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Zusammenfassung

Mehrantennensysteme werden in zukünftigen Mobilfunksystemen der dritten und vierten Gener-

ation eingesetzt werden, um die Leistungsfähigkeit der Systeme, ihre spektrale Effizienz sowie die

Zuverlässigkeit der Funkverbindung zu verbessern.

Aus der Informationstheorie ist bekannt, dass die Kanalkapazität von Mehrantennensystemen

linear mit der Anzahl der verwendeten Sende- und Empfangsantennen ansteigen kann. Wichtige

Kenngrößen zur Systemcharakterisierung sind die Kanalkapazität und der mittlere quadratische

Fehler (MSE). Beide Kenngrößen hängen von den Eigenschaften des Mehrantennen-Funkkanals

ab sowie vom Umfang und der Art der Kanalinformation am Sender und Empfänger.

In der vorliegenden Arbeit werden optimale Übertragungsverfahren für Einnutzer- und Mehrnutzer-

Mehrantennen-Systeme hergeleitet, jeweils abhängig von der vorhandenen Kanalkenntnis. Hierzu

wird der Summen-MSE als Optimierungskriterium herangezogen. Die sich daraus ergebenden

Resultate weichen erwartungsgemäß von denen für die ergodische Kapazität ab. Für das MIMO-

Einnutzerszenario mit perfekter Kanalkenntnis am Empfänger und keiner oder ebenfalls perfekter

Kanalkenntnis am Sender wird die optimale Übertragungsstrategie hergeleitet. Des weiteren leiten

wir die optimale Sendestrategie für den Mehrnutzer-Zugriffskanal mit jeweils einer Antenne pro

Mobilterminal und mehreren Antennen an der Basisstation her. Wir untersuchen wie das funk-

tionale Verhalten der Summenrate durch die SNR-Gap-Approximation beeinträchtigt wird.

Um einen Übergang von der etablierten Theorie zu Implementierungen auf echten Systemen zu

ermöglichen, werden einige grundsätzliche und durch die Praxis motivierte Betrachtungen für

Mehrantennensysteme vorgenommen. Hier betrachten wir insbesondere die Anzahl und Art der

verwendeten Antennen auf jeder Seite der Übertragungsstrecke. Wir untersuchen die Auswirkung

von Sichtverbindungen im Funkkanal auf systemrelevante Parameter, wie den Rang des Übertra-

gungskanals, die Kapazität und die erreichbare Bitfehlerrate.

Der MIMO Broadcast-Kanal als duales Äquivalent des MIMO-Vielfachzugriffskanals wird für eine

Mehrantennenbasisstation und verteilte Mobilterminals mit jeweils einer Antenne betrachtet. Im

Fall von ausreichender Kanalkenntnis an der Basisstation können Vorcodiertechniken eingesetzt

werden. Wir betrachten verschiedene lineare und nicht-lineare Vorcodierverfahren und vergleichen

sie bezüglich der jeweils notwendigen Sendeleistung.

In der Praxis kann die Leistungsfähigkeit eines Übertragungssystems degradieren, durch z.B.

Kanalschätzfehler, eine begrenzte Dynamik der Sendeleistungsverstärker oder durch Gleichkanal-

interferenzen. Wir untersuchen die Auswirkungen verschiedenen Degradierungsursachen und en-

twickeln Lösungsvorschläge zu ihrer Beseitigung bzw. Begrenzung.

Die Verwendung kanalangepasster Übertragungsverfahren ist eine Schlüsseltechnik zur Erreichung

eines optimalen Datendurchsatzes. Hierzu wird die Datenübertragung an die aktuelle Güte des

Funkkanals angepasst, so dass z.B. eine Übertragung in schlechten Kanälen vermieden werden
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kann. Wir erweitern das dazu verwendete adaptive Bitladeverfahren um Mehrnutzer-Scheduling-

Algorithmen. In einem schichtübergreifenden Ansatz werden sowohl die aktuellen Kanalzustände

aller Nutzer als auch Übertragungsgüteanforderungen der einzelnen Nutzer berücksichtigt. Dieser

Ansatz ermöglicht einen hohen Zelldurchsatz und eine hohe Systemstabilität bezüglich der Daten-

warteschlangen für jeden Nutzer. Eine Echtzeitimplementierung im MIMO-Testbett zeigt, dass

eine Umsetzung bereits auf heutiger Hardware möglich ist.

Eine wesentliche Voraussetzung für die Umsetzung der entwickelten Übertragungstechniken ist

eine sorgfältige Analyse und Optimierung der notwendigen MIMO-Algorithmen. Wir geben

eine Anforderungsanalyse für das Algorithmendesign und diskutieren einige ausgewählte MIMO-

Basisbandalgorithmen im Detail besonders bezüglich einer Abbildung auf digitale Signalprozes-

soren (DSPs).

Der letzte Teil der Arbeit ist den experimentellen Resultaten gewidmet, wo sich Theorie und

Praxis treffen. Wir führen in die wesentlichen Übertragungsmodi des MIMO-Testbetts und die

dazugehörigen relevanten Systemparameter ein und berichten dann über die Experimente zu An-

tennendiversität und zum räumlichen Multiplexing. Wir vergleichen verschiedene Übertragngs-

verfahren bezüglich der gemessenen Bitfehlerrate und des erreichten Datendurchsatzes mit adap-

tivem Bitladen unter Verwendung von linearen und nicht-linearen Detektionsverfahren. Des weit-

eren berichten wir über eine erste echtzeitfähige Implementierung von adaptiver Kanalinversion.

II



Abstract

Multiple-input multiple-output (MIMO) systems will be applied in wireless communications in

order to increase the system performance, spectral efficiency, and link reliability. Theoretically,

the channel capacity of MIMO systems can grow linearly with the number of transmit and receive

antennas. An important performance metric beneath capacity is the normalized mean square error

(MSE) under the assumption of optimal linear reception. Both performance measures depend on

the properties of the MIMO channel as well as on the available channel state information (CSI)

at the transmitter.

In this thesis, we derive optimum transmission strategies of single- and multiuser MIMO systems

with respect to the different types of CSI at the transmit and receive side. The optimization is

taken under the assumption of the MSE as the objective function. The results differ therefore

from those known for ergodic capacity optimizations. We start with a derivation of the optimum

transmission strategy for the single user MIMO scenario with perfect channel knowledge at the

receiver and no or full channel knowledge at the transmitter. Furthermore, we derive the optimum

transmission strategy for a multiple access channel (MAC) with only one antenna per user and

several antennas at the base station. We look very close on how the SNR gap approximation,

often used for bit-loading approaches, affects the behavior of the sum rate functional which has

to be maximized.

To bridge from the well studied multi-antenna theory towards implementations on real-world

systems some basic and practical considerations will be made for wireless MIMO systems. Here,

the emphasis is put on antenna configurations with respect to the number and kind of antennas

at each side of the link. Furthermore we analyze the effect of a line-of-sight on system relevant

parameters as the rank of the transmission channel, capacity and achievable bit-error-rates.

The MIMO broadcast channel as the duality equivalent of the MIMO MAC is investigated for

a multi-antenna base station and several distributed users. When CSI is available at the BS

appropriate pre-coding techniques can be applied. We will look into SVD-MIMO transmission and

linear and non-linear pre-coding techniques. Further emphasis is put on a comparison towards the

necessary transmit power needed for transmit pre-coding.

In reality the systems can suffer from performance degradation caused by e.g. channel estimation

errors, a limited transmitter dynamics or co-channel interference. The impact of each degradation

factor will be evaluated and strategies to combat or limit the undesired effects will be proposed.

To achieve optimum system performance adaptive transmission is an important issue. The aim is

to adapt the data transmission to the actual channel realization, thus avoiding transmission over

bad channels. We will extend channel aware bit-loading with discrete modulation alphabets to

multi-user scheduling policies. In a cross-layer approach the optimization considers the instanta-

neous channel state and quality of service parameters e.g. the data queues of all users as well.

This approach allows high cell throughput and stable data queues at the MTs or the BS, both
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which may have limited buffer size or user applications may have stringent delay requirements. A

real-time implementation on the MIMO test-bed shows the feasibility already on today’s hardware.

A prerequisite for a successful implementation is a thorough analysis of the MIMO algorithms

necessary to realize the before discussed transmission strategies. We list requirements for real-

time algorithms and a few basic algorithms for MIMO base-band signal processing are discussed

in detail with respect towards an implementation in a DSP.

The last part of this thesis is dedicated to the experiments where theory and practice will meet.

We start with an overview of the real-time MIMO test-bed and the various configurations for

the experiments are introduced. We then present experimental results on antenna diversity and

spatial multiplexing. We will compare the BER performance and the measured throughput with

channel adaptive bit-loading using linear and non-linear detection schemes. Furthermore, we show

measurement results of a first implementation of real-time adaptive channel inversion.
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1 Nomenclature and abbreviations

Nomenclature

H Flat Fading MIMO channel matrix
Hk Channel matrix of user k
hij Entry in the i-th column and the j-th row of the channel matrix H
hi Transmit or receive vector of the i-th signal
n Noise vector
x Transmitted signal vector
y Received signal vector
σ2

N Noise power
K Number of mobile users
nT Number of transmit antennas
mR Number of receive antennas
MSEk Achievable normalized MSE of user k
P Transmit power constraint
pk Individual power constraint of user k or direction k
Rk Achievable transmission rate of user k
Z Noise covariance matrix
Q Transmit covariance matrix
Qk Transmit covariance matrix of user k

Abbreviations

The following list summarizes the acronyms used in this work.

ACI Adaptive Channel Inversion
ARQ Automatic Repeat ReQuest
AWGN Additive White Gaussian Noise
BC Broadcast Channel
CDMA Code Division Multiple Access
CI Channel Inversion
CSI Channel State Information
cdf Cumulative Distribution Function
DL Down-Link
DLL Data Link Layer
DSL Digital Subscriber Line
FDD Frequency Domain Duplex
FDMA Frequency Division Multiple Access
FEC Forward Error Correction
i.i.d. Identically Independent Distributed
ISI Inter Symbol Interference
JCBF Joint Costa Beam Forming
JT Joint Transmission
LHS Left Hand Side
LCI Linear Channel Inversion
LMMSE Linear Minimum Mean Square Estimation
LOS Line Of Sight
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MAC Multiple Access Channel
MIMO Multiple Input Multiple Output
MISO Multiple Input Single Output
ML Maximum Likelihood
MLD Maximum Likelihood Detector
MMSE Minimum Mean Square Error
MRC Maximum Ratio Combining
MSE Average normalized Mean Square Error
NLOS Non-Line Of Sight
PAM Pulse Amplitude Modulation
pdf Probability Density Function
PEF Power Enhancement Factor
PSK Phase Shift Keying
OFDM Orthogonal Frequency Division Multiple Access
QAM Quadrature Amplitude Modulation
QLD QL-Decomposition
QoS Quality of Service
QRD QR-Decomposition
RHS Right Hand Side
RKI Ranked Known Interference
Rx Receiver
SDMA Space Division Multiple Access
SIC Successive Interference Cancellation
SIMO Single Input Multiple Output
SNR Average Signal to Noise Ratio
SVD Singular Value Decomposition
TDD Time Domain Duplex
TDMA Time Division Multiple Access
THP Tomlinson Harashima Pre-coding
Tx Transmitter
UL Up-Link
UMTS Universal Mobile Telecommunications System
UPA Uniform Power Allocation
VBLAST Vertical BLAST
WLAN Wireless Local Area Network
ZF Zero Forcing
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2 Introduction

2.1 Motivation

The widespread use of wireless and mobile communication devices has changed everyday life

tremendously during the recent decade. The introduction of cellular networks laid the foundation

for mobile communication almost everywhere, anytime and with everyone. A growing use of data

communication mainly over the internet e.g. email, news or information of any kind, produces

an increasing demand in wireless data traffic as well. Since wireless connections are generally no

exclusive point-to-point connections as land lines used e.g. for telephone and DSL, the available

frequency spectrum has to be shared with other users and radio systems.

The tremendous expectations towards the growth of mobile communications made the available

spectrum valuable and expensive for licensing. Therefore it is a prerequisite for all service providers

and radio systems to exploit the limited resource frequency spectrum very efficiently.

A new transmission concept proposed by Foschini [Fos96] using multiple-antennas at each side

of the radio link promised a significant increase in spectral efficiency. An information theoretic

basic work by Telatar [Tel95] on the capacity in multi-antenna channels opened intensive research

activities in the MIMO1 area worldwide. The new domain to be exploited is the spatial domain,

taking into account the separability of data streams transmitted from different antennas due to

their specific and independent spatial interference patterns e.g. in multi-path environments.

Therefore a MIMO transmission scheme allows that several radio links can be supported simulta-

neously at the same time, in the same frequency band by using multiple antennas at both end of

the radio transmission link.

2.2 Related Work

The increasing demand for faster and more reliable wireless communication links reopened dis-

cussions on how to exploit all given degrees of freedom in wireless transmission which can come

basically from time, frequency, space or scenarios with many users to choose from. Since the

time and frequency domains are already exploited to a high extend the spatial domain offers an

additional degree of freedom. The work of Foschini [Fos96, FG98] inspired discussion about radio

transmission systems with multiple antennas at both ends of the link - so called multiple-input

multiple-output (MIMO) systems. The achievable capacity in a single cell multi-user scenario

[KH95] was well understood and it was also well known that the use of several antennas at one

side of the transmission link can increase the system capacity and performance due to transmit

or receive diversity [Jak74]. In recent years, it was found that MIMO systems have the ability

to reach higher spectral efficiency than systems using antenna arrays only at one side of the link

1MIMO: Multiple-Input Multiple-Output
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[Tel99]. This so-called spatial multiplexing was studied in [Sal85, Fos96, RC98, CS03] and is based

on the fact that under a sum power constraint the capacity can be increased by establishing several

parallel links (MIMO) instead of one SISO2 link. When the transmission with spatial multiplexing

is separable, then the sum capacity is given by the sum of the individual capacities which is always

bigger than that of a single antenna link. [ZT03] showed that there exists a fundamental trade-off

between multiplexing and diversity gain for any multi-antenna system.

In 1998 a first successful experimental demonstration [WFGV98] proved the practical feasibility

of spatial multiplexing in narrow-band frequency-flat channels which boosted research effort in

the MIMO area.

In a basic work Telatar [TT98] showed an equivalence between Gaussian and fading channels when

we go into the broadband wireless channel. A recent work from [Ver02] investigated the spectral

efficiency in the broadband regime in detail.

The general impact of antenna correlation on the achievable capacity was investigated in [CTK98,

SFGK99] while [GBGP00, SL03] pointed out the existence of so-called keyhole channels where the

capacity can degrade to that of a SISO system despite the fact that there is low fading correlation

between antennas.

In order to prepare a transfer of the promising predictions from information theory into practical

applications many groups [SO00, KMJ+00, MBFK00, CLW+02] started extensive channel mea-

surement campaigns to study the spatial, temporal and frequency nature of transmission channels

in realistic scenarios. The measurement results indicated that even in outdoor scenarios with

sufficient scattering environment [LCW+01] high channel capacities similar to indoor scenarios

[KWV00, PJHvH02, JPN+02] can be found.

Recent works of [PCL03, Win04, E.J04] gave general frameworks for the optimization of transmit

and receive processing for multi-antenna systems towards capacity, throughput or bit-error-rate

performance. An extension to frequency selective channels was given by [PFL00, FH03, Joh04,

FSH04, Hun02, Man05].

Another important issue is the power control for the transmission link to optimize throughput

and bit-error performance. This was investigated in [Sch02] in a general frame work using duality

between up-link and down-link. [HL02] investigated the performance under a slow feed-back

channel constraint. A work of [HD03] discussed optimum power allocation in the context with

multi-carrier systems.

For the case of channel state information (CSI) at the transmitter, the link performance can be

enhanced by appropriate signal processing at the transmitter before emitting the signal from the

antennas. The most simple way is exploiting transmit diversity [Win98] while linear transmit pre-

coding proposed by [HPJ+02, JHJvH02, WM03] or in the context of CDMA [BF01, BMWT00,

Irm05] needs more complex signal processing at the transmit side. A first realtime implementation

of adaptive linear pre-coding was presented by [HFG+04a].

