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A B S T R A C T

In this doctoral thesis, the thermodynamic phases und phase tran-
sitions of a generalised Dicke model are studied and characterised.
Both, finite and vanishing temperatures are considered.

The Dicke model of quantum optics describes collective pheno-
mena which occur when light interacts with a many-atom system. In
the thermodynamic limit, a so-called Hepp–Lieb superradiant phase
transition sets in. A superradiant phase develops for low tempera-
tures or strong coupling between light and atoms, which is charac-
terised by a macroscopic excitation of the light field and a sponta-
neous, collective polarisation of the atoms.

This thesis discusses a generalised version of the Dicke model,
which is described by a quantum mechanical system consisting of
three-level atoms in Lambda-configuration and two modes of a res-
onator.

By means of the Holstein–Primakoff transformation, the Hamilto-
nian of this system is written in terms of four interacting, non-linear
oscillators, which can be linearised in the thermodynamic limit, yield-
ing the ground-state energy as well as the low-energy excitations. The
phase diagram consisting of two superradiant phases separated by
continuous and first-order phase transitions is derived.

In order to clarify the question whether or not the superradiant
phase transition of this generalised Dicke model can be observed ex-
perimentally for real atoms, the significance of the diamagnetic term
is discussed. In contrast to the original Dicke model, superradiant
phase transitions are possible in principle. This is due to the first-
order phase transitions. In addition, a no-go theorem for continuous
superradiant phase transitions is presented. The argument is based
on the Thomas–Reiche–Kuhn sum rule.

Last, we study the superradiant phase transition of the generalised
Dicke model at finite temperatures. Therefore, the partition sum is
computed and analysed in the thermodynamic limit using Laplace’s
method. At finite temperatures, the properties of the phase diagram
and phases remain. However, here all phase transitions are of first
order.
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Z U S A M M E N FA S S U N G

Gegenstand dieser Doktorarbeit ist die Untersuchung und Charakte-
risierung der thermodynamischen Phasen und Phasenübergänge in
einem generalisierten Dicke-Modell bei endlichen Temperaturen und
im Grenzfall verschwindender Temperaturen.

Das Dicke-Modell der Quantenoptik dient zur Beschreibung von
kollektiven Phänomenen in der Wechselwirkung von Licht mit vie-
len Atomen. Es weist im thermodynamischen Limes einen Phasen-
übergang auf; den sogenannten Hepp–Lieb Superradianzphasenüber-
gang. Hier kommt es bei tiefen Temperaturen bzw. starker Kopplung
zwischen Licht und Atomen zur Bildung einer superradianten Phase,
welche durch eine makroskopische Anregung im Lichtfeld und eine
spontane kollektive Polarisierung aller Atome gekennzeichnet ist.

In dieser Arbeit wird eine generalisierte Version des Dicke-Modells
betrachtet: Die Atome werden durch quantenmechanische Systeme
bestehend aus drei Energiezuständen in der sogenannten Lambda-
Konfiguration beschrieben und das Lichtfeld besteht aus zwei Moden
eines Resonators.

Mithilfe der Holstein–Primakoff-Darstellung wird der Hamilton-
Operator des Systems auf die Form von vier wechselwirkenden nicht-
linearen Oszillatoren gebracht. Im thermodynamischen Limes wird
dieses System linearisiert und die Grundzustandsenergie, sowie die
niedrig-energetischen Anregungsenergien analytisch bestimmt. Das
Phasendiagramm mit zwei superradianten Phasen getrennt durch
Phasenübergänge erster und zweiter Ordnung wird aufgestellt.

Ein weiterer Aspekt dieser Doktorarbeit ist, ob der superradian-
te Phasenübergang dieses generalisierten Dicke-Modells in Systemen
mit echten Atomen experimentell nachgewiesen werden kann. Hier-
bei wird auf die Bedeutung des diamagnetischen Terms eingegan-
gen und gezeigt, dass hier, im Gegensatz zum ursprünglichen Dicke-
Modell, aufgrund des Auftretens eines Phasenübergangs erster Ord-
nung ein superradianter Phasenübergang möglich ist. Des Weiteren
wird ein Beweis für die Unmöglichkeit von kontinuierlichen superra-
dianten Phasenübergängen bei realen Atomen vorgestellt. Grundlage
dafür ist die Thomas–Reiche–Kuhn-Summenregel.

Als letzter Punkt wird auf die Frage eingegangen, wie sich der
Quantenphasenübergang des generalisierten Dicke-Modells auf end-
liche Temperaturen überträgt. Dazu wird die Zustandssumme im
thermodynamischen Limes in einer Sattelpunktsnäherung berechnet
und analysiert. Man sieht, dass auch bei endlichen Temperaturen der
Charakter des Phasendiagramms und der Phasen erhalten bleibt, wo-
bei hier alle Phasenübergänge von erster Ordnung sind.
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1
I N T R O D U C T I O N

The Dicke model of quantum optics in its original form introduced by
Robert Henry Dicke in 1954 (Dicke, 1954) describes the interaction of
a many-atom system with the electromagnetic field, light in particular.
It supports the prominent phenomenon of Dicke superradiance, i. e.
the collective spontaneous radiation of light which is focused both in
space (along a direction defined by the experimental setup) and time.
In addition, in the thermodynamic limit, the Dicke model develops a
phase transition, the superradiant Hepp–Lieb phase transition, which
was first described in 1973 by Elliot Hershel Lieb & Klaus Hepp (Hepp

and Lieb, 1973b). This continuous phase transition separates a phase
at high temperatures and small atom-light coupling from a phase at
low temperatures and strong atom-light coupling. In the former, all
atoms occupy their respective ground state and no excitations in the
light field are present. The latter phase is the so-called superradiant
phase, which is characterised by a macroscopic excitation of the atoms
and the light field, and a collective spontaneous polarisation of the
atoms.

Phase transitions are one of the most striking phenomena in phy-
sics. For a wide range of control parameters, e. g. temperature or pres-
sure, a substance has qualitatively the same physical properties. But
some of these properties differ strongly for the respective phases. The
appearance of phase transitions are traced back to large fluctuations
of energy and particle number of the system at certain temperatures
or other control parameters. These fluctuations are due to the cou-
pling of the system to its environment. At zero temperature, thermal
fluctuations are absent. However, then quantum fluctuations can take
over and give rise to quantum phase transitions. Both, thermal and
quantum phase transitions, emerge in the Dicke model.

The superradiant phase transition is some kind of peculiar, since it
does not show for systems consisting of real atoms. Theoretically, this
is described by the so-called no-go theorem. However, the group of
Tilman Esslinger realised the superradiant phase transition for an ef-
fective Dicke model in 2010 (Baumann, Guerlin, et al., 2010). Among
others, this triggered a great deal of publications on the Dicke model
and its generalisations.

The aim of this thesis is to analyse a generalised version of the
original Dicke model: The individual atoms are described by three-
level systems in a Lambda-configuration, i. e. two, in general, non-
degenerate ground states which couple via two modes of a resonator
respectively to one excited state. The first question which naturally

1



2 introduction

arises is if there is a superradiant phase transition; probably yes. But
does the superradiant phase exhibits the same properties as in the
original model and of what order is the phase transition? Aside from
that, might it be even possible that the no-go theorem is not applicable
here and a superradiant phase transition does occur for real atoms in
this generalised level scheme. We will discuss all these questions in
the quantum limit, i. e. at zero temperature. However, the influence
of finite temperatures on the phase transition and the properties of
the phases is addressed as well.

In addition, the STIRAP1 scheme and dark-state physics are hall-
marks of the Lambda-configuration. The STIRAP scheme is used in
experiments for a complete transfer of population from one quantum
state to another quantum state. In order to allow for a transfer be-
tween transitions which are forbidden due to selection rules, STIRAP
is achieved via an intermediate state which is never populated during
the transfer. In the case of the Lambda-configuration, the intermedi-
ate state is the excited state and the two states on which the transfer is
performed are the two ground states. Since the excited state is never
populated, it can never decay and thus not radiate via a coupling
to a light field. For this reason, the excited state is called dark state
here. Since the dark state plays a prominent role in STIRAP and the
physics of atoms in Lambda-configuration, we expect to find some
kind of emergence of it in the phases or phase transitions.

Before we analyse the generalised Dicke model in detail, we give
a derivation of the original and the generalised versions of the Dicke
model. This derivation is based on a microscopic Hamiltonian. Fur-
thermore, an introduction to the phenomena of Dicke superradiance,
and the superradiant phase transition of Hepp and Lieb and its quan-
tum limit is given. But first of all, we quantise the electromagnetic
field and its interaction with charges, in order to get the proper con-
stants in the microscopic atomic Hamiltonian. This step is crucial
when we study the effect of the diamagnetic term and the no-go the-
orem for real atoms.

1.1 quantisation of the electromagnetic field

The classical theory of electromagnetism is based on Maxwell’s equa-
tions and the Lorentz force law from which all electromagnetic phe-
nomena like radiation, Faraday’s cage, light diffraction and reflec-
tion, induction, and so forth can be deduced. However, to formulate
a quantum theory of electromagnetism, the Maxwell–Lorentz equa-
tions are not a good starting point. The canonical way of quantising a
classical theory is by promoting the generalised coordinates and their
conjugate momenta to operators which obey a canonical commuta-

1 Stimulated Raman Adiabatic Passage, cf. e.g. Ref. (Bergmann, Theuer, and Shore,
1998).



1.1 quantisation of the electromagnetic field 3

tion relation (Dirac, 1958; Altland and Simons, 2010). In addition,
the classical Hamiltonian function becomes an operator and is the
central object in Schrödinger’s equation.

Thus we need to find the classical Hamiltonian of the electromag-
netic field. On the other hand, the Hamiltonian is obtained from the
Lagrangian by a Legendre transformation. So the schedule is as fol-
lows:

(i) Find the Lagrangian of the electromagnetic field which gene-
rates the correct equations of motion, i. e. the Maxwell–Lorentz
equations,

(ii) identify the generalised coordinates and the corresponding con-
jugate momenta,

(iii) set up the Hamiltonian, and

(iv) canonical quantise the Hamiltonian.

This is done in the next subsections.

1.1.1 The Lagrangian of Electromagnetism

One fundamental principle of analytical mechanics is Lagrangian me-
chanics. Given the Lagrangian of a system, one can derive the equa-
tions of motion which govern the movement of point particles as well
as the dynamics of fields, i. e. systems with continuous degrees of
freedom (Goldstein, 1980). The latter applies to e. g. all kind of wave
phenomena, especially to the electromagnetic field.

The Lagrangian L for systems of charged particles interacting with
an electromagnetic field is given by

L

{rn}, {ṙn},A,Φ,∂tA,∂tΦ


=

N
n=1

1

2
mnṙ

2
n +


R3

d3rL, (1.1)

with the Lagrangian density

L =
ε0
2


E(r)2 − c2B(r)2


+ j(r) ·A(r) − ρ(r)Φ(r). (1.2)

Here, rn is the position of the nth particle with charge qn and mass
mn, ṙn = d

dtrn is the corresponding velocity, ε0 is the vacuum per-
mittivity, E and B are the electric and magnetic field, respectively, c
is the speed of light in vacuum, j and ρ are the current and charge
density, respectively, and A and Φ are the vector and scalar potential,
respectively. The sum extends over the number N of charged parti-
cles.
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The current and charge densities are sources for the electromag-
netic field and originate from the charged particles,

j(r) =

N
n=1

qnṙnδ(r− rn), (1.3)

ρ(r) =

N
n=1

qnδ(r− rn), (1.4)

where δ(r) is Dirac’s delta distribution.
Lastly, the connection of the electromagnetic fields E & B and the

electromagnetic potentials A & Φ is given by

E(r) = −∇Φ(r) − ∂tA(r), (1.5a)

B(r) = ∇×A(r). (1.5b)

The Lagrangian of Eq. (1.1) is justified, since its Euler–Lagrange equa-
tions reproduce both the Lorentz force law and the Maxwell equa-
tions (Jackson, 1999; Cohen-Tannoudji, Dupont-Roc, and Gryn-
berg, 1989). In addition, it is invariant under Lorentz transformations
and makes the corresponding action gauge invariant.

electromagnetism in fourier space The Maxwell equations
and the potential equations, Eq. (1.5), involve different kind of space
derivatives like gradient, divergence, and rotation. These are not that
difficult to handle. However, the equations are much more simpler in
Fourier or reciprocal space where space derivatives become multipli-
cations with numbers.

If f(r) is a field or component of a vector field, then the correspond-
ing field f̃(k) in Fourier space reads

f̃(k) =


R3

d3r f(r)e−ik·r, (1.6)

or the other way around

f(r) =


R3

d3k
(2π)3

f̃(k)eik·r. (1.7)

We denote fields in Fourier space, i. e. the Fourier transform, by a tilde.
Besides, note that the 1/2π normalisation factor is asymmetrically put
into the k integral.

We give two examples of Fourier transforms which will be needed
later on. First, the Fourier transform of the charge density, Eq. (1.4),
is given by

ρ̃(k) =

N
n=1

qne−ik·rn . (1.8)
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Secondly, we calculate the Fourier transform of ϕ(r) = 1/r, the Cou-
lomb potential, explicitly,

ϕ̃(k) =


R3

d3r
e−ik·r

r
(1.9)

=

∞
0

dr
π
0

dϑ sin ϑ
2π
0

dφr e−ikr cosϑ (1.10)

= 2π

∞
0

dr
1
−1

ds r e−ikrs (1.11)

= lim
µ→0

2π

ik

∞
0

dr

eikr − e−ikr


e−µr (1.12)

= − lim
µ→0

2π

ik

 1

ik− µ
−

1

−ik− µ


=
2π

ik

2ik

k2
(1.13)

ϕ̃(k) =
4π

k2
. (1.14)

The Fourier transform f̃ is in general complex. However, all fields
in the Lagrangian are real valued. In order to guarantee for real val-
ued fields in Eq. (1.7), the Fourier transform f̃(k) has to satisfy the
relation2

f̃∗(k) = f̃(−k). (1.17)

I. e., we get the Fourier transform for negative k by complex conjuga-
tion.

The Fourier transforms of the electromagnetic fields, Eq. (1.5), are
given by the relations

Ẽ(k) = −ik Φ̃(k) − ∂tÃ(k), (1.18)

B̃(k) = ik× Ã(k). (1.19)

Before we write the Lagrangian density, Eq. (1.2), in Fourier space,
we first note that for two fields f(r) & g(r) and their corresponding
Fourier transforms f̃(k) & g̃(k) it holds

R3
d3r f(r)g(r) =


R3

d3r
1

(2π)6


R3

d3k


R3
d3k ′ f̃(k)g̃(k ′) ei(k+k ′)·r

(1.20)

=


R3

d3k
(2π)3


R3

d3k ′ f̃(k)g̃(k ′)δ(k+ k ′) (1.21)

=


R3

d3k
(2π)3

f̃(k)g(−k). (1.22)

2

f∗(r)
(1.7)
=


R3

d3k
(2π)3

f̃∗(k)e−ik·r k→−k
=


R3

d3k
(2π)3

f̃∗(−k)eik·r (1.15)

!
= f(r)

(1.7)
=


R3

d3k
(2π)3

f̃(k)eik·r (1.16)
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Thus, we have the relation
R3

d3r f(r)g(r) =


R3

d3k
(2π)3

f̃(k)g̃∗(k), (1.23)

which is known as Plancherel theorem (Champeney, 1973). Then, the
Lagrangian in Eq. (1.1) can be written as

L =

N
n=1

1

2
mnṙ

2
n +


R3

d3k
(2π)3

L̃1, (1.24)

where the Lagrangian density L̃ in Fourier space is given by

L̃1 =
ε0
2


|Ẽ(k)|2 − c2|B̃(k)|2


+ j̃∗(k) · Ã(k) − ρ̃∗(k)Φ̃(k)

=
ε0
2


|ikΦ̃(k) + ∂tÃ(k)|2 − c2|k× Ã(k)|2


+ j̃∗(k) · Ã(k) − ρ̃∗(k)Φ̃(k).

(1.25)

We already noticed that the Fourier transform is in general complex.
So at first glance it may seem that we have twice as many degrees
of freedom in Fourier space than in real space. On the other hand,
we have noticed in Eq. (1.17) that the Fourier transform needs to be
defined in one half space only; the Fourier transform at k in the second
half space can be obtained by complex conjugation of the Fourier
transform at the corresponding point k in the first half space. Thus
we can restrict the integrals in Fourier space to the half space

K =

k = (k1, k2, k3) ∈ R3| k1 ⩾ 0


. (1.26)

Then the integral in L ranges over K,

L =

N
n=1

1

2
mnṙ

2
n +


K

d3k
(2π)3

L̃2 (1.27)

and the Lagrangian density is given by

L̃2 = ε0

|ikΦ̃(k) + ∂tÃ(k)|2 − c2|k× Ã(k)|2


+ j̃∗(k) · Ã(k) + j̃(k) · Ã∗(k) − ρ̃∗Φ̃(k) − ρ̃Φ̃∗(k). (1.28)

The two extra terms in the Lagrangian density L̃2, Eq. (1.28), com-
pared to the Lagrangian density L̃1, Eq. (1.25), stem from the restric-
tion of the range of the integral to the half space.

We see that there is no kinetic term ∂tΦ for the scalar potential in
the Lagrangian. This is no problem when the Euler–Lagrange equa-
tions are set up for the coordinate Φ (which will give Gauß’s law).
However, in the end we want to construct the Hamiltonian, where
we need the conjugate momenta of all coordinates. The conjugate
momentum of a coordinate q is obtained from the partial derivative
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∂L/∂(∂tq). Since ∂tΦ does not enter L, there is no corresponding con-
jugate momentum, or it is identically zero. This means, that Φ is no
dynamical variable. To eliminate Φ from the Lagrangian, we first set
up the Euler–Lagrange equation for Φ̃,

0 =
∂L̃2
∂Φ̃∗(k)

−
∂L̃2

∂(∂tΦ̃∗(k))

= −ε0

ikΦ̃(k) + ∂tÃ(k)


· ik− ρ̃(k), (1.29)

then solve for Φ̃,

Φ̃(k) =
1

k2


ik · ∂tÃ(k) +

ρ̃(k)

ε0


, (1.30)

and lastly, replace Φ̃ in the Lagrangian.

the coulomb gauge The electromagnetic field at each point in
space is characterised by E and B, i. e. by six degrees of freedom. The
four Maxwell equations relate these degrees of freedom, such that
only four independent degrees of freedom for the electromagnetic
field remain. These four degrees of freedom fully describe the theory.

We have considered the Lagrangian of the electromagnetic field in
terms of the scalar and the vector potential plus their corresponding
velocities. We have already eliminated the scalar potential since it is no
dynamical variable. Thus, so far our theory is based on six degrees
of freedom, i. e. compared to the theory described by the E and B

field, there are two excessive degrees of freedom. The two degrees
of freedom can be further eliminated by fixing a gauge. The most
appropriate gauge in our case is the Coulomb or transverse gauge. In
the Coulomb gauge, one sets

∇ ·A(r) = 0, (1.31)

or in Fourier space

k · Ã(k) = 0. (1.32)

The name transverse gauge becomes clear from the second equation,
where the longitudinal (parallel to k) part of Ã is set to zero and only
the transverse part is left.

Due to this discrimination of transverse and longitudinal compo-
nents of the vector potential, we decompose all Fourier transformed
vector fields ṽ in the Lagrangian in a transversal ṽ⊥ and a longitudi-
nal ṽq part,

ṽ(k) = ṽq(k) + ṽ⊥(k), (1.33)

where the longitudinal and transverse parts are given by

ṽq(k) =
k

k
· ṽ(k)k

k
≡ ṽq(k)

k

k
and (1.34)

ṽ⊥(k) = ṽ(k) − ṽq(k), (1.35)
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respectively.
Performing this decomposition, the Lagrangian density, Eq. (1.28),

becomes

L̃2 = ε0

|ik ρ̃(k)/(k2ε0)+ ∂tÃ⊥(k)|

2 − c2|k× Ã⊥(k)|
2


+ j̃∗⊥(k) · Ã⊥(k) + j̃⊥(k) · Ã∗

⊥(k) − 2
ρ̃∗(k)ρ̃(k)

k2ε0
. (1.36)

If we expand the moduli squared, we finally obtain the Lagrangian

L =

N
n=1

1

2
mnṙ

2
n − VC +


K

d3k
(2π)3

L̃3, (1.37)

where VC is the electrostatic Coulomb energy of all charges,

VC =
1

ε0


K

d3k
(2π)3

|ρ̃(k)|2

k2
, (1.38)

which can be written as

VC =
1

2ε0


R3

d3k
(2π)3

|ρ̃(k)|2

k2
(1.39)

(1.8)
=

1

2ε0

N
n,m=1

qnqm


R3

d3k
(2π)3

1

k2
e−ik·(rn−rm) (1.40)

(1.14)
=

N
n=1

q2n
16π3ε0


R3

d3k
1

k2
(1.41)

+
1

ε0

N
n,m=1
n>m

qnqm


R3

d3k
(2π)3


R3

d3r
e−ik·(rn−rm+r)

4πr
(1.42)

= VSE +
1

4πε0

N
n,m=1
n>m

qnqm


R3

d3r
1

r
δ(rn − rm + r) (1.43)

VC = VSE +
1

4πε0

N
n,m=1
n>m

qnqm
1

|rn − rm|
. (1.44)

We see that the Coulomb energy VC can be separated into two parts;
one constant (but diverging) self energy part, VSE, and one part which
stems from the electrostatic interaction of all charges.

The Lagrangian density L̃3 is given by

L̃3 = ε0

∂tÃ

∗(k) · Ã(k) − c2k2Ã∗(k) · Ã(k)


+ j̃∗(k) · Ã(k) + j̃(k) · Ã∗(k), (1.45)

and we have omitted the subscript ⊥ of the vector potential and from
now on, the Coulomb gauge is assumed, i. e. Ã · k = 0.
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Due to the Coulomb gauge, the vector field Ã(k) has two indepen-
dent components only. We denote these two components at the point
k with ε1(k) and ε2(k), respectively. Thus, Ã can be written as

Ã(k) = ε1(k)Ãε1(k) + ε2(k)Ãε2(k), ε1 ⊥ ε2. (1.46)

Going back to real space, the corresponding Lagrangian is

L =

N
n1

1

2
mnṙ

2
n − VC

+


R3

d3r


ε0
2


∂tA(r)

2
− c2


∇×A(r)

2
+ j(r) ·A(r)


.

(1.47)

1.1.2 The Classical Hamiltonian of Electrodynamics

So far we have constructed the Lagrangian in the Coulomb gauge of
charges interacting with the electromagnetic field. The next step is
to find the corresponding Hamiltonian. Therefore, we compute the
conjugate momenta pn and Π̃ of the coordinates rn and Ã. The con-
jugate momenta for the charges are given by

pn = ∇ṙnL = mnṙn + qnA(rn), (1.48)

where we took into account that the velocities ṙn enter the current
density, Eq. (1.3). In terms of the conjugate momenta, the current
density reads

j(r) =

N
n=1


qn

pn

mn
δ(r− rn) −

q2n
mn

A(rn)δ(r− rn)


. (1.49)

The conjugate momenta of the fields Ãεs is given by (Goldstein,
1980; Cohen-Tannoudji, Dupont-Roc, and Grynberg, 1989)

Π̃εs(k) =
∂L

∂

∂tÃ∗

εs
(k)
 = ε0∂tÃεs(k). (1.50)

In real space this becomes

Π(r) = ε0∂tA(r). (1.51)

Now, we obtain the Hamiltonian by a Legendre transformation
(Goldstein, 1980),

H =

N
n=1

pn · ṙn

+


K

d3k
(2π)3

2
s=1


Π̃εs(k)∂tÃ

∗
εs
(k) + Π̃∗

εs
(k)∂tÃεs(k)


− L. (1.52)



10 introduction

If we substitute the velocities for the conjugate momenta,

H =

N
n=1

 p2n
mn

−
qn

mn
pn ·A(rn) −

1

2mn


pn − qnA(rn)

2
+ VC

+


K

d3k
(2π)3


1

ε0

2
s=1


Π̃εsΠ̃

∗
εs

+ Π̃∗
εs
Π̃εs − Π̃

∗
εs
Π̃εs

+ε0c

2k2Ã∗ · Ã



−

N
n=1

 qn
mn

pn ·A(rn) −
q2n
mn

A2(rn)


(1.53)

H =

N
n=1

1
2

p2n
mn

− 2qn
pn ·A(rn)

2mn
+
1

2

q2n
mn

A(rn)
2 + VC

+


K

d3k
(2π)3

 1
ε0

2
s=1

Π̃∗
εs
(k)Π̃εs(k) + ε0c

2k2Ã∗(k) · Ã(k)

,

(1.54)

the Hamiltonian in the Coulomb gauge is given by

H =

N
n=1

1

2mn


pn − qnA(rn)

2
+ VC

+


K

d3k
(2π)3

 1
ε0

Π̃∗(k) · Π̃(k) + ε0c
2k2Ã∗(k) · Ã(k)


  

=Hf

. (1.55)

The term on the second line is the Hamiltonian, Hf, of the free elec-
tromagnetic field, i.e. without any charges.

1.1.3 Canonical Quantisation in the Coulomb Gauge

Now we go from classical electrodynamics to quantum electrodynam-
ics. The actual quantisation is done by promoting the coordinates and
fields to operators (Dirac, 1958; von Neumann, 1932; Altland and
Simons, 2010),

rn −→ r̂n, pn −→ p̂n, for the charges and (1.56)

Ã(k) −→ Â(k), Π̃(k) −→ Π̂(k), for the electromagnetic field.
(1.57)

Here we have omitted the tilde (~) on the field operators Â and Π̂ to
simplify the notation.

These operators are not commuting in general, but rather have to
fulfil the canonical commutation relations,

r̂n

j
,

p̂m

k


= ihδn,mδj,k (1.58)



1.1 quantisation of the electromagnetic field 11

for the charges [

r̂n

j

is the jth component of the position operator of
the nth charge;


p̂m

k

is defined in a similar way] and
Âε1(k), Π̂ε2(k

′)

= 0 (1.59a)

Âε1(k), Π̂
†
ε2
(k ′)


= ihδε1,ε2δ(k− k ′) (1.59b)

for the electromagnetic field (Cohen-Tannoudji, Dupont-Roc, and
Grynberg, 1989). All other commutators give zero. We note that the
vectors k and k ′ in Eqs. (1.59) are in the same half space K. The
operator Π̂† is the Hermitian adjoint operator of Π̂.

One can formulate these commutation relations in real space as
well. Since they contain the so-called transverse delta function [see
e. g. (Cohen-Tannoudji, Dupont-Roc, and Grynberg, 1989)], the
corresponding expressions are more complex, though.

So we have quantised the classical system by replacing the Poisson
brackets of classical mechanics by the quantum mechanical commuta-
tor, {·, ·} → 1

ih [·, ·], (Dirac, 1958; von Neumann, 1932; Altland and
Simons, 2010) both for the charges and the electromagnetic field.

creation and annihilation operators This last paragraph
completes the quantisation of the electromagnetic field. For this pur-
pose, we define the two operators

âε(k) =


ε0

2hωk


ωkÂε(k) + i

1

ε0
Π̂ε(k)


, (1.60)

â†ε(k) =


ε0

2hωk


ωkÂ

†
ε(k) − i

1

ε0
Π̂†
ε(k)


(1.61)

composed of operators of the electromagnetic field only. In addition,
we have introduced the dispersion relation

ωk = ck. (1.62)

We see, that the commutation relations of these two operators,
âε1(k), â

†
ε2
(k ′)


=

ε0
2hωk


−i
ωk
ε0


Âε1(k), Π̂

†
ε2
(k ′)

  
=ihδε1 ,ε2δ(k−k ′)

+i
ωk ′

ε0

=−ihδε1 ,ε2δ(k−k ′)  
Π̂ε1(k), Â

†
ε2
(k ′)



= δε1,ε2δ(k− k ′) (1.63)

are the commutation relations for the annihilation and creation oper-
ators (all other commutators are zero). Thus, the operators âε(k) and
â
†
ε(k) are interpreted as annihilation and creation operators, respec-

tively. They annihilate and create a photon with momentum hk and
polarisation ε.

Besides, we note that the matrix elements of the creation and anni-
hilation operators are not dimensionless, as can be seen from Eq. (1.63).
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The inversion of Eq. (1.60) reads

Âε(k) =


h

2ε0ωk


â†ε(k) + âε(k)


, (1.64)

Π̂ε(k) = i


hωkε0
2


â†ε(k) − âε(k)


. (1.65)

So the product of the two Π̂ operators gives

Π̂†
ε(k)Π̂ε(k) =

ε0
hωk
2


âε(k)â

†
ε(k) − âε(k)

2 − â†ε(k)
2 + â†ε(k)âε(k)


(1.66)

and the product of the two Â operators is

Â†
ε(k)Âε(k) =

h

2ε0ωk


âε(k)â

†
ε(k) + âε(k)

2 + â†ε(k)
2 + â†ε(k)âε(k)


, (1.67)

so that the electromagnetic-only part of the Hamiltonian [see (1.55)]
becomes

Ĥf =


K

d3k
(2π)3

2
s=1

hωk

âεs(k)â

†
εs
(k) + â†εs(k)âεs(k)


(1.68)

=


R3

d3k
(2π)3

2
s=1

hωk

â†εs(k)âεs(k) +

1/2

, (1.69)

i. e. a sum of non-interacting harmonic oscillators with frequencies
ωk. The full Hamiltonian, consisting of both charges and electromag-
netic fields, reads

Ĥ =

N
n=1

1

2mn


p̂n − qn

2
s=1

εsÂεs(r̂n)
2

+VC({r̂n}) + Ĥf. (1.70)

periodic boundary conditions So far, there is no constraint
on the movement of the charges. However, in most experiments the
charges are restricted to a finite volume. This may be due to traps
or interaction with other particles. In this situation, periodic or box
boundary conditions are advantageous. We apply periodic boundary
conditions. These imply

f(r)
!
= f(r+ ℓjej), j ∈ {1, 2, 3} (1.71)

for every field f. This may be artificial for small volumes, but becomes
exact in the thermodynamic limit when the volume goes to infinity.

