petri net
using the Petri net tool PIPE2 (Platform Independent Petri Net Editor) [56].

Other tool environments like PEP (Programming Environment based on Petri Nets)
[297], INA (Integrated Net Analyzer) [156], PNK (Petri Net Kernel) [167, 309], Renew
(The Reference Net Workshop) [293], Charlie [289, 145], Tina (Time Petri Net Analyzer)
[184, 17], EZPetri [2, 5], JARP [55], POSEIDON [191], PIPE2 [56], PNTools (Petri Net Tools)
[42], Petri Net Toolbox [288], and many others are indeed capable to model, simulate, and
analyze different kinds of Petri nets but they do not handle the net reconfiguration by
means of algebraic graph transformation.

We conclude that the available tools do not directly support the analysis of the seman-
tical properties we are interested in for Petri net transformation systems. However, we
expect that the translation of reconfigurable Petri nets into Maude modules using ReCon-
Net along the lines of [245] can be adapted to different kinds of Petri net transformation
systems. Based on such adapted translations, the analysis of properties such as local con-
fluence and termination could be enabled using the Maude specific tools keeping their
known limitation in mind. Moreover, most of the graph transformation specific tools
discussed in Subsubsection 13.2.1.3 as well as the RON-tool can be used for modeling
and limited analysis of the desired properties but a formal foundation for the required
encodings of Petri net transformation systems into the respective tool languages is called
for. Finally, the tool MCReNet focuses on Petri net transformation systems but cannot be
used for the analysis of the intended semantical properties.

13.3 existing frameworks for translation of different formalisms

Besides the functorial transfer of objects and morphisms between categories as well as the
transfer of property satisfaction pursued in this thesis, there are further frameworks de-
signed for similar purposes. We consider in Subsection 13.3.1 institutions and institution
morphisms that are tailored for the relation of logical systems and that, as underlined by
related work, can also be used in principle to relate transformation systems as in this the-
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sis. However, we believe that the generality of the framework provides too little support
for solving the actual research problem of this thesis. Furthermore, we briefly consider
in Subsection 13.3.2 the approach of triple graph grammars that allows for the synchro-
nization of different models. In relation to this thesis, triple graph grammars can be used
to implement a connection between objects of two transformation systems. However, the
approach of triple graph grammars has, to the best of our knowledge, not been extended
to verify the transfer of the satisfaction of semantical properties as in this thesis. Hence,
triple graph grammars merely implement translations between transformation systems
similarly to the applications of M-functors in this thesis.

13.3.1 Institutions

Institutions were introduced in [36, 126, 127] to formalize the concept of a logical system to
allow to relate and compare logics (see e.g. [182, 228, 227, 129, 231]) and to inherit results
from one logic to another through a relationship expressed by an institution morphism
[127, 41]. Intuitively, an institution consists of a collection of signatures Σ together with
the corresponding signature morphisms, a set of Σ-sentences for each signature Σ, a set
of Σ-models for each signature Σ, and a Σ-satisfaction relation between Σ-models and
Σ-sentences. For example, algebraic signatures and Σ-algebras can be used to define
an institution (see e.g. [276, 229]) that has the usual many sorted signatures Σ with
the usual signature morphisms, Σ-sentences in the form of equations consisting of two
terms, Σ-models given by the usual Σ-algebras, and the usual Σ-satisfaction relation
where a Σ-algebra satisfies an equation if both contained terms are evaluated to the
same element in the carrier set. The important property of an institution is then that
changing Σ-models and Σ-sentences using a signature morphism is compatible with the
Σ-satisfaction relations of the institution. This compatibility implies that theorem provers
can be used interchangeably, once the required institutions are in place.

The framework of institutions has been used for different purposes. In [274, 275]
observational equivalence is considered in the context of algebraic specifications (i.e., it
has been checked whether two Σ-algebras evaluate their terms in the same manner w.r.t.
a set of tests given in the form of Σ-sentences by not only relying on the ultimately
obtained element of the carrier set). In these works, an institution is used again for
relating different Σ-algebras and universal quantification is added to the above described
compatibility definition allowing for the usage of free variables in Σ-sentences. In [230,
238] the CSP process algebra has been considered and the absence of deadlocks has
been verified for concrete processes by using structuring techniques introduced by use of
institutions. In [171, 172, 170] different UML diagram types (such as UML state machines,
UML class diagrams, and UML sequence diagrams [236]) are related using institutions.

In [41] early results on borrowing theorems have been developed that are similar to the
formal translation of models and analysis results in this thesis. In this work, institution
morphisms are employed to relate institutions for different logics (which must be linked
by adjoint functors) to derive theorem prover support for one logic from the theorem
prover support of the other logic. This approach follows conceptually considerations
in [215] on the formal interoperability of formalizations of a system also allowing for
the usage of tools supporting different of these formalizations. An attempt to obtain
a unified framework for institution morphisms has been presented in [128]. Moreover,
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besides the relation of logics, also other formalisms such as the OWL ontology language
and the Z specification language have been related using institution morphisms in [204].

For our purposes, we can assume that Σ-sentences of an institution are used to express
properties such as the existence of direct transformations and transformation sequences
(leading to the behavioral equivalence of the underlying systems) as well as their inde-
pendence, (local) confluence, termination, and functional behavior, which are then to
be defined (in terms of the corresponding Σ-satisfaction relations) for hypergraph, PTI
net, and typed attributed graph transformation systems in a compatible way. This as-
sumption also implies that the definition of the institution morphisms corresponds to
our (restricted) M-functors FHG and FPTI. However, as pointed out in [127], it can be
already tedious to show that something is an institution in the sense of the satisfaction
of the compatibility conditions. While we believe that the framework of institutions can
be used to characterize the problem tackled in this thesis from a different point of view,
it adds, in our opinion, too little support for its formal-based solution. Even though the
tool Maude, widely used for the analysis of systems specified in terms of institutions, en-
ables the local confluence and termination analysis for single systems, there is no formal
theory supporting the sound transfer of analysis results between M-adhesive transfor-
mation systems or concrete instances thereof as considered in this thesis so far. However,
institutions and institution morphisms may be seen as an umbrella framework, in which
we can state our main problem of translating analysis results among formalisms but
existing institution technology seems to be not directly applicable to our problem.

13.3.2 Triple Graph Grammars

Triple graph grammars have been developed for the synchronization of models of dif-
ferent formalisms in [281]. Adaptations on one of the related models (initiated by users
or other software components) are then propagated to the other model by application of
rules of the employed triple graph grammar allowing to adopt the changes. This syn-
chronization between the models is intended to restore their consistency to ensure that
the models provide a consistent perspective on the considered system.

The research in the field of triple graph grammars mainly focuses on the design and
verification of the process of such resynchronization that has to be correct w.r.t. the triple
graph grammar that serves as a specification [4, 146, 3, 192]. Further scenarios include
e.g. physical distribution or concurrent modification of more than one model, which
are both rendering the resynchronization task for the consistency restoration more com-
plex [192]. Moreover, suitable data structures that keep track of corresponding elements
are employed to minimize the computational effort for consistency restoration [4].

Based on this general approach, triple graph grammars have been also investigated
in [68] for relating two transformation systems whose models are, as in this thesis, related
by bisimulations that are preserved by the steps of the transformation systems. However,
for comparison, the used triple graph grammars merely correspond to the application of
our M-functors and the bisimulations are checked rather than enforced as in this thesis.
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C O N C L U S I O N

In this thesis, we have introduced an abstract framework relating different formalisms
with respect to semantical properties of interest. The relationship defined within our
framework allows for the transfer of semantical properties between the considered con-
crete formalisms enabling the usage of analysis tools available for the target formalism
also for the source formalism as visualized in Figure 1 in the introduction. The class of
formalisms covered by our framework is given by M-adhesive transformation systems,
which are based on M-adhesive categories. For M-adhesive categories certain techni-
cal properties are assumed and many technical notions are defined, which are relevant
for the modeling of system transformation and adaptation. We have investigated vari-
ous semantical properties such as behavioral equivalence, (local) confluence, termination,
functional behavior as well as parallel and sequential independence of transformations.
In our abstract framework we have established a formal relationship between two M-
adhesive transformation systems by introducing the so-called M-functors. Within the
framework we have treated first transformation systems without nested application con-
ditions and have extended the framework subsequently to the case of transformation
systems with nested application conditions. This extension, compared to the case regard-
ing transformation systems without nested application conditions, greatly simplifies the
modeling of transformation systems in practice but requires further sufficient properties
to be satisfied by the M-adhesive categories and M-functors involved. Moreover, we have
considered two instantiations of our abstract framework, namely, we have related both,
hypergraph transformation systems and Petri net transformation systems with individ-
ual tokens, with typed attributed graph transformation systems. For these instantiations
we have defined concrete M-functors from the M-adhesive category of the source trans-
formation system to the corresponding M-adhesive category of the target transformation
system. In both cases we have ensured a sound instantiation by verifying the sufficient
properties stated by our abstract framework for the involved M-adhesive categories and
the defined M-functors. We have chosen typed attributed graph transformation systems
as a target formalism for both instantiations because e.g. the well-established tool Agg,
operating on typed attributed graph transformation systems, provides, besides modeling
and simulation capabilities, also analysis capabilities such as, in particular, the critical
pair analysis, which is the first step towards confluence analysis.

In Figure 81 we present an overview of the main results, which are included in the
central Parts ii–v of this thesis. The tree depicted in the center with “General Approach”
as the root contains the results of Part ii where we have introduced our main theoretical
approach consisting of Theorems 1–13 for the functorial transfer of the semantical prop-
erties P1–P6 given in the table in the bottom of the picture. The two rows below the tree
contain the application results from the two consecutive Parts iii and iv where we have
instantiated all theoretical results of Part ii for the concrete settings of hypergraph and
PTI net transformation systems in Theorems 14–20 and Theorems 21–27, respectively.
Finally, the arrow leading to “General Approach” from the top adds to the overview

241
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the functor decomposition strategy for the requirement verification introduced in The-
orems 28 and 29 in Part v allowing for an alternative proof strategy for deriving the
theorem instantiations for concrete (restricted) functors at hand. The application of this
functor decomposition strategy to the two concrete functors FHG and FPTI is then shown
in Theorems 30 and 31, respectively.

In Figure 82 we provide an overview of the requirements (given by the previously
mentioned sufficient properties) that need to be verified for a (restricted) functor at hand
to instantiate the theorems of our abstract framework given in Figure 81. In fact, we focus
in the first table (see the upper left part of Figure 82) on the semantical properties P1–P6
(given in the second table in the lower left part of Figure 82) for transformation systems
without or with nested application conditions and provide for functors and restricted
functors a list of requirements to be verified. These requirements are listed in the third
and fourth table depicted in the right part of Figure 82.

The theoretical results given in Theorems 1–13 in Part ii characterize the requirements
needed to transfer the semantical properties P1–P6 between M-adhesive transformation
systems using M-functors. Subsequently, we first recall the main results from the first
and the second branch of the tree in Figure 81 considering the transfer of semantical
properties P1–P3, whose analysis in our case is dependent on whether the rules of the
involved transformation systems are equipped with nested application conditions. Af-
terwards, we review our results on the semantical properties P4–P6 where we did not
provide separate theorems for the two alternate cases.

Firstly, in Theorems 1–3 we have shown the translation and creation of transformation
steps and their sequences (with general or M-match morphisms) between the correspond-
ing M-adhesive transformation systems (property P1) using M-functors for the case of
rules without or with nested application conditions. That is, we have provided suffi-
cient properties ensuring that an M-functor properly relates each transformation step in
the source transformation system with a corresponding transformation step in the target
transformation system guaranteeing behavioral equivalence of the functor-related parts
of both transformation systems. Secondly, in Theorems 7 and 10 we have dealt with the
transfer of the parallel and sequential independence of transformation steps (property
P2), which is a sufficient condition for the absence of conflicting rule applications and,
hence, also for local confluence of a transformation system. Thirdly, in Theorems 6, 8,
9, and 11 we have established the transfer of the local confluence property (property
P3) enforcing that the order of rule applications is not relevant in the sense that alter-
native choices of rules to be applied can be joined in a reasonable way. Fourthly, to
capture the notion of behavioral equivalence of the functor-related parts of the source
and the target transformation systems as well as to additionally provide a different per-
spective on the relation of behavior of transformation systems, we have considered in
Theorems 4 and 5 the F-bisimulations between functor-related objects of the underlying
source and target categories of an M-functor as well as the F-transfer of bisimulations
between objects of the source category into the corresponding bisimulations between ob-
jects of the target category (property P4), respectively. Fifthly, in Theorem 12 we have
transferred termination/non-termination of transformation sequences (property P5), i.e.,
the absence/existence of infinite sequences of transformation steps. While termination
is an important property in general, it is also crucial for the analysis of confluence and
functional behavior. That is why we have reused our results on termination and local
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Figure 81: Overview of main results
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Figure 82: Requirements to be verified for a (restricted) functor at hand for the instantiation of
the theorems of our abstract framework given in Figure 81, which allow for the transfer of the
semantical properties P1–P6
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confluence transfer for Theorem 13 to ensure the transfer of confluence and functional
behavior (property P6), i.e., to guarantee that all transformation sequences ultimately
lead to a common result that is unique in case of functional behavior.

In Part iii we have introduced the concrete M-functor FHG that translates hypergraphs
into typed attributed graphs over a specific attributed type graph HGTG and have veri-
fied that FHG satisfies the required properties for Theorems 14–20, which allow for the
sound transfer of the semantical properties P1–P6 for the setting of hypergraph transfor-
mation systems. Using our first running example, in which we model a Mobile Processes
scenario as a hypergraph transformation system, we have firstly provided some small ex-
amples for the theoretical concepts introduced in Part ii and, secondly, we have shown
in detail the Agg-supported analysis of local confluence for our considered concrete
hypergraph transformation system facilitating the theoretical results from our abstract
framework.

In Part iv we have defined the restricted M-functor FPTI for the translation of Petri nets
with individual tokens into typed attributed graphs over a Petri net specific attributed
type graph PNTG. The mentioned restriction refers to the class of morphisms of the un-
derlying category of the source transformation system that have to be translated by the
defined restricted M-functor. In the case of Petri nets with individual tokens, we have
used as the source category of FPTI the category of PTI nets restricted to monomorphisms
only. This restriction to monomorphisms is a suitable choice for PTI net transformation
systems because the usage of non-monomorphic morphisms alters markings of PTI nets
in an undesired way when executing transformation steps for transition firing. However,
the results introduced in Part ii are carefully designed to also handle restricted func-
tors like this. As in Part iii, we have proven that our concrete restricted M-functor FPTI

satisfies the adapted sufficient properties that are required for Theorems 2–13 allowing
for the instantiation of these abstract results in Theorems 21–27 for PTI net transforma-
tion systems. Based on our second running example on the Mobile Dining Philosophers
problem, we have provided, similarly to Part iii, some small examples for the theoret-
ical concepts introduced in Part ii and have revisited the Agg-based analysis of local
confluence for our considered concrete PTI net transformation system.

In Part v we have introduced a functor decomposition strategy for the verification of
the requirements characterizing the applicability of the developed general theory of (re-
stricted) M-functors presented in Part ii. This strategy, compared to the regular strategy
introduced in Part ii, is based on functor decomposition and requires essentially (a) the
definition of a category equivalence (directly based on the functor at hand) between the
source category of the functor and the subcategory of the target category containing only
the objects and morphisms that are images of the considered functor and (b) the verifi-
cation of the required properties only for the inclusion functor between the considered
subcategory of the target category and the entire target category. This decomposition of
the proof process into the two steps (a) and (b) may often be advantageous for concrete
instantiations because the proofs for the satisfaction of the required properties for the in-
clusion functor are usually less complex compared to verifying these properties directly
for the M-functor at hand. As in Part ii, we have also adapted the functor decomposition
strategy to the case of restricted M-functors and have demonstrated the applicability of
the functor decomposition strategy to our both concrete functors FHG and FPTI.
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To conclude, the results of this thesis provide a formally verified framework for re-
lating transformation-based modeling formalisms that are instantiations of M-adhesive
transformation systems and their analysis techniques. Our theory covers a wide range
of modeling formalisms such as many kinds of graph transformation systems (based on
e.g. typed and/or attributed graphs or hypergraphs) as well as different variants of Petri
net transformation systems (based on e.g. PTI nets or algebraic high-level nets). The
requirements assumed for the theoretical results of our framework are shown to be suf-
ficient to transfer a reasonable set of semantical properties between two concrete model-
ing formalisms. The formal M-functor-based relation between two modeling formalisms
enables modelers to apply analysis techniques and tools designed for one modeling for-
malism also to another modeling formalism. Hence, it provides a way to overcome the
lack of suitable analysis techniques and tools for specific modeling formalisms.



15
F U T U R E W O R K

In this chapter, we propose possible future research directions concerning our theoretical
framework as well as its application.

15.1 extension of the framework

The theoretical results presented in this thesis can be extended in two fundamental di-
rections allowing for their usage in more specific practical contexts.

Firstly, we want to extend our results by considering further semantical properties to
be transferred among the involved transformation systems, enlarging as a consequence
the application scope of our theory to further scenarios.

On the one hand, we are interested in an extension of our handling of the bisimu-
lation notion from Section 3.2 to weak bisimulation [218], additionally accounting for
silent internal steps not observable by a context, or even to behavioral congruences [193],
possibly along the ideas introduced in [78] considering various kinds of contexts to en-
able the analysis whether a bisimulation is a congruence with respect to these contexts.
While the notion of weak bisimulation can be formalized straightforwardly based on our
definitions and results, the integration of the concept of behavioral congruence based on
borrowed contexts [78] into our framework might be much more challenging.

On the other hand, it would be possible to transfer invariants and specific termina-
tion criteria among the involved transformation systems to support the verification of
transformation systems on a more advanced level.

Invariants for transformation systems can be defined, for example, in the form of gen-
eral nested graph conditions [135, 136] to be preserved by every transformation step.
Such nested graph conditions can already be translated using our definitions from a
source transformation system into the corresponding nested graph conditions in a target
transformation system. Hence, the integration of the invariant transfer into our frame-
work should be possible straightforwardly.

Termination analysis is already an important aspect of this thesis. However, since
transformation systems are typically Turing powerful, we cannot expect termination to
be decidable for many applications. We believe that user-assisted termination analysis
based on suitable termination criteria is an appropriate approach to this problem resem-
bling similar developments for functional programs [123, 124]. For example, using the
idea from [57], we may define for a transformation system a measure for termination
in the form of a mapping from objects of the underlying category to natural numbers
such that any non-empty sequence of transformation steps of a certain length strictly
decreases the natural number resulting from applying the mapping to the first and the
last object of the sequence. Then, based on a functorial translation of such a measure,
we can delegate the analysis whether a given mapping is indeed a measure to the target
transformation system.

247
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Secondly, it is interesting to extend the expressiveness of the involved transformation
systems.

On the one hand, the transformation systems that are currently considered do not
involve control structures, which are commonly used in practical applications to restrict
the applicable rules without the need to encode such control in the transformation rules.
For example, GROOVE [121, 298] allows for the usage of priorities or a certain control
language. Similarly, in Henshin [69, 6] priorities can be used. The handling of (possibly
quite different) control structures in the source and the target transformation systems
would require our approach to be extended with a translation of these control structures
to be able to transfer the system behavior appropriately.

On the other hand, the expressiveness of the used type graphs (allowing e.g. for
inheritance and multiplicities as used in Agg [292]) and nested application conditions
(allowing for more complex graph patterns beyond first-order logic) can be improved.

The usage of type graphs ensures that transformation steps are disabled when pro-
ducing graphs that are disallowed by the type graph. Hence, the expressiveness of type
graphs is very important. Until now we have not introduced results on the translation
of type graphs since the two source transformation systems considered in our running
examples do not require explicit type graphs.

Besides nested application conditions, as we used in this thesis, representing local
graph properties in the sense of Gaifman [119], we could also allow for handling of
non-local graph properties, like the existence of an arbitrary-length path between two
nodes. Such modifications would affect not only the definition of the translation using
M-functors but also the computation and analysis of critical pairs for the case of trans-
formations with nested application conditions.

15.2 application of the framework

There are also several further research directions considering the application of our the-
oretical approach.

Firstly, it is interesting to study the relationship between other M-adhesive transfor-
mation systems by developing further M-functors to provide analysis support to other
domains beyond hypergraph transformation systems and Petri net transformation sys-
tems with individual tokens. Examples of such M-adhesive transformation systems be-
tween which M-functors could be possibly considered are Petri nets with individual
data-tokens, called algebraic high-level nets with individual tokens [224] (short AHLI
nets), and typed attributed graphs (see [206] for initial ideas) as well as triple graphs
[281] and their flattening (see [91] for a general motivation).

Secondly, tool support is very important as a long-term goal to ensure the applicabil-
ity of our theoretical results in concrete settings. Since for hypergraph transformation
systems and Petri net transformation systems with individual tokens there are no ver-
ification tools directly suitable for our analysis purposes, a possibility for future work
would be to develop new tools or to adapt existing tools (such as Henshin [69] for hyper-
graph transformation systems and ReConNet [248] or RON-tool [291] for Petri net transfor-
mation systems with individual tokens) to allow for theory-based modeling, simulation,
and analysis of these formalisms. This would ideally entail additional support for nested
application conditions in all involved tools. To support the developed theory in these
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tools, we want to implement the concrete functors FHG and FPTI translating hypergraphs
and Petri nets with individual tokens into their corresponding typed attributed graph
counterparts. Moreover, considering the inverse direction, one could also implement the
translation of the analysis results in the form of artifacts of typed attributed graphs and
their transformations back into the hypergraph and Petri net transformation system for-
malisms to present the obtained results to the user in the formalism originally employed
for modeling.

For the verification of the local confluence property via the critical pair analysis in Agg,
a line of future work would be also to implement a suitable automated detection of FHG-
resp. FPTI-reachable critical overlapping graphs, which would facilitate the analysis of
the calculated critical pairs.

Furthermore, one could extend Agg by implementing a semi-decision procedure for
strict confluence analysis of the calculated critical pairs consisting of the following two
steps. Firstly, for a critical pair P1 ⇐= K =⇒ P2 an interactive approach would be helpful
allowing stepwise application of transformation rules to P1 and P2 to determine a graph,
to which both transformation sequences starting in P1 and P2 can be merged. Secondly,
we want to implement the algorithm allowing for the analysis of the strictness condition
(see Definition 14) for a calculated critical pair at hand.

Additionally, for the context of transformation systems with application conditions,
we intend to implement in Agg the required test for AC(F)-compatibility of application
conditions in the sense of Definition 59.

To allow for an alternative analysis of termination in the context of the Agg-tool, the
implementation of a naive reachability graph generating algorithm, which is sufficient
for transformation systems with finite loop-free reachability graphs, would be helpful.
Furthermore, we want to implement the checking of termination criteria in the sense as
explained above, to support user-assisted termination analysis of hypergraph transfor-
mation systems and Petri net transformation systems with individual tokens. Similarly,
one could implement the transfer and testing of invariants as mentioned before between
the source and the target transformation systems of considered functors.
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In this appendix, we recall some basic categorical definitions as well as give the detailed
proofs for some technical characteristics from the main part of this work.

For some categorical constructions we need two morphisms to be jointly epimorphic.
Intuitively, this is the case if two morphisms together behave similar to an epimorphism,
i.e., the object C can be considered as a suitable gluing of objects A and B (see the
diagram in the definition below). The formal definition of this notion (see e.g. [277]) is
given in the following.

Definition 71 (Jointly Epimorphic Morphisms [277]).
A pair (f : A→ C,g : B→ C) of morphisms is called jointly epimorphic iff the following holds:

∀h1,h2 : C→ D. (h1 ◦ f = h2 ◦ f ∧ h1 ◦ g = h2 ◦ g)⇒ (h1 = h2)

A

B

C D

f

g

h1

h2

Lemma 1: (E ′ −M Pair Factorization Based on E−M-Factorization, see page 27)
Consider a category C with E−M-factorizations, as given in Definition 10, and binary
coproducts. Let furthermore (m1 : L1 → G,m2 : L2 → G) be a morphism pair with the
common codomain, (L1+L2, i1 : L1 → L1+L2, i2 : L2 → L1+L2) be a binary coproduct of
(L1,L2) with induced coproduct morphism f : L1+L2 → G and L1+L2

e→ K
m→ G be an

E−M-factorization of the morphism f as given in Definition 11. Then ((o1,o2),m) with
o1 = e ◦ i1 and o2 = e ◦ i2 is an E ′ −M pair factorization of (m1,m2).

L1

L1+L2

L2

K

G

i1

i2
e

f

o1

o2

m

m1

m2

Proof.
According to Definition 11, ((o1,o2),m) is an E ′−M pair factorization of (m1,m2) if there are
a unique up to isomorphism object K and morphisms m : K→ G, oj : Lj → K for j ∈ {1, 2} such
that (o1,o2) ∈ E ′,m ∈M andm ◦oj = mj for j ∈ {1, 2}. By E−M-factorization of f according
to Definition 10, we already have that m ∈M. Moreover, by coproduct construction and E−M-

factorization of f we have that mj
univ. prop. of coprod.

= f ◦ ij
E−M-fact. of f

= m ◦ e ◦ ij
Def. oj
= m ◦ oj for
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j ∈ {1, 2}. To get that (o1,o2) ∈ E ′, we have to show that the morphisms (o1,o2) are jointly
epimorphic. According to Definition 71 this formally means the following (see the diagram below
to the left):

∀h1,h2 : K→ X.((h1 ◦ o1 = h2 ◦ o1) ∧ (h1 ◦ o2 = h2 ◦ o2))⇒ h1 = h2

Fix h1,h2 : K→ X such that holds h1 ◦ o1 = h2 ◦ o1 and h1 ◦ o2 = h2 ◦ o2. Then we have the
following:

(h1 ◦ o1 = h2 ◦ o1) ∧ (h1 ◦ o2 = h2 ◦ o2)
Def. o1,o2⇒ (h1 ◦ e ◦ i1 = h2 ◦ e ◦ i1) ∧ (h1 ◦ e ◦ i2 = h2 ◦ e ◦ i2)
(i1,i2)∈E ′1⇒ h1 ◦ e = h2 ◦ e
e∈E⇒ h1 = h2

It remains to show that the object K of the considered E ′ −M pair factorization is unique up to
isomorphism. For this reason, we first assume that there are another object K ′ and morphisms
m ′ : K ′ → G, o ′1 : L1 → K ′, o ′2 : L2 → K ′ for which it holds that (o ′1,o ′2) ∈ E ′, m ′ ∈ M and
m ′ ◦ o ′j = mj for j ∈ {1, 2} (see the diagram below to the right). Furthermore, there is an induced
morphism e ′ : L1+L2 → K ′ such that o ′j = e

′ ◦ ij holds for j ∈ {1, 2} by the coproduct property.
We have to show that K ∼= K ′. It holds the following:

(m ′ ◦ o ′1 = m1) ∧ (m ′ ◦ o ′2 = m2)
mj=m◦oj for j∈{1,2}⇒ (m ′ ◦ o ′1 = m ◦ o1) ∧ (m ′ ◦ o ′2 = m ◦ o2)
Def. o1,o2⇒ (m ′ ◦ o ′1 = m ◦ e ◦ i1) ∧ (m ′ ◦ o ′2 = m ◦ e ◦ i2)
Def. o ′1,o ′2⇒ (m ′ ◦ e ′ ◦ i1 = m ◦ e ◦ i1) ∧ (m ′ ◦ e ′ ◦ i2 = m ◦ e ◦ i2)
(i1,i2)∈E ′⇒ m ′ ◦ e ′ = m ◦ e
E−M-fact. of f⇒ m ′ ◦ e ′ = f

By assumption, we know that m ′ ∈ M and for arbitrary morphisms g1,g2 : K ′ → Y (see the
diagram below to the right) we have that:

g1 ◦ e ′ = g2 ◦ e ′

⇒ (g1 ◦ e ′ ◦ i1 = g2 ◦ e ′ ◦ i1) ∧ (g1 ◦ e ′ ◦ i2 = g2 ◦ e ′ ◦ i2)
Def. o ′1,o ′2⇒ (g1 ◦ o ′1 = g2 ◦ o ′1) ∧ (g1 ◦ o ′2 = g2 ◦ o ′2)
(o ′1,o ′2)∈E ′⇒ g1 = g2

Thus, e ′ ∈ E implying that m ′ ◦ e ′ is also an E−M-factorization of f according to Definition 10.
Since E−M-factorizations are unique up to isomorphism, we have that K ∼= K ′.

1 From the universal property of binary coproducts we can deduce that (i1, i2) are jointly epimorphic.
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L1

L1+L2

L2

K

G

X

i1

i2
e

f

o1

o2

m

m1

m2

h1h2

L1

L1+L2

L2

K

G

Y

K ′i1

i2
e

f

o1

o2

m

m1

m2

g1 g2

e ′

m ′

o ′1

o ′2

�

For some applications we need special kinds of pair factorization construction e.g. as
given in the lemma below.

Lemma 66 (A Special Case of Pair Factorization).
Consider a category C with E ′-M pair factorizations and morphisms a ′ : A → C, b ′ : B → C

in MorC. Then ((a ′,b ′), id) is an E ′-M pair factorization of (a ′,b ′) if (a ′,b ′) are jointly
epimorphic.

Proof.
According to Definition 11, we have to show that there is a unique up to isomorphism object
C ∈ ObC such that (a ′,b ′) ∈ E ′, id ∈ M and id ◦ a ′ = a ′, id ◦ b ′ = b ′. All mentioned
properties except the uniqueness hold trivially. For the uniqueness of C, we have to show that
for another object K ∈ ObC with morphisms e1 : A → K, e2 : B → K, f : K → C such
that it holds (e1, e2) ∈ E ′, f ∈ M, f ◦ e1 = a ′, f ◦ e2 = b ′, we have that K ∼= C. K ∼= C

holds if the morphism f is a monomorphism and epimorphism at once. By assumption we already
have that f ∈ M and hence a monomorphism. It remains to show that f is an epimorphism, i.e.,
∀k1, k2 : C → X. (k1 ◦ f = k2 ◦ f) ⇒ (k1 = k2). Fix k1, k2 ∈ MorC. Then we have the
following:

k1 ◦ f = k2 ◦ f
⇒ k1 ◦ f ◦ e1 = k2 ◦ f ◦ e1 ∧ k1 ◦ f ◦ e2 = k2 ◦ f ◦ e2
f◦e1=a ′⇒ k1 ◦ a ′ = k2 ◦ a ′ ∧ k1 ◦ f ◦ e2 = k2 ◦ f ◦ e2
f◦e2=b ′⇒ k1 ◦ a ′ = k2 ◦ a ′ ∧ k1 ◦ b ′ = k2 ◦ b ′
Def. 71⇒ k1 = k2

B

A

C

C X

K
b ′

a ′

id

b ′

a ′

k1

k2

f

e2

e1

�
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For the verification of local confluence we need a suitable decomposition property for
pushouts consisting of a pullback and special morphisms in M and M ′ as assumption for
the Completeness of Critical Pairs Lemma (see Fact 2). According to [88] this technical
property is called M−M ′ pushout-pullback decomposition property.

Definition 72 (M−M ′ Pushout-Pullback Decomposition Property [88]).
An M-adhesive category (C,M) with a morphism class M ′ has the M−M ′ pushout-pullback
decomposition property if the following property holds: Given the following commutative dia-
gram with l ∈M and w ∈M ′, where (1) + (2) is a pushout and (2) a pullback, then (1) and (2)

are pushouts and also pullbacks.

A B E

C D F

(1) (2)

k r

l

u

v

w

s

According to [88], an extension diagram describes how a transformation t : G0
∗⇒ Gn

can be extended to a transformation t ′ : G ′0
∗⇒ G ′n via an extension morphism k0 : G0 →

G ′0 mapping G0 to G ′0.

Definition 73 (Extension Diagram [88]).
An extension diagram is a diagram (1), where k0 : G0 → G ′0 is a morphism, called an extension
morphism, and t : G0

∗
=⇒ Gn, t ′ : G ′0

∗
=⇒ G ′n are transformations via the same productions

(p0, ...,pn−1) and matches (m0, ...,mn−1), (k0 ◦m0, ...,kn−1 ◦mn−1) respectively, defined by
the following double pushout diagrams:

G0
∗Gn

G ′0
∗G ′n

(1)

t

kn

t ′

k0

pi : Li Ki Ri

Gi Di Gi+1

G ′i D ′i G ′i+1

i ∈ {0, ...,n− 1} , n > 0

li ri

fi gi

f ′i g ′i

mi ji ni

ki di ki+1

For n = 0, the extension diagram is given up to isomorphism by

G0 G0 G0

G ′0 G ′0 G ′0

idG0 idG0

k0

id ′G0

k0

id ′G0

k0
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In order to apply a rule via a match morphism to some typed attributed graph, we have
to check whether the gluing condition is satisfied. The gluing condition can be formu-
lated on the abstract level of M-adhesive transformation systems using initial pushouts
as already introduced in Subsection 2.2.1 or, alternatively, by the following more con-
structive definition in the set-based notation. These two concepts for gluing condition
definition given in Definition 74 below and Fact 8 from Subsection 2.4.1 are equivalent
as already shown in [88].

Definition 74 (Gluing Condition in AGraphsATG [88]).
Consider a typed attributed graph rule ρ = (L

l← K
r→ R) with injective morphisms l, r in

MorAGraphsATG , a typed attributed graphG and a match morphismm : L→ G inMorAGraphsATG

with X = (((VXG,VXD = N,EXG,EXNA,EXEA, (sXj , tXj )j∈{G,NA,EA}
), NAT), typeX) and typeX :

((VXG,VXD = N,EXG,EXNA,EXEA, (sXj , tXj )j∈{G,NA,EA}
), NAT)→ ATG for X ∈ {L,K,R,G}. Then

we can state the following definitions:
• The gluing points GP are those graph items in L that are not deleted by the rule ρ, i.e.,
GP = lVG(V

K
G) ∪ lEG(EKG) ∪ lENA(EKNA) ∪ lEEA(EKEA).

• The identification points IP are those graph items in L that are identified by the match
morphism m, i.e., IP = IPVG ∪ IPEG ∪ IPENA ∪ IPEEA , where

IPVG = {a ∈ VLG | ∃a ′ ∈ VLG ∧ a 6= a ′ ∧ mVG(a) = mVG(a
′)},

IPEj = {a ∈ ELj | ∃a ′ ∈ ELj ∧ a 6= a ′ ∧ mEj(a) = mEj(a
′)} for j ∈ {G,NA,EA}.

• The dangling pointsDP are those graph items in L, whose images are the source or the target
of an item (see Definition 30) that does not belong to m(L), i.e., DP = DPVG ∪ DPEG ,
where

DPVG = {a ∈ VLG | (∃a ′ ∈ (EGNA \mENA(E
L
NA)). mVG(a) = s

G
NA(a

′))

∨(∃a ′ ∈ (EGG \mEG(E
L
G)). (mVG(a) = s

G
G(a

′)) ∨ (mVG(a) = t
G
G(a

′)))}

DPEG = {a ∈ ELG | ∃a ′ ∈ (EGEA \mEEA(E
L
EA)). mEG(a) = s

G
EA(a

′)}
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In this appendix, we give the detailed proofs for indicated lemmas from the main part
of this work concerning our general theory.
Lemma 8: (F Creates Identities and Isomorphisms, see page 83)
Consider M-adhesive categories (C1,M1) and (C2,M2). Then an M-functor F : (C1,M1)

→ (C2,M2) creates identities and isomorphisms if F creates morphisms.

Proof.
• F creates identities:

We have to show the following: ∀(m ′ : F(L) → F(G)) ∈MorC2 . (m
′ identity ⇒ ∃!(m :

L→ G) ∈MorC1 . F(m) = m ′ ∧ m identity).
Fix m ′ ∈ MorC2 and assume the premise of the statement. It remains to show the conclu-
sion of the statement.
The fact that m ′ is an identity morphism implies that m ′ = idF(L) = idF(G) with
F(L) = F(G). Let us now consider without loss of generality that m ′ is of the type
F(L) → F(L). Since F creates morphisms by assumption, we have that there is a unique
morphism m : L → L in MorC1 such that F(m) = m ′. We now want to show that m is
an identity morphism, i.e., m = idL. We have the following:

F(idL)
funct. prop.

= idF(L)
m ′ ident.

= m ′
creat. ofm

= F(m)

This implies by uniqueness of creation of m that m = idL.
• F creates isomorphisms:

We have to show the following: ∀(m ′ : F(L) → F(G)) ∈ MorC2 . (m
′ isomorphism ⇒

∃!(m : L→ G) ∈MorC1 . F(m) = m ′ ∧ m isomorphism).
Fix m ′ ∈ MorC2 and assume the premise of the statement. It remains to show the conclu-
sion of the statement.
The fact thatm ′ is an isomorphism implies by definition thatm ′ is a retraction and coretrac-
tion, i.e., there is a morphism m ′ : F(G) → F(L) in MorC2 such that m ′ ◦m ′ = idF(G)

and m ′ ◦m ′ = idF(L) (see the diagram below). Since F creates morphisms by assumption,
there are unique morphisms m : L→ G and m : G→ L in MorC1 such that F(m) = m ′,
F(m) = m ′. Thus, we have exactly one morphism m : L→ G satisfying F(m) = m ′.
It remains to show that m is an isomorphism, i.e., there is a morphism m : G → L in
MorC1 such that m ◦m = idG and m ◦m = idL (see the diagram below).
Let m be the unique morphism from the morphism creation property of m ′ as given before.
Since F creates identity morphisms according to the first part of this lemma, we have that
for the identity morphism idF(G) there is a unique morphism idG in MorC1 which is
the identity morphism satisfying the property F(idG) = idF(G). But it holds as well the
following:

F(m ◦m)
funct. prop.

= F(m) ◦F(m)
creat. ofm,m

= m ′ ◦m ′ m
′ isom.
= idF(G)

275
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This implies by uniqueness of creation of idG that m ◦m = idG.
Similarly, using the identity morphism creation property for idF(L), we get that m ◦m =

idL. Thus, we have that m is an isomorphism.

L

G

F(L)

F(G)

mm

idL

idG

m ′m ′

idF(L)

idF(G)

�

Lemma 9: (F is Injective on Objects, see page 83)
Consider M-adhesive categories (C1,M1) and (C2,M2). Then an M-functor F : (C1,M1)

→ (C2,M2) is injective on objects, i.e.,

∀H1,H2 ∈ ObC1 . (F(H1) = F(H2))⇒ (H1 = H2)

if F creates morphisms.

Proof.
Fix H1,H2 ∈ ObC1 and assume that F(H1) = F(H2). This means that there is an identity
morphism id ′ : F(H1) → F(H2). Using the fact that F creates identities from Lemma 8, we
get the unique identity morphism id : H1 → H2 such that F(id) = id ′, which implies that
H1 = H2. �

Lemma 10: (F is Injective on Morphisms, see page 83)
Consider M-adhesive categories (C1,M1) and (C2,M2). Then an M-functor F : (C1,M1)

→ (C2,M2) is injective on morphisms, i.e.,

∀(F(m),F(n) : F(G)→ F(H)) ∈MorC2 . (F(m) = F(n))⇒ (m = n)

if F creates morphisms.

Proof.
Fix F(m),F(n) : F(G) → F(H) ∈ MorC2 and assume that F(m) = F(n). Let now the
morphism m be of the type X1 → X2. Applying F to this morphism m, we get the morphism
F(m) of the type F(X1)→ F(X2). Furthermore, according to the assumption we have that F(m)

is of the type F(G) → F(H), which implies that F(X1) = F(G) and F(X2) = F(H). Now we
can apply Lemma 9 and get that X1 = G, X2 = H implying that m is of the type G → H. For
the morphism n, we can similarly show that n is of the type G → H as well. Since F creates
morphisms by assumption, we furthermore have that there is a unique morphism f : G→ H such
that F(f) = F(m). Both morphisms m,n : G → H satisfy this property, because F(m) = F(n)

by assumption, which implies by uniqueness of creation of f that m = n. �

Lemma 11: (Satisfaction of Nested Application Conditions [213], see page 90)
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)),
and an M-functor F : (C1,M1) → (C2,M2) that creates (M-)morphisms. Then a mor-
phism p : P → G satisfies a nested application condition acP in AS1 iff the corresponding
morphism F(p) : F(P)→ F(G) satisfies the nested application condition F(acP) in AS2.
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Proof (by Induction over the Depth of a Nested Application Condition).
Basis :

Let acP = true. Every morphism in C1 satisfies true. Every morphism in C2 satisfies
F(true) = true.
Induction Hypothesis :

• For some acC over the object C holds: ∀p ′ : C→ G ∈MorC1 . p
′ |= acC ⇔

F(p ′) |= F(acC)

• For some acP,i (i ∈ I) over the object P holds: ∀p : P → G ∈MorC1 .
p |= acP,i ⇔ F(p) |= F(acP,i)

It remains to show:

1. ∀a : P → C ∈MorC1 , p : P → G ∈MorC1 . p |= ∃(a,acC)⇔ F(p) |= F(∃(a,acC))

2. ∀p : P → G ∈MorC1 . p |= ¬acP ⇔ F(p) |= F(¬acP)

3. ∀p : P → G ∈MorC1 . p |=
∧
i∈I acP,i ⇔ F(p) |= F(

∧
i∈I acP,i)

4. ∀p : P → G ∈MorC1 . p |=
∨
i∈I acP,i ⇔ F(p) |= F(

∨
i∈I acP,i)

Induction Step :

1. Fix a : P → C ∈MorC1 and p : P → G ∈MorC1 .

a) (⇒) :

p : P → G |= ∃(a,acC)
Def. 16⇒ ∃q : C→ G ∈M1. q ◦ a = p ∧ q |= acC

Fix q : C→ G s.t. q ◦ a = p ∧ q |= acC.
Then q |= acC

Ind. H.⇒ F(q) |= F(acC)

pres. of com. diag.⇒ ∃F(q) : F(C)→ F(G) ∈M2. F(q) ◦F(a) = F(p) ∧

F(q) |= F(acC)

⇒ ∃q ′ : F(C)→ F(G) = F(q) ∈M2. q ′ ◦F(a) = F(p) ∧ q ′ |= F(acC)

Rem. 11⇒ F(p) : F(P)→ F(G) |= ∃(F(a),F(acC))
Def. 47⇒ F(p) : F(P)→ F(G) |= F(∃(a,acC))

F(acP).F(P)

=

F(C)/F(acC)

F(G)

F(a)

F(p) F(q) = q ′ ∈M2

b) (⇐) :

F(p) : F(P)→ F(G) |= F(∃(a,acC))
Def. 47⇒ F(p) : F(P)→ F(G) |= ∃(F(a),F(acC))
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Rem. 11⇒ ∃q ′ : F(C)→ F(G) ∈M2. q ′ ◦F(a) = F(p) ∧ q ′ |= F(acC)

Fix q ′ : F(C)→ F(G) ∈M2 s.t. q ′ ◦F(a) = F(p) ∧ q ′ |= F(acC).
Then ∃!q : C→ G ∈M1. F(q) = q ′ since F creates M-morphisms.

F prop.⇒ ∃q : C→ G ∈M1. F(q) ◦F(a) = F(q ◦ a) = F(p) ∧ F(q) |= F(acC)

F creat. morph. + Lem. 10⇒ ∃q : C→ G ∈M1. q ◦ a = p ∧ F(q) |= F(acC)

Ind. H.⇒ ∃q : C→ G ∈M1. q ◦ a = p ∧ q |= acC
Def. 16⇒ p : P → G |= ∃(a,acC)

acP.P

=

C/acC

G

a

p q ∈M1

2. Fix p : P → G ∈MorC1 .

p : P → G |= ¬acP

(∗)⇔ ¬(p : P → G |= acP)

Ind. H.⇔ ¬(F(p) : F(P)→ F(G) |= F(acP))

(∗)⇔ F(p) : F(P)→ F(G) |= ¬F(acP)

Def. 47⇔ F(p) : F(P)→ F(G) |= F(¬acP)

(*): The compatibility of |= with ¬, ∧, ∨ is given for morphisms by definition.

3. Fix p : P → G ∈MorC1 .

p : P → G |=
∧
i∈I
acP,i

Def. 16⇔
∧
i∈I

(p |= acP,i)

Ind. H.⇔
∧
i∈I

(F(p) |= F(acP,i))

Def. 16⇔ F(p) : F(P)→ F(G) |=
∧
i∈I

F(acP,i)

Def. 47⇔ F(p) : F(P)→ F(G) |= F(
∧
i∈I
acP,i)

4. Fix p : P → G ∈MorC1 .

p : P → G |=
∨
i∈I
acP,i

Def. 16⇔
∨
i∈I

(p |= acP,i)

Ind. H.⇔
∨
i∈I

(F(p) |= F(acP,i))
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Def. 16⇔ F(p) : F(P)→ F(G) |=
∨
i∈I

F(acP,i)

Def. 47⇔ F(p) : F(P)→ F(G) |= F(
∨
i∈I
acP,i)

�

Lemma 12: (R-Simulations are Closed under Isomorphism Closure, see page 94)
Consider M-adhesive transformation systems AS1 = (C1,M1,P1), AS2 = (C2,M2,P2), a
rule relation R ⊆ P1×P2, and an R-simulation SR ⊆ ObC1 ×ObC2 . Then the isomorphism
closure IC(SR) ⊆ ObC1 ×ObC2 of SR is an R-simulation.

Proof.
Let R ⊆ P1 × P2 be a rule relation. Let furthermore SR ⊆ ObC1 ×ObC2 be an R-simulation, i.e.,
according to Definition 49 we have

∀(G,G ′) ∈ SR,H ∈ ObC1 , ρ ∈ P1,m : L→ G. ((G
ρ,m
=⇒ H)

⇒ (∃H ′ ∈ ObC2 , ρ
′ ∈ P2,m ′ : L ′ → G ′. (G ′

ρ ′,m ′
=⇒ H ′ ∧ (ρ, ρ ′) ∈ R ∧ (H,H ′) ∈ SR)))

We have to show that IC(SR) = {(G,G ′) | ∃(G,G ′) ∈ SR. G ∼= G ∧ G ′ ∼= G
′
} is an R-

simulation, i.e., according to Definition 49 it holds that

∀(G,G ′) ∈ IC(SR),H ∈ ObC1 , ρ ∈ P1,m : L→ G. ((G
ρ,m
=⇒ H)

⇒ (∃H ′ ∈ ObC2 , ρ
′ ∈ P2,m ′ : L ′ → G

′. (G ′
ρ ′,m ′
=⇒ H

′
∧ (ρ, ρ ′) ∈ R ∧ (H,H ′) ∈ IC(SR))))

Assume the premise of the statement and fix G,H ∈ ObC1 , G
′ ∈ ObC2 , ρ ∈ P1 and m ∈MorC1 .

It remains to show the conclusion of the statement.
Because of the definition of IC(SR), we know that there are objects G ∈ ObC1 and G ′ ∈ ObC2

which are isomorphic to objects G, G ′, respectively. Since transformation steps are unique up to
isomorphism, we have that there is an object H ∈ ObC1 and a match morphism m : L → G in
MorC1 such that the transformation step G ρ,m

=⇒ H is possible and H ∼= H. Furthermore, we have
by definition of IC(SR) that (G,G ′) ∈ SR, which means according to Definition 49 as given before
that there is an object H ′ ∈ ObC2 and a match morphism m ′ : L ′ → G ′ in MorC2 such that the

transformation step G ′ ρ
′,m ′
=⇒ H ′ is possible, (ρ, ρ ′) ∈ R and (H,H ′) ∈ SR. Using again the fact

that transformation steps are unique up to isomorphism, we get that there is an object H ′ ∈ ObC2

and a match morphism m ′ : L ′ → G
′ in MorC2 such that the transformation step G ′ ρ

′,m ′
=⇒ H

′

is possible and H ′ ∼= H ′. The definition of IC(SR) now obviously implies that (H,H ′) ∈ IC(SR).
Thus, SR as defined above is an R-simulation.

G

G G ′

G
′

H

H H ′

H
′

ρ,m
ρ,m

ρ ′,m ′
ρ ′,m ′

∼ ∼

∼ ∼

IC(SR)

SR

SR

IC(SR)

�
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Lemma 13: (R-Bisimulations are Closed under Isomorphism Closure, see page 95)
Consider M-adhesive transformation systems AS1 = (C1,M1,P1), AS2 = (C2,M2,P2), a
rule relation R ⊆ P1 × P2, and an R-bisimulation BR ⊆ ObC1 ×ObC2 . Then the isomor-
phism closure IC(BR) ⊆ ObC1 ×ObC2 of BR is an R-bisimulation.

Proof.
Assume that BR is an R-bisimulation, therefore BR and B−1

R are R- resp. R−1-simulations ac-
cording to Definition 50. We have to show that IC(BR) = {(G,G ′) | ∃(G,G ′) ∈ BR. G ∼=

G ∧ G ′ ∼= G
′
} and IC(BR)

−1 are R- resp. R−1-simulations. Using the fact that R-similarity is
closed under isomorphisms according to Lemma 12, we get that IC(BR) and IC(B−1

R ) are R- resp.
R−1-simulations. Furthermore, it holds the following:

IC(B−1
R )

Def. 48
= {(G,G ′) | ∃(G,G ′) ∈ B−1

R . G ∼= G ∧ G ′ ∼= G
′
}

Def.−1
= {(G,G ′) | ∃(G ′,G) ∈ BR. G ∼= G ∧ G ′ ∼= G

′
}

renam.
= {(G

′,G) | ∃(G,G ′) ∈ BR. G ∼= G ∧ G ′ ∼= G
′
}

Def.−1
= {(G,G ′) | ∃(G,G ′) ∈ BR. G ∼= G ∧ G ′ ∼= G

′
}−1

Def. 48
= IC(BR)

−1

Therefore, IC(BR) is an R-bisimulation. �

Lemma 14: (F-Image Restricted F-Transfer of R-Bisimilarity, see page 97)
Consider M-adhesive transformation systems AS1 = (C1,M1,P1), AS2 = (C1,M1,P2),
AS3 = (C2,M2,F(P1)), AS4 = (C2,M2,F(P2)), rule relation R ⊆ P1 × P2, and an M-
functor F : (C1,M1) → (C2,M2) that creates (direct) transformations according to Theo-
rem 3 and (M-)morphisms. Then F translates and creates F-image restricted R-bisimilari-
ty of objects, i.e., BR ⊆ ObC1 ×ObC1 is an R-bisimulation iff F(BR) ⊆ ObC2 ×ObC2 is an
F(R)-bisimulation.

Proof.
• (⇒) :

Let R ⊆ P1 × P2 be a rule relation. Let furthermore BR ⊆ ObC1 × ObC1 be an R-
bisimulation, i.e., according to Definition 50 BR, B−1

R are R- resp. R−1-simulations. This
means according to Definition 49 for BR that

∀(G,G ′) ∈ BR,H ∈ ObC1 , ρ ∈ P1,m : L→ G. ((G
ρ,m
=⇒ H)

⇒ (∃H ′ ∈ ObC1 , ρ
′ ∈ P2,m ′ : L ′ → G ′. (G ′

ρ ′,m ′
=⇒ H ′ ∧ (ρ, ρ ′) ∈ R ∧ (H,H ′) ∈ BR)))

and for B−1
R that

∀(G ′,G) ∈ B−1
R ,H ′ ∈ ObC1 , ρ

′ ∈ P2,m ′ : L ′ → G ′. ((G ′
ρ ′,m ′
=⇒ H ′)

⇒ (∃H ∈ ObC1 , ρ ∈ P1,m : L→ G. (G
ρ,m
=⇒ H ∧ (ρ ′, ρ) ∈ R−1 ∧ (H ′,H) ∈ B−1

R ))).

We have to show that F(BR) ⊆ ObC2 ×ObC2 is an F(R)-bisimulation, i.e., according to
Definition 50 F(BR), F(B−1

R ) are F(R)- resp. F(R)−1-simulations.
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– Part 1:
Let F(R) ⊆ F(P1)× F(P2) be a rule relation. F(BR) is an F(R)-simulation means
according to Definition 49 that

∀(F(G),F(G ′)) ∈ F(BR),X ∈ ObC2 ,F(ρ) ∈ F(P1),m : F(L)→ F(G).

((F(G)
F(ρ),m
=⇒ X)

⇒ (∃X ′ ∈ ObC2 ,F(ρ
′) ∈ F(P2),m ′ : F(L ′)→ F(G ′).