If CSI is available at the Tx and the Rx then eigenmode transmission [BHSN00, HBD00, EB99,

HB03] is the optimum strategy. The data streams are coupled into the eigenspaces of the channel

and decoupled at the Rx providing full decorrelation due to the orthogonal sub-spaces. An ASIC-

2Single-Input Single-Output
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2.2 Related Work

Implementation of algorithms for slow flat fading channels was presented in [PTB03] while other

groups conducted experiments on reconfigurable hardware platforms ranging from single carrier

transmissions at low data rates [SJZO05] and high data rates [HFGS05] to multicarrier MIMO-

OFDM in [NWK+05].

The fundamental result from Costa [Cos83] was applied for non-linear pre-coding in multi-antenna

systems by e.g. [SB02a]. In fact, results concerning the capacity of (MIMO) broadcast channels

[WJ01, VJG03, JG04, VT03, CS03] have shown that Costa pre-coding is an essential ingredient

to achieve the capacity of these channels. A simple version which is based on a decision feed-back

equalizer (DFE) structure equivalent to non-linear detection schemes like V-BLAST [Fos96] is

Tomlinson-Harashima pre-coding [Tom71, HM72] which was originally proposed for inter-symbol-

interference channels but can be easily adapted for MIMO pre-coding [FWLH02, GC02, CS03,

IHRF03]. So-called lattice-based pre-coding techniques help to assure a limited transmit power

[ESZ00, WF03, Fis02, FWLH02, IBW04]

A further important contribution for the overall multi-antenna system performance is given by

a proper coding to combat badly faded channels e.g. [Goe99, CG01]. The additional spa-

tial dimension allows for so-called space-time-codes [Sze05] which perform optimum in the low

SNR range by basically transmitting replicas of the same information over e.g. different an-

tennas in different time slots. In parallel very efficient and powerful error correcting codes like

Turbo-Codes [BGT93], Product Accumulate Codes [LNG04] or Low-Density-Parity-Check-Codes

(LDPC) [Gal62] have been developed over the recent years which are now entering the application

stage [LTS00, ZPBF04]. Coded transmission which is a research area in itself was not considered

throughout the thesis without disregarding the impact of channel and source coding on the final

system performance.

In reality practical transmission systems normally don’t apply neither Gaussian alphabets nor

infinite interleaving as would be required from the capacity point of view. Nevertheless we

are interested in how to achieve optimum rate and performance with e.g. discrete modula-

tion alphabets and/or symbol-by-symbol decisions. This problem is generally referred to as

bit-loading and can be performed in time, space and frequency [Bin90]. Ref [Cam98] gave the-

oretical sufficient conditions for discrete bit-loading to be optimum in the context of OFDM.

[CCB95, FH96, Cam99, ATG99, AC02, SS04, MDHF03, Dar04, Lam04] proposed bit-loading

strategies for fixed rate applications. A recent work by [PV02] discussed an analytical optimiza-

tion of the joint-error-rate with successive interference cancellation at fixed rate by means of power

and bit-allocation. In ref [VG97] it was shown that a transmission using a MMSE-SIC receiver

combined with adaptive modulation and coding is capacity achieving at high SNR.

A slightly different bit-loading approach is followed in this thesis. The idea exploits the fact

that CSI is available to the transmission system and that the loading of information on available

resources is performed such that transmission in bad channels is avoided. Exploiting CSI and

the detector structure we can predict the achieved signal-to-noise-and-interference-ratio (SINR)

in front of the decision unit. Based on symbol by symbol decisions we can now adapt power and

bit-allocation such that all data streams have a desired error probability [HB03, HLB03]. The

proposed scheme has variable rate but an upper limited and assured BER, which requires error-

correcting codes only to contribute SNR gain instead of protection against fading. This allows

for codes with high code rates and schemes like automatic repeat request (ARQ) [ZLH42, FS98,

3
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AVCM04, ACV+04, LZG04] are supported ideally since the achieved BER can be controlled to the

desired working point. Experiments of [HFG+04c, HFG+04a, HFGS05] could show the advantages

of channel aware bit-loading in experiments at high data rate. The resulting variable data rate in

a single user scenario might appear unusual, but with an increasing number of users, a multi-user

scheduling algorithm can control the data streams individually.

In the reality of multi-user scenarios the user scheduling becomes a challenging task when spectral

efficiency and quality-of-service (QoS) e.g. average rate or delay are included in the optimization.

[NMR03] discussed single antenna systems and [YC03, Bor, TH98] used simplified assumptions

on the packet arrival rates. Works by [HBH03, BW02, BW03, BW04a, WB04a] proposed a

powerful framework to solve the complex scheduling task very efficiently, such that a real-time

implementation [HFG+04b, HFG+05a] on today’s hardware could show the gains towards sum

rate and individual QoS requirements of a new scheduling policy.

Recently, an increasing number of implementations of MIMO techniques e.g. [HKM+04, KSM+05]

and real-time over-the-air transmission experiments were published e.g. [JFH+05a, NWK+05].

While some groups e.g. [SJZO05] focussed on narrow-band single carrier transmission like in this

thesis [HFG+04c, HFG+04a, HFG+04b, HFGS05] while other groups exploited the MIMO tech-

niques straight forward for multi-carrier systems which can exploit higher bandwidths [JFH+05a,

JHF+04, BCK03, HPB+04, NWK+05]. When using OFDM to handle the frequency selective

channel, all algorithms discussed in this thesis can be mapped in a sub-carrier-by-sub-carrier fash-

ion and the computational effort scales linearly with the number of OFDM tones. An analysis of

the algorithmic complexity connected with MIMO-OFDM [PC04, ?, HSJ+05] showed that further

complexity reduction is a key issue for an efficient implementation.

2.3 Contribution and Outline of the Thesis

Throughout this thesis we will focus on narrow-band MIMO transmission systems where the

channel coefficients between antenna pairs can be represented by constant complex values, the

so-called flat-fading case. For completeness and especially in the context of complexity we will

also address broadband transmission systems using multi-carrier techniques in frequency selective

channels.

The contributions of this thesis are summarized in the following:

Chapter 3 introduces into multi-antenna systems. We consider several up- and down-link scenarios,

statistical channel models and we will give a short introduction on capacity and bit-error-rate issues

with multiple antenna systems.

In section 3.5 we will make some basic considerations for the implementation and applications of

multiple antenna techniques for Wireless LAN systems. Here, we put an emphasis on antenna

configuration with respect to the number of antennas at each side of the link and a general guide

towards antenna design. Furthermore we discuss the effect of a line-of-sight on system relevant

parameters as the rank of the transmission channel, capacity and achievable bit-error-rates.

The first part of chapter 4 is dedicated to a detailed discussion of multi-antenna transmission

schemes. The optimization is taken under the assumption of the mean square error (MSE) as the

4



2.3 Contribution and Outline of the Thesis

objective function. The results differ therefore from those known for ergodic capacity optimiza-

tions. In section 4.1.1 we start with a derivation of the optimum transmission strategy for the

single user MIMO scenario with perfect channel knowledge at the receiver and no or full channel

knowledge at the transmitter.

In section 4.1.2 we derive the optimum transmission strategy for a multiple access channel (MAC)

with only one antenna per user and several antennas at the base station which uses a MMSE

receiver and successive interference cancellation (SIC). Furthermore we look closer how the SNR

gap approximation, often used for bit-loading approaches, affects the behavior of the sum rate

functional which has to be maximized. Extensive numerical simulations will illustrate the results.

In section 4.2 we discuss the broadcast channel from a multi-antenna base station to several dis-

tributed users and appropriate pre-coding techniques. We have a closer view into SVD-MIMO

transmission and linear and non-linear pre-coding techniques. Further emphasis is put on a com-

parison towards the necessary transmit power needed for transmit pre-coding.

Section 4.3 discusses sources of performance degradation in MIMO systems, e.g. channel esti-

mation errors, a limited transmitter dynamics and co-channel interference. The impact of each

degradation factor is evaluated and strategies to combat or limit the undesired effects are proposed.

The last two sections of chapter 4 are dedicated to the very important topic of practical bit-

loading strategies with discrete modulation alphabets adapted to the actual channel realization.

We extend the concept of channel aware bit-loading to multi-user scheduling policies in a cross-

layer approach and will consider additionally quality of service parameters e.g. the data queues

of the individual users.

Chapter 5 is dedicated to real-time algorithms necessary to realize the before discussed transmis-

sion strategies in a real-time application. We give a list of requirements for real-time algorithms

and a few basic algorithms for MIMO base-band signal processing are discussed in detail with re-

spect towards an implementation in a DSP. The various algorithmic approaches will be illustrated

by examples.

Chapter 6 is dedicated to the experiments where theory and practice will meet. We start with

an overview of the real-time MIMO test-bed and the various configuration for the experiments

are introduced. In section 6.2 we present experimental results on antenna diversity and spatial

multiplexing. After a comparison of the BER performance of linear and non-linear detection

schemes we show throughput measurement results with channel adaptive bit-loading using linear

and non-linear detection schemes and the throughput optimum SVD scheme which exploits joint

signal processing at the transmit and receive side. In section 6.3 we show measurement results of a

first implementation of real-time adaptive channel inversion as a special case of spatial pre-coding

for a system using non-cooperative receive antennas.

Section 6.4 shows measurement results on multi-user scheduling where we will show that already

with today’s hardware efficient multi-user scheduling schemes can be implemented which offer a

high sum throughput due to spatial multiplexing and limited delays at the same time since the

queue length of the users is evaluated as a QoS parameter.

Chapter 7 concludes the thesis and gives an outlook on open problems and future research topics.

The list of publications and the bibliography finalize this thesis.
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3 Multi-Antenna Systems - Capacity and Bit Error Rates

3.1 Channel Models

3.1.1 Multiple Antenna MIMO Channel Model

We consider a transmission system which uses nT transmit antennas and mR receive antennas

thus forming a general multiple-input multiple-output (MIMO) transmission channel H.

Rx
MIMO

channel
Tx

Figure 3.1: A Multiple-Input Multiple-Output (MIMO) channel.

We describe the transmission channel H in matrix form of dimensions mR × nT . For most of

this thesis will will assume no frequency selectivity of the transmission channel therefore the

channel coefficients hij reduce to a complex scalar value. Then hij characterizes the transmission

coefficient received at the i-th Rx antenna coming from the j-th Tx antenna. This scalar describes

the amplitude and the phase of the transmission from one antenna to another.

Furthermore we apply the commonly accepted flat block fading model.

The flat fading model assumes the signal bandwidth of the system to be much shorter than the

coherence bandwidth of the radio transmission channel thus reducing the channel coefficients for

each antenna pair to a single frequency independent scalar complex value.

The block fading model assumes constant fading coefficients over the whole length of a block

and i.i.d.1 coefficients between two following transmission block or channel realizations. In real

transmission scenarios two successive channel realizations are at least in part correlated to each

other. Nevertheless the block fading model is widely accepted and offers the possibility of com-

parison with other results and it gives us insight into quantities of interest like e.g. capacity,

throughput, outage or BER.

The belonging transmit and receive signals are described as vectors x and y of dimensions nT × 1

and mR × 1, respectively.

The general MIMO transmission equation has the following form

y = Hx + n (3.1)

1identically independently distributed
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3 Multi-Antenna Systems

where n describes the additional noise imposed by the amplifiers at each receive antenna.

The following tableau gives an illustration matrix/vector equation from (3.1)









y1

y2

...

ymR
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h11 h12 · · · h1nT

h21 h22 h2nT

...
. . .

...

hmR1 hmR2 · · · hmRnT

















x1

x2

...

xnT









+









n1

n2

...

nmR









. (3.2)

All considerations are based on a uni-lateral transmission view, always keeping in mind that many

real communication systems require bi-directional data exchange between the two communication

points. Therefore all schematic figures have to be read as a transmission from the left to the right

or otherwise it will be indicated by arrows. The term base station (BS), mobile station (MS) or

equivalently mobile terminal (MT) is referred to the transmitter (Tx) and the receiver (Rx) or

vice versa, depending on the scenario under investigation.

The term uplink (UL) will be used to describe a transmission from a MS to the BS and the term

downlink (DL) will be used for the opposite transmission direction. This notation pay tribute

to the fact that in cellular mobile networks BSs are often placed further up on a hill or on top of

a building while the MSs are on ground level in general.

MS

1

MS

K

BS

SIMO

channels

MS

1

MS

K

BS

MISO

channels

up-link                                        down-link

Figure 3.2: Uplink transmission (left) and Downlink transmission (right) in mobile cellular net-
works when the MSs have only one antenna each.

3.1.2 Single User Channel

A transmission link between two terminals will be referred to as a Single User (SU) channel if

only one terminal at each side of the link is involved in the transmission at a time. The terminals

can be equipped with only one or several antennas each, which results in SISO2, SIMO3, MISO4

or MIMO5 channels depending on the number of antennas on each side.

Single User MIMO Channel

We consider a transmitter unit with nT transmit antennas and a receive unit with mR receive

antennas (Fig. 3.3). We put no limitation on the role of the transmit and receive unit, in gen-

2Single-Input Single-Output
3Single-Input Multiple-Output
4Multiple-Input Single-Output
5Multiple-Input Multiple-Output
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3.1 Channel Models

eral, therefore the notation MT and/or BS is additionally used to identify a specific scenario, if

necessary.

It is important to note that in principle both sides of the single user MIMO link are capable of

performing joint signal processing. This general ability can then be exploited depending on the

amount of channel state information (CSI) available at the Tx and/or the Rx. Having said

this we can categorize 3 major transmission scenarios.

CSI @ Tx CSI @ Rx Transmission Mode

YES NO joint Precoding at Tx

NO YES joint Decoding at Rx

YES YES joint Precoding at Tx and joint Decoding at Rx

Rx
MIMO

channel
Tx

Figure 3.3: Single user MIMO Channel (SU-MIMO).

The performance of the joint pre-coding and joint decoding also depends on the number of transmit

and receive antennas. Thus, the minimum antenna configuration provides a single-input single-

output (SISO) channel, where pre-coding and decoding reduces to complex scalar multiplications.

3.1.3 Multi-User Channel

If several users / MTs are to be supported by a BS then the separation can be performed in time

(TDMA6), frequency (FDMA7), code (CDMA8) and/or spatial domain (SDMA9). The first three

multi-user techniques are already standard techniques of actual mobile communication systems.

FDMA and CDMA are not within the scope of this work and will therefore only slightly touched

if necessary for some explanations and to give application examples.

The last multi-user technique (SDMA) can be directly applied due to the use of multiple antennas

at the BS and possibly at the MTs (see Fig. 3.5). Throughout this thesis the main emphasis will

be on the spatial domain, except when we consider multi-user scheduling techniques. There we

use both the spatial and time domain to schedule the transmission from and to all users (sec. 4.5).

Multi-User Multiple Access Channel

In contrast to the more general case discussed above we consider a scenario where several MTs try

to transmit to a communication access point over a so called a multiple access channel (MAC). We

assume the access point to be a BS therefore in the following we will consider an up-link scenario

where the BS has several antennas and the MTs have one or several transmit antennas each.

6Time Division Multiple Access
7Frequency Division Multiple Access
8Code Division Multiple Access
9Space Division Multiple Access

9



3 Multi-Antenna Systems

Furthermore the BS has full CSI. Since the MTs are decentralized and no joint pre-processing

can be performed between the MTs the BS has to perform all the joint signal processing at the

receiver side. The only case where the MTs can perform a kind of spatial pre-processing is limited

to the case of several transmit antennas at one terminal. The resulting channel is then a MU-

MIMO channel which we will not discuss in detail but it should be mentioned for the purpose of

completeness of scenarios.

MS

1

MS

K

BS

Multi-user

SIMO

channels

MS

1

MS

K

BS

Multi-user

MIMO

channels

Figure 3.4: Multi-User Multiple-Access Channel left:MU-SIMO MAC, right:MU-MIMO MAC .

