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Abstract

This thesis discusses a field-related recording technique based on microphone arrays and
orthogonal sound field decomposition that delivers a suitable description for dynamic
binaural reproduction.

Dynamic binaural reproduction refers to a mostly headphone-based reproduction
method that allows for presenting localizable virtual sources and accounts for the head
movements of the recipient in order to decouple them from the spatial orientation of the
virtual auditory scene. Increased source localization and externalization stability can
be regarded as primary advantages compared to classic static binaural reproduction.
Spatially stationary or dynamic virtual sound sources can be presented that maintain
their spatial positions or move in relation to a fixed external world coordinate system,
which is independent from the recipient’s head movements.

Dynamic binaural reproduction requires either object-based audio production or spe-
cific field-related recording techniques. The focus of this thesis lies on the latter. Us-
ing microphone arrays paired with orthogonal sound field decomposition appears to
be a particularly promising approach for field-related dynamic binaural recording. It
is based on an elegant, closed-form mathematical solution and allows accounting for
head-tracking in all rotational degrees-of-freedom during the playback of a recorded
auditory scene. Theoretically, even translation of the recipient can be considered. The
method inherently comprises individualization capabilities by employing individual
head-related transfer functions (HRTFs) and allows for point-to-multipoint distribu-
tion. Due to the close mathematical relationship with higher-order Ambisonics (HOA),
the respective formats and codecs can be used for storage and distribution of the audio
data.

The theoretical mathematical approach under ideal physical conditions is discussed
and a closed-form solution is derived. Due to constraints in technical systems, such as
discrete spatial sampling or noise in the signal paths for instance, ideal conditions can-
not be maintained in practice. The major constraints are pointed out and their specific
impact is analyzed and assessed. Various approaches for improving the transmission
characteristics of the system are proposed and evaluated. The perceptual properties
under dedicated technical constraints and realistic conditions are assessed in listening
experiments. Optimal technical parameters for the system are also determined. It
turns out that an array-based system for dynamic binaural recording with satisfying
perceptual properties can be realized within reasonable technological and economical
limits.
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Abstract in German

Die vorliegende Dissertationsschrift behandelt ein feldbezogenes räumliches Audioauf-
nahmeverfahren, das auf Mikrofonarrays und orthogonaler Schallfeldzerlegung beruht
und eine geeignete Beschreibung für dynamische binaurale Wiedergabe liefert.

Dynamische binaurale Wiedergabe bezeichnet ein meist kopfhörerbasiertes räumliches
Audiowiedergabeverfahren zur Darbietung lokalisierbarer virtueller Schallquellen, das
die Kopfbewegung des Rezipienten berücksichtigt, um sie von der räumlichen Orientie-
rung der wiedergegeben virtuellen auditorischen Szene zu entkoppeln. Die wesentlichen
Vorteile gegenüber statischer binauraler Wiedergabe bestehen in einer verbesserten Lo-
kalisation und Externalisierung der virtuellen Quellen, sowie der Möglichkeit, statische
oder dynamische virtuelle Quellen wiederzugeben, die unabhängig von der Kopfbe-
wegung des Rezipienten ortsfest verbleiben oder sich in Bezug zu einem statischen
weltbezogenen Koordinatensystem bewegen.

Dynamische binaurale Wiedergabe setzt entweder objektbasierte Audioproduktion
oder spezifische feldbezogene Aufnahmeverfahren voraus. Letztere liegen im Fokus die-
ser Arbeit. Der Einsatz von Mikrofonarrays in Kombination mit orthogonaler Schall-
feldzerlegung stellt hierzu einen vielversprechenden Lösungsansatz dar. Das Verfahren
beruht auf einer eleganten mathematisch geschlossenen Lösung. Kopfbewegungen des
Rezipienten können in allen rotatorischen Freiheitsgraden berücksichtigt werden. In
der Theorie lassen sich auch translatorische Freiheitsgrade einbeziehen. Durch Einsatz
individueller kopfbezogener Übertragungsfunktionen (HRTFs) kann die Wiedergabe in-
dividualisiert werden. Das Verfahren eignet sich für Punkt-zu-Mehrpunkt Übertragung.
Aufgrund enger mathematischer Verwandtschaft zum higher-order Ambisonics (HOA)
Verfahren, lassen sich die dort eingesetzten Formate und Codecs zur Speicherung und
Übertragung der Audiodaten nutzen.

Unter Annahme idealer physikalischer Bedingungen wird zunächst der theoretische An-
satz diskutiert und eine mathematisch geschlossene Lösung abgeleitet. Aufgrund ver-
schiedener Einschränkungen in technischen Systemen, wie beispielsweise raumdiskrete
Abtastung oder Rauschen in den Signalwegen, sind in der Praxis allerdings keine idea-
len Bedingungen erzielbar. Die wichtigsten Einschränkungen werden aufgezeigt und
ihr jeweiliger Einfluss auf das Systemverhalten untersucht. Verschiedene Methoden zur
Verbesserung der Übertragungseigenschaften werden diskutiert. In Hörversuchen wer-
den perzeptive Eigenschaften des Systems im Hinblick auf spezifische technische Ein-
schränkungen sowie realistische Bedingungen evaluiert. Ferner werden optimale System-
parameter ermittelt. Es zeigt sich, dass arraybasierte Systeme für die feldbezogene dy-
namische Binauralaufnahme mit guten perzeptiven Eigenschaften unter vertretbarem
technischen und wirtschaftlichen Aufwand realisierbar sind.
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Prolog

«Sorry, we’re sold out tonight.» This is the final straw. Jon was looking forward to this
concert for ages. It’s gonna be the very last show of his all-time favorite artist. That’s
it. Jon is about to turn away. «Hey, you’re looking so upset. I’m really sorry. But
did you hear they’re checking out a crazy new technology, like immense ... or imitative
live sound transmission today? They told me it would be incredible – just feels like
being here with the fellows at the venue or so. Don’t know how it works, but maybe
you wanna give it a try.» The doorman passes Jon a flyer. «Okay, thanks, maybe I’ll
check it out.»

Back at home Jon opens himself a can of beer and remembers the flyer. Well, might
be better than nothing, he thinks. With expectations to hear one of these radio concert
transmissions they do on Friday evenings, he starts to follow the simple instructions
on the flyer. Download the application to your mobile phone. Plug in and put on your
headphones with tracking sensor. Log in to the stream. Close your eyes. Welcome to
the show!

John sits back. After a short while the mobile phone starts grabbing the stream. Jon
closes his eyes. A friendly telephone information voice annotates: «Welcome to our
new immersive live sound streaming service and welcome to the show tonight. We’ll
fade you over to the venue in about 5 seconds.»

At the same time Christine made herself comfortable on the plush sofa of her shared
apartment in Berlin and follows the stream of the Vienna Philharmonic Orchestra
playing tonight. She enjoys this application that achieved bringing her to the most
fascinating concert halls all over the globe during the last weeks. Everything started
with buying these new pink headphones in June, wearing a special sensor, and the
little flyer in the boxing announcing the application. She loves how it sounds here. It
seems like being in a particularly good seat tonight. The orchestra spreads wide in
front of her and she feels the depth of this wonderful stage, she hears every breath
of the pianist behind his piano and the violins are clear like diamonds in front of her.
The amazing room acoustics gently envelopes her from all around. What a wonderful
evening here in Vienna.

Karl is very pleased about this new teleconferencing system they brought for his com-
pany. The last years were exhausting. He didn’t even have time to recover from the
last jet lag before the next one was around the corner. Finally, he wouldn’t have to
travel that much anymore. And finally, he could spent more time with his wife and
his children. Teleconferencing underwent a severe evolution lately. Thanks to any new
kind of audio technology it feels as if he were sitting right at the conference table with
his colleagues and business partners in New York this Monday morning. It’s a funny
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piece of technology, he thinks by himself, they just put something that looks like a soc-
cer ball in my place at the table if I’m not there with them – they told me it was kind
of a microphone array or something like that. Since they brought up the soccer ball
and the new headphones with tracking sensor, you can definitely point to the position
of every single person sitting at the table around you and the speech is emerging at
some distance from you as if you were really there in the conference room. You can
even turn your head towards each person who is talking. Karl now is able to take part
even in the most complex conversations with many people around the table, where
sometimes more than one single track of conversation is going on. All of this was near
to impossible with the old system the company had. Complex conversation always
was a complete mess. This is the reason why he traveled to any ever so insignificant
meeting in any corner of the world.

After 5 seconds suddenly the world around Jon starts to change. He is surrounded
by a dense crowd in a huge venue. A girl starts to scream and to whistle right in his
back. Completely scared he drops his drink. He opens his eyes and spins around. He
continues to hear the whistle and screaming coming from the same place as before, but
he does not see anything but his old run-down dresser in the corner of his room. There
is nobody. He rips off his phones. Silence. «Okay, what the ... this is really kind of
scary», he speaks out loud. He becomes aware of the drink leaking to the carpet. He
stops the stream and cleans the floor.

Having gotten over the first shock, Jon sits back again and puts his headphones on. He
logs in to the stream and closes his eyes. He is back at the venue. Right here. Right
now. He hears laughter, screaming, whistles around him. Some guys talking about the
afternoon’s soccer results right to his left. It feels as if he could touch them standing
at short distance, while the tremendous concert hall surrounds him from everywhere.
All of a sudden, a thundering noise goes through the venue. The crowd instantly starts
to go crazy. The musicians hit the stage. Everybody is screaming and clapping hands
with a kick-drum giving the beat. Jon has goosebumps. A shiver runs down his spine.
He feels like wanting to jump up from his chair and scream along with his invisible
fellows next to him. The show starts. Everybody goes crazy in here. Jon hears the
huge PA rigs from above and the backline amps screaming from the stage in front of
him. The crowd around him sings along every single line of his favorite song. Jon
instantly starts to sing with them. What a night! This is raw. This is live. This is the
full packet of emotions that a live concert can deliver. And this is definitely not one
of these radio concert transmissions they do on Friday evenings.

This thesis is about the technology.
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1 Introduction

1.1 State of Technology

In order to introduce the topic and to motivate this work, a brief overview of the current
state of binaural technology is given in the following. The methods for recording,
production and playback are discussed.

1.1.1 Binaural Hearing

Before starting with binaural technology, at least a minimal introduction to binaural
hearing is indispensable. Binaural hearing refers to the reception of sound events with
two ears and the deduced perception of auditory events or auditory scenes. Sound
events are evoked by sound sources that produce a specific physical sound field around
the listener, which is determined by deviations of the static air pressure and the parti-
cle velocity. The ears evaluate deviations of the air pressure and produce bioelectrical
signals that are further evaluated by the central auditory system in the human brain.
Since the ears are placed at different spatial locations in the sound field and the head
directly interacts with the sound field, i.e. evokes scattering effects, the sound field
differs at the two ear canal entrances, except for sound events in certain spatial direc-
tions. The actual difference manifests itself as spectral and temporal differences that
depend on the direction of sound incidence. These interaural differences are globally
referred to as binaural cues and are specifically referred to as interaural level differ-
ences (ILDs) and interaural time differences (ITDs). Additionally, reflections from the
pinna and torso influence the sound field at the ear canal entrance and evoke a certain
filtering of the spectrum that is received by the ears, depending on the direction of
sound incidence. The coloration effects due to pinna and torso reflections are referred
to as monaural cues. Both, monaural and binaural cues are grouped in the collective
term localization cues. The auditory system evaluates these cues for localizing sound
sources. The principles and mechanisms of binaural hearing are massively simplified.
For a comprehensive introduction and overview of binaural hearing, the reader is re-
ferred to (Blauert, 1997), which can be considered the primary reference work on this
topic.
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1 Introduction

1.1.2 Binaural Technology

Binaural technology embraces all technological methods that finally yield the technical
reproduction of a sound scene based on two separate ear signals in such a way that
the human auditory system can read the necessary information for localizing virtual
sound sources in the perceived auditory scene.

Binaural technology is based on the assumption that if a technical system produces the
same sound pressures at the ear canal entrances of a recipient as a real source would do,
the recipient perceives a virtual source that cannot be distinguished from a real source,
refer to (Møller, 1992), for instance. Hence, binaural technology aims at a physically
correct reproduction of the sound field at the ear canal entrances.

If we further define (room) reflections as sources, which is feasible from a listener’s
point of view, it becomes explicit that a recipient can be virtually placed in an arbitrary
acoustical environment (e.g. a virtual concert hall) that includes active sound sources
and passive room acoustics. At best, the subject feels to be actually present in the
reproduced virtual scene.

The term binaural technology mostly refers to reproduction using headphones. Alter-
native approaches are loudspeaker-based transaural reproduction systems using appro-
priate cross-talk cancellation filters for generating two separated ear signals close to
the ear canal entrances. Transaural reproduction is discussed e.g. by Damaske (1971),
Cooper and Bauck (1989), Bauck and Cooper (1992), Bauck and Cooper (1996), Gard-
ner (1997), Menzel et al. (2006), or Lentz (2006).

Binaural reproduction systems always comprise exactly two ear signals fitted for ap-
propriate acoustical reproduction close to the ears, which inherently carry localization
cues that can be evaluated by the auditory system for localizing sound sources. This
discriminates binaural reproduction systems from other (spatial) audio reproduction
systems including the conventional stereophonic headphone-based reproduction.

Note that localization comprises both spatial directions in terms of azimuth and ele-
vation and also in terms of distance. At best, a virtual source that is generated by a
binaural system is perceived outside the head (externalized) with dedicated distance
to the recipient.

Comprehensive research on binaural technology has been conducted in the past and
is still being conducted in the present. There is a vast amount of literature available.
Binaural technology, as well as certain inherent aspects of binaural hearing are dis-
cussed e.g. in (Møller, 1992), (Gilkey and Anderson, 1997), or (Blauert, 2013). A good
overview and a discussion of some recent aspects are provided by Lindau (2014a).
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1.1 State of Technology

The topics discussed in this thesis build the bridge between field-related descriptions
and binaural technology. Field-related description refers to approaches such as wave
field synthesis, introduced by Berkhout (1988) (refer to (Spors et al., 2008) for a review),
and especially near-field compensated higher-order Ambisonics (Daniel, 2003), which
is based on Ambisonics introduced by Gerzon (1973) and others.

1.1.3 Static Binaural Recording

The most simple and straight-forward approach to binaural technology is recording a
sound scene using an acoustic dummy head or ear microphones and playing it back
through headphones. This method is mostly referred to as binaural recoding. It is well-
known in science and also in media production practice for many years. An overview
of the history of binaural recording technology is provided in (Paul, 2009).

The advantages of this basic method are manifold. First of all, the realization is
very simple and does not require any active signal processing – at least in a most
basic setup. Real sound scenes of arbitrary complexity can be recorded, transmitted
and reproduced. The method requires only two audio channels from recording to
reproduction. Signals can be captured and played back in real-time. The captured
signal allows for direct point-to-multipoint distribution, i.e. any amount of recipients
can join a binaural transmission. Furthermore, using ear microphones for recording a
sound scene, the individual anatomical properties of a single subject can be taken into
account.

Dummy head or
ear microphones

Recipient(s)

Capturing real 
sound scene

Reproducing 
virtual sound scene

2 audio
channels

(Stereo format)

Live
transmission

Recording
Playback

Figure 1.1 Basic system overview of binaural recording.

However, there are some clear restrictions on the other hand. This method basically
does not take into account the head movements of the recipient. The auditory scene
is always related to the recipient’s head and follows his or her head movements during
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playback1. This differs from the natural experience where the auditory scene is typi-
cally independent of the head movements of the recipient and the head can be freely
moved in relation to the scene.

Besides of this unnatural behavior of the virtual environment compared to a real envi-
ronment, the fixed relation between auditory scene and head movement yields a classi-
cal problem in binaural recordings. If the head cannot be moved independently from
the spatial sound scene, the localization accuracy and stability decrease and front-back
confusions for frontal or rearward sources arise. This effect increases if the recordings
are non-individual, i.e. do not account for the specific anatomical properties of the
recipient. At worst, the entire auditory scene collapses and sources are perceived from
straight above or are not even externalized anymore. Several experiments show, ap-
prove, and partly explain these phenomena, refer e.g. (Young, 1931), (Wallach, 1940),
(Pollack and Rose, 1967), (Perrett and Noble, 1997), (Wightman and Kistler, 1999),
(Begault et al., 2001), or (Mackensen, 2004). Similar effects were observed for pre-
senting static binaural recordings and subjects with physically fixed heads exposed to
real sound scenes. The common consent is that the auditory system apparently eval-
uates (small spontaneous) head movements for stabilizing the localization of sources
and avoiding front-back confusions. Head rotation in the horizontal plane appears to
play a major role herein. The differential information resulting from head rotation is
generally referred to as dynamic cues.

From this perspective we understand that static binaural recordings inherently cannot
work very well at all, being further prone to massive inter-individual perceptual dif-
ferences, especially if the recordings are non-individual. Besides the need for wearing
headphones for reproduction, this might indeed be one of the major reasons why static
binaural recodings did not achieve any true commercial breakthrough in the past.

Even if binaural recording basically allows accounting for the individual anatomical
properties of a single recipient (either if the recipient himself wears ear microphones
during recording or a specific dummy head with suitable properties is built) and allows
point-to-multipoint transmission, it is not possible to combine both features at the
same time. There is either individual point-to-point transmission or non-individual
point-to-multipoint transmission.

1If the scene is recorded by a subject wearing ear microphones, the subject’s head movements,
which are not identical with the recipient’s head movements, are firmly encoded in the recorded
signal. This is not discussed here.
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1.1.4 Head-Tracking

The key to overcoming many of the restrictions and uncertainties in binaural recordings
is tracking the head movements of the recipient and adapting the reproduced signals
accordingly, in order to establish dynamic localization cues. Technology for tracking
the head orientation or position is state-of-the-art. An overview of different methods
is given by Hess (2012).

However, the actual adaptation of the ear signals accounting for the head movements
is a technological challenge. The next sections describe some of the currently known
approaches to this problem.

1.1.5 Rotating Dummy Head

Listening experiments using a motorized dummy head that is coupled to a head-
tracking system were conducted by Mackensen (2004), for example. A motorized
dummy-head for free rotation in three degrees of freedom (DOF) is e.g. proposed by
Toshima et al. (2003). Similar early approaches using mechanical rotation of a dummy
head coupled to the recipient’s head were described much earlier by Kock (1950) and
others.

Motor

Dummy head or
ear microphones

2 audio
channels

(Stereo format)

Tracking (1 DOF)

Recipient

Live
transmission

Capturing real 
sound scene

Reproducing 
virtual sound scene

Figure 1.2 Basic system overview with rotating dummy head. The system can be
expanded to more degrees of freedom by adding more motors, compare e.g. (Toshima
et al., 2003).

This general approach yields clear improvements concerning localization, front-back
confusion, or externalization. In practice it has severe limitations. First of all, the
method can only be applied for live transmission and does not allow for recording and
time-delayed playback. It only allows for point-to-point transmission, since the head
can only follow a single recipient. Possible structure-borne noise in mechanical systems
or motor reaction times, which might be a question of optimization only, are not even
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considered here. All in all, the method might be useful for research purposes, but there
hardly appears to be any serious practical application.

1.1.6 Dynamic Binaural Synthesis

The availability of computers and digital signal processing brought up a different ap-
proach that is commonly referred to as dynamic binaural synthesis (Wenzel et al., 1990),
(Begault, 1994), (Reilly and McGrath, 1995), (Karamustafaoglu et al., 1999).

The influence of pinna, head and torso on the sound transmission from a point source in
the free field to the ear canal entrances is determined by a head-related transfer function
(HRTF)2 (Møller, 1992). The latter, in terms of linear system theory, describes a pair of
filters with certain specific magnitude and phase responses that vary with the direction
of sound incidence. A HRTF describes the pure physical transmission properties from
a source to the ear canal entrances without carrying any specific information content.
It inherently comprises localization cues that can be evaluated by auditory system for
localizing the source position.

HEAD

HRTF 
left ear

HRTF 
right ear

Sound 
Source

left ear filter

right ear filter

input

HRTF

output
left ear

output
right ear

a.) b.)

Figure 1.3 a.) Illustration of the head-related transfer function. b.) Simple linear
system description of the HRTF with the filter pair for the left and the right ear.

HRTFs can be acquired by acoustical transfer function measurements in an anechoic
environment either using a dummy head or ear microphones worn by a subject. Be-
sides acquiring HRTFs by acoustic measurements, their numeric approximation using
boundary elements method (BEM) is a promising alternative approach (Katz, 2001a),
(Katz, 2001b), (Gumerov et al., 2010).

An extension of the concept of HRIRs are binaural room impulse responses (BRIRs),
which can be regarded as a specific case of HRIRs. BRIRs are acquired conducting
impulse response or transfer-function measurements in a non-anechoic environment

2HRTFs are also referred to as head-related impulse responses (HRIRs), which is an equivalent
time-domain representation. Both are related through the time-frequency Fourier transform
(Beerends et al., 2003, p 141).
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such as a room or concert hall. As an alternative to measuring BRIRs, room simulation
tools (Krokstad et al., 1968), (Vorländer, 2008) can be employed for generating artificial
BRIRs for instance. While HRIRs only regard the properties of the subject itself,
BRIRs integrate the surroundings as well. In addition to the direct sound, BRIRs
include early reflections and reverberation. A BRIR describes a fixed constellation of
source, room, and receiver.

The actual information content is brought in by convolving the HRTF or BRIR with an
anechoic monaural audio signal in a separate step. When playing back the convolution
product of HRTF and audio signal through headphones, the recipient perceives an
externalized virtual source in free space that reproduces the audio signal. Using a
BRIR instead, the recipient perceives an externalized virtual source located in a room
and the recipient is enveloped by the room acoustics as if he were present in the
room. Hence, the binaural signal is synthesized from a combination of a pure physical
description of the transmission path and a dry audio signal.

If both head-tracking, as well as a set of HRTFs or BRIRs for different spatial inci-
dence directions are provided, differently orientated HRTFs or BRIRs can be selected
and exchanged dynamically during playback depending on the head movement of the
recipient. The process basically operates against the head movement, which maintains
the auditory scene fixed in space or, more precisely, unchains it from the head move-
ments of the recipient. From a different perspective, the recipient can move his head
independently form the spatial orientation of the sound scene. This is equivalent to
reality. As a consequence, the auditory system can access dynamic cues from head
movements for stabilizing localization.

Dynamic binaural synthesis is performed using a binaural renderer, which manages
the dynamic exchange and convolution of HRTFs or BRIRs with dry source signals.
A popular state-of-the-art renderer is provided by Geier et al. (2008) for instance.
Current state-of-the-art systems for dynamic binaural synthesis do already achieve
highly plausible reproduction of acoustical environments (Lindau, 2014a), partly even
touching the edge of authenticity (Brinkmann et al., 2014).

Dynamic binaural synthesis cannot be compared directly to binaural recordings, since it
follows a basically different approach. While binaural recordings are based on capturing
real existing sound scenes, dynamic binaural synthesis is generally based on composing
artificial sound scenes. Hence, no true recordings in a classical sense but only composed
productions can be realized. Ideally, the audio signals, e.g. narrators, instruments,
sound effects, or background noise, should be recorded in an anechoic environment
and can be placed in virtual acoustic environments inside the renderer in a separate
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step. This has several different advantages and drawbacks in practice, which are not
discussed at this point.

X stored audio files
or live feeds

Live
transmission

Recording
Playback

Binaural
Renderer

Tracking (3+3 DOF)

Tracking (3+3 DOF)

HRTF (& BRIR)
sets A

Recipient(s)

A

B
Binaural
Renderer

HRTF (& BRIR)
sets B

[Generic HRTFs 
 and BRIRs]

Scene description +
X audio channels +

[generic HRTFs 
and BRIRs]

(Object-based format 
like MPEG-SAOC or 

MPEG-H)

Reproducing 
virtual sound scene

Composing sound scene 
in the computer

Scene description

Figure 1.4 Basic system overview for a dynamic binaural synthesis system.

The final product is basically an object-based scene description (Geier et al., 2010)
that is rendered in real-time during playback in a binaural rendering instance exclu-
sively assigned to a single recipient. This is indispensable in order to account for the
recipient’s head rotation and it inherently allows accounting for specific anatomical
properties of the listener by using individual HRTFs or BRIRs, refer to Section 3.12.1.
Point-to-multipoint transmission is possible. Object-based scene descriptions and the
audio source signals can be distributed to multiple recipients. Formats, such as MPEG-
H Audio (Herre et al., 2014) or MPEG SAOC (Engdegard et al., 2008), provide first
approaches to transmitting object-based audio. An alternative to transmitting object-
based audio is performing a static 2-channel downmix that is compatible with the
Stereo format, i.e. the signals can be transmitted through stereo infrastructure but
must be reproduced using headphones. However, the static downmix yields the identi-
cal situation and problems discussed in the scope of static binaural recordings above,
since the downmix does not allow for using head-tracking.

All in all, dynamic binaural synthesis has several advantages including head-tracked and
individual reproduction, as long as object-based descriptions are used from production
to reproduction. Nevertheless, it is a distinct approach and concept that does not
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Recipient(s)

Reproducing 
virtual sound scene

2 audio
channels

(Stereo format)

Static
2-channel
downmix

Binaural
Renderer

Live
transmission

Recording
Playback

X stored audio files
or live feeds

Composing sound scene 
in the computer

[Generic HRTFs 
 and BRIRs]

Scene description

Figure 1.5 Basic system overview for a dynamic binaural synthesis system with static
2-channel downmix for transmission or recording in Stereo format.

replace the classical binaural recording at all, as it does not allow for field-related
capturing, transmission, and playback of real existing sound fields.

However, this might be essential in certain situations such as live concert recording
or transmission including room-acoustics, artist-room interaction, as well as the indis-
pensable vivid and enveloping ambience noise from the audience. Other examples are
teleconferencing, live-transmission of sport events, capturing sound-scapes, or impro-
visational theater. All of these scenarios actually live from a certain spontaneousness,
agility, and rawness in the sound scene, which can hardly be post-produced using a
binaural renderer in a satisfying way. As a consequence, a different approach is re-
quired, which truly extends the classical binaural recording methods by head-tracking
and individualization capabilities.

1.1.7 Motion-tracked Binaural Sound (MTB)

Motion-tracked binaural sound (MTB) was proposed by Algazi et al. (2004). Refine-
ments are described in (Melick et al., 2004), (Algazi et al., 2005), and (Hom et al.,
2006). MTB is perceptually evaluated by Lindau and Roos (2010).

MTB is based on the assumption that a rigid sphere of head diameter that is equipped
with flush mounted microphones is capable of delivering the most important binaural
cues such as ITDs and ILDs. A rigid sphere in the sound field evokes comparable
acoustic scattering effects to a human head, especially at lower temporal frequencies,
compare Section 4.3.2.2.1. The underlying idea is not basically new and the methods
were applied in the scope of static recordings long before the introduction of MTB
(Theile, 1986a).
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The new aspect of MTB is equipping the rigid sphere with a multitude of microphones
along the equator and switching over, fading over, or interpolating between the differ-
ent signals depending on the head rotation of the recipient. The signals of opposing
microphones are directly used for binaural auralization. Hence, MTB is based on a
microphone array but does not involve classical array processing such as beamforming
or sound field decomposition.

The MTB approach allows for field-related recording or transmission of real existing
sound scenes and enables using head-tracking during reproduction. Point-to-multipoint
transmission is possible, albeit proprietary data formats and codecs are required, since
the format is not compatible with any existing approaches.

There are some basic restrictions. MTB is based on a highly simplified model of the
head that e.g. does not provide pinnae. Hence, monaural localization cues are missing.
Even if several creative approaches for customization and individualization of MTB
signals are proposed by Melick et al. (2004), no true analytic closed-form solution for
providing real generic or even individual HRTFs can be achieved.

Tracking (1 DOF)

MTB
interpolation

MTB Array with
M microphones

(Rigid sphere with 
azimuthal ring of

microphones)

Recipient(s)

MTB
interpolation

Capturing Real 
Sound Scene

Reproducing 
virtual sound scene

Tracking (1 DOF)

M Audio Channels
(Proprietary Format)

Live
transmission

Recording
Playback

Figure 1.6 Basic system overview for motion-tracked binaural sound (MTB).

Another critical factor is the cross-fading or interpolation between different sensors of
the MTB array. Different interpolation methods are proposed in (Algazi et al., 2004),
(Melick et al., 2004), and (Hom et al., 2006).

The MTB method, as introduced in the literature, only allows for head-tracking in the
horizontal plane, as all microphones are lined up along the equator. The horizontal
plane can be considered the most essential degree of freedom. Extending the approach
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to other degrees of freedom would be possible if extra microphones at other angles of
latitude were added. However, the number of microphones and required transmission
channel rises very quickly.

All in all, MTB appears to be a promising approach for practical applications that
is comparably easy to realize. On the other hand, it has several restrictions and
disadvantages due to the oversimplified head model and does not provide true closed-
form solutions for individualization or even using generic HRTFs.

1.1.8 Virtual Artificial Head (VAH)

A different approach for capturing and reproducing field-related descriptions is e.g. pro-
posed by Chen et al. (1992), Mellert and Tohtuyeva (1997), Tohtuyeva and Mellert
(1999), Sakamoto et al. (2010), or Rasumow et al. (2011). The approach is entitled
virtual artificial head (VAH) by the authors. Refinements, improvements, and further
analysis are provided by Rasumow et al. (2013), Rasumow et al. (2014a), and Rasumow
et al. (2014b).

The method is based on using microphone arrays and classical delay-and-sum beam-
forming approaches for approximating the properties of HRTFs. The beam is formed
using least square approaches or non-linear cost functions (Rasumow et al., 2013) for
achieving HRTF-like characteristics. The limited number of spatially distributed mi-
crophones yields a certain deviation or error between the characteristics of a real HRTF
and the beamformer.

Even though the array proposed in e.g. Rasumow et al. (2011) is restricted to covering
the horizontal plane only, the approach could be extended to resolve arbitrary directions
by adding microphones in different height-layers. Restricting to the horizontal plane
would not be feasible for capturing real-world sound fields involving room acoustics or
sources that are located out of the optimized plane. Sakamoto et al. (2010) follow a
similar processing approach but use a spherical rigid sphere microphone array instead,
which enables accounting for all spatial directions.

VAH allows for real-time capture, transmission, and binaural reproduction of real ex-
isting sound scenes. Point-to-multipoint transmission is possible, albeit proprietary
data formats and codecs are required, since the format is not compatible with any
existing approaches. Individual HRTFs can be involved for providing highest possible
individualization. The method allows full head-tracking capabilities in all rotational
degrees, if the microphone array is not restricted to a single plane.

Most of the proposed array designs, delay-and-sum beamforming and least-square ap-
proximations, or alternatively proposed methods arise from a purely mathematical or
physical background and not from a perceptually motivated perspective or classical
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Figure 1.7 Basic system overview for a virtual acoustic dummy-head (VAH).

audio engineering background. Thus, even though in theory, simulations, and first
basic localization experiments the approach appears to be very promising, a dedicated
evaluation of the perceptual properties has yet to be performed. VAH can be seen as
an alternative approach to the methods discussed in this thesis.

1.1.9 Dynamic Binaural Recording (DBR)

At this point we arrive at discussing the approach being subject of the present thesis.
For practical reasons, we may simply call it dynamic binaural recording (DBR). The
underlying methods are not new and were not invented in this thesis. Before having a
closer look at the state of research we start with explaining how it works.

The basic idea consists in capturing the sound field on a spherical surface, decomposing
it into orthogonal base functions and performing plane wave decomposition followed
by a HRTF-weighted recomposition of the decomposed portions yielding a binaural
output signal. Spherical microphone arrays are used for capturing the sound field on
the sphere. The method combines graceful closed-form mathematical descriptions with
well-proven approaches in audio engineering.

An array-based system for dynamic binaural recording allows for real-time capture,
transmission, storage, and binaural reproduction of sound scenes. Point-to-multipoint
transmission is possible. Full head-tracking capabilities are provided, not only concern-
ing head rotations in all three degrees-of-freedom but even concerning head translations
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1.2 State of Research and Motivation

in theory. Individual head-related transfer functions (HRTFs) for each single recipient
can be involved, yielding the highest possible level of individualization.

Modal
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Figure 1.8 Basic system overview for dynamic binaural recording (DBR).

A modal description of the sound field is employed in an intermediate stage between
capturing and reproducing the signals, which is based on identical principles and math-
ematics as the higher-order Ambisonics (HOA) format, refer e.g. to (Gerzon, 1973) or
(Daniel et al., 2003). Respective modal sound field descriptions are well-known and
their application in audio processing can be considered state-of-the-art. Due to the
close relationship to HOA, the signals can be transmitted and stored using available
codecs and formats, such as MPEG-H Audio (Herre et al., 2014), that provide HOA
support.

In theory, a transparent closed-form solution for binaural auralization can be provided
under ideal conditions. However, there are several constraints in technical systems,
such as limited modal resolution, spatial aliasing, noise in the transducer paths, as well
as several additional error sources yielding non-ideal conditions, that have an impact
on the transmission properties. Several of these factors are analyzed and discussed
throughout the thesis.

1.2 State of Research and Motivation

The underlying mathematical approach is known as acoustic holography, since it al-
lows for deriving the entire source-free sound field in an interior or exterior volume
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from only knowing the sound field on a closed surface. The basic ideas trace back to
Berkhout (1988) and Berkhout et al. (1997), who introduced the principles of wave
field synthesis and analysis to acoustics and conducted intense research of these topics.
They introduced loudspeaker and microphone arrays for reproducing and capturing
complex spatial sound fields. Another important milestone was set by Williams (1999),
who introduced the principles of Fourier acoustics and introduced what is referred to
as spherical acoustics. In the meantime, extensive research was performed by many
groups all over the world and uncountable publications emerged.

Amongst others, Meyer and Elko (2002) and Abhayapala and Ward (2002) discuss
approaches in spherical phase mode array processing. Similar ideas and circular arrays
were introduced before. Rigorous research on spherical microphone arrays and sound
field decomposition was performed by Rafaely (2004), who since was involved in about
100 publications on this topic. Much of his work is condensed in (Rafaely, 2015),
which is to be released at the time of finishing this thesis. Important contributions,
especially in the context of generating binaural signals from array signals, are made
by Duraiswami et al. (2005a), who published several works on spherical arrays, sound
field decomposition and modal decomposition of HRTFs. Many of the mathematical
foundations are described in (Gumerov and Duraiswami, 2004). All in all, spherical
microphone arrays and sound field decomposition methods can be considered well-
known.

Binaural auralization of modal sound field descriptions captured by spherical micro-
phone arrays is not a new topic either, but the number of contributions on this specific
topic is lower. The theoretical approach was first described by Duraiswami et al.
(2005b). The authors propose decomposing the sound field using a microphone array
and spherical harmonic decomposition techniques for obtaining directional signals and
to convolve the latter with with HRTFs for auralization.

Similar approaches are described by O’Donovan et al. (2008), Melchior et al. (2009),
Melchior (2011), Shabtai and Rafaely (2012), and Shabtai and Rafaely (2013a), for
instance. Spors et al. (2012b) compare modal versus delay-and-sum beamforming
approaches for array-based binaural auralization. Spors and Wierstorf (2012) and
Salvador Castaneda et al. (2013) analyze different aspects concerning the deviation
between HRTFs and the incidence of analytical plane waves to a simulated array-based
binaural system. Schultz and Spors (2013), as well as Winter et al. (2014) examine
localization properties of an array-based binaural system with special regard to head
translation. Shabtai and Rafaely (2013b), as well as Jeffet and Rafaely (2014) describe
approaches using array-based binaural auralization for improving speech intelligibility
in reverberant spaces. Rettberg and Spors (2013) analyze the impact of noise in array-
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1.2 State of Research and Motivation

based binaural systems. Sheaffer et al. (2014a) propose using the finite difference time
domain (FDTD) method for deriving binaural impulse responses from a spherical array
response. Sheaffer and Rafaely (2014) and Sheaffer et al. (2014b) propose equalization
of binaural room responses derived from spherical array processing in order to minimize
the spectral deviation from original binaural room impulse responses.

Basic and partly informal listening experiments with respect to singular aspects are
covered in only a few publications. Melchior et al. (2009) and Melchior (2011) perform
listening experiments in order to compare different stimuli and array configurations
for binaural auralization using a dual-radius spherical microphone array. Jeffet and
Rafaely (2014) evaluate the trade-off between binaural reproduction and enhanced
spatial selectivity on perception using microphone arrays for binaural auralization in
a basic listening experiment. Sheaffer and Rafaely (2014) and Sheaffer et al. (2014b)
evaluate equalization strategies in listening experiments.

More profound, widespread and formal perceptual evaluation is described only by two
authors. Song et al. (2011) compare a spherical array beamforming approach for bin-
aural auralization versus a dummy head with respect to different aspects like apparent
source width, spaciousness, preference, or localization accuracy. Avni et al. (2013) per-
form listening experiments comparing array based binaural auralization versus original
binaural signals with respect to different attributes such as muffled or bright sound,
smearing of transients, high frequency artifacts, balance of timbre, accuracy of localiza-
tion, perceived source distance, and spaciousness. A repertory grid technique is applied
to evaluate the results.

Very basic questions concerning the theoretical methods and the impact of dedicated
technical constraints on the binaural output signals still remain open from a techni-
cal, as well as from a perceptual point of view. The non-trivial and yet not fully
clarified theoretical approach, a rather complex and delicate signal processing chain
to be implemented, the need for suitable, trustful and consistent measured data-sets,
and a specific listening test environment make a valid, comprehensive, and meaningful
analysis covering the entire path from theory to evaluating perceptual properties a so-
phisticated and elaborate challenge. Yet no comprehensive and fully conclusive work is
available that embraces anything from theory to perceptual evaluation in methodically
consistent steps.

This thesis starts with a theoretical closed-form solution under ideal conditions. The
major constraints in technical systems are pointed out, discussed, and analyzed. A
comprehensive perceptual evaluation of the system and of dedicated specific aspects
concludes the work. Theoretical deduction, as well as the results from simulations and
listening experiments yield clear recommendations for the construction of technical
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systems in practice. This is the first wide-embracing work that includes formal per-
ceptual evaluation dedicated to microphone arrays and sound field decomposition for
dynamic binaural recording. Several new aspects are developed and discussed, such as
the modal mismatch of microphone arrays and HRTFs, for instance, which turns out to
be one of the major factors of influence concerning array-based binaural recording. A
new approach for patching portions of the array response that are disturbed by spatial
aliasing is proposed, discussed, and evaluated. The dedicated impact of limiting the
modal amplification gain, spatial aliasing or noise in the transducer channels on the
binaural output signal is analyzed and evaluated. Some similar analysis was done by
other authors in the context of spherical microphone arrays and plane wave decompo-
sition before, but the impact on the binaural output signal using a true closed-form
array-based binaural system turns out to be quite different from a single plane wave
decomposition output used in other analyses. Those examples show that this thesis
introduces several new and relevant aspects to the topic.

1.3 Objectives of the Thesis

The subject of this thesis is spherical microphone arrays and sound field decomposition
techniques for dynamic binaural recording. Many of the approaches and considerations
are driven rather by a practical or audio engineering point of view rather than by
abstract mathematical or physical considerations. Nevertheless, a comprehensive and
solid theoretical introduction to the topic is provided in a first step.

The thesis has different major objectives:

• Develop a theoretical closed-from analytic approach under ideal conditions by
starting from the principles of wave propagation for deriving a rotatable binau-
ral signal based on the knowledge of the sound field on a spherical surface. The
spherical surface is a generalization of spherical microphone arrays and the rotata-
bility of the binaural signal aims at providing head-tracking capabilities during
reproduction in practice.

• Point out the major constraints that arise in technical systems and analyze and
assess the impact of the main influencing factors.

• Propose and evaluate approaches to optimize the transmission characteristics of
the system with respect to dedicated technical constraints.

• Assess the perceptual properties of a technical system for array-based binaural
recording under dedicated isolated constraints and under realistic conditions.
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• Determine feasible configurations for technical systems in practice, based on the
outcomes of simulations and listening experiments.

• Assess whether a technical system with satisfying perceptual properties can be
realized within reasonable technological and economical limits.

• Last but not least, an implicit objective is to provide a useful base of theory,
software, and data-sets to the scientific community for continuing research.

The listening experiments in this thesis do not aim at assessing the properties of bin-
aural technology by itself or assessing the plausibility or authenticity of virtually repro-
duced scenes. The latter is covered in different works like (Lindau, 2014a).

The experiments aim at assessing the auditory differences between array-based dynamic
binaural recording and dynamic binaural recording based on rotating dummy heads.
The latter is assumed as optimum reference, regardless of the differences between the
assumed optimum reference and reality. This appears to be the most reasonable ap-
proach for isolating the influences and specific perceptual properties of array-based
binaural recording.

The entire approach can be described in terms of linear time-invariant system theory,
which permits falling back on impulse responses instead of employing specific content-
related signals for describing and analyzing the transmission properties. Impulse re-
sponses are easier to handle and allow more generalized and exact system analysis
than content-related signals. Therefore, processing and analysis are based on impulse
responses throughout the entire work. During the listening experiments content-related
signals were presented to the participants, which were generated by convolving the final
impulse responses with audio content in the last stage.

Even if this work is based on impulse responses, the approaches can be applied to
content-related signals as well, with minor exceptions or restrictions. This is of par-
ticular importance with regard to systems capable of recording real sound scenes in
practice.

1.4 Overview of the Thesis

In the first chapter, a short introduction to binaural technology is given and its current
state of technology is outlined. The state of research concerning array-based binaural
recording is discussed. The present work is motivated and its dedicated objectives are
defined.

In the second chapter, a theoretical approach for dynamic binaural recording based
on a sound field description under ideal conditions is discussed. The chapter covers a
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detailed description starting from wave propagation in the sound field up to deriving
ideal binaural signals based on the knowledge of the sound field properties on an
arbitrary sphere around the center of the recipient.

The third chapter discusses constraints of spherical microphone arrays, which impede
maintaining ideal properties in practice. Several aspects, such as the binaural repro-
duction of sound fields with limited modal resolution, radial filter gain limiting, spatial
aliasing, uncorrelated noise in the transducer paths, or the surface expansion of the
microphone array transducers are discussed and analyzed with regard to array-based
binaural recording.

The fourth chapter is dedicated to resources and technology. Since the presented ap-
proaches are comparably recent and not yet established in commercial products, there
is hardly any appropriate hardware, software or measured data available. Considerable
effort was spent in building a respective base of resources and technology from scratch.
The chapter e.g. describes the design and construction of a spherical microphone array
measurement system, the design, implementation and verification of a sound field ana-
lysis toolbox, the acquisition and verification of several data sets, as well as the setup
of a suitable environment for performing listening tests.

The fifth chapter describes listening experiments that were performed in order to verify
the approach and to assess its perceptual properties. The tests were performed based
on both simulated and measured data. Simulated data is suitable for isolating and
analyzing the effect of single influencing factors while maintaining ideal conditions
apart from the specific factor under test. Measured data, by contrast, is suitable for
evaluating the overall performance under realistic conditions. Several factors, such as
modal reduction of HRTFs, radial filter amplification limiting, or spatial aliasing are
analyzed.

Finally, the approaches, results and conclusion are summarized. The impatient reader
may directly refer to this largely self-containing chapter starting on page 240.

f

«Make things as simple as possible, but not simpler.» A. Einstein
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1.5 Nomenclature

In the following, some of the most important conventions, symbols, and notations that
are used throughout this work are defined. Additional symbols or deviations from given
symbols are explained in the respective context.

Fourier Domains

Be g(·) a function prototype in the time domain and G(·) a function prototype in the
frequency domain. Temporal frequencies are generally given as angular frequencies
ω. Exceptions are explained in the respective context of occurrence. The six different
Fourier domains appearing in this work are denoted as given in the following examples:

g(t) Time domain

g(x, t) Space-time domain

g̃(kc, t) Wave spectrum-time domain

g̊nm(r0, t) Spherical wave spectrum-time domain

G(ω) Frequency domain

G(x, ω) Space-frequency domain

G̃(kc, ω) Wave spectrum-frequency domain

G̊nm(r0, ω) Spherical wave spectrum-frequency domain
(Surface expansion coefficients)

•

Gnm(ω) Spherical wave spectrum-frequency domain
(Volume expansion coefficients)

Fourier Transforms

Ft{ · } (Forward) time-frequency Fourier transform

F−1
t { · } Inverse (backward) time-frequency Fourier transform

F̃x{ · } (Forward) spatial Fourier transform in Cartesian coordinates

F̃−1
x { · } Inverse (backward) spatial Fourier transform in Cartesian coor-

dinates

F̊x,nm{ · } (Forward) spatial Fourier transform in spherical coordinates

F̊x,nm−1{ · } Inverse (backward) spatial Fourier transform in spherical coor-
dinates
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Global Proprietary Sub- and Superscripts

(·)A Coefficients or signals with spatial aliasing artifacts

(·)c,s Operator, variable or expression specified for Cartesian (c) or
spherical coordinates (s)

(·)D,C,Y Trace of reference: PWD (D), composite (C) or binaural (Y)

(·)l,r Left ear (l) and right ear (r)

(·)L Coefficients or signals with limited radial filter amplification

(·)N Coefficients or signals with noise only at the array inputs

(·)N’ Coefficients or signals with HRTFs replaced by noise of equiva-
lent power spectral density

(·)OS,OSC,RS Expression specified for open sphere arrays with pressure trans-
ducers (OS), open sphere arrays with cardioid transducers
(OSC), or rigid sphere arrays with pressure transducers (RS)

(·)R Rotated function or coefficient set

Angles

In formulas and written text, angles are given in radians. Angles in figures are given
in degrees for more comprehensive illustration.

α, β, γ Rotation angles about coordinate axis

γt Aperture angle of the spherical cap or expanded transducer

θ, ϕ Elevation and azimuth angle (spherical coordinates)

θd, ϕd PWD steering direction (elevation and azimuth)

θgcg , ϕgcg Angle of the composite grid node gcg

θgsg , ϕgsg Angle of the sampling grid node gsg

θj , ϕj Error evaluation angles, elevation and azimuth

θk, ϕk Incidence direction of the reflection/wave with index k (eleva-
tion and azimuth)

θw, ϕw Wave incidence direction (elevation and azimuth)

Ω Solid angle

Ωh Subject’s head rotation angle

Ωk Incidence direction of the reflection/wave with index k
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Common Mathematical Functions, Operators and Constants

| · | Absolute value

(·)∗ Complex conjugate

(·)! Factorial

cos(·) Cosine

d Derivative

dn
mm′ (β) Wigner-d function

Dn
mm′ (α, β, γ) Wigner-D function

Dm(α) Reduced Wigner-D function (Euler rotation)

∂ Partial derivative

δ(·) Dirac delta

δll′ Kronecker delta

e(·) Exponential function

h
(1)
n (·) Spherical Hankel function of the first kind

h
(2)
n (·) Spherical Hankel function of the second kind

i Imaginary unit

ℑ{·} Imaginary part

jn(·) Spherical Bessel function of the first kind

∇ Del operator (Nabla)

∇2 Laplacian

Pn(·) Legendre polynomials

Pm
n (·) Associated Legendre functions

π Mathematical constant for the circle, π ≈ 3.14159

Qm
n (·) Associated Legendre functions of the second kind

ℜ{·} Real part

sin(·) Sine

tan(·) Tangent

(·)T Transposition

yn(·) Spherical Bessel function of the second kind

Ym
n (θ, ϕ) Surface spherical harmonics
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Vectors

e⃗r,θ,ϕ Unit vectors in Spherical coordinates

e⃗x,y,z Unit vectors in Cartesian coordinates

f⃗ Vector field

k Wave vector

n⃗ Normal vector

x Position vector

Variables

â Radial filter amplification limit (linear)

âdB Radial filter amplification limit (dB)

c Speed of sound in m/s

d0 Diameter of the surface S0 (array measurement diameter)

dt Transducer diameter in m

DI Directivity index

ηg Sampling efficiency of the grid

f Frequency in Hz

fA Spatial aliasing frequency in Hz

fs Temporal sampling frequency in s−1

gcg Index of the composite grid node

gsg Index of the sampling grid node

J Number of error evaluation angles

k Wave number

k Index of the early reflection

kx,y,z Wave numbers along the x, y and z axis of a Cartesian coordi-
nate system

K Total number of early reflections

m Mode

Msg Number of nodes (sensors/microphones) in the sampling grid

Mcg Number of nodes in the composite grid

n Order

N (Highest) order of the system or PWD

Nsg Order of the sampling grid
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Ncg Order of the composite grid

ω Angular frequency in s−1

ωi BEMA spatial image extraction frequency

p̂, P̂ Sound pressure amplitude (p̂ = P̂ )

Ψ, χ, ζ Arbitrary constants

r Radius

r0 Radius of the surface S0 (array measurement radius)

rRS Radius of the rigid sphere

t Time in s

wcg Mean composite grid weight

x, y, z Cartesian coordinates

Surface and Volume Descriptors

S Spherical surface

S0 Spherical surface with radius r0

Ve Exterior volume

Vi Interior volume

Specific Proprietary Functions, Operators, Weights, Signals and Coefficients

A(ω) Isolated spatial aliasing signal from a plane wave impact

bl,r(t) BRIR

B̊nm(ω) Modal beamforming coefficients

C(ω) Composite signal using discrete sampling nodes in the space-
frequency domain

C′(ω) Ideal composite signal in the space-frequency domain

C0(ω) Omni-directional signal at the center of S0 (center of the array)
in the space-frequency domain

dn
(
ω
c
r0
)

Radial filters

d̄n
(
ω
c
r0
)

Radial filters with soft-knee amplitude limiting

d̃n
(
ω
c
r0
)

Non-critical radial filters

D(θd, ϕd, ω) Output signal of the PWD

DB(θd, ϕd, ω) Output signal of a modal beamformer

ĎN(θd, ϕd, ω) wcg-weighted PWD output
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∆E(θj , ϕj , N,Ncg) Mean spectral deviation between RHRTF and its related HRTF

∆̂E(N,Ncg) Mean spectral deviation between RHRTFs and its related HRTFs
averaged over the entire surface S

γ(t),Γ(ω) Gaussian white noise (σ2 = 1)

γ̄(t), Γ̄(ω) Averaged reference noise

γg(t),Γg(ω) Gaussian white noise realization at grid node g

ΓH
gc (ω) Gaussian white noise at the composite grid nodes with equiva-

lent power spectral density to HRTFs

Γ̊nm(ω) Gaussian white noise expansion coefficients

hl,r(θ, ϕ, t) Head-related impulse response (HRIR)

Hl,r(θ, ϕ, ω) Head-related transfer function (HRTF)

H̃l,r(θ, ϕ, ω) Interpolated HRTF

Hl,r
N (θ, ϕ, ω) HRTF with reduced modal order N (RHRTF)

Hl,r DF(ω) Diffuse field HRTF response

H̊l,r
nm(ω) HRTF expansion coefficients

•

Inm BEMA spatial image coefficients weighted with C0(ωi)
•

I′nm BEMA spatial image coefficients

p(x, t), P (x, ω) Sound pressure

pn Signal power at order n

p̂k Amplitude of the reflection/wave with index k

Ppw(θw,ϕw)(x, ω) Pressure spectrum of a plane wave arriving from (θw, ϕw)

Psw(x′)(x, ω) Pressure spectrum of a spherical wave excited by a monopole
source located at x′

P̊nm(r0, ω) Surface expansion coefficients of the sound pressure
•

Pnm(ω) Volume expansion coefficients of the sound pressure
•

P i
nm(ω) Interior expansion coefficients of the sound pressure

•

P e
nm(ω) Exterior expansion coefficients of the sound pressure

P̊nm pw(θw,ϕw)(r0, ω) Pressure spectrum surface expansion coefficients of a plane wave
arriving from (θw, ϕw)

R(r) Radial Solution to the separated Helmholtz equation

Rzyz(α, β, γ) Rotation operator (Index: Axis)

R̊zyz(α, β, γ) Rotation operator in the spherical wave spectrum domain (In-
dex: Axis)

T (γt) Spherical cap
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T̊nm(γt) Expansion coefficients for a spherical cap

T̊ ′
nm Expansion coefficients for a spherical cap with γt → 0

τk Time-shift of the reflection/wave with index k

Θ(θ),Φ(ϕ) Angular Solutions to the separated Helmholtz equation

wgsg Quadrature weight of the sampling grid node gsg

wgcg Quadrature weight of the composite grid node gcg

WNG(ω) White noise gain in dB

WNG−1(ω) Noise amplification in dB

Y l,r(ω) Binaural output signal

HRTF and BRIR Angle Conventions

The angles that are denoted in binaural room impulse responses (BRIRs) describe the
orientation of the head in relation to a fix external world coordinate system. The angles
that are denoted in head-related transfer functions (HRTFs), by contrast, describe
the position of the virtual source or the direction of sound incidence. The reference
coordinate system is related to the head in the latter case. All HRTFs refer to the far-
field throughout this work; no explicit radius is denoted and the given angles describe
the virtual source direction or the direction of sound incidence only, instead of a closer
determined position of the source in space.

