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1 Introduction

The discovery of novel molecules and materials is crucial for research in a wide va-
riety of applications ranging from food processing and drug design [3, 46] to more
efficient batteries [12, 23, 25] and solar cells [35]. While quantum-chemical calcu-
lations [14, 28] deliver the means to predict such properties for given atomistic
systems, their computational cost as well as the vastness of chemical compound
space prevents an exhaustive exploration [30]. In recent years, there has been
a growing interest in applying machine learning techniques to model quantum-
chemical systems [5, 9, 11, 13, 16, 17, 21, 22, 32, 40, 43]. While research has
focused primarily on predicting chemical properties by applying non-linear re-
gression methods such as Gaussian processes or neural networks to manually
crafted features[4, 6], there have also been successful approaches to learn molecu-
lar representations end-to-end. These include neural circular fingerprints that use
chemical graphs as inputs [15, 26], mixed approaches that use both graph infor-
mation as well as atomic positions [20] and architectures that learn purely from
first-principles information such as deep tensor neural networks (DTNNs) [42],
which represent atomistic systems by modeling subsequent pair-wise interactions
of atomic environments with factorized tensor layers. Other architectures fitting
into the DTNN framework include SchNet [45], where the interactions are mod-
eled using continuous-filter convolutions [44] as well as more recent variations of
this theme such as HIP-NN [31] or crystal graph convolutional networks [50].

As these neural network architectures become increasingly complex, it is cru-
cial that quantum-chemistry researchers are able to acquire an intuition how
these models function and how trustworthy predictions are. Beyond a high
prediction accuracy, this requires neural networks to demonstrate that they
have learned fundamental quantum-chemical principles. Several techniques have
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been developed that generate explanations for classifier decisions of neural net-
works [1, 2, 27, 33, 48, 51, 52]. Since quantum-chemical properties are often
continuous, such as the prediction of molecular energies with a neural network
potential, regression problems are more common in this field than classification.
This changes how explanations have to be interpreted. Given a neural network
potential, saliency maps based on input gradients [2, 48] correspond to the force
that acts on atoms. While this might indeed be a reason for high energies, e.g. if
two atoms are very close, the gradient is too local to explain the energy level suf-
ficiently. This is especially the case for stable (equilibrium) molecules, which are
located in a local energy minimum such that all forces are zero. Therefore, input
gradients would indicate that the atom positions are not important, which is
clearly wrong. Other explanation methods assign importance or relevance scores
to input features through obtaining reverse mappings based on the network pa-
rameters [1, 33, 51], sampling [52] or training for signal reconstruction [? ]. Even
though some of those alleviate the problem of pure input gradients since their
explanations are less local [41], there is another fundamental issue in this appli-
cation: While pixel-wise relevance scores of images allow for a visual inspection,
the influence of the positions and types of individual atoms is not readily inter-
pretable in the quantum chemical picture. Here, we aim for an explanation in
the full 3-d space, i.e. beyond positions of nuclear charges.

In the following, we will introduce two neural network potentials, namely (1)
Behler-Parrinello networks (BP) [8, 9, 19] that make use of manually engineered
features and (2) SchNet [44, 45], which learns atomistic representations directly
from atom types and positions. For both architectures, we will demonstrate
interpretation strategies that allow for spatially and chemically resolved insights
into the inner workings of the neural network as well as the underlying data.
Furthermore, we will show that both kinds of architectures – and deep end-to-
end models in particular – not only are highly accurate, but recover fundamental
chemical knowledge.

2 Atomistic Neural Network Potentials

Due to the spatial structure of atomistic systems and the nature of quantum me-
chanical laws giving rise to various invariances and scaling behaviors of chemical
properties, special adaptations to conventional neural network architectures are
necessary in order to model chemical systems efficiently. The first major issue
arises from the overall diversity exhibited by molecules. They can vary greatly
with respect to the overall number of atoms as well as the combination of chem-
ical elements present, thus rendering purely static architectures ill-suited for
obtaining a general description. In addition, molecular properties do not change
if atoms of the same element are exchanged and the corresponding invariances
with respect to atom types needs to be accounted for by the model.