Multi-User Broadcast Channel

Corresponding to the up-link MAC scenario the down-link transmission from the BS to several

MTs will be referred to as a Multi-User Broadcast Channel (MU-BC). This pays tribute to the

fact that in principle all users could receive every message sent by the BS (broadcast). Here,

again the MTs can have only one ore several antennas for the reception. Again, the BS has to

perform all spatial signal processing since the MTs (one antenna per MT) are not able to perform

joint detection and can therefore be low price devices. The necessary CSI to perform spatial

pre-processing must be obtained the one or another way e.g. by measuring the channel in the

opposite direction and exploiting the channel reciprocity in TDD10.

MS

1

MS

K

BS

MISO

channels

MS

1

MS

K

BS

MIMO

channels

Figure 3.5: Multi-User Broadcast Channel left: MU-MISO BC, right: MU-MIMO BC.

3.1.4 The Statistical Flat-Fading Channel Model

As introduced above the flat fading model assumes the symbol length to be much longer than

the delay spread of the transmission channel which reduces the channel coefficients to frequency

independent scalar complex values. The delay spread describes the maximum width of the tem-

poral distribution of incoming signals belonging all to the same transmitted symbol. The physical

reason behind this temporal spread is to be explained by pathes of different length which results

in different arrival times after multiplying with the reciprocal of the speed of light in the medium.

10Time Division Duplex
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3.1 Channel Models

In practice the delay spread is calculated only till the last incoming signal peak with reasonable

power, all incoming signals after are not considered and will cause inter-symbol-interference (ISI)

which does not decrease the system performance if its power is below a acceptable threshold,

depending on the transmission system.

The extension is found in the block fading model which assumes constant fading coefficients

over the whole length of a block and i.i.d. coefficients between two following transmission blocks

or channel realizations.

This flat block fading model will be used in the following to evaluate algorithms, predict capacity

and / or BER based on numerical simulations. The important statistical component is then always

given by the statistical distribution of the channel coefficients, determined by the mean and the

variance and whether channel coefficients are i.i.d. or have a distinctive kind of correlation e.g.

transmit or receive correlation.

The Rayleigh and Rician Fading Channel

The simplest probabilistic model for the channel filter taps is based on the assumption that

there are a large number of statistically independent reflected and scattered paths with random

amplitudes in the delay window corresponding to each tap. Note, that with rising measurement

bandwidth in channel sounding more taps can be resolved. The phase of i-th path is 2πfcτi modulo

2π. Now, fcτi = di/λ, where di is the distance travelled by the i-th path and λ is the carrier

wavelength. Since the reflectors and scatterers are far away compared to the carrier wavelength,

i.e., di ≫ λ, it is reasonable to assume that the phase for each path is uniformly distributed

between 0 and 2π and that the phases of different paths are independent. The contribution of

each path in the tap gain hl(t) at time instance t can be modelled as a circular symmetric complex

random variable. Each tap hl(t) is the sum of a large number of such small independent circular

symmetric random variables. It follows that the sum of many such independent circular symmetric

random variables, according to the Central Limit Theorem can be modelled reasonably as a zero-

mean Gaussian random variable. Similarly, because of the uniform phase, E
[
hl(t)e

jφ
]

is Gaussian

with the same variance for any fixed φ. This assures us that hl(t) is in fact circular symmetric

CN(0, σ2
l ) which means variance

σ2
l

2 for the real and the imaginary part. It is assumed here that

the variance of hl(t) is a function of the tap l, but independent of time t. With this assumed

Gaussian probability density, we know [Xio00, TV04] that the magnitude r = |hl(t)| of the l-th

tap is a Rayleigh distributed with density

f(r) =
r

σ2
l

exp

(−r2

2σ2
l

)

, r ≥ 0, (3.3)

and the squared magnitude |hl(t)|2 is χ2distributed with two degrees of freedom with density

f(r2) =
1

σ2
l

exp

(−r

σ2
l

)

, r ≥ 0. (3.4)

This model, which is called Rayleigh fading, is quite reasonable for scattering mechanisms where

there are many small reflectors, but is adopted primarily for its simplicity in typical cellular

11



3 Multi-Antenna Systems

situations with a relatively small number of reflectors. The word Rayleigh is almost universally

used for this model, but the assumption is that the tap gains are circularly symmetric complex

Gaussian random variables.

Since for many scenarios the average path loss can be assumed to be constant, it can be taken

out of the channel matrix as a constant scalar factor. A motivation for this can be seen in the

separability of any transmission channel. The attenuation which every transmitted signal will

suffer over distance or by passing certain media is taken away from the channel coefficient and is

treated as a constant scalar which has no implication for the statistical behavior of the system.

Hence, the statistical Rayleigh channel will be numerically modelled by channel matrix entries

h(t) which are i.i.d. CN(0, 1). This means that between one pair of antennas in average neither

attenuation nor amplification is expected.

The statistical behavior of the Rayleigh channel describes a scenario of multi-path transmission

without a line-of-sight. The Rayleigh assumption is therefore a suitable model e.g. for an indoor

environment.

There is a frequently used alternative model in which a line-of-sight (LOS) path (often called a

specular path) is large and has a known magnitude, and that there are also a large number of

independent paths. In this case, at least for one value of l the coefficient for the l-th tap, hl(t),

can be modelled as

hl(t) =

√

K

K + 1
σle

jθ +

√

1

K + 1
CN(0, σ2

l ) (3.5)

with the first term corresponding to the specular path arriving with uniform phase θ and the

second term corresponding to the aggregation of the large number of reflected and scattered

paths, independent of θ. The parameter K (so-called K-factor) is the ratio of the energy in the

specular path to the energy in the scattered paths; the larger K is, the more deterministic is

the channel. The magnitude of such a random variable is said to have a Rician distribution. Its

density has quite a complicated form[Xio00] but in many scenarios e.g. with a strong LOS the

Rician model reflects the reality more precise than the Rayleigh model.

For numerical simulations the Rician channel will be modelled by channel entries h(t) which are

i.i.d. CN(K, 1) with the Rician factor K as a fixed mean. For the composition of a Rician channel

which follows (3.5) we construct the Rician channel H as

H =

√

K

K + 1
HLOS +

√

1

K + 1
HNLOS , (3.6)

from a LOS and a non-LOS component. We then obtain

K =
E[trace(HLOSHH

LOS)]

E[trace(HNLOSHH
NLOS)]

(3.7)
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3.1 Channel Models

for the Rician factor K, using the trace operator

trace(HHH) =

nT∑

i=1

(
HHH

)

ii
=

nT∑

i=1

|hi|2. (3.8)

Rank and Condition Number of the Channel

Another very useful measure is the rank of a matrix.

We assume a singular value decomposition of the channel H

H = U ·D ·VH (3.9)

where U and V are unitary matrices and D has only diagonal entries in the upper square sub-

matrix. The non-negative real entries on this diagonal are called singular values. The number of

singular values which are greater than zero denote rank(H).

The fraction between the biggest singular value and the smallest non-zero singular value is called

the condition number of H which we denote cond(H). The condition number gives a measure

about the quality ration between the best and the worst sub-channel. This is of importance if

an inversion of H is needed e.g. for zero forcing detection in a multi-antenna system. A matrix

is called singular when some columns or rows are linearly dependent from each other or one

column / row can be decomposed as a linear combination of some other columns / rows.

Note, that in practice the number of non-zero SVs is replaced by the number of valid or useful SVs.

Here, valid or useful SVs has to be understood under certain side constraints e.g. the dynamic

range of a given transmission scheme or the achievable SNR for data transmission. Those factors

might limit the number of data streams which can be multiplexed over the transmission channel

and thus, can be significant few than non-zero SVs.

3.1.5 Frequency Selectivity of the Transmission Channel

With rising delay spread bandwidth e.g. in outdoor scenarios the channel often becomes much

longer than the symbol length 11. This means that during one symbol length the transmission

properties are changing significantly and can no longer be described sufficiently by a single scalar.

We then speak of a frequency selective channel, where transmission signals of different base-

band frequencies face different transmission properties. As a result, the base band signals will then

be affected by self-interference or inter-symbol-interference during the transmission which can be

mitigated by appropriate signal processing e.g. FIR filters or rake-receiver as used in CDMA12

systems.

11The delay spread of the channel can be approximated by the difference in arrival time of the signal travelling
the shortest path, which will be mainly the LOS, and the last relevant signal along the longest path, which e.g.
can be a reflection from far away.

12Code Division Multiple Access
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Another common approach is the slicing of the frequency transmission band into D frequency

sub-carriers 13. Using such multi-carrier or multi-tone transmission schemes e.g. OFDM14 the

channel can be decomposed into D frequency-flat sub-carriers since the overall transmission chan-

nel achieves block diagonal structure. Hence, using Fourier Transform (FFT) the received signal

at k-th sub-carrier is given by a flat fading MIMO equation

yk = Hkxk + nk, (3.10)

where xNT ×1
k is a zero-mean transmit vector on sub-carrier k, HMR×NT

k the k-th MIMO channel

matrix and nMR×1
k is circular symmetric zero-mean additive white Gaussian noise with E[nkn

H
k ] =

σ2
NI, where ·H denotes the conjugate transpose and σ2

n the noise variance. A cyclic prefix (CP) of

length LCP > L assures orthogonality between the sub-carriers and additionally allows a certain

timing flexibility at the receiver.

Since we perform the signal processing for each of the sub-carriers separately like in the flat-fading

case we can reuse all MIMO algorithms developed for the single carrier flat-fading case. Therefore,

all algorithms discussed in this thesis can directly be extended to the frequency selective channel

by simply using OFDM techniques.

3.1.6 Equivalent Real-Valued Model

For complex-valued channel models it can turn out to be useful to work with an equivalent real-

valued transmission model. Taking the complex-valued model

yc = Hcxc + nc, (3.11)

by separating real and imaginary parts we can equivalently write [Tel99]

[

ℜyc

ℑyc

]

=

[

ℜHc −ℑHc

ℑHc ℜHc

] [

ℜxc

ℑxc

]

+

[

ℜnc

ℑnc

]

(3.12)

which gives an equivalent K = 2Kc-dimensional real model of the form

y = Hx + n, (3.13)

with the obvious definitions of y, etc.

One reason to use this description is that, if the components of x are taken from some set of evenly

spaced points on the real line, the noiseless received signal Hx from (3.12) can be interpreted as

points in a lattice described by the basis H, and the detection problem can be considered as

13Practical systems normally use D ≥ 3L, where L denotes the order of the frequency selective channel.
14Orthogonal Frequency Division Multiplexing
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an instance of a lattice decoding problem [Win04]. Additionally it was shown by [FW03] that

removing the restrictions of complex arithmetics by breaking the coupling between real and imag-

inary parts can be usefully exploited, e.g. for decision-feedback equalization where the real valued

signal precessing allows additional choice for the detection order. Furthermore, real-valued sig-

nal processing offers advantages to combat I/Q imbalances in single carrier transmission systems

[HFG+04c]. Many low cost systems use direct up- and/or down-conversion (DUC/DDC) tech-

niques to limit sample rates to reasonable values. With imperfections in the I/Q-modulators and

demodulators this commonly used technique imposes a severe I/Q imbalance on the end-to-end

base-band transmission channel. This signal crosstalk between the real and imaginary part of the

signal can be compensated easily by real-valued signal processing.

3.1.7 Signal Constellations

The following gives a description of the signal sets we consider for the components of the complex

valued symbols to be transmitted, which we will call ac, and the corresponding real-valued vector

a. Remember that the channel input vector is denoted xc, and xc = ac (complex-valued) or x = a

(real-valued) if no transmit pre-processing is performed, resulting in a one symbol transmission

per transmit antenna.

Throughout this thesis we use PAM15 with square QAM16 for analytical discussions and numer-

ical simulations and rectangular QAM for the transmission experiments. Following [Hay01] the

components of ac = [ac,1, ..., ac,nT
]T are taken from a rectangular grid around zero in the complex

plane.

Some signal sets Ac correspond to square M-ary QAM constallations, M=4,16,64,256 (accordingly

Rm = log2(M) = 2, 4, 6, 8 bits are included in one symbol). A real-valued constellation set A

can be understood as two sub-sets of a complex-valued constellations projected onto the real and

imaginary plane as depicted in Fig. 3.6. Those real-valued signal sets carry then 1,2,3 or 4 bits

per symbol, respectively.

Re Re Re

ReReRe

ImImIm

00 0

Figure 3.6: Complex-valued signal constellations Ac used for transmission (top) and their projec-
tions A onto the real-axis (bottom). Normalization to unit symbol power with uniform
probability is assumed. The boundary regions of the constellations are marked by the
bounding squares.

15Pulse Amplitude Modulation
16Quadrature Amplitude Modulation
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While it is common to use signal points on the odd-integer grid, (2a + 1) + j(2b + 1), a, bǫZ, we

choose the complex signal points such that the unit average transmit power holds E[aH
c ac] = 1

and E[aHa] = 1/2 for the real-valued case.

For ASK17 symbols (real-valued) in component ak, used with uniform probability, the average

real-valued constellation point distance dM has to satisfy

M/2
∑

i=1

((2i + 1)dM )2 · 2

M
=

1

2
(3.14)

with M = 2, 4, 8, 16 denoting the number of signal points along the real axis.

For the chosen signal constellations the dominant errors will be caused by symbols distorted to the

nearest neighbors of the transmitted symbol. Therefore, Gray labelling will be used as proposed

in [J.G00, TAG99] to map the bits to the constellation points such that errors between adjacent

symbols only cause 1 bit error. This minimizes the bit error rate for un-coded transmission which

will be studied throughout this thesis. Since the nearest neighbors in the complex plane are

situated either along the purely real or purely imaginary offset, Gray labelling can be applied

independently to the real and imaginary part of the constellation, i.e., the points in A can be

Gray labelled regardless of which component of Ac they correspond to.

3.1.8 A mathematical measure of correlation

In order to provide a measure of correlation, we will use the definition used in [E.J04]. This

measure will be very useful if e.g. two transmission scenarios are to be compared.

A more detailed introduction following the outline of [E.J04] is given in the appendix of P.2.

We take two arbitrarily chosen transmit correlation matrices18 R
(1)
T and R

(2)
T with the constraint

that trace(R
(1)
T ) = trace(R

(2)
T ) = nT which is equivalent to

nT∑

l=1

λT,1
l =

nT∑

l=1

λT,2
l , (3.15)

with λT,1
l , 1 ≤ l ≤ nT , and λT,2

l , 1 ≤ l ≤ nT , are the eigenvalues19 of the covariance matrix R
(1)
T

and R
(2)
T , respectively.

This constraint regarding the trace of the correlation matrix RT is necessary because the compar-

ison of two transmission scenarios is only valid if the average path loss is equal. Without receive

correlation, the trace of the correlation matrix can be written as

trace(RT ) =

nT∑

i=1

(
E
[
HHH

])

ii
=

nT∑

i=1

E
[
|hi|2

]
. (3.16)

17Amplitude Shift Keying
18transmit correlation matrix RT = HHH, receive correlation matrix RR = HHH

19
λ

T :vector of eigenvalues of transmit correlation matrix
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However, the RHS of (3.16) is the sum of the average path loss from the transmit antenna i =

1...nT . In order to study e.g. the impact of correlation on the achievable capacity separately, the

average path loss is kept fixed by applying the trace constraint on the correlation matrices R
(1)
T

and R
(2)
T .

We will say that a correlation matrix R
(1)
T is more correlated than R

(2)
T with descending ordered

eigenvalues λT,1
1 ≥ λT,1

2 ≥ ... ≥ λT,1
nT
≥ 0 and λT,2

1 ≥ λT,2
2 ≥ ... ≥ λT,2

nT
≥ 0 if

m∑

k=1

λT,1
k ≥

m∑

k=1

λT,2
k 1 ≤ m ≤ nT − 1. (3.17)

The measure of correlation which we will introduce is defined in a natural way: the larger the

first m eigenvalues of the correlation matrices are (with the trace constraint in (3.16)), the more

correlated is the MIMO channel. As a result, the most uncorrelated MIMO channel has equal

eigenvalues, whereas the most correlated MIMO channel has only one non-zero eigenvalue which

is given by λ1 = nT .