(F(G ′)
F(ρ ′),m ′
=⇒ X ′ ∧ (F(ρ),F(ρ ′)) ∈ F(R) ∧ (X,X ′) ∈ F(BR))))

Assume the premise of the statement and fix G,G ′ ∈ ObC1 , X ∈ ObC2 , ρ ∈ P1 and
m ∈MorC2 . It remains to show the conclusion of the statement.
Since F creates morphisms by assumption, we have the unique match morphism
m : L → G such that F(m) = m. Furthermore, since F creates (direct) transforma-
tions by assumption, we get the transformation step G ρ,m

=⇒ H in AS1 with F(H) ∼= X

leading to the transformation step F(G)
F(ρ),F(m)

=⇒ F(H) in AS3, because transfor-
mation steps are unique up to isomorphism. Since BR ⊆ ObC1 × ObC1 is an R-
bisimulation by assumption, we additionally know that there is also the transformation

step G ′ ρ
′,m ′
=⇒ H ′ in AS2 such that (ρ, ρ ′) ∈ R and (H,H ′) ∈ BR. Since F preserves

commuting diagrams by general functor property and pushouts along M-morphisms

by M-functor property, we have the transformation step F(G ′)
F(ρ ′),F(m ′)

=⇒ F(H ′) in
AS4. Thus, there are an object X ′ = F(H ′) with the transformation step F(G ′)
F(ρ ′),F(m ′)

=⇒ F(H ′) and the match morphism m ′ = F(m ′). This implies that F(BR)
is an F(R)-simulation, because we additionally have that (F(ρ),F(ρ ′)) ∈ F(R) since
(ρ, ρ ′) ∈ R and (F(H),F(H ′)) ∈ F(BR) since (H,H ′) ∈ BR.

F(G)

X ∼= F(H)

F(G ′)

F(H ′) = X ′

G

H

G ′

H ′

F(ρ),m = F(m)
F(ρ ′),F(m ′) = m ′

F(BR)

F(BR)
ρ,m ρ ′,m ′

BR

BR

– Part 2:
F(B−1

R ) is an F(R)−1-simulation means according to Definition 49 that

∀(F(G ′),F(G)) ∈ F(B−1
R ),X ′ ∈ ObC2 ,F(ρ

′) ∈ F(P2),m ′ : F(L ′)→ F(G ′).

((F(G ′)
F(ρ ′),m ′
=⇒ X ′)

⇒ (∃X ∈ ObC2 ,F(ρ) ∈ F(P1),m : F(L)→ F(G).

(F(G)
F(ρ),m
=⇒ X ∧ (F(ρ ′),F(ρ)) ∈ F(R)−1 ∧ (X ′,X) ∈ F(B−1

R ))))

The proof works analogously to the Part 1 above.
• (⇐) :

Let F(BR) ⊆ ObC2 ×ObC2 be an F(R)-bisimulation, i.e., according to Definition 50 F(BR),
F(B−1

R ) are F(R)- resp. F(R)−1-simulations. This means according to Definition 49 for
F(BR) that

∀(F(G),F(G ′)) ∈ F(BR),X ∈ ObC2 ,F(ρ) ∈ F(P1),m : F(L)→ F(G). ((F(G)
F(ρ),m
=⇒ X)
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⇒ (∃X ′ ∈ ObC2 ,F(ρ
′) ∈ F(P2),m ′ : F(L ′)→ F(G ′).

(F(G ′)
F(ρ ′),m ′
=⇒ X ′ ∧ (F(ρ),F(ρ ′)) ∈ F(R) ∧ (X,X ′) ∈ F(BR))))

and for F(B−1
R ) that

∀(F(G ′),F(G)) ∈ F(B−1
R ),X ′ ∈ ObC2 ,F(ρ

′) ∈ F(P2),m ′ : F(L ′)→ F(G ′).

((F(G ′)
F(ρ ′),m ′
=⇒ X ′)

⇒ (∃X ∈ ObC2 ,F(ρ) ∈ F(P1),m : F(L)→ F(G).

(F(G)
F(ρ),m
=⇒ X ∧ (F(ρ ′),F(ρ)) ∈ F(R)−1 ∧ (X ′,X) ∈ F(B−1

R ))))

We have to show that BR ⊆ ObC1 ×ObC1 is an R-bisimulation, i.e., according to Defini-
tion 50 BR, B−1

R are R- resp. R−1-simulations.
– Part 1:
BR is an R-simulation means according to Definition 49 that

∀(G,G ′) ∈ BR,H ∈ ObC1 , ρ ∈ P1,m : L→ G. ((G
ρ,m
=⇒ H)

⇒ (∃H ′ ∈ ObC1 , ρ
′ ∈ P2,m ′ : L ′ → G ′.

(G ′
ρ ′,m ′
=⇒ H ′ ∧ (ρ, ρ ′) ∈ R ∧ (H,H ′) ∈ BR)))

Assume the premise of the statement and fix G,G ′,H ∈ ObC1 , ρ ∈ P1 and m ∈
MorC1 . It remains to show the conclusion of the statement.
Since F preserves commuting diagrams by general functor property and pushouts
along M-morphisms by M-functor property, we have the transformation step F(G)
F(ρ),F(m)

=⇒ F(H) in AS3 with the match morphism F(m) : F(L) → F(G). Since
F(BR) is an F(R)-bisimulation by assumption, we now have the transformation step

F(G ′)
F(ρ ′),m ′
=⇒ X ′ in AS4 such that (F(ρ),F(ρ ′)) ∈ F(R) and (F(H),X ′) ∈ F(BR).

Since F creates morphisms by assumption, we have the unique match morphism
m ′ : L ′ → G ′ such that F(m ′) = m ′. Furthermore, since F creates (direct)

transformations by assumption, we get the transformation step G ′ ρ
′,m ′
=⇒ H ′ in AS2

with F(H ′) ∼= X ′ leading to the transformation step F(G ′)
F(ρ ′),F(m ′)

=⇒ F(H ′)

in AS4, because transformation steps are unique up to isomorphism. This implies
that BR is an R-simulation, because we additionally have that (ρ, ρ ′) ∈ R since it
holds that (F(ρ),F(ρ ′)) ∈ F(R) as well as (H,H ′) ∈ BR, because it holds that
(F(H),F(H ′)) ∈ F(BR) and F creates morphisms (thus also identities implying in-
jectivity of F on objects according to Lemmas 8 and 9) by assumption.

G

H

G ′

H ′

F(G)

F(H) = X

F(G ′)

X ′ ∼= F(H ′)

ρ,m ρ ′,m ′

BR

BR
F(ρ),F(m) = m

F(ρ ′),m ′ = F(m ′)

F(BR)

F(BR)

– Part 2:
B−1
R is an R−1-simulation means according to Definition 49 that

∀(G ′,G) ∈ B−1
R ,H ′ ∈ ObC1 , ρ

′ ∈ P2,m ′ : L ′ → G ′. ((G ′
ρ ′,m ′
=⇒ H ′)
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⇒ (∃H ∈ ObC1 , ρ ∈ P1,m : L→ G. (G
ρ,m
=⇒ H ∧ (ρ ′, ρ) ∈ R−1 ∧ (H ′,H) ∈ B−1

R ))).

The proof works analogously to the Part 1 above.
�

Lemma 15: (R-Bisimulation is Preserved under F-Image Restriction, see page 97)
Consider M-adhesive transformation systems AS1 = (C1,M1,P1), AS2 = (C1,M1,P2),
AS3 = (C2,M2,F(P1)), AS4 = (C2,M2,F(P2)), and an M-functor F : (C1,M1) →
(C2,M2) that creates (direct) transformations according to Theorem 3 and (M-)mor-
phisms. Consider furthermore a rule relation R ⊆ P1×P2 as well as an F(R)-bisimulation
B ′
F(R) ⊆ ObC2 ×ObC2 that is closed under isomorphisms, i.e., IC(B ′

F(R)) = B ′
F(R). Then

BF(R) ⊆ ObC2 ×ObC2 with BF(R) = B
′
F(R) ∩ (F(ObC1)×F(ObC1)) is also an F(R)-bisimu-

lation.

Proof.
Let B ′

F(R) ⊆ ObC2 × ObC2 be an F(R)-bisimulation, i.e., according to Definition 50 B ′
F(R),

B ′−1F(R) are F(R)- resp. F(R)−1-simulations. This means according to Definition 49 for B ′
F(R)

that

∀(G,G ′) ∈ B ′F(R),X ∈ ObC2 ,F(ρ) ∈ F(P1),m : F(L)→ G. ((G
F(ρ),m
=⇒ X)

⇒ (∃X ′ ∈ ObC2 ,F(ρ
′) ∈ F(P2),m ′ : F(L ′)→ G

′.

(G
′ F(ρ ′),m ′

=⇒ X ′ ∧ (F(ρ),F(ρ ′)) ∈ F(R) ∧ (X,X ′) ∈ B ′F(R))))

and for B ′−1F(R) that

∀(G ′,G) ∈ B ′−1F(R),X
′ ∈ ObC2 ,F(ρ

′) ∈ F(P2),m ′ : F(L ′)→ G
′. ((G ′

F(ρ ′),m ′
=⇒ X ′)

⇒ (∃X ∈ ObC2 ,F(ρ) ∈ F(P1),m : F(L)→ G.

(G
F(ρ),m
=⇒ X ∧ (F(ρ ′),F(ρ)) ∈ F(R)−1 ∧ (X ′,X) ∈ B ′−1F(R))))

We have to show that BF(R) ⊆ ObC2 ×ObC2 with BF(R) = B ′
F(R) ∩ (F(ObC1)× F(ObC1))

is an F(R)-bisimulation, i.e., according to Definition 50 BF(R), B
−1
F(R) are F(R)- resp. F(R)−1-

simulations.
• Part 1:
BF(R) is an F(R)-simulation means according to Definition 49 that

∀(F(G),F(G ′)) ∈ BF(R), Y ∈ ObC2 ,F(ρ) ∈ F(P1),m : F(L)→ F(G). ((F(G)
F(ρ),m
=⇒ Y)

⇒ (∃Y ′ ∈ ObC2 ,F(ρ
′) ∈ F(P2),m ′ : F(L ′)→ F(G ′).

(F(G ′)
F(ρ ′),m ′
=⇒ Y ′ ∧ (F(ρ),F(ρ ′)) ∈ F(R) ∧ (Y, Y ′) ∈ BF(R))))

Assume the premise of the statement and fix G,G ′ ∈ ObC1 , Y ∈ ObC2 , ρ ∈ P1 and
m ∈MorC2 . It remains to show the conclusion of the statement.
Since F creates morphisms by assumption, we have the unique match morphismm : L→ G

such that F(m) = m. Furthermore, since F creates (direct) transformations by assumption,
we get the transformation step G ρ,m

=⇒ H in AS1 with F(H) ∼= Y leading to the transforma-

tion step F(G)
F(ρ),F(m)

=⇒ F(H) in AS3, because transformation steps are unique up to iso-
morphism. Because of the definition of BF(R), we additionally know that (F(G),F(G ′)) ∈
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B ′
F(R), which implies according to the assumption above that for the transformation step

F(G)
F(ρ),F(m)

=⇒ F(H) there are object X ′ ∈ ObC2 , a match morphismm ′ : F(L ′)→ F(G ′)

and a rule ρ ′ ∈ P2 such that (ρ, ρ ′) ∈ R and F(G ′)
F(ρ ′),m ′
=⇒ X ′ and (F(H),X ′) ∈ B ′

F(R).
Since F creates morphisms by assumption, we get the unique match morphism m ′ : L ′ →
G ′ such that F(m ′) = m ′. Furthermore, since F creates (direct) transformations by as-

sumption, we get the transformation step G ′ ρ
′,m ′
=⇒ H ′ in AS2 with F(H ′) ∼= X ′ leading

to the transformation step F(G ′)
F(ρ ′),F(m ′)

=⇒ F(H ′) in AS4, because transformation steps
are unique up to isomorphism. Thus, there are an object Y ′ = F(H ′), a rule F(ρ ′), and
a match morphism m ′ = F(m ′) with (F(ρ),F(ρ ′)) ∈ F(R) and the transformation step

F(G ′)
F(ρ ′),F(m ′)

=⇒ F(H ′). Furthermore, we have that (F(H),F(H ′)) ∈ BF(R), because
(F(H),X ′ ∼= F(H ′)) ∈ B ′

F(R) and obviously (F(H),F(H ′)) ∈ (F(ObC1)× F(ObC1)) as
well.

F(G)

Y ∼= F(H)

F(G ′)

X ′ ∼= F(H ′) = Y ′

G

H

G ′

H ′

F(ρ),m = F(m) F(ρ ′),m ′ = F(m ′) = m ′

BF(R) ⊆ B ′F(R)

BF(R) ⊆ B ′F(R)

ρ,m ρ ′,m ′

• Part 2:
B

−1
F(R) is an F(R)−1-simulation means according to Definition 49 that

∀(F(G ′),F(G)) ∈ B −1
F(R), Y

′ ∈ ObC2 ,F(ρ
′) ∈ F(P2),m ′ : F(L ′)→ F(G ′).

((F(G ′)
F(ρ ′),m ′
=⇒ Y ′)⇒ (∃Y ∈ ObC2 ,F(ρ) ∈ F(P1),m : F(L)→ F(G).

(F(G)
F(ρ),m
=⇒ Y ∧ (F(ρ ′),F(ρ)) ∈ F(R)−1 ∧ (Y ′, Y) ∈ B −1

F(R))))

The proof works analogously to the Part 1 above.
�

Lemma 16: (F Preserves E ′ −M Pair Factorization, see page 102)
Consider M-adhesive categories (Ci,Mi) with binary coproducts and Ei −Mi-factoriza-
tions for i ∈ {1, 2} as well as an M-functor F : (C1,M1) → (C2,M2). Then F preserves
E ′ −M pair factorization based on an E−M-factorization if F preserves coproducts and
epimorphisms.

Proof.
Consider arbitrary morphisms m1 : L1 → G and m2 : L2 → G with common codomain in
MorC1 . Construct first an E ′1 −M1 pair factorization of (m1,m2) in (C1,M1) according to
Lemma 1. As given in the diagram below to the left, we get an E ′1 −M1 pair factorization
((o1,o2),m) with oj = e ◦ ij for j ∈ {1, 2}. Applying F to the diagram below to the left,
we get the diagram given below to the right, which commutes as well since functors preserve
commuting diagrams by general functor property. Since F preserves coproducts by assump-
tion, we have that (F(L1+L2),F(i1) : F(L1) → F(L1+L2),F(i2) : F(L2) → F(L1+L2))

is a binary coproduct of (F(L1),F(L2)) in (C2,M2) with induced coproduct morphism F(f) :

F(L1+L2) → F(G). Moreover according to Definition 10, F(L1+L2)
F(e)→ F(K)

F(m)→ F(G)

is an E2 −M2-factorization of the morphism F(f) with F(e) ∈ E2 and F(m) ∈ M2, because
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F preserves monomorphisms and epimorphisms by assumption. Thus using Lemma 1, we get
that ((F(o1) = F(e) ◦ F(i1),F(o2) = F(e) ◦ F(i2)),F(m)) is an E ′2 −M2 pair factorization of
(F(m1),F(m2)).

L1

L1+L2

L2

K

G

i1

i2
e

f

o1

o2

m

m1

m2

F(L1)

F(L1+L2)=F(L1)+F(L2)

F(L2)

F(K)

F(G)

F(i1)

F(i2) F(e)

F(f)

F(o1)

F(o2)

F(m)

F(m1)

F(m2)

�

Lemma 17: (F-Reachable Critical Pairs, see page 103)
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)),
and an M-functor F : (C1,M1)→ (C2,M2) that creates (direct) transformations according
to Theorem 1 and morphisms. Then each critical pair of rules F(ρ1) and F(ρ2) with
overlapping K ∼= F(K) in AS2 is already F-reachable (up to isomorphism).

F(R1) F(K1) F(L1) F(L2) F(K2) F(R2)

P1 N1 K N2 P2

(1) o1 o2

F(l1)F(r1)

v1w1

F(l2) F(r2)

w2v2

Proof.
Consider a critical pair (1) with K = F(K). This implies by creation of (direct) transformations
with F(oi) = oi for i ∈ {1, 2} the following diagram (2)

R1 K1 L1 L2 K2 R2

P ′1 N ′1 K N ′2 P ′2

(2)
o1 o2

l1r1

v1w1

l2 r2

w2v2

with F((2)) ∼= (1). The uniqueness of (direct) transformations with given match morphisms
implies that F((2)) ∼= (3) and hence (1) ∼= (3). This means that (1) is an F-reachable critical
pair.

F(R1) F(K1) F(L1) F(L2) F(K2) F(R2)

F(P1) F(N1) F(K) F(N2) F(P2)

(3)
F(o1) F(o2)

F(l1)F(r1)

F(v1)F(w1)

F(l2) F(r2)

F(w2)F(v2)

�
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Lemma 18: (Completeness of F-Reachable Critical Pair, see page 103)
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)),
an M-functor F : (C1,M1) → (C2,M2) that is compatible with pair factorization, and a

translated parallel dependent transformation span F(H1)
F(ρ1),F(m1)⇐= F(G)

F(ρ2),F(m2)
=⇒

F(H2). Then there is an F-reachable critical pair F(P1)
F(ρ1),F(o1)⇐= F(K)

F(ρ2),F(o2)
=⇒ F(P2)

of rules F(ρ1), F(ρ2) and an embedding given below.

F(P1) F(K) F(P2)

F(H1) F(G) F(H2)

(1) (2)

F(ρ1),F(o1) F(ρ2),F(o2)

F(ρ1),F(m1) F(ρ2),F(m2)

F(m)

Proof.
The translated parallel dependent transformation span F(H1)

F(ρ1),F(m1)⇐= F(G)
F(ρ2),F(m2)

=⇒
F(H2) in AS2 is generated by parallel dependent transformation span H1

ρ1,m1⇐= G
ρ2,m2=⇒ H2 in

AS1. Because of the existence of an E ′1 −M1 pair factorization in AS1, we have completeness of
critical pairs in AS1 using Fact 2 and therefore a critical pair P1

ρ1,o1⇐= K
ρ2,o2=⇒ P2 in AS1 with the

corresponding embedding (see diagram (A) below), where m ◦ o1 = m1 and m ◦ o2 = m2 is an
E ′1-M1 pair factorization with (o1,o2) ∈ E ′1 and m ∈ M1. By assumption that F is compatible
with pair factorization, we have that F(m) ◦ F(o1) = F(m1) and F(m) ◦ F(o2) = F(m2)

is an E ′2-M2 pair factorization with (F(o1),F(o2)) ∈ E ′2 and F(m) ∈ M2. This implies by

construction of critical pairs in [88] and by application of Lemma 17 that F(P1)
F(ρ1),F(o1)⇐=

F(K)
F(ρ2),F(o2)

=⇒ F(P2) is an F-reachable critical pair (see diagram (B) below). Applying F

to the diagram (A) we obtain also an embedding into the given translated parallel dependent

transformation span F(H1)
F(ρ1),F(m1)⇐= F(G)

F(ρ2),F(m2)
=⇒ F(H2), because F(m) ∈ M2. Now

the lower part of the diagram (B) corresponds to the extension diagrams (1) and (2) since F

preserves pushouts along M-morphisms using the proof of the Completeness of Critical Pairs
Lemma in [88].

R1 K1 L1 L2 K2 R2

P1 N1 K N2 P2

H1 D1 G D2 H2

(A)
w1 v1

m

o1 o2

v2 w2

m1 m2



appendices 287

F(R1) F(K1) F(L1) F(L2) F(K2) F(R2)

F(P1) F(N1) F(K) F(N2) F(P2)

F(H1) F(D1) F(G) F(D2) F(H2)

(B)
F(w1) F(v1)

F(m)

F(o1) F(o2)

F(v2) F(w2)

F(m1) F(m2)

�

Lemma 19: (Creation of Compatibility of Nested Application Conditions, see page 110)
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)),
where P are rules with nested application conditions, and an M-functor F : (C1,M1) →
(C2,M2) that creates (M-)morphisms. Then F creates compatibility of nested application
conditions, i.e.,

(F(acP)⇒ F(ac ′P)) implies (acP ⇒ ac ′P).

Proof.
We have to show that acP ⇒ ac ′P, i.e., according to Definition 27 that ∀p : P → G.((p |=

acP)⇒ (p |= ac ′P)).
Fix p : P → G. p |= acP. Then by Lemma 11 we have that F(p) |= F(acP). Using the
assumption that F(acP) ⇒ F(ac ′P) and Definition 27 we also have that F(p) |= F(ac ′P). This
implies by Lemma 11 that p |= ac ′P. �

Lemma 20: (F(AC)-Compatibility Implies AC-Compatibility, see page 111)
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)),
where P are rules with nested application conditions, and an M-functor F : (C1,M1) →
(C2,M2) that preserves pullbacks of M-morphisms and creates (M-)morphisms. Then
two AC-disregarding transformations are AC-compatible if they are F(AC)-compatible.

Proof.

Transformations P1
ρ1,o1⇐= K

ρ2,o2=⇒ P2 are F(AC)-compatible
Def. 58⇔ (F(acK)∧F(ac∗K))⇒ (F(ac(t1))∧F(ac(t2))), where ti , K

ρi,oi=⇒ Pi
t ′i ∗=⇒ K ′

are extended AC-disregarding transformations with derived nested application

conditions ac(ti) on K for i ∈ {1, 2}
Def. 47⇔ F(acK ∧ ac∗K)⇒ F(ac(t1)∧ ac(t2)), where ti , K

ρi,oi=⇒ Pi
t ′i ∗=⇒ K ′ are

extended AC-disregarding transformations with derived nested application

conditions ac(ti) on K for i ∈ {1, 2}
Lem. 19⇒ (acK ∧ ac∗K)⇒ (ac(t1)∧ ac(t2)), where ti , K

ρi,oi=⇒ Pi
t ′i ∗=⇒ K ′ are

extended AC-disregarding transformations with derived nested application

conditions ac(ti) on K for i ∈ {1, 2}
Def. 28⇔ Transformations P1

ρ1,o1⇐= K
ρ2,o2=⇒ P2 are AC-compatible
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K

P1

P2

K ′

∗

∗

ρ1,o1

ρ2,o2

t ′1

t ′2

�

Lemma 21: (Preservation and Creation of Plain Strict Confluence, see page 112)
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)),
where P are rules with nested application conditions, an M-functor F : (C1,M1) →
(C2,M2) that preserves pullbacks of M-morphisms as well as creates morphisms, and
local confluence diagrams (1) in AS1 and (2) in AS2 with F(1) = (2). Then the diagram
(1) is plain strictly confluent iff the diagram (2) is plain strictly confluent.

K

N1 N2

N

(PB)

P1 P2(3) (4)

N3 N4

K ′

(5)

(1)

ρ1,o1 ρ2,o2

∗ ∗

v1 v2

z1 z2

z3 z4

w1

v3

w2

v4

w3 w4

F(K)

F(N1) F(N2)

F(N)

(PB)

F(P1) F(P2)(6) (7)

F(N3) F(N4)

F(K ′)

(8)

(2)

F(ρ1),F(o1) F(ρ2),F(o2)

∗ ∗

F(v1) F(v2)

F(z1) F(z2)

F(z3) F(z4)

F(w1)

F(v3)

F(w2)

F(v4)
F(w3) F(w4)

Proof.
• (⇒):

Let (1) be a strict confluence diagram with a pullback (N, z1, z2) in diagram (1) with
z1, z2 ∈ M1

1 leading to the corresponding pullback (F(N),F(z1),F(z2)) in diagram (2)

with F(z1),F(z2) ∈M2, because F preserves pullbacks of M-morphisms by assumption. If
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(1) is strictly confluent, then we have according to Definition 14 that there exist morphisms
z3 : N→ N3 and z4 : N→ N4, such that subdiagrams (3), (4) and (5) commute. Now, by
application of functor F to the morphisms z3 and z4 from diagram (1) we get the morphisms
F(z3) and F(z4) in diagram (2), such that the corresponding subdiagrams (6), (7) and (8)

commute as well, because F preserves commuting diagrams by general functor property.
This implies that (2) is a strict confluence diagram.

• (⇐):
Let (2) be a strict confluence diagram. Construct a pullback (N, z1, z2) in diagram (1)

with z1, z2 ∈M1
1 leading to the corresponding pullback (F(N),F(z1),F(z2)) in diagram

(2) with F(z1),F(z2) ∈ M2, because F preserves pullbacks of M-morphisms by assump-
tion. Strict confluence of diagram (2) means according to Definition 14, that there exist
morphisms z ′3 : F(N)→ F(N3) and z ′4 : F(N)→ F(N4), such that subdiagrams (6), (7)
and (8) commute. Applying morphism creation property given by assumption, we get for
every morphism from diagram (2) the corresponding morphism in diagram (1), such that
F applied to every morphism in diagram (1) equals to the corresponding given morphism
in diagram (2). Furthermore, the uniqueness of morphism creation implies commutativity
of every subdiagram of (1) and hence strict confluence of the whole diagram (1).

�

Lemma 22: (F is Compatible with Shift-Transformation, see page 114)
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)),
where P are rules with nested application conditions, and an M-functor F : (C1,M1) →
(C2,M2) that preserves and creates E ′-instances according to Definition 61. Then F is
compatible with the Shift-transformation, i.e.,

∀acP,b : P → P ′. F(Shift(b,acP)) = Shift(F(b),F(acP)).

Proof (by Induction over the Depth of a Nested Application Condition).
Fix acP over the object P and b : P → P ′.
Basis :

Let acP = true. Then we have:

F(Shift(b, true))
Rem. 4
= F(true)

Def. 47
= true

Rem. 4
= Shift(F(b), true)

Def. 47
= Shift(F(b),F(true))

Induction Step :

It remains to show under the corresponding Induction Hypothesis:
1. ∀a : P → C. F(Shift(b, ∃(a,acC))) = Shift(F(b),F(∃(a,acC))),
2. F(Shift(b,¬acP)) = Shift(F(b),F(¬acP)),
3. F(Shift(b,

∧
i∈I acP,i)) = Shift(F(b),F(

∧
i∈I acP,i)),

4. F(Shift(b,
∨
i∈I acP,i)) = Shift(F(b),F(

∨
i∈I acP,i)).

1 Obviously it holds that l1, l2 ∈ M1 and thus also the opposite morphisms v1, v2 in the corresponding
pushout diagrams from the weak critical pair definition are in M1. Similarly, z1, z2 are the opposite mor-
phisms of v1, v2 in the pullback diagram (PB) in diagram (1) and hence z1, z2 ∈M1.
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acP.P

acC.C

P ′

C ′

(1)

b

a

b ′

a ′

F(acP).F(P)

F(acC).F(C)

F(P ′)

C ′′= F(C ′)

(2)

F(b)

F(a)

b ′′

a ′′

1. Fix a : P → C.
• Case 1: F = {(a ′,b ′) ∈ E ′1 | b

′ ∈M1 ∧ (1) commutes} = ∅:

F(Shift(b, ∃(a,acC)))
Rem. 4
= F(false) ≡ F(¬true)

Def. 47
= ¬(F(true))

Def. 47
= ¬true ≡ false

(∗)
= Shift(F(b), ∃(F(a),F(acC)))

Def. 47
= Shift(F(b),F(∃(a,acC)))

Where (∗) holds by Remark 4, because F ′ = {(a ′′,b ′′) ∈ E ′2 | b
′′ ∈M2

∧ (2) commutes} = ∅ since F creates E ′1-instances from E
′
2-instances.

• Case 2: F = {(a ′,b ′) ∈ E ′1 | b
′ ∈M1 ∧ (1) commutes} 6= ∅:

F(Shift(b, ∃(a,acC)))
Rem. 4
= F(

∨
(a ′,b ′)∈F

∃(a ′, Shift(b ′,acC)))

Def. 47
=

∨
(a ′,b ′)∈F

F(∃(a ′, Shift(b ′,acC)))

Def. 47
=

∨
(a ′,b ′)∈F

∃(F(a ′),F(Shift(b ′,acC)))

(∗1)
=

∨
(a ′,b ′)∈F

∃(F(a ′), Shift(F(b ′),F(acC)))

Def. F
=

∨
(a ′,b ′)∈{(a ′,b ′)∈E ′1|b ′∈M1 ∧ a ′◦b=b ′◦a}

∃(F(a ′), Shift(F(b ′),F(acC)))

Index Shifting
=

∨
(a ′′,b ′′)∈{(a ′′,b ′′)∈F(E ′1)|b

′′∈F(M1) ∧ a ′′◦F(b)=b ′′◦F(a)}

∃(a ′′, Shift(b ′′,F(acC)))

Def. 61 (1,2) + M- funct. prop.
=

∨
(a ′′,b ′′)∈

{
(a ′′,b ′′)∈E ′2|b ′′∈M2 ∧ a ′′◦F(b)=b ′′◦F(a)

}∃(a ′′, Shift(b ′′,F(acC)))

Def. F ′
=

∨
(a ′′,b ′′)∈F ′

∃(a ′′, Shift(b ′′,F(acC)))

Rem. 4 + (∗2)
= Shift(F(b), ∃(F(a),F(acC)))

Def. 47
= Shift(F(b),F(∃(a,acC)))

(∗1): Is equal by induction hypothesis, which states that for some acC over the object
C holds: ∀b ′ : C→ C ′. F(Shift(b ′,acC)) = Shift(F(b ′),F(acC)).



appendices 291

(∗2): F ′ 6= ∅, because each E ′1-instance from F 6= ∅, as given by assumption of the
considered case, can be translated into the corresponding E

′
2-instance since E

′
2 =

F(E ′1) by Definition 61.
Furthermore, index shifting means the following:∨

(i1,i2)∈A

G(F(i1),F(i2)) =
∨

(j1,j2)∈F(A)

G(j1, j2),

where G(x,y) , ∃(x, Shift(y,F(acC))).
2.

F(Shift(b,¬acP))
Rem. 4
= F(¬(Shift(b,acP)))

Def. 47
= ¬(F(Shift(b,acP)))

(∗3)
= ¬(Shift(F(b),F(acP)))

Rem. 4
= Shift(F(b),¬(F(acP)))

Def. 47
= Shift(F(b),F(¬acP))

(∗3): Is equal by induction hypothesis, which states that for some acP over the object P
holds: ∀b : P → P ′. F(Shift(b,acP)) = Shift(F(b),F(acP)).

3.

F(Shift(b,
∧
i∈I
acP,i))

Rem. 4
= F(

∧
i∈I

Shift(b,acP,i))

Def. 47
=

∧
i∈I

F(Shift(b,acP,i))
(∗4)
=
∧
i∈I

Shift(F(b),F(acP,i))

Rem. 4
= Shift(F(b),

∧
i∈I

F(acP,i))
Def. 47
= Shift(F(b),F(

∧
i∈I
acP,i))

4.

F(Shift(b,
∨
i∈I
acP,i))

Rem. 4
= F(

∨
i∈I

Shift(b,acP,i))

Def. 47
=

∨
i∈I

F(Shift(b,acP,i))
(∗4)
=
∨
i∈I

Shift(F(b),F(acP,i))

Rem. 4
= Shift(F(b),

∨
i∈I

F(acP,i))
Def. 47
= Shift(F(b),F(

∨
i∈I
acP,i))

(∗4): Is equal by induction hypothesis, which states that for some acP,i (i ∈ I) over the
object P holds: ∀b : P → P ′. F(Shift(b,acP,i)) = Shift(F(b),F(acP,i)).

�

Lemma 23: (F is Compatible with L-Transformation, see page 114)
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)),
where P are rules with nested application conditions, and an M-functor F : (C1,M1) →
(C2,M2) that translates and creates rule applicability according to Theorem 3 as well as
preserves pullbacks of M-morphisms. Then F is compatible with the L-transformation,
i.e.,

∀acR, ρ ∈ P ∪ P∗. F(L(ρ,acR)) = L(F(ρ),F(acR))

where P∗ is a set of derived rules in AS1.
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Proof (by Induction over the Depth of a Nested Application Condition).
Fix acR over the object R and ρ ∈ P ∪ P∗.
Basis :

Let acR = true. Then we have:

F(L(ρ, true))
Rem. 5
= F(true)

Def. 47
= true

Rem. 5
= L(F(ρ), true)

Def. 47
= L(F(ρ),F(true))

Induction Step :

It remains to show under the corresponding Induction Hypothesis:
1. ∀a : R→ H. F(L(ρ, ∃(a,acH))) = L(F(ρ),F(∃(a,acH)))
2. F(L(ρ,¬acR)) = L(F(ρ),F(¬acR))
3. F(L(ρ,

∧
i∈I acR,i)) = L(F(ρ),F(

∧
i∈I acR,i))

4. F(L(ρ,
∨
i∈I acR,i)) = L(F(ρ),F(

∨
i∈I acR,i))

acR

O

L(ρ∗,acH)
M

acH

M

L K R

G D H

(1)

ρ∗ :

ρ :

(2)b a

l r

r∗l∗

F(acR)

O

L(F(ρ∗),F(acH))
M

F(acH)
M

F(L) F(K) F(R)

F(G) F(D) F(H)

(3)

F(ρ∗) :

F(ρ) :

(4)F(b) F(a)

F(l) F(r)

F(r∗)F(l∗)

1. Fix a : R→ H.
• Case 1: (r,a) has no pushout complement in (1):

F(L(ρ, ∃(a,acH)))
Rem. 5
= F(false) ≡ F(¬true)

Def. 47
= ¬(F(true))

Def. 47
= ¬true ≡ false

(∗1)
= L(F(ρ), ∃(F(a),F(acH)))

Def. 47
= L(F(ρ),F(∃(a,acH)))

Where (∗1) holds because (F(r),F(a)) has no pushout complement in (3) since F

creates rule applicability.
• Case 2: (r,a) has a pushout complement in (1) and ρ∗ = (G ← D → H) is the

derived rule by constructing the pushout (2):

F(L(ρ, ∃(a,acH)))
Rem. 5
= F(∃(b, L(ρ∗,acH)))

Def. 47
= ∃(F(b),F(L(ρ∗,acH)))

(∗2)
= ∃(F(b), L(F(ρ∗),F(acH)))

Rem. 5 + (∗3)
= L(F(ρ), ∃(F(a),F(acH)))

Def. 47
= L(F(ρ),F(∃(a,acH)))
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Where (∗2) holds by induction hypothesis, which states that for some acH over the ob-
ject H holds: ∀ρ∗ ∈ P∗. F(L(ρ∗,acH) = L(F(ρ∗),F(acH)) and (∗3) holds, because
(F(r),F(a)) has a pushout complement in (3) since F translates rule applicability
and F(ρ∗) is the derived rule of the translated direct transformation.

2.

F(L(ρ,¬acR))
Rem. 5
= F(¬(L(ρ,acR)))

Def. 47
= ¬(F(L(ρ,acR)))

(∗4)
= ¬(L(F(ρ),F(acR)))

Rem. 5
= L(F(ρ),¬(F(acR)))

Def. 47
= L(F(ρ),F(¬acR))

Where (∗4) holds by induction hypothesis, which states that for some acR over the object R
holds: ∀ρ ∈ P. F(L(ρ,acR)) = L(F(ρ),F(acR)).

3.

F(L(ρ,
∧
i∈I
acR,i))

Rem. 5
= F(

∧
i∈I

L(ρ,acR,i))

Def. 47
=

∧
i∈I

F(L(ρ,acR,i))
(∗5)
=
∧
i∈I

L(F(ρ),F(acR,i))

Rem. 5
= L(F(ρ),

∧
i∈I

F(acR,i))
Def. 47
= L(F(ρ),F(

∧
i∈I
acR,i))

4.

F(L(ρ,
∨
i∈I
acR,i))

Rem. 5
= F(

∨
i∈I

L(ρ,acR,i))

Def. 47
=

∨
i∈I

F(L(ρ,acR,i))
(∗5)
=
∨
i∈I

L(F(ρ),F(acR,i))

Rem. 5
= L(F(ρ),

∨
i∈I

F(acR,i))
Def. 47
= L(F(ρ),F(

∨
i∈I
acR,i))

Where (∗5) holds by induction hypothesis, which states that for some acR,i (i ∈ I) over the
object R holds: ∀ρ ∈ P. F(L(ρ,acR,i)) = L(F(ρ),F(acR,i)).

�

Lemma 24: (AC(F)-Compatibility Implies F(AC)-Compatibility, see page 115)
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)),
where P are rules with nested application conditions, and an M-functor F : (C1,M1) →
(C2,M2) that creates morphisms and is compatible with Shift- and L-transformations
according to Lemmas 22 and 23. Then two AC-disregarding transformations P1

ρ1,o1⇐=
K
ρ2,o2=⇒ P2 are F(AC)-compatible if their corresponding translations by the M-functor F

are AC(F)-compatible.

K

P1

P2

K ′

∗

∗

ρ1,o1

ρ2,o2

t ′1

t ′2

t1

t2
F(K)

F(P1)

F(P2)

F(K ′)

∗

∗

F(ρ1),F(o1)

F(ρ2),F(o2)

F(t ′1)

F(t ′2)

F(t1)

F(t2)
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Proof.
We have to show the following three steps which lead in Step 4 to the desired result:

• Step 1: F(acK) = acF(K)

F(acK)
Def. 25
= F(Shift(o1,acL1)∧ Shift(o2,acL2))

Lem. 22
= Shift(F(o1),F(acL1))∧ Shift(F(o2),F(acL2))

Def. 56
= acF(K)

• Step 2: F(ac∗K) = ac
∗
F(K)

F(ac∗K)
Def. 25
= F(¬(ac∗K,d12 ∧ ac

∗
K,d21))

– Case 1: ∃d12 : L1 → N2,d21 : L2 → N1.v2 ◦ d12 = o1 ∧ v1 ◦ d21 = o2

F(¬(ac∗K,d12 ∧ ac
∗
K,d21))

Def. 25
= F(¬(L(p∗2, Shift(w2 ◦ d12,acL1))∧ ac

∗
K,d21))

Def. 25
= F(¬(L(p∗2, Shift(w2 ◦ d12,acL1))

∧ L(p∗1, Shift(w1 ◦ d21,acL2))))
Def. 47
= ¬(F(L(p∗2, Shift(w2 ◦ d12,acL1))

∧ L(p∗1, Shift(w1 ◦ d21,acL2))))
Def. 47
= ¬(F(L(p∗2, Shift(w2 ◦ d12,acL1)))

∧F(L(p∗1, Shift(w1 ◦ d21,acL2))))
Lem. 23
= ¬(L(F(p∗2),F(Shift(w2 ◦ d12,acL1)))

∧ L(F(p∗1),F(Shift(w1 ◦ d21,acL2))))
Lem. 22
= ¬(L(F(p∗2), Shift(F(w2 ◦ d12),F(acL1)))

∧ L(F(p∗1), Shift(F(w1 ◦ d21),F(acL2))))
funct. prop.

= ¬(L(F(p∗2), Shift(F(w2) ◦F(d12),F(acL1)))
∧ L(F(p∗1), Shift(F(w1) ◦F(d21),F(acL2))))
Def. 56 + (∗1)

= ¬(ac∗F(K),d ′12

∧ L(F(p∗1), Shift(F(w1) ◦F(d21),F(acL2))))
Def. 56 + (∗1)

= ¬(ac∗F(K),d ′12
∧ ac∗F(K),d ′21

)

Def. 56
= ac∗F(K)

Where (∗1) holds since there are morphisms d ′12 : F(L1) → F(N2) and d ′21 :

F(L2) → F(N1) with d ′12 = F(d12), d ′21 = F(d21) such that F(v2) ◦ F(d12) =

F(o1) and F(v1) ◦ F(d21) = F(o2), because v2 ◦ d12 = o1 and v1 ◦ d21 = o2 by
assumption and functors preserve commuting diagrams.

– Case 2: @d12 : L1 → N2.v2 ◦ d12 = o1 ∧ @d21 : L2 → N1.v1 ◦ d21 = o2

F(¬(ac∗K,d12 ∧ ac
∗
K,d21))
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Def. 25
= F(¬(false∧ ac∗K,d21))

Def. 25
= F(¬(false∧ false))

Def. 47
= ¬(F(false∧ false))

Def. 47
= ¬(F(false)∧F(false))

Def. 47
= ¬(false∧ false)

Def. 56 + (∗2)
= ¬(ac∗F(K),d ′12

∧ false)

Def. 56 + (∗2)
= ¬(ac∗F(K),d ′12

∧ ac∗F(K),d ′21
)

Def. 56
= ac∗F(K)

Where (∗2) holds since there are no morphisms d ′12 : F(L1) → F(N2) and d ′21 :

F(L2) → F(N1) such that F(v2) ◦ d ′12 = F(o1) and F(v1) ◦ d ′21 = F(o2), because
assuming that there are such morphisms and using the fact that F creates morphisms
we get the existence of morphisms d12 : L1 → N2, d21 : L2 → N1 with d ′12 =

F(d12) and d ′21 = F(d21) such that v2 ◦ d12 = o1 and v1 ◦ d21 = o2, which is a
contradiction to our assumption.

– Case 3: ∃d12 : L1 → N2.v2 ◦ d12 = o1 ∧ @d21 : L2 → N1.v1 ◦ d21 = o2
F(¬(ac∗K,d12 ∧ ac

∗
K,d21))

Def. 25
= F(¬(L(p∗2, Shift(w2 ◦ d12,acL1))∧ ac

∗
K,d21))

Def. 25
= F(¬(L(p∗2, Shift(w2 ◦ d12,acL1))∧ false))

Def. 47
= ¬(F(L(p∗2, Shift(w2 ◦ d12,acL1))∧ false))

Def. 47
= ¬(F(L(p∗2, Shift(w2 ◦ d12,acL1)))∧F(false))

Def. 47
= ¬(F(L(p∗2, Shift(w2 ◦ d12,acL1)))∧ false)

Lem. 23
= ¬(L(F(p∗2),F(Shift(w2 ◦ d12,acL1)))∧ false)

Lem. 22
= ¬(L(F(p∗2), Shift(F(w2 ◦ d12),F(acL1)))∧ false)

funct. prop.
= ¬(L(F(p∗2), Shift(F(w2) ◦F(d12),F(acL1)))∧ false)

Def. 56 + (∗3)
= ¬(ac∗F(K),d ′12

∧ false)

Def. 56 + (∗3)
= ¬(ac∗F(K),d ′12

∧ ac∗F(K),d ′21
)

Def. 56
= ac∗F(K)

Where (∗3) holds since there is a morphism d ′12 : F(L1) → F(N2) with d ′12 =

F(d12) such that F(v2) ◦ F(d12) = F(o1), because v2 ◦ d12 = o1 by assumption
and functors preserve commuting diagrams. Furthermore, there is no morphism d ′21 :

F(L2)→ F(N1) such that F(v1) ◦d ′21 = F(o2), because assuming that there is such
a morphism and using the fact that F creates morphisms we get the existence of the
morphism d21 : L2 → N1 with d ′21 = F(d21) such that v1 ◦ d21 = o2, which is a
contradiction to our assumption.
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– Case 4: ∃d21 : L2 → N1.v1 ◦ d21 = o2 ∧ @d12 : L1 → N2.v2 ◦ d12 = o1
This case works analogously to the Case 3.

acL1
O

acL2
O

acK
O

ac∗K

M

p1 :

p∗1 :

: p2

: p∗2

R1 K1 L1 L2 K2 R2

P1 N1 K N2 P2

d12d21

o1 o2

v1w1 w2v2

F(acL1)
O

F(acL2)
O

acF(K)
O

ac∗
F(K)

M

F(p1) :

F(p∗1) :

: F(p2)

: F(p∗2)

F(R1) F(K1) F(L1) F(L2) F(K2) F(R2)

F(P1) F(N1) F(K) F(N2) F(P2)

d ′12d ′21

F(o1) F(o2)

F(v1)F(w1) F(w2)F(v2)

• Step 3: F(ac(ti)) = ac(F(ti)) for i ∈ {1, 2}
– Case 1: ti : G0 ⇒ G0 with the length of transformation | ti |= 0

F(ac(ti))
Def. 22
= F(true)

Def. 47
= true

|F(ti)|=0
= ac(F(ti))

– Case 2: ti : G0
ρ1,m1⇒ G1 with the length of transformation | ti |= 1

F(ac(ti))
Def. 22
= F(Shift(m1,acL1))

Lem. 22
= Shift(F(m1),F(acL1))

Def. 54
= ac(F(ti))

– Case 3: ti : G0
∗⇒ Gn

ρn+1,mn+1
=⇒ Gn+1 with the length of transformation | ti |> 2

Proof by Induction over the length of transformation:
Basis :

Let ti : G0 ⇒ G1 ⇒ G2 with the length of transformation | ti |= 2:

F(ac(ti : G0 ⇒ G1 ⇒ G2))

Def. 22
= F(ac(t1 : G0 ⇒ G1)∧ L(p∗1,ac(t2 : G1 ⇒ G2)))

|t1|=1
= F(Shift(m1,acL1)∧ L(p∗1,ac(t2 : G1 ⇒ G2)))

|t2|=1
= F(Shift(m1,acL1)∧ L(p∗1, Shift(m2,acL2)))

Def. 47
= F(Shift(m1,acL1))∧F(L(p∗1, Shift(m2,acL2)))

Lem. 23
= F(Shift(m1,acL1))∧ L(F(p∗1),F(Shift(m2,acL2)))

Lem. 22
= Shift(F(m1),F(acL1))∧ L(F(p∗1), Shift(F(m2),F(acL2)))

Def. 54
= ac(F(t1) : F(G0)⇒ F(G1))

∧ L(F(p∗1),ac(F(t2) : F(G1)⇒ F(G2)))

Def. 54
= ac(F(ti) : F(G0)⇒ F(G1)⇒ F(G2))
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Induction Hypothesis :

For some t ′i : G0
∗⇒ Gn with the length of transformation | t ′i |= n > 2 holds

F(ac(t ′i : G0
∗⇒ Gn)) = ac(F(t

′
i) : F(G0)

∗⇒ F(Gn)).
It remains to show:
For ti : G0

∗⇒ Gn ⇒ Gn+1 with the length of transformation | ti |= n+ 1 > 3

holds F(ac(ti : G0
∗⇒ Gn+1)) = ac(F(ti) : F(G0)

∗⇒ F(Gn+1)).
Induction Step :

F(ac(ti : G0
∗⇒ Gn+1))

Def. 22
= F(ac(t ′i : G0

∗⇒ Gn)∧ L(p∗n,ac(tn+1 : Gn ⇒ Gn+1)))

Def. 47
= F(ac(t ′i : G0

∗⇒ Gn))∧F(L(p∗n,ac(tn+1 : Gn ⇒ Gn+1)))

Ind. H.
= ac(F(t ′i) : F(G0)

∗⇒ F(Gn))∧F(L(p∗n,ac(tn+1 : Gn ⇒ Gn+1)))

Lem. 23
= ac(F(t ′i) : F(G0)

∗⇒ F(Gn))∧ L(F(p∗n),F(ac(tn+1 : Gn ⇒ Gn+1)))

|tn+1|=1
= ac(F(t ′i) : F(G0)

∗⇒ F(Gn))∧ L(F(p∗n),F(Shift(mn+1,acLn+1)))
Lem. 22
= ac(F(t ′i) : F(G0)

∗⇒ F(Gn))∧ L(F(p∗n), Shift(F(mn+1),F(acLn+1)))
Def. 54
= ac(F(t ′i) : F(G0)

∗⇒ F(Gn))

∧ L(F(p∗n),ac(F(tn+1) : F(Gn)⇒ F(Gn+1)))

Def. 54
= ac(F(ti) : F(G0)

∗⇒ F(Gn+1))

acL1
O

acLn+1
O

L1 K1 R1 Ln+1 Kn+1 Rn+1

G1
∗⇒G0 D0 Gn Dn+1 Gn+1

p∗n

m1
mn+1

F(acL1)

O
F(acLn+1)

O
F(L1) F(K1) F(R1) F(Ln+1) F(Kn+1) F(Rn+1)

F(G1) ∗⇒F(G0) F(D0) F(Gn) F(Dn+1) F(Gn+1)

F(p∗n)

F(m1)
F(mn+1)

• Step 4: Then we have the following.

Translated transformations F(P1)
F(ρ1),F(o1)⇐= F(K)

F(ρ2),F(o2)
=⇒ F(P2) are

AC(F)-compatible
Def. 59⇔ (acF(K) ∧ ac

∗
F(K))⇒ (ac(F(t1))∧ ac(F(t2))), where F(ti) , F(K)

F(ρi),F(oi)
=⇒ F(Pi)

F(t ′i) ∗=⇒ F(K ′) are translated extended AC-disregarding transfor-

mations with translated derived nested application conditions ac(F(ti)) on F(K)
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for i ∈ {1, 2}
Steps 1,2,3⇒ (F(acK)∧F(ac∗K))⇒ (F(ac(t1))∧F(ac(t2))), where ti , K

ρi,oi=⇒ Pi

t ′i ∗=⇒ K ′ are extended AC-disregarding transformations with derived nested applica-

tion conditions ac(ti) on K for i ∈ {1, 2}
Def. 58⇔ Transformations P1

ρ1,o1⇐= K
ρ2,o2=⇒ P2 are F(AC)-compatible

K

P1

P2

K ′

∗

∗

ρ1,o1

ρ2,o2

t ′1

t ′2

t1

t2
F(K)

F(P1)

F(P2)

F(K ′)

∗

∗

F(ρ1),F(o1)

F(ρ2),F(o2)

F(t ′1)

F(t ′2)

F(t1)

F(t2)

�

Lemma 25: (AC(F)-Compatibility Implies AC-Compatibility [213], see page 115)
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)),
where P are rules with nested application conditions, and an M-functor F : (C1,M1) →
(C2,M2) that creates (M-)morphisms and is compatible with Shift- and L-transforma-
tions according to Lemmas 22 and 23. Then two AC-disregarding transformations P1

ρ1,o1⇐=
K
ρ2,o2=⇒ P2 are AC-compatible if their corresponding translations by the M-functor F are

AC(F)-compatible.

K

P1

P2

K ′

∗

∗

ρ1,o1

ρ2,o2

t ′1

t ′2

t1

t2
F(K)

F(P1)

F(P2)

F(K ′)

∗

∗

F(ρ1),F(o1)

F(ρ2),F(o2)

F(t ′1)

F(t ′2)

F(t1)

F(t2)

Proof.
Assume that two translated AC-disregarding transformations F(P1)

F(ρ1),F(o1)⇐= F(K)
F(ρ2),F(o2)

=⇒ F(P2) are AC(F)-compatible. Then by Lemma 24 we also have that the transfor-
mations P1

ρ1,o1⇐= K
ρ2,o2=⇒ P2 are F(AC)-compatible. This implies the AC-compatibility of AC-

disregarding transformations P1
ρ1,o1⇐= K

ρ2,o2=⇒ P2 by application of Lemma 20. �

Lemma 26: (Preservation of (Weak) Critical Pairs [213], see page 116)
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P)),
where P are rules with nested application conditions, a (weak) critical pair P1

ρ1,o1⇐= K
ρ2,o2=⇒

P2 in AS1, and an M-functor F : (C1,M1)→ (C2,M2) that creates (M-)morphisms and is
compatible with E ′ −M pair factorization as well as with Shift- and L-transformations.

Then F(P1)
F(ρ1),F(o1)⇐= F(K)

F(ρ2),F(o2)
=⇒ F(P2) is the corresponding F-reachable (weak)

critical pair in AS2.
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Proof.
• Let P1

ρ1,o1⇐= K
ρ2,o2=⇒ P2 be a weak critical pair in AS1. This means according to Def-

inition 25, that P1
ρ1,o1⇐= K

ρ2,o2=⇒ P2 is a pair of AC-disregarding transformations with
(o1,o2) ∈ E ′1. Applying the assumption that F translates rule applicability, we get the cor-

responding AC-disregarding pair of transformations F(P1)
F(ρ1),F(o1)⇐= F(K)

F(ρ2),F(o2)
=⇒

F(P2) in AS2 by constructing for each transformation within the double pushout dia-
gram first the corresponding pushout complement, because F preserves pushouts along
M-morphisms according to the M-functor property from Definition 41, and subsequently
the second pushout diagram, because of the same reason as mentioned before (for more de-
tails see the proof of Theorem 1). This pair of transformations in AS2 (see the picture
below) is an F-reachable critical pair in the sense of the plain case, because all objects and
morphisms within the constructed double pushout diagrams are F-images and we also have
(F(o1),F(o2)) ∈ E ′2, because F is compatible with pair factorization by assumption. So

we get that F(P1)
F(ρ1),F(o1)⇐= F(K)

F(ρ2),F(o2)
=⇒ F(P2) is an F-reachable weak critical pair.