Second, the properties of molecules originate from interactions between nu-
clei and electrons. These can be roughly represented by interatomic potentials
which are functions in 3d space depending on the types and positions of the
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Fig. 1: Illustration of the two examined neural network architectures: Behler-
Parrinello network with atom-centered symmetry functions (ACSFs, left) and
the end-to-end architecture SchNet (right). The softplus activation is shifted by
− ln(2) such that it crosses the origin.

atoms. However, atom coordinates – and subsequently all associated molecular
properties – can change in a continuous manner. Hence, all grid based meth-
ods (e.g. conventional convolutional neural networks) are generally infeasible, as
they fail to resolve these incremental changes. Moreover, chemical properties are
invariant with respect to translations and rotations in Cartesian space, imposing
additional constraints on machine learning models for molecules and materials.

In order to overcome the first of the above issues, so-called atomistic neural
network architectures are introduced. Similar to neural networks for graphs, the
atomistic system is decomposed into local environments. Specifically, a set of
feature vectors is defined for every atom based on which latent atom-wise con-
tributions to a property of interest are predicted. These are used to reconstruct
the target property via physically motivated aggregation layers that guarantee
permutational invariance of the atoms.

Depending on the strategy used to obtain atom-wise features, two categories
of atomistic neural network models can be distinguished (see Figure 1). The
first type employs handcrafted features, which are engineered before training.
A popular choice in this category are Behler–Parrinello (BP) networks using
atom-centered symmetry functions [8, 9]. In the second category, all spatial in-
variances are encoded instead directly into the structure of an atomistic neural
network such that atom-wise representations can be obtained during training in
an end-to-end fashion. This includes neural networks implementing the DTNN
framework, where atomistic representations are constructed through interaction
layers such as the continuous-filter convolutional neural network SchNet [44, 45].
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In the following section, BP and SchNet architectures will be discussed in
greater detail. Finally, a short overview will be given on how various chemical
properties are obtained in an atomistic machine learning framework.

2.1 Behler–Parrinello Potentials

BP neural network potentials apply fully-connected neural networks atom-wise
to so-called atom-centered symmetry functions (ACSFs) [8]. These ACSFs de-
scribe the arrangement and chemical identities of the neighbors surrounding a
central atom via sets of specialized distribution functions. Typically, multiple,
different types of ACSFs are used to capture radial and angular information.

Radial distribution functions take the form

Grad
i =

N∑
j 6=i

e−η(rij−r0)2fcut(rij), (1)

where N is the number of atoms in the molecule and rij the distance between the
central atom i and its neighbor j. The parameters η and r0 control the width and
position of the Gaussian. The cutoff function fcut ensures that the contribution
of every neighbor to the ACSF becomes exactly zero if it is located too far away
from the central atom. As radial functions offer only a limited spatial resolution,
they are used in combination with angular ACSFs.

In order to account for different chemical species in an atoms environment,
ACSFs are typically defined for pairs (radial) and triples (angles) of chemical
elements. In addition, a set of radial and angular ACSFs differing in their respec-
tive hyper-parameters is used for every resulting combination in order to provide
a sufficiently resolved description of chemical environments. Thus, the number
of features and hyper-parameters grows quickly with the number of chemical
elements present in the data set. However, strategies have been proposed to
overcome some of these problems, such as introducing an element-dependent
weighting of ACSFs in order to avoid the combinatorial explosion of features [19].

Due to the above definition, the hyper-parameters of all individual func-
tions need to be determined in a tedious trial and error procedure based on the
molecules under investigation. However, ACSFs engineered based on the domain
knowledge of a skilled practitioner can be highly efficient in terms of required
reference calculations for training [19].

2.2 SchNet

In contrast to the previously described architecture, SchNet is able to learn an
efficient representation of chemical environments directly from atom types and
positions with minimal hyper-parameter tuning. The overall structure of SchNet
follows the DTNN framework [42] consisting of three steps:

1. Initialize atom features xi with embeddings of chemical element Zi:

x
(0)
i = AZi
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2. Infuse spatial information of the chemical environment adding pair-wise in-
teraction corrections v(t) multiple times:

x
(t+1)
i = x

(t)
i +

∑
j 6=i

v(t)
(
x

(t)
j , rij

)
3. Obtain property of interest from final atom-wise representations x

(T )
i using

physically motivated aggregation (see Sec. 2.3).