Before proceeding with our definition of ’more correlated’ in terms of the eigenvalue distribution

of the channel covariance matrix, we give the necessary definitions we will need in the following.

Definition 1: For two vectors x,y ∈ Rn with descending ordered components x1 ≥ x2 ≥ ... ≥
xn ≥ 0 and y1 ≥ y2 ≥ ... ≥ yn ≥ 0 one says that the vector x majorizes the vector y and writes

x ≻ y if

m∑

k=1

xk ≥
m∑

k=1

yk , m = 1, ..., n− 1. and

n∑

k=1

xk =

n∑

k=1

yk.

Using this definition we can compare the correlation of two matrices by comparing there belonging

vectors of ordered eigenvalues in the sense of majorization. This means under trace constraint

from (3.16) that R
(1)
T is more correlated than R

(2)
T if the vector of ordered eigenvalues λT,2 is

majorized by λT,1 (λT,1 ≻ λT,2). The measure of correlation introduced here is limited due to the

fact that a comparison of two vectors in the majorization sense is not always possible.

3.1.9 Simulation Setups

The main objective of this thesis will be the evaluation of different transmit and receive config-

urations, therefore we will concentrate on the single user MIMO channel as discussed in 3.1.2.

Depending whether the individual configuration requires joint transmit pre-processing or/and

joint receive processing, the results are valid either for the single user MIMO (point-to-point), the

multiple access channel (multi-point-to-point) and the broadcast channel (point-to-multi-point).

All simulations will be restricted to direct base-band transmission assuming all RF components to

be ideal towards e.g. I/Q-imbalances and non-linearities. Following [Win04] we use the equivalent

discrete base-band description [Tre71] where the continuous-time transmit signal is formed using

(complex) PAM modulation with a
√

Nyquist-pulse g(t) of energy Eg.

We will assume for most cases the number of receive antennas to be equal or higher than the

number of transmit antennas to profit from the receive diversity in the up-link scenarios, see
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3 Multi-Antenna Systems

details in 3.5.1. When down-link scenarios with pre-coding are discussed the number of transmit

antennas is assumed to be equal or higher than the number of receive antennas or supported users

in a broadcast scenario.

The real 2nT × 2mR-dimensional channel matrix H then corresponds to a nT × mR random

matrix Hc of i.i.d. complex Gaussian entries of unit variance and zero mean (Rayleigh channel)

or non-zero mean (Rician channel). The normalization of the channel matrix will be mostly such

that E
(
trace[HHH ]

)
= nT ·mR is satisfied. The real-valued representation was the basis for the

implementation in the single carrier system, while the simulations for capacity and BERs use the

complex signal representation.

The transmitted power will satisfy a sum power constraint in most cases and capacity and bit

error rates are plotted over the average signal-to-noise-ratio per receive antenna (SNR at Rx

antenna) under the assumption of equal noise power σ2
N from all receive amplifiers. The widely

used measure of Eb

N0
which denotes the fraction of the received energy per bit (Eb) and the two-

sided power spectral density (N0) allows a fair comparison of different information transmitting

systems but will be of minor importance for this work.

In this work we will use the average SNR per Rx antenna which is a practical measure and can

be directly measured during experiments.

3.2 Channel Capacity

A very important measure of a transmission system is given by the mutual information or the

channel capacity [Sha48] which gives a measure how many bits per time and frequency bandwidth

can be transmitted in a certain channel. Transmission systems with a high spectral efficiency e.g.

multi-antenna (MIMO) systems can transmit more bits per time and frequency band than e.g.

SISO systems.

In the following we always assume a sum power constraint
∑nT

i=1 pi = P at the transmit side which

means that one Tx antenna can use the full sum power for a transmission if the others are not

active. The noise power σ2
N per Rx antenna is assumed to equal for all antennas.

Starting from the SISO channel capacity [Sha48]

CSISO = log2 (1 + SNR) (3.18)

We extend this to the general frequency selective (FS) MIMO channel

CFS
MIMO =

1

B

∫

B

log2 det
[
I + G(f)Φ(f)G(f)HK−1(f)

]
df (3.19)

G: channel response matrix, not normalized (mR × nT )

K: covariance matrix of impairment (mR ×mR)

B: bandwidth
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3.2 Channel Capacity

Φ: covariance matrix of transmit signal (nT ×nT ) with Φ = E[x ·xH ] and the sum transmit power

P is held constant.

If we limit ourselves to the flat fading case and require the impairment to be Gaussian, then the

integration and its averaging effects disappear

CMIMO = log2 det
[
I + GΦGHK−1

]
. (3.20)

When entries of G are independent, the open-loop capacity (CSI is known to the Rx only) is

maximized by transmitting Gaussian signals with covariance

Φ =
P

nT
I (3.21)

with P the total radiated sum power.

If entries of G have same variance (g), we can define a unit-variance normalized channel matrix

H so that

CMIMO = log2 det

[

I +
P

nT
gHHHK−1

]

. (3.22)

When the impairment consists exclusively of thermal noise K = σ2
N I we find the noise-limited

open loop capacity to be

CMIMO = log2 det

[

I +
Pg

σ2
N

1

nT
HHH

]

. (3.23)

where Pg
σ2

N

denotes the average SNR at any Rx antenna.

The different levels of randomness in the channel can be separated into:

• Large-scale randomness e.g. distance dependence , shadowing, etc. can be absorbed into

SNR and regarded as deterministic within a local area.

• Small-scale randomness caused by multi-path will be contained within H.

The asymptotic capacities will then increase with SNR depending on the number of transmit

or/and receive antennas assuming the channel to have full rank at least in average and a sum

power constraint at the transmitter.

Increasing SNR with symmetric antenna numbers nT = mR = n

C = n log2 [1 + SNR] . (3.24)

Increasing number of transmitters , nT , with mR constant, nT ≥ mR

C = mR log2 [1 + SNR] . (3.25)
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3 Multi-Antenna Systems

Increasing number of receivers , mR, with nT constant, mR ≥ nT

C = nT log2

[

1 +
mR

nT
SNR

]

. (3.26)

From (3.24) to (3.26) we see that the asymptotic capacity slope is determined by min(nT , mR)

therefore it makes no sense to increase the number of Tx antennas without inceasing the numbers

of receive antennas at the same time since the total transmit power is limited, therefore the SNR

can not be changed by this means. An increase in receive antennas will improve the SNR, since

the effective size of the antenna array is increased and more signal energy is available for signal

processing. Then the final capacity slope is determined by the number of Tx antennas.

We can conclude that considering the asymptotic behavior of the MIMO capacity it would be most

beneficial towards spatial multiplexing to distribute a certain total number of antennas between

two communication points such that the whole antenna configuration becomes ideally symmetric,

or in case of an odd number of antennas, place one more antenna at the receiver side to increase

the SNR.

Let us now consider a narrow band (flat fading scenario) with multi-path fading (Rayleigh) and

the large scale randomness (distance, shadowing, Rician factor etc.) to be held fixed. Furthermore

the total power constraint holds and different data streams are transmitted from each Tx antenna.

The capacity formula by [Fos96] describes how much capacity is available in a certain MIMO

channel realization.

CnT ,mR
= log2 det

[
ImR + (ρ/nT )HHH

]
bit/s/Hz. (3.27)

where ρ = Pg
σ2

N

is the average SNR at any Rx antenna under the assumption of i.i.d. noise at any

Rx antenna with variance σ2
N as introduced in (3.23). Then (3.27) can be reformulated as

C =

nT∑

i=1

log2

[

1 +
ρ

nT
λ2

i

]

(3.28)

where λi are the singular values of the parallel sub-channels of H which describe the properties

of the parallel spatial sub-channels. λi can be obtained by singular value decomposition (see

section 5.2.2) or λ2
i can be obtained directly by eigenvalue decomposition.

We see that the distribution of the singular values (SVs) / eigenvalues (EVs) is very important

for the achievable channel capacity especially in the low to mid SNR region (below 20 dB) where

many applications will be working. Therefore it is of great interest to us to know how we can

influence the distribution of the singular values by an appropriate system design. If we consider

a per channel normalization to unit variance we can evaluate the best and worst case scenario.

For a better illustration we plot the capacity curves per channel realization versus the SNR for a

fixed number of Tx and Rx antennas (nT = mR = 8) in Fig. 3.7. The best curve (red, most left)

belongs to the channel where all SVs are the same (H has diagonal form) and the capacity grows

with 8 bits/s/Hz per 3 dB SNR increase at high SNR. The worst channel (e.g. dyad or key-hole

channel [GAY+02, JPN+02]) (most right curve, black) belongs to a SV-distribution where only

one SV is non-zero , therefore the capacity only grows with 1 bit/s/Hz per 3 dB SNR increase

even at high SNR. The green dashed curve denotes the ergodic (average) capacity over 105 random
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3.2 Channel Capacity

Rayleigh distributed channel realizations.
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Figure 3.7: Channel capacities for different channel realizations under trace constraint. Red curve
left: all SVs are identical, green dashed curve middle: the average capacity over 105

Rayleigh channel realizations, black curve right: only one SV is non-zero.

In reality we will have a mixture of many channel realizations which can follow e.g. Rayleigh or

Rician statistics, therefore the ergodic (average) or outage capacity20 are more adequate measures,

compare also Fig. 3.13 and Fig. 3.14.

We now consider closed-loop transmission systems where channel state information is available at

the transmit side as well. Again, a total transmit power constraint is assumed. Then the optimum

strategy which maximizes the capacity is a transmission of each independent data stream into the

direction of one of the eigenvectors of the channel matrix H [Tel99, E.J04, HB03].

Now the capacity formula from (3.27) changes to

CnT ,mR
= log2 det

[
ImR + (ρ/nT )HQHH

]
bit/s/Hz. (3.29)

where Q denotes the transmit correlation matrix which can be decomposed into

Q = V ·DQ ·VH (3.30)

where V is a unitary beam-forming matrix derived from SVD (H = UDVH) which arranges the

transmission of the data streams into the eigenmodes of the channel and a weight matrix DQ

which weighs each data stream towards the percentage received from the total transmit power.

20An outage capacity of 1 % means that only 1 % of the channels do not carry the specified capacity, therefore
outage will occur with probability 0.01.
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3 Multi-Antenna Systems

We now find [EB99]

CnT ,mR
= log2 det

[
ImR + (ρ/nT )(UDVH )(VDQVH)(VDHUH)

]
(3.31)

=

min(nT ,mR)
∑

i=1

log2

[

1 +
ρ

nT
· |dii|2 · λ2

i

]

bit/s/Hz. (3.32)

where |dii|2 = pi which is the power used for each data stream and λi the singular values of the

channel.

The optimum power allocation is the well known water-filling solution which also includes the

beam-forming case at low SNR, where only one data stream is transmitted with full power from

all antennas and the high SNR case where uniform power allocation is optimum.

The water-filling solution can be described by two sets of equations

∂C(p)

∂pi |p=popt

= const, i = 1...nT , and

min(nT ,mR)
∑

i=1

popt
i = P (3.33)

or

popt
i =

[

µ− nT

ρ

1

λ2
i

]+

with µ such that

min(nT ,mR)
∑

i=1

popt
i = P (3.34)

where a+ = max(a, 0) is the positive part of a.
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Figure 3.8: Achievable spectral efficiency / capacity with different transmission schemes in a
Rayleigh flat fading channel with 4 Tx and 4 Rx antennas.
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3.3 Bit Error Rates

Fig. 3.8 shows the achievable capacity for different transmission and detection schemes21. The

optimum transmission strategy with CSI at the Tx and Rx is the water-filling solution from (3.34)

represented by the black solid line. Multiplexing one data stream per antenna and applying

successive interference cancellation (SIC) at the Rx is known to be capacity achieving in the high

SNR region as well [VG97]. Unfortunately this is only valid under the assumption of negligible

error propagation during the successive detection process which is not valid in real applications.

Therefore we have to expect a rightward shift of the capacity curves with SIC, leaving a gap

between the spectral efficiency of the SVD scheme and SIC detection even at high SNR. For the

linear detection schemes (solid lines red and blue) we observe a throughput loss which increases

with the number of parallel data streams. We also observe that under the perspective of capacity

that the achievable capacities with ZF and MMSE converge at high SNR in contrast to BER plots

with a fixed rate where MMSE always outperforms ZF at any reasonable SNR value.

3.3 Bit Error Rates

Another way to characterize the performance of a transmission scheme is an evaluation of the

fraction of bits, symbols or frames which are detected correctly after transmission of a channel.

This can be done using the measures bit-error-rate (BER), symbol-error-rate (SER) or frame-

error-rate (FER).

Following the argumentation and notations in [TV04] this gives an example for the transmission

with BPSK symbols over one single channel (AWGN or Fading) to show that e.g. the bit-error

probability can be calculated for certain statistical channel models. Knowing the channel gain,

coherent detection of BPSK can be performed on a symbol by symbol basis.

y = hx + n (3.35)

The detection of x from y can be done exactly as in the AWGN case, except that the decision is

now based on the sign of the real sufficient statistic. If the transmitted symbol is x = ±a, then

for a given value of h, the error probability of detecting x is

Q

(

a|h|
√

N0/2

)

= Q
(√

2|h|2SNR
)

(3.36)

where SNR = a2/N0 is the average received signal-to-noise ratio per symbol time and Q as Q-

function. The channel gain was normalized such that E[|h|2] = 1. We average over the random gain

h to find the overall error probability. For Rayleigh fading when h ∼ CN(0, 1), direct integration

yields

pe = E[Q
(√

2|h|2SNR
)

] =
1

2

(

1−
√

SNR

1 + SNR

)

(3.37)

At high SNR, we get the approximation

pe ≈
1

4SNR
(3.38)

21UPA: Uniform Power Allocation
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3 Multi-Antenna Systems

which decays inversely proportional to the SNR. This is in contrast with AWGN where the error

probability decays exponentially with the SNR, therefore e.g. at an error probability of 10−3, there

is a 17 dB difference between the performance on the AWGN channel and coherent detection on the

Rayleigh fading channel. This difference in the required SNR to attain the same error probability

will be used in the thesis to compare schemes. This corresponds to a horizontal gap the SNR

curves of the two schemes at the same error probability.

The main reason why detection in fading channel has poor performance is due to the fact that the

channel gain is random and there is a significant probability that the channel is in a ”deep fade”.

At high SNR, we can in fact be more precise about what a ”deep fade” means by inspecting (3.36).

The quantity |h|2SNR is the instantaneous received SNR. Under typical channel conditions, i.e.,

|h|2SNR ≫ 1, the conditional error probability is very small, since the tail of the Q-function

decays very rapidly. In this regime, the separation between the constellation points is much larger

than the standard deviation of the Gaussian noise. On the other hand, when |h|2SNR is of the

order of 1 or less, the separation is of the same order as the standard deviation of the noise and

the error probability becomes significant. The probability of this event is

P{|h|2SNR < 1} =

∫ 1/SNR

0

e−xdx =
1

SNR
+ O(

1

SNR2
). (3.39)

This probability has the same order of magnitude as the error probability itself (3.38). Thus, we

can define a ”deep fade” via an order-of-magnitude approximation

deep fading event: |h|2 <
1

SNR

P{deep fading} ≈ 1

SNR
.

[TV04] conclude that high-SNR error events most often occur because the channel is in deep fade

and not as a result of the additive noise being large. In contrast, in the AWGN channel the

only possible error mechanism is for the additive noise to be large. Thus, the error probability

performance over the AWGN channel is much better.

3.4 Diversity versus Multiplexing Trade-off

Following the basic idea of [ZT03] which investigated the fundamental trade-off between multi-

plexing gain and diversity gain for any multi-antenna system for SNR→∞ we concentrate on the

definitions and results which are important for this thesis.

