
Forschungsberichte
der Fakultät IV – Elektrotechnik und Informatik

Automatic derivation of
compact abstract syntax data types
from concrete syntax descriptions

Florian Lorenzen

Bericht-Nr. 2011 – 11
ISSN 1436-9915

Automatic derivation of
compact abstract syntax data types
from concrete syntax descriptions

Florian Lorenzen
Technische Universität Berlin

florian.lorenzen@tu-berlin.de

No. 2011–11
ISSN 1436-9915
November 21, 2011

Abstract

We describe an algorithm (written in Haskell) to automatically de-
rive compact abstract syntax data types from concrete grammar de-
scriptions. The input for the algorithm is almost the grammar language
of the parser generator PaGe which not only constructs a parser but
also the data types necessary to represent an abstract syntax tree. The
algorithm of this report is suitable to minimize the data type used to
represent the parsing result to both improve the handling of abstract
syntax trees and their space requirements.

1 Description of the problem
Parser generators come in two flavours with respect to the result of a suc-
cessful parsing of a given input:

• Some generators allow arbitrary semantic actions programmed in the
host language to be inserted into the syntax description (e. g. Yacc,
Happy).

• Others derive a tree data type from the syntax description and gen-
erate the necessary code to manipulate values of this data type in the
host language (e. g. PaGe).

In this report we are concerned with the latter type of parser generators since
these generators have a practically annoying problem: the tree data types
derived from a given grammar are usually much more verbose than a care-
fully handcrafted abstract syntax. The reason is that many non-terminals in
the grammar are inserted for organisational or syntactical reasons like prece-
dences or associtivities which are implicitly represented in a tree structure.
But abstract syntax generated in a naive way contains all these unnecessary
nodes.

In this report, we present an algorithm that distills a compact abstract
syntax from a concrete syntax description. This algorithm can be used in
a parser generator that also generates the abstract syntax data types to
produce more manageable code.

G → P ; · · · P ; Grammar
P → Id ::= R Production
R → Id | · · · | Id Alternatives

| S · · · S Sequences
S → " string " Terminal symbol

| id : " string " Terminal symbol with value
| id : N Nonterminal symbol

N → Id Nonterminal
| Id * [^ " string "] Repetition 0 or more times
| Id + [^ " string "] Repetition 1 or more times

Figure 1: Concrete Syntax description language.

2

E ::= E "+" E1
| E1;

E1 ::= E1 "*" E2
| E2;

E2 ::= "(" E ")"
| "NUM";

E ::= Add | E1;
E1 ::= Mul | E2;
E2 ::= PE | Num;
Add ::= lhs:E "+" rhs:E1;
Mul ::= lhs:E1 "*" rhs:E2;
PE ::= "(" pe:E ")";
Num ::= num:"NUM";

Figure 2: Grammar for arithmetic expression (left) and its equivalent in
PaGe’s input language (right).

We take the parser generator PaGe as example in the remainder of this
report.

1.1 An example with PaGe

The input language of the parser generator PaGe [PG08, Hög09] differs
from usual EBNF grammar description in two aspects:

• Productions with more than one right-hand side (sum productions)
are restricted to single nonterminal right-hand sides.

• Nonterminal symbols and terminal symbols carrying a value (like iden-
tifiers or numbers) are explicitly named.

Figure 1 shows the productions for the input language used in this report.
It differs from PaGe’s input in not allowing optional parts in a production.
We leave out this aspect but believe that it can be integrated easily. By the
terminal symbols id, Id, string we mean identifiers beginning with a small
letter, identifiers beginning with a capital letter, and arbitrary strings resp.

We illustrate the problem of unnecessarily large abstract syntax by the
grammar of Fig. 2 for simple arithmetic expression, with associativity and
precedence stated explicitly.

PaGe derives the following Java interfaces and classes from this gram-
mar, where sum productions are mapped to interface and sequence produc-
tions are mapped to classes with corresponding attributes:

3

interface E {}
interface E1 extends E {}
interface E2 extends E1 {}
class Add implements E { E lhs; E1 rhs; }
class Mul implements E1 { E1 lhs; E2 rhs; }
class Num implements E2 { num:NUM; }
class PE implements E2 { E pe; }

If we were to write down the classes for the abstract syntax manually,
we would perhaps write something like (see [AP02] where this style is used
extensively)

abstract class E {}
class Add extends E { E lhs; E rhs; }
class Mul extends E { E lhs; E rhs; }
class Num extends E { num:NUM }

If we target a functional language like Haskell we could use the follow-
ing data type definition:

data E = Add {lhsAdd::E, rhsAdd::E}
| Mul {lhsMul::E, rhsMul::E}
| Num {num::NUM}

The Java and Haskell representation are very similar in structure. We
identify classes with summands and abstract classes with sum types.