F(acL1)
O

F(acL2)
O

acF(K)
O

ac∗
F(K)

M

F(R1) F(K1) F(L1) F(L2) F(K2) F(R2)

F(P1) F(N1) F(K) F(N2) F(P2)

d ′12d ′21

F(o1) F(o2)

F(v1)F(w1) F(w2)F(v2)

• Let P1
ρ1,o1⇐= K

ρ2,o2=⇒ P2 be a critical pair in AS1. This means according to Defini-
tion 26, that P1

ρ1,o1⇐= K
ρ2,o2=⇒ P2 is a weak critical pair with induced extension and

conflict-inducing nested application conditions acK and ac∗K, respectively, and it holds
additionally that if we embed the considered weak critical pair into a pair of AC-regarding
transformations H1

ρ1,m1⇐= G
ρ2,m2=⇒ H2, then there is an M1-morphism m : K → G,

such that m |= acK ∧ ac∗K and morphisms mi = m ◦ oi for i ∈ {1, 2} satisfy the
gluing condition, i.e., mi has a pushout complement Di with respect to the plain de-
rived rule pi for i ∈ {1, 2} (see the picture below, where diagrams (1)-(8) are pushouts).
Now we can construct the corresponding pair of translated AC-regarding transformations

F(H1)
F(ρ1),F(m1)⇐= F(G)

F(ρ2),F(m2)
=⇒ F(H2), because F translates rule applicability,

i.e., for both transformations we have pushout complements F(D1), F(D2) and can sub-
sequently construct the respective second pushout completing the corresponding double
pushout diagrams (for details see the proof of Theorem 1). Furthermore, applying F to
the weak critical pair P1

ρ1,o1⇐= K
ρ2,o2=⇒ P2, we get the F-reachable weak critical pair

F(P1)
F(ρ1),F(o1)⇐= F(K)

F(ρ2),F(o2)
=⇒ F(P2) with induced translated extension and conflict-

inducing nested application conditions on F(K), acF(K) and ac∗
F(K), respectively, accord-

ing to the previous part of the proof. Because F is compatible with pair factorization, we
have that there is the morphism F(m) : F(K) → F(G) such that F(m) ◦ F(oi) = F(mi)

for i ∈ {1, 2} and F(m) ∈ M2. Moreover, because F translates pushouts along M-
morphisms according to the M-functor property, we get that also the diagrams (9)-(16)
are pushouts obtaining the corresponding embedding of the F-reachable weak critical pair

F(P1)
F(ρ1),F(o1)⇐= F(K)

F(ρ2),F(o2)
=⇒ F(P2) into the considered pair of translated transfor-

mations F(H1)
F(ρ1),F(m1)⇐= F(G)

F(ρ2),F(m2)
=⇒ F(H2).
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It remains to show, that also F(m) |= acF(K) ∧ ac
∗
F(K) or equivalently F(m) |= F(acK ∧

ac∗K), because the following holds:

acF(K) ∧ ac
∗
F(K)

Proof of Lem. 24
= F(acK)∧F(ac∗K)

Def. 47
= F(acK ∧ ac∗K)

According to Definition 26 as given before, we already know that m |= acK ∧ ac∗K. This
implies using Lemma 11 that F(m) |= F(acK ∧ ac∗K), which was to be shown. Hence

F(P1)
F(ρ1),F(o1)⇐= F(K)

F(ρ2),F(o2)
=⇒ F(P2) is the corresponding F-reachable critical pair in

AS2.
acL1
O

acL2
O

acK ∧ ac∗K
O

R1 K1p1 : : p2

(1)(2)

(3)(4)

(5) (6)

(7) (8)

L1 L2 K2 R2

P1 N1 K N2 P2

H1 D1 G D2 H2

w1 v1

m

o1 o2

v2 w2

m1 m2

F(acL1)

O
F(acL2)

O

acF(K) ∧ ac
∗
F(K)

O

F(R1) F(K1) F(L1) F(L2) F(K2) F(R2)

F(P1) F(N1) F(K) F(N2) F(P2)

F(H1) F(D1) F(G) F(D2) F(H2)

(9)(10)

(11)(12)

(13) (14)

(15) (16)

F(w1) F(v1)

F(m)

F(o1) F(o2)

F(v2) F(w2)

F(m1) F(m2)

�

Lemma 58: (FC Satisfies Required Properties, see page 215)
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P))
such that (C1,M1) has E ′1-M1 pair factorization and initial pushouts, a functor F :

(C1,M1)→ (C2,M2), and functors FC : (C1,M1)→ (C ′2,M∗2), F
−1
C : (C ′2,M∗2)→ (C1,M1)

building a category equivalence FC : (C1,M1)
∼→ (C ′2,M∗2) where (C ′2,M∗2) is the subcate-

gory of (C2,M2), in which all non-F-images have been removed, and where the functor
FC is the restriction of F. Then the functor FC satisfies the properties listed in Defini-
tion 69.

Proof.
1. FC preserves monomorphisms, i.e., FC(M1) ⊆M∗2:

Since we have by assumption that the functor FC is a restriction of F, it holds that
FC(M1) = F(M1) = M∗2, which directly implies that FC(M1) ⊆M∗2.

2. FC preserves pushouts along M-morphisms:
Let (1) be a pushout along M1-morphisms in C1 as given below with f1 ∈ M1. Applying
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the functor FC to the diagram (1), we get the diagram (2), which obviously commutes,
because functors preserve commuting diagrams by general functor property. Moreover,
FC(f1) ∈ M∗2 because the functor FC preserves monomorphisms as shown before. It
remains to show the universal property for the diagram (2). Let X ′ be a comparison object
with j ′1 : FC(B) → X ′, j ′2 : FC(C) → X ′ such that j ′2 ◦ FC(f2) = j ′1 ◦ FC(f1). Since
C ′2 has only FC-images, there are X, j1 : B → X and j2 : C → X such that FC(j1) = j ′1,
FC(j2) = j ′2 and FC(X) = X ′. Obviously, j1 ◦ f1 = j2 ◦ f2, which implies that there
is a unique k : D → X such the triangles (3), (4) commute. Applying the functor FC
to k, we get the morphism FC(k) making triangles (5) and (6) commute as well. Let
k
′
: FC(D) → FC(X) be a morphism which makes the triangles (5) and (6) commute.

Since C ′2 has only FC-images, there is k : D→ X such that FC(k) = k
′. By uniqueness of

k, we have that k = k because kmakes the triangles (3) and (4) commute as well. Therefore,
k
′
= FC(k) = FC(k). Thus, (2) is a pushout along M∗2-morphisms in C ′2.

A B

X

C D

(1)

(3)

(4)

f1 ∈M1

k

f2 j1

g2

k

j2

g1

FC(A) FC(B)

X ′=FC(X)

FC(C) FC(D)

(2)

(5)

(6)

FC(f1) ∈M∗2

FC(k)

FC(f2) j ′1=FC(j1)

FC(g2)

k
′

j ′2=FC(j2)

FC(g1)

3. FC creates morphisms:
Let f ′ : FC(A) → FC(B) be a morphism in MorC ′2 . Since C ′2 has only FC-images, there
is f : A → B such that FC(f) = f ′. Let g : A → B be another morphism such that
FC(g) = f

′. By injectiveness of F and hence also of FC we get g = f. Thus, f is unique.
4. FC preserves initial pushouts:

Let (1) be an initial pushout and hence also a pushout in (C1,M1). Since the functor
FC preserves pushouts along M-morphisms, we get that (2) is a pushout in C ′2. Consider
now another pushout (3) in C ′2 with h1 : B ′ → FC(L), h2 : C ′ → FC(G) in M∗2.
Since F−1

C : (C ′2,M∗2)
∼→ (C1,M1) is obviously a category equivalence as well and thus

has the same properties as the category equivalence FC : (C1,M1)
∼→ (C ′2,M∗2), we have

that also the functor F−1
C preserves monomorphisms and pushouts along M-morphisms,

which implies that also (4) is a pushout with F−1
C (h1) : F−1

C (B ′) → L and F−1
C (h2) :

F−1
C (C ′) → G in M1. By assumption we know that (1) is an initial pushout, which

means according to Definition 4 that there are unique morphisms k1 : B → F−1
C (B ′),

k2 : C→ F−1
C (C ′) in M1 such that triangles (5), (6) commute and (7) is a pushout in C1.

Applying now the functor FC to k1 and k2, we get morphisms FC(k1) : FC(B)→ B ′ and
FC(k2) : FC(C) → C ′ in M∗2 because the functor FC preserves monomorphisms, making
the triangles (8) and (9) commute by general functor property. Moreover, we obtain that
(10) is a pushout in C ′2 because the functor FC preserves pushouts along M-morphisms.
It remains now to show that the morphisms FC(k1), FC(k2) are unique with properties
mentioned before. For this reason assume first that there are other morphisms k1 : FC(B)→
B ′, k2 : FC(C) → C ′ in M∗2 such that it holds that h1 ◦ k1 = FC(b), h2 ◦ k2 = FC(c)

and f2 ◦k1 = k2 ◦FC(f1) is a pushout in C ′2. Applying now the functor F−1
C to k1 and k2,
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we get morphisms F−1
C (k1) : B→ F−1

C (B ′) and F−1
C (k2) : C → F−1

C (C ′) in M1 because
the functor F−1

C preserves monomorphisms such that F−1
C (h1) ◦F−1

C (k1) = b, F−1
C (h2) ◦

F−1
C (k2) = c by general functor property and F−1

C (k2) ◦ f1 = F−1
C (f2) ◦ F−1

C (k1) is a
pushout in C1 because the functor F−1

C preserves pushouts along M-morphisms. But since
(1) is an initial pushout, we have that the morphisms k1, k2 are unique, which directly
implies that k1 = F−1

C (k1) and k2 = F−1
C (k2). Thus, we get that also FC(k1) = k1 and

FC(k2) = k2. This altogether implies that (2) is an initial pushout in (C ′2,M∗2) according
to Definition 4.

B L
F−1
C (B ′)

C G
F−1
C (C ′)

(1)(7)

(5)

(6)

b
k1

F−1
C (k1)

f1

F−1
C (h1)

c

k2

F−1
C (k2)

F−1
C (f2)

F−1
C (h2)

f

FC(B) FC(L)
B ′

FC(C) FC(G)
C ′

(2)(10)

(8)

(9)

FC(b)
FC(k1)

k1

FC(f1)

h1

FC(c)

FC(k2)

k2

f2

h2

FC(f)

F−1
C (B ′)

(4)

L

F−1
C (C ′) G

F−1
C (h1)

F−1
C (f2) f

F−1
C (h2)

B ′

(3)

FC(L)

C ′ FC(G)

h1

f2 FC(f)

h2

5. FC preserves epimorphisms, i.e., FC(E1) ⊆ E∗2:
Let f : A→ B be an epimorphism in MorC1 . We have to show that also FC(f) : FC(A)→
FC(B) is an epimorphism in MorC ′2 . Consider morphisms FC(g),FC(h) : FC(B) →
FC(C) such that FC(g) ◦ FC(f) = FC(h) ◦ FC(f) (see the diagram below to the right).
Since the functor FC creates morphisms uniquely as shown before, we have morphisms
g,h : B → C with g ◦ f = h ◦ f. Moreover, since f is an epimorphism by assumption, we
get that g = h and thus also FC(g) = FC(h), which was to be shown.

A B C
f

g

h
FC(A) FC(B) FC(C)

FC(f)

FC(g)

FC(h)

6. FC preserves coproducts:
Consider a family of objects (FC(Ai))i∈I in ObC ′2 with an index set I. Since C ′2 has only
FC-images, there is also a family of objects (Ai)i∈I in ObC1 . Construct now a coproduct
(A, (ui)i∈I) of (Ai)i∈I in C1 for A ∈ ObC1 and a family of morphisms (ui : Ai → A)i∈I
in MorC1 . Then there are also an object FC(A) ∈ ObC ′2 as well as a family of morphisms
(FC(ui) : FC(Ai)→ FC(A))i∈I in MorC ′2 . Take now B ′ ∈ ObC ′2 as object of comparison
together with a family of morphisms (f ′i : FC(Ai) → B ′)i∈I in MorC ′2 . Since C ′2 has
only FC-images, we have that there are an object of comparison B ∈ ObC1 together with
a family of morphisms (fi : Ai → B)i∈I in MorC1 such that (f ′i)i∈I = (FC(fi))i∈I and
B ′ = FC(B). Then by the universal property of coproducts, we have that there is a unique
morphism f : A → B making the triangle (1) commute. Applying the functor FC to the
triangle to the left, we get the triangle to the right commuting as well since the functor FC
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preserves commuting diagrams by general functor property.
Let FC(f) : FC(A) → FC(B) be a morphism in MorC ′2 making the triangle (2) commute
as well. Then there is also a morphism f : A→ B in MorC1 and it holds:

FC(f) ◦FC(ui) = FC(fi)⇔ FC(f ◦ ui) = FC(fi)
Lem. 10⇒ f ◦ ui = fi

This implies by uniqueness of f that f = f and thus also FC(f) = FC(f). Then we have
that FC(f) is a unique morphism making the triangle (2) commute.

Ai A

B

(1)

ui

fi
ff

FC(Ai) FC(A)

FC(B) = B
′

(2)

FC(ui)

f ′i = FC(fi)
FC(f)FC(f)

7. FC creates M-morphisms:
Let f ′ : FC(A)→ FC(B) be a morphism in M∗2. From the fact that the functor FC creates
morphisms, we get that there is a unique f : A → B such that FC(f) = f ′. Furthermore,
since M∗2 = FC(M1) by construction, we know that there is a morphism f ′′ : A→ B from
M1 such that FC(f ′′) = f ′. By uniqueness we get that f ′′ = f.

8. FC preserves pullbacks of M-morphisms:
Let (1) be a pullback of M1-morphisms in C1 as given below with g1,g2 ∈M1. Applying
the functor FC to the diagram (1), we get the diagram (2), which obviously commutes,
because functors preserve commuting diagrams by general functor property. Moreover,
FC(g1),FC(g2) ∈ M∗2 because the functor FC preserves monomorphisms. It remains
to show the universal property for the diagram (2). Let X ′ be a comparison object with
j ′1 : X ′ → FC(B), j ′2 : X ′ → FC(C) such that FC(g2) ◦ j ′2 = FC(f1) ◦ j ′1. Since C ′2
has only FC-images, there are X, j1 : X → B and j2 : X → C such that FC(j1) = j ′1,
FC(j2) = j ′2 and FC(X) = X ′. Obviously, g1 ◦ j1 = g2 ◦ j2, which implies that there
is a unique k : X → A such that the triangles (3), (4) commute. Applying the functor
FC to k, we get the morphism FC(k) making triangles (5) and (6) commute as well. Let
k
′
: FC(X) → FC(A) be a morphism which makes the triangles (5) and (6) commute.

Since C ′2 has only FC-images, there is k : X→ A such that FC(k) = k
′. By uniqueness of

k, we have that k = k because kmakes the triangles (3) and (4) commute as well. Therefore,
k
′
= FC(k) = FC(k). Thus, (2) is a pullback of M∗2-morphisms in C ′2.

A B

X

C D

(1)
(3)

(4)

f1

k

f2

j1

g2 ∈M1

k

j2 g1 ∈M1

FC(A) FC(B)

X ′=FC(X)

FC(C) FC(D)

(2)

(5)

(6)

FC(f1)

FC(k)

FC(f2)

j ′1=FC(j1)

FC(g2) ∈M∗2

k
′

j ′2=FC(j2)

FC(g1) ∈M∗2

9. FC preserves E ′-instances:
According to Definition 61, we have to show the following2:

∀(a ′1 : P ′ → C ′1,b ′1 : C→ C ′1) ∈ E ′1.

2 E ′′2 denotes in the following formula the class of jointly epimorphic morphisms of the subcategory C ′2.
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∃(a ′2 : FC(P ′)→ C ′2,b ′2 : FC(C)→ C ′2) ∈ E ′′2 .

a ′2 = FC(a
′
1) ∧ b ′2 = FC(b

′
1)

Consider morphisms a : P → C and b : P → P ′ in MorC1 and let (a ′1 : P ′ → C ′1,b ′1 :

C→ C ′1) be in E ′1. Since C ′2 contains only FC-images and the functor FC is a restriction of
F, we have the morphisms FC(a ′1) : FC(P

′)→ FC(C
′
1) and FC(b

′
1) : FC(C)→ FC(C

′
1)

in MorC ′2 with C ′2 = FC(C
′
1), a

′
2 = FC(a

′
1) and b ′2 = FC(b

′
1).

It remains to show that (a ′2,b ′2) ∈ E ′′2 . According to Definition 71 in Appendix A, we have
to show that arbitrary morphisms h ′1,h ′2 : C ′2 → X ′ satisfy the property that (h ′1 ◦ a ′2 =

h ′2 ◦ a ′2 ∧ h ′1 ◦ b ′2 = h ′2 ◦ b ′2)⇒ (h ′1 = h
′
2). It holds the following:

h ′1 ◦ a ′2 = h ′2 ◦ a ′2 ∧ h ′1 ◦ b ′2 = h ′2 ◦ b ′2
⇒ h ′1 ◦FC(a ′1) = h ′2 ◦FC(a ′1) ∧ h ′1 ◦FC(b ′1) = h ′2 ◦FC(b ′1)
(∗)⇒ FC(h1) ◦FC(a ′1) = FC(h2) ◦FC(a ′1)
∧ FC(h1) ◦FC(b ′1) = FC(h2) ◦FC(b ′1)
Funct. prop.⇒ FC(h1 ◦ a ′1) = FC(h2 ◦ a ′1) ∧ FC(h1 ◦ b ′1) = FC(h2 ◦ b ′1)
Lem. 10+FC restr. of F⇒ h1 ◦ a ′1 = h2 ◦ a ′1 ∧ h1 ◦ b ′1 = h2 ◦ b ′1
(a ′1,b ′1)∈E ′1⇒ h1 = h2

⇒ FC(h1) = FC(h2)

⇒ h ′1 = h
′
2

(*): This step is possible since C ′2 contains only FC-images and the functor FC is a restric-
tion of F.
Thus, altogether we get that (a ′2 = FC(a

′
1),b

′
2 = FC(b

′
1)) ∈ E ′′2 .

P P ′

C C ′1 X

b

a

b ′1

a ′1

h1

h2

FC(P) FC(P
′)

FC(C) C ′2 X ′ = FC(X)

FC(b)

FC(a)

b ′2

a ′2

h ′1

h ′2

10. FC creates E ′-instances:
According to Definition 61, we have to show the following:

∀(a ′2 : FC(P ′)→ C ′2,b ′2 : FC(C)→ C ′2) ∈ FC(E
′
1). (1) commutes ∧ b ′2 ∈M∗2

⇒ ∃(a ′1 : P ′ → C ′1,b ′1 : C→ C ′1) ∈ E ′1. a ′2 = FC(a
′
1) ∧ b ′2 = FC(b

′
1)

∧ (2) commutes ∧ b ′1 ∈M1

Consider morphisms a : P → C and b : P → P ′ inMorC1 and let (a ′2 : FC(P
′)→ C ′2,b ′2 :

FC(C) → C ′2) be in FC(E
′
1), (1) commute and b ′2 ∈ M∗2. Since C ′2 contains only FC-

images and the functor FC is a restriction of F, we have that a ′2 = FC(a
′
1), b

′
2 = FC(b

′
1)

and C ′2 = FC(C
′
1) for morphisms a ′1 : P ′ → C ′1 and b ′1 : C → C ′1 in MorC1 . Since

M∗2 = F(M1) and b ′2 = FC(b
′
1) = F(b ′1), we also have that b ′1 ∈ M1. Furthermore, we

have that (2) commutes since:

a ′2 ◦FC(b) = b ′2 ◦FC(a)
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⇒ FC(a
′
1) ◦FC(b) = FC(b

′
1) ◦FC(a)

Funct. prop.⇒ FC(a
′
1 ◦ b) = FC(b

′
1 ◦ a)

Lem. 10+FC restr. of F⇒ a ′1 ◦ b = b ′1 ◦ a

It remains to show that (a ′1,b ′1) ∈ E ′1. According to Definition 71 in Appendix A, we have
to show that arbitrary morphisms h1,h2 : C ′1 → X satisfy the property that (h1 ◦ a ′1 =

h2 ◦ a ′1 ∧ h1 ◦ b ′1 = h2 ◦ b ′1)⇒ (h1 = h2). It holds the following:

h1 ◦ a ′1 = h2 ◦ a ′1 ∧ h1 ◦ b ′1 = h2 ◦ b ′1
⇒ FC(h1 ◦ a ′1) = FC(h2 ◦ a ′1) ∧ FC(h1 ◦ b ′1) = FC(h2 ◦ b ′1)
Funct. prop.⇒ FC(h1) ◦FC(a ′1) = FC(h2) ◦FC(a ′1)
∧ FC(h1) ◦FC(b ′1) = FC(h2) ◦FC(b ′1)
(a ′2,b ′2)∈FC(E ′1)⇒ FC(h1) = FC(h2)

Lem. 10+FC restr. of F⇒ h1 = h2

Thus, altogether we get that (a ′1,b ′1) ∈ E ′1.

FC(P) FC(P
′)

FC(C) C ′2 FC(X)

(1)

FC(b)

FC(a)

b ′2

a ′2

FC(h1)

FC(h2)

P P ′

C C ′1 X

(2)

b

a

b ′1

a ′1

h1

h2

�

Lemma 59: (I ◦FC Satisfies Required Properties, see page 215)
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,F(P))
such that the underlying M-adhesive categories (Ci,Mi) have E ′i-Mi pair factorization
for i ∈ {1, 2} and (C1,M1) has initial pushouts, a functor F : (C1,M1) → (C2,M2), an
inclusion functor I : (C ′2,M∗2) → (C2,M2), and functors FC : (C1,M1) → (C ′2,M∗2), F

−1
C :

(C ′2,M∗2) → (C1,M1) building a category equivalence FC : (C1,M1)
∼→ (C ′2,M∗2) where

(C ′2,M∗2) is the subcategory of (C2,M2), in which all non-F-images have been removed.
Then the functor composition I ◦ FC : (C1,M1) → (C2,M2) satisfies the properties listed
in Definition 69 if the functors I and FC satisfy these properties.

Proof.
1. I ◦FC preserves monomorphisms, i.e., (I ◦FC)(M1) ⊆M2:

(I ◦FC)(M1)
Def. I
= FC(M1)

(∗)
⊆ M∗2 ⊆M2

The step (*) holds, because the functor FC preserves monomorphisms by assumption.
2. I ◦FC preserves pushouts along M-morphisms:

Consider a pushout (1) in C1 with an M1-morphism f1. Since the functor FC preserves
monomorphisms and pushouts along M-morphisms by assumption, we have that also the
diagram (2) is a pushout in C ′2 with an M∗2-morphism FC(f1). Since I preserves monomor-
phisms and pushouts along M-morphisms by assumption, we have that also the diagram
(3) is a pushout in C2 with an M2-morphism I(FC(f1)) = FC(f1).
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A B

C D

(1)

f1 ∈M1

f2

g2

g1

FC(A) FC(B)

FC(C) FC(D)

(2)

FC(f1) ∈M∗2

FC(f2)

FC(g2)

FC(g1)

I(FC(A)) I(FC(B))

I(FC(C)) I(FC(D))

(3)

I(FC(f1)) ∈M2

I(FC(f2))

I(FC(g2))

I(FC(g1))

3. I ◦FC creates morphisms:
Since the functor FC creates morphisms by assumption, we have that ∀f ′ : FC(A) →
FC(B). ∃!f : A → B. FC(f) = f ′. Applying now the definition of I, we obtain that
∀f ′ : (I ◦FC)(A)→ (I ◦FC)(B). ∃!f : A→ B. (I ◦FC)(f) = f ′.

4. I ◦FC preserves initial pushouts:
Consider an initial pushout (1) over a morphism f : L → G in (C1,M1) with boundary
object B, context object C and M1-morphisms b : B→ L, c : C→ G. Since the functor FC
preserves initial pushouts by assumption, we have that also the diagram (2) is an initial
pushout over the morphism FC(f) : FC(L) → FC(G) in (C ′2,M∗2) with boundary object
FC(B), context object FC(C) and M∗2-morphisms FC(b) : FC(B) → FC(L), FC(c) :

FC(C) → FC(G). Since I preserves initial pushouts by assumption, we have that also the
diagram (3) is an initial pushout over the morphism I(FC(f)) : I(FC(L)) → I(FC(G))

in (C2,M2) with boundary object I(FC(B)), context object I(FC(C)) and M2-morphisms
I(FC(b)) : I(FC(B))→ I(FC(L)), I(FC(c)) : I(FC(C))→ I(FC(G)).

B L

C G

(1)

b ∈M1

f1

c ∈M1

f

FC(B) FC(L)

FC(C) FC(G)

(2)

FC(b) ∈M∗2

FC(f1)

FC(c) ∈M∗2

FC(f)

I(FC(B)) I(FC(L))

I(FC(C)) I(FC(G))

(3)

I(FC(b)) ∈M2

I(FC(f1))

I(FC(c)) ∈M2

I(FC(f))

5. I ◦FC preserves epimorphisms, i.e., (I ◦FC)(E1) ⊆ E2:

(I ◦FC)(E1)
Def. I
= FC(E1)

(∗)
⊆ E∗2 ⊆ E2

The step (*) holds, because the functor FC preserves epimorphisms by assumption.
6. I ◦FC preserves coproducts:

Consider a coproduct (A, (ui)i∈I) of a family of objects (Ai)i∈I in C1 for A ∈ ObC1 and a
family of morphisms (ui : Ai → A)i∈I inMorC1 with an index set I. Since the functor FC
preserves coproducts by assumption, we have that also (FC(A), (FC(ui))i∈I) is a coproduct
of the family of translated objects (FC(Ai))i∈I in C ′2 for FC(A) ∈ ObC ′2 and the family
of translated morphisms (FC(ui) : FC(Ai) → FC(A))i∈I in MorC ′2 . Since I preserves
coproducts by assumption, we have that also (I(FC(A)), (I(FC(ui)))i∈I) is a coproduct of
the family of translated objects (I(FC(Ai)))i∈I in C2 for I(FC(A)) ∈ ObC2 and the family
of translated morphisms (I(FC(ui)) : I(FC(Ai))→ I(FC(A)))i∈I in MorC2 .

Ai A
ui

FC(Ai) FC(A)
FC(ui)

I(FC(Ai)) I(FC(A))
I(FC(ui))

7. I ◦FC creates M-morphisms:
Since the functor FC creates M-morphisms by assumption, it holds that ∀f ′ : FC(A) →
FC(B). f ′ ∈ M∗2 ⇒ (∃!f ∈ M1. FC(f) = f ′). Applying now the definition of I, we obtain
that ∀f ′ : (I ◦FC)(A)→ (I ◦FC)(B). f ′ ∈M2 ⇒ (∃!f ∈M1. (I ◦FC)(f) = f ′)

8. I ◦FC preserves pullbacks of M-morphisms:
Consider a pullback (1) in C1 with M1-morphisms g1 and g2. Since the functor FC
preserves monomorphisms and pullbacks of M-morphisms by assumption, we have that
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also the diagram (2) is a pullback in C ′2 with M∗2-morphisms FC(g1) and FC(g2). Since
I preserves monomorphisms and pullbacks of M-morphisms by assumption, we have that
also the diagram (3) is a pullback in C2 with M2-morphisms I(FC(g1)) = FC(g1) and
I(FC(g2)) = FC(g2).

A B

C D

(1)

f1

f2

g2 ∈M1

g1 ∈M1

FC(A) FC(B)

FC(C) FC(D)

(2)

FC(f1)

FC(f2)
FC(g2) ∈M∗2

FC(g1) ∈M∗2

I(FC(A)) I(FC(B))

I(FC(C)) I(FC(D))

(3)

I(FC(f1))

I(FC(f2))
I(FC(g2)) ∈M2

I(FC(g1)) ∈M2

9. I ◦FC preserves E ′-instances:
According to Definition 61, we have to show the following:

∀(a ′1 : P ′ → C ′1,b ′1 : C→ C ′1) ∈ E ′1.

∃(a ′3 : (I ◦FC)(P ′)→ C ′3,b ′3 : (I ◦FC)(C)→ C ′3) ∈ E ′2.

a ′3 = (I ◦FC)(a ′1) ∧ b ′3 = (I ◦FC)(b ′1)

Consider morphisms a : P → C and b : P → P ′ in MorC1 and fix a ′1 : P ′ → C ′1,
b ′1 : C → C ′1 such that (a ′1,b ′1) ∈ E ′1. Since the functor FC preserves E ′-instances by
assumption, it holds that

∃(a ′2 : FC(P ′)→ C ′2,b ′2 : FC(C)→ C ′2) ∈ E ′′2 . a ′2 = FC(a
′
1) ∧ b ′2 = FC(b

′
1)

Since I preserves E ′-instances by assumption as well, we have that

∃(a ′3 : I(FC(P ′))→ C ′3,b ′3 : I(FC(C))→ C ′3) ∈ E ′2.

a ′3 = I(a
′
2) = I(FC(a

′
1)) = (I ◦FC)(a ′1)

∧ b ′3 = I(b
′
2) = I(FC(b

′
1)) = (I ◦FC)(b ′1)

P P ′

C C ′1

b

a

b ′1

a ′1

FC(P) FC(P
′)

FC(C) C ′2

FC(b)

FC(a)

b ′2

a ′2

(I ◦FC)(P) (I ◦FC)(P ′)

(I ◦FC)(C) C ′3

I(FC(b))

I(FC(a))

b ′3

a ′3

10. I ◦FC creates E ′-instances:
According to Definition 61, we have to show the following:

∀(a ′3 : (I ◦FC)(P ′)→ C ′3,b ′3 : (I ◦FC)(C)→ C ′3) ∈ (I ◦FC)(E ′1).
(1) commutes ∧ b ′3 ∈M2

⇒ ∃(a ′1 : P ′ → C ′1,b ′1 : C→ C ′1) ∈ E ′1. a ′3 = (I ◦FC)(a ′1) ∧ b ′3 = (I ◦FC)(b ′1)
∧ (3) commutes ∧ b ′1 ∈M1

Consider morphisms a : P → C and b : P → P ′ in MorC1 and let (a ′3 : (I ◦ FC)(P ′) →
C ′3,b ′3 : (I ◦ FC)(C) → C ′3) be in (I ◦ FC)(E ′1), (1) commute and b ′3 ∈ M2. Since I
creates E ′-instances by assumption, it holds that

∃(a ′2 : FC(P ′)→ C ′2,b ′2 : FC(C)→ C ′2) ∈ FC(E
′
1).

a ′3 = I(a
′
2) ∧ b ′3 = I(b

′
2) ∧ (2) commutes ∧ b ′2 ∈M∗2
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Since the functor FC creates E ′-instances by assumption as well and the premise of the
corresponding statement for the subcategory (C ′2,M∗2) is fulfilled, we have that

∃(a ′1 : P ′ → C ′1,b ′1 : C→ C ′1) ∈ E ′1. a ′2 = FC(a
′
1) ∧ b ′2 = FC(b

′
1)

∧ (3) commutes ∧ b ′1 ∈M1

Furthermore, it holds that a ′3 = I(a ′2) = I(FC(a
′
1)) = (I ◦ FC)(a ′1) and b ′3 = I(b ′2) =

I(FC(b
′
1)) = (I ◦FC)(b ′1).

(I ◦FC)(P) (I ◦FC)(P ′)

(I ◦FC)(C) C ′3

(1)

I(FC(b))

I(FC(a))

b ′3

a ′3

FC(P) FC(P
′)

FC(C) C ′2

(2)

FC(b)

FC(a)

b ′2

a ′2

P P ′

C C ′1

(3)

b

a

b ′1

a ′1

�

Lemma 60: (FRC Satisfies Required Properties, see page 218)
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,FR(P))
such that (C1,M1) has E ′1-M1 pair factorization and initial pushouts, a restricted functor
FR : C1|M1

→ C2|M2
, and restricted functors FRC : C1|M1

→ C ′2|M∗2 , FR
−1
C : C ′2|M∗2 →

C1|M1
building a category equivalence FRC : C1|M1

∼→ C ′2|M∗2 such that C ′2|M∗2 is the
subcategory of C2|M2

, in which all non-FR-images have been removed, and where the
restricted functor FRC is the restriction of FR. Then the restricted functor FRC satisfies
the properties listed in Definition 70.

Proof.
1. FRC preserves monomorphisms, i.e., FRC(M1) ⊆M∗2:

The proof works analogously to Case 1 from the proof of Lemma 58.
2. FRC preserves pushouts of M-morphisms:

The proof works analogously to Case 2 from the proof of Lemma 58.
3. FRC creates M-morphisms:

The proof works analogously to Case 7 from the proof of Lemma 58.
4. FRC preserves initial pushouts over M-morphisms:

The proof works analogously to Case 4 from the proof of Lemma 58.
5. FRC preserves epimorphisms, i.e., FRC(E1) ⊆ E∗2:

The proof works analogously to Case 5 from the proof of Lemma 58.
6. FRC preserves coproducts of M-morphisms:

The proof works analogously to Case 6 from the proof of Lemma 58.
7. FRC preserves pullbacks of M-morphisms:

The proof works analogously to Case 8 from the proof of Lemma 58.
8. FRC preserves E ′-instances:

The proof works analogously to Case 9 from the proof of Lemma 58.
9. FRC creates E ′-instances:

The proof works analogously to Case 10 from the proof of Lemma 58.
�

Lemma 61: (IR ◦FRC Satisfies Required Properties, see page 218)
Consider M-adhesive transformation systems AS1 = (C1,M1,P), AS2 = (C2,M2,FR(P))
such that the underlying M-adhesive categories (Ci,Mi) have E ′i-Mi pair factorization
for i ∈ {1, 2} and (C1,M1) has initial pushouts, a restricted functor FR : C1|M1

→ C2|M2
,

a restricted inclusion functor IR : C ′2|M∗2 → C2|M2
, and restricted functors FRC : C1|M1

→
C ′2|M∗2 , FR

−1
C : C ′2|M∗2 → C1|M1

building a category equivalence FRC : C1|M1

∼→ C ′2|M∗2
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such that C ′2|M∗2 is the subcategory of C2|M2
, in which all non-FR-images have been

removed. Then the functor composition IR ◦FRC : C1|M1
→ C2|M2

satisfies the properties
listed in Definition 70 if the restricted functors IR and FRC satisfy these properties.

Proof.
1. IR ◦FRC preserves monomorphisms, i.e., (IR ◦FRC)(M1) ⊆M2:

The proof works analogously to Case 1 from the proof of Lemma 59.
2. IR ◦FRC preserves pushouts of M-morphisms:

The proof works analogously to Case 2 from the proof of Lemma 59.
3. IR ◦FRC creates M-morphisms:

The proof works analogously to Case 7 from the proof of Lemma 59.
4. IR ◦FRC preserves initial pushouts over M-morphisms:

The proof works analogously to Case 4 from the proof of Lemma 59.
5. IR ◦FRC preserves epimorphisms, i.e., (IR ◦FRC)(E1) ⊆ E2:

The proof works analogously to Case 5 from the proof of Lemma 59.
6. IR ◦FRC preserves coproducts of M-morphisms:

The proof works analogously to Case 6 from the proof of Lemma 59.
7. IR ◦FRC preserves pullbacks of M-morphisms:

The proof works analogously to Case 8 from the proof of Lemma 59.
8. IR ◦FRC preserves E ′-instances:

The proof works analogously to Case 9 from the proof of Lemma 59.
9. IR ◦FRC creates E ′-instances:

The proof works analogously to Case 10 from the proof of Lemma 59.
�
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In this appendix, we give the detailed proofs for indicated lemmas from the main part
of this work concerning the hypergraph application.
Lemma 2: (Characterization of Hypergraph Morphisms, see page 49)

1. Consider a hypergraph morphism f = (fV : VG → VH, fE : EG → EH) according to
Definition 34. Then the following two properties hold:

a) The number of incoming resp. outgoing arrows for each edge remains equal,
i.e.,

i. ∀e ∈ EG, ∀n ∈N. (|sG(e)|=n)⇔ (|sH(fE(e))|=n),
ii. ∀e ∈ EG, ∀n ∈N. (|tG(e)|=n)⇔ (|tH(fE(e))|=n) and

b) The morphism preserves/reflects the source and target components of every
edge, i.e.,

i. ∀v ∈ VG, ∀e ∈ EG, ∀n 6 |sG(e)|. (snG(e)=v)⇒ (snH(fE(e))=fV(v)),
ii. ∀v ∈ VG, ∀e ∈ EG, ∀n 6 |sG(e)|.

(snG(e)=v)⇐ (snH(fE(e))=fV(v) if fV is injective),
iii. ∀v ∈ VG, ∀e ∈ EG, ∀n 6 |tG(e)|. (tnG(e)=v)⇒ (tnH(fE(e))=fV(v)),
iv. ∀v ∈ VG, ∀e ∈ EG, ∀n 6 |tG(e)|.

(tnG(e)=v)⇐ (tnH(fE(e))=fV(v) if fV is injective).
2. According to Definition 34, f = (fV : VG → VH, fE : EG → EH) is a hypergraph

morphism if the properties 1(b)i and 1(b)iii hold.

Proof.
1. Assume that f = (fV : VG → VH, fE : EG → EH) is a hypergraph morphism, i.e.,
f∗V(sG(e)) = sH(fE(e)).
To show: Properties 1(a)i-1(a)ii and 1(b)i-1(b)iv.
Property 1(a)i:

a) (⇒): Given e ∈ EG and n ∈N with |sG(e)| = n. Then we have:

|sH(fE(e))| = |f∗V(sG(e))| = |sG(e)| = n

⇒|sH(fE(e))| = n

b) (⇐): Given e ∈ EG and n ∈N with |sH(fE(e))| = n. Then we have:

|sG(e)| = |f∗V(sG(e))| = |sH(fE(e))| = n

⇒|sG(e)| = n

Property 1(a)ii: Similar to the proof of Property 1(a)i replacing s by t.
Property 1(b)i: Given v ∈ VG and e ∈ EG with snG(e) = v = vn, where sG(e) =

v1. . .vn. . .vm, n < |sG(e)| and m = |sG(e)|. Then we have:

sH(fE(e)) = f
∗
V(sG(e)) = fV(v1). . .fV(vn). . .fV(vm)

⇒snH(fE(e)) = fV(vn) = fV(v)

311
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Property 1(b)ii: Given v ∈ VG and e ∈ EG with snH(fE(e)) = fV(v) and n 6 |sG(e)|.
Furthermore, let fV be injective. Then we have:

fV(s
n
G(e)) = [f∗V(sG(e))]n = [sH(fE(e))]n = snH(fE(e)) = fV(v)

fV inj.⇒ snG(e) = v, where [ ]n denotes n-th component of [ ]

Property 1(b)iii: Similar to the proof of Property 1(b)i replacing s by t.
Property 1(b)iv: Similar to the proof of Property 1(b)ii replacing s by t.

2. Assume that Properties 1(b)i and 1(b)iii hold.
To show: f = (fV : VG → VH, fE : EG → EH) is a hypergraph morphism, i.e.,

a) f∗V(sG(e)) = sH(fE(e)) and
b) f∗V(tG(e)) = tH(fE(e)).

Part 2a:

f∗V(sG(e)) = sH(fE(e))

⇔∀n 6 |sG(e)|. [f∗V(sG(e))]n = [sH(fE(e))]n

⇔∀n 6 |sG(e)|. fV(snG(e)) = s
n
H(fE(e))

Let snG(e) = v
1(b)i⇒ snH(fE(e)) = fV(v)

⇒∀n 6 |sG(e)|. fV(snG(e)) = fV(v) = s
n
H(fE(e))

⇒f∗V(sG(e)) = sH(fE(e))
Part 2b: Similar to Part 2a replacing s by t and using Property 1(b)iii.

�

Lemma 3: (Pushout in HyperGraphs, see page 50)
Consider the pushout construction from Definition 36. Then the diagram given below is
a hypergraph pushout.

A

(1)

B

C D

b

c g

f

Proof.
Consider hypergraph morphisms b = (bV ,bE), c = (cV , cE), f = (fV , fE) and g = (gV ,gE).
We have to show that the diagram (1) above commutes and that the universal property for
pushouts holds for (1).

1. Commutation:
We have to show that gi ◦ bi = fi ◦ ci for i ∈ {V ,E}.

a) gV ◦ bV = fV ◦ cV :

Let x be an arbitrary hypergraph node in VA. Then we have the following:

(gV ◦ bV)(x) = gV(bV(x))
Def. gV
= [bV(x)]≡V

(∗)
= [cV(x)]≡V

Def. fV
= fV(cV(x)) = (fV ◦ cV)(x)

The step (∗) holds, because by definition of ≡V (see Definition 36) we have that
((bV(x), cV(x)) ∈≡V)⇒ ([bV(x)]≡V = [cV(x)]≡V ).
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b) gE ◦ bE = fE ◦ cE :

The proof for this case works analogously to the case above.
2. Universal property for pushouts:

Let D ′ = (VD ′ ,ED ′ , sD ′ , tD ′) be an object of comparison and g ′ : B → D ′, f ′ : C → D ′

with g ′ = (g ′V ,g ′E), f
′ = (f ′V , f ′E) be hypergraph morphisms such that holds g ′ ◦b = f ′ ◦ c.

We have to show: ∃!h : D→ D ′. h ◦ f = f ′ ∧ h ◦ g = g ′.

A B

D ′

C D

(1)

b

h

c g ′

f

h ′

f ′

g

a) Existence:
Due to the pushout construction in Sets for each component, implying that hV ◦ fV =

f ′V , hE ◦ fE = f ′E, hV ◦ gV = g ′V , hE ◦ gE = g ′E, we have that h = (hV ,hE) exists.
It remains to show that h is a hypergraph morphism, i.e., sD ′ ◦ hE = h∗V ◦ sD and
tD ′ ◦ hE = h∗V ◦ tD.

ED V∗D

ED ′ V∗D ′

sD

tD
hE h∗V

sD ′

tD ′

i. sD ′ ◦ hE = h∗V ◦ sD :

Fix e ∈ ED. Then by definition of ED we have that ∃e ′ ∈ (EB ∩ e). e = gE(e ′)
or ∃e ′ ∈ (EC ∩ e). e = fE(e ′).

• Let e ′ ∈ (EB ∩ e) such that holds: e = gE(e ′):
We have the following:

(sD ′ ◦ hE)(e) = sD ′(hE(e))
e=gE(e

′)
= sD ′(hE(gE(e

′)))

= sD ′((hE ◦ gE)(e ′))
hE◦gE=g ′E= sD ′(g

′
E(e
′))

g ′∈MorHyperGraphs
= g ′

∗
V(sB(e

′))
g ′V=hV◦gV= (hV ◦ gV)∗(sB(e ′))

= h∗V(g
∗
V(sB(e

′)))
g∈MorHyperGraphs

= h∗V(sD(gE(e
′)))

gE(e
′)=e
= h∗V(sD(e)) = (h∗V ◦ sD)(e)

EB

=

V∗B

ED ′ V∗D ′

sB

tB
g ′E g ′∗V

sD ′

tD ′

EB

=

V∗B

ED V∗D

sB

tB
gE g∗V

sD

tD

• Let e ′ ∈ (EC ∩ e) such that holds: e = fE(e ′):
The proof for this case works analogously to the case above.

ii. tD ′ ◦ hE = h∗V ◦ tD :

The proof for this case works analogously to the case above.
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b) Uniqueness:
Let h ′ : D→ D ′ be another morphism with h ′ = (h ′V ,h ′E), h

′
V ◦ fV = f ′V , h ′E ◦ fE =

f ′E, h ′V ◦ gV = g ′V , h ′E ◦ gE = g ′E. This implies, using the universal property for the
two pushouts in Sets for the V- and E-components, that h ′V = hV , h ′E = hE and
hence h ′ = h.

�

Lemma 4: (Pullback in HyperGraphs, see page 52)
Consider the pullback construction from Definition 37. Then the diagram given below is
a hypergraph pullback.

A

(1)

B

C D

b

c g

f

Proof.
Consider hypergraph morphisms b = (bV ,bE), c = (cV , cE), f = (fV , fE) and g = (gV ,gE).
We have to show that the diagram (1) above commutes and that the universal property for pull-
backs holds for (1).

1. Commutation:
We have to show that gi ◦ bi = fi ◦ ci for i ∈ {V ,E}.

a) gV ◦ bV = fV ◦ cV :

Let (x,y) be an arbitrary hypergraph node in VA. Then we have the following:

(gV ◦ bV)(x,y) = gV(bV(x,y))
Def. bV
= gV(x)

Def. VA
= fV(y)

Def. cV
= fV(cV(x,y)) = (fV ◦ cV)(x,y)

b) gE ◦ bE = fE ◦ cE :

The proof for this case works analogously to the case above.
2. Universal property for pullbacks:

Let A ′ = (VA ′ ,EA ′ , sA ′ , tA ′) be an object of comparison and b ′ : A ′ → B, c ′ : A ′ → C

with b ′ = (b ′V ,b ′E), c
′ = (c ′V , c ′E) be hypergraph morphisms such that holds g ◦ b ′ =

f ◦ c ′.
We have to show: ∃!h : A ′ → A. b ◦ h = b ′ ∧ c ◦ h = c ′.

A B

A ′

C D

(1)

b

h

c

b ′

f

h ′

c ′ g

a) Existence:
Due to the pullback construction in Sets for each component, implying that bV ◦
hV = b ′V , bE ◦ hE = b ′E, cV ◦ hV = c ′V , cE ◦ hE = c ′E, we have that h = (hV ,hE)
exists. It remains to show that h is a hypergraph morphism, i.e., sA ◦ hE = h∗V ◦ sA ′
and tA ◦ hE = h∗V ◦ tA ′ .
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EA ′ V∗A ′

EA V∗A

sA ′

tA ′

hE h∗V
sA

tA

i. sA ◦ hE = h∗V ◦ sA ′ :

Fix e ∈ EA ′ . Then we have the following:

(sA ◦ hE)(e) = (h∗V ◦ sA ′)(e)
⇐ sA(hE(e)) = h

∗
V(sA ′(e))

Def. bV ,cV⇐ b∗V(sA(hE(e))) = b
∗
V(h

∗
V(sA ′(e)))

∧ c∗V(sA(hE(e))) = c
∗
V(h

∗
V(sA ′(e)))

b,c∈MorHyperGraphs⇐ sB(bE(hE(e))) = b
∗
V(h

∗
V(sA ′(e)))

∧ sC(cE(hE(e))) = c
∗
V(h

∗
V(sA ′(e)))

⇐ sB((bE ◦ hE)(e)) = (bV ◦ hV)∗(sA ′(e))
∧ sC((cE ◦ hE)(e)) = (cV ◦ hV)∗(sA ′(e)))
bE◦hE=b ′E⇐ sB(b

′
E(e)) = (bV ◦ hV)∗(sA ′(e))

∧ sC((cE ◦ hE)(e)) = (cV ◦ hV)∗(sA ′(e)))
cE◦hE=c ′E⇐ sB(b

′
E(e)) = (bV ◦ hV)∗(sA ′(e))

∧ sC(c
′
E(e)) = (cV ◦ hV)∗(sA ′(e)))

bV◦hV=b ′V⇐ sB(b
′
E(e)) = b

′∗
V(sA ′(e))

∧ sC(c
′
E(e)) = (cV ◦ hV)∗(sA ′(e)))

cV◦hV=c ′V⇐ sB(b
′
E(e)) = b

′∗
V(sA ′(e))

∧ sC(c
′
E(e)) = c

′∗
V(sA ′(e)))

b ′,c ′∈MorHyperGraphs⇐ sB(b
′
E(e)) = sB(b

′
E(e))

∧ sC(c
′
E(e)) = sC(c

′
E(e))

EA

=

V∗A

EB V∗B

sA

tA
bE b∗V

sB

tB

EA

=

V∗A

EC V∗C

sA

tA
cE c∗V

sC

tC

EA ′

=

V∗A ′

EB V∗B

sA ′

tA ′

b ′E b ′∗V
sB

tB

EA ′

=

V∗A ′

EC V∗C

sA ′

tA ′

c ′E c ′∗V
sC

tC

ii. tA ◦ hE = h∗V ◦ tA ′ :

The proof for this case works analogously to the case above.
b) Uniqueness:

Let h ′ : A ′ → A be another morphism with h ′ = (h ′V ,h ′E), bV ◦ h ′V = b ′V , bE ◦
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h ′E = b ′E, cV ◦ h ′V = c ′V , cE ◦ h ′E = c ′E. This implies, using the universal property
for the two pullbacks in Sets for the V- and E-components, that h ′V = hV , h ′E = hE
and hence h ′ = h.

�

Lemma 5: (Boundary Object in (HyperGraphs,M1), see page 53)
Consider two hypergraphs L = (VL,EL, sL, tL) and G = (VG,EG, sG, tG). The boundary
object B ⊆ L of the initial pushout over a general morphism f : L→ G in the M-adhesive
category (HyperGraphs,M) can be constructed as follows with an inclusion b : B→ L:

B = (VB,EB, sB, tB) where

VB = DPV ∪ IPV ∪ IPVE with dangling points

DPV = {v ∈ VL | ∃e ∈ EG\fE(EL).(fV(v) e sG(e)) ∨ (fV(v) e tG(e))}

where x e w⇔ ∃w1,w2. w = w1·x·w2 and identification points

IPV =
{
v ∈ VL | ∃v ′ 6= v.v ′ ∈ VL ∧ fV(v) = fV(v

′)
}

,

IPVE = {v ∈ VL | ∃e ∈ IPE. v e sL(e) ∨ v e tL(e)} ,

EB = IPE =
{
e ∈ EL | ∃e ′ 6= e.e ′ ∈ EL ∧ fE(e) = fE(e

′)
}

,

sB(e) = sL(e),

tB(e) = tL(e).

B L

G

b

f

Proof.
1. To show: b : B→ L is an inclusion.
b : B → L is an inclusion, because functions sB and tB are restrictions of the respective
functions sL and tL.

2. To show: sB, tB : EB → V∗B are well-defined.
Consider e ∈ EB with v e sB(e). Then we have that v e sL(e), because bV is an
inclusion and hence v ∈ VL. Then there is e ∈ IPE with v e sL(e), which implies that
v ∈ IPVE ⊆ VB.
The proof for tB works analogously replacing s by t.

�

Lemma 6: (Context Object in (HyperGraphs,M1), see page 54)
Consider a hypergraph morphism f : L → G and the boundary object B constructed
according to Lemma 5 above. Then the context object C can be constructed in the M-
adhesive category (HyperGraphs,M) as follows with inclusion c : C→ G:

C = (VC,EC, sC, tC) with

VC = (VG\fV(VL))∪ fV(bV(VB)),
EC = (EG\fE(EL))∪ fE(bE(EB)),
sC(e) = sG(e),

tC(e) = tG(e).

B L

C G

b

f

c
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Proof.
1. To show: c : C→ G is an inclusion.
c : C → G is an inclusion, because functions sC and tC are restrictions of the respective
functions sG and tG.

2. To show: sC, tC : EC → V∗C are well-defined.
a) Let e ∈ EC.

To show: sC(e) ∈ V∗C.

EC

=

V∗C

EG V∗G

sC

cE c∗V

sG

Consider some v e sC(e). According to definition of sC we get that v e sG(e) and
hence also v ∈ VG.
It remains to show: v ∈ VC.
Case 1: Let e ∈ EG \ (fE(EL)): (1)

Case 1.1: Let v ∈ fV(VL)⇒ ∃v ′ ∈ VL. fV(v ′) = v: (2)

v e sG(e)

(1), (2)⇒ ∃e ∈ EG \ (fE(EL)). fV(v ′) e sG(e)
Def. DPV⇒ v ′ ∈ DPV (see Lemma 5)
Def. VB⇒ v ′ ∈ VB
bV incl.⇒ v ′ ∈ bV(VB)
(2)⇒ v ∈ fV(bV(VB))
Def. VC⇒ v ∈ VC

Case 1.2: Let v /∈ fV(VL)⇒ v ∈ VG \ (fV(VL))
Def. VC⇒ v ∈ VC

Case 2: Let e ∈ fE(bE(EB))⇒ ∃e ′ ∈ EB. e = fE(bE(e ′))
bE incl.
= fE(e

′): (3)

f∗V ◦ sL = sG ◦ fE
⇒ f∗V(sL(e

′)) = sG(fE(e
′))

(3)⇒ f∗V(sL(e
′)) = sG(e)

vesG(e)⇒ v e f∗V(sL(e
′))

⇒ ∃x e sL(e ′). v = fV(x)
(∗)⇒ x ∈ VB ∧ v = fV(x)

bV incl.⇒ x ∈ VB ∧ v = fV(bV(x))

⇒ v ∈ fV(bV(VB))
Def. VC⇒ v ∈ VC
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(*):

sL(e
′)
bE incl.
= sL(bE(e

′))
(D1) comm.