Zheng and Tse [ZT03] argue that multiple antenna channels provide spatial diversity, which can

be used to improve the reliability of the link. The basic idea is to supply the receiver with multiple

independently faded replicas of the same information symbol, so that the probability that all the

signal components fade simultaneously is reduced. As an example, they consider uncoded BPSK

signals over a single antenna fading channel (nT = mR = 1). We known [J.G00] that the bit error

probability at high SNR (averaged over the fading gain of H as well as the additive noise) is

Pe(SNR) ≈ 1

4
(SNR)−1. (3.40)
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3.4 Diversity versus Multiplexing Trade-off

In contrast, transmitting the same signal to a receiver equipped with 2 antennas, the bit error

probability is

Pe(SNR) ≈ 3

16
(SNR)−2. (3.41)

Having the extra receive antenna, the error probability decreases with SNR at a steeper slope

than (SNR)−2. This phenomenon implies that at high SNR, the error probability is much smaller.

Similar results can be obtained if the modulation is changed to other signal constellations. Since

the performance gain at high SNR is determined by the SNR exponent of the error probability,

this exponent is called the diversity gain. It corresponds to the number of independently faded

pathes that a symbol passes through; in other words, the number of independent fading coefficients

that can be averaged over to detect a symbol. In a general system with nT transmit and mR receive

antennas, there are in total mR × nT random fading coefficients, therefore the maximal diversity

gain provided by the channel is mR · nT .

Besides providing diversity to improve reliability, multiple antenna channels can also support a

higher data rate than single antenna channels. Let us consider an ergodic block fading channel.

Then the ergodic capacity (bits/s/Hz) of this channel [Tel95, Fos96] for high SNR grows with

CMIMO(SNR) ≈ M · log2(SNR); with M = min(nT , mR) (3.42)

in contrast to log2(SNR) as for single antenna channels. This result suggests that the multiple

antenna channel can be viewed as M parallel spatial channels and the number M = min(nT , mR)

is the total number of degrees of freedom to communicate. Now one can transmit independent

information symbols in parallel through the spatial channels. This idea is also called spatial

multiplexing.

Since in any realistic scheme we achieve only a fraction of the actual capacity we say that a scheme

achieves a spatial multiplexing gain of r if the supported data rate follows

R(SNR) ≈ r log2(SNR)[bit/s/Hz] (3.43)

at high SNR.

[ZT03] then introduces the following definitions which we will also use despite the fact that they

are mainly useful for SNR → ∞ and e.g. fixed rate systems might have no multiplexing gain at

all at high SNR, according to this definition.

Definition 2: A multi-antenna transmission scheme is said to achieve spatial multiplexing gain

r and diversity gain d if the data rate

lim
SNR→∞

R(SNR)

log2 SNR
= r (3.44)

and average error probability
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lim
SNR→∞

log2 (Pe(SNR))

log2 SNR
= −d. (3.45)

For T ≥ mR + nT − 1 [ZT03] then concludes the following theorem about the optimum trade-off

curve as the main result which we will use in this thesis.

Theorem 1: Assume T ≥ mR + nT − 1. Let M = min(nT , mR): The optimal trade-off curve

d⋆(r) is given by the piecewise linear function connecting the points (k; d⋆(k)); k = 0, ..., M , where

d⋆(k) = (nT − k)(mR − k) (3.46)

and k is the number of multiplexed data streams. As a consequence d⋆
max = mR · nT , and

r⋆
max = min(nT , mR). The function d⋆(r) is plotted in Fig. 3.9.
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Figure 3.9: The diversity-multiplexing tradeoff of the 2× 2 i.i.d. Rayleigh fading MIMO channel
along with those of four schemes.

The optimal trade-off curve intersects the r axis at M = min(nT , mR). This means that the

maximum achievable spatial multiplexing gain r⋆
max = M , which is the total number of degrees

of freedom provided by the channel, as suggested by the ergodic capacity result in (3.44). The

results are to be understood as gain compared to a SISO channel.

The theorem says that at this point, however, no extra positive diversity gain can be achieved.

Intuitively, as r → M , the data rate approaches the ergodic capacity and there is no protection

against the randomness in the fading channel. On the other hand, the curve intersects the d axis

at the maximal diversity gain d⋆
max = nT · mR, corresponding to the total number of random

fading coefficients that a scheme can average over. There are known designs that achieve the

maximal diversity gain at a fixed data rate [Ala98]. The theorem says that in order to achieve

26



3.4 Diversity versus Multiplexing Trade-off

the maximal diversity gain, no positive spatial multiplexing gain can be obtained at the same

time. The optimal trade-off curve d⋆(r) bridges the gap between the above two design criteria,

by connecting the two extreme points: (0; d⋆
max) and (r⋆

max; 0). This result says that positive

diversity gain and spatial multiplexing gain can be achieved simultaneously. However, increasing

the diversity advantage comes at a price of decreasing the spatial multiplexing gain, and vice versa.

The trade-off curve is thus a more complete concept than the two extreme points corresponding to

the maximum diversity gain and maximum multiplexing gain. For example, the ergodic capacity

result suggests that by increasing the minimum of the number of transmit and receive antennas,

M = min(nT , mR), by one, the channel gains one more degree of freedom, corresponds to r⋆
max

is increased by 1. The theorem makes here a more informative statement: if we increase both nT

and mR by 1, the entire trade-off curve is shifted to the right by 1, as shown in Fig. 3.10; i.e.,

for a given diversity gain requirement d, the supported spatial multiplexing gain is then increased

also by 1.
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Figure 3.10: Diversity versus Multiplexing Trade-off curve d⋆(r) for mR = nT + 1 with
nT = 3 (green), nT = 4 (red) and nT = 5 (black) assuming Rx detectors like ZF,
MMSE or VBLAST. The bullets belong to the transmission schemes with an unlim-
ited number of modulation levels, while the dotted line shows the behavior achieved
with a rate saturated at 256-QAM.

For a better understanding of the operational meaning of the trade-off curves, we have a closer

look at an example depicted in Fig. 3.10. Here, we assume uncoded transmission with independent

data streams from each antenna and all MIMO signal processing is performed at the Rx with either

a ZF-, MMSE- or VBLAST-detector. The trade-off curve now has the direct dependance between

the achieved data stream multiplexing and the available antenna diversity when using all receive

antennas. Furthermore, we assume that from one to nT data streams are transmitted from the

transmit antennas in a BLAST like fashion22. Here, we do not consequently follow the notation

of [TV04] which defined their diversity advantage and multiplexing gain always compared to a

22BLAST transmission mode: one data stream is transmitted from one transmit antenna
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SISO system. This means that a diversity order of 1 for the BER equals a diversity advantage of

zero against a SISO system. We see that adding one more antenna at both sides of the link still

increases the multiplexing gain by one and leaves the diversity gain unchanged. If a limitation of

the modulation levels becomes effective which has to be expected for a real transmission system,

we will not obtain the maximum multiplexing gain as predicted by the solid lines in Fig. 3.10.

This can be explained by the fact that before the sum rate curve reaches its theoretical maximum

slope, the cut-off rate limits a further accent and the theoretical expected slope is not reached

to the full extend. Transmission experiments conducted in our lab are in good accordance with

the dashed lines in Fig. 3.10 which give the diversity - multiplexing curve which is achievable in

reality with the above mentioned linear and non-linear detectors (see also Fig. 6.27).

Summarizing the results from this section we always have to keep in mind that in no way we

can maximize the number of multiplexed data streams and the antenna diversity gain at the same

time. We have to trade between the two extremes in a reasonable way. This basic result is reflected

in the following section on considerations on the design parameters of WLAN systems.

3.5 Considerations for the Application in WLAN Systems

In the this section we discuss some basic parameters and their influence on the performance of

a MIMO system. This gives a very useful insight into the relevance of certain parameters for a

dedicated application and might help the system designer to optimize the overall performance of

the whole system.

The discussion will be underlined with figures for a better illustration. Throughout the next three

subsections we use the following system model assumptions.

We assume a MIMO transmission in a flat block-fading multi-antenna channel. Within the Rician

model for the fading channel, we describe H as a composition of a line of sight (LOS) component

and a non-line of sight (NLOS) component [DF99].

H =

√

K

K + 1
HLOS +

√

1

K + 1
HNLOS (3.47)

As an example, the LOS component is modelled with a circular transmitter (Tx) array and a

uniform linear receiver (Rx) array which faces broad-side to the Tx (see Fig. 3.11). All antennas

have the same polarization and are adjusted perpendicular to one plane. The radiation pattern

is assumed to be omni-directional and the path-loss is proportional to 1/d2 (d : distance between

the Tx and Rx arrays). The NLOS component is modelled as a Rayleigh channel with the matrix

entries being complex Gaussian having zero mean and unit variance.

The composite Rician channel will be characterized by the effective Rician factor K which we

define as the expectation of the ratio of the LOS-power and the NLOS-power averaged over all
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Figure 3.11: Antenna configuration for the LOS model Tx-antenna: circular, Rx - antenna: linear-
broad-side.

Tx and Rx antennas similar as in (3.7).

K =

E





nT ,mR∑

i,j=1

|hLOS
ij |2





E





nT ,mR∑

i,j=1

|hNLOS
ij |2





=
E[trace(HLOS ·HH

LOS)]

E[trace(HNLOS ·HH
NLOS)]

. (3.48)

In the following it is assumed that the transmit symbols satisfy a long term unit power constraint

E[xH · x] = 1. (3.49)

Two different constraints will be applied on total power transferred in average over the transmission

channel. We take the expectation of the transmitted power and apply

1. a total power constraint on H:

E
[
trace(H ·HH)

]
= const

to discuss systems using a Tx power control. This is motivated by the fact that a practical

system will try to control the average received power with a feed back to the Tx to limit the

necessary dynamic range at the Rx and to reduce the interference to other users as well.

2. a Rayleigh power constraint on HNLOS :

E
[
trace(HNLOS ·HH

NLOS)
]

= const
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to discuss the effect of sudden blocking or adding of a LOS in a transmission scenario without

or with a very slow power control. Practically, blocking the LOS simply reduces the power

at the Rx, while the received power from the NLOS component is almost unchanged.

In order to see how the parameters of interest have influence on a MIMO system we do numerical

system simulations. We assume Rayleigh and Rician channels and look at

1. the distribution of the singular values of the channel matrix H.

2. the capacity of H.

3. the BERs using fixed rate (QPSK) per antenna, no error protection coding and a linear

Detector (Zero-Forcing) at the Rx.

3.5.1 Antenna Diversity

Distribution of the Singular Values:

Assuming a pure Rayleigh channel H with no LOS we investigate the distribution of the ordered

SVs (λi) of H obtained by SVD of 105 random channel matrices.

Fig 3.12 shows the computed probability density function (pdf) of the ordered SVs for a MIMO

system having 8 Tx antennas and 8 / 12 Rx antennas, respectively. The numerical results are

consistent with an analytical formula (3.50) for the ordered eigenvalues Λi = λ2
i given by [Tel95]

and [Ede89]

pΛ,ord(Λ1, ..., Λm) =
1

Km,n

∏

i

e−ΛiΛn−m
i

∏

i<j

(Λi − Λj)
2, (3.50)

Λ1 ≥ ... ≥ Λm ≥ 0

where Km,n is a normalizing factor.

With 8 Rx and 8 Tx antennas, the distributions are well separated from each other and there is

only a slight increase of the distance between the maxima from the smallest to the highest SV.

From this unique property of the ordered SV distribution, a Rayleigh-like channel can quickly be

identified, when measured MIMO channels are inspected, for instance.

The more additional antennas are used at one side of the link, the more all SVs are shifted to

higher values. This is due to the higher signal power received by using either receive diversity

or transmit diversity. Additional antennas successfully combat the fading. Note that that the

smallest SV has the largest relative shift when compared to the case of 8 Rx antennas. The

condition number cond(H) = λmax/λmin is therefore significantly reduced.

Capacity and Antenna Diversity:

The average capacity calculated from 105 random channels is shown in Fig. 3.13. It is observed

that no additional multiplexing gain is achieved if antennas are added only at one side of the link.

Following the definition given in (3.44) [ZT03] a transmission scheme achieves a maximum spatial
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Figure 3.12: Pdf of the ordered singular values for a MIMO transmission matrix with 8x8 and
8x12 antennas.
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Figure 3.13: Average Capacity for various MIMO configurations in the Rayleigh channel plotted
over average SNR at Rx antenna.

multiplexing gain r = min(nT , mR) if H has full rank. For a sufficiently large SNR we observe a

slope of 8 bits/s/Hz every 3 dB for the MIMO systems using 8 Tx antennas in Fig. 3.13. This slope

r which is also called effective degree of freedom (edof) [CFV+00] is a very important parameter.

A MIMO system has therefore to be adaptive to the edof otherwise much of the effort of parallel

transmission will be wasted. In indoor scenarios [KWV00], [JPN+02] almost the Rayleigh capacity

was found and even in multi-scattering urban areas like Down-town Manhattan [LFV01a] about
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80% of the Rayleigh capacity were substantial when 16 antennas were used at both sides of the

link.
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Figure 3.14: Empirical cumulative density function for the capacity for various antenna configu-
rations in the i.i.d. Rayleigh channel (SNR=20 dB).

Fig. 3.14 shows the empirical cumulative density function (ecdf) of the capacity obtained from

the simulations. The average capacity which was already depicted in Fig. 3.13 increases when

additional antennas are used on both sides. Adding antennas at one side not only increases the

average capacity. Interestingly, a steeper accent of the ecdf is always observed which narrows

the capacity distribution. For a total number of 20 antennas, the capacity loss would be only

1.5 Bits/s/Hz (∼3%) for an 10% outage capacity with SNR=20 dB when a 8x12 MIMO configu-

ration is used instead of a 10x10 configuration and the difference reduces when the outage shall

be further reduced.

Bit Error Rates and Antenna Diversity:

We assume equal data rate and modulation on nT parallel data streams transmitted each from

one transmit antenna and no CSI at the Tx. The receiver with mR ≥ nT receive antennas has

perfect channel knowledge and performs ZF to extract the data from the receive signals.

x̂ = H†y = H†(H · x + n) = x + H†n (3.51)

with H† denoting the Moore-Penrose pseudo inverse of the channel matrix H.

The resulting BER performance can be obtained analytically for the special case of binary phase

shift keying (BPSK) [J.G00], [JJR94], and simulation results in Fig. 3.15 agree very well with
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(3.52),

pb =

(
1

2
(1− µ)

)l

·
l−1∑

k=0

(

l − 1 + k

k

)

·
(

1

2
(1 + µ)

)k

(3.52)

where l = mR − nT + 1 and µ =
√

( γc

1+γc
) and γc = 〈SINR〉

nT
.
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Figure 3.15: Bit Error Rates with antenna diversity plotted over average SNR at Rx antenna.

Fig. 3.15 illustrates the remarkable effect of antenna diversity on the achievable BER. For high

SNR, the BER with ZF follows a decay of a mR − nT + 1-diversity order system. This gain in

BER performance is easy to understand if we remember that the unitary matrix V obtained from

SVD (3.9) performs a projection of the data streams on the parallel sub-channels. In general, this

projection feeds parts of each data stream into each sub-channel. The sub-channels corresponding

to the smaller SVs (see Fig. 3.12) have the worst effective SNR which means they cause most of

the bit errors while the part of the data which is feed into the better sub-channels suffers less

degradation. Since additional antennas shift the whole bunch of ordered SVs to higher values,

especially the smallest SVs are improved which caused most of the bit errors. This explains the

drastic enhancement effect on the BER.

3.5.2 Line-of-Sight in Rician Channels

In a general wireless transmission scenario we have to consider the existence of a LOS and therefore

something like a Rician channel. The composite channel consisting of a NLOS component and

the LOS component may suffer performance degradation when the Rician factor K is high and

rank(HLOS) is low and the received power is kept constant by a closed loop transmit power control.

But for the first part of the simulations we discuss the LOS effect on the SVs considering the LOS

as additional power to the NLOS component (no power control at Tx).
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Distribution of the Singular Values:
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Figure 3.16: Ordered singular values of the LOS channel HLOS versus the distance of the antenna
arrays, given in unit wavelength [λ].