To capture these similarities and to undertake a programming language
independent development, we introduce an extra notation to specify data
types for abstract syntax trees as shown in Fig. 3. This language is al-
most the same as the concrete syntax description language of Fig. 1 but
allows more general right-hand sides and abstracts from the distinction of
the repetition operators as well as labelled terminals/nonterminals.

We could easily generate the Haskell or Java data types from the
following specification:

E == Add* lhs:E rhs:E
| Mul* lhs:E rhs:E
| Num* num:NUM

The use of tags, i. e. the elements decorated by *, becomes now apparent:
they identify constructors or classes. They may only appear as the first
symbol in any right-hand side but we do not encode this restriction in the
grammar of Fig. 3 because this leads to unnecessary clumsiness.

4

A → D · · · D Collection of datatypes
D → str == V | · · · | V Data type definition
V → F · · · F Variant (sequence of fields)
F → str * Tag

| str : N Labelled node
N → [N] Sequence of nodes

| str (Non)terminal identifier

Figure 3: Language to describe data types for abstract syntax trees (str
denotes arbitrary strings).

The task of our algorithm presented here is to derive the small description
from the grammar.

We present the algorithm as a Haskell implementation in the next
section. We interleave the code with extensive comments and illustrations.

The algorithm has been developed in an empirical process and we neither
show any properties of it nor do we prove its correctness in any sense.

2 Algorithm
The algorithm is implemented in the module GenerateASDT and we begin
by some formal noise and imports.
module GenerateASDT where

import qualified Data.Array as A
import qualified Data.Graph as G
import qualified Data.List as L
import qualified Data.Map as M
import Data.Maybe
import qualified Data.Set as S

The module is structured as follows:

1. We define data types and functions to handle the input language.

2. We define the data types to describe the abstract syntax, i. e. the
result of our transformation.

3. We develop the algorithm step by step. We will use arithmetic expres-
sion as a running example to illustrate the different transformations.

5

4. We wrap up the individual steps in a function generateASDT at the
end.

2.1 Input language

The abstract syntax of our input follows very closely the structure of the
grammar in Fig. 1 but we do not distinguish between id, Id, and string.
type Grammar = [Prod] -- G in Fig. 1

data Prod = Id ::= Rhs deriving (Eq, Show) -- P in Fig. 1

data Rhs = Sum [Id] -- R in Fig. 1 (alternatives)
| Seq [Sym] deriving (Eq, Show) -- (sequences)

data Sym = T String -- S in Fig. 1 (terminal)
| TV (Id, String) -- (terminal with value)
| N (Id, NT) deriving (Eq, Show) -- (nonterminal)

isT s = case s of { T _ -> True; _ -> False } -- Discriminators
isTV s = case s of { TV _ -> True; _ -> False }
isN s = case s of { N _ -> True; _ -> False }

data NT = Sing Id -- N in Fig. 1 (nonterminal)
| Plus Id (Maybe String) -- (repetition 0 or more times)
| Star Id (Maybe String) -- (repetition 1 or more times)
deriving (Eq, Show)

type Id = String

Here is our running example of Fig. 2 in the Haskell encoding:
arithExpGrammar =

["E" ::= Sum ["Add", "E1"]
, "E1" ::= Sum ["Mul", "E2"]
, "E2" ::= Sum ["PE", "Num"]
, "Add" ::= Seq [N ("lhs", Sing "E"), T "+", N ("rhs", Sing "E1")]
, "Mul" ::= Seq [N ("lhs", Sing "E"), T "*", N ("rhs", Sing "E1")]
, "PE" ::= Seq [T "(", N ("pe", Sing "E"), T ")"]
, "Num" ::= Seq [TV ("num", "NUM")]
]

2.2 Output data structures

Similarly to the input language we encode our output abstract syntax data
type (ASDT) description in a few Haskell datatypes that closely follow
Fig. 3. We omit the explicit definition of variants and encode them in lists
of lists directly in DT.