Periodic boundary conditions restrict the values of k = (k1, k2, k3)
to3

kj =
2π

ℓj
nj, nj ∈ Z. (1.72)

3 With the definition of the Fourier transform, Eq. (1.7), we have: f(r) =
R3

d3k
(2π)3

f̃(k)eik·r !
=


R3

d3k
(2π)3

f̃(k)eik·r+ik·ejℓj = f(r+ ℓjej),⇒ eik·ejℓj !
= 1
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Here, ℓj is the period of the periodic boundary condition in the jth

direction. Then, all Fourier integrals over k space reduce to sums,
R3

d3k
(2π)3

f(k) −→ 1

V


k

f(k). (1.73)

The sum on the right hand side is over the discrete values of k as in
Eq. (1.72).

The Hamiltonian, Eq. (1.69), of the free electromagnetic field is then
given by

Ĥf =

k,s

hωkâ
†
k,sâk,s, (1.74)

with

âk,s =


1

V
âεs(k). (1.75)

Now, the matrix elements of the annihilation and creation operators
have no physical dimension and they fulfil the commutation relation

âk,sâ
†
k ′,s ′


= δk,k ′δs,s ′ . (1.76)

Besides, we note that in Eq. (1.74), we have omitted the constant, infi-
nite vacuum energy.

The Fourier transform of the transverse vector potential with peri-
odic boundary conditions reads

Âk =

2
s=1


hV

2ε0ωk
εs(k)


â
†
k,s + âk,s


(1.77)

Eventually, in real space the transverse vector potential is given by

Â(r) =

k,s

Akεs(k)

â
†
k,s + âk,s


eik·r, (1.78)

with

Ak =


h

2ε0Vωk
(1.79)

and k given by Eq. (1.72).
On the one hand, the Hamiltonian in Eqs. (1.70) and (1.74) mark

the end of this section of the quantisation of the electromagnetic
fields plus charges; on the other hand, this Hamiltonian is the start-
ing point for the derivation of the Dicke model and generalisations
thereof which is discussed in the next section.
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1.2 derivation of (generalised) dicke models

In the last section, the Hamiltonian of a collection of charges inter-
acting with the electromagnetic field was derived. In general, these
charges can be any particles with an electrical charge: elementary
particles like leptons or quarks, or composite particles like protons or
ions. We concentrate on atoms, or more precisely, on electrons bound
to a nucleus; the charge of the nucleus is not considered. The position
of the atoms is fixed inside a resonator, or cavity. For this quasi zero
dimensional system, the exponential in the transverse vector potential
of Eq. (1.78) is not significant and A reduces to

Â(r) =

k,s

Akεs(k)

â
†
k,s + âk,s


, (1.80)

where Ak is still given by the expression of Eq. (1.79) and V is the vol-
ume of the resonator. The values of k are still discrete as in Eq. (1.72)
and real polarisation vectors εs(k) are considered only.

Each of the N identical atoms has Ne electrons. Hence, the Hamil-
tonian of Eqs. (1.74) and (1.70) reads

Ĥ =

N
i=1


1

2m

Ne
j=1


p̂i,j − q Â


r̂i,j
2

+ V̂C


r̂i,1, . . . , r̂i,Ne


+

k,s

hωk â
†
k,s âk,s. (1.81)

Here, m, q, p̂i,j and r̂i,j are the mass, the charge, the kinetic mo-
mentum and the position of the jth electron of ith atom, respectively,
and V̂C is the Coulomb energy of all electrons with respect to their
respective nuclei [see Eqs. (1.38), (1.44)].

The Hamiltonian, Eq. (1.81), can be written as

Ĥ =

N
i=1


ĥ
(0)
i + ĥ

(1)
i


+

k,s

hωk â
†
k,s âk,s, (1.82)

with

ĥ
(0)
i =

Ne
j=1

p̂2i,j

2m
+ V̂C


r̂i,1, . . . , r̂i,Ne


=


n

En |n⟩i⟨n| (1.83)

and

ĥ
(1)
i = −

q

m

Ne
j=1

p̂i,j ·

k,s

εs(k)Ak

â
†
k,s + âk,s


(1.84)

+
q2

2m

Ne
j=1


k,s
k ′,s ′

εs · εs ′AkAk ′

â
†
k,s + âk,s


â
†
k ′,s ′ + âk ′,s ′


.

(1.85)
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Here, the eigensystem {En, |n⟩i} of the free system — that is the ki-
netic energy of the Ne electrons of the ith atom, plus the Coulomb
energy of the Ne electrons with its respective nuclei — has been in-
troduced. The energies En are the same for every atom.

Next, we proceed by expressing the kinetic momentum operator
p̂i,j in this energy basis. First, we note that the identity

p̂i,j = i
m
h


ĥ
(0)
i , r̂i,j


(1.86)

holds. If we then insert on both sides of this commutator a complete
set of eigenstates of ĥ(0)i , the kinetic momentum can be written in a
rather complicated form as

p̂i,j = i
m
h


n,l


En − El


⟨n|r̂i,j|l⟩ |n⟩i⟨l| . (1.87)

In addition, we introduce the coupling constants, also called coupling
strengths,

gnl,k,s = −i
√
N

En − El


Akεs(k) ·dnl/h, (1.88)

with the matrix element

dnl = q

Ne
j=1

⟨n|r̂ij|l⟩ , (1.89)

of the dipole operator d̂, cf. (A.3). The dipole matrix elements dnl
are identical for all atoms. The factor

√
N together with the factor

1/V in the definition of Ak, Eq. (1.79), results in coupling constants
gnl,k,s which scale with the number density of the atoms. Hence in
the thermodynamic limit4, the coupling constants are fixed.

Generally, the coupling constants are complex numbers. The com-
plex conjugates of the coupling constants are given by

g∗nl,k,s = +i
√
N

En − El


Akεs(k) ·dln/h = gln,k,s. (1.90)

Furthermore, we define the collective operators

Â l
n =

N
i=1

|n⟩i⟨l| (1.91)

and the diamagnetic parameter

κ =


q2NNeh

4mε0V
. (1.92)

4 In the thermodynamic limit, the limits N →∞, V →∞ with N/V = const. is consid-
ered, see 1.3.3
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With these definitions, the Hamiltonian of Eq. (1.82) assumes the
form

Ĥ =

n

EnÂ
n
n +


k,s

hωk â
†
k,s âk,s

+

k,s


n>l


gnl,k,s√

N
Â l
n +

g∗nl,k,s√
N

Â n
l


â
†
k,s + âk,s


+

k,k ′


s,s ′

κ2
√
ωkωk ′

εs(k) · εs ′(k ′)

â
†
k,s + âk,s


â
†
k,s ′ + â

†
k,s ′

.

(1.93)

All four terms of this Hamiltonian have a physical interpretation: the
first two terms give the energy of the uncoupled atoms and electro-
magnetic field, respectively. The third term is the so-called dipole
interaction of the atoms with the electromagnetic field. It shuffles
energy between these two degrees of freedom. At last, the fourth
term is the so-called diamagnetic term. The name diamagnetic term
is due to the fact that this term contains a term quadratic in the vec-
tor potential A. This results in an increase of energy of the system
when A increases. Thus a state with non-zero A is energetically un-
favourable. In fact, in solid-state and molecular physics this term is
responsible for the phenomenon of diamagnetism. The diamagnetic
term is discarded in most applications of the Dicke model, since it is
assumed negligible. However, we will see that this is not the case, if
the strength of the dipole interaction is increased.

1.2.1 Special Case I: The Dicke Model

The Hamiltonian, Eq. (1.93), is the most general Dicke-like Hamilto-
nian. It describes the interaction of atoms with an arbitrary number
of energy levels with the electromagnetic modes of a resonator. The
most important specialisation of it is the original Dicke Hamiltonian.
Here, two states of the atoms and one mode of the electromagnetic
field are considered only. The quantum number n can take the values
1 and 2, and k and s are fixed and can be omitted for notational con-
venience. By an appropriate definition of the phase of the eigenstates
|n⟩ of the atomic Hamiltonian ĥ(0)i , the sole coupling constant g can
be chosen real. Finally, the diamagnetic term is completely dropped.
Then, the Hamiltonian (1.93) reads

Ĥ = E1Â
1
1 + E2Â

2
2 + hωâ†â+

g√
N


â† + â


Â 1
2 + Â 2

1


(1.94)

Usually, for this system consisting of two-level atoms, one introduces
collective spin operators

Ĵz =
1

2


Â 2
2 − Â 1

1


, Ĵ+ = Â 2

1 , Ĵ− = Â 1
2 (1.95)
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ω

|1⟩

|2⟩

∆g

Figure 1.1: The Dicke model: A cloud of atoms interacts with one electro-
magnetic mode of a resonator. Both, atoms and resonator make
up the whole (closed) system. No additional driving of the res-
onator or the atoms is present. The atoms are described by two-
level systems, with energy separation ∆. The mode of the res-
onator with frequency ω induces transitions between these two
states |1⟩ and |2⟩. The corresponding coupling strength is given
by g.

obeying the commutation relations for angular momentum operators;
except for a possible factor h, depending on the definition of the com-
mutation relations of the collective spin operators. For details about
this, see Sec. A.2 in the Appendix. In terms of these collective spin
operators, the representation

Ĥ = ∆ Ĵz + hω â†â+
g√
N


â† + â


Ĵ+ + Ĵ−


(1.96)

of the well-known Dicke Hamiltonian is obtained (Dicke, 1954; Ari-
mondo, 1996; Emary and Brandes, 2003a; Garraway, 2011). Note
that a constant term proportional to the particle number operator N̂ =

Â 1
1 + Â 2

2 was dropped, to obtain the Dicke Hamiltonian, Eq. (1.96),
from the Hamiltonian of Eq. (1.94). The parameter ∆ is given by the
difference of the two energy levels, ∆ = E2 − E1. The setup of the
Dicke model is visualised in Fig. 1.1.

1.2.2 Special Case II: The Lambda-Model

We obtain a model with less stringent simplifications as in the Dicke
model of the Hamiltonian of Eq. (1.93), if we include more energy
levels or more modes of the resonator. We consider both, i. e. one
extra energy level and one extra mode of the resonator.

We allow for transitions between the three energy levels in the so-
called Lambda-configuration (Λ-configuration), where the two ener-
getically lower lying single-particle eigenstates |1⟩ and |2⟩, the ground-
state manifold, are coupled to the energetically highest single-particle
eigenstate |3⟩, the excited state, only. Thus, the coupling g12,k,s is
zero. This can be achieved either by choosing both polarisations εs
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ω1

ω2

|1⟩

|3⟩

|2⟩g1

g2

δ

∆

Figure 1.2: Lambda-model: A cloud of atoms interacts with two electromag-
netic modes of a resonator. The atoms are described by three-
level systems in Lambda-configuration, with energy separations
∆ between the single-particle states |1⟩ and |3⟩, and δ between |1⟩
and |2⟩. The modes of the resonator with frequencies ω1 and ω2
induce transitions between the states |1⟩ and |3⟩, and |2⟩ and |3⟩,
respectively. The corresponding coupling strengths are given by
g1 and g2, respectively.

perpendicular to d12, or by even having d12 = 0. This may be due to
symmetry. The Lambda-model is illustrated in Fig. 1.2.

The two modes of the electromagnetic field with the quantum num-
bers (k, s) and (k ′, s ′) are abbreviated with 1 and 2, respectively. Both
modes can induce both possible transitions |1⟩ ←→ |3⟩ and |2⟩ ←→ |3⟩.
This results in four coupling constants. As in the Dicke model of the
previous section, we can choose these four coupling constants real,

g1 := g31,1 = c31


1

ω1
|ε1 ·d31| (1.97)

g31,2 = c31


1

ω2
|ε2 ·d31|, (1.98)

g32,1 = c32


1

ω1
|ε1 ·d32| (1.99)

g2 := g32,2 = c32


1

ω2
|ε2 ·d32|, (1.100)
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with c3n =

E3 − En

 hN
2ε0V

/h [see the definition of the coupling
constants in Eq. (1.88)]. With the definitions

χ1 =


ω1
ω2

|ε2 ·d31|
|ε1 ·d31|

and χ2 =

ω2
ω1

|ε1 ·d32|
|ε2 ·d32|

, (1.101)

the two coupling constants in Eqs. (1.98) and (1.99) can be written as

g31,2 = χ1g1 and g32,1 = χ2g2. (1.102)

Eventually, the Hamiltonian of the Lambda-model reads

Ĥ =

3
n=1

En Â
n
n +

2
n=1

hωnâ
†
n ân

+
g1√
N


Â 1
3 + Â 3

1


â
†
1 + â1 + χ1


â
†
2 + â2


+
g2√
N


Â 2
3 + Â 3

2


â
†
2 + â2 + χ2


â
†
1 + â1


+

2
n=1

κ2

ωn


â†n + ân

2
+ 2

ε1 · ε2κ2√
ω1ω2


â
†
1 + â1


â
†
2 + â2


. (1.103)

The properties of this Hamiltonian, including the diamagnetic term,
are studied in Ch. 3.

For a simplified version of this Hamiltonian, we neglect the dia-
magnetic terms proportional to κ, and allow transitions in the two
branches of the Lambda-configuration by one mode of the electro-
magnetic field, respectively, only. Then, the Hamiltonian simplifies
to

Ĥ =

3
n=1

En Â
n
n +

2
n=1

hωnâ
†
n ân

+
g1√
N


Â 1
3 + Â 3

1


â
†
1 + â1


+
g2√
N


Â 2
3 + Â 3

2


â
†
2 + â2


.

(1.104)

The properties of this Hamiltonian are studied in detail in Ch. 2.
In conclusion, in the previous two sections, we have derived the

classical Langrangian and Hamiltonian in the Coulomb gauge. The
latter was quantised in a canonical way, by introducing, eventually,
creation and annihilation operators. To adapt the finite range of every
experiment in the laboratory, we have applied periodic boundary con-
ditions. However, these become exact in the thermodynamic limit. In
order to derive the Hamiltonian of the generalised Dicke models, the
dipole approximation was made, i. e. the transverse vector potential
does not depend on the exact position of the atoms in the resonator.
This is justified as long as the wavelength of the mode of the resonator
is large compared to the extent of the atomic cloud. Finally, we have
restricted the number of atomic single-particle energy levels to two
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for the Dicke model, and to three for the generalised Dicke model in
Lambda-configuration.

In the following section, we discuss the properties of the original
Dicke model and give a review of Dicke superradiance and the super-
radiant phase transition.

1.3 the dicke model & superradiance

1.3.1 Properties of the Dicke Model

The Dicke model of quantum optics and its collective properties were
first studied by Robert Henry Dicke (Dicke, 1954). The Hamiltonian
of this model is given by

Ĥ = ∆

N
n=1

ŝ
(n)
z + hωâ†â+

g√
N

N
n=1


â† + â


ŝ
(n)
+ + ŝ

(n)
−


. (1.105)

It can be microscopically derived for atomic systems (cf. Sec. 1.2).
Here, the bosonic operators â represent one mode of a resonator
and the N atoms are represented by two-level systems which are de-
scribed by the spin-1/2 operators ŝ(n)j , j ∈ {x,y, z,+,−}, n ∈ {1, . . . ,N},
respectively, which fulfil the commutation relations for angular mo-
mentum operators,


ŝ
(n)
j , ŝ(m)

k


= δn,mih

3
ℓ=1

εj,k,ℓ ŝ
(n)
ℓ . (1.106)

Here, εj,k,ℓ is the Levi-Civita symbol5. Since they act on different
Hilbert spaces, operators of different atoms (n,m) always commute.
Therefore, in the following, we will consider commutators with oper-
ators of the same atom only. If it is clear from the context, the label n
for the atoms will be even omitted in the following.

Based on these commutation relation, the commutation relations
for the so-called raising (+) and lowering (−) operators,

ŝ± = ŝx ± iŝy (1.107)

can be derived,
ŝz, ŝ±


= ±hŝ±,


ŝ+, ŝ−


= 2hŝz. (1.108)

On the one hand, the separation of the atoms is small compared to
the wavelength of the mode of the resonator. On the other hand, the
overlap of the wave functions of the single atoms has to be small such
that the particle symmetry can be omitted. In addition, this means

5 With ε1,2,3 = 1 as well as for an even number of permutations of the indices, e. g.
ε2,3,1; for an odd number of permutations of the indices the symbol gives −1, e. g.
ε2,1,3 = −1. If two indices are equal, the symbol gives 0.
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that the actual position of the atoms is irrelevant and the coordinates
of the atoms can be ignored.

We remark that there is no direct interaction between the atoms, i. e.
there is no collision term present in the Hamiltonian. However, due
to the coupling to the resonator field, the atoms interact indirectly
with each other; in fact this is a long range interaction.

The Hamiltonian of the Dicke model is a many-body generalisation
of the Rabi model (Rabi, 1937; Larson, 2007; Braak, 2011). And, as
the Rabi model in the rotating-wave approximation has its counter-
part in the Jaynes–Cummings model (Jaynes and Cummings, 1963;
Meystre, 1992; Shore and Knight, 1993; Larson, 2007), the corre-
sponding rotating-wave approximated Dicke model is given by the
Tavis–Cummings model (Tavis and Cummings, 1968, 1969).

collective spin operators The form of the Dicke Hamilto-
nian suggests the introduction of so-called collective spin operators,

Ĵj =

N
n=1

ŝ
(n)
j , j ∈ {x,y, z,+.−}. (1.109)

In terms of the collective spin operators, the Hamiltonian of Eq. (1.96)
is obtained. These operators affect all atoms in the same manner, i. e.
collectively.

In order to derive the commutation relations for the collective spin
operators, we use the commutation relation of the spin-1/2 operators,
Eq. (1.106). Then we obtain


Ĵj, Ĵk


=

N
n,m=1


ŝ
(n)
j , ŝ(m)

k


= ih

N
n=1

3
ℓ=1

εj,k,ℓ ŝ
(n)
ℓ = ih

3
ℓ=1

εj,k,ℓ Ĵℓ.

(1.110)

Hence, since the collective spin operators fulfil the commutation rela-
tions of angular momentum, they are, as the name suggests, angular
momentum operators as well.

In conclusion, the Dicke model describes the interaction of collec-
tive (large) spins via a bosonic mode. As we pointed out earlier, this
is a long range interaction, which gives a glimpse on the connex-
ion of the Dicke model with the Lipkin–Meshkov–Glick model (Lip-
kin, Meshkov, and Glick, 1965; Meshkov, Glick, and Lipkin, 1965;
Glick, Lipkin, and Meshkov, 1965) and its phase transition (Ribeiro,
Vidal, and Mosseri, 2008).

states of the dicke model In general the states of the Hamil-
tonian of the Dicke model can be expanded by products of states of
the individual atoms,

|m1,m2, . . . ,mN⟩ , (1.111)
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where mn gives the eigenvalues of the ŝz operator of the nth atom. To
be specific, consider

|↑ ↑ ↓ ↑ ↓⟩ , (1.112)

a five-atom state with three atoms in the upper and two atoms in
the lower energy level. These states are eigenstates of the collective
Ĵz operator, which measures the difference of the number of atoms
in the upper and the lower state. The corresponding eigenvalue of Ĵz
is denoted by M. It is either integer (even number of atoms) or half-
integer (odd number of atoms); however, in both cases the difference
of two eigenvalues is always integer.

Now consider the Hamiltonian of the Dicke model in the limit of
g→ 0. Then the Hamiltonian commutes both with Ĵ2 =

3
k=1 Ĵ

2
k and

with Ĵz. Neglecting the part of the resonator in the state vectors at the
moment, we can thus construct simultaneous eigenstates |r,M⟩ of Ĵ2,
Ĵz, and Ĥ. These eigenstates fulfil

Ĵ2 |r,M⟩ = r(r+ 1) |r,M⟩ (1.113)

and

Ĵz |r,M⟩ =M |r,M⟩ . (1.114)

From Dicke (1954) stems the term cooperation number for the quantum
number r. It follows from the commutation relations of the angular
momentum operators, that the modulus of M is bounded by r (Saku-
rai, 1994). In addition, the maximal value of M is given by N/2, i. e.
if all atoms occupy the upper energy level. This corresponds to the
maximal possible value of the collective spin which we denote by J.
In conclusion, the inequality

|M| ⩽ r ⩽
N

2
=: J (1.115)

holds. Hence, for a specific value of r, there are 2r+ 1 states |r,M⟩.
The N+ 1 states with r = N

2 (maximal cooperativity) are called Dicke
states (Emary and Brandes, 2003a). Among the Dicke states are the
states where all N spins point in a single direction, e. g. the state
|r = N

2 ,M = −N
2 ⟩ = |↓↓ . . . ↓⟩.

Given a value for M, there are in general many distributions of
atoms which result in the same value for M. To be specific, the states
|↑↑↓⟩ and |↓↑↑⟩ give both the value M = 1/2. Hence, first of all, the
states |r,M⟩ are in general highly degenerate and the degeneracy is
given by [permutations of multisets (Abramowitz and Stegun, 1972;
Bronstein et al., 2001)]

dM =


N

N
2 +M, N

2 −M


=

N!
N
2 +M


!

N
2 −M


!
, (1.116)



1.3 the dicke model & superradiance 23

where

a
b,c


is the multinomial coefficient. Secondly, to distinguish be-

tween states with same values of r and M, the permutation of atoms
have to be specified. Alternatively, symmetry-adapted states can be
used (Arecchi et al., 1972). The latter are conveniently characterised
by means of Young tableaux (Scharf, 1970; Sakurai, 1994). This goes
as follows. We denote the states of a single spin by a box, , and the
states of N spins by N boxes, ⊗ ⊗ . . . ⊗ . As an example
consider the simplest case, i. e. the case N = 2. Then the many-body
states reduce to two sets of states,

⊗ = ⊕ . (1.117)

Remember that each box corresponds to a single spin. The Young
tableaux on the right-hand side of Eq. (1.117) are read as follows:
(i) Vertically stacked boxes correspond to anti-symmetrised states, (ii)
horizontally written boxes correspond to symmetrised states, (iii) hor-
izontally and vertically placed boxes correspond to mixed symmetry
(not present in the example). So in the above example, the Young
tableau corresponds to the single anti-symmetric (singlet) state

|r = 0,M = 0⟩ = 1√
2


|↑↓⟩− |↓↑⟩


. (1.118)

In addition, the second Young tableau corresponds to the three
symmetric (triplet) states

|r = 1,M = 1⟩ = |↑↑⟩ , (1.119)

|r = 1,M = 0⟩ = 1√
2


|↑↓⟩+ |↓↑⟩


, (1.120)

|r = 1,M = −1⟩ = |↓↓⟩ . (1.121)

The same construction can be done for arbitrary number N of spins.
However, this becomes cumbersome for increasing N.

One last note concerning the Young tableaux: as was explicitly
shown in the above example, the totally symmetric Young tableaux
with horizontally placed boxes only, contain the states where all spins
point in a single direction. For this reason, this Young tableau repre-
sents the Dicke states.

selection rules Up to now, we have considered the Hamilto-
nian of the Dicke model without the atom-light coupling, i. e. g = 0.
For finite values of g, the coupling term g√

N


â†+ â)


Ĵ++ Ĵ−


induces

transitions between the eigenstates |r,M⟩ [see Eq. (A.42)],

Ĵ± |r,M⟩ ∝ |r,M± 1⟩ . (1.122)

These transitions are accompanied with either a creation or annihila-
tion of one photon in the mode of the resonator.
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|r = 1,M = 1⟩

|r = 1,M = 0⟩

|r = 1,M = −1⟩

|r = 0,M = 0⟩
Ĵ±

Ĵ±

Figure 1.3: Transitions between states in the two-atom Dicke model. On the
left are the triplet states; on the right is the single singlet state
[see Eqs. (1.118) - (1.121)]. The Dicke Hamiltonian induces tran-
sitions (arrows) via the collective operators Ĵ± among the states
with equal quantum number r.

The collective operator Ĵ2 is still conserved and correspondingly r
is still a good quantum number. Contrary, the operator Ĵz does not
commute with the Hamiltonian. Consequently the selection rules

∆r = 0, ∆M = ±1 (1.123)

hold. Thus, having a state vector with a certain eigenvalue of Ĵ2, the
state vector will remain in the sector of the Hilbert space with this
eigenvalue. This is depicted in Fig. 1.3 for the two-atom case from
Eqs. (1.118)-(1.121).

One last remark: if the Hamiltonian contains terms with no collec-
tive spin operators, e. g. operators which act on a single spin only,
then Ĵ2 as well does not commute with the Hamiltonian of the Dicke
model anymore, r is no good quantum number, and transitions be-
tween states with different values of r and different Young tableaux
i. e. different symmetries are possible. This would correspond to non-
vertical transitions in Fig. 1.3.

Tied with the Dicke model is the phenomenon of superradiance.
There are two instances of superradiance. One appears for systems
with a finite number of atoms which are initially excited and are
coupled to a resonator in a vacuum state. The other instance of su-
perradiance appears as a thermodynamic or quantum phase for a
infinite number of atoms in the regime of large atom-field coupling
g. Whereas the second instance is of main interest in this thesis, we
will briefly discuss the first instance for the sake of completeness in
the next subsection.
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1.3.2 Dicke Superradiance

Consider a system of N two-level atoms in a state with all atoms in
their respective excited state (a Dicke state),

|r = J,M = J⟩ = |↑↑ . . . ↑⟩ . (1.124)

Remember, we have set J = N/2. Now, think of putting the atoms in-
side a resonator which is in a vacuum state, i. e. there are no photons
present. Now let this state evolve in time under the dynamics of the
Hamiltonian of the Dicke model, Eq. (1.96). Due to the coupling term
gâ†(Ĵ++ Ĵ−) in the Hamiltonian, the atomic state will couple with the
vacuum state of the resonator and eventually transfer excitations to
the resonator. To be concrete, the rate Ir(M) of spontaneous emission
from the state |r,M⟩ to the energetically lower lying state |r,M− 1⟩ is
proportional to the matrix element (Sakurai, 1967) [see Eq. (A.42)]

|⟨r,M− 1|Ĵ−|r,M⟩|2 = (r−M+ 1)(r+M). (1.125)

For a single atom (r = M = 1/2), this matrix element is one. Conse-
quently, Ir(M) is given by

Ir(M) = (r−M+ 1)(r+M)I0, (1.126)

where I0 is the spontaneous emission rate for a single atom in the
resonator.

The state |r = J,M = J⟩ will thus descend the ladder of Dicke states
|r = J,M = J⟩ → |r = J,M = J− 1⟩ → . . . → |r = J,M = −J+ 1⟩ →
|r = J,M = −J⟩ and radiate with the rate IN/2(M). This rate is largest
for values of M around zero. If the number N of atoms is large, the
rate of spontaneous emission is approximately given by

IN/2(M≪ N) =
N2

4
I0. (1.127)

So in the course of time, the emitted radiation in the resonator is
proportional to the squared of the number of radiators (atoms) in the
volume. This is in stark contrast to the case if the N atoms would
radiate independently with different phases, i. e. incoherently. Then
the emitted radiation is given by N times the radiation of a single
atom. Contrary to that, here, the emission rate is proportional to N2

which corresponds to the case that all atoms radiate in phase, i. e.
coherently. This observation led Dicke (1954) to the term superradiant,

“For want of a better term, a gas which is radiating strongly because of
coherence will be called super-radiant”.

In experiment, Dicke superradiance is observed as a flash with in-
tensity N2 and width 1/N (Gross and Haroche, 1982). Dicke super-
radiance has been observed in many different physical system, for
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example in atomic gases (Skribanowitz et al., 1973; Gross, Fabre,
et al., 1976; Gross, Raimond, and Haroche, 1978; Röhlsberger et
al., 2010; Goban et al., 2015), quantum dots (Scheibner et al., 2007),
circuit QED (Mlynek et al., 2014), or semiconductors (Laurent et al.,
2015).

We note that there are also exist so-called subradiant states (Dicke,
1954; Scully, 2015; Guerin, Araújo, and Kaiser, 2016). These are
highly correlated states as well, but are characterised by a low cooper-
ation number and show suppressed radiation rates. The singlet state
of the two-atom system above is an example of a subradiant state.
The atoms still radiate coherently but with mutual opposite phases.

To conclude, Dicke superradiance is a collective quantum mechan-
ical phenomenon, since in the beginning the photonic mode of the
resonator can be in a vacuum state and quantum fluctuations trig-
ger transitions from the state |r = J,M = J⟩ down the ladder of Dicke
states. This would be impossible without the quantum vacuum fluc-
tuations. Hence, there is no Dicke superradiance for a classical sys-
tem without an electromagnetic field. So, Dicke superradiance is the
extension of spontaneous emission of a single atom to many atoms,
like lasing is the generalisation of stimulated emission of one atom
to many atoms. This statement makes clear that Dicke superradiance
and lasing share the same background, but are based on two different
physical mechanisms. In addition, the rates for stimulated emission
of superradiant states are normal (Dicke, 1954).

1.3.3 The Hepp–Lieb Superradiant Phase Transition

The striking phenomenon of Dicke superradiance occurs for a large
but finite number N of atoms. In a seminal paper, Hepp and Lieb

(1973b) have studied the thermodynamic properties of the Hamilto-
nian of the Tavis–Cummings model, i. e. the Dicke model in a rotating-
wave approximation. They have computed the free energy and ther-
modynamic expectation values of intensive observables in the ther-
modynamic limit, i. e. for N → ∞, V → ∞, with ρ = N/V = const.,
and found a phase transition from a normal to a so-called superradiant
phase. Here, the superradiant phase is characterised by a macroscopic
excitation of both the atoms and the mode of the resonator, and a
spontaneous polarisation of the atoms. Macroscopic means that the
corresponding thermodynamic expectation value is extensive, i. e. it
scales with the number of atoms in the system. On the other hand, in
the normal phase, on average, all atoms are in the ground state and
no photon is excited in the mode of the resonator.
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The superradiant phase is realised for high coupling strengths and
low temperatures. More precisely, the phase boundary between the
two phases is given explicitly by the relation6

g(T) =

√
hω∆

2


1

tanh[12∆/(kBT)]
, (1.128)

where g,ω, and ∆ are defined as in Secs. 1.2.1, 1.3.1, kB is Boltzmann’s
constant, and T is the temperature of the system.