The crucial difference between various implementations of the DTNN frame-
work is how the interaction corrections v(t), which present a functional block of
SchNet, are modeled. In case of SchNet, we apply a continuous-filter convolu-
tion [44] over the atomistic system with a smooth convolution filter generated
by a fully-connected neural network depending on the pair-wise distances rij

(x ∗W )(ri) =

N∑
j=1

x
(t)
j ◦ W (t)(rij)︸ ︷︷ ︸

filter-generating network

,

where ”◦” is the Hadamard product. To avoid self-interaction, we mask the filter
such that W (t)(0) = 0. We obtain the interaction correction v(t) as a sequence
of this convolution and atom-wise layers that facilitate the cross-talk between
feature maps. For the detailed architecture, please refer to Ref. [45]. Defining the
interaction correction v(t) using such a convolution on pair-wise distances results
in radial filters, i.e. rotational and translational invariances are guaranteed. Due
to the repeated interaction corrections, spatial information is propagated across
multiple atoms. Thus, many-body interactions can be inferred without having
to explicitly include angular or higher-order information [9, 24, 37].

2.3 Chemical Properties

In atomistic models, a chemical property is expressed via latent atomistic contri-
butions. Based on these contributions, the original property is then reconstructed
via a physically motivated aggregation layer. The exact functional form strongly
depends on the property.

A common target of atomistic machine learning approaches is the atomization
energy E. It can be seen as a measure of how stable different molecules and their
configurations are compared to each other and allows to make predictions about
the reactivity of chemical species. In an atomistic framework, the aggregation
for the potential energy of a molecule takes the form

E =

N∑
i=1

Êi, (2)

where Êi are latent atomic contributions to the energy. In case of BP and SchNet,
they are obtained from atom-wise prediction layers that take the respective atom-
wise representations as input. Due to the summation in Eq. 2, atomistic models
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Table 1: Mean absolute errors and root mean squared errors of analyzed models
trained on 100k molecules from the QM9 benchmark dataset.

Behler-Parrinello SchNet
Property Unit MAE RMSE MAE RMSE

Atomization energy kcal mol−1 0.77 1.32 0.35 0.94
Dipole moment Debye 0.073 0.118 0.025 0.050

implicitly account for permutation invariance and can be applied to molecules
of arbitrary size and composition.

Another chemical property of interest is the dipole moment µ or its mag-
nitude µ [18, 47]. Those properties are a measure for the separation of regions
of positive and negative charge in a molecule and, for instance, important in
infrared spectroscopy. The dipole moment vector µ can be written as

µ =

N∑
i=1

q̂iri. (3)

where q̂i are latent partial charges predicted from atom-wise representations.
The positions ri of atom i are given relative to a reference point, typically the
molecules center of mass. Based on expression 3, the magnitude of the dipole
moment µ simply is

µ = ‖µ‖2 =

∥∥∥∥∥
N∑
i=1

q̂iri

∥∥∥∥∥
2

. (4)

An important feature of atomistic architectures is that the latent properties
are not learned directly, but inferred by the neural network. Only the molecu-
lar energies and dipole moments are quantum-mechanical observables and can
hence be computed based purely on first principles. Although atomic energies
and partial charge distributions can not be derived in a unique manner, they
nevertheless constitute important tools to characterize and interpret the proper-
ties and behavior of atomistic systems. In this sense, atomistic models represent
a new class of purely data driven partitioning schemes for chemical properties.

3 Interpretability

As stated in the introduction, conventional interpretation techniques work well
for neural networks on images or text, however can not sufficiently explain pre-
dictions of continuous chemical properties that depend on interatomic potential
spanning the whole 3d space. Instead, we investigate approaches particularly
tailored to these kind of problems, exploiting several features of atomistic mod-
els in the process. E.g., analyzing latent contributions of chemical environments
to a property of interest opens up new venues for interpreting atomistic neural
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networks from a machine learning perspective [42]. Moreover, many of these ex-
planation schemes are directly related to physical and chemical properties of the
molecules under study, allowing to extract chemical insights from the model.