6

type ASDT = [DT]

data DT = DT Id [[Field]] deriving (Show, Eq) -- D and V of Fig. 3

data Field = Lab Id Node -- F of Fig. 3 (tag)
| Tag Id deriving (Show, Eq, Ord) -- (labelled node)

data Node = NSeq Node -- N of Fig. 3 (sequence)
| TVal Id -- (terminal)
| NVal Id deriving (Show, Eq, Ord) -- (nonterminal)

We show the representation of the hand-crafted abstract syntax for arith-
metic expression of Sec. 1.1 to illustrate the use of the data types:
arithExpAS =

[DT "E" [[Tag "Add", Lab "lhs" (NVal "E"), Lab "rhs" (NVal "E")]
, [Tag "Mul", Lab "lhs" (NVal "E"), Lab "rhs" (NVal "E")]
, [Tag "Num", Lab "num" (TVal "NUM")]
]]

2.3 The ASDT generation algorithm

Step 1: Translating Grammar to ASDT

At first, we translate the grammar, basically as is, into the ASDT repre-
sentation. Since simple terminals are irrelevant to the abstract syntax they
are dropped in this transformation.
grammarToASDT :: Grammar -> ASDT
grammarToASDT = map prodToDT

Productions with several right-hand sides are are mapped to datatypes
with singleton field sequence that contain nonterminals with empty labels.

Productions with one right-hand sides are converted to a sequence of
fields each one labelled with the identifier from the grammar description.
prodToDT :: Prod -> DT

prodToDT (lhs ::= Sum ids) = DT lhs [[Lab "" $ NVal id] | id <- ids]

prodToDT (lhs ::= Seq syms) =
DT lhs [[symToField sym | sym <- syms, not $ isT sym]]
where

symToField (N (id, Sing n)) = Lab id (NVal n)
symToField (N (id, Plus n _)) = Lab id (NSeq (NVal n))
symToField (N (id, Star n _)) = Lab id (NSeq (NVal n))
symToField (TV (id, t)) = Lab id (TVal t)

7

Feeding arithExpGrammar to this function yields

E == Add | E1
E1 == Mul | E2
E2 == PE | Num
Add == lhs:E rhs:E1
Mul == lhs:E1 rhs:E2
PE == pe:E
Num == num:NUM

(We use the syntax of Fig. 3 instead of the more clumsy Haskell represen-
tation here and in the following when showing examples and omit the “:” if
the preceding identifier is empty.)

This still looks more or less like the grammar except that we have deleted
plain terminal symbols.

Step 2: Expansion of single nonterminals
For the second step it is useful to have a map representation of the ASDT

where each left-hand side of a data type is mapped to all its right-hand sides:
type ASDTMap = M.Map Id [[Field]]

asdtAsMap :: ASDT -> ASDTMap
asdtAsMap dts = M.fromList [(lhs, rhs) | DT lhs rhs <- dts]

We also need a “map of sets” in the following with the corresponding
insertion function: if a key is not present in the map it is inserted mapping
to a singleton set containing the value, otherwise the value is added to the
key’s set.
type MapOfSets k a = M.Map k (S.Set a)

mapOfSetsInsert k v m = if k ‘M.member‘ m
then let set = m M.! k

in M.insert k (S.insert v set) m
else M.insert k (S.singleton v) m

The goal of this step is to expand right-hand sides that only consist of
a single nonterminal1 to the defining right-hand side of that non-terminal.
The rationale for this transformation is that we want to eliminate chain
productions, especially in sum productions of the original grammar.

When we expand the defining right-hand side of a nonterminal into an-
other right-hand side the original data type becomes useless because we can

1This excludes sequences like l:[A].

8

use the data type of the expansion site to build that same node in an ab-
stract syntax tree. We have to record which data types have become useless
and which data types can be used instead. We set up an ElimMap for that
purpose that maps left-hand sides of eliminated data types to the left-hand
sides of expansion sites.
type ElimMap = MapOfSets Id Id

We now develop the basic function to perform the expansion. It takes
the original ASDT (as a map, for convenience), an elimination map, and a
single data type. It iterates over alternative right-hand sides of this data
type (by a fold) and returns a new elimination map as well as new right-hand
side alternatives.