Shortly after the paper of Hepp and Lieb (1973b), Wang and Hioe

(1973) analysed the thermodynamics of the Dicke model in the rotating-
wave approximation as well. They considered the canonical partition
sum and used Glauber’s coherent states to evaluate the resonator part
of the partition sum. Due to the fact that only collective spin operators
enter the Hamiltonian of the Dicke model, they obtained the remain-
ing atomic part of the partition function by a simple diagonalisation
of a two-by-two matrix. In the end, Wang and Hioe reproduced the
findings of Hepp and Lieb for the superradiant phase transition.

Already a few years before the paper of Hepp and Lieb (1973b),
Mallory (1969) observed that for high coupling strengths, states
with a larger number of excitations in the mode of the resonator, are
lower in energy. In addition, Scharf (1970) analysed the spectrum
of the Hamiltonian of the Dicke model and computed asymptotic
expressions for the eigenvalues for large atom number. In his paper
Scharf shortly notes that for large couplings strengths, the ground-
state energy can become negative and a phase transition can occur.

The superradiant phase appears for the Dicke model in the rotating-
wave approximation for large values of the coupling strength. How-
ever, the rotating-wave approximation becomes worse for large val-
ues of the coupling strength (Agarwal, 1971; Walls, 1972; Knight

and Allen, 1973), i. e. the Tavis–Cummings model should be a bad
description for the system in the superradiant phase. Thus, Hepp

and Lieb (1973a) on the one hand extended their previous paper,
and Hioe (1973) and Carmichael, Gardiner, and Walls (1973) ex-
tended the calculation of Wang and Hioe (1973). They all considered
the full Hamiltonian of the Dicke model without the rotating-wave
approximation and obtained qualitatively the same results as before.
The only difference lies in the fact that the phase boundary is shifted
by a factor of 2.

The discovery of the superradiant phase transition in the Dicke
model triggered a myriad of following publications ranging from dis-
sipative pumped Dicke models (Hepp and Lieb, 1973c; Dembiński

and Kossakowski, 1974) which combine lasing with superradiance,
coupling to phonons (Thompson, 1975) leading to an enhancement

6 In fact, this is the result for the Dicke model and not for the Tavis–Cummings model.
However, the result of Hepp and Lieb (1973b) is identical except for the factor 1/2
outside the square root.
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of the number of excitations in the mode of the resonator and a first-
order superradiant phase transition, to studies of the original Dicke
model by other methods like gap equations (Vertogen and De Vries,
1974) or the Holstein–Primakoff transformation to study the superra-
diant quantum phase transition (Emary and Brandes, 2003a).

Newer trends concern the Berry (Liberti, Plastina, and Piperno,
2006), or geometric phase (Chen, Li, and Liang, 2006) as an indica-
tor for the superradiant quantum phase transition, or the extension
of ground-state quantum phase transitions to phase transitions in the
excited states (Brandes, 2013). Furthermore, there is also interest in
dynamical properties of the phase transition (Bastidas et al., 2012),
how the character of the phase and the point of the phase transi-
tion changes when dissipation for the atoms or the resonator mode is
taken into account (Kopylov, Emary, and Brandes, 2013; Bhaseen et
al., 2012; Keeling, Bhaseen, and Simons, 2010; Genway et al., 2014),
or how the phase transition can be controlled by time-delayed feed-
back (Kopylov, Emary, Schöll, et al., 2015).

1.3.3.1 Thermal Phase Transitions

Thermodynamic phases of matter are characterised by certain proper-
ties like particle density, order, or elasticity. The solid phase of water
for example has a high particle density, is highly ordered, and hardly
elastic. Contrary, the gaseous phase of water is characterised by a
low particle density, no order at all, and a high elasticity. Each phase
retains these properties upon small changes of parameters like tem-
perature or pressure, respectively. However, for large modifications
of the parameters, eventually, one of the phases will become unsta-
ble whereas the other phase becomes stable. This is the point where
the phase transition occurs. The stability of the phases is quantified
by the thermodynamic potentials, like the internal energy, the free
energy, or Gibbs free energy. Consider, for example, the free energy,

F(T ,V ,N) = E(T ,V ,N) − TS. (1.129)

Here, E is the internal energy and S is the entropy of the system. The
phase with the lowest free energy is stable, whereas the other phase
is unstable. For parameter values at the phase transition, the thermo-
dynamic potential is non-analytic. In general, this non-analyticity is
in theory realised in systems in the thermodynamic limit only.

The Hepp–Lieb superradiant phase transition is a so-called second-
order or continuous phase transition. The order of phase transitions
is determined by the degree of the non-analyticity of the thermody-
namic potential (Goldenfeld, 2010; Jaeger, 1998). For a nth-order
phase transition, the first n− 1 partial derivatives of F are continuous,
whereas the nth derivative shows a discontinuity. In practice, only
first and higher-order phase transitions are discriminated. Therefore,
the latter are comprised as continuous phase transitions.
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Examples for first-order phase transitions are the melting of ice
to water or the formation of a Bose–Einstein condensate in an ideal
Bose gas (Griffin, Snoke, and Stringari, 1995, Sec. 3); examples
of second-order phase transition are the paramagnetic–ferromagnetic
phase transition in the Ising model (Huang, 1964, Sec. 17.3), the phase
transition from the fluid to the gaseous phase at the critical point
in the van der Waals model, and of course the superradiant phase
transition in the Dicke model.

During first-order phase transition, energy, the so-called latent heat,
is exchanged between the system and its environment but the temper-
ature of the system remains the same. Considering the example of the
ice-water phase transition, the latent heat is consumed to break up the
inter-molecular binding forces.

On the other hand, second-order or continuous phase transitions
are typically characterised by the breakdown of some symmetry in
the systems during the process of the phase transition. Consider for
example the Ising model. In the paramagnetic phase, the mean mag-
netisation is zero, i. e. no preferred direction for the Ising spins is
present. In contrast, in the ferromagnetic phase, all spins point along
the same direction although the Hamiltonian of the systems does not
prefer this specific direction. This is also the essence of spontaneous
symmetry breaking.

The simple expression of Eq. (1.129) for the free energy already
gives an intuitive mathematical explanation why phase transitions oc-
cur. For a system to be in thermal equilibrium, the free energy needs
to be minimal. In view of Eq. (1.129), this can be achieved either by
minimising the internal energy E or by maximising the entropy S.
Thus we have a competition between energy and entropy. For low
temperatures, the entropy term can be neglected and the state of the
system is characterised by a minimal E. In most physical systems this
is realised by states with some kind of order. On the other hand, for
high temperatures, the entropy term in Eq. (1.129) dominates and
high-entropy states define the system. States of high entropy have
a disordered character. Hence, the first observation is that for inter-
mediate temperatures, there must be some kind of transition from
the ordered to the disordered state of the system. This transition
can become manifest in the thermodynamic limit via a phase tran-
sition. The second observation is that high-temperature phases have
disordered character and low-temperature phases have ordered char-
acter. Consider for instance the paramagnetic-ferromagnetic phase
transition in the Ising model. In the high-temperature paramagnetic
phase, each spin points in an individual direction. Contrary, in the
low-temperature ferromagnetic phase, all spins point along the same
direction and are thus perfectly ordered.
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1.3.3.2 Quantum Phase Transitions

In the limit T → 0 the internal energy E and the free energy F are
identical, cf. Eq. (1.129). Hence upon minimisation of the free energy,
the free energy is given by the ground-state energy of the system and
is thus solely determined by quantum properties. Different phases of
matter can still exist at zero temperature and are realised by different
parameters α of the underlying Hamiltonian Ĥ(α).

Examples of Quantum phase transitions are the Mott insulator-
superfluid phase transition in the Bose–Hubbard model (Fisher et
al., 1989; Greiner et al., 2002), the quantum Ising model (Sachdev,
1999), or, as we will see shortly, the superradiant phase transition in
the Dicke model (Emary and Brandes, 2003a).

Quantum phase transitions are an intense field of research. On the
one hand, the ground state of certain quantum many-body system,
i. e. the phase, can be either a tool or a resource for quantum computa-
tion (Nielsen and Chuang, 2002) and quantum simulation (Jaksch,
Bruder, et al., 1998; Jaksch and Zoller, 2005; Lewenstein et al.,
2007). In addition, quantum many-body physics and its dynamics
can help to understand thermalisation (Altland and Haake, 2012).

1.3.3.3 The Hepp–Lieb Quantum Phase Transition in the Dicke Model

The zero-temperature quantum phase transition in the generalised
Dicke model is of predominant importance for this thesis. For this
reason, this section is devoted to give a review of the quantum phase
transition in the original Dicke model.

First start with a short reprise of the Dicke model. The Hamiltonian
written in terms of the collective spin is given by (cf. Sec. 1.3.1)

Ĥ = ∆ Ĵz + hω â†â+
g√
N

(â† + â)

Ĵ+ + Ĵ−


. (1.130)

Before we analyse the Hamiltonian in detail, we consider two limiting
cases: namely the extreme cases of large, g ≫ ∆, hω, and small, g ≪
∆, hω, coupling strengths g.

For small g, the two terms ∆ Ĵz and ωâ†â dominate in the Hamil-
tonian (1.130). Thus the eigenstates of the system are product states
of the eigenstates of both the operators Ĵz and â†â, i. e. a product of
Dicke and Fock states. The state with lowest energy is then the prod-
uct state where the mode of the resonator is in its vacuum state and
the collective spin is in a Dicke state with M = −J. Hence for small
coupling strength g, all atoms are in their respective ground state
and no photon is excited in the resonator. This is visualised in the top
panel of Fig. 1.4. In the following, this will be called the normal phase.

In the other limit, for large coupling strengths g, the coupling term
g(â† + â)


Ĵ+ + Ĵ−


dominates. Using Eq. (A.32) for the collective spin

operators and represent the â and â† operators in terms of the posi-
tion operator x̂ of the mode oscillator (Glauber, 1963), the coupling
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g < gc

g > gc

Figure 1.4: State of the Dicke model for g < gc (top panel) and for g > gc
(bottom panel). For small couplings, all atoms occupy their re-
spective ground state. The two-level atoms are represented by
spin-1/2 systems. Thus all spins point downwards in the nor-
mal phase. In contrast for the superradiant phase where the cou-
pling constant g is large, the atoms are spontaneously polarised,
i. e. the spins point in x direction. In addition, the mode of the
resonator is macroscopically excited, which is indicated by the
yellow shading.

term can be written in the form g x̂ Ĵx. Thus in this limit, the eigen-
states of the Hamiltonian, Eq. (1.130), of the Dicke model are product
states of eigenstates of the position operator for oscillator and Dicke
states in the Ĵx basis, respectively. The product state with the lowest
energy corresponds to a product state with a displaced oscillator and
a state for the collective spin with ⟨Ĵz⟩ = 0 and ⟨Ĵx⟩ = ±J = ±N/2.
Thus for large couplings, the atoms are spontaneously and macro-
scopically polarised and the mode of the resonator is in a coherent
state (Glauber, 1963; Sakurai, 1994). This is visualised in the bottom
panel of Fig. 1.4. This phase is called the superradiant phase.

We see that the two limits of small and large coupling strengths
support completely different ground states. On the one hand there is
an excitation-less ground state; on the other hand, the ground state
has macroscopic excitations both in the atomic and in the resonator
degrees of freedom. In principle there could be a smooth crossover
from the one to the other ground state upon changing the coupling
strength g. However, we will see that this is not the case and at a
certain value gc, a phase transition sets in.

For arbitrary coupling strength and finite atom number, no exact
analytical solution, i. e. determination of the eigensystem, has been
found so far. Moreover the model is non-integrable (Emary and Bran-
des, 2003a). Since we are interested in the phase transition and its
properties, we will consider the thermodynamic limit N → ∞ only.
There are different methods to analyse the Hamiltonian of the Dicke
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model in this limit, e. g. setting up semi-classical equations of mo-
tion (Bhaseen et al., 2012; Kopylov, Emary, Schöll, et al., 2015;
Bakemeier, Alvermann, and Fehske, 2012, 2013), or study the semi-
classical energy landscape (Engelhardt et al., 2015). In this thesis,
we employ a method which is based upon the Holstein–Primakoff
transformation (Emary and Brandes, 2003a,b),

Ĵz = b̂
†b̂−

N

2
, Ĵ+ = b̂†


N− b̂†b̂ , Ĵ− =


N− b̂†b̂ b̂. (1.131)

The operators b̂†, b̂ are bosonic creation and annihilation operators
and fulfil the canonical commutation relation

[b̂, b̂†] = 1. (1.132)

A review of the Holstein–Primakoff transformation and its generalisa-
tion is given in Appendix A.3. In the end, all approaches are equiva-
lent and are essentially different sides of a coin of a mean-field theory.

Additionally, the bosonic operators both for the spin, b̂, and for the
mode of the resonator, â, are displaced via a displacement operator
(Glauber, 1963) by the, in general complex, displacements Ψ and φ,
respectively,

b̂ = d̂+
√
NΨ, â = ĉ+

√
Nφ. (1.133)

The fluctuation operators ĉ and d̂ fulfil ⟨ĉ⟩ = ⟨d̂⟩ = 0. For every state
in the Hilbert space with at most N atoms, it holds that ⟨b̂⟩/

√
N ⩽ 1.

Hence the above scaling with
√
N guarantees |Ψ| ⩽ 1. In addition, we

define the real quantity

ψ =
√
1−Ψ∗Ψ . (1.134)

By expanding the square root in Eqs. (1.131) in powers of
√
N, the

Hamiltonian, Eq. (1.130), of the Dicke model can be written in the
form

Ĥ = N ĥ(0) +N
1/2 ĥ(1) +N0 ĥ(2) +N−1/2ĥ(3) + . . . , (1.135)

where the terms in the Hamiltonian have been sorted in powers of
N
1/2. All terms proportional to N−1/2 and lower can be neglected in

the thermodynamic limit. The individual Hamiltonians ĥ(ℓ) are given
by

ĥ(0) = ∆Ψ∗Ψ−
∆

2
+ hωφ∗φ+ g(φ∗ +φ)(Ψ∗ +Ψ)ψ, (1.136)

ĥ(1) = ∆(Ψd̂† +Ψ∗d̂) + hω(φĉ† +φ∗ĉ) (1.137)

+ g(ĉ† + ĉ)(Ψ∗ +Ψ)ψ+ g(φ∗ +φ)(d̂† + d̂)ψ

−
g

2
(φ∗ +φ)(Ψ∗ +Ψ)(Ψd̂† +Ψ∗d̂)/ψ,
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and

ĥ(2) = ∆d̂†d̂+ hωĉ†ĉ+ g(ĉ† + ĉ)(d̂† + d̂)ψ (1.138)

−
g

2
(ĉ† + ĉ)(Ψ∗ +Ψ)(Ψd̂† +Ψ∗d̂)/ψ

−
g

2
(φ∗ +φ)(d̂† + d̂)(Ψd̂† +Ψ∗d̂)/ψ

−
g

2
(φ∗ +φ)(Ψ∗ +Ψ)d̂†d̂/ψ

+
1

8
g(φ∗ +φ)(Ψ∗ +Ψ)(Ψd̂† +Ψ∗d̂)2/ψ3.

On closer inspection, we see that the prefactors of the operators d̂, d̂†,
ĉ, and ĉ† in ĥ(1) are obtained by differentiating ĥ(0) with respect to Ψ,
Ψ∗, φ, and φ∗, respectively. The same observation can be made, when
comparing the coefficients appearing in ĥ(2) and ĥ(1). This property
is a consequence of the affine displacement of the creation and anni-
hilation operators and the Taylor expansion of the square root origi-
nating from the Holstein–Primakoff transformation.

From Eq. (1.133) it is clear that a possible phase of the displace-
ments Ψ and φ can be defined in the operators b̂ and â, respectively
and, finally, get absorbed in the states. Consequently, the displace-
ments Ψ and φ can be chosen real. Then the Hamiltonians from above
are written as,

ĥ(0) = ∆Ψ2 −
∆

2
+ hωφ2 + 4gφΨψ, (1.139)

ĥ(1) = ∆Ψ(d̂† + d̂) + hωφ(ĉ† + ĉ) + 2gΨψ(ĉ† + ĉ) (1.140)

+ 2gφψ(d̂† + d̂) − 2gφΨ2(d̂† + d̂)/ψ,

ĥ(2) = ∆d̂†d̂+ hωĉ†ĉ+ gψ(ĉ† + ĉ)(d̂† + d̂) (1.141)

− gΨ2(ĉ† + ĉ)(d̂† + d̂)/ψ− gφΨ(d̂† + d̂)2/ψ

− 2gφΨ d̂†d̂/ψ+
1

2
gφΨ2(d̂† + d̂)2/ψ3

We see that the Hamiltonian of the Dicke model separates into an
operator-free contribution, ĥ(0), a part ĥ(1) linear in the operators,
and a part ĥ(2) bi-linear in the operators. The Hamiltonian ĥ(0) en-
ters with a prefactor N in the Hamiltonian, Eq. (1.135). Hence, in the
thermodynamic limit, it gives the main contribution to the energy of
the system and represents the ground-state energy of the system. The
term ĥ(1) will drop out, as we will see in the following. Finally, the
term ĥ(2) represents low-energy excitations above the ground state.

In Sec. 1.3.3.1, we have seen that for zero temperature, the energy of
the system is identical to the free energy. Furthermore, the free energy
needs to be minimal in thermal equilibrium. Therefore, the displace-
ments Ψ and φ have to be chosen such that the expectation value of
the Hamiltonian becomes minimal. Since we consider the thermody-
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namic limit only, this minimisation is equivalent to minimising the
ground-state energy ĥ(0). In conclusion, the equations

∂ĥ(0)

∂φ
= 0 (1.142)

and

∂ĥ(0)

∂Ψ
= 0 (1.143)

have to be fulfilled. Inserting the expression of ĥ(0) from Eq. (1.139),
results in the requirements,

hωφ+ 2gΨψ = 0 (1.144)

and

∆Ψ+ 2gφ(ψ−Ψ2/ψ) = 0, (1.145)

or rather, when combining both equations,

Ψ

1−

 g
gc

2
(1+ 2Ψ2)


= 0. (1.146)

Here we have defined the critical coupling strength

gc =

√
hω∆

2
, (1.147)

whose meaning becomes clear shortly.
The Eq. (1.146) has two solutions:

(i) one trivial solution with

Ψn = 0 and φn = 0, (1.148)

and

(ii) one non-trivial solution with

Ψs = ±


1

2


1−
gc
g

2
and φs = ∓

g
hω


1−

gc
g

4
. (1.149)

Up to now we only know that these two solutions correspond to ex-
trema of the ground-state energy. To test for minima, we analyse the
Hessian matrix of ĥ(0),

H =


∂2ĥ(0)

∂Ψ2
∂2ĥ(0)

∂Ψ∂φ
∂2ĥ(0)

∂φ∂Ψ
∂2ĥ(0)

∂φ2


=

2∆+ 4g
φΨ(2Ψ2−3)

ψ3
4g1−2Ψ

2

ψ

4g1−2Ψ
2

ψ 2hω

 , (1.150)

from which one distinguishes minima from maxima by the sign of
its determinant; a positive sign corresponds to a minimum and a
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⟨â†â⟩

−N
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⟨Ĵz⟩

g/gc

Figure 1.5: Ground-state expectation values of the collective spin operators
Ĵx and Ĵz, and the occupation â†â of the resonator mode as func-
tions of g/gc. The units of ⟨â†â⟩ are arbitrary.

negative sign to a maximum. Inserting the above solutions, (1.148)
and (1.149), yields

Det

H(Ψn,φn)


= −g2 + g2c (1.151)

and

Det

H(Ψs,φs)


= 2(g2 − g2c). (1.152)

So we see that for g < gc solution (i) minimises the free energy,
whereas for g > gc the second solution (ii) provides a minimal free
energy. Hence, for g < gc, solution (i) describes the physical state of
the system and for g > gc, solution (ii) does.

To see the physical meaning of both solutions, we look at ground-
state expectation values of the observables â†â, Ĵz, and Ĵx. All three
can be written in terms of the displacements φ and Ψ as follows,

⟨â†â⟩ = Nφ2, ⟨Ĵz⟩ = N

Ψ2− 1/2


, ⟨Ĵx⟩ = NΨ


1−Ψ2. (1.153)

Inserting the two solutions, (1.148) and (1.149), we obtain

⟨â†â⟩n = 0, ⟨Ĵz⟩n = −
N

2
, and ⟨Ĵx⟩n = 0 (1.154)

for the first solution, and

⟨â†â⟩s = N
 g

hω

2
1−

gc
g

4
, ⟨Ĵz⟩s = −

N

2

gc
g

2
, (1.155)

⟨Ĵx⟩s = ±
N

2


1−

gc
g

4
(1.156)

for the second solution.
The indices correspond to the ones of the solution of Eqs. (1.148),

(1.149). The latter solution shows a macroscopic7 occupation of the

7 Macroscopic, since the expectation values scale with the particle number N



36 introduction

ĥ(0)

∂ĥ(0)/∂g
∂2ĥ(0)/∂g2

−1

0

0 1 2

−0.5

g/gc

Figure 1.6: Ground-state energy ĥ(0) and its first, ∂ĥ(0)/∂g, and second,
∂2ĥ(0)/∂g2, derivative as functions of g/gc in arbitrary units and
with ∆ = 1. The ground-state energy itself and its first derivative
are continuous, whereas its second derivative shows a disconti-
nuity at g = gc.

mode of the resonator, a macroscopic excitation of the atoms, and
a spontaneous polarisation of the atoms in spin-x direction. Due to
this spontaneous occupation of the resonator mode and spontaneous
polarisation of the atoms, this solution, or phase, is called superradiant
phase. On the other hand, the first solution with no excitations for
both the resonator and the atoms and no polarisation of the atoms is
called normal phase.

In Fig. 1.5, the ground-state expectation values for all three obser-
vables, Ĵx, Ĵz, and â†â are shown. We clearly see a non-analyticity at
g = gc, i. e. a quantum phase transition. The order can be deduced
from the free energy, i. e. the ground-state energy. The latter is given
by inserting the displacements Ψ and φ into ĥ(0), which yields,

ĥ(0) =

−∆2 , g < gc

−∆4

g/gc

2
+

gc/g

2 , g > gc.
(1.157)

First and second derivative with respect to g of ĥ(0) are given by

∂ĥ(0)

∂g
=

0 , g < gc

−∆2
1
gc


g/gc −


gc/g

3 , g > gc

(1.158)

∂2ĥ(0)

∂g2
=

0 , g < gc

−∆2
1
g2c


1+ 3


gc/g

4 , g > gc.
(1.159)
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Figure 1.7: Low-energy excitation energies ε± as functions of g/gc on reso-
nance ∆ = hω. Both dispersions are continuous and one disper-
sion vanishes at the point of the phase transition, g = gc.

The ground-state energy and its first and second derivative are shown
in Fig. 1.6. One sees that the ground-state energy itself and its first
derivative are continuous for all coupling strengths g. However, the
second derivative of ĥ(0) shows a discontinuity at the critical cou-
pling strength gc. Hence, at the critical coupling strength gc the sys-
tem undergoes a quantum phase transition of second order, i. e. a
continuous quantum phase transition.

From the analysis of the ground-state energy ĥ(0), we have derived
various properties of the superradiant phase transition. What addi-
tional information can be gained from the other terms, ĥ(1) and ĥ(2)

of the Hamiltonian? First, ĥ(1) becomes identically zero, upon insert-
ing the solutions for the displacements Ψ and φ. Second, ĥ(2) is bi-
linear in the creation and annihilation operators of the atoms and the
mode of the resonator. Using a Bogoliubov and a canonical transfor-
mation (Emary and Brandes, 2003a), ĥ(2) can be cast in the form

ĥ(2) = ε+ê
†
+ê+ + ε−ê

†
−ê−, (1.160)

where ê†± and ê± are creation and annihilation operators as well; see
Sec. A.4.1 of the appendix for details. The bosonic operators are given
by linear combinations of the operators ĉ and d̂ (Emary and Bran-
des, 2003a). They correspond to low-energy excitations above the
ground state with energies ε±. The energies ε± are shown in Fig. 1.7.
Both excitation energies are continuous and the excitation energy ε−
vanishes on the phase transition at the critical coupling strength gc.
This is a general feature of continuous phase transitions, since in the
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thermodynamic limit, the first excited state and the ground state ap-
proach arbitrarily close at the critical coupling strength gc.

To conclude, we have analysed the superradiant quantum phase
transition in the Dicke model with help of the Holstein–Primakoff
transformation via a mean-field theory - the displacements Ψ and
φ are mean-fields. All collective expectation values can be deduced
from these mean-fields. In addition, the excitation energies of the
bosonised system can be calculated as well. In Ch. 2, we will extend
this procedure to analyse the generalised Dicke model with three-
level systems interacting with two resonator modes. The calculation
is in principle the same, but more involved.

1.3.4 What is the Connection between Dicke Superradiance and the Hepp–
Lieb Superradiant Phase Transition?

We have two seemingly different phenomena, Dicke superradiance
and the Hepp–Lieb superradiant phase transition. Now the question
arises: why do they both share the name superradiance?

First, both phenomena originate from the same model - the Dicke
model - and both superradiant effects are collective by nature. In addi-
tion, Dicke superradiance sets in for high densities of the atomic gas.
In the Dicke model, the coupling strength g between atoms and the
modes of the resonator is proportional to atomic density. Therefore,
high values of g or high densities, respectively result in a superradi-
ant phase transition as well.

Furthermore, for Dicke superradiance, the superradiant states are
Dicke states with small values for the quantum number M and, in
addition, are eigenstates of the collective Ĵz operator. However, the su-
perradiant ground state in the superradiant phase for high coupling
strengths g is no Dicke state, i. e. an eigenstate of the Ĵz operator8.
Contrary, the superradiant ground state, for large g, is an eigenstate
of the Ĵx operator. Identical is the expectation value for the Ĵz op-
erator; it is zero in the superradiant phase for large g as well [cf.
Eq. (1.155) and Fig. 1.5].

Another point is that in superradiant phase transitions, the mode
of the resonator is a part of the system itself; thus it represents no
external drive to the atoms, i. e. no energy is pumped into the system.
As in Dicke superradiance, the field of the mode of the resonator fa-
cilitates spontaneous transitions between levels of the atoms. For this
reason, we have the name superradiance. If we had a driven system,
i. e. energy would be pumped into the atoms, then emission and ab-
sorption would be induced, and the dynamics would not solely be
determined by spontaneous processes.

8 In fact, in the thermodynamic limit, this statement has to be relaxed, since then Ĵx
and Ĵz commute.
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1.4 the superradiant phase transition in experiment

As mentioned in Sec. 1.3.2, Dicke superradiance has been experimen-
tally realised in various systems ranging from atomic to solid-state
physics. Unfortunately, the same cannot been said for the Hepp–Lieb
superradiant phase transition.

Soon after the discovery of the superradiant phase transition in the
Dicke model, Rzażewski, Wódkiewicz, and Żakowicz (1975) showed
that the phase transition is merely an artefact of the approximations
done to the original light-matter Hamiltonian, Eq. (1.70). They argue
that for real atoms, the coupling strength g, Eq. (1.88), and the dia-
magnetic parameter κ, Eq. (1.92), cannot be tuned independently. In
particular, κ cannot be set to zero, i. e. the diamagnetic term propor-
tional to A2 cannot be neglected. They considered the Hamiltonian
of the Dicke model but with the diamagnetic term, κ


â + â

2, in-
cluded. Using the same techniques to calculate the partition sum of
this extended Hamiltonian as Wang and Hioe (1973), they derived
a new condition for the existence of a non-trivial, i. e. superradiant
phase. However, by application of the exact Thomas–Reiche–Kuhn
sum rule for atomic systems (see Sec. A.1), Rzażewski, Wódkiewicz,
and Żakowicz (1975) showed that this condition is never satisfied and
thus the normal phase is always stable and no superradiant phase is
possible for real atomic systems. This fact is called no-go theorem.

Although there was some controversy (Gilmore, 1976; Orszag,
1977) whether or not the phase transition persists if the diamagnetic
term is included, these objections were clarified by several publica-
tions (Rzażewski, Wódkiewicz, and Żakowicz, 1976; Rzażewski and
Wódkiewicz, 1976; Knight, Aharonov, and Hsieh, 1978; Bialynicki-
Birula and Rza̧żewski, 1979; Slyusarev and Yankelevich, 1979)
and the no-go theorem for the Dicke model of atomic systems is un-
doubtedly valid.

With the advent of new quantum systems like superconducting
electrical circuits (Blais et al., 2004), there was renewed interest in
the study of superradiant quantum phase transitions (Chen, Chen,
and Liang, 2007; Lambert et al., 2009; Nataf and Ciuti, 2010a,b).
In fact, Nataf and Ciuti (2010a) considered a collection of artificial
atoms, Cooper pair boxes, capacitively coupled to a transmission line
resonator. They derived a Hamiltonian which has the same form as
the Hamiltonian for real atoms, with a diamagnetic term included
as well. However, in contrast to the A2 term of real atoms, here, the
diamagnetic contribution can be made arbitrarily small and thus the
no-g0 theorem is circumvented and the superradiant phase transi-
tion becomes possible for these artificial atomic systems. There was a
controversy, though, if the effective model of Blais et al. (2004) and
Nataf and Ciuti (2010a) correctly describes the underlying micro-
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Figure 1.8: Proposed atomic level scheme of Dimer et al. (2007) to generate
an effective Dicke Hamiltonian. The single-particle ground states
|0⟩ and |1⟩ are coupled off-resonant to the excited states |r⟩ and
|s⟩ via two lasers (with Rabi frequenciesΩr andΩs, respectively)
and a quantised mode of a resonator (with coupling strengths
gr and gs). For instance, the blue, curved, double-headed arrow
marks the transition which, after adiabatically eliminating the
excited states, results in the term (â†Ĵ− + âĴ+) of the effective
Dicke Hamiltonian. Figure taken and adapted from Dimer et al.
(2007).

scopic model correctly (Viehmann, Delft, and Marquardt, 2011;
Ciuti and Nataf, 2012; Viehmann, Delft, and Marquardt, 2012).