25



2 Theory of Sound Field Decomposition

2.1 Homogeneous Acoustic Wave Equation

The propagation of a sound wave in a source-free fluid medium is described by the ho-
mogeneous acoustic wave equation (Feynman et al., 2011), (Blackstock, 2000), (Möser,
2007)

∇2p(x, t)−
1

c2
∂2

∂t2
p(x, t) = 0, (2.1)

which is a classic second-order linear partial differential equation that in the given
denotation refers to the variation of the sound pressure in dependence of time and
space. The variation of sound pressure over the static air pressure is denoted as p, the
time as t, the position vector in a three-dimensional space as x, and c stands for the
speed of sound. The symbol ∇2 represents the Laplacian and ∂ describes the partial
derivative. An analogous equation describes the velocity. Dedicated derivations of the
wave equation are given e.g. by Feynman et al. (2011), Blackstock (2000), or Möser
(2007). The wave equation for sound propagation is derived from the conservation
equations for fluid media, i.e. the conservation of mass and the momentum equation
(Blackstock, 2000, pp 27–35). The wave equation in general traces back to the 18th
century and is based on fundamental work of Isaac Newton, Leonhard Euler, Daniel
Bernoulli, Joseph-Louis Lagrange, and others. Every sound wave satisfies the wave
equation as long as certain conditions are maintained. In linear acoustics, a complex
sound field can be described by the superposition of single sound waves. As a con-
sequence, arbitrarily complex sound fields follow the wave equation likewise. This
property for linear systems and equations is referred to as the principle of superposi-
tion (Feynman et al., 2011). The linear and lossless acoustic wave equation as denoted
above in Eq. (2.1) demands that specific conditions be fulfilled (Möser, 2007), (Spors,
2006). The pressure and density perturbations caused by the wave must be small com-
pared to the static pressure and density for a valid bias-point linearization. Otherwise,
methods from non-linear acoustics need to be considered instead. There are several
conditions imposed on the propagation medium. The medium must be characterizable
as ideal gas with adiabatic state changes (Feynman et al., 2011), i.e. without consider-
able heat conduction and resultant propagation loss. Furthermore, the medium must
be homogeneous and quiescent in order to assure that the relevant parameters are time-
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2.2 Wave Equation in Cartesian Coordinates

and space-invariant (Spors, 2006). For the propagation of acoustic waves in air with
moderate sound pressure levels the conditions are considered to be adequately fulfilled.

2.2 Wave Equation in Cartesian Coordinates

The wave equation, Eq. 2.1, and its related problems can be formulated for different
coordinate systems. The choice of the appropriate coordinate system depends on the
respective problem set to be solved. In the following, the basic theory is initially
discussed for the Cartesian coordinate system, see Figure 2.1, as this is most compre-
hensible. Later, the theory is transferred to spherical coordinate systems, as this thesis
deals with spherical apertures and geometries.

x-axis

y-axis

z-axis

xc

x
y

z

e⃗x
e⃗y

e⃗z

Figure 2.1 Illustration of the xc vector in a cartesian coordinate system used in this
thesis; e⃗x, e⃗y and e⃗z indicate the corresponding unit vectors.

In order to adapt the wave equation Eq. (2.1) to a specific coordinate system, the
position vector x and the Laplacian have to be customized. The position vector in
Cartesian coordinates is denoted by

xc = x e⃗x + y e⃗y + z e⃗z, (2.2)

where e⃗x, e⃗y and e⃗z describe the unit vectors in the Cartesian coordinate system, see
Figure 2.1. The gradient of a function f(x, y, z) in Cartesian coordinates reads

∇cf =
∂f

∂ x
e⃗x +

∂f

∂ y
e⃗y +

∂f

∂ z
e⃗z, (2.3)

27



2 Theory of Sound Field Decomposition

and the divergence of a vector field f⃗ is given by

∇c · f⃗ =
∂fx

∂ x
+
∂fy

∂ y
+
∂fz

∂ z
, (2.4)

whereas

f⃗ =

⎡⎢⎣ fx(x, y, z)

fy(x, y, z)

fz(x, y, z)

⎤⎥⎦ . (2.5)

The Laplacian is defined as divergence of the gradient of a function f(x, y, z) in Carte-
sian coordinates written as

∇2
cf =

∂2f

∂ x2
+
∂2f

∂ y2
+
∂2f

∂ z2
. (2.6)

Hence, the homogeneous linear wave equation Eq. (2.1) in Cartesian coordinates explic-
itly yields

∂2

∂ x2
p(xc, t) +

∂2

∂ y2
p(xc, t) +

∂2

∂ z2
p(xc, t)−

1

c2
∂2

∂t2
p(xc, t) = 0. (2.7)

2.3 Solutions to the Wave Equation in Cartesian Coordinates

The wave equation Eq. (2.1) is solved by an arbitrary function that is twice differen-
tiable (Kuttruff, 2004, p 47). The most general solution for an l-th order linear partial
differential equation contains l arbitrary functions (Blackstock, 2000, p 8). As the
wave equation is a second order linear partial differential equation, the most general
solution p(x, t) is expected to incorporate two functions f1 and f2 that are weighted
by two constants p̂1 and p̂2 yielding a general expression describing plane waves in a
three-dimensional space like

p(xc, t) = p̂1 f1(−n⃗T
c xc ± ct) + p̂2 f2(−n⃗T

c xc ± ct). (2.8)

Depending on the signs of the last term in brackets this expression describes two
waves traveling in the same direction or in opposite directions. The latter expression
combined with suitable boundary conditions also includes the description of a standing
wave. The negative sign of the first term is chosen by convention. The normal vector
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2.3 Solutions to the Wave Equation in Cartesian Coordinates

n⃗ = [nx ny nz]T with |n⃗| = 1 points in the direction of propagation and is orthonormal
to the isophasic planes. The shape of the waves is determined by the functions f1
and f2. Assuming that the wave involves harmonic oscillations only, it is feasible to
replace the general functions f1 and f2 by sinoidal functions such as sine, cosine or
complex exponential functions. Furthermore, for the description of certain specific
problems, i.e. a single plane wave propagating in free space, it is appropriate to reduce
the general expression that embraces two functions to a single function only. Hence,
choosing the complex exponential function to describe a harmonic plane wave in free
field conditions, a potential solution with freely chosen signs and an amplitude factor
p̂ is given by

p(xc, t) = p̂ e−i 2π
λ

(n⃗T
c xc−ct), (2.9)

where i =
√
−1 denotes the imaginary unit. By introduction of a factor 1/λ the

inner argument is being referred to as wavelength λ. The factor 2π is introduced to
stretch one wavelength unit to a full circle run and represents one full period of a
sinoidal function. The introduced normalization factor accounts for the periodicity
properties of harmonic waves. The normalized argument subsequently indicates the
number of wave oscillations per full circle run. The normalization inherently introduces
the temporal frequency to the argument, which is one of the classical parameters of
harmonic oscillations. The wavelength λ and the frequency f are related by λ = c/f .
By taking the latter into account, as well as the relation ω = 2πf , the factor 2π/λ

can be rewritten as ω/c. This quotient is often replaced by the wavenumber k. The
dispersion relation associates the temporal frequency and the wave number, whereas
sound propagation in air as an approximately ideal gas is assumed to be non-dispersive,
i.e. the speed of sound does not considerably depend on the frequency. The dispersion
relation reads

k =
ω

c
. (2.10)

Taking the last considerations into account, Eq. (2.9) is now rewritten as

p(xc, t) = p̂ e−i(k n⃗T
c xc−ωt). (2.11)

The scalar wave number k appearing in the equation is firmly associated with the
direction of wave propagation and is only valid for this particular perspective. For
waves or wave fields propagating in ν-dimensional spaces, ν ∈{2, 3, ...}, it is rather
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2 Theory of Sound Field Decomposition

convenient to pass over to a wave vector that embraces single components according to
the base vectors of the respective coordinate system. The transition to a wave vector
can be accomplished by melting the scalar wave number k and the normal vector of
propagation n⃗ to the wave vector k = k n⃗. An explicit description for the wave vector
in Cartesian coordinates reads kc = k n⃗c. The components of this particular wave
vector are given by kc = [kx ky kz]T, where kx, ky, and kz describe the trace wave
numbers along the axes of the Cartesian coordinate system. Eq. (2.11) is rewritten as

p(xc, t) = p̂ e−i(kT
c xc−ωt). (2.12)

When inserting Eq. (2.12) into the wave equation Eq. (2.1) it becomes apparent that
the components of the wave vector are not independent. Applying the Laplacian to
Eq. (2.12) in Cartesian coordinates explicitly yields

∇2
c p(xc, t) = p̂ (−k2x e−i(kT

c xc−ωt) − k2y e−i(kT
c xc−ωt) − k2z e−i(kT

c xc−ωt))

⇔ (−k2x − k2y − k2z ) p̂ e−i(kT
c xc−ωt) . (2.13)

The second derivative of Eq. (2.12) with respect to the time is given by

∂2

∂t2
p(x, t) = −ω2 p̂ e−i(kT

c xc−ωt). (2.14)

Both of these terms inserted into Eq. (2.1) reads

(−k2x − k2y − k2z ) p̂ e−i(kT
c xc−ωt) −

1

c2
(−ω2) p̂ e−i(kT

c xc−ωt) = 0 . (2.15)

The essential outcome of this procedure is

(ω
c

)2
= k2x + k2y + k2z , (2.16)

which, using the dispersion relation given in Eq. (2.10), finally yields

k2 = k2x + k2y + k2z (2.17)

⇔ k = ±
√
k2x + k2y + k2z .
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2.3 Solutions to the Wave Equation in Cartesian Coordinates

This equation points out two important relations. First, the scalar wavenumber k
corresponds to the length of the wave vector according to

k = |k| =
√
k2x + k2y + k2z , (2.18)

where the negative branch of the square root is intentionally discarded as the wave
number, as well as any vector lengths, are always positive numbers. Second, Eq. (2.17)
demonstrates the dependency of the wave vector components when rearranging the
equation according to the single vector components yielding

kx = ±
√
k2 − k2y − k2z , for (k2y + k2z ) ≤ k, (2.19)

ky = ±
√
k2 − k2x − k2z , for (k2x + k2z ) ≤ k, and (2.20)

kz = ±
√
k2 − k2x − k2y, for (k2x + k2y) ≤ k. (2.21)

Two of the three components can be freely chosen. The third one is dependent, since
the wave number is constant. When not restricting the value range of the wave vector
components, the argument of the square roots in Eq. (2.19) to Eq. (2.21) can become
negative entailing imaginary wave vector components like

kx = ± i
√
k2y + k2z − k2, for (k2y + k2z ) > k, (2.22)

ky = ± i
√
k2x + k2z − k2, for (k2x + k2z ) > k, and (2.23)

kz = ± i
√
k2x + k2y − k2, for (k2x + k2y) > k. (2.24)

Even when employing imaginary wave vector components, Eq. (2.12) formally satisfies
the wave equation. The equation in this case describes evanescent waves (Williams,
1999, pp 24–26) that are characterized by an exponential decay of the amplitude in the
direction of the imaginary wave vector component. This can be verified by successively
inserting Eq. (2.22) to (2.24) into Eq. (2.12) resulting in

p(xc, t) = p̂ e−|kx x| e−i(ky y+kz z−ωt), for (k2y + k2z ) > k, (2.25)

p(xc, t) = p̂ e−|ky y| e−i(kx x+kz z−ωt), for (k2x + k2z ) > k, and (2.26)

p(xc, t) = p̂ e−|kz z| e−i(kx x+ky y−ωt), for (k2x + k2y) > k. (2.27)
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2 Theory of Sound Field Decomposition

In order to obtain a decaying character, the argument of the real exponential must
be chosen to have an overall negative sign. A positive sign in the exponential would
describe waves with an exponentially increasing amplitude over the distance, which
has no physical sense. Evanescent waves occur e.g. in the context of wave transition
between different media, when the incident angle exceeds the critical angle yielding
total internal reflection of a plane wave (de Fornel, 2001). Evanescent waves also occur
in the context of sound radiation from plates (Williams, 1999). Evanescent waves play
an important role in the near field and as their amplitude decays exponentially they
can be neglected in the far field. All considerations and experiments presented in this
thesis refer to the far field. Thus, evanescent waves are not discussed further.

2.4 Fourier Transforms

The Fourier transform is a linear transform that is used to express a function or signal
in terms of a sum of different (simpler) functions or signals. The latter are called
base functions of the Fourier transform and need to fulfill the orthogonality criterion.
The Fourier transform traces back to Jean Baptiste Joseph Fourier (Fourier, 1822)
and is of utmost importance for all fields of physics and engineering. The Fourier
transform is often used for transforming signals from time domain into the frequency
domain representation and vice versa. This for instance enables spectral analysis of
time signals. The general concept of the Fourier transform is by far more versatile. For
this thesis three types of the Fourier transform are of great relevance. The first one
is the classical time-frequency Fourier transform Ft using complex exponential base
functions. It transforms a function or signal from the time domain to the frequency
domain. The two other transforms are spatial Fourier transforms and their use depends
on the respective coordinate system. The first spatial transform F̃s is specified in
Cartesian coordinates and transforms a function or signal from the space domain to
the wave spectrum domain by employing complex exponentials as base functions once
more. The second spatial transform F̊s is specified for spherical coordinate systems and
transforms a function or signal on a spherical surface to the spherical wave spectrum
domain. It uses spherical harmonics as base functions. The latter transform will be
discussed later, after introducing the spherical coordinate system properties and base
functions. The time-frequency Fourier transform Ft is defined as (Beerends et al., 2003,
p 141)

G(ω) = Ft
{
g(t)

}
=

∫ ∞

−∞
g(t) e−iω t dt, (2.28)
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and the inverse Fourier transform from frequency to time domain as (Beerends et al.,
2003, p 164)

g(t) = F−1
t
{
G(ω)

}
=

1

2π

∫ ∞

−∞
G(ω) eiω t dω, (2.29)

where g(t) is a function depending on the time t and G(ω) a function depending on the
angular frequency ω; the latter is associated with the frequency f by the expression
ω = 2πf . The one-dimensional spatial Fourier transform in Cartesian coordinates
(Williams, 1999, pp 1–2) reads

G̃(kx) = F̃x
{
G(x)

}
=

∫ ∞

−∞
G(x) eikxxdx, (2.30)

where G(x) denotes a function in the space domain and G̃(kx) a function in the wave
spectrum domain. This transform is very similar to the time-frequency transform with
the exception of the sign of the exponent and the variables referring to the respective
source and target domains. The corresponding inverse transform is defined by

G(x) = F̃−1
x
{
G(kx)

}
=

1

2π

∫ ∞

−∞
G̃(kx) e

−ikxxdkx, (2.31)

The variables x and kx are still congruent to the previously given definition, where x
denotes the x-component of the position vector and kx the kx-component of the wave
vector. Both could alternatively be understood as new independent variables. The first
interpretation directly entails the need for a more general expression that involves all
vector components, not just a singular one. This expression is obtained by superposing
the transforms for the single components yielding

G̃(kc) = F̃x
{
G(xc)

}
=

∫∫∫ ∞

−∞
G(xc) e

ikT
c xc dx dy dz. (2.32)

The inverse transform is given by

G(xc) = F̃−1
x
{
G(kc)

}
=

1

(2π)3

∫∫∫ ∞

−∞
G̃(kc) e

−ikT
c xc dx dy dz. (2.33)

Finally, the time-frequency Fourier transform and the spatial Fourier transform can
also be joined by the same approach of superposition describing a four-dimensional
signal yielding

G̃(kc, ω) = F̃xt
{
g(xc, t)

}
=

∫∫∫∫ ∞

−∞
g(xc, t) e

i(kT
c xc−ω t) dx dy dz dt. (2.34)
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The inverse transform is given by

g(xc, t) = F̃−1
xt
{
G(kc, ω)

}
=

1

(2π)4

∫∫∫∫ ∞

−∞
G̃(kc, ω)e

−i(kT
c xc−ω t) dx dy dz dt.

(2.35)

In an analogous manner, the multidimensional transform relations can be extended to
arbitrary higher-dimensional signals and spaces Rν , ν ∈ N as proposed in (Spors, 2006,
pp 44–45). However, in this thesis all problems are covered using transforms with four
or less dimensions. The superimposed transform relations Eq. (2.34) and Eq. (2.35)
show the separability of the Fourier transforms.

g(xc, t) G(xc, ω)

g̃(kc, t) G̃(kc, ω)

Ft

F̃x F̃x

Ft

F̃xt

wave spectrum domain

space domain

time domain frequency domain

Figure 2.2 Transform relations and respective domains for the temporal and the
spatial Fourier transforms in Cartesian coordinates. The diagram shows the forward
transforms. In the corresponding scheme for the inverse transforms the arrows are re-
versed. The diagram illustrates the separability of the temporal and spatial transforms
(Spors, 2006, p 45).

Instead of applying the entire transform operation at once, temporal and spatial Fourier
transforms can be applied sequentially (Spors, 2006, pp 44–45) yielding

G̃(kc, ω) = F̃x
{
Ft
{
g(x, t)

}}
= Ft

{
F̃x
{
g(x, t)

}}
= F̃xt

{
g(x, t)

}
, (2.36)

which for the inverse transforms reads

g(x, t) = F−1
t

{
F̃−1

x
{
G̃(kc, ω)

}}
= F̃−1

x

{
F−1

t
{
G̃(kc, ω)

}}
= F̃−1

xt
{
G̃(kc, ω)

}
.

(2.37)
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Figure 2.2 gives an overview of the transform relations in Cartesian coordinates and
the respective Fourier domains that are of importance for this thesis.

2.5 Helmholtz Equation

A different formulation of the wave equation is given by the Helmholtz equation that
delivers stationary solutions in the frequency domain. The Helmholtz equation and its
solutions are of fundamental importance for this thesis. The Helmholtz equation can be
obtained by applying a time-frequency Fourier transform to Eq. (2.1), (Williams, 1999,
p 18). The time-frequency Fourier transform is given in Eq. (2.28) and the inverse
transform in Eq. (2.29). The function prototype G(ω) in Eq. (2.29) is replaced by the
spatial pressure spectrum P (x, ω) and g(t) by the spatial pressure function p(x, t)
therein. Next, Eq. (2.29) is differentiated with respect to the time yielding

∂

∂t
p(x, t) =

i

2π

∫ ∞

−∞
ω P (x, ω) eiωt dω. (2.38)

A second derivation with respect to time gives

∂2

∂t2
p(x, t) = −

1

2π

∫ ∞

−∞
ω2 P (x, ω) eiωt dω. (2.39)

The following correspondences arise:

∂2

∂t2
p(x, t) = −F−1

t
{
ω2 P (x, ω)

}
, (2.40)

and

Ft

{
∂2

∂t2
p(x, t)

}
= −ω2P (x, ω). (2.41)

In a next step, the time-frequency Fourier transform from Eq. (2.28) is applied to the
wave equation Eq. (2.1) giving

Ft

{
∇2p(x, t)−

1

c2
∂2

∂t2
p(x, t)

}
= 0 (2.42)

⇔ Ft

{
∇2p(x, t)

}
−

1

c2
Ft

{
∂2

∂t2
p(x, t)

}
= 0, (2.43)
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The first term does not have an operator with respect to the time t. As a consequence,
it can be transformed by direct application of the Fourier transform to p(x, t) yielding

∇2P (x, ω)−
1

c2
Ft

{
∂2

∂t2
p(x, t)

}
= 0. (2.44)

The transform of the second term yields

∇2P (x, ω)−
1

c2
(−ω2)P (x, ω) = 0, (2.45)

which finally leads to the well-known Helmholtz equation that reads

∇2P (x, ω) +
(
ω
c

)2
P (x, ω) = 0. (2.46)

The quotient ω/c is often replaced by the wave number k according to the dispersion
relation of Eq. (2.10).

2.6 Solutions to the Helmholtz Equation in Cartesian Coordinates

Analogous to obtaining the Helmholtz equation by applying the time-frequency Fourier
transform to the wave equation from Eq. (2.1), a solution to the Helmholtz equation
can be found by applying the time-frequency Fourier transform to Eq. (2.12) yielding

P (xc, ω) = P̂ e−ikT
c xc = Ft

{
p̂ e−i(kT

c xc−ωt)
}
. (2.47)

It is conspicuous that the ωt-term in the exponential disappears. To study this aspect,
a dedicated frequency ω = ω0 is inserted into the initial equation and the exponential
function is split according to

p̂ eiω0t e−ikT
c,0xc = p̂ e−i(kT

c,0xc−ω0t). (2.48)

Consequently, the wave vector that implicitly involves ω must also be reformulated with
respect to ω0. This is denoted by attaching 0 to the wave vector’s index. Taking the
frequency-shift property of the Fourier transform (Beerends et al., 2003) into account,
the following correspondence arises:

Ft

{
eiω0t

}
= 2π δ(ω − ω0), (2.49)
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where δ denotes the Dirac delta function (Arfken and Weber, 2005, pp 83–95). Thus
the time-frequency Fourier transform of the expression given in Eq. (2.48) yields

P ′(xc, ω) = p̂ 2π δ(ω − ω0) e
−ikT

c,0xc = Ft

{
p̂ e−i(kT

c,0xc−ω0t)
}
. (2.50)

This expression points out the monochromatic nature of the time dependence (Williams,
1999, p 21). The sifting-property of the Dirac delta function (Beerends et al., 2003, p
193) generally sets all the expression to zero except for the single specific frequency ω0,
sifting out one particular valid solution. To come back to a more elegant expression
again, the selected frequency ω0 is reset to ω and hence the argument of the δ-function
keeps constantly zero, bypassing the δ-function as it always exactly sifts out the cur-
rently observed monochromatic frequency. Thus, it can be omitted and set to one. By
defining a constant P̂ = 2π p̂ the expression P ′(xc, ω) becomes P (xc, ω) given in the
initial equation Eq. (2.47).

2.7 Plane Wave Expansion in Cartesian Coordinates

The previous considerations referred to single plane waves. Complex source-free sound
fields can be expressed by an appropriately weighted summation of single plane waves
(Williams, 1999, pp 31–32), (Spors, 2006, pp 13–14), which is referred to as plane wave
expansion. This is analogous to the classic Fourier series where complex time-domain
signals are described by the sum of suitably weighted sinoid signals (Beerends et al.,
2003, pp 60–133). Let S(xc, ω) denote a complex sound field at a specific angular fre-
quency ω characterized by a stationary pressure distribution in Cartesian coordinates.
Then S(xc, ω) is expected to be expressible in terms of plane waves according to the
plane wave solution given in Eq. (2.47). Specific coefficients P̃ are introduced in order
to weight the plane waves with respect to their amplitude and phase. These coeffi-
cients are called expansion coefficients. As previously shown, the three components of
the wave vector are not independent, compare Eq. (2.17). Thus, if the values for two
of the wave vectors components are chosen, the value of the third one is determined
except for its sign; this is reflected in Eq. (2.19) to Eq. (2.24). Let kz be the dependent
wave vector component. Consequently, only value pairs for kx and ky are regarded for
the summation, since the value for kz emerges according to Eq. (2.21) and Eq. (2.24).
Without any loss of generality may the dependent value range for kz be restricted to
the positive branch of the respective square roots. Thus, all sources are located in the
negative z-half space and waves do only travel in positive z-direction. The values for
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{kx, ky} ∈ R extend over the entire range from −∞ to ∞. After that, a sound field
S(xc, ω) can be expressed as

S(xc, ω) =
1

4π2

∫∫ ∞

−∞
P̃ (kx, ky, ω) e

−ikT
c xcdkx dky. (2.51)

The dependence on the angular frequency is implicitly given through the wave vector.
The amplitude scaling factor 1/(4π2) is introduced in order to close the connection
to the spatial Fourier transform, which will become explicit in the following. The
expansion equation given in Eq. (2.51) is quite useful to understand the expansion
principle, however, its true potential does not reveal until the inverse operation and
the subsequent operations, i.e. sound field extrapolation or plane wave decomposition,
are discussed. It is best to derive the inverse operation first. An inverse operation
to Eq. (2.51) would extract expansion coefficients P̃ (kx, ky, ω) from a complex sound
field S(xc, ω). Without any loss of generality z can be set to zero and reducing our
observation to the x-y-plane Eq. (2.51) yields

S(xc|z=0, ω) =
1

4π2

∫∫ ∞

−∞
P̃ (kx, ky, ω) e

−i (kxx+kyy) dkx dky, (2.52)

rewritten in a slightly different manner as

S(xc|z=0, ω) =
1

4π2

∫∫ ∞

−∞
P̃ (kx, ky, ω) e

−i kxx e−i kyy dkx dky, (2.53)

and compared to Eq. (2.31) on page 33, the expression turns out to be an inverse
two-dimensional spatial Fourier transform. This obviously simplifies the inversion of
the expression. Analogous to the spatial Fourier transform Eq. (2.30) on page 33 an
expression for gaining expansion coefficients can be given by

P̃ (kx, ky, ω) =

∫∫ ∞

−∞
S(xc|z=0, ω) e

i (kxx+kyy) dx dy . (2.54)

The expansion coefficients describing the sound field in the wave spectrum domain can
be used for sound field extrapolation and plane wave decomposition. The plane wave
decomposition transforms the wave field into plane wave components referring to a
specific observation angle. Due to the dependency on an observation angle, cylindrical
coordinates (Spors, 2006, pp 56–100) or spherical coordinates, cf. Section 2.9 are better
suited to this problem than Cartesian coordinates. The plane wave decomposition is
therefore discussed later after the introduction of the spherical coordinate system and

38



2.8 Sound Field Extrapolation

its inherent sound field equations. The sound field extrapolation, on the other hand,
is performed most comprehensively in the Cartesian coordinate system.

2.8 Sound Field Extrapolation

Sound field extrapolation is based on the Fourier expansion of a sound field. The advan-
tage of this technique is that a source free sound field can be constructed based on the
knowledge of the field parameters on a single plane or cylindrical or spherical surface
only. In the Cartesian coordinate system this technique is easy to grasp. As already
shown in Eq. (2.18) et seq., the three wave vector components are not fully indepen-
dent. This has a direct impact on the equations describing the plane wave expansion,
Eq. (2.51) to Eq. (2.54), where kz is a dependent variable and the Fourier integrals
depend on kx and ky only. In a first step, the expansion coefficients P̃ (kx, ky, ω) for
the x-y plane are calculated by setting the z-coordinate to zero and using Eq. (2.54),
which obviously requires knowledge of the sound field in the respective x-y plane only.
The sound field in a different parallel plane with z′ > 0 can be calculated with the
dependency of kz given in the relations Eq. (2.16) et seq. and using Eq. (2.51):

S(x′
c|z=z′ , ω) =

1

4π2

∫∫ ∞

−∞
P̃ (kx, ky, ω)e

−i
(
kxx+kyy+

√
(ω/c)2−k2

x−k2
y z′
)

dkx dky.

(2.55)

The entire sound field for the positive half space z > 0 can be calculated based on
the knowledge of the sound field in the x-y plane at z = 0 only. This extrapolation,
as well as an alternative point of view, are discussed in (Williams, 1999, p 31-33). A
derivation of the Rayleigh integrals based on the extrapolation approach is given in
(Williams, 1999, pp 34–37). Extrapolation techniques can also be adapted to different
scenarios and coordinate systems. Extrapolation in a spherical coordinate system will
be discussed later.

2.9 Helmholtz Equation in Spherical Coordinates

The sound field equations can be formulated for different coordinate systems. The
choice of the appropriate coordinate system depends on the respective problem. Com-
mon coordinate systems, besides the classical Cartesian coordinates, are the cylindrical
and the spherical coordinate systems. The latter is discussed in the following. For a
detailed discussion of the sound field equations in cylindrical coordinates the reader
may refer to (Williams, 1999, pp 115–181) or (Spors, 2006, e.g. pp 14-18).
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Figure 2.3 Illustration of the xs vector in a spherical coordinate system as used in
this thesis; e⃗θ, e⃗ϕ and e⃗r indicate the corresponding unit vectors.

The Helmholtz equation Eq. (2.46) and its stationary solutions are specified in a spheri-
cal coordinate system depicted in Figure 2.3. This configuration is of major interest for
this thesis. The time domain wave equation Eq. (2.1) and its solutions can be expressed
analogous.

The position vector in spherical coordinates is denoted as

xs = r e⃗r + θ e⃗θ + ϕ e⃗ϕ, (2.56)

where e⃗θ, e⃗ϕ, and e⃗r denote the corresponding unit vectors. The relation between the
Cartesian unit vectors e⃗x, e⃗y, and e⃗z is given by a transform matrix⎡⎢⎣ e⃗r

e⃗θ
e⃗ϕ

⎤⎥⎦ =

⏐⏐⏐⏐⏐⏐⏐
sin θ cosϕ sin θ sinϕ cos θ

cos θ cosϕ cos θ sinϕ − sin θ

− sinϕ cosϕ 0

⏐⏐⏐⏐⏐⏐⏐
⎡⎢⎣ e⃗x

e⃗y

e⃗z

⎤⎥⎦ . (2.57)

Since the transform matrix is orthogonal, the inverse operation can be obtained by a
matrix transposition | · |T of the transform matrix given in Eq. (2.57).

The gradient of a function f(r, θ, ϕ) is given by

∇sf =
∂f

∂r
e⃗r +

1

r

∂f

∂θ
e⃗θ +

1

r sin θ

∂f

∂ϕ
e⃗ϕ. (2.58)
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The divergence of a vector field f⃗ is defined as

∇c · f⃗ =
1

r2
∂(r2 fr)

∂r
+

1

r sin θ

∂

∂θ
(fθ sin θ) +

1

r sin θ

∂fϕ

∂ϕ
, (2.59)

with

f⃗ =

⎡⎢⎣ fr(r, θ, ϕ)

fθ(r, θ, ϕ)

fϕ(r, θ, ϕ)

⎤⎥⎦ . (2.60)

The Laplacian is defined as divergence of the gradient of a function f(x, y, z) in Carte-
sian coordinates,

∇2
s f =

1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂P

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2
. (2.61)

Thus, the Helmholtz equation in spherical coordinates explicitly reads

1

r2
∂

∂r

(
r2
∂P

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂P

∂θ

)
+

1

r2 sin2 θ

∂2P

∂ϕ2
+
(w
c

)2
P = 0 . (2.62)

2.10 Solutions to the Helmholtz Equation in Spherical Coordinates

The Helmholtz equation in spherical coordinates, cf. Eq. (2.62), can be solved by a
separation of variables. The expression is decomposed into different equations, where
each depends on a single variable only. For the separated differential equations explicit
solutions are known. The separation of variables and the solutions to the separated
equations are discussed according to Williams (1999), Blackstock (2000), and Jin (2011)
in the following.

2.10.1 Separation of Variables

We assume that Eq. (2.62) is separable and that the solutions to the equation can be
expressed in product form by using expressions R(r), Θ(θ), and Φ(ϕ) that represent
solutions to the separated equations. This yields

P (r, θ, ϕ) = R(r) ·Θ(θ) · Φ(ϕ). (2.63)
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2 Theory of Sound Field Decomposition

This expression is substituted in Eq. (2.62). The full equation is divided byR(r)Θ(θ)Φ(ϕ)

and multiplied by (r2 sin2 θ) yielding

sin2 θ

R

d
dr

(
r2

dR
dr

)
+

sin θ

Θ

d
dθ

(
sin θ

dΘ
dθ

)
+

1

Φ

d2Φ

dϕ2
+
(ω
c

)2
r2 sin2 θ = 0. (2.64)

Since only the third term depends on ϕ, the first separation can be directly deduced
(Jin, 2011, p 249) giving

d2Φ

dϕ2
+m2Φ = 0, (2.65)

where m2 denotes a constant that depends on the specific problem. Thus Eq. (2.64) is
reduced to

sin2 θ

R

d
dr

(
r2

dR
dr

)
+

sin θ

Θ

d
dθ

(
sin θ

dΘ
dθ

)
+
(ω
c

)2
r2 sin2 θ −m2 = 0. (2.66)

Dividing by (sin2 θ) and rearranging according to terms depending on r and terms
depending on θ yields

[
1

R

d
dr

(
r2

dR
dr

)
+
(ω
c

)2
r2

]
+

[
1

Θ sin θ

d
dθ

(
sin θ

dΘ
dθ

)
−

m2

sin2 θ

]
= 0. (2.67)

Eq. (2.67) can be separated into two expressions (Jin, 2011, p 249):

1

R

d
dr

(
r2

dR
dr

)
+
(ω
c

)2
r2 = n(n+ 1), and (2.68)

1

Θ sin θ

d
dθ

(
sin θ

dΘ
dθ

)
−

m2

sin2 θ
= −n(n+ 1). (2.69)

The term n(n+1) denotes a constant depending on the specific problem. After slightly
rearranging Eq. (2.68) and Eq. (2.69) and picking up Eq. (2.65) again, the Helmholtz
equation is finally decomposed into three ordinary differential equations (Williams,
1999, p 185):
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d
dr

(
r2

dR
dr

)
+
[(ω

c

)2
r2 − n(n+ 1)

]
R = 0, (2.70)

1

sin θ

d
dθ

(
sin θ

dΘ
dθ

)
+

[
n(n+ 1)−

m2

sin2 θ

]
Θ = 0, and (2.71)

d2Φ

dϕ2
+m2Φ = 0. (2.65)

Each equation depends either on r, θ, or ϕ only. All three equations and their so-
lutions are well-known. Applying minor changes and substitutions (Williams, 1999,
pp 193–194), Eq. (2.70) can be transformed into a spherical Bessel differential equation
(Abramowitz and Stegun, 1972, p 437). Eq. (2.71) is known as Legendre differential
equation (Abramowitz and Stegun, 1972, p 332) and Eq. (2.65) is an ordinary second-
order differential equation.

2.10.2 Spherical Bessel and Hankel Functions

The spherical Bessel equation, cf. Eq. (2.69), that represents the radial component of
the Helmholtz equation is solved by nth-order spherical Bessel functions of the first
kind jn and of the second kind yn, and spherical Hankel functions of the first kind
h
(1)
n and of the second kind h(2)n (Abramowitz and Stegun, 1972, p 437). The spherical

Bessel functions of the second kind are also referred to as spherical Neumann functions
and the spherical Hankel functions as spherical Bessel functions of the third kind. The
spherical Bessel functions of the first and the second kind for integer orders are depicted
in Figure 2.4. The spherical Hankel functions are complex-valued linear combinations
of spherical Bessel functions of the first and the second kind. This is similar to the ex-
ponential function, which represents a complex composition of trigonometric functions
that is well-known as Euler’s formula. The spherical Hankel functions are defined as
(Abramowitz and Stegun, 1972, p 437)

h
(1)
n (z) = jn(z) + i yn(z), and (2.72)

h
(2)
n (z) = jn(z)− i yn(z). (2.73)

Whenever the number indicating the kind of Hankel function is omitted, the spherical
Hankel function of the second kind is addressed throughout this work, i.e. hn = h

(2)
n .

Trigonometric expressions describing the spherical Bessel and Hankel functions, Maclau-
rin/Taylor series, the relation to the conventional Bessel and Hankel functions, as well
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Figure 2.4 Spherical Bessel functions of the first kind jn(z) and of the second kind
yn(z) each for integer orders n = {0, 1, 2, 3, 4}.

as several mathematical relations concerning spherical Bessel and Hankel functions are
discussed in (Abramowitz and Stegun, 1972, pp 437–442), (Williams, 1999, pp 193–197),
and (Blackstock, 2000, pp 341–345). A general solution R(r) to Eq. (2.70) is given by
a linear combination of spherical Bessel functions of the first and of the second kind
(Williams, 1999, p 185):

R(r) = ψ1 jn
(
ω
c
r
)
+ ψ2 yn

(
ω
c
r
)
. (2.74)

Solutions can also be expressed as (Williams, 1999, p 186)

R(r) = ψ3 h
(1)
n

(
ω
c
r
)
+ ψ4 h

(2)
n

(
ω
c
r
)
, (2.75)

where ψ1 to ψ4 denote arbitrary constants. The specific choice of the spherical Bessel
or Hankel functions depends on the observed scenario and the location of the sources.
More details on this topic are discussed in subsequent sections.

2.10.3 Legendre Polynomials and Associated Legendre Functions

The expression that depends on the elevation angle θ, given in Eq. (2.71), is solved by
Legendre polynomials Pn(cos θ) or their generalization given by associated Legendre
functions of the first kind, Pm

n (cos θ), (Jin, 2011, pp 249–250), (Abramowitz and Stegun,
1972, p 332), (Williams, 1999, p 185); n is referred to as order and m as mode of the
respective functions or polynomials. The cosine function in the argument arises from a
transform of variables that is used to transform a given equation to the native Legendre
differential equation, i.e. to map the elevation angle range from [0, π] to the associated
Legendre function’s domain from [−1, 1]. Legendre polynomials can be represented
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Figure 2.5 Legendre polynomials Pn(cos θ) for n = {0, 1, 2, 3, 4} and exemplary asso-
ciated Legendre functions Pm

n (cos θ) for m = 1 and n = {1, 2, 3, 4}. The angle θ is
defined in the range θ ∈ [0, π].

in a compact expression referred to as Rodrigues’ formula (Atkinson and Han, 2012,
pp 36–39), (Jackson, 1962, p 57) that reads

Pn(z) =
1

2nn!

dn

dzn
(z2 − 1)n. (2.76)

For m = 0 the associated Legendre functions Pm
n (x) are identical to the Legendre

polynomials Pn(x):

Pm
n (z)|m=0 = P 0

n(z) = Pn(z). (2.77)

For m > 0 the relation between both is given by (Jackson, 1962, p 64)

Pm
n (z) = (−1)m(1− z2)m/2 d

m

dzm
Pn(z), (2.78)

and for m < 0 the following equation can be applied (Jackson, 1962, p 65):

P−m
n (z) = (−1)m

(n−m)!

(n+m)!
Pm
n (z). (2.79)

The (−1)m factor is a sign convention referred to as Condon-Shortley phase (Arfken
and Weber, 2005, p 788) after Condon and Shortley (1951); it was originally introduced
in the context of quantum mechanics in order to simplify the treatment of angular
momentum. Using Rodrigues’ formula (Atkinson and Han, 2012, pp 36–39) to represent
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the Legendre polynomial in Eq. (2.78), a common expression for both positive and
negative values for m can be found that yields (Jackson, 1962, p 64)

Pm
n (z) =

(−1)m

2nn!
(1− z2)m/2 dn+m

dzn+m
(z2 − 1)n. (2.80)

Legendre polynomials and associated Legendre functions are orthogonal function sets.
This property is of fundamental importance and discussed in the context of spherical
harmonics later in Section 2.10.5. General solutions to the Legendre differential equa-
tion may involve Legendre functions of the second kind Qm

n (cos θ) (Abramowitz and
Stegun, 1972, p 332). Since the latter are not finite at the poles, θ = {0, π}, the re-
spective solutions are discarded and the solutions to Eq. (2.71) are given by (Williams,
1999, p 185)

Θ(θ) = χ1 P
m
n (cos θ) + χ2Q

m
n (cos θ), (2.81)

where χ1 and χ2 are arbitrary constants. χ2 is generally set to zero in order to explicitly
exclude any Legendre functions of the second kind from the solutions. Trigonometric
expressions describing the Legendre polynomials and associated Legendre functions,
respective series expansions, as well as several further mathematical relations are dis-
cussed in (Abramowitz and Stegun, 1972, pp 332–339), (Williams, 1999, pp 186–191),
and (Blackstock, 2000, pp 338–341).

2.10.4 Solutions to the Separated Azimuthal Equation

The separated azimuthal equation, cf. Eq. (2.65), which depends on the azimuthal
angle ϕ ∈ [0, 2π] is an ordinary second-order differential equation that can be solved by
harmonic functions, such as complex exponential functions, yielding (Williams, 1999,
p 185)

Φ(ϕ) = ζ1 e
imϕ + ζ2 e

−imϕ, (2.82)

where ζ1 and ζ2 denote arbitrary constants.

2.10.5 Spherical Harmonics

The angular portion, consisting of both angular functions for elevation θ and azimuth
ϕ, can conveniently be described by a single function Ym

n (θ, ϕ) that is referred to as
spherical harmonics or surface spherical harmonics and defined by (Jackson, 1962, p 65)

Ym
n (θ, ϕ) =

√
2n+ 1

4π

(n−m)!

(n+m)!
Pm
n (cos θ) eimϕ. (2.83)
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According to Eq. (2.79) negative values for m yield (Jackson, 1962, p 65)

Y −m
n (θ, ϕ) = (−1)m Ym

n (θ, ϕ)∗. (2.84)

The spherical harmonics given in Eq. (2.83) are composed of associated Legendre func-
tions and complex exponential functions. A normalization factor is introduced that
is different for different scientific disciplines. The normalization used here entails or-
thonormality of the spherical harmonics and is commonly used in classical physics.
Orthonormality over a spherical surface yields (Jackson, 1962, p 65), (Arfken and We-
ber, 2005, p 788)∫ 2π

0

∫ π

0
Ym
n (θ, ϕ) Ym′

n′ (θ, ϕ)∗ dϕ sin θ dθ = δnn′ δmm′ , (2.85)

with

δll′ =

⎧⎨⎩ 1 if l = l′

0 if l ̸= l′
(2.86)

denoting the Kronecker delta (Arfken and Weber, 2005, p 10). Atkinson and Han
(2012) show in great detail that spherical harmonics are the only irreducible system of
function spaces that is complete and closed. The completeness relation (Jackson, 1962,
pp 44–47) in spherical harmonics yields (Jackson, 1962, p 65)

∞∑
n=0

n∑
m=−n

Ym
n (θ, ϕ)Ym

n (θ′, ϕ′)∗ = δ(ϕ− ϕ′) δ(cos θ − cos θ′), (2.87)

where δ now denotes a Dirac delta function (Arfken and Weber, 2005, pp 83–95).
Trigonometric expressions describing spherical harmonics, simplifications for special
problems, as well as several other mathematical relations are discussed in (Atkinson
and Han, 2012, pp 11–81), (Jackson, 1962, pp 66–69), (Williams, 1999, pp 192–193),
(Arfken and Weber, 2005, p 790), and (Varshalovich et al., 1988, pp 130–163).

The real and imaginary parts and the magnitudes of the first spherical harmonics for
orders n = {0...4} including all possible corresponding modes m are shown in Figure
2.6 and Figure 2.7.
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Figure 2.6 Real ℜ{Ym
n } part and imaginary ℑ{Ym

n } part of the spherical harmonics.
The polarity is indicated by gray (plus) and black (minus) colors. The m = 0 responses
of ℜ{Ym

n } are diminished by 3 dB for better illustration.
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Figure 2.7 Directional magnitudes of the spherical harmonics |Ym
n |.
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2.11 Spherical Harmonic Expansion of Functions on the Sphere

In addition to solving the angular portion of the Helmholtz equation, spherical harmon-
ics can be used to expand arbitrary functions G(θ, ϕ) on the (unit) sphere (Williams,
1999, p 192):

G(θ, ϕ) =

∞∑
n=0

n∑
m=−n

G̊nm Ym
n (θ, ϕ), (2.88)

with complex constants G̊nm that are referred to as expansion coefficients. This opera-
tion reveals the true power of the spherical harmonics as will become explicit during the
following sections. The rough structure of the expanded function G(θ, ϕ) is modeled
by the lower order spherical harmonics and the fine structure by higher order spherical
harmonics. This observation is important in case the expansion is truncated at a finite
order N , which is discussed in subsequent chapters. Due to the orthonormality of the
spherical harmonics, cf. Eq. (2.85), the complex coefficients G̊nm can be found using
(Williams, 1999, p 192)

G̊nm =

∫ 2π

0

∫ π

0
G(θ, ϕ)Ym

n (θ, ϕ)∗ sin θ dθ dϕ. (2.89)

Hence, the coefficients G̊nm are calculated by integrating the function G(θ, ϕ) over the
full (unit) sphere. G(θ, ϕ) is weighted with the complex conjugate spherical harmonic
function of the respective order n and mode m.

2.12 Spatial Fourier Transform in Spherical Coodinates

In a next step, the function G(θ, ϕ) on the unit sphere is replaced by a more specific
function G(θ, ϕ, r0, ω) that is defined on a radius r0 for a specific angular frequency
ω. This function represents a sound pressure distribution P (θ, ϕ, r0, ω), for instance.
Inserting G(θ, ϕ, r0, ω) into equation Eq. (2.89) yields

G̊nm(r0, ω) =

∫ 2π

0

∫ π

0
G(θ, ϕ, r0, ω)Y

m
n (θ, ϕ)∗ sin θ dθ dϕ, (2.90)

which is referred to as forward spatial Fourier transform in spherical coordinates. In
order to simplify notation and handling, the solid angle Ω over the spherical surface S
is introduced (Arfken and Weber, 2005, p 124) with dΩ = sin θ dθ dϕ. We use

∫∫
S

dΩ =

∫ 2π

0

∫ π

0
sin θ dθ dϕ (2.91)
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to represent the integration over the full sphere S. Let now be S0 a sphere of radius
r0. The position angles θ and ϕ, as well as the radius r0 can be combined in a single
vector xs,0 ∈ S0 according to Eq. (2.56) yielding

G̊nm(r0, ω) =

∫∫
S0

G(xs,0, ω)Y
m
n (θ, ϕ)∗ dΩ. (2.92)

There exist two domains, the space domain, where the originating spherical function
distribution G(xs, ω) lives, and, the spherical wave spectrum domain (after Williams
(1999)), which is the habitat of the spherical spatial Fourier coefficients G̊nm(r, ω). We
introduce the symbol F̊x for the spatial Fourier transform in a spherical coordinate
system, equivalent to the symbol introduced in Eq. (2.32). Now a shorthand notation
for Eq. (2.92) is given by

G̊nm(r0, ω) = F̊x,nm
{
G(xs,0, ω)

}
. (2.93)

g(xs,0, t) G(xs,0, ω)

g̊nm(r0, t) G̊nm(r0, ω)

Ft

F̊x,nm F̊x,nm

Ft

F̊tx,nm

spherical wave
spectrum domain

space domain

time domain frequency domain

Figure 2.8 Transform relations and respective domains for the temporal and the
spatial Fourier transforms in spherical coordinates. The diagram shows the forward
transforms. In the corresponding scheme for the inverse transforms the arrows are
reversed.

The temporal Fourier transform Ft is equivalent to the definition given earlier in
Eq. (2.28). The same holds true for its inverse transform. Combining the spatial
Fourier transform in spherical coordinates F̊x,nm and the temporal Fourier transform
Ft to a transform operation F̊tx,nm yields

G̊nm(r0, ω) =

∫∫
S0

∫ ∞

−∞
g(xs,0, t) e

−iω t Ym
n (θ, ϕ)∗ dtdΩ. (2.94)
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The forward transform relations for spherical coordinate systems are depicted in Fig-
ure 2.8. Analogous to Eq. (2.93) the inverse spatial Fourier transform in spherical
coordinates is denoted as

G(xs,0, ω) = F̊−1
x,nm

{
G̊nm(r0, ω)

}
. (2.95)

According to Eq. (2.88) the inverse transform is given by

G(x′
s,0, ω) =

∞∑
n=0

n∑
m=−n

G̊nm(r0, ω)Y
m
n (θ′, ϕ′). (2.96)

Note that the angles θ′, ϕ′, and x′
s can be either identical to the previously used angles

i.e. θ′=θ, ϕ′=ϕ, and x′
s=xs, or differ from the latter, i.e. θ′ ̸= θ, ϕ′ ̸= ϕ and x′

s ̸= xs.
All operations related to the spatial Fourier transform discussed so far are restricted to
the spherical surface S0 with a dedicated radius r0. This is quite obvious, since up to
now the transform operation admits the expansion of arbitrary functions on the sphere
without restrictions. No information on the nature of the function or field outside or
inside the sphere S0 can be assumed unless certain restrictions are introduced. In the
present context of sound field analysis these restrictions are precisely determined by
the Helmholtz equation given in Eq. (2.62). Assuming that all waves in a sound field
follow the Helmholtz equation, required knowledge on the nature of the field outside
and inside the sphere S0 is gained. The spherical harmonics exactly solve the angular
portion of the Helmholtz equation, which is discussed above. Adding the missing
radial portion of the Helmholtz equation, the dedicated sphere S0 can be left and the
description expands into the full three-dimensional space. Depending on the given
constellation we distinguish between interior and exterior problems.

2.13 Interior and Exterior Problems

Interior and exterior problems differ from each other depending on the location of the
sound sources and the resulting valid regions for sound field calculations. If all sources
are surrounding the sphere S0 the problem is called interior. The interior volume Vi

is the valid region in that case. If the sphere S0 encloses the sources, the problem
is called exterior. The exterior volume Ve, extending from S0 to infinity, is the valid
region here. Both are illustrated in Figure 2.9. A third class are mixed problems, which
are combinations of interior and exterior problems. Involving the radial portion of the
Helmholtz equation gives access to the spatial sound field outside of S0, as mentioned
above. A new class of expansion coefficients arises that is detached from the radius
r0 and involves sufficient information to reconstruct the full three-dimensional sound
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field in its corresponding region of validity Vi or Ve, respectively. In contrast to the last
section where arbitrary functions on the sphere were admitted, the next expressions
are firmly connected to the Helmholtz equation and wave fields. To point out this
difference we directly insert a pressure distribution P (xs,0, ω) with xs,0 ∈ S0 instead
of inserting any arbitrary function G(xs,0, ω). Dealing with an interior problem, all
waves run from the outside region through the sphere S0 into the volume Vi. Incoming
waves are described by spherical Bessel functions of the first kind jn. Thus, the interior
expansion coefficients

•

P i
nm(ω) are calculated using (Williams, 1999, p 218)

•

P i
nm(ω) =

1

jn
(
ω
c
r0
) ∫∫

S0

P (xs,0, ω)Y
m
n (θ, ϕ)∗ dΩ. (2.97)

According to Eq. (2.93) the latter can also be written as

•

P i
nm(ω) =

1

jn
(
ω
c
r0
) F̊x,nm

{
P (xs,0, ω)

}
. (2.98)

(a) Interior Problem (b) Exterior Problem

Source

Source

Source(s)

Valid Region Vi

Valid Region Ve

S0r0

S0

r0

Figure 2.9 Two-dimensional illustration of an interior problem (a) and an exterior
problem (b) (Williams, 1999). The sphere S0 with radius r0 is shown with surrounding
sources and the maximum extension touching the sources r0=rmax in (a), and with
enclosed sources and the minimum extension touching the sources r0=rmin in (b). The
valid spatial regions for sound field calculations are hatched.