The workhorse of this function is subst which replaces single nontermi-
nals in an alternative by their definition. We have to avoid non-termination,
i. e. given a definition

lhs == ... | id:lhs | ...

we must not insert the definition of lhs here.
There are three cases:

1. The definition of the single nonterminal is again a single nonterminal:
we simply replace the nonterminal:

lhs == ... | id:n | ...
n == id1:n1

⇒ lhs == ... | id:n1 | ...

2. The definition of the single nonterminal is a single alternative. We
insert an additional alternative at the expansion site, tagged with the
left-hand side of the original definition:

lhs == ... | id:n | ...
n == f1 ... fn

⇓

lhs == ... | n* f1 ... fn | ...

3. The third possibility is that the definition of the single nonterminal
consists of more than one alternative. In that case, we simply copy all
the alternatives to our new right-hand side.

9

expand :: ASDTMap -> ElimMap -> DT -> (ElimMap, DT)
expand am elims (DT lhs alts) =

let (alts1, elims1) = foldl subst ([], elims) alts
in (elims1, DT lhs $ L.nub alts1)
where

-- Single nonterminal.
subst (fields, elims) [Lab id (NVal n)] =

if n == lhs then (fields, elims) -- Avoid non termination.
else case am M.! n of

-- Case 1.
[[Lab _ (NVal n1)]] -> (fields ++ [[Lab id (NVal n1)]]

, mapOfSetsInsert n lhs elims)
-- Case 2.
[x] -> (fields ++ [Tag n : x]

, mapOfSetsInsert n lhs elims)
-- Case 3.
x -> (fields ++ x

, elims)

-- Other field.
subst (fields, elims) x = (fields ++ [x], elims)

We extend the function to expand a single data type to expand a se-
quence of data types:
expandAllDTs :: ASDTMap -> (ElimMap, ASDT) -> (ElimMap, ASDT)
expandAllDTs am (elim, asdt) = L.mapAccumL (expand am) elim asdt

Expansion is an iterative process, so we take the fixed point of this
function:
expandASDT :: ASDT -> (ElimMap, ASDT)
expandASDT asdt = let am = asdtAsMap asdt

in fix (expandAllDTs am) (M.empty, asdt)

fix :: Eq a => (a -> a) -> a -> a
fix f x0 = let x1 = f x0

in if x1 == x0 then x0 else fix f x1

Step 3: Delete eliminated data type definitions
We can now delete all data types from our ASDT that have been elimi-

nated, i. e. fully expanded on some other right-hand side.
pruneASDT :: ElimMap -> ASDT -> ASDT
pruneASDT elims asdt = filter notEliminated asdt

where
elimLhs = M.keysSet elims
notEliminated (DT lhs _) = S.notMember lhs elimLhs

10

Step 4: Identify and delete redundant data types
After step 3, the data type for our running example looks like this:

E == Add* lhs:E rhs:E1
| Mul* lhs:E1 rhs:E2
| Num* num:NUM

E1 == Mul* lhs:E1 rhs:E2
| Add* lhs:E rhs:E1
| Num* num:NUM

E2 == Add* lhs:E rhs:E1
| Mul* lhs:E1 rhs:E2
| Num* num:NUM

We do not have useless sums anymore but instead identical datatypes E1,
E2, and E2. We now eliminate these.

In this step, we order the right-hand sides of all data types by a par-
tial order and extract the largest elements of this set. We introduce some
defintions to work with partial orders first: a data type representing the
result of a “partial” comparison and a typeclass with a method for partial
comparison:
data PartialOrdering = PLT | PEQ | PGT | PUnrelated

deriving (Eq, Show)

class PartialOrd a where
partialCompare :: a -> a -> PartialOrdering

We are interested in comparing right-hand sides of a data type definition.
For this purpose, we consider a right-hand side as a set of lists and give a
general instances for partially ordered sets by set inclusion:
instance Ord a => PartialOrd (S.Set a) where

partialCompare x y | x == y = PEQ
| x ‘S.isSubsetOf‘ y = PLT
| y ‘S.isSubsetOf‘ x = PGT
| otherwise = PUnrelated

(The total order on the set’s elements is necessary for the set implementation
in use.)