Another route to realise the superradiant quantum phase transi-
tion is to create a physical system which is effectively described by
a Dicke-type Hamiltonian. Dimer et al. (2007) proposed a theoreti-
cal scheme where four-level atoms interact simultaneously with one
quantised light mode of a resonator and two classical electromagnetic
fields of a pair of lasers, see Fig. 1.8. The two ground states are indi-
rectly coupled via one of the lasers, one of the excited levels, and
the mode of the resonator. On adiabatically eliminating both atomic
excited states, the system is described by an effective Dicke Hamil-
tonian. The parameters entering this effective Hamiltonian are solely
determined by the frequencies and intensities of the lasers and the
resonator mode. The diamagnetic term seems to be irrelevant in this
proposal.

Recently, Baden et al. (2014) experimentally realised these cavity-
assisted Raman transitions using two hyperfine ground states of 87Rb
atoms. They could easily tune the energies of the resonator mode
and the spin, and observe the superradiant phase transition via the
photon output of the resonator. Concerning the Lambda-model of
this thesis, the outlook of Baden et al. (2014) sounds very promising:
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Figure 1.9: (Left panel): Experimental data from Baumann, Guerlin, et al.
(2010), showing the formation of a self-organisation of a trapped
Bose–Einstein condensate. The above two density plots give the
momentum modes of the Bose–Einstein condensate in a time-
of-flight image. The lower diagram shows the mean number of
photons in the resonator on increasing the pump strength, i. e.
increasing the coupling strength in the effective Dicke model.
In the self-organising phase, i. e. the superradiant phase, higher
momentum modes become macroscopically populated (upper
two images) and the mean photon number shows a sharp peak
(lower curve). (Right panel): Sketch of the spatial density distribu-
tion of the Bose–Einstein condensate, below (upper image) and
above (lower image) the critical pump power Pcr. Above Pcr
the atoms self-organise on a chequerboard pattern. Figures taken
from Baumann, Guerlin, et al. (2010).

they note that their experimental setup could be easily extended to
(effective) multi-level atoms and additional modes of the resonator.

In a similar scheme, the motional degrees of freedom of a Bose–
Einstein condensate are coupled to a mode of a resonator and a pump
laser (Nagy et al., 2010). In this proposal the effective two-level system
is spanned by the ground state of the Bose–Einstein condensate and
states with an additional photon momentum. The energy spacing of
the two-level system is given by the detuning of pump laser and res-
onator mode frequency, whereas the coupling strength between the
effective two-level systems and the resonator mode is proportional to
the intensity of the pump laser. In a seminal work Baumann, Guer-
lin, et al. (2010) and Baumann, Mottl, et al. (2011) demonstrate
for the first time the superradiant quantum phase transition of the
Dicke model in experiment. They monitor the output of the resonator
field and are thus able to see the phase transition in situ, see left
panel of Fig. 1.9. The superradiant phase transition manifests itself
in a chequerboard pattern of the Bose–Einstein condensate, see right
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panel of Fig. 1.9. So, although the superradiant phase transition can-
not be tested directly for atomic systems, the simulation or emulation
of atomic systems allows for the experimental analysis of the Dicke
model.

1.5 outline of this thesis

This introduction gave the basis for the rest of this thesis. The Dicke
model in its original and its generalised form was derived microscop-
ically. Of course, the Hamiltonian of the Dicke model can always be
studied independently of any microscopic physical system like atoms
interacting with light. But, for the existence of the superradiant phase
in atomic systems and the validity of the no-go theorem in particu-
lar, the definition of the parameters in the Hamiltonian of the Dicke
model in terms of the microscopic constants is crucial.

The rest of this thesis addresses the properties of a generalised
Dicke model, the Lambda-model. In Ch. 2, we study the phases and
phase transitions of the Lambda-model without the diamagnetic term.
This chapter is not restricted to atomic system. Then, in Ch. 3, we
will analyse how the phases and the phase transition of the Lambda-
model is altered if the diamagnetic term is included. Intrinsically, this
chapter directs its focus on atomic systems. Both chapters treat the
quantum zero-temperature superradiant phase transition only. Con-
trary, in Ch. 4, we analyse how this quantum phase transition for the
Lambda-model without diamagnetic term extends for finite tempera-
tures. Ch. 5 summarises the results of this thesis and gives an outlook
for following work.



2
P H A S E T R A N S I T I O N S A N D D A R K - S TAT E P H Y S I C S
I N T W O - C O L O U R S U P E R R A D I A N C E

This Chapter is mostly based on the publication:

Hayn, Mathias, Clive Emary, and Tobias Brandes (2011): Phase tran-
sitions and dark-state physics in two-color superradiance, Phys. Rev. A
84, p. 053856. doi: 10.1103/PhysRevA.84.053856.

2.1 introduction

Superradiance is a collective phenomenon originating from atomic
physics. There, it is regarded as a collective spontaneous emission
process of a dense ensemble of radiating atoms (Gross and Haroche,
1982). The atoms interact indirectly via a light field. The first micro-
scopic description of this phenomenon was given by Dicke (1954).

In the context of phase transitions, a collection of two-level sys-
tems coupled linearly to one bosonic mode undergoes a second-order
phase transition from a normal to a superradiant phase at a certain
critical coupling strength. This phase transition has been investigated
theoretically a long time ago by Hepp and Lieb (1973b,a) and also
by Wang and Hioe (1973). However, there is no experimental real-
isation in atomic systems to date. There were theoretical proposals
to produce this phase transition in artificial quantum systems like
circuit or cavity quantum electrodynamic (QED) systems (Chen, Chen,
and Liang, 2007; Dimer et al., 2007; Lambert et al., 2009). Though,
there exist no-go theorems for atomic, cavity, and circuit QED sys-
tems which theoretically preclude the normal–superradiant phase
transition (Rzażewski, Wódkiewicz, and Żakowicz, 1975; Nataf and
Ciuti, 2010a; Viehmann, Delft, and Marquardt, 2011).

Recently, experimental progress was achieved in this field by the
group of Esslinger, who coupled a Bose–Einstein condensate to a sin-
gle mode of an open optical cavity (Baumann, Guerlin, et al., 2010).
The unitary dynamics of this system is described by an effective Dicke
Hamiltonian (Baumann, Guerlin, et al., 2010; Nagy et al., 2010). Ex-
perimentally, the normal–superradiant phase transition is observed
by measuring the mean intra-cavity photon number.

Inspired by this experimental realisation of an effective Hamilto-
nian of the Dicke model, we theoretically investigate an extension of
the Dicke model; namely three-level systems in Lambda-configuration
are considered. These are coupled to two independent bosonic modes.
We are interested in how the phase transition is changed in this config-
uration. In addition, coherent population trapping (Arimondo, 1996),

43

http://dx.doi.org/10.1103/PhysRevA.84.053856


44 two-colour superradiance

ω1

ω2

g1

g2

E1

E2

E3

|1⟩

|2⟩

|3⟩

∆
δ

Figure 2.1: Level structure of the Lambda-configuration. One particle has
two single-particle ground states |1⟩, |2⟩ and one excited state
|3⟩. The excited state is coupled to the two ground states via two
independent bosonic modes with in general different frequencies
ω1, ω2 and coupling strengths g1, g2.

dark states and the STIRAP scheme (Bergmann, Theuer, and Shore,
1998) are associated with this kind of system in the single-particle
and semi-classical case. We therefore study to what extent dark-state
physics plays a role in our quantum many-body setting.

This chapter is organised as follows: At the beginning, in Sec. 2.2,
we introduce the model, give a detailed description of the Hamil-
tonian and discuss the symmetries of the model. Subsequently in
Sec. 2.3, we describe the Holstein–Primakoff transformation for multi-
level systems and derive an effective Hamiltonian in the thermody-
namic limit. We diagonalise this effective Hamiltonian and give ex-
plicit expressions for the ground-state energy and the excitation ener-
gies. Section 2.4 addresses the phase transition: The zero-temperature
phase diagram is mapped out and analysed. In Sec 2.4.2, we discuss
properties of the appearing dark state. Finally, Sec. 2.5 closes with
some conclusions.

2.2 the model

We consider a quantum mechanical system consisting of N distin-
guishable particles and two independent bosonic modes. Each parti-
cle i possess three energy levels |1⟩(i), |2⟩(i), and |3⟩(i) with energies
E1 ⩽ E2 ⩽ E3, respectively. For later analysis we define, ∆ = E3 − E1,
δ = E2 − E1, with ∆ ⩾ δ ⩾ 0. The level scheme is in so-called Lambda-
configuration. Each of the two lowest energy levels couple to the



2.2 the model 45

highest energy level via one of the bosonic modes, respectively (see
Fig. 2.1). The Hamiltonian has the form (cf. Sec. 1.2.2)

Ĥ =

3
n=1

En Â
n
n +

2
n=1


hωn â

†
n ân

+
gn√
N


â†n + ân

 
Â 3
n + Â n

3


. (2.1)

Here, Â s
r are defined by

Â s
r =

N
i=1

|r⟩(i)⟨s| , r, s = 1, 2, 3, (2.2)

and represent collective particle operators. See Sec. A.2 of the ap-
pendix for details.

The diagonal operators Â n
n measure the occupation of the nth en-

ergy level, i.e. how many of the N particles are in the single-particle
energy state |n⟩. This illustrates the first term in the Hamiltonian (2.1).
The second term gives the energy of the two bosonic modes, each one
having the frequency ω1 and ω2, respectively. The operators â†n and
ân create and annihilate a boson in the nth mode. They fulfil canon-
ical commutator relations, [ân, â†m] = δn,m and [ân, âm] = 0. Lastly,
the third term in the Hamiltonian, (2.1), represents the interaction
of the particles with the two bosonic modes. Here, gn are the corre-
sponding coupling constants. This model was derived in Sec. 1.2.2.

We call the first (|1⟩) and the third (|3⟩) energy levels of the particle
system together with the first bosonic mode blue branch, since ∆ ⩾ δ is
assumed. Correspondingly, we call the second (|2⟩) and the third (|3⟩)
energy level of the particle system together with the second bosonic
mode red branch (see Fig. 2.1).

2.2.1 Symmetries and Phase Transition

Our model is a generalisation of the Dicke model (Dicke, 1954; Emary

and Brandes, 2003a), where particles with only two energy levels are
considered, and the two states are coupled via one bosonic mode. In
the thermodynamic limit, the Dicke model exhibits a non-analytic be-
haviour in physical observables as a function of the coupling strength
g. Thus, the Dicke model exhibits a quantum phase transition, which
is continuous, i.e. of second order and separates two phases: a nor-
mal phase and a so-called superradiant phase. The superradiant phase
has a ground state with spontaneously broken symmetry. A similar
behaviour is anticipated in the extended model.

In analogy to the Dicke model, here exist two symmetry operators

Π̂n = exp

−iπ


−Â n

n + â†n ân


, n = 1, 2, (2.3)
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which commute with the Hamiltonian, Eq. (2.1). These operators have
the physical meaning of parity operators and have eigenvalues ±1. The
operator η̂n = −Â n

n + â†n ân in the exponent of the parity operator,
Eq. (2.3), is related to the number of excitations in the blue (n = 1) or
in the red (n = 2) branch of the Lambda-system and the number of
excitations in the corresponding nth bosonic mode, respectively. The
operator η̂n itself is not conserved, i.e. [η̂n, Ĥ] ̸= 0. This is consistent
with the Dicke model (Emary and Brandes, 2003a).

In the rotating-wave approximation, the operators η̂n become con-
served quantities. Conservation of the two parities means that the
Hilbert space decomposes into four irreducible subspaces. It is the
parity which is spontaneously broken in the superradiant phase of
the Dicke model. Thus, we expect that at least one of the parities is
also spontaneously broken in our model.

2.2.2 Collective Operators

Using the definition (2.2) of the operators Â s
r , one can show that the

two sets of traceless operators

1
2(Â

3
3 − Â n

n ), Â 3
n , Â n

3


, n = 1, 2 fulfil

the angular momentum algebra, respectively, i.e. they are generators
of the special unitary group SU(2) and can be understood as angular
momentum operators. See Sec. A.2 of the appendix for details. In ad-
dition, the operators Â s

r fulfil the algebra of generators of the unitary
group U(3) (Okubo, 1975; Klein and Marshalek, 1991)

Â s
r , Â m

n


= δs,n Â

m
r − δr,m Â

s
n (2.4)

and are, according to that, generators of the group U(3). It is known,
that the generators of the group U(N) can be represented by either
N or by N − 1 independent bosons (Okubo, 1975; Klein and Mar-
shalek, 1991). The first choice corresponds to the Schwinger boson
representation (Schwinger, 1952; Okubo, 1975; Sakurai, 1994), the
latter choice to the Holstein–Primakoff transformation of the genera-
tors (Okubo, 1975; Holstein and Primakoff, 1940; Klein and Mar-
shalek, 1991).

2.3 methods

The Dicke model was introduced in 1954 (Dicke, 1954). To date there
exists no exact analytical solution to this model for a finite number
N of particles. However, the Dicke Hamiltonian can be exactly diag-
onalised in the thermodynamic limit (Emary and Brandes, 2003a),
i.e. N → ∞. This can be achieved by using the already mentioned
Holstein–Primakoff transformation. We apply a generalised version
of the Holstein–Primakoff transformation to diagonalise the Hamilto-
nian (2.1) of the Lambda-system. The following calculation is a gener-
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alisation of the computations done in Sec. 1.3.3.3 and in (Emary and
Brandes, 2003a).

2.3.1 The Generalised Holstein–Primakoff Transformation

In this thesis we discuss in particular the Lambda-system which has
N = 3 single-particle states. Though, we will formulate the follow-
ing argument for a general number N of single-particle states. The
number of particles is denoted by N, whereas the number of single-
particle states is denoted by N.

The generalised Holstein–Primakoff transformation maps the gen-
erators Â s

r of the group U(N) onto a combination of creation and an-
nihilation operators b̂†r, b̂r of N− 1 independent bosons. Hence, the
operators b̂†r and b̂r fulfil canonical commutator relations, [b̂r, b̂

†
s] =

δr,s, [b̂r, b̂s] = 0. These bosons we will refer to as Holstein–Primakoff
bosons (HP bosons for brevity). One of the N states of the single-
particle system is called the reference state, which we denote with
|m⟩. The meaning of the state |m⟩ and which of the N states can
be used as a reference state will be elucidated later. Then, the gen-
eralised Holstein–Primakoff transformation is given by (Klein and
Marshalek, 1991)

Â s
r = b̂†r b̂s,

Â m
r = b̂†r Θ̂m


N

,

Â s
m = Θ̂m


N

b̂s,

Â m
m = Θ̂m


N
2,


r, s ̸= m (2.5)

with

Θ̂m

N

=


N−


r̸=m

b̂
†
r b̂r . (2.6)

There are at most N HP bosons per mode, i.e. the expectation value
satisfies ⟨b̂†r b̂r⟩ ⩽ N, r ̸= m, due to the operator Θ̂m


N


and the fact
that b̂r acting on a state with zero HP bosons in the rth mode equals
to zero. In addition, the number of HP bosons in all N − 1 modes
does not exceed N, i.e.


r ̸=m ⟨b̂

†
r b̂r⟩ ⩽ N.

We now apply the generalised Holstein–Primakoff transformation,
Eq. (2.5), to the Hamiltonian (2.1) with e.g. |1⟩ as the reference state
(m = 1) and obtain

Ĥm=1 = E1N+ δ b̂†2 b̂2 +∆ b̂
†
3 b̂3 +

2
n=1

hωn â
†
n ân

+
g1√
N


â
†
1 + â1

 
b̂
†
3 Θ̂1


N

+ Θ̂1


N

b̂3


+
g2√
N


â
†
2 + â2

 
b̂
†
3 b̂2 + b̂

†
2 b̂3


. (2.7)
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Figure 2.2: Physical interpretation of the bosons introduced via the gener-
alised Holstein–Primakoff transformation (2.5): the two bosonic
operators b̂†r, with r ̸= m, can be understood as collectively ex-
citing the particles from the reference state |m⟩ (left: m = 1, right:
m = 2) to the state |r⟩. The analogue holds for the annihilation
operators b̂r.

The first line is the free part of the Hamiltonian, from which one can
infer the meaning of the HP bosons: The number of HP bosons in the
mode with frequency δ is given by the operator b̂†2 b̂2. This means
that b̂†2 is related to the creation of excitations with energy δ, which
is the energy separation of the single-particle energy levels |1⟩ and
|2⟩. Thus, the operator b̂†2 can be understood as collectively exciting
the particles from the first energy level to the second one. This is
visualised in Fig. 2.2. An analogous reasoning can be given for the
other HP boson corresponding to the operator b̂3.

2.3.2 The Thermodynamic Limit

The expectation value of the HP boson operators b̂r is zero for a finite
number N of particles. In contrast, in the thermodynamic limit, the ex-
pectation value of this operator can be finite, and is then macroscopic.
Given that the occupations ⟨Â n

n ⟩ and ⟨â†n ân⟩ should scale with the
particle number N, we make the ansatz

b̂r =
√
N Ψr + d̂r, r ̸= m, (2.8a)

ân =
√
N φn + ĉn, n = 1, 2, (2.8b)

in the thermodynamic limit. Here
√
N Ψr and

√
N φn are the ground-

state expectation values of b̂r and ân, respectively. This means that
the ground-state expectation value of the bosonic operators d̂r and
ĉn is zero and, consequently, these operators can be interpreted as
quantum fluctuations. Furthermore, they fulfil canonical commutator
relations and their matrix elements are of the order of N0. The pa-
rameters Ψr and φn can be chosen real and range from zero to one,
which ensures ⟨b̂†r b̂r⟩ ⩽ N. Another viewpoint is that the operators
d̂r and ĉn can be generated from b̂r and ân, respectively, by a canoni-
cal transformation and can be considered as displaced bosonic modes
(Emary and Brandes, 2003a).
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Using the ansatz (2.8), we find that the ground-state occupations of
the particles and of the bosonic modes are given by

⟨Â r
r ⟩ = NΨ2r + ⟨d̂†r d̂r⟩ , r ̸= m, (2.9)

⟨Â m
m ⟩ = Nψ2m −


r ̸=m

⟨d̂†r d̂r⟩ , (2.10)

⟨â†n ân⟩ = Nφ2n + ⟨ĉ†n ĉn⟩ , n = 1, 2, (2.11)

with the abbreviation

ψ2m = 1−

r ̸=m

Ψ2r . (2.12)

Inserting the ansatz of Eq. (2.8) into the operator Θ̂m

N

, Eq. (2.6),

of the Holstein–Primakoff transformation, Eq. (2.5), we obtain

Θ̂m

N

=


Nψ2m −


r ̸=m


d̂
†
r d̂r +

√
N Ψr


d̂
†
r + d̂r


. (2.13)

Since we are working in the thermodynamic limit, we can asympto-
tically expand the square root in powers of


1/N and obtain up to

the order N−1:

Θ̂m

N

≈
√
N ψm


1−

1

2
√
N ψ2m


r̸=m

Ψr

d̂†r + d̂r


−

1

2Nψ2m


r ̸=m


d̂†r d̂r +


s̸=m

Ψr Ψs

4ψ2m


d̂†r + d̂r


d̂†s + d̂s


.

(2.14)

In this expansion we have neglected terms of the order N−3/2 and
higher, which do not contribute to the Hamiltonian (2.7) in the ther-
modynamic limit.

Finally, we insert the expression (2.14) for the operator Θ̂m

N


and
the ansatz (2.8) into the Hamiltonian (2.7). In the thermodynamic
limit, we can neglect terms with inverse powers of N and constants
of the order N0. This eventually yields

Ĥm=1 = Nĥ
(0)
m=1 +

√
N ĥ

(1)
m=1 + ĥ

(2)
m=1, (2.15)

with

ĥ
(0)
m=1 = E1 + δΨ

2
2 +∆Ψ

2
3 + hω1φ

2
1 + hω2φ

2
2 (2.16)

+ 4 g1φ1ψ1 Ψ3 + 4 g2φ2 Ψ2 Ψ3,

and

ĥ
(1)
m=1 =


d̂
†
2 + d̂2


δΨ2 − 2 g1φ1 Ψ2 Ψ3/ψ1 + 2 g2φ2 Ψ3


+

d̂
†
3 + d̂3


∆Ψ3 + 2 g1φ1ψ1


1−Ψ23/ψ

2
1


+ 2 g2φ2 Ψ2


+

ĉ
†
1 + ĉ1


hω1φ1 + 2 g1ψ1 Ψ3


+

ĉ
†
2 + ĉ2


hω2φ2 + 2 g2 Ψ2 Ψ3


, (2.17)
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and

ĥ
(2)
m=1 = d̂

†
2 d̂2


δ− 2 g1φ1 Ψ3/ψ1


(2.18)

+ d̂†3 d̂3

∆− 2 g1φ1 Ψ3/ψ1


+ hω1 ĉ

†
1 ĉ1 +

hω2 ĉ
†
2 ĉ2

−

d̂
†
2 + d̂2

2 1
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g1φ1 Ψ

2
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−

d̂
†
3 + d̂3
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−
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†
2 + d̂2
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d̂
†
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
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
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1


+
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d̂
†
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†
2 d̂3


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−

ĉ
†
1 + ĉ1


d̂
†
2 + d̂2


g1 Ψ2 Ψ3/ψ1

+

ĉ
†
1 + ĉ1


d̂
†
3 + d̂3


g1ψ1


1−Ψ23/ψ

2
1


+

ĉ
†
2 + ĉ2


d̂
†
2 + d̂2


g2 Ψ3

+

ĉ
†
2 + ĉ2


d̂
†
3 + d̂3


g2 Ψ2.

The Hamiltonian Ĥ separates into three parts ĥ(n), each one scaling
with N(2−n)/2 and containing products of n operators d̂r, ĉi.

2.3.3 Ground-State Properties

The ground-state energy ĥ
(0)
m (2.16) of the Hamiltonian (2.15) is a

function of the parameters φ1, φ2, Ψ2 and Ψ3. Next, we extremise the
ground-state energy with respect to these parameters, i. e. we stipu-
late

∂ĥ
(0)
m=1

∂φn

!
= 0, n = 1, 2, (2.19a)

∂ĥ
(0)
m=1

∂Ψr

!
= 0, r = 2, 3. (2.19b)

In the case of ψ1 being finite, this stipulation is equivalent to set the
coefficients of the linear Hamiltonian ĥ(1)m=1 (2.17) equal to zero [cf.
(Emary and Brandes, 2003a)].

The first set of Eqs. (2.19a) gives conditional equations for the pa-
rameters φn of the bosonic modes,

φ1 = −2
g1

hω1
ψ1 Ψ3, φ2 = −2

g2
hω2

Ψ2 Ψ3, (2.20)

which, when inserted into the second set of Eqs. (2.19b), gives condi-
tional equations for the parameters Ψr of the HP-bosons,

δ+ 4
 g21

hω1
−

g22
hω2


Ψ23


Ψ2 = 0, (2.21a)

∆− 4
g21

hω1


1−Ψ22 − 2Ψ

2
3


− 4

g22
hω2

Ψ22


Ψ3 = 0. (2.21b)

These equations have several sets of solutions:
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(i) normal state . The trivial solution, Ψ2 = Ψ3 = 0, is attended
by φ1 = φ2 = 0 [see Eq. (2.20)]. Since φ2n measures the macroscopic
(∼ N) ground-state expectation value of the nth bosonic mode [see
Eq. (2.11)], this trivial solution describes the normal state, i. e.. no
superradiant state of the system. In addition, the ground-state ex-
pectation value of the occupation of the nth energy level, which is
given by ⟨Â n

n ⟩, is macroscopic for n = 1 only [see Eqs. (2.9), (2.10)].
Thus, all particles occupy their respective single-particle ground state
|1⟩. The ground-state energy of the many-particle system is given by
ĥ
(0)
normal = E1. Finally, we note that the normal state is always a solu-

tion of the equations (2.20) and (2.21), irrespective of the couplings
g1 and g2. However, analysing the Hessian matrix of ĥ(0)m=1, restricts1

the range of the first coupling to

g1 <

√
∆ hω1
2

≡ g1,c, (2.22)

where we have defined a critical coupling strength g1,c.

(ii) blue superradiant state . Of course the Eqs. (2.21) give
non-trivial solutions as well. The second solution is given by

Ψ2 = 0, Ψ3 = ±

1

2


1−

g1,c

g1

2
, (2.23a)

φ1 = ∓
g1

hω1


1−

g1,c

g1

4
, φ2 = 0. (2.23b)

In contrast to the previous solution, this solution has a finite parame-
ter φ1 and for this reason a finite and macroscopic occupation ⟨â†1 â1⟩
of the first bosonic mode. This solution corresponds to a superradiant
state of the system, where superradiance occurs in the blue branch of
the Lambda-system. More precisely, we call this state a blue superra-
diant state. Furthermore, the first and the third single-particle energy
level are macroscopically occupied.

If we insert the solution (2.23) into the ground-state energy (2.16)
of the many-particle system, we obtain

ĥ
(0)
blue = E1 −

∆

4

 g1
g1,c

2
1−

g1,c

g1

22
. (2.24)

Hence, the ground-state energy of the superradiant state is always
smaller than the ground-state energy of the normal state. However,
this solution is only valid for couplings g1 ⩾ g1,c, since for smaller
couplings g1 the non-zero parameters of the solution (2.23) become
purely imaginary and, in addition, the Hessian matrix of ĥ(0)m=1 be-
comes indefinite.

1 Cf. the discussion for the Dicke model in Sec. 1.3.3.3, in particular the analysis from
Eq. (1.150) on.
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(iii) red superradiant state . There can be another set of pa-
rameters φn, Ψr which extremise the ground-state energy ĥ(0)m . This
set cannot be deduced from the ground-state energy ĥ(0)m=1, Eq. (2.16),
because it represents not a local but a global minimum of ĥ(0)m=1. Since
ĥ
(0)
m=1 is defined on the unit ball B2 =


(x,y) ∈ R2 | x2 + y2 ⩽ 1


,

the global minimum lies on the boundary of B2, that is Ψ22 +Ψ
2
3 = 1

(ψ1 = 0) holds. To obtain this global minimum one has to first of all
set ψ1 = 0 in Eq. (2.16) and omit all terms involving ψ1 in Eq. (2.17).
Secondly, one extremises the ground-state energy as before, but tak-
ing the constraint Ψ22 + Ψ

2
3 = 1 into account. Eventually, we obtain

Ψ2 = ±

1

2


1+

g2,c1
g2

2
, (2.25a)

Ψ3 = ±

1

2


1−

g2,c1
g2

2
, (2.25b)

φ1 = 0, φ2 = ∓
g2

hω2


1−

g2,c1
g2

4
, (2.25c)

where we have introduced

g2,c1 ≡


(∆− δ) hω2
2

(2.26)

a second critical coupling strength.
The occupation of the first single-particle energy level |1⟩ is not

macroscopic, i.e. it is negligible in the thermodynamic limit. Since
φ1 = 0 and φ2 is finite, this state also corresponds to a superradiant
state, whereat superradiance occurs in the red branch of the Lambda-
system. We call this superradiant state a red superradiant state.

This red superradiant solution can also be found by direct extrem-
isation of the ground-state energy ĥ(0)m=2(Ψ1,Ψ3), i.e. if one consid-
ers the second level |2⟩ as the reference state m of the Holstein–
Primakoff transformation, Eq. (2.5). In general, one can say that using
the Holstein–Primakoff transformation in the thermodynamic limit
with the mth state as the reference state, one can describe many-
particle states in which the occupation of the mth energy level of the
single-particle system is finite. In order to describe the normal state,
which is a state where all particles occupy their respective ground
state |1⟩, one has to take |1⟩ as the reference state (m = 1). In contrast,
to describe a state where no particle occupies its respective single-
particle ground state |1⟩, either |2⟩ (m = 2) or |3⟩ (m = 3) has to be
chosen as the reference state.

At last, the ground-state energy of this red superradiant state is
given by

ĥ
(0)
red = E1+ δ−

1

4

√
∆+
√
δ
 g2
g2,c2

−
√
∆−
√
δ
 g2,c2
g2

2
, (2.27)
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where

g2,c2 ≡
√
∆+
√
δ
√

hω2

2
(2.28)

is a third critical coupling strength.

unphysical solution. There is also a solution of the Eqs. (2.21)
which corresponds to a state where both branches of the Lambda-
system are superradiant. However, this state is either not well defined
for certain couplings g1 and g2 or it does not minimise the ground-
state energy (2.16). In the latter case, this solution can be attributed to
a point of inflection on the energy landscape ĥ(0)m=1(Ψ2,Ψ3).

A further solution of the Eqs. (2.21) represents a dark state. This
state is discussed in detail in Sec. 2.4.2.

2.3.4 Excitation Energies

So far, we have extremised the ground-state energy ĥ(0) of the Hamil-
tonian (2.15) in the thermodynamic limit. By this procedure, the lin-
ear part ĥ(1) is eliminated as well. The next step is to diagonalise
the quadratic part ĥ(2). This can be achieved by means of a principle
axis or Bogoliubov transformation (Emary and Brandes, 2003a). See
Sec. A.4.2 of the appendix for details. The diagonalised Hamiltonian
is then given by

ĥ(2) =

4
n=1

hεn ê
†
n ên, (2.29)

where ê†n(ên) create (annihilate) quasi-particles which refer to bosonic
excitations, i.e. ê†n and ên satisfy canonical commutator relations. The
operators ê†n, ên and the excitation energies hεn have to be evaluated
separately in the three different states. The determination of these
quantities reduces to a diagonalisation of two-by-two matrices. The
diagonalisation procedure yields four excitation energies, which are
given in the appendix; see Eq. (A.156)-Eq. (A.162) of Sec. A.4.2.