In the following, we will demonstrate three interpretable aspects of atomistic
models, namely (1) atom-wise latent contributions, (2) probing representations
in 3-d space and (3) embeddings of chemical elements. For all of our analyses, we
will employ BP and SchNet models trained on 100k reference calculations at the
B3LYP level of theory [7, 29] from the popular QM9 molecule benchmark [38].
The dataset consists of all possible molecules with up to nine heavy atoms from
the {C, O, N, F} set of chemical elements and are chemically saturated with
hydrogen [10, 39]. Table 1 shows the performance of the trained models. SchNet
achieves consistently lower errors since it is able to adapt its representation to the
data at hand, while BP employs a fixed feature representation. This is especially
advantageous in the chemical compound space setting with a large and diverse
set of training molecules. On this ground, we will analyze how both models
obtain predictions of chemical properties as well as whether the obtained latent
variable agree with chemical intuition and can be employed to extract further
insight.

3.1 Atom-wise Partitioning of Chemical Properties

A major feature of atomistic architectures is the access to atom-wise latent
variables, providing a framework for atom-wise explanation out-of-the-box. This
atom-wise saliency can be seen as the logical extension of the pixel-wise expla-
nations used for images to the domain of molecules. Unlike relevance propaga-
tion approaches [1, 34], the latent energies Êi and charges q̂i in Eqs. 2 and 3
are interpretable features that are an implicit part of the model architecture
and obtained during training without additional cost, similar to approaches for
weakly-supervised object detection [36]. The final prediction is aggregated via
physically motivated aggregation layers from the latent variable which thereby
get assigned inherent physical interpretations. Since the use of these aggregation
layers is not restricted to a particular class of atomistic architectures, valuable
information can be gained for any type of model – independent on whether
models use hand-crafted features such as BPs or learn representations end-to-
end such as SchNet. This makes it possible to compare different models at new
levels of abstraction, gaining insights into their inner workings and fundamental
differences.

When the property of interest is the atomization energy of an atomistic sys-
tem, atomic energy contributions are obtained as latent properties. Figure 2
depicts the distributions of these energies obtained for the BP and SchNet mod-
els and different folds of the QM9 database. While the energy contributions
within a model are well conserved in general, we find that this effect is signifi-
cantly more pronounced for the SchNet architecture. Beyond that, it is possible
to discern effects due to the frequency of atom types in the reference data. Less
frequent elements such as oxygen show greater variation compared to the abun-
dant hydrogen and carbon atoms.
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Fig. 2: Distribution of energy contributions Êi (see Eq. 2) for atoms of types H,
C, O from QM9 molecules predicted by Behler-Parrinello and SchNet models.
The models were trained on 100k examples. Each color corresponds to a model
trained on a different subset.

As shown in Figure 2, both atomistic models arrive at qualitatively different
partitionings of the atomic energies. The differences observed between the latent
variables allow for insight about how energy predictions are obtained. Generally,
energy distributions of the BP architecture are wider than their SchNet coun-
terparts and show more distinct features. The main reason for this behavior is
the way, how both architectures represent molecular structure. In BP networks,
ACSFs are engineered before training to provide a sufficient resolution of dif-
ferent chemical environments. During the learning process, the atomistic energy
contributions are adapted based on these predetermined features, which intro-
duce a certain bias. Hence, patterns already present in the descriptors are more
or less retained in the latent properties. This is particularly prominent in the
case of carbon, where the different peaks of the distribution simply correspond
to the various local environments present in QM9. SchNet on the other hand
learns appropriate representations in an end-to-end manner exclusively from the
reference data. The narrow shape observed for the SchNet energy distributions
indicates that this type of model arrives at a simple solution of the learning
problem by keeping the deviation of the interaction energies within atom types
to a minimum.