We illustrate the idea of this step by an artificial example. Suppose, the
outcome of step 3 of our algorithm is

11

D == Q* F [F]
E == P* E F

| Q* F [F]
| R* D E E

F == R* D E E
| Q* F [F]

Whenever we need a node of type D we can take F or E since they both have
the Q* variant. Analogously, whenever we need a node of type F we can
take E. We always want to use the “largest” data type possible because this
enables us to discard all smaller one. Using the partial order for right-hand
defined above, we can order the three data types as

D v F v E

(x v y means that partialCompare returns PLT or PEQ).
From this ordering we extract the largest element E and replace all oc-

curences of smaller elements with E. The smaller elements can now be deleted
from the ASDT. For our artificial example, we end up with:2

E == P* E E
| Q* E [E]
| R* E E E

We have neglected one important issue so far: since right-hand sides are
only ordered partially there might be several largest elements and smaller
elements might be related to more than one of the largest. To illustrate this
situation, we add the definition

G == Q* F [F]
| S* G E G

to the previous example. As the Hasse diagram in Fig. 4 shows we can either
use G or E to replace D. But we cannot eliminate G in favor of E because they
are unrelated. The solution is to keep E and G and to to consistently chose
any of them to replace D. Choosing G for D gives us the reduced data types

E == P* E E
| Q* E [E]
| R* G E E

G == Q* E [E]
| S* G E G

12

E

F

D

G

Figure 4: Hasse diagram of the partial order of the D, E, F, G example.

The implementation of this step proceeds as follows:

1. Build the directed graph representing the partial order.

2. Extract all vertices with indegree of one. Those are the largest data
types (they are only comparable with themselves).

3. Delete all data types from the ASDT that were not detected previously.

The function asdtRhsToSets converts the list of right-hand sides to a
set of right-hand sides:
asdtRhsToSets :: ASDT -> [(Id, S.Set [Field])]
asdtRhsToSets asdt = [(lhs, S.fromList rhs) | DT lhs rhs <- asdt]

To build the graph, we set up an adjacency map that maps left-hand
sides to their neighbors. A neighbor is a left-hand side that has a smaller
right-hand side.
adjacencyMap :: [(Id, S.Set [Field])] -> MapOfSets Id Id
adjacencyMap dts = foldl insertIntoAdj M.empty pairs

where
pairs = [(dt1, dt2) | (dt1, dts1) <- zip dts (init $ L.tails dts)

, dt2 <- dts1]

insertIntoAdj adj ((lhs1, rhs1), (lhs2, rhs2)) =
case partialCompare rhs1 rhs2 of

PUnrelated -> adj
PGT -> mapOfSetsInsert lhs1 lhs2 adj
PEQ -> mapOfSetsInsert lhs1 lhs2 adj
PLT -> mapOfSetsInsert lhs2 lhs1 adj

The function asdtToGraph uses the Data.Graph library to build the
graph of the partial order.

2We lose some type safety of course but that is usually a price we have to pay for
smaller data types.

13

type POGraph = (G.Graph, G.Vertex -> (Id, Id, [Id]), Id -> Maybe G.Vertex)

asdtToGraph :: ASDT -> POGraph
asdtToGraph asdt =

let adjMap = adjacencyMap $ asdtRhsToSets asdt
adjList = M.toList adjMap

in G.graphFromEdges [(k, k, S.toList v) | (k, v) <- adjList]

We now extract the largest data types, i. e. those with an indegree of
one.
largestDTs :: POGraph -> S.Set Id
largestDTs (g, vf, kf) = S.fromList [lhs | vertex <- vertices

, let (_, lhs, _) = vf vertex
, indegree A.! vertex == 1]

where
indegree = G.indegree g
vertices = G.vertices g

We are now in position to delete all data types from our ASDT that are
not large enough.
deleteDTs :: S.Set Id -> ASDT -> ASDT
deleteDTs largest asdt =

[dt | dt@(DT lhs _) <- asdt, lhs ‘S.member‘ largest]

The function deleteRedundantDTs encapsulates the entire step and re-
turns the new ASDT, the graph of the partial order, and the set of largest
data types.
deleteRedundantDTs :: ASDT -> (ASDT, POGraph, S.Set Id)
deleteRedundantDTs asdt = let g = asdtToGraph asdt

largest = largestDTs g
asdt1 = deleteDTs largest asdt

in (asdt1, g, largest)

Step 5: Update remaining data types
Since we deleted data types in the previous two steps the remaining ones

now use undefined data types. So, we have to replace them appropriately,
either by the left-hand side of their expansion site (if they were deleted in
step 3) or by a larger data type (if they were deleted in step 4).