If S0 encloses all sources, all waves emerge from the inside of S0, pass through S0 and
run into the exterior region Ve. This is defined as exterior problem. The outgoing
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waves are described by the spherical Hankel functions of the second kind h(2)n . Hence,
the exterior expansion coefficients

•

P e
nm(ω) are calculated using (Williams, 1999, p 207)

•

P e
nm(ω) =

1

hn
(
ω
c
r0
) ∫∫

S0

P (xs,0, ω)Y
m
n (θ, ϕ)∗ dΩ. (2.99)

Analogous to Eq. (2.98) this can also be written as

•

P e
nm(ω) =

1

hn
(
ω
c
r0
) F̊x,nm

{
P (xs,0, ω)

}
. (2.100)

Note that both,
•

P i
nm(ω) and

•

P e
nm(ω), are not restricted to r0 anymore. Due to the

conditions imposed by the Helmholtz equation, both contain sufficient information on
the nature of the underlying field to describe the complete sound field in the respective
valid regions Vi and Ve, with the exception of some specific problems that arise in
Eq. (2.97) when the spherical Bessel function in the denominator goes to zero. We
come back to this problem when discussing different sphere configurations.

If the expansion coefficients
•

P i
nm(ω) or

•

P e
nm(ω) are known, inverse operations can be

applied for calculating the sound pressure distribution P (xs, ω) on a sphere S with
xs ∈ S ∈ {Vi, Ve}. For the interior problem the inverse operation yields (Williams,
1999, p 218)

P (xs, ω) =
∞∑

n=0

n∑
m=−n

•

P i
nm(ω) jn

(
ω
c
r
)
Ym
n (θ, ϕ). (2.101)

Analogous, the inverse operation for the exterior problem is given by (Williams, 1999,
p 206)

P (xs, ω) =

∞∑
n=0

n∑
m=−n

•

P e
nm(ω)hn

(
ω
c
r
)
Ym
n (θ, ϕ). (2.102)

The important detail is the radius r that can either be identical to r0 or can generally
be defined as r ≤ r0 for interior problems or r ≥ r0 for exterior problems. Knowing
the expansion coefficients, the sound field can be calculated on an arbitrary sphere S
with radius r that lies in the corresponding valid region Vi or Ve.

2.14 Sound Field Extrapolation in Spherical Coordinates

The basic idea of sound field extrapolation is introduced for Cartesian coordinates
in Section 2.8. For spherical coordinates the concept is the same but the procedure
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2.14 Sound Field Extrapolation in Spherical Coordinates

is different. Combining forward and inverse transforms appropriately, the pressure
distribution on a sphere S0 with radius r0 can be related to the pressure distribution
on a sphere S′ with radius r′ in the space domain. For an interior problem the following
equation arises (Williams, 1999, p 218):

P (x′
s, ω) =

∞∑
n=0

jn
(
ω
c
r′
)

jn
(
ω
c
r0
) n∑

m=−n

Ym
n (θ′, ϕ′)

∫∫
S0

P (xs,0, ω)Y
m
n (θ, ϕ)∗dΩ, (2.103)

where the vector x′
s ∈ S′ involves θ′, ϕ′, and r′, and xs,0 ∈ S0 involves θ, ϕ, and r0.

The spatial Fourier transform can be written using the previously defined transform
operator F̊x,nm yielding

P (x′
s, ω) =

∞∑
n=0

jn
(
ω
c
r′
)

jn
(
ω
c
r0
) n∑

m=−n

Ym
n (θ′, ϕ′) F̊x,nm

{
P (xs,0, ω)

}
. (2.104)

For an exterior problem with r′ ≥ r0 ≥ r0,min the following equation arises (Williams,
1999, p 207):

P (x′
s, ω) =

∞∑
n=0

hn
(
ω
c
r′
)

hn
(
ω
c
r0
) n∑

m=−n

Ym
n (θ′, ϕ′)

∫∫
S0

P (xs,0, ω)Y
m
n (θ, ϕ)∗dΩ, (2.105)

which can be written as

P (x′
s, ω) =

∞∑
n=0

hn
(
ω
c
r′
)

hn
(
ω
c
r0
) n∑

m=−n

Ym
n (θ′, ϕ′) F̊x,nm

{
P (xs,0, ω)

}
. (2.106)

As an alternative, the extrapolation can be performed in the spherical wave spectrum
domain by directly relating spatial Fourier coefficients. If we insert a pressure distri-
bution P (xs, ω) into Eq. (2.93) we obtain spatial Fourier coefficients P̊nm(r, ω) in the
spherical wave spectrum domain:

P̊nm(r, ω) = F̊x,nm
{
P (xs, ω)

}
, (2.107)

For interior problems with r′ ≤ r0 the relation between coefficients corresponding to
different radii in the spherical wave spectrum domain yields (Williams, 1999, p 218)

P̊nm(r′, ω) =
jn
(
ω
c
r′
)

jn
(
ω
c
r0
) P̊nm(r0, ω). (2.108)
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For exterior problems with r′ ≥ r0 we have (Williams, 1999, p 208)

P̊nm(r′, ω) =
hn
(
ω
c
r′
)

hn
(
ω
c
r0
) P̊nm(r0, ω). (2.109)

2.15 Inter- and Extrapolation in the Spherical Wave Spectrum Domain

We need to elaborate the two types of Fourier coefficients introduced in the last sections.
Eq. (2.93) can be applied to a pressure distribution P (xs,0, ω) on S0 in order to obtain
spatial Fourier coefficients P̊nm(r0, ω) in the spherical wave spectrum domain. As
already discussed in Section 2.12 these coefficients do only contain information on the
sound pressure distribution on the sphere S0 and do not suffice to calculate anything
outside or inside S0, since we are not firmly tied to the full Helmholtz equation so
far. Thus, at first sight these coefficients appear to be intermediate objects. However,
looking at the inverse spatial Fourier transform in Eq. (2.96) it becomes apparent that
the pressure can be calculated for an arbitrary point in S0.

(a) Interpolation (b) Extrapolation

S0

r0

S0

r0

P̊nm(r0, ω)
•

Pnm(ω)

Figure 2.10 Two-dimensional illustration of (a) interpolation on the sphere S0 using
the Fourier coefficients P̊nm(r0, ω), and (b) extrapolation into the space outside of S0

using the Fourier expansion coefficients
•

Pnm(ω) along concentric spheres. The latter
does not specify whether the underlying problem is an interior or an exterior one. The
valid regions have to be considered, refer to Figure 2.9, and the appropriate coefficients

•

Pnm(ω)=
•

P i
nm(ω) for interior or

•

Pnm(ω)=
•

P e
nm(ω) for exterior problems, respectively,

need to be chosen.
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If we now consider not knowing the continuous pressure distribution on S0 but knowing
the pressure at discrete sampling positions located on S0 only, the spatial Fourier
transform reveals powerful capabilities for interpolation on the sphere. This is shown
in Figure 2.10(a).

In a next step, the angular portion of the Helmholtz equation is applied, as discussed
in Section 2.13. Depending on the type of the problem, specific Fourier expansion
coefficients are calculated which are firmly tied to the Helmholtz equation. If we
have an interior problem the inner expansion coefficients

•

P i
nm(ω) are calculated using

Eq. (2.97). If the problem is an exterior one, the exterior expansion coefficients
•

P i
nm(ω)

are calculated using Eq. (2.99). The coefficients
•

Pnm(ω) can be used to leave the sphere
S0 and calculate the sound field on an arbitrary concentric sphere inside or outside S0

within the valid region defined by the given problem, see Figure 2.9.

Both techniques, i.e. interpolation and extrapolation, are illustrated in Figure 2.10.
An example for practical application of interpolation is described in the context of
head-related transfer functions, refer to Section 3.12.4.

2.16 Rotations in the Spherical Wave Spectrum Domain

The function defined by the Fourier coefficients G̊nm(r0, ω) can be rotated on the
sphere. The rotation in the spherical wave spectrum domain is quite useful, especially
for rotating discretely sampled pressure distributions, since this operation provides
inherent capabilities for interpolation on the sphere.

2.16.1 Rotation Group SO(3) and Wigner-D Functions

An element ν of the rotation group SO(3) (Arfken and Weber, 2005, p 250) can be
expressed as a product of single rotation operators. A common convention is the
z-y-z rotation, where first a rotation around the z-axis is performed, followed by a
rotation around the y-axis and by another rotation around the z-axis. All rotations
are counterclockwise. They are expressed using the Euler angles α, β and γ and
described by the well-known 3×3 rotation matrices (Arfken and Weber, 2005, p 202)

Rz(α) =

⎛⎜⎝ cosα sinα 0

− sinα cosα 0

0 0 1

⎞⎟⎠ , (2.110)

Ry(β) =

⎛⎜⎝ cosβ 0 − sinβ

0 1 0

sinβ 0 cosβ

⎞⎟⎠ , (2.111)

57



2 Theory of Sound Field Decomposition

and

Rz(γ) =

⎛⎜⎝ cos γ sin γ 0

− sin γ cos γ 0

0 0 1

⎞⎟⎠ . (2.112)

The full rotation operator R on SO(3) is

Rzyz(α, β, γ) = Rz(α)Ry(β)Rz(γ). (2.113)

Wigner-D functions Dn
mm′ (α, β, γ) can be used to perform rotations in the spherical

wave spectrum domain. They were introduced by Wigner (1931) and are commonly
used in quantum mechanics for the description of particles with spin (Edmonds, 1957).
In analogy to the rotation operator, Wigner-D functions contain single rotations with
the Euler angles (Morrison and Parker, 1987):

Dn
mm′ (α, β, γ) = e−imα dnmm′ (β) e

−im′ γ , (2.114)

where dn
mm′ (β) denotes the Wigner-d function that can be explicitly expressed in terms

of the Jacobi polynomials (Morrison and Parker, 1987):

dnmm′ (β) =

√
(n−m′)!(n+m′)!

(n+m)!(n−m)!

(
cos β

2

)m′+m(
sin β

2

)m′−m
P

(m′−m,m′+m)
n−m′ (cosβ).

(2.115)

The Jacobi polynomials in Eq. (2.115) can be written as (Morrison and Parker, 1987)

P
(k1,k2)
k (cosβ) = (k + k1)!(k + k2)!×∑

s

1

s!(k + k1 − s)!(k2 + s)!(k − s)!

(
− sin2

β

2

)k−s (
cos2

β

2

)s
, (2.116)

with integers k, k1 and k2; the summation involves all integers for s that have positive
arguments of the factorials. Wigner-D functions form a complete orthogonal (but not
orthonormal) set of functions with respect to integration over the rotation group SO(3).
The orthogonality relation yields (Edmonds, 1957, p 62)

∫ 2π

0

∫ π

0

∫ 2π

0
Dn2

m2m
′
2
(α, β, γ)∗ Dn

mm′ (α, β,γ) dα sinβ dβ dγ =

8π2

2n+ 1
δm2m1 δm′

2m
′
1
δn2n1 . (2.117)

58



2.16 Rotations in the Spherical Wave Spectrum Domain

Due to the orthogonality, an arbitrary function F (α, β, γ) ∈ L2(SO(3)) can be decom-
posed using Wigner-D functions. Spherical harmonics are related to the Wigner-D
functions for m′ = 0 according to (Pendleton, 2003)

Dn
m0(α, β, γ) =

√
4π

2n+ 1
Ym
n (β, α)∗. (2.118)

The Wigner-D functions form matrix entries for the spherical rotation operator
R̊(α, β, γ) in the spherical wave spectrum domain and can be used for rotation of
the spherical harmonics yielding (Morrison and Parker, 1987)

Ym′
n (θ′, ϕ′) =

n∑
m=−n

Ym
n (θ, ϕ)Dn

mm′ (α, β, γ). (2.119)

For complex conjugate spherical harmonics the equation reads (Varshalovich et al.,
1988, p 72)

Ym′
n (θ′, ϕ′)∗ =

n∑
m=−n

Ym
n (θ, ϕ)∗Dn

mm′ (α, β, γ)
∗. (2.120)

θ′ and ϕ′ describe the new angles after rotation. As an alternative, the rotation in
Eq. (2.119) can be expressed in terms of a rotation operator R̊zyz(α, β, γ) in the spher-
ical wave spectrum domain:

R̊zyz(α, β, γ)Y
m′
n (θ, ϕ) =

n∑
m=−n

Ym
n (θ, ϕ)Dn

mm′ (α, β, γ). (2.121)

This is equivalent to the operator Rzyz(α, β, γ) in the space domain introduced in
Eq. (2.113). We formulate a function G(xs,0, ω) on the sphere in the space domain.
This function can be rotated by applying the rotation operator Rzyz(α, β, γ) as defined
in Eq. (2.113). The rotated function is denoted as GR(xs,0, ω):

GR(xs,0, ω) = Rzyz(α, β, γ)G(xs,0, ω) . (2.122)
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2 Theory of Sound Field Decomposition

In Eq. (2.96) the expansion of G(θ, ϕ) in spherical harmonics is given. Applying
Eq. (2.121) to this expansion, where m is changed for m′, the rotation can be expressed
as

GR(xs,0, ω) = Rzyz(α, β, γ)G(xs,0, ω) (2.123)

=

∞∑
n=0

n∑
m′=−n

G̊nm′ (r0, ω) R̊zyz(α, β, γ)Y
m′
n (θ, ϕ) (2.124)

=

∞∑
n=0

n∑
m′=−n

G̊nm′ (r0, ω)

n∑
m=−n

Ym
n (θ, ϕ)Dn

mm′ (α, β, γ) (2.125)

=
∞∑

n=0

n∑
m=−n

[
n∑

m′=−n

G̊nm′ (r0, ω)D
n
mm′ (α, β, γ)

]
Ym
n (θ, ϕ) (2.126)

=

∞∑
n=0

n∑
m=−n

G̊R
nm(r0, ω)Y

m
n (θ, ϕ). (2.127)

This is similar to the expression in (Rafaely and Kleider, 2008). It leads to the conclu-
sion that the spatial Fourier coefficients G̊nm corresponding to G(θ, ϕ) can be rotated
in the spherical wave spectrum domain using

G̊R
nm =

n∑
m′=−n

G̊nm′ (r0, ω)D
n
mm′ (α, β, γ). (2.128)

Other aspects of rotations and Wigner-D functions are discussed e.g. in (Edmonds,
1957, pp 53–65), (Varshalovich et al., 1988, pp 72–117), (Morrison and Parker, 1987)
or (Pendleton, 2003). Wigner-D functions for array beam steering are discussed in
(Rafaely and Kleider, 2008), the use of the same for rotating directivity patterns in
room acoustic simulations are treated in (Pelzer et al., 2012). Wigner-D functions for
improving matrix conditioning in the context of direction of arrival (DOA) estimation
with microphone arrays are discussed in (Sun et al., 2011).

2.16.2 Euler Rotation

For several applications only rotations around the z-axis are required. A reduced
rotation operator, called Euler rotation, is introduced in order to eliminate the overhead
that comes with the full Wigner-D functions in this special case. For {β, γ}=0 the
Wigner-D function Dn

mm′ (α, β, γ) reduces to a function Dm(α), which according to
Eq. (2.114) is defined as

Dm(α) = e−imα, (2.129)
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2.17 Plane Wave Expansion

where α denotes the rotation around the z-axis. The corresponding Euler rotation
matrix in the space domain is given by Eq. (2.110). Analogous to Eq. (2.119), the
rotation of spherical harmonics yields

Ym
n (θ, ϕ′) = Ym

n (θ, ϕ)Dm(α). (2.130)

According to Eq. (2.121) this can be expressed in terms of a reduced rotation operator
R̊z(α) as

R̊z(α)Y
m
n (θ, ϕ) = Ym

n (θ, ϕ)Dm(α). (2.131)

The equivalent approach to Eq. (2.123) to Eq. (2.127), written as

GR(xs,0, ω) = Rz(α)G(xs,0, ω) (2.132)

=

∞∑
n=0

n∑
m=−n

G̊nm(r0, ω) R̊z(α)Y
m
n (θ, ϕ) (2.133)

=

∞∑
n=0

n∑
m=−n

G̊nm(r0, ω)Y
m
n (θ, ϕ)Dm(α) (2.134)

=

∞∑
n=0

n∑
m=−n

[
G̊nm(r0, ω)Dm(α)

]
Ym
n (θ, ϕ) (2.135)

=
∞∑

n=0

n∑
m=−n

G̊R
nm(r0, ω)Y

m
n (θ, ϕ), (2.136)

indicates that the reduced rotation of spatial Fourier coefficients G̊nm corresponding
to G(θ, ϕ) can be expressed as

G̊R
nm = G̊nm(r0, ω)Dm(α). (2.137)

The result is a simple operation with low computational demands in practical applica-
tions.

2.17 Plane Wave Expansion

The plane wave is one of the most important concepts when talking about waves. In
the present work the plane wave plays a major role, since the objective is to decompose
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2 Theory of Sound Field Decomposition

the sound fields into plane wave components. In theory, plane waves are assumed to
arise from a point source that is located at infinite distance. The curvature of the
wave front vanishes before the wave reaches the observation point. The plane wave
solution to the Helmholtz equation in Cartesian coordinates is introduced in Eq. (2.47)
and, inverting the propagation direction for convenience, an incident plane wave reads

Ppw(xc, ω) = P̂ eik
T
c,pwxc . (2.138)

If the position vector is expressed in spherical coordinates according to Eq. (2.56), the
plane wave can be simply written as

Ppw(xs, ω) = P̂ eik
T
s,pwxs , (2.139)

where the wave vector kT
s,pw points into the direction of wave propagation. It is given

according to a kpw-weighted version of the unit vector e⃗r in Eq. (2.57) by kT
s,pw =

kpw [sin θpw cosϕpw sin θpw sinϕpw cos θpw]T, with θpw and ϕpw denoting the wave
arrival direction observed from the origin and kpw the respective wave number similar
to (Ahrens, 2010, p 4). The pressure distribution on S0 that is generated by the incident
plane wave can be expressed in terms of spherical harmonics according to Eq. (2.101),
which is shown in (Williams, 1999, pp 225–227). The expansion of an incident plane
wave arriving from (θw, ϕw) yields (Williams, 1999, p 227), (Gumerov and Duraiswami,
2004, p 74)

Ppw(xs, ω) = P̂ 4π

∞∑
n=0

n∑
m=−n

injn
(
ω
c
r
)
Ym
n (θ, ϕ)Ym

n (θw, ϕw)∗. (2.140)

2.18 Spherical Waves in Spherical Coordinates

The plane wave assumption is not valid for the observation of point sources located
in the near field, as the curvature of the wave front is not negligible anymore. The
sound pressure Psw at the location xs produced by a monopole source located at
x′

s = r′ e⃗r′ + θ′ e⃗θ′ + ϕ e⃗ϕ′ is described by (Williams, 1999, p 259)

Psw(xs,x′
s, ω) = P̂

ei
ω
c
|x′

s−xs|

|x′
s − xs|

, (2.141)

which, besides a normalization factor of 1/4π, is known as free-field Green’s function.
For r0 < r′, where the monopole source in x′

s is further away from the origin than
the observation point xs, the expansion of Eq. (2.141) in spherical harmonics yields
(Williams, 1999, p 259)
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Psw(xs,x′
s, ω) = P̂ 4π i

ω

c

∞∑
n=0

jn
(
ω
c
r0
)
hn
(
ω
c
r′
)
×

n∑
m=−n

Ym
n (θ′, ϕ′) Ym

n (θ, ϕ)∗. (2.142)

For this thesis, dedicated near field observations are neglected. The sound sources are
assumed to be located in the far field and the focus of interest is on the decomposition
of plane waves.

2.19 Plane Wave Decomposition (PWD)

Analogous to the plane wave expansion discussed in Section 2.17, a given sound field can
be decomposed into its plane wave components. According to the principle of superpo-
sition stated in Section 2.1, the decomposition is valid for both, single plane waves and
arbitrarily complex sound fields. The latter can be described by superimposed plane
waves. We assume a continuous pressure distribution P (θ, ϕ, r0, ω) on S0 with radius
r0. Its corresponding spatial Fourier coefficients are denoted by P̊nm(r0, ω). Both
are related through the spatial Fourier transform, cf. Section 2.92. The plane wave
decomposition (PWD) (Rafaely, 2004), (Duraiswami et al., 2005a) returns the plane
wave components D for a specific spatial decomposition direction (θd, ϕd) yielding

D(θd, ϕd, ω) =

∞∑
n=0

n∑
m=−n

1

in jn(
ω
c
r0)

P̊nm(r0, ω)Y
m
n (θd, ϕd). (2.143)

PWD can be understood as a spatial Dirac pulse pointing into direction (θd, ϕd). This
enables ideal spatial sampling in terms of plane waves. The Dirac pulse is ideal, as
long as the sum n = [0,∞[ is infinite. The consequences of truncating the sum to a
limited order N , n = [0, N ] are discussed in Section 3.3.

At this point we still rely on a continuous and error-free description of the sound field
on S0, which would indeed enable perfect PWD. As soon as technical systems, i.e.
microphone arrays, are used to capture the information on S0, the PWD looses several
of its ideal properties. Section 3 is dedicated to analyzing and discussing the respective
constraints in technical systems.

PWD is a special case of modal beamforming using what is referred to as regular beam
pattern (Li and Duraiswami, 2007). This term becomes more explicit in Section 3.3,
where the spatial Dirac pulse degenerates due to the truncation of the modal order.
In order to perform beamforming with arbitrarily shaped beams, specific beamforming
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coefficients B̊nm can be introduced to Eq. (2.143), which establish the target beam
shape:

DB(θd, ϕd, ω) =
∞∑

n=0

n∑
m=−n

B̊nm(ω)

in jn(
ω
c
r0)

P̊nm(r0, ω)Y
m
n (θd, ϕd). (2.144)

The PWD provides constant coefficients B̊nm = 1, cf. Eq. 2.143. Different approaches
and applications of modal beamforming are not further discussed. The reader is referred
e.g. to (Teutsch, 2007) for a detailed discussion of modal beamforming.

2.20 Binaural Reproduction of Physical Sound Field Descriptions

For binaural playback of sound fields that are described in the modal domain, the modal
sound field description needs to be merged with HRTFs. For that purpose, the sound
field in P̊nm(r0, ω) is decomposed into separate directional contributions (θ, ϕ) ∈ S

using PWD according to Eq. (2.143). Then the separate directional output signals are
weighted with corresponding complex-valued HRTFs1 with angular directions (θ, ϕ) ∈
S. Finally, all directional HRTF-weighted signals are integrated over the complete
sphere S in order to deliver a binaural output signal Y l,r(ω). This operation yields:

Y l,r(ω) =
1

4π

∫∫
S
Hl,r(θ, ϕ, ω)

∞∑
n=0

n∑
m=−n

1

in jn(
ω
c
r0)

P̊nm(r0, ω)Y
m
n (θ, ϕ)dΩ.

(2.145)

In order to justify this approach, we define a basic analytic wave field in the spherical
wave spectrum domain that consists of a single plane wave with unit amplitude arriving
from direction (θw, ϕw) (Williams, 1999, p 259):

P̊nm pw(θw,ϕw)(r0, ω) = 4π in jn(
ω
c
r0)Y

m
n (θw, ϕw)∗. (2.146)

In a next step, analogous to Eq. (2.145), we perform a single PWD and weight the
output signal with the corresponding HRTF yielding

Y l,r ’(θ, ϕ, ω) = Hl,r(θ, ϕ, ω)
∞∑

n=0

n∑
m=−n

1

in jn(
ω
c
r0)

P̊nm(r0, ω)Y
m
n (θ, ϕ). (2.147)

1Corresponding to the convolution in the time-space domain.
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When replacing the general sound field description P̊nm(r0, ω) in Eq. (2.147) by the
analytic plane wave description P̊nm pw(θw,ϕw)(r0, ω) from Eq. (2.146), the relation

Y l,r ’(θ, ϕ, ω) = Hl,r(θ, ϕ, ω) 4π

∞∑
n=0

n∑
m=−n

Ym
n (θ, ϕ)Ym

n (θw, ϕw)∗ (2.148)

emerges, which means

Y l,r ’(θ, ϕ, ω) =

⎧⎨⎩Hl,r(θ, ϕ, ω) if (θw, ϕw) = (θ, ϕ), and

0 if (θw, ϕw) ̸= (θ, ϕ).
(2.149)

The spatial Dirac pulse in the expression noted above sifts out plane wave incidence
that matches the original HRTF direction.

Inserting the analytic plane wave description P̊nm pw(θw,ϕw)(r0, ω) from Eq. (2.146)
into Eq. (2.145) yields

Y l,r
pw(θw,ϕw)

(ω) =

∫∫
S
Hl,r(θ, ϕ, ω)

∞∑
n=0

n∑
m=−n

Ym
n (θ, ϕ)Ym

n (θw, ϕw)∗ dΩ. (2.150)

For the specific case of a single plane wave incidence from the direction (θw, ϕw) this
becomes

Y l,r
pw(θw,ϕw)

(ω) = Hl,r(θw, ϕw, ω). (2.151)

Assuming ideal conditions, the operation actually turns out to be transparent for plane
wave incidence. Due to the principle of superposition, the transparency property can
be generalized to complex sound fields.

The real advantage of this approach is the ability to deduce a (theoretically) ideal
binaural signal from the knowledge of the sound field properties on a static sphere S0,
while free head rotation and even translation can be performed in a separate stage.

Rotation can be applied in different ways. One option is to rotate the entire sound
sound field Pnm(r0, ω) in Eq. (2.145) around the angles α, β and γ using Wigner-D
functions (cf. Section 2.16.1), yielding rotated Fourier coefficients P̊R

nm(r0, ω) with

P̊R
nm(r0, ω) =

n∑
m′=−n

P̊nm′ (r0, ω)D
n
mm′ (α, β, γ) . (2.152)
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A different option is to apply a pre-rotated HRTF set Hl,r(θ′, ϕ′, ω) instead of
Hl,r(θ, ϕ, ω) in Eq. (2.145), where (θ′, ϕ′) describes the rotated angle pair. If not ex-
plicitly available, rotated HRTFs Hl,r(θ′, ϕ′, ω) can be generated using spatial Fourier
transforms and Wigner-D functions. A spherical HRTF set Hl,r(θ, ϕ, ω) can be re-
garded as a frequency-dependent description of a closed complex function with respect
to magnitude and phase on a virtual sphere S. Thus, the spatial Fourier transform
(cf. Eq. (2.92)) is directly applicable:

H̊l,r
nm(ω) =

∫∫
S
Hl,r(θ, ϕ, ω)Ym

n (θ, ϕ)∗ dΩ. (2.153)

In a next step, Wigner-D rotation (cf. Section 2.16.1) around the angles α, β and γ is
applied, yielding a rotated HRTF set H̊l,rR

nm (r0, ω),

H̊l,rR
nm (ω) =

n∑
m′=−n

H̊l,r
nm′ (ω)D

n
mm′ (α, β, γ). (2.154)

In a last step, the inverse spatial Fourier transform (cf. Eq. (2.96)) is used to achieve
a rotated HRTF Hl,r(θ′, ϕ′, ω) in the space-frequency domain related to the original
angle pair (θ, ϕ),

Hl,r(θ′, ϕ′, ω) =
∞∑

n=0

n∑
m=−n

H̊l,rR
nm (ω)Ym

n (θ, ϕ). (2.155)

As an alternative to applying Wigner-D functions for rotating the HRTFs, the an-
gle offset can be directly applied to (θ, ϕ) during the backward Fourier transform in
Eq. (2.155).

This operation might appear excessively complicated at first. Nevertheless, the rota-
tion of the HRTF set usually requires less computational power than rotating the entire
sound field description. Furthermore, forward and backward spatial Fourier transforms
inherently performs spherical harmonic HRTF interpolation, which is of particular in-
terest for discretely sampled HRTF sets that are used in practice. Discrete spatial
sampling of HRTFs and spherical harmonic HRTF interpolation are discussed in Sec-
tion 3.12. Thus the benefit of this approach becomes more explicit later.

An additional option is translating the head within the source-free region of the sound
field. This is done by successively extrapolating the Fourier coefficients P̊nm′ (r0, ω) to
a shifted sphere using Eq. (2.108). The basic approach for sound field extrapolation is
discussed in Section 2.14.
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2.20 Binaural Reproduction of Physical Sound Field Descriptions

The entire theoretical approach clearly unveils a certain grace and completeness. A
transparent binaural system providing full horizontal, vertical and lateral head rotation
and even theoretical head translation capabilities that are applicable in a separate post-
processing stage can be designed. Nevertheless, several of the previously assumed ideal
conditions cannot be established in technical systems.
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3 Constraints in Technical Systems

3.1 Discretization of Time and Amplitude

Processing of the audio signals is performed with digital systems. As a consequence, the
signals are discretized with respect to time and amplitude. Discretization of time and
amplitude does not have any special impact on the presented approaches. The reader is
referred to the extensive available literature on digital audio processing, e.g. (Kefauver
and Patschke, 2007) or (Zölzer, 2008).

In order to simplify the notation, signals are denoted as ideal signals with continuous
time and amplitude resolution, even though in practice signals with discrete time and
amplitude resolution are addressed. The corresponding discrete signals are assumed
to be band-limited to frequencies below half of the temporal sampling rate and to
have sufficient amplitude resolution. Thus, there is no relevant restriction of the dy-
namic range in the systems and no spectro-temporal aliasing is present according to the
Nyquist-Shannon sampling theorem (Nyquist, 1928), (Shannon, 1949). Since the sig-
nals are denoted as continuous signals, the continuous time-frequency Fourier transform
is used in the equations, according to the definitions from Section 2.4. When process-
ing discrete signals in practice, the continuous Fourier transforms need to be replaced
with appropriate discrete transforms such as the discrete Fourier transform (DFT) or
the fast Fourier transform (FFT), cf. (Jackson, 1996).

Unless otherwise specified, a temporal sampling rate of 48 kHz is used for all measure-
ments and simulations throughout this work. All signals are band-limited to 20 kHz.
Signal conversions between the analog and the digital domain are performed using ana-
log to digital converters (ADCs) or digital to analog converters (DACs) with a word
length of 24 bit. Computations are performed using double precision floating point
variables. Time-frequency Fourier transforms are based on FFT algorithms.

3.2 Spatial Discretization

Up to this point we assumed to have continuous information on the sound pressure
on the entire sphere S0. Currently, no known technical system is capable of acquiring
sound field information in real-time that is even close to a continuous description.
Future technologies, e.g. based on floating air-filled spherical membranes scanned with
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3.2 Spatial Discretization

a laser1 might possibly come much closer to this goal. In the meantime, microphone
arrays with their membranes located on the sphere S0 are used for the acquisition
of the sound pressure in practice. As a consequence of using microphone arrays, the
pressure distribution on S0 is sampled at a limited amount of discrete spatial sampling
nodes, which severely impacts the transmission properties of the previously defined
ideal system. This raises basic questions concerning the expected consequences of
discrete spatial sampling, the required number of sampling nodes, or the reasonable
distribution of nodes on the sphere.

3.2.1 Microphone Arrays

Classical real-time microphone arrays carry a microphone at each spatial sampling node
and provide an individual signal path including pre-amplifier and ADC. Examples of
classical real-time arrays that are specifically made for modal analysis of exterior sound
fields are the popular EIGENMIKER⃝ from mh-Acoustics (Meyer and Elko, 2002) or
several experimental arrays that were built in the scientific community such as the
arrays presented in (Li and Ruraiswami, 2005), (Duraiswami et al., 2005b), (O’Donovan
et al., 2008), or (Peters and Schmeder, 2011).

A particular type of arrays is called scanning array or virtual array. The scanning array
carries only one microphone (or few microphones) mounted on a robotic arm, which can
be moved to different spatial positions. The signals for each transducer position of the
array are acquired sequentially. This procedure is feasible, as long as the surroundings
behave sufficiently time-invariant. Scanning arrays are usually employed for acquiring
(room) impulse responses. In contrast to classical microphone arrays, this kind of
array is generally not suitable for capturing sound fields in real-time. Nevertheless,
the advantage of scanning arrays is the large flexibility concerning the positioning and
number of sampling points, which is highly convenient for research purposes. Very
dense sampling grids including a nearly arbitrary amount of sampling positions on
different radii can be captured for a single array position, which is hardly possible using
conventional microphone arrays according to the current state of technology. Since a
spherical microphone only uses a single microphone and the identical audio path for
all sampling nodes, no specific array calibration (Rettberg et al., 2012) is necessary. A
first spherical scanning microphone array was developed by Schlesinger et al. (2007).
Another spherical scanning array is used by Rafaely et al. (2007a). For this thesis a
scanning microphone array system called VariSphear was developed, which is described
in Section 4.1.

1Originator of this idea is Gary Grutzek.
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3 Constraints in Technical Systems

3.2.2 Spatial Sampling Strategies

The question of finding an appropriate distribution of sampling nodes on the sphere is a
non-trivial mathematical problem. The target of designing suitable sampling schemes
is the stable and unique identification of spherical harmonics up to a certain order,
based on the sparse information that is acquired at as few sampling nodes as possible.
A unique identification of the spherical harmonic modes is crucial in order to main-
tain orthogonality, cf. Eq. (2.85). Since the structure of the spherical harmonics gets
progressively more complex with rising orders, any sampling distribution involving a
limited number of nodes reaches a certain limit of modal resolution. Discrete sampling
schemes resolve spherical harmonics up to a dedicated maximum order Nsg only. For
strictly band-limited functions on the sphere ideal conditions can be assumed, while
neglecting some minor approximation errors coming with certain types of sampling
schemes. Unfortunately, natural sound fields are not order-limited. As a consequence,
ambiguities concerning the mode identification arise, which result in spatial aliasing
artifacts, cf. Section 3.8.

Spatial sampling schemes on the sphere can be generated using different approaches. A
comprehensive overview of several sampling approaches that are relevant in the present
context, including an analysis of their particular properties, can be found in (Zotter,
2009a, pp. 69–82) and (Zotter, 2009b). In this thesis, we restrict to quadrature (or
cubature) approaches that are commonly applied for this purpose. Quadratures al-
low for a straight-forward application of the discrete spatial Fourier transform, given
in Eq. (3.3). Quadratures usually define spatial node positions (θgsg , ϕgsg ) and corre-
sponding quadrature weights wgsg , where gsg = [1,Msg] describes an integer index of
the sampling positions and Msg the total number of sampling nodes (equivalent to
microphones or microphone positions here).

Throughout this work we assume any quadrature weights wgsg to be unnormalized
yielding

Msg∑
gsg=1

wgsg = 4π. (3.1)

A theoretical minimum boundary for the required number of nodes Msg according to
a grid order Nsg can be estimated using

Msg ≈ ηg(Nsg + 1)2, (3.2)

where ηg depends on the specific sampling scheme and indicates the degree of overde-
terminacy. ηg = 1 represents the best possible grid efficiency, ηg > 1 indicates a certain
inefficiency. Very few grids, such as hyperinterpolation (Zotter, 2009b) or quadratures
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3.2 Spatial Discretization

proposed by Fliege and Maier (1999), achieve a theoretical ηg = 1. Throughout this
work, two different quadratures are used; equiangular Gauss quadratures (Stroud and
Secrest, 1966) with ηg = 2, as well as quite efficient equidistant Lebedev quadratures
(Lebedev, 1977) with ηg = 1.3, cf. Figure 3.1. Lebedev quadratures are defined for a
limited subset of orders only. Both quadrature types turn out to be stable and both
have certain advantages depending on the respective application.

Drawing a first important conclusion, discrete spatial sampling reduces the modal
resolution of the system.

Figure 3.1 Equiangular Gauss quadrature with 72 nodes (left) and equidistant Lebe-
dev quadrature with 50 nodes (right). Both have grid order Nsg = 5. The reason for
the difference in efficiency can be easily observed in the figure in this case; the Gauss
quadrature provides disproportionately many nodes at the poles, while the lowest node
density (around the equator) is the decisive factor. The Levedev quadrature provides
nearly equally spaced nodes on the sphere, which is the reason for its higher efficiency.

3.2.3 Discrete Spatial Fourier Transform

Instead of having continuous knowledge of the pressure on the surface S0, we only
have information at discrete quadrature nodes (θgsg , ϕgsg ) ∈ S0 at this point. Hence,
the continuous spatial Fourier transform given in Eq. (2.92) is not applicable. The
corresponding discrete spatial Fourier transform for the estimation of spatial Fourier
coefficients yields

G̊nm(r0, ω) ≈
Msg∑
gsg=1

wgsg G(θgsg , ϕgsg , r0, ω)Y
m
n (θgsg , ϕgsg )

∗, (3.3)

where wgsg denotes the quadrature weights. Note that only for n ≤ Nsg valid spatial
Fourier coefficients can be deduced. As we use quadrature based sampling schemes
here, approximation errors are expected. However, the errors are negligible in practice.
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3 Constraints in Technical Systems

3.3 PWD and Modal Beamforming with Limited Modal Order

Discrete spatial sampling reduces the maximum resolvable modal order of the system.
Limiting the system’s resolution to a maximum order N (≤ Nsg) has direct impact on
the properties of the PWD and modal beamforming.

The order-limited PWD in contrast to the ideal PWD from Eq. (2.143) yields

D(θd, ϕd, ω) =

N∑
n=0

n∑
m=−n

1

in jn(
ω
c
r0)

P̊nm(r0, ω)Y
m
n (θd, ϕd). (3.4)

Analogous, order-limited modal beamforming yields

B′(θd, ϕd, ω) =

N∑
n=0

n∑
m=−n

B̊
(R)
nm (ω)

in jn(
ω
c
r0)

P̊nm(r0, ω)Y
m
n (θd, ϕd). (3.5)

Both expressions are quite similar to their ideal counterparts from Section 2.19, except
for the first sum running only up to the maximum finite order N instead of N →∞.

N=5 N=10 N=20 N=30

0←− no spatial resolution
(omni-directional)

perfect spatial resolution −→∞
(spatial Dirac pulse)

Figure 3.2 Normalized logarithmic magnitude of the PWD for a single plane wave
impact at different exemplary orders N = {5, 10, 20, 30} projected to a spherical sur-
face with a limited dynamic range between -50 dB (white) and 0 dB (black) for better
visualization. The corresponding magnitudes are shown in Figure 3.3.

The order reduction has a severe impact on both operations. The ideal PWD for
N →∞ describes a spatial dirac pulse with an infinitely small beam (infinite directional
gain) towards a target direction and perfect rejection of any other direction. Truncation
of the order N entails a widened main-lobe (which means lower spatial resolution) and
the appearance of additional side-lobes. The effects of truncating the modal order
are illustrated in Figure 3.2 and Figure 3.3. Towards infinite orders N → ∞, the
response approaches a spatial Dirac pulse with perfect spatial resolution. In contrast,

72



3.3 PWD and Modal Beamforming with Limited Modal Order
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Figure 3.3 Normalized magnitude response of the PWD (regular beampattern) in the
azimuth plane (θd = π/2, ϕd = [−π, π]) for a plane wave impact from (θw = π/2,
ϕw = 0) at modal orders N = {5, 10, 20, 30}.

for N = 0 no spatial resolution can be achieved, since we only use the first omni-
directional spherical harmonic mode. The total number of lobes including main-lobe,
back-lobe, and all side-lobes is N + 1. Low truncation orders bring up few but strong
side-lobes, high orders bring up more but weaker side lobes. For N →∞ the side-lobes
vanish.

At this point, the relation of the PWD and classical beamforming approaches known
from arbitrary sensor arrays (e.g. antenna arrays) becomes apparent. The order-
truncated PWD with B̊nm = 1 is commonly referred to as regular beampattern. Clas-
sical beamforming objectives, such as controlling the directional gain or maintaining
a minimum side-lobe rejection level etc., can be established using the beamforming
coefficients B̊nm(ω). Approaches for applying these classical beamforming objectives
known from communications system theory in the modal domain can be found e.g. in
(Teutsch, 2007), (Koretz and Rafaely, 2009), or (Agmon et al., 2009). These topics
are not further discussed in the following, since all presented techniques are based on
PWD with regular beampattern.

An important measure for beamformers, as well as for directional microphones, is
the directivity index (DI), which describes the maximum achievable directional gain
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3 Constraints in Technical Systems

referred to an omni-directional receiver. The DI for modal beamformers can be simply
calculated using (Meyer and Elko, 2002)

DI = 10 log
[
(N + 1)2

]
. (3.6)

The DI of the modal beamformer for orders N = [0, 30] is plotted in Figure 3.4. For
a first order beamformer (N = 1), the relation of modal beamforming and classical
directional microphones becomes visible. The hypercardioid microphone is a first order
transducer with maximum directional gain. Both, the modal beamformer with N = 1

and the hypercardioid microphone, have a directivity index DI = 6.02dB.
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Figure 3.4 Directivity index (DI) of a modal beamformer with N = [0, 30].

A remarkable property of modal beamforming is the native frequency-independence
of the beam, which is commonly referred to as constant directivity (CD) beamform-
ing. Of course, the beam can be intentionally modified by setting frequency-dependent
coefficients B̊nm(ω), but while applying frequency-independent beamforming coeffi-
cients, the beampattern is frequency-independent likewise. This property is owed to
the frequency-independence of the spherical harmonics. The CD property is illustrated
in Figure 3.5. Unfortunately, constraints in technical systems usually impede maintain-
ing true CD behavior on the entire audio spectrum in practice.

3.4 Composite Signal

It might appear logically consistent that integrating ideal PWD signals (i.e. a continu-
ous distribution of ideal spatial Dirac pulses) over the closed sphere S using

C′(ω) =
1

4π

∫∫
S

∞∑
n=0

n∑
m=−n

1

in jn(
ω
c
r0)

P̊nm(r0, ω)Y
m
n (θ, ϕ)dΩ (3.7)
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Figure 3.5 Normalized magnitude response |D(θd, ϕd, ω)/(N +1)2| of the PWD (reg-
ular beampattern) in the azimuth plane (θd = π/2, ϕd = [−π, π]) for an order-limited
broadband plane wave impact from (θw = π/2, ϕw = 0) at decomposition orders N = 5

(top) and N = 20 (bottom) versus the temporal frequency. The beampattern is con-
stant. Note that the order of the wave is matched to the order of the decomposition
here.

yields an omni-directional output signal C′(ω) that exactly corresponds to the signal
C0(ω) that can be measured using an ideal omni-directional transducer at the origin
of the sphere S0. Hence, we find the relation C′(ω) = C0(ω).

However, in practice, we face two limitations concerning this equation. Since we assume
the order of the source system delivering Pnm(r0, ω) to be limited to any finite order
N , the order of the first sum needs to be limited to N .

Moreover, continuous integration over the surface S cannot be performed in practice.
Hence, we must restrict ourselves to a finite number of discrete spatial nodes on S in
order to be able to perform numeric integration in this context. It appears reasonable
to fall back on quadratures (cf. Section 3.2.2), since they are precisely designed for
performing numerical integration on the sphere. In addition, quadratures provide
a valid space-frequency domain base for spherical harmonics up to the order of the
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3 Constraints in Technical Systems

quadrature. Thus, the continuous integration over S is exchanged with a summation
over the discrete quadrature nodes (θgcg , ϕgcg ), gcg = [1,Mcg], with Mcg denoting
the total number of nodes. The nodes (θgcg , ϕgcg ) need to be scaled with individual
quadrature weights wgcg to support equality, cf. Section 3.2.2. Finally, the entire
expression reads

C(ω) =
1

4π

Mcg∑
gc=1

wgcg

N∑
n=0

n∑
m=−n

1

in jn(
ω
c
r0)

P̊nm(r0, ω)Y
m
n (θgcg , ϕgcg ). (3.8)

The involved quadrature is referred to as composite grid with grid order Ncg in the
following, as it is used to recompose the previously decomposed wave field. The signal
C(ω) is referred to as composite signal, accordingly. Even under the given constraints
we still find C(ω) = C0(ω), while the composite grid order fulfills Ncg ≥ N . This once
more points to the closed form of the spherical harmonic decomposition approach and
the suitability of quadratures serving as discrete space-frequency domain base. Eq (3.8)
and its logical consequences, i.e. C(ω) = C0(ω) for Ncg ≥ N are of great importance
in the following.

3.5 Binaural Systems with Limited Modal Resolution

Limited modal resolution is a fundamental problem for binaural reproduction. Modal
sound field descriptions that are truncated at low orders turn out to be incompatible
with HRTFs. This issue is discussed in (Bernschütz, 2014) and (Bernschütz et al.,
2014).

In order to point out the elementary problem, we begin with analyzing the modal
properties of HRTFs. As discussed in Section 2.20, a spherical HRTF set Hl,r(θ, ϕ, ω)

can be regarded as a complex function of magnitude and phase on the sphere. Hence,
the spatial Fourier transform is applicable in order to obtain spatial Fourier coefficients
H̊l,r

nm(ω). Figure 3.6 shows the modal intensity distribution of a measured HRTF set
that is described in Section 4.3.2.

As is clearly visible from Figure 3.6, the HRTFs progressively involve higher modes at
higher temporal frequencies. The higher orders arise due to air-path delays and complex
physical scattering effects around the head. Both are of fundamental importance for
establishing localization cues that can be read by the human auditory system for the
localization of sound sources. Thus, in order to resolve HRTFs that cover the entire
audible time-frequency bandwidth and that are capable of establishing the necessary
localization cues for binaural auralization, the system should contain modal orders2

up to approximately N = 35.
2The given value refers to HRTFs without torso, cf. Section 4.3.2.
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Figure 3.6 Modal intensity distribution for one ear channel of a measured spherical
HRTF set versus the temporal frequency. Contributions of all modes m = [−n, n] in
a specific order n are summed. The data set is normalized to 0 dB and the dynamic
range is limited to −48 dB for better visualization.

With a sampling scheme with highest possible efficiency (ηg = 1), an array with around
1300 nodes (microphones) would be required to strictly fulfill this claim. This is ob-
viously not feasible in practice, unless when using a scanning microphone array. The
latter, however, is not capable of performing real-time operation. There are also other
technical constraints that decrease the maximum achievable modal bandwidth of mi-
crophone arrays, which are discussed during the next sections. A reasonable modal
resolution of microphone arrays is in the range of approximately N = [4, 7], far away
from N = 35. A fundamental adaptation problem arises, which immediately becomes
apparent in the modal domain. The problem is illustrated in Figure 3.7.

The source system (microphone array) only delivers lower orders N = [0, 5] in the
given example. There is no information available to feed the higher modal inputs of
the HRTF set. Setting the residual inputs to zero, which means truncating the order
of the HRTF set, would entail severe loss of information at higher temporal frequencies.
Besides the inherent loss of spatial resolution in the modal domain, we expect some
kind of low-pass characteristics to arise in the time-frequency domain, since the signal
contributions coded in higher modes would get lost without substitution.

The effects of the order-truncation can be be evaluated applying an order-limited in-
verse spatial Fourier transform to the spatial Fourier coefficients H̊l,r

nm(ω) that describe
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Source system 
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Figure 3.7 Illustration of the adaptation problem between a source system with lim-
ited modal resolution and a spherical HRTF set in the modal domain.

the spherical HRTF set in the modal domain. The inverse spatial Fourier transform is
introduced in Eq. (2.96) and the order-limited inverse transform of the HRTFs yields

Hl,r
N (θ, ϕ, ω) =

N∑
n=0

n∑
m=−n

H̊l,r
nm(ω)Ym

n (θ, ϕ), (3.9)

where Hl,r
N (θ, ϕ, ω) describes a HRTF in the space-frequency domain that is limited

to the modal order N in the spherical wave spectrum domain. The angle pair (θ, ϕ)

denotes the source position. Figure 3.8 shows the impact of the order-truncation in
the modal domain on the spectral magnitude in the time-frequency domain for two
exemplary source positions or head rotations, i.e. a frontal and a lateral HRTF.

For the frontal HRTF, depicted in Figure 3.8 a), we can indeed observe the expected
low-pass effect that decreases with increasing truncation order. The low-pass effect
is not constant and depends on the source position or head rotation. If the ear is
e.g. turned towards the source (lateral HRTF), the low-pass effect nearly vanishes and
the HRTF appears to be comparatively well reproduced even at lower truncation orders.
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Figure 3.8 Impact of truncating the order of HRTFs in the modal domain on the
spectral magnitude in the time-frequency domain for a) a frontal and b) a lateral
HRTF. The left ear channel is evaluated.

A corresponding problem and identical phenomena must be observable in the space
domain, since the modal domain and the space domain are unambiguously connected
through the spatial Fourier transform.

In theory, a single far-field HRTF, Hl,r(θ, ϕ, ω), in the space domain is assumed to be
acquired using a point source located at infinite radius in the direction (θ, ϕ). Using
ideal PWD, the spatial Dirac pulse in the space domain is capable of resolving this
constellation, since it allows for perfect spatial sampling. For this reason, the ideal
operation is claimed to be transparent in Section 2.20.

In contrast, considering PWD with limited modal order, we observe a certain degen-
eration of the spatial Dirac pulse that manifests itself in a widened main-lobe and
the appearance of additional side-lobes. Neglecting the side-lobes for simplicity, an
ideal point source would be interpreted as a source with dedicated spatial expansion
according to the width of the main-lobe. The width of the main lobe increases as the
truncation order of the PWD decreases. The previously assumed point source is now
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translated into an isophasic expanded spherical source, which basically excites several
HRTFs at once. Since the ear is not placed at the physical origin, which is the mathe-
matical reference of the PWD, different propagation path lengths arise. Different path
lengths entail different phase shifts. As a consequence, the overlay of the signals shows
cancellations, especially at high frequencies, where the path lengths start to exceed
half cycle of the wave length. This implies low-pass characteristics of the transmission
system in the time-frequency domain.

To clarify this, a simplified monopole array analogy can be used as illustrated in Figure
3.9. Due to the order truncation of the PWD a dense array of monopole sources is
located on a spherical cap that has an expansion according to the main lobe width of
the degenerated Dirac pulse. The spherical cap is embedded in an imaginary sphere
around the physical origin (mathematical reference of the PWD).

In Figure 3.9 a), the receiver is placed at the origin and the path lengths from all
radiating monopoles are identical. Due to the phase coherence, the contributions always
sum up perfectly, independent of the cap expansion. We obtain a flat magnitude
response in the time-frequency domain. As soon as HRTFs are involved, the receiver
is located with a certain spatial offset from the origin, cf. Figures 3.9 b) and c).

The path lengths are different and depend either on the head rotation or the direction
of sound incidence. At low frequencies, the path differences are widely negligible but
at higher frequencies with shorter wavelengths they evoke intense cancellations. This
leads to low-pass effects that depend both on the order of the truncation, thus on the
main lobe width, and on the head rotation or sound incidence direction. If the ear is
turned towards the source, cf. Figure 3.9 b), the path differences are comparably low,
so is the manifestation of the low pass effect. If, by contrast, the head looks towards
the source or the source is located behind the head, the path differences become larger,
and, as a consequence, the low pass effect gets more prominent, cf. Figure 3.9 c).

A very similar behavior can be observed when truncating the modal order of the HRTF
set, cf. Figure 3.8. The simplified analogy does not deliver exactly the same results,
since neither the side lobes nor the decrease of intensity in the main lobe away from
the center are considered. This overemphasizes the cancellation effects. Nevertheless,
the elementary problem becomes clear. Identical problems and effects are observable
in both the spherical wave spectrum and the space-frequency domain, indicating a
fundamental adaptation problem. The following sections focus on the adaptation of
HRTFs to systems providing lower modal order. Nevertheless, the approach is generally
applicable for the adaption of two arbitrary system with different modal resolution.
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Figure 3.9 Simplified monopole array analogy in the space domain for pointing out
the modal adaptation problem.
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In order to find a suitable adaptation approach that conserves the spectral transmission
properties in the space-frequency domain in the best possible way, we return to equation
Eq. (2.145) that is used for generating the binaural output signal Y l,r(ω) from a modal
sound field description P̊nm(r0, ω) under ideal conditions,

Y l,r(ω) =
1

4π

∫∫
S
Hl,r(θ, ϕ, ω)

∞∑
n=0

n∑
m=−n

1

in jn(
ω
c
r0)

P̊nm(r0, ω)Y
m
n (θ, ϕ)dΩ.