2.4 phase transitions

Comparing the ground-state energies of the states we found in the
last section, we can derive the zero-temperature phase diagram. As
mentioned before, the normal state is only stable for couplings g1 <
g1,c and its energy is independent of both coupling strengths g1 and
g2. We also observed that the energy of the blue superradiant state is
always less than the energy of the normal state. However, the blue su-
perradiant state is stable for g1 ⩾ g1,c only. In addition, by comparing
the energies of the blue (2.24) and the red (2.27) superradiant state,
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Figure 2.3: Phase diagram for ∆ > δ > 0 showing the three different phases:
the normal and the blue and red superradiant phase. The (sym-
metric) normal phase is defined by Ψ2 = Ψ3 = φ1 = φ2 = 0.
In the (symmetry-broken) blue superradiant phase Ψ2 = 0,Ψ3 ̸=
0,φ1 ̸= 0 and φ2 = 0. Finally, in the (symmetry-broken) red su-
perradiant phase Ψ2 ̸= 0,Ψ3 ̸= 0,φ1 = 0 and φ2 ̸= 0 holds. The
phase transition from the normal to the blue superradiant phase
is of second order (red dashed line), whereas the phase transi-
tion from the normal to the red superradiant phase and between
the two superradiant phases is of first order (red solid line). The
normal state is meta-stable in the region of the red superradiant
phase as long as g1 < g1,c.

we see that only for g2 ⩾ g2,c2 the red superradiant state is stable.
Furthermore, in this parameter regime its energy is always smaller
than the energy of the normal state [see Eq. (2.27) with g2 = g2,c2].

2.4.1 The Phase Diagram

From this discussion we derive the phase diagram which is shown
in Fig. 2.3. It consists of three phases: one normal phase for couplings
g1 < g1,c and g2 < g2,c2 , one blue superradiant phase for couplings
g1 ⩾ g1,c and g2 ⩽ ḡ2,c(g1), and lastly one red superradiant phase for
couplings g1 < ḡ1,c(g2) and g2 ⩾ g2,c2 . If both couplings are at criti-
cality, g1 = g1,c and g2 = g2,c2 , all three phases coexist, i.e. there is a
triple point in the phase diagram. Here, ḡ1,c(g2) and ḡ2,c(g1) parame-
terise the same curve, which represents the phase boundary between
the two superradiant phases (see Fig. 2.3). Both ḡ1,c(g2) and ḡ2,c(g1)

are given by the condition that the energies of the blue (2.24) and the
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red (2.27) superradiant state intersect, i.e. both can be obtained by
setting the Eqs. (2.24) and (2.27) equal. For ḡ1,c(g2) we obtain after
several algebraic transformations

ḡ21,c(g2) = g
2
2

1

2

ω1
ω2


1+

g2,c1
g2

4
−
δ hω2
2 g22

+

1+

g2,c1
g2

2
1−

g2,c1
g2

22
−
δ hω2
g22


. (2.30)

In the limit δ → 0, the phase boundary flattens to a straight line,
limδ→0 ḡ1,c(g2) =


ω1/ω2 g2.

The order of a phase transition is defined by the non-analytic be-
haviour of a thermodynamic potential (cf. Sec. 1.3.3.1). In the case
of zero temperature, the ground-state energy represents a thermody-
namic potential and hence its derivatives give the order of the phase
transition. The ground-state energy of the normal state is E1, irrespec-
tive of the couplings g1 and g2. Hence, all derivatives with respect
to g1 and g2 vanish. Comparing this result with the first and sec-
ond derivatives of the ground-state energy of the blue (2.24) and the
red (2.27) superradiant state, we see that the phase transition from
the normal phase to the blue (red) superradiant phase is of second
(first) order. The ground-state energy is shown in Fig. 2.4.

In addition, the parameters Ψr (r = 2, 3) and φn (n = 1, 2) also
give evidence for the phase transition and can be interpreted as order
parameters. An order parameter is continuous for second-order phase
transitions and discontinuous for first-order phase transitions (Gold-
enfeld, 2010). This behaviour is visible in Fig. 2.4. The order param-
eters are zero in the symmetric (normal) phase and are finite in the
symmetry-broken (superradiant) phase. The corresponding symmetry
is the parity symmetry (see Sec. 2.2). In the blue (red) superradi-
ant phase, the parity symmetry corresponding to the parity operator
Π̂1 (Π̂2) [see Eq. (2.3)] is broken, since e.g. in the blue superradiant
phase for finite φ1 the operator ĉ†1 ĉ1 in the Hamiltonian (2.18) is
not invariant under the symmetry transformation Π̂1: Π̂1 ĉ

†
1 ĉ1 Π̂

†
1 =

ĉ
†
1 ĉ1 +

√
Nφ1(ĉ

†
1 + ĉ1) +Nφ21.

Both, the phase transition and the order of the phase transition can
also be deduced from the excitation energies. The excitation energies
from the Eqs. (A.156)-(A.162) are shown in Fig. 2.5. At the phase tran-
sition at least one of the excitation energies either tends to zero or
is discontinuous. The first case corresponds to a second-order, the
latter case to a first-order phase transition. The second-order phase
transition can be read off the excitation energy ε4 which is zero for
g1 = g1,c and g2 < g2,c2 .

Finally, we note that the phase transition from the normal to the
blue superradiant phase is in accordance with the superradiant phase
transition in the Dicke model (Emary and Brandes, 2003a), i.e. it is
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Figure 2.4: Ground-state energy ĥ(0), ground-state occupation φ2n of the
first (n = 1) and the second (n = 2) bosonic mode and the
ground-state occupation Ψ2n of the single-particle energy lev-
els (n = 1, 2, 3). Numerical values: ∆ = hω1 = 1, δ = 0.75,
hω2 = 0.25 (on resonance).

of second order and one (the atomic) branch of the excitation energies
tends to zero at the phase transition.

The discontinuity of the order parameters and the first derivative
of the ground-state energy at the phase transition between the normal
and the red superradiant phase scales with

√
δ. Thus, this first-order

phase transition becomes continuous in the limit δ→ 0. However, the
phase boundary between the two superradiant phases persists to be
a first-order phase transition in this degenerate limit. This is also the
case in the limit of large couplings, g1/g1,c,g2/g2,c2 →∞.
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Figure 2.5: Excitation energies εn from Eqs. (A.156)-(A.162). Numerical val-
ues: ∆ = hω1 = 1, δ = 0.75, hω2 = 0.25 (on resonance).

2.4.2 Dark State

Due to the interaction of a quantum system with its environment,
decay processes within the quantum system occur. Eigenstates of the
Hamiltonian which are unaffected by these decay processes are called
dark states. In our model, a dark state is a many-body state which
does not radiate, i. e. a state where the occupation in either of the
bosonic modes is zero. This condition is satisfied if the two mean-
fields φn are zero. From Eqs. (2.20) we see that the normal state,
with Ψ2 = Ψ3 = 0, is a trivial dark state. In general, it suffices to
set Ψ3 = 0 for a dark state. Applying this condition to Eq. (2.21),
we can identify a dark state for δ = 0 only, i. e. for two energetically
degenerate ground states. In the thermodynamic limit, the coherence
of this dark state is given by ⟨Â 2

1 ⟩ = Nψ1 Ψ2, and is therefore finite
apart from the two trivial cases ψ1 = 0 or Ψ2 = 0. The energy of the
dark state is simply ĥ(0)Dark = E1.
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We obtain the excitation energies for the dark state by diagonalis-
ing ĥ(2)m=1 from Eq. (2.18). For any given Ψ2, these energies can be
computed from the characteristic equation

Det

 ∆2 − ε2 2 g1ψ1
√

hω1∆ 2g2 Ψ2
√

hω2∆

2g1ψ1
√

hω1∆ (hω1)
2 − ε2 0

2 g2 Ψ2
√

hω2∆ 0 (hω2)
2 − ε2

 = 0,

(2.31)

where DetM is the determinant of the matrix M. The characteristic
equation is readily solved in the case of two-photon resonance (ω1 =
ω2 = ∆/h ≡ ω), yielding the energies

ε1 = 0, ε2 = hω, (2.32)

ε3,4 =


(hω)2 ± 2 hω


g21

1−Ψ22


+ g22 Ψ

2
2 , (2.33)

where the additional zeroth mode ε1 stems from the limit δ→ 0.
The parameter Ψ2 is arbitrary and can range from zero to one. For

a given Ψ2, we find by analysis of the Hessian matrix of ĥ(0)m=1, that
this dark state is meta-stable if the inequality

g1/g1,c
2
1−Ψ22


⩽ 1−


g2/g2,c

2
Ψ22 (2.34)

is satisfied. Otherwise this dark-state solution is unstable. In Eq. (2.34)
we have introduced the critical coupling strength g2,c ≡

√
hω2∆/2.

We emphasise that the dark state exists for δ = 0 only. By inspection
of the inequality (2.34), we make the following statements: First, the
dark state is stable for g1 < g1,c or g2 < g2,c only. Furthermore, if
both coupling strengths fulfil gn < gn,c, i.e. in the normal phase, both
ψ1 and Ψ2 can range from zero to one. On the other hand, if g2 > g2,c

and g1 < g1,c, then Ψ2 is restricted to the interval [0,Ψ2,max], where
Ψ2,max > 0 is given by the inequality (2.34). Correspondingly ψ1 is

restricted to the interval [ψ1,min, 1], with ψ1,min given by

1−Ψ22,max .

An analogue argument can be given for the case g1 > g1,c and g2 <
g2,c, where ψ1 and Ψ2 are interchanged.

For couplings g1 ≫ g1,c and g2 < g2,c, inequality (2.34) restricts
the order parameters to ψ1 ≈ 0 and Ψ2 ≈ 1, i.e. only the second
single-particle level is macroscopically occupied. On the other hand,
for couplings g2 ≫ g2,c and g1 < g1,c only the first single-particle
level is macroscopically occupied, i.e.ψ1 ≈ 1 and Ψ2 ≈ 0. This counter-
intuitive behaviour is reminiscent of the STIRAP scheme (Bergmann,
Theuer, and Shore, 1998). In contrast to the STIRAP scheme, the ac-
tual values of the populations ψ1 and Ψ2 in this dark state are not
defined by the coupling strengths g1 and g2, but rather by the prepa-
ration of the system. Thus, the system cannot be driven coherently
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Figure 2.6: Phase diagram (a) as in Fig. 2.3 and ground-state energy surfaces
ĥ(0) (b–d) in the degenerate (δ→ 0) limit. In (a), the solid and the
broken red lines denote first and second-order phase transitions,
respectively. The red lines in (b–d) visualise the inequality (2.34),
i.e. the line where the dark state with Ψ3 = 0 is stable. However,
as the red line is flat, fluctuations along the Ψ2-direction trans-
form stable states on the red line into unstable states outside
the red line. Eventually, these states decay to superradiant states
with Ψ3 ̸= 0.

from a state with all particles occupying the first single-particle en-
ergy level |1⟩ to a state where all particles occupy the second single-
particle energy level |2⟩ just by changing the couplings.

In addition, we note that in this dark state the mode ε1 = 0 in
direction of Ψ2 of the energy surface ĥ(0)(Ψ2,Ψ3) is trivially massless
[see Eq. (2.32)]. Therefore, tiny fluctuations can easily excite this dark
state along the direction of Ψ2, making the state eventually unstable.
This instability is visualized in Fig. 2.6

2.5 conclusion

We have analysed an extension of the well-known Dicke model from
two to three-level particles. By means of a Holstein–Primakoff trans-
formation we have identified three stable states in the thermodynamic
limit: a normal, a blue superradiant, and a red superradiant state. At
zero temperature, these states correspond to three thermodynamic
phases which we have arranged in a phase diagram. The phase tran-
sition between the normal and the blue superradiant phase is of sec-
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ond order and all other phase transitions are of first order. We have
also shown that a state with both superradiant states coexisting is not
stable. A dark state with zero occupancy of the third single-particle
level exists for δ = 0 only. However, this dark state is not stable.

As in the original Dicke model, the same experimental difficulties
arise in our extended Dicke model, i.e. reaching the critical coupling
strength is challenging as well. Hence, using three-level atoms has no
advantage over the use of two-level atoms.

However, we expect that similarly to the Dicke model and its real-
isation in the experiments of Baumann, Guerlin, et al. (2010), there
should be experimental manageable systems which can theoretically
be described by an effective Hamiltonian of the form presented here.
In the case of the experiments of Baumann, Guerlin, et al. (2010),
this might be achieved by coupling a Bose–Einstein condensate to an
additional cavity mode. Furthermore, an even richer phase diagram
with additional superradiant phases could be generated in such a
system.

Considering a cold quantum gas in an optical lattice, a characteris-
tic feature of our extended Dicke model especially in the degenerate
limit, δ → 0, could appear. In this regard, we have an extension of a
system proposed by Silver et al. (2010) in mind. There, it was shown
that a two-band zero-hopping Bose–Hubbard model coupled to a cav-
ity light field can be written as an effective Dicke model. If one super-
poses a superlattice of twice the wavelength of the original lattice,
and couples the superlattice to two independent cavity light fields,
this extended Bose–Hubbard model can be mapped to our extended
Dicke model with δ = 0. Since in experiment one has an extensive
control over the parameters of cold quantum gases, the observation
of superradiant phases should be feasible.
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S U P E R R A D I A N T P H A S E T R A N S I T I O N S A N D T H E
D I A M A G N E T I C T E R M

This Chapter is mostly based on the publication:

Hayn, Mathias, Clive Emary, and Tobias Brandes (2012): Superradi-
ant phase transition in a model of three-level-Λ systems interacting with
two bosonic modes, Phys. Rev. A 86, p. 063822. doi: 10.1103/PhysR
evA.86.063822.

3.1 introduction

Superradiant phase transitions in systems of atoms interacting with
an electromagnetic field were first discussed theoretically by Hepp

and Lieb (1973b,a), and Wang and Hioe (1973). The superradiant
phase transition is characterised by a macroscopic and coherent ex-
citation of both the atoms and the electromagnetic field modes. To
date, superradiant phase transitions have been observed experimen-
tally in artificial realisations of the seminal Dicke model (Dicke, 1954)
in cold atoms (Baumann, Guerlin, et al., 2010), but not for real or
for artificial atoms. The question which was debated forty years ago
and which is under debate today again, is whether or not superradi-
ant phase transitions are in principle possible in these systems (Rza-
żewski, Wódkiewicz, and Żakowicz, 1975; Nataf and Ciuti, 2010a;
Viehmann, Delft, and Marquardt, 2011).

The system of an ensemble of atoms interacting with an electro-
magnetic field is often described by the Dicke model (Dicke, 1954).
In this model, each individual atom is described by a two-level sys-
tem and the electromagnetic field by a single mode of a resonator.
For the generalised Dicke model with diamagnetic terms included
[i. e. a Hopfield-like model (Hopfield, 1958)], there exists a no-go
theorem (Rzażewski, Wódkiewicz, and Żakowicz, 1975; Nataf and
Ciuti, 2010a; Viehmann, Delft, and Marquardt, 2011) which pre-
cludes the transition to a superradiant phase. This no-go theorem is
a consequence of sum rules and of the appearance of a diamagnetic
term in the microscopic Hamiltonian which is quadratic in the trans-
verse vector potential A. Thus no matter how low the temperature or
how strong the coupling strength is, the superradiant phase transition
does not exist in such models.

The no-go theorem has also been extended to multi-level Hopfield-
like-models (Viehmann, Delft, and Marquardt, 2011). However,
it has been commented (Ciuti and Nataf, 2012) that these kind of
no-go theorems for multi-level systems do not apply to first-order
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superradiant phase transitions and therefore new perspectives open
up.

In this chapter we extend the abstract model of Ch. 2 by including
a diamagnetic term and account for all boson-mediated transitions
from the ground states to the excited state. We analyse and discuss the
phases and phase transitions of this extended model and show that
the system shows both a first and a second-order phase transition.
We also discuss the symmetries of this model and show how they
are related to the quantum phases of this system. Finally, we show
that a no-go theorem in general does not hold for this model and a
superradiant phase transition is in fact possible. However, due to the
Thomas–Reiche–Kuhn sum rule, only the first-order phase transition
survives. This is consistent with the results of Baksic, Nataf, and
Ciuti (2013). There, three-level atoms were considered as well, and
only a first-order superradiant phase transition was found.

3.2 the model

We consider a system consisting of N identical particles interacting
with two modes of a bosonic field. The particles are described by
three-level systems in Lambda-configuration, i.e. two in general non-
degenerate ground states and one excited state with energies E1, E2,
and E3, and detunings δ = E2−E1 ⩾ 0 and ∆ = E3−E1 > 0. The two
bosonic modes have frequencies ω1 and ω2, respectively. In Fig. 1.2,
the model is summarised graphically. The Hamiltonian is given by

Ĥ =

3
n=1

En Â
n
n +

2
n=1

hωnâ
†
n ân

+
g1√
N


Â 1
3 + Â 3

1


â
†
1 + â1 + χ1


â
†
2 + â2


+
g2√
N


Â 2
3 + Â 3

2


â
†
2 + â2 + χ2


â
†
1 + â1


+

2
n=1

κ2n
ωn


â†n + ân

2
+ 2

κ23√
ω1ω2


â
†
1 + â1


â
†
2 + â2


. (3.1)

Here, Â m
n are collective atomic operators (see Sec. 1.2 and Sec. A.2)

and â
†
n, ân are the creation and annihilation operators of the nth

bosonic mode. The first two terms in Eq. (3.1) correspond to the en-
ergy of the free system of particles and the bosonic fields, respec-
tively. The third and the fourth term proportional to the coupling
constants g1 and g2 model the interaction between the particles and
the bosonic fields. The dimensionless parameters χ1 (χ2) generate
transitions from the first (second) ground state to the excited state
induced by the second (first) bosonic mode. Eventually, the last terms
scaling with κn represent a self interaction of the bosonic field.
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Special cases of the Hamiltonian, Eq. (3.1), include (i) the model of
Ch. 2 with χn = κn = 0, and (ii) a model describing atoms interacting
with two modes of an electromagnetic field with

gn =
√
N(E3 − En)|d3n · εn| An/h, (3.2)

χn =


ωn

ωn ′

|εn ′ ·d3n|
|εn ·d3n|

(n ′ ̸= n), (3.3)

κ1 = κ2 = κ, κ3 =
√
ε1 · ε2κ. (3.4)

The derivation of this model and the detailed definition of the param-
eters is given in Sec. 1.2.2.

By virtue of the Thomas–Reiche–Kuhn sum rule, the couplings con-
stants gn are bounded. In our model, we have two important sum
rules (the derivation can be found in Sec. A.1)

g1 ⩽


∆

ω1
κ ≡ g1,TRK and g2 ⩽


∆− δ

ω2
κ ≡ g2,TRK. (3.5)

Thus for given parameters, the light-matter coupling strengths g1, g2
for atomic systems cannot exceed g1,TRK, g2,TRK, respectively. This
bound will be crucial in the next section where we discuss phase
transitions of this model.

3.3 phase transitions

In order to obtain the phase diagram of this system, we apply the
techniques presented in Ch. 2. There, we have used the Holstein–
Primakoff transformation (Holstein and Primakoff, 1940; Klein

and Marshalek, 1991). This is a non-linear transformation, which
maps the collective particle operators Â m

n onto bosonic creation and
annihilation operators. The corresponding non-linear Hamiltonian
can be linearised by introducing mean-fields both for the bosonic
modes and for the creation and annihilation operators of the parti-
cles. Then, the Hamiltonian obtains the form

Ĥ = Nĥ(0) +
√
N ĥ(1) + ĥ(2) +O(N−1/2), (3.6)

where the order of N is explicitly given. Here, ĥ(0) corresponds to the
ground-state energy, and ĥ(2) to the fluctuations around the ground
state. In the thermodynamic limit, N ≫ 1, analysis of the ground-
state energy ĥ(0) yields the relevant information for the phases, phase
transitions, and phase diagram of the system. Explicitly, the ground-
state energy is given by

E0 := ĥ
(0) = δΨ22 +∆Ψ

2
3 +


hω1 +

4κ21
ω1


φ21 +


hω2 +

4κ22
ω2


φ22

+ 4g1ψ1Ψ3(φ1 + χ1φ2) + 4g2Ψ2Ψ3(φ2 + χ2φ1)

+ 8
κ23√
ω1ω2

φ1φ2. (3.7)
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The real mean-fields φs (with s = 1, 2), Ψn (with n = 2, 3), and

ψ1 =

1−Ψ22 −Ψ

2
3 correspond to the two bosonic modes and the

bosons introduced by the Holstein–Primakoff transformation, respec-
tively (cf. Ch. 2). Finite values of the mean-fields give macroscopic
populations of the bosonic modes or the three particle levels, i.e. if
Ψ3 (φ1) is finite, then the third (first) energy level of the particles
(bosonic mode) is macroscopically occupied. Particle number conser-
vation implies Ψ22 +Ψ

2
3 ⩽ 1.

We eliminate the two mean-fields φ1 and φ2 from E0 by mini-
mising E0 with respect to these two mean-fields. Then, the ground-
state energy is a function of the mean-fields Ψ2 and Ψ3 only: E0 =

E0(Ψ2,Ψ3). One can show that the normal state with Ψ2 = Ψ3 = 0 is
always a critical point of E0. However, it can still be a maximum,
or, if it is a minimum, it can be a local minimum only. To check
whether it is a minimum or a maximum, we analyse the Hessian
of E0(Ψ2 = 0,Ψ3 = 0). This gives the inequality

g1 ⩽

∆hω1
4


1+

4κ21
hω21


1+

4κ22
hω22


−

16κ43
h2ω21ω

2
2

1+
4κ22
hω22

+ ω1
ω2
χ21


1+

4κ21
hω21


−
8κ23
hω22

χ1


ω2
ω1

≡ g1,c.

(3.8)

As long as this inequality is fulfilled, the normal state minimises the
ground-state energy.

Analysing the Hessian of E0(Ψ2 = 0,Ψ3 = 0), we can check whether
or not the normal state minimises the ground-state energy. However,
we do not see if it is a global minimum of E0. To see this, we need to
check all critical points of E0. We do this by numerical minimisation
of the ground-state energy E0. Fig. 3.1 shows the order parameters
Ψ2 and Ψ3 obtained by this numerical procedure. Regions with both
Ψ2 = 0 and Ψ3 = 0 correspond to the normal phase, whereas the
superradiant phase is characterised by regions with Ψ2 > 0 or Ψ3 > 0.
As is clear from Fig. 3.1, the system supports a normal and a superra-
diant phase.

If two thermodynamic phases are separated by a second-order phase
transition, the order parameter (which is given by the mean-fields)
characterising this phase transition is continuous across the phase
boundary. However, numerical analysis indicates that it is not a con-
tinuous phase transition along the entire phase boundary and at a cer-
tain point the order parameters, e.g. Ψ2, become discontinuous. This
behaviour is shown in Fig. 3.2. Then, the phase transition is of first
order. Consequently, the phase boundary separating the normal from
the superradiant phase consists of two segments which characterise
a second (solid green line in Fig. 3.1) and a first (dashed green line
in Fig. 3.1)-order phase transition, respectively. These two segments
meet in a single point (red ring in Fig. 3.1). The location of this point
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Figure 3.1: Mean-fields Ψ2 and Ψ3 for parameters δ = 0.1, ∆ = 1, hω1 = 0.5,
hω2 = 0.6, κ1 = κ2 = 1, κ3 =

√
ε1 · ε2κ, ε1 · ε2 = 0.5, and

|ε1 · d31| = |ε2 · d32| = 1. The green line gives the phase bound-
ary and is separated into two segments: The solid (dashed) green
line corresponds to a second (first)-order superradiant phase
transition. The point where these two segments meet is marked
with a red ring. The numerical value of g1 for the boundary of
the second-order phase transition is given by 1.03 g1,TRK which
coincides with the value obtained by an analytical analysis. The
blue region below the green line in both diagrams represents the
normal phase (ψ1 = 1, Ψ2 = Ψ3 = φ1 = φ2 = 0). The comple-
mentary region corresponds to the superradiant phase where all
mean-fields are finite. The accessible parameter region for atoms
is indicated by the solid yellow box. The small inset clarifies that
the superradiant phase is within this region. The couplings gn
are scaled with gn,TRK. These are the largest possible couplings
for the analogous atomic model given by the Thomas–Reiche–
Kuhn sum rule, Eq. (3.5). The diagrams for φ1 and φ2 look
qualitatively the same as the diagram for Ψ3. In addition, ψ1
is obtained by using the relation ψ1 =


1−Ψ22 −Ψ

2
3 .

cannot be obtained by an analysis of stability of the normal phase.
Likewise, we cannot derive an inequality analogous to Eq. (3.8) for
g2.

The continuous phase transition signals the breakdown of stability
of the normal phase. Therefore, the phase boundary for the second-
order phase transition is given by the value of g1 where the inequality,
Eq. (3.8), becomes an equation, i.e. for g1 = g1,c. Since g1,c does
not depend on g2, the phase boundary is a straight line. With the
numerical values used to generate Fig. 3.1, g1,c = 1.03 g1,TRK (dashed
red line in Fig. 3.2), where g1,TRK is given by Eq. (3.5). This is in
perfect agreement with our numerical findings (see Fig. 3.1).

It is known (Viehmann, Delft, and Marquardt, 2011) that the
critical coupling strength increases if the diamagnetic term propor-
tional to κ increases. This becomes transparent, e.g., from the ground-
state energy, Eq. (3.7), where the terms proportional to κ1 (κ2) are
quadratic in φ1 (φ2) and thus increase the energy of the superradi-
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Ψ2

g1/g1,TRK

0.5

0
0.5 1 1.5

increasing g2

0

Figure 3.2: Mean-field Ψ2 as a function of g1 for different values of g2, in-
dicating the change of the order of the superradiant phase tran-
sition. The value of g2 for each single line increases in direction
of the arrow from 0 to 1.5 with an increment of 0.15. The other
parameters are as in Fig. 3.1. In the range 0 ⩽ g2 ⩽ 0.45, Ψ2
is continuous as a function of g1 (solid blue lines), whereas for
g2 ⩾ 0.6, Ψ2 is discontinuous (dashed green lines). The dashed
red line marks the critical value for g1 of Eq. (3.8) above which
the normal phase is unstable and corresponds to the red ring in
the top panel.

ant state. On the contrary, the parameters χn effectively give an ad-
ditional contribution to the couplings gn. Hence, larger parameters
χn should lead to lower critical values of the coupling strengths. We
have numerically computed the location of three points of the phase
boundary for different values of κ ≡ κ1 = κ2 = κ3 and χ ≡ χ1 = χ2.
This is shown in Fig. 3.3 and one clearly sees that an increase of κ
leads to an increase of gc as well, and that for large values of χ the
critical coupling is lowered. We note that gc as a function of χ de-
creases monotonically for κ = 0 only.

Concerning the atomic system, the couplings gn are not arbitrary
and cannot exceed a bound given by the Thomas–Reiche–Kuhn sum
rule of Eqs. (3.5). These bounds are displayed by the solid yellow
lines in Fig. 3.1. As can be seen in Fig. 3.1, this atomic system can
in fact undergo a superradiant phase transition on the choice of the
parameters. The numerical calculations show that this is a first-order
phase transition. Indeed, combining the Thomas–Reiche–Kuhn sum
rule for g1, Eq. (3.5), with the stability criterion, Eq. (3.8), for the
normal state, we see that in our model the normal state is stable for
all g1 ⩽ g1,TRK. Hence, concerning our model, the superradiant phase
transition cannot be of second order. This is also in agreement with
the results found for the single-mode model of Baksic, Nataf, and
Ciuti (2013).
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κ = 1.2

Figure 3.3: Critical coupling gc at different points on the phase boundary
as a function of χ ≡ χ1 = χ2, and for different values of κ ≡
κ1 = κ2 = κ3. The solid lines correspond to points on the phase
boundary with (g1 = gc,g2 = 0), dashed lines to points with
(g1 = 0,g2 = gc), and dashed dotted lines to points with (g1 =

gc,g2 = gc). The red lines correspond to κ = 0, the orange
lines to κ = 0.6, and the blue lines to κ = 1.2. The remaining
parameters are given by ∆ = hω1 = 1, δ = 0.1, hω2 = 0.9.

3.4 symmetries

If one neglects the terms proportional to κn (n = 1, 2, 3) and χn (n =

1, 2), then the Hamiltonian, Eq. (3.1), commutes with the symmetry-
operators Π̂ ′

n = exp[−iπ(−Â n
n + â†n ân)], (n = 1, 2). As was shown

in Ch. 2, this gives rise to two superradiant states where a single
bosonic mode is macroscopically occupied only (blue and red super-
radiant states), and either of the superradiant phases correspond to
one broken symmetry. In contrast, including those terms, the symme-
try operators do not commute with the Hamiltonian, Eq. (3.1), since

Π̂ ′
n


â†m + âm


â†n + ân


Π̂

′†
n =


â†m + âm


â†n + ân


×

−1 : m ̸= n,

+1 : m = n.
(3.9)

Hence, the parities corresponding to the two branches of the Lambda-
system are no conserved quantities anymore, since the term propor-
tional to (â1 + â

†
1)(â2 + â

†
2) mixes both bosonic modes. However, the

operators

Π̂n = exp

−iπ


−Â n

n + â†1â1 + â
†
2â2


(n = 1, 2) (3.10)
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do commute with the Hamiltonian, Eq. (3.1), and therefore this parity
including both bosonic modes is conserved.

In the normal phase, both parities Π̂1, Π̂2 are conserved, whereas
both parities are simultaneously broken in the superradiant phase.
This loss of parity symmetry has a large impact on the phase dia-
gram: in our numerical analysis, we obtain only one superradiant
phase with both bosonic modes being macroscopically excited simul-
taneously (see Fig. 3.1). In addition, analytical calculations show that
blue and red superradiant states are not stable. This is in contrast to
the model without the terms proportional to κn and χn, where these
superradiant states are the only superradiant phases and a state with
both branches of the Lambda-system being simultaneously superra-
diant is not stable (cf. Ch. 2).

3.5 the no-go theorem for second-order superradiant

phase transitions

We consider the most general model of an ensemble of N multi-level
atoms interacting with a single mode of a resonator. The Hamiltonian
has the form

Ĥ =

N
n=1

EnÂ
n
n + hωâ† â+

κ2

ω
(â† + â)2

+

N
n,m=1

1

2

gn,m√
N


Â m
n + Â n

m


(â† + â). (3.11)

Each of the N single atoms has N energy levels characterised by the
non-degenerate energies E1 < E2 < . . . < EN. Populations of and
transitions among the atomic energy levels are described by the col-
lective operators Â n

n and Â m
n , respectively. The frequency of the

mode of the resonator is given by ω > 0; the bosonic operator â†

(â) create (annihilate) a corresponding photon. The coupling of the
transverse vector potential with the atoms is approximated by the
dipole coupling, with coupling strength gn,m = gm,n, gn,n = 0. The
diamagnetic contribution is parameterised via the parameter κ. In de-
riving this Hamiltonian, we have neglected atom-atom and Coulomb
interaction among different atoms.