The LOS channel is modelled with a circular Tx array and a linear Rx array which faces broad-

side to the Tx as depicted in Fig. 3.11. The channel matrix is then computed for a fixed distance

(d) between the antenna arrays. Fig. 3.16 shows the distribution of the SVs of the LOS matrix

obtained by SVD. At short distances the matrix HLOS has high or even full rank which means

that MIMO may already work on a LOS based connection with special antenna configurations.

In [HK03] it was shown analytically and in an experiment that under well known geometrical

conditions between the Tx and the Rx like in an office scenario, the MIMO channel can be

enhanced by forcing the LOS channel component to achieve full rank. This also includes the

most desirable antenna configuration where all SVs are the same and the higher the Rician factor

the better. This allows very stable high data rate transmission without a need of sophisticated

detection schemes like V-BLAST because already a linear detector e.g. ZF or MMSE achieves a

very good BER performance.

In the far field approximation where d is of several thousand carrier wavelengths λ, the matrix

HLOS reduces its effective rank to one which means that the transmission should be reduced to

one data stream with beam-forming by adaptation at the Tx side [HFG+04c, HJJ+01a, HFG+04a]

since otherwise the transmission channel might be over-loaded with multiple data streams. As-

suming a Rician channel we compose HLOS and HNLOS and investigate the distribution of the

SVs for a fixed distance d = 105λ and varying Rician factors K in Fig. 3.17 and for a fixed Rician

factor K = 10 dB and several distances d for the antenna positions in Fig. 3.18.

Fig. 3.17 shows that the additional power from the LOS improves only the highest SVs while

the lower SVs remain unchanged. With rising Rician factor K the quality of the best and worst

transmission channel is spreading apart meaning that with high K the number of useful parallel

transmission channels will decrease under a Tx power control scheme.
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Figure 3.17: Distribution of the ordered singular values of a 8x12 MIMO system for a fixed array
distance (far field:d = 105λ) and antenna spacing δ = 2λ and several Rician factors
K and no power control at Tx.
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Figure 3.18: Distribution of the singular values for several array distances d = 20, 40, 100, 105λ
(antenna spacing δ = 2λ and Rician factor K = 10dB) and no power control at Tx.

Fig. 3.18 shows that the effect of the LOS strongly depends on the actual antenna configuration.

In case of a static LOS configuration we see that the LOS improves exactly rank(HLOS) singular

values. For small distance between Tx and Rx the Rician channel has full rank even for high Rician

factors K. This has to be kept in mind for the antenna design towards real applications, either

the antennas enhance the multi-path signals or if there is not much multi-path signal available or
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the Rician factor is high then the antennas should support a LOS channel with maximum rank

possible (at least 2 due to polarization multiplexing [AMdC01, SBH+02]) and the data stream

multiplexing should be adapted to the actual channel quality [JHPvH03, HFG+04c].

Capacity and Line-of-Sight

In order to discuss the effect on the capacity we plot the average capacity over the average SNR

in the Rayleigh channel (see Fig. 3.19). This is chosen to show the effect of the additional LOS

without any normalization which would be caused by a Tx power control.
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Figure 3.19: Average capacity for a MIMO system with 8 Tx and 8 Rx antennas plotted for various
Rician factors K without power control.

When a LOS is suddenly added or blocked (we assume that the slow power control can not follow

fast enough), then the LOS simply adds or subtracts power and capacity because some of the

SVs are increased/decreased while the characteristic slope for high SNR remains unchanged. This

means a constant multiplexing gain.

Fig. 3.20 shows the capacity loss if we assume a slow power control at the Tx like in [DF99]. This

power control assumption is justified by the fact that real transmission systems always require a

sort of power control to match the received power and the dynamic range of the receive branches

and to reduce the interference power into neighboring cells. Therefore the average transmitted

power will be automatically reduced if more power is received due to an additional LOS.

In Fig. 3.20 the capacity of a single-input single-output (SISO) channel is compared with a MIMO

channel of 8 Tx and 8 Rx antennas for several Rician factors K at SNR=20 dB. The curves

represent some specific antenna configurations according to the SV distribution in Fig. 3.18. Under

the assumption of a power control we have to conclude that if HLOS is of reduced rank we expect

always a capacity loss for a high Rician factor K. If a static LOS antenna configuration is apparent

which supports a high rank of HLOS then the capacity loss can be limited or even avoided. Note
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Figure 3.20: Average capacity (8 × 8) for various antenna array distances (d=10, 20, 40, 100,
5000 λ) versus Rician factor K. The Tx power control holds long term receive power
constraint at Rx (constant dynamic range at Rx). SNR at Rx antenna: 20 dB.

if K can be kept low with an appropriate antenna design, therefore the capacity loss might be

tolerable.

Bit Error Rate and Line-of-Sight

The BER simulations in Fig. 3.21 and Fig. 3.22 assume perfect CSI and ZF at the Rx. Likewise

in the discussion about capacity we start with the assumption of no power control where a LOS

simply adds additional power to the Rx.

The curves in Fig. 3.21 show the effect of the LOS on the BER depending on rank(HLOS) with

a fixed Rician factor K = 10 dB and perfect CSI at the Rx (no power control). For comparison

we have used the same antenna configurations as in Fig. 3.16. The open squares (�) represent

the BER in the Rayleigh channel. The open circles (◦) stand for the worst case scenario with a

LOS in the far-field approximation which means that rank(HLOS) = 1, so only the highest SV is

improved and the small SVs remain unchanged and so does the BER which is determined by the

bit errors caused by these channels. With rising rank of HLOS the smaller SVs are also shifted

to higher values thus benefiting from the additional power of the LOS. The left curve is the best

case scenario where HLOS is of full rank causing all SVs to be shifted. The resulting effect does

not only shift the BER curve to a lower SNR region but also improves the slope to be more like

in a channel with additive white Gaussian noise (AWGN) instead of a Rayleigh fading channel.

This is easy to understand because in the latter case already HLOS enables full multiplexing gain

but the LOS does not follow fading statistics which explains the BER performance more similar

to a wired data transmission.

If a long term Tx power control is assumed, then the SNR axis in Fig. 3.21 has simply to be
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Figure 3.21: BER for a 8x12 MIMO system with K = 10dB and various antenna array distances
d (no power control at the Tx ).

shifted by a factor of 1 + K for all BERs. This is done in Fig. 3.22 for four distinctive antenna

configurations and variable Rician factors.
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Figure 3.22: BER performance of a 8x12 MIMO system for four distinctive antenna array distances
of 10, 20, 100 and 5000 λ and various Rician factors K and BPSK (long term power
control at the Tx is applied).
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We see that the BER performance always degrades if rank(HLOS) < min(nT , mR) and a long term

power control is activated. The worst degradation is found when HLOS is of rank one that means

the LOS supports only one sub-channel while the power transmitted over the remaining parallel

MIMO sub-channels is reduced dramatically by the long term power control. Note that the BER

performance is not much effected by a reduction of the rank of H if maximum likelihood detection

would be used, which seems technically not very realistic at the moment, assuming many parallel

data streams and a high modulation level, e.g. 256-QAM.

Summarizing the effects of a LOS on the BER performance and the achievable capacity of a MIMO

system we have to state that we have to face BER performance degradation and capacity loss with

a LOS, in general. For any practical system long term power control can be expected because of

SNR and dynamic range requirements at the Rx. This power control will generally respond to

the overall power received at the Rx regardless of its origin (LOS or NLOS). The degradation in

BER and capacity strongly depends on the rank(HLOS) and the Rician factor K which was also

found in [LFV01b]. Recent experiments conducted by [ESA04] and [HK03] showed the crucial

performance dependence on rank(H). For some specific antenna configurations rank(HLOS) can

be high or equal to the M = min(nT , mR) but this could only be realized or enforced for quasi-

static connections [HK03]. Generally, this can not be taken for granted, therefore we have to

expect a lower rank of the LOS channel. This means that the degradation depends mainly on the

Rician factor K. For measurements in typical indoor scenarios we used antennas which support the

NLOS component and achieved Rician factors between -5dB and +10dB [PJHvH02, JPN+02]. We

used λ/4-antennas (see Fig. 6.8) which were mounted on the three planes of a metal cube of edge

size λ= 6 cm. The measurement results indicate that adequate antenna design is very important.

Suitable antennas for MIMO WLAN applications should have high spatial diversity achievable

by polarization diversity, diverse and broad antenna pattern to support the explicable properties

of the rich multi-scattering environment. Similar results could be concluded from narrow band

[KMJ+00] and broadband [JPN+02] measurements in rich multi-path environments.
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4 Transmission strategies for multiple antenna channels

4.1 Transmission and Detection Strategies

4.1.1 Single User MIMO Transmission Scenario

Rx
MIMO

channel
Tx

Figure 4.1: Single user MIMO Channel (SU-MIMO).

In the following we assume a single user MIMO system with nT Tx and mR Rx antennas with

nT ≤ mR and up to L data streams are transmitted over the MIMO channel H. At the Rx we

assume a Minimum Mean Square Error (MMSE) detector with perfect CSI. We assume either no

CSI (4.1.1) at the transmitter or perfect CSI at the transmitter and the receiver and we always

consider a total sum power constraint at the Tx. The transmission scenario is depicted in Fig. 4.1.

The complex valued MIMO transmission model in matrix form reads

y = H · x + n (4.1)

with y the receive vector of length mR, x the transmitted vector of size nT , n is the additive

Gaussian noise vector of size mR.

CSI only at the Receiver

If no CSI is available at the Tx then uniform power allocation and one data stream per antenna is

optimal: E[xxH ] = P
nT
· InT

where E[.] means the expectation, [.]H means Hermitean conjugate,

P is the total sum power and InT
is the identity matrix of size nT × nT .

The data symbol estimate by the linear MMSE receiver is

x̂ =
P

nT
HH

[

σ2ImR
+

P

nT
HHH

]−1

y (4.2)

with σ2 the noise variance at the Rx. The covariance matrix Kε
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Kε = E[(x̂ − x)(x̂ − x)H ]

=
P

nT
InT
− P

nT
InT

HH [σ2ImR
+

P

nT
HHH ]−1H

P

nT
InT

yields with a normalization

nT

P
Kε = InT

−
√

P

nT
InT

HH [σ2ImR
+

P

nT
HHH ]−1H

√

P

nT
InT

. (4.3)

trace (Kε) gives the normalized MSE at the Rx.

trace
(nT

P
Kε

)

= nT − trace

(

[σ2ImR
+

P

nT
HHH ]−1 P

nT
HHH

)

. (4.4)

We consider the singular value decomposition (SVD) of

H = UΛ
1/2
H

VH (4.5)

where U and V are unitary matrices and Λ1/2 is a diagonal matrix with the square root of the

ordered eigenvalues of HHH on its diagonal. We now decompose HHH

HHH = UΛ
1/2
H VHVΛ

1/2
H UH = UΛHUH

therefore σ2ImR
+

P

nT
HHH = U

(

σ2ImR
+

P

nT
ΛH

)

UH .

We define D = σ2ImR
+ P

nT
ΛH then

[σ2ImR
+

P

nT
HHH ]−1 = UD−1UH . (4.6)

We now apply (4.6) to substitute the last part in (4.4)

trace([σ2ImR
+

P

nT
HHH ]−1 P

nT
HHH)

= trace

(
P

nT
UD−1UHUΛHUH

)

= trace

(
P

nT
UD−1ΛHUH

)

=

mR∑

l=1

P
nT

λH(l)

σ2 + P
nT

λH(l)
= mR − σ2

mR∑

l=1

1

σ2 + P
nT

λH(l)

with λH(i) denoting the i-th eigenvalue of H. The normalized MSE of (4.4) (also see Fig. 4.3)

now reads
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nT

P
trace(Kε) = nT −mR + σ2

mR∑

l=1

1

σ2 + P
nT

λH(l)
(4.7)

= nT −mR + σ2

(
nT∑

l=1

1

σ2 + P
nT

λH(l)
+

mR∑

l=nT +1

1

σ2

)

(4.8)

=

nT∑

l=1

1

1 + P
nT σ2 λH(l)

. (4.9)

The RHS in (4.9) is a Schur-convex function which leads to the following theorem.

Theorem 2: For trace(HHH) = constant, rising correlation1 in H increases the normalized MSE

at the MMSE receiver.

Proof: Let trace(HHH) =
∑N

l=1 λH(l)
.
= 1. H1 and H2 be two channel matrices and H1 has more

correlation than H2 which we write
∑m

l=1 λH1(l) ≥
∑m

l=1 λH2(l) m = 1, ..., nT . The MSE is of

the form MSE=
∑m

l=1 f(x) with the Schur-convex function f(x) = 1
1+x . According to theorem

C1 from chapter 3 in [MO79] also MSE=
∑m

l=1 f(x) is Schur-convex. Therefore always holds

m∑

l=1

1

σ2 + P
nT

λH1(l)
≥

m∑

l=1

1

σ2 + P
nT

λH2 (l)
� (4.10)

CSI at the Transmitter and the Receiver

Let L be fixed and perfect CSI is available at the Tx, then the data symbol vector sǫCL is

preprocessed and then xǫCnT is emitted from the M Tx antennas while nT −L data streams are

switched off. The transmission scheme is depicted in Fig. 4.2 and
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Figure 4.2: MIMO transmission setup with channel knowledge at Tx.

x = WDs, where D = diag(
√

P1, ...,
√

PL) is the power allocation matrix and W is a unitary

beam-forming matrix of size nT × L. Now (4.1) reads

y = Hx + n = HWDs + n (4.11)

We define sp = Ds then E[ssH ] = IL and E[sps
H
p ]=D with

∑L
l=1 Pl ≤ P. The estimated data

1Correlation is used here in the sense of the distribution of the ordered eigenvalues (EW)[H. 02]. Uncorrelated -
best case, when all EW are the same, fully correlated - worst case, when there is only one EW bigger then zero.
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ŝǫCL at the MMSE receiver is then

ŝ = DWHHH [σ2ImR
+ HWDWHHH ]−1y. (4.12)

The covariance matrix Kε is

Kε = D−DWHHH [σ2ImR
+ HWDWHHH ]−1HWD (4.13)

or in normalized form

D− 1
2 KεD

− 1
2 = IL −D

1
2 WHHH [σ2ImR

+ HWDWHHH ]−1HWD
1
2 . (4.14)

With H = UΛ
1/2
H VH , V = [V1, ..., VnT

] and W = [V1, ..., VL] the normalized MSE is given by

trace(D− 1
2 KεD

− 1
2 ) = L− trace

(
[σ2ImR

+ HWDWHHH ]−1HWDWHHH
)

= L−
(

mR − σ2
mR∑

l=1

1

σ2 + λH(l)Pl

)

(4.15)

= L−mR + σ2

(
L∑

l=1

1

σ2 + λH(l)Pl
+

mR∑

l=L+1

1

σ2

)

(4.16)

=

L∑

l=1

1

1 + λH (l)Pl

σ2

. (4.17)

In order to minimize the sum of the MSE’s for all data streams we solve the following minimization

problem

min
P

L
l=1 Pl≤P
Pl≥0

L∑

l=1

1

1 + λH(l)Pl

σ2

. (4.18)

We find the Lagrange function L(P , µ, ω)

L(P , µ, ω) =

L∑

l=1

1

1 + λH (l)Pl

σ2

+ µ

(
L∑

l=1

Pl − P

)

−
L∑

l=1

ωlPl (4.19)

where µ is the Lagrange multiplier to satisfy
∑L

l=1 Pi ≤ P and ω guarantees all Pi ≥ 0. Partial

differentiation of (4.19) gives

∂L

∂Pr
= −

λH (r)
σ2

(

1 + λH (r)Pr

σ2

)2 + µ− ωr = 0. (4.20)

With a closer look at (4.18) we see that the sub-channels have different impact on the MSE.