We find the latter equation to be very similar to Eq. (3.7) that describes the ideal
recomposition, except for the introduced HRTF weighting by Hl,r(θ, ϕ, ω) . In practice,
we face the identical constraints concerning the finite order N of the source system
delivering Pnm(r0, ω) on the one hand and continuous integration over S on the other
hand. The summation is limited to N and the continuous integration is replaced by
a discrete composite grid (quadrature), analogous to the transition from Eq. (3.7) to
Eq. (3.8),

Y l,r(ω) =
1

4π

Mcg∑
gc=1

wgcg H
l,r(θgcg , ϕgcg , ω)×

N∑
n=0

n∑
m=−n

1

in jn(
ω
c
r0)

P̊nm(r0, ω)Y
m
n (θgcg , ϕgcg ). (3.10)

The HRTFs must exactly match the composite grid angles (θgcg , ϕgcg ). Thus, either
the involved HRTF set is measured with respect to matching composite grid angles
(θgcg , ϕgcg ) or the necessary signals are derived from a high-resolution HRTF set using
spherical harmonic interpolation for spatial resampling,

Y l,r(ω) =
1

4π

Mcg∑
gc=1

wgcg

[
M′∑
g′=1

N′∑
n′=0

n′∑
m′=−n′

w′
g′ H

l,r(θg′ , ϕg′ ,ω)Y
m
n (θg′ , ϕg′ )

∗×

Ym
n (θgcg , ϕgcg )

]
N∑

n=0

n∑
m=−n

1

in jn(
ω
c
r0)

P̊nm(r0, ω)Y
m
n (θgcg , ϕgcg ).

(3.11)

The spherical harmonic interpolation in square brackets consists of a forward spatial
Fourier transform applied to the high-resolution HRTF set and a backward spatial
Fourier transform to the required HRTF nodes (θgsg , ϕgsg ), which is discussed in greater
detail in Section 3.12.4. The HRTFs need to be measured on a grid with M ′ nodes
that is capable of resolving spherical harmonic orders N ′ ≥ 35 for the HRTF set that
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3.5 Binaural Systems with Limited Modal Resolution

is used throughout this work and discussed in Section 4.3.2. The angles (θg′ , ϕg′ ) refer
to the measured nodes of the HRTF set and w′

g′ denotes the corresponding quadra-
ture weights. While performing this operation, rotation of the HRTFs is performed
using Wigner-D functions or applying respective angle offsets to (θgsg , ϕgsg ) during the
backward transform as previously discussed in Section 2.20.

So far, the major question remains, i.e. how to adapt the high-order HRTFs to the low
order source system in a best possible way, getting rid of the inherent low-pass filter
effects.

3.5.1 Spatial Subsampling of HRTFs

During the transition from Eq. (2.145) to Eq. (3.10), the continuous integration over
the sphere S is replaced by a summation over discrete nodes of a quadrature grid that
was previously defined as composite grid. The composite grid is the key for a suitable
adaptation of the high-order HRTFs to a low-order source system, as will be shown in
the following.

In order to achieve a best possible approximation to the continuous integration, it
might appear reasonable to use a composite grid with the highest possible resolution,
i.e. Mcg → ∞ (Ncg → ∞). At least, the composite grid might be expected to resolve
the HRTF set properly, i.e. providing Ncg ≥ 35 in the given context. This means
covering Msg ≥ 1730 nodes using a Lebedev quadrature or Msg ≥ 2592 nodes using a
Gauss quadrature, for instance.

With a high-order composite grid, the HRTFs indeed unfold their full modal resolution,
but as a consequence, we run into the modal adaptation problem discussed earlier.

However, considerable improvement of the adaptation can be achieved by using a low-
order composite grid instead that exactly matches the order of the low-order source
system, i.e. Ncg = N . Thus, if the source system provides a maximum order of N = 5

for example, the composite grid should match Ncg = 5 likewise. For the given example
using Ncg = 5, a Gauss composite grid consists of Mcg = 72 and a Lebedev grid of
Mcg = 50 nodes only. Using a low-order composite grid indeed means to perform
spatial subsampling of the HRTF set, since we are restricted to Mcg spatial nodes for
sampling the entire spherical HRTF set. Using subsampling in the space-frequency
domain enables us to properly reduce the modal resolution of the HRTF set and to
avoid the spectral low-pass effects due to the modal mismatch of both systems.

3.5.2 HRTFs with Limited Modal Resolution (RHRTFs)

In order to demonstrate the adaptation enhancements using spatial HRTF subsampling,
as well as to evaluate the impact of the modal reduction on HRTFs in general, suitable

83



3 Constraints in Technical Systems

signals need to be generated and appropriate measures need to be defined that allow
for performing meaningful and informative analysis.

A reasonable reference for a comparative analysis is the original HRTF Hl,r(θ, ϕ, ω). In
contrast to the original HRTF, a processed signal is generated by inserting an analytic
plane wave with incidence direction (θ, ϕ) defined by

P̊nm pw(θ,ϕ)(r0, ω) = 4π in jn(
ω
c
r0)Y

m
n (θ, ϕ)∗ (3.12)

into Eq. (3.11),

Hl,r
N,Ncg

(θ, ϕ, ω) =

Mcg∑
gc=1

wgcg

[
M′∑
g′=1

N′∑
n′=0

n′∑
m′=−n′

w′
g′ H

l,r(θg′ , ϕg′ , ω)×

Ym
n (θg′ , ϕg′ )

∗ Ym
n (θgcg , ϕgcg )

]
N∑

n=0

n∑
m=−n

Ym
n (θgcg , ϕgcg )Y

m
n (θ, ϕ)∗.

(3.13)

The output signalHl,r
N,Ncg

(θ, ϕ, ω) describes a HRTF with limited modal resolution with
the plane wave order N and the composite grid order Ncg. For the subsequent simula-
tions the HRTFs presented in Section 4.3.2 are used. The HRTF set Hl,r(θg′ , ϕg′ , ω)

is measured on a Lebedev grid with M ′ = 2702 spatial sampling nodes. Spatial resam-
pling to the required composite grid nodes (θgcg , ϕgcg ) is inherently performed within
Eq. (3.13) by employing spherical harmonic HRTF interpolation.

At this point we have two different signals Hl,r(θ, ϕ, ω) and Hl,r
N,Ncg

(θ, ϕ, ω) that can
be adequately compared. In the following, we compare the magnitudes |Hl,r(θ, ϕ, ω)|
and |Hl,r

N,Ncg
(θ, ϕ, ω)|. Another option would be to evaluate the phase responses.

For evaluating several different angles (θj , ϕj), j = [1, J ] at once, it is more useful
to restrain the data to a single value describing an appropriately averaged spectral
deviation between |Hl,r(θj , ϕj , ω)| and |Hl,r

N,Ncg
(θj , ϕj , ω)| for a specific angle (θj , ϕj).

We introduce the measure ∆E(θj , ϕj , N,Ncg) for that purpose. To simplify matters,
the calculation of the latter is described by the informal equation

∆E(θj , ϕj , N,Ncg) =

⏐⏐⏐⏐⏐20 log10

(
avg

[ 1−20 kHz  
avg1/3 oct

[
|Hl,r

N,Ncg
(θ, ϕ, ω)|

|Hl,r(θ, ϕ, ω)|

]])⏐⏐⏐⏐⏐. (3.14)

The magnitude deviation is calculated by division of |Hl,r
N,Ncg

| by |Hl,r| in a first step.
In a second step, the spectral values are grouped and pre-averaged in 1/3 oct bands
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3.5 Binaural Systems with Limited Modal Resolution

to account for logarithmic frequency scaling that relates to our perception. Deviations
in the high frequency range would be overemphasized otherwise. The evaluation is
restricted to a temporal frequency range of 1− 20 kHz, since the spectral deviation is
negligible below 1 kHz. In a third step, the resulting 1/3 oct block values are averaged
and converted to decibels. In a fourth step, the absolute value of the decibel value
is taken. Although it might not appear perfectly reasonable from a perceptual point
of view, positive and negative deviations are treated equal, which simply allows for a
clearer graphical representation of the data set.

In order to obtain an even more abstract measure that accounts for the mean spectral
magnitude deviation over the entire sphere S for a certain wave order N and composite
grid order Ncg in a single value, we define

∆̂E(N,Ncg) =
1

J

J∑
j=0

wj ∆E(θj , ϕj , N,Ncg). (3.15)

For the subsequent simulations an equidistant Lebedev quadrature with J = 974 nodes
(θj , ϕj) and weights wj is used to acquire representative average deviation values over
the entire sphere S. ∆̂E(N,Ncg) for N ∈ [3, 9] × Ncg ∈ [3, 14] is depicted in Figure
3.10 using two different composite grid types, i.e. Lebedev and Gauss quadratures, in
order to evaluate the adaptation properties using different wave orders vs. composite
grid orders.
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Figure 3.10 ∆̂E(N,Ncg) in dB coded in the gray scale for N ∈ [3, 9]×Ncg ∈ [3, 14].

Figure 3.10 clearly shows the minimum of the magnitude deviation for Ncg = N , which
indicates that the generated signal Hl,r

N,Ncg
is most similar to the original HRTF Hl,r

for this constellation. Composite grids with Ncg > N or with Ncg < N lead to larger
deviations of the generated signal. Hence, spatial subsampling of the HRTF set to the
order of the source system indeed optimizes the overall transmission properties of the
coupled system.
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As previously discussed, the deviation decreases for increasing wave orders, since both
signals are claimed to become identical for high orders, i.e. Hl,r

(N,Ncg)→∞ = Hl,r. In
practice, an order of Ncg = N ≥ 35 can be considered sufficient for the given HRTF set
to achieve just about identical signals with negligible deviation on the entire audible
spectrum, i.e. we assume Hl,r

(N,Ncg)≥35
= Hl,r.

Furthermore, we observe certain differences between the Lebedev and the Gauss com-
posite grid, which will turn out to be a crucial factor of influence later on.

Since we have shown that order-matched composite grids Ncg = N achieve the most
convenient adaptation properties, we restrict the discussion to this condition hereafter.
This implies a constant relation between the modal system order and the compos-
ite grid order, which makes the additional index Ncg dispensable. Hence, Hl,r

N,Ncg

from Eq. (3.13) is reduced to Hl,r
N . Analogous, ∆E(θj , ϕj , N, [Ncg]) is reduced to

∆E(θj , ϕj , N). Hl,r
N (θ, ϕ, ω) is referred to as head-related transfer function with limited

modal resolution (RHRTF).

3.5.3 Properties of RHRTFs

We have found the RHRTF to be identical to the HRTF for high modal orders. Never-
theless, even though the adaptation using spatial subsampling reduces the deviations,
the signals cannot be expected to be identical when scaling down the modal order
of the RHRTF, which is shown in Figure 3.10. In order to gain more specific infor-
mation on the properties of RHRTFs, ∆E(θj , ϕj , N) is evaluated using a low wave
order of N = 5 and a Lebedev composite grid in steps of 1◦ over the entire sphere
S, i.e. θj ∈ [0◦, 180◦] × ϕj ∈ [0◦, 359◦]. The result is depicted in Figure 3.11 using a
Mollweide map projection (Snyder, 1997), (Bernschütz, 2012b) for better illustration.
The left ear signal is used for evaluation. The ear position is marked. For judging the
overall transmission properties, we need to keep in mind that a RHRTF consists of two
ear channels that must be considered as a coupled pair. Neglecting possible anatomic
asymmetries, the opposite ear delivers equivalent results. The map just needs to be
mirrored horizontally for the opposite ear.

The auditory system combines both ear signals. As the influence of two independently
modified ear signals on the perception is unknown in the given context, a reasonable
combined analysis of both ear signals is hardly possible. For this reason, we further
restrict the analysis to single ear signals. Nevertheless, a suitable combined analysis is
inherently performed during the listening experiments in Section 5.

The deviations vary considerably depending on the wave incidence direction. Waves
that arrive at the opposite side of the ear tend to entail larger deviations. Figures 3.12
to 3.14 show exemplary HRTF and their corresponding RHRTF magnitudes.
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Figure 3.11 ∆E(θj , ϕj , N) (values encoded using different gray intensities) using a
low wave order of N = 5 and a Lebedev composite grid for incidence directions θj ∈
[0◦, 180◦] × ϕj ∈ [0◦, 359◦]. The markers (a), (b) and (c) refer to subsequent Figure
3.12, Figure 3.13 and Figure 3.14.
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Figure 3.12 HRTF and RHRTF (N = 5, Lebedev) magnitudes for an incidence
direction according to marker (a) in Figure 3.11. The deviation is rather small in this
case. The dotted line shows the same HRTF when simply truncating its modal order
to N = 5 or using a high order composite grid instead of order-matched subsampling.

Figure 3.12 shows a case with low deviation. Figure 3.13 is a random example that
approximately corresponds to the overall mean deviation. Figure 3.14 shows a particu-
larly bad example that corresponds to the maximum deviation for the entire RHRTF
set. The dotted line in Figure 3.12 shows the result for the respective HRTF that
is truncated at a modal order of N = 5 instead of using spatial subsampling. The
identical magnitude response is achieved using a high order composite grid instead of
a matched-order composite grid. The low-pass effect is clearly visible.
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Figure 3.13 HRTF and RHRTF (N = 5, Lebedev) magnitudes for an incidence
direction according to marker (b) in Figure 3.11. The deviation in this example ap-
proximately corresponds to the mean overall deviation.
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Figure 3.14 HRTF and RHRTF (N = 5, Lebedev) magnitudes for an incidence
direction according to marker (c) in Figure 3.11.

Figure 3.15 is generated analogous to Figure 3.11 but using Gauss composite grids
instead of a Lebedev grid. Comparing Figure 3.11 and the top image of Figure 3.15
reveals the influence of using different composite grid types. Different RHRTF orders
N = {5, 7, 11} are provided to illustrate the trend of ∆E for increasing orders. As
expected, the deviation ∆E globally decreases at higher wave orders. The RHRTFs
become more similar to the HRTFs for all incidence directions.
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Figure 3.15 ∆E(θj , ϕj , N) (values encoded using different gray intensities) for different
wave orders N = {5, 7, 11} using Gauss composite grids.
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Limited modal resolution and an appropriate adaptation of the HRTFs can clearly be
regarded as an important factor of influence concerning the binaural reproduction of
microphone array signals or modal sound field descriptions in general. So far this has
not been discussed in the literature. Considerable deviations arise between HRTFs and
low-order RHRTFs depending on the direction of incidence. However, a pure technical
analysis or comparison of the ear signals does not allow for any reasonable assessment of
the perceptual influences. Therefore, extensive listening experiments were performed,
in order to assess the overall perceived audio quality of different RHRTFs compared
to HRTFs on the one hand and specific perceptual attributes that are inherent to
RHRTFs on the other hand. The listening experiments are presented in Section 5.

3.5.4 Positive Side-Effects of Modal Reduction and Spatial HRTF Subsampling

A convenient side-effect of the spatial subsampling approach is the dramatically reduced
number of required HRTF nodes for building a system that is capable of representing
sound incidence from arbitrary directions over the full sphere S and that enables free
horizontal, vertical and lateral head rotation. Assuming e.g. a particularly low maxi-
mum system order of N = 5 using a Lebedev composite grid, we only need to measure
Mcg = 50 HRTF nodes distributed on the entire sphere.

The reduced number of nodes is highly convenient for individual HRTFs, cf. Section
3.12.1, since measuring full-sphere HRTF sets with high spatial resolution is time-
consuming.

In addition, this approach provides considerable potential for designing scalable spatial
audio data reduction algorithms.

3.6 Radial Filters

Radial filters are included in the PWD (cf. Section 2.19) and compensate for the
radial portion of the Helmholtz equation in spherical coordinates that is solved by
spherical Bessel and Hankel functions (cf. Section 2.10.2). The radial filters scale the
amplification gain of the spherical harmonic modes. For each mode, a specific radial
filter function is applied that depends on the measurement radius r0 and the temporal
frequency ω. The radial filters consist of (N + 1) single time-frequency domain filters.
In this work, the radial filters are implemented as finite impulse response (FIR) filters,
which due to the non-causal portions adds some latency to the system. Alternative
approaches for approximating infinite impulse response (IIR) radial filters are proposed
e.g. in (Baumgartner et al., 2011).
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3.6 Radial Filters

3.6.1 Sphere Configuration

The radial filters depend on the sphere configuration. The sphere configuration de-
scribes whether the sensor nodes on S0 are located in free field or are mounted on a
rigid spherical body on the one hand, and the type of sensors (e.g. omni-directional,
cardioid) (Rafaely, 2005) on the other hand.

Starting from Eq. (2.143) that describes the PWD and using a slightly different notation
yields

D(θd, ϕd, ω) = 4π
∞∑

n=0

n∑
m=−n

[
1

4π in jn(
ω
c
r0)

]
P̊nm(r0, ω)Y

m
n (θd, ϕd). (3.16)

The term in square brackets describes the radial filters for omni-directional sensors
located in free field (open sphere). In order to simplify the expression, the radial filters
are expressed as (Rafaely, 2005)

dOS
n (ω

c
r0) =

[
4π in jn(

ω
c
r0)
]−1

. (3.17)

The mode strength and the filter magnitudes for this configuration are depicted in
Figure 3.16.
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Figure 3.16 Mode strength (left) and magnitudes of the radial filters |dOS
n (ω

c
r0)|

(right) for an open sphere array with omni-directional transducers at mode orders
n = [0, 7].

The open sphere configuration with omni-directional transducers is critical, since the
mode strengths drops out and the filter amplification becomes infinite at the zeros of
the spherical Bessel function in the denominator. The physical background is discussed
in (Williams, 1999, pp 217–221). Hence, a single open sphere configuration with omni-
directional transducers is not stable. Balmages and Rafaely (2007) propose a dual-
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sphere approach to avoid this problem. The radii are chosen to complement the mode
strength in the best possible way. The decomposer selects the more stable signal.

An alternative configuration is the open sphere array with cardioid transducers. The
radial filters must account for the gradient portion of the cardioid transducers. They
are defined by (Balmages and Rafaely, 2007)

dOSC
n (ω

c
r0) =

[
4π in 1

2

(
jn(

ω
c
r0)− i j′n(

ω
c
r0)
)]−1

. (3.18)

The mode strength and the filter magnitudes for this configuration are shown in Figure
3.17.
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Figure 3.17 Mode strength (left) and magnitudes of the radial filters |dOSC
n (ω

c
r0)|

(right) for an open sphere array with cardioid transducers at mode orders n = [0, 7].

The minima of the mode strength can be avoided due to the gradient portion of the
cardioid transducer. This configuration is suitable for practical application. However,
cardioid microphones do usually not provide ideal cardioid properties in the entire
temporal frequency range, which might entail impairments during the processing.

A common configuration is the rigid sphere array with omni-directional transducers.
The tranducers are located on an acoustically hard, rigid spherical surface SRS with
radius rRS ≤ r0. The radial filters must account for the scattered field around the rigid
body. The radial filters for this configuration yield (Meyer and Elko, 2002)

dRS
n (ω

c
, r0, rRS) =

[
4π in

[
jn(

ω
c
r0)−

j′n(
ω
c
rRS)

h
′(2)
n (ω

c
rRS)

h
(2)
n (ω

c
r0)

]]−1

. (3.19)
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In most cases, the sensors are flush with the sphere, which implies rRS = r0 and yields
a simplified radial filter expression

dRS
n (ω

c
r0) =

[
4π in

[
jn(

ω
c
r0)−

j′n(
ω
c
r0)

h
′(2)
n (ω

c
r0)

h
(2)
n (ω

c
r0)

]]−1

. (3.20)

The mode strength and the filter magnitudes for this configuration are depicted in
Figure 3.18. The sound velocity is forced to zero at the rigid surface and hence the
sound field is described by the sound pressure only. No dropouts in mode strength
appear. The rigid sphere configuration turns out to be very stable in practice and is
used throughout this work for simulations and measured data sets.
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Figure 3.18 Mode strength (left) and magnitudes of the radial filters |dRS
n (ω

c
r0)|

(right) for a rigid sphere array with flush mounted omni-directional transducers at
mode orders n = [0, 7].

A disadvantage is the bulky appearance and difficult construction of rigid sphere arrays
with large measurement radii. Furthermore, the array body cannot be assumed to be
acoustically transparent. Even if the primary scattered field is taken into account
by the radial filters, the array tends to reflect sound that might be thrown back by
the environment, as long as the array is not placed in the free field. A rigid sphere
array influences the reflection properties of the measured environment. However, for
scenarios in the far-field using common array sizes (e.g. r0 ≈ 0.1m) this effect can be
neglected.

Additional sphere configurations can be derived, but we restrict the discussion to the
latter common configurations in this work.
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With these filter definitions the PWD from Eq. (2.143) can be written as

D(θd, ϕd, ω) = 4π

∞∑
n=0

n∑
m=−n

dOS/OSC/RS
n (ω

c
r0) P̊nm(r0, ω)Y

m
n (θd, ϕd). (3.21)

This allows to account for different sphere configurations and provides a compact ex-
pression. For the order-limited PWD an analogous notation is applied.

In order to perform analysis based on simulated plane waves, analytic plane wave
expressions are introduced that account for the sphere configurations given above.

For an open sphere array with omni-directional transducers the analytic plane wave is
described by

P̊ OS
nm pw(θw,ϕw)(r0, ω) = 4π in jn(

ω
c
r0)Y

m
n (θw, ϕw)∗. (3.22)

The open sphere array with cardioid transducers yields

P̊ OSC
nm pw(θw,ϕw)(r0, ω) = 4π in 1

2

(
jn(

ω
c
r0)− i j′n(

ω
c
r0)
)
Ym
n (θw, ϕw)∗. (3.23)

The rigid sphere array with omni-directional transducers, narrowed down to flush-
mounted transducers (i.e. rRS = r0), results in

P̊ RS
nm pw(θw,ϕw)(r0, ω) = 4π in

[
jn(

ω
c
r0)−

j′n(
ω
c
r0)

h
′(2)
n (ω

c
r0)

h
(2)
n (ω

c
r0)

]
Ym
n (θw, ϕw)∗.

(3.24)

3.6.2 Example Configuration and Phase Responses

For further analysis, we define an exemplary rigid sphere array with r0 = 0.1m. Figure
3.19 shows the mode strength and radial filter magnitudes versus an absolute frequency
scale for this configuration.

Besides of the magnitude responses, the particular phase responses of the complex-
valued radial filters are of great interest. If the radial filters are to be modified in
any way, it is of fundamental importance to maintain the relative phase relationships
between the individual filters. Any individual processing using IIR filters is quite
delicate. This is the main reason why falling back to FIR filters is preferable, as FIR
filters allow for changing the magnitude response while maintaining the original phase
response or to keep the phase relationship constant. The phase responses and the
derived group delays are shown in Figure 3.20.
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Figure 3.19 Mode strength (left) and magnitudes of the radial filters |dRS
n (ω

c
r0)|

(right) for a rigid sphere array with omni-directional transducers and measurement
radius r0 = 0.1m at mode orders n = [0, 7].
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Figure 3.20 Phase response (left) and group delay of the radial filters |dRS
n (ω

c
r0)|

(right) for a rigid sphere array with omni-directional transducers and measurement
radius r0 = 0.1m at mode orders n = [0, 7].

3.6.3 Amplification Demands

One of the major issues concerning the radial filters are the excessive amplification
demands for higher modal orders at low (ω/c) r0 ratios that can be observed in Figures
3.16 to 3.18. Figure 3.19 illustrates the amplification demands for a realistic array
configuration.

In order to maintain the CD properties of the order-limited PWD over the entire
temporal frequency range, illustrated in Figure 3.5, we need to apply the radial filters
depicted in the right plot of Figure 3.19, since the mode strength at high orders and
low temporal frequencies is weak, which is visible in the left plot of Figure 3.19.
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The radial filters are critical in practice. Equipment noise from microphones, micro-
phone amplifiers, and ADCs arises. External electromagnetic interference to the equip-
ment or rounding noise on the digital stage can be considered as further but less relevant
noise sources. The higher-order radial filters require amplification levels that quickly
reach several hundreds of decibels at comparably low temporal frequencies. Thereby,
equipment noise is amplified disproportionately compared to the useful signal, which
can lead to a completely useless array response (Bernschütz et al., 2011b).

3.6.4 Limiting the Radial Filter Gain

The gain of the radial filters needs to be limited for achieving stable array responses
in practice. However, setting a hard limit to the amplification leads to unsteady filter
functions causing leaps in the spherical wave spectrum domain (Bernschütz et al.,
2011b) and inconvenient time domain behavior of the system (Rettberg and Spors,
2014). In order to improve the system properties, a soft-knee limiting approach for
limiting the amplifications gain of the radial filters is presented in (Bernschütz et al.,
2011b). An arctangent function is employed for realizing the soft-knee characteristics
yielding

d̄n(
ω
c
r0) =

2 â

π

dn(
ω
c
r0)

|dn(ωc r0)|
arctan

(
π

2 â
|dn(ωc r0)|

)
, (3.25)

where â denotes the linear amplification limit. Figure 3.21 (left plot) shows the radial
filters dRS

n (ω
c
r0) from Figure 3.19 and Figure 3.21 (right plot) shows the identical

filters with applied soft-knee limiting according to Eq. (3.25) yielding d̄RS
n (ω

c
r0). The

amplification limit is set to âdB = 40 dB in the given example.
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Figure 3.21 Radial filter magnitudes |dRS
n (ω

c
r0)| (left) and |d̄RS

n (ω
c
r0)| with an am-

plification limit of âdB = 40 dB (right).
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For applying the gain limitation, the magnitudes of the filters need to be modified
individually. Since the radial filters are applied as FIR filters, the magnitudes are
modified while the original phase responses (see Figure 3.20) are left untouched.

Limiting the gain of the radial filters has an impact on the array response. Since the
contribution of higher modal orders is reduced, the overall order of the array is reduced
successively for decreasing temporal frequencies. As a consequence, the CD properties
of the PWD cannot hold.

To illustrate this, we trace back to Eq. (3.24) that describes an ideal plane wave:

P̊ RS
nm pw(θw,ϕw)(r0, ω) = 4π in

[
jn(

ω
c
r0)−

j′n(
ω
c
r0)

h
′(2)
n (ω

c
r0)

h
(2)
n (ω

c
r0)

]
Ym
n (θw, ϕw)∗.

Both P̊ RS
nm pw(θw,ϕw)

(r0, ω) and d̄RS
n (ω

c
r0) are inserted into an order-limited PWD:

DL(θd, ϕd, ω) = 4π

N∑
n=0

n∑
m=−n

d̄RS
n (ω

c
r0) P̊

RS
nm pw(θw,ϕw)(r0, ω)Y

m
n (θd, ϕd). (3.26)

The amplification limit is set to âdB = 40dB, cf. Figure 3.21 (right plot). An ideal
plane wave from (θw = π/2, ϕw = 0) is generated using Eq. (3.24) and a scanning
PWD of order N = 7 along the horizontal plane (θd = π/2, ϕd = [−π, π]) is performed
according to Eq. (3.26). The output is depicted in Figure 3.22.
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Figure 3.22 Normalized magnitude response |DL(θd, ϕd, ω)/(N + 1)2| of the PWD
(regular beampattern) in the azimuth plane (θd = π/2, ϕd = [−π, π]) versus the
temporal frequency.

Below approximately 2 kHz, the PWD looses the CD properties and the beam starts
to widen due to missing contributions from higher modal orders, compare Figure 3.21
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Figure 3.23 Normalized magnitude response |DL(θd, ϕd, ω)/(N+1)2| of the PWD for
(θd, ϕd) = (θw, ϕw) with limited radial filter gain. For comparison, the flat response
for full radial filter gain is added.

(left plot). Hence, the spatial selectivity of the PWD is sucessively decreased at low
frequencies.

Apart from the widened beam, a certain decrease of the on-axis gain can be observed.
This is again due to the missing signal contributions from higher modal orders. The
on-axis magnitude response of the PWD versus the temporal frequency is depicted
in Figure 3.23. The on-axis gain loss can be compensated by amplifying the n = 0

omni-directional mode as proposed in (Bernschütz et al., 2011b). No compensation is
necessary in this present context as will be discussed in Section 3.6.7.

3.6.5 Non-critical Radial Filters

The question of a reasonable choice for the amplification limit â arises. Generally, â
could be individually adapted according to the signal-to-noise ratio (SNR). However,
this approach is unsatisfactory since it does not provide a universally valid solution.
The most general choice is lowering the limit to âdB = 0dB. Here, the radial filters
are not allowed to perform any amplification at all. The filters establish the necessary
phase relations and perform attenuation only. This way, the typically critical and
unstable low frequency range is not critical anymore. Specific restrictions or demands
concerning the overall SNR for array processing vanish.

The radial filter magnitudes can be subdivided into two different sections at their
minimum around (ω/c) r0 = N , see Figures 3.16 to 3.18. For (ω/c) r0 ≤ N the
amplification individually depends on the specific order n and quickly rises to excessive
levels. This range is particularly critical. For (ω/c) r0 > N , a common and comparably
moderate increase of amplification can be observed that is roughly comparable to
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a high-shelf filter. The amplification in this range is less critical for realistic array
configurations such as the example configuration depicted in Figure 3.21.

Direct application of the limit of âdB = 0dB in Eq. (3.25) leads to attenuation in
both sections. Attenuation in the upper section (ω/c) r0 > N should not be applied,
since attenuating the amplification in this range would entail a global reduction of high
frequencies. Hence, a specific radial filter set is designed, where the soft-knee limiting
from Eq. (3.25) is applied for (ω/c) r0 ≤ N only. The upper section (ω/c) r0 > N is
left untouched. The respective filter set is denoted as d̃RS

n (ω
c
r0).

The magnitude response |d̃RS
n (ω

c
r0)| for the example configuration is depicted in Figure

3.24. The scanning PWD according to Figure 3.22 using d̃RS
n (ω

c
r0) is illustrated in

Figure 3.25. The on-axis magnitude is shown in Figure 3.26.
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Figure 3.24 Magnitude response |d̃RS
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Figure 3.25 Normalized magnitude response |DL(θd, ϕd, ω)/(N + 1)2| of the PWD
(regular beampattern) in the azimuth plane (θd = π/2, ϕd = [−π, π]) versus the
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Figure 3.26 Normalized magnitude response |DL(θd, ϕd, ω)/(N + 1)2| of the PWD
for (θd, ϕd) = (θw, ϕw) with limited radial filter gain using d̃RS

n (ω
c
r0). For comparison,

the flat response for full radial filter gain is added.

3.6.6 Effective Operational Bandwidth (EOB)

At this point we introduce a new measure called effective operational bandwidth (EOB).
The EOB refers to the temporal frequency range where the array under certain techni-
cal, physical, or numerical constraints still maintains a an ideal response with a certain
error margin of e.g. ±3 dB averaged over all incidence directions. Ideal response refers
to the response from an array under idealized conditions.

From Figure 3.25 and Figure 3.26, we can deduce that the EOB referred to fs/2 =

24 kHz for an array of radius r0 = 10 cm and decomposition order N = 7 is reduced to
around 3.3 oct due to the application of non-critical radial filters.
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Figure 3.27 Effective operational bandwidth (EOB) referred to fs/2 at a temporal
sampling rate of fs = 48 kHz for different orders versus the array radius using non-
critical radial filters with âdB = 0 dB.
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The EOB using non-critical radial filters (âdB = 0 dB) depends on the array radius and
the decomposition order. Figure 3.27 shows the EOB versus the radius r0 for N = 7

and for N = [3, 9], respectively. The EOB is referred to fs/2 = 24 kHz, since we permit
full radial filter amplification in the upper range defined by (ω/c) r0 > N .

A different representation of the same aspect is given in Figure 3.28. The curves denote
the absolute lower frequency limit where the array maintains an ideal PWD response.
Below this limit the array successively decreases in order and looses spatial resolution.
We obtain a drawdown in the magnitude response of the PWD signal.
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Figure 3.28 Lower frequency limit for an ideal array response versus the array radius
using non-critical radial filters âdB = 0 dB.

Finally, we want to know how much bandwidth we gain if we raise the radial filter
limit, i.e. âdB > 0 dB. Figure 3.29 shows the bandwidth gain versus the radial filter
limit referred to the non-critical radial filters with âdB = 0 dB.
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Figure 3.29 Bandwidth gain versus the radial filter amplification limit.

Note that the bandwidth gain depends on the decomposition order and that it increases
only moderately when raising the amplification limit. We already need e.g. +35dB of
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additional radial filter gain compared to the non-critical filters in order to achieve a
bandwidth gain of 1 oct at a decomposition order of N = 7.

3.6.7 Composite Signal

The on-axis magnitude response of the PWD signal shows successive attenuation of
low frequencies due to limiting the radial filters, cf. Figure 3.23 and Figure 3.26. In
order to achieve a flat on-axis magnitude response of the PWD, the output signal
needs to be equalized e.g. by applying an inverted filter that compensates for the
attenuation. A different approach is presented in (Bernschütz et al., 2011b). The
attenuation of low frequencies is compensated using the n = 0 omni-directional signal
that provides an excellent SNR in the respective frequency range. However, equalizing
the on-axis response has other effects on the diffuse-field response of the array. The
array tends to overemphasize diffuse-field components at low frequencies. Defining a
suitable equalization filter is difficult, since it depends on the specific context. This is
not satisfactory, since we are looking for a general solution.

Fortunately, the apparent problem does not require a solution, when we consider the
composite operation of the array. While a single PWD signal shows impairments in
the magnitude response, the magnitude of the composite signal C(ω) (cf. Section 3.8)
is not affected by attenuation or impairment due to the radial filter limiting. C(ω) for
the ideal PWD is calculated using

C(ω) =
1

4π

Mcg∑
gc=1

wgcg D(θgcg , ϕgcg , ω), (3.27)

i.e. by summing several adequately distributed PWD signals on the sphere S. Analo-
gous, we define CL(ω) with limited radial filters,

CL(ω) =
1

4π

Mcg∑
gc=1

wgcg D
L(θgcg , ϕgcg , ω). (3.28)

DL(θgcg , ϕgcg , ω) is defined in Eq. (3.26). Since the decomposition order N does not
influence the magnitude response of C(ω), cf. Section 3.8, the implicit successive
decrease of the modal order does not either. The Mcg order-limited PWD responses at
(θgcg , ϕgcg ) still complement each other, as long as the composite grid fulfills Ncg ≥ N .
We finally find the important relation CL(ω) = C(ω).

We return to the example configuration defined in Section 3.6.2 and the non-critical
radial filters from Section 3.6.5. A plane wave P̊ RS

nm pw(θw,ϕw)
(r0, ω) is generated with

incidence direction (θw = π/2, ϕw = 0◦). Note that the wave incidence direction can
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be chosen arbitrarily. A Lebedev composite grid with Mcg = 86 nodes yielding Ncg = 7

is applied.

The magnitudes of both the composite signal CL(ω) and the contributing (wgcg -
weighted) PWD signals DL(θgcg , ϕgcg , ω)wgcg for this configuration are plotted in Fig-
ure 3.30. The partial dropouts in the PWD signals not pointing towards the wave
incidence direction are due to the successive order reduction at lower frequencies. The
signals cross zero, which does not occur for a PWD with CD. The phenomenon is
obvious from Figure 3.22 and Figure 3.25.
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Figure 3.30 Magnitude responses of the composite signal CL(ω) and the 86 contribut-
ing PWD signals DL(θgcg , ϕgcg , ω)wgcg .

The composite signal, which is the complex sum of the 86 single PWD signals, shows a
perfectly flat magnitude response. Thus, limiting the radial filter amplification of the
single PWD signals indeed does not impair the composite signal. This beneficial prop-
erty of the spherical harmonic de- and recomposition is of fundamental importance for
binaural auralization, since we do not need to apply equalization to the low frequency
range in order to compensate for the gain loss due to the limiting of the radial filters.
The binaural signal is generated using an identical approach but weighting the single
PWD signals with HRTFs, cf. Eq. (3.10) or Eq. (3.11).

3.6.8 Binaural Processing

Limiting the radial filter amplification reduces the effective order of the PWD at low
frequencies, cf. Figure 3.25. Figure 3.6 shows the modal intensity distribution of the
HRTF set. Looking at the lower temporal frequency range f < 500Hz, it becomes
quickly apparent that the HRTF set does only cover lower orders. The information
at low frequencies is largely coded in low orders n = 0 up to n = 2. For about
f > 1 kHz higher modal orders start to appear sucessively. It becomes obvious that
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at low frequencies there is no need for fully resolving higher modal orders for binaural
auralization. As a consequence, the implicit order-reduction due to limiting the radial
filters is acceptable under certain conditions.

The critical frequency of the radial filters is around (ω/c) r0 ≈ N and depends on the
measurement radius r0. Non-critical radial filters |d̃RS

n (ω
c
r0)| for different measurement

radii r0 are depicted in Figure 3.31.
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Figure 3.31 Magnitude of the non-critical radial filters |d̃RS
n (ω

c
r0)| for different mea-

surement radii r0 = {5, 10, 15, 30} cm.

For (ω/c) r0 > N full modal resolution N is achievable. For (ω/c) r0 < N the amplifica-
tion limiting successively starts to reduce the effective order of the array. For a certain
range below (ω/c) r0 < N the radial filters still maintain their original magnitude until
they run into the soft-knee limiter. The limit for fully resolving a mode n is located at
the 0 dB-crossing for the original filters or at the knee for the non-critical filters.

If we take the configuration with r0 = 15 cm from Figure 3.31, the critical frequency
is located at 2.7 kHz. Mode n = 7 is resolved for about f > 2 kHz, n = 6 for approxi-
mately f > 1.5 kHz or n = 5 for about f > 1 kHz and so forth.
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These values need to be matched with the modal intensity distribution of the HRTF
set depicted in Figure 3.6 in order to assess a suitable array radius. An array with
around r0 ≈ 15 cm turns out to be an optimal choice for non-critical radial filters, since
the individual cutoff frequencies match well with the occurrence of respective modal
contributions in the HRTF set.

Choosing a radius r0 ≪ 15 cm with non-critical radial filters is not feasible, since the
decrease of modal resolution due to the amplification limit does not match the intensity
distribution of the HRTF set and yields further modal reduction of the HRTFs. A
radius of approximately r0 ≈ 10 cm is still acceptable, since the decrease in resolution
matches comparably well with the HRTFs. By contrast, choosing a radius of e.g. r0 =

5 cm while using non-critical filters is far out of the reasonable range and does not
fit for binaural auralization. For a small array radius, the radial filter limits need to
be raised until the cutoff frequencies of the mode amplification match the occurrence
of the respective modal contributions in the HRTF set. The question of a feasible
amplification limit is discussed in the next section, since we first need to understand
the propagation of uncorrelated noise through the system.

A radius of r0 > 15 cm does not have a big advantage for binaural auralization, since
the resulting improved modal resolution at lower frequencies is not translated by the
HRTFs. To the contrary, for bigger radii the required amplification of higher frequen-
cies (ω/c) r0 > N increases. As a consequence, more equipment noise is amplified in
the high frequency range. This can be observed in Figure 3.31 for the r0 = 30 cm radial
filter set.

3.7 Noise

For further understanding and optimization, a dedicated analysis of noise propagation
through the system from the sensor inputs to the binaural outputs is crucial. Noise
refers to uncorrelated white noise that e.g. emanates from the equipment such as mi-
crophones, microphone amplifiers, ADCs, and so forth.

We will further see that besides being able to predict the noise response of the system,
the dedicated analysis of uncorrelated noise yields a much deeper understanding of the
entire approach, especially concerning the interaction between HRTFs and array.

3.7.1 White Noise Gain (WNG)

A common measure for quantifying noise propagation from the input to the output
of the array is the white noise gain (WNG), compare e.g. (Rafaely, 2005), (Li and
Duraiswami, 2007), (Elko and Meyer, 2009), or (Rettberg and Spors, 2013). The
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white noise gain describes the increase of SNR at the system’s output referred to its
input. Since we treat a linear system here, i.e. the system output is proportional
to the system input, the signal can be removed from the observation and the WNG
is equivalent to the attenuation of noise from the input to the output. Analogous,
WNG−1 describes the amplification of noise, which is more intuitive. According to
this definition, WNG−1 > 0 dB indicates amplification of noise and WNG−1 < 0 dB
attenuation of noise, respectively.

In the literature, e.g. (Rafaely, 2005), the analysis is mostly restricted to the WNG
referred to the output signal of a PWD (or beamformer). This is reasonable, since
PWD or beamforming are the predominant applications for arrays. Rettberg and Spors
(2013) analyze the impact of noise in spherical beamforming on binaural auralization
but again restrict the analysis of the WNG to a single beamformer.

In the specific context of binaural auralization the analysis of the WNG for a single
PWD signal is of very limited conclusiveness. Noise propagation through the system is
non-trivial. Even though the closed form approach for binaural auralization presented
in this thesis is based on performing PWD, the composite signal resulting from the
overlay of several PWD signals on the sphere shows substantially different properties
than the single contributing PWD signals. Furthermore, the HRTF set acts as a com-
plex modal filter in the middle of both and has impact on the WNG. Thus, analyzing
the properties of a single PWD or beamformer is not sufficient for assessing the over-
all system properties. In order to gain a deeper insight, we analyze a PWD signal,
the composite signal, and the binaural output signal for varying constellations in the
following.

We are mainly interested in the expected WNG of the binaural output signal referred
to the array inputs and how array size, radial filter limit, number of sensors, or decom-
position order influence the overall WNG.

3.7.2 Analytic Description

Be γ(t) Gaussian white noise with variance σ2 = 1. Its time-frequency Fourier trans-
form is Γ(ω) = Ft{γ(t)}, where Γ(ω) has a constant power spectral density. Gaussian
white noise is a reasonable assumption for equipment noise.

Since every input signal path of the array produces an independent realization of γ(t),
we extent the expression to γg(t), where g denotes a single realization corresponding to
a specific grid node g of the spatial sampling grid. The realizations γg(t) and γg+1(t)

are uncorrelated.
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The noise realizations at nodes g are transformed to the spherical wave spectrum using
the discrete spatial Fourier transform according to Eq. (3.3).

Γ̊nm(ω) =

Msg∑
gsg=1

wgsg Γg(ω)Y
m
n (θgsg , ϕgsg )

∗, (3.29)

where Γg(ω) describes a noise realization at node g in the space-frequency domain
and Γ̊nm(r0, ω) the spatial Fourier coefficients in the spherical wave spectrum domain.
g ∈ [1,Msg] indicates the node and wgsg are is respective grid weight of the spatial
sampling grid.

To simplify matters, we restrict the analysis to rigid sphere array configurations and
their related radial filters dRS

n (ω
c
r0), cf. Section 3.6.

The output of a single PWD signal is calculated using

DN(θd, ϕd, ω) = 4π

N∑
n=0

n∑
m=−n

dRS
n (ω

c
r0) Γ̊

u
nm(ω)Ym

n (θd, ϕd), (3.30)

The composite signal is generated by weighted summation of multiple PWD signals
defined by the nodes gc of a suitable composite grid, according to Eq. (3.8) and Section
3.8. The composite signal CN(ω) is obtained using

CN(ω) =

Mcg∑
gc=1

wgcg D
N(θgcg , ϕgcg , ω). (3.31)

For performing noise analysis with respect to the binaural output, we only consider a
single ear (left ear). Assuming symmetrical anatomy of the head we expect identical
results for both ears. The binaural output is generated analogous to Eq. (3.11) using

Y N(ω) =

Mcg∑
gc=1

wgcg

[ M′∑
g′=1

N′∑
n′=0

n′∑
m′=−n′

w′
g′ H

l(θg′ , ϕg′ , ω)Y
m
n (θg′ , ϕg′ )

∗×

Ym
n (θgcg , ϕgcg )

]
DN(θgcg , ϕgcg , ω). (3.32)

The reference input noise for the WNG calculation is defined by

γ(t) =
1√
Msg

Msg∑
gsg=1

γg(t), (3.33)

with its corresponding frequency domain representation Γ(ω).
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For assessing the WNG of the PWD we can observe arbitrary decomposition direc-
tions, e.g. (θd = pi/2, ϕd = 0). We are interested in the specific contribution of a single
PWD signal related to the composite signal or the binaural output signal. Since the
contributing PWD signals are weighted with individual node weights that are defined
by the composite grid, every single PWD signal is individually attenuated by its as-
signed weight. In order to appropriately account for the reduced sensitivity of a single
PWD contribution, we weight the PWD signal with a mean composite grid weight
wcg, which is equivalent to the reciprocal of the number of nodes for all quadratures,
i.e. wcg = 1/Msg. This yields a representative relation of the PWD signal compared
to the composite signal or the binaural signal. Accounting for the average weight wcg

and the freely defined decomposition angle (θd = π/2, ϕd = 0) we obtain a slightly
modified version of Eq. (3.30),

ĎN(ω) = 4π wcg

N∑
n=0

n∑
m=−n

dRS
n (ω

c
r0) Γ̊

u
nm(ω)Ym

n (π/2, 0), (3.34)

where ĎN(ω) denotes a representative weighted PWD output signal. Finally, the WNG
(in dB) of the weighted PWD signal is obtained using

WNGĎ(ω) = 10 log10
|Γ(ω)|2

|ĎN(ω)|2
. (3.35)

Analogous, the calculation of the WNGs for the composite signal and the binaural
signal yields

WNGC(ω) = 10 log10
|Γ(ω)|2

|CN(ω)|2
, (3.36)

and

WNGY(ω) = 10 log10
|Γ(ω)|2

|Y N(ω)|2
, (3.37)

respectively.

3.7.3 WNG Analysis

Simulations are performed in order to determine the different noise transmission func-
tions. In practice, a single realization of white noise with finite signal length does
usually not show constant power spectral density as previously assumed for an infinite
signal in theory. In order to obtain representative simulation results, we sequentially
feed several independent realizations into the processing chain and average the magni-
tudes at the respective outputs, as well as the magnitudes of the reference noise. The
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3.7 Noise

averaged power spectral density becomes more constant as we increase the repetitions.
For the subsequent simulations, 200 uncorrelated realizations with 214 random sam-
ples are averaged yielding an improved constancy of the power spectral density with
an acceptable amount of residual ripple. In a final step, the WNGs are smoothed with
1/6 oct.

We start the WNG analysis with our example configuration using a rigid sphere array
with N = 7, r0 = 10 cm, Msg = 86, and non-critical radial filters (amplification limit
âdB = 0dB). We use Lebedev quadratures for spatial sampling and order-matched
Gauss quadratures as composite grids.

Since we aim to analyze the impact of changing dedicated parameters, the given config-
uration is used as arbitrarily chosen anchor or reference configuration in the following.
Figure 3.32 shows the WNG−1 of the weighted PWD signal WNG−1

Ď
(ω), the composite

signal WNG−1
C (ω) and the binaural signal WNG−1

C (ω) for the given setup.
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Figure 3.32 WNG−1 of the weighted PWD signal WNG−1

Ď
(ω), the composite signal

WNG−1
C (ω) and the binaural signal WNG−1

Y (ω) for the reference configuration.

From Figure 3.32 we can derive some basic observations. First, the WNG of the PWD
signal closely follows the shape of the radial filter of the highest order involved, which is
n = 7 in the present case. Hence, the WNG of the single PWD is essentially determined
by the highest order of decomposition. Lower orders indeed contribute as well but are
less influential due the fact that they contribute with lower amplitudes. The global
attenuation of around −20 dB is due to the applied mean node weight wcg = 1/Msg

that yields an attenuation of 10 log 10(1/Msg) dB. The run and absolute magnitude
of WNG−1

Ď
(ω) conforms with observations described in literature e.g. (Rafaely, 2005).

Note that for direct comparison to literature, the specific weighting wcg = 1/Msg and
the introduced amplitude limiting need to be removed.
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Focusing on the WNG of the composite signal, we observe an entirely different behavior.
The WNG of the composite signal follows the run of the radial filter for n = 0. Keeping
in mind that the composite signal represents the composed omni-directional signal
at the origin, and, that n = 0 addresses the omni-directional mode of the spherical
harmonics, this result appears to be plausible but is certainly not trivial.

In order to understand the differences between the WNG of the binaural signal WNGY

and the WNG of the composite signal WNGC we modify some of the simulations
parameters.

3.7.3.1 Decomposition Order and Number of Spatial Sampling Nodes

In this section we study the question whether the decomposition order has an influence
on the WNG. For this purpose, we vary the decomposition order. At the same time the
number of sampling nodes is adapted in order to fulfill Nsg = N . Figure 3.33 shows the
results for orders N = {5, 7, 9, 11} that demand a minimum of Msg = {50, 86, 146, 194}
spatial sampling nodes of the Lebedev sampling quadrature.
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Figure 3.33 WNG−1

Ď,C,Y
for different decomposition orders N = {5, 7, 9, 11} using

spatial sampling grids that fulfill Nsg = N with Msg = {50, 86, 146, 194} nodes.

110



3.7 Noise

Frequency in Hz
102 103 104

1/
W

N
G

in
d
B

-40

-30

-20

-10

0

10

20
N=7, r0 =10 cm, M=86, âdB =0dB
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Figure 3.34 WNG−1

Ď,C,Y
for decomposition orders N = 7 using different spatial sam-

pling grids with Msg = {86, 1202} nodes (Lebedev). Both grid fulfill Nsg ≥ N .

From the figure we can derive that WNG−1

Ď
(ω) is determined by the radial filter of the

highest involved mode n = N .

In contrast to the PWD WNG−1

Ď
(ω), the composite signal WNGC(ω) is independent of

the decomposition order. The same holds true for the binaural signal. There are some
minor order-dependent fluctuations in the high frequency range that can be ascribed
to the order-reduction artifacts of RHRTFs discussed in Section 3.5.2. Otherwise we
see that WNGY(ω) is independent of the decomposition order N .

We also find that the overall magnitudes scale with 1/
√
Msg, i.e. they depend on the

number of sensors. In order to assure the latter assumption, we modify our reference
design. We keep the decomposition order N = 7 constant but dramatically increase
the number of sensors to Msg = 1202. The result is depicted in Figure 3.34.

Now, everything scales perfectly with 1/
√
Msg. As a consequence, we can be sure

the observed scaling in Figure 3.33 is solely ascribed to the number of sensors and
there is no influence of the decomposition order on WNGC(ω) and WNGY(ω), if we
neglect the observed minor fluctuations at high frequencies that are due to the RHRTF
order-reduction artifacts observed in Figure 3.33.

3.7.3.2 Array Radius

In order to evaluate the influence of the array radius on the WNG and to further un-
derstand the relation between WNG of the composite signal and WNG of the binaural
signal, we vary the radius of the reference design, r0 = {5, 10, 20, 40} cm. The respec-
tive curves are depicted in Figure 3.35. Since we see a multitude of changes emerging
at once, we discuss the observations for the PWD signal WNGĎ, the composite signal
WNGC, and the binaural signal WNGY step-by-step.
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3.7.3.2.1 WNG of the PWD The behavior of WNG−1

Ď
does not reveal new information.

The curves remain akin to the respective radial filter of the highest modal order, i.e. n =

7, consistent with earlier observations. The typical knee that is located around ω =

N c/r0 moves along the frequency axis in proportion to the measurement radius r0.
This is just analogous to the radial filters.
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Figure 3.35 WNG−1

Ď,C,Y
for different measurement radii r0 = {5, 10, 20, 40} cm.

3.7.3.2.2 WNG of the Composite Signal Likewise, the WNG of the composite signal
moves along the frequency axis in proportion to the measurement radius r0. We further
analyze the particular structure of WNG−1

C . The WNG−1
C can be subdivided into two

different sections. There is a constant section for ω < (c/r0) and an ascending section
for ω > (c/r0). If we account for the damping factor of 1/

√
Msg, we come to the

important finding that a spherical array operating in the underlying composite mode
provides a natural WNG according to

WNGC(ω) = 10 log10

[
Msg

1 +
(
ω r
c

)2
]

dB, (3.38)
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which in terms of noise amplification, i.e. WNG−1
C , yields

WNG−1
C (ω) = 10 log10

[
1 +

(
ω r
c

)2
Msg

]
dB. (3.39)

The noise amplification WNG−1
C results from an overlay of a constant term (0 dB) and

an ascending term (6 dB/oct). Both terms are scaled by 1/
√
Msg. Thus, for every

doubling of the number of transducers, the resulting power spectral density at the
composite array output decreases by 3 dB. The noise amplification as a function of the
ratio (ω/c) r0 is depicted in Figure 3.36.
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Figure 3.36 Natural WNG−1 of a spherical array in composite mode referred to a
single transducer (Msg = 1). The entire curve is shifted down by 10 log10(

√
Msg)dB

in order to account for the actual number of transducers in the array.