The Thomas–Reiche–Kuhn sum rule [see Eq. (A.5)] of this model
can be written in the form

N
n=1
n ̸=m

g2n,m

En,m
⩽
κ2

ω
, (3.12)

with En,m = En − Em and m = 1, . . . ,N. Note that in terms of os-

cillator strengths fn,m =
g2n,mω

Em,nκ2
, the Thomas–Reiche–Kuhn sum rule

obtains the memorable form

n fn,m = 1.
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Applying a Holstein–Primakoff transformation to the collective op-
erators Â m

n and introducing mean-fields both for the atomic [Ψn,
(n = 2, . . . ,N)] and for the photonic (φ) degrees of freedom, we ob-
tain the ground-state energy per atom in the thermodynamic limit,

EGS = E1 +

N
n=2

En,1Ψ
2
n +


hω+ 4

κ2

ω


φ2

+ 2φ

N
n=2

2gn,1

1− N
m=2

Ψ2m +

N
m=2

gn,mΨm

Ψn. (3.13)

Since we are only interested whether or not the normal state with
Ψn = φ = 0 minimises the ground-state energy, Eq. (3.13), we expand
the ground-state energy to second order in Ψn and φ. This yields

EGS = E1 +

N
n=2

En,1Ψ
2
n +


hω+ 4

κ2

ω


φ2

+ 4

ν
n=2

gn,1Ψnφ+O(Ψ3n). (3.14)

Because the ground-state energy has no terms linear in Ψn or φ, the
normal state represents a critical point. In order to specify the type of
the critical point, we calculate the Hessian of the ground-state energy,
Eq. (3.14). We obtain

∂2EGS
∂φ2

= 2


hω+ 4

κ2

ω


+O(Ψ3n), (3.15)

∂2EGS
∂Ψm ∂Ψn

= 2En,1δn,m +O(Ψn), (3.16)

and

∂2EGS
∂φ∂Ψn

= 4gn,1 +O(Ψ2n), (3.17)

with 1 < n,m ⩽ N. Hence, the Hessian for the normal state is given
by

H

EGS,Ψn = 0,φ = 0


=

2



hω+ 4κ
2

ω 2g2,1 2g3,1 . . . 2gN−1,1 2gN,1

2g2,1 E2,1 0 . . . 0 0

2g3,1 0 E3,1 . . . 0 0
...

...
...

. . .
...

...

2gN−1,1 0 0 . . . EN−1,1 0

2gN,1 0 0 . . . 0 EN,1


. (3.18)
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Now we will proof that H is in fact positive definite which means
that the critical point is a local minimum. Therefore, we compute the
principal minors of H. The kth principal minor of a n×n matrix M is
the determinant of the matrix where the first n−k rows and columns
of M are deleted. If all principal minors of a symmetric matrix are
positive, then the matrix is positive definite. In the following we will
show that all principal minors of H are positive.

One sees readily that the first ν− 1 principal minors are positive
since En,1 are positive by definition. Hence, we need to compute the
νth principal minor which is the determinant of H itself. This is done
by reducing H to a triangular matrix using elementary row opera-
tions. Eventually, this gives

1

2
Det

H

EGS,Ψn = 0,φ = 0


=

X 0 0 . . . 0 0

2g2,1 E2,1 0 . . . 0 0

2g3,1 0 E3,1 . . . 0 0
...

...
...

. . .
...

...

2gν−1,1 0 0 . . . Eν−1,1 0

2gν,1 0 0 . . . 0 Eν,1


, (3.19)

where X = hω + 4κ
2

ω − 4
ν
n=2

g2n,1
En,1

. Applying the Thomas–Reiche–
Kuhn sum rule, Eq. (3.12), with m = 1, we obtain

X ⩾ hω (3.20)

which is always positive. Since the determinant of a triangular matrix
is the product of its diagonal elements, the determinant of the Hes-
sian for the normal state is positive. Hence we have shown that all
principal minors are positive. Consequently, the Hessian is positive
definite. This means that the normal state minimises the ground-state
energy irrespective of the parameters of the Hamiltonian and no ad-
ditional states, i.e. superradiant states, can evolve from the normal
state continuously. Thus, no continuous, i.e. second-order, phase tran-
sitions are possible. However, this argument does not apply to first-
order phase transitions and we can not say whether or not first-order
phase transition can occur. In addition, a second-order superradiant
phase transition originating from a superradiant phase which results
from a first-order superradiant phase transition is also not covered
by our analysis. We also note that a superradiant phase where a sin-
gle one-particle energy level is macroscopically occupied only, can be
excluded by a similar argument as presented above.
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3.6 conclusion

In this chapter, we have presented a generalised Dicke model of par-
ticles with three energy-levels in Lambda-configuration coupled to
two bosonic modes where the microscopic Hamiltonian contains a
diamagnetic term. We showed that this system exhibits a superradi-
ant quantum phase transition in the thermodynamic limit. This phase
transition can be both of first and of second order and we analytically
derived the critical coupling strength for the second-order phase tran-
sition. Quantitatively, the whole phase diagram was obtained using
numerical methods. Compared to the model without the diamagnetic
term we have studied in Ch. 2, the phase diagram has one superradi-
ant phase only. The loss of the second superradiant phase is directly
connected to the diamagnetic term since it changes the parity symme-
try of the Hamiltonian.

In addition, we mapped this abstract model to an atomic system
interacting with two photonic modes of a resonator and showed by
numerical calculations that the superradiant phase transition persists.
We emphasise that the microscopic Hamiltonian includes diamag-
netic contributions and that this model respects the Thomas–Reiche–
Kuhn sum rule which gives bounds for the coupling strengths. This
is in stark contrast to Hopfield-like-models, where the combination
of the diamagnetic contribution and the sum rule suppresses the
superradiant phase transition. Thus, compared to the Dicke-model
with diamagnetic terms included and its generalisations (Viehmann,
Delft, and Marquardt, 2011), no no-go theorem exists in our model.
However, we showed that the superradiant phase transition is of first
order.

In experiments, our model would be realised by atoms, if they can
be reduced to three-level systems in Lambda-configuration. In addi-
tion, the dipole matrix element d31 (d32) must not be orthogonal to
the polarisation vector ε2 (ε1) of the two modes of the resonator.

In the paper of Baksic, Nataf, and Ciuti (2013) a similar model is
discussed. They consider atoms in a general three-level-configuration,
which are coupled to one mode of a resonator. Including a diamag-
netic contribution in the Hamiltonian and respecting the Thomas–
Reiche–Kuhn sum rule, they find a superradiant quantum phase tran-
sition. Thus, no no-go theorem exists in their model either. In partic-
ular for the Lambda-configuration, this phase transition is always of
first order. This agrees with our results.

In addition, we have considered the most general model of multi-
level atoms interacting with a single mode of a resonator which obey
the Thomas–Reiche–Kuhn sum rule. We have shown that the normal
state, the state where all atoms occupy their respective ground state
and in the resonator no photon is excited, does always minimise the
ground-state energy. Hence the normal phase is stable irrespective of
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the parameters of the system and no second-order phase transition to
superradiant phases are possible.

There is one point we want to remark: theoretically, the Dicke-
model (i.e. a Hopfield-like-model without the diamagnetic term) sup-
ports a second-order phase transition (Hepp and Lieb, 1973b,a; Wang

and Hioe, 1973; Carmichael, Gardiner, and Walls, 1973; Emary

and Brandes, 2003a). The no-go theorem (Rzażewski, Wódkiewicz,
and Żakowicz, 1975; Nataf and Ciuti, 2010a; Viehmann, Delft,
and Marquardt, 2011) applies to these continuous phase transitions
only. Hence, first-order phase transitions could in principle still pro-
vide a superradiant phase.
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The finite-temperature phase transition in the Dicke model was first
studied by Hepp and Lieb (1973b) and Wang and Hioe (1973). In fact,
they considered the Tavis–Cummings model. i. e. the Dicke model in
the rotating-wave approximation. Shortly after that, Hepp and Lieb

(1973a), Carmichael, Gardiner, and Walls (1973), and Hioe (1973)
relaxed this limitation and took the counter-rotating terms into ac-
count as well.

In this chapter, the finite-temperature phase transition of the Dicke
model is addressed. We first give a review of the phase transition
of the original Dicke model. Here the presentation follows the lines
of Wang and Hioe (1973) and Carmichael, Gardiner, and Walls

(1973). Then we study the finite-temperature phase transition in the
Lambda-model.

4.1 finite-temperature phase transition : dicke model

The Hamiltonian of the Dicke model is given by

Ĥ = ∆Ĵz + hωâ†â+
g√
N
(â† + â)(Ĵ+ + Ĵ−). (4.1)

For the meaning of the terms and parameters, refer to the introduc-
tion, Sec. 1.2.1. The following calculation becomes more transparent,
if we expand the collective spin operators Ĵn as (cf. Sec. 1.3.1)

Ĵn =

N
k=1

ŝ
(k)
n , n ∈ {x,y, z,+,−}. (4.2)

Here, ŝ(k)n is the nth component of the spin operator of the kth particle,
cf. (1.109) in Sec. 1.3.1. Using this expansion, the above Hamiltonian
assumes the form

Ĥ = ∆

N
k=1

ŝ
(k)
z + hωâ†â+

g√
N
(â† + â)

N
k=1


ŝ
(k)
+ + ŝ

(k)
−


. (4.3)

All thermodynamic information of the equilibrium system is con-
tained in the (canonical) partition sum (Feynman, 1972)

Z = Z(N, T) = Tr{e−βĤ}, (4.4)
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where the trace ranges over all degrees of freedom of the quantum
system. Here, β = 1/(kBT) is the inverse temperature. In order to eval-
uate the trace, we have to choose a basis or rather a set of quantum
numbers. It is understood that the basis must be complete or the set
of operators has to form a complete set of commuting observables,
respectively. A convenient choice for the spin degrees of freedom is a
direct product of single-spin basis states |m⟩; for the bosonic field we
take Glauber’s coherent states |α⟩ (α ∈ C) which are eigenstates of the
annihilation operator (Glauber, 1963; Arecchi et al., 1972; Nussen-
zveig, 1973). Then the trace is evaluated as

Z =


m1=±1
· · ·


mN=±1


C

d2α
π
⟨m1 . . .mN;α|e−βĤ|m1 . . .mN;α⟩ .

(4.5)

The integration goes over the complex plane and


C
d2α stands for

R
d(Re{α})


R

d(Im{α}).
Since |α⟩ is an eigenket of the annihilation operator â with eigen-

value α, the bosonic part of the expectation values is easily calculated,

Z =


C

d2α
π

e−βhωα∗α
N
k=1

 
mk=±1

⟨mk|e−βĥ
(k)(α∗,α)|mk⟩

 , (4.6)

with the single-particle Hamiltonian

ĥ(k)(α∗,α) = ∆ŝ(k)z +
g√
N


α∗ +α


ŝ
(k)
+ + ŝ

(k)
−


. (4.7)

As the Dicke model describes an interacting system, the Hamiltonian
consists of non-commuting parts. Therefore, the above factorisation
of the exponential is in general not valid. However, everything is fine
in the thermodynamic limit, N→∞.

The sum in the squared brackets of Eq. (4.6) is a representation
of the trace of the single-particle degrees of freedom. Moreover, the
trace does not depend on the specific particle. Hence, the partition
sum factorises and can be written as

Z =


C

d2α
π

e−βhωα∗α Tr


e−βĥ(α
∗,α)

N

. (4.8)

The remaining single-particle trace is evaluated in the eigenbasis of
the single-particle Hamiltonian

ĥ(α∗,α) =

 ∆
2

g√
N


α∗ +α


g√
N


α∗ +α


−∆2

 , (4.9)

where we have explicitly written out the matrices for the spin opera-
tors.
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Then, the trace of the exponential operator in Eq. (4.8) is the sum of
the exponentials of the eigenvalues of the operator. Thus, it suffices
to know the eigenvalues of ĥ(α∗,α); these are given by

ε± = ±∆
2


1+

4g2

∆2N


α∗ +α

2
. (4.10)

With this, we can sum up the particle-part of the partition sum,

Z =


C

d2α
π

e−βhωα∗α


2 cosh


β∆

2


1+

4g2

∆2N


α∗ +α

2N
. (4.11)

The last step is to evaluate the bosonic part of the partition sum. This
cannot be done exactly. But, instead of computing the integral nu-
merically, we can approximate the integral for large N by Laplace’s
method (saddle point approximation) (Bender and Orszag, 1999;
Jänich, 2001). First we decompose α in its real and imaginary part as

α = x+ ip, α∗ = x− ip, (4.12)

Re{α} = x =
1

2
(α+α∗), Im{α} = p =

1

2i
(α−α∗), (4.13)

d2α = dxdp. (4.14)

In addition, we scale x and p with the number N of particles,

y = x/
√
N, z = p/

√
N. (4.15)

With these definitions, the partition sum can be written as

Z =
N

π


R

dy


R

dz e−Nf(y,z), (4.16)

where f(y, z) in the exponential reads

f(y, z) = βhω(y2+ z2) − ln

2 cosh

β∆
2


1+ 16g2y2/∆2


. (4.17)

From the form of the integral in Eq. (4.16), it is clear that for large N

the main contribution to the integral is given by the minima of f(y, z).
Larger values of f(y, z) are exponential suppressed with respect to
the values of the minima of f(y, z). This is the essence of the saddle
point or Laplace’s approximation.

Since z enters only quadratically in f(y, z), the minima are located
on the z axis, i. e. z = 0. Minimisation with respect to y leads to the
equation

0 = y


gc

g

2
Ω(y) − tanh

β∆
2
Ω(y)


, (4.18)

with

Ω(y) =


1+

4hω

∆

 g
gc

2
y2 (4.19)
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Figure 4.1: Graphical solution of Eq. (4.18) for g < gc (left) and g > gc
(right) for fixed temperature and finite y. The red straight line
corresponds to the first term, (gcg )2Ω(y), the other blue curved
line corresponds to the tanh term of Eq. (4.18). Of physical rel-
evance is the region Ω > 1 only. Thus, no meaningful solution
exists for g < gc, whereas for g > gc exactly one solution exists.

and

gc =

√
hω∆

2
. (4.20)

Since tanh(x) is bounded by 1 and Ω(y) ⩾ 1, Eq. (4.18) is solved for
g < gc by y = 0 only, see left part of Fig. 4.1. Contrary for g > gc, non-
trivial solutions of Eq. (4.18) can exist, depending on the value of β,
i. e. on the temperature T , see right part of Fig. 4.1. In the limit β≫ ∆

the hyperbolic tangent is one. Thus for g > gc and large β, or small
T , Eq. (4.18) always has two solutions. Since limy→∞ f(y, z) → +∞,
the non-trivial solution corresponds to a global minimum and the
solution y = 0 corresponds to a local maximum of f. Hence, the
non-trivial solution defines the state of the system in this parameter
regime.

We emphasise that if a non-trivial solution exists, than this solu-
tion is unique. This is because both, the hyperbolic tangent and its
derivative, are monotonous functions.

To find the smallest value of β for which Eq. (4.18) still gives a non-
trivial solution, we have to consider the point where the vertical thick
dashed grid line in Fig. 4.1 intersects with the tangent hyperbolic,
i. e. the smallest attainable value of the tangent hyperbolic. Hence,
Eq. (4.18) with Ω = 1 or y = 0 needs to be solved,

g

gc
=

1
tanh


β∆
2

 . (4.21)

This curve defines the phase boundary gc(T) between the normal
(y = 0) and the superradiant (y ̸= 0) phase [cf. Eq. (1.128)]. The
corresponding phase diagram is shown in Fig. 4.2.
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Normal phase

Figure 4.2: Finite-temperature phase diagram of the Dicke model. The
superradiant phase exists for all temperatures. High cou-
pling strengths g are needed, though. The phase boundary is
parametrised by Eq. (4.21).

To find the value of y0 which minimises the exponent of the inte-
gral of the partition sum, we have so solve Eq. (4.18) numerically, or
directly minimise the function f(y, z), Eq. (4.17).

4.1.1 Expectation Values of Mode Operators

Mean or expectation values of functions G(â†, â) of the creation and
annihilation operators of the resonator mode only, are calculated in
the same manner as the partition sum,

⟨G(â†, â)⟩ = 1

Z
Tr{G(â†, â) e−βĤ} (4.22)

=
1

Z


C

d2α
π
G(α∗,α)e−βhωα∗α Tr{e−βĥ(α

∗,α)}N

(4.23)

=
1

Z

N

π


R

dyG(
√
Ny,
√
Ny) e−Nf(y,0). (4.24)

In the integrand, the exponential dominates for large N. Hence, the
function G can be considered constant and the remaining integral is
equal to the partition sum. So we have

⟨G(â†, â)⟩ = G(
√
N y0,

√
N y0). (4.25)

For example, the expectation value of the number of excitations in the
mode of the resonator is given by ⟨â†â⟩ = Ny20. By finding the mini-
mum of f(y, z) of Eq. (4.17) numerically, we obtain y0 and therefore
⟨â†â⟩ which is shown in Fig. 4.3.
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Figure 4.3: Numerical computation of the scaled occupation ⟨â†â⟩ /N of the
mode of the resonator in the Dicke model, with ∆ = 1 and hω =

1. The units of ⟨â†â⟩ are arbitrary. The computation has been
done in the thermodynamic limit using Laplace’s method.

4.1.2 Expectation Values of Particle Operators

Expectation values of collective particle degrees of freedom can be
calculated in a similar manner. Let M̂ be a collective many-particle
operator and m̂(n) the corresponding single-particle operator for the
nth particle, such that

M̂ =

N
n=1

m̂(n). (4.26)

The mean value of M̂ is then given by

⟨M̂⟩ = 1

Z
Tr{M̂e−βĤ} (4.27)

=
1

Z


C

d2α
π

e−βhωα∗α
N
n=1

Tr

m̂(n)e−βĥ

(1) · . . . · e−βĥ(N)


(4.28)

=
1

Z


C

d2α
π

e−βhα∗αTr{e−βĥ}N N
Tr

m̂ e−βĥ


Tr{e−βĥ}

(4.29)

= N
Tr

m̂ e−βĥ(y0)


Tr{e−βĥ(y0)}

, (4.30)
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Figure 4.4: Numerical computation of ⟨Ĵz⟩ /N in the Dicke model, with pa-
rameters as in Fig. 4.3.

with ĥ(n) = ĥ(n)(α∗,α) from Eq. (4.7), ĥ = ĥ(α∗,α) from Eq. (4.9),
and ĥ(y0) = ĥ(

√
Ny0,

√
Ny0). The single-particle operator m̂ and the

traces in the last two lines of the above equations refer to any particle.
This is because the particle are identical and the coupling to the mode
of the resonator is homogeneous.

In conclusion, the many-particle expectation value ⟨M̂⟩ is given by
N times the single-particle expectation value ⟨m̂⟩ evaluated using the
Hamiltonian ĥ(y0). Thus, to compute the expectation value, we need
to know y0 from the minimisation procedure, which, in general, is
obtained by a numerical computation.

For relevance regarding the superradiant phase transition in the
Dicke model are the collective operators Ĵz and Ĵx. The expectation
values of both operators can be evaluated explicitly for the Dicke
model,

⟨Ĵz⟩ = −
N

2

tanh

β∆
2 Ω(y0)


Ω(y0)

, ⟨Ĵx⟩ =
4gy0
∆
⟨Ĵz⟩ , (4.31)

with Ω(y0) from Eq. (4.19). In the normal phase with y0 = 0 and
consequently Ω(y0) = 1, these expectation values reduce to

⟨Ĵz⟩n = −
N

2
tanh

β∆
2


, ⟨Ĵx⟩n = 0. (4.32)

In Fig. 4.4 we show ⟨Ĵz⟩ as a function of the coupling strength g
and temperature T . At g = gc, the phase transition is clearly visible.
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Figure 4.5: Numerical computation of ⟨Ĵx⟩ /N in the Dicke model, with pa-
rameters as in Fig. 4.3.

In addition, for low temperatures, the particles occupy their respec-
tive ground states, i. e. the collective spin points downwards. In the
normal phase, for increasing temperature, more and more particles
get excited, resulting in an increase of ⟨Ĵz⟩. We note that in the super-
radiant phase, ⟨Ĵz⟩ is rather insensitive with respect to the tempera-
ture T , whereas in the normal phase it is independent of the coupling
strength g, see Eq. (4.32)

In Fig. 4.5, ⟨Ĵx⟩ is shown. Again, the two phase are clearly visible,
where the normal phase is characterised by vanishing ⟨Ĵx⟩ and the
superradiant phase shows finite values for ⟨Ĵx⟩. We note that ⟨Ĵx⟩ is
rather insensitive to T .

4.1.3 The Free Energy

The last thermodynamic quantity we want to discuss is the free en-
ergy F. In statistical physics, the free energy is given by (Feynman,
1972)

F = −kBT lnZ. (4.33)

In the thermodynamic limit, this definition is equivalent to the defini-
tion, Eq. (1.129), of thermodynamics. By Laplace’s method, the parti-
tion sum Z reads

Z = c e−Nf(y0,0) (4.34)

in the thermodynamic limit. Here, c is constant of order N
1/2 which

stems from the Gaussian integration done in Laplace’s method (Ben-
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Figure 4.6: Numerical computation of the free energy per particle in the
Dicke model, with parameters as in Fig. 4.3. The units of F are
arbitrary.

der and Orszag, 1999; Jänich, 2001). Hence, the leading contribution
to the free energy is given by

F = NkBTf(y0, 0) (4.35)

and we can interpret kBTf(y0, 0) as the free energy per particle. We
use Eq. (4.35) to compute the free energy numerically. The free energy
for the Dicke model in the thermodynamic limit is shown in Fig. 4.6.

4.1.4 The Zero-Temperature Limit

We end this section of the thermodynamics of the superradiant phase
transition of the Dicke model by considering the limit of ultra-cold
temperatures, β→∞, i. e. the quantum limit. Then, Eq. (4.18) can be
solved for y0 exactly and yields the result

y0 = ±
g

hω


1−

gc
g

4
. (4.36)

Taking into account the findings of Eq. (4.25), we can identify y0 with
⟨â⟩ = ⟨â†⟩ which is equal to φ of Eq. (1.133).



82 thermodynamics of the lambda-model

The results for the expectation values of Ĵz and Ĵx, Eq. (4.31) read
in the zero-temperature limit

⟨Ĵz⟩ = −
N

2

1

Ω(y0)
= −

N

2

gc
g

2
(4.37)

and

⟨Ĵx⟩ = 4
gy0
∆

N

2

gc
g

2
= ∓N

2


1−

gc
g

4
(4.38)

Hence, we reproduce the findings of Eqs. (1.149), (1.155), and (1.156)
of the quantum phase transition of the Dicke model analysed in
Sec. 1.3.3.3.

Having analysed the original Dicke model at finite temperatures,
we proceed to study the Lambda-model at non-zero temperatures.

4.2 finite-temperature phase transition : lambda-model

In this section we apply and generalise the methods of the previous
section to the Lambda-model. The Hamiltonian is given by

Ĥ = δÂ 2
2 +∆Â 3

3 + hω1â
†
1â1 +

hω2â
†
2â2

+
g1√
N


â
†
1 + â1


Â 3
1 + Â 1

3


+
g2√
N


â
†
2 + â2


Â 3
2 + Â 2

3


.

(4.39)

As in the calculation of the Dicke model, Sec. 4.1, we expand the
collective particle operators Â m

n in single-particle operators â(k)n,m (cf.
Sec. A.2),

Â m
n =

N
k=1

â
(k)
n,m. (4.40)

The operator â(k)n,m acts on the degrees of freedom of the kth particle
and can be represented by

â
(k)
n,m = |n⟩(k) ⟨m| . (4.41)

In terms of these single-particle operators, the Hamiltonian, Eq. (4.39),
of the Lambda-model is given by

Ĥ = δ

N
k=1

â
(k)
2,2 +∆

N
k=1

â
(k)
3,3 + hω1â

†
1â1 +

hω2â
†
2â2

+
g1√
N


â
†
1 + â1

 N
k=1


â
(k)
1,3 + â

(k)
3,1


+
g2√
N


â
†
2 + â2

 N
k=1


â
(k)
2,3 + â

(k)
3,2


(4.42)
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Again, the central quantity is the partition sum. It is given by

Z = Tr{e−βĤ} (4.43)

=


C

d2α1
π


C

d2α2
π
⟨α1,α2|


N
n=1

Trn


e−βĤ|α1,α2⟩ . (4.44)

Here, we have already replaced the trace over the bosonic degrees
of freedom with two integrals over coherent states (α1,α2) and the
remaining trace over the particle degrees of freedom has been split
into traces over single-particle states. Now, in complete analogy to
the steps done for the calculation of the partition sum of the Dicke
model, we evaluate the expectation value of the bosonic degrees of
freedom. The trace over the particle degrees of freedom factorises as
before and we are left with the partition sum

Z =


C2

d2α1d2α2
π2

e−β
2
n=1

hωn|αn|
2

Tr


e−βĥ(α
∗
1,α1,α∗

2,α2)
N

. (4.45)

Again, the factorisation of the exponentials is valid in the thermody-
namic limit only. The single-particle Hamiltonian ĥ(α∗

1,α1,α∗
2,α2) is

given by

ĥ(α∗
1,α1,α∗

2,α2) = δâ2,2 +∆â3,3 +
g1√
N


α∗
1 +α1


â1,3 + â3,1


+
g2√
N


α∗
2 + α2


â2,3 + â3,2


. (4.46)

Since all particles are identical, we have omitted the superindex k at
the single-particle operators â(k)n,m.

In a matrix representation, ĥ(α∗
1,α1,α∗

2,α2) reads

ĥ(α∗
1,α1,α∗

2,α2) =


0 0 g1√

N


α∗
1 +α1


0 δ g2√

N


α∗
2 +α2


g1√
N


α∗
1 +α1


g2√
N


α∗
2 +α2


∆

 .

(4.47)

The trace over the particle degrees of freedom in the partition sum,
Eq. (4.45), is evaluated in an eigenbasis of the single-particle Hamilto-
nian ĥ(α∗

1,α1,α∗
2,α2). Hence, we need to find the eigenvalues of the

three-times-three matrix, Eq. (4.47). By virtue of Cardano’s formula
this can be done exactly1. However, the discussion of whether there
is a phase transition or not and the analysis of the phase transition,
is not very transparent. Therefore, we will pass the general case to a
numerical computation and first consider the special case with δ = 0
only, which is amenable to analytical calculations.

1 One can show that Cardano’s formula gives indeed three real solutions, as it should
be.
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4.2.1 Special Case of Vanishing δ

For δ = 0, the eigenvalues λn of the Hamiltonian matrix, Eq. (4.47),
are given by

λ0 = 0, λ± =
∆

2


1±Ω(α∗

1,α1,α∗
2,α2)


, (4.48)

with

Ω(α∗
1,α1,α∗

2,α2) =


1+

4g21
∆2N


α∗
1 +α1

2
+
4g22
∆2N


α∗
2 +α2

2 . (4.49)

This allows us to sum up the particle degrees of freedom and the
partition sum is given by

Z =


C2

d2α1d2α2
π2

e−β
2
n=1

hωn|αn|
2

1+ 2e−

β∆
2 cosh

β∆
2
Ω
N

.

(4.50)

Next, we decompose both α1 and α2 in its real and imaginary part
as in Eq. (4.12) and scale them with the number N of particles as in
Eq. (4.15),

αn =
√
N yn + i

√
N zn, n = 1, 2. (4.51)

Then the partition sum reads

Z =
N2

π2


R2

dy1dz1


R2
dy2dz2 e−Nf(y1,y2,z1,z2), (4.52)

with

f(y1,y2, z1, z2) = βhω1y
2
1 +βhω2y

2
2 +βhω1z

2
1 +βhω2z

2
2

− ln

1+ 2e−β∆/2 cosh

β∆
2
Ω


(4.53)

and a corresponding Ω given by

Ω(y1,y2) =

1+ 16g21y

2
1/∆

2 + 16g22y
2
2/∆

2 . (4.54)

The integral in the partition sum of Eq. (4.52) has again the form
which is tractable with Laplace’s method.

As in the Dicke model, the variable zn enters only quadratically in
f, such that upon minimising f, both zn need to be zero. Minimising
f with respect to yn yields the two equations (n = 1, 2)

0 = yn

gn,c

gn

2
Ω(y1,y2) − q(Ω)


, (4.55)
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with

q(Ω) =
2e−β∆/2 sinh


β∆
2 Ω(y1,y2)


1+ 2e−β∆/2 cosh


β∆
2 Ω(y1,y2)

 , (4.56)

and

gn,c =

√
hωn∆

2
. (4.57)

Of course, Eqs. (4.55) are always solved by the trivial solutions y1 =
y2 = 0. But do non-trivial solutions exist, and for which parameter
values?

We first observe that the Eqs. (4.55) do not support solutions where
both y1 and y2 are non-zero. For given y1 and y2, the parameter
Ω(y1,y2) is fixed. Then the squared bracket cannot be zero for both
equations2. Hence, the non-trivial solutions are given by one yn being
zero and the other being finite. In the following, the non-zero solution
will be called yn,0.

To see whether a non-zero yn,0 really exists, we have to analyse the
equation

0 =
gn,c

gn

2
Ω(yn,0) − q


Ω(yn,0)


, (4.58)

with

Ω(yn,0) =


1+ 4

hωn
∆

 gn
gn,c

2
y2n,0. (4.59)

The function q(Ω) is bounded by one (see left panel of Fig. 4.7)
and Ω itself is always greater or equal one. Therefore, for gn < gn,c,
Eq. (4.58) has no solution and yn has to be zero as well.