These atomic energies can also serve as a basis for constructing novel mea-
sures of more abstract chemical concepts. An example for such an application is
the use of atomic energies as a stability ranking for aromatic rings with different
substitution patterns. We obtain this by summing the contributions of atoms
that make up a ring:

Ering =
∑
i∈ring

Êi

The ten most stable rings in the QM9 database determined in this way are shown
in Figure 3. The SchNet stability ranking appears to capture central aspects of
the chemistry of the investigated systems. For example, the most stable ring is
found to be adjacent to a five membered ring involving oxygen. Since the car-
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Fig. 3: Energy ranking of 6-membered carbon rings in the QM9 dataset obtained
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Parrinello model (bottom). For each architecture, we show the ten most stable
6-membered carbon rings according to this metric. The atom types are colored
as follows: hydrogen–white, carbon–gray, nitrogen–blue, fluorine–green.
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Fig. 4: Distributions of latent charges q̂i (see Equation 4) from Behler-Parrinello
and SchNet dipole models.

bon atoms in the smaller ring are connected via a double bond, the π system of
the aromatic ring is extended, leading to the high stability. This phenomenon
is also referred to as the mesomeric effect in organic chemistry [49]. The same
reasoning holds true for alkyne substituents (−C≡CH, e.g. top right molecule
Fig. 3), which are found in six out of the ten structures. Another common motif
is the presence of a fluorine atom (−F, green in Fig. 3). Due to its high elec-
tronegativity, fluorine forms very strong bonds with carbon, thus contributing
greatly to the overall stability of the system. In case of the BP ranking, similar
patterns are found for fluorine. Otherwise, the BP model shows preference for
groups donating electron density to the central ring, such as hydroxy (−OH)
and amine (−NH2) groups. This trend is referred to as the inductive effect in or-
ganic chemistry and is known to increase ring stability similar to the mesomeric
effect observed above [49]. Finally, we find that the BP based model attributes
more energy to the ring carbons than SchNet, providing further evidence that
SchNet strives to learn a partitioning that minimizes the deviation of the in-
teraction energies within atom types. This interplay between explaining model
predictions via chemical reasoning and obtaining new insights into investigated
systems themselves constitutes one of the most tantalizing aspects of applying
these methods to physically or chemically motivated problems.

Using the molecular dipole moment as the target property, the atomistic net-
works yield latent atomic partial charges instead of energies (see Equation 4). In
direct analogy to the atomic energies, the resulting atom-wise explanations can
be used to gain insights not only on a model level, but also on a physical level.
Pertaining to model level insights, qualitative differences between the energy and
dipole models, as well as between BP and SchNet architectures, can be eluci-
dated based on the distribution of partial charges obtained for all molecules in
QM9 (Fig. 4). Comparing the distributions obtained for the same model trained
on different subsets of the data, we find that in general the distributions of
partial charges are more conserved than those obtained for the atomic energies
(Fig. 2). The reason for this behavior is the additional structural information
present in the dipole aggregation operation (Equation 4). The dependence on
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the atom positions ri and hence on the molecular shape introduces additional
prior knowledge, thus leading to a more unique partitioning (up to a constant
scaling factor). Further support for this conclusion is offered by the observation
that the distribution of charges obtained with BP networks and SchNets shows
a much closer agreement than for the atomic energies. This effect is especially
pronounced for the hydrogen and carbon partial charge distributions, which ex-
hibit very similar features. Analyzing these features for the carbon atom, one
also notices parallels between the energy and charge distribution obtained for the
BP type model, whereas the SchNet counterparts show little to no similarity. As
stated above, the reason for this phenomenon is the static nature of descriptors
employed in BP models, which stay the same irrespective of the target property.
SchNet on the other hand is able to infer different, more optimal representations
of the molecular structure depending on the modeling task.

In the case of dipole moments and partial charges, interpretation on the
physical level takes on particularly interesting characteristics. The ability to
obtain partial charges based exclusively on the dipole moment is remarkable,
as it offers insights into the internal structure of a molecule – in this case the
charge distribution – based on a single global property. These partial charges
can in turn be used to rationalize e.g. chemical reaction mechanisms, molecular
reactivity or the aggregation behavior of molecules. In the next section, we will
explore how to visualize such spatially resolved insights.