The WNG of the composite signal is independent of the radial filter amplification limit,
which conforms with the findings in Section 3.6.7.

3.7.3.2.3 WNG of the Binaural Signal The WNG of the binaural signal is more difficult to
understand. In Figure 3.35 we observe that the WNG of the binaural signal converges
to the WNG of the composite signal for larger array radii. We also see some irregular
drawdown at higher frequencies, f > 2 kHz. This needs to be discussed first.

We determine the diffuse-field response Hl,DF(ω) of the spherical HRTF set (left ear)
by integrating the magnitudes of the HRTFs over the entire sphere,

Hl,DF(ω) =
1

4π

∫∫
S
|Hl(θ, ϕ, ω)| dΩ. (3.40)
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Figure 3.37 Diffuse-field response Hl,DF(ω) of the HRTF set from Section 4.3.2.

The resulting diffuse-field response Hl,DF(ω) is depicted in Figure 3.37. From this
figure we understand the origin of the irregular drawdown at higher frequencies in
WNG−1

Y ; it corresponds to the native diffuse-field response of the HRTF set.

We also need to keep in mind the inherent order-reduction of the HRTFs leading to
RHRTFs, as discussed in Section 3.5.2. The order-reduction introduces errors that
distinguish RHRTFs from HRTFs. These errors not only influence single RHRTFs, but
also impact the overall diffuse-field response of the entire RHRTF set.

As a consequence, we need to gather the diffuse-field response of the RHRTFs Hl,r
N

rather than the diffuse-field response of the original HRTFs Hl,r yielding

Hl,DF
N (ω) =

1

4π

∫∫
S
|Hl

N (θ, ϕ, ω)| dΩ. (3.41)

This difference explains some deviations, as well as the minor fluctuations in the upper
frequency range that are observed in Figure 3.33, where different decomposition orders
are compared.

So far we understand the phenomena that emerge in the high frequency range. In a
next step we concentrate on the low frequency range.

From Figure 3.35 we can see that the noise amplification WNG−1
Y of the binaural signal

raises for ω = N c/r0 when decreasing the array radius. In contrast, the WNG of the
binaural signal tends to converge to the WNG of the composite signal with increasing
array radius.

If we consider that a HRTF set is widely omni-directional at low temporal frequencies,
we understand why both, WNGY(ω) and WNGC(ω), tend to show similar characteris-
tics. The important difference is the spatial offset of the ear from the physical origin,
which is discussed in Section 3.5.
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While the composite signal represents an omni-directional signal at the physical and
mathematical origin, the binaural signal emerges from a position with a spatial offset
from the origin that further varies with the wave incidence direction. This spatial
offset excites higher spherical harmonic orders n > 0 even at low frequencies where the
HRTF set could otherwise be assumed fully omni-directional, compare Figure 3.6.

Due to the radial filter limiting higher modes are successively suppressed at low tem-
poral frequencies. Suppressing higher modal orders entails truncation errors in the
modal representation of the HRTFs. The truncation error yields increased noise levels
in the affected range, since the higher modal contributions do not cancel, which is the
case in the composite signal. Increasing the radius, the higher modes at low temporal
frequencies undercut the radial filter limit and become available to resolve the HRTFs
properly. This decreases the truncation error and yields an increased WNG of the
binaural signal, whereby the natural upper limit is generally determined by the WNG
of the composite signal.

So far we conclude that using non-critical radial filters (âdB = 0 dB) and an array size
r0 →∞, the binaural signal has a WNGY according to

WNGY(ω) = 10 log10

[
Msg

1 +
(
ω r
c

)2
]
− 20 log10

[
Hl,DF

N (ω)
]
dB, (3.42)

which corresponds to the WNG of the composite signal weighted by the diffuse-field
response of the RHRTFs.

In practice, we can neglect the order truncation effects in the diffuse-field response and
roughly approximate WNGY for an array that is greater or equal than the height of a
human head, i.e. r0 ≥ rhhead , by

WNGY ≈ 10 log10

[
Msg

1 +
(
ω r
c

)2
]
− 20 log10

[
Hl,DF(ω)

]
dB. (3.43)

3.7.3.3 Radial Filter Amplification Limit

Since we have seen that the radial filter limiting entails truncation errors that yield
increased noise levels, we might want to increase the radial filter limit. We set the
radial filter limit to âdB = 18 dB for the reference configuration. The result is shown
in Figure 3.38.

The PWD signal WNG−1

Ď
responds proportional to the raised radial filter limit and

we observe the expected increase of WNG−1

Ď
at low frequencies. The composite signal

WNG−1
C , by contrast, is actually independent of the radial filter limit.
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Figure 3.38 WNG−1

Ď,C,Y
for non-critical radial filters with âdB = 0dB and radial

filters with âdB = 18 dB.

The binaural signal WNG−1
Y is indeed affected but does not respond proportional to the

raised radial filter gain. We observe this ambivalent response, because the truncation
error is reduced due to the availability of higher modal orders, while the remaining
truncation error residuals leak the increased noise power delivered by the single PWD
signals. Unfortunately, the decreased truncation error does not compensate for the
leaked noise, which leads to increased noise levels.

In theory, we could omit the limiting of the radial filter amplification to provide full
modal resolution and avoid the truncation errors. In this case, the WNG of the binaural
signal equals the WNG of the composite signal. In practice, however, opening the
radial filters implicates that even smallest errors (sensor differences, sensor positioning
errors, etc.) are amplified excessively and the output signal immediately blows up.
Since we deal with amplification ratios in the range of several hundred decibels at low
frequencies, we even may reach the numerical limit of the variables in the processing
software. In order to avoid instability and to obtain a robust array response, radial
filter amplification limiting is absolutely indispensable in practice.

We now increase the array radius and use the raised radial filter limit of âdB = 18 dB.
The result is depicted in Figure 3.39.

As long as the modal HRTF filters avail of all required modes, the truncation error
vanishes and the WNG of the binaural signal becomes equal to the WNG of the com-
posite signal. In this specific range the WNG of the binaural signal turns out to be
equally independent of the radial filter gain. However, increased output noise appears
in the range where modal truncation is applied. Hence, the WNG of the binaural signal
turns out to depend on the radial filter amplification limit, but in a decisively different
manner than the WNG of the PWD.
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Figure 3.39 WNG−1

Ď,C,Y
for radii r0 = {20, 40} cm using radial filters with an ampli-

fication limit of âdB = 18 dB.

We see that raising the radial filter limit and decreasing the radius yield increased noise
amplification in the low frequency range of the binaural signal. As a consequence, the
proposed non-critical radial filters turn out to be optimal in terms of the WNG.

There is a certain WNG headroom, up to 10 log10(Msg) dB in the low frequency range,
that can be exploited for raising the radial filter amplification limit and for increasing
the effective operational bandwidth (EOB) of the array, refer to Section 3.6.6, while
maintaining a reasonable overall WNG. The increased bandwidth allows for decreasing
the array radius while still resolving the HRTFs properly, refer to Section 3.6.8. De-
creasing the array radius is beneficial, as it reduces noise in the higher frequency range,
where the WNG of the binaural signal is low.

3.7.3.4 Optimization of Array Parameters

Optimizing the array radius for binaural auralization consists of finding a suitable
trade-off between noise at higher frequencies (larger radius → more noise) and noise
at low frequencies (smaller radius or raised radial filter limit → more noise), while
simultaneously preserving an adequate modal resolution of the HRTFs according to
their modal intensity distribution in the spherical wave spectrum domain, as discussed
in Section 3.6.8. The optimization also depends on the actual number of transducers
used in the array.

The optimization task must be individually performed depending on the total number
of sensors in the array. In practice, we find a very manageable margin for reasonable
array parameters. We strive to use as few sensors as possible, since additional mi-
crophones (plus microphone amplifiers and ADCs) increase the costs. Therefore, we
tend to use the minimum number of nodes to fulfill the basic requirement Nsg = N .
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Thus, if we aim for a decomposition order of N = 7 for example, we apply Msg = 86

microphones arranged on a Lebedev sampling grid to satisfy Nsg = N . For this con-
figuration an array radius of r0 = 10 cm with Msg = 86 transducers (Nsg = 7) and
an amplification limit of âdB ≈ 20 dB keeps a relatively good balance between the
effective operational array bandwidth and WNG constraints at low and high temporal
frequencies. This configuration is similar to the one that is analyzed in Figure 3.38
(right plot).

Increasing the radius yields more noise at high frequencies. Decreasing the radius
and raising the amplification limit yields more noise at low frequencies. Furthermore,
decreasing the radius while not raising the amplification limit yields modal truncation
of the HRTF set in the mid-frequency range (just below ω < (c/r0)), which impairs
the RHRTF response.

In general, we find the optimum trade-off between the parameters when WNGY is close
to 0 dB and as constant as possible. We restrict ourselves to as constant as possible
instead of constant, since the WNG does not become perfectly constant and the output
noise always remains colored. Hence, the design target is to achieve a WNGY of around
0 dB with minimum fluctuation over the temporal frequency. We conclude that if we
feed uncorrelated white noise to the array inputs, we do not get white noise at the
binaural output, but noise with a certain spectral coloration depending on the array
parameters and the diffuse-field response of the HRTF set.

3.7.4 Conclusions

To conclude this section, we summarize some of the major aspects of the WNG:

• Analyzing the WNG of the PWD only, which is the most common approach in
literature, turns out to be inconclusive for assessing the WNG properties of an
array-based binaural system. The composite approach needs to be considered.

• Neglecting minor order-reduction artifacts of the HRTFs at high temporal fre-
quencies, the WNG of the binaural system is independent of the decomposition
order.

• For large array radii (e.g. r0 > 15 cm) the WNG of the binaural output tends to
follow the WNG of the composite output. Additionally, it is weighted with the
diffuse field response of the (R)HRTF set.

• For small array radii (e.g. r0 < 15 cm) by contrast, the WNG rapidly decreases
for temporal frequencies ω < N c/r0 when compared to the composite signal.
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3.8 Spatial Aliasing

• Radial filter amplification limiting is indispensable for obtaining a robust array
response in practice. The presented non-critical radial filters (âdB = 0 dB) yield
highest possible WNG over the entire temporal frequency spectrum.

• The WNG of the composite signal is generally unaffected by the radial filter
amplification limiting. However, the WNG of the binaural signal depends on
the radial filter amplification limit, but in a different way than the WNG of the
PWD.

• We found analytic expressions for predicting the composite WNG, cf. Eq. (3.38),
as well as the binaural WNG, cf. Eq.(3.42) and Eq.(3.43).

• The WNG of an array in composite mode turns out to be constant for ω < (c/r0)

and shows a decrease of 6 dB/oct for ω > (c/r0). The overall WNG is scales with
the number of sensors in the array.

• Raising the radial filter amplification limit within reasonable boundaries (e.g. up
to +20 dB) increases the effective operational bandwidth (EOB) and permits to
decrease the array radius slightly.

• Finding optimum array parameters means to find the optimum trade-off between
array radius, number of sensors, and radial filter gain limit. The design target
is to obtain noise at the output that provides the best possible constancy of the
power spectral density.

• The optimum array size for performing array-based binaural auralization turns
out to be more or less the size of a human head, i.e. between approximately
r0 = 10 cm and r0 = 12 cm. Smaller arrays raise the noise at low temporal
frequencies and tend to truncate the modal order of the HRTF set in a crucial
band. Larger arrays, by contrast, raise the noise at high temporal frequencies.
The gained modal resolution at lower temporal frequencies dissipates, since it is
not resolved by the HRTFs in a useful way.

• The resulting noise at the binaural output is colored depending on the array size,
the radial filter limit, and the diffuse field response of the HRTF set. Even a
well-optimized system can be expected to show some residual coloration of noise
at the binaural outputs.

3.8 Spatial Aliasing

Spatial aliasing or angular aliasing is a consequence of discrete spatial sampling. Since
the structure of the spherical harmonics gets progressively more complex at higher
orders, any discrete sampling scheme reaches a certain limit of resolution, which was
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previously denoted by Nsg in Section 3.2.2. For spherical harmonic orders N > Nsg

the modes cannot be uniquely identified.

As long as the function on the sphere is band-limited to N ≤ Nsg, no spatial aliasing
arises, since the information can be uniquely decoded by reading the different modes.
Since natural sound fields are not band-limited, spatial aliasing is expected. Higher
modes project aliases into lower modes due to identification ambiguities. The isolated
information contained in the dedicated modes is mixed up. Spatial aliasing decreases
the spatial resolution of the system and can impede reasonable decomposition under
certain conditions.

The number and arrangement of sampling nodes for an achievable grid target order
Nsg is discussed in Section 3.2.2. The radius r0 of the sphere S0 that embeds the
sampling nodes, as well as the analyzed temporal frequency within the sampled wave
field must be taken into account..

Keeping the number and arrangement of sampling nodes constant while changing the
radius r0 influences the effective node density on S0. Additionally, higher temporal
frequencies in the sound field progressively tend to excite higher spherical harmonic
modes on S0. As a consequence, high temporal frequencies are more prone to spatial
aliasing than low temporal frequencies. Sampling a natural sound field using discrete
sampling positions always brings up a certain spatial aliasing contribution throughout
the entire time-frequency spectrum. The contributions are less intense at lower tempo-
ral frequencies and progressively more intense for higher temporal frequencies. Thus,
there is no dedicated frequency boundary for a spatial aliasing-free operation in the
time-frequency domain that would be equivalent to the Nyquist-frequency (Nyquist,
1928), (Shannon, 1949), known from discrete temporal sampling. The true equivalent
to the Nyquist-frequency would refer to the maximum modal order, i.e. to Nsg, and not
to a temporal frequency, since spatial aliasing refers to the space domain / spherical
wave spectrum domain and only implicitly affects the time-frequency domain.

However, we can indeed observe a certain temporal frequency, where spatial aliasing
contributions start to surge excessively. This specific temporal frequency is denoted
as spatial aliasing frequency3, fA. It can be estimated using (Rafaely, 2005) (Rafaely
et al., 2007b)

fA =
Nsg c

2π r0
. (3.44)

3Against the common conventions in this thesis, we use the frequency fA instead of the angular
frequency ωA here, as the latter is more intuitive. Both are related by ωA = 2π fA.
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3.8 Spatial Aliasing

fA depends on the grid order, the radius and the sound propagation velocity. The
exact structure of the spatial aliasing contributions depends on the distribution of the
sampling nodes and the sphere configuration of the array, cf. Section 3.6.1.

In practice, spatial aliasing contributions for f ≤ fA can be neglected, whereas for
f > fA we must expect strong aliasing contributions and considerable impairments
that impede a reasonable sound field decomposition.

In order to analyze the properties and impacts of spatial aliasing, appropriate signals
need to be generated. In order to improve numerical stability, a rigid sphere array
configuration is used for the simulations. Eq. (3.24) describes an ideal plane wave,

P̊ RS
nm pw(θw,ϕw)(r0, ω) = 4π in

[
jn(

ω
c
r0)−

j′n(
ω
c
r0)

h
′(2)
n (ω

c
r0)

h
(2)
n (ω

c
r0)

]
Ym
n (θw, ϕw)∗.

Spatial sampling is introduced, by using a discrete sampling grid with Msg nodes
located at node angles (θgsg , ϕgsg ), g ∈ [1,Msg] with corresponding node weights wgsg :

P̊ RSA
nm pw(θw,ϕw)(r0, ω) =

Msg∑
gsg=1

wgsg

[ ∞∑
n=0

n∑
m=−n

P̊ RS
nm pw(θw,ϕw)(r0, ω)×

Ym
n (θgsg , ϕgsg )

]
Ym
n (θgsg , ϕgsg )

∗.

(3.45)

P̊ RSA
nm pw(θw,ϕw)

(r0, ω) denotes the spatial Fourier coefficients including spatial aliasing
artifacts due to discrete spatial sampling. The term in square brackets describes an
inverse spatial Fourier transform yielding the required sound pressure values at nodes
(θgsg , ϕgsg ).

We define a typical scenario with a Lebedev sampling grid of order Nsg = 5 with Msg =

50 sampling nodes located on the sphere S0 defined by the array radius r0 = 0.1m.
According to Eq. (3.44), the aliasing frequency is located at around fA ≈ 2700Hz for
this configuration.

A plane wave of full modal order and unit gain with frontal incidence direction (θw =

π/2, ϕw = 0) is generated using Eq. (3.24). Discrete spatial sampling is applied using
Eq. (3.45). Analogous to the notation from Eq. (3.21), the corresponding PWD yields

DA(θd, ϕd, ω) = 4π
N∑

n=0

n∑
m=−n

dRS
n (ω

c
r0) P̊

RSA
nm pw(θw,ϕw)(r0, ω)Y

m
n (θd, ϕd), (3.46)
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where DA(θd, ϕd, ω) denotes the decomposition output for a spatially sampled plane
wave impact. The decomposition order is set to N = Nsg = 5. A scanning PWD along
the horizontal plane (θd = π/2, ϕd = [−π, π]) is performed analogous to Figure 3.5.
The result of this operation is depicted in Figure 3.40.
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Figure 3.40 Normalized magnitude response |DA(θd, ϕd, ω)/(N+1)2| versus the tem-
poral frequency of the PWD (regular beampattern) in the azimuth plane (θd = π/2,
ϕd = [−π, π]) for a full order broadband plane wave impact from (θ = π/2, ϕ = 0) at
the decomposition order N = 5.

The impact of spatial aliasing is clearly visible. For f < fA the PWD performs well
and the result is comparable to the one depicted in Figure 3.5. However, at f = fA the
beam starts to burst and for f ≫ fA no reasonable PWD can be performed anymore.
The spatial selectivity gets lost and incoming waves cannot be assigned to dedicated
directions.

The depicted PWD is normalized by the DI 1/(N + 1)2, i.e. during ideal operation
the output exactly reaches a maximum of 0dB for ϕd = ϕw. However, in the aliased
frequency range f ≫ fA the output exceeds 0 dB. The dynamic range of Figure 3.40
is limited to a range between -50 dB and 0 dB in order to maintain a comparable
scale with Figure 3.5. The increased output level is due to the principle of modal
beamforming that consists of constructive summation as well as suppression of certain
modal components. The components are weighted with respective radial filters, cf.
Section 3.6. Since the orthogonality criterion is violated in the aliased range, the
respective mechanisms do not work properly, which leads to increased output levels.

The composite signal C(ω), introduced in Section 3.4, can be considered an informative
control signal. The signal provides an estimator for the overall free field frequency
response of the system. Sending a plane wave with unit magnitude from any spatial
direction through an ideal system produces an ideal Dirac pulse in the time domain
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3.8 Spatial Aliasing

yielding a perfectly flat magnitude response of 0 dB in the frequency domain at the
output.

However, if the signal chain is impaired (e.g. by spatial aliasing), an overall impact on
the time-frequency domain can be observed. Thus, C(ω) is a useful and informative
control signal for the assessment of the global spectral impairment due to deficiencies
in the system chain.

Under ideal conditions the composite signal C(ω) yields

C(ω) =
1

4π

Mcg∑
gc=1

wgcg D(θgcg , ϕgcg , ω), (3.47)

which corresponds to Eq. (3.8). Analogous, we define an aliased composite signal CA(ω)

that allows for assessing the impact of spatial aliasing on the time-frequency domain
yielding

CA(ω) =
1

4π

Mcg∑
gc=1

wgcg D
A(θgcg , ϕgcg , ω). (3.48)

An order-matched composite grid with Ncg = 5, Msg = 50 grid nodes (θgcg , ϕgcg ), and
grid weights wgcg is used for recomposition. C(ω) and CA(ω) are depicted in Figure
3.41.
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Figure 3.41 Control signals |C(ω)| and |CA(ω)|. Additionally, the radial filters for
the simulated configuration are depicted. Radial filters are discussed in Section 3.6.

As expected, |C(ω)| shows a flat magnitude response over the entire frequency range.
In contrast, |CA(ω)| indicates progressively increased output levels for f ≫ fA, similar
to the observations in Figure 3.40.

Even if |CA(ω)| can be used for roughly assessing global impairments in the overall
frequency response of the system, it does not provide specific information on the im-
pairment of the single PWD signals D(θd, ϕd, ω).
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In order to gain quantitative information on the impact of spatial aliasing on the PWD
signals, the ideal signal is subtracted from the aliased signal and normalized by the DI,

A(ω) =
DA(θd, ϕd, ω)−D(θd, ϕd, ω)

(N + 1)2
. (3.49)

Hence, the absolute signal contributions that arise due to spatial aliasing for a unit gain
plane wave impact are isolated. The latter can be considered as additive spatial noise
components that are produced by the system itself. To give a representative overview,
A(ω) is averaged over the entire sphere with a resolution of 1◦ (θd = [−π, π] × ϕd =

[0, 2π[) yielding the averaged absolute spatial aliasing noise contribution Ā(ω) for a
DI-normalized PWD. The result is depicted in Figure 3.42.
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|Ā
(ω

)|
in

d
B

-120

-100

-80

-60

-40

-20

0

f
A

Figure 3.42 Magnitude of the averaged absolute aliasing contribution |Ā((ω)|.

The figure indeed indicates progressively ascending aliasing noise contributions over
the entire temporal frequency range as previously discussed. For f < fA the increase
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Figure 3.43 Mean SNR (D/A) of the PWD signals.

is linear on the logarithmic frequency scale and starts to increase disproportionately at
f = fA. For very high frequencies, the aliasing noise contributions exceed the maximum
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3.8 Spatial Aliasing

gain of the PWD that is normalized to 0 dB. Referring the ideal PWD signal to the
spatial aliasing noise contributions yields the SNR D/A of the PWD signals, which is
depicted in Figure 3.43.

Analogous, referring C(ω) to [CA(ω)−C(ω)] yields the overall SNR of the recomposed
signal as depicted in Figure 3.44. Generally, the overall SNR is considerably higher
compared to the SNR of the single PWD signals, except for f ≫ fA. The overall SNR
does not account for the spatial distortion but can be used as estimator for the global
spectral distortion of the final output signal in the time-frequency domain.
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Figure 3.44 Overall SNR of the recomposed signal.

In order to demonstrate the specific impact of spatial aliasing on RHRTFs, both
P̊nm pws(θw,ϕw)(r0, ω) and P̊A

nm pws(θw,ϕw)
(r0, ω) are inserted into Eq. (3.11) for com-

paring clean RHRTFs and RHRTFs containing spatial aliasing artifacts. Both signals
are depicted in Figure 3.45 for different wave incidence directions (θw = π/2, ϕw =

{0, π/6, π/3, 3π/2}) . The sampling parameters are chosen according to the example
scenario given above. As expected, for f ≤ fA the responses of both signals are nearly
identical and spatial aliasing can be neglected. At f > fA the structures of the aliased
RHRTFs differ individually from the clean RHRTFs, which is due to the inherent loss
of spatial selectivity. Furthermore, a global increase of high frequency appears. A
similar is observed in the control signal CA(ω), when the composed PWD signals are
not weighted with HRTFs.

Note that this analysis is restricted to our specific example configuration. However,
comparable outcomes and dimensions can be found for any other configuration.

More detailed analysis of the properties and inner structures of spatial aliasing can
be found e.g. in (Rafaely, 2005), (Rafaely et al., 2007b), (Meyer and Elko, 2008), or
(Zotter, 2009a). Analysis of the influences of the sampling node distribution on the
spatial distortion and the crosstalk behaviour of aliased higher modes into lower modes
are discussed therein.
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Figure 3.45 Comparison of clean HRTFs and HRTFs containing spatial aliasing ar-
tifacts due to discrete spatial sampling for different wave incidence directions (θw =

π/2, ϕw = {0, π/6, π/3, 3π/2}).

The inner structure of aliasing is well described in the literature stated above, but it
is not very relevant for the considerations in this work. We summarize the important
aspects concerning spatial aliasing in practice:

• Plane waves in natural sound fields are not order-limited and thus discrete spatial
sampling is always accompanied by (a certain amount of) spatial aliasing.

• Spatial aliasing is present in the entire temporal frequency range. But high
temporal frequencies are more prone to spatial aliasing than low frequencies.

• fA approximately describes a temporal frequency where spatial aliasing artifacts
start to surge disproportionately.

• fA depends on the measurement radius r0 and the spatial sampling grid order
Nsg. Hence, fA implicitly depends on the node density and grid efficiency.

• For f ≤ fA spatial aliasing is negligible in practice.

• For f > fA strong spatial aliasing artifacts arise that cannot be neglected.
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• Spatial aliasing entails spatial distortions. The spatial selectivity of the system
gets lost in the affected temporal frequency range and the sound field cannot be
decomposed appropriately.

• Spatial aliasing entails distortions of the temporal frequency response for both,
the single PWD signals as well as for a recomposed output signal. The system
inherently adds spatial noise, which for f ≫ fA tends to exceed the magnitude
of the input signal and leads to increased overall output levels.

• For f > fA the response of the RHRTFs is impaired depending on the wave
incidence direction. An increased output level can be observed for f ≫ fA.

3.8.1 Reduction of Spatial Aliasing Artifacts

In this section we briefly discuss different options for reducing spatial aliasing artifacts.
Different approaches to treat spatial aliasing in the context of spherical microphone
arrays are discussed in (Abhayapala et al., 1999), (Rafaely et al., 2007b), (Li and
Duraiswami, 2007), (Meyer and Elko, 2008), (Alon and Rafaely, 2012), or (Bernschütz,
2012a).

The most obvious solution for reducing spatial aliasing contributions is either increasing
the number of sensors Msg or decreasing the measurement radius r0. According to
the last section and Eq. (3.44), we assume negligible aliasing contributions for f ≤
(Nsg c)/(2π r0). The number of required nodes, Msg, for achieving the grid order Nsg

can be approximated using Eq. (3.2). Figure 3.46 shows the required number of nodes
for fulfilling the relation f = (Nsg c)/(2π r0) with different sampling grid types and
different measurement radii.

Generally, the number of nodes quickly rises with the temporal frequency due to the
quadratic relation between Nsg and Msg. Decreasing the measurement radius is quite
efficient. Nevertheless, in Section 3.6.8 we have shown that the array size should not
be smaller than the average size of a human head. Hence, the potential for decreasing
the radius is limited, unless two concentric arrays with different radii are used. If
we exhaust the absolute minimum limit with respect to the radial filters by using an
array radius of r0 = 9 cm and assume using an ideal sampling grid with ηg = 1, we
still need about Msg ≈ 1150 nodes to achieve negligible aliasing contributions up to
f = 20 kHz. Lowering the upper target frequency limit to f = 10 kHz and neglecting
aliasing for f > 10 kHz, the amount of nodes reduces to approximately Msg ≈ 300

sensors. Constructing a real-time array with r0 = 9 cm covered withMsg = 300 discrete
microphones is still challenging and expensive in practice. Not only the microphones
need to be considered, but also a corresponding amount of microphone preamplifiers
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Figure 3.46 Number of required spatial sampling nodes, Msg, versus the temporal
frequency for different measurement radii r0 = {5, 10, 15, 30} cm. Ideal refers to a grid
efficiency ηg = 1.

and ADCs. A realistic setup could, for instance, involve around 50-120 sensors. Using
Lebedev quadratures for sampling, we find constellations with Msg = {50, 74, 86, 110}
nodes in the given range. This corresponds with grid orders Nsg = {5, 6, 7, 8} and
respective aliasing frequencies in the range of approximately 3 kHz to 5 kHz.

A second option for reducing spatial aliasing is to apply spatial anti-aliasing filters
as proposed by Rafaely et al. (2007b) and Meyer and Elko (2008). This approach is
discussed in the context of expanded transducers in Section 3.10.

Meyer and Elko (2008) propose discarding the array processing in the aliased range
and falling back on single microphones pointing approximately towards the incidence
direction. The directivity of the microphones or the natural scattering using a rigid-
sphere array is used for achieving a certain directivity in this range. This solution does
not preserve any closed mathematical description but could be a useful approach in
practice.
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Alon and Rafaely (2012) propose a theoretical anti-aliasing approach using matrix regu-
larization. However, the approach is not robust against noise and hence not applicable
in practice in its current state.

An approach for bandwidth extension based on specific assumptions concerning natural
sound fields is proposed in (Bernschütz, 2012a). The method is referred to as bandwidth
extension for microphone arrays (BEMA) and discussed in Section 3.11.

Recent approaches to reduce spatial aliasing based on sparse signal representation
theory are proposed e.g. by Koyama et al. (2014).

3.8.2 Spectral Compensation

Avoiding spatial aliasing turns out to be quite difficult in practice. The simple alterna-
tive is to accept the presence of spatial aliasing. From a purely technical point of view
spatial aliasing is obviously not tolerable. The question arises, to what extent spatial
aliasing is perceivable by a listener and which kind of perceptual impairments emerge.
This question can only be answered by performing listening experiments. Such tests
are presented in Section 5.6.3 and Section 5.7.4.

Spatial aliasing creates two different problems. The first is the typical loss of spatial
resolution in the aliased frequency range, cf. Figure 3.40. Since we accept aliasing
artifacts in this context, we assume that the spatial resolution is irretrievably lost.

The second problem is an increased output level in the aliased frequency range due to
additive spatial self-noise. This phenomenon can be observed throughout Figures 3.40,
3.41, 3.44 and 3.45.

Even if the level increase depends on the incidence direction and is not constant for
all RHRTFs, a certain amount of increase can be observed for all RHRTFs in common.
By averaging the spectral differences between aliased RHRTFs and HRTFs for a repre-
sentative amount of incidence directions distributed on the sphere, the mean spectral
deviation can be estimated. Suitable inversion of the mean spectral deviation yields a
global compensation filter for minimizing the average spectral impairment.

The mean spectral deviation between analytic RHRTFs and measured HRTFs using a
Lebedev sampling grid with Msg = 86 nodes and grid order Nsg = 7 on a measurement
radius of r0 = 0.0875 cm with non-critical radial filters is calculated in a first step.
Next, the procedure is repeated using measured data, i.e. using measured array based
binaural room impulse responses (ABRIRs) and BRIRs from two different rooms, cf.
Section 4.3.3. The ABRIRs are measured with an identical array configuration and
parameters that are used in the simulations for generating the RHRTFs. Since the
measured BRIRs are only available in the horizontal plane, the averaging is restricted
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to 360 spatial directions in the horizontal plane. The mean deviations resulting from
the analytic simulation, as well as the mean deviations from both measured scenarios
are depicted in Figure 3.47 (left plot). A spectral compensation filter is derived from
the analytic deviation by magnitude inversion and smoothing. The filter is plotted in
Figure 3.47 (right plot).
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Figure 3.47 Averaged magnitude deviation due to spatial aliasing (left plot) and
derived spectral compensation filter (right plot).

The figure shows a remarkable congruence of the simulated prediction and the mea-
sured deviations. The increase is linear for f > fA and closely matches 6 dB/oct. A
compensation filter can be generated by inversion of the magnitude. Owing to the
simple structure of the filter slope, a first-order low-pass filter providing the required
damping of 6 dB/oct for f > fA could be applied as an alternative. Most probably
this result that is based on a single example can be generalized. However, this is not
further investigated in this thesis.

The derived filter can be applied to both ear signals and it compensates for the high
frequency slope induced by spatial aliasing for a specific array setup. Hence, the
loss of spatial selectivity due to spatial aliasing still persists, but the global spectral
impairment is equalized as far as possible.

The suitability of this approach is perceptually evaluated in Section 5.7.4. The respec-
tive stimuli with applied spectral compensation filters have the postfix «EQ» (equal-
ized).

3.9 Effective Operational Bandwidth Including Spatial Aliasing

The effective operational bandwidth (EOB) is introduced in Section 3.6.6, where it is
analyzed for a single factor of influence only, i.e. for limiting the radial filter ampli-
fication. At this point we pick up both, radial filter limiting at low frequencies and
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spatial aliasing at high frequencies. The EOB of the microphone array is substantially
narrowed. In order to give a practical example for the dimensions of the resulting EOB,
we fall back on the reference array configuration (rigid sphere array with r0 = 10 cm
and a Lebedev sampling scheme with Msg = 86 and Nsg = 7). Non-critical radial
filters according to Section 3.6.5 are used. An analytic full-order plane wave with unit
gain arriving from (θw = π/2, ϕw = 0) is generated using Eq. (3.24). Spatial sampling
is simulated using Eq. (3.45).

A scanning PWD along the horizontal plane (θd = π/2, ϕd = [−π, π]) is performed
using

DA,L(θd, ϕd, ω) =
4π

(N + 1)2

N∑
n=0

n∑
m=−n

d̃RS
n (ω

c
r0) P̊

RSA
nm pw(θw,ϕw)(r0, ω)Y

m
n (θd, ϕd),

(3.50)
where the decomposition order is set to N = Nsg = 7. The magnitude |DA,L(θd, ϕd, ω)|
is depicted in Figure 3.48.
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Figure 3.48 Magnitude response |DA,L(θd, ϕd, ω)| versus the temporal frequency of
the PWD (regular beampattern) in the azimuthal plane (θd = π/2, ϕd = [−π, π]) for
a full order broadband plane wave impact from (θ = π/2, ϕ = 0) at the decomposition
order N = 7.

The plot shows a remaining EOB of approximately 0.5 oct only. The effective opera-
tional range is located between roughly 2.9 kHz and 4 kHz. The EOB can be increased
at the top end using more sensors or at the bottom end by allowing for additional
radial filter gain, cf. Section 3.6.6. Using more sensors in a real-time array is expensive
because of the quadratic surge in the number of required sensors. Increasing the radial
filter gain amplifies equipment noise, cf. Section 3.7.

Figure 3.49 is generated analogous to Figure 3.48 but with an additional radial filter
amplification gain of âdB = 18 dB. The EOB increases to approximately 1 oct. Note
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that raising the radial filter amplification gain only sparsely increases the EOB. The
bandwidth gain depending on the radial filter amplification limits is quantified in Figure
3.29.
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Figure 3.49 Magnitude response analogous to Figure 3.48 but allowing for additional
radial filter amplification gain of âdB = 18 dB.

A nested array with concentric radii can be used for increasing the EOB. The signals
from different radii are combined according to their optimum operational ranges. This
approach is used in (Melchior et al., 2009) or (Melchior, 2011), for instance. With a
scanning array, different radii can be measured sequentially.

Hence, the balance between achievable EOB and technical effort or noise constraints
is a question of requirements and budget in practice.

For the purpose of binaural auralization, the comparably low EOB of the single sphere
configuration might be acceptable. As discussed before, the lower frequency range with
reduced modal resolution is not critical, as long as the array provides a certain minimum
size. The aliased high frequency range is more critical. The use of compensation filters
for equalizing the spectral impairment that is evoked by spatial aliasing is proposed.
However, the spatiotemporal resolution of the array is lost in this range. Even if from
a purely technical point of view the signal is not useful, auralization might still work
reasonably well. This finally depends on the perceptual impact of the spatial aliasing
artifacts (at comparably high frequencies), which is evaluated in listening experiments
that are presented in Section 5.6.3 and Section 5.7.4.

3.10 Surface Expansion of the Transducers

For the theoretical consideration of discrete spatial sampling we assumed ideal point
transducers with infinitesimal surface expansion on the sphere. In the following, the
influence of a transducer covering a certain radial surface with diameter dt on a sphere
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of radius r0 is analyzed. A simplified mathematical model of a spherical cap is used for
this purpose. The spherical cap is placed at the north pole around the z-axis, which
entails a compact formulation in the spherical wave spectrum domain. In the space
domain, the cap is described by

T (θ) =

⎧⎨⎩1 for 0 ≤ θ ≤ γt/2

0 for γt/2 < θ ≤ π,
(3.51)

where θ denotes the elevation angle, counting from the positive z-axis, T(θ) the ampli-
tude of the resulting function on the sphere, and γt the total aperture angle of the cap,
cf. Figure 3.50.

γt

dt

r0

Figure 3.50 Sphere of diameter r0 (array) with a spherical cap (transducer) at the
north pole spanning an arc length dt and the corresponding angle γt.

The aperture angle γt describes the ratio between dt and r0 yielding

γt(dt) =
dt

r0
. (3.52)

Owing to the established symmetry around the z-axis, Eq. 3.51 can be expressed using
a compact expression in the spherical wave spectrum domain (Williams, 1999, p 215)
based on Legendre polynomials (Pollow et al., 2012):

T̊nm(γt) =
√
π (2n+ 1) δm0

∫ 1

cos
γt
2

Pn(x) dx, (3.53)

where Pn denotes the Legendre polynomial of order n and δm0 the Kronecker delta.
T̊nm(γt) are the spatial Fourier coefficients, which are zero for m ̸= 0 and entirely
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real in the given case. The cap at the north pole can be rotated in the spherical
wave spectrum domain to an arbitrary position on the sphere using Wigner-D rotation,
cf. Section 2.16.1. Applying the inverse spatial Fourier transform to T̊nm(γt) yields
T(θ). To be exact, it yields T(θ, ϕ), since the function is defined over the entire
sphere and not restricted to a circle. An example for the inverse transform of T̊nm(γt)

for an angle γt = pi/2 is depicted in Figure 3.51. For generating the image, inverse
spatial Fourier transforms are applied for 360 × 181 angles covering the sphere. The
magnitudes are mapped to a flat surface according to a simple cylindrical Plate Carrée
projection (Bernschütz, 2012b). The transform is truncated at N = 20, which entails
a soft edge at θ = π/12 (15◦) and some visible ripple in the space-frequency domain.
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Figure 3.51 360 x 181 point normalized inverse spatial Fourier transform of T̊nm(γt)

for γt = π/6 truncated at N = 20.

The modal signal power pn that corresponds to the spectrum T̊nm(γt) for a specific
spherical harmonic order n can be calculated using (Pollow et al., 2012)

pn =

n∑
m=−n

|T̊nm(γt)|2. (3.54)

pn remains constant when rotating the spherical cap using Wigner-D functions (Pollow
et al., 2012). Observing the absolute modal signal power pn of the spherical harmonic
spectrum T̊nm(γt) is not too meaningful at this point. However, relating the latter to
the modal signal power that is excited by a infinitesimal point would show the impact
of surface expansion on the modal signal power in the spherical harmonic spectrum
referred to ideal conditions.
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The expanded spherical cap described by Eq. 3.53 is reduced to an infinitesimal point
at the north pole for γt → 0 yielding

T̊ ′
nm = lim

γt→0

√
π (2n+ 1) δm0

∫ 1

cos
γt
2

Pn(x) dx, (3.55)

with its corresponding signal power p′n analogous to Eq. 3.56

p′n =

n∑
m=−n

|T̊ ′
nm(γt)|2. (3.56)

The ratio pn/p′n describes the relative modal signal power of the spherical harmonic
spectrum excited by a function describing a spherical cap with expansion dt related to
an infinitesimal point. Applying reciprocity to the analytic description, a transducer
in the array that is exposed to a spherical harmonic mode of order n, would deliver an
output power according to pn. From this point of view, pn/p′n describes the relative
output power of a transducer with diameter dt referred to the ideal point transducer,
when exposed to spherical harmonic modes of order n.

Figure 3.52 shows an example for the relative output power 10 log10(pn/p
′
n) in dB for

γt = dt/r0 = π/6 plotted as a function of the spherical harmonic order n = [0, 40].
The plot reveals a sinc function. The spherical cap defined in Eq. 3.51 describes a
rect-function on the sphere in the space(-frequency) domain. Given the well-known
correspondences of the akin time-frequency Fourier transform, cf. e.g. (Ohm and Lüke,
2004, p 62), the resulting sinc function in the spherical wave spectrum domain is hardly
surprising.
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Figure 3.52 Relative transducer output power for γt = π/6 referred to an ideal point
transducer at spherical harmonic orders n = [0, 40] .

Depending on the point of view, this outcome indicates certain drawbacks of using
expanded transducers in an ideal system on the one hand, or, it indicates the chance
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to take advantage of the resulting power loss for realizing basic spatial low-pass filters
on the other hand. Both perspectives are discussed in the following.

3.10.1 Expanded Transducers in Ideal Systems

From the perspective of an ideal system, the question arises, to what extent expanded
transducers would impair the system properties. The increasing power loss at higher
modal orders observed in Figure 3.52 would generally impair the PWD or any desired
beam pattern to a certain extent, as long as the power loss is not compensated. A much
more critical problem are the complete drops in output signal power of the expanded
transducer. At certain orders, e.g. n = 14 in the previous example, the transducers are
not able to deliver a reasonable output signal power. Compensating these drops would
be highly unstable and amplify the transducer noise excessively. As a consequence,
compensation is not feasible in practice.

Due to the excessive radial filter amplification, a microphone array is generally not
able to resolve higher spherical harmonic orders. The previous example with γt = π/6

is exaggerated for microphone arrays, where usually transducers are used whose radius
is small compared to the array radius. For spherical loudspeaker arrays, in contrast,
the given ratio might be more realistic, e.g. (Pollow et al., 2012). Figure 3.53 shows
the relative output power for more realistic examples of a microphone array with a
radius of r0 = 8.75 cm (approx. head diameter) and typical transducer diameters of
dt = {1/4”, 1/2”, 1”}. Results for an exaggerated transducer diameter of dt = 2” are
shown as well.

The plots show a very moderate power loss for the two smallest transducers. The
first null of the sinc-function is not even located in the depicted range. For larger
transducers, the sinc-function becomes visible again. In this thesis, the measured
array data is acquired using an array of r0 = 8.75 cm that is equipped with a small
transducer, dt < 1/4” (Earthworks M30). Furthermore, the measured data is only
decomposed up to a maximum order of N = 7. Thus, the influence of the transducer
expansion is negligible in this context.

The previous studies of the transducer size consider the space domain and the spherical
wave spectrum domain only. For large transducers, particularly when using single large
diaphragms, resonances and partial oscillations might arise at wave lengths that are
small when compared to the transducer diameter. This influences the transmission
properties in the time-frequency domain, which is a common problem in microphone
design and is not further regarded in this work.
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Figure 3.53 Relative transducer output power referred to an ideal point trans-
ducer at spherical harmonic orders n = [0, 40] for different diaphragm diameters
dt = {1/4”, 1/2”, 1”, 2”} located on an array radius of r0 = 8.75 cm.

3.10.2 Expanded Transducers as Modal Low-pass Filter

Besides causing unwanted impairments to an ideal system, the damping of the output
power at higher modal orders due to the transducer expansion can be employed to
realize basic modal low-pass filters, refer to Rafaely et al. (2007b) or Meyer and Elko
(2008). Modal low-pass filters minimize spatial aliasing artifacts that arise due to
discrete spatial sampling of the sound field. The ratio γt = dt/r0 can be chosen to
match certain criteria, e.g. to provide a certain amount of power damping at a specific
target mode. Following common conventions, the power drop can be specified to match
−3dB at a desired target mode. Figure 3.54 (left plot) shows a modal low-pass filter
with target mode n = 10 that is obtained for γt ≈ 0.31. Analogous to the given
example, low-pass filters for reasonable target orders can be designed by varying the
ratio γt = dt/r0. The ratio γt for specific target orders n = [5, 40] is depicted in Figure
3.54 (right plot).

For several reasons a single transducer with large diaphragm is not feasible in practice.
In order to realize a spatial low-pass filter, a dense transducer sub-array consisting of
small transducers can be used to cover the required area with diameter dt instead of
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Figure 3.54 Exemplary basic modal low-pass filter for target order n = 10 (left plot).
Required ratio γt = dt/r0 for equivalent low-pass filters at target orders n = [5, 40]

(right plot).

using a single large transducer. The transducers of the sub-array can be combined by
a simple parallel circuit even before the microphone amplification and analog-digital
conversion. The sub-array would then be treated as a single transducer of the main
array.

Even though the previously discussed basic modal low pass filter is easy to realize and
therefore convenient in practice, the resulting filter characteristic in the spherical wave
spectrum domain is not satisfying, since the filter is based on a simple rect-function
in the space domain. More graceful filters concerning the slew rate, pass-band flatness,
and rejection-band damping could be designed in theory. In return, a complex and
sophisticated sub-array pattern with individual weighting of the transducers would be
required to replace each single transducer position of the main array. This approach
is challenging and expensive in practice. The theoretical design of an ideal spatial
low-pass filter (rect and sinc functions are exchanged between the space domain and
the spherical wave spectrum domain) is discussed in (Rafaely et al., 2007b). Thus, the
simple approach of using an expanded transducer (or passive transducer sub-array) that
covers a spherical cap could be the most feasible solution for the practical realization
of modal low-pass filters, even though the resulting filter properties might not be the
best imaginable.

3.11 Bandwidth Extension for Microphone Arrays (BEMA)

In this section we discuss an approach for extending the bandwidth of microphone
arrays4 presented in (Bernschütz, 2012a). In this thesis we only discuss a simplified
basic version of the approach in order to outline the underlying idea. The BEMA

4The approach is referred to as bandwidth extension for microphone arrays (BEMA).

138



3.11 Bandwidth Extension for Microphone Arrays (BEMA)

method can be used to patch spatial aliasing. The underlying approach can also
be employed for other applications, like the design of spatial audio data reduction
algorithms.

The approach and mathematical description for decomposing the sound field as it is
discussed in this thesis and in the common literature that this thesis is based upon,
is highly abstract and does not account for potential prior knowledge on the specific
conditions in realistic sound fields. This refers to the capability of independently resolv-
ing monofrequent waves of arbitrary temporal frequency in both, the time-frequency
domain and the space-spherical wave spectrum domain. This might not be necessary
under certain assumptions and conditions.
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Figure 3.55 Circular response of an ideal array in the azimuthal plane (θd = π/2,
ϕd = [−π, π]) for a broadband plane wave impact from (θw = π/2, ϕw = 0) at
decomposition order N = 7.

The azimuthal response of an ideal5 array to a broadband plane wave impact is depicted
in Figure 3.55. The response is uniform over the full time-frequency spectrum due to
the native constant directivity (CD) property.

As a consequence, we only need to evaluate the decomposition for a single temporal fre-
quency (bin) in order to derive the entire response in the space-spherical wave spectrum
domain over the full temporal frequency range. In other words, the spatial direction
of a single ideal broadband plane wave impact is sufficiently determined by evaluating
a monofrequent portion at arbitrary single temporal frequency.

The effective operational bandwidth (EOB) of a realistic array under typical techni-
cal constraints, i.e. involving discrete spatial sampling and radial filter amplification
limiting is shown in Section 3.6.6. We can achieve a nearly ideal array response for a

5Ideal means not accounting for neither discrete spatial sampling nor radial filter amplification
limiting.
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Figure 3.56 Circular response of a non-ideal array with r0 = 10 cm, Msg = 86 discrete
sampling positions and âdB = 0dB in the azimuthal plane (θd = π/2, ϕd = [−π, π])
for a broadband plane wave impact from (θw = π/2, ϕw = 0) at decomposition order
N = 7.

narrow frequency band below ω = N c/r0. The respective band covers the range be-
tween approximately 2.9 kHz and 4 kHz for the configuration used to generate Figure
3.56.

Since we found a monofrequent portion to be sufficient to determine the spatial response
to a single ideal broadband plane wave on the entire time-frequency spectrum, the
stable narrow frequency band indeed delivers sufficient information to perfectly recover
the ideal response over the entire time-frequency spectrum. We extract the reference
response at ωi = N c/r0 or slightly below (i.e. around 3.5 kHz in the upper example),
since the array response is most robust in this specific range. This narrow-band extract
is referred to as spatial image in the following. Once the spatial image is extracted, it
can be copied and pasted to the impaired sections in the response. As a consequence,
we are able to reconstruct the result from Figure 3.55 based on the narrow-band spatial
image extracted from Figure 3.56.

In order to put this into a more concrete mathematical description, we assume arbitrary
modal sound field description P̊nm(r0, ω). In a first step we extract a spatial image

•

I′nm at a stable temporal frequency ωi using

•

I′nm = P̊nm(r0, ωi) dn(
ωi
c
r0), (3.57)

where ωi = N c/r0 is a reasonable choice in this context due to the high robustness
of the array response. The extracted spatial image

•

I′nm is unchained from its specific
dependence on the measurement radius, the array configuration, and the temporal fre-
quency by multiplying the source coefficients P̊nm(r0, ωi) with the specific radial filters

140



3.11 Bandwidth Extension for Microphone Arrays (BEMA)

dn(
ωi
c
r0), cf. Section 3.6. Thus,

•

I′nm represents abstracted spatiotemporal properties
of the sound field described in P̊nm(r0, ω) at ω = ωi.

In a next step, spatial Fourier coefficients P̊B′
nm(r0, ω) for an arbitrary temporal fre-

quency ω can be generated using

P̊B′
nm(r0, ω) =

•

I′nm

dn(
ω
c
r0)

. (3.58)

Hence, we create valid spatial Fourier coefficients P̊B′
nm(r0, ω) for an arbitrary frequency

ω that provide (ideal) spatiotemporal properties that are identical with the properties
we find in P̊nm(r0, ω) at ω = ωi. So far we are able to recover the ideal spatial Fourier
coefficients for any ω merely based on the information gained at ωi. This is strictly
limited to ideal plane waves in P̊nm(r0, ω) that actually provide a perfectly flat spectral
magnitude response and a linear phase response, since we completely loose or ignore
specific magnitude and phase information.

The first stage so far only considers the spatiotemporal properties and neglects any spec-
trotemporal properties. As a consequence, it cannot be used for practical applications.
In real sound fields there are no plane waves that strictly fulfill the ideal properties.
Real sound sources do not produce ideal plane waves, as this would imply reproducing
an ideal spectrotemporal Dirac pulse. For simplicity, we use (room) impulse responses
instead of complex audio signals. The sound source provides a magnitude and phase
response that we would like to include into our considerations. If we perform room
impulse response measurements, the incident reflections can be considered to be de-
layed copies of the source signal, modified with respect to magnitude and phase, which
precisely characterize the room impulse response. Hence, we need to account for the
specific spectrotemporal properties.

At this point we come to the core of the BEMA approach. It consists of merging
the abstract spatiotemporal properties that are gained at ωi with spectrotemporal
information that is acquired using a separate omni-directional transducer at the origin
of the array. The respective space-frequency domain signal is denoted as C0(ω).

We reformulate Eq. (3.57) reading

•

Inm =
P̊nm(r0, ωi) dn(

ωi
c
r0)

|C0(ωi)|
, (3.59)
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where the spatiotemporal image is normalized by the magnitude of the center trans-
ducer signal C(ω) at ω = ωi. We reformulate Eq. (3.58) in order to account for the
spectrotemporal information acquired at the center transducer yielding

P̊B
nm(r0, ω) =

•

Inm

dn(
ω
c
r0)

C0(ω). (3.60)

Hence, we separately account for a spatiotemporal component that describes the spatial
distribution unchained from specific spectrotemporal information, and a spectrotem-
poral component that comprises magnitude and phase information but does not carry
specific spatiotemporal information due to the omni-directional characteristics. We
mark both separate components in Eq. (3.60),

P̊B
nm(r0, ω) =

•

Inm

dn(
ω
c
r0)  

A

B  
C0(ω) .

A: Spatiotemporal component: Spatial distribution
B: Spectrotemporal component: Magnitude and phase

Acquiring the spectrotemporal information with a separate transducer at the math-
ematical and physical origin of the array is particularly suitable, since this spatial
position is the reference point of phase in the original Fourier coefficients. Due to the
magnitude normalization of the spatial image to |C(ωi)| in Eq. (3.59) we automatically
achieve suitable magnitude relations. Hence, there is no specific need for calibrating
the gain of the center transducer.

We have found a closed form description with magnitude and phase relations that
perfectly match the original Fourier coefficients. This is of great relevance for fading
between original Fourier coefficients and BEMA Fourier coefficients. We can fade
or switch from the original coefficients to BEMA estimated coefficients for patching
unstable or impaired sections of the original response without even producing gaps in
the magnitude and phase response. However, in practical applications, particularly
when using a rigid sphere array, the center transducer cannot be placed at the true
origin. The center transducer is then placed on top, below or besides the array. The
resulting phase gap may be negligible in practice.