As a preparation step, we first have to calculate all data types that
the remaining ones are able to represent. That is, we calculate all nodes
reachable by the largest data types in the graph of the partial order.

14

smallerDTs :: POGraph -> S.Set Id -> [(Id, [Id])]
smallerDTs (g, vf, kf) largest =

[(lhs, dts) | lhs <- S.toList largest
, let key = fromJust $ kf lhs
, let vertices = G.reachable g key
, let dts = [dt | vertex <- vertices

, let (_, dt, _) = vf vertex]]

In fact, we need the inverse of the above mapping because we want to
find a data type able to represent some deleted data type. The function
largerDTs invertes this mapping:
largerDTs :: [(Id, [Id])] -> ElimMap
largerDTs mapping = foldl (flip $ uncurry mapOfSetsInsert) M.empty

[(s1, l) | (l, s) <- mapping, s1 <- s]

To perform the replacement step, we need the elimination map from
step 2 as well as the output of largerDTs with the set of largest data types.

The replacement is basically a traversal of all data types down to the
individual nodes. Once at a node (in function replaceNode), it is checked
if the node belongs to the largest data types. If so, it is left unchanged. If
not, we check if there is a known larger data type that we can take instead.
If the node is not in larger it has already been eliminated in step 2 and
we extract its replacement from elims. The replacement may have been
deleted in step 4, therefore it is subject to replaceNode again to find the
appropriate larger data type.

larger as well as elims are maps of sets, i. e. the replacement is not
unique. The function repFrom extracts some arbitrary but fixed, i. e. fixed
for each key, element from the set. This choice may most likely be improved.
replaceDTs :: ASDT -> ElimMap -> ElimMap -> S.Set Id -> ASDT
replaceDTs asdt elims larger largest = map replaceDT asdt

where
replaceDT (DT lhs rhs) = DT lhs (map replaceAlts rhs)
replaceAlts fields = map replaceField fields

replaceField (Lab id n) = Lab id $ replaceNode elims larger largest n
replaceField field = field

replaceNode :: ElimMap -> ElimMap -> S.Set Id -> Node -> Node
replaceNode elims larger largest (NSeq n) =

NSeq (replaceNode elims larger largest n)

15

replaceNode elims larger largest (NVal n)
| n ‘S.member‘ largest = NVal n
| n ‘M.member‘ larger = NVal $ repFrom larger n
| n ‘M.member‘ elims = replaceNode elims larger largest

$ NVal (repFrom elims n)

replaceNode _ _ _ n = n

repFrom :: MapOfSets Id Id -> Id -> Id
repFrom reps id = head $ S.elems (reps M.! id)

We wrap up the entire step in function updateDTs:
updateDTs ::

ASDT -> POGraph -> S.Set Id -> ElimMap -> (ASDT, MapOfSets Id Id)
updateDTs asdt g largest elims =

let smaller = smallerDTs g largest
larger = largerDTs smaller
asdt1 = replaceDTs asdt elims larger largest

in (asdt1, larger)

Feeding our example grammar for arithmetic expression through steps 1–
5, we obtain

E == Add* lhs:E rhs:E
| Mul* lhs:E rhs:E
| Num* num:NUM

This is the result we were looking for! Nevertheless, some grammars still
produce artefacts, which are removed by the last step 6.

Step 6: Remove duplicate right-hand sides
It sometimes happens that step 5 returns a data type with right-hand

sides like
E == ...

| P* E E
| Q* E E
| ...

which might or might not be the desired outcome. Basically, if P and Q
have been insserted in the original grammar for semantic reasons, i. e. they
denote different things, the result is perfectly alright. But if P and Q have
been inserted for syntactical reasons, i. e. for disambiguation or precedences
one of them will be sufficient.

The last step trys to eliminate duplicates by relating the replacement
of data types back to the original grammar. If the productions become

16

identical by the replacement, we consider them syntactical and duplicates
are removed. This step has been developed empirically and may turn out
to be nonsense in certain circumstances.