3.2 Insights from Local Chemical Potentials

Having inspected atom-wise latent contributions, we will now introduce a feature
of the DTNN framework that allows us to extend such atom-wise explanations to
interpretable visualizations in 3-d space. Since energies are obtained atom-wise
through a series of pair-wise interaction corrections, it is possible to obtain an
energy contribution for every point in space. To this end, we introduce a test
charge p to the atomistic system which we will use to probe the space surround-
ing the atoms. This enables us to examine the representation regarding spatial
changes and interactions. In particular, we obtain a more intuitive visualization
of the interactions within the molecule, as they haven been learned by the neural
network.

Since we only can represent atoms in SchNet, the test charge is bound to
be an atom in our model. This brings the problem that the molecule would be
drastically influenced by adding another atom and, moreover, that the result-
ing molecule is bound to leave the training manifold if we trained the neural
network only on equilibrium configuration or single molecular dynamics trajec-
tories with a fixed number of atoms. We solve this by letting the probe atom
feel the influence of the molecule, but not vice versa. This allows us to define a
local chemical potential ΩZp

(r) as the energy of the test charge of atom type Zp
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located at position r:

x(t+1)
p = x(t)

p +
∑
j

v(t)
(
x

(t)
j , rp − rj

)
(5)

ΩZp
(r) = fout(x

(T )
p ) (6)

It is important to note that this potential does not correspond to the actual po-
tential of the molecule, but is a tool for us to visualize the spatial structure of the
representation. Since this potential is defined in R3, we obtain a 3-dimensional
continuous explanation. Fig. 5 visualizes such local chemical potentials using a
carbon probe for SchNet trained on QM9 on a smooth isosurface with constant∑
i ‖r − ri‖−2 around a selection of molecules from the dataset. Furthermore,

we show cuts through the local chemical potentials of the molecules as contour
plots.

The potentials reflect the expected symmetries that stem from the rotational
and translational invariance of SchNet. The low- and high-energy regions on the
iso-surfaces are clearly separated. In the cuts, we observe a high sensitivity to
the probe position (i.e. high density of contour lines) near the atom positions,
which is most clearly visible for the molecules with aromatic rings. Both of these
findings indicate that the learned representation is localized, which coincides
with chemical intuition.

Since our local chemical potentials inherit the locality of atom-wise expla-
nations, they can be similarly used as a visually more intuitive alternative for
attributing local relevance. On top of that, the visualizations mirror chemical
concepts such as bond saturation as well as different degrees of aromaticity. This
makes them a powerful analysis tool for the chemistry researcher.

While the local chemical potentials introduced above deliver valuable and
chemically plausible visualizations of the learned representation, they can not
correspond to the actual potential generated by the molecule. This is because we
are not able to introduce a real point charge for probing into the network, but
have to resort to full atoms that would significantly disturb the molecule if we
allowed it to influence the other atoms. In contrast, we are able to use the latent
partial charges learned during the prediction of dipole moments to obtain an ap-
proximation of the electrostatic potential (ESP) of the molecule. The ESP offers
insights into the spatial distribution of charges inside a molecule and indicates
regions which are attractive or repulsive to the probe atom. This information
can in turn be used to interpret e.g. reaction outcomes or coordination to other
molecules.

The ESP of a molecule is the potential energy experienced by a probe charge
q0 in the electric field of a molecule. Using the latent partial charges q̂ obtained
above, we can obtain another interpretation in form of a corresponding ESP

E(r0) =

N∑
i

q̂iq0

||ri − r0||2
, (7)

where r0 and q0 are the position and charge of the probe and ri and q̂i are
the positions and partial charge of atom i of the molecule. Here, the charge
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ri‖−2 = 3.7Å−2 isosurface (top) as well as cuts through the center of the molecule
(bottom). Dashed lines indicate regions of negative potential.