We expect a ”waterfilling”-like solution, which means that with little sum power, sub-channels

corresponding to smaller eigenvalues λi are switched off.

if P opt
l = 0, then ωl ≥ 0 and if P opt

l > 0, then ωl = 0 (4.21)

There exists a maximum index L for which holds: if l > L, then

44



4.1 Transmission and Detection Strategies

P opt
l = 0 and λH (l)

σ2 = µ− ωl. With (4.19) and for l ≤ L the optimal solution is then given by

P opt
l =

[√

σ2

µλH(l)
− σ2

λH(l)

]+

(4.22)

where µ satisfies
∑L

l=1 P opt
l = P . This leads to:

Theorem 3: In case of perfect CSI at the Tx and Rx and a MMSE receiver, then the optimal

transmit strategy is given by transmitting L data streams with the transmit vector x:

x = WDs. (4.23)

The unitary beam-forming matrix W is given by the first L columns of V obtained from SVD of

H = VΛ1/2UH and the power allocation matrix D = diag(
√

P1, ...,
√

PL) with Pl in (4.22) from

the solution of the minimization problem formulated in (4.18).
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Figure 4.3: MSE as a function of the eigenvalues λH(1) with λH(1) = (1− λH(2)) and
∑2

i=1 Pi =
P = 1, 2, 5, 10 and σ2 = 1.0

Fig. 4.3 shows the MSE functions for the ordered 2 Eigenvalues example. The upper curves(+)

belong to the system with no CSI at the Tx and are Schur-convex. The lower curves (◦) of the

4 sets are the MSE’s with optimum power allocation. These functions are not Schur-convex, in

general, which we show in the following. On the right hand side from the jump discontinuity only

the effective MSE of the remaining data stream is depicted because P2=0. Let us assume σ and

P to be fixed and λH(1) be the parameter for the MSE like in Fig. 4.3 (λH(1) + λH(2) = 1). The

solution of the minimization task be L = 2 for λH(1) = λH(2). With rising correlation (λH(1) ↑)
we find a λ̃H(1), so that L = 1. Now we consider λ

(1)
H
≥ λ

(2)
H
≥ λ̃H(1) then

MSE(1) =
1

1 +
λ
(1)
H

P

σ2

≤ 1

1 +
λ
(2)
H

P

σ2

= MSE(2) ≤MSE(λ̃H) (4.24)

which is Schur-concave for λ
(i)
H
≥ λ̃H. The more general case reads:

nT∑

l=1

λ
(1)
l =

nT∑

l=1

λ
(2)
l and λ(1) ≥ λ(2). (4.25)
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We substitute Pl in (4.18) with (4.22) and find for the L best channels in use MSE(L) =
∑L

l=1
1√

µλ(l)
. Since we know that

∑L
l=1

1√
λ(1)(l)

≥
∑L

l=1
1√

λ(2)(l)
a comparison of MSE(1) =

∑L
l=1

1√
µ(1)λ(l)

and MSE(2) =
∑L

l=1
1√

µ(2)λ(l)
depends on µ(1) and µ(2). Therefore it can not

be generally stated whether MSE(1) ≥MSE(2) or vice versa. This complex behaviour is to be seen

in Fig. 4.3.

We now find the critical power when a channel has to be switched off, assuming a fixed correlation

and noise. We consider the two eigenvalue example. We assume P to be the sum power, so that

P opt
2 > 0. We choose a P̂ , with P ≥ P̂ , which holds P opt

1 = P and P opt
2 = 0. We find the function

f(P opt
1 , P opt

2 ) and parameterize it with P opt
1 = P − ε and P opt

2 = ε.

f(P opt
1 , P opt

2 ) =
1

1 +
λH(1)P opt

1

σ2

+
1

1 +
λH(2)P opt

2

σ2

f(P − ε, ε) =
1

1 + λH(1)(P−ε)
σ2

+
1

1 + λH(2)ε
σ2

Now we look at the point where the derivative becomes positiv

df(P − ε, ε)

dε
|ε=0≥ 0. (4.26)

df

dε
|ε=0=

λH(1)
σ2

(

1 + λH(1)(P−ε)
σ2

)2 −
λH(2)

σ2

(

1 + λH(2)ε
σ2

)2 ≥ 0. (4.27)

which leads to

Theorem 4: A necessary and sufficient condition for beam-forming to be optimum is given by

P ≤ σ2

λH(1)

(√

λH(1)

λH(2)
− 1

)

= P crit. (4.28)

Below the critical sum power P crit only one channel is active.

4.1.2 Multi-User SIMO MAC scenario

System model

We consider a multi-user SIMO scenario where all K users have one transmit antenna each and

the base station (BS) has mR receive antennas. The overall formed MU-SIMO or MIMO channel

is of size mR × K. We investigate the up-link from the mobiles to the BS with perfect channel

state information.

Fig. 4.4 shows the signal model for the multi-user SIMO MAC with a MMSE receiver. K mobile

terminals with one antenna each transmit to a BS with mR antennas.

The transmit signal from user k is given by xk and the transmission channel to the BS is described

by the channel vector hk. The received signal y at the BS is given by

46



4.1 Transmission and Detection Strategies

MS

1

MS

K

BS

MMSE

Multi-user

SIMO

channels

Figure 4.4: MU SIMO MAC with MMSE multi-user receiver

y =

K∑

k=1

hkxk + n. (4.29)

We assume a flat fading channel hk for all users in (4.29). Additionally, we assume an i.i.d.

additive white Gaussian noise vector n with noise variance σ2
N . Equation (4.29) can be rewritten

in compact form as

y = Hx̂ + n (4.30)

where H = [h1, ...,hK ]ǫCmR×K is the overall channel matrix and the transmit signals from all

users are collected in x̂ = [x1, ..., xK ]T .

Analytical Description of the SINR region

We follow the considerations of [BS02b] and assume i.i.d. Gaussian noise at each receive antenna.

Then the SINR of all links can be controlled by jointly adjusting the transmission powers p1...pK

and the beamformers uiǫC
mR , 1 ≤ i ≤ K. The uplink SINR of the i-th user is given by

SINRUL
i (ui, p1, ..., pK) =

pi | uH
i hi |2

uH
i Zi(p)ui

, 1 ≤ k ≤ K (4.31)

where Zi(p) = σ2
NI +

K∑

k=1
k 6=i

pkhkh
H
k

For given transmission powers p1...pK , the SINRi from (4.31) are individually maximized by the

normalized MMSE solution

uopt
i = αZi(p)−1hi, (4.32)

where α is chosen such that ‖ uopt
i ‖= 1. Substituting uopt

i in (4.31) we have
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SINRUL-MMSE
i (p1...pK) = pih

H
i Zi(p)−1hi. (4.33)

A simple two user example given in Fig. 4.6 may illustrate the shape of the SINR region obtained.

But the more general problem is to find the optimum power allocation which maximizes the sum

capacity for given h1, ...,hK .

Multi User Sum Capacity without Successive Interference Cancellation (noSIC)

It is well known that under the assumption of i.i.d. Gaussian signaling, there is a one-to-one

monotonic relationship between user rates Ri and SINRi values [Lap96], i.e.,

RnoSIC
i = log2(1 + SINRMMSE

i (p1...pK))

= log2 | I + Zi(p)−1/2pihih
H
i Zi(p)−1/2 | (4.34)

= log2 | pihih
H
i + Zi(p) | − log2 | Zi(p) | [bits/symbol] (4.35)

where | . | denotes det(.).

Hence, the sum rate without SIC at the receiver is given by

fnoSIC(p) =

K∑

i=1

RnoSIC
i = K log2 | σ2

N I +

K∑

k=1

pkhkh
H
k | −

K∑

k=1

log2 | Zk(p) | . (4.36)

As stated in [BS02b] the function fnoSIC(p) is the sum of a convex and a concave term, therefore

the result needs neither to be convex nor to be concave, as can be seen in the given 2-user

example depicted in Fig. 4.10. Thus, known strategies for sum capacity maximization [BSJ03,

BJ02, VBW98] cannot be applied here.

4.1.3 Multi-User Sum Capacity with SIC

Successive interference cancellation (SIC) is a common technique to reduce known interference

step by step. We assume a detection order for the data streams d1, ..., dK . We start the process

by making a decision for data symbol d1. Since d1 is known from now on its interference on

data symbols from other users can be eliminated prior to making a decision for the next data

stream. Effectively every transmission layer sees only the interference from the layers which will

be detected later.

Using SIC the functional describing the sum rate becomes concave in the transmission powers

p1...pK . The rate of layer k is

RSIC
k = log2(1 + pkh

H
k [σ2

NI +

K∑

l=k+1

plhlh
H
l ]−1hk). (4.37)
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For convenience we define B = [σ2
NI +

∑K
l=k+1 plhlh

H
l ] and σ2

N = 1.

RSIC
k = log2 | I + pkB

−1/2hkh
H
k B−1/2 | (4.38)

= log2 |
K∑

l=k

plhlh
H
l + I | − log2 |

K∑

l=k+1

plhlh
H
l + I | (4.39)

Then, the sum rate with SIC is given by

fSIC(p) =

K∑

k=1

RSIC
k = (4.40)

=
K∑

k=1

(log2 |
K∑

l=k

plhlh
H
l + I | − log2 |

K∑

l=k+1

plhlh
H
l + I |) (4.41)

= log2 | I +
K∑

k=1

pkhkh
H
k | . (4.42)

or in a more general form with σ2
N 6= 1

fSIC(p) = log2 | I +

K∑

k=1

pk

σ2
N

hkh
H
k | . (4.43)

The optimum power allocation can be found by convex optimization techniques, like the maxdet

algorithm [VBW98].

We make the observation that the sum rate in (4.43) is independent on the detection order of the

data streams ( see fig. 4.5). This conservation law of the sum capacity is of great importance

and is very interesting from a providers point of view. If the sum rate is independent on the user

detection order, then the provider can run its system at maximum sum rate while supporting the

users with different SINR demands by simply changing the detection order accordingly at the BS.

4.1.4 Analysis of the SNR Gap Concept

A common approximation to predict the achievable rate for a transmission system with a certain

symbol alphabet and code is the so-called SNR gap approximation. The assumption is that a

transmission system can achieve a rate that simply corresponds to the Shannon capacity shifted

on the SNR axis. The SNR shift is then called a SNR gap Γ which depends on the modulation

and coding scheme used.

This concept was used e.g. for bit-loading algorithms for OFDM [CCB95] and is proposed by

[CLH+03] to perform bit-loading with the VBLAST algorithm. The idea is to predict the SINR

of each layer by using the gap approximation.

If the SNR gap approximation is used in order to simplify the problem of finding a practical

solution with SIC and realistic modulation alphabets and coding, then the desirable and nice
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Figure 4.5: Achievable rate region for a 3 user SIMO channel w/o time sharing policies. The
colored hyperplanes show the rate region for one fixed SIC order each. The dots
indicate where the sum rate for every possible SIC order is maximized. The maximum
sum rate is independent on the SIC order.

concave behavior of the sum capacity functional and the independence on the detection order can

be lost. To see this, we have to look into the mathematical expression in more detail.

Following the outlines of [CLH+03] we assume the SNR gap Γ > 1 and a detection order 1...K.

The rate for the k-th layer is then

RΓ
k = log2(1 +

1

Γ
SINRk) (4.44)

= log2 | I +
K∑

l=k+1

pl

σ2
hlh

H
l +

1

Γ

pk

σ2
hkh

H
k | − log2 | I +

K∑

l=k+1

pl

σ2
hlh

H
l | . (4.45)

The sum rate is then given by

K∑

k=1

RΓ
k =

K∑

k=1

log2 | I +

K∑

l=k+1

pl

σ2
hlh

H
l +

1

Γ

pk

σ2
hkh

H
k |

−
K∑

k=1

log2 | I +

K∑

l=k+1

pl

σ2
hlh

H
l | . (4.46)

Here we make the observation that the interference terms do not cancel pairwise as seen in (4.43)

therefore the achieved sum rate may become dependent on the detection order. Furthermore the

two sum terms are concave each, therefore the difference of two concave functionals corresponds
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to a sum of a concave and a convex functional. Thus the functional for the sum rate with gap

approximation needs neither to be concave nor to be convex and standard algorithms to find the

maximum sum rate can not be applied as discussed in 4.1.2.

As long as the SNR gap Γ ≃ 1 or the channels are orthogonal (e.g. MIMO-OFDM [GVK02]) the

gap approximation does neither affect the concave behavior of the functional nor the sum capacity

is depending on the detection order of the data streams. But this can not be assumed in general,

therefore the SNR gap approximation might be misleading sometimes.

4.1.5 Two User Examples

Detection without SIC

We consider a 2 user SIMO scenario without SIC and a MMSE receiver. Starting from (4.33) and

using the matrix inversion lemma we find

SINR1 = p1h
H
1 [σ2I + p2h2h

H
2 ]−1h1 (4.47)

=
p1

σ2

1 + p2

σ2 ‖h2‖2
[

‖h1‖2 +
p2

σ2

(
‖h1‖2‖h2‖2 − ‖hH

1 h2‖2
)]

(4.48)

SINR2 =
p2

σ2

1 + p1

σ2 ‖h1‖2
[

‖h2‖2 +
p1

σ2

(
‖h1‖2‖h2‖2 − ‖hH

1 h2‖2
)]

(4.49)

We see that for a fixed power allocation the SINRi is maximal if h1 ⊥ h2. The resulting capacity

C1+2 = log2(1 + SINR1) + log2(1 + SINR2)

is also maximized.
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Figure 4.6: SINR region in the 2 user example for fixed sum powers Ptotal and varying correlation
in H with SIC (dashed lines) and without SIC (solid lines) (nT = 2, mR = 4, σ2

N = 1).
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For illustration purposes we choose three gain normalized channels with varying correlation 2.

Fig. 4.6 shows the achievable SINR regions. The regions appear to be convex which could not be

proven so far. The maximum achievable SINR region is given for h1 ⊥ h2 and nothing can be

gained with SIC.

If correlation between h1 and h2 is apparent then the achievable SINR region is reduced (see

curves for H1 and H2 in Fig. 4.6) and SIC gains according to the correlation. For this example

the channels were chosen as

H⊥ =







0 0.4

0.3 0

1 0

0 1







H1 =







1 0.4

0.3 1

0 0

0 0







H2 =







0 0.4

0.3 0

1 1

0 0







.

The SINR regions of another example are depicted in Fig. 4.7, note the dB scale. We discuss

this example in the following regarding the theoretically achievable sum rate and what can be

achieved with discrete bit-loading in 4.4.2. In Fig. 4.7 we see that the SINR gain for the second

data stream is about 10 dB at maximum. Therefrom we would expect a higher achievable rate

of about 3 bits/symbol if SIC is applied. The calculation is based on the fact that we expect the

rate to rise by 1 bit/s/Hz per 3 dB SINR increase. This gain in data throughput can be approved

in Fig. 4.10 and Fig. 4.29. The channel used here assumes 2 users and 4 BS antennas. Without

loss of generality it is real-valued for convenience.

h1 = [+0.5918 −0.5107 −0.5102 −0.1423]T

h2 = [−1.2379 +0.4931 +0.5738 +0.4500]T
(4.50)
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Figure 4.7: SINR region in the 2 user example for different sum powers Ptotal with/without SIC
(nT = 2, mR = 4, σ2

N = 1). Channel from (4.50).

2Correlation between two channel vectors is meant here to be the normalized scalar product h1
‖h1‖

· h2
‖h2‖

where

zero means uncorrelated and one means full correlation
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Detection with SIC and Individual Power Constraints

In the following we will always assume a detection order 2,1 which means the data from user 2 is

detected first and then subtracted before user 1 is detected. This makes user 1 virtually interference

free. We assume σ2
N =1. Furthermore we assume the allocatable power to each user to be p1,2 =

[0, Pmax]. In direct consequence of maximizing the sum throughput this yields to p1 = p2 = Pmax

for Γ = 1.

SIC and Γ = 1

The rates of the 2 users with SIC and individual power constraint are

R1 = log2(1 + p1|h1‖2) (4.51)

R2 = log2(1 + p2h
H
2 [I + p1h1h

H
1 ]−1h2) (4.52)

= log2

(

1 + p2

(

‖h2‖2 −
p1‖hH

1 h2‖2
1 + p1‖h1‖2

))

. (4.53)

The sum rate is then given by

CSIC = R1 + R2 (4.54)

= log2(

g1
︷ ︸︸ ︷

1 + p1‖h1‖2 + p2‖h2‖2 + p1p2(‖h1‖2‖h2‖2 − ‖hH
1 h2‖2)) (4.55)

= G(p1, p2). (4.56)

With p1 ≤ p2 = Pmax the functional G is only dependent on p1.