= b∗V(sB(e
′))

bV incl.
= sB(e

′) ∈ V∗B

EL

=

V∗L

EG V∗G

sL

fE f∗V

sG

EB

(D1)

V∗B

EL V∗L

sB

bE b∗V

sL

b) The proof for tC works analogously replacing s by t.
�

Lemma 7: (Initial Pushout in (HyperGraphs,M1), see page 54)
Consider a hypergraph morphism f : L → G, a boundary object B constructed accord-
ing to Lemma 5, a context object C constructed according to Lemma 6, and inclusions
b : B → L, c : C → G. Then the diagram (1) given below is an initial pushout in
(HyperGraphs,M) with the hypergraph morphism g : B→ C defined as g = f|B.

B

(1)

L

C G

b

g f

c

Proof.
In this proof, we show first that (1) is a pushout in (HyperGraphs,M1). According to Defini-
tion 36 and Lemma 3, we know that pushouts in HyperGraphs are constructed componentwise.
Then using Lemma A.6 from [224], which concerns the construction of pushout complements in
Sets, we get that the diagrams (1a) and (1b) are pushouts in Sets, because VC and EC are
pushout complements in Sets. This implies directly that also (1) is a pushout in HyperGraphs.

VB

(1a)

VL

VC VG

bV

gV fV

cV

EB

(1b)

EL

EC EG

bE

gE fE

cE

In the next step we show that the diagram (1b) is an initial pushout in Sets. For this reason
assume first that the diagram (2) given below to the left is also a pushout with d : D → L,
e : E → G in M1. Since pushouts in HyperGraphs are constructed componentwise, we have
that the diagrams (2a) and (2b) are pushouts in Sets. The components EB and EC in the diagram
(1b) are exactly the boundary over fE : EL → EG in Sets and the context in Sets, respectively
(see Definition A.5 and Fact A.6 in [224]). So we get that the pushout (1b) is initial, which
implies using the fact that (2b) is a pushout that there are unique morphisms bE : EB → ED,
cE : EC → EE in M1 such that the diagram (3) is a pushout and the triangles (4), (5) commute.
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D

(2)

L

E G

d

h f

e

VD

(2a)

VL

VE VG

dV

hV fV

eV

ED

(2b)

EL

EE EG

dE

hE fE

eE

EB EL
ED

EC EG
EE

(1b)(3)

(4)

(5)

bE
bE

gE

dE

cE

cE

hE

eE

fE

Now it remains to show that also the diagram (1a) is an initial pushout in (HyperGraphs,M1).
For this reason, we define the function cV : VC → VE given in the picture below with cV(x) = y
and eV(y) = cV(x) for x ∈ VC and y ∈ VE.
We have to show first that cV given in this way is well-defined, i.e., for every x ∈ VC there is a
unique y ∈ VE such that eV(y) = cV(x).

VB VL
VD

VC VG
VE

(1a)

bV
bV

gV

dV

cV

cV

hV

eV

fV

Let x ∈ VC. As we already know the diagram (2a) is a pushout in Sets. So we have the
following case distinction for the existence of y ∈ VE:

1. x ∈ VG \ fV(VL)

Since (2a) is a pushout, the functions fV : VL → VG and eV : VE → VG are jointly
surjective. So x /∈ fV(VL) implies that x ∈ eV(VE) and hence there is y ∈ VE with

eV(y) = x
cV incl.
= cV(x).

2. x ∈ fV(bV(VB))

In this case, we know that there is z ∈ VB with fV(bV(z)) = x
cV incl.
= cV(x) for VB =

DPV ∪ IPV ∪ IPVE according to Lemma 5.
a) z ∈ DPV

i. z ∈ VL, e ∈ EG \ fE(EL) s.t. fV(z) e sG(e)
Since (2b) is a pushout, the functions fE : EL → EG and eE : EE → EG are
jointly surjective. Since e /∈ fE(EL) by assumption, we know that e ∈ eE(EE).
Thus, there is e ′ ∈ EE such that eE(e ′) = e. Then it holds the following:

cV(x)
cV incl.
= x

Asm.
= fV(bV(z))

bV incl.
= fV(z)

(∗)
= (sG(e))i
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e=eE(e
′)

= (sG(eE(e
′)))i

e∈MorHyperGraphs
= (e∗V(sE(e

′)))i = eV((sE(e
′))i)

(*): Where fV(z) occurs at position i in sG(e) according to assumption that
fV(z) e sG(e).

EE

=

V∗E

EG V∗G

sE

tE
eE e∗V

sG

tG

Thus, we have that there is y = (sE(e
′))i in VE such that eV(y) = eV((sE(e ′))i)

= cV(x), which was to be shown.
ii. z ∈ VL, e ∈ EG \ fE(EL) s.t. fV(z) e tG(e)

The proof for this case works analogously to the proof in the case above.
b) z ∈ IPV

This means according to Lemma 5 that there is z ′ ∈ VL such that z ′ 6= z and fV(z) =
fV(z

′). Since the diagram (2a) is a pushout in Sets, we have that z, z ′ are dV -
images because of the pushout construction in Sets. Thus, there is y ′ ∈ VD such that
dV(y

′) = z implying that fV(dV(y ′)) = fV(z). Then it holds the following:

cV(x)
cV incl.
= x

x=fV(bV(z))
= fV(bV(z))

bV incl.
= fV(z)

fV(z)=fV(dV(y
′))

= fV(dV(y
′))

(2a) comm.
= eV(hV(y

′))

Thus, we have that there is y = hV(y
′) in VE such that eV(y) = eV(hV(y

′)) =

cV(x), which was to be shown.
c) z ∈ IPVE

i. e ∈ IPE s.t. z e sL(e) ∧ (sL(e))i = z
By the characterization of gluing condition in Sets (see Fact A.7 in [224]), we
have that morphisms dE : ED → EL, fE : EL → EG satisfy the gluing condition
since (1b) is an initial pushout and there is a morphism bE : EB → ED making
the triangle (4) commute as already shown before. This implies that e ∈ dE(ED),
i.e., there is e ′ ∈ ED such that dE(e ′) = e. Then it holds the following:

cV(x)
cV incl.
= x

x=fV(bV(z))
= fV(bV(z))

bV incl.
= fV(z)

z=(sL(e))i
= fV((sL(e))i)

e=dE(e
′)

= fV((sL(dE(e
′)))i)

d∈MorHyperGraphs
= fV((d

∗
V(sD(e

′)))i) = fV(dV((sD(e
′))i))

(2a) comm.
= eV(hV((sD(e

′))i))

ED

=

V∗D

EL V∗L

sD

tD
dE d∗V

sL

tL

Thus, we have that there is y = hV((sD(e
′))i) in VE such that eV(y) =

eV(hV((sD(e
′))i)) = cV(x), which was to be shown.



appendices 321

ii. e ∈ IPE s.t. z e tL(e) ∧ (tL(e))i = z
The proof for this case works analogously to the proof in the case above.

It remains now to show the uniqueness of the existing y ∈ VE for which holds that eV(y) =
cV(x) where x ∈ VC. Let us first assume that y is not unique, i.e., there is y ∈ VE with
eV(y) = cV(x) and y 6= y. Since we already know that e ∈ M1 which means that eV is
injective, we directly get the contradiction y = y implying altogether that cV is well-defined.

After the functions cV : VC → VE, cE : EC → EE are given, we now define the morphism
c : C→ E by c = (cV , cE).

B L
D

C G
E

(1)(6)

=

=

b
b

g

d

c

c

h

e

f

It remains to show that c defined in this way is a well-defined hypergraph morphism, i.e., c is
compatible with source and target functions.

1. ∀e ∈ EC. c∗V(sC(e)) = sE(cE(e))
Fix e ∈ EC. As we already know, the statements cV(x) = y and cV(x) = eV(y) are
equivalent for x ∈ VC and y ∈ VE. Therefore, obviously, c∗V(x) = y and c∗V(x) = e∗V(y)

are equivalent as well for x ∈ V∗C and y ∈ V∗E. Let x = sC(e) and y = sE(cE(e)). To get
that c∗V(x) = c∗V(sC(e)) = sE(cE(e)) = y it suffices to show that c∗V(x) = c∗V(sC(e)) =

e∗V(sE(cE(e))) = e
∗
V(y). This holds from the following:

c is a hypergraph morphism

⇒ c∗V(sC(e)) = sG(cE(e))

(5) comm.⇒ c∗V(sC(e)) = sG(eE(cE(e)))

e∈MorHyperGraphs⇒ c∗V(sC(e)) = e
∗
V(sE(cE(e)))

EC

=

V∗C

EE V∗E

sC

tC
cE c∗V

sE

tE

EC

=

V∗C

EG V∗G

sC

tC
cE c∗V

sG

tG

EE

=

V∗E

EG V∗G

sE

tE
eE e∗V

sG

tG

2. ∀e ∈ EC. c∗V(tC(e)) = tE(cE(e))
The proof for this case works analogously to the proof in the case above.

Thus, we have that c : C → E is a morphism with c = e ◦ c because cE = eE ◦ cE by
commutativity of the triangle (5) and cV = eV ◦ cV holds by construction of the function cV .
This implies by Morphism-Pushout-Lemma (see Lemma A.1 in [224]) that c is unique and there
is a unique morphism b : B → D in M1 with b = d ◦ b such that furthermore holds that
(6) is a pushout in HyperGraphs. Hence we directly get that (1) is an initial pushout in
(HyperGraphs,M1). �
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Lemma 27: (Well-Definedness of Hypergraph Morphism Translation, see page 126)
Consider M-adhesive categories (HyperGraphs,M1), (AGraphsHGTG,M2), and the func-
tor FHG : HyperGraphs → AGraphsHGTG from Definition 63. Then for each hyper-
graph morphism f : G1 → G2 the corresponding typed attributed graph morphism
FHG(f) : FHG(G1) → FHG(G2) is well-defined in AGraphsHGTG. Moreover, FHG pre-
serves compositionality, injective morphisms, inclusions, and identities.

Proof.
We have to show the following five steps:

1. The components of FHG(f) are well-defined w.r.t. the codomain.
2. The components of FHG(f) are compatible with the source and target functions.
3. The components of FHG(f) are compatible with the typing morphisms.
4. Compositionality axiom holds for FHG.
5. f ∈M1 (inclusion, identity) implies that FHG(f) ∈M2 (inclusion, identity).

Let FHG(f) : FHG(G1)→ FHG(G2) be defined by FHG(f) = f
′ = (f ′VG , f ′VD = idN, f ′EG , f ′ENA ,

f ′EEA), where in the short notation FHG(Gi) = (VGiG , N,EGiG ,EGiNA,EGiEA, (sGij , tGij )j∈{G,NA,EA})

for i ∈ {1, 2}.
1. f ′VG , f ′VD , f ′EG , f ′ENA , f ′EEA are well-defined w.r.t. the codomain.

a) f ′VG is well-defined, i.e., f ′VG(x) ∈ V
G2
G for x ∈ VG1G :

• Case 1: Let x ∈ VG1 ⊆ VG1G .
f ′VG(x) = fV(x) ∈ VG2 , because f = (fV , fE) is a hypergraph morphism
⇒ fV(x) ∈ VG2G .

• Case 2: Let x ∈ EG1 ⊆ VG1G .
f ′VG(x) = fE(x) ∈ EG2 , because f = (fV , fE) is a hypergraph morphism
⇒ fE(x) ∈ VG2G .

b) f ′VD is well-defined, i.e., f ′VD(i) ∈ V
G2
D for i ∈ VG1D :

• Let i ∈ VG1D with VG1D = N.
f ′VD(i) = idN(i) = i ∈N

⇒ i ∈ VG2D .
c) f ′EG is well-defined, i.e., f ′EG(x,y,n) ∈ EG2G for (x,y,n) ∈ EG1G = EG1n2e ] E

G1
e2n:

• Case 1: Let (v, e,n) ∈ EG1n2e with v ∈ VG1 , e ∈ EG1 ,n ∈N, s.t. snG1(e) = v.
f ′EG(v, e,n) = (fV(v), fE(e),n) with fV(v) ∈ VG2 and fE(e) ∈ EG2
⇒ snG2(fE(e)) = fV(v), i.e., fV(v) is one of the source nodes of the hyperedge
fE(e) in G2, because f = (fV , fE) is a hypergraph morphism
⇒ (fV(v), fE(e),n) ∈ EG2n2e ⊆ E

G2
G .

• Case 2: Let (e, v,n) ∈ EG1e2n with e ∈ EG1 , v ∈ VG1 ,n ∈N, s.t. tnG1(e) = v.
f ′EG(e, v,n) = (fE(e), fV(v),n) with fE(e) ∈ EG2 and fV(v) ∈ VG2
⇒ tnG2(fE(e)) = fV(v), i.e., fV(v) is one of the target nodes of the hyperedge
fE(e) in G2, because f = (fV , fE) is a hypergraph morphism
⇒ (fE(e), fV(v),n) ∈ EG2e2n ⊆ E

G2
G .

d) f ′ENA is well-defined, i.e., f ′ENA(x,y, z) ∈ EG2NA for (x,y, z) ∈ EG1NA = EG1in ] E
G1
out :

• Case 1: Let (e,n, in) ∈ EG1in with e ∈ EG1 ,n ∈N, s.t. |sG1(e)| = n.
f ′ENA(e,n, in) = (fE(e),n, in) with fE(e) ∈ EG2
⇒ |sG2(fE(e))| = |f∗V(sG1(e))| = |sG1(e)| = n, because f = (fV , fE) is a
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hypergraph morphism
⇒ (fE(e),n, in) ∈ EG2in ⊆ E

G2
NA.

• Case 2: Let (e,n, out) ∈ EG1out with e ∈ EG1 ,n ∈N, s.t. |tG1(e)| = n.
f ′ENA(e,n, out) = (fE(e),n, out) with fE(e) ∈ EG2
⇒ |tG2(fE(e))| = |f∗V(tG1(e))| = |tG1(e)| = n, because f = (fV , fE) is a
hypergraph morphism
⇒ (fE(e),n, out) ∈ EG2out ⊆ EG2NA.

e) f ′EEA is well-defined, i.e., f ′EEA(x,y, z) ∈ EG2EA for (x,y, z) ∈ EG1EA = EG1s ] EG1t :
• Case 1: Let (n, v, e) ∈ EG1s with n ∈N, v ∈ VG1 , e ∈ EG1 , s.t. snG1(e) = v.
f ′EEA(n, v, e) = (n, fV(v), fE(e)) with fV(v) ∈ VG2 and fE(e) ∈ EG2
⇒ snG2(fE(e)) = fV(v), because f = (fV , fE) is a hypergraph morphism
⇒ (n, fV(v), fE(e)) ∈ EG2s ⊆ EG2EA.

• Case 2: Let (n, e, v) ∈ EG1t with n ∈N, e ∈ EG1 , v ∈ VG1 , s.t. tnG1(e) = v.
f ′EEA(n, e, v) = (n, fE(e), fV(v)) with fE(e) ∈ EG2 and fV(v) ∈ VG2
⇒ tnG2(fE(e)) = fV(v), because f = (fV , fE) is a hypergraph morphism
⇒ (n, fE(e), fV(v)) ∈ EG2t ⊆ EG2EA.

2. f ′VG , f ′VD , f ′EG , f ′ENA , f ′EEA are compatible with the source and target functions.

To show:
a) f ′VD ◦ t

G1
EA = tG2EA ◦ f ′EEA ,

b) tG2NA ◦ f ′ENA = f ′VD ◦ t
G1
NA,

c) sG2NA ◦ f ′ENA = f ′VG ◦ s
G1
NA,

d) sG2EA ◦ f ′EEA = f ′EG ◦ s
G1
EA,

e) sG2G ◦ f ′EG = f ′VG ◦ s
G1
G ,

f) tG2G ◦ f ′EG = f ′VG ◦ t
G1
G .

EG1G VG1G

EG1NA

VG1D

EG1EA

sG1G

tG1G sG1NA

tG1NA

sG1EA

tG1EA

EG2G VG2G

EG2NA

VG2D

EG2EA

sG2G

tG2G sG2NA

tG2NA

sG2EA

tG2EA

f ′EG f ′VG

f ′ENA

f ′VD

f ′EEA

Part 2a:
Case 1: Let (n, v, e) ∈ EG1s ⊆ EG1EA with n ∈N, v ∈ VG1 and e ∈ EG1 .

(f ′VD ◦ t
G1
EA)(n, v, e) = f ′VD(t

G1
EA(n, v, e)) = f ′VD(n) = n = tG2EA(n, fV(v), fE(e))

= tG2EA(f
′
EEA

(n, v, e)) = (tG2EA ◦ f ′EEA)(n, v, e)

Case 2: Let (n, e, v) ∈ EG1t ⊆ EG1EA with n ∈N, e ∈ EG1 and v ∈ VG1 : similarly to Case 1
replacing v by e and e by v.
Part 2b:
Let (e,n, x) ∈ EG1NA with x ∈ {in, out}.

(tG2NA ◦ f ′ENA)(e,n, x) = tG2NA(f
′
ENA

(e,n, x)) = tG2NA(fE(e),n, x) = n = f ′VD(n)

= f ′VD(t
G1
NA(e,n, x)) = (f ′VD ◦ t

G1
NA)(e,n, x)

Part 2c:
Let (e,n, x) ∈ EG1NA with x ∈ {in, out}.

(sG2NA ◦ f ′ENA)(e,n, x) = sG2NA(f
′
ENA

(e,n, x)) = sG2NA(fE(e),n, x) = fE(e) = f ′VG(e)
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= f ′VG(s
G1
NA(e,n, x)) = (f ′VG ◦ s

G1
NA)(e,n, x)

Part 2d:
Case 1: Let (n, v, e) ∈ EG1s ⊆ EG1EA with n ∈N, v ∈ VG1 and e ∈ EG1 .

(sG2EA ◦ f ′EEA)(n, v, e) = sG2EA(f
′
EEA

(n, v, e)) = sG2EA(n, fV(v), fE(e))

= (fV(v), fE(e),n) = f ′EG(v, e,n) = f
′
EG

(sG1EA(n, v, e))

= (f ′EG ◦ s
G1
EA)(n, v, e)

Case 2: Let (n, e, v) ∈ EG1t ⊆ EG1EA with n ∈N, e ∈ EG1 and v ∈ VG1 : similarly to Case 1
replacing v by e and e by v.
Part 2e:
Case 1: Let (v, e,n) ∈ EG1n2e ⊆ E

G1
G with v ∈ VG1 , e ∈ EG1 and n ∈N.

(sG2G ◦ f ′EG)(v, e,n) = s
G2
G (f ′EG(v, e,n)) = s

G2
G (fV(v), fE(e),n) = fV(v) = f ′VG(v)

= f ′VG(s
G1
G (v, e,n)) = (f ′VG ◦ s

G1
G )(v, e,n)

Case 2: Let (e, v,n) ∈ EG1e2n ⊆ EG1G with e ∈ EG1 , v ∈ VG1 and n ∈ N: similarly to
Case 1 replacing v by e and e by v.
Part 2f:
Case 1: Let (v, e,n) ∈ EG1n2e ⊆ E

G1
G with v ∈ VG1 , e ∈ EG1 and n ∈N.

(tG2G ◦ f ′EG)(v, e,n) = t
G2
G (f ′EG(v, e,n)) = t

G2
G (fV(v), fE(e),n) = fE(e) = f ′VG(e)

= f ′VG(t
G1
G (v, e,n)) = (f ′VG ◦ t

G1
G )(v, e,n)

Case 2: Let (e, v,n) ∈ EG1e2n ⊆ EG1G with e ∈ EG1 , v ∈ VG1 and n ∈ N: similarly to
Case 1 replacing v by e and e by v.

3. f ′VG , f ′VD , f ′EG , f ′ENA , f ′EEA are compatible with the typing morphisms.
Consider FHG(G1) = ((G ′1, NAT), typeG1) and FHG(G2) = ((G ′2, NAT), typeG2).
To show: typeG2 ◦FHG(f) = typeG1 with typeGi = (typeGi

VG
, typeGi

VD
, typeGi

EG
, typeGi

ENA
, typeGi

EEA
)

where i ∈ {1, 2} and FHG(f) = f
′ = (f ′VG , f ′VD , f ′EG , f ′ENA , f ′EEA).

Or in particular:
a) typeG2

VG
◦ f ′VG = typeG1

VG
,

b) typeG2
VD
◦ f ′VD = typeG1

VD
,

c) typeG2
EG
◦ f ′EG = typeG1

EG
,

d) typeG2
ENA
◦ f ′ENA = typeG1

ENA
,

e) typeG2
EEA
◦ f ′EEA = typeG1

EEA
.

FHG(G1)

=

FHG(G2)

HGTG

FHG(f)

typeG1 typeG2

Part 3a:
Case 1: Let v ∈ VG1 ⊆ VG1G .

(typeG2
VG
◦ f ′VG)(v) = typeG2

VG
(f ′VG(v)) = typeG2

VG
(fV(v))

fV(v)∈VG2= Node = typeG1
VG

(v)

Case 2: Let e ∈ EG1 ⊆ VG1G .

(typeG2
VG
◦ f ′VG)(e) = typeG2

VG
(f ′VG(e)) = typeG2

VG
(fE(e))

fE(e)∈EG2= Edge = typeG1
VG

(e)
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Part 3b:
Let i ∈N.

(typeG2
VD
◦ f ′VD)(i) = typeG2

VD
(f ′VD(i)) = typeG2

VD
(idN(i)) = typeG2

VD
(i) = nat = typeG1

VD
(i)

Part 3c:
Case 1: Let (v, e,n) ∈ EG1n2e ⊆ E

G1
G with v ∈ VG1 , e ∈ EG1 and n ∈N.

(typeG2
EG
◦ f ′EG)(v, e,n) = typeG2

EG
(f ′EG(v, e,n)) = typeG2

EG
(fV(v), fE(e),n)

fV(v)∈VG2∧fE(e)∈EG2= node2edge = typeG1
EG
(v, e,n)

Case 2: Let (e, v,n) ∈ EG1e2n ⊆ E
G1
G with e ∈ EG1 , v ∈ VG1 and n ∈N.

(typeG2
EG
◦ f ′EG)(e, v,n) = typeG2

EG
(f ′EG(e, v,n)) = typeG2

EG
(fE(e), fV(v),n)

fE(e)∈EG2∧fV(v)∈VG2= edge2node = typeG1
EG
(e, v,n)

Part 3d:
Case 1: Let (e,n, in) ∈ EG1in ⊆ E

G1
NA with e ∈ EG1 and n ∈N.

(typeG2
ENA
◦ f ′ENA)(e,n, in) = typeG2

ENA
(f ′ENA(e,n, in)) = typeG2

ENA
(fE(e),n, in)

fE(e)∈EG2= in = typeG1
ENA

(e,n, in)

Case 2: Let (e,n, out) ∈ EG1out ⊆ EG1NA with e ∈ EG1 and n ∈ N: similarly to Case 1
replacing in by out.
Part 3e:
Case 1: Let (n, v, e) ∈ EG1s ⊆ EG1EA with n ∈N, v ∈ VG1 and e ∈ EG1 .

(typeG2
EEA
◦ f ′EEA)(n, v, e) = typeG2

EEA
(f ′EEA(n, v, e)) = typeG2

EEA
(n, fV(v), fE(e))

fV(v)∈VG2∧fE(e)∈EG2= number = typeG1
EEA

(n, v, e)

Case 2: Let (n, e, v) ∈ EG1t ⊆ EG1EA with n ∈N, e ∈ EG1 and v ∈ VG1 : similarly to Case 1
replacing v by e and e by v.

4. Compositionality axiom holds for FHG.
Consider hypergraph morphisms f : G2 → G3 and g : G1 → G2.
To show: FHG(f ◦ g) = FHG(f) ◦FHG(g).

• We consider the VG-component of some typed attributed graph morphism.
Case 1: Let v ∈ VG1 .

FHG(f ◦ g)VG(v)
=((f ◦ g)V ] (f ◦ g)E)(v)
=(f ◦ g)V(v)

Def. ◦
= (fV ◦ gV)(v)
=((fV ] fE) ◦ (gV ] gE))(v)
=(FHG(f)VG ◦FHG(g)VG)(v)

Def. ◦
= (FHG(f) ◦FHG(g))VG(v)

Case 2: Let e ∈ EG1 . The proof works similar to the Case 1.
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• We consider the VD-component of some typed attributed graph morphism.
Let x ∈N.

FHG(f ◦ g)VD(x)
=idN(x)

=(idN ◦ idN)(x)

=(FHG(f)VD ◦FHG(g)VD)(x)

=(FHG(f) ◦FHG(g))VD(x)

• We consider the EG-component of some typed attributed graph morphism.
Case 1: Let (v, e,n) ∈ EG1n2e.

FHG(f ◦ g)EG(v, e,n)
=((f ◦ g)V(v), (f ◦ g)E(e),n)

Def. ◦
= ((fV ◦ gV)(v), (fE ◦ gE)(e),n)
=(fV(gV(v)), fE(gE(e)),n)

=FHG(f)EG(gV(v),gE(e),n)

=FHG(f)EG(FHG(g)EG(v, e,n))

=(FHG(f)EG ◦FHG(g)EG)(v, e,n)
Def. ◦
= (FHG(f) ◦FHG(g))EG(v, e,n)

Case 2: Let (e, v,n) ∈ EG1e2n. The proof is similar to the Case 1 replacing v by e and
e by v.

• We consider the ENA-component of some typed attributed graph morphism.
Let (e,n, x) ∈ EG1in ] E

G1
out .

FHG(f ◦ g)ENA(e,n, x)

=((f ◦ g)E(e),n, x)
Def. ◦
= ((fE ◦ gE)(e),n, x)

=(fE(gE(e)),n, x)

=FHG(f)ENA(gE(e),n, x)

=FHG(f)ENA(FHG(g)ENA(e,n, x))

=(FHG(f)ENA ◦FHG(g)ENA)(e,n, x)
Def. ◦
= (FHG(f) ◦FHG(g))ENA(e,n, x)

• We consider the EEA-component of some typed attributed graph morphism.
Case 1: Let (n, v, e) ∈ EG1s .

FHG(f ◦ g)EEA(n, v, e)

=(n, (f ◦ g)V(v), (f ◦ g)E(e))
Def. ◦
= (n, (fV ◦ gV)(v), (fE ◦ gE)(e))
=(n, fV(gV(v)), fE(gE(e)))
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=FHG(f)EEA(n,gV(v),gE(e))

=FHG(f)EEA(FHG(g)EEA(n, v, e))

=(FHG(f)EEA ◦FHG(g)EEA)(n, v, e)
Def. ◦
= (FHG(f) ◦FHG(g))EEA(n, v, e)

Case 2: Let (n, e, v) ∈ EG1t . The proof is similar to the Case 1 replacing v by e and e
by v.

5. f ∈M1 (inclusion, identity) implies that FHG(f) ∈M2 (inclusion, identity).
a) Let f = (fV , fE) ∈M1, i.e., fV , fE are injective.

To show: FHG(f) = f ′ = (f ′VG , f ′VD , f ′EG , f ′ENA , f ′EEA) ∈ M2, i.e., f ′VG , f ′VD , f ′EG ,
f ′ENA and f ′EEA are injective.

i. f ′VG = fV ] fE is obviously injective for injective fV and fE.
ii. f ′VD = idN is obviously injective.

iii. Consider arbitrary (x1,y1, z1) and (x2,y2, z2) from EG1G .
A. Let x1, x2 ∈ VG:

f ′EG(x1,y1, z1) = f ′EG(x2,y2, z2)

⇒(fV(x1), fE(y1), z1) = (fV(x2), fE(y2), z2)

⇒fV(x1) = fV(x2) and fE(y1) = fE(y2) and z1 = z2
fV ,fE inj.⇒ (x1,y1, z1) = (x2,y2, z2)

B. Let x1, x2 ∈ EG: analogously to the previous case applying fE to the first
and fV to the second component of both triples.

C. Let x1 ∈ EG and x2 ∈ VG:

f ′EG(x1,y1, z1) = f ′EG(x2,y2, z2)

⇒(fE(x1), fV(y1), z1) = (fV(x2), fE(y2), z2)

⇒fE(x1) = fV(x2)
⇒(x1,y1, z1) = (x2,y2, z2), because fE, fV have disjoint codomains

D. Let x1 ∈ VG and x2 ∈ EG: analogously to the previous case applying fV to
the first and fE to the second component of the first triple and vice versa for
the second triple.

iv. Consider arbitrary (x1,y1, z1) and (x2,y2, z2) from EG1NA.

f ′ENA(x1,y1, z1) = f ′ENA(x2,y2, z2)

⇒(fE(x1),y1, z1) = (fE(x2),y2, z2)

⇒fE(x1) = fE(x2) and y1 = y2 and z1 = z2
fE inj.⇒ (x1,y1, z1) = (x2,y2, z2)

v. Consider arbitrary (x1,y1, z1) and (x2,y2, z2) from EG1EA.
A. Let y1,y2 ∈ VG:

f ′EEA(x1,y1, z1) = f ′EEA(x2,y2, z2)

⇒(x1, fV(y1), fE(z1)) = (x2, fV(y2), fE(z2))
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⇒x1 = x2 and fV(y1) = fV(y2) and fE(z1) = fE(z2)
fV ,fE inj.⇒ (x1,y1, z1) = (x2,y2, z2)

B. Let y1,y2 ∈ EG: analogously to the previous case applying fE to the second
and fV to the third component of both triples.

C. Let y1 ∈ EG and y2 ∈ VG:

f ′EEA(x1,y1, z1) = f ′EEA(x2,y2, z2)

⇒(x1, fE(y1), fV(z1)) = (x2, fV(y2), fE(z2))

⇒fE(y1) = fV(y2)
⇒(x1,y1, z1) = (x2,y2, z2), because fE, fV have disjoint codomains

D. Let y1 ∈ VG and y2 ∈ EG: analogously to the previous case applying fV to
the second and fE to the third component of the first triple and vice versa for
the second triple.

b) Consider inclusions (identities) fA : A→ A ′ with fA(a) = a and fB : B→ B ′ with
fB(b) = b.
To show: fA ] fB : A]B→ A ′ ]B ′ withA]B = (A× {1}∪B× {2}) andA ′ ]B ′ =
(A ′ × {1}∪B ′ × {2}) is an inclusion (identity).
Case 1: Let i = 1 and x ∈ A]B:

(fA ] fB)(x, i) = (fA ] fB)(x, 1) = (fA(x), 1) = (x, 1)

Case 2: Let i = 2 and x ∈ A]B:

(fA ] fB)(x, i) = (fA ] fB)(x, 2) = (fB(x), 2) = (x, 2)

�

Lemma 28: (FHG Preserves Pushouts along Injective Morphisms [211], see page 129)
Consider M-adhesive categories (HyperGraphs,M1), (AGraphsHGTG,M2), functor FHG :

HyperGraphs → AGraphsHGTG introduced in Definition 63, hypergraphs Gi for i ∈
{0, 1, 2, 3} with hypergraph morphisms b = (bV ,bE), c = (cV , cE), g = (gV ,gE), h =

(hV ,hE), and typed attributed graphs FHG(Gi) for i ∈ {0, 1, 2, 3} with typed attributed
graph morphisms FHG(b) = b

′ = (b ′VG ,b ′VD ,b ′EG ,b ′ENA ,b ′EEA), FHG(c) = c
′ = (c ′VG , c ′VD ,

c ′EG , c ′ENA , c ′EEA), FHG(g) = g
′ = (g ′VG ,g ′VD ,g ′EG ,g ′ENA ,g ′EEA), FHG(h) = h

′ = (h ′VG ,h ′VD ,
h ′EG ,h ′ENA ,h ′EEA). If (1) is a pushout in HyperGraphs with b ∈M1 then we have that (2)
is a pushout in AGraphsHGTG with FHG(b) ∈M2.

G0

(1)

G1

G2 G3

b

c g

h

FHG(G0)

(2)

FHG(G1)

FHG(G2) FHG(G3)

FHG(b)=b
′

FHG(c)=c
′ FHG(g)=g

′

FHG(h)=h
′

Proof.
Let (1) be a pushout in HyperGraphs with b ∈ M1, i.e., V- and E-components of (1) are
pushouts in Sets, because pushouts in HyperGraphs are constructed componentwise according
to Definition 36.
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V0

(PO)

V1

V2 V3

bV inj.

cV gV

hV

E0

(PO)

E1

E2 E3

bE inj.

cE gE

hE

To show: VG-, VD-, EG-, ENA- and EEA-components of (2) are pushouts in Sets with
FHG(b) = b ′ ∈ M2, because pushouts in AGraphsHGTG are constructed componentwise as
well.

For the given morphism b ∈M1 we have that FHG(b) = b
′ ∈M2 according to Lemma 27.

1. VG-component of (2) is a pushout in Sets (see diagram (3)) with f ′VG = fV ] fE for
f ∈ {b, c,g,h}, because pushouts are compatible with coproducts (and coproduct in Sets is
the disjoint union ]).

VG0G

(3)

VG1G

VG2G VG3G

bV ] bE

cV ] cE gV ] gE

hV ] hE

2. VD-component of (2) is obviously a pushout in Sets (see diagram (4)) with f ′VD = idN for
f ∈ {b, c,g,h}.

VG0D =N

(4)

VG1D =N

VG2D =N VG3D =N

idN

idN idN

idN

3. For the EG-component we have to show that (5) is a pushout in Sets which holds if (5a)
and similarly (5b) are pushouts.

EG0G

(5)

EG1G

EG2G EG3G

b ′EG

c ′EG g ′EG

h ′EG

EG0n2e

(5a)

EG1n2e

EG2n2e EG3n2e

bV × bE × idN

cV × cE × idN

gV × gE × idN

hV × hE × idN

EG0e2n

(5b)

EG1e2n

EG2e2n EG3e2n

bE × bV × idN

cE × cV × idN

gE × gV × idN

hE × hV × idN

Diagrams (5a) and (5b) commute, because for each product component we have a pushout
in Sets by assumption. So it remains to show that (5a) and (5b) are pushouts, because
products of pushouts are not necessarily pushouts (the merging morphisms are in general
not jointly surjective).

a) For diagram (5a) we have to show that the diagram (5a ′) is a pushout in Sets with

Vi ⊗ Ei ⊗N = {((v, e),n) ∈ (Vi × Ei)×N | sni (e) = v} for i ∈ {0, 1, 2, 3}

and fV ⊗ fE ⊗ idN for f ∈ {b, c,g,h} .
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V0 ⊗ E0 ⊗N

(5a ′)

V1 ⊗ E1 ⊗N

V2 ⊗ E2 ⊗N V3 ⊗ E3 ⊗N

bV ⊗ bE ⊗ idN

cV ⊗ cE ⊗ idN gV ⊗ gE ⊗ idN

hV ⊗ hE ⊗ idN

Since b, c,g,h are hypergraph morphisms, we have that all fV ⊗ fE⊗ idN morphisms
for f ∈ {b, c,g,h} are well-defined. Furthermore, we have that the components of (5a ′)
are pushouts and pullbacks in Sets, because b = (bV ,bE) ∈ M1 by assumption.
Hence, also (5a ′) is a pullback, because pullbacks are compatible with products and it
remains to show that (hV ⊗ hE ⊗ idN,gV ⊗ gE ⊗ idN) are jointly surjective.
Consider (v3, e3,n) ∈ V3 ⊗ E3 ⊗N. The E-component of (5a ′) is a pushout in Sets
s.t. we have e1 ∈ E1 with gE(e1) = e3 (or we have e2 ∈ E2 with hE(e2) = e3).
Without loss of generality we consider the first case. Let v1 = sn1 (e1) for n ∈N, then
(gV ⊗ gE ⊗ idN)(v1, e1,n) = (v3, e3,n), because g = (gV ,gE) is a hypergraph
morphism, i.e., the compatibility with the corresponding source function holds s.t. we
have sn3 (e3) = v3 (see the diagram below). Hence, (5a ′) and (5a) are pushouts.

E1

=

V∗1

E3 V∗3

s1

t1
gE g∗V

s3

t3

b) For diagram (5b) we have to show that the diagram (5b ′) is a pushout in Sets with

Ei ⊗ Vi ⊗N = {((e, v),n) ∈ (Ei × Vi)×N | tni (e) = v} for i ∈ {0, 1, 2, 3}

and fE ⊗ fV ⊗ idN for f ∈ {b, c,g,h} .

E0 ⊗ V0 ⊗N

(5b ′)

E1 ⊗ V1 ⊗N

E2 ⊗ V2 ⊗N E3 ⊗ V3 ⊗N

bE ⊗ bV ⊗ idN

cE ⊗ cV ⊗ idN gE ⊗ gV ⊗ idN

hE ⊗ hV ⊗ idN

The proof for this case is similar to the Case 3a. Hence, (5b ′) and (5b) are pushouts.
4. For the ENA-component we have to show that (6) is a pushout in Sets which holds if (6a)

and similarly (6b) are pushouts for X = {in} and Y = {out}.

EG0NA

(6)

EG1NA

EG2NA EG3NA

b ′ENA

c ′ENA g ′ENA

h ′ENA

EG0in

(6a)

EG1in

EG2in EG3in

bE × idN × idX

cE × idN × idX
gE × idN × idX

hE × idN × idX

EG0out

(6b)

EG1out

EG2out EG3out

bE × idN × idY

cE × idN × idY
gE × idN × idY

hE × idN × idY

Diagrams (6a) and (6b) commute, because for each product component we have a pushout
in Sets by assumption. So it remains to show that (6a) and (6b) are pushouts.
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a) For diagram (6a) we have to show that the diagram (6a ′) is a pushout in Sets with

Ei ⊗N⊗X = {(e,n, in) | (e,n) ∈ Ei ×N ∧ |si(e)| = n} for i ∈ {0, 1, 2, 3}

and fE ⊗ idN ⊗ idX for f ∈ {b, c,g,h} .

E0 ⊗N⊗X

(6a ′)

E1 ⊗N⊗X

E2 ⊗N⊗X E3 ⊗N⊗X

bE ⊗ idN ⊗ idX

cE ⊗ idN ⊗ idX gE ⊗ idN ⊗ idX

hE ⊗ idN ⊗ idX

Also here we know that fE ⊗ idN ⊗ idX morphisms for f ∈ {b, c,g,h} are well-
defined, because b, c,g,h are hypergraph morphisms. Furthermore, we have that the
components of (6a ′) are pushouts and pullbacks in Sets, because b = (bV ,bE) ∈
M1 by assumption. Hence, also (6a ′) is a pullback and we have that (hE ⊗ idN ⊗
idX,gE ⊗ idN ⊗ idX) are obviously jointly surjective. Therefore, (6a ′) and (6a) are
pushouts.

b) For diagram (6b) we have to show that the diagram (6b ′) is a pushout in Sets with

Ei ⊗N⊗ Y = {(e,n, out) | (e,n) ∈ Ei ×N ∧ |ti(e)| = n} for i ∈ {0, 1, 2, 3}

and fE ⊗ idN ⊗ idY for f ∈ {b, c,g,h} .

E0 ⊗N⊗ Y

(6b ′)

E1 ⊗N⊗ Y

E2 ⊗N⊗ Y E3 ⊗N⊗ Y

bE ⊗ idN ⊗ idY

cE ⊗ idN ⊗ idY gE ⊗ idN ⊗ idY

hE ⊗ idN ⊗ idY

The proof for this case is similar to the Case 4a. Hence, (6b ′) and (6b) are pushouts.
5. For the EEA-component we have to show that (7) is a pushout in Sets which holds if (7a)

and similarly (7b) are pushouts.

EG0EA

(7)

EG1EA

EG2EA EG3EA

b ′EEA

c ′EEA g ′EEA

h ′EEA

EG0s

(7a)

EG1s

EG2s EG3s

idN × bV × bE

idN × cV × cE
idN × gV × gE

idN × hV × hE

EG0t

(7b)

EG1t

EG2t EG3t

idN × bE × bV

idN × cE × cV
idN × gE × gV

idN × hE × hV

Diagrams (7a) and (7b) commute, because also here we have a pushout in Sets for each
product component by assumption. So it remains to show that (7a) and (7b) are pushouts.
The proof for (7a) and (7b) works analogously to the Case 3 of the current proof switching
the components of the products. Hence, (7a) and (7b) are pushouts.

�
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Lemma 29: (Uniquely Determined FHG-Images [211], see page 137)
Consider M-adhesive categories (HyperGraphs,M1), (AGraphsHGTG,M2), M-functor
FHG : HyperGraphs → AGraphsHGTG from Definition 63, typed attributed graphs
FHG(G1), FHG(G2), and a morphism f ′ : FHG(G1) → FHG(G2) with f ′VD = idN. Then
we have that f ′ is uniquely determined by the VG-component f ′VG : VG1G → VG2G with
VGiG = VGi ] EGi for i ∈ {1, 2}.

Proof.
Consider a typed attributed graph morphism f ′ : FHG(G1) → FHG(G2) with f ′ = (f ′VG , f ′VD =

idN, f ′EG , f ′ENA , f ′EEA) given according to the diagram below and fV(v) = f ′VG(v) for v ∈ VG1 ,
fE(e) = f

′
VG

(e) for e ∈ EG1 .

To show:
1. f ′EG(v, e,n)=(fV(v), fE(e),n) for (v, e,n)∈EG1n2e ,
2. f ′EG(e, v,n)=(fE(e), fV(v),n) for (e, v,n)∈EG1e2n ,
3. f ′ENA(e,n, x)=(fE(e),n, x) for (e,n, x)∈EG1in ]E

G1
out ,

4. f ′EEA(n, v, e)=(n, fV(v), fE(e)) for (n, v, e)∈EG1s and
5. f ′EEA(n, e, v)=(n, fE(e), fV(v)) for (n, e, v)∈EG1t .

EG1G VG1G

EG1NA

VG1D

EG1EA

sG1G

tG1G sG1NA

tG1NA

sG1EA

tG1EA

EG2G VG2G

EG2NA

VG2D

EG2EA

sG2G

tG2G sG2NA

tG2NA

sG2EA

tG2EA

f ′EG f ′VG

f ′ENA

f ′VD

f ′EEA

Part 1:
Let f ′EG(v, e,n) = (v ′, e ′,n ′) with sG2G (v ′, e ′,n ′) = v ′ and tG2G (v ′, e ′,n ′) = e ′. Then we have:

v ′ = sG2G (v ′, e ′,n ′) = sG2G (f ′EG(v, e,n)) = f
′
VG

(sG1G (v, e,n)) = f ′VG(v) = fV(v)

⇒ v ′ = fV(v),

e ′ = tG2G (v ′, e ′,n ′) = tG2G (f ′EG(v, e,n)) = f
′
VG

(tG1G (v, e,n)) = f ′VG(e) = fE(e)

⇒ e ′ = fE(e),

n = idN(tG1EA(n, v, e)) = tG2EA(f
′
EEA

(n, v, e))
(∗)
= tG2EA(n

′, v ′, e ′) = n ′

⇒ n ′ = n.

Where the step (∗) holds since we have the following:

sG2EA(f
′
EEA

(n, v, e)) = f ′EG(s
G1
EA(n, v, e)) = f ′EG(v, e,n)

=(v ′, e ′,n ′) = sG2EA(n
′, v ′, e ′)

⇒f ′EEA(n, v, e) = (n ′, v ′, e ′), because sG2EA is a bijection and therefore also an injection.

This implies altogether that f ′EG(v, e,n) = (v ′, e ′,n ′) = (fV(v), fE(e),n).
Part 2:
Similar to Part 1 replacing v by e and e by v.
Part 3:
Let f ′ENA(e,n, x) = (e ′,n ′, x ′) with sG2NA(e

′,n ′, x ′) = e ′ and x = x ′ by compatibility with
typing morphisms. Then we have:

e ′ = sG2NA(e
′,n ′, x ′) = sG2NA(f

′
ENA

(e,n, x)) = f ′VG(s
G1
NA(e,n, x)) = f ′VG(e) = fE(e)
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⇒ e ′ = fE(e),

n ′ = n : Similar to Part 1.

This implies altogether that f ′ENA(e,n, x) = (e ′,n ′, x ′) = (fE(e),n, x).
Part 4:
Let f ′EEA(n, v, e) = (n ′, v ′, e ′) with sG2EA(n

′, v ′, e ′) = (v ′, e ′,n ′). Then we have:

n ′ = n : Similar to Part 1,

v ′ = sG2G (sG2EA(n
′, v ′, e ′)) = sG2G (v ′, e ′,n ′)

Part 1⇒ v ′ = fV(v),

e ′ = tG2G (sG2EA(n
′, v ′, e ′)) = tG2G (v ′, e ′,n ′)

Part 1⇒ e ′ = fE(e).

This implies altogether that f ′EEA(n, v, e) = (n ′, v ′, e ′) = (n, fV(v), fE(e)).
Part 5:
Similar to Part 4 replacing v by e and e by v. �

Lemma 30: (FHG Creates Morphisms [211], see page 137)
Consider M-adhesive categories (HyperGraphs,M1) and (AGraphsHGTG,M2), typed
attributed graphs FHG(G1) and FHG(G2) as well as a morphism f ′ : FHG(G1)→ FHG(G2)

that is compatible with typing morphisms. Then the M-functor FHG : HyperGraphs →
AGraphsHGTG creates a unique morphism f : G1 → G2 such that FHG(f) = f

′ or formally
written:

∃!f : G1 → G2. FHG(f) = f
′.

Proof.
• Construction of f : G1 → G2:

Consider a morphism f ′ : FHG(G1) → FHG(G2) with FHG(Gi) = (VGiG ,VGiD =

N,EGiG ,EGiNA,EGiEA, (sGij , tGij )
j∈{G,NA,EA}

) for i ∈ {1, 2} given by f ′ = (f ′VG , f ′VD , f ′EG ,

f ′ENA , f ′EEA), where

f ′VG : VG1G → VG2G with VGiG = VGi ] EGi for i ∈ {1, 2},

f ′VD : N →N with f ′VD = idN,

f ′EG : EG1G → EG2G with EGiG = EGin2e ] E
Gi
e2n for i ∈ {1, 2},

f ′ENA : EG1NA → EG2NA with EGiNA = EGiin ] E
Gi
out for i ∈ {1, 2},

f ′EEA : EG1EA → EG2EA with EGiEA = EGis ] EGit for i ∈ {1, 2}.

Define f : G1 → G2 with Gj = (VGj ,EGj , sGj , tGj) for j ∈ {1, 2} by f = (fV : VG1 →
VG2 , fE : EG1 → EG2) with

fV(v) = f
′
VG

(v) for v ∈ VG1 ⊆ VG1G ,

fE(e) = f
′
VG

(e) for e ∈ EG1 ⊆ VG1G .

• Well-definedness of f : G1 → G2:
We have to show the following three steps:
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1. fV(v) = f ′VG(v) ∈ VG2 for v ∈ VG1 , fE(e) = f ′VG(e) ∈ EG2 for e ∈ EG1 ,
2. f is a hypergraph morphism, i.e., square (1) below commutes, and
3. FHG(f) = f

′.
Then the following holds:

1. To show: fV(v) = f ′VG(v) ∈ VG2 for v ∈ VG1 .
a) f ′VG(v) ∈ V

G2
G = VG2 ] EG2 by construction. type-compatibility of f ′ given by

assumption implies that (typeG2
VG
◦ f ′VG)(v) = typeG1

VG
(v) = Node using v ∈ VG1 .

This implies that fV(v) = f ′VG(v) ∈ VG2 using typeG2
VG

(f ′VG(v)) = Node and
(typeG2

VG
)−1(Node) = VG2 .

b) fE(e) = f ′VG(e) ∈ EG2 for e ∈ EG1 : similarly to the proof above.
2. To show: Square (1) commutes, i.e.,

a) ∀v ∈ VG1 , ∀e ∈ EG1 , ∀n 6 |sG1(e)|. (s
n
G1

(e) = v)⇒ (snG2(fE(e)) = fV(v)),
b) ∀v ∈ VG1 , ∀e ∈ EG1 , ∀n 6 |tG1(e)|. (t

n
G1

(e) = v)⇒ (tnG2(fE(e)) = fV(v)).

EG1

(1)

V∗G1

EG2 V∗G2

s1

t1

fE f∗V

s2

t2

We have the following:
(a)

snG1(e) = v⇔ (v, e,n) ∈ EG1n2e
⇒ f ′EG(v, e,n) ∈ E

G2
n2e

(∗)⇒ (fV(v), fE(e),n) ∈ EG2n2e ⇔ snG2(fE(e)) = fV(v)

Lem. 2⇒ f = (fV , fE) is a hypergraph morphism.

Where the step (∗) holds since we have the following:

f ′EG(v, e,n) = (fV(v), fE(e),n), because f ′EG , f ′VG are compatible with

sGiG , tGiG for i ∈ {1, 2} (see the diagram below) since f ′ is a typed attri-

buted graph morphism implying the following:

(sG2G ◦ f ′EG)(v, e,n) = (f ′VG ◦ s
G1
G )(v, e,n)

= f ′VG(s
G1
G (v, e,n)) = f ′VG(v) = fV(v) and

(tG2G ◦ f ′EG)(v, e,n) = (f ′VG ◦ t
G1
G )(v, e,n)

= f ′VG(t
G1
G (v, e,n)) = f ′VG(e) = fE(e)

EG1G VG1G

EG2G VG2G

sG1G

tG1G
f ′EG f ′VG

sG2G

tG2G

(b) Similarly to the proof above.
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3. To show: FHG(f) = f
′.

Let FHG(f) = f ′′ = (f ′′VG , f ′′VD , f ′′EG , f ′′ENA , f ′′EEA). This implies that f ′′VG
Def. 63
= fV ]

fE and f ′′VD = idN. But by construction above we have that:

f ′VG = fV ] fE
⇒f ′VG = f ′′VG ∧ f ′VD = f ′′VD = idN

Lem. 29⇒ f ′ = f ′′

⇒FHG(f) = f
′′ = f ′

• Uniqueness of f : G1 → G2:
Let FHG(f) = f

′. Assume that we have another morphism g : G1 → G2 with FHG(g) = f
′.

We have to show that f = g.
Since FHG(f) = f

′ = FHG(g) and using Lemma 29 we have the following two cases:
Case 1: The argument of both morphisms is some node.

FHG(f) = FHG(g)

⇒∀v ∈ VG1G . FHG(f)VG(v) = FHG(g)VG(v)

⇒∀v ∈ VG1 . fV(v) = gV(v)
⇒fV = gV

Case 2: The argument of both morphisms is some edge.

FHG(f) = FHG(g)

⇒∀e ∈ VG1G . FHG(f)VG(e) = FHG(g)VG(e)

⇒∀e ∈ EG1 . fE(e) = gE(e)
⇒fE = gE

�

Lemma 31: (FHG Creates Injective Morphisms [213], see page 137)
Consider M-adhesive categories (HyperGraphs,M1), (AGraphsHGTG,M2), typed attri-
buted graphs FHG(G1),FHG(G2), and an injective typed attributed graph morphism f ′ :

FHG(G1) → FHG(G2) that is compatible with typing morphisms. Then the M-functor
FHG : HyperGraphs → AGraphsHGTG creates a unique injective hypergraph morphism
f : G1 → G2 such that FHG(f) = f

′ or formally written:

∃!f : G1 → G2 in M1. FHG(f) = f
′.

Proof.
Consider an injective typed attributed graph morphism f ′ : FHG(G1)→ FHG(G2) with
FHG(Gi) = (VGiG ,VGiD = N,EGiG ,EGiNA,EGiEA, (sGij , tGij )

j∈{G,NA,EA}
) for i ∈ {1, 2} given by

f ′ = (f ′VG , f ′VD , f ′EG , f ′ENA , f ′EEA) with injective components

f ′VG : VG1G → VG2G with VGiG = VGi ] EGi for i ∈ {1, 2},

f ′VD : N →N with f ′VD = idN,

f ′EG : EG1G → EG2G with EGiG = EGin2e ] E
Gi
e2n for i ∈ {1, 2},
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f ′ENA : EG1NA → EG2NA with EGiNA = EGiin ] E
Gi
out for i ∈ {1, 2},

f ′EEA : EG1EA → EG2EA with EGiEA = EGis ] EGit for i ∈ {1, 2}.

Define the corresponding hypergraph morphism f : G1 → G2 withGj = (VGj ,EGj , sGj , tGj) for
j ∈ {1, 2} according to Lemma 30 by f = (fV : VG1 → VG2 , fE : EG1 → EG2) with

fV(v) = f
′
VG

(v) for v ∈ VG1 ⊆ VG1G ,

fE(e) = f
′
VG

(e) for e ∈ EG1 ⊆ VG1G .

Well-definedness of f : G1 → G2 as well as the uniqueness of hypergraph morphism creation
follow from Lemma 30.
It remains to show that f = (fV : VG1 → VG2 , fE : EG1 → EG2) is an injective hypergraph
morphism, i.e., fV and fE are injective.