We see that the BEMA approach produces new valid and mathematically closed spatial
Fourier coefficients that are fully compatible with the original Fourier coefficients.
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3.11.1 BEMA Requirements and Restrictions

Even though the BEMA estimated Fourier coefficients are fully compatible with the
original coefficients, they differ from them and there are specific restrictions. With
BEMA coefficients there is no true source separation in a classical sense, but the sig-
nal C0(ω) at the omni-directional transducer is reasonably distributed and assigned
in proper portions to dedicated spatial incidence directions. Single separate plane
wave incidences can indeed be reconstructed perfectly. Nevertheless, for superimposed
plane waves with different magnitude and phase responses, the omnidirectional sum
response is distributed and assigned in proper portions to the true directions of inci-
dence. Depending on the scenario, various inherent estimation errors will emerge. But
we still achieve substantial improvements e.g. when patching aliased sections of the
array response.

BEMA works only for incident waves that provide energy at ωi, since this is where
the spatial image is extracted. If there is no energy at ωi, the spatial image extraction
fails and the wave becomes invisible to the BEMA processing. Hence, there are severe
restrictions, e.g. for monochromatic waves with ω ̸= ωi. However, most waves in realis-
tic sound fields cover sufficient spectral bandwidth. If we restrict our considerations to
room impulse responses, the incident waves consisting of direct sound and room reflec-
tions usually cover sufficient spectral bandwidth to be fully compatible with BEMA.
Room resonances at low frequencies that due to their monochromatic nature would be
invisible for the BEMA processing are an exception.

BEMA should not be applied to the full time-frequency bandwidth, but rather be
used to patch dedicated impaired sections of the array response only. The approach
is well suitable in the context of auralization for patching the upper frequency band
that is impaired due to spatial aliasing. Here we further use the original Fourier
coefficients P̊nm(r0, ω) for f < fA and fade or switch over to the estimated BEMA
Fourier coefficients P̊B

nm(r0, ω) for f ≥ fA. Thus, below the aliasing frequency we have
the native array resolution and source separation capabilities and above the aliasing
frequency the signal is complemented by a suitable BEMA estimation.

The BEMA processing should be applied in blocks (e.g. 128 or 256 samples with or
without overlap) in order to properly resolve complex dynamic structures that vary
with time in a measured or simulated room impulse response. Straight block based
BEMA processing apparently works very well for dedicated single or superimposed
reflections, cf. Section 5.6.4, but it turns out to be rather sensitive to highly diffuse
portions in the sound field. Audible block processing artifacts arise in diffuse sound
fields, cf. Section 5.7.4.4.
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3.11.2 BEMA Spatial Anti Aliasing

In this section specific properties of the BEMA approach are demonstrated. We focus
on using BEMA for patching the upper spectrotemporal range f > fA that is impaired
by spatial aliasing, as proposed in (Bernschütz, 2012a) and evaluated in the listening
experiments in Section 5.

Eq. (3.45) delivers spatial Fourier coefficients according to a single plane wave impact
when factoring in discrete spatial sampling that results in spatial aliasing artifacts for
f > fA. The equation is modified in order to allow for generating K plane waves with
individual incidence directions (θwk , ϕwk ), amplitudes p̂k, and time shifts τk. The
modified equation reads

P̊ RSA
nm (r0, ω) =

Msg∑
gsg=1

wgsg

K∑
k=1

p̂k e−iω τk

[ ∞∑
n=0

n∑
m=−n

P̊ RS
nm pw(θwk

,ϕwk
)(r0, ω)×

Ym
n (θgsg , ϕgsg )

]
Ym
n (θgsg , ϕgsg )

∗, (3.61)

where the coefficients P̊ RS
nm pw(θwk

,ϕwk
)
(r0, ω) are defined in Eq. (3.24). They describe

an ideal plane wave impact.

We require an appropriate center transducer signal C(ω) that reproduces the sum signal
of the K superimposed waves. Since the transducer is located at the mathematical
origin, the description reduces to the sum of individual amplitude and phase shift
terms,

C0(ω) =
U∑

u=1

p̂k e−iω τk . (3.62)

The spatial image
•

Inm is extracted using Eq. (3.59) yielding

•

Inm =
P̊ RSA
nm (r0, ωi) dn(

ωi
c
r0)

|C0(ωi)|
, (3.63)

where we chose ωi = (N − 1) c/r0, i.e. slightly below ωi = N c/r0 for providing some
headroom with respect to the aliasing frequency. The BEMA Fourier coefficients
P̊B
nm(r0, ω) are generated using

P̊B
nm(r0, ω) =

•

Inm

dn(
ω
c
r0)

C0(ω). (3.64)

144
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At this point we have the original Fourier coefficients P̊A
nm and the BEMA estimated

Fourier coefficients P̊B
nm. A patched coefficient set P̊AB

nm is defined by

P̊AB
nm(r0, ω) =

⎧⎨⎩ P̊A
nm(r0, ω) for f < fA and

P̊B
nm(r0, ω) for f ≥ fA.

(3.65)

Hence, at f = fA we switch over6 from the original coefficients to the BEMA co-
efficients. For evaluating the result of this operation, a DI-normalized plane wave
decomposition is performed, based on the original coefficients P̊A

nm yielding

DA(θd, ϕd, ω) =
4π

(N + 1)2

N∑
n=0

n∑
m=−n

dRS
n (ω

c
r0) P̊

A
nm(r0, ω)Y

m
n (θd, ϕd), (3.66)

as well as on the patched coefficient set P̊AB
nm yielding

DAB(θd, ϕd, ω) =
4π

(N + 1)2

N∑
n=0

n∑
m=−n

dRS
n (ω

c
r0) P̊

AB
nm(r0, ω)Y

m
n (θd, ϕd). (3.67)

Three different scenarios (BS1, BS2 and BS3) are analyzed to demonstrate some of
the properties of BEMA in the following. The simulated array corresponds to the
reference configuration. It is a rigid sphere array with r0 = 10 cm and Msg = 86.
The decomposition order is set to N = 7 and no radial filter amplification limiting is
applied. Other simulation parameters that depend on the specific scenario are listed
in Table 3.1.

Table 3.1 Simulation parameters for scenarios BS1, BS2 and BS3.

Scenario BS1 BS2 BS3

Number of waves K 1 3 3
Direction (θwk , ϕwk ) (π/2, 0) (π/2, 0), (π/2, 0)

(π/2, π/2), (π/2, π/2),
(π/2,−π/3) (π/2,−π/3)

Amplitude p̂k 0 dB 0dB, -6 dB, -12 dB 0dB, -6 dB, -12 dB
Time shift τk 0ms 0ms, 0ms, 0ms 0ms, 30ms, 10ms

6In practical implementations we should fade between both for about 1/6 oct to 1/3 oct in order
to achieve a smooth transition.
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The following plots show both magnitude responses |DA| and |DAB| using decomposi-
tion angles (θd = π/2, ϕd = [−π, π]) as a function of the temporal frequency.

The first scenario (BS1) is depicted in Figure 3.57. Note that an isolated plane wave
impact can be reconstructed perfectly. This still holds true in case the incident wave
provides a particular magnitude and phase response. The only crucial condition is that
the wave provides energy at ω = ωi for enabling the extraction of the spatial image.
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Figure 3.57 Responses |DA(θd, ϕd, ω)| (left) and |DAB(θd, ϕd, ω)| (right) for scenario
BS1.

The second scenario (BS2) is depicted in Figure 3.58. There are three incident waves
with different directions and different amplitudes but equal time shifts. We observe
that BEMA apparently is also capable of resolving this more complex structure. The
response is properly extended and the different magnitudes of the waves are matched.
However, we must keep in mind, that above f ≥ fA there is no true source separation
possible anymore. The spatial image is applied and the superimposed signal from the
center transducer is simply distributed in proper portions to the incident waves.

The third scenario (BS3) is depicted in Figure 3.59. Analogous to BS2 there are three
incident waves with different directions and different amplitudes. However, in contrast
to BS2, there are different time shifts for each wave. Now we observe the overlay of
an irregular pattern in the range of the BEMA estimated coefficients. The pattern is
due to comb filter effects that arise at the omni-directional center transducer. At the
center transducer all waves are superimposed without directional separation. Hence,
BEMA is not capable of reconstructing an ideal response. However, the result is still
considerably improved when comparing to the aliased response.

In this thesis we only discuss aspects that are useful for understanding the functional
principle of BEMA. Refer to (Bernschütz, 2012a) for a more detailed discussion.
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Figure 3.58 Responses |DA(θd, ϕd, ω)| (left) and |DAB(θd, ϕd, ω)| (right) for scenario
BS2.
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Figure 3.59 Responses |DA(θd, ϕd, ω)| (left) and |DAB(θd, ϕd, ω)| (right) for scenario
BS3.

As mentioned in the introduction of the chapter, the functional principle can be em-
ployed for other purposes besides patching aliased portions in the array response. The
separation and separate treatment of spectrotemporal and spatiotemporal properties of
the sound field is, for instance, a potential approach for designing spatial audio codecs.

3.12 HRTFs

This section shortly discusses some of the most relevant factors, approaches and issues
concerning head-related transfer functions (HRTFs) in practice.

3.12.1 Non-individual, Individualized and Individual HRTFs

We distinguish between non-individual, individualized, and individual HRTFs. Non-
individual HRTFs are measured with a dummy head or a reference subject. No adapta-
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tion is made to the specific listener. Individualized HRTFs are non-individual HRTFs
that are further adapted to the specific anatomy of the listener. Individual HRTFs are
individually measured or modeled for each specific listener.

Generally, the use of individual HRTFs is preferable, since there is considerable anatom-
ical variation between different subjects or dummy heads. If the mismatch between
the subject’s anatomy and non-individual HRTFs is too large, the localization accuracy
can be affected (Plenge, 1974), (Wenzel et al., 1993), (Møller et al., 1996). Neverthe-
less, it is not always feasible to use individual HRTF, since the measurement process
for human subjects is quite elaborate. Different approaches for individualizing non-
individual HRTFs, e.g. by using ITD-scaling, are proposed by Middlebrooks (1999),
Zotkin et al. (2003), Hu et al. (2006), or Lindau et al. (2010). As an alternative to
active individualization, a best fitting set can be chosen (Seeber and Fastl, 2003), (Katz
and Parseihian, 2012) from a database of different HRTFs, such as the CIPIC database
by Algazi et al. (2001b), for example.

For the present work, a Neumann KU 100 dummy head was used to acquire the nec-
essary HRTFs and BRIRs. No individual HRTFs are involved nor is any approach to
individualization applied for different reasons. Measuring adequate individual HRTF
sets was not feasible due to the demands concerning grid resolution and positioning
accuracy. Highly consistent BRIRs needed to be acquired at different locations and a
large amount of subjects was involved in the listening experiments. Hence, the use of
individual HRTFs was not feasible at all. No individualization is applied, since active
individualization might generate unexpected artifacts and affect the test results. All lis-
tening experiments conducted for this thesis compare to given external references and
do not rely on an internal reference. Hence, using individual HRTFs or individualiza-
tion of the dummy-head HRTFs might indeed enhance the overall listening experience
but it is supposed to have only minor influences on the results of the performed listening
tests.

The approach presented in this thesis directly permits using individual HRTFs in array-
based binaural systems. Due to the specific wave order adaptation using spatial subsam-
pling of the HRTFs individual HRTFs can be acquired and integrated effortlessly. For a
reasonable array-based binaural system working at decomposition order of N = 7 and
using a Gauss composite grid, we only need to acquire Mcg = 128 (individual) HRTFs
distributed over the entire sphere. For lower decomposition orders (e.g. N = 5) and
more efficient composite grids (e.g. Lebedev), this number be reduced (e.g. Mcg = 50)
in theory, with considerable perceptual losses, cf. Section 5.

For concrete applications, each listener could use individual HRTFs in his personal
rendering instance for listening to dynamic binaural sound recordings or productions.
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3.12 HRTFs

Dynamic listening refers to head-tracked reproduction in at least three different degrees-
of-freedom that are inherently covered by the modal description.

3.12.2 Torso reflections

The Neumann KU100 that was used to acquire all binaural data in this work consists
of a head only, in contrast to other models, such as the KEMAR Manikin (Burkhard
and Sachs, 1975) or F.A.B.I.A.N. (Lindau and Weinzierl, 2006), that use a full torso.
The influence of the torso was analyzed by Algazi et al. (2001a) and Guldenschuh
et al. (2008), for example. The torso reflections are primarily evaluated by the au-
ditory system for stabilizing the localization of sound sources in the median plane,
i.e. for estimating the height of sound sources. For this work torso reflections are not
considered.

3.12.3 Discrete Spatial Sampling

HRTF measurements are performed for discrete spatial sampling positions. The re-
quired number and the arrangement of different source directions to be acquired are
important parameters.

For the modal adaptation of HRTFs to order-limited source systems, such as micro-
phone arrays or higher-order Ambisonics (HOA) (Gerzon, 1985), (Daniel et al., 2003)
decoders, spatial subsampling of the HRTF set was found to deliver best results, refer
to Section 3.5.2. The spatial subsampling of the HRTFs in the space-frequency domain
means modal low-pass filtering in the spherical wave spectrum domain.

The required number and position of sampling nodes are precisely determined by the
composite grid that is used for performing the modal adaptation. The composite grid,
in turn, is determined by the resolution of the source system that delivers the modal
sound field description. The composite grid should be a quadrature that provides
the same modal order as the underlying sound field description. The only remaining
variable is the type of quadrature to be used as composite grid. From a technical or
mathematical point of view, the differences between different composite grid types are
low. In contrast, from a perceptual point of view the differences are indeed considerable,
which is shown in Section 5. The equiangular Gauss quadrature has convenient and
reliable properties in this context. Hence, we generally use Gauss quadratures as
composite grids. Gauss quadratures provide a grid efficiency of ηg = 2.

Thus, we need to capture exactly 2 (N + 1)2 HRTFs distributed over the entire sphere
according to the Gauss quadrature specification in order to auralize a modal sound
field description of order N .
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3.12.4 Spherical Harmonic Interpolation of HRTFs

As stated before, a full HRTF Hl,r(θ, ϕ, ω) set is described by a complex function of
magnitude and phase on a virtual sphere Sh. Hence, the spatial Fourier transform is
applicable. The result is a spherical harmonic expansion H̊l,r

nm(ω) of the underlying
HRTF set. Measuring HRTFs is done by discrete spatial sampling. As a consequence,
the discrete spatial Fourier transform from Eq. (3.3) applies de facto yielding

H̊l,r
nm(ω) =

Msg∑
gsg=1

wgsg H
l,r(θgsg , ϕgsg , ω)Y

m
n (θgsg , ϕgsg )

∗. (3.68)

The required spatial sampling nodes (θgsg , ϕgsg ) and weights wgsg with g ∈ [1,Msg] are
determined by a suitable quadrature. The specific requirements are discussed below.

The spatial Fourier coefficients H̊l,r
nm(ω) contain sufficient information for performing

continuous interpolation over the surface of the virtual sphere Sh, which is discussed
in Section 2.15.

The inverse spatial Fourier transform, cf. Eq. (2.96) can be applied, yielding

H̃l,r(θ, ϕ, ω) =

N≤Nsg∑
n=0

n∑
m=−n

H̊l,r
nm(ω)Ym

n (θ, ϕ), (3.69)

where H̃l,r(θ, ϕ, ω) represents a SH-interpolated HRTF. The maximum transform order
N is determined by the order of the sampling quadrature Nsg.

This yields a continuous representation for any angle (θ, ϕ) ∈ S from a discrete subset
(θgsg , ϕgsg ) ∈ S, g ∈ [1,Msg] by spherical harmonic interpolation. In other words, we
obtain HRTFs for arbitrary angle (θ, ϕ) that can be, but does not have to be, contained
in the original data set (θgsg , ϕgsg ), g ∈ [1,Msg].

To determine the required transform order N and the grid order Nsg we perform an
approximation in the following. We span a virtual sphere Sh around the center of
the head whose radius is delimited by the pinnae. As a reasonable choice we assume
a sphere radius of rh = 9.5 cm. Let us assume 20 kHz to be the highest temporal
frequency to be resolved. If we insert this into (Rafaely, 2005)

N =
ω

c
rh, (3.70)

we come to the conclusion that the HRTF set should be completely described using
a maximum spherical harmonic order of N = 35 in theory. Figure 3.6 illustrates
the modal intensity distribution of a measured HRTF set and indeed confirms our
theoretical assumptions. As a consequence, the HRTF set needs to be sampled using
a quadrature of Nsg ≥ 35, in order to obtain a suitable spherical harmonic expansion
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3.12 HRTFs

and to perform spherical harmonic interpolation that is valid on the entire audible
spectrum up to 20 kHz. A Lebedev quadrature of Nsg = 35 with ηg = 1.3 yields 1730

spatial sampling nodes or source positions, respectively.

Even though for this grid configurations the aliasing frequency is shifted to the outer
limit of the considered temporal frequency range, we must still expect minor aliasing
contributions over the entire spectrotemporal range due to the fact that natural sound
fields are not order-limited. This is discussed in Section 3.8. However, the additive
spatial noise from orders greater than Nsg is negligible in practice.

In order to keep a safety margin and to decrease spatial aliasing artifacts, a slightly
higher grid order should be used in practice. Therefore, we use a Lebedev quadrature of
order Nsg = 41 with 2354 spatial sampling nodes in the following. Note that arbitrary
grid order Nsg ≥ 35 is valid here. The data set for generating the subsequent content
is described in Section 4.3.2.

The following figures give practical insight into spherical harmonic HRTF interpolation.
First, we use different transform ordersN to observe the development of an interpolated
HRTF. Even using a HRTF set that is sampled at Nsg = 41, the interpolation order
N can be varied while fulfilling N ≤ Nsg, compare Eq. (3.69). Figure 3.60 shows an
interpolated HRTF H̃l(π/2, π/4, ω) at different interpolation orders N = [5, 10, 20, 35]

versus the original measured counterpart Hl(π/2, π/4, ω) from a different measurement
session.

Indeed we observe that at N = 35 the interpolated HRTF comes very close to its
original measured counterpart. For orders N < 35 specific impairments arise, like low-
pass filter effects. This phenomenon was discussed in Section 3.5 in the context of a
binaural system with limited modal resolution.

This example is a favorable one. The interpolation performance depends on the exact
source position. Therefore, in Figure 3.61 additional examples with different source
positions (θ = π/2, ϕ = [0, π/4, π/2, 3π/2] interpolated at N = 35 are provided. The
figure also comprises unfavorable cases.

We notice that deviations arise at very high frequencies and particularly at sharp
notches in the magnitude response. The deviations reflect the impact of several sec-
ondary factors such as minor residual information in modal orders N > 35, spatial
aliasing contributions, small motor positioning errors, temperature fluctuations during
a measurement session, or temperature differences between the two measurement ses-
sions, background noise, numerical errors, and so forth. Considering this large variety
of influencing factors we can conclude that spherical harmonic interpolation of HRTFs
works astonishing well in practice.
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Figure 3.60 Original HRTF Hl(π/2, π/4, ω) and interpolated HRTF H̃l(π/2, π/4, ω)

at different interpolation orders.

Even though in a strict sense we only find that H̃l,r(θ, ϕ, ω) approximates Hl,r(θ, ϕ, ω),
the differences are negligible in practice and can be considered imperceivable. Therefore,
throughout this thesis we assume H̃l,r(θ, ϕ, ω) = Hl,r(θ, ϕ, ω).

Spherical harmonic interpolation is a useful approach for deriving the required HRTF
angles defined by the composite grid nodes (θgcg , ϕgcg ) in Eq. (3.10) from a common
high-resolution HRTF set that originally does not provide the required node positions.
This operation is inherently contained in Eq. (3.11). Both equations adapt the HRTFs
to a modal sound field description of limited modal order by performing subsampling of
the HRTF set. This approach is applied for all simulations and listening experiments
throughout this thesis. Respective routines are implemented in the SOFiA toolbox,
refer to Section 4.2.
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Figure 3.61 Original HRTFs Hl(θ, ϕ, ω) and interpolated HRTFs H̃l(θ, ϕ, ω) at inter-
polation order N = 35 for different source directions.

More details on spherical harmonic expansion or interpolation of HRTFs are discussed
e.g. by Evans et al. (1997), Nelson and Kahana (2001), Duraiswami et al. (2004), Zhang
et al. (2009), Zotkin et al. (2009), Pollow (2010), or Zhang et al. (2012).

Range extrapolation of HRTFs can be performed using similar approaches. This not
treated here but discussed by Duraiswami et al. (2004), Pollow (2010), or Spors et al.
(2012a), for example.

3.13 Additional Factors of Influence

Major factors of influence, such as limited modal resolution of the sound field descrip-
tion, limiting the radial filter gain, discrete spatial sampling, and uncorrelated noise,
were discussed so far. Those factors are found to be most crucial for properly assessing
and describing the transmission properties of an array-based binaural system.
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However, there are several additional factors that are not discussed at this point, since
an appropriate in-depth discussion of all possible factors would go beyond the scope
of this work. However, some of the additional factors are briefly mentioned. Several
of them were already analyzed by different authors. Most of the other analyses focus
on the influence of the respective factors on the PWD or beamformer only. As we see
in Section 3.7 (noise analysis), the impact on the array working in composite mode
might be considerably different from the impact on the isolated PWD. Thus, most
of the analyses that are found in the literature may be enlightening for any kind of
beamforming applications, but might not be conclusive in the context of array-based
binaural auralization. In most cases they need to be repeated with regard of the
composite processing in order to obtain meaningful results for this specific purpose.

For analyzing further factors of influence, the approach could be similar to the one
presented in Section 3.7. The PWD signal, the composite signal, as well as the final
binaural output signal, should be analyzed separately in order to deliver conclusive
information regarding the impact on array-based binaural auralization.

3.13.1 Sources in the Near-field

The mathematical approach yielding a theoretically transparent behavior of the array-
based binaural system that is discussed in Section 2.20 and followed throughout the
entire thesis is only fully valid for sources in the far-field. Sources that are located close
to the array yield certain impairments. The specific adaptation of the approach to a
source in the near-field is not a problem. The radial filters can be adapted to resolve
a near-field source properly.

However, there is a fundamental problem concerning near-field sources. In order to
adapt the radial filters to a near-field source, the distance of the source must be known.
Unfortunately, we usually do not know the positions of sources in the sound field.
Furthermore, the radial filters need to be specifically focused on a dedicated distance,
comparable to a camera lens that is focused an a specific focal plane. As a consequence,
there is no general solution to generate radial filters that are capable of perfectly
resolving sources at arbitrary distances. The radial filters used throughout this work
focus the array to infinity, which appears to be the most general choice for processing
unknown sound fields.

Near-field sources in the context of spherical microphone arrays are discussed e.g. in
(Kennedy et al., 1996), (Abhayapala et al., 1999), (Fisher and Rafaely, 2008), (Abhaya-
pala, 2008), (Fisher and Rafaely, 2009), or (Fisher and Rafaely, 2011).
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3.13.2 Transducer Positioning Errors

The microphones might not be perfectly located at their assigned spatial positions in
practice. Positioning errors of the array transducers yield orthogonality errors, as the
spherical harmonic base functions are not sampled at the assigned positions and hence
the acquired magnitude and phase information does not correspond to the aimed sam-
pling nodes. The orthogonality errors are particularly critical at both very low and very
high wavelengths compared to the array radius. Positioning errors are e.g. discussed
and analyzed by Rafaely (2005).

3.13.3 Non-ideal Transducers and Interindividual Differences

Real microphones show a deviation from the ideal sensitivity, frequency response, and
directivity. Moreover, the single array transducers show interindividual differences.
The resulting errors are hard to quantify and to express in reasonable measures, since
the variation possibilities are virtually infinite. Helwani et al. (2011) and Rettberg
et al. (2012) propose using a multiple input – multiple output (MIMO) system theory
approach for the calibration of microphone arrays in practice.

3.13.4 Time-variances

When using a scanning array with a single transducer instead of a real-time array
with multiple microphones, amplifiers and ADCs, the interindividual differences largely
vanish. Nevertheless, the single transducer still shows non-ideal properties. We strictly
assume time-invariant properties of the medium and surroundings during the sequential
acquisition of the complete array response. However, there are several factors that
might not be time-invariant in practice, e.g. background noise, air movement, or varying
characteristics of the speaker system due to increasing heat generation in the drivers.
Another relevant factor is the air temperature, which due to natural environmental
influences or air conditioners might have considerable fluctuations during the sequential
acquisition of a complete array response. The influence of time-variances in the air
temperature on scanning arrays is analyzed in (Bernschütz et al., 2011c).

3.13.5 Incomplete Sampling

A particular problem is incomplete or non-uniform sampling, where either single nodes
or entire sections of the sampling grid are missing or the nodes are distributed very
irregularly. Zotter (2009b) declares non-uniform and incomplete sampling as «ultimate
challenge» in spatial sampling. Indeed, both are non-trivial problems demanding for
complex theoretical or numerical approaches. Incomplete and non-uniform sampling
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are discussed e.g. in (Pail et al., 2001) and (Du et al., 2003). More recent approaches
to this topic based on sparse representation theory are discussed e.g. in (Rauhut and
Ward, 2011) or (McEwen et al., 2013).

3.13.6 Non-ideal Sphere in the Measurement System

Unspecific deviations were observed in the measured array data sets, particularly for
frequencies above 6 kHz. Spatiotemporal errors arise, such as minor ghost images in the
space-frequency domain, as well as decreased output magnitudes of the binaural signal.
These phenomena can unambiguously be ascribed to the non-ideal measurement setup.
The data sets were captured using the VariSphear scanning array (cf. Section 4.1)
equipped with a rigid sphere head. The setup is depicted in Figure 3.62.

Rigid sphere
head with

microphone 

Motor and mounting 
structure

10 cm

Figure 3.62 VariSphear scanning array with rigid-sphere head that provides a sphere
diameter of d = 17.5 cm. The picture [Foto: P. Stade] (left) and the true-to-scale sketch
(right) show the rigid sphere, the motor, and the mounting structure.

The motor sticks out of the sphere and the mounting structure is quite close to the
measurement head. Both motor and mounting structure interact with the sound field,
yielding non-ideal acoustical properties of the sphere. The motor and the mounting
structure are not even fix obstacles in the sound field, but their position changes with
the position of the respective target sampling node. As a consequence, the interaction is
highly complex and can only be modeled using a boundary elements method (BEM) in
a reasonable way. But even though the interaction is modeled properly, the theoretical
approach needs to be modified accordingly. This was not within the scope of this
work. Hence, neither the data nor the theoretical approach are modified to account
for the latter. As a consequence, the non-ideal properties of the measurement setup
yield certain errors during the processing, since ideal properties are assumed. The
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3.13 Additional Factors of Influence

errors increase towards high temporal frequencies, as the wavelength is short and the
additional obstacles become an increasingly significant factor of influence.

A decreased output level of the binaural signal at high temporal frequencies was ob-
served that is quite comparable to a high-shelf filter. In order to compensate for the
resulting global coloration, a suitable compensation filter was designed that at least
equalizes the diffuse field response of the array-based binaural signals. The filter mag-
nitude is depicted in Figure 3.63. The filter was derived from comparing the circular
diffuse field response of the original BRIR sets with the circular diffuse field response
of the corresponding array based binaural room impulse response (ABRIR) sets and is
consistently applied to all ABRIRs involved in the listening experiments presented in
Section 5.7.
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Figure 3.63 Spectral error compensation filter for a decomposition order of N = 7.
The filter is applied to the array based binaural room impulse responses (ABRIRs) in
Section 5.7 and aims to compensate for the resulting coloration due to the non-ideal
sphere configuration of the VariSphear rigid sphere head.

This approach is the only feasible way to cope with the non-ideal properties of the
specific measurement system in practice. For arrays that are closer to an ideal sphere,
the spectral compensation filter is not required. We must keep in mind that the
listening experiments based on measured data (Section 5.7) are negatively influenced
by the errors introduced by this specific measurement system, even though the overall
diffuse field response is compensated. Therefore, the ratings can generally be expected
to be slightly higher for arrays with more ideal properties, i.e. providing a sphere
without motors sticking out or comparably large mounting structures being close to
the measurement head.
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This chapter describes and discusses the technology and resources that were used for the
experiments and simulations. The field of spherical microphone arrays for auralization
–and spherical acoustics in general– can be considered to be a young discipline in
science. The relevance for commercial applications is still comparably low at the current
state of research and technology. Thus, hardly any suitable hardware, software or
measured data is available. As a consequence, considerable effort needed to be spent
for the design and construction of specific hardware, the design and implementation
of signal processing algorithms, acquiring measured data, and setting up a suitable
environment for listening experiments. All software or data resources that were built
or acquired are made available to the scientific community.

4.1 VariSphear Scanning Array

A variable spherical scanning microphone array measurement system, called VariSp-
hear1, was developed and constructed (Bernschütz et al., 2010). Scanning microphone
arrays are discussed in Section 3.2.1. The VariSphear systems consist of specifically
designed hard- and software for the acquisition of array impulse responses or array
room impulse responses. After completing the prototype, several additional VariSp-
hear measurement systems were built for universities and industrial companies. The
VariSphear array was e.g. used for the extensive measurement sessions in the SEACEN
project (Weinzierl et al., 2012).

4.1.1 Hardware

The hardware of the array consists of a stable ground plane with leveling feet, carrying a
robot arm structure that meets a best possible compromise between constructional sta-
bility and acoustical transparency. The construction is made of aluminum. The array
hardware is depicted in Figure 4.1. The robot arm provides two motorized degrees of
freedom (azimuth ϕ and elevation θ), as well as two manual degrees of freedom (sphere
radius r0 and measurement height h0). Two Schunk/Amtec Robotics PR70 motors
with internal position sensors and position references, as well as magnetic breaks are
used for realizing the automatized degrees of freedom. The construction provides very

1VariSphear: Variable Spherical Ear.
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4.1 VariSphear Scanning Array

good repetition accuracy with angle errors |∆Ω| < 0.01◦. The array can be changed
from open sphere configuration with variable radius to rigid sphere configurations with
a fixed radius. The VariSphear system provides a Hygrosens TSIC-LABKIT/TSIC 306
temperature sensor for tracking the air temperature during the measurements. A re-
motable TOPCON LEM30 laser distance sensor can be mounted to the robot arm
for capturing distances and angles for simple true-to-scale CAD modeling. All motors
and sensors are tied to a MOXA Nport 5410 industrial device server, providing Ether-
net connectivity to the external world for controlling the entire measurement system.
Nearly all parts of the system, except the electronics, were custom built from raw
material in the mechanical workshop of the Institute of Communications Systems at
Cologne University of Applied Sciences.

Figure 4.1 Images of the VariSphear hardware including the rigid sphere head and
the flightcase for transport [Pictures: S. Moritz, except right, top: P. Stade].
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4 Technology and Resources

Several additional heads and mounts for using the motion base in different applications
were built. The custom mount for capturing spherical head-related transfer functions
(HRTFs) or binaural room impulse responses (BRIRs) is depicted in Figure 4.5 on page
168. For taking spherical panorama pictures, a pano head was developed for mounting
remotable reflex cameras. The pano head can be seen in Figure 4.19 on page 181. The
laser head for acquiring CAD data is depicted in Figure 4.20 on page 181.

4.1.2 Software

For controlling the hardware and performing automatized impulse response measure-
ments, a proprietary software was developed and implemented. The software is written
under MATLABR⃝ and offers a comprehensive guided user interface (GUI), which is
depicted in Figure 4.2.

Figure 4.2 VariSphear software; screenshot of the main page, giving an overview of
the current session settings and status.

The reader is referred to the VariSphear manual (Bernschütz, 2013b) for a detailed
description of the software. The following listing gives a short overview of the most
important features provided by the VariSphear software:

• Project/session management

• Automatized capturing of array impulse responses including meta data
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4.1 VariSphear Scanning Array

• Automatic measurement error detection and correction (e.g. audio dropouts,
background noise events, motion/hardware errors)

• Data revision module for verification of the measurements and manual replace-
ment of single positions

• Impulse response capturing core with port audio binding, based on sine sweep
excitation and integrated deconvolution according to Müller (1999).

• Predefined or user defined sampling grids/quadratures

• Proprietary CAD module (realCAD geometrix) for capturing, drawing, and edit-
ing true-to-scale models of the venue using the VariSphear laser head

• Manual motion/hardware control

• Module for capturing center impulse responses

• Polar data capturing and viewer, Monkey Forest polar bridge

In addition to the compiled GUI based software package, dedicated open MATLABR⃝

functions are provided for controlling the VariSphear hardware and building proprietary
scripts.
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4 Technology and Resources

4.2 SOFiA Sound Field Analysis Toolbox

An open source sound field analysis toolbox called SOFiA2 for MATLABR⃝ was de-
veloped, implemented, and published (Bernschütz et al., 2011a). SOFiA provides an
ample function set for simulating spherical microphone arrays, processing measured ar-
ray data, analyzing and visualizing array responses, or performing binaural auralization
based on analytic or measured array data sets. Since its first release and publication
the toolbox was extended. The current version of the toolbox facilitates to transfer
large parts of the theory discussed in Section 2 and Section 3 to practice in terms of
simulation, visualization, and auralization.

SOFiA is implemented in MATLABR⃝. Certain operations with extensive computa-
tional demands are implemented as externals in C++ and integrated to MATLABR⃝

via MEX3 binding. This approach achieves improved computational performance while
staying in the comfortable MATLABR⃝ environment.

The toolbox was verified in extensive experiments and simulations. The software is
open source under a GNU GPLv3 license and is used by other researchers, such as Spors
et al. (2012b), Rettberg and Spors (2013), Schultz and Spors (2013), or Muhammad
et al. (2014).

All simulation, visualization, or auralization conducted in this thesis is processed using
SOFiA. A detailed discussion of the toolbox goes beyond the scope of this section.
Hence, the description is limited to a signal flow diagram that is depicted in Figure 4.3.
For more detailed information on SOFiA, the reader is referred to (Bernschütz et al.,
2011a) and to the SOFiA code hosting page that can be found in the publication.

2SOFiA: sound field analysis
3MEX: MATLAB external
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Figure 4.3 SOFiA R13-0306 signal flow diagram.
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4.3 Measured Data

Several measurements of head-related impulse responses (HRIRs), binaural room im-
pulse responses (BRIRs), and array room impulse responses (ARIRs) were performed.
The data used for simulations and listening experiments in this thesis was acquired
from scratch under strictest criteria.

Suitability of the acquired data was ascertained by precedent analytic simulations and
dedicated strategic planning, in order to determine suitable setups and parameters for
the measurement sessions.

For ascertaining validity of the data, the entire impulse response measurement chain
was verified in several test procedures. During the measurement sessions, every indi-
vidual impulse response in the data sets was reviewed and checked for abnormalities
using specifically designed algorithms comparing the similarity to neighboring impulse
responses and analyzing the signal-to-noise ratios (SNRs). In addition, a visual in-
spection of the impulse responses and the corresponding spectra was performed. Very
few impulse responses turned out to be faulty due to clicks or dropouts in the audio
chain or environmental noise during the data acquisition. The outliers could be clearly
detected and the affected impulse responses were recaptured. The integrity of the
data concerning completeness, indexing and meta data assignment (e.g. assignment of
spatial directions) was checked by analyzing the deviations for neighboring impulse
responses paired with a visual inspection of polar or balloon-plots showing magnitude
and phase of the spatial data set.

Consistency of all data sets was established by using the identical setup in every detail
for all locations including the anechoic chamber. The sources and source positions were
intentionally varied at the different locations, but identical sources and positions were
used for a common subset of receivers. The adjustment and positioning of the receiver
pivot point was performed with great accuracy using cross-grid lasers and observing the
phase responses using a real time analyzer. The spatial origin of the array was equal to
the predefined center of the dummy head and the position of the captured monophonic
impulse response. Furthermore, the measurements of binaural room impulse responses
(BRIRs) in the rooms and head-related impulse responses (HRIRs) in the anechoic
chamber are consistent concerning the pivot point and the physical structure of the
apparatus, by using identical equipment including the rotation mounts. The distances
of the different source positions to the receiver within a location were kept constant
with great accuracy. As a consequence, the different data sets for a single source type
can be overlayed with nearly perfectly matching phase responses of the direct sound
leading to constructive summation on the entire audio spectrum without comb filter
effects. The constancy of extrinsic physical conditions, such as air temperature or
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4.3 Measured Data

humidity, are not controllable for different locations. Both were tracked and recorded
during the measurement sessions. The background noise was analyzed during the
impulse response measurements. Single noise events above the constant background
noise were detected and the respective measurements were repeated automatically.

The aim was to acquire data that is suitable for auralization at the level of broadcast
studio production. This leads to specific demands for the achieved frequency band-
width, linearity of the frequency response, and the signal-to-noise ratio (SNR). More
effort needed to be spent on the data acquisition than would be sufficient for just an-
swering most of the arising scientific questions. The frequency bandwidth was set to
cover the range of approximately 40Hz to 18 kHz. This leads to ambitious demands
concerning the involved sources and the density of the measurement grids. All sources
were tuned to provide a flat frequency response on axis. For studio monitors, a very
strict target of ±1dB of maximum deviation on the entire bandwidth was allowed. For
the portable sources, the maximum allowed deviation was scaled down to ±3dB. The
impulse response to noise ratio was set to be greater than 80 dB. In some locations,
SNR values up to 115 dB could be achieved for the full measurement bandwidth. The
data sets were captured at a temporal sampling rate of 48 kHz and a word length of
24 bits. As no suitable omni-directional source with sufficient bandwidth and output
power is available on the market, a new source called Sonic Ball was developed from
scratch, cf. Section 4.3.3.2. In order to obtain suitable HRTFs including the critical
low-frequency range, an algorithm for the low-frequency extension of HRTFs was de-
veloped, cf. Section 4.3.2.2.1. All in all, great effort was spent in order to acquire data
sets with good technical audio transmission properties. As a consequence, even critical
expert listeners (Category A, cf. Section 5.3) from the field of radio production were
pleased by the auralization during the listening experiments.

4.3.1 MIRO Data Format

In order to provide appropriate and structured storage, localization, signal processing,
and management of the more than 50.000 impulse responses (IRs) that were acquired,
a proprietary object-oriented data type called MIRO (Measured Impulse Response
Object) for MATLABR⃝ was developed. The structure of the MIRO data type is
depicted in Figure 4.4.

MIRO was specifically designed for storing head-related impulse response (HRIR),
binaural room impulse response (BRIR), or array based binaural room impulse re-
sponse (ABRIR) sets. In addition to the measured data, approximately 50 different
properties including meta data and adjustable processing parameters are provided in
each instance. The MIRO class offers an internal pseudo real-time signal processing
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Figure 4.4 MIRO data type overview.

core. The processing is non-destructive and applied to the output signal just at the
moment an IR is requested from the storage via its dedicated getter method. The
processing core includes the application of headphone filters, adjustable truncation
and windowing, as well as temporal resampling of the requested IR. The processing
parameters are set via setter methods and written to the properties of the instance.
Any other properties (also including the processing parameters) can directly be read
or be written to the properties of the instance without using specific setter and getter
methods. Even if this approach is slightly more unsafe than providing getter and set-
ter methods, the usage is considerably more comfortable. Safety is not that important
in the given context, since the objects are conceived as data storage containers for
read-only data and thus an accidentally misconfigured or destroyed object can just be
reloaded without loosing important information. The MIRO class offers several other
methods that are listed in the following:

• Locate the closest matching impulse response to a given angle pair,

• Plot the underlying reference coordinate system,

• Plot or return the sample grid of the stored data in the specific instance,

• Pre-listen an adressed IR convolved with a passed audio stimulus,

• Drop a common mono or stereo wave file containing the addressed IR,

• Export interleaved HRIR or BRIR wave files for the Sound Scape Renderer (SSR)
(Geier et al., 2008),

• Export SOFiA time domain data sets for seamless processing in the spherical
harmonic domain using the SOFiA toolbox, cf. Section 4.2.
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The MIRO class definition for MATLABR⃝ is included in the published impulse re-
sponse data sets introduced in Section 4.3.2 and Section 4.3.3. The MIRO data type,
for example, was also adopted by the BBC spatial audio research group by Melchior
et al. (2014) and Satongar et al. (2014).

A comparable data format named SOFA is under development (Majdak et al., 2013).
It was initiated by the ABBA research group (Blauert et al., 2010). In the meantime,
the SOFA format has considerable afflux from various international research groups
and was recently released as standard (AES, 2015).

At the time of acquiring the data sets for the present work, the SOFA format was still
unknown and rather elementary. Hence, the proprietary MIRO format was developed in
parallel. In addition, the SOFA format does not offer a signal processing core or export
methods to the SSR or to SOFiA in the current version. These are quite convenient
features of the MIRO data type and justify the coexistence of SOFA and MIRO at the
present time. Nevertheless, SOFA is most probably becoming the prevailing spatial
audio data format and several additional features are expected. In order to make the
data acquired in this thesis accessible to a broad community, the HRIR data sets from
Section 4.3.2 were additionally made available in the SOFA format by the SOFA work
group.

4.3.2 Far-field HRTF Measurements

Spherical far field HRTF sets with optimized properties for applications in the field of
spherical acoustics were measured (Bernschütz, 2013a).

4.3.2.1 Environment and Setup

The measurements took place in the anechoic chamber at Cologne University of Ap-
plied Sciences. A Neumann KU100 dummy head was mounted on the VariSphear
motion system, cf. Section 4.1. The custom-built rotation mount for the dummy head
required a transform of the usual VariSphear coordinate system. The addressed virtual
source positions were mapped to the motor steering angles. The coordinate transform
was implemented as plug-in for the VariSphear software; hence all features, such as
automated motion control, impulse response capturing, and error detection, were avail-
able for the HRTF measurements. An emphasized sweep with +20 dB low-shelf at
100Hz of 219 samples was used for excitation. A Genelec 8260A speaker system was
playing back the measurement signals at a distance of approximately 3.5m to the
center of the head. This distance is considered as far field referring to the speaker’s
dimensions. The speaker was tuned to a flat frequency response of ±1 dB on axis. A
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RME Fireface UCX was used as audio interface, including the built-in analog-digital
converters, digital-analog converters and microphone pre-amplifiers.

Figure 4.5 Setup for the HRTF measurements in the anechoic chamber [Picture: P.
Stade].

The head positioning and angle adjustment were conducted accurately using cross-grid
lasers and real-time phase analysis of the two ear signals with a real time audio analyzer.
Different quadrature grids were captured:

• Circular azimutal grid with 1◦ stepsize (mic stand),

• Circular azimutal grid with 1◦ stepsize (full rotation mount),

• Spherical equidistant Lebedev quadrature with 2354 nodes,

• Spherical equidistant Lebedev quadrature with 2703 nodes, and

• Spherical equiangular 2◦ Gauss quadrature with 16020 nodes.

Figure 4.6 Spatial sampling configurations: Circular 1◦, Lebedev 2354, Lebedev 2702
and Gauss-Legendre 2◦ (Bernschütz, 2013a).

The three spherical grids enable a stable transform of the respective HRTF sets to the
spherical wave spectrum domain for frequencies up to at least 20 kHz with low spatial
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alias contributions. Climate conditions in the anechoic chamber were tracked with
temperature and humidity sensors. In order to detect time-variances in the measure-
ment chain (e.g. due to driver heating) a fix-mounted measurement microphone on a
separate channel was used. The temperature variations within the single measurement
runs were below ±0.5K and no remarkable time-variance of the measurement chain
was observed when comparing the progressive responses of the control channel.

4.3.2.2 Post Processing

In order to obtain a suitable HRTF data set with good audio-transmission properties
referring to magnitude and phase, some post processing operations needed to be ap-
plied, which are briefly outlined in the following and described in (Bernschütz, 2013a)
in greater detail. Besides the magnitude and phase properties of the HRTF that are
inherent to binaural techniques (Møller, 1992), (Blauert, 1997), additional unwanted
parasitic magnitude and phase changes arise owing to the measurement setup. If not
considered and removed, the respective changes of the complex transfer function prop-
agate through the entire binaural playback chain. A common problem is measuring
the low frequency range of HRTFs. First of all, most anechoic chambers typically
have a lower boundary frequency due to limited dimensions and length of the absorp-
tion wedges (Beranek and Sleeper Jnr, 1946; ISO, 2003) that is within the audible
range. Below this frequency the chamber cannot hold the anechoic properties. As
a consequence, room modes and reflections arise. In the present case, the anechoic
chamber at Cologne University of Applied Sciences has a lower boundary frequency
of approximately 200Hz. Even if the very low frequency range does hardly influence
the binaural hearing and localization (Blauert, 1997), (Møller, 1992), the reflections
and room modes have substantial influences on the frequency response and the group
delay properties of the measured HRTFs. Additionally, most speaker systems show
ripple in the frequency response, high-pass characteristics and a considerable surge
of group delay towards lower frequencies (Goertz, 2008), (D’Appolito, 1999), (Müller,
1999). High-pass characteristics of the HRTFs lead to a sound reproduction lacking
low frequencies. Other changes or ripple in the magnitude response exceeding certain
limits bring along audible coloration (Fastl and Zwicker, 2007, pp 175–202). Group
delay distortions can cause audible impairment of the audio signal (Blauert and Laws,
1978) and lead to an unnecessary expansion of the time domain signal, i.e. the HRIR.
This directly impacts the required computational power for the HRIR convolution. All
those distortions should be considered and their effects removed in the post processing
stage.
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4.3.2.2.1 Adaptive Low Frequency Extension (ALFE) In order to avoid the severe problems
due to measurement uncertainties at low frequencies, the low frequency components
of the measured HRTFs were replaced by synthesized components. The procedure is
similar to the approach presented by Xie (2009). A replacement is feasible, as the
influence of the head on the sound field is negligible for low frequencies according to
Rayleigh scattering for spheres of a dimension that is small compared to the wavelength
(Bowman et al., 1970). The pinna filters also do not have a substantial effect on the
low frequency range (Blauert, 1997). A simulation of a plane wave impact at different
frequencies on a rigid sphere as a simplified head model was conducted in order to assess
the actual scattering influences. Graphical results of the simulations are depicted in
Figure 4.7, indeed indicating negligible scattering effects below approximately 200Hz.
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Figure 4.7 Simulated scattering effects for a monochromatic plane wave impact from
south at different frequencies to a rigid sphere of a diameter d=17.5 cm that serves as
simplified dummy head. The plots depict the resulting pressure magnitudes around
the sphere. The pressure variations due to physical scattering effects are smaller than
±0.2 dB below 200Hz, which can be neglected in practice.

An algorithm for dynamic replacement of the low frequency HRTF portion, called
adaptive low frequency extension (ALFE), was developed. The block diagram of the
ALFE algorithm is depicted in Figure 4.8.

The ALFE algorithm is independently applied to every single HRIR and HRIR chan-
nel. It first splits off a high frequency path of the raw HRIR, using a Linkwitz-Riley
24 dB/oct high-pass filter at the target crossover frequency of 200 Hz. The second path
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Figure 4.8 Block diagram of the ALFE algorithm from (Bernschütz, 2013a).

is transformed to the frequency domain and the group delay at the crossover point is
determined.

A shifted dirac pulse is generated according to the group delay at the crossover point.
The mean gain for the low frequency band is estimated by analyzing carefully selected
frequency bins in the raw HRTF signal that do not match dedicated room modes. The
dirac pulse is scaled in gain accordingly. At this point, a flat full-spectrum impulse
with matching group delay and gain properties for the low frequency range is generated.
In order to couple in this synthetic signal to the HRIR, a corresponding Linkwitz-Riley
24 dB/oct low-pass filter is applied. In a last step, all-pass filters are inserted in order
to match the phase responses between the original high-pass filtered HRIR signal and
the synthesized low-pass filtered ALFE signal around the crossover frequency. The
phase-matching at the crossover frequency is necessary in order to obtain a constructive
summation of both signals. The single output signals from the high-passed HRTF path,
the low-passed ALFE path, and the sum signal are depicted in Figure 4.9 (top). The
corresponding phase responses of the two signals, as well as the phase slope matching
in the range of the crossover frequency can be observed in Figure 4.9 (bottom). Apart
from the crossover frequency, the phase responses start to diverge, but the damping
of the 24 dB/oct crossover provides sufficient attenuation. The output signal of the
algorithm is a single HRIR channel with improved properties concerning the magnitude
and phase responses compared to the raw HRIR channel at the input. The frequency
response at low frequencies is flat and the group delay of the HRIR is reduced below the
crossover frequency, which is illustrated in Figure 4.11. The high-pass characteristics
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Figure 4.9 Exemplary magnitude and phase responses for the signal paths in the
ALFE algorithm with a crossover frequency of 200Hz.

is removed from the HRIR and thus a binaural system using this HRIR would be able
to transmit low frequency content without restrictions.

4.3.2.2.2 Magnitude and Phase Compensation After replacing the low frequency range
of the HRTFs, compensation filters for the magnitude and phase responses were gen-
erated. For that purpose, a transfer function was captured using a Microtech Gefell
M296S measurement microphone at the pivot point instead of the dummy head. Ap-
propriately smoothed inversion of the magnitude and phase response yields a suitable
complex-phase FIR filter (Müller, 1999) that was used for compensating the ripple of
the speaker’s frequency response and to remove unnecessary group delay distortion in
the transmission path. The complex-phase compensation filter is a non-causal filter,
since it needs to remove lagging group delay portions in the transmission path. In com-
bination with the measured HRTFs, non-causal parts clear away and only an overall
frequency-independent latency remains. This latency can simply be cut off by remov-
ing the leading zeros. At that point, the time domain response (HRIR) is contracted
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to a much more compact response, without affecting the inherent group delay varia-
tions that are necessary for binaural hearing. Using this approach, possible ripple in
the magnitude response or group delay distortion of the transmission path are removed
with a common compensation filter. Only the inverted properties (frequency and phase
response) of the measurement microphone remain as an artifact in the transmission
path, which usually can be neglected in practice. Hence, the measurement microphone
should be as neutral as possible concerning its frequency and phase response for this
compensation approach. The frequency and phase response of the transducers in the
dummy head remain in the overall signal chain, as these are not involved in the com-
pensation process. These are compensated during the headphone equalization that is
introduced in Section 4.3.4.

The magnitude compensation is illustrated in Figure 4.10. The plot shows the magni-
tude responses of different paths of the ALFE algorithm from Section 4.3.2.2.1. The
sum of both paths is the resulting HRTF without compensation filter. Some minor
ripple in the magnitude response can be observed (black curve), that can be ascribed
to the loudspeaker system. Since the loudspeaker system was already tuned to a very
flat response with deviations smaller than ±1dB during the measurement session, the
ripple is comparatively small and could be neglected in practice. But since the complex-
phase compensation filter is applied for improving the group delay properties anyways,
the remaining ripple is removed in the same step. The light-gray trace shows the re-
sulting compensated magnitude response, where the loudspeaker’s magnitude response
is removed.
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Figure 4.10 Compensation of the magnitude response.

The influence of the more essential phase response compensation on the group delay and
the time domain are illustrated in Figure 4.11 and Figure 4.12. Figure 4.11 shows the
group delay responses at three different stages of the post processing. The continuous
black curve represents the raw measured HRTF. A tendential surge of group delay
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Figure 4.11 Group delay at different stages of the post processing.

with two additional peaks at 50Hz and 100Hz can be observed at low frequencies.
The surge of group delay can be mainly ascribed to the speaker system and the two
peaks are due to resonances in the anechoic chamber. The dotted gray curve represents
the HRTF after applying the ALFE algorithm. The group delay is limited to maximum
values of 10ms on the entire frequency range. A slight increase of group delay can be
observed around the ALFE crossover frequency of 200Hz, which is a consequence of
the Linwitz-Riley 24 dB/oct crossovers filters. The dashed black trace represents the
final HRTF with applied complex-phase compensation filters.
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Figure 4.12 Time domain response without and with phase compensation.