On the other hand, for gn > gn,c, non-trivial solutions of Eq. (4.58)
can exist. In the right panel of Fig. 4.7, both terms of Eq. (4.58) are
drawn. We see that for every finite temperature, the two curves al-
ways intersect twice, so that Eq. (4.58) always has two solutions. Of
course, for a differentiable f, the two solutions cannot both corre-
spond to minima of f. Hence, one solution stems from a maximum
and the other from a minimum. Since the right side of Eq. (4.58) is
the derivative of f, its sign-change signals whether a maximum (plus-
minus sign change) or a minimum (minus-plus sign change) is passed
when Ω is increased. Therefore, the first solution corresponds to a
maximum and the second to a minimum.

We gain additional insight, if we directly analyse f(yn) for different
coupling strengths3. This is shown in Fig. 4.8. We see that for small
coupling strengths, f(yn) has one minimum only which is located

2 An exception is the line parametrised by g1

g1,c
= g2

g2,c
.

3 f(yn) ≡ f(y1, 0, 0, 0) from Eq. (4.53), w.l.o.g. n = 1
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Figure 4.7: Graphical analysis of Eq. (4.58) for gn < gn,c (left) and gn >

gn,c (right) for a certain n and fixed temperature. The red
straight line corresponds to the first term,

gn,c
gn

2
Ω, the other

blue curved line corresponds to q(Ω) of Eq. (4.58) involving the
hyperbolic functions. Of physical relevance is the region Ω > 1

only. Thus, for g < gn,c no physical solution is possible, whereas
for gn > gn,c a physical solution might exist.

at yn = 0; this is the trivial solution corresponding to the normal
phase. If the coupling strength is increased, a maximum-minimum
pair forms at finite values of yn. In general, this minimum at yn > 0
is energetically higher than the minimum of the trivial solution at
yn = 0, see Fig. 4.8. Hence, the trivial solution still minimises f(yn)
globally. However, if the coupling strength is increased even further,
the local minimum at yn > 0 becomes the global minimum. So we see
that the position yn,0 of the global minimum jumps at a certain value
of the coupling strength from zero to a finite value. As we have seen
in the previous section, yn,0 measures the occupation of the mode of
the resonator. Therefore, the finite-temperature superradiant phase
transition in the Lambda-model is a first-order phase transition.

In conclusion, we have shown the existence of three different min-
ima of the function f appearing in the exponent of the integrand of
the partition sum. We have also shown that for given temperature T ,
we can find coupling strengths g1,c(T),g2,c(T), below which the triv-
ial solution minimises f. In this parameter regime, the system is in the
normal phase. In addition, above these coupling strengths, f is min-
imised by non-zero values of either y1 or y2. The first corresponds to
the blue superradiant phase, the latter to the red superradiant phase
of Ch. 2. In contrast to the zero-temperature case of Ch. 2, here all
phase transitions are of first order.

The above discussion confines to the case δ = 0. However, for finite
δ, the results are qualitatively the same. We discuss the properties of
the phase transition for finite δ below.

Next we analyse expectation values of observables. These can be
computed just as in the previous section, Sec. 4.1.
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0

0 y

f(y)

increasing g

Figure 4.8: The function f of Eq. (4.53) with zn = 0 = y2, and y1 = y

for fixed temperature. The coupling strength g increases from
the upper to the lower curves. The units are arbitrary and f has
been rescaled for comparison, such that f(0) = 0 for all coupling
strengths g. On increasing g, a local minimum forms distant
from the origin. For large g this minimum eventually becomes a
global minimum.

4.2.2 Expectation Values of Mode Operators

For functions G of operators of the two modes of the resonator, the
expectation value is given by [cf. the derivation of Eq. (4.25)]

⟨G(â†1, â1, â†2, â2)⟩ = G(
√
N y1,0,

√
N y1,0,

√
N y2,0,

√
N y2,0). (4.60)

Then we obtain for the occupation of both modes

⟨â†nân⟩ = N y2n,0. (4.61)

Thus we see that for finite temperatures, the character of the normal
phase with zero occupation of the resonator modes is preserved. The
same holds for the two superradiant phases at non-zero temperatures,
as they show only one macroscopically occupied mode of the res-
onator as well; mode one for the blue superradiant phase and mode
two for the red superradiant phase, while the occupation of the other
mode is zero. This is due to the fact that at most one of the two yn
can be non-zero simultaneously.
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4.2.3 Expectation Values of Particle Operators

The expectation values for the collective particle operators Â m
n can

be traced back to the single-particle operators ân,m [cf. the derivation
of Eq. (4.30)],

⟨Â m
n ⟩ = N

Tr

ân,m e−βĥ(y1,0,y2,0)


Tr{e−βĥ(y1,0,y2,0)}

, (4.62)

with ĥ(y1,0,y2,0) = ĥ(
√
N y1,0,

√
N y1,0,

√
N y2,0,

√
N y2,0) [cf. ĥ of

Eq. (4.47)]. This and the following holds even for non-zero δ. Let
εn be the eigenvalues and wn the corresponding eigenvectors of
ĥ(y1,0,y2,0). Then, we evaluate the traces in Eq. (4.62) in this eigenba-
sis and the expectation values can be written as

⟨Â m
n ⟩ = N

1

z

3
k=1

(w∗
k)n(wk)m e−βεk . (4.63)

Here z = Tr{exp[−βĥ(y1,0,y2,0)]} is the partition sum of the single-
particle Hamiltonian ĥ(y1,0,y2,0) and we have used that the matrix
elements of ân,m are given by zeros, except for the entry of the nth

row and mth column, which is one (cf. Sec. A.2).
In the normal phase with y1,0 = y2,0 = 0, the Hamiltonian ĥ(0, 0) is

diagonal and the eigenvectors wk are given by Cartesian unit vectors.
Hence, the expectation value of all collective operators Â m

n with n ̸=
m vanish. Conversely for the diagonal operators Â n

n , the occupations;
their expectation values are given by

⟨Â 1
1 ⟩ = N

1

1+ e−βδ + e−β∆
, (4.64)

⟨Â 2
2 ⟩ = N

e−βδ

1+ e−βδ + e−β∆
, (4.65)

and

⟨Â 3
3 ⟩ = N

e−β∆

1+ e−βδ + e−β∆
. (4.66)

Here, we explicitly see that in the normal phase the expectation val-
ues are independent of the coupling strengths g1 and g2. Further-
more, we note that for finite temperatures, in addition to the single-
particle ground state |1⟩, the energetically higher lying single-particle
states |2⟩ and |3⟩ are macroscopically excited as well. Hence, in con-
trast to the modes of the resonator, the particle part of the system
gets thermally excited. From that point of view, i. e. concerning the
populations of the single-particle energy levels, the particle system in
the normal phase behaves like a normal thermodynamical system.

For the superradiant phases, we cannot give explicit expressions
for the expectation values. Neither for finite or vanishing δ. That is
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because we need to compute the minimum of f numerically. Though
for δ = 0, we can say that some expectation values are exactly zero.
This will be done next, separately for the red and the blue superradi-
ant phases.

First consider the blue superradiant phase with y1,0 ≡ y0 ̸= 0

and y2,0 = 0. Then, the single-particle Hamiltonian ĥ(y0, 0) reads [cf.
Eq. (4.47)]

ĥ(y0, 0) =

 0 0 2g1y0

0 0 0

2g1y1 0 ∆

 , (4.67)

and its exponential has the form

e−βĥ(y0,0) =

a+ 0 b1

0 1 0

b1 0 a−

 . (4.68)

The matrix elements a± and bn are given by4

a± = e−
β∆
2


cosh

β∆Ω
2


±

sinh

β∆Ω
2


Ω


, (4.69)

bn = −
4gnyn

∆Ω
e−

β∆
2 sinh

β∆Ω
2


. (4.70)

The product of the exponential operator, Eq. (4.68), with matrices of
the form 0 M12 0

M21 0 M23

0 M32 0

 (4.71)

is traceless. Therefore, the expectation values of the collective oper-
ators Â 2

1 , Â 3
2 and their Hermitian conjugates are zero, i. e. there is

no spontaneous polarisation between both the single-particle states
|1⟩ and |2⟩, and the single-particle states |2⟩ and |3⟩. Contrary, the po-
larisation in the left branch of the Lambda-system, i. e. between the
states |1⟩ and |3⟩, is finite and macroscopic.

For the red superradiant case, the discussion is similar. Here we
have y2,0 ≡ y0 ̸= 0 and y1,0 = 0, and the exponential of the single-
particle Hamiltonian reads

e−βĥ(0,y0) =

1 0 0

0 a+ b2

0 b2 a−

 . (4.72)

4 The matrix element b2 is needed below.
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The matrix elements are given above, Eqs (4.69), (4.70). Now, the prod-
uct of the exponential operator, Eq. (4.72), with matrices of the form

 0 M12 M13

M21 0 0

M31 0 0

 (4.73)

is traceless and thus expectation values of the collective operators Â 2
1 ,

Â 3
1 and their Hermitian conjugates are zero. On the other hand, the

expectation value of the operators Â 3
2 , Â 2

3 is finite and macroscopic.
Hence, only the transition in the right branch of the Lambda-system
is spontaneously polarised.

In conclusion, we found that in the superradiant phases at finite
temperature, only the corresponding branch of the Lambda-system
shows spontaneous polarisation; the left branch in the blue superra-
diant phase and the right branch in the red superradiant phase. In
the normal phase, the polarisation is completely absent. Hence, in
contrast to the populations of the particle system, the polarisations
are not thermally excited and show a genuine quantum character.
Thus, both the polarisations and the occupations of the two resonator
modes show a similar behaviour in the three phases. Therefore, we
have two sets of observables, the polarisations for the particles and
the occupations of the modes for the resonator, to detect the superra-
diant phase transition at finite temperatures.

4.2.4 General Case of Finite δ

The above analysis for vanishing δ already shows that the phase tran-
sition in the Lambda-model for finite temperatures is a first-order
phase transition. This fact renders the calculation of the exact loca-
tion of the phase transition with our methods impossible. This can be
understood with the help of the free energy as follows. In the ther-
modynamic limit, the global minimum of the free energy defines the
thermodynamic phase of the system. We explicitly saw this when we
have computed the partition sum. In a phase transition, the system
changes from one thermodynamic state to another thermodynamic
state. This new state corresponds to a different, now global minimum
of the free energy.

For continuous phase transitions, the new minimum evolves con-
tinuously from the first minimum5 and the first minimum changes
its character to a maximum. Hence, the continuous phase transition
is characterised by a sign-change of the curvature of the free energy
at the position of the minimum of the state describing the normal
phase. Often, this is tractable analytically.

5 In most cases, two or more new minima appear.
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In contrast, in the case of first-order phase transitions, the new
global minimum of the free energy appears distant from the old
global minimum of the free energy, see Fig. 4.8. There are still two
minima and we cannot detect the phase transition by the curvature
of the free energy. Thus, to find the phase transition for first-order
phase transitions, we first need to find all minima of the free energy
and then find the global minima of these. This has to be done numer-
ically here.

For the numerical computation, we do not solve Eq. (4.55), but we
test for the minima of f(y1,y2), Eq. (4.53), directly. Therefore, we
apply a brute-force method, i. e. we look for the smallest value of
f(y1,y2) on a y1–y2 grid. Due to the reflection symmetry of f(y1,y2),
we can confine the grid to positive values for y1 and y2. This yields
the position of the minimum (y1,0,y2,0). Then we compute the eigen-
values and eigenvectors of the Hamiltonian ĥ(y1,0,y2,0), Eq. (4.47)6,
at this point and obtain via Eq. (4.60) the expectation values for the
operators of the resonator modes, and via Eq. (4.63) the correspond-
ing particle expectation values.

Fig. 4.9, 4.10, 4.11 show the occupation ⟨â†nân⟩ of the modes of the
resonator, the occupation Â n

n of the single-particle levels of the parti-
cles, and the polarisations Â 3

1 , Â 3
2 of the particles for low and high

temperatures. All plots have been generated numerically for finite
values of δ.

These figures corroborate our findings from the analytical discus-
sion of the partition sum for vanishing δ. We see three phases: a nor-
mal phase for coupling strengths g1 and g2 below the critical coupling
strengths g1,c and g2,c, a blue superradiant phase for large coupling
strengths g1 above the critical coupling strength g1,c, and a red su-
perradiant phase for coupling strengths g2 above the critical coupling
strength g2,c.

The normal phase is characterised by a zero occupation of both
modes of the resonator (Fig. 4.9) In addition, the polarisation, or co-
herence, of the particles is zero in the normal phase (Fig. 4.11).

In contrast to the normal phase, the two superradiant phases are
characterised by a macroscopic occupation of only one of the two res-
onator modes; mode one in the blue superradiant phase and mode
two in the red superradiant phase. In addition, the blue (red) superra-
diant phase shows a spontaneous polarisation only on the transition
of the single-particle levels |1⟩ ↔ |3⟩ (|2⟩ ↔ |3⟩).

We see that these defining properties remain for increasing tem-
perature (right part of Figs. 4.9-4.11). As discussed in Sec. 4.2.3, we
see that the population ⟨Â 2

2 ⟩ of the single-particle energy level |2⟩
increases for rising temperature. The same is true for the occupation
⟨Â 3
3 ⟩, though this is not visible in the right part of Fig. 4.10 due to

the fact that the temperature is yet too small.

6 Replace αn and α∗n by yn,0 in ĥ
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Figure 4.9: Numerical computation of the scaled occupations ⟨â†nân⟩ /N of
the two bosonic modes for the Lambda-model for kBT = 0.001∆
(left) and kBT = 0.25∆ (right). The parameters are set to ∆ = 1,
δ = 0.1, hω1 = 1.1, and hω2 = 0.8. The computation has been
done in the thermodynamic limit using Laplace’s method.

From the Figs. 4.9-4.11 we also see that the shape of the phase
boundary remains a straight line between the normal and the two su-
perradiant phases. Between the red and the blue superradiant phases,
the form of the phase boundary seems to persist as well. The only ef-
fect of the rising temperature is a shift of the phase boundary towards
higher values of the coupling strengths g1 and g2. This is visualised
in Fig. 4.12 where the polarisation ⟨Â 3

1 ⟩ of the transition |1⟩ ↔ |3⟩
of the three-level systems is shown for variable coupling strength g1
and temperature T . The coupling strength of the second mode is fixed
to g2 = 0.2 g2,c. We see that for increasing temperature, the superra-
diant phase diminishes.

In addition to the shift of the phase boundary, the jump in the ob-
servables at this first-order phase transition increases. This is shown
in Fig. 4.13 for the occupation ⟨â†1â1⟩ of the first mode of the res-
onator. Of course, numerically, jumps are hard to detect since we get
a discrete set of points as an output anyway. However, the dotted
lines in Fig. 4.13 connect two largely separated points; each of the
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Figure 4.10: Numerical computation of the scaled occupations ⟨Â n
n ⟩ /N of

the single-particle energy levels of the three-level systems for
kBT = 0.001∆ (left) and kBT = 0.25∆ (right), and other param-
eters as in Fig. 4.9

lines consists of 1000 data points. Thus, we can really speak of jumps
in the observables and thus of a first-order phase transition.
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⟨Â 3
2 ⟩ /N

−0.5

0

g
1
/g
1

,c
g
1
/g
1

,c

g
1
/g
1

,c
g
1
/g
1

,c

g2/g2,c

g2/g2,c g2/g2,c

g2/g2,c

Figure 4.11: Numerical computation of the scaled polarisations ⟨Â 3
1 ⟩ /N,

⟨Â 3
2 ⟩ /N of the three-level systems for kBT = 0.001∆ (left) and

kBT = 0.25∆ (right), and other parameters as in Fig. 4.9

4.2.5 The Zero-Temperature Limit

To close this chapter, we analyse the zero-temperature limit of the
Lambda-model for δ = 0. For decreasing temperature, the function
q(Ω), Eq. (4.56), becomes more and more step function like. Indeed,
for β∆ ≫ 1, q(Ω) can be written as a Fermi function, and eventually
in the limit β∆→∞, q(Ω) is given by

q(Ω) =

0 , Ω < 1

1 , Ω > 1.
(4.74)

Hence, at zero temperature, Eq. (4.58) has always a unique solution
for coupling strengths gn > gn,c. In addition, since f(y) shows no
additional maximum, we have a continuous phase transition in this
quantum limit.

Furthermore, we can also compute the position of the minimum of
f. In the limit T → 0, Eq. (4.58) reads

0 =
gn,c

gn

2
1+

4hωn
∆

 gn
gn,c

2
y2n − 1. (4.75)
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Figure 4.12: Numerical computation of the scaled polarisation ⟨Â 3
1 ⟩ /N of

the transition |1⟩ ↔ |3⟩ of the three-level system. g2 = 0.2 g2,c
and other parameters as in Fig. 4.9.

Solving for yn, we obtain

yn = ± g
hωn


1−

gn,c

gn

4
. (4.76)

If we identify, again, yn with the mean-fields φn of Eq. (2.8) of
Chap. 2, we reproduce the results of Eqs. (2.23) and (2.25) for the
superradiant phases of the quantum phase transition of the Lambda-
model.

The mean-fields Ψn can be reproduced as well. Consider for in-
stance Ψ3 which is related to ⟨Â 3

3 ⟩ through ⟨Â 3
3 ⟩ = NΨ23, except for

a possible phase [cf. Eqs. (2.5) and (2.8)]. Using the results for the
Boltzmann operator in the red superradiant phase, Eq. (4.72), plus
the above expression for y1, Eq. (4.76), and finally plug everything
into the expectation value of Eq. (4.62), we obtain

⟨Â 3
3 ⟩ =

N

2

1− eβ∆Ω +

1+ eβ∆Ω


Ω

1+ eβ∆Ω + e
β∆
2 (Ω+1)


Ω

(4.77)

which in the zero-temperature limit β∆→∞ reduces to

⟨Â 3
3 ⟩ =

N

2

Ω− 1

Ω
. (4.78)
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Figure 4.13: Occupations ⟨â†1â1⟩ of the first mode of the resonator as a func-
tion of the coupling strength g1 for fixed coupling strength
g2 = 0.2g2,c and rising temperature (left to right, blue to red,
respectively). The other parameters are set to ∆ = 1, δ = 0.1,
hω1 = 1.1, and hω2 = 0.8.

Here,Ω = Ω(y1) from Eq. (4.59). If we finally insert the position y1 of
the minimum of the free energy, Eq. (4.76), the population of the third
single-particle energy level in the zero-temperature limit is given by

⟨Â 3
3 ⟩ =

N

2


1−

g1,c

g1

2
(4.79)

which agrees with the findings of Ch. 2 for Ψ3, Eqs. (2.23) and (2.25).
Applying the same technique, we can obtain the expectation values of
all other collective particle operators Â m

n in both superradiant phases.
This coincides with the results of Ch. 2.

4.3 conclusion

In this section we have analysed the Lambda-model for finite temper-
atures. Therefore, we have computed the partition sum of the Hamil-
tonian. We found that at finite temperatures the properties of the
phases and phase transition partially persist, compared to the quan-
tum phase transition. Namely, we found a normal and two superra-
diant phases with the same properties as in the quantum limit, e. g.
macroscopic occupation for the modes of the resonator only in the
superradiant phases.
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In contrast, a new characteristic of the phase transition at finite
temperatures is the appearance of first-order phase transitions only.
For the quantum phase transition we already found first-order phase
transitions between the normal and the red superradiant phase and
between the two superradiant phases. Here, for finite temperatures,
the phase transition from the normal to the blue superradiant phase
becomes a first-order phase transition as well.





5
C O N C L U S I O N

This thesis gives an extensive study of a generalised Dicke model;
the interaction of three-level atoms in Lambda-configuration with
two modes of a resonator. Though, as modern experiments or their
proposals show (Baumann, Guerlin, et al., 2010; Nataf and Ciuti,
2010a; Dimer et al., 2007; Baden et al., 2014), we do not have to re-
strict to atoms and photons. The atomic system can be any quantum
mechanical three-level system and the resonator mode can be repre-
sented in principle by any bosonic degree of freedom. The above men-
tioned experiments and theoretical proposals all consider the original
Dicke model. However, we think it is possible, and the conclusions of
Baden et al. (2014) leaves us optimistic, that our generalised Dicke
model can be simulated in a future experiment.

The results of this thesis show that the Lambda-model has a rich
phase diagram with a trivial normal phase and two non-trivial super-
radiant phases. The normal and superradiant phases have the same
properties known from the original Dicke model: all atoms occupy
the ground state, the atoms show no polarisation, and no photons
are present in the resonator for the normal phase; contrary, in the
superradiant phases, the atoms as well as the resonator mode are
macroscopically excited, and the atoms show a spontaneous polarisa-
tion. In addition, the two superradiant phases, blue and red, manifest
themselves in one branch of the Lambda-system only. Compared to
the original Dicke model, the superradiant phase transition to the
blue superradiant phase is qualitatively identical; both are continu-
ous phase transitions and all expectation values like resonator oc-
cupation or atomic inversion show the same dependency. However,
the transition to the red superradiant phase, i. e. the phase which
is connected to the branch of the Lambda-system with the energet-
ically higher single-particle ground state, differs. Here, we found a
first-order phase transition which manifests itself in all expectation
values as well. A phase with both branches of the Lambda-system be-
ing superradiant does not appear. Thus, this generalised Dicke model
supports these mutually different superradiant phases which are sep-
arated by a first-order phase transition from each other.

We found signatures of STIRAP and dark-state physics, the hall-
marks of three-level systems in Lambda-configuration. However, con-
sidering the superradiant phase transitions, the dark state is irrele-
vant and a phase corresponding to a dark state is not stable. Maybe if
the low-energy excitations or the excited states are analysed in more
detail, the dark state becomes more relevant.
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If the three-level systems in our generalised Dicke model represent
real atoms, then the coupling strengths of the atom-light interaction
are not independent of the diamagnetic term. Thus, in general the
diamagnetic term cannot be neglected for real atoms. We showed
that the phase diagram of the generalised Dicke model drastically
changes, if diamagnetic terms are included. However, the system still
undergoes a superradiant phase transition. Comparing to the model
without the diamagnetic term, here, the phase transition is of first or-
der only. We emphasise that the model respects the Thomas–Reiche–
Kuhn sum rule. This is in contrast to the original Dicke model, where
the superradiant phase transition disappears if a diamagnetic term is
included in the Hamiltonian. We showed that this can be traced back
to the order of the superradiant phase transition; superradiant phase
transitions of second order are impossible.

All results found for the quantum phase transition are based on the
bosonisation of the generators of the unitary group which naturally
appear as collective atomic operators in the Hamiltonian. The bosoni-
sation is done using a generalised Holstein–Primakoff transformation.
This transformation results in a non-linear Hamiltonian of interacting
oscillators. However, in the thermodynamic limit, the Hamiltonian is
expanded and is bi-linear in the creation and annihilation operators
of the oscillators representing atomic and resonators degrees of free-
dom. From this Hamiltonian, we can directly read off the many-body
ground-state energy, which is a real number and scales with the num-
ber of particles. The analysis of the minima of the ground-state energy
gives the phase transition and the properties of the phases. The collec-
tive excitations above the many-body ground state are obtained from
the part of the Hamiltonian which is bi-linear in the creation and
annihilation operators. A Bogoliubov and a canonical transformation
yields the corresponding excitation energies.

The last chapter of this thesis addresses the superradiant phase
transition in the generalised Dicke model for finite temperatures. We
have evaluated the partition sum of the model in the thermodynamic
limit using Laplace’s method as far as we could. In the case of de-
generate single-particle ground-state energies, we made strong state-
ments on the properties of the phase transition and phases: in analogy
to the quantum phase transition, there exist at most one superradiant
phase for specific values of the coupling constants. These superradi-
ant phases have the same properties as the blue and red superradiant
phases of the zero-temperature model. In addition, the phase tran-
sition is always a first-order phase transition. We confirmed these
findings numerically for the case of non-degenerate single-particle
ground states as well. We did not explore the relevance of the dia-
magnetic term on the phase transition. Since we know that the no-go
theorem presented in Ch. 3 does not apply to first-order superradi-
ant phase transition, it is interesting to see whether or not the dia-
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magnetic term permits superradiant phase transition for the Lambda-
model at finite temperatures.

Other open questions concern (i) the ultra-strong coupling limit.
How can a polaron transformation for the Lambda-model as in Al-
calde et al. (2012) be constructed? Is there a Lipkin-Meshkov-Glick
model corresponding to the Lambda-model? Furthermore, (ii) is it
possible to go beyond the low-energy excitations obtained via the
Holstein–Primakoff transformation? Can the methods for the compu-
tation of the partition sum of Ch. 4 be used to analyse the properties
of excited-state quantum phase transitions (Brandes, 2013)?





A
A P P E N D I X

a.1 the thomas–reiche–kuhn sum rule

For every Hamiltonian Ĥ with spectrum En and eigenbasis |n⟩, the
identity

n


En − El


⟨l|Ô|n⟩ ⟨n|Ô|l⟩ = 1

2
⟨l|

Ô, [Ĥ, Ô]


|l⟩ (A.1)

is fulfiled. Here, the sum runs over all quantum numbers n. This
identity is called sum rule and is proven by expanding the double
commutator on the right hand side of Eq. (A.1) plus inserting a com-
pleteness relation. The sum rule, Eq. (A.1), is valid for any operator
Ô and every quantum number l of the Hamiltonian Ĥ.

For atomic systems with Ne electrons per atom, position and mo-
mentum operators r̂n and p̂n for each electron, respectively, and a
Hamiltonian of the form

Ĥ =

Ne
n=1

p̂2n
2m

+ ĥ

r̂1, . . . , r̂Ne


, (A.2)

a special sum rule with the operators

Ô = ε · d̂, d̂ = q

Ne
n=1

r̂n, |ε| = 1 (A.3)

is given by


n


En − El


|ε ·dln|2 =

h2q2Ne
2m

, dnl = ⟨n|d̂|l⟩ . (A.4)

This equation holds for all quantum numbers l. Up to now, no approx-
imation has been made. This kind of sum rule for the matrix element
dnl of the dipole operator d̂ is called Thomas–Reiche–Kuhn sum rule
(see e. g. Bethe and Jackiw, 1986). Upon inserting the definitions for
the real coupling strengths, Eq. (1.88), and the diamagnetic parameter,
Eq. (1.92), the Thomas–Reiche–Kuhn sum rule reads,


n

g2nl,k,s

En − El
=
κ2

ωk
. (A.5)

103



104 appendix

specialisation to lambda-system If the infinite dimensional
Hilbert space of a single atom is restricted to three energy levels only
and d12 = 0 is assumed, as in the Lambda-model, then not all terms
in the sum on the left hand side of the Thomas–Reiche–Kuhn sum
rule, Eq. (A.5), contribute. Hence, the left hand side is bounded, i.e.

3
n

g2nl,k,s

En − El
⩽
κ2

ωk
, l = 1, 2. (A.6)

Eventually, inserting l = 1, 2 and bear in mind that gnn,k,s = g12,k,s =

0, g31,k,s = g1, g32,k,s = g2, and ωk needs to be either ω1 or ω2, we
obtain the two inequalities of the Eqs. (3.5).

a.2 about the u(n) & su(n) group and its generators

A group consists of a set G plus an operation on two group elements
which satisfies (Singer, 2005):

(i) For g1,g2,g3 ∈ G it holds (g1g2)g3 = g1(g2g3), i. e. associativ-
ity of the group operation.

(ii) There exists an identity element I ∈ G such that for all g ∈ G
we have Ig = gI = g.

(iii) There is an inverse element g−1 ∈ G for every element g ∈ G
such that g−1g = gg−1 = I.

This definition is at first sight quite abstract. However, in physics in
general and in quantum mechanics in special, symmetries play an
important role. Symmetry operations leave the state or the physical
properties of a physical system invariant, i. e. the action of symmetry
operators let the state of the system remain in its corresponding sym-
metric subspace. In other words, the symmetry operators in quantum
mechanics are representations of elements of a group. It is clear that
the identity is a symmetry operation and that every symmetry oper-
ation can be reversed and thus representing the inverse element. In
modern physics, symmetries and the theory of groups are of consid-
erable interest in e. g. high-energy (Weinberg, 1995) or in solid-state
physics (Ashcroft and Mermin, 1976).

As a specific example of a group, consider the invertible linear
transformations of elements of aN dimensional complex vector space
onto itself. These transformations can be described by complex ma-
trices and form a group, the so-called general linear group, GL(N, C).
The operation of the group is given by matrix multiplication. It is clear
that all three group properties are satisfied: (i) since matrix multiplica-
tion is associative, (ii) the identity element is given by the identity ma-
trix, and (iii) since the linear transformations are assumed invertible,
hence their corresponding matrix representations have an inverse ma-
trix which gives the inverse element.
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The restriction to unitary transformations only, produces another
group, the so-called unitary group U(N). Unitary matrices U ∈ U(N)

have the property that their inverse is given by their Hermitian conju-
gate, U−1 = U†1. The unitary transformations are generalisations of
orthogonal matrices to complex vector spaces and therefore represent
rotations in Hilbert space. In general, the determinant of unitary ma-
trices is a complex number of modulus one, i. e. DetU = eiα, α ∈ R.
Unitary matrices with DetU = 1 also form a group, the so-called
special unitary group SU(N)2. The groups U(N) and SU(N) are key
players in various fields of physics, like atomic, nuclear, or high en-
ergy physics.

generators of u(n) The elements of the two groups U(N) and
SU(N) can be obtained by so-called generators via the exponential map
(Hall, 2003). For instance, consider the unitary matrix U ∈ U(2)

U =


cos s i sin s

i sin s cos s


. (A.7)

This matrix is generated by the Pauli matrix

σx =


0 1

1 0


, (A.8)

via U = exp[isσx].
The elements of the group U(N) are generated by N2 generators

(Hall, 2003). From the restriction for elements of the special unitary
group SU(N) of having a determinant equal to one, their generators
need to be traceless. This constraint removes one generator, such that
the number of generators for SU(N) is N2 − 1.