• fV : VG1 → VG2 is injective:
Fix v1, v2 ∈ VG1 . It holds the following:

fV(v1) = fV(v2)

Def. f ′VG⇒ f ′VG(v1) = f
′
VG

(v2)

f ′VG
inj.
⇒ v1 = v2

• fE : EG1 → EG2 is injective:
The proof for this case works analogously to the proof of the case above.

�

Lemma 32: (Application of M-Functor FHG to a Hypergraph Boundary Object B over
a Morphism f : L→ G, see page 138)
Consider M-adhesive categories (HyperGraphs,M1), (AGraphsHGTG,M2), a boundary
object B = (VB,EB, sB, tB) over a given morphism f : L → G in (HyperGraphs,M1) con-
structed according to Lemma 5, and the M-functor FHG : HyperGraphs→ AGraphsHGTG

from Definition 63. Then the application of FHG to the boundary object B results in the
following typed attributed graph:

FHG(B) = B
∗ = ((B∗0, NAT), typeB∗) with

B∗0 = (V
B∗0
G ,VB

∗
0

D = N,EB
∗
0

G ,EB
∗
0

NA,EB
∗
0

EA, (sB
∗
0

j , tB
∗
0

j )
j∈{G,NA,EA}

) where

V
B∗0
G = VB ] EB = IPV ∪ IPVE ∪DPV ∪ IPE,

E
B∗0
G = E

B∗0
n2e ] E

B∗0
e2n with

E
B∗0
n2e = {((v, e),n) ∈ (VB × EB)×N | snB(e) = v} ,

E
B∗0
e2n = {((e, v),n) ∈ (EB × VB)×N | tnB(e) = v} ,

E
B∗0
NA = E

B∗0
in ] E

B∗0
out with

E
B∗0
in = {(e,n, in) | (e,n) ∈ EB ×N ∧ |sB(e)| = n} ,

E
B∗0
out = {(e,n, out) | (e,n) ∈ EB ×N ∧ |tB(e)| = n} ,

E
B∗0
EA = E

B∗0
s ] EB

∗
0
t with

E
B∗0
s = {(n, (v, e)) ∈N× (VB × EB) | snB(e) = v} ,
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E
B∗0
t = {(n, (e, v)) ∈N× (EB × VB) | tnB(e) = v} ,

s
B∗0
G : E

B∗0
G → V

B∗0
G defined by s

B∗0
G ((x,y),n) = x,

t
B∗0
G : E

B∗0
G → V

B∗0
G defined by t

B∗0
G ((x,y),n) = y,

s
B∗0
NA : E

B∗0
NA → V

B∗0
G defined by s

B∗0
NA(e,n, x) = e,

t
B∗0
NA : E

B∗0
NA →N defined by t

B∗0
NA(e,n, x) = n,

s
B∗0
EA : E

B∗0
EA → E

B∗0
G defined by s

B∗0
EA(n, (x,y)) = ((x,y),n),

t
B∗0
EA : E

B∗0
EA →N defined by t

B∗0
EA(n, (x,y)) = n,

and FHG(b) : FHG(B)→ FHG(L) is an inclusion.

B∗ = FHG(B) FHG(L)

FHG(G)

FHG(b)

FHG(f)

Proof.
Applying Definition 63 to the boundary object B = (VB,EB, sB, tB) over a morphism f con-
structed according to Lemma 5, we directly get FHG(B) as given above. Moreover, by Lemma 27,
we have for the inclusion b : B→ L that also FHG(b) : FHG(B)→ FHG(L) is an inclusion. �

Lemma 33: (Boundary Object in (AGraphsHGTG,M2) over a Morphism f ′ : L ′ → G ′,
see page 139)
Consider a typed attributed graph morphism f ′ : L ′ → G ′. The boundary object B ′ is given
by B ′ = ((B ′0, NAT), typeB ′) with the boundary points

B ′0 = (V
B ′0
G ,VB

′
0

D = N,EB
′
0

G ,EB
′
0

NA,EB
′
0

EA, (sB
′
0

j , tB
′
0

j )
j∈{G,NA,EA}

).

The components of B ′0 are given by the dangling and identification points as follows:

B ′ L ′

G ′

b ′

f ′

E
B ′0
NA = IPENA = {a ∈ EL ′NA | ∃a ′ 6= a. a ′ ∈ EL ′NA ∧ f ′ENA(a) = f

′
ENA

(a ′)},

E
B ′0
EA = IPEEA = {a ∈ EL ′EA | ∃a ′ 6= a. a ′ ∈ EL ′EA ∧ f ′EEA(a) = f

′
EEA

(a ′)},

E
B ′0
G = DPEG ∪ IPEG ∪ sL

′
EA(IPEEA) with

DPEG = {a ∈ EL ′G | ∃a ′ ∈ EG ′EA\f ′EEA(E
L ′
EA). f

′
EG

(a) = sG
′

EA(a
′)},

IPEG = {a ∈ EL ′G | ∃a ′ 6= a. a ′ ∈ EL ′G ∧ f ′EG(a) = f
′
EG

(a ′)},

V
B ′0
G = DPVG ∪ IPVG ∪ sL

′
G (E

B ′0
G )∪ tL ′G (E

B ′0
G )∪ sL ′NA(IPENA) with
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DPVG = {a ∈ VL ′G | [∃a ′ ∈ EG ′NA\f ′ENA(E
L ′
NA). f

′
VG

(a) = sG
′

NA(a
′)]

∨ [∃a ′ ∈ EG ′G \f ′EG(E
L ′
G ). f ′VG(a) = s

G ′
G (a ′)∨ f ′VG(a) = t

G ′
G (a ′)]},

IPVG = {a ∈ VL ′G | ∃a ′ 6= a. a ′ ∈ VL ′G ∧ f ′VG(a) = f
′
VG

(a ′)},

s
B ′0
G , tB

′
0

G : E
B ′0
G → V

B ′0
G are restrictions of sL

′
G , tL

′
G : EL

′
G → VL

′
G ,

s
B ′0
NA : E

B ′0
NA → V

B ′0
G is a restriction of sL

′
NA : EL

′
NA → VL

′
G ,

t
B ′0
NA : E

B ′0
NA →N is a restriction of tL

′
NA : EL

′
NA →N,

s
B ′0
EA : E

B ′0
EA → E

B ′0
G is a restriction of sL

′
EA : EL

′
EA → EL

′
G ,

t
B ′0
EA : E

B ′0
EA →N is a restriction of tL

′
EA : EL

′
EA →N,

and b ′ : B ′ → L ′ is an inclusion.

EL
′
G VL

′
G

EL
′
NA

VL
′
D

EL
′
EA

sL
′
G

tL
′
G sL

′
NA

tL
′
NA

sL
′
EA

tL
′
EA

EG
′

G VG
′

G

EG
′

NA

VG
′

D

EG
′

EA

sG
′

G

tG
′

G

sG
′

NA

tG
′

NA

sG
′

EA

tG
′

EA

f ′EG f ′VG

f ′ENA

f ′VD

f ′EEA

Proof.
The construction above coincides with the construction in Fact 6. The only difference is in con-
structing the smallest well-defined graph containing certain elements. In Fact 6 this is achieved
by the intersection of possible extensions (called there B ′) contained in L ′. Here, we execute a
closure operation which adds the sources and targets of all contained attributes and edges such
that the resulting graph is obtained. Both approaches are obviously equivalent. �

Lemma 34: (FHG Preserves Initial Pushouts [211], see page 140)
Consider M-adhesive categories (HyperGraphs,M1), (AGraphsHGTG,M2), M-functor
FHG : HyperGraphs → AGraphsHGTG from Definition 63, and let (1) be an initial
pushout over f : L → G in (HyperGraphs,M1). Then (2) is an initial pushout over
FHG(f) : FHG(L)→ FHG(G) in (AGraphsHGTG,M2).

B

(1)

L

C G

b

f ⇒
FHG(B)

(2)

FHG(L)

FHG(C) FHG(G)

FHG(b)

FHG(f)
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Proof.
We assume that (1) is an initial pushout in (HyperGraphs,M1) with boundary B = (VB,EB, sB
= sL, tB = tL) ⊆ L defined according to Lemma 5 and context C = (VC,EC, sC = sG, tC = tG)

defined according to Lemma 6.

FHG(B) FHG(L) = L
′

B ′

FHG(C) FHG(G) = G
′

C ′

(2)(4)

(5)

(6)

FHG(b)
i

b ′

j

c ′

FHG(f) = f
′

B ′

(3)

FHG(L) = L
′

C ′ FHG(G) = G
′

b ′

FHG(f) = f
′

c ′

Since FHG preserves pushouts along injective morphisms according to Lemma 28, we have that
(2) is a pushout in AGraphsHGTG with FHG(b) ∈M2.

Now we construct the initial pushout (3) over the morphism FHG(f) : FHG(L) → FHG(G) in
(AGraphsHGTG,M2) with inclusion b ′ : B ′ → FHG(L) and boundary object B ′ = ((B ′0, NAT),
typeB ′) with the components of B ′0 = (V

B ′0
G ,VB

′
0

D = N,EB
′
0

G ,EB
′
0

NA,EB
′
0

EA, (sB
′
0

j , tB
′
0

j )
j∈{G,NA,EA}

)

defined according to Lemma 33.
Initiality of (3) implies unique morphisms i : B ′ → FHG(B) and j : C ′ → FHG(C) such that

(4) is a pushout in AGraphsHGTG and (5), (6) commute with i, j ∈M2.
Consider now the typed attributed graph FHG(B) = B∗ = ((B∗0, NAT), typeB∗) with B∗0 =

(V
B∗0
G ,VB

∗
0

D = N,EB
∗
0

G ,EB
∗
0

NA,EB
∗
0

EA, (sB
∗
0

j , tB
∗
0

j )
j∈{G,NA,EA}

) defined according to Lemma 32.
In the next step we have to show that i : B ′ → FHG(B) is surjective, i.e., FHG(B) = B

∗ ⊆ B ′,
i.e., VB

∗
0

G ⊆ V
B ′0
G ∧ E

B∗0
G ⊆ E

B ′0
G ∧ E

B∗0
NA ⊆ E

B ′0
NA ∧ E

B∗0
EA ⊆ E

B ′0
EA.

1. To show: VB
∗
0

G ⊆ V
B ′0
G .

From constructions in Lemmas 32 and 33 we have:

V
B∗0
G = VB ] EB = IPV ∪ IPVE ∪DPV ∪ IPE and

V
B ′0
G = DPVG ∪ IPVG ∪ sL

′
G (E

B ′0
G )∪ tL ′G (E

B ′0
G )∪ sL ′NA(IPENA)

a) Let v ∈ DPV . Then we consider two cases:
i. v ∈ VL and ∃e ∈ EG\fE(EL). fV(v) e sG(e), i.e., ∃n ∈N. fV(v) = snG(e).

It remains to show: v ∈ DPVG ⊆ V
B ′0
G .

From v ∈ VL we get that v ∈ VL ′G . Furthermore, let a ′ = (fV(v), e,n) ∈ EG
′

n2e,
because fV(v) = snG(e). Then we have:

f ′VG(v) = fV(v) = s
G ′
G (a ′) and e ∈ EG\fE(EL)

⇒ a ′ = (fV(v), e,n) /∈ f ′EG(E
L ′
G )

Lem. 33⇒ v ∈ DPVG ⊆ V
B ′0
G .

ii. v ∈ VL and ∃e ∈ EG\fE(EL). fV(v) e tG(e), i.e., ∃n ∈ N. fV(v) = tnG(e):
Similar to the proof above.
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b) Let v ∈ IPV . Then we have:
v ∈ VL and ∃v ′ 6= v. v ′ ∈ VL ∧ fV(v) = fV(v

′).
It remains to show: v ∈ IPVG ⊆ V

B ′0
G .

From v, v ′ ∈ VL we get that v, v ′ ∈ VL ′G . Furthermore, we have:

fV(v) = fV(v
′)⇒ f ′VG(v) = fV(v) = fV(v

′) = f ′VG(v
′)

Lem. 33⇒ v ∈ IPVG ⊆ V
B ′0
G .

c) Let e ∈ IPE. Then we have:
e ∈ EL and ∃e ′ 6= e. e ′ ∈ EL ∧ fE(e) = fE(e

′).
It remains to show: e ∈ IPVG ⊆ V

B ′0
G .

From e, e ′ ∈ EL we get that e, e ′ ∈ VL ′G . Furthermore, we have:

fE(e) = fE(e
′)⇒ f ′VG(e) = fE(e) = fE(e

′) = f ′VG(e
′)

Lem. 33⇒ e ∈ IPVG ⊆ V
B ′0
G .

d) Let v ∈ IPVE. Then we consider two cases:
i. v ∈ VL and ∃e ∈ IPE. v e sL(e), i.e., ∃n ∈N. v = snL (e).

It remains to show: v ∈ sL ′G (IPEG) ⊆ sL
′
G (E

B ′0
G ) ⊆ VB

′
0

G .
From e ∈ IPE we get that ∃e ′ 6= e. e ′ ∈ EL ∧ fE(e) = fE(e

′).
Let a = (v, e,n) ∈ EL ′n2e and we construct a ′ 6= a with a ′ = (v ′, e ′,n) ∈ EL ′n2e
s.t. v ′ = snL (e

′). Then we have:

fV(v) = fV(s
n
L (e)) = [f∗V(sL(e))]n = [sG(fE(e))]n

=
[
sG(fE(e

′))
]
n
=
[
f∗V(sL(e

′))
]
n
= fV(s

n
L (e
′))

= fV(v
′), where [ ]n denotes the n-th component of [ ]

This implies:

f ′EG(a) = f
′
EG

(v, e,n) = (fV(v), fE(e),n)

= (fV(v
′), fE(e ′),n) = f ′EG(v

′, e ′,n) = f ′EG(a
′)

Lem. 33⇒ a ∈ IPEG
⇒ v ∈ sL ′G (IPEG) with v = sL

′
G (a)

⇒ v ∈ sL ′G (IPEG) ⊆ sL
′
G (E

B ′0
G ) ⊆ VB

′
0

G .

EL

=

V∗L

EG V∗G

sL

tL
fE f∗V

sG

tG

ii. v ∈ VL and ∃e ∈ IPE. v e tL(e), i.e., ∃n ∈ N. v = tnL (e): Similar to the proof
above.

2. To show: EB
∗
0

G ⊆ E
B ′0
G .

From constructions in Lemmas 32 and 33 we have:

E
B∗0
G = E

B∗0
n2e ] E

B∗0
e2n and

E
B ′0
G = DPEG ∪ IPEG ∪ sL

′
EA(IPEEA)
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a) Let (v, e,n) ∈ EB
∗
0

n2e. Then we have:
(v, e,n) ∈ (VB × EB)×N with snB(e) = v = s

n
L (e).

It remains to show: (v, e,n) ∈ IPEG ⊆ E
B ′0
G .

From e ∈ EB = IPE we get that ∃e ′ 6= e. e ′ ∈ EL ∧ fE(e) = fE(e
′).

Let a = (v, e,n) ∈ EL ′n2e and we construct a ′ 6= a with a ′ = (v ′, e ′,n) ∈ EL ′n2e s.t.
v ′ = snL (e

′). Then we have:

fV(v) = fV(s
n
L (e)) = [f∗V(sL(e))]n = [sG(fE(e))]n

=
[
sG(fE(e

′))
]
n
=
[
f∗V(sL(e

′))
]
n
= fV(s

n
L (e
′))

= fV(v
′), where [ ]n denotes the n-th component of [ ]

This implies:

f ′EG(a) = f
′
EG

(v, e,n) = (fV(v), fE(e),n)

= (fV(v
′), fE(e ′),n) = f ′EG(v

′, e ′,n) = f ′EG(a
′)

Lem. 33⇒ a ∈ IPEG ⊆ E
B ′0
G .

b) Let (e, v,n) ∈ EB
∗
0

e2n: Similar to the proof above.

3. To show: EB
∗
0

NA ⊆ E
B ′0
NA.

From constructions in Lemmas 32 and 33 we have:

E
B∗0
NA = E

B∗0
in ] E

B∗0
out and

E
B ′0
NA = IPENA

a) Let (e,n, in) ∈ EB
∗
0

in . Then we have:
(e,n, in) ∈ EB ×N× {in} with |sB(e)| = n = |sL(e)|.
It remains to show: (e,n, in) ∈ IPENA = E

B ′0
NA.

From e ∈ EB = IPE we get that ∃e ′ 6= e. e ′ ∈ EL ∧ fE(e) = fE(e
′).

Let a = (e,n, in) ∈ EL ′in and we construct a ′ 6= a with a ′ = (e ′,n ′, in) ∈ EL ′in s.t.
n ′ = |sL(e

′)|. Then we have:

n = |sL(e)| = |f∗V(sL(e))| = |sG(fE(e))|

= |sG(fE(e
′))| = |f∗V(sL(e

′))| = |sL(e
′)|

This implies:

f ′ENA(a) = f
′
ENA

(e,n, in) = (fE(e),n, in) = (fE(e), |sL(e ′)|, in)

= (fE(e
′),n ′, in) = f ′ENA(e

′,n ′, in) = f ′ENA(a
′)

Lem. 33⇒ a ∈ IPENA = E
B ′0
NA.

b) Let (e,n, out) ∈ EB
∗
0

out: Similar to the proof above.
4. To show: EB

∗
0

EA ⊆ E
B ′0
EA.

From constructions in Lemmas 32 and 33 we have:

E
B∗0
EA = E

B∗0
s ] EB

∗
0
t and

E
B ′0
EA = IPEEA
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a) Let (n, v, e) ∈ EB
∗
0
s . Then we have:

(n, v, e) ∈N× (VB × EB) with snB(e) = v = s
n
L (e).

It remains to show: (n, v, e) ∈ IPEEA = E
B ′0
EA.

From e ∈ EB = IPE we get that ∃e ′ 6= e. e ′ ∈ EL ∧ fE(e) = fE(e
′).

Let a = (n, v, e) ∈ EL ′s and we construct a ′ 6= a with a ′ = (n, v ′, e ′) ∈ EL ′s s.t.
v ′ = snL (e

′). Then we have:

fV(v) = fV(s
n
L (e)) = [f∗V(sL(e))]n = [sG(fE(e))]n

=
[
sG(fE(e

′))
]
n
=
[
f∗V(sL(e

′))
]
n
= fV(s

n
L (e
′))

= fV(v
′), where [ ]n denotes the n-th component of [ ]

This implies:

f ′EEA(a) = f
′
EEA

(n, v, e) = (n, fV(v), fE(e))

= (n, fV(v ′), fE(e ′)) = f ′EEA(n, v ′, e ′) = f ′EEA(a
′)

Lem. 33⇒ a ∈ IPEEA = E
B ′0
EA.

b) Let (n, e, v) ∈ EB
∗
0
t : Similar to the proof above.

This concludes the part of surjectivity of i : B ′ → FHG(B). Now i is injective and surjective,
so we get that i is an isomorphism. Since (4) is a pushout, also j : C ′ → FHG(C) is an
isomorphism and hence (2) is isomorphic to (3). So we get that also (2) is an initial pushout over
FHG(f) : FHG(L)→ FHG(G). �

Lemma 35: (E−M-Factorization in HyperGraphs, see page 150)
The M-adhesive category (HyperGraphs,M1) has an E1 −M1-factorization according to
Definition 10 where M1 is the class of all injective hypergraph morphisms and E1 is the
class of all surjective hypergraph morphisms.

Proof.
Consider hypergraphs H1 = (V1,E1, s1 : E1 → V∗1 , t1 : E1 →
V∗1), H2 = (V2,E2, s2 : E2 → V∗2 , t2 : E2 → V∗2) and a
hypergraph morphism f : H1 → H2. We construct an E1 −M1-
factorization (f1 : H1 → H3, f2 : H3 → H2) of f given to the
right with H3 = (V3,E3, s3 : E3 → V∗3 , t3 : E3 → V∗3) compo-

H1

H2

H3=f

f1=(fV1 , fE1) surj.

f2=(fV2 , fE2) inj.

nentwise in Sets for nodes and hyperedges as follows

E1 V∗1

E2 V∗2

E3 V∗3

s1

t1

s3

t3
fE

f∗V

s2

t2

fE1

fE2

f∗V1

f∗V2

V1

V2

V3fV

fV1 surj.

fV2 inj.

where fE1 : E1 → E3 is surjective, fE2 : E3 → E2 is injective and the corresponding factoriza-
tion diagram for the node component is given on the right side of the diagram above. For the
construction of the source function s3 consider the following diagram.
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E1 V∗1

E3 V∗3

E2 V∗2

s1

f∗V1fE1 surj.
s3

fE2 inj.

s2

f∗V2

Since fE1 is surjective and hence an epimorphism in Sets, we also know that fE1 is a coequalizer in
Sets. Moreover, by Definition 2.6 from [251, p. 171] we have that fE1 is a regular epimorphism
implying by Lemma 2.10 from [251, p. 171] that fE1 is a strong epimorphism. Finally, by
definition of a strong epimorphism (see Definition 2.1 from [251, p. 170]) we get that there is
a unique source function s3 : E3 → V∗3 making the diagram below commute if fV∗2 is injective,
which can be easily shown as follows:
f∗V2 is injective, i.e., ∀w = x1. . .xn,w ′ = x ′1. . .x

′
n ∈ V∗3 . (f∗V2(x1. . .xn) = f∗V2(x

′
1. . .x

′
n)) ⇒

(x1. . .xn = x ′1. . .x
′
n).

Fix w,w ′ ∈ V∗3 and assume that f∗V2(x1. . .xn) = f
∗
V2

(x ′1. . .x
′
n). Then we have:

f∗V2(x1. . .xn) = f
∗
V2

(x ′1. . .x
′
n)

Def. f∗V2⇒ fV2(x1). . .fV2(xn) = fV2(x
′
1). . .fV2(x

′
n)

fV2 inj.
⇒ x1. . .xn = x ′1. . .x

′
n

E1

=

=

E3

V∗3 V∗2

fE1 surj.

s2 ◦ fE2f∗V1 ◦ s1

f∗V2

s3

The unique target function t3 : E3 → V∗3 can be constructed similarly to the case of the source
function considering the following diagrams:

E1 V∗1

E3 V∗3

E2 V∗2

t1

f∗V1fE1 surj.
t3

fE2 inj.

t2

f∗V2

E1

=

=

E3

V∗3 V∗2

fE1 surj.

t2 ◦ fE2f∗V1 ◦ t1

f∗V2

t3

It remains to show that the hypergraph H3 constructed in this way is unique up to isomorphism.
For this reason assume that there are another hypergraph H ′3 = (V ′3,E ′3, s ′3 : E ′3 → V ′3

∗, t ′3 :

E ′3 → V ′3
∗) and morphisms f ′1 : H1 → H ′3 with f ′1 = (f ′V1 : V1 → V ′3, f ′E1 : E1 → E ′3) in E1,

f ′2 : H ′3 → H2 with f ′2 = (f ′V2 : V
′
3 → V2, f ′E2 : E

′
3 → E2) in M1 such that it holds f = f ′2 ◦ f ′1.

We have to show that H ′3 ∼= H3.
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H1

H2

H3 H ′3=f

f1 surj.

f2 inj.

∼

f ′1 surj.

f ′2 inj.

By the componentwise construction of H3, we know that there are isomorphisms iV : V ′3 → V3,
iE : E ′3 → E3 in Sets such that fV1 = iV ◦ f ′V1 , fE1 = iE ◦ f ′E1 , f

′
V2

= fV2 ◦ iV and f ′E2 =

fE2 ◦ iE as given in the diagrams below.

V1

V2

V3 V ′3=

=

=

fV

fV1

fV2

iV

f ′V1

f ′V2

E1

E2

E3 E ′3=

=

=

fE

fE1

fE2

iE

f ′E1

f ′E2

Thus i : H ′3 → H3 with i = (iV , iE) is a hypergraph isomorphism if it is compatible with the
corresponding source and target functions, i.e.,

• s3 ◦ iE = i∗V ◦ s ′3 :
It holds the following:

s3 ◦ iE ◦ f ′E1
fE1=iE◦f

′
E1= s3 ◦ fE1

(1) comm.
= f∗V1 ◦ s1

fV1=iV◦f
′
V1= (iV ◦ f ′V1)

∗ ◦ s1 = i∗V ◦ f ′V1
∗ ◦ s1

(2) comm.
= i∗V ◦ s ′3 ◦ f ′E1

Thus, we have that s3 ◦ iE ◦ f ′E1 = i
∗
V ◦ s ′3 ◦ f ′E1 and since f ′E1 is surjective by assumption,

we get that s3 ◦ iE = i∗V ◦ s ′3.
• t3 ◦ iE = i∗V ◦ t ′3 :

The proof for this case works analogously to the proof of the case above.

E ′3

=

V ′3
∗

E3 V∗3

s ′3

t ′3
iE i∗V

s3

t3

E1

(1)

V∗1

E3 V∗3

s1

t1
fE1 f∗V1

s3

t3

E1

(2)

V∗1

E ′3 V ′3
∗

s1

t1
f ′E1 f ′V1

∗

s ′3

t ′3

This implies that i : H ′3 → H3 is a hypergraph isomorphism and hence H ′3 ∼= H3. �

Lemma 36: (FHG Preserves Coproducts, see page 150)
Consider a hypergraph A, a family of hypergraphs (Aj)j∈I, a family of hypergraph
morphisms (ij : Aj → A)j∈I, a coproduct (A, (ij)j∈I) of (Aj)j∈I in HyperGraphs, and the
M-functor FHG : HyperGraphs→ AGraphsHGTG from Definition 63. Then (FHG(A),
(FHG(ij))j∈I) is a coproduct of (FHG(Aj))j∈I in AGraphsHGTG.
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Aj A

B

FHG=⇒

ij

fj
f

FHG(Aj) FHG(A)

FHG(B)

FHG(ij)

FHG(fj)
FHG(f)

Proof.
To prove the preservation of coproducts by FHG it is sufficient to show, that FHG preserves
pushouts and initial objects, because pushouts over initial objects are coproducts. In Lemma 28
we have already shown, that FHG preserves pushouts. It remains to show that FHG preserves
initial objects, i.e., for the initial hypergraph ∅, FHG(∅) = ∅N is initial in AGraphsN

HGTG. This
holds obviously according to the explanation in Section 5.1. Thus, FHG preserves coproducts. �

Lemma 37: (FHG Preserves Surjective Morphisms [211], see page 150)
Consider two hypergraphs H1 = (V1,E1, s1, t1), H2 = (V2,E2, s2, t2), a surjective hyper-
graph morphism f : H1 → H2 with f = (fV : V1 → V2, fE : E1 → E2), and the M-functor
FHG : HyperGraphs→ AGraphsHGTG from Definition 63. Then the corresponding typed
attributed graph morphism FHG(f) : FHG(H1) → FHG(H2) with FHG(f) = f ′ = (f ′VG :

VG1G → VG2G , f ′VD : N → N, f ′EG : EG1G → EG2G , f ′ENA : EG1NA → EG2NA, f ′EEA : EG1EA → EG2EA) is
also surjective.

Proof.
Consider surjective morphisms fV and fE, i.e., ∀v ′ ∈ VG2 . ∃v ∈ VG1 . v ′ = fV(v) and ∀e ′ ∈
EG2 . ∃e ∈ EG1 . e ′ = fE(e).

1. To show: f ′VG is surjective, i.e., ∀x ′ ∈ VG2G . ∃x ∈ VG1G . (x ′ = fV(x)) ∨ (x ′ = fE(x)).
f ′VG : VG1G → VG2G with f ′VG = fV ] fE for VGiG = VGi ]EGi where i ∈ {1, 2} is surjective,
because the components fV and fE are surjective.

2. To show: f ′VD is surjective, i.e., ∀n ′ ∈N. ∃n ∈N. n ′ = idN(n).
f ′VD is obviously surjective.

3. To show: f ′EG is surjective.
f ′EG : EG1G → EG2G for EGiG = EGin2e ] E

Gi
e2n with i ∈ {1, 2},

where EGin2e =
{
(v, e,n) ∈ (VGi × EGi)×N | snGi(e) = v

}
and EGie2n =

{
(e, v,n) ∈ (EGi × VGi)×N | tnGi(e) = v

}
.

a) Let (v ′, e ′,n ′) ∈ EG2n2e with sn
′
G2

(e ′) = v ′.
It remains to show: ∃(v, e,n) ∈ EG1n2e. f ′EG(v, e,n) = (v ′, e ′,n ′).
Because of surjectivity of fE holds: ∃e ∈ EG1 . e ′ = fE(e) and let v = sn

′
G1

(e). Then
we get that (v, e,n ′) ∈ EG1n2e, because sn

′
G1

(e) = v. Furthermore, we have:

v ′ = sn
′
G2

(e ′)
fE surj.
= sn

′
G2

(fE(e)) = [sG2(fE(e))]n ′ = [f∗V(sG1(e))]n ′

= fV(s
n ′
G1

(e)) = fV(v), where [ ]n denotes the n-th component of [ ]

This implies that f ′EG(v, e,n
′) = (fV(v), fE(e),n ′) = (v ′, e ′,n ′).

EG1

=

V∗G1

EG2 V∗G2

sG1

tG1
fE f∗V

sG2

tG2
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b) Let (e ′, v ′,n ′) ∈ EG2e2n with tn
′
G2

(e ′) = v ′: The proof for this case is similar to the
proof above.

4. To show: f ′ENA is surjective.
f ′ENA : EG1NA → EG2NA for EGiNA = EGiin ] E

Gi
out with i ∈ {1, 2},

where EGiin = {(e,n, in) | (e,n) ∈ EGi ×N ∧ |sGi(e)| = n}

and EGiout = {(e,n, out) | (e,n) ∈ EGi ×N ∧ |tGi(e)| = n}.
a) Let (e ′,n ′, in) ∈ EG2in with |sG2(e

′)| = n ′.
It remains to show: ∃(e,n, in) ∈ EG1in . f ′ENA(e,n, in) = (e ′,n ′, in).
Because of surjectivity of fE holds: ∃e ∈ EG1 . e ′ = fE(e) and let n = |sG1(e)|. Then
we get that (e,n, in) ∈ EG1in , because |sG1(e)| = n. Furthermore, we have:

n ′ = |sG2(e
′)|
fE surj.
= |sG2(fE(e))|

= |f∗V(sG1(e))| = |sG1(e)| = n

This implies that f ′ENA(e,n, in) = (fE(e),n, in) = (e ′,n ′, in).
b) Let (e ′,n ′, out) ∈ EG2out with |tG2(e

′)| = n ′: The proof for this case is similar to the
proof above.

5. To show: f ′EEA is surjective.
f ′EEA : EG1EA → EG2EA for EGiEA = EGis ] EGit with i ∈ {1, 2},

where EGis =
{
(n, v, e) ∈N× (VGi × EGi) | snGi(e) = v

}
and EGit =

{
(n, e, v) ∈N× (EGi × VGi) | tnGi(e) = v

}
.

a) Let (n ′, v ′, e ′) ∈ EG2s with sn
′
G2

(e ′) = v ′.
It remains to show: ∃(n, v, e) ∈ EG1s . f ′EEA(n, v, e) = (n ′, v ′, e ′).
Because of surjectivity of fE holds: ∃e ∈ EG1 . e ′ = fE(e) and let v = sn

′
G1

(e). Then
we get that (n ′, v, e) ∈ EG1s , because sn

′
G1

(e) = v. Furthermore, we have:

v ′ = sn
′
G2

(e ′)
fE surj.
= sn

′
G2

(fE(e)) = [sG2(fE(e))]n ′ = [f∗V(sG1(e))]n ′

= fV(s
n ′
G1

(e)) = fV(v), where [ ]n denotes the n-th component of [ ]

This implies that f ′EEA(n
′, v, e) = (n ′, fV(v), fE(e)) = (n ′, v ′, e ′).

b) Let (n ′, e ′, v ′) ∈ EG2t with tn
′
G2

(e ′) = v ′: The proof for this case is similar to the proof
above.

�

Lemma 38: (FHG is Compatible with Pair Factorization [211], see page 151)
Consider M-adhesive transformation systems AS1 = (HyperGraphs,M1,P), AS2 =
(AGraphsHGTG,M2,FHG(P)), and the M-functor FHG : HyperGraphs → AGraphsHGTG

from Definition 63. Then FHG is compatible with pair factorization.

Proof.
According to Definition 51 and as already discussed before, we have to show that the cate-
gories (HyperGraphs,M1) and (AGraphsHGTG,M2) have E ′ −M pair factorizations and for
each E ′1 −M1 pair factorization (f1 = m ◦ e1, f2 = m ◦ e2) in (HyperGraphs,M1) also
(FHG(f1) = FHG(m) ◦ FHG(e1),FHG(f2) = FHG(m) ◦ FHG(e2)) is an E ′2 −M2 pair factor-
ization in (AGraphsHGTG,M2) (see the diagram below). According to Lemma 1, an E ′1 −M1
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pair factorization of (f1 : L1 → G, f2 : L2 → G) based on E1 −M1-factorization and co-
products is given by (f1 = m ◦ e1, f2 = m ◦ e2), where f : L1+L2 → G is the induced
morphism of fi : Li → G for i ∈ {1, 2}, f = m ◦ e is an E1 − M1-factorization accord-
ing to Definition 10 and e1 = e ◦ i1, e2 = e ◦ i2 are defined via the coproduct morphisms
i1 : L1 → L1+L2 and i2 : L2 → L1+L2 in (HyperGraphs,M1). Similar we obtain a pair factor-
ization in (AGraphsHGTG,M2). Lemma 1 is applicable to the categories (HyperGraphs,M1)

and (AGraphsHGTG,M2), because these categories have Ei −Mi-factorizations for i ∈ {1, 2} ac-
cording to Lemma 35 and [88] as well as coproducts constructed componentwise as disjoint union,
because the empty hypergraph ∅ resp. almost empty typed attributed graph FHG(∅) are initial in
the categories HyperGraphs resp. AGraphsHGTG and we have pushouts in both categories.

In order to show that FHG is compatible with pair factorization it remains to show that FHG

preserves pair factorization, i.e., for each pair factorization (f1 = m ◦ e1, f2 = m ◦ e2) in
(HyperGraphs,M1) also (FHG(f1) = FHG(m) ◦ FHG(e1),FHG(f2) = FHG(m) ◦ FHG(e2))

is a pair factorization in (AGraphsHGTG,M2). This can be concluded, if FHG preserves coprod-
ucts and surjective morphisms according to Lemma 16. Both properties are shown to hold in
Lemmas 36 and 37 above. Thus, we get that FHG is compatible with pair factorization.

L1

L1+L2

L2

K

G

i1

i2
e

f

e1

e2

m

f1

f2

FHG(L1)

FHG(L1+L2)=FHG(L1)+FHG(L2)

FHG(L2)

FHG(K)

FHG(G)

FHG(i1)

FHG(i2) FHG(e)

FHG(f)

FHG(e1)

FHG(e2)

FHG(m)

FHG(f1)

FHG(f2)

�

Lemma 39: (FHG Translates Jointly Surjective Morphisms, see page 152)
Consider E ′1-M1 pair factorization in (HyperGraphs,M1) and E ′2-M2 pair factorization in
(AGraphsHGTG,M2). Then the M-functor FHG : (HyperGraphs,M1)→ (AGraphsHGTG,
M2) from Definition 63 translates jointly surjective hypergraph morphisms (a ′,b ′) into
the corresponding jointly surjective typed attributed graph morphisms (a ′′,b ′′) with
a ′′ = FHG(a

′) and b ′′ = FHG(b
′).

C

P ′

C ′
b ′

a ′

FHG(C)

FHG(P
′)

C ′′= FHG(C
′)

b ′′ = FHG(b
′)

a ′′ = FHG(a
′)

Proof.
We have to show the following according to Definition 61:

∀(a ′,b ′) ∈ E ′1. ∃(a ′′,b ′′) ∈ E ′2. a ′′ = FHG(a
′) ∧ b ′′ = FHG(b

′)

Let (a ′,b ′) be a pair of jointly surjective morphisms in E ′1. According to Lemma 66 from Ap-
pendix A, we know that ((a ′,b ′), id) is an E ′1-M1 pair factorization of (a ′,b ′) in (HyperGraphs,
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M1). Furthermore, we get by application of Lemma 38 that ((FHG(a
′),FHG(b

′)),FHG(id)) is an
E ′2-M2 pair factorization of (FHG(a

′),FHG(b
′)) in (AGraphsHGTG,M2), which implies by the

definition of E ′-M pair factorization that (FHG(a
′),FHG(b

′)) ∈ E ′2. �

Lemma 40: (FHG Creates Jointly Surjective Morphisms, see page 152)
Consider E ′1-M1 pair factorization in (HyperGraphs,M1), E ′2-M2 pair factorization in
(AGraphsHGTG,M2), and hypergraph morphisms a : P → C, b : P → P ′. Then the
M-functor FHG : (HyperGraphs,M1) → (AGraphsHGTG,M2) from Definition 63 cre-
ates jointly surjective hypergraph morphisms (a ′,b ′) from the corresponding typed at-

tributed graph morphisms (a ′′,b ′′) in E
′
2 = FHG(E

′
1) if for all spans (C

a← P
b→ P ′) holds

that the diagram (1) below commutes, FHG(a
′) = a ′′, FHG(b

′) = b ′′, and the injectivity
of b ′′ implies the injectivity of b ′.

P

C

P ′

C ′

(1)

b

a

b ′

a ′

FHG(P)

FHG(C)

FHG(P
′)

C ′′= FHG(C
′)

(2)

FHG(b)

FHG(a)

b ′′ = FHG(b
′)

a ′′ = FHG(a
′)

Proof.
We have to show the following according to Definition 61:

∀(a ′′,b ′′) ∈ E
′
2. (2) commutes ∧ b ′′ ∈M2 ⇒

∃(a ′,b ′) ∈ E ′1. a ′′ = FHG(a
′)∧ b ′′ = FHG(b

′)∧ (1) commutes ∧ b ′ ∈M1.

Since E
′
2 = FHG(E

′
1), we have that there is (a ′,b ′) ∈ E ′1 with a ′′ = FHG(a

′) and b ′′ =
FHG(b

′). Furthermore, by commutativity of (2) holds:

FHG(a
′) ◦FHG(b) = FHG(b

′) ◦FHG(a)

funct. prop.⇒ FHG(a
′ ◦ b) = FHG(b

′ ◦ a)
Lem. 10⇒ a ′ ◦ b = b ′ ◦ a

Finally, we have that b ′ ∈ M1, because b ′′ = FHG(b
′) in M2 and FHG creates injective mor-

phisms by Lemma 31. �

Lemma 41: (FHG Preserves Pullbacks of Injective Morphisms [213], see page 153)
Consider M-adhesive categories (HyperGraphs,M1), (AGraphsHGTG,M2), the M-func-
tor FHG : HyperGraphs → AGraphsHGTG from Definition 63, hypergraphs Gi for i ∈
{0, 1, 2, 3} with hypergraph morphisms b = (bV ,bE), c = (cV , cE), g = (gV ,gE), h =

(hV ,hE), and typed attributed graphs FHG(Gi) for i ∈ {0, 1, 2, 3} with typed attributed
graph morphisms FHG(b) = b

′ = (b ′VG ,b ′VD ,b ′EG ,b ′ENA ,b ′EEA), FHG(c) = c
′ = (c ′VG , c ′VD ,

c ′EG , c ′ENA , c ′EEA), FHG(g) = g
′ = (g ′VG ,g ′VD ,g ′EG ,g ′ENA ,g ′EEA), FHG(h) = h

′ = (h ′VG ,h ′VD ,
h ′EG ,h ′ENA ,h ′EEA). If (1) is a pullback in HyperGraphs with g,h ∈M1 then we have that
(2) is a pullback in AGraphsHGTG with FHG(g),FHG(h) ∈M2.

G0

(1)

G1

G2 G3

b

c g

h

FHG(G0)

(2)

FHG(G1)

FHG(G2) FHG(G3)

FHG(b)=b
′

FHG(c)=c
′ FHG(g)=g

′

FHG(h)=h
′
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Proof.
For the given morphisms g,h ∈ M1 we have that FHG(g) = g ′, FHG(h) = h ′ are in M2

according to Lemma 27.
Let (1) be a pullback in HyperGraphs with g,h ∈ M1, i.e., V- and E-components of (1) are
pullbacks in Sets, because pullbacks in HyperGraphs are constructed componentwise as we have
already shown in Lemma 4.

V0

(PB)

V1

V2 V3

bV

cV gV inj.

hV inj.

E0

(PB)

E1

E2 E3

bE

cE gE inj.

hE inj.

To show: VG-, VD-, EG-, ENA- and EEA-components of (2) are pullbacks of injective morphisms
in Sets, because according to [88] pullbacks in AGraphsATG and hence also in AGraphsHGTG

are constructed componentwise as well.
1. VG-component of (2) is a pullback of injective morphisms in Sets (see diagram (3)) with
f ′VG = fV ] fE for f ∈ {b, c,g,h}, because the components of (3) are pullbacks and pushouts
of injective morphisms in Sets since g = (gV ,gE), h = (hV ,hE) are in M1 by assumption
and pushouts are compatible with coproducts (and coproduct in Sets is disjoint union ]).

VG0G

(3)

VG1G

VG2G VG3G

bV ] bE

cV ] cE gV ] gE

hV ] hE

2. VD-component of (2) is obviously a pullback of injective morphisms in Sets (see diagram
(4)) with f ′VD = idN for f ∈ {b, c,g,h}.

VG0D =N

(4)

VG1D =N

VG2D =N VG3D =N

idN

idN idN

idN

3. For the EG-component we have to show that (5) is a pullback of injective morphisms in
Sets, which follows if (5a) and similarly (5b) are pullbacks of injective morphisms.

EG0G

(5)

EG1G

EG2G EG3G

b ′EG

c ′EG g ′EG

h ′EG

EG0n2e

(5a)

EG1n2e

EG2n2e EG3n2e

bV × bE × idN

cV × cE × idN

gV × gE × idN

hV × hE × idN

EG0e2n

(5b)

EG1e2n

EG2e2n EG3e2n

bE × bV × idN

cE × cV × idN

gE × gV × idN

hE × hV × idN

Diagrams (5a) and (5b) commute, because for each product component we have a pullback
in Sets by assumption. So it remains to show that (5a) and (5b) are pullbacks.
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a) For diagram (5a) we have to show that the diagram (5a ′) is a pullback in Sets with

Vi ⊗ Ei ⊗N = {((v, e),n) ∈ (Vi × Ei)×N | sni (e) = v} for i ∈ {0, 1, 2, 3}

and fV ⊗ fE ⊗ idN for f ∈ {b, c,g,h} .

V0 ⊗ E0 ⊗N

(5a ′)

V1 ⊗ E1 ⊗N

V2 ⊗ E2 ⊗N V3 ⊗ E3 ⊗N

bV ⊗ bE ⊗ idN

cV ⊗ cE ⊗ idN gV ⊗ gE ⊗ idN

hV ⊗ hE ⊗ idN

Since b, c,g,h are hypergraph morphisms, we have that all fV ⊗ fE⊗ idN morphisms
for f ∈ {b, c,g,h} are well-defined. Furthermore, we have that the components of (5a ′)
are pullbacks in Sets by assumption. Hence, also (5a ′) (as well as (5a)) is a pullback,
because pullbacks are compatible with products.

b) For diagram (5b) we have to show that the diagram (5b ′) is a pullback in Sets with

Ei ⊗ Vi ⊗N = {((e, v),n) ∈ (Ei × Vi)×N | tni (e) = v} for i ∈ {0, 1, 2, 3}

and fE ⊗ fV ⊗ idN for f ∈ {b, c,g,h} .

E0 ⊗ V0 ⊗N

(5b ′)

E1 ⊗ V1 ⊗N

E2 ⊗ V2 ⊗N E3 ⊗ V3 ⊗N

bE ⊗ bV ⊗ idN

cE ⊗ cV ⊗ idN gE ⊗ gV ⊗ idN

hE ⊗ hV ⊗ idN

The proof for this case is similar to the Case 3a. Hence, (5b ′) and (5b) are pullbacks.
4. For the ENA-component we have to show that (6) is a pullback of injective morphisms

in Sets, which follows if (6a) and similarly (6b) are pullbacks of injective morphisms for
X = {in} and Y = {out}.

EG0NA

(6)

EG1NA

EG2NA EG3NA

b ′ENA

c ′ENA g ′ENA

h ′ENA

EG0in

(6a)

EG1in

EG2in EG3in

bE × idN × idX

cE × idN × idX
gE × idN × idX

hE × idN × idX

EG0out

(6b)

EG1out

EG2out EG3out

bE × idN × idY

cE × idN × idY
gE × idN × idY

hE × idN × idY

Diagrams (6a) and (6b) commute, because for each product component we have a pullback
in Sets by assumption. So it remains to show that (6a) and (6b) are pullbacks.

a) For diagram (6a) we have to show that the diagram (6a ′) is a pullback in Sets with

Ei ⊗N⊗X = {(e,n, in) | (e,n) ∈ Ei ×N ∧ |si(e) = n|} for i ∈ {0, 1, 2, 3}

and fE ⊗ idN ⊗ idX for f ∈ {b, c,g,h} .
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E0 ⊗N⊗X

(6a ′)

E1 ⊗N⊗X

E2 ⊗N⊗X E3 ⊗N⊗X

bE ⊗ idN ⊗ idX

cE ⊗ idN ⊗ idX gE ⊗ idN ⊗ idX

hE ⊗ idN ⊗ idX

Also here we know that fE⊗ idN⊗ idX morphisms for f ∈ {b, c,g,h} are well-defined
since b, c,g,h are hypergraph morphisms. Furthermore, we have that the components
of (6a ′) are pullbacks in Sets by assumption. Hence, also (6a ′) (as well as (6a)) is a
pullback, because pullbacks are compatible with products.

b) For diagram (6b) we have to show that the diagram (6b ′) is a pullback in Sets with

Ei ⊗N⊗ Y = {(e,n, out) | (e,n) ∈ Ei ×N ∧ |ti(e) = n|} for i ∈ {0, 1, 2, 3}

and fE ⊗ idN ⊗ idY for f ∈ {b, c,g,h} .

E0 ⊗N⊗ Y

(6b ′)

E1 ⊗N⊗ Y

E2 ⊗N⊗ Y E3 ⊗N⊗ Y

bE ⊗ idN ⊗ idY

cE ⊗ idN ⊗ idY gE ⊗ idN ⊗ idY

hE ⊗ idN ⊗ idY

The proof for this case is similar to the Case 4a. Hence, (6b ′) and (6b) are pullbacks.
5. For the EEA-component we have to show that (7) is a pullback of injective morphisms in

Sets, which follows if (7a) and similarly (7b) are pullbacks of injective morphisms.

EG0EA

(7)

EG1EA

EG2EA EG3EA

b ′EEA

c ′EEA g ′EEA

h ′EEA

EG0s

(7a)

EG1s

EG2s EG3s

idN × bV × bE

idN × cV × cE
idN × gV × gE

idN × hV × hE

EG0t

(7b)

EG1t

EG2t EG3t

idN × bE × bV

idN × cE × cV
idN × gE × gV

idN × hE × hV

Diagrams (7a) and (7b) commute, because also here we have a pullback in Sets for each
product component by assumption. So it remains to show that (7a) and (7b) are pullbacks.
The proof for (7a) and (7b) is very similar to the Case 3 of the current proof switching the
components of the products. Hence, (7a) and (7b) are pullbacks.

�

Lemma 62: (FHGC is a Category Equivalence, see page 221)
The categories (HyperGraphs,M1) and (SubAGraphsHGTG,M∗2) are equivalent, i.e., the-
re exists a category equivalence FHGC : (HyperGraphs,M1)

∼→ (SubAGraphsHGTG,M∗2).

Proof.
In the first step we construct the functor FHGC : (HyperGraphs,M1)→ (SubAGraphsHGTG,
M∗2) according to Definition 63. FHGC defined in this way is a well-defined functor as it is shown
in the proof of Lemma 27. Now we define the inverse functor FHG

−1
C : (SubAGraphsHGTG,
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M∗2) → (HyperGraphs,M1) on objects and morphisms as is given in the following. Con-
sider a typed attributed graph ((G ′, NAT1), type) in SubAGraphsHGTG with E-graph G ′ =
(VG

′
G ,VG

′
D = N,EG

′
G ,EG

′
NA,EG

′
EA, (sG

′
j , tG

′
j )

j∈{G,NA,EA}
) and morphism type : (G ′, NAT) →

(HGTG,Dfin) given by final morphism of data types from NAT to the final algebra Dfin and
typeG ′ : G ′ → HGTG is given by E-graph morphism typeG ′ = (typeVG , typeVD , typeEG , typeENA ,
typeEEA). Since the category SubAGraphsHGTG contains only FHGC-images, we have that
((G ′, NAT), type) = FHGC(G) for some hypergraph G = (VG,EG, sG, tG). We define the object
FHG

−1
C (G ′) = (VFHG

−1
C (G ′),EFHG

−1
C (G ′), sFHG

−1
C (G ′), tFHG

−1
C (G ′)) as follows:

VFHG
−1
C (G ′) = {v ∈ VG ′G | typeVG(v) = Node}

EFHG
−1
C (G ′) = {e ∈ VG ′G | typeVG(e) = Edge}

sFHG
−1
C (G ′) = {(e, v1· . . . ·vn) | (e,n, in) ∈ EG ′NA ∧ ∀i 6 n. ((vi, e), i) ∈ EG

′
G }

tFHG
−1
C (G ′) = {(e, v1· . . . ·vn) | (e,n, out) ∈ EG ′NA ∧ ∀i 6 n. ((e, vi), i) ∈ EG

′
G }

Consider additionally another typed attributed graph ((H ′, NAT), type ′) in SubAGraphsHGTG

with E-graph H ′ = (VH
′

G ,VH
′

D = N,EH
′

G ,EH
′

NA,EH
′

EA, (sH
′

j , tH
′

j )
j∈{G,NA,EA}

) and morphism
type ′ : (H ′, NAT)→ (HGTG,Dfin). For each typed attributed graph morphism f ′ : ((G ′, NAT),
type) → ((H ′, NAT), type ′) in SubAGraphsHGTG with f ′ = (f ′VG : VG

′
G → VH

′
G , f ′VD : N →

N, f ′EG : EG
′

G → EH
′

G , f ′ENA : EG
′

NA → EH
′

NA, f ′EEA : EG
′

EA → EH
′

EA), we define FHG
−1
C (f ′) :

FHG
−1
C (G ′)→ FHG

−1
C (H ′) where FHG

−1
C (G ′) = (VFHG

−1
C (G ′),EFHG

−1
C (G ′), sFHG

−1
C (G ′),

tFHG
−1
C (G ′)) and FHG

−1
C (H ′) = (VFHG

−1
C (H ′),EFHG

−1
C (H ′), sFHG

−1
C (H ′), tFHG

−1
C (H ′)) by

FHG
−1
C (f ′) = f = (fV , fE) where:

fV : VFHG
−1
C (G ′) → VFHG

−1
C (H ′) with fV(v) = f ′VG(v)

fE : EFHG
−1
C (G ′) → EFHG

−1
C (H ′) with fE(e) = f ′VG(e)

As the next step we have to show, that the functor FHG
−1
C introduced above is a well-defined func-

tor. For this reason we have to show the following for an arbitrary object ((G ′, NAT), type) as well
as for an arbitrary morphism f ′ : ((G ′, NAT), type)→ ((H ′, NAT), type ′) in SubAGraphsHGTG:

1. The components of FHG
−1
C (G ′) are well-defined w.r.t. codomain.

Consider a typed attributed graph ((G ′, NAT), type) in SubAGraphsHGTG with E-graph
G ′ = (VG

′
G ,VG

′
D = N,EG

′
G ,EG

′
NA,EG

′
EA, (sG

′
j , tG

′
j )

j∈{G,NA,EA}
) and morphism type :

(G ′, NAT) → (HGTG,Dfin) with typeG ′ = (typeVG , typeVD , typeEG , typeENA , typeEEA).
We have to show that FHG

−1
C (G ′) = (VFHG

−1
C (G ′),EFHG

−1
C (G ′), sFHG

−1
C (G ′), tFHG

−1
C (G ′))

is a well-defined hypergraph. For this reason it suffices to show that the corresponding
components of FHG

−1
C (G ′) and G are equal.