Any surge of group delay that is not inherent to the binaural transfer function itself is
removed at this point. The true advantage of the phase compensation filters achieving
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a flattened group delay response of the HRTF can be observed in the time domain, illus-
trated in Figure 4.12. The black trace (top) shows a HRIR channel in the time domain
with applied ALFE algorithm. According to the maximum group delay of 10ms, the
impulse response covers around 480 filters taps at a temporal sampling rate of 48 kHz,
whereas the measured response without ALFE algorithm would even cover consider-
ably more taps. The low frequencies are mainly coded in the tail section. Cutting off
the impulse response at e.g. 128 taps would entail severe loss of low frequencies. Hence,
the response should not be cut off at any value lower than 480 taps in order to maintain
a reasonable frequency response at low frequencies. The gray trace (bottom) shows
the identical HRIR with applied phase compensation filters. The response is clearly
tightened. Cutting off this response at e.g. 128 taps, would not have any consequence
in the frequency domain in contrast, since the response is entirely decayed. Hence,
with phase compensation, the HRIRs can be much shorter. This saves memory and
computational power during the convolution in a binaural system, while maintaining
identical spectral properties and minimized group delay distortions.

175



4 Technology and Resources

4.3.3 WDR Spatial Audio Impulse Response Compilation

An extensive impulse response compilation was captured at the Westdeutscher Rund-
funk (WDR) broadcast studios for this thesis, an affiliated master thesis (Stade, 2013),
and an affiliated bachelor thesis (Rühl, 2012).

Figure 4.13 Poster for presenting the WDR spatial audio impulse response compi-
lation at the 27th VDT International Convention in Cologne/Germany (Stade et al.,
2012) [Picture: P. Stade].

Impulse response sets in several rooms using different receivers and sources were
recorded. Additionally, CAD Models of the rooms and panoramic photographs were
captured. The compilation is called WDR spatial audio impulse response compilation
and published in (Stade et al., 2012). The final compilation involves more than 35.000
room impulse responses. The structure and procedure of the measurements is com-
parable to the extensive measurement sessions that were conducted in the SEACEN
project (Weinzierl et al., 2012). In the following, some elementary information on the
compilation, as well as some pictured impression are presented. For a more detailed
description, the reader is referred to (Stade et al., 2012).

4.3.3.1 Rooms

Two studio control rooms are included in the compilation, i.e. control room 1 – CR1
(music production) with a room volume of 93 m2 and an average reverberation time
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60 (RT60) of 0.23 s, as well as control room 7 – CR7 (radio drama production) with a
room volume of 168m2 and an average RT60 of 0.25 s, cf. Figure 4.14. Two broadcast
studios are included, i.e. the small broadcast studio - SBS with a room volume of
1250m2 and an average RT60 of 0.9 s, as well as the large broadcast studio with a
room volume of 6500m2 and an average RT60 of 1.7 s, cf. Figure 4.15.

Figure 4.14 Control rooms: a.) Control room 1 – CR1 [Picture: WDR/Hagmayer],
b.) Control room 7 – CR7 [Picture: WDR/Maurer].

Figure 4.15 Broadcast studios: c.) Small broadcast studio - SBS and d.) Large
broadcast studio - LBS [Pictures: P. Stade].

4.3.3.2 Sources

Different sound sources were used for exciting the rooms. In the control rooms, the
available studio main monitor systems, Genelec 8260A or B&W803D were used for
that purpose, cf. Figure 4.16.

In the broadcast studios, portable sound systems with two different source characteris-
tics were used for excitation. The first sound source was a PA stack from AD-Systems,
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Figure 4.16 Sound sources in the control rooms: a.) Genelec 8260A in CR1 and b.)
B&W803D in CR7 [Pictures: P. Stade].

consisting of a horn-loaded 2x12" mid/high unit called Stium and 3x15" Flex-Series
subwoofers, which is depicted in Figure 4.17 (c). The Stium speaker system has a

Figure 4.17 Sound sources in the broadcast studios: c.) AD Systems PA stack (PA)
and d.) Sonic Ball omni-directional source (SB) [Pictures: P. Stade].

nominal pattern of 75◦ H x 50◦ V. The stack was driven by Camco Vortex amplifiers
and controlled by an XTA system controller. It was aligned in the anechoic chamber
in advance and the overall equalization was only sparsely adapted to the respective
rooms, both using the Monkey Forest measurement system from Four Audio. The
room adaption is quite different from PA system alignment, where equalizers are used
to counteract room resonances. In the present application, room resonances are a ma-
jor aspect of the natural room acoustic properties and therefore basically no PA system
equalization for room correction should be applied.

The second portable source has omni-directional characteristics; it was designed and
developed in the context of this thesis and an affiliated diploma thesis (Meuleman,
2011). It is called Sonic Ball and presented in (Meuleman et al., 2011). The Sonic Ball
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system is depicted in Figure 4.17 (d). The mid/high unit of the source is a concentric
dodecahedron with two shells. The inner shell works from 100Hz up to approximately
3 kHz. It is equipped with 12 x 6.5" drivers and constructed like a standard dodec-
ahedron loudspeaker commonly used for room acoustic measurements. Frequencies
above 3 kHz are radiated by the outer shell that is equipped with 144 x 1" calottes,
mounted in an aluminum framework and covered by a steel grille for protection. A
dedicated subset of the calottes works with reversed polarity in order to suppress side
lobes. Below 100Hz, the system is supplemented by a 15" subwoofer that is located
below the mid/high unit. The system is controlled and aligned using a DSP and driven
by class-D power amplifiers. Due to the use of performant low- and mid-range drivers,
combined with a large number of calottes, the system is capable of producing a sound
power level of Lw > 120dB with distortion factors k < 1% on its entire frequency
range, which makes it suitable for measuring even large spaces with convenient SNRs.
The radiation properties of the Sonic Ball fulfill the requirements defined in ISO 3382-1
(DIN, 2009). Furthermore, the source is capable of holding these properties up to much
higher frequencies than specified in ISO 3382-1. The source was constructed for deliver-
ing high sound pressure levels, good omni-directional radiation properties, and a very
flat energy frequency response. The latter is particularly important for auralization
purposes. For more detailed information on the Sonic Ball speaker system, the reader
is referred to (Meuleman et al., 2011). Sonic Ball was also used for the measurement
in the SEACEN project (Weinzierl et al., 2012).

4.3.3.3 Receivers

The impulse responses were captured using several different receivers, cf. Figure 4.18.
All receivers were accurately placed at a common pivot point. The VariSphear micro-
phone array (cf. Section 4.1) was used to acquire array room impulse responses (ARIRs).
Different grids and array configurations were captured using either an omni-directional
Earthworks M30 microphone in a rigid sphere or a Microtech Gefell M900 microphone
in an open sphere configuration. Additional omni-directional center impulse responses
were captured at the pivot point, thus at the center of the array. Binaural room im-
pulse responses (BRIRs) with 1◦ resolution in the horizontal plane were captured using
a Neumann KU100 dummy head (Norbert) mounted on the VariSphear motion sys-
tem. Furthermore, some static classical stereophonic microphone configurations, such
as AB, XY, ORTF and M/S, with Shoeps MK2, MK4, Neumann KM83, U89 and SM69
microphones were arranged for capturing basic stereophonic room impulse responses.
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Figure 4.18 Receivers: a.) VariSphear scanning microphone array in rigid sphere
configuration, b.) Motorized Neumann KU100 dummy head (Norbert), c.) Exemplary
stereophonic small-AB setup [Pictures: P. Stade].

4.3.3.4 Software, Hardware, and Audio Parameters

The impulse response measurements and motion control were both performed using
the proprietary VariSphear array software running under MATLABR⃝. The impulse
responses were acquired using sine-sweep excitation with emphasized (+20 dB low-shelf
at 100Hz) sine-sweeps of 219 samples as proposed by Müller (1999). The audio interface
was an RME Fireface UCX including its internal microphone preamplifiers.

4.3.3.5 Spherical panorama pictures and CAD models

In addition to the audio data, meta-data content, such as spherical panorama pictures
or basic CAD models of the rooms, was generated. For capturing spherical panorama
pictures, the VariSphear motion base was equipped with a custom built pano-head
holding a Canon EOS 5D camera. Proprietary software for capturing and stitching
the panorama pictures was developed by a students’ work group from the media tech-
nology degree course at Cologne University of Applied Sciences (Stade et al., 2012).
The capturing software is written in MATLABR⃝ and the image stitching algorithm
and viewer are written in C++. The packages is called GIXEL4. GIXEL enables the
stitching and viewing of panorama images and the overlay of sound field data matrices
from the SOFiA toolbox, cf. Section 4.2. This procedure can be used to visualize
acoustic reflections in a panorama image of the surrounding room (Bernschütz et al.,
2012).
The VariSphear array system was equipped with a laser head for capturing room dimen-
sions and constructing basic true-to-scale CAD models referred to the measurement

4GIXEL: Giga-Pixel
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Figure 4.19 VariSphear pano head with remotable Canon EOD 5D camera for cap-
turing spherical panorama pictures [Picture: P. Stade].

origin. The VariSphear laser head and an exemplary CAD model are depicted in Figure
4.20.

Figure 4.20 VariSphear laser head with remotable TOPCON EM-30 laser distance
measuring device for capturing CAD models [Picture: S. Moritz] and exemplary basic
CAD drawing of the small broadcast studio.

4.3.4 Headphone Equalization

In the context of acquiring the HRTFs from Section 4.3.2 and the BRIRs from Section
4.3.3, respective headphone compensation filters as discussed e.g. in (Schärer and Lin-
dau, 2012) were generated for several headphone models. The headphones have each
been positioned 12 times on the Neumann KU100 dummy head for obtaining repre-
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sentative transfer functions by averaging. Complex-phase FIR filters were generated
using a semi-automatic inversion of the spline-based smoothed magnitude and phase
responses of the mean of both median transfer functions for the left and the right ear
in a next step. The lowest and highest frequency sections were excluded from the
inversion, considering the physical limits of the drivers. Furthermore, high-Q dips in
the responses were excluded from the inversion in order to avoid ringing artifacts of
the filters.
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Figure 4.21 Headphone magnitude response compensation of the Neumann KU100
dummy head and the AKG K601 headphone. The gray curve shows the average for
both ears and 12 repositions without compensation filters. The black curve shows the
equalized curve with applied compensation filter.

The procedure for generating the FIR filters is similar to the approach for equalizing
loudspeakers proposed in (Müller, 1999). The filters for several headphone models are
published in the corresponding data sets from (Bernschütz, 2013a) and (Stade et al.,
2012). For the listening experiments presented in Section 5, AKG K 601 headphones
were used and the specific headphone filter was applied. In order to keep the latency low,
which is of great importance in the context of dynamic binaural synthesis, the complex-
phase FIR compensation filters were converted to minimum phase filters (2048 filter
taps) using the Hilbert transform (Ohm and Lüke, 2004, pp 53–55). As a consequence,
the compensation is restricted to equalizing the magnitude response of the dummy
head-headphone chain. The original averaged magnitude of the Neumann KU 100 →
AKG K601 chain, and the compensated magnitude response are depicted in Figure
4.21. Nevertheless, for the presented experiments the use of compensation filters is
not vital, since references were provided in all trials and only relative ratings were
gathered. The chain of Neumann KU100 and AKG K601 delivers a quite satisfying
transfer function on its own, due to the well-done internal diffuse field tuning of both
the dummy head and the headphones, as proposed by Theile (1986b).
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4.4 SCALE Software Tool

In order to perform listening experiments for this thesis and the associated research
project, a proprietary listening test software, called Scale5, was implemented and pub-
lished by Vázquez-Giner (2013). In addition to the MUSHRA and SAQI designs that
are presented in Section 5, the software includes several other test paradigms. Scale
offers a subject administration database and a module for previewing listening test
results. It communicates with the IOSONO Core renderer and the SoundScape Ren-
derer (SSR) (Geier et al., 2008), (Geier and Spors, 2012) for performing spatial audio
listening experiments (Vázquez-Giner, 2015). Screen shots of the Scale user interface
are depicted in Figure 5.2 and Figure 5.3. A comparable tool from Technical University
of Berlin, called WhisPER, is described in (Ciba et al., 2009).

4.5 Environment for the Listening Experiments

All listening tests presented in this thesis were performed in the anechoic chamber
at Cologne University of Applied Sciences. This environment offered low background
noise levels and minimized distraction of the participants. The subjects were sitting
in a swivel chair that enables full 360◦ rotation, wearing tracked headphones and
holding a tablet computer for operating the Scale software interface. The environment
is depicted in Figure 4.22.

Figure 4.22 Listening experiment environment – a participant is sitting in the swivel
chair in the anechoic chamber performing a MUSHRA test [Pictures: P. Stade].

5Scale – Setup, conduction, and analysis of listening experiments
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4.6 Technical Setup for the Listening Experiments

The technical setup for performing the listening experiments is depicted in Figure 4.23.
The experiments are controlled by the Scale software (Section 4.4) that is running
on a standard office PC. Scale controls the IOSONO Core renderer via TCP/IP and
provides the anechoic and diotic audio feeds via AES3. The IOSONO Core renderer
holds the spatial filters and performs the fast real-time convolution (buffersize 256
taps) of the audio feed and the spatial filters, taking into account the subject’s head
rotation. The subject’s head rotation is captured using a Polhemus Fastrak tracking
device that is connected via RS232↔RS485↔RS232 to the IOSONO Core. Only
horizontal rotations (yaw) are considered for the experiments. The resolution of the
spatial filters is 1◦ in the horizontal plane for all scenarios and stimuli. The audio
signal is converted and amplified using a RME ADI-2 digital to analog converter and
played back using AKGK601 headphones. A wireless tablet computer (Apple iPad 2)
with touch surface mirrors the Scale user interface via VNC and serves as user input
device to perform the ratings, cf. Figure 4.22.
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Figure 4.23 Technical setup for the listening experiments.
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Listening experiments were conducted in order to assess perceptual influences of certain
physical or algorithmic parameters and to evaluate the methods that are presented in
this thesis.

5.1 Two-stage Approach and Test Paradigms

The experiments were performed in a two-stage approach using two different test de-
signs. A multiple stimulus with hidden reference and anchor (MUSHRA) paradigm,
refer to Section 5.1.1 and (ITU, 2003), was used to assess the quantitative influence of
a physical or algorithmic parameter on the unspecific overall perceived quality in the
first stage. In the second stage, selected representative stimulus-reference pairs were
picked out for assessing specific perceptual attributes based on the spatial audio qual-
ity inventory (SAQI), refer to Section 5.1.2 and (Lindau et al., 2014). The two-stage
approach is illustrated in Figure 5.1.

5.1.1 MUSHRA

The multiple stimulus with hidden reference and anchor (MUSHRA) test is a double-
blind multi-stimulus test method with hidden reference and hidden anchor(s) proposed
by the International Telecommunication Union (ITU) in Rec. ITU-R BS.1534-1 for
the «subjective assessment of intermediate quality of coding systems» (ITU, 2003).
Whereas the word «subjective» should not be misunderstood in this context. The
MUSHRA test claims to deliver objective results, as can be expected from any reason-
able (listening) test design (Weinzierl and Maempel, 2012).

The MUSHRA paradigm is primarily designed for assessing the perceptual audio qual-
ity of lossy audio transmission systems and codecs. During the test procedure, several
different stimuli or stimulus levels are presented at once. A stimulus can be compared
to a given reference and to other stimuli. Amongst the presented stimuli, at least one
hidden reference (HR) and one anchor (AN) are presented. The ratings are gathered
on a continuous ordinal scale {bad, poor, fair, good, excellent} combined with a ratio
scale (0-100%), which is referred to as continuous quality scale.

The test is recommended for intermediate quality systems, i.e. some of the presented
stimuli besides the anchor are assumed to show artifacts or changes that are clearly
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Figure 5.1 Illustration of the two-stage approach for the listening tests.

perceivable by the test subjects. If the occurring artifacts for all or most of the stimuli
are more subtle, a different test design such as an ABX test as proposed in Rec. ITU-R
BS.1116-1 (ITU, 1994) is preferable. The MUSHRA test design is claimed to deliver
statistically significant results even for a comparatively low number of ratings (ITU,
2003). Nevertheless, the test might be prone to a certain bias (Zielinski et al., 2007)
(Zielinski et al., 2008). All in all, the procedure allows for evaluating comparatively
large stimulus sets with low time exposure. This is reasonable in the given context, as
the tests aim to give a first and broad exploratory overview on the absolute magnitude
of influence of widely varied physical or algorithmic parameters on the perceived audio
quality.

The MUSHRA tests in this thesis are largely based on the original recommendation
(ITU, 2003), except for using dynamic binaural synthesis instead of static stimuli, and,
therewith, using different anchors than proposed in the document. The source signal,
cf. Section 5.5, was constantly looped and the subject switched over different spatial
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filters in the binaural rendering engine in real-time, which allowed for immediate direct
comparison of the stimuli. The subjects were asked to rate the audio quality in terms of
the magnitude of the overall perceived difference compared to the given reference. This
is assumed to provide the best imaginable quality, even though neither particularly high
plausibility nor authenticity is claimed for any of the reference stimuli. The dynamic
behavior of the stimuli, i.e. their dependence on the wave incidence direction and, thus,
the relative rotation of the subject referred to the virtual source turned out to be a
particular challenge. The subjects were encouraged to perform head and body rotations
during the rating procedure and to give averaged judgments. This additional degree
of freedom turned the procedure into a demanding task for the participants.

In the meantime, an updated proposal for the MUSHRA design is available (ITU, 2014),
which includes more specific details on the test and evaluation procedure. However,
the tests presented in this thesis are still based on the previous proposal (ITU, 2003).

Figure 5.2 Exemplary MUSHRA test interface in Scale (Vázquez-Giner, 2013) for 8
different stimuli plus hidden reference and anchor.
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5.1.2 SAQI

The spatial audio quality inventory (SAQI) is a consensus vocabulary consisting of
verbal descriptors of perceptual attributes for assessing specific apparatus-related per-
ceptual differences between different virtual auditory environments (VAEs), and be-
tween VAEs and either a presented or imagined reality. SAQI was developed and
proposed by Lindau et al. (2014). A proposal for instrumentalization is given by the
same research group in a 2014 release (Ciba et al., 2014) of the WhisPER toolbox
(Ciba et al., 2009). The SAQI test is a semantic differential test paradigm (Bortz and
Döring, 2002, pp 185–187) using the SAQI descriptors combined with bipolar, unipolar,
or dichotomous rating scales, which individually depends on the specific attribute.

The SAQI test procedure is implemented in the Scale software, refer to Section 4.4. For
a paired comparison, the subject can seamlessly toggle between two different spatial
filters while rating. The SAQI test interface in Scale is depicted in Figure 5.3. Since
only a single source was presented and not the entire technical VAE system but only the
presented stimulus pairs themselves were to be evaluated, the optional SAQI assessment
entities and the aspects of time variance were ignored. The SAQI test is well-suited for
a more differentiated insight into the information gathered using the MUSHRA tests.
While the MUSHRA test is used for obtaining quantitative and unspecific perceptual
quality ratings for a broad range of different stimuli, the SAQI test is used for extracting
detailed information on specific perceptual attributes for selected stimulus-reference
pairs in a second stage.

The subset of attributes from the SAQI vocabulary used for the listening experiments
is listed in Table 5.1. The SAQI tests were performed using the German version (SAQI-
GER) of the vocabulary, as the SAQI participants were native German speakers. Table
5.1 and the SAQI plots show the corresponding validated English translations (SAQI-
EN). For a back translation to the original German attribute names, and for detailed
circumscriptions refer to the SAQI test manual (Lindau, 2014b).

Table 5.1 Listing of the involved SAQI attributes.

Catergory Perceptual Attribute Scale end labels

Difference Difference none-very large
General Clarity less pronounced-more pronounced

Naturalness lower-higher
Presence lower-higher
Degree of liking lower-higher

Timbre Tone color dark-bright darker-brighter
High-frequency tone color attenuated-emphasized
Mid-frequency tone color attenuated-emphasized
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Table 5.1 Listing of the involved SAQI attributes.

Catergory Perceptual Attribute Scale end labels

Low-frequency tone color attenuated-emphasized
Sharpness less sharp-sharper
Roughness less rough-more rough
Comb filter coloration less pronounced-more pronounced
Metallic tone color less pronounced-more pronounced

Tonalness Tonalness more unpitched-more pitched
Pitch lower-higher

Dynamics Loudness quieter-louder
Dynamic range smaller-larger
Dyn. compression effects less pronounced-more pronounced

Geometry Distance closer-more distant
Depth less deep-deeper
Width less wide-wider
Height less high-higher
Externalization more internalized-less internalized
Localizability more difficult-easier
Spatial disintegration more coherent-more disjointed
|Horizontal direction|1 not shifted-shiftet (max. 30◦)
Vertical direction shifted up-shifted down

(min.−90◦, max. +90◦)
Room Reverberation level less-more

Reverberation time shorter-longer
Envelopment less pronounced-more pronounced

Time Pre-echoes less intense-more intense
Post-echoes less intense-more intense
Temporal disintegration more coherent-more disjointed
Crispness less pronounced-more pronounced

Artifacts Pitched artifact less intense-more intense
Impulsive artifact less intense-more intense
Noise-like artifact less intense-more intense
Ghost source less intense-more intense
Distortion less intense-more intense

Other Other2 less pronounced-more pronounced

Once again, the dynamic behavior of the stimuli, depending on the rotation of the
subjects referred to the virtual source, made the procedure very demanding for the
1In contrast to the original proposal, an absolute value of the horizontal shift is assessed instead of

clock- and counterclockwise shifts, since some of the stimuli showed ambiguous shifts depending
on the respective subject’s head or body rotation referred to the virtual source.

2"Other" is a mandatory residual category/attribute introduced to catch any perceptual artifact
that might not be covered within the current SAQI vocabulary. During the experiments that
were conducted in this thesis, none of the participants made use of this residual category.
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Figure 5.3 Exemplary SAQI test interface in Scale (Vázquez-Giner, 2013) for a paired
comparison. In the upper center section the stimulus A or B can be switched seamlessly
in real-time. In the upper right corner the SAQI categories {difference, timbre, tonal-
ness, geometry, room, time behavior, dynamics, artifacts, general impressions, other}
can be selected and the faders adapt accordingly. In the bottom box the circumscrip-
tion for a specific attribute is shown when touching the respective fader.

participants. The rotational orientation entailed a dynamic variation of several percep-
tual attributes. The participants were instructed to perform head and body rotations
and to give best possible average ratings.

5.2 Statistical Evaluation

The majority of tests conducted in this thesis aim to assess and directly reflect the
subjects’ comparative judgments for certain stimulus pairs or stimulus clusters instead
of being strict statistical hypothesis tests. Thus, most of the information for both test
paradigms can directly be deduced from the corresponding plots. The plots show the
rating means with their respective confidence intervals (CIs). For the calculation of the
confidence intervals a bootstrapping approach (DiCiccio and Efron, 1996) using 2 · 103

bootstrap samples at a confidence level of 95% is applied. Bootstrap CIs are based on
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resampling the underlying datasets and are claimed to be more accurate than classical
confidence intervals (DiCiccio and Efron, 1996). The upper and lower interval limits
are evaluated separately and therefore the CIs might turn out to be asymmetric.

A one-way analysis of variance (ANOVA) (Thompson, 2006, pp 303–224) paired with
a Tukey-Kramer post hoc test (Thompson, 2006, pp 325–332) at a confidence level
of 95% is applied in order to evalute the statistical significance of difference between
dedicated stimuli. Thus, whenever the rating means are supposed to be equal or the
null hypothesis is rejected and statistical significance is claimed for the means of a
stimulus pair or certain stimulus clusters, the statements are based on the results
of this procedure. Sporer et al. (2009) propose alternative and extended approaches
for the statistical evaluation of MUSHRA tests, where they consider that the subjects
performing inherent ranking tests and a paired comparison test between pairs of stimuli.
In this thesis the statistical evaluation is restricted to the classical procedure stated
above. The calculation of means and boostrap confidence intervals, as well as the
ANOVA and post hoc tests are performed using the MATLABR⃝ statistics toolbox.

5.3 Participants/Grading

For different listening tests designs the required experience and expertise of the partic-
ipating subjects is considerably different. While some of the basic MUSHRA tests can
be performed by adequately trained but otherwise relatively inexperienced subjects,
the SAQI tests generally demand for well-trained and highly experienced participants
with high audio expertise.

Three groups of participants from different resources were involved. They were gradu-
ated into different categories, cf. Table 5.2. For less critical tests, a large mixed group
of university students in the field of media technology without specific listening expe-
rience or specific audio expertise was recruited. This group is referred to as normal
listeners and assigned to category C. A second more specialized group with certain min-
imum requirements was assembled for performing more critical tests. The participants
of this group had to have enhanced listening experience (e.g. audio mixing or playing
musical instruments) on an ambitious but not necessarily professional level. They had
to commit to regular participation in all respective listening experiments. This group
is referred to as experienced listeners and assigned to category B. The third category is
a carefully selected group of audio experts with extensive experience and professional
expertise. All members of this specific group were required to have several years of
experience and to work full-time in the field of audio engineering. The group is com-
posed of sound engineers from the Westdeutscher Rundfunk (WDR) radio broadcast
studios, some mixed external experts and selected members of the audio research group

191



5 Listening Experiments

at Cologne University of Applied Sciences. This group is referred to as expert listeners
and assigned to category A. An informal post-hoc analysis indeed showed particularly
plausible and consistent ratings from all listeners in category A.

Table 5.2 Grading of the participants and respective requirements/expertise.

Grading Requirements/Expertise

Category C Good mood
(Normal listeners) No hearing damage

Taking part in the introduction and training

Category B All from category C plus:
(Experienced listeners) Audio and/or listening experience on an

ambitious but not necessarily professional level
Constantly taking part in all listening experiments

Category A Professional audio expertise
(Expert listeners) Several years of experience

5.4 Introduction and Training

For the MUSHRA tests, all subjects obtained around 40 minutes of general introduction
to the experiments. Additionally, every subject was provided a personal explanation
by an adviser before starting the experiment. Before starting a scenario, a detailed
pre-produced verbal explanation of the ensuing question, including a description of
the scale end points and audio examples, was presented to each subject. All subjects
had at least one hour of listening experience using the binaural rendering system and
handling the test environment in hidden training sessions. Those are the minimum
requirements for category-C listeners.

For the SAQI tests, each participant obtained an individual introduction for around
1.5 h; the introduction included a dedicated explanation and discussion of the single
SAQI attributes.

A short audio drama including spatially distributed conversation, effect sounds, and
a short piece of Flamenco guitar, virtually reproduced in a broadcast studio of the
Westdeutscher Rundfunk (WDR), was produced and played back in advance to the very
first test procedure for motivating the subjects. Without exception the participants
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gave positive feedback for the teaser and indeed reported a considerable increase in
personal motivation.

Only very few single trials or subjects needed to be excluded from the statistical evalu-
ation due to obviously inappropriate ratings. This indicates that the participants were
taking their task seriously. It also showed that the overall test procedure, the stimulus
ranges, and the introduction and training were well designed and adequate.

5.5 Source Signal

The source signal is an anechoic monaural audio signal. This signal is routed through
the binaural renderer that applies the spatial filters and produces the binaural signal.
The combination of source signal and spatial filter is referred to as stimulus in this thesis.
Different types of source signals were evaluated in informal pre-tests performed by three
category-A listeners. Pure technical audio stimuli, such as noise bursts or clicks, as
well as natural stimuli, such as drums, guitars, speech, singing vocals, or violins, were
evaluated. For the MUSHRA test, the use of critical material representing the typical
broadcast program for the desired application is recommended in (ITU, 2003). This
recommendation can only partly be transferred to the given test scenarios, since typical
material can hardly be defined in this context. Pure technical stimuli were excluded
due to their questionable relation to realistic signals.

A drum loop (kick, snare and hi-hats) turned out to be highly critical with respect to
the artifacts and to be comfortable for listening during longer sessions. It offers a broad
frequency range, which is useful for revealing spectral artifacts, and sharp transients
for the detection of temporal artifacts. This stimulus is referred to as Drums and it
is consistently used throughout all listening experiments except MUSHRA-STM and
MUSHRA-BCS, where the influence of the source signal itself is evaluated or a less
critical scenario is presented. The alternate source signal for the latter is an acoustic
guitar with steel strings and rich high-frequency content, which can be considered as
critical but not highly critical. The alternate source signal is referred to as Guitar.
Other stimuli, such as speech or singing vocals, as well as some classical bowed in-
struments or classic guitar, were found to be considerably less critical in this specific
context.
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5.6 Simulated Data Sets

The listening experiments are divided into experiments with simulated or measured
data sets. Simulated data sets are analytic array responses based on mathematical wave
descriptions. Measured data sets are microphone array recordings or measurements
using a sound source in a room. When analyzing measured data sets, the influences of
particular parameters cannot be evaluated separately, since several factors of influence
inextricably emerge at the same time. Therefore, simulated data sets are used in a
first step, which allow for an independent selective analysis of a particular parameter
while maintaining ideal conditions for all other parameters. Listening experiments
based on simulated data sets are presented in this section. The system architecture for
generating the respective data sets is described in Figure 5.4.
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Figure 5.4 System architecture for generating the simulated data sets and presenting
the stimuli.

5.6.1 Modal Reduction

One of the major issues concerning array based binaural auralization is the limited
modal resolution of microphone arrays, which is discussed in Section 3.5. Different
aspects concerning sound field descriptions with reduced modal order and their impact
on perception are analyzed in the following. Full resolution HRIR or BRIR sets are
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compared to their respective counterparts with limited modal resolution. They are
denoted as head-related impulse response with limited modal resolution (RHRIR)3

and binaural room impulse response with limited modal resolution (RBRIR). Both
are generated using simulated plane waves with reduced modal order that are adapted
to the HRIR set as described in Section 3.5 and depicted in Figure 5.4. The underlying
theoretical aspects, as well as the listening experiments presented in this section are
published in Bernschütz (2014) and in Bernschütz et al. (2014).

5.6.1.1 MUSHRA-MR I

In Section 3.5, it is shown that the properties of the RHRTF depend on the approach
of adaptation between the spherical HRTF set and the (order-limited) modal wave field
description. It is shown that an inconvenient adaptation entails severe low-pass filter
effects due to the modal mismatch of HRTFs and low-order sound field descriptions.
The properties of the RHRTFs can be considerably improved by performing spatial
downsampling of the HRTFs with a composite grid that exactly corresponds to the
wave order. Furthermore, the properties not only depend on the order but also on the
node distribution of the composite grid. In the first experiment MUSHRA-MR I, three
adaptation approaches are directly compared in a single trial for different low wave
orders. The first variant involves a high-order composite grid (Gauss, N = 35) that
enables nearly ideal resolution of the HRTF set in the audible frequency range. Using
a high-order composite grid corresponds to spatial upsampling of the low-order wave
description. This adaptation entails maximum low-pass filter effects due to the order
mismatch. Both remaining variants involve low-order composite grids that are adapted
to the wave order for two different quadrature types, Gauss and Lebedev quadratures,
see Section 3.2.2. The experiment parameters are listed in Table 5.3 and the result is
depicted in Figure 5.5.

The results of MUSHRA-MR I reflect the effects of the predicted low-pass effect for
the high-order grid; all mean ratings are located within the lowest third of the rat-
ing scale. Additionally, the expected shift of the low-pass filter knee towards higher
frequencies with increasing order can be observed. Higher orders entail higher rat-
ings. At sufficiently high orders (i.e. N>35), the low-pass vanishes from the audible
range. Both versions of composite grids that are adapted to the lower wave order show
clear and statistically significant improvements for the presented orders. The order-
adapted Gauss and order-adapted Lebedev quadratures achieve different ratings. A
clear perceptual enhancement using the Gauss grid can be approved for the presented
orders. This outcome is surprising, since the mathematical mean overall spectral error

3The respective time-frequency Fourier transform is denoted as RHRTF.

195



5 Listening Experiments

Table 5.3 Parameters MUSHRA-MR I.

Experiment ID MUSHRA-MR I (Modal Reduction)

Test paradigm MUSHRA
Varied parameter(s) Plane wave with limited modal orders N = 3− 6

for three different wave adaptation types:
High-order, adapted Gauss and adapted Lebedev

Spatial filter(s) RHRIRs
Reference HRIRs
Anchor Unfiltered diotic
Number of ratings 22 (hidden double trials)
Listener grading Mixed B(6), A(5)
Trials 1
No. of stimuli per trial 12 + Anchor + Hidden Reference
Source signal Drums

between RHRTFs and HRTFs is a little lower for the Lebedev grid than for the Gauss
grid, c.f. Section 3.5. However, at least for the presented scenario with a single frontal
source and the first few orders, the Gauss grid shows a better performance throughout
from a perceptual point of view. Finally, the RHRTFs converge to the original full res-
olution HRTFs with increasing orders for all approaches. At low modal orders, clearly
significant physical and perceptual improvements can be observed for order-adapted
composite grids.
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Figure 5.5 MUSHRA-MR I results.
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5.6.1.2 MUSHRA-MR II

The experiment MUSHRA-MR II is similar to MUSHRA-MR I. The stimuli using the
high-order composite grid are dropped and the range of order-adapted stimuli is ex-
tended up to order N = 8 within one trial. The experiment was performed with the
same listeners as MUSHRA-MR I. The experiment parameters are listed in Table 5.4
and the results are depicted in Figure 5.6.

Table 5.4 Parameters MUSHRA-MR II.

Experiment ID MUSHRA-MR II (Modal Reduction)

Test paradigm MUSHRA
Varied parameter(s) Plane wave with limited modal orders N = 3− 8

for two different composite grids
Spatial filter(s) RHRIRs
Reference HRIRs
Anchor Unfiltered diotic
Number of ratings 22 (hidden double trials)
Listener grading Mixed B(6), A(5)
Trials 1
No. of stimuli per trial 12 + Anchor + Hidden Reference
Source signal Drums

For orders N = {3, 4, 5, 6}, MUSHRA-MR II shows similar results as MUSHRA-MR I
just with a typical context-dependent bias. The additional orders N = 7 and N = 8

show two interesting aspects. First, a positive "outlier" for N = 7 using the Lebedev
quadrature emerges. This indicates a volatile behavior of the Lebedev quadrature and
a more constant performance of the Gauss quadrature over different orders. These
properties further consolidate in the following experiments. For some particular orders
(e.g. for N = 3 and N = 7), the Lebedev quadrature apparently delivers similar
perceptual results as the Gauss quadrature. Second, the Gauss grid for N = 8 delivers
a mean rating that surpasses the 90%-excellent boundary for a critical stimulus and
critical listeners of the categories A and B only. A clearly perceivable but relatively
small difference to the reference remains. MUSHRA-MR II covers a realistic range of
orders that can be resolved by typical microphone arrays according to the current state
of technology.
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Figure 5.6 MUSHRA-MR II results.

5.6.1.3 MUSHRA-MR III

MUSHRA-MR III is again similar to the previous experiments. However, a broader
range of orders is presented, i.e. N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 14, 17, 23}. Due to
the large number of stimuli, the experiment is split into two different trials (Gauss,
Lebedev). In contrast to the previous experiments, MUSHRA-MR III involves several
additional category-C listeners. The hidden double trials were dropped due to the
larger number of participants. The experiment parameters are listed in Table 5.5 and
the results are depicted in Figure 5.7.

Table 5.5 Parameters MUSHRA-MR III.

Experiment ID MUSHRA-MR III (Modal Reduction)

Test paradigm MUSHRA
Varied parameter(s) Plane wave with limited modal orders

N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 14, 17, 23}
for two different composite grids

Spatial filter(s) RHRIRs
Reference HRIRs
Anchor Unfiltered diotic
Number of ratings 26 (each trial)
Listener grading Mixed C(15), B(6), A(5)
Trials 2
No. of stimuli per trial 13 + Anchor + Hidden Reference
Source signal Drums
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Figure 5.7 MUSHRA-MR III results.

The ratings for the previously presented orders are similar to the ratings from
MUSHRA-MR I and MUSHRA-MR II, even though a considerable number of less crit-
ical category-C listeners is involved. Using the Gauss grid, ratings from order N = 11

upwards do not show statistically significant differences to the reference anymore. The
volatile characteristics of the Lebedev grid and the smooth and more constant per-
formance of the Gauss grid are shown again. All MUSHRA-MR experiments show
negative outliers for the Lebedev N = 4 stimulus. The processing chain and stimuli
were double checked for potential errors. The Lebedev quadrature apparently tends to
perform better on odd orders than on even ones.

5.6.1.4 SAQI-MR

For SAQUI-MR the selected stimulus is a RHRTF set based on a Gauss composite
grid with order N = 5. This specific stimulus yielded ratings in the range of 75-85%
(between good and excellent) in the MUSHRA-MR experiments. Thus, the stimulus is
still acceptable but shows clearly audible differences compared to the reference, which
is a native HRTF set with full modal resolution. The selected SAQI attributes are
listed in Table 5.1 and the experiment parameters in Table 5.6.

The results are depicted in Figure 5.8. The difference between stimulus and reference
is clearly perceivable. For all general attributes, i.e. clarity, naturalness, presence,
and degree of liking, the stimulus is rated lower than the reference. The stimulus
appears to be perceived with a certain increase of mid/high frequencies, accompanied
by increased comb-filter artifacts and a more metallic tone color. The listeners perceive
a small dynamic compression effect. The source depth and width appear to be slightly
increased, whereas the height remains identical. A horizontal shift of the source and a
small vertical shift are perceived. The perceived distance and externalization appear
to be comparable, at least concerning the overall mean ratings. However, the subjects
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Table 5.6 Parameters SAQI-MR.

Experiment ID SAQI-MR (Modal Reduction)

Test paradigm SAQI
Varied parameter(s) Plane wave with limited modal order N = 5

using a gauss composite grid
Spatial filter(s) RHRIRs
Reference HRIRs
Number of ratings 11
Listener grading A
Trials 1
No. of stimuli per trial 1 + Reference
Source signal Drums

reported a sudden reduction of externalization and varying distances for a few specific
spatial orientations. The localizability clearly decreases and spatial disintegration of
the source is perceived. The reverberation level and envelopment are rated to be slightly
increased. These results appear to be confusing at first, since both the stimulus and
the reference were completely dry and comprised no reverberation at all. But increased
spatial and temporal disintegration, decreased localizability, and the subtle perception
of a ghost source appears to be interpreted as additional reverberation.
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Figure 5.8 SAQI-MR results.

201



5 Listening Experiments

5.6.1.5 Early Reflections (MUSHRA-REF)

The next scenario is based on the MUSHRA-MR experiment. In order to analyze
the influence of additional room reflections in addition to the direct sound, some early
reflections according to the small broadcast studio at WDR Cologne (SBS) of the WDR
are presented. A specific artificial BRIR set was generated for this purpose, which is
described in the following.

5.6.1.5.1 Generating Simulated BRIRs In order to enable a well-controlled modal reduc-
tion that is free of different influences and effects, a specific BRIR set needs to be
generated. The direct use of a measured array response is not suitable in this case,
since a variety of unwanted side-effects arises. The simulated BRIR sets are implicitly
based on microphone array measurements. An interposed procedure for appropriate
signal abstraction is applied. The underlying microphone array data was captured at
a broadcast studio (SBS), refer to Section 4.3.3. An algorithm provided in the SOFiA
toolbox is used for extracting the directions of incidence Ωk, the times of incidence
τk, and the levels p̂k in a high-mid frequency band around 2–4 kHz for K = 24 early
reflections k within the first 200ms of the room response. Simulated BRIRs bl,r are
generated from this basic geometric description by summing time-shifted and intensity-
scaled high-order interpolated HRIRs hl,r according to

bl,r(Ωh) =

K∑
k=1

p̂k h
l,r(Ωk − Ωh, t− τk), (5.1)

where Ωh describes the subject’s head orientation. The identical geometric description
is used for generating the respective order-reduced RBRIR sets using the plane wave
generators as depicted in Figure 5.4. This approach enables perfectly isolated analysis
of the perceptual influences that are introduced by a reduction of the modal order,
even though the spectral properties of the corresponding measured BRIR set are sub-
stantially simplified. The respective simulated BRIR sets were evaluated and rated
as realistic and well-sounding by three category-A listeners during informal listening
sessions prior to the experiment.

5.6.1.5.2 MUSHRA-REF The experiment MUSHRA-REF extends the MUSHRA-REF III
experiment and is designed for analyzing the perceptual influence of additional and like-
wise order-reduced reflections. The spatial filters are generated as discussed in the last
section. Simulated BRIRs were presented for the Gauss and the Lebedev composite
grid. The experiment parameters are listed in Table 5.7. The results, including the
ratings from MUSHRA-REF III (dry HRIRs) for comparison, are depicted in Figure
5.9 and Figure 5.10.
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Table 5.7 Parameters MUSHRA-REF.

Experiment ID MUSHRA-REF (Modal red. with early reflections)

Test paradigm MUSHRA
Varied parameter(s) Plane waves (including reflections) with limited modal

orders N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 14, 17, 23}
for two different composite grids

Spatial filter(s) Simulated RBRIRs
Reference Simulated BRIRs
Anchor Unfiltered diotic (including reflections)
Number of ratings 26 (each trial)
Listener grading Mixed C(15), B(6), A(5)
Trials 4 (2 trials from MUSHRA-REF III for comparison)
No. of stimuli per trial 13 + Anchor + Hidden Reference
Source signal Drums
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Figure 5.9 MUSHRA-REF results (Lebedev trials).
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Figure 5.10 MUSHRA-REF results (Gauss trials).

The plots show an increase in the ratings for the (R)BRIRs compared to the dry
(R)HRIRs with a Lebedev composite grid. For the Gauss grid, a slight increase can
still be observed for some orders, even though the increase is more subtle. In general,
additional reflections, even if reduced in the modal resolution, appear to mask the
perceived order-reduction artifacts of the direct sound and tend to improve the percep-
tual properties of the signals, instead of introducing further audible artifacts. Diffuse
reverberation, which is less prone to order-reduction artifacts due to the multitude of
randomly distributed directions of incidence, is expected to increase the ratings due to
other masking effects. The synthesis of highly diffuse and natural sounding reverbera-
tion with controllable modal resolution is a complex and time-consuming task. As a
consequence, diffuse reverberation is considered for measured data sets only, refer to
Section 5.7.

5.6.1.6 Source Signal (MUSHRA-STM)

The MUSHRA-STM experiment is a clone of the MUSHRA-MR III experiment, with
a different source signal. The modified experiment is conducted in order to find out to
what extent the perceptibility of the order-reduction artifacts depends on the source
signal.

The highly critical drum source signal (Drums) is compared to a source signal with
clearly different characteristics. The alternate stimulus is a western acoustic guitar
(Guitar), which is rated as critical but not highly critical, refer to Section 5.5. The
experiment parameters are listed in Table 5.7. The results, including the ratings from
MUSHRA-REF III (source signal: Drums) for comparison, are depicted in Figure 5.11
and Figure 5.12.
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Indeed, a less critical source signal entails slightly increased ratings, at least for certain
orders of the Lebedev composite grid that comprises stronger perceptual reduction
artifacts in general. For the Gauss grid, the differences are only subtle and not statisti-
cally significant. Thus, the experiment shows that the reduction artifacts are generally
well perceivable and the corresponding ratings are comparable, even though an entirely
different source signal is presented.

Table 5.8 Parameters MUSHRA-STM.

Experiment ID MUSHRA-STM (Source Signal)

Test paradigm MUSHRA
Varied parameter(s) Plane wave with limited modal orders

N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 14, 17, 23}
for two different composite grids

Spatial filter(s) RHRIRs
Reference HRIRs
Anchor Unfiltered diotic
Number of ratings 26 (each trial)
Listener grading Mixed C(15), B(6), A(5)
Trials 4 (2 trials taken from MUSHRA-REF III for comparison)
No. of stimuli per trial 13 + Anchor + Hidden Reference
Source signal Guitar
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Figure 5.11 MUSHRA-STM results (Lebedev trials).
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Figure 5.12 MUSHRA-STM results (Gauss trials).

5.6.1.7 Simulated Best-Case Scenario (MUSHRA-BCS)

The last experiment in the series of investigations of modal order-reduction based on
simulated signals is MUSHRA-BCS, where a less critical scenario is presented that is
supposed to be close to realistic applications. The slightly less critical Guitar source
signal is combined with the simulated (R)BRIRs from MUSHRA-REF and presented
to a mixed group of listeners of the categories A, B and C. The experiment parameters
are listed in Table 5.9. The results are depicted in Figure 5.13.

Table 5.9 Parameters MUSHRA-BCS.

Experiment ID MUSHRA-BCS (Best-case scenario)

Test paradigm MUSHRA
Varied parameter(s) Plane waves (including reflections) with limited modal

orders N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 14, 17, 23}
for two different composite grids

Spatial filter(s) Simulated RBRIRs
Reference Simulated BRIRs
Anchor Unfiltered diotic (including reflections)
Number of ratings 26
Listener grading Mixed C(14), B(7), A(5)
Trials 1
No. of stimuli per trial 13 + Anchor + Hidden Reference
Source signal Drums

The results show a rapid convergence towards the reference with increasing modal or-
der. Even comparatively low orders achieve high ratings for less critical scenarios and
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Figure 5.13 MUSHRA-BCS results.

a mixed group of listeners. The 90% (excellent) rating mark is already surpassed at
order N = 5. Minor differences (<10%) apparently are audible up to much higher
orders, even though the perceived differences at higher orders (N ≥ 7) show no sta-
tistical significance when compared to the reference. The outcome of MUSHRA-BCS
is quite positive for a practical construction of array systems for binaural auralization.
Thus, microphone arrays with realistic expense and complexity can achieve satisfying
perceptual results in this context, with the constraints of the limited modal resolution.

5.6.2 Radial Filter Limiting

Another important restriction is due to the excessive radial filter amplification demands
that are discussed in Section 3.6.3. The required mode amplification for maintaining
a constant array directivity quickly increases for higher orders at lower temporal fre-
quencies. Since practical systems comprise equipment noise (tranducers, amplifiers,
analog-digital converters), the radial filters need to be limited to rational amplification
values in order to obtain a stable array signal. In Section 3.6.4 a soft-knee limiting
approach is discussed and in Section 3.6.5 non-critical radial filters are proposed, which
are depicted in Figure 5.14.

The mode amplification limit is set to âdB = 0 dB. Hence, arbitrary attenuation and no
amplification is allowed for the critical range f < (N c)/(2π r). This can be considered
to be a very strict criterion. In return, this configuration ensures a definitely stable
array response. Limiting the radial filter amplification leads to reduced spatial resolu-
tion of the array at lower temporal frequencies. If the array radius undercuts a certain
limit, which was previously found to be in the range of r0 = 15 cm for non-critical
radial filters, the HRTFs start to be successively truncated in their modal order in the
affected frequency range. For a detailed discussion return to Section 3.6.8, where the
impact of radial filter limiting on binaural reproduction is discussed.
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Figure 5.14 Magnitude response of the proposed non-critical radial filters. The filters
are shifted along the frequency axis with varying array radius r0.

The following experiments MUSHRA-RFL and SAQI-RFL aim at assessing the per-
ceptual influences of applying non-critical radial filters to a system for array-based
binaural reproduction.

5.6.2.1 MUSHRA-RFL

In MUSHRA-RFL, non-critical radial filters as depicted in Figure 5.14 are used for
generating the stimuli. The radius of the simulated array is varied in the range of
r0 = 2 cm to r0 = 30 cm in order to evaluate the perceptual influences of using a
non-critical filter configuration in dependence of the array measurement radius. The
reference is generated with unlimited4 radial filters, which is only feasible for simulated
data sets. The experiment parameters are listed in Table 5.10. The results are depicted
in Figures 5.15 to 5.18.

The results of MUSHRA-RFL show the minimum microphone array radius that should
be used for array based binaural auralization. Accordingly, the array should at least be
of the order of the head radius or slightly above for a non-critical filter configuration
with âdB = 0dB. A radius of r0 = 9 cm achieves ratings around the 90% (excellent)
mark. Smaller radii entail considerable artifacts and larger radii improve the signal
only slightly. For radii r0 ≥ 15 cm none of the ratings show statistically significant
differences compared to the reference. Thus, a reasonable array dimension for binaural
auralization is in the range of r0 = 9 cm to r0 = 15 cm, which exactly corresponds
to our theoretical predictions. There is no significant difference between trials with
different orders N .

4The limit is actually set to 250 dB in order to avoid numerical instabilities.
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Table 5.10 Parameters MUSHRA-RFL.

Experiment ID MUSHRA-RFL (Radial filter limiting)

Test paradigm MUSHRA
Varied parameter(s) Varying array radius r0 = 2− 30 cm

with fixed radial filter limit of 0 dB
for modal orders N = {4, 5, 6, 7}

Spatial filter(s) RHRIRs with limited filters
Reference RHRIRs with unlimited filters
Anchor Diotic with hi-shelf filter (-12 dB, 2 kHz)
Number of ratings 21
Listener grading Mixed B(15), A(6)
Trials 4 (one per modal order)
No. of stimuli per trial 13 + Anchor + Hidden Reference
Source signal Drums
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Figure 5.15 MUSHRA-RFL results for N = 4.
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Figure 5.16 MUSHRA-RFL results for N = 5.
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Figure 5.17 MUSHRA-RFL results for N = 6.
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Figure 5.18 MUSHRA-RFL results for N = 7.
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5.6.2.2 SAQI-RFL

SAQI-RFL is conducted for the purpose of a more specific examination of the percep-
tual artifacts that come along with radial filter limiting. The reference is a RHRTF
of N = 7 with Gauss composite grid and unlimited radial filters. The stimulus is a
RHRTF of N = 7 with Gauss composite grid and a radius of r0 = 5 cm with non-
critical radial filters with âdB = 0 dB. The identical stimulus achieved ratings of about
70% (good) in the MUSHRA-RFL experiment. Thus, the audio quality is still accept-
able, but the stimulus comprises clearly audible artifacts. The experiment parameters
are listed in Table 5.11. The results are depicted in Figure 5.19. They indicate col-
oration of the stimulus, i.e. decreased high/mid and increased low frequency tone color.
Furthermore, a decrease of externalization and an additional horizontal shift become
apparent. The source width is slightly decreased and a minimal dynamic compression
effect is perceived.

Table 5.11 Parameters SAQI-RFL.

Experiment ID SAQI-RFL (Radial filter limiting)

Test paradigm SAQI
Varied parameter(s) Array radius r0 = 5 cm with the radial

filter limit set to âdB = 0 dB (non-critical)
Spatial filter(s) RHRIRs (N = 7) with limited radial filters
Reference RHRIRs (N = 7) with unlimited radial filters
Number of ratings 11
Listener grading A
Trials 1
No. of stimuli per trial 1 + Reference
Source signal Drums
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Figure 5.19 SAQI-RFL results.
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5.6.3 Spatial Aliasing

Spatial aliasing emerges due to discrete spatial sampling of the sound field, which was
discussed in Section 3.8. Depending on the respective spatial sampling density, higher
spherical harmonic modes cannot be appropriately resolved. The resulting modal am-
biguity manifests itself as spatial aliasing. Primarily higher temporal frequencies are
affected by this, since they tend to excite increasingly higher modes. Spatial aliasing
decreases or even impedes the spatial resolution of the microphone array within the
affected temporal frequency bands. Different listening experiments were conducted in
order to evaluate the perceptual influences of spatial aliasing.

5.6.3.1 MUSHRA-SA I

In MUSHRA-SA I, discrete spatial sampling is simulated in order to obtain simulated
array responses including spatial aliasing artifacts. Even though spatial aliasing is
usually present in the full temporal frequency spectrum, and, as a consequence, no
strict aliasing-boundary can be defined, the aliasing contributions suddenly increase
excessively above a certain aliasing frequency fA which is approximately determined
by Eq. (3.44). This equation indicates the dependency of fA on the grid order Nsg and
the array radius r0. Increasing the grid order or decreasing the radius shifts the aliasing
frequency fA towards higher temporal frequencies. MUSHRA-SA I was conducted in
order to evaluate the magnitude of perceptual artifacts coming from spatial aliasing.
Two different stimulus traces were generated for testing the influences of the grid order
Nsg and the radius r0. Different grid orders Nsg = {7, 11, 14, 17, 20} of a Lebedev
sampling grid were applied, using a fixed array radius of r0 = 200mm. Then, the
grid order Nsg = 7 is kept constant and the radius r0 = {200, 127, 100, 82, 70}mm is
varied according to Eq. (3.44) in order to obtain identical aliasing frequencies fA =

{1.9, 3.0, 3.8, 4.6, 5.4} kHz for both traces. The start configuration is Nsg = 7 and
r0 = 200mm. The experiment parameters are listed in Table 5.12 and the results are
depicted in Figure 5.20.