Let the generators be denoted by Γ mn where n and m assume the
values 1, 2, . . . ,N. The generators Γ mn of the U(N) group satisfy the
commutation relation (Hamermesh, 1964; Okubo, 1975)

Γ mn , Γ jk

= Γ jn δm,k − Γ

m
k δn,j. (A.9)

Every element g of the groups U(N) and SU(N) can be written in the
form

g = exp


N

n,m=1

i sn,mΓ
m
n


. (A.10)

For example, well-known generators for the unitary group U(2) are
the Pauli matrices plus the identity matrix. For the special unitary
group SU(3), the Gell-Mann matrices give the eight generators.

1 The product of two unitary matrices U1, U2 is a unitary matrix U3 = U1U2 as well,
since the inverse of U3 needs to be U−1

3 = U
†
3 = U

†
2U

†
1. Then it holds U−1

3 U3 =

U
†
2U

†
1U1U2 = U†

2U2 = 1. Hence, the product U1U2 is in fact a unitary matrix.
2 Remember Det(U1U2) = DetU1DetU2.
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connection to collective particle operators In Sec. 1.2
we introduced collective particle operators [cf. Eq. (1.91)],

Â m
n =

N
ν=1

|n⟩ν⟨m| , (A.11)

where |n⟩ν are the nth single-particle energy eigenstate of the νth

particle. Since the states of different particles are orthogonal, we have

Â m
n Â

j
k =


ν,µ

|n⟩ν⟨m|k⟩µ⟨j| (A.12)

=

ν

|n⟩ν⟨j| δm,k (A.13)

= Â j
n δm,k (A.14)

and analogous

Â
j
k Â

m
n = Â m

k δj,n, (A.15)

or combined
Â m
n , Â j

k


= Â j

n δm,k − Â
m
k δj,n, (A.16)

i. e., we reproduce the commutation relation, Eq. (A.9). Hence, the
operators Â m

n are actually a representation of the generators Γ mn of
the groups U(N) and SU(N).

For atomic systems, the number N appearing in U(N) and SU(N)
corresponds to the number of single-particle energy levels of the
atoms. So that in the Hamiltonian of the Dicke model from Sec. 1.2.1,
generators of the unitary group U(2) appear, whereas the Lambda-
model from Sec. 1.2.2 is described by SU(3) generators.

From their representation, Eq. (A.11), we see that the generators
fulfil the relation

Â m
n

†
= Â n

m . (A.17)

We can write the collective particle operators as

Â m
n =

N
ν=1

â
(ν)
n,m. (A.18)

Here, â(ν)n,m = |n⟩ν⟨m| is the single-particle operator of the νth particle.
One can easily show that theses operators are a representation of the
generators Γ mn as well. A three-by-three matrix representation of the
operators â(ν)n,m reads

â
(ν)
n,m


ij
= δi,nδj,m, i, j = 1, 2, 3. (A.19)

This matrix representation is obtained by choosing Cartesian basis
vectors as a representation for the single-particle states |n⟩ν.
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hermitian subsets The generators Â n
m with n ̸= m are not her-

mitian. However, one can consider linear combinations of the genera-
tors and construct hermitian generators. Consider the N(N−1)

2 subsets
Â n
k , Â k

n , 12

Â k
k − Â n

n


of generators of the unitary group U(N),

with n, k ∈ {1, 2, . . . ,N} and n < k. The operators of each set fulfil the
following commutation relations1

2


Â k
k − Â n

n


, Â n
k


=
1

2


Â k
k , Â n

k


−
1

2


Â n
n , Â n

k


(A.20)

=
1

2
Â n
k +

1

2
Â n
k = Â n

k , (A.21)1
2


Â k
k − Â n

n


, Â k
n


=
1

2


Â k
k , Â k

n


−
1

2


Â n
n , Â k

n


(A.22)

= −
1

2
Â k
n −

1

2
Â k
n = −Â k

n , (A.23)

and 
Â n
k , Â k

n


= Â k

k − Â n
n = 2

1

2


Â k
k − Â n

n


. (A.24)

These are the commutation relation of spin operators (Sakurai, 1994).
In consequence, we have for each of the (N− 1)! transitions of the N-
level particle a set of spin operators


X̂k,n, Ŷk,n, Ẑk,n


satisfying

X̂k,n, Ŷk,n

= i Ẑk,n (A.25)

(and cyclic permutation) plus the mapping

X̂k,n =
1

2


Â n
k + Â k

n


, (A.26)

Ŷk,n =
1

2i


Â n
k − Â k

n


, (A.27)

and

Ẑk,n =
1

2


Â k
k − Â n

n


. (A.28)

In general, spin operators corresponding to different transitions but
involving one common energy level, do not commute. For instance,

X̂2,1, X̂3,2

=
1

4


Â 1
2 + Â 2

1 , Â 2
3 + Â 3

2


(A.29)

= −
i

2

1

2


Â 1
3 − Â 3

1


(A.30)

= −
i

2
Ŷ3,1. (A.31)

In the case of two-level systems, N = 2, we have only one subset of
generators and the mapping

Ĵx =
1

2


Â 1
2 + Â 2

1


=
1

2


Ĵ+ + Ĵ−


, (A.32)

Ĵy =
1

2i


Â 1
2 − Â 2

1


=
1

2i


Ĵ+ − Ĵ−


, (A.33)
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and

Ĵz =
1

2


Â 2
2 − Â 1

1


(A.34)

to the spin operators Ĵn, n ∈ {x,y, z}. Here we have also identified the
spin ladder operators

Ĵ+ = Â 1
2 , Ĵ− = Â 2

1 . (A.35)

We note that the matrix elements of spin operators have a physical
dimension, whereas the matrix elements of the collective operators
Â m
n are dimensionless. This can be fixed by including a h on the

right-hand side. However, we neglect h here in this thesis.
For the unitary group U(3), i. e. for three-level systems, we have

three possible transitions between the single-particle energy levels,
and, consequently, there are three subsets of spin operators.

a.3 the holstein–primakoff transformation

Mathematically, the matrices or operators of the generators of the uni-
tary group U(N) group can be represented by oscillator, or bosonic
operators (Okubo, 1975; Klein and Marshalek, 1991). One bosonic
representation for the group SU(2) was introduced by Holstein and
Primakoff (1940) and is therefore called Holstein–Primakoff transfor-
mation.

holstein–primakoff transformation of su(2) The Fig. A.1
gives an idea, why this mapping of spin states3 to oscillator states
works. The idea of the Holstein–Primakoff transformation is that the
ladder of spin states |J,M⟩, with (M = −J,−J + 1, . . . , J − 1, J), is
mapped onto a finite number of harmonic oscillator states |n⟩ (n =

0, 1, . . . , 2J); the spin raising and lowering operators Ĵ+ and Ĵ− are
mapped onto independent (bosonic) creation and annihilation opera-
tors b̂† and b̂ of the oscillator.

This mapping of spin to oscillator operators, i. e. the transforma-
tion of Holstein and Primakoff, is given by (Okubo, 1975; Klein and
Marshalek, 1991)

Ĵ+ = b̂†

2J− b̂†b̂ , Ĵ− =


2J− b̂†b̂ b̂, Ĵz = b̂

†b̂− J. (A.36)

The bosonic operators b̂† and b̂ fulfil canonical commutation relations


b̂, b̂†


= 1. (A.37)

Correspondingly, the mapping of the spin states is given by

|J,M⟩ = |J+M⟩ . (A.38)

3 Remember, SU(2) is the group which is used for describing spin degrees of freedom.
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|J, 3⟩

|J, 2⟩

|J, 1⟩

|J, 0⟩

|J,−1⟩

|J,−2⟩

|J,−3⟩
Ĵ−

Ĵ+
|6⟩

|5⟩

|4⟩

|3⟩

|2⟩

|1⟩

|0⟩

b̂†

b̂

Figure A.1: Mapping of spin states (with J = 3) and operators (left) onto har-
monic oscillator states and operators (right), |J,M⟩ ↔ |M+ 3⟩
and Ĵ+ ↔ b̂†, Ĵ− ↔ b̂.

To be clear, on the left hand side is a spin state, whereas on the right
hand side there is an oscillator state. We note that the quantum num-
ber J is unchanged by the spin operators considered here.

In order to check the validity of the Holstein–Primakoff transforma-
tion, we act with the bosonic representation directly on the oscillator
states4,

Ĵ+ |J,M⟩ = b̂†

2J− b̂†b̂ |J+M⟩ (A.39)

= b̂†

2J− (J+M) |J+M⟩ (A.40)

=

J+M+ 1


J−M |J+M+ 1⟩ (A.41)

=


(J−M)(J+M+ 1) |J,M+ 1⟩ (A.42)

analogously for Ĵ−, and for Ĵz we have

Ĵz |J,M⟩ =

b̂†b̂− J


|J+M⟩ (A.43)

=

J+M− J


|J+M⟩ (A.44)

=M |J,M⟩ . (A.45)

We see, that the Holstein–Primakoff transformation indeed gives the
correct states and prefactors [see e. g. Sakurai (1994)].

holstein–primakoff transformation of u(n) The trans-
formation of Holstein and Primakoff can be generalised to unitary

4 Remember for the creation and annihilation operators b̂†, b̂ it holds b̂† |n⟩ =√
n+ 1 |n+ 1⟩ and b̂ |n⟩ =

√
n |n− 1⟩.
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groups U(N) with N arbitrary (Okubo, 1975; Klein and Marshalek,
1991). Then, the generators of U(N) are represented as

Â m
n = b̂†n b̂m,

Â ℓ
n = b̂†n Θ̂ℓ


N

,

Â m
ℓ = Θ̂ℓ


N

b̂m,

Â ℓ
ℓ = Θ̂ℓ


N
2


n,m ̸= ℓ. (A.46)

Here, n,m, ℓ ∈ {1, . . . ,N} and ℓ is fixed.
The operator Θ̂ℓ


N


is a generalisation of the square root operator
of the Holstein–Primakoff transformation of SU(2):

Θ̂ℓ

N

=

N−

N
n=1
n ̸=ℓ

b̂
†
nb̂n . (A.47)

The values of ℓ and N depend on the physical context. In this thesis
N is the number of particles. For spin systems N is given by 2J.

The N− 1 bosonic operators b̂n fulfil the canonical commutation
relations

b̂n, b̂†m

= δn,m,


b̂n, b̂m


= 0. (A.48)

To close this section, we want to show that the generators represented
by the Holstein–Primakoff transformation of Eq. (A.46) indeed sat-
isfy the commutation relations (A.9) of the generators of the unitary
group U(N).

We first consider generators Â b
a with a,b ̸= ℓ

Â m
n , Â j

k


=

b̂†nb̂m, b̂†kb̂j


= b̂†nb̂jδm,k − b̂

†
kb̂mδn,j (A.49)

= Â j
nδm,k − Â

m
k δn,j (A.50)

which agrees with Eq. (A.9).
Next we analyse the commutator with one generator having one

index m = ℓ,
Â m
ℓ , Â j

k


=

Θ̂ℓb̂m, b̂†kb̂j


=

Θ̂ℓ, b̂

†
kb̂j

b̂m + Θ̂ℓb̂jδm,k (A.51)

=

Θ̂ℓb̂

†
kb̂j − b̂

†
kb̂jΘ̂ℓ


b̂m + Â j

ℓ δm,k. (A.52)

In order to evaluate the expression in the parentheses, we use the
following identities (m ̸= ℓ)N−

N
n=1
n ̸=ℓ

b̂
†
nb̂n b̂

†
m = b̂†m

N−

N
n=1
n ̸=ℓ

b̂
†
nb̂n − 1 (A.53)

b̂m

N−

N
n=1
n ̸=ℓ

b̂
†
nb̂n =

N−

N
n=1
n ̸=ℓ

b̂
†
nb̂n − 1 b̂m (A.54)


Θ̂k, b̂†mb̂m


= 0. (A.55)
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These equations can easily be checked by applying both sides of the
equation to a Fock state. By means of these identities, we can simplify
the parentheses in Eq. (A.52),

Θ̂ℓb̂
†
kb̂j =

N−

N
n=1
n ̸=ℓ

b̂
†
nb̂n b̂

†
kb̂j (A.56)

= b̂†k

N−

N
n=1
n ̸=ℓ

b̂
†
nb̂n − 1 b̂j (A.57)

= b̂†kb̂j

N−

N
n=1
n ̸=ℓ

b̂
†
nb̂n = b̂†kb̂j Θ̂ℓ (A.58)

i. e. 
Θ̂ℓ, b̂

†
kb̂j

= 0 (A.59)

for arbitrary k, j ̸= ℓ. So, the above commutator, Eq. (A.52) yields
Â m
ℓ , Â j

k


= Â j

ℓ δm,k (A.60)

as it should [see Eq. (A.9)].
Next, we consider the commutator with n = j = ℓ:

Â m
ℓ , Â ℓ

k


=

Θ̂ℓb̂m, b̂†kΘ̂ℓ


= Θ̂ℓb̂mb̂

†
kΘ̂ℓ − b̂

†
kΘ̂
2
ℓ b̂m (A.61)

= Θ̂ℓb̂
†
kb̂mΘ̂ℓ + Θ̂

2
ℓδm,k − b̂

†
kΘ̂
2
ℓ b̂m (A.62)

= b̂†k

N−

N
n=1
n ̸=ℓ

b̂
†
nb̂n − 1

N−

N
n=1
n ̸=ℓ

b̂
†
nb̂n − 1 b̂m

(A.63)

+ Θ̂2ℓδm,k − b̂
†
k


N−

N
n=1
n ̸=ℓ

b̂†nb̂n


b̂m (A.64)

= −b̂†kb̂m + Θ̂2ℓδm,k = Â ℓ
ℓ δm,k − Â

m
k , (A.65)

as desired.
The next case is given by n = m = ℓ and is calculated as

Â ℓ
ℓ , Â j

k


=

Θ̂2ℓ , b̂†kb̂j


= −


b̂
†
kb̂k + b̂

†
j b̂j, b̂

†
kb̂j


(A.66)

= −b̂†kb̂j + b̂
†
kb̂kδj,k + b̂

†
kb̂j − b̂

†
j b̂jδj,k = 0. (A.67)

Which is true as well.
Finally, we consider the case with n = m = k = ℓ:

Â ℓ
ℓ , Â j

ℓ


=

Θ̂2ℓ , Θ̂ℓb̂j


= Θ̂ℓ


Θ̂2ℓ , b̂j


(A.68)

= −Θ̂ℓ

b̂
†
j b̂j, b̂j


= Θ̂ℓb̂j = Â

j
ℓ (A.69)
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All other combination of operators in the commutator follow from
these cases by Hermitian conjugation and renaming of indices. Thus,
the Holstein–Primakoff transformation of Eq. (A.46) indeed repro-
duces the canonical commutation relations Eq. (A.9) for the gener-
ators of the unitary group U(N).

a.4 the bogoliubov transformation

a.4.1 Basic Example — Two Interacting Oscillators

Consider the Hamiltonian

Ĥ/h = ω1â
†
1â1 +ω2â

†
2â2

+ λ

â
†
1 + â1


â
†
2 + â2


+ λ ′


â
†
1 + â1

2 (A.70)

of two interacting oscillators.
We introduce a transformation to new coordinates q̂, p̂ via

q̂ =


1

2ω


â† + â


, (A.71)

p̂ = i


ω

2


â† − â


. (A.72)

For the inverse transformation, it holds

â =


ω

2


q̂+ i

1

ω
p̂

, (A.73)

â† =


ω

2


q̂− i

1

ω
p̂

. (A.74)

With that, we have for the commutator and the squares of these
new coordinates

[q̂, p̂] = i, (A.75)

q̂2 =
1

2ω


â†2 + 2â†â+ 1+ â2


, (A.76)

p̂2 = −
ω

2


â†2 − 2â†â− 1+ â2


(A.77)

and thus

1

2
p̂2 +

1

2
ω2q̂2 = ω


â†â+ 1/2


. (A.78)

In addition, it holds

â†â =
1

2ω
p̂2 +

1

2
ωq̂2 − 1/2, (A.79)

â† + â =
√
2ωq̂. (A.80)
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In these new coordinates, the Hamiltonian, Eq. (A.70), of the inter-
acting oscillators reads

Ĥ/h =
1

2
p̂21 +

1

2
p̂22 +

1

2
ω21q̂

2
1 +

1

2
ω22q̂

2
2

+ 2
√
ω1ω2λq̂1q̂2 + 2ω1λ

′q̂21. (A.81)

The q-sector of this Hamiltonian can be written in a matrix-vector
notation,

Ĥ/h =
1

2
p̂21+

1

2
p̂22+

1

2


q̂1, q̂2) ·


ω21 + 4ω1λ

′ 2
√
ω1ω2λ

2
√
ω1ω2λ ω22


·


q̂1

q̂2


.

(A.82)

Diagonalising this matrix gives new uncoupled coordinates Q̂n.
Due to the diagonalisation of a symmetric matrix, the operators Q̂n
and q̂n are related by an orthogonal transformation U,

Q̂n =

m

Un,mq̂m. (A.83)

If we define new canonical momenta P̂n via

P̂n =

m

Un,mp̂m, (A.84)

the canonical commutation relations are preserved,

[Q̂n, P̂m] =

j,k

Un,jUm,k[q̂j, p̂k] = i

j

Un,jUm,j = iδn,m. (A.85)

In the last step, the orthogonality property of U was used.
In addition, the sum of the squares of the momenta is invariant

under the orthogonal transformation U,
m

P̂2m =

m


j,k

Um,jUm,kp̂jp̂k =

j

p̂2j . (A.86)

Finally, the Hamiltonian in these new coordinates reads

Ĥ/h =
1

2
P̂21 +

1

2
P̂22 +

1

2
ε21Q̂

2
1 +

1

2
ε22Q̂

2
2. (A.87)

This is a Hamiltonian of two non-interacting oscillators. Here, ε2n are
the two eigenvalues of the matrix appearing in the Hamiltonian of
Eq. (A.82). These eigenvalues are explicitly given by

ε21,2 =
1

2


ω21 + 4ω1λ

′ +ω22 (A.88)

±

[ω21 + 4ω1λ

′ −ω22]
2 + 16λ2ω1ω2


.
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Applying an additional transformation back to new creation and
annihilation operators ê†n, ên, similar as above, Eqs. (A.71), (A.72),
we end with a Hamiltonian of two non-interacting oscillators

Ĥ = hε1ê
†
1ê1 +

hε2ê
†
2ê2, (A.89)

with the frequencies εn from the diagonalisation procedure. This di-
agonalisation procedure of interacting oscillators or bosonic degrees
of freedom is called Bogoliubov transformation.

a.4.2 Application to Excitations in the Lambda-model

The Hamiltonian of the Lambda-model reads (cf. Sec. 2.2)

Ĥ =

3
n=1

EnÂ
n
n +

2
n=1


hωnâ

†
nân

+
gn√
N


â†n + ân


Â 3
n + Â n

3


. (A.90)

Upon representing the collective Â m
n operators by bosonic operators

via the Holstein–Primakoff transformation (cf. Sec. 2.3.1) and intro-
duce mean fields Ψn and φn, the Hamiltonian can be written in pow-
ers of 1/

√
N (cf. Sec. 2.3.2). Of interest here is the ĥ(2)m part of the

Hamiltonian, since it defines the collective excitations of the system
(Emary and Brandes, 2003a). The index m signals different instances
of the Holstein–Primakoff transformation. For the normal and blue
superradiant phase, m = 1 is suitable. The Hamiltonian is given in
Eq. (2.18)

Next, we introduce new names for the creation and annihilation
operators,

â1 = ĉ1, (A.91)

â2 = ĉ2, (A.92)

â3 = d̂2, and (A.93)

â4 = d̂3, (A.94)

for the frequencies

hω3 = δ− 2 g1φ1 Ψ3/ψ1, and (A.95)
hω4 = ∆− 2 g1φ1 Ψ3/ψ1, (A.96)

(A.97)
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and for the couplings

hλ33 = −
1

2
g1φ1 Ψ

2
2 Ψ3/ψ

3
1 (A.98)

hλ44 = −g1φ1 Ψ3/ψ1

1+ 1

2Ψ
2
3/ψ

2
1


(A.99)

hλ34 = −g1φ1 Ψ2/ψ1

1+Ψ23/ψ

2
1


(A.100)

hλ34 ′ = 2 g2φ2 (A.101)
hλ13 = −g1 Ψ2 Ψ3/ψ1 (A.102)
hλ14 = g1ψ1


1−Ψ23/ψ

2
1


(A.103)

hλ23 = g2 Ψ3 (A.104)
hλ24 = g2 Ψ2. (A.105)

With that, the Hamiltonian of Eq. (2.18) assumes the form

ĥ
(2)
m=1/

h = ω1â
†
1â1 +ω2â

†
2â2 +ω3â

†
3â3 +ω4â

†
4â4 (A.106)

+ λ33

â
†
3 + â3

2
+ λ44


â
†
4 + â4

2
+ λ34


â
†
3 + â3


â
†
4 + â4


+ λ34 ′


â
†
4â3 + â

†
3â4


+ λ13


â
†
1 + â1


â
†
3 + â3


+ λ14


â
†
1 + â1


â
†
4 + â4


+ λ23


â
†
2 + â2


â
†
3 + â3


+ λ24


â
†
2 + â2


â
†
4 + â4


.

In the following, we specialise this Hamiltonian to the three phases
of the Lambda-model: the normal and the two superradiant phases.

normal phase For the normal Phase, it holds (cf. Sec. 2.3.3)

Ψ2 = 0,Ψ3 = 0,ψ1 = 1,φ1 = 0,φ2 = 0. (A.107)

Then, the coupling λ14 = g1/h is non-zero only, the frequencies sim-
plify to

hω3 = δ (A.108)
hω4 = ∆ (A.109)

and the Hamiltonian is given by

ĥ
(2)
m=1 =

hω1â
†
1â1 +

hω2â
†
2â2 +

hω3â
†
3â3 +

hω4â
†
4â4

+ hλ14

â
†
1 + â1


â
†
4 + â4


. (A.110)

Using the findings of the previous section, the excitation energies
are given by

ε21,4 =
1

2


ω21 +


∆/h
2 (A.111)

±


[ω21 −

∆/h
2
]2 + 16


g1/h

2
ω1∆/h


,

ε2 = δ/h, (A.112)

ε3 = ω2. (A.113)
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blue superradiant phase Now, consider the blue superradi-
ant phase (cf. Sec. 2.3.3),

Ψ2 = 0,Ψ3 =


1

2


1−

g1,c

g1

2
, (A.114)

φ1 = −
g1

hω1


1−

g1,c

g1

4
φ2 = 0. (A.115)

We introduce new names for the creation and annihilation operators
as above.

Furthermore, it holds

2g1φ1Ψ3/ψ1 = −2
g21

hω1


1−

g1,c

g1

4 1− g1,c
g1

2
1+

g1,c
g1

2
= −2

g21
hω1


1−

g1,c

g1

2
= −

∆

2

 g1
g1,c

2
1−

g1,c

g1

2
=
∆

2


1−

 g1
g1,c

2
(A.116)

and we define

η1 =
 g1
g1,c

2
, η2 =

 g2
g2,c1

2
, (A.117)

with the critical coupling strengths

g1,c =

√
∆hω1
2

and g2,c1 =


∆− δ


hω2

2
. (A.118)

With that, the frequencies in the Hamiltonian are given by,

hω3 = δ+
∆

2


η1 − 1


, (A.119)

hω4 =
∆

2


η1 + 1


(A.120)
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and the non-zero couplings are given by

hλ44 = −
∆

4


1−

 g1
g1,c

2
1+

1

2

1−

g1,c
g1

2
1+


g1,c
g1

2 

=
∆

8


η1 − 1


3η1 + 1


η1 + 1

, (A.121)

hλ14 = g1


1

2


1+

g1,c

g1

2 
1−

1−

g1,c
g1

2
1+


g1,c
g1

2 

=
g1,c
√
2√

η1 + 1
, (A.122)

hλ23 = g2


1

2


1− 1/η1 = g2


1

2


η1 − 1

η1
. (A.123)

The Hamiltonian is given by

ĥ
(2)
m=1 =

hω1â
†
1â1 +

hω2â
†
2â2 +

hω3â
†
3â3 +

hω4â
†
4â4

+ hλ14

â
†
1 + â1


â
†
4 + â4


+ hλ23


â
†
2 + â2


â
†
3 + â3


+ hλ44


â
†
4 + â4

2. (A.124)

We see, that the first and fourth, and second and third oscillator
are coupled, respectively. Thus, the excitation energies of the diag-
onalised Hamiltonian are given by

ε21,4 =
1

2


ω21 +ω

2
4 + 4ω4λ44 (A.125)

±


[ω21 −ω
2
4 − 4ω4λ44]

2 + 16λ214ω1ω4


,

(A.126)

ε22,3 =
1

2


ω22 +ω

2
3 ±


[ω22 −ω

2
3]
2 + 16λ223ω2ω3


. (A.127)
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red superradiant phase At last, consider the red superradiant
phase. The Hamiltonian for the excitations, with m = 2 as a reference
state, is given by

ĥ
(2)
m=2 = d̂

†
1 d̂1


−δ− 2 g2φ2 Ψ3/ψ2


(A.128)

+ d̂†3 d̂3

∆− δ− 2 g2φ2 Ψ3/ψ2


+ hω1 ĉ

†
1 ĉ1 +

hω2 ĉ
†
2 ĉ2

−

d̂
†
1 + d̂1

2 1
2
g2φ2 Ψ

2
1 Ψ3/ψ

3
2

−

d̂
†
3 + d̂3

2
g2φ2 Ψ3/ψ2


1+ 1

2Ψ
2
3/ψ

2
2


−

d̂
†
1 + d̂1


d̂
†
3 + d̂3


g2φ2 Ψ1/ψ2


1+Ψ23/ψ

2
2


+

d̂
†
3 d̂1 + d̂

†
1 d̂3


2 g1φ1

−

ĉ
†
2 + ĉ2


d̂
†
1 + d̂1


g2 Ψ1 Ψ3/ψ2

+

ĉ
†
2 + ĉ2


d̂
†
3 + d̂3


g2ψ2


1−Ψ23/ψ

2
2


+

ĉ
†
1 + ĉ1


d̂
†
1 + d̂1


g1 Ψ3

+

ĉ
†
1 + ĉ1


d̂
†
3 + d̂3


g1 Ψ1.

Here, we have defined ψ2 =

1−Ψ21 −Ψ

2
3.

We define new operators

â1 = ĉ1, (A.129)

â2 = ĉ2, (A.130)

â3 = d̂1, (A.131)

â4 = d̂3, (A.132)

new frequencies

hω3 = −δ− 2 g2φ2 Ψ3/ψ2, (A.133)
hω4 = ∆− δ− 2 g2φ2 Ψ3/ψ2, (A.134)

and new couplings

hλ33 = −
1

2
g2φ2 Ψ

2
1 Ψ3/ψ

3
2, (A.135)

hλ44 = −g2φ2 Ψ3/ψ2

1+ 1

2Ψ
2
3/ψ

2
2


, (A.136)

hλ34 = −g2φ2 Ψ1/ψ2

1+Ψ23/ψ

2
2


, (A.137)

hλ ′34 = 2g1φ1, (A.138)
hλ23 = −g2Ψ1Ψ3/ψ2, (A.139)
hλ24 = g2ψ2(1−Ψ

2
3/ψ

2
2), (A.140)

hλ13 = g1Ψ3, (A.141)
hλ14 = g1Ψ1. (A.142)
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For the red superradiant state, it holds (cf. Sec. 2.3.3)

Ψ1 = 0,Ψ3 =


1

2


1−

g2,c1
g2

2
, (A.143)

φ1 = 0,φ2 = −
g2

hω2


1−

g2,c1
g2

4
, (A.144)

such that λ44, λ24, and λ13 are non-zero only.
We have

2g2φ2Ψ3/ψ2 = −
∆− δ

2

 g2
g2,c1

2
− 1

, (A.145)

g2φ2Ψ3/ψ2(1+
1
2Ψ
2
3/ψ

2
2) = −

∆− δ

8


g2
g2,c1

2
− 1

3

g2
g2,c1

2
+ 1


1+

g2
g2,c1

2 ,

(A.146)

g2ψ2(1−Ψ
2
3/ψ

2
2) =

√
2g2,c1

 1

1+

g2
g2,c1

2 . (A.147)

With that, we have for the frequencies

hω3 = −δ+
∆− δ

2


η2 − 1


, (A.148)

hω4 =
∆− δ

2


η2 + 1


, (A.149)

and for the couplings

hλ13 = g1


1

2


1− 1/η2 = g1


1

2


η2 − 1

η2
, (A.150)

hλ24 = g2,c1

√
2


1

η2 + 1
, (A.151)

hλ44 =
∆− δ

8


η2 − 1


3η2 + 1


η2 + 1

. (A.152)

The Hamiltonian is given by

ĥ
(2)
m=2 =

hω1â
†
1â1 +

hω2â
†
2â2 +

hω3â
†
3â3 +

hω4â
†
4â4

+ hλ13

â
†
1 + â1


â
†
3 + â3


+ hλ24


â
†
2 + â2


â
†
4 + â4


+ hλ44


â
†
4 + â4

2. (A.153)

Thus, the excitation energies are given by

ε21,4 =
1

2


ω21 +ω

2
3 ±


ω21 −ω

2
3

2
+ 16λ213ω1ω3


, (A.154)

ε22,3 =
1

2


ω22 +ω

2
4 + 4ω4λ44

±

ω22 −ω

2
4 − 4ω4λ44

2
+ 16λ224ω2ω4


.

(A.155)
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We note, that we have chosen a different naming of the indices of the
excitation energies here.

In conclusion, we have for the excitation energies of the collective
excitations for the Lambda-model in the respective phases:

normal phase

ε1,4 =

1

2


ω21 +


∆/h
2 ±[ω21 −


∆/h
2
]2 + 64


g1/h

2
g1,c/h

2 
(A.156)

ε2 = δ/h (A.157)

ε3 = ω2. (A.158)

blue superradiant phase

ε21,4 =
1

2


ω21 +

∆/h
2


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2
+
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2

2
η1 − 1


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
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red superradiant phase
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1
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±
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The notation η1 =

g1/g1,c

2, η2 =

g2/g2,c1

2 is used. The criti-
cal coupling strengths are given by g1,c =

√
∆hω1/2 and g2,c1 =

∆−δ

hω2/2. It is clear that the excitation energies are positive.
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