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5

1st principal component

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2
n
d

p
ri

n
ci

p
a
l 
co

m
p
o
n
e
n
t

H Li

CsRb

K

Na

Ba

Sr

Mg
Ca

Be

GaInAl
B

Tl
Si

C
PbSn

Ge

As

Bi

P

N

Sb

Se

Te

S

O

I
F

Cl
Br

Ne

Xe

Ar
He

Kr

I

II

III

IV

V

VI

VII

VIII

Group II

Group I

Gro
up

 V

1.5

Fig. 6: The two leading principal components of the learned embeddings x0 of
sp atoms learned by SchNet from the Materials Project dataset. We recognize a
structure in the embedding space according to the groups of the periodic table
(shown exemplary for groups I, II and V and color-coded online) as well as an
ordering from lighter to heavier elements within the groups, e.g., in groups I and
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distribution of the molecule is approximated by atom-wise latent partial charges
learned in order to predict the dipole moment. Therefore, this approximation
only models the part of the ESP that is relevant to describe the dipole of the
molecule.

Figure 7 gives the ESPs of six molecules from QM9 as computed with la-
tent partial charges from BP and SchNet. Both models give very similar ESPs
for the different molecules. This is a consequence of the similarity between the
charge distributions produced by the different architectures (see Section 3.1) and
further amplified by the damping introduced via the inverse dependence on the
distance between probe and atoms. Looking at the ESPs in general, we find that
the obtained maps show excellent agreement with basic chemical reasoning. In
the molecules containing only hydrogen and carbon (methane, propane, ben-
zene, toluene), one would expect the hydrogen atoms to carry a slight positive
charge and hence lead to unfavorable interactions with the equally positively
charged probe. The opposite holds true for the carbon atom. This feature is
indeed observed in all the ESP maps. In a similar manner, one would expect the
oxygen atoms in phloroglucinol to carry a negative charge, due to their electron-
withdrawing properties. Thus, the ESP should show a negative area around these
atoms, which is indeed the case in the examined ESPs.

Similar to the local chemical potentials, the ESPs are a valuable tool for
analyzing the obtained features. Moreover, they are grounded in physics which
makes them readily interpretable. Hence, ESPs present a valuable tool for model
validation and allow to directly extract spatially resolved chemical insights.

3.3 Insights from Atom Type Embeddings

While a lot of handcrafted descriptors consider different atom types orthogo-
nal [9, 21, 43] or use nuclear charges to encode atom similarities [19, 40], SchNet
and DTNN allows for cross-element generalization through the high-dimension
embeddings of chemical elements [42, 45] If the trained models learn to efficiently
make use of this possibility, we should be able to extract element similarities from
the embeddings that resemble chemical intuition. Since QM9 only contains five
atom types (H, C, N, O, F), we will perform this analysis on the Materials
Project dataset of crystal structures as it includes 89 atom types ranging across
the periodic table.

Fig. 6 shows the two leading principal components of the element embeddings
of the main group elements of the periodic table. The projection explains only
about 20% of the variance, therefore atom types might appear closer than they
are in the high-dimensional space. However, we see that atoms belonging to the
same group tend to form clusters. This is especially apparent for main groups
1-5, while groups 6-8 appear to be slightly more scattered. In group 1, hydro-
gen lies further apart from the other members which coincides with its special
status, being the element without core electrons. Beyond that, there are partial
orderings of elements according to their period within some of the groups. There
are orderings from light to heavier elements, e.g. in group 1 (left to right: H -
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[Na,Li] - [K, Rb, Cs]), group 2 (left to right: Be - Mg - Ca - Sr - Ba) and group
5 (top to bottom: N-[As, P]-[Sb,Bi]).

Note that these extracted chemical insights were not imposed by the SchNet
architecture onto the embeddings as they were initialized randomly before train-
ing. They had to be inferred by the model based on the co-occurrence of atoms
in the crystal structures of the training data.