• VFHG
−1
C (G ′) = VG :

VFHG
−1
C (G ′)

Def. FHG
−1
C= {v ∈ VG ′G | typeVG(v) = Node}

VG
′

G from Def. 63
= {v ∈ VG ] EG | typeVG(v) = Node}

typeVG from Def. 63
= VG

1 Similarly to Section 5.2, we consider the category SubAGraphsHGTG with the fixed data type NAT and an
identical algebra homomorphism, which implies that the VD-component of morphisms is an identity.
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• EFHG
−1
C (G ′) = EG :

EFHG
−1
C (G ′)

Def. FHG
−1
C= {e ∈ VG ′G | typeVG(e) = Edge}

VG
′

G from Def. 63
= {e ∈ VG ] EG | typeVG(e) = Edge}

typeVG from Def. 63
= EG

• sFHG
−1
C (G ′) = sG :

sFHG
−1
C (G ′)

Def. FHG
−1
C= {(e, v1· . . . ·vn) | (e,n, in) ∈ EG ′NA ∧ ∀i 6 n. ((vi, e), i) ∈ EG

′
G }

EG
′

G from Def. 63
= {(e, v1· . . . ·vn) | (e,n, in) ∈ EG ′NA

∧ ∀i 6 n. ((vi, e), i) ∈ EG
′

n2e ] EG
′

e2n}

EG
′

NA from Def. 63
= {(e, v1· . . . ·vn) | (e,n) ∈ EG ×N ∧ |sG(e)| = n

∧ ∀i 6 n. ((vi, e), i) ∈ EG
′

n2e}

EG
′

n2e from Def. 63
= {(e, v1· . . . ·vn) | (e,n) ∈ EG ×N ∧ |sG(e)| = n

∧ ∀i 6 n. siG(e) = vi}

= sG

• tFHG
−1
C (G ′) = tG :

tFHG
−1
C (G ′)

Def. FHG
−1
C= {(e, v1· . . . ·vn) | (e,n, out) ∈ EG ′NA ∧ ∀i 6 n. ((e, vi), i) ∈ EG

′
G }

EG
′

G from Def. 63
= {(e, v1· . . . ·vn) | (e,n, out) ∈ EG ′NA

∧ ∀i 6 n. ((e, vi), i) ∈ EG
′

n2e ] EG
′

e2n}

EG
′

NA from Def. 63
= {(e, v1· . . . ·vn) | (e,n) ∈ EG ×N ∧ |tG(e)| = n

∧ ∀i 6 n. ((e, vi), i) ∈ EG
′

e2n}

EG
′

e2n from Def. 63
= {(e, v1· . . . ·vn) | (e,n) ∈ EG ×N ∧ |tG(e)| = n

∧ ∀i 6 n. tiG(e) = vi}

= tG

2. The components of FHG
−1
C (f ′) are well-defined w.r.t. codomain.

Consider a typed attributed graph morphism f ′ : ((G ′, NAT), type) → ((H ′, NAT), type ′)
in SubAGraphsHGTG with f ′ = (f ′VG : VG

′
G → VH

′
G , f ′VD : N → N, f ′EG : EG

′
G →

EH
′

G , f ′ENA : EG
′

NA → EH
′

NA, f ′EEA : EG
′

EA → EH
′

EA). Since the category SubAGraphsHGTG

contains only FHGC-images, we have that f ′ = FHGC(f) for some hypergraph morphism
f = (fV : VG → VH, fE : EG → EH). We have to show that FHG

−1
C (f ′) = ((FHG

−1
C (f ′))V :
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VFHG
−1
C (G ′) → VFHG

−1
C (H ′), (FHG

−1
C (f ′))E : EFHG

−1
C (G ′) → EFHG

−1
C (H ′)) is a well-defined

hypergraph morphism. It suffices to show that the corresponding components of FHG
−1
C (f ′)

and f are equal.
• (FHG

−1
C (f ′))V = fV :

Fix v ∈ VFHG
−1
C (G ′).

(FHG
−1
C (f ′))V(v)

Def. FHG
−1
C= f ′VG(v)

f ′VG
from Def. 63
= (fV ] fE)(v) = fV(v)

• (FHG
−1
C (f ′))E = fE :

Fix e ∈ EFHG
−1
C (G ′).

(FHG
−1
C (f ′))E(e)

Def. FHG
−1
C= f ′VG(e)

f ′VG
from Def. 63
= (fV ] fE)(e) = fE(e)

3. Compositionality axiom holds for FHG
−1
C .

Consider morphisms g ′ : ((G ′, NAT), type)→ ((H ′, NAT), type ′) and f ′ : ((H ′, NAT),
type ′) → ((D ′, NAT), type ′′) in SubAGraphsHGTG. We have to show that FHG

−1
C (f ′ ◦

g ′) = FHG
−1
C (f ′) ◦ FHG

−1
C (g ′). Since the category SubAGraphsHGTG contains only

FHGC-images, we have that g ′ = FHGC(g) and f ′ = FHGC(f) for hypergraph morphisms
g : G → H, f : H → D. Thus, it suffices to show that: FHG

−1
C (FHGC(f) ◦ FHGC(g)) =

FHG
−1
C (FHGC(f)) ◦FHG

−1
C (FHGC(g)). It holds the following:

FHG
−1
C (FHGC(f) ◦FHGC(g))

Funct. prop.
= FHG

−1
C (FHGC(f ◦ g))

FHG
−1
C well-def. on morph.

= f ◦ g
FHG

−1
C well-def. on morph.

= FHG
−1
C (FHGC(f)) ◦FHG

−1
C (FHGC(g))

4. Identity axiom holds for FHG
−1
C .

Consider an identity morphism idX ′ : ((X
′, NAT), type)→ ((X ′, NAT), type) in

SubAGraphsHGTG. We have to show that FHG
−1
C (idX ′) = idFHG

−1
C (X ′). Since the cat-

egory SubAGraphsHGTG contains only FHGC-images, we have that X ′ = FHGC(X) for
some X ∈ ObHyperGraphs. Thus, it suffices to show that: FHG

−1
C (idFHGC(X)

) =

idFHG
−1
C (FHGC(X))

. It holds the following:

FHG
−1
C (idFHGC(X)

)
FHGC is funct.

= FHG
−1
C (FHGC(idX))

FHG
−1
C well-def. on morph.

= idX
FHG

−1
C well-def. on morph.

= idFHG
−1
C (FHGC(X))

It remains now to show that FHGC : (HyperGraphs,M1)
∼→ (SubAGraphsHGTG,M∗2) is a

category equivalence. For this reason, according to Definitions 66 and 67, we have to show that:

∀A ∈ ObHyperGraphs. ∃t1(A) : (FHG
−1
C ◦FHGC)(A)→ IdHyperGraphs(A).

t1(A) is an isomorphism in HyperGraphs ∧

∀A ′ ∈ ObSubAGraphsHGTG . ∃t2(A ′) : (FHGC ◦FHG
−1
C )(A ′)→ IdSubAGraphsHGTG(A

′).

t2(A
′) is an isomorphism in SubAGraphsHGTG
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Fix objects A ∈ ObHyperGraphs, A ′ ∈ ObSubAGraphsHGTG and let t1(A) = idA and t2(A ′) =

idA ′ . Obviously, idA and idA ′ are isomorphisms in HyperGraphs, SubAGraphsHGTG, re-
spectively. Furthermore, it holds the following:

t1(A) = idA : A→ A

FHG
−1
C well-def. on obj.

= idA : (FHG
−1
C ◦FHGC)(A)→ A

Def. IdHyperGraphs
= idA : (FHG

−1
C ◦FHGC)(A)→ IdHyperGraphs(A)

and

t2(A
′) = idA ′ : A

′ → A ′

Def. IdSubAGraphsHGTG= idA ′ : A
′ → IdSubAGraphsHGTG(A

′)

(∗)
= idA ′ : (FHGC ◦FHG

−1
C )(A ′)→ IdSubAGraphsHGTG(A

′)

(*): This step is possible since we know that the functor FHG
−1
C is well-defined on objects and for

an arbitrary object B ∈ ObHyperGraphs it holds the following:

(FHG
−1
C ◦FHGC)(B) = B

Funct. prop.⇔ FHG
−1
C (FHGC(B)) = B

⇔ FHGC(FHG
−1
C (FHGC(B))) = FHGC(B)

A ′=FHGC(B)⇔ FHGC(FHG
−1
C (A ′)) = A ′

Funct. prop.⇔ (FHGC ◦FHG
−1
C )(A ′) = A ′

Thus, we obtain that FHGC : (HyperGraphs,M1)
∼→ (SubAGraphsHGTG,M∗2) is a category

equivalence2 implying that the categories (HyperGraphs,M1) and (SubAGraphsHGTG,M∗2)
are equivalent, which was to be shown. �

Lemma 63: (IHG Satisfies Required Properties, see page 222)
Consider a transformation system (SubAGraphsHGTG,FHG(P)) with a distinguished class
of monomorphisms M∗2, an M-adhesive transformation system (AGraphsHGTG,M2,
FHG(P)), and a functor FHG : (HyperGraphs,M1) → (AGraphsHGTG,M2). Then the
inclusion functor IHG : (SubAGraphsHGTG,M∗2) → (AGraphsHGTG,M2) satisfies the
properties listed in Definition 69.

Proof.
Consider M-adhesive transformation system (HyperGraphs,M1,P), the functor FHG :

(HyperGraphs,M1)→ (AGraphsHGTG,M2) from Definition 63, the subcategory of typed at-
tributed graphs SubAGraphsHGTG with ObSubAGraphsHGTG = FHG(ObHyperGraphs) and
MorSubAGraphsHGTG(FHG(A),FHG(B)) = FHG(MorHyperGraphs(A,B)) for arbitrary A,B ∈
ObHyperGraphs, and functors FHGC : (HyperGraphs,M1)→ (SubAGraphsHGTG,M∗2),
F−1

HGC : (SubAGraphsHGTG,M∗2) → (HyperGraphs,M1) building a category equivalence
FHGC : (HyperGraphs,M1)

∼→ (SubAGraphsHGTG,M∗2). Let moreover, ((G, NAT), type) be
a typed attributed graph in SubAGraphsHGTG with E-graph G = (VGG ,VGD = N,EGG,EGNA,
EGEA, (sGj , tGj )j∈{G,NA,EA}

) and morphism type : (G, NAT) → (HGTG,Dfin) given by final

2 In this case, we even have a category isomorphism according to Definition 68 since it obviously holds that
FHGC ◦FHG

−1
C = IdSubAGraphsHGTG and FHG

−1
C ◦FHGC = IdHyperGraphs.
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morphism of data types from NAT to the final algebra Dfin and typeG : G → HGTG with
typeG = (typeVG , typeVD , typeEG , typeENA , typeEEA).
We have to show that the inclusion functor IHG : (SubAGraphsHGTG,M∗2)→ (AGraphsHGTG,
M2) satisfies the following properties:

1. IHG preserves monomorphisms, i.e., IHG(M
∗
2) ⊆M2:

By definition of IHG, we know that IHG(M
∗
2) = M∗2. Furthermore, we have by construction

of M∗2 that M∗2 ⊆M2.
2. IHG preserves pushouts along M-morphisms:

Let (D,g1 : B → D,g2 : C → D) be a pushout in SubAGraphsHGTG with f1 : A → B

in M∗2. Since pushouts in HyperGraphs are constructed componentwise and the func-
tor FHGC preserves the componentwise construction, pushouts in SubAGraphsHGTG

are constructed componentwise as well and we have that the VG-, VD-, EG-, ENA- and
EEA-components of (1) are pushouts in Sets. Thus, also (IHG(D), IHG(g1) : IHG(B) →
IHG(D), IHG(g2) : IHG(C)→ IHG(D)) with IHG(D) = D, IHG(g1) = g1 and IHG(g2) =

g2 is constructed componentwise in AGraphsHGTG such that the VG-, VD-, EG-, ENA-
and EEA-components of (2) are pushouts in Sets. This implies that (2) is a pushout in
AGraphsHGTG. Furthermore, since IHG preserves monomorphisms according to the prop-
erty shown before, we have for f1 ∈M∗2 that IHG(f1) ∈M2.

A B

C D

(1)

f1 ∈M∗2

f2

g2

g1

IHG(A)=A IHG(B)=B

IHG(C)=C IHG(D)=D

(2)

(IHG(f1)=f1) ∈M2

IHG(f2)=f2

IHG(g2)=g2

IHG(g1)=g1

3. IHG creates morphisms:
Consider a morphism f ′ : IHG(A) → IHG(B) in MorAGraphsHGTG . We have to show that
there is exactly one morphism f : A → B in MorSubAGraphsHGTG such that IHG(f) = f ′.
f ′ satisfies already the existence property with f ′ : A → B and IHG(f

′) = f ′, because
IHG(A) = A and IHG(B) = B. Let f ′′ : A→ B be another SubAGraphsHGTG-morphism
for which it holds that IHG(f

′′) = f ′. This implies that IHG(f
′′) = IHG(f

′) and by definition
of IHG we get that f ′′ = f ′.

4. IHG creates M-morphisms:
Consider an M2-morphism f ′ : IHG(A) → IHG(B) in MorAGraphsHGTG . We have to
show that there is exactly one M∗2-morphism f : A → B in MorSubAGraphsHGTG such that
IHG(f) = f

′. f ′ satisfies already the existence property with f ′ : A → B and IHG(f
′) = f ′,

because IHG(A) = A and IHG(B) = B. Since the category SubAGraphsHGTG contains
only FHG-images and FHGC creates M-morphisms according to Lemma 58, there is exactly

one M1-morphism f : A→ B such that FHGC(f)
Def. FHGC

= FHG(f) = f
′. This implies that

f ′ ∈ FHGC(M1) ∩M2
FHGC(M1)⊆M∗2⊆M2

= FHGC(M1)
Def. FHGC

= FHG(M1)
Def. M∗2= M∗2.

Let f ′′ : A → B be another SubAGraphsHGTG-monomorphism for which it holds that
IHG(f

′′) = f ′. This implies that IHG(f
′′) = IHG(f

′) and by definition of IHG we get that
f ′′ = f ′.

5. IHG preserves initial pushouts:
Consider an initial pushout (2) over the morphism FHGC(f) : FHGC(L) → FHGC(G) in
(SubAGraphsHGTG,M∗2) consisting of FHGC-images only with boundary object
FHGC(B), context object FHGC(C) and morphisms FHGC(b),FHGC(c) ∈M∗2. This initial
pushout is the FHGC-translation of the diagram (1) with boundary object B, context object
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C constructed as given in Lemma 5 resp. Lemma 6 and morphisms b, c ∈M1, which is an
initial pushout in (HyperGraphs,M1) since FHG

−1
C : (SubAGraphsHGTG,M∗2)

∼→
(HyperGraphs,M1) is a category equivalence as well and hence the functor FHG

−1
C :

(SubAGraphsHGTG,M∗2) → (HyperGraphs,M1) from this category equivalence pre-
serves initial pushouts by the corresponding instantiation of Lemma 58.
We have to show that the diagram (3) is an initial pushout in (AGraphsHGTG,M2).
Let FHGC(B) = B∗ = ((B∗0, NAT), type) be given according to Lemma 32. Since IHG

preserves monomorphisms and pushouts along M-morphisms as already shown before, we
have that (3) is a pushout in (AGraphsHGTG,M2) with M2-morphisms IHG(FHGC(b)) =

FHGC(b) and IHG(FHGC(c)) = FHGC(c). Furthermore, by definition of IHG we obviously
have that the diagrams (2) and (3) are isomorphic. Now we construct the initial pushout
(4) over the morphism FHGC(f) : FHGC(L) → FHGC(G) in (AGraphsHGTG,M2) with
boundary B ′ = ((B ′0, NAT), type) defined according to Lemma 33 and morphisms b ′ :
B ′ → FHGC(L), c ′ : C ′ → FHGC(G) in M2. The initiality of (4) implies the existence
of unique morphisms i : B ′ → FHGC(B) and j : C ′ → FHGC(C) such that (5) is a
pushout in AGraphsHGTG and (6), (7) commute with i, j ∈ M2. The surjectivity of
i : B ′ → FHGC(B), i.e., FHGC(B) = B∗ ⊆ B ′, follows from the surjectivity proof given
for Lemma 34 replacing FHG by IHG ◦ FHGC. Thus, i is injective and surjective, so we get
that i is an isomorphism. Since (5) is a pushout, also j : C ′ → FHGC(C) is an isomor-
phism and hence (3) is isomorphic to (4). So we get that also (3) is an initial pushout over
FHGC(f) : FHGC(L)→ FHGC(G).

B

(1)

L

C G

b

g f

c

FHGC(B)

(2)

FHGC(L)

FHGC(C) FHGC(G)

FHGC(b)

FHGC(g) FHGC(f)

FHGC(c)

IHG(FHGC(B)) IHG(FHGC(L))
B ′

IHG(FHGC(C)) IHG(FHGC(G))
C ′

(3)(5)

(6)

(7)

IHG(FHGC(b))
i

IHG(FHGC(g))

b ′

IHG(FHGC(c))
j

g ′

c ′

IHG(FHGC(f))

B ′

(4)

IHG(FHGC(L))

C ′ IHG(FHGC(G))

b ′

g ′ IHG(FHGC(f))

c ′

6. IHG preserves pullbacks of M-morphisms:
Let (A, f1 : A → B, f2 : A → C) be a pullback in SubAGraphsHGTG with g1 :

B → D, g2 : C → D in M∗2. Since pullbacks in HyperGraphs are constructed
componentwise and the functor FHGC preserves the componentwise construction, pull-
backs in SubAGraphsHGTG are constructed componentwise as well and we have that
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the VG-, VD-, EG-, ENA- and EEA-components of (1) are pullbacks in Sets. Thus, also
(IHG(A), IHG(f1) : IHG(A) → IHG(B), IHG(f2) : IHG(A) → IHG(C)) with IHG(A) = A,
IHG(f1) = f1 and IHG(f2) = f2 is constructed componentwise in AGraphsHGTG such
that the VG-, VD-, EG-, ENA- and EEA-components of (2) are pullbacks in Sets. This im-
plies that (2) is a pullback in AGraphsHGTG. Furthermore, since IHG preserves monomor-
phisms according to the first shown property of this proof, we have for g1,g2 ∈ M∗2 that
IHG(g1), IHG(g2) ∈M2.

A B

C D

(1)

f1

f2

g2 ∈M∗2

g1 ∈M∗2

IHG(A)=A IHG(B)=B

IHG(C)=C IHG(D)=D

(2)

IHG(f1)=f1

IHG(f2)=f2
(IHG(g2)=g2) ∈M2

(IHG(g1)=g1) ∈M2

7. IHG preserves epimorphisms, i.e., IHG(E
∗
2) ⊆ E2:

By definition of IHG, we know that IHG(E
∗
2) = E∗2. Furthermore, we have by construction

of E∗2 that E∗2 ⊆ E2.
8. IHG preserves coproducts:

Let (A, (ui)i∈I) be a coproduct in SubAGraphsHGTG withA ∈ ObSubAGraphsHGTG , a fam-
ily of SubAGraphsHGTG-morphisms ui : Ai → A and an index set I. Since coproducts in
HyperGraphs are constructed componentwise and the functor FHGC preserves the compo-
nentwise construction, coproducts in SubAGraphsHGTG are constructed componentwise
as well and we have that the corresponding VG-, VD-, EG-, ENA- and EEA-components
of (1) are coproducts in Sets. Thus, also (IHG(A), (IHG(ui))i∈I) with IHG(A) = A and
IHG(ui) = ui is constructed componentwise in AGraphsHGTG such that the correspond-
ing VG-, VD-, EG-, ENA- and EEA-components of (2) are coproducts in Sets. This implies
that (IHG(A), (IHG(ui))i∈I) is a coproduct in AGraphsHGTG.

Ai A

B

(1)

ui

fi
f

IHG(Ai) IHG(A)

IHG(B)

(2)

IHG(ui)

IHG(fi)
IHG(f)

9. IHG preserves E ′-instances:
According to Definition 61, we have to show the following:

∀(a ′,b ′) ∈ E ′′2 . ∃(a ′′,b ′′) ∈ E ′2. a ′′ = IHG(a
′) ∧ b ′′ = IHG(b

′)

Let (a ′,b ′) be a pair of jointly surjective morphisms in E ′′2 and define a ′′ = IHG(a
′),

b ′′ = IHG(b
′). Then it remains to show that (IHG(a

′), IHG(b
′)) ∈ E ′2. For this reason it

is obviously sufficient to show that IHG is compatible with pair factorization, which means
by Definition 51 that categories SubAGraphsHGTG and AGraphsHGTG have pair factor-
izations and IHG translates pair factorization in SubAGraphsHGTG into the correspond-
ing pair factorization in AGraphsHGTG. According to [88], we know that the category
AGraphsATG and hence also AGraphsHGTG has E ′2−M2 pair factorizations. In the next
step, we want to show that also the subcategory SubAGraphsHGTG has pair factorizations.
As already mentioned in Section 7.1, we can construct an E ′′2 −M∗2 pair factorization using
binary coproducts and E∗2 −M∗2-factorizations in SubAGraphsHGTG. We have binary co-
products in SubAGraphsHGTG because ∅ is an initial object in SubAGraphsHGTG and
SubAGraphsHGTG has pushouts since the functor FHGC preserves pushouts along M-
morphisms by application of Lemma 58. Moreover, we have E∗2 −M∗2-factorizations in
SubAGraphsHGTG since the category HyperGraphs has E1 −M1-factorizations accord-
ing to Lemma 35 and the functor FHGC preserves E−M-factorizations, which can be shown



appendices 359

as follows: Let A e→ X
m→ B be an E1 −M1-factorization of the morphism f : A → B in

HyperGraphs with e ∈ E1 and m ∈ M1 according to Definition 10. Applying the func-
tor FHGC to the commuting triangle (1), we get a commuting triangle (2), because func-
tors preserve commuting diagrams by general functor property. Furthermore, according to
Lemma 58 the functor FHGC preserves monomorphisms and epimorphisms, which implies
that FHGC(e) ∈ E∗2 and FHGC(m) ∈ M∗2. It remains to show that the object FHGC(X) is
unique up to isomorphism. For this reason consider another object X ′ ∈ ObSubAGraphsHGTG

and morphisms e ′ : FHGC(A) → X ′, m ′ : X ′ → FHGC(B) in MorSubAGraphsHGTG such
that it holds that e ′ ∈ E∗2, m ′ ∈ M∗2 and FHGC(f) = m ′ ◦ e ′. We have to show that
FHGC(X) ∼= X ′. According to the definition of the category SubAGraphsHGTG, we know
that X ′, e ′ andm ′ are FHGC-images. This means that for some object X ′′ ∈ ObHyperGraphs

and morphisms e ′′ : A → X ′′, m ′′ : X ′′ → B in MorHyperGraphs it holds that X ′ =
FHGC(X

′′), e ′ = FHGC(e
′′) and m ′ = FHGC(m

′′). Furthermore, by Lemma 58 we
know that the functor FHGC creates M-morphisms implying that m ′′ ∈M1. To show that
e ′′ ∈ E1, let us first assume that e ′′ /∈ E1. This implies directly a contradiction, namely that
also (FHGC(e

′′) = e ′) /∈ E∗2 since we have the following: Let e ′′ = (e ′′V , e ′′E). Then e ′′ /∈ E1
means that either e ′′V or e ′′E is not surjective. Let us first assume that e ′′V is not surjective,
which means that there is y ∈ VX ′′ such that ∀x ∈ VA. e ′′V(x) 6= y. It remains to show that
also FHGC(e

′′) is not surjective. For this reason it suffices to show that FHGC(e
′′)VG is

not surjective, which follows from the property that ∀x ∈ VA ′G . FHGC(e
′′)VG(x) 6= y since

y is also in VX ′G = VX ′′ ] EX ′′ . Fix x ∈ (VA
′

G = VA ] EA). Then we have the following:

FHGC(e
′′)VG(x) = (e ′′V ] e ′′E)(x)

Let x ∈ VA then it holds:

(e ′′V ] e ′′E)(x) = e ′′V(x) 6= y by assumption for y ∈ VX ′′
Let x ∈ EA then it holds:

(e ′′V ] e ′′E)(x) = e ′′E(x) 6= y for y ∈ VX ′′

Hence, we get that e ′′ ∈ E1. Finally, we can show that f = m ′′ ◦ e ′′ as follows:

FHGC(f) = e
′ ◦m ′

⇒ FHGC(f) = FHGC(e
′′) ◦FHGC(m

′′)

⇒ FHGC(f) = FHGC(e
′′ ◦m ′′)

Def. FHGC⇒ FHG(f) = FHG(e
′′ ◦m ′′)

Lem. 10⇒ f = e ′′ ◦m ′′

A

B

X X ′′(1)f

e ∈ E1

m ∈M1

∼

e ′′ ∈ E1

m ′′ ∈M1

FHGC(A)

FHGC(B)

FHGC(X) X ′=FHGC(X
′′)(2)FHGC(f)

FHGC(e) ∈ E∗2

FHGC(m) ∈M∗2

∼

(e ′ = FHGC(e
′′)) ∈ E∗2

(m ′ = FHGC(m
′′)) ∈M∗2
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Thus, we get that A e ′′→ X ′′
m ′′→ B is an E1 −M1-factorization of the morphism f : A → B

in HyperGraphs with e ′′ ∈ E1, m ′′ ∈ M1 and f = m ′′ ◦ e ′′ according to Defini-
tion 10. But since A e→ X

m→ B is an E1 −M1-factorization of the morphism f : A → B

in HyperGraphs by assumption, we have that X ′′ ∼= X, which implies by application

of the functor FHGC that also FHGC(X) ∼= X ′. Thus, we get that FHGC(A)
FHGC(e)→

FHGC(X)
FHGC(m)→ FHGC(B) is an E∗2 −M∗2-factorization of the morphism FHGC(f) in

SubAGraphsHGTG and hence the functor FHGC preserves E−M-factorizations.
Moreover, since IHG preserves coproducts, monomorphisms and epimorphisms according to
the proofs of the previous properties, we get using Lemma 16 that IHG translates E ′′2 −M∗2
pair factorization in SubAGraphsHGTG into the corresponding E ′2−M2 pair factorization
in AGraphsHGTG. Thus, by Definition 51, we have that IHG is compatible with pair
factorization implying that IHG preserves E ′-instances.

10. IHG creates E ′-instances:
According to Definition 61, we have to show the following:

∀(a ′′,b ′′) ∈ IHG(E
′′
2 ). (2) commutes ∧ b ′′ ∈M2 ⇒

∃(a ′,b ′) ∈ E ′′2 . a ′′ = IHG(a
′)∧ b ′′ = IHG(b

′)∧ (1) commutes ∧ b ′ ∈M∗2

Let (a ′′,b ′′) be a pair of jointly surjective morphisms in IHG(E
′′
2 ) such that (2) commutes

and b ′′ ∈ M2. Since IHG(E
′′
2 ) = E ′′2 , we have that there is (a ′,b ′) ∈ E ′′2 , namely the pair

(a ′′,b ′′), with IHG(a
′′) = a ′′, IHG(b

′′) = b ′′ and the diagram (1) obviously commutes.
It remains to show that (b ′ = b ′′) ∈ M∗2. Since IHG creates M-morphisms as already
shown above, we have that for b ′′ ∈M2 there is exactly one morphism b∗ ∈M∗2 such that
IHG(b

∗) = b ′′, which implies directly that b ′′ ∈M∗2.

P

C

P ′

C ′

(1)

b

a

b ′ ∈M∗2

a ′

IHG(P)

IHG(C)

IHG(P
′)

C ′′= IHG(C
′)

(2)

IHG(b)

IHG(a)

(b ′′ = IHG(b
′)) ∈M2

a ′′ = IHG(a
′)

�
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In this appendix, we give the detailed proofs for indicated lemmas from the main part
of this work concerning the PTI net application.
Lemma 42: (Well-Definedness of PTI Net Morphism Translation [207], see page 177)
Consider M-adhesive categories (PTINet,M1), (AGraphsPNTG,M2), and the restricted
functor FPTI : PTINet|M1

→ AGraphsPNTG|M2
from Definition 64. Then for each PTI

net morphism f : NI1 → NI2 in M1 the corresponding morphism FPTI(f) : FPTI(NI1) →
FPTI(NI2) is well-defined in AGraphsPNTG with FPTI(f) ∈ M2. Moreover, FPTI preserves
compositionality, injectivity of morphisms, inclusions, and identities.

Proof.
We have to show the following five steps:

1. The components of FPTI(f) are well-defined w.r.t. the codomain.
2. The components of FPTI(f) are compatible with the source and target functions.
3. The components of FPTI(f) are compatible with the typing morphisms.
4. Compositionality axiom holds for FPTI.
5. f ∈M1 (inclusion, identity) implies that FPTI(f) ∈M2 (inclusion, identity).

Let FPTI(f) : FPTI(NI1)→ FPTI(NI2) be defined by FPTI(f) = f
′ = (f ′VG , f ′VD=idN, f ′EG , f ′ENA ,

f ′EEA), where in the short notation FPTI(NIi) = (VGiG , N,EGiG ,EGiNA,EGiEA, (sGij , tGij )j∈{G,NA,EA})

for i ∈ {1, 2}.
1. f ′VG , f ′VD , f ′EG , f ′ENA , f ′EEA are well-defined w.r.t. the codomain.

a) f ′VG is well-defined, i.e., f ′VG(x) ∈ V
G2
G for x ∈ VG1G :

• Case 1: Let x ∈ VG1G with x ∈ I1.
f ′VG(x) = fI(x) ∈ I2, because f = (fP, fT , fI) ∈M1 is a PTINet-morphism
⇒ fI(x) ∈ VG2G .

• Case 2: Let x ∈ VG1G with x ∈ P1: similarly to Case 1 replacing I by P.
• Case 3: Let x ∈ VG1G with x ∈ T1: similarly to Case 1 replacing I by T .

b) f ′VD is well-defined, i.e., f ′VD(i) ∈ V
G2
D for i ∈ VG1D :

• Let i ∈ VG1D with VG1D = N.
f ′VD(i) = i ∈N

⇒ i ∈ VG2D .
c) f ′EG is well-defined, i.e., f ′EG(x,y) ∈ EG2G for (x,y) ∈ EG1G = EG1to2p ] E

G1
p2t ] E

G1
t2p:

• Case 1: Let (x,p) ∈ EG1to2p with x ∈ I1,p ∈ P1.
f ′EG(x,p) = (fI(x), fP(p)) with fI(x) ∈ I2 and fP(p) ∈ P2
⇒ m2(fI(x)) = fP(p), because f = (fP, fT , fI) ∈M1 is a PTINet-morphism
⇒ (fI(x), fP(p)) ∈ EG2to2p ⊆ E

G2
G .

• Case 2: Let (p, t) ∈ EG1p2t with p ∈ P1, t ∈ T1.
f ′EG(p, t) = (fP(p), fT (t)) with fP(p) ∈ P2 and fT (t) ∈ T2
⇒ pre(fT (t))(fP(p)) > 0, i.e., there exists an edge between fP(p) and fT (t) in
G2, because f = (fP, fT , fI) ∈M1 is a PTINet-morphism
⇒ (fP(p), fT (t)) ∈ EG2p2t ⊆ E

G2
G

361
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• Case 3: Let (t,p) ∈ EG1t2p with t ∈ T1,p ∈ P1: similarly to Case 2 replacing pre
by post.

d) f ′ENA is well-defined, i.e., f ′ENA(x,y, z) ∈ EG2NA for (x,y, z) ∈ EG1NA = EG1in ] E
G1
out :

• Case 1: Let (t,n, in) ∈ EG1in with t ∈ T1,n ∈N.
f ′ENA(t,n, in) = (fT (t),n, in) with fT (t) ∈ T2
⇒| •fT (t) |= n, because f = (fP, fT , fI) ∈M1 is a PTINet-morphism
⇒ (fT (t),n, in) ∈ EG2in ⊆ E

G2
NA.

• Case 2: Let (t,n, out) ∈ EG1out with t ∈ T1,n ∈ N: similarly to Case 1 replacing
in by out and •fT (t) by fT (t)•.

e) f ′EEA is well-defined, i.e., f ′EEA(x,y, z) ∈ EG2EA for (x,y, z) ∈ EG1EA = EG1wpre ] EG1wpost :
• Case 1: Let (p, t,n) ∈ EG1wpre with p ∈ P1, t ∈ T1,n ∈N.
f ′EEA(p, t,n) = (fP(p), fT (t),n) with fP(p) ∈ P2 and fT (t) ∈ T2
⇒ pre(fT (t))(fP(p)) = n, because f = (fP, fT , fI) ∈M1 is a PTINet-morphism
⇒ (fP(p), fT (t),n) ∈ EG2wpre ⊆ EG2EA.

• Case 2: Let (t,p,n) ∈ EG1wpost with t ∈ T1,p ∈ P1,n ∈ N: similarly to Case 1
replacing pre by post.

2. f ′VG , f ′VD , f ′EG , f ′ENA , f ′EEA are compatible with the source and target functions.

To show:
a) f ′VD ◦ t

G1
EA = tG2EA ◦ f ′EEA ,

b) tG2NA ◦ f ′ENA = f ′VD ◦ t
G1
NA ,

c) sG2NA ◦ f ′ENA = f ′VG ◦ s
G1
NA ,

d) sG2EA ◦ f ′EEA = f ′EG ◦ s
G1
EA ,

e) sG2G ◦ f ′EG = f ′VG ◦ s
G1
G ,

f) tG2G ◦ f ′EG = f ′VG ◦ t
G1
G .

EG1G VG1G

EG1NA

VG1D

EG1EA

sG1G

tG1G sG1NA

tG1NA

sG1EA

tG1EA

EG2G VG2G

EG2NA

VG2D

EG2EA

sG2G

tG2G sG2NA

tG2NA

sG2EA

tG2EA

f ′EG f ′VG

f ′ENA

f ′VD

f ′EEA

Part 2a:
Case 1: Let (p, t,n) ∈ EG1EA with p ∈ P1 and t ∈ T1.

(f ′VD ◦ t
G1
EA)(p, t,n) = f ′VD(t

G1
EA(p, t,n)) = f ′VD(n) = n = tG2EA(fP(p), fT (t),n)

= tG2EA(f
′
EEA

(p, t,n)) = (tG2EA ◦ f ′EEA)(p, t,n)

Case 2: Let (t,p,n) ∈ EG1EA with t ∈ T1 and p ∈ P1: similarly to Case 1 replacing p by t
and t by p.
Part 2b:
Let (t,n, i) ∈ EG1NA with i ∈ {in, out}.

(tG2NA ◦ f ′ENA)(t,n, i) = tG2NA(f
′
ENA

(t,n, i)) = tG2NA(fT (t),n, i) = n = f ′VD(n)

= f ′VD(t
G1
NA(t,n, i)) = (f ′VD ◦ t

G1
NA)(t,n, i)

Part 2c:
Let (t,n, i) ∈ EG1NA with i ∈ {in, out}.

(sG2NA ◦ f ′ENA)(t,n, i) = sG2NA(f
′
ENA

(t,n, i)) = sG2NA(fT (t),n, i) = fT (t) = f ′VG(t)

= f ′VG(s
G1
NA(t,n, i)) = (f ′VG ◦ s

G1
NA)(t,n, i)
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Part 2d:
Case 1: Let (p, t,n) ∈ EG1EA with p ∈ P1 and t ∈ T1.

(sG2EA ◦ f ′EEA)(p, t,n) = sG2EA(f
′
EEA

(p, t,n)) = sG2EA(fP(p), fT (t),n) = (fP(p), fT (t))

= f ′EG(p, t) = f ′EG(s
G1
EA(p, t,n)) = (f ′EG ◦ s

G1
EA)(p, t,n)

Case 2: Let (t,p,n) ∈ EG1EA with t ∈ T1 and p ∈ P1: similarly to Case 1 replacing p by t
and t by p.
Part 2e:
Case 1: Let (x,p) ∈ EG1G with x ∈ I1 and p ∈ P1.

(sG2G ◦ f ′EG)(x,p) = sG2G (f ′EG(x,p)) = sG2G (fI(x), fP(p)) = fI(x) = f ′VG(x)

= f ′VG(s
G1
G (x,p)) = (f ′VG ◦ s

G1
G )(x,p)

Case 2: Let (p, t) ∈ EG1G with p ∈ P1 and t ∈ T1: similarly to Case 1 replacing x by p and
p by t.
Case 3: Let (t,p) ∈ EG1G with t ∈ T1 and p ∈ P1: similarly to Case 1 replacing x by t.
Part 2f:
Case 1: Let (x,p) ∈ EG1G with x ∈ I1 and p ∈ P1.

(tG2G ◦ f ′EG)(x,p) = tG2G (f ′EG(x,p)) = tG2G (fI(x), fP(p)) = fP(p) = f ′VG(p)

= f ′VG(t
G1
G (x,p)) = (f ′VG ◦ t

G1
G )(x,p)

Case 2: Let (p, t) ∈ EG1G with p ∈ P1 and t ∈ T1: similarly to Case 1 replacing x by p and
p by t.
Case 3: Let (t,p) ∈ EG1G with t ∈ T1 and p ∈ P1: similarly to Case 1 replacing x by t.

3. f ′VG , f ′VD , f ′EG , f ′ENA , f ′EEA are compatible with the typing morphisms.
Consider FPTI(NI1) = ((G1, NAT), typeG1) and FPTI(NI2) = ((G2, NAT), typeG2).
To show: typeG2 ◦FPTI(f) = typeG1 with typeGi = (typeGi

VG
, typeGi

VD
, typeGi

EG
, typeGi

ENA
, typeGi

EEA
)

where i ∈ {1, 2} and FPTI(f) = f
′ = (f ′VG , f ′VD , f ′EG , f ′ENA , f ′EEA).

Or in particular:
a) typeG2

VG
◦ f ′VG = typeG1

VG
,

b) typeG2
VD
◦ f ′VD = typeG1

VD
,

c) typeG2
EG
◦ f ′EG = typeG1

EG
,

d) typeG2
ENA
◦ f ′ENA = typeG1

ENA
,

e) typeG2
EEA
◦ f ′EEA = typeG1

EEA
.

FPTI(NI1)

=

FPTI(NI2)

PNTG

FPTI(f)

typeG1 typeG2

Part 3a:
Case 1: Let p ∈ VG1G with p ∈ P1.

(typeG2
VG
◦ f ′VG)(p) = typeG2

VG
(f ′VG(p)) = typeG2

VG
(fP(p)) = Place = typeG1

VG
(p)

Case 2: Let t ∈ VG1G with t ∈ T1: similarly to Case 1 replacing p by t.
Case 3: Let x ∈ VG1G with x ∈ I1: similarly to Case 1 replacing p by x.

Part 3b:
Let i ∈N.

(typeG2
VD
◦ f ′VD)(i) = typeG2

VD
(f ′VD(i)) = typeG2

VD
(i) = nat = typeG1

VD
(i)
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Part 3c:
Case 1: Let (x,p) ∈ EG1G with x ∈ I1 and p ∈ P1.

(typeG2
EG
◦ f ′EG)(x,p) = typeG2

EG
(f ′EG(x,p)) = typeG2

EG
(fI(x), fP(p))

= token2place = typeG1
EG
(x,p)

Case 2: Let (p, t) ∈ EG1G with p ∈ P1 and t ∈ T1: similarly to Case 1 replacing x by p and
p by t.
Case 3: Let (t,p) ∈ EG1G with t ∈ T1 and p ∈ P1: similarly to Case 1 replacing x by t.

Part 3d:
Case 1: Let (t,n, in) ∈ EG1NA.

(typeG2
ENA
◦ f ′ENA)(t,n, in) = typeG2

ENA
(f ′ENA(t,n, in)) = typeG2

ENA
(fT (t),n, in)

= in = typeG1
ENA

(t,n, in)

Case 2: Let (t,n, out) ∈ EG1NA: similarly to Case 1 replacing in by out.
Part 3e:
Case 1: Let (p, t,n) ∈ EG1EA with p ∈ P1 and t ∈ T1.

(typeG2
EEA
◦ f ′EEA)(p, t,n) = typeG2

EEA
(f ′EEA(p, t,n)) = typeG2

EEA
(fP(p), fT (t),n)

= weightpre = typeG1
EEA

(p, t,n)

Case 2: Let (t,p,n) ∈ EG1EA with t ∈ T1 and p ∈ P1: similarly to Case 1 replacing p by t
and t by p.

4. Compositionality axiom holds for FPTI.
Consider PTI net morphisms f : NI2 → NI3 and g : NI1 → NI2.
To show: FPTI(f ◦ g) = FPTI(f) ◦FPTI(g).

• We consider the VG-component of some typed attributed graph morphism.
Case 1: Let p ∈ P1.

FPTI(f ◦ g)VG(p)
=((f ◦ g)P ] (f ◦ g)T ] (f ◦ g)I)(p)
=(f ◦ g)P(p)

Def. ◦
= (fP ◦ gP)(p)
=((fP ] fT ] fI) ◦ (gP ] gT ] gI))(p)
=(FPTI(f)VG ◦FPTI(g)VG)(p)

Def. ◦
= (FPTI(f) ◦FPTI(g))VG(p)

Case 2: Let t ∈ T1. The proof works similar to the Case 1.
Case 2: Let x ∈ I1. The proof works similar to the Case 1.

• We consider the VD-component of some typed attributed graph morphism.
Let x ∈N.

FPTI(f ◦ g)VD(x)
=idN(x)

=(idN ◦ idN)(x)

=(FPTI(f)VD ◦FPTI(g)VD)(x)

=(FPTI(f) ◦FPTI(g))VD(x)
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• We consider the EG-component of some typed attributed graph morphism.
Case 1: Let (p, t) ∈ EG1p2t.

FPTI(f ◦ g)EG(p, t)

=((f ◦ g)P(p), (f ◦ g)T (t))
Def. ◦
= ((fP ◦ gP)(p), (fT ◦ gT )(t))
=(fP(gP(p)), fT (gT (t)))

=FPTI(f)EG(gP(p),gT (t))

=FPTI(f)EG(FPTI(g)EG(p, t))

=(FPTI(f)EG ◦FPTI(g)EG)(p, t)
Def. ◦
= (FPTI(f) ◦FPTI(g))EG(p, t)

Case 2: Let (t,p) ∈ EG1t2p. The proof is similar to the Case 1 replacing p by t and t by
p.
Case 3: Let (x,p) ∈ EG1to2p. The proof is similar to the Case 1 replacing p by x and t
by p.

• We consider the ENA-component of some typed attributed graph morphism.
Let (t,n, x) ∈ EG1in ] E

G1
out .

FPTI(f ◦ g)ENA(t,n, x)

=((f ◦ g)T (t),n, x)
Def. ◦
= ((fT ◦ gT )(t),n, x)

=(fT (gT (t)),n, x)

=FPTI(f)ENA(gT (t),n, x)

=FPTI(f)ENA(FPTI(g)ENA(t,n, x))

=(FPTI(f)ENA ◦FPTI(g)ENA)(t,n, x)
Def. ◦
= (FPTI(f) ◦FPTI(g))ENA(t,n, x)

• We consider the EEA-component of some typed attributed graph morphism.
Case 1: Let (p, t,n) ∈ EG1wpre .

FPTI(f ◦ g)EEA(p, t,n)

=((f ◦ g)P(p), (f ◦ g)T (t),n)
Def. ◦
= ((fP ◦ gP)(p), (fT ◦ gT )(t),n)
=(fP(gP(p)), fT (gT (t)),n)

=FPTI(f)EEA(gP(p),gT (t),n)

=FPTI(f)EEA(FPTI(g)EEA(p, t,n))

=(FPTI(f)EEA ◦FPTI(g)EEA)(p, t,n)
Def. ◦
= (FPTI(f) ◦FPTI(g))EEA(p, t,n)

Case 2: Let (t,p,n) ∈ EG1wpost . The proof is similar to the Case 1 replacing p by t and
t by p.



366 appendices

5. f ∈M1 (inclusion, identity) implies that FPTI(f) ∈M2 (inclusion, identity).
a) Consider injective PTI net morphisms fA : A → A ′ and fB : B → B ′. For the

restricted M-functor FPTI it follows directly that fA ] fB : A ] B → A ′ ] B ′ is also
injective.

b) Consider inclusions (identities) fA : A→ A ′ with fA(a) = a and fB : B→ B ′ with
fB(b) = b.
To show: fA ] fB : A]B→ A ′ ]B ′ withA]B = (A× {1}∪B× {2}) andA ′ ]B ′ =
(A ′ × {1}∪B ′ × {2}) is an inclusion (identity).
Case 1: Let i = 1 and x ∈ A]B:

(fA ] fB)(x, i) = (fA ] fB)(x, 1) = (fA(x), 1) = (x, 1)

Case 2: Let i = 2 and x ∈ A]B:

(fA ] fB)(x, i) = (fA ] fB)(x, 2) = (fB(x), 2) = (x, 2)

�

Lemma 43: (FPTI Preserves Pushouts of Injective Morphisms [207], see page 179)
Consider M-adhesive categories (PTINet,M1) and (AGraphsPNTG,M2), restricted M-
functor FPTI : PTINet|M1

→ AGraphsPNTG|M2
introduced in Definition 64, PTI nets NIi

with PTI net morphisms fi = (fiP, fiT , fiI), and typed attributed graphs FPTI(NIi) with
typed attributed graph morphisms FPTI(fi) = f ′i = (f ′iVG , f ′iVD , f ′iEG , f ′iENA , f ′iEEA) for
i ∈ {0, 1, 2, 3}. If (1) is a pushout in PTINet with fi ∈ M1 then we have that (2) is a
pushout in AGraphsPNTG with FPTI(fi) ∈M2 for i ∈ {0, 1, 2, 3}.

NI0

(1)

NI1

NI2 NI3

f1

f2 f4

f3

FPTI(NI0)

(2)

FPTI(NI1)

FPTI(NI2) FPTI(NI3)

FPTI(f1) = f
′
1

FPTI(f2) = f
′
2 FPTI(f4) = f

′
4

FPTI(f3) = f
′
3

Proof.
Let (1) be a pushout in PTINet with fi ∈M1 for i ∈ {0, 1, 2, 3}, i.e., P-, T - and I-components of
(1) are pushouts in Sets, because pushouts in PTINet are constructed componentwise according
to [224].

P0

(PO)

P1

P2 P3

f0P inj.

f1P inj.
f2P inj.

f3P inj.

T0

(PO)

T1

T2 T3

f0T inj.

f1T inj.

f2T inj.

f3T inj.

I0

(PO)

I1

I2 I3

f0I inj.

f1I inj.
f2I inj.

f3I inj.

To show: VG-, VD-, EG-, ENA- and EEA-components of (2) are pushouts in Sets with
FPTI(fi) = f ′i ∈ M2 for i ∈ {0, 1, 2, 3}, because pushouts in AGraphsPNTG are constructed
componentwise as well.

For given morphisms fi ∈ M1 we have that FPTI(fi) = f ′i ∈ M2 for i ∈ {0, 1, 2, 3} according
to Lemma 42.
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1. VG-component of (2) is a pushout in Sets (see diagram (3)) with f ′iVG = fiP ] fiT ] fiI
for i ∈ {0, 1, 2, 3}, because pushouts are compatible with coproducts (and coproduct in Sets
is the disjoint union ]).

VG0G

(3)

VG1G

VG2G VG3G

f0P ] f0T ] f0I

f1P ] f1T ] f1I f2P ] f2T ] f2I

f3P ] f3T ] f3I

2. VD-component of (2) is obviously a pushout in Sets (see diagram (4)) with f ′iVD = idN

for i ∈ {0, 1, 2, 3}.

VG0D =N

(4)

VG1D =N

VG2D =N VG3D =N

idN

idN idN

idN

3. For the EG-component we have to show that (5) is a pushout in Sets which holds if (5a),
(5b) and (5c) are pushouts.

EG0G

(5)

EG1G

EG2G EG3G

f ′0EG

f ′1EG f ′2EG

f ′3EG

EG0p2t

(5a)

EG1p2t

EG2p2t EG3p2t

f0P × f0T

f1P × f1T f2P × f2T

f3P × f3T

EG0t2p

(5b)

EG1t2p

EG2t2p EG3t2p

f0T × f0P

f1T × f1P
f2T × f2P

f3T × f3P

EG0to2p

(5c)

EG1to2p

EG2to2p EG3to2p

f0I × f0P

f1I × f1P f2I × f2P

f3I × f3P

Diagrams (5a), (5b) and (5c) commute, because for each product component we have
a pushout in Sets by assumption. So it remains to show that (5a), (5b) and (5c) are
pushouts, because products of pushouts are not necessarily pushouts (the merging mor-
phisms are in general not jointly surjective).

a) For diagram (5a) we have to show that the diagram (5a ′) is a pushout in Sets with

Pi ⊗ Ti = {(p, t) ∈ Pi × Ti | prei(t)(p) > 0} and fiP ⊗ fiT for i ∈ {0, 1, 2, 3}.

P0 ⊗ T0
(5a ′)

P1 ⊗ T1

P2 ⊗ T2 P3 ⊗ T3

f0P ⊗ f0T

f1P ⊗ f1T f2P ⊗ f2T

f3P ⊗ f3T

Since fi are PTI net morphisms, we have that all fiP ⊗ fiT morphisms for i ∈
{0, 1, 2, 3} are well-defined. Furthermore, we have that the components of (5a ′) are
pushouts and pullbacks in Sets, because fi = (fiP, fiT , fiI) ∈ M1 for i ∈ {0, 1, 2, 3}
by assumption. Hence, also (5a ′) is a pullback, because pullbacks are compatible with
products and it remains to show that (f2P ⊗ f2T , f3P ⊗ f3T ) are jointly surjective.
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Consider (p3, t3) ∈ P3 ⊗ T3. The T -component of (5a ′) is a pushouts in Sets, thus
it holds that t1 ∈ T1 with f2T (t1) = t3 (or t2 ∈ T2 with f3T (t2) = t3). With-
out loss of generality we consider the first case. Since (p3, t3) ∈ P3 ⊗ T3, we know
that pre3(t3)(p3) > 0. This implies by compatibility of f2 with the corresponding
pre-functions (see diagram below) that f2⊕P (pre1(t1)) = pre3(f2T (t1)) = pre3(t3).
Thus it also holds that pre3(t3)(p3) = (f2

⊕
P (pre1(t1))((p3) > 0 implying that there

is p1 ∈ P1 s.t. f2P(p1) = p3 and pre1(t1)(p1) > 0, which by definition means that
(p1, t1) ∈ P1 ⊗ T1. Hence, we get that (5a ′) and (5a) are pushouts.

T1

=

P⊕1

T3 P⊕3

pre1

post1
f2T f2

⊕
P

pre3

post3

b) For diagram (5b) we have to show that the diagram (5b ′) is a pushout in Sets with

Ti ⊗ Pi = {(t,p) ∈ Ti × Pi | posti(t)(p) > 0} and fiT ⊗ fiP for i ∈ {0, 1, 2, 3}.

T0 ⊗ P0
(5b ′)

T1 ⊗ P1

T2 ⊗ P2 T3 ⊗ P3

f0T ⊗ f0P

f1T ⊗ f1P f2T ⊗ f2P

f3T ⊗ f3P

The proof for this case is similar to the Case 3a. Hence, (5b ′) and (5b) are pushouts.
c) For diagram (5c) we have to show that the diagram (5c ′) is a pushout in Sets with

Ii ⊗ Pi = {(x,p) ∈ Ii × Pi | mi(x) = p} and fiI ⊗ fiP for i ∈ {0, 1, 2, 3}.

I0 ⊗ P0
(5c ′)

I1 ⊗ P1

I2 ⊗ P2 I3 ⊗ P3

f0I ⊗ f0P

f1I ⊗ f1P f2I ⊗ f2P

f3I ⊗ f3P

Since fi are PTI net morphisms, we have that all fiI ⊗ fiP morphisms for i ∈
{0, 1, 2, 3} are well-defined. Furthermore, we have that the components of (5c ′) are
pushouts and pullbacks in Sets, because fi = (fiP, fiT , fiI) ∈ M1 for i ∈ {0, 1, 2, 3}
by assumption. Hence, also (5c ′) is a pullback, because pullbacks are compatible with
products and it remains to show that (f2I ⊗ f2P, f3I ⊗ f3P) are jointly surjective.
Consider (x3,p3) ∈ I3 ⊗ P3. The I-component of (5c ′) is a pushouts in Sets
s.t. we have x1 ∈ I1 with f2I(x1) = x3 (or we have x2 ∈ I2 with f3I(x2) =

x3). Without loss of generality we consider the first case. Let p1 = m1(x1), then
(f2I ⊗ f2P)(x1,p1) = (x3,p3), because f2 = (f2P, f2T , f2I) is a PTI net morphism,
i.e., the compatibility with the corresponding marking functions holds s.t. we have
m3(x3) = p3 (see the diagram below). Hence, (5c ′) and (5c) are pushouts.

I1

=

P1

I3 P3

m1

f2I f2P

m3
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4. For the ENA-component we have to show that (6) is a pushout in Sets which holds if (6a)
and similarly (6b) are pushouts for X = {in} and Y = {out}.