The function removeDuplicateDTs scans all data types and removed
duplicates on the right-hand side using a special equality function dup. This
function extracts the original production from the grammar and replaces all
nonterminal symbols in that production by their counterparts in the final
ASDT (using the function replaceNode defined in step 5).
removeDuplicateDTs ::

ElimMap -> ElimMap -> S.Set Id -> Grammar -> ASDT -> ASDT
removeDuplicateDTs elims larger largest grammar asdt =

let grammarMap = M.fromList [(lhs, rhs) | lhs ::= rhs <- grammar]
in [DT lhs rhs1 | DT lhs rhs <- asdt

, let rhs1 = L.nubBy (dup grammarMap) rhs]
where

dup grm (Tag tx:xs) (Tag ty:ys) = let px = grm M.! tx
py = grm M.! ty
upx = updProd px
upy = updProd py

in upx == upy

updProd (Seq syms) = [updSym sym | sym <- syms]

updSym s@(T _) = s
updSym s@(TV _) = s
updSym (N (id, Sing n)) = N (id, Sing $ replacement n)
updSym (N (id, Plus n sep)) = N (id, Plus (replacement n) sep)
updSym (N (id, Star n sep)) = N (id, Star (replacement n) sep)

replacement n =
let NVal n1 = replaceNode elims larger largest (NVal n) in n1

2.4 Wrapping it up

The function generateASDT composes the individual steps 1–6:
generateASDT grammar =

let asdt1 = grammarToASDT grammar
(elims, asdt2) = expandASDT asdt1
asdt3 = pruneASDT elims asdt2
(asdt4, g, largest) = deleteRedundantDTs asdt3
(asdt5, larger) = updateDTs asdt4 g largest elims
asdt6 = removeDuplicateDTs elims larger

largest grammar asdt5
in asdt6

17

3 A more complex example
We illustrate the technique by a more complex example: λ-expression with
let-bindings. The following grammar fully specifies binding strength, asso-
ciativity, and precedence of λ-expressions in the usual way:

E ::= A | B | F | L;
A ::= H | B1;
H ::= I | F1 | L1;
B ::= P | Q;
F ::= "\" id:"ID" "." body:E;
B1 ::= "(" b:B ")";
F1 ::= "(" f:F ")";
L1 ::= "(" l:L ")";
P ::= fun:H arg:A;
Q ::= fun:B arg:A;
I ::= id:"ID";
L ::= "let" defs:D+^";" "in" body:E;
D ::= lhs:"ID" "=" rhs:E;

Most nonterminals have been introduced for purely syntactic reasons and
PaGe produces four interfaces and nine classes. Feeding the grammar into
the algorithm of Sec. 2 yields

E == I* id:ID
| F* id:ID body:E
| L* defs:[D] body:E
| P* fun:E arg:E

D == lhs:ID rhs:E

which is as compact as a handwritten abstract syntax.

4 Open issues
There remain a few open issues and problems with the algorithm presented.

• It has been developed empirically by an iterative process of inspection
of examples and modifications of the algorithm. For this reason, there
might be grammars for which the output is inadequate.

• The algorithm does not properly record which data elements must be
used by a parser when performing reductions. Part of this information

18

is encoded in the maps larger and elims but this does not include
which variant of a data type has to be used.

• The fifth step updates nonterminals in a rather ad-hoc way. It should
be possible for the user to annotate which nonterminals should remain
in the abstract syntax data types and which are present merely for
technical reasons. With this information, the function repFrom will
probably work much more predictable.

• Optional parts in productions have been omitted entirely.

• The artifical example used in the description of step 4 of the algorithm
keeps two identical variants with tag Q* but in two different data types.
We are not sure if this can (or should) be eliminated or if this case
shows up in practice at all.

References
[AP02] Andrew W. Appel and Jens Palsberg. Modern Compiler Implemen-

tation in Java. Cambridge University Press, 2nd edition, 2002.

[Hög09] Christoph Höger. Generation of incremental parsers for modern
IDEs. In Jens Knoop and Adrian Prantl, editors, KPS’09: 15.
Kolloquium Programmiersprachen und Grandlagen der Program-
mierung, 2009.

[PG08] Peter Pepper and Martin Grabmüller. Compiler generator für Opal-
2, April 2008. Lecture slides Compilerbau Projekt 2 SS 2008.

19

	Description of the problem
	An example with PaGe

	Algorithm
	Input language
	Output data structures
	The ASDT generation algorithm
	Wrapping it up

	A more complex example
	Open issues
	RoteReihe.pdf
	Folie 1

	Leere Seite