The results clearly prove that spatial aliasing is audible and they indicate that a propor-
tional relation exists between the strength of perceptual artifacts and fA. Furthermore,
less perceptual artifacts are noticed when increasing the grid order (depending on the
grid density) rather than decreasing the radius. According to Eq. (3.44) both should
be equivalent for a constant target aliasing frequency fA. In addition to the reduced
spatial selectivity of the array by itself, an increasing spectral coloration for frequencies
f > fA arises, which can be deduced from the simulations in Section 3.8.2, as well as
from the SAQI-SA experiment in Section 5.6.3.4.

213



5 Listening Experiments

Table 5.12 Parameters MUSHRA-SA I.

Experiment ID MUSHRA-SA I (Spatial Aliasing)

Test paradigm MUSHRA
Varied parameter(s) Fixed array radius r0 = 20 cm with varying sampling grid

density/order Nsg = {7, 11, 14, 17, 20} vs. varying radius
r0 = {20, 12.7, 10, 8.2, 7} cm at a fixed grid order Nsg = 7

for common theoretical aliasing frequencies.
Spatial filter(s) RHRIRs, simulating discrete spatial sampling
Reference RHRIRs, ideal / no spatial sampling
Anchor Diotic with hi-shelf filter (+15 dB, 2 kHz)
Number of ratings 21
Listener grading Mixed B(15), A(6)
Trials 1
No. of stimuli per trial 9 + Anchor + Hidden Reference
Source signal Drums
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Figure 5.20 MUSHRA-SA I.
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5.6.3.2 MUSHRA-SA II

In MUSHRA-SA II the influence of the sample grid’s node distribution is examined.
Two different node distributions, to a Gauss and a Levedev quadrature, are applied
to simulating spatial sampling. The aliasing frequency fA is kept constant at 2 kHz
throughout the experiment by adaption of the radius r0 according to Eq. (3.44). Dif-
ferent grid orders Nsg = {4, 5, 6, 7} were explored in separate trials. The experiment
parameters are listed in Table 5.13 and the results are depicted in Figure 5.21.

Table 5.13 Parameters MUSHRA-SA II.

Experiment ID MUSHRA-SA II (Spatial Aliasing)

Test paradigm MUSHRA
Varied parameter(s) Fixed aliasing frequency fA = 2 kHz for two different

sampling grids Gauss (Gss) and Lebedev (Lev) at
RHRIR orders Nsg = {4, 5, 6, 7}.

Spatial filter(s) RHRIRs, simulating discrete spatial sampling
Reference RHRIRs, ideal / no spatial sampling
Anchor Diotic with hi-shelf filter (+15 dB, 2 kHz)
Number of ratings 21
Listener grading Mixed B(15), A(6)
Trials 4
No. of stimuli per trial 2 + Anchor + Hidden Reference
Source signal Drums
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Figure 5.21 MUSHRA-SA II.
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Except for Nsg = 6, the ratings for different sampling grids do not show statistically
significant differences. Thus, different node distributions of the spatial sampling grid
apparently introduce a comparable amount and comparable characteristics of percep-
tual aliasing artifacts, as long as an identical aliasing frequency is established for both
grids. This result stands in contrast to the outcome of the MUSHRA-MR experiments,
where different node distributions of the composite grid entailed clearly significant per-
ceptual differences. However, the spatial node distribution of the array sensors and the
inherent subsampling artifacts appear to be nearly irrelevant compared to the influence
of the node distribution of the composite grid.

5.6.3.3 MUSHRA-SA III

In the third experiment of this series, MUSHRA-SA III, the influence of additional early
reflections on a spatially subsampled system are examined. Due to the loss of spatial
selectivity in the aliased frequency bands, additional reflections could be expected to
mask the spatial aliasing artifacts. The stimuli of MUSHRA-SA III are based on the
simulated (R)BRIRs previously described in Section 5.6.1.5. The experiment parame-
ters are listed in Table 5.14 and the results are depicted in Figure 5.22.

Table 5.14 Parameters MUSHRA-SA III.

Experiment ID MUSHRA-SA III (Spatial Aliasing)

Test paradigm MUSHRA
Varied parameter(s) Varying radius r0 = {20, 15, 10, 5} cm with Lebedev

sampling grid of order Nsg = 7 using RHRIRs
and RBRIRs of N = 7 with a Gauss composite grid.

Spatial filter(s) RHRIRs/RBRIRs, simulating discrete spatial sampling
Reference RHRIRs/RBRIRs, ideal / no spatial sampling
Anchor Diotic with hi-shelf filter (+15 dB, 2 kHz)
Number of ratings 21
Listener grading Mixed B(15), A(6)
Trials 2
No. of stimuli per trial 4 + Anchor + Hidden Reference
Source signal Drums

The ratings of the RBRIRs are slightly higher than those of the RHRIRs, but the dif-
ferences between the rating means are not statistically significant. Hence, the inherent
spatial aliasing artifacts are perceived nearly equal in a dry virtual source and in a vir-
tual source with additional early reflections. Again, much of the perceivability of the
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spatial aliasing artifacts can be ascribed to the predominant coloration of the source
signal. This is affirmed in the SAQI-SA test in the next section. When appropriately
compensating for the coloration, and adding reflections and diffuse reverberation to a
virtual source, spatial aliasing in higher temporal frequency bands entails a surprisingly
small perceptual impairment only, refer to the experiments in Section 5.7.
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Figure 5.22 MUSHRA-SA III.

217



5 Listening Experiments

5.6.3.4 SAQI-SA

A RHRTF set of order N = 7 with a Gauss composite grid and with a Gauss sampling
grid Nsg = 7 on a radius of r0 = 10 cm for simulating spatial sampling was presented
to the participants. The aliasing frequency is located around fA = 3.8 kHz for this
configuration. The same stimulus achieves ratings of around 60% (between fair and
good) in the MUSHRA-SA I test. Thus, spatial aliasing artifacts are clearly perceiv-
able but the signal is still acceptable. The equivalent RHRTF set without simulating
spatial sampling and without spatial aliasing artifacts is presented as reference. The
experiment parameters are listed in Table 5.15 and the results are depicted in Figure
5.23.

Table 5.15 Parameters SAQI-SA.

Experiment ID SAQI-SA (Spatial Aliasing)

Test paradigm SAQI
Varied parameter(s) RHRIR set with N = 7, Gauss composite grid and

Gauss sampling grid of Nsg = 7 on a radius r0 = 10 cm
simulating discrete spatial subsampling vs. an equivalent
RHRIR set without simulating spatial sampling

Spatial filter(s) RHRIRs including spatial subsampling (fA = 3.8 kHz)
Reference RHRIRs without spatial sampling
Number of ratings 11
Listener grading A
Trials 1
No. of stimuli per trial 1 + Reference
Source signal Drums

The overall perceived difference is large. The results confirm a strong coloration of the
signal in the higher frequency range. This reflects in a bright, sharp and metallic tone
color. The source is perceived closer to the subject, less externalized, and spatially
disintegrated. Primarily the width, but also the depth and height of the source are
increased and the localizability is decreased. A minor increment of the source elevation
is perceived. The stimulus appears louder than the reference. Pitched artifacts, noise-
like artifacts, and increased distortion are perceived. The signal appears to be slightly
pitched. Minor post-echoes and temporal disintegration of the source are detected.The
aliasing artifacts are apparently interpreted as a minor increase in reverberation, even
though neither of the presented stimuli involved reverberation.
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Figure 5.23 SAQI-SA results.
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5.6.4 MUSHRA-BEMA (Anti-Aliasing)

In the MUSHRA-BEMA experiment, the performance of the BEMA approach of Sec-
tion 3.11 for patching aliased frequency bands in simulated signals is evaluated. The
BEMA anti-aliasing method is discussed in Section 3.11. For a single isolated plane
wave incidence the BEMA method allows for an exact reconstruction of the aliased fre-
quency bands. Hence, a listening test is obsolete in this case. For multiple plane waves
that arrive from arbitrary directions and with arbitrary phase relation at once, the
array signal can only be approximated and not reconstructed exactly. Thus, a virtual
source with additional reflections according to Section 5.6.1.5 is used for evaluating the
performance of the BEMA method.

Table 5.16 Parameters MUSHRA-BEMA.

Experiment ID MUSHRA-BEMA (Spatial anti-aliasing)

Test paradigm MUSHRA
Varied parameter(s) Varying radius r0 = {20, 15, 10, 5} cm with Lebedev

sampling grids of orders Nsg = {5, 7} using RBRIRs
with Gauss composite grids. Raw stimuli with spatial
aliasing vs. stimuli with BEMA anti-aliasing.

Spatial filter(s) RBRIRs, simulating discrete spatial sampling
with and without BEMA anti-aliasing

Reference RBRIRs, ideal / no spatial sampling
Anchor Diotic with hi-shelf filter (+15 dB, 2 kHz)
Number of ratings 21
Listener grading Mixed B(15), A(6)
Trials 2
No. of stimuli per trial 4 + Anchor + Hidden Reference
Source signal Drums

A temporal block size of 128 samples with zero samples overlap is used for partitioning
the simulated array input signals in the time domain. The internal BEMA processing
core upscaled the blocks to a FFT size of 8192 samples for extracting an appropriately
resolved spatio-temporal image down to low temporal frequencies. The extraction
bandwidth is set to 1/3 octave around the most stable array frequency range at f =

(Nsg c)/(2π r). In the MUSHRA-BEMA experiment, two trials with different sampling
grid orders Nsg = {5, 7} were performed. For each trial, the radius of the simulated
array is varied in four steps, r0 = {20, 15, 10, 5} cm. The resulting array configurations
entailed different aliasing frequencies fA,N5 = {1.4, 1.8, 2.7, 5.5} kHz and fA,N7 =
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5.6 Simulated Data Sets

{1.9, 2.5, 3.8, 7.6} kHz, respectively. Based on the configuration, a stimulus pair is
generated that consists of an aliased raw stimulus and an equivalent stimulus that
is treated with the BEMA anti-aliasing procedure for comparison. The experiment
parameters are listed in Table 5.16 and the results are depicted in Figure 5.24 (Nsg = 5)
and Figure 5.25 (Nsg = 7).
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Figure 5.24 MUSHRA-BEMA, Nsg = 5.
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Figure 5.25 MUSHRA-BEMA, Nsg = 7.

The results show a highly significant improvement of the stimuli with applied BEMA
anti-aliasing processing in comparison to the aliased raw stimuli. None of the stimuli
using BEMA anti-aliasing indicates statistically significant perceptual differences to
the reference, with exception of Nsg = 5 and r0 = 20 cm. The BEMA patching seems
to work well at both orders Nsg = {5, 7}. Apparently, the processing can be applied
at relatively low aliasing frequencies, like fA ≈ 2 kHz. The low rating for Nsg = 5 and
r0 = 20 cm could either be a random audible artifact for the specific configuration, or
indicate a lower valid boundary of fA for using BEMA. Further experiments need to be
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5 Listening Experiments

conducted in order to answer that question. Generally, the results are quite promising
and proof the basic concept of the BEMA procedure, at least for simulated signals of
comparably low complexity.

5.7 Measured Data Sets

In this section several listening experiments based on measured microphone array and
dummy head data sets are presented. The data sets are introduced in Section 4.3.3.
Two rooms with different acoustic properties were chosen for the experiments. The
first room is a large broadcast studio (LBS) with a volume of around 6500m3 and
reverberation times around 1.7 s. The second room is a studio control room (CR7) with
a room volume of around 170m3 and reverberation times around 0.25 s. A portable
directional sound system5 was used for excitation in the broadcast studio.
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Figure 5.26 System architecture for processing the measured data sets and presenting
the stimuli.

In the control room, a speaker of the main monitoring system6 was used instead. The
capturing device is a VariSphear scanning microphone array system, refer to Section
4.1. The corresponding BRIR references were captured at a common pivot point with
a Neumann KU100 dummy head mounted on the VariSphear motion base. For further
details concerning the locations and the technical setup refer to Section 4.3.3. The

5Name in the library (Stade et al., 2012): LBS-PAC
6Name in the library (Stade et al., 2012): CR7-L
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5.7 Measured Data Sets

system architecture and processing chain for generating the ABRIRs is described in
Figure 5.26.

5.7.1 Array Configuration and Filters

The array was operated in rigid sphere configuration with a sphere diameter of
d0 = 17.5 cm. This diameter was used for capturing the full audio bandwidth. Non-
critical radial filters with âdB = 0 dB, introduced in Section 3.6.5, are applied. The
configuration is not optimized. According to the considerations and outcomes from
Section 3.6.8 and the listening experiments in Section 5.6.2, the radius is too small for
binaural auralization. The radial filter limit could have been raised to compensate for
the small radius. But a larger measurement radius was not available due to construc-
tional constraints. Non-critical filters with âdB = 0 dB are used in order to have a
reasonable reference amplification. The array did not form an ideal sphere, as the mo-
tor and rotation mount stick out of the rigid sphere body, which is discussed in Section
3.13.6. A spectral compensation filter, refer to Figure 3.63, is applied to the output
signal in order to compensate for the impaired frequency response. In this light, the
ratings from the following listening experiments can be expected to be slightly lower
than the ones that were achievable with an optimized array with an ideal sphere of
appropriate size or using less strict radial filter amplification limits.

Full resolution ABRIRs were generated based on a Lebedev sampling grid of order
Nsg = 29, comprising 1202 spatial sampling nodes. By theory, according to Eq. (3.44),
this configuration is stable up to fA = 18 kHz. Simulations prove the constellation to be
stable for frequencies up to at least fA = 20 kHz with negligible aliasing contributions.
Hence, no considerable spatial aliasing arises on the entire audible frequency range
for this configuration. The plane wave decomposition operations are performed on
maximum orders N = {4, 5, 6, 7}, depending on the respective scenario. Order-adapted
Gauss quadratures are used as composite grid for all experiments, since they achieved
best perceptual ratings in the MUSHRA-MR experiments of Section 5.6.1.

5.7.2 Motion-tracked Binaural Sound (MTB)

Stimuli based on the motion tracked binaural sound (MTB) method were added to the
experiments for comparison. The MTB method is introduced in Section 1.1.7.

In order to minimize the influences of the number of microphones and interpolation
methods, a virtual high density MTB array with 360 sampling nodes lined up on the
equator was used for generating the stimuli. This yielded a resolution of 1◦ in the
horizontal plane. Since this is identical to the resolution of the reference BRIR sets, no
additional MTB-specific interpolation needed to be performed. The MTB signals are
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5 Listening Experiments

derived using high-order spherical harmonic interpolation of high-density array data
sets captured with the VariSphear rigid-sphere head at a diameter of d0 = 17.5 cm,
which corresponds to the average head diameter.

In order to minimize spectral coloration of the MTB signals compared to the original
BRIRs, specific global spectral compensation filters were generated based on magni-
tude averaging of the circular sets. Applying the compensation filters, the MTB set
comprises the same spectral circular diffuse field response as the BRIR reference set
and the perceived difference in global coloration vanishes. MTB stimuli with spectral
compensation filters are marked as «MTBEQ» in the plots, whereas raw MTB stimuli
without compensation filters are denoted as «MTB». No further customization or indi-
vidualization of the MTB stimuli as proposed in (Melick et al., 2004) is performed. No
torso reflections are present, which is not relevant in the given context, as the Neumann
KU100 reference dummy head does not provide a torso either.

Considering the very high microphone density to avoid cross-fading or interpolation
artifacts, and the precise spectral equalization to the reference BRIR set, the pre-
sented MTB signals can be regarded as idealized MTB stimuli. Most of the remaining
differences can be ascribed mainly to the missing pinna cues and other «anatomic» dif-
ferences between the reference dummy head and the MTB array.

5.7.3 Measured ABRIRs vs. BRIRs

In the first listening experiment, MUSHRA-MMR, ABRIR sets with varied modal
orders are compared to the corresponding reference BRIR sets. The array configuration
and filter settings for generating the ABRIRs are given in Section 5.7.1. Since the
sampling grid order is sufficiently high (Nsg = 29, 1202 nodes), spatial aliasing can be
considered negligible in the entire audible frequency spectrum. The experiments were
conducted in a broadcast studio and in a studio control room. For comparison of the
results, compensated MTB EQ sets, cf. Section 5.7.2, are included with each trial.

5.7.3.1 MUSHRA-MMR I

In MUSHRA-MMRI, ABRIR sets for the broadcast studio and the control room were
explored as described above. The experiment parameters are listed in Table 5.17. The
results for both rooms are depicted in Figure 5.27.

The ratings for both rooms are very similar and no statistically significant differences
can be seen. Generally, the differences between ABRIRs and the reference BRIRs are
statistically significant. The rating means for N = 7 surpass the 90% (excellent) mark,
which indicates perceptible but very small differences. Further analysis of the percep-
tual properties concerning this stimulus are presented in Section 5.7.3.3. The results of
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5.7 Measured Data Sets

Table 5.17 Parameters MUSHRA-MMRI

Experiment ID MUSHRA-MMRI.
(Modal reduction based on measured data)

Test paradigm MUSHRA
Varied parameter(s) Varying modal order N = {4, 5, 6, 7} of ABRIRs

based on measured high-resolution microphone
array data from two acoustically distinct rooms

Spatial filter(s) ABRIRs, MTB
Reference BRIRs
Anchor Diotic
Number of ratings 24
Listener grading Mixed B(17), A(7)
Trials 2 (1 trial per room)
No. of stimuli per trial 5 + Anchor + Hidden Reference
Source signal Drums
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Figure 5.27 MUSHRA-MMRI.
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MUSHRA-MMRI are comparable and consistent with the outcomes of the MUSHRA-
MR experiments in Section 5.6.1, which are based on simulated array responses. The
ratings are proportional to the order of the ABRIRs, i.e. higher modal orders achieve
higher ratings. Even the absolute range of the ratings is well-comparable to the pre-
vious experiments that are based on simulated data sets. This points to a certain
reliability and validity of the listening experiments, the signal processing chain, and
the measured data sets. The ratings for the optimized spectrum-compensated MTB
EQ stimulus are located on about the same level as the ratings for ABRIRs with N = 4.
The ABRIRs for orders N ≥ 5 achieve significantly improved perceptual results when
compared to the MTB array signals.

5.7.3.2 MUSHRA-MMR II

In the MUSHRA-MMRII experiment, the data sets from the broadcast studio are split
into two temporal sections. The first segment (a) includes the direct sound and some
early reflections (ERs). The second segment (b) involves further ERs and the full
diffuse reverberation tail, cf. Figure 5.28.
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Figure 5.28 Energy-time curve (16x downsampled) from the broadcast studio, using
a directional source and an omni-directional receiver located at the reference origin.
Segment a includes the direct sound and early reflections from the floor and the side
walls. Segment b includes dedicated back plane and ceiling reflections, as well as the
entire diffuse reverberation tail. The transition is at 62ms.

The experiment should give information on the influences of either dedicated singular
incident waves (i.e. especially the direct sound), on the one hand, and largely diffuse
sound fields, on the other hand. The experiment parameters are listed in Table 5.18
and the results are depicted in Figure 5.29. The graph shows combined ratings for
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Table 5.18 Parameters MUSHRA-MMRII.

Experiment ID MUSHRA-MMRII
(Modal reduction based on measured data)

Test paradigm MUSHRA
Varied parameter(s) Varying modal order N = {4, 5, 6, 7} of ABRIRs

based on measured high-resolution microphone
array data from the broadcast studio. The sets
are split at approx. 62ms into two sections, cf.
Figure 5.28

Spatial filter(s) ABRIRs, MTB (temporal segments)
Reference BRIRs (temporal segments)
Anchor Diotic
Number of ratings 24
Listener grading Mixed B(17), A(7)
Trials 2 (1 per section) + 1 from MUSHRA-MMRI
No. of stimuli per trial 5 + Anchor + Hidden Reference
Source signal Drums
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Figure 5.29 MUSHRA-MMRII (Broadcast Studio).
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both trials performed in segment a and segment b. Additionally, the related ratings
for MUSHRA-MMRI are plotted for reference, thus providing the ratings for the full
response.

The results of MUSHRA-MMRII show decreased ratings for segment a (direct sound)
and increased ratings for segment b (reverberation) compared to the values from
MUSHRA-MMRI, where the full response is presented. The perceived artifacts of
the ABRIRs can apparently be primarily ascribed to the direct sound. Even though
the ratings for segment b (reverberation) are generally higher and appear more con-
stant, a certain remaining dependence on the order can be observed. Generally, all of
the reverberation stimuli from segment b show statistically significant differences to
the reference. This can be ascribed to the strong back plane and ceiling reflections in
segment b, cf. Figure 5.28, and to possible remaining spectral differences even after ap-
plying the spectral compensation filters. The filters were globally generated for the full
response and not specifically adapted to the single segments a or b. Since the ratings
for the full response are mostly located in between the two segment ratings, the rever-
beration can be assumed to partly mask the perceived artifacts on the direct sound,
which entails increased overall ratings for the full response. The ratings in segment b
(reverberation) for the MTB EQ stimulus are comparably high, which corresponds to
expectations, as the missing monaural cues are of minor importance for the perception
of diffuse sound fields. Nevertheless, the MTB EQ ratings of the direct sound, as well
as of the full response are clearly located below the ratings of any ABRIR with N ≥ 5.
Both segment ratings for the ABRIR with N = 7 surpass the 90% (excellent) mark,
indicating perceivable but very small differences.

5.7.3.3 SAQI-MMR

The ABRIR with N = 7 turns out to be perceived quite similar to the original reference.
However, minor differences remain. The SAQI-MMR experiment is conducted in order
to gain a deeper insight into the remaining differences. An ABRIR with N = 7 from
the broadcast studio is compared to the reference BRIR set for this purpose. The
experiment parameters are listed in Table 5.19 and the results are depicted in Figure
5.30.

The results of SAQI-MMR confirm rather small perceptual differences between the
ABRIRs and the reference HRIRs. Even the category-A listeners reported difficulties
in assigning definite differences. This is reflected in the distribution of the rating values.
Most of the ratings show very small displacements randomly scattered around the zero
level. Besides indicating typical uncertainties that arise for very similar stimuli, the
distribution around the zero level could possibly be ascribed to the dynamic behavior
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Table 5.19 Parameters SAQI-MMR.

Experiment ID SAQI-MMR
(Modal reduction based on measured data)

Test paradigm SAQI
Varied parameter(s) Measured ABRIR set with N = 7, Gauss

composite grid and Lebedev sampling grid
of Nsg = 29 on a diameter d0 = 17.5 cm vs.
measured reference BRIR set.

Spatial filter(s) ABRIR
Reference BRIR
Number of ratings 11
Listener grading A
Trials 1
No. of stimuli per trial 1 + Reference
Source signal Drums

of the ABRIRs depending on the wave incidence direction or the listener’s rotational
angle.

Good absolute agreement between all listeners can be seen for a minimal amount of
temporal disintegration, arising pre/post echoes, as well as for the manifestation of a
ghost source. This can be ascribed to the artifacts of the modal order reduction. The
source generally appears to be shifted in the horizontal plane, which could primarily be
ascribed to the applied radial filter limiting, when considering the outcomes of SAQI-
RFL in Section 5.6.2.1. A minor decrease in crispness is perceived. All in all, the
differences between both stimuli appear to be small and difficult to grasp. Without a
direct A/B comparison to an original reference BRIR set, a decisive detection of the
ABRIR set can be supposed to be even more difficult. All in all, an ABRIR set with
N = 7 can hardly be distinguished from a corresponding original BRIR set, even by
critical listeners under good listening conditions.
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Figure 5.30 SAQI-MMR results.
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5.7.4 ABRIRs with Reduced Sensor Density

The previous experiments are based on high-density impulse response data sets that
involve as many as 1202 spatial sampling nodes. Hence, spatial aliasing contributions
are negligible in the entire audible spectrum for the given sphere diameter of d0 =

17.5 cm. The data sets were acquired with a scanning array system that allows for
capturing arbitrary sampling density at no extra cost but time. However, such sensor
density cannot be realized with real-time arrays in practice. As long as no alternate
technical solution for sampling the sound field is found, the system must work at a
reduced sensor density.

Table 5.20 Legend MUSHRA-RSD stimuli.

Stimulus name Explanation

AN Anchor
MTB Motion tracked binaural sound
MTB EQ Motion tracked binaural sound with spectral compensation
A86 Aliased stimulus based on 86 sampling nodes
A86 EQ Aliased stimulus based on 86 sampling nodes with spectral

compensation filters
A110 Aliased stimulus based on 110 sampling nodes
A110 EQ Aliased stimulus based on 110 sampling nodes with spectral

compensation
BEMA Aliased stimulus based on 86 sampling nodes with BEMA

processing applied to the aliased frequency band
1202 Stimulus based on 1202 sampling nodes (no spatial aliasing)
HR Hidden reference

The minimum sensor density is determined by the desired target order for generating
the ABRIRs, which is assumed to be N = 7 in the following. The minimum radius is de-
termined by the radial filters. According to the MUSHRA-RFL experiment in Section
5.6.2.1, the array radius should not be much below r0 = 10 cm. The aliasing frequency
of such a configuration is typically located around fA = 4 kHz, which is clearly located
in the audible spectrum. The MUSHRA-SA and SAQI-SA experiments in Section
5.6.3 indicate considerable impairments for the aliased stimuli; for measured signals
with diffuse reverberation and appropriate spectral compensation fewer impairments
can be expected.

For the following experiments, two subsampled Lebedev sampling grids with 86 nodes
(Nsg = 7) and 110 nodes (Nsg = 8), respectively, are used. The corresponding aliasing

231



5 Listening Experiments

frequencies for a sphere diameter of d0 = 17.5 cm are fA = 4.4 kHz and fA = 5 kHz,
respectively. Since larger contributions to the perceived impairments for spatial aliasing
originate from spectral coloration, cf. Section 3.8, the aliased stimuli are presented in
two versions, i.e. with and without spectral compensation filters, cf. Section 3.8.2.

The BEMA anti-aliasing procedure from Section 3.11.2 is applied to the stimuli based
on the data sets with 86 nodes. The algorithm is set to 1/3 octave extraction bandwidth
at around fA ≈ 4.4 kHz and using a block size of 128 samples with zero samples overlap.
The blocks are internally upscaled to 8192 samples to increment the resolution at low
frequencies. The required omni-directional center signal was captured at the physical
origin of the array in a separate measurement.

MTB stimuli with and without spectral compensation are used according to Section
1.1.7. The names of the stimuli in the plots are explained in Table 5.20.

5.7.4.1 MUSHRA-RSD I

In MUSHRA-RSD I, stimuli from the broadcast studio and the control room were
presented in two subsequent trials. The experiment parameters are listed in Table 5.21
and the results are depicted in Figure 5.31.

Table 5.21 Parameters MUSHRA-RSD I.

Experiment ID MUSHRA-RSD I (Reduced sensor density)

Test paradigm MUSHRA
Varied parameter(s) Number of spatial sampling nodes, compensation

filters, BEMA anti-aliasing processing
Spatial filter(s) ABRIRs, MTB
Reference BRIRs
Anchor Diotic with hi-shelf filter (+15 dB, 4 kHz)
Number of ratings 24
Listener grading Mixed B(17), A(7)
Trials 2 (Broadcast studio and control room)
No. of stimuli per trial 8 + Anchor + Hidden Reference
Source signal Drums

As expected from the MUSHRA-SA and SAQI-SA experiments in Section 5.6.3, both
aliased stimuli, A86 and A110, achieve ratings between 50-60% (fair to good) only.
The A110 ratings are located slightly above the A86 ratings. As soon as spectral com-
pensation filters are applied (A86 EQ and A110 EQ), the ratings improve significantly
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and achieve values larger than 80% (good to excellent). This confirms the prevalence
of spectral coloration artifacts due to spatial aliasing. There appears to be no perceiv-
able difference between using 86 or 110 sampling nodes. Apparently, even microphone
arrays with a considerably reduced sensor density can achieve good perceptual quality
for binaural auralization, as long as an appropriate filter for spectral compensation of
spatial aliasing artifacts is applied. A slight increase of the number of sensors does
not entail any advantage from a perceptual point of view. Hence, using the minimum
required sensor density for achieving the target order is a reasonable choice. Both facts
are very relevant for the construction of microphone arrays for binaural auralization.

 0   

 10  

 20  

 30  

 40  

 50  

 60  

 70  

 80  

 90  

 100 

AN MTB MTB
EQ

A86 A110 A86
EQ

A110
EQ

BEMA 1202 HR

R
a
ti
n
g
 m

e
a
n
s
 w

it
h
 9

5
%

 C
I

 

 

Excellent

Good

Fair

Poor

Bad
Broadcast Studio

Control Room

Figure 5.31 MUSHRA-RSD I.

The BEMA ratings are higher than the A86 and A110 ratings, but stay below the
ratings for A86 EQ and A110 EQ. This is surprising in view of the excellent ratings of
the MUSHRA-BEMA experiments from Section 5.6.4. A closer inspection reveals the
presence of audible processing artifacts of the BEMA algorithm applied to measured
signals This is confirmed in the SAQI-BEMA experiment in Section 5.7.4.4. The pro-
cessing artifacts can be ascribed to the block segmentation. They become particularly
audible for complex or diffuse portions of the response. This explains the discrep-
ancy between the ratings of MUSHRA-RSD I and the MUSHRA-BEMA experiment in
Section 5.6.4, since the MUSHRA-BEMA experiment does not involve diffuse reverber-
ation. The BEMA artifacts depend on the parametrization of the algorithm, i.e. the
extraction bandwidth, the block sizes, and the overlap. A consistent parametrization,
which in informal pretests delivered reasonable results, was chosen for all experiments.
In summary, the BEMA processing further on appears to be a promising approach;
the implementation needs to be refined in order to suppress the audible segmentation
artifacts that cause the rather moderate ratings.
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The MTB stimuli achieve ratings around 50% (fair) without spectrum adaptation and
80% (good to excellent) with spectrum adaptation. The spectrum adaptation is impor-
tant for removing global spectral differences compared to the reference BRIRs, which is
reflected in the ratings. The MTB approach delivers results comparable to the aliased
ABRIRs. This puts in question the motivation to fall back to the considerably more
elaborate procedure using spherical arrays (with reduced sensor density). However, the
ABRIRs have several advantages.

The MTB stimuli are generated with as many as 360 spatial sampling nodes, which
needs to be reduced in practice. Hence, the disadvantages of cross-fading or interpola-
tion algorithms (Lindau and Roos, 2010) arise, which are expected to entail additional
impairments for the MTB stimuli. Also, the ABRIRs are not restricted to the azimuthal
plane, and make possible full three-dimensional head rotation including elevation. By
contrast, the MTB signals are restricted to the azimuthal plane in this case. Thirdly,
the ABRIRs allow for the use of individual HRTFs with little effort; individual HRTFs
need to be captured for the few nodes of the composite grid only. Only 128 individual
HRTF nodes need to be acquired with a Gauss composite grid of order Nsg = 7 in
order to obtain an individual array system for binaural auralization that enables full
three-dimensional head rotation. Hence, spherical arrays and sound file decomposition
techniques for binaural auralization are worth the increased effort compared to MTB.

In summary, falling back to a system with a certain amount of spatial aliasing and
spectral compensation filters is a reasonable choice for binaural auralization in practice.
The impairments due to spatial aliasing appear to be tolerable, as long as the aliasing
frequency is sufficiently high. Further approaches, such as spatial anti-aliasing filters as
discussed in Section 3.8.1 and Section 3.10.2, could potentially improve the perceptual
results.

5.7.4.2 MUSHRA-RSD II

In MUSHRA-RSD II, the stimuli from the broadcast studio are divided into two sections
as shown in Figure 5.28, analogous to the MUSHRA-MMRII experiment in Section
5.7.3.2. The first section involves the direct sound and early reflections and the second
section involves further early reflections and late diffuse reverberation. The experiment
parameters are listed in Table 5.22 and the results are depicted in Figure 5.32.

The results demonstrate the perceived artifacts that are introduced by the BEMA
processing, especially in diffuse reverberation. The ratings are significantly lower than
the ratings for the aliased and spectrum-compensated stimuli A86EQ and A110EQ,
as well as for the MTBEQ stimulus. The latter achieve very good ratings >90%
(excellent) for the reverberation and acceptable ratings between 70% and 85% (good
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to excellent) for the direct sound. The direct sound of the A110 stimulus is rated
slightly higher than the direct sound of the A86 stimulus.

Table 5.22 Parameters MUSHRA-RSD II.

Experiment ID MUSHRA-RSD II (Reduced sensor density)

Test paradigm MUSHRA
Varied parameter(s) Number of spatial sampling nodes, compensation

filters, BEMA anti-aliasing processing
Spatial filter(s) ABRIRs, MTB (temporal segments)
Reference BRIRs (temporal segments)
Anchor Diotic with hi-shelf filter (+15 dB, 4 kHz)
Number of ratings 24
Listener grading Mixed B(17), A(7)
Trials 2 (1 per section) + 1 from MUSHRA-RSD I
No. of stimuli per trial 8 + Anchor + Hidden Reference
Source signal Drums
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Figure 5.32 MUSHRA-RSD II.
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5.7.4.3 SAQI-AEQ

The A86EQ stimuli achieve acceptable ratings in the MUSHRA experiments. They are
particularly interesting for the construction of systems in practice, as they are based on
a realistic number of microphones. The SAQI-AEQ experiment is conducted in order
to gain a better understanding of the perceptual artifacts.

The A86EQ set is compared to the reference BRIR set in the broadcast studio. The
experiment parameters are listed in Table 5.23 and the results are depicted in Figure
5.33.

The overall differences are well-perceivable. The results indicate minor coloration of
the stimulus; the mid frequency range appears to be slightly more emphasized and the
low frequency range to be reduced. Minimal manual equalization beyond the analytic
spectrum compensation filters could remove the residual coloration. The stimulus is
perceived brighter, with more sharpness and a minor additional comb-filter artifact.
The dynamic range seems to be slightly reduced, even though no dynamic processing
is applied to the signal. The source is perceived closer to the listener and the external-
ization decreases slightly. Temporal disintegration of the source and the manifestation
of a ghost source are perceived. The signal appears to be less crisp and the source is
shifted in the horizontal plane. The naturalness decreases. All in all, the aliased signal
is clearly different from the reference, but the impairment appears to be perceived as
hardly annoying, as the participants do not dislike the stimulus at all.

Table 5.23 Parameters SAQI-AEQ.

Experiment ID SAQI-AEQ
(Spatial aliasing with spectrum compensation)

Test paradigm SAQI
Varied parameter(s) Measured ABRIR set with N = 7, Gauss

composite grid and Lebedev sampling grid
of Nsg = 7 on a diameter d0 = 17.5 cm vs.
measured reference BRIR set.

Spatial filter(s) ABRIR
Reference BRIR
Number of ratings 11
Listener grading A
Trials 1
No. of stimuli per trial 1 + Reference
Source signal Drums
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Figure 5.33 SAQI-AEQ results.
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5.7.4.4 SAQI-BEMA

The BEMA processing appears to introduce audible processing artifacts to the signal.
The SAQI-BEMA experiment is conducted in order to gain a deeper insight into the
processing artifacts. The BEMA-treated ABRIR set from MUSHRA-RSD I in Section
5.7.4.1 is compared to the BRIR reference set from the broadcast studio.

Table 5.24 Parameters SAQI-BEMA.

Experiment ID SAQI-BEMA
(Spatial aliasing with BEMA anti-aliasing)

Test paradigm SAQI
Varied parameter(s) Measured ABRIR set with N = 7, Gauss

composite grid and Lebedev sampling grid
of Nsg = 7 on a diameter d0 = 17.5 cm
with BEAM anti-aliasing above approx 4 kHz.
vs. measured reference BRIR set.

Spatial filter(s) ABRIR
Reference BRIR
Number of ratings 11
Listener grading A
Trials 1
No. of stimuli per trial 1 + Reference
Source signal Drums

The experiment parameters are listed in Table 5.24 and the results are depicted in
Figure 5.34. The results show considerable impairments of the stimulus. All global
attributes are clearly decreased. A slight reduction of high frequencies and a darker tone
color is perceived. The processing artifacts manifest themselves in increased roughness,
comb-filter sound, metallic sound color, post echoes, temporal disintegration, a slight
distortion, and additionally perceived impulsive artifacts. The dynamic range appears
to be decreased with audible dynamic compression artifacts.

The source dimensions tendentially decrease and the source appears to be smaller,
which is quite remarkable. Also, the source is less externalized. The reverberation is
clearly affected by the BEMA processing, since the reverberation level, time, and en-
velopment decrease. Additionally, a horizontal shift of the source, decreased crispness,
and the manifestation of a ghost source are perceived. However, the latter attributes
supposedly can be ascribed to the modal reduction rather than to the BEMA pro-
cessing. All in all, the BEMA anti-aliasing approach entails considerable artifacts, at
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least using a proper but quite basic implementation of the algorithm. Further develop-
ment and refinement of the algorithm needs to be conducted in order to get rid of the
undesired processing artifacts.
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Figure 5.34 SAQI-BEMA results.
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6 Summary and Conclusions

In the following, essential approaches, results and, conclusions are summarized.

6.1 Theory

A theoretical transparent closed-form solution for deriving ideal binaural signals from
a sound field description defined on a spherical surface S0 does exist. The approach
is based on spherical harmonic decomposition of the sound field and HRTF-weighted
recombination. The method allows for factoring in individual HRTFs, as well as per-
forming free horizontal, vertical, and lateral head rotation in an independent post-
processing stage. In theory, even position transitions of the listener in the sound field
can be realized.

6.2 Constraints in Technical Systems

According to the current state of technology, spherical microphone arrays can be used
for sampling the sound field on the surface S0 in practice. Array-based binaural systems
can be realized that extent the capabilities of the classical dummy head by allowing for
head rotation and by using individual HRTFs for multiple recipients. However, there
are constraints inherent in technical systems, in particular in microphone arrays, which
impede maintaining ideal conditions as in theory.

Microphone arrays require discrete spatial sampling. As a consequence, we obtain
sound field descriptions with limited modal resolution. It is shown that sound field
descriptions with lower modal resolution than the expansion of the HRTF set are basi-
cally incompatible with binaural reproduction. An expansion of a HRTF set requires
approximately spherical harmonic orders of about N = 35, while realistic microphone
arrays typically achieve orders of N = [4, 7] only. The inherent order-truncation leads
to low-pass effects in the time-frequency domain. It is shown that subsampling the
HRTF set using a composite grid of the highest order included in the sound field
description considerably decreases order-truncation artifacts and improves the overall
transmission properties.

Another consequence of discrete spatial sampling is spatial aliasing. Spatial aliasing
manifests itself as additive spatial noise being present over the entire time-frequency
range. The contributions increase in proportion to the temporal frequency. We can
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6.2 Constraints in Technical Systems

locate an aliasing frequency fA that depends on the specific properties of the sampling
grid and on the array radius, where aliasing contributions start to surge excessively.
Below fA spatial aliasing can be neglected, whereas above fA the signal is massively
impaired. The spatial selectivity of the array is lost and increased output levels can be
observed in this range.

Different approaches to overcome spatial aliasing or at least to improve the transmission
properties in the presence of aliasing are discussed. The trivial solutions consist of
increasing the sensor density or decreasing the radius. Increasing the sensor density is
expensive, since the required number of sensors increases in quadratic relation with the
temporal frequency. Decreasing the radius is only feasible within certain limits that
are determined by noise constraints and the modal intensity distribution of HRTFs.
Hence, with a realistic array radius and a realistic number of sensors, we must expect
serious aliasing contributions from around 4 kHz to 5 kHz upwards.

Two different methods to improve the transmission properties are proposed in this
thesis. The first one is to accept the spatial impairments and to equalize the diffuse
field response in order to minimize the coloration that is inherent to spatial aliasing.
The second approach is a method entitled bandwidth extension for microphone arrays
(BEMA) and is based on the separate acquisition and treatment of spatiotemporal
and spectrotemporal properties of the sound field. The spatiotemporal information
is extracted from a particularly robust section of the array response, whereas the
spectrotemporal information is acquired using a separate omni-directional transducer.
New Fourier coefficients are derived for patching impaired sections of the response,
which are fully compatible with the original coefficients. The approach has several
requirements and restrictions, and a refined implementation would be required to avoid
audible block-processing artifacts in diffuse sound fields.

Microphone arrays deliver signals with finite signal-to-noise ratio (SNR). As a con-
sequence, the radial filter amplification must be limited in order to achieve a robust
array response. This entails successively decreased modal resolution towards lower
temporal frequencies. Theoretical considerations, as well as comprehensive analysis
of the white noise gain (WNG) show the specific impact of uncorrelated noise in the
transducer paths on array-based binaural auralization. We discovered that the analy-
sis of the WNG of single plane wave decomposition (PWD) signals is not conclusive,
since the array works in composite mode, i.e. it provides a closed-form recombination
of the decomposed PWD signals. This aspect needs to be considered for most kind of
error analyses. A general analytic expression for predicting the WNG of array-based
binaural systems is derived.
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It is shown that the reduced modal resolution due to limiting the radial filter amplifi-
cation does not affect the binaural signal, as long as we provide a suitable combination
of array radius and radial filter amplification limit that lies within realistic dimensions.
As a final conclusion we notice that an array for binaural auralization should provide
a radius of r0 ≈ 10 cm. This specific radius should not be markedly undercut in or-
der not to truncate the modal expansion of HRTFs in the mid-frequency band. This
radius should also not be markedly exceeded either, since this increases noise at the
top frequency end and entails more spatial aliasing contributions. As a rule of thumb,
the optimum size for an array for binaural auralization is comparable to the size of a
human head, which appears quite plausible.

Spatial aliasing and limited radial filter amplification yield a limited effective opera-
tional bandwidth (EOB) of about 0.5 oct to 1 oct. Different ways of increasing the
EOB, such as using more sensors, raising the radial filter amplification limit, or em-
ploying multiple array spheres of different diameters, are discussed. Illustration show
the dependence of the EOB on different influencing factors. Even though for classical
array applications, like beamforming, the achievable EOB of a single-sphere array ap-
pears to be rather poor, we see that it might be sufficient for performing reasonable
array-based binaural auralization.

An expanded transducer that deviates from the infinitesimal point transducer, assumed
in theory, produces a sinc-like weighting of the modes in the spherical wave spectrum
domain. If the transducer expansion is large in relation to the measurement radius
r0, complete dropouts of the signal power arise for dedicated modes owing to the
zeros in the sinc-function. However, for array dimensions like r0 = 10 cm and typical
1/8" or 1/4" microphone capsules, the impact of the capsule expansion turns out
to be negligible for the considered orders. From a different point of view, expanded
transducers can be applied to create basic modal low-pass filters in order to reduce
spatial aliasing. Passive sub-arrays of multiple joint transducers covering a certain
surface could be applied to every single node in order to realize simple modal low-pass
filters.

There are additional influencing factors, such as sources in the near-field, non-ideal
transducers, positioning inaccuracies, time variances in scanning arrays, incomplete
sampling, or non-ideal sphere configurations.

6.3 Technology and Resources

Since the approaches are relatively recent, not yet established in commercial products,
and the subject of current research, there was hardly any suitable ready-made hard- or
software available at the time of writing this thesis. Therefore, a spherical microphone
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array measurement system (VariSphear) was designed and built, a sound field analysis
toolbox (SOFiA) was designed, implemented, and verified, and appropriate data sets
were acquired and validated. A suitable environment for listening experiments was set
up. The implemented software and the acquired data sets were made accessible to the
scientific community under either GNU GPL or Creative Commons licenses.

6.4 Listening Experiments

Several listening experiments were performed in order to evaluate the performance of
the approach and to assess the implications of certain technical constraints on percep-
tion.

A broad series of tests is dedicated to the binaural reproduction of sound field descrip-
tions with limited modal order. The test results are not only of particular interest
for array-based binaural auralization, but conclusive for binaural auralization of any
modal sound field description, such as higher-order Ambisonics (HOA) desciptions.

The tests indicate significant perceptual improvements at low wave orders when using
the proposed HRTF subsampling compared to high-order composite grids for adapta-
tion or truncating the modal HRTF order, which is equivalent. HRTF subsampling is
applied to all experiments yielding either head-related transfer functions with limited
modal resolution (RHRTFs) or binaural room impulse responses with limited modal
resolution (RBRIRs).

The exact structure and node distribution of the composite grid influences the per-
ceptual properties at (singular) lower decomposition orders. Two different composite
grid types are analyzed, an equiangular Gauss quadrature and an equidistant Lebedev
quadrature. While the Gauss composite grid shows good, predictable and stable per-
formance, the Lebedev grid shows volatile performance that varies with the specific
decomposition order. The Lebedev composite grid does not show a significantly im-
proved performance compared to the Gauss grid for none of the stimuli. Hence, the
Gauss composite grid is preferable for array-based binaural auralization in all cases.

The perceived similarity of RHRTF and HRTF quickly rises for orders between N = 0

and N = 11. From approximately N = 11 upwards only a minor tendential difference
remains, which, however, is not statistically significant. Hence, a RHRTF or RBRIR
with N ≥ 11 can be considered to be identical to the original full-resolution counterpart
from a perceptual point of view. The remaining perceived differences appear to be
minimal and can only be detected in ideal surroundings and critical scenarios.

At low decomposition orders, the order-reduction artifacts in RHRTFs and RBRIRs
appear to be well-perceivable and yield more or less comparable ratings, no matter
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whether only direct sound, direct sound and early reflections, or a full response includ-
ing direct sound, early reflections and diffuse reverberation is presented. Simulated
and measured sound fields have similar ratings in general.

Decomposition orders N < 5 yield substantial perceptual impairment and can be
regarded as improper for binaural auralization. Orders starting from N = 5 appear to
be acceptable but not fully satisfying. The most reasonable trade-off between technical
effort and perceptual properties might be found at N = 7. The required number of
microphones for realizing a real-time array of that order is well within realistic technical
and economic limits. The MUSHRA ratings for N = 7 are very close to, or even above,
the 90%-excellent mark in all scenarios. Some perceivable differences remain in a direct
A-B comparison, but the achieved results appear to be satisfying. A SAQI (Lindau
et al., 2014) test is employed to assess more specific differences between an original
BRIR set and a measured array-based RBRIR set of N = 7. Even critical expert
listeners perceived only subtle differences. We conclude that N = 7 would actually
be a reasonable target order for designing realistic array-based binaural systems that
achieve satisfying perceptual results.

Limiting the radial filter amplification is indispensable in order to achieve a robust ar-
ray response in practice. Non-critical radial filters are proposed, with a strict limit of
âdB = 0 dB for ω ≤ (N c)/r0 and full native amplification in the range of ω > (N c)/r0.
In theory, we assume that the non-critical radial filters do not yield considerable im-
pairments of the binaural signal, as long as the array provides a minimum radius
r0 ≥ 15 cm.

The theoretical assumptions are confirmed by the results of listening experiments. With
non-critical radial filters no significant differences can be perceived when using an
array radius of r0 ≥ 15 cm. For r0 = 9 cm the mean ratings are located around the
90%-excellent mark. For smaller radii the signal is impaired and the ratings decrease
quickly. With non-critical radial filters, r0 = 9 cm can be regarded as the minimum
array radius for binaural auralization. There are perceivable impairments, but the
signal still appears to be satisfying.

The non-critical radial filters are excessively restrained. The analysis of the white noise
gain (WNG) indicates a certain headroom for raising the radial filter amplification limit
while still preserving reasonable WNG at low frequencies. This slightly increases the ef-
fective operational bandwidth (EOB) and allows for decreasing the radius. Exhausting
the headroom of reasonable radial filter gain, we conclude that an radius of approxi-
mately r0 = 10 cm, or even r0 = 9 cm, does not yield perceivable impairments in the
binaural output signal.
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Spatial aliasing is perceivable as soon as the aliasing frequency fA is located in the
audible range. The structure of the spatial sampling grid apparently does not have
much influence on the perceptual performance when the aliasing frequency is kept
constant. There are two major aspects concerning the impact of spatial aliasing. The
first and obvious aspect is the loss of spatial selectivity in the aliased range, which leads
to perception of increased source width or spatial disintegration. The second aspect
is an increased output level in the aliased range. The listening experiments show the
perception of spectral coloration. Even if this effect is less obvious than the loss of
spatial selectivity, it turns out to be the predominating factor from a perceptual point
of view.

In order to counter the spectral coloration, the use of a simple global diffuse field com-
pensation filter is proposed. The listening experiments show significant improvements
with a spectral compensation filter. As soon as the coloration is removed, even aliased
stimuli yield good to excellent ratings. Even the effects of widened sources or spatial
disintegration appear to decrease considerably. The spatial aliasing frequency should
no be too low, in order not to affect vital localization cues. However, even admitting
a certain amount of spatial aliasing at higher frequencies (e.g. f > 4 kHz), reason-
able binaural auralization with more or less satisfying perceptual properties can be
performed while just using appropriate global spectral compensation filters.

Using the BEMA approach for patching aliased sections of the array response yields
highly significant perceptual improvement for simulated sound fields without diffuse
components. While untreated stimuli show significant perceptual differences to the ref-
erence, BEMA-treated stimuli are not distinguishable from the reference in most cases.
This proves the validity of the BEMA approach. However, perceivable block processing
artifacts arise in measured sound fields that provide diffuse components. As a conse-
quence, the BEMA-treated stimuli finally not achieve improved ratings compared to
aliased stimuli with spectral compensation filters. To the contrary, SAQI tests show
that aliased stimuli with spectral compensation filters yield more pleasant perceptual
results than BEMA-treated stimuli. Further refinement of the BEMA implementation
could possibly reduce the perceived artifacts.

The stimuli based on sound field decomposition without spatial aliasing (M = 1202

sensors) with N = 7 yield significantly higher ratings than the MTB stimuli with M =

360 sensors. The stimuli based on sound field decomposition including spatial aliasing
(M = 86 or M = 110 sensors) with spectral aliasing compensation using N = 7 achieve
comparable ratings with the MTB stimulus. The sound field decomposition approach
provides a description that inherently allows for performing full horizontal, vertical
and lateral head rotation without increasing the number of sensors, while the MTB
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approach is limited to the horizontal plane if no additional sensors are used. In contrast
to the MTB method, the sound field decomposition method allows for using individual
HRTFs in a true closed-form approach. We conclude that sound field decomposition has
several advantages over MTB. There is greater flexibility and the perceptual properties
are better or at least equal when allowing a certain amount of spatial aliasing. The
only disadvantage compared to MTB is the increased computational demand for the
spatial Fourier transforms and the plane wave decomposition operations.

6.5 Applications

With the presented methods, the use of the classical classical dummy head is extended
by head-tracking abilities and by individual HRTFs, which widely removes the known
problems of classical binaural recording. The methods allow for live transmission as
well as recording and delayed playback of a sound scene. The signals can be directly
embedded and transmitted using available formats and codecs, such as MPEG-H Audio
(Herre et al., 2014). They are adaptable to the available transmission bandwidth by
a floating reduction or increment of the number of spatial Fourier coefficients, using a
varying modal order. This is of great practical relevance for the use of the Internet as
a broadcast channel.

As outlined in the prolog at the very beginning of this work, there are different practi-
cal applications for this technology, such as binaural point-to-multipoint transmission
of live concerts, sport events, or theater plays, as well as advanced 3D-audio telecon-
ferencing. Suitable microphone arrays can be built, according to the specifications
developed in this thesis. Current commercial CPUs provide sufficient processing power
to implement the required encoders and decoders. Spherical binaural decoders can
be implemented in smart phones and the headphones could be equipped with head-
tracking sensors in order to reach a broad range of users. The technology indeed could
be commercially successful in a near future.

6.6 Final Conclusion

Systems for dynamic binaural recording based on microphone arrays and sound field
decomposition techniques with satisfying perceptual properties can be realized within
feasible technological and economical limits.
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