EG0NA

(6)

EG1NA

EG2NA EG3NA

f ′0ENA

f ′1ENA f ′2ENA

f ′3ENA

EG0in

(6a)

EG1in

EG2in EG3in

f0T × idN × idX

f1T × idN × idX
f2T × idN × idX

f3T × idN × idX

EG0out

(6b)

EG1out

EG2out EG3out

f0T × idN × idY

f1T × idN × idY
f2T × idN × idY

f3T × idN × idY

Diagrams (6a) and (6b) commute, because for each product component we have a pushout
in Sets by assumption. So it remains to show that (6a) and (6b) are pushouts.

a) For diagram (6a) we have to show that the diagram (6a ′) is a pushout in Sets with

Ti ⊗N⊗X = {(t,n, in) | (t,n) ∈ Ti ×N ∧ | • t| = n}

and fiT ⊗ idN ⊗ idX for i ∈ {0, 1, 2, 3}.

T0 ⊗N⊗X

(6a ′)

T1 ⊗N⊗X

T2 ⊗N⊗X T3 ⊗N⊗X

f0T ⊗ idN ⊗ idX

f1T ⊗ idN ⊗ idX f2T ⊗ idN ⊗ idX

f3T ⊗ idN ⊗ idX

Also here we know that fiT ⊗ idN ⊗ idX morphisms for i ∈ {0, 1, 2, 3} are well-
defined, because fi are PTI net morphisms. Furthermore, we have that the components
of (6a ′) are pushouts and pullbacks in Sets, because fi = (fiP, fiT , fiI) ∈ M1 for
i ∈ {0, 1, 2, 3} by assumption. Hence, also (6a ′) is a pullback and we have that (f2T ⊗
idN ⊗ idX, f3T ⊗ idN ⊗ idX) are obviously jointly surjective. Therefore, (6a ′) and
(6a) are pushouts.

b) For diagram (6b) we have to show that the diagram (6b ′) is a pushout in Sets with

Ti ⊗N⊗ Y = {(t,n, out) | (t,n) ∈ Ti ×N ∧ |t • | = n}

and fiT ⊗ idN ⊗ idY for i ∈ {0, 1, 2, 3} .

T0 ⊗N⊗ Y

(6b ′)

T1 ⊗N⊗ Y

T2 ⊗N⊗ Y T3 ⊗N⊗ Y

f0T ⊗ idN ⊗ idY

f1T ⊗ idN ⊗ idY f2T ⊗ idN ⊗ idY

f3T ⊗ idN ⊗ idY

The proof for this case is similar to the Case 4a. Hence, (6b ′) and (6b) are pushouts.
5. For the EEA-component we have to show that (7) is a pushout in Sets which holds if (7a)

and similarly (7b) are pushouts.
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EG0EA

(7)

EG1EA

EG2EA EG3EA

f ′0EEA

f ′1EEA f ′2EEA

f ′3EEA

EG0wpre

(7a)

EG1wpre

EG2wpre EG3wpre

f0P × f0T × idN

f1P × f1T × idN
f2P × f2T × idN

f3P × f3T × idN

EG0wpost

(7b)

EG1wpost

EG2wpost EG3wpost

f0T × f0P × idN

f1T × f1P × idN
f2T × f2P × idN

f3T × f3P × idN

Diagrams (7a) and (7b) commute, because also here we have a pushout in Sets for each
product component by assumption. So it remains to show that (7a) and (7b) are pushouts.

a) For diagram (7a) we have to show that the diagram (7a ′) is a pushout in Sets with

Pi ⊗ Ti ⊗N =
{
(p, t,n) ∈ EGip2t ×N | prei(t)(p) = n

}
and fiP ⊗ fiT ⊗ idN for i ∈ {0, 1, 2, 3}.

P0 ⊗ T0 ⊗N

(7a ′)

P1 ⊗ T1 ⊗N

P2 ⊗ T2 ⊗N P3 ⊗ T3 ⊗N

f0P ⊗ f0T ⊗ idN

f1P ⊗ f1T ⊗ idN f2P ⊗ f2T ⊗ idN

f3P ⊗ f3T ⊗ idN

The proof for this case works similar to the Case 3a. Hence, (7a ′) and (7a) are
pushouts.

b) For diagram (7b) we have to show that the diagram (7b ′) is a pushout in Sets with

Ti ⊗ Pi ⊗N =
{
(t,p,n) ∈ EGit2p ×N | posti(t)(p) = n

}
and fiT ⊗ fiP ⊗ idN for i ∈ {0, 1, 2, 3}.

T0 ⊗ P0 ⊗N

(7b ′)

T1 ⊗ P1 ⊗N

T2 ⊗ P2 ⊗N T3 ⊗ P3 ⊗N

f0T ⊗ f0P ⊗ idN

f1T ⊗ f1P ⊗ idN f2T ⊗ f2P ⊗ idN

f3T ⊗ f3P ⊗ idN

The proof for this case works similar to the Case 3b. Hence, (7b ′) and (7b) are
pushouts.

�

Lemma 44: (Uniquely Determined FPTI-Images, see page 185)
Consider M-adhesive categories (PTINet,M1), (AGraphsPNTG,M2), restricted M-functor
FPTI : PTINet|M1

→ AGraphsPNTG|M2
from Definition 64, typed attributed graphs

FPTI(NI1), FPTI(NI2), and a morphism f ′ : FPTI(NI1)→ FPTI(NI2) with f ′VD = idN. Then
we have that f ′ is uniquely determined by the VG-component f ′VG : V1G → V2G with
ViG = Pi ] Ti ] Ii for i ∈ {1, 2}.

Proof.
Consider a typed attributed graph morphism f ′ : FPTI(NI1)→ FPTI(NI2) with f ′ = (f ′VG , f ′VD =
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idN, f ′EG , f ′ENA , f ′EEA) given according to the diagram below and fP(p) = f ′VG(p) for p ∈ P1,
fT (t) = f

′
VG

(t) for t ∈ T1, fI(x) = f ′VG(x) for x ∈ I1.

To show:
1. f ′EG(x,p)=(fI(x), fP(p)) for (x,p)∈E1to2p ,
2. f ′EG(p, t)=(fP(p), fT (t)) for (p, t)∈E1p2t ,
3. f ′EG(t,p)=(fT (t), fP(p)) for (t,p)∈E1t2p ,
4. f ′ENA(t,n, x)=(fT (t),n, x) for (t,n, x)∈E1in ] E1out ,
5. f ′EEA(p, t,n)=(fP(p), fT (t),n) for (p, t,n)∈E1wpre ,
6. f ′EEA(t,p,n)=(fT (t), fP(p),n) for (t,p,n)∈E1wpost .

EG1G VG1G

EG1NA

VG1D

EG1EA

sG1G

tG1G sG1NA

tG1NA

sG1EA

tG1EA

EG2G VG2G

EG2NA

VG2D

EG2EA

sG2G

tG2G sG2NA

tG2NA

sG2EA

tG2EA

f ′EG f ′VG

f ′ENA

f ′VD

f ′EEA

Part 1:
Let f ′EG(x,p) = (x ′,p ′) with s2G(x ′,p ′) = x ′ and t2G(x ′,p ′) = p ′. Then we have:

x ′ = s2G(x
′,p ′) = s2G(f ′EG(x,p)) = f ′VG(s1G(x,p)) = f ′VG(x) = fI(x)

⇒ x ′ = fI(x),

p ′ = t2G(x
′,p ′) = t2G(f ′EG(x,p)) = f ′VG(t1G(x,p)) = f ′VG(p) = fP(p)

⇒ p ′ = fP(p).

This implies altogether that f ′EG(x,p) = (x ′,p ′) = (fI(x), fP(p)).
Part 2:
Let f ′EG(p, t) = (p ′, t ′) with s2G(p ′, t ′) = p ′ and t2G(p ′, t ′) = t ′. Then we have:

p ′ = s2G(p
′, t ′) = s2G(f ′EG(p, t)) = f ′VG(s1G(p, t)) = f ′VG(p) = fP(p)

⇒ p ′ = fP(p),

t ′ = t2G(p
′, t ′) = t2G(f ′EG(p, t)) = f ′VG(t1G(p, t)) = f ′VG(t) = fT (t)

⇒ t ′ = fT (t).

This implies altogether that f ′EG(p, t) = (p ′, t ′) = (fP(p), fT (t)).
Part 3:
Similar to Part 2 replacing p by t and t by p.
Part 4:
Let f ′ENA(t,n, x) = (t ′,n ′, x ′) with s2NA(t ′,n ′, x ′) = t ′ and x = x ′ by compatibility with
typing morphisms. Then we have:

t ′ = s2NA(t
′,n ′, x ′) = s2NA(f ′ENA(t,n, x)) = f ′VG(s1NA(t,n, x)) = f ′VG(t) = fT (t)

⇒ t ′ = fT (t),

n ′ = t2NA(t
′,n ′, x ′) = t2NA(f ′ENA(t,n, x)) = f ′VD(t1NA(t,n, x))

= idN(t1NA(t,n, x)) = idN(n) = n

⇒ n ′ = n.

This implies altogether that f ′ENA(t,n, x) = (t ′,n ′, x ′) = (fT (t),n, x).
Part 5:
Let f ′EEA(p, t,n) = (p ′, t ′,n ′) with s2EA(p ′, t ′,n ′) = (p ′, t ′). Then we have:
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p ′ = s2G(s2EA(p
′, t ′,n ′)) = s2G(p ′, t ′)

Part 2⇒ p ′ = fP(p),

t ′ = t2G(s2EA(p
′, t ′,n ′)) = t2G(p ′, t ′)

Part 2⇒ t ′ = fT (t),

n ′ = t2EA(p
′, t ′,n ′) = t2EA(f ′EEA(p, t,n)) = f ′VD(t1EA(p, t,n))

= idN(t1EA(p, t,n)) = idN(n) = n

⇒ n ′ = n.

This implies altogether that f ′EEA(p, t,n) = (p ′, t ′,n ′) = (fP(p), fT (t),n).
Part 6:
Similar to Part 5 replacing p by t and t by p. �

Lemma 45: (FPTI Creates Injective Morphisms [207], see page 185)
Consider M-adhesive categories (PTINet,M1), (AGraphsPNTG,M2), typed attributed
graphs FPTI(NI1),FPTI(NI2), and an injective typed attributed graph morphism f ′ :

FPTI(NI1) → FPTI(NI2) that is compatible with typing morphisms. Then the restricted
M-functor FPTI : PTINet|M1

→ AGraphsPNTG|M2
creates a unique injective PTI net mor-

phism f : NI1 → NI2 such that FPTI(f) = f
′ or formally written:

∃!f : NI1 → NI2 in M1. FPTI(f) = f
′.

Proof.
• Construction of f : NI1 → NI2:

Consider an injective typed attributed graph morphism f ′ : FPTI(NI1)→ FPTI(NI2) with
FPTI(NIi) = (ViG,ViD = N,EiG,EiNA,EiEA, (sij, tij)j∈{G,NA,EA}

) for i ∈ {1, 2} by
f ′ = (f ′VG , f ′VD , f ′EG , f ′ENA , f ′EEA) with injective components

f ′VG : V1G → V2G with ViG = Pi ] Ti ] Ii for i ∈ {1, 2},

f ′VD : N →N with f ′VD = idN,

f ′EG : E1G → E2G with EiG = Eito2p ] Eip2t ] Eit2p for i ∈ {1, 2},

f ′ENA : E1NA → E2NA with EiNA = Eiin ] Eiout for i ∈ {1, 2},

f ′EEA : E1EA → E2EA with EiEA = Eiwpre ] Eiwpost for i ∈ {1, 2}.

Define the corresponding PTI net morphism f : NI1 → NI2 withNIj = (Pj, Tj,prej,postj,
Ij,mj) for j ∈ {1, 2} by f = (fP : P1 → P2, fT : T1 → T2, fI : I1 → I2) with

fP(p) = f
′
VG

(p) for p ∈ P1 ⊆ V1G,

fT (t) = f
′
VG

(t) for t ∈ T1 ⊆ V1G,

fI(x) = f
′
VG

(x) for x ∈ I1 ⊆ V1G.

• Injectivity of f : NI1 → NI2:
We have to show that f = (fP : P1 → P2, fT : T1 → T2, fI : I1 → I2) is an injective PTI
net morphism, i.e., fP, fT and fI are injective.
1. fP : P1 → P2 is injective:

Fix p1,p2 ∈ P1. It holds the following:
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fP(p1) = fP(p2)

Def. f ′VG⇒ f ′VG(p1) = f
′
VG

(p2)

f ′VG
inj.
⇒ p1 = p2

2. fT : T1 → T2 is injective:
The proof for this case works analogously to the proof of Case 1.

3. fI : I1 → I2 is injective:
The proof for this case works analogously to the proof of Case 1.

• Well-definedness of f : NI1 → NI2:
We have to show the following three steps:
1. fP(p) = f ′VG(p) ∈ P2 for p ∈ P1, fT (t) = f ′VG(t) ∈ T2 for t ∈ T1, fI(x) = f ′VG(x) ∈
I2 for x ∈ I1,

2. f is an injective PTI net morphism, i.e., squares (1) and (2) below commute with
injective fP, fT , fI, and

3. FPTI(f) = f
′.

T1

(1)

P1
⊕

T2 P2
⊕

pre1

post1

fT fP
⊕

pre2

post2

I1

(2)

P1

I2 P2

m1

fI fP

m2

The following holds:
1. To show: fP(p) = f ′VG(p) ∈ P2 for p ∈ P1.

a) f ′VG(p) ∈ V2G = P2 ] T2 ] I2 by construction. The type-compatibility of f ′

given by assumption implies that (type2VG
◦ f ′VG)(p) = type1VG

(p) = Place using
p ∈ P1. This implies that fP(p) = f ′VG(p) ∈ P2 using type2VG

(f ′VG(p)) = Place
and (type2VG

)−1(Place) = P2.
b) fT (t) = f ′VG(t) ∈ T2 for t ∈ T1: similarly to the proof of Case 1a.
c) fI(x) = f ′VG(x) ∈ I2 for x ∈ I1: similarly to the proof of Case 1a.

2. To show: f is an injective PTI net morphism, i.e., squares (1) and (2) commute with
injective fP, fT , fI.
For this purpose, we have first to verify the following four conditions:
(1) ∀t ∈ T1.p ∈ •t⇒ fP(p) ∈ •fT (t) and ∀t ∈ T1.p ∈ t• ⇒ fP(p) ∈ fT (t)•,
(2) ∀(p, t) ∈ P1 ⊗ T1 = E1p2t. ((p, t),n) ∈ E1wpre ⇒ ((fP(p), fT (t)),n) ∈

E2wpre and
∀(t,p) ∈ T1 ⊗ P1 = E1t2p. ((t,p),n) ∈ E1wpost ⇒ ((fT (t), fP(p)),n) ∈
E2wpost ,

(3) ∀t ∈ T1. | • t| = n⇒ | • fT (t)| = n and |t • | = n⇒ |fT (t) • | = n with
•t = {p ∈ P1 | pre1(t)(p) > 0} and t• = {p ∈ P1 | post1(t)(p) > 0},

(4) ∀x ∈ I1.(x,p) ∈ E1to2p ⇒ (fI(x), fP(p)) ∈ E2to2p.
We have the following:
(1) ∀t ∈ T1.p ∈ •t⇒ fP(p) ∈ •fT (t) and ∀t ∈ T1.p ∈ t• ⇒ fP(p) ∈ fT (t)•:

Fix p ∈ P1 and t ∈ T1 such that p ∈ •t. Then it holds:

p ∈ •t⇔ (p, t) ∈ E1p2t
⇒ f ′EG(p, t) ∈ E2p2t
(∗)⇒ (fP(p), fT (t)) ∈ E2p2t
⇔ fP(p) ∈ •fT (t)
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Where for the step (*) it holds that:

f ′EG(p, t) = (fP(p), fT (t)), because f ′EG , f ′VG are compatible with

siG, tiG for i ∈ {1, 2} (see diagram below) since f ′ is a graph morphism.

This implies that:

(s2G ◦ f ′EG)(p, t) = (f ′VG ◦ s1G)(p, t) = f ′VG(p) = fP(p) and

(t2G ◦ f ′EG)(p, t) = (f ′VG ◦ t1G)(p, t) = f ′VG(t) = fT (t)

E1G

=

V1G

E2G V2G

s1G

t1G

f ′EG f ′VG
s2G

t2G

Similarly we have that ∀t ∈ T1.p ∈ t• ⇔ fP(p) ∈ fT (t)•.
(2) ∀(p, t) ∈ P1 ⊗ T1 = E1p2t. ((p, t),n) ∈ E1wpre ⇒ ((fP(p), fT (t)),n) ∈

E2wpre and
∀(t,p) ∈ T1 ⊗ P1 = E1t2p. ((t,p),n) ∈ E1wpost ⇒ ((fT (t), fP(p)),n) ∈
E2wpost :
Fix (p, t) ∈ P1 ⊗ T1 = E1p2t such that ((p, t),n) ∈ E1wpre . Since f ′ :

FPTI(NI1)→ FPTI(NI2) is an AGraphsPNTG-morphism we have:

((p, t),n) ∈ E1wpre ⇒ f ′EEA((p, t),n) ∈ E2wpre
⇒ (f ′EG(p, t),n) ∈ E2wpre
(∗)⇒ ((fP(p), fT (t)),n) ∈ E2wpre

where we have in the second step f ′EEA((p, t),n) = (f ′EG(p, t),n) using the
diagram below.

E1EA

=

E1G

E2EA E2G

N =

s1EA

f ′EEA f ′EG

s2EA

t1EA

t2EA

Similarly we have that ∀(t,p) ∈ T1 ⊗ P1 = E1t2p. ((t,p),n) ∈ E1wpost ⇒
((fT (t), fP(p)),n) ∈ E2wpost .

(3) ∀t ∈ T1. | • t| = n⇒ | • fT (t)| = n and |t • | = n⇒ |fT (t) • | = n with
•t = {p ∈ P1 | pre1(t)(p) > 0} and t• = {p ∈ P1 | post1(t)(p) > 0}:
The proof for this case works similarly to the proof of Case (2) using the following
diagram.

E1NA

=

V1G

E2NA V2G

N =

s1NA

f ′ENA f ′VG

s2NA

t1NA

t2NA

(4) ∀x ∈ I1.(x,p) ∈ E1to2p ⇒ (fI(x), fP(p)) ∈ E2to2p:
The proof for this case works similarly to the proof of Case (1) using the diagram
of Case (1).

Furthermore, we show in the following that f is an injective PTI net morphism if
f = (fP, fT , fI) is injective satisfying the conditions (1) − (4).
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We start with showing that ∀x ∈ I1.fP ◦m1(x) = m2 ◦ fI(x).
Fix x ∈ I1. Then it holds:

x ∈ I1 ⇒ (x,m1(x)) ∈ E1to2p
(4)⇒ (fI(x), (fP ◦m1)(x)) ∈ E2to2p
⇒ (m2 ◦ fI)(x) = (fP ◦m1)(x)

As the next step we show that ∀t ∈ T1.fP⊕ ◦ pre1(t) = pre2 ◦ fT (t).
Fix t ∈ T1 and let pre1(t) =

∑m
i=1 λipi, where pi-s are pairwise disjoint and λi >

0, pre2(fT (t)) =
∑m ′
j=1 λ

′
jp
′
j, where p ′j-s are pairwise disjoint and λ ′j > 0. Then it

holds for i ∈ {1, ...,m}:

pi ∈ •t
(1)⇒ fP(pi) ∈ •fT (t)⇒ ∃j ∈ {1, ...,m ′}. pj = fP(pi)

Furthermore we have:

((pi, t), λi) ∈ E1wpre
(2)⇒ ((fP(pi), fT (t)), λi) ∈ E2wpre
⇒ ∃j ∈ {1, ...,m ′}. pj = fP(pi) ∧ λi = λ

′
j

Finally, for a fixed t ∈ T1 holds:

| • t| = m (3)⇒ | • fT (t)| = m = m ′, where fP is injective and pi-s and pj-s are

pairwise disjoint

⇒ ∃ a permutation π of {1, ...,m} with fP(pi) = p ′π(i)

⇒ pre2(fT (t)) =

m ′∑
j=1

λ ′jp
′
j =

m∑
i=1

λifP(pi)

= fP
⊕(

m∑
i=1

λipi) = fP
⊕(pre1(t))

For similar reasons we have that post2(fT (t)) = fP⊕(post2(t)).
3. To show: FPTI(f) = f

′.

Let FPTI(f) = f ′′ = (f ′′VG , f ′′VD , f ′′EG , f ′′ENA , f ′′EEA). This implies that f ′′VG
Def. 64
= fP ]

fT ] fI and f ′′VD = idN. But by construction above we have that:

f ′VG = fP ] fT ] fI
⇒f ′VG = f ′′VG ∧ f ′VD = f ′′VD = idN

Lem. 44⇒ f ′ = f ′′

⇒FPTI(f) = f
′′ = f ′

• Uniqueness of f : NI1 → NI2:
Let FPTI(f) = f ′. Assume that we have another M1-morphism g : NI1 → NI2 with
FPTI(g) = f

′. We have to show that f = g.
Since it holds that FPTI(f) = f ′ = FPTI(g) and using Lemma 44 we have the following
three cases:
Case 1:

FPTI(g) = FPTI(f)

⇒∀t ∈ V1G. FPTI(g)VG(t) = FPTI(f)VG(t)
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⇒∀t ∈ T1. gT (t) = fT (t)

⇒gT = fT

Case 2: Similarly to Case 1 applying FPTI(g) and FPTI(f) to an arbitrary place p ∈ P1.
Case 3: Similarly to Case 1 applying FPTI(g) and FPTI(f) to an arbitrary individual token
x ∈ I1.

�

Lemma 46: (Application of FPTI to a PTI Net Boundary Object over an Injective Mor-
phism f : L→ G, see page 186)
Consider M-adhesive categories (PTINet,M1), (AGraphsPNTG,M2), a boundary object
B = (PB, TB,preB,postB, IB,mB) over an injective morphism f : L → G in (PTINet,M1)

constructed according to Remark 9, and the restricted M-functor FPTI : PTINet|M1
→

AGraphsPNTG|M2
from Definition 64. Then the application of FPTI to the boundary object

B results in the following typed attributed graph:

FPTI(B) = ((B0, NAT), typeFPTI(B)) with

B0 = (VB0G ,VB0D = N,EB0G ,EB0NA,EB0EA, (sB0j , tB0j )
j∈{G,NA,EA}

) where

VB0G = PB ] TB ] IB = DPT ∪DPI with

DPT =
{
p ∈ PL | ∃t ∈ TG\fT (TL). fP(p) ∈ (•t∪ t•)

}
,

DPI =
{
p ∈ PL | ∃x ∈ IG\fI(IL). fP(p) = mG(x)

}
,

EB0G = EB0to2p ] E
B0
t2p ] E

B0
p2t = ∅ since

EB0to2p =
{
(x,p) ∈ IB × PB | mB(x) = p

}
= ∅ using IB = ∅,

EB0t2p = ∅ using TB = ∅,
EB0p2t = ∅ using TB = ∅,

EB0NA = EB0in ] E
B0
out = ∅ using TB = ∅,

EB0EA = EB0wpre ] EB0wpost = ∅ since

EB0wpre = ∅ using EB0p2t = ∅,
EB0wpost = ∅ using EB0t2p = ∅,

and FPTI(b) : FPTI(B)→ FPTI(L) is an inclusion.

Proof.
Applying Definition 64 to the boundary object B = (PB, TB,preB,postB, IB,mB) constructed
according to Remark 9, we directly get FPTI(B) as given above. Furthermore, by Lemma 42, we
have for the inclusion b : B→ L that also FPTI(b) : FPTI(B)→ FPTI(L) is an inclusion. �

Lemma 47: (Boundary Object in (AGraphsPNTG,M2) over an Injective Morphism f ′ :

L ′ → G ′, see page 186)
Consider an injective typed attributed graph morphism f ′ : L ′ → G ′. Then the boundary
object B ′ is given by B ′ = ((B ′0, NAT), typeB

′
) with the boundary points B ′0 that corre-

spond to the dangling points and are defined as follows:

B ′0 = (V
B ′0
G ,VB

′
0

D = N,EB
′
0

G ,EB
′
0

NA,EB
′
0

EA, (sB
′
0

j , tB
′
0

j )
j∈{G,NA,EA}

) given by

B ′0 =
⋂

{B ′′ ⊆ L ′ | VL ′D = VB
′′

D ∧ V
B ′′0
G ⊆ VB ′′G ∧ E

B ′′0
G ⊆ EB

′′
G ∧ E

B ′′0
NA ⊆ EB

′′
NA ∧ E

B ′′0
EA ⊆ EB

′′
EA}.
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The components of B ′′0 = (V
B ′′0
G ,VB

′′
0

D = N,EB
′′
0

G ,EB
′′
0

NA,EB
′′
0

EA, (sB
′′
0

j , tB
′′
0

j )
j∈{G,NA,EA}

) are de-
fined as given below:

E
B ′′0
NA = E

B ′′0
EA = ∅,

V
B ′′0
G = {a ∈ VL ′G = PL ] TL ] IL |

[∃a ′ ∈ EG ′NA\f ′ENA(E
L ′
NA) = (EG

′
in ] EG

′
out)\f

′
ENA

(EL
′

in ] EL
′

out). f
′
VG

(a) = sG
′

NA(a
′)]

∨ [∃a ′ ∈ EG ′G \f ′EG(E
L ′
G ) = (EG

′
to2p ] EG

′
p2t ] EG

′
t2p)\f

′
EG

(EL
′
to2p ] EL

′
p2t ] EL

′
t2p).

f ′VG(a) = s
G ′
G (a ′)∨ f ′VG(a) = t

G ′
G (a ′)]},

E
B ′′0
G = {a ∈ EL ′G = EL

′
to2p ] EL

′
t2p ] EL

′
p2t |

∃a ′ ∈ EG ′EA\f ′EEA(E
L ′
EA) = (EG

′
wpre

] EG ′wpost)\f ′EEA(E
L ′
wpre

] EL ′wpost).
f ′EG(a) = s

G ′
EA(a

′)},

s
B ′′0
G , tB

′′
0

G : E
B ′′0
G → V

B ′′0
G are restrictions of sL

′
G , tL

′
G : EL

′
G → VL

′
G ,

and b ′ : B ′ → L ′ is an inclusion.

EB
′
G VB

′
G

∅
VB

′
D

∅

sB
′
G

tB
′
G ∅

∅

∅

∅

EL
′
G VL

′
G

EL
′
NA

VL
′
D

EL
′
EA

sL
′
G

tL
′
G

sL
′
NA

tL
′
NA

sL
′
EA

tL
′
EA

b ′EG b ′VG

∅

idN

∅

EG
′

G VG
′

G

EG
′

NA

VG
′

D

EG
′

EA

sG
′

G

tG
′

G
sG
′

NA

tG
′

NA

sG
′

EA

tG
′

EA

f ′EG f ′VG

f ′ENA

f ′VD

f ′EEA

Proof.
The boundary object construction from Fact 6 is simplified to the form above, because the identi-
fication points for nodes, edges, node attributes and edge attributes are empty when assuming an
injective typed attributed graph morphism f ′ : L ′ → G ′. �

Lemma 48: (Boundary Object in (AGraphsPNTG,M2) over a Morphism f ′ = FPTI(f) :

FPTI(L)→ FPTI(G) for an Injective PTI Net Morphism f : L→ G, see page 187)
Consider M-adhesive categories (PTINet,M1), (AGraphsPNTG,M2), an injective PTI net
morphism f : L→ G, and the restricted M-functor FPTI : PTINet|M1

→ AGraphsPNTG|M2
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from Definition 64. Then the boundary object B ′ of the initial pushout over a translated
morphism FPTI(f) : FPTI(L)→ FPTI(G) is constructed in (AGraphsPNTG,M2) as follows:

B ′ = ((B ′0, NAT), typeB
′
) is essentially given by the boundary points

B ′0 = (V
B ′0
G ,VB

′
0

D = N,EB
′
0

G ,EB
′
0

NA,EB
′
0

EA, (sB
′
0

j , tB
′
0

j )
j∈{G,NA,EA}

) with

E
B ′0
G = E

B ′0
NA = E

B ′0
EA = ∅,

V
B ′0
G = {a ∈ VL ′G = PL ] TL ] IL |

[ ∃a ′ ∈ EG ′NA\f ′ENA(E
L ′
NA) = (EG

′
in ] EG

′
out)\f

′
ENA

(EL
′

in ] EL
′

out).

f ′VG(a) = s
G ′
NA(a

′) ]

∨ [ ∃a ′ ∈ EG ′G \f ′EG(E
L ′
G ) = (EG

′
to2p ] EG

′
p2t ] EG

′
t2p)\f

′
EG

(EL
′
to2p ] EL

′
p2t ] EL

′
t2p).

f ′VG(a) = s
G ′
G (a ′)∨ f ′VG(a) = t

G ′
G (a ′) ]},

and b ′′ : B ′ → FPTI(L) is an inclusion.

B ′ FPTI(L) = L
′

FPTI(G) = G
′

b ′′

FPTI(f) = f
′

Proof.
First, we show that the set of edges EB

′
0

G (or EB
′′
0

G as defined in Lemma 47) is empty. Obviously, the
morphism f ′ = FPTI(f) preserves the edge attributes of its source object. Furthermore, the edges
in the source and the target objects of f ′ have unique edge attributes, because f ′ is an FPTI-image.
Therefore, there can not be an edge attribute a ′ in the target object of f ′, which is not reached by
f ′ if the edge sG

′
EA(a

′) is reached by f ′. Thus, EB
′
0

G is empty.
From this fact we conclude that B ′0 is not required to be constructed by intersection, because
the graph B ′′0 defined in Lemma 47 is a well-defined graph consisting only of nodes (the node
attributes and edge attributes have already been empty in Lemma 47). �

Lemma 49: (Initial Pushout in (AGraphsPNTG,M2) over a Morphism f ′ = FPTI(f) :

FPTI(L)→ FPTI(G) for an Injective PTI Net Morphism f : L→ G, see page 190)
Consider M-adhesive categories (PTINet,M1), (AGraphsPNTG,M2), an injective PTI net
morphism f : L→ G, and the restricted M-functor FPTI : PTINet|M1

→ AGraphsPNTG|M2

from Definition 64. Then the diagram (1) given below with the boundary object B ′

constructed according to Lemma 48, the context object C ′ constructed according to Fact 7,
inclusions b ′ : B ′ → L ′, c ′ : C ′ → G ′, and the morphism g ′ : B ′ → C ′ given by g ′j(x) =
(f ′j ◦ b ′j)(x) for j ∈ {VG,VD,EG,ENA,EEA} is an initial pushout in (AGraphsPNTG,M2)

over f ′ = FPTI(f) : FPTI(L)→ FPTI(G).

B ′ L ′

C ′ G ′

(1)

b ′

c ′

f ′ = FPTI(f)g ′
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Proof.
According to Fact 7 and the proofs of Lemmas 47 and 48, the construction of initial pushouts
in (AGraphsATG,M2) as given in [88] (see Fact 8) coincides with the construction of initial
pushouts in (AGraphsPNTG,M2) as given in this lemma for the case if the initial pushout is
constructed over an injective FPTI-image morphism f ′. �

Lemma 50: (FPTI Preserves Initial Pushouts over Injective Morphisms [207], see
page 190)
Consider M-adhesive categories (PTINet,M1), (AGraphsPNTG,M2), the restricted M-
functor FPTI : PTINet|M1

→ AGraphsPNTG|M2
from Definition 64, and let (1) be an initial

pushout over an injective morphism f : L → G in (PTINet,M1). Then (2) is an initial
pushout over an injective morphism FPTI(f) : FPTI(L)→ FPTI(G) in (AGraphsPNTG,M2).

B

(1)

L

C G

b

f ⇒
FPTI(B)

(2)

FPTI(L)

FPTI(C) FPTI(G)

FPTI(b)

FPTI(f)

Proof.
We assume that (1) is an initial pushout in (PTINet,M1) with boundary object B = (PB, TB =

∅,preB = ∅,postB = ∅, IB = ∅,mB = ∅) defined according to Remark 9, context object
C = (PC, TC,preC = preG,postC = postG, IC,mC = mG) defined according to Fact 10
and an injective PTI net morphism f : L→ G.

FPTI(B) FPTI(L) = L
′

B ′

FPTI(C) FPTI(G) = G
′

C ′

(2)(4)

(5)

(6)

FPTI(b)
i

b ′

j

c ′

FPTI(f) = f
′

B ′

(3)

FPTI(L) = L
′

C ′ FPTI(G) = G
′

b ′

FPTI(f) = f
′

c ′

Since FPTI preserves pushouts of injective morphisms according to Lemma 43, we have that (2)
is a pushout of injective morphisms in (AGraphsPNTG,M2).

Now we construct the initial pushout (3) over the morphism FPTI(f) : FPTI(L) → FPTI(G) in
(AGraphsPNTG,M2) according to Lemma 49 with inclusion b ′ : B ′ → FPTI(L) and boundary
object B ′ = ((B ′0, NAT), typeB

′
) with boundary points B ′0 = (V

B ′0
G ,VB

′
0

D = N,EB
′
0

G = ∅,EB
′
0

NA =

∅,EB
′
0

EA = ∅, (sB
′
0

j , tB
′
0

j )
j∈{G,NA,EA}

) defined according to Lemma 48. Initiality of (3) implies
unique morphisms i : B ′ → FPTI(B) and j : C ′ → FPTI(C) such that (4) is a pushout in
AGraphsPNTG and (5), (6) commute with i ∈ M2. Consider now the typed attributed graph
FPTI(B) = ((B0, NAT), typeFPTI(B)) with B0 = (VB0G ,VB0D = N,EB0G = ∅,EB0NA = ∅,EB0EA =

∅, (sB0j , tB0j )
j∈{G,NA,EA}

) given according to Lemma 46.
In the next step we have to show that i : B ′ → FPTI(B) is surjective, i.e., FPTI(B) ⊆ B ′. Since
(EB0G = ∅) ⊆ EB

′
0

G , (EB0NA = ∅) ⊆ EB
′
0

NA and (EB0EA = ∅) ⊆ EB
′
0

EA, it remains only to show that

(VB0G = DPT ∪DPI) ⊆ VB
′
0

G . For an arbitrary p ∈ VB0G we have the following two cases:
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1. Let p ∈ DPT :
By definition of DPT we have that there is t ∈ TG\fT (TL) with fP(p) ∈ (•t∪ t•). It holds
without loss of generality that fP(p) ∈ •t for p ∈ PL.
It suffices to show for p ∈ PL that ∃a ′ ∈ EG ′p2t\f ′EG(E

L ′
p2t) with f ′VG(p) = s

G ′
G (a ′).

Let a ′ = (fP(p), t) ∈ (EG
′

G = EG
′

to2p ]EG
′

p2t ]EG
′

t2p), because EG
′

p2t = {(p ′, t) ∈ PG× TG |

p ′ ∈ •t} and fP(p) ∈ •t.
Assume now that a ′ = (fP(p), t) ∈ f ′EG(E

L ′
p2t). This implies that ∃(p ′′, t ′′) ∈ EL ′p2t such

that p ′′ ∈ •t ′′ with f ′EG(p
′′, t ′′) = a ′ = (fP(p), t). Then it holds: f ′EG(p

′′, t ′′)
Def. 64
=

(fP(p
′′), fT (t ′′)) = (fP(p), t). Since fP is injective, we have that p ′′ = p and fT (t ′′) =

t ∈ fT (T
L), which contradicts to the assumption that t /∈ fT (T

L). This implies that

a ′ ∈ EG ′G \f ′EG(E
L ′
p2t) with sG

′
G (a ′) = sG

′
G (fP(p), t)

Def. 64
= fP(p)

Def. 64
= f ′VG(p). Thus, we

get that p ∈ VB
′
0

G , which was to be shown.
2. Let p ∈ DPI:

By definition of DPI we have that there is x ∈ IG\fI(IL) with fP(p) = mG(x) for p ∈ PL.
It suffices to show for p ∈ PL that ∃a ′ ∈ EG ′to2p\f ′EG(E

L ′
to2p) with f ′VG(p) = t

G ′
G (a ′).

Let a ′ = (x, fP(p)) ∈ EG
′

to2p with f ′VG(p)
Def. 64
= fP(p)

Def. 64
= tG

′
G (x, fP(p)) = tG

′
G (a ′).

Similarly to above we show that a ′ /∈ f ′EG(E
L ′
to2p) using x /∈ fI(IL), which altogether

implies that p ∈ VB
′
0

G .
This concludes the part of surjectivity of i : B ′ → FPTI(B). Now i is injective and surjective, so
we get that i is an isomorphism. Since (4) is a pushout, also j : C ′ → FPTI(C) is an isomorphism
and hence (2) is isomorphic to (3). So we get that also (2) is an initial pushout over an injective
morphism FPTI(f) : FPTI(L)→ FPTI(G). �

Lemma 51: (E−M-Factorization in PTINet, see page 194)
The M-adhesive category (PTINet,M1) has an E1 −M1-factorization according to Defi-
nition 10 where M1 is the class of all injective PTI net morphisms and E1 is the class of
all surjective PTI net morphisms.

Proof.
Consider PTI nets NI1 = (P1, T1,pre1 : T1 → P⊕1 ,post1 :

T1 → P⊕1 , I1,m1 : I1 → P1), NI2 = (P2, T2,pre2 : T2 →
P⊕2 ,post2 : T2 → P⊕2 , I2,m2 : I2 → P2) and a PTI net mor-
phism f : NI1 → NI2. We construct an E1 −M1-factorization
(f1 : NI1 → NI3, f2 : NI3 → NI2) of f given to the right with

NI1

NI2

NI3=f

f1=(fP1 , fT1 , fI1) surj.

f2=(fP2 , fT2 , fI2) inj.

NI3 = (P3, T3,pre3 : T3 → P⊕3 ,post3 : T3 → P⊕3 , I3,m3 : I3 → P3) componentwise in Sets
for places, transitions and individual tokens as follows

T1 P⊕1

T2 P⊕2

T3 P⊕3

pre1

post1

pre3

post3
fT

f⊕P

pre2

post2

fT1

fT2

f⊕P1

f⊕P2

I1 P1

I2 P2

I3 P3

m1

m3
fI

fP

m2

fI1

fI2

fP1

fP2
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where fP1 : P1 → P3, fT1 : T1 → T3, fI1 : I1 → I3 are surjective and fP2 : P3 → P2,
fT2 : T3 → T2, fI2 : I3 → I2 are injective. For the construction of the pre3 function consider the
following diagram.

T1 P⊕1

T3 P⊕3

T2 P⊕2

pre1

f⊕P1fT1 surj.
pre3

fT2 inj.

pre2

f⊕P2

Since fT1 is surjective and hence an epimorphism in Sets, we also know that fT1 is a coequalizer in
Sets. Moreover, by Definition 2.6 from [251, p. 171] we have that fT1 is a regular epimorphism
implying by Lemma 2.10 from [251, p. 171] that fT1 is a strong epimorphism. Finally, by
definition of a strong epimorphism (see Definition 2.1 from [251, p. 170]) we get that there is a
unique function pre3 : T3 → P⊕3 making the diagram below commute if fP⊕2 is injective, which
can be easily shown as follows:
f⊕P2 is injective, i.e., ∀M = x1 ⊕ . . .⊕ xn,M ′ = x ′1 ⊕ . . .⊕ x ′n ∈ P⊕3 . (f⊕P2(x1 ⊕ . . .⊕ xn) =

f⊕P2(x
′
1 ⊕ . . .⊕ x ′n))⇒ (x1 ⊕ . . .⊕ xn = x ′1 ⊕ . . .⊕ x ′n).

Fix M,M ′ ∈ P⊕3 and assume that f⊕P2(x1 ⊕ . . .⊕ xn) = f
⊕
P2
(x ′1 ⊕ . . .⊕ x ′n). Then we have:

f⊕P2(x1 ⊕ . . .⊕ xn) = f
⊕
P2
(x ′1 ⊕ . . .⊕ x ′n)

Def. f⊕P2⇒ fP2(x1)⊕ . . .⊕ fP2(xn) = fP2(x ′1)⊕ . . .⊕ fP2(x ′n)
fP2 inj. + commutativity

⇒ x1 ⊕ . . .⊕ xn = x ′1 ⊕ . . .⊕ x ′n

T1

=

=

T3

P⊕3 P⊕2

fT1 surj.

pre2 ◦ fT2f⊕P1 ◦ pre1

f⊕P2

pre3

The unique function post3 : T3 → P⊕3 can be constructed similarly to the case of the pre3
function considering the following diagrams:

T1 P⊕1

T3 P⊕3

T2 P⊕2

post1

f⊕P1fT1 surj.
post3

fT2 inj.

post2

f⊕P2

T1

=

=

T3

P⊕3 P⊕2

fT1 surj.

post2 ◦ fT2f⊕P1 ◦ post1

f⊕P2

post3

The unique marking function m3 : I3 → P3 can be constructed similarly to the case of the pre3
function considering the following diagrams:
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I1 P1

I3 P3

I2 P2

m1

fP1fI1 surj.
m3

fI2 inj.

m2

fP2

I1

=

=

I3

P3 P2

fI1 surj.

m2 ◦ fI2fP1 ◦m1

fP2

m3

It remains to show that the PTI net NI3 constructed in this way is unique up to isomorphism.
For this reason assume that there are another PTI net NI ′3 = (P ′3, T ′3,pre ′3 : T ′3 → P ′3

⊕,post ′3 :

T ′3 → P ′3
⊕, I ′3,m ′3 : I ′3 → P ′3) and morphisms f ′1 : NI1 → NI ′3 with f ′1 = (f ′P1 : P1 → P ′3, f ′T1 :

T1 → T ′3, f ′I1 : I1 → I ′3) in E1, f ′2 : NI ′3 → NI2 with f ′2 = (f ′P2 : P
′
3 → P2, f ′T2 : T

′
3 → T2, f ′I2 :

I ′3 → I2) in M1 such that it holds that f = f ′2 ◦ f ′1. We have to show that NI ′3 ∼= NI3.

NI1

NI2

NI3 NI ′3=f

f1 surj.

f2 inj.

∼

f ′1 surj.

f ′2 inj.

By the componentwise construction of NI3, we know that there are isomorphisms jP : P ′3 → P3,
jT : T ′3 → T3, jI : I ′3 → I3 in Sets such that fP1 = jP ◦ f ′P1 , fT1 = jT ◦ f ′T1 , fI1 = jI ◦ f ′I1 ,
f ′P2 = fP2 ◦ jP, f ′T2 = fT2 ◦ jT and f ′I2 = fI2 ◦ jI as given in the diagrams below.

P1

P2

P3 P ′3=

=

=

fP

fP1

fP2

jP

f ′P1

f ′P2

T1

T2

T3 T ′3=

=

=

fT

fT1

fT2

jT

f ′T1

f ′T2

I1

I2

I3 I ′3=

=

=

fI

fI1

fI2

jI

f ′I1

f ′I2

Thus j : NI ′3 → NI3 with j = (jP, jT , jI) is a PTI net isomorphism if it is compatible with the
corresponding pre-, post- and marking functions, i.e.,

• pre3 ◦ jT = j⊕P ◦ pre ′3 :
It holds the following:

pre3 ◦ jT ◦ f ′T1
fT1=jT◦f

′
T1= pre3 ◦ fT1

(1) comm.
= f⊕P1 ◦ pre1

fP1=jP◦f
′
P1= (jP ◦ f ′P1)

⊕ ◦ pre1 = j⊕P ◦ f ′P1
⊕ ◦ pre1

(2) comm.
= j⊕P ◦ pre ′3 ◦ f ′T1

Thus, we have that pre3 ◦ jT ◦ f ′T1 = j
⊕
P ◦ pre ′3 ◦ f ′T1 and since f ′T1 is surjective by assump-

tion, we get that pre3 ◦ jT = j⊕P ◦ pre ′3.
• post3 ◦ jT = j⊕P ◦ post ′3 :

The proof for this case works analogously to the proof of the case above.



appendices 383

T ′3

=

P ′3
⊕

T3 P⊕3

pre ′3

post ′3
jT j⊕P

pre3

post3

T1

(1)

P⊕1

T3 P⊕3

pre1

post1
fT1 f⊕P1

pre3

post3

T1

(2)

P⊕1

T ′3 P ′3
⊕

pre1

post1
f ′T1 f ′P1

⊕

pre ′3

post ′3

• m3 ◦ jI = jP ◦m ′3 :
It holds the following:

m3 ◦ jI ◦ f ′I1
fI1=jI◦f

′
I1= m3 ◦ fI1

(3) comm.
= fP1 ◦m1

fP1=jP◦f
′
P1= jP ◦ f ′P1 ◦m1

(4) comm.
= jP ◦m ′3 ◦ f ′I1

Thus, we have that m3 ◦ jI ◦ f ′I1 = jP ◦m
′
3 ◦ f ′I1 and since f ′I1 is surjective by assumption,

we get that m3 ◦ jI = jP ◦m ′3.

I ′3

=

P ′3

I3 P3

m ′3

jI jP

m3

I1

(3)

P1

I3 P3

m1

fI1 fP1

m3

I1

(4)

P1

I ′3 P ′3

m1

f ′I1 f ′P1

m ′3

This implies that j : NI ′3 → NI3 is a PTI net isomorphism and hence NI ′3 ∼= NI3. �

Lemma 52: (FPTI Preserves Coproducts, see page 194)
Consider a PTI net A, a family of PTI nets (Aj)j∈I, a family of PTI net morphisms (ij :

Aj → A)j∈I, a coproduct (A, (ij)j∈I) of (Aj)j∈I in PTINet, and the restricted M-functor
FPTI : PTINet|M1

→ AGraphsPNTG|M2
from Definition 64. Then (FPTI(A), (FPTI(ij))j∈I)

is a coproduct of (FPTI(Aj))j∈I in AGraphsPNTG.

Aj A

B

FPTI=⇒

ij

fj
f

FPTI(Aj) FPTI(A)

FPTI(B)

FPTI(ij)

FPTI(fj)
FPTI(f)

Proof.
To prove the preservation of coproducts by FPTI it is sufficient to show, that FPTI preserves
pushouts and initial objects, because pushouts over initial objects are coproducts. In Lemma 43
we have already shown that FPTI preserves pushouts. It remains to show that FPTI preserves
initial objects, i.e., for the initial PTI net ∅, FPTI(∅) = ∅N is initial in AGraphsN

PNTG. This holds
obviously according to the explanation in Section 8.1. Thus, FPTI preserves coproducts. �

Lemma 53: (FPTI Preserves Surjective Morphisms, see page 194)
Consider two PTI nets NI1 = (P1, T1,pre1,post1, I1,m1), NI2 = (P2, T2,pre2,post2, I2,
m2), a surjective PTI net morphism f : NI1 → NI2 with f = (fP : P1 → P2, fT : T1 →
T2, fI : I1 → I2), and the restricted M-functor FPTI: PTINet|M1

→ AGraphsPNTG|M2
.

Then the corresponding typed attributed graph morphism FPTI(f): FPTI(NI1)→ FPTI(NI2)

with FPTI(f) = f ′ = (f ′VG : V1G → V2G, f ′VD : N → N, f ′EG : E1G → E2G, f ′ENA : E1NA →
E2NA, f ′EEA : E1EA → E2EA) is also surjective.

Proof.
Consider surjective morphisms fP, fT and fI, i.e., ∀p ′ ∈ P2. ∃p ∈ P1. p ′ = fP(p), ∀t ′ ∈
T2. ∃t ∈ T1. t ′ = fT (t) and ∀x ′ ∈ I2. ∃x ∈ I1. x ′ = fI(x).
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1. To show: f ′VG is surjective, i.e., ∀y ′ ∈ V2G. ∃y ∈ V1G. (y ′ = fP(y)) ∨ (y ′ = fT (y)) ∨

(y ′ = fI(y)).
f ′VG : V1G → V2G with f ′VG = fP ] fT ] fI for ViG = Pi ] Ti ] Ii where i ∈ {1, 2} is
surjective, because the components fP, fT and fI are surjective.

2. To show: f ′VD is surjective, i.e., ∀n ′ ∈N. ∃n ∈N. n ′ = idN(n).
f ′VD is obviously surjective.

3. To show: f ′EG is surjective.
f ′EG : E1G → E2G for EiG = Eito2p ] Eip2t ] Eit2p with i ∈ {1, 2},
where Eito2p = {(x,p) ∈ Ii × Pi | mi(x) = p},
Eip2t = {(p, t) ∈ Pi × Ti | prei(t)(p) > 0} and
Eit2p = {(t,p) ∈ Ti × Pi | posti(t)(p) > 0}.

a) Let (x ′,p ′) ∈ E2to2p with m2(x ′) = p ′.
It remains to show: ∃(x,p) ∈ E1to2p. f ′EG(x,p) = (x ′,p ′).
Since fI and fP are surjective, we have that ∃x ∈ I1. fI(x) = x ′, ∃p ∈ P1. fP(p) = p ′

and it holds: f ′EG(x,p)
Def. 64
= (fI(x), fP(p)) = (x ′,p ′). Furthermore, we have:

m2(x
′) = p ′ ⇒ m2(fI(x)) = fP(p)

(1) comm.⇒ fP(m1(x)) = fP(p)

fP inj.⇒ m1(x) = p

Def. E1to2p⇒ (x,p) ∈ E1to2p

I1

(1)

P1

I2 P2

m1

fI fP

m2

b) Let (p ′, t ′) ∈ E2p2t with pre2(t ′)(p ′) > 0.
It remains to show: ∃(p, t) ∈ E1p2t. f ′EG(p, t) = (p ′, t ′).
Since fP and fT are surjective, we have that ∃p ∈ P1. fP(p) = p ′, ∃t ∈ T1. fT (t) = t ′

and it holds: f ′EG(p, t)
Def. 64
= (fP(p), fT (t)) = (p ′, t ′). Furthermore, we have:

pre2(t
′)(p ′) > 0⇒ pre2(fT (t))(fP(p)) > 0

(2) comm.⇒ fP
⊕(pre1(t))(fP(p)) > 0

fP inj.⇒ pre1(t)(p) > 0

Def. E1p2t⇒ (p, t) ∈ E1p2t

T1

(2)

P1
⊕

T2 P2
⊕

pre1

post1
fT fP

⊕

pre2

post2

c) Let (t ′,p ′) ∈ E2t2p with post2(t ′)(p ′) > 0. The proof for this case is similar to the
proof of the Case 3b above.
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4. To show: f ′ENA is surjective.
f ′ENA : E1NA → E2NA for EiNA = Eiin ] Eiout with i ∈ {1, 2},
where Eiin = {(t,n, in) | (t,n) ∈ Ti ×N ∧ | • t| = n}
and Eiout = {(t,n, out) | (t,n) ∈ Ti ×N ∧ |t • | = n}.

a) Let (t ′,n ′, in) ∈ E2in with | • t ′| = n ′.
It remains to show: ∃(t,n, in) ∈ E1in. f ′ENA(t,n, in) = (t ′,n ′, in).
Because of surjectivity of fT holds: ∃t ∈ T1. fT (t) = t ′ and let n = | • t|. Then we
get that (t,n, in) ∈ E1in, because | • t| = n. Furthermore, we have:

n ′ = | • t ′| = | • fT (t)|
Def. •fT (t)

= |{p ′ ∈ P2 | pre2(fT (t))(p ′) > 0}|
= |{fP(p) ∈ P2 | pre2(fT (t))(fP(p)) > 0}|
fP inj., surj.

= |{p ∈ P1 | pre2(fT (t))(fP(p)) > 0}|
(2) comm.

= |{p ∈ P1 | fP⊕(pre1(t))(fP(p)) > 0}|
fP inj.
= |{p ∈ P1 | pre1(t)(p) > 0}|

Def. •t
= | • t| = n

This implies: f ′ENA(t,n, in)
Def. 64
= (fT (t),n, in) = (t ′,n ′, in).

b) Let (t ′,n ′, out) ∈ E2out with |t ′ • | = n ′. The proof for this case is similar to the proof
of the Case 4a above.

5. To show: f ′EEA is surjective.
f ′EEA : E1EA → E2EA for EiEA = Eiwpre ] Eiwpost with i ∈ {1, 2},
where Eiwpre =

{
((p, t),n) ∈ Eip2t ×N | prei(t)(p) = n

}
and Eiwpost =

{
((t,p),n) ∈ Eit2p ×N | posti(t)(p) = n

}
.

a) Let ((p ′, t ′),n ′) ∈ E2wpre with pre2(t ′)(p ′) = n ′.
It remains to show: ∃((p, t),n) ∈ E1wpre . f ′EEA((p, t),n) = ((p ′, t ′),n ′).
Because of surjectivity of fP and fT holds: ∃p ∈ P1. fP(p) = p ′, ∃t ∈ T1. fT (t) = t ′

and let n = pre1(t)(p). Then we get that ((p, t),n) ∈ E1wpre , because pre1(t)(p) =
n. Furthermore, we have:

n ′ = pre2(t
′)(p ′) = pre2(fT (t))(fP(p))

(2) comm.
= fP

⊕(pre1(t))(fP(p))

fP inj.
= pre1(t)(p) = n

This implies: f ′EEA((p, t),n)
Def. 64
= ((fP(p), fT (t)),n) = ((p ′, t ′),n ′).

b) Let ((t ′,p ′),n ′) ∈ E2wpost with post2(t ′)(p ′) = n ′. The proof for this case is
similar to the proof of the Case 5a above.