4 Conclusions

We have presented two atomistic neural networks that enable fast and accurate
predictions of energies and dipole moments: Behler-Parrinello (BP) networks
that use atom-centered symmetry functions as input features and the end-to-end
architecture SchNet which learns representations of atomistic systems directly
from first-principles. In these architectures, chemical properties are modeled us-
ing physically motivated aggregation layers over atom-wise latent contributions.
At the same time, latent local contributions correspond to the assignment of
atom-wise relevances in the spirit of LRP [1] or similar methods [27, 33]. How-
ever, since the models are constrained to assemble the final target from atom-wise
contributions in the forward pass, we do not have to resort to relevance redis-
tribution techniques. On this ground, we have presented various interpretation
techniques to extract insights about the learned representations as well as the
underlying quantum-chemical problems.

Both examined models obtain partitionings of the energy – a major chal-
lenge for quantum-mechanical calculations – that are consistent across different
training splits. Particularly remarkable is the possibility to obtain chemically
plausible rankings of aromatic rings regarding their stability. Using a virtual
probe atom, we are able to extend atom-wise energy contributions to visualiza-
tions in 3-d space in the form of local chemical potentials. These further improve
interpretability of the energy partitioning and resemble chemical concepts such
as bond saturation, electronegativity and different degrees of aromaticity. In
the same spirit, we have examined latent partial charges obtained during the
prediction of dipole molecular moments. They allow us to visualize the approxi-
mate charge distribution of the molecule using electrostatic potentials, which are
grounded in physics and show excellent agreement with basic chemical intuition.
Both local chemical potentials as well as electrostatic potentials present a valu-
able tool for model validation as well as extracting spatially resolved chemical
insights. Finally, we have examined embeddings of chemical elements obtained
from training SchNet on a diverse set of crystal structures. The obtained em-
beddings recover knowledge about chemical elements present in the structure of
the periodic table. This guides the way to future work, extending the analysis
to measure chemical similarity of local structures.

While accurate predictions are a necessary requirement for every machine
learning model in quantum chemistry, it is crucial that the model is able to facil-
itate new research. Here, interpretability constitutes an essential building block
for researchers in the respective field to validate, understand and ultimatively
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trust the machine learning model. Therefore, interpretation techniques should
be closely oriented towards analysis methods familiar to the respective field,
lowering the initial barrier for researchers unfamiliar with non-linear models of
machine learning. For the same reason, it is beneficial if the interpretable prop-
erties are directly obtained during the forward pass. This ensures that they are
ground truth – i.e. they are the exact decompositon into local contributions that
was learned by the model – without having to rely on an approximate redistri-
bution. The excellent agreement of the examined representations with chemical
knowledge is a clear demonstration of the ability of atomistic neural networks
to open up new venues for data-driven research in the chemistry, physics and
materials science.
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[4] Bartók, A.P., Kondor, R., Csányi, G.: On representing chemical environ-
ments. Phys. Rev. B 87(18), 184115 (2013)
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[45] Schütt, K.T., Sauceda, H.E., Kindermans, P.J., Tkatchenko, A., Müller,
K.R.: SchNet - a deep learning architecture for molecules and materials. J.
Chem. Phys. 148(24), 241722 (2018)

[46] Shoichet, B.K.: Virtual screening of chemical libraries. Nature 432(7019),
862 (2004)

[47] Sifain, A.E., Lubbers, N., Nebgen, B.T., Smith, J.S., Lokhov, A.Y., Isayev,
O., Roitberg, A.E., Barros, K., Tretiak, S.: Discovering a transferable charge
assignment model using machine learning. The journal of physical chemistry
letters 9, 4495–4501 (2018)

[48] Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional net-
works: Visualising image classification models and saliency maps. arXiv
preprint arXiv:1312.6034 (2013)

[49] Vollhardt, K.P.C., Schore, N.E.: Organic Chemistry; Palgrave version:
Structure and Function. Palgrave Macmillan (2014)

[50] Xie, T., Grossman, J.C.: Crystal graph convolutional neural networks for
an accurate and interpretable prediction of material properties. Phys. Rev.
Lett. 120(14), 145301 (2018)

[51] Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional net-
works. In: European Conference on Computer Vision. pp. 818–833. Springer
(2014)



Quantum chemical insights 21

[52] Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M.: Visualizing deep
neural network decisions: Prediction difference analysis. arXiv preprint
arXiv:1702.04595 (2017)