�

Lemma 54: (FPTI is Compatible with Pair Factorization, see page 195)
Consider a PTI net transformation system (PTINet,M1,P), a typed attributed graph
transformation system (AGraphsPNTG,M2,FPTI(P)), and the restricted M-functor FPTI :

PTINet|M1
→ AGraphsPNTG|M2

from Definition 64. Then FPTI is compatible with pair
factorization.
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Proof.
According to Definition 51 and as already discussed before, we have to show that the categories
(PTINet,M1) and (AGraphsPNTG,M2) have E ′ −M pair factorizations and for each E ′1 −M1

pair factorization (f1 = m ◦ e1, f2 = m ◦ e2) in (PTINet,M1) also (FPTI(f1) = FPTI(m) ◦
FPTI(e1),FPTI(f2) = FPTI(m) ◦FPTI(e2)) is an E ′2 −M2 pair factorization in (AGraphsPNTG,
M2) (see the diagram below). According to Lemma 1, an E ′1−M1 pair factorization of (f1 : L1 →
G, f2 : L2 → G) based on E1 −M1-factorization and coproducts is given by (f1 = m ◦ e1, f2 =

m ◦ e2), where f : L1+L2 → G is the induced morphism of fi : Li → G for i ∈ {1, 2}, f = m ◦ e
is an E1 −M1-factorization according to Definition 10 and e1 = e ◦ i1, e2 = e ◦ i2 are defined
via the coproduct morphisms i1 : L1 → L1+L2 and i2 : L2 → L1+L2 in (PTINet,M1). Similar
we obtain a pair factorization in (AGraphsPNTG,M2). Lemma 1 is applicable to the categories
(PTINet,M1) and (AGraphsPNTG,M2), because these categories have Ei −Mi-factorizations
for i ∈ {1, 2} according to Lemma 51 and [88] as well as coproducts constructed componentwise as
disjoint union, because the empty PTI net ∅ resp. almost empty typed attributed graph FPTI(∅) are
initial in the categories PTINet resp. AGraphsPNTG and we have pushouts in both categories.

In order to show that FPTI is compatible with pair factorization it remains to show that FPTI

preserves pair factorization, i.e., for each pair factorization (f1 = m ◦ e1, f2 = m ◦ e2) in
(PTINet,M1) also (FPTI(f1) = FPTI(m) ◦ FPTI(e1),FPTI(f2) = FPTI(m) ◦ FPTI(e2)) is a pair
factorization in (AGraphsPNTG,M2). This can be concluded, if FPTI preserves coproducts and
surjective morphisms according to Lemma 16. Both properties are shown to hold in Lemmas 52
and 53 above. Thus, we get that FPTI is compatible with pair factorization.

L1

L1+L2

L2

K

G

i1

i2
e

f

e1

e2

m

f1

f2

FPTI(L1)

FPTI(L1+L2)=FPTI(L1)+FPTI(L2)

FPTI(L2)

FPTI(K)

FPTI(G)

FPTI(i1)

FPTI(i2) FPTI(e)

FPTI(f)

FPTI(e1)

FPTI(e2)

FPTI(m)

FPTI(f1)

FPTI(f2)

�

Lemma 55: (FPTI Translates Jointly Surjective Morphisms, see page 196)
Consider E ′1-M1 pair factorization in (PTINet,M1) and E ′2-M2 pair factorization in
(AGraphsPNTG,M2). Then the restricted M-functor FPTI : PTINet|M1

→ AGraphsPNTG|M2

from Definition 64 translates jointly surjective PTI net morphisms (a ′,b ′) into the cor-
responding jointly surjective typed attributed graph morphisms (a ′′,b ′′) with a ′′ =

FPTI(a
′) and b ′′ = FPTI(b

′).

C

P ′

C ′
b ′

a ′

FPTI(C)

FPTI(P
′)

C ′′= FPTI(C
′)

b ′′ = FPTI(b
′)

a ′′ = FPTI(a
′)
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Proof.
We have to show the following according to Definition 61:

∀(a ′,b ′) ∈ E ′1. ∃(a ′′,b ′′) ∈ E ′2. a ′′ = FPTI(a
′) ∧ b ′′ = FPTI(b

′)

Let (a ′,b ′) be a pair of jointly surjective morphisms in E ′1. According to Lemma 66 from Ap-
pendix A, we know that ((a ′,b ′), id) is an E ′1-M1 pair factorization of (a ′,b ′) in (PTINet,M1).
Furthermore, we get by application of Lemma 54 that ((FPTI(a

′),FPTI(b
′)),FPTI(id)) is an E ′2-

M2 pair factorization of (FPTI(a
′),FPTI(b

′)) in (AGraphsPNTG,M2), which implies by the
definition of E ′-M pair factorization that (FPTI(a

′),FPTI(b
′)) ∈ E ′2. �

Lemma 56: (FPTI Creates Jointly Surjective Morphisms, see page 196)
Consider E ′1-M1 pair factorization in (PTINet,M1), E ′2-M2 pair factorization in
(AGraphsPNTG,M2), and PTI net morphisms a : P → C, b : P → P ′. Then the restricted
M-functor FPTI : PTINet|M1

→ AGraphsPNTG|M2
from Definition 64 creates jointly sur-

jective PTI net morphisms (a ′,b ′) from the corresponding typed attributed graph mor-

phisms (a ′′,b ′′) in E
′
2 = FPTI(E

′
1) if for all spans (C

a← P
b→ P ′) holds that the diagram

(1) below commutes, FPTI(a
′) = a ′′, FPTI(b

′) = b ′′, and the injectivity of b ′′ implies the
injectivity of b ′.

P

C

P ′

C ′

(1)

b

a

b ′

a ′

FPTI(P)

FPTI(C)

FPTI(P
′)

C ′′= FPTI(C
′)

(2)

FPTI(b)

FPTI(a)

b ′′ = FPTI(b
′)

a ′′ = FPTI(a
′)

Proof.
We have to show the following according to Definition 61:

∀(a ′′,b ′′) ∈ E
′
2. (2) commutes ∧ b ′′ ∈M2 ⇒

∃(a ′,b ′) ∈ E ′1. a ′′ = FPTI(a
′)∧ b ′′ = FPTI(b

′)∧ (1) commutes ∧ b ′ ∈M1.

Since E
′
2 = FPTI(E

′
1), we have that there is (a ′,b ′) ∈ E ′1 with a ′′ = FPTI(a

′) and b ′′ =
FPTI(b

′). Furthermore, by commutativity of (2) holds:

FPTI(a
′) ◦FPTI(b) = FPTI(b

′) ◦FPTI(a)

funct. prop.⇒ FPTI(a
′ ◦ b) = FPTI(b

′ ◦ a)
Lem. 10 + Rem. 10⇒ a ′ ◦ b = b ′ ◦ a

Finally, we have that b ′ ∈ M1, because b ′′ = FPTI(b
′) in M2 and FPTI creates injective mor-

phisms by Lemma 45. �

Lemma 57: (FPTI Preserves Pullbacks of Injective Morphisms, see page 197)
Consider a PTI net transformation system (PTINet,M1,P), a typed attributed graph
transformation system (AGraphsPNTG,M2,FPTI(P)), the restricted M-functor FPTI :

PTINet|M1
→ AGraphsPNTG|M2

, PTI nets NIi for i ∈ {0, 1, 2, 3} with PTI net morphisms
b = (bP,bT ,bI), c = (cP, cT , cI), g = (gP,gT ,gI), h = (hP,hT ,hI), and typed attributed
graphs FPTI(NIi) for i ∈ {0, 1, 2, 3} with typed attributed graph morphisms FPTI(b) =
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b ′ = (b ′VG ,b ′VD ,b ′EG ,b ′ENA ,b ′EEA), FPTI(c) = c ′ = (c ′VG , c ′VD , c ′EG , c ′ENA , c ′EEA), FPTI(g) =

g ′ = (g ′VG ,g ′VD ,g ′EG ,g ′ENA ,g ′EEA), FPTI(h) = h ′ = (h ′VG ,h ′VD ,h ′EG ,h ′ENA ,h ′EEA). If (1) is a
pullback in PTINet with g,h ∈ M1 then we have that (2) is a pullback in AGraphsPNTG

with FPTI(g),FPTI(h) ∈M2.

NI0

(1)

NI1

NI2 NI3

b

c g

h

FPTI(NI0)

(2)

FPTI(NI1)

FPTI(NI2) FPTI(NI3)

FPTI(b)=b
′

FPTI(c)=c
′ FPTI(g)=g

′

FPTI(h)=h
′

Proof.
For the given morphisms g,h ∈ M1 we have that FPTI(g) = g ′,FPTI(h) = h ′ ∈ M2 according
to Lemma 42.
Let (1) be a pullback in PTINet with g,h ∈M1, i.e., P-, T - and I-components of (1) are pullbacks
in Sets, because pullbacks in PTINet are constructed componentwise as shown in Fact 4.1.5 in
[223, p. 73].

P0

(PB)

P1

P2 P3

bP

cP
gP inj.

hP inj.

T0

(PB)

T1

T2 T3

bT

cT

gT inj.

hT inj.

I0

(PB)

I1

I2 I3

bI

cI
gI inj.

hI inj.

To show: VG-, VD-, EG-, ENA- and EEA-components of (2) are pullbacks of injective morphisms
in Sets, because according to [88] pullbacks in AGraphsATG and hence also in AGraphsPNTG

are constructed componentwise as well.
1. VG-component of (2) is a pullback of injective morphisms in Sets (see diagram (3)) with
f ′VG = fP ] fT ] fI for f ∈ {b, c,g,h}, because the components of (3) are pullbacks and
pushouts of injective morphisms in Sets since g = (gP,gT ,gI),h = (hP,hT ,hI) ∈ M1

by assumption and pushouts are compatible with coproducts (and coproduct in Sets is ]).

V0G

(3)

V1G

V2G V3G

bP ] bT ] bI

cP ] cT ] cI gP ] gT ] gI

hP ] hT ] hI

2. VD-component of (2) is obviously a pullback of injective morphisms in Sets (see diagram
(4)) with f ′VD = idN for f ∈ {b, c,g,h}.

V0D=N

(4)

V1D=N

V2D=N V3D=N

idN

idN idN

idN

3. For the EG-component we have to show that (5) is a pullback of injective morphisms in
Sets which follows if (5a), (5b) and (5c) are pullbacks of injective morphisms.
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E0G

(5)

E1G

E2G E3G

b ′EG

c ′EG g ′EG

h ′EG

E0to2p

(5a)

E1to2p

E2to2p E3to2p

bI × bP

cI × cP gI × gP

hI × hP
E0p2t

(5b)

E1p2t

E2p2t E3p2t

bP × bT

cP × cT
gP × gT

hP × hT

E0t2p

(5c)

E1t2p

E2t2p E3t2p

bT × bP

cT × cP
gT × gP

hT × hP

Diagrams (5a), (5b) and (5c) commute, because for each product component we have
a pullback in Sets by assumption. So it remains to show that (5a), (5b) and (5c) are
pullbacks.

a) For diagram (5a) we have to show that the diagram (5a ′) is a pullback in Sets with

Ii ⊗ Pi = {(x,p) ∈ Ii × Pi | mi(x) = p} for i ∈ {0, 1, 2, 3}

and fI ⊗ fP for f ∈ {b, c,g,h} .

I0 ⊗ P0
(5a ′)

I1 ⊗ P1

I2 ⊗ P2 I3 ⊗ P3

bI ⊗ bP

cI ⊗ cP gI ⊗ gP

hI ⊗ hP

Since b, c,g,h are PTI net morphisms, we have that all fI ⊗ fP morphisms for f ∈
{b, c,g,h} are well-defined. Furthermore, we have that the components of (5a ′) are
pullbacks in Sets by assumption. Hence, also (5a ′) (as well as (5a)) is a pullback,
because pullbacks are compatible with products.

b) For diagram (5b) we have to show that the diagram (5b ′) is a pullback in Sets with

Pi ⊗ Ti = {(p, t) ∈ Pi × Ti | prei(t)(p) > 0} for i ∈ {0, 1, 2, 3}

and fP ⊗ fT for f ∈ {b, c,g,h} .

P0 ⊗ T0
(5b ′)

P1 ⊗ T1

P2 ⊗ T2 P3 ⊗ T3

bP ⊗ bT

cP ⊗ cT gP ⊗ gT

hP ⊗ hT

The proof for this case is similar to the Case 3a. Hence, (5b ′) and (5b) are pullbacks.
c) For diagram (5c) we have to show that the diagram (5c ′) is a pullback in Sets with

Ti ⊗ Pi = {(t,p) ∈ Ti × Pi | posti(t)(p) > 0} for i ∈ {0, 1, 2, 3}

and fT ⊗ fP for f ∈ {b, c,g,h} .

T0 ⊗ P0
(5c ′)

T1 ⊗ P1

T2 ⊗ P2 T3 ⊗ P3

bT ⊗ bP

cT ⊗ cP gT ⊗ gP

hT ⊗ hP
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The proof for this case is similar to the Case 3a. Hence, (5c ′) and (5c) are pullbacks.
4. For the ENA-component we have to show that (6) is a pullback of injective morphisms

in Sets, which follows if (6a) and similarly (6b) are pullbacks of injective morphisms for
X = {in} and Y = {out}.

E0NA

(6)

E1NA

E2NA E3NA

b ′ENA

c ′ENA g ′ENA

h ′ENA

E0in

(6a)

E1in

E2in E3in

bT × idN × idX

cT × idN × idX
gT × idN × idX

hT × idN × idX

E0out

(6b)

E1out

E2out E3out

bT × idN × idY

cT × idN × idY
gT × idN × idY

hT × idN × idY

Diagrams (6a) and (6b) commute, because for each product component we have a pullback
in Sets by assumption. So it remains to show that (6a) and (6b) are pullbacks.

a) For diagram (6a) we have to show that the diagram (6a ′) is a pullback in Sets with

Ti ⊗N⊗X = {(t,n, in) | (t,n) ∈ Ti ×N ∧ | • t| = n} for i ∈ {0, 1, 2, 3}

and fT ⊗ idN ⊗ idX for f ∈ {b, c,g,h} .

T0 ⊗N⊗X

(6a ′)

T1 ⊗N⊗X

T2 ⊗N⊗X T3 ⊗N⊗X

bT ⊗ idN ⊗ idX

cT ⊗ idN ⊗ idX gT ⊗ idN ⊗ idX

hT ⊗ idN ⊗ idX

Also here we know that fT ⊗ idN⊗ idX morphisms for f ∈ {b, c,g,h} are well-defined
since b, c,g,h are PTI net morphisms. Furthermore, we have that the components of
(6a ′) are pullbacks in Sets by assumption. Hence, also (6a ′) (as well as (6a)) is a
pullback, because pullbacks are compatible with products.

b) For diagram (6b) we have to show that the diagram (6b ′) is a pullback in Sets with

Ti ⊗N⊗ Y = {(t,n, out) | (t,n) ∈ Ti ×N ∧ |t • | = n} for i ∈ {0, 1, 2, 3}

and fT ⊗ idN ⊗ idY for f ∈ {b, c,g,h} .

T0 ⊗N⊗ Y

(6b ′)

T1 ⊗N⊗ Y

T2 ⊗N⊗ Y T3 ⊗N⊗ Y

bT ⊗ idN ⊗ idY

cT ⊗ idN ⊗ idY gT ⊗ idN ⊗ idY

hT ⊗ idN ⊗ idY

The proof for this case is similar to the Case 4a. Hence, (6b ′) and (6b) are pullbacks.
5. For the EEA-component we have to show that (7) is a pullback of injective morphisms in

Sets, which follows if (7a) and similarly (7b) are pullbacks of injective morphisms.
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E0EA

(7)

E1EA

E2EA E3EA

b ′EEA

c ′EEA g ′EEA

h ′EEA

E0wpre

(7a)

E1wpre

E2wpre E3wpre

bP × bT × idN

cP × cT × idN

gP × gT × idN

hP × hT × idN

E0wpost

(7b)

E1wpost

E2wpost E3wpost

bT × bP × idN

cT × cP × idN

gT × gP × idN

hT × hP × idN

Diagrams (7a) and (7b) commute, because also here we have a pullback in Sets for each
product component by assumption. So it remains to show that (7a) and (7b) are pullbacks.

a) For diagram (7a) we have to show that the diagram (7a ′) is a pullback in Sets with

Pi ⊗ Ti ⊗N =
{
((p, t),n) ∈ Eip2t ×N | prei(t)(p) = n

}
for i ∈ {0, 1, 2, 3}

and fP ⊗ fT ⊗ idN for f ∈ {b, c,g,h} .

P0 ⊗ T0 ⊗N

(7a ′)

P1 ⊗ T1 ⊗N

P2 ⊗ T2 ⊗N P3 ⊗ T3 ⊗N

bP ⊗ bT ⊗ idN

cP ⊗ cT ⊗ idN gP ⊗ gT ⊗ idN

hP ⊗ hT ⊗ idN

Similarly to the cases above we have that fP ⊗ fT ⊗ idN morphisms for f ∈ {b, c,g,h}
are well-defined since b, c,g,h are PTI net morphisms. Furthermore, it holds that the
components of (7a ′) are pullbacks in Sets by assumption. Hence, also (7a ′) (as well
as (7a)) is a pullback, because pullbacks are compatible with products.

b) For diagram (7b) we have to show that the diagram (7b ′) is a pullback in Sets with

Ti⊗ Pi⊗N =
{
((t,p),n) ∈ Eit2p ×N | posti(t)(p) = n

}
for i ∈ {0, 1, 2, 3}

and fT ⊗ fP ⊗ idN for f ∈ {b, c,g,h} .

T0 ⊗ P0 ⊗N

(7b ′)

T1 ⊗ P1 ⊗N

T2 ⊗ P2 ⊗N T3 ⊗ P3 ⊗N

bT ⊗ bP ⊗ idN

cT ⊗ cP ⊗ idN gT ⊗ gP ⊗ idN

hT ⊗ hP ⊗ idN

The proof for this case is similar to the Case 5a. Hence, (7b ′) and (7b) are pullbacks.
�

Lemma 64: (FPTIC is a Category Equivalence, see page 223)
The categories PTINet|M1

and SubAGraphsPNTG are equivalent, i.e., there exists a cate-
gory equivalence FPTIC : PTINet|M1

∼→ SubAGraphsPNTG.

Proof.
As the first step we construct the restricted functor FPTIC : PTINet|M1

→ SubAGraphsPNTG

exactly as given in Definition 64. FPTIC defined in this way is a well-defined restricted functor as
it is shown in the proof of Lemma 42. Now we have to define the inverse restricted functor FPTI

−1
C :

SubAGraphsPNTG → PTINet|M1
on objects and morphisms as given in the following. Consi-

der a typed attributed graph ((G ′, NAT1), type) in SubAGraphsPNTG with the E-graph G ′ =
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(VG
′

G ,VG
′

D =N,EG
′

G ,EG
′

NA,EG
′

EA, (sG
′

j , tG
′

j )
j∈{G,NA,EA}

) and morphism type : (G ′, NAT)→
(PNTG,Dfin) given by a final morphism of data types from NAT to the final algebra Dfin and
typeG ′ : G ′ → PNTG is given by E-graph morphism typeG ′ = (typeVG , typeVD , typeEG , typeENA ,
typeEEA). Since the category SubAGraphsPNTG contains only FPTIC-images, we have that ((G ′,
NAT), type) = FPTIC(G) for some PTI net G = (PG, TG,preG,postG, IG,mG). We define the
object FPTI

−1
C (G ′) = (PFPTI

−1
C (G ′), TFPTI

−1
C (G ′),preFPTI

−1
C (G ′),postFPTI

−1
C (G ′), IFPTI

−1
C (G ′),

mFPTI
−1
C (G ′)) as follows:

PFPTI
−1
C (G ′) = {p ∈ VG ′G | typeVG(p) = Place}

TFPTI
−1
C (G ′) = {t ∈ VG ′G | typeVG(t) = Trans}

preFPTI
−1
C (G ′)(t)(p) = n if ((p, t),n) ∈ EG ′EA

postFPTI
−1
C (G ′)(t)(p) = n if ((t,p),n) ∈ EG ′EA

IFPTI
−1
C (G ′) = {x ∈ VG ′G | typeVG(x) = Token}

mFPTI
−1
C (G ′) = {(x,p) ∈ EG ′G | typeEG(x,p) = to2p}

Consider additionally another typed attributed graph ((H ′, NAT), type ′) in SubAGraphsPNTG

with the E-graph H ′ = (VH
′

G ,VH
′

D =N,EH
′

G ,EH
′

NA,EH
′

EA, (sH
′

j , tH
′

j )
j∈{G,NA,EA}

) and the mor-
phism type ′ : (H ′, NAT) → (PNTG,Dfin). For each typed attributed graph morphism f ′ :

((G ′, NAT), type) → ((H ′, NAT), type ′) in SubAGraphsPNTG with f ′ = (f ′VG : VG
′

G →
VH

′
G , f ′VD : N → N, f ′EG : EG

′
G → EH

′
G , f ′ENA : EG

′
NA → EH

′
NA, f ′EEA : EG

′
EA → EH

′
EA), we de-

fine FPTI
−1
C (f ′) : FPTI

−1
C (G ′)→ FPTI

−1
C (H ′) where FPTI

−1
C (G ′) = (PFPTI

−1
C (G ′), TFPTI

−1
C (G ′),

preFPTI
−1
C (G ′),postFPTI

−1
C (G ′), IFPTI

−1
C (G ′),mFPTI

−1
C (G ′)) and FPTI

−1
C (H ′) = (PFPTI

−1
C (H ′),

TFPTI
−1
C (H ′),preFPTI

−1
C (H ′),postFPTI

−1
C (H ′), IFPTI

−1
C (H ′),mFPTI

−1
C (H ′)) by FPTI

−1
C (f ′) = f = (fP,

fT , fI) where:

fP : PFPTI
−1
C (G ′) → PFPTI

−1
C (H ′) with fP(p) = f ′VG(p)

fT : TFPTI
−1
C (G ′) → TFPTI

−1
C (H ′) with fT (t) = f ′VG(t)

fI : IFPTI
−1
C (G ′) → IFPTI

−1
C (H ′) with fI(x) = f ′VG(x)

In the next step we have to show, that the restricted functor FPTI
−1
C introduced above is a well-

defined restricted functor. For this reason we have to show the following for an arbitrary object
((G ′, NAT), type) as well as for an arbitrary morphism f ′ : ((G ′, NAT), type)→ ((H ′, NAT),
type ′) in SubAGraphsPNTG:

1. The components of FPTI
−1
C (G ′) are well-defined w.r.t. codomain.

Consider a typed attributed graph ((G ′, NAT), type) in SubAGraphsPNTG with the E-
graph G ′ = (VG

′
G ,VG

′
D =N,EG

′
G ,EG

′
NA,EG

′
EA, (sG

′
j , tG

′
j )

j∈{G,NA,EA}
) and the morphism

type : (G ′, NAT)→ (PNTG,Dfin) with typeG ′ = (typeVG , typeVD , typeEG , typeENA ,
typeEEA). We have to show that FPTI

−1
C (G ′) = (PFPTI

−1
C (G ′), TFPTI

−1
C (G ′),preFPTI

−1
C (G ′),

postFPTI
−1
C (G ′), IFPTI

−1
C (G ′),mFPTI

−1
C (G ′)) is a well-defined PTI net. For this reason it suf-

fices to show that the corresponding components of FPTI
−1
C (G ′) and G are equal.

• PFPTI
−1
C (G ′) = PG :

PFPTI
−1
C (G ′)

Def. FPTI
−1
C= {p ∈ VG ′G | typeVG(p) = Place}

1 Similarly to Section 8.2, we consider the category SubAGraphsPNTG with the fixed data type NAT and an
identical algebra homomorphism, which implies that the VD-component of morphisms is an identity.
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VG
′

G from Def. 64
= {p ∈ (PG ] TG ] IG) | typeVG(p) = Place}

typeVG from Def. 64
= PG

• TFPTI
−1
C (G ′) = TG :

TFPTI
−1
C (G ′)

Def. FPTI
−1
C= {t ∈ VG ′G | typeVG(t) = Trans}

VG
′

G from Def. 64
= {t ∈ (PG ] TG ] IG) | typeVG(t) = Trans}

typeVG from Def. 64
= TG

• preFPTI
−1
C (G ′) = preG :

We have to show the following:
∀t ∈ TG,p ∈ PG. preFPTI

−1
C (G ′)(t)(p) = preG(t)(p).

Fix t ∈ TG and p ∈ PG. Then it holds:

preG(t)(p) = preG(t)(p)

EG
′

EA from Def. 64⇒ ((p, t),preG(t)(p)) ∈ EG
′

EA

Def. FPTI
−1
C⇒ preFPTI

−1
C (G ′)(t)(p) = preG(t)(p)

• postFPTI
−1
C (G ′) = postG :

We have to show the following:
∀t ∈ TG,p ∈ PG. postFPTI

−1
C (G ′)(t)(p) = postG(t)(p).

Fix t ∈ TG and p ∈ PG. Then it holds:

postG(t)(p) = postG(t)(p)

EG
′

EA from Def. 64⇒ ((t,p),postG(t)(p)) ∈ EG
′

EA

Def. FPTI
−1
C⇒ postFPTI

−1
C (G ′)(t)(p) = postG(t)(p)

• IFPTI
−1
C (G ′) = IG :

IFPTI
−1
C (G ′)

Def. FPTI
−1
C= {x ∈ VG ′G | typeVG(x) = Token}

VG
′

G from Def. 64
= {x ∈ (PG ] TG ] IG) | typeVG(x) = Token}

typeVG from Def. 64
= IG

• mFPTI
−1
C (G ′) = mG :

mFPTI
−1
C (G ′)

Def. FPTI
−1
C= {(x,p) ∈ EG ′G | typeEG(x,p) = to2p}

EG
′

G from Def. 64
= {(x,p) ∈ (EG

′
to2p ] EG

′
p2t ] EG

′
t2p) | typeEG(x,p) = to2p}

typeEG from Def. 64
= EG

′
to2p

EG
′

to2p from Def. 64
= {(x,p) ∈ IG × PG | mG(x) = p}

= mG
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2. The components of FPTI
−1
C (f ′) are well-defined w.r.t. codomain.

Consider a typed attributed graph morphism f ′ : ((G ′, NAT), type) → ((H ′, NAT), type ′)
in SubAGraphsPNTG with f ′ = (f ′VG : VG

′
G → VH

′
G , f ′VD : N → N, f ′EG : EG

′
G →

EH
′

G , f ′ENA : EG
′

NA → EH
′

NA, f ′EEA : EG
′

EA → EH
′

EA). Since the category SubAGraphsPNTG

contains only FPTIC-images, we have that f ′ = FPTIC(f) for some injective PTI net mor-
phism f = (fP : PG → PH, fT : TG → TH, fI : IG → IH). We have to show that
FPTI

−1
C (f ′) = ((FPTI

−1
C (f ′))P : PFPTI

−1
C (G ′) → PFPTI

−1
C (H ′), (FPTI

−1
C (f ′))T : TFPTI

−1
C (G ′) →

TFPTI
−1
C (H ′), (FPTI

−1
C (f ′))I : IFPTI

−1
C (G ′) → IFPTI

−1
C (H ′)) is a well-defined injective PTI net

morphism. It suffices to show that the corresponding components of FPTI
−1
C (f ′) and f are

equal.
• (FPTI

−1
C (f ′))P = fP :

Fix p ∈ PFPTI
−1
C (G ′).

(FPTI
−1
C (f ′))P(p)

Def. FPTI
−1
C= f ′VG(p)

f ′VG
from Def. 64
= (fP ] fT ] fI)(p) = fP(p)

• (FPTI
−1
C (f ′))T = fT :

Fix t ∈ TFPTI
−1
C (G ′).

(FPTI
−1
C (f ′))T (t)

Def. FPTI
−1
C= f ′VG(t)

f ′VG
from Def. 64
= (fP ] fT ] fI)(t) = fT (t)

• (FPTI
−1
C (f ′))I = fI :

Fix x ∈ IFPTI
−1
C (G ′).

(FPTI
−1
C (f ′))I(x)

Def. FPTI
−1
C= f ′VG(x)

f ′VG
from Def. 64
= (fP ] fT ] fI)(x) = fI(x)

3. Compositionality axiom holds for FPTI
−1
C .

Consider morphisms g ′ : ((G ′, NAT), type)→ ((H ′, NAT), type ′) and f ′ : ((H ′, NAT),
type ′) → ((D ′, NAT), type ′′) in SubAGraphsPNTG. We have to show that FPTI

−1
C (f ′ ◦

g ′) = FPTI
−1
C (f ′) ◦ FPTI

−1
C (g ′). Since the category SubAGraphsPNTG contains only

FPTIC-images, we have that g ′ = FPTIC(g) and f ′ = FPTIC(f) for injective PTI net
morphisms g : G → H, f : H → D. Thus, it suffices to show that: FPTI

−1
C (FPTIC(f) ◦

FPTIC(g)) = FPTI
−1
C (FPTIC(f)) ◦FPTI

−1
C (FPTIC(g)). It holds the following:

FPTI
−1
C (FPTIC(f) ◦FPTIC(g))

funct. prop.
= FPTI

−1
C (FPTIC(f ◦ g))

FPTI
−1
C well-def. on morph.

= f ◦ g
FPTI

−1
C well-def. on morph.

= FPTI
−1
C (FPTIC(f)) ◦FPTI

−1
C (FPTIC(g))

4. Identity axiom holds for FPTI
−1
C .

Consider an identity morphism idX ′ : ((X
′, NAT), type)→ ((X ′, NAT), type) in

SubAGraphsPNTG. We have to show that FPTI
−1
C (idX ′) = idFPTI

−1
C (X ′). Since the category

SubAGraphsPNTG contains only FPTIC-images, we have that X ′ = FPTIC(X) for some
X ∈ ObPTINet|M1

. Thus, it suffices to show that: FPTI
−1
C (idFPTIC(X)) = idFPTI

−1
C (FPTIC(X)).

It holds the following:

FPTI
−1
C (idFPTIC(X))

FPTIC is funct.
= FPTI

−1
C (FPTIC(idX))

FPTI
−1
C well-def. on morph.

= idX
FPTI

−1
C well-def. on morph.

= idFPTI
−1
C (FPTIC(X))
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It remains now to show that FPTIC : PTINet|M1

∼→ SubAGraphsPNTG is a category equiva-
lence. For this reason, according to Definitions 66 and 67, we have to show that:

∀A ∈ ObPTINet|M1
. ∃t1(A) : (FPTI

−1
C ◦FPTIC)(A)→ IdPTINet|M1

(A).

t1(A) is an isomorphism in PTINet|M1
∧

∀A ′ ∈ ObSubAGraphsPNTG . ∃t2(A ′) : (FPTIC ◦FPTI
−1
C )(A ′)→ IdSubAGraphsPNTG(A

′).

t2(A
′) is an isomorphism in SubAGraphsPNTG

Fix objects A ∈ ObPTINet|M1
, A ′ ∈ ObSubAGraphsPNTG and let t1(A) = idA and t2(A ′) =

idA ′ . Obviously, idA and idA ′ are isomorphisms in PTINet|M1
, SubAGraphsPNTG, respectively.

Furthermore, it holds the following:

t1(A) = idA : A→ A

FPTI
−1
C well-def. on obj.

= idA : (FPTI
−1
C ◦FPTIC)(A)→ A

Def. IdPTINet|M1= idA : (FPTI
−1
C ◦FPTIC)(A)→ IdPTINet|M1

(A)

and

t2(A
′) = idA ′ : A

′ → A ′

Def. IdSubAGraphsPNTG= idA ′ : A
′ → IdSubAGraphsPNTG(A

′)

(∗)
= idA ′ : (FPTIC ◦FPTI

−1
C )(A ′)→ IdSubAGraphsPNTG(A

′)

(*): This step is possible since we know that the restricted functor FPTI
−1
C is well-defined on

objects and for an arbitrary object B ∈ ObPTINet|M1
it holds the following:

(FPTI
−1
C ◦FPTIC)(B) = B

funct. prop.⇔ FPTI
−1
C (FPTIC(B)) = B

⇔ FPTIC(FPTI
−1
C (FPTIC(B))) = FPTIC(B)

A ′=FPTIC(B)⇔ FPTIC(FPTI
−1
C (A ′)) = A ′

funct. prop.⇔ (FPTIC ◦FPTI
−1
C )(A ′) = A ′

Thus, we get that FPTIC : PTINet|M1

∼→ SubAGraphsPNTG is a category equivalence2 implying
altogether that the categories PTINet|M1

and SubAGraphsPNTG are equivalent. �

Lemma 65: (IPTI Satisfies Required Properties, see page 223)
Consider a transformation system (SubAGraphsPNTG,FPTI(P)) with a distinguished class
of monomorphisms M∗2, an M-adhesive transformation system (AGraphsPNTG,M2,
FPTI(P)), and a restricted functor FPTI : PTINet|M1

→ AGraphsPNTG|M2
. Then the re-

stricted inclusion functor IPTI : SubAGraphsPNTG → AGraphsPNTG|M2
satisfies the prop-

erties listed in Definition 70.

Proof.
Consider M-adhesive transformation system (PTINet,M1,P), the restricted functor FPTI :

PTINet|M1
→ AGraphsPNTG|M2

(see Definition 64), the subcategory of typed attributed graphs
SubAGraphsPNTG withObSubAGraphsPNTG = FPTI(ObPTINet|M1

),MorSubAGraphsPNTG(FPTI(A),

2 In this case, we even have a category isomorphism according to Definition 68 since it obviously holds that
FPTIC ◦FPTI

−1
C = IdSubAGraphsPNTG and FPTI

−1
C ◦FPTIC = IdPTINet|M1 .
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FPTI(B)) = FPTI(MorPTINet|M1
(A,B)) for arbitrary A,B ∈ ObPTINet|M1

, and restricted func-
tors FPTIC : PTINet|M1

→ SubAGraphsPNTG, F−1
PTIC : SubAGraphsPNTG → PTINet|M1

building the category equivalence FPTIC : PTINet|M1

∼→ SubAGraphsPNTG. Let furthermore,
((G, NAT), type) be a typed attributed graph in SubAGraphsPNTG with the E-graph G =

(VGG ,VGD = N,EGG,EGNA,EGEA, (sGj , tGj )j∈{G,NA,EA}
) and the morphism type : (G, NAT) →

(PNTG,Dfin) given by a final morphism of data types from NAT to the final algebra Dfin and
typeG : G→ PNTG with typeG = (typeVG , typeVD , typeEG , typeENA , typeEEA).
In the following we have to show that the restricted inclusion functor IPTI : SubAGraphsPNTG →
AGraphsPNTG|M2

satisfies properties from Definition 70:
1. IPTI preserves monomorphisms, i.e., IPTI(M

∗
2) ⊆M2:

By definition of IPTI, we know that IPTI(M
∗
2) = M∗2. Furthermore, we have by construction

of M∗2 that M∗2 ⊆M2.
2. IPTI preserves pushouts of M-morphisms:

Let (D,g1 : B → D,g2 : C → D) be a pushout in SubAGraphsPNTG with f1 :

A → B and f2 : A → C in M∗2. Since pushouts in PTINet are constructed com-
ponentwise and the restricted functor FPTIC preserves the componentwise construction,
pushouts in SubAGraphsPNTG are constructed componentwise as well and we have that
the VG-, VD-, EG-, ENA- and EEA-components of (1) are pushouts in Sets. Thus, also
(IPTI(D), IPTI(g1) : IPTI(B)→ IPTI(D), IPTI(g2) : IPTI(C)→ IPTI(D)) with IPTI(D) = D,
IPTI(g1) = g1 and IPTI(g2) = g2 is constructed componentwise in AGraphsPNTG|M2 and
hence also in AGraphsPNTG such that the VG-, VD-, EG-, ENA- and EEA-components of
(2) are pushouts in Sets. This implies that (2) is a pushout in AGraphsPNTG. Further-
more, since IPTI preserves monomorphisms according to the property shown before, we have
for f1, f2 ∈M∗2 that IPTI(f1), IPTI(f2) ∈M2.

A B

C D

(1)

f1 ∈M∗2

f2 ∈M∗2

g2

g1

IPTI(A)=A IPTI(B)=B

IPTI(C)=C IPTI(D)=D

(2)

(IPTI(f1)=f1) ∈M2

IPTI(f2)=f2 ∈M2

IPTI(g2)=g2

IPTI(g1)=g1

3. IPTI creates M-morphisms:
Consider an M2-morphism f ′ : IPTI(A) → IPTI(B) in MorAGraphsPNTG . We have to
show that there is exactly one M∗2-morphism f : A → B in MorSubAGraphsPNTG such that
IPTI(f) = f

′. f ′ satisfies already the existence property with f ′ : A → B and IPTI(f
′) = f ′,

because IPTI(A) = A and IPTI(B) = B. Since the category SubAGraphsPNTG contains
only M∗2-morphisms, f ′ is an M∗2-morphism. Finally, uniqueness of f ′ follows from the
injectivity of the inclusion functor IPTI.

4. IPTI preserves initial pushouts over M-morphisms:
Consider initial pushout (2) over the M∗2-morphism FPTIC(f) : FPTIC(L) → FPTIC(G) in
SubAGraphsPNTG consisting of FPTIC-images only with boundary object FPTIC(B),
context object FPTIC(C) and morphisms FPTIC(b),FPTIC(c) ∈ M∗2. This initial pushout
is the FPTIC-translation of the diagram (1) with boundary object B, context object C con-
structed over the M1-morphism f : L → G as given in Remark 9 resp. Fact 10 and mor-
phisms b, c ∈ M1, which is an initial pushout in PTINet|M1

and hence also in PTINet
since FPTI

−1
C : SubAGraphsPNTG

∼→ PTINet|M1
is a category equivalence as well and

hence the restricted functor FPTI
−1
C : SubAGraphsPNTG → PTINet|M1

from this cate-
gory equivalence preserves initial pushouts by the corresponding instantiation of Lemma 60.
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We have to show that the diagram (3) is an initial pushout in AGraphsPNTG|M2 and hence
also in AGraphsPNTG.
Let FPTIC(B) = B∗ = ((B∗0, NAT), type) be given according to Lemma 46. Since IPTI

preserves monomorphisms and pushouts of M-morphisms as already shown before, we have
that (3) is a pushout in AGraphsPNTG|M2

and hence also in AGraphsPNTG with M2-
morphisms IPTI(FPTIC(b)) = FPTIC(b) and IPTI(FPTIC(c)) = FPTIC(c). Furthermore, by
definition of IPTI we obviously have that the diagrams (2) and (3) are isomorphic. Now we
construct the initial pushout (4) over the M2-morphism FPTIC(f) : FPTIC(L)→ FPTIC(G)

in AGraphsPNTG with boundary B ′ = ((B ′0, NAT), type) defined according to Lemma 48
and morphisms b ′ : B ′ → FPTIC(L), c ′ : C ′ → FPTIC(G) in M2.
The initiality of (4) implies the existence of unique morphisms i : B ′ → FPTIC(B) and
j : C ′ → FPTIC(C) such that (5) is a pushout in AGraphsPNTG and (6), (7) commute
with i, j ∈ M2. The surjectivity of i : B ′ → FPTIC(B), which can be shown by the
fact that FPTIC(B) = B∗ ⊆ B ′, follows from the surjectivity proof given for Lemma 50
replacing FPTI by IPTI ◦ FPTIC. Thus, i is injective and surjective, so we get that i is an
isomorphism. Since (5) is a pushout, also j : C ′ → FPTIC(C) is an isomorphism and hence
(3) is isomorphic to (4). So we get that also (3) is an initial pushout over the M2-morphism
FPTIC(f) : FPTIC(L)→ FPTIC(G) in AGraphsPNTG.

B

(1)

L

C G

b

g f ∈M1

c

FPTIC(B)

(2)

FPTIC(L)

FPTIC(C) FPTIC(G)

FPTIC(b)

FPTIC(g) FPTIC(f) ∈M∗2

FPTIC(c)

IPTI(FPTIC(B)) IPTI(FPTIC(L))
B ′

IPTI(FPTIC(C)) IPTI(FPTIC(G))
C ′

(3)(5)

(6)

(7)

IPTI(FPTIC(b))
i

IPTI(FPTIC(g))

b ′

IPTI(FPTIC(c))
j

g ′

c ′

IPTI(FPTIC(f)) ∈M2

B ′

(4)

IPTI(FPTIC(L))

C ′ IPTI(FPTIC(G))

b ′

g ′ IPTI(FPTIC(f)) ∈M∗2

c ′

5. IPTI preserves pullbacks of M-morphisms:
Let (A, f1 : A → B, f2 : A → C) be a pullback in SubAGraphsPNTG with g1 :

B → D, g2 : C → D in M∗2. Since pullbacks in PTINet are constructed componen-
twise and the restricted functor FPTIC preserves the componentwise construction, pull-
backs in SubAGraphsPNTG are constructed componentwise as well and we have that the
VG-, VD-, EG-, ENA- and EEA-components of (1) are pullbacks in Sets. Thus, also
(IPTI(A), IPTI(f1) : IPTI(A) → IPTI(B), IPTI(f2) : IPTI(A) → IPTI(C)) with IPTI(A) = A,
IPTI(f1) = f1 and IPTI(f2) = f2 is constructed componentwise in AGraphsPNTG|M2 and
hence also in AGraphsPNTG such that the VG-, VD-, EG-, ENA- and EEA-components
of (2) are pullbacks in Sets. This implies that (2) is a pullback in AGraphsPNTG. Fur-
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thermore, since IPTI preserves monomorphisms according to the first shown property of this
proof, we have for g1,g2 ∈M∗2 that IPTI(g1), IPTI(g2) ∈M2.

A B

C D

(1)

f1

f2

g2 ∈M∗2

g1 ∈M∗2

IPTI(A)=A IPTI(B)=B

IPTI(C)=C IPTI(D)=D

(2)

IPTI(f1)=f1

IPTI(f2)=f2
(IPTI(g2)=g2) ∈M2

(IPTI(g1)=g1) ∈M2

6. IPTI preserves epimorphisms, i.e., IPTI(E
∗
2) ⊆ E2:

By definition of IPTI, we know that IPTI(E
∗
2) = E∗2. Furthermore, we have by construction

of E∗2 that E∗2 ⊆ E2.
7. IPTI preserves coproducts of M-morphisms:

Let (A, (ui)i∈I) be a coproduct in SubAGraphsPNTG with A ∈ ObSubAGraphsPNTG , a
family of SubAGraphsPNTG-morphisms ui : Ai → A and an index set I. Since coprod-
ucts in PTINet and PTINet|M1 are constructed componentwise and the restricted functor
FPTIC preserves the componentwise construction, coproducts in SubAGraphsPNTG are
constructed componentwise as well and we have that the corresponding VG-, VD-, EG-
, ENA- and EEA-components of (1) are coproducts in Sets. Thus, it holds that also
(IPTI(A), (IPTI(ui))i∈I) with IPTI(A) = A and IPTI(ui) = ui is constructed componen-
twise in AGraphsPNTG|M2 and hence also in AGraphsPNTG such that the corresponding
VG-, VD-, EG-, ENA- and EEA-components of (2) are coproducts in Sets. This implies
that (IPTI(A), (IPTI(ui))i∈I) is a coproduct in AGraphsPNTG.

Ai A

B

(1)

ui

fi
f

IPTI(Ai) IPTI(A)

IPTI(B)

(2)

IPTI(ui)

IPTI(fi)
IPTI(f)

8. IPTI preserves E ′-instances:
According to Definition 61, we have to show the following:

∀(a ′,b ′) ∈ E ′′2 . ∃(a ′′,b ′′) ∈ E ′2. a ′′ = IPTI(a
′) ∧ b ′′ = IPTI(b

′)

Let (a ′,b ′) be a pair of jointly surjective morphisms in E ′′2 and define a ′′ = IPTI(a
′),

b ′′ = IPTI(b
′). Then it remains to show that (IPTI(a

′), IPTI(b
′)) ∈ E ′2. For this reason it

is obviously sufficient to show that IPTI is compatible with pair factorization, which means
by Definition 51 and Remark 13 that categories SubAGraphsPNTG and AGraphsPNTG

have pair factorizations and IPTI translates pair factorization in SubAGraphsPNTG into
the corresponding pair factorization in AGraphsPNTG. According to [88], we know that
the category AGraphsATG and hence also AGraphsPNTG has E ′2−M2 pair factorizations.
In the next step, we want to show that also the subcategory SubAGraphsPNTG has pair
factorizations. As already mentioned in Section 10.1, we can construct an E ′′2 −M∗2 pair
factorization using binary coproducts and E∗2 −M∗2-factorization in SubAGraphsPNTG.
We have binary coproducts in SubAGraphsPNTG because ∅ is an initial object in
SubAGraphsPNTG and SubAGraphsPNTG has pushouts of M∗2-morphisms since the re-
stricted functor FPTIC preserves pushouts of M-morphisms by application of Lemma 60.
Moreover, we have E∗2 −M∗2-factorizations in SubAGraphsPNTG because PTINet has
E1−M1-factorizations according to Lemma 51, E1−M1-factorizations of monomorphisms
in PTINet are preserved by the restriction to monomorphisms in PTINet|M1

(because it
holds that epimorphisms in E1 −M1-factorizations of M1-morphisms in PTINet are iso-
morphisms due to the decomposition property of M1-morphisms), and the restricted functor
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FPTIC preserves E−M-factorizations, which can be shown as follows: Let A e→ X
m→ B

be an E1 −M1-factorization of the morphism f : A → B in PTINet|M1
with e ∈ E1

and m ∈ M1 according to Definition 10. Applying the restricted functor FPTIC to the
commuting triangle (1), we get a commuting triangle (2), because functors preserve com-
muting diagrams by general functor property. Furthermore, according to Lemma 60 the
restricted functor FPTIC preserves monomorphisms and epimorphisms, which implies that
FPTIC(e) ∈ E∗2 and FPTIC(m) ∈ M∗2. It remains to show that the object FPTIC(X) is
unique up to isomorphism. For this reason consider another object X ′ ∈ ObSubAGraphsPNTG

and morphisms e ′ : FPTIC(A) → X ′, m ′ : X ′ → FPTIC(B) in MorSubAGraphsPNTG such
that it holds that e ′ ∈ E∗2, m ′ ∈ M∗2 and FPTIC(f) = m ′ ◦ e ′. We have to show that
FPTIC(X) ∼= X ′. According to the definition of the category SubAGraphsPNTG, we know
that X ′, e ′ and m ′ are FPTIC-images. This means that for some object X ′′ ∈ ObPTINet|M1
and morphisms e ′′ : A → X ′′, m ′′ : X ′′ → B in MorPTINet|M1

it holds that X ′ =
FPTIC(X

′′), e ′ = FPTIC(e
′′) and m ′ = FPTIC(m

′′). Furthermore, by Lemma 60 we
know that the restricted functor FPTIC creates M-morphisms implying that m ′′ ∈ M1.
To show that e ′′ ∈ E1, let us first assume that e ′′ /∈ E1. This implies directly a con-
tradiction, namely that also (FPTIC(e

′′) = e ′) /∈ E∗2 since we have the following: Let
e ′′ = (e ′′P , e ′′T , e ′′I ). Then e ′′ /∈ E1 means that either e ′′P or e ′′T or e ′′I is not surjective. Let
us first assume that e ′′P is not surjective, which means that there is y ∈ PX ′′ such that
∀x ∈ PA. e ′′P(x) 6= y. It remains to show that also FPTIC(e

′′) is not surjective. For this
reason it suffices to show that FPTIC(e

′′)VG is not surjective, which follows from the prop-
erty that ∀x ∈ VA ′G . FPTIC(e

′′)VG(x) 6= y since y is also in VX ′G = PX ′′ ] TX ′′ ] IX ′′ . Fix
x ∈ (VA

′
G = PA ] TA ] IA). Then we have the following:

FPTIC(e
′′)VG(x) = (e ′′P ] e ′′T ] e ′′I )(x)

Let x ∈ PA then it holds:

(e ′′P ] e ′′T ] e ′′I )(x) = e ′′P(x) 6= y by assumption for y ∈ PX ′′
Let x ∈ TA then it holds:

(e ′′P ] e ′′T ] e ′′I )(x) = e ′′T (x) 6= y for y ∈ PX ′′
Let x ∈ IA then it holds:

(e ′′P ] e ′′T ] e ′′I )(x) = e ′′I (x) 6= y for y ∈ PX ′′

Hence, we get that e ′′ ∈ E1. Finally, we can show that f = m ′′ ◦ e ′′ as follows:

FPTIC(f) = e
′ ◦m ′

⇒ FPTIC(f) = FPTIC(e
′′) ◦FPTIC(m

′′)

⇒ FPTIC(f) = FPTIC(e
′′ ◦m ′′)

Def. FPTIC⇒ FPTI(f) = FPTI(e
′′ ◦m ′′)

Lem. 10 + Rem. 10⇒ f = e ′′ ◦m ′′

A

B

X X ′′(1)f

e ∈ E1

m ∈M1

∼

e ′′ ∈ E1

m ′′ ∈M1

FPTIC(A)

FPTIC(B)

FPTIC(X) X ′=FPTIC(X
′′)(2)FPTIC(f)

FPTIC(e) ∈ E∗2

FPTIC(m) ∈M∗2

∼

(e ′ = FPTIC(e
′′)) ∈ E∗2

(m ′ = FPTIC(m
′′)) ∈M∗2
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Thus, we get that A e ′′→ X ′′
m ′′→ B is an E1 −M1-factorization of the morphism f : A → B

in PTINet|M1
with e ′′ ∈ E1, m ′′ ∈ M1 and f = m ′′ ◦ e ′′ according to Definition 10.

But since A e→ X
m→ B is also an E1 −M1-factorization of the morphism f : A → B by

assumption, we have that X ′′ ∼= X, which implies by application of the restricted functor

FPTIC that also X ′ ∼= FPTIC(X). Thus, we get that FPTIC(A)
FPTIC(e)→ FPTIC(X)

FPTIC(m)→
FPTIC(B) is an E∗2 −M∗2-factorization of the morphism FPTIC(f) in SubAGraphsPNTG

and hence the restricted functor FPTIC preserves E−M-factorizations.
Moreover, since IPTI preserves coproducts of M-morphisms, monomorphisms and epimor-
phisms according to the proofs of the previous properties, we get using Lemma 163 and
Remark 13 that IPTI translates E ′′2 −M∗2 pair factorization in SubAGraphsPNTG into
the corresponding E ′2 −M2 pair factorization in AGraphsPNTG. Thus, by Definition 51
adapted according to Remark 13, we have that IPTI is compatible with pair factorization
implying that IPTI preserves E ′-instances.

9. IPTI creates E ′-instances:
According to Definition 61, we have to show the following:

∀(a ′′,b ′′) ∈ IPTI(E
′′
2 ). (2) commutes ∧ b ′′ ∈M2 ⇒

∃(a ′,b ′) ∈ E ′′2 . a ′′ = IPTI(a
′)∧ b ′′ = IPTI(b

′)∧ (1) commutes ∧ b ′ ∈M∗2

Let (a ′′,b ′′) be a pair of jointly surjective morphisms in IPTI(E
′′
2 ) such that (2) commutes

and b ′′ ∈ M2. Since IPTI(E
′′
2 ) = E ′′2 , we have that there is (a ′,b ′) ∈ E ′′2 , namely the pair

(a ′′,b ′′), with IPTI(a
′′) = a ′′, IPTI(b

′′) = b ′′ and the diagram (1) obviously commutes.
It remains to show that (b ′ = b ′′) ∈ M∗2. Since IPTI creates M-morphisms as already
shown above, we have that for b ′′ ∈M2 there is exactly one morphism b∗ ∈M∗2 such that
IPTI(b

∗) = b ′′, which implies directly that b ′′ ∈M∗2.

P

C

P ′

C ′

(1)

b

a

b ′ ∈M∗2

a ′

IPTI(P)

IPTI(C)

IPTI(P
′)

C ′′= IPTI(C
′)

(2)

IPTI(b)

IPTI(a)

(b ′′ = IPTI(b
′)) ∈M2

a ′′ = IPTI(a
′)

�

3 Note that IPTI preserves coproducts because it preserves coproducts of M-morphisms and
SubAGraphsPNTG contains only M-morphisms by definition.
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