Since always holds ‖h1‖2‖h2‖2 ≥ ‖hH
1 h2‖2 the functional G(p1) is monotonic rising in p1 therefore

maximum sum rate is achieved for p2 = p1 = Pmax.

SIC and Γ > 1

The rates of the 2 users with SIC, individual power constraint and Γ-approximation are

RΓ
1 = log2(1 +

p1

Γ
‖h1‖2) (4.57)

RΓ
2 = log2(1 +

p2

Γ
hH

2 [I + p1h1h
H
1 ]−1h2) (4.58)

= log2

(

1 +
p2

Γ

(

‖h2‖2 −
p1‖hH

1 h2‖2
1 + p1‖h1‖2

))

. (4.59)

The sum rate is then given by

CΓ=RΓ
1 + RΓ

2 (4.60)

=log2(

g1
︷ ︸︸ ︷

1 + p1‖h1‖2 +
p2

Γ
‖h2‖2 +

p1p2

Γ
(‖h1‖2‖h2‖2 − ‖hH

1 h2‖2)) (4.61)

+ log2

(
1 + p1

Γ ‖h1‖2
1 + p1‖h1‖2

)

︸ ︷︷ ︸

g2

= log2 g1(p1, p2) + log2 g2(p1) = G(p1, p2). (4.62)

Because the power of user 2 does not influence the rate of user 1, user 2 will always transmit at
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maximum transmit power. With p1 ≤ p2 = Pmax the functional G is only dependent on p1. We

differentiate G(p1) in order to find a maximum for the sum rate

G′(p1) =
g′1(p1)

g1(p1)
+

g′2(p1)

g2(p1)
= 0.

G′(p1) =
‖h1‖2 +

(‖h1‖2‖h2‖2−‖hH
1 h2‖2)Pmax

Γ

log(2)(1 + p1‖h1‖2 + Pmax

Γ ‖h2‖2 + p1Pmax

Γ (‖h1‖2‖h2‖2 − ‖hH
1 h2‖2)

(4.63)

+

(
1 + p1‖h1‖2

)



−
‖h1‖2

„

1+
p1‖h1‖2

Γ

«

(1+p1‖h1‖2)2 + ‖h1‖2

(1+p1‖h1‖2)Γ





(

1 + p1‖h1‖2

Γ

)

log(2)
(4.64)

After some transformations we finish with the following numerator which is set equal to zero.

0 = ‖h1‖2Pmax

(
−‖hH

1 h2‖2p1(2 + ‖h1‖2p1) + (‖h2‖+ ‖h1‖2‖h2‖p1)
2)
)

(4.65)

+
(
(‖h1‖+ ‖h1‖3p1)

2 − ‖hH
1 h2‖2Pmax

)
Γ (4.66)

The two zeros for p1are :

p1 = −
1± ‖hH

1 h2‖2√Pmax

√
Γ−1√

−‖hH
1 h2‖2Pmax+‖h1‖2(‖h2‖2Pmax+Γ)

‖h1‖2
.

One solution p+
1 is always negativ and therefore not a valid transmit power while the other solution

p−1 can become positiv exactly when:

‖hH
1 h2‖2

√
Pmax

√
Γ− 1

√

−‖hH
1 h2‖2Pmax + ‖h1‖2(‖h2‖2Pmax + Γ)

> 1.

Fig. 4.10 shows the sum rate for a 2 user example (nT = 2, mR = 4, σ2
N = 1) and varying

total transmit power Ptot. We see that the sum rate functional with SIC is always concave while

the behavior without SIC depends on the total transmit power. For very large transmit powers

(Ptot > 105) the sum rate functional also has a concave behavior for this example.

Detection with SIC and Sum Power Constraints

SIC and Γ = 1
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Figure 4.8: Achievable sum rate in the 2 user case for Pmax = 100 as a function of p1, p2 under
individual power constraint, (nT = 2, mR = 4, σ2

N = 1) and parallel detection ( black
and magenta) and SIC (red and blue) is assumed. Channel from (4.50).

The rates of the 2 users with SIC and sum power constraint are

RΓ
1 = log2(1 + p1|h1‖2) (4.67)

RΓ
2 = log2(1 + p2h

H
2 [I + p1h1h

H
1 ]−1h2) (4.68)

= log2

(

1 + p2

(

‖h2‖2 −
p1‖hH

1 h2‖2
1 + p1‖h1‖2

))

. (4.69)

The sum rate is then given by

CSIC=R1 + R2 (4.70)

=log2(

g1
︷ ︸︸ ︷

1 + p1‖h1‖2 + p2‖h2‖2 + p1p2(‖h1‖2‖h2‖2 − ‖hH
1 h2‖2)) (4.71)

=log2 g1(p1, p2). (4.72)

With p2 = Ptotal − p1 the functional G is only dependent on p1.

G(p1) = log2(

g1
︷ ︸︸ ︷

1 + p1‖h1‖2 + (Ptotal − p1)‖h2‖2 + p1(Ptotal − p1)(‖h1‖2‖h2‖2 − ‖hH
1 h2‖2))(4.73)

Next we differentiate G(p1) in order to find the maximum sum rate.

G′(p1) =
g′1(p1)

g1(p1)
= 0.
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The maximum is found for p1:

p1 =
1

2

(
(‖h1‖ − ‖h2‖)(‖h1‖+ ‖h2‖)
‖h1‖2‖h2‖2 − ‖hH

1 h2‖2
+ Ptotal

)

(4.74)

SIC and Γ > 1

The rates of the 2 users with SIC, sum power constraint and Γ-approximation are

RΓ
1 = log2(1 +

p1

Γ
‖h1‖2) (4.75)

RΓ
2 = log2(1 +

p2

Γ
hH

2 [I + p1h1h
H
1 ]−1h2) (4.76)

= log2

(

1 +
p2

Γ

(

‖h2‖2 −
p1‖hH

1 h2‖2
1 + p1‖h1‖2

))

. (4.77)

The sum rate is then given by

CΓ=RΓ
1 + RΓ

2 (4.78)

=log2(

g1
︷ ︸︸ ︷

1 + p1‖h1‖2 +
p2

Γ
‖h2‖2 +

p1p2

Γ
(‖h1‖2‖h2‖2 − ‖hH

1 h2‖2)) (4.79)

+ log2

(
1 + p1

Γ ‖h1‖2
1 + p1‖h1‖2

)

︸ ︷︷ ︸

g2

= log2 g1(p1, p2) + log2 g2(p1) = G(p1, p2). (4.80)

With p2 = Ptotal − p1 the functional G is only dependent on p1. We differentiate G(p1) in order

to find the maximum sum rate

G′(p1) =
g′1(p1)

g1(p1)
+

g′2(p1)

g2(p1)
= 0.

The lengthy differentiation finishes with a polynomial equation which is of third order in p1.

Therefrom we know that all zeros have to be real valued or conjugated complex and that their

number is either 1 or 3. In the latter case we find two local maxima or minima.

To illustrate the two user behavior we choose a fixed channel and vary the power allocated to

each user under a sum power constraint. Fig. 4.9 shows the sum rate functional plotted over the

transmit power of user 1. For convenience we set σ2
N = 1, the total transmit power Ptot = 1000

and Γ=8 dB which corresponds to uncoded M-QAM and a BER ¡ 10−5. Due to the entanglement

of the two channel vectors SIC can gain up to 3 bits/s/Hz for this example. The upper curve is the

concave sum rate functional with SIC with a square to mark the maximum achievable rate. The

curve below which describes the achievable sum rate without SIC is neither convex nor concave.

The maximum sum rate is achieved when all power is given to user 2.

Below we see the resulting sum rate calculated with the SINR gap approximation. We clearly see

that the curves are neither concave nor convex and several local maxima appear. Furthermore the

sum rate is clearly depending on the detection order at the receiver (dotted and dashed curve).

The sum rate curve without SIC remains neither convex nor concave.

Fig. 4.10 shows the sum rate functional again plotted versus the transmit power of user 1 under

sum power constraint. We varied the total transmit power while keeping the channel fixed. The
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Figure 4.9: Achievable sum rate in the 2 user example for Ptotal = 1000 and sum power constraint
with/without SIC (upper curves), nT = mR = 2. The sum rate is depicted as a
function of p1 if the SNR gap approximation is applied which is a central part of the
SRPQ-algorithm proposed by Chung et. al

black solid lines represent the sum rate functional without SIC and up to Ptot = 140 the optimum

power allocation is given by only supporting user 2 at full power. The red and dotted lines

represent the functional when SIC is used. Here we clearly see again the concave behavior and

already from Ptot = 10 both users are supported to reach the maximum sum rate.
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4.2 Pre-coding Strategies

4.2.1 The idea of Pre-coding

Pre-coding strategies are means or methods applied at the transmitter to facilitate detection

at the receiver. In contrast to the detection methods, now channel state information (CSI) is

required at the transmitter side, and not necessarily at the receiving side. This is naturally the

case in symmetric time-division-duplex (TDD) systems, where each receiver in turn also acts as

a transmitter. Provided the time between up-link and down-link is short relative to the fading

coherence time [J.G00], the estimates from the receiving direction can be used for the subsequent

transmission. In other settings e.g. quasi-static channels the CSI can be made available to the

transmitter via some backward channel.

We formalize this into a pre-coding operation F̃ applied on the data symbols d, thus sending x

from the transmitter

x = F̃d, (4.81)

The belonging detection operation at the receiver is

d′ = FRxy (4.82)

= FRx(Hx + n) (4.83)

= d + FRxn (4.84)

Note, that pre-coding can not be applied in the multiple access channel at all, since the users

are not able to cooperate. However, for the dual setting of the broadcast channel, some pre-

coding methods that we will discuss are able to improve the detection performance of the users,

even though the users/MTs can not cooperate on the detection task. Note that for the those

pre-coding methods, the matrix FRx from (4.84) has diagonal form.

4.2.2 SVD-MIMO Transmission and Waterfilling

If CSI is available at the transmitter and receiver, we can apply the rather straightforward concept

of SVD-MIMO transmission, which is in fact information-theoretically optimum towards capacity

as discussed in sec. 3.2.

The SVD based transmission scheme requires joint processing both on the transmit and the receive

side of the communication system, which means that it can only be implemented in centralized

systems, such as the single user MIMO system described in sec. 4.1.1.

The necessary pre-coding and decoding matrices are obtained from the singular-value-decomposition
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(SVD) [PTVF92, GL96] of H, the matrices U, D, and V are obtained like in (5.9) as

H = UDVH (4.85)

with U and V unitary matrices and D = diag(λ1, ..., λk) a diagonal matrix with the singular

values of H.

Using the transmit signal x = Vd, the appropriate receiver processing is

d′ = D−1UHy (4.86)

= D−1UH(UDVHx + n) (4.87)

= d + D−1UHn = d + n′ (4.88)

where E[n′n′H ] = σ2
N E[diag(λ−2

1 , ..., λ−2
k )] gives the average SNR for the parallel AWGN channels

under the assumption of i.i.d. noise at all Rx antennas.

The multiplication with the unitary matrices do neither enhance the transmit power nor enhance

the noise power at the Rx, hence the separation into parallel channels is performed in an ideal

manner. In fact, the information theoretic capacity of the MIMO channel is equal to the sum of the

capacities of the parallel sub channels obtained from the SVD transmission scheme, cf., e.g., [Tel99].

It turns out that the noise powers resulting are distributed over a wide range and consequently

some form of adaptive transmission is necessary to achieve a reasonable average (uncoded) BER.

In [Ven02] it was observed that without any power and rate adaptation the performance of this

scheme approaches that of linear equalization for high SNR. The author argues that here the sum

of the noise powers of the overall transmission channel is the same for linear pre-coding (ZF) and

the SVD scheme, since trace(D−2) = trace(H−1H−1H
).

Since the parallel channels are independent, mere power-adaptation, i.e., multiplying the transmit

vector by D−1, does not significantly change the error rate performance, since it the transmit

power enhancement is limited due to the limited dynamic range of the Tx amplifiers or the limited

resolution of the DAC, therefore this strategy is not advised for an application.

The right way to deal with these parallel sub-channels is to adapt the transmission rates accord-

ing to the SNR of each sub-channel. If this is done properly, asymptotically the (constellation-

constrained) capacity of the MIMO channel can be fully utilized. An additional power allocation

at the Tx is possible if sub-channels are switched off in the low SNR regime. Now, the saved

power of one or several streams can be redistributed to the remaining data streams to increase

throughput. Ideally, this is done in a water-filling like fashion as long as the per antenna transmit

power limit is not violated. For the uncoded transmission, this adaptive bit and power allocation

has the effect of equalizing the bit error rates for all bits transmitted while achieving the maxi-

mum sum throughput. The measurement results of an implementation in the real-time test-bed

are found in Fig. 6.20.

[Win04] showed that with both the transmitter side adaptation to the channel matrix and the

spatial loading (Off or QPSK), the resulting bit error rate is superior to that of maximum-likelihood

detection for the Rx detection scenario with fixed rate per antenna transmission, because of the
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4 Multi-Antenna Transmission Schemes

ideal separation of the sub-channels. The BER resulting without loading approaches that of linear

ZF detection.

For MIMO systems where joint processing and (rate/power) adaptation is possible, the SVD based

scheme is the optimum approach.

4.2.3 Linear Pre-coding

The transmitter-side equivalent to the linear Rx equalization discussed in section 3.5.1, and the

equivalent approach is linear pre-equalization. In the ZF or MMSE case this corresponds to a

multiplication with a pre-coding matrix F̃ and transmitting x = F̃d

with

F̃ =
1

α
H† (4.89)

which leads to a received signal of

y = d + αn (4.90)

where the parameter α is used to keep the transmitted power constrained.

A sum power constraint leads to

α =

√

trace(H†H†H
), (4.91)

while the more realistic constraint of limited transmit power per antenna leads to

α =

√

max(f̃ i f̃ i
H

), (4.92)

where f̃ i is the i-th row of the pre-coding matrix F̃. The transmit constraint from (4.92) was

implemented for the experiments on Adaptive Channel Inversion described in sec. 6.3.

In the following no such transmit power will be assumed in order to study the general performance

and to evaluate the necessary dynamic range at the transmit side which is very important towards

a reduction of transmitted radiation [Min04], which helps reducing the inner-cell and inter-cell

interference.

If transmit power limitations of any kind are taken into account then this transforms directly into

an SNR decrease according to (4.90).
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Linear Channel Inversion and Joint Transmission

We assume nT transmit and mR receive antennas and a flat fading channel matrix H of size

mR × nT . With rank(H) = min(nT , mR) = m, data transmission can be performed over m

parallel sub-channels. Furthermore we assume the transmitter at the BS has more or an equal

number of antennas than the MT. With the given transmission equation y = Hx+n and channel

state information (CSI) at the transmitter, the channel can be pre-compensated prior to the

transmission of the data symbols which we then will call Channel Inversion (CI). Under the

assumption of channel reciprocity the Tx can obtain CSI prior to the transmission from a channel

measurement into the opposite direction.

Several groups use slightly different terms to distinguish between variations of the CI. Since the

terms Linear Channel Inversion and Joint Transmission are widely used a short explanation will

be given.

Linear Channel Inversion (LCI) is a pre-equalization technique which fully inverts the phases

and the attenuation of the channel at the transmit side. The resulting transmission channel

behaves like an AWGN channel. LCI compensates the path loss and even ill conditioned channels

to full extend. This can require a huge dynamic range at the Tx depending on the channel statistics

and the number of Tx and Rx antennas. Therefore even the expectation value of the required

transmit power might be unlimited.

Joint Transmission (JT) works in principle the same way as LCI but with the important dif-

ference that the transmit power is held constant. Therefore all channel variations which require

more than the maximum transmit power translate directly into SNR loss at the Rx. Therefore

the BER shows the same diversity order as known from the ZF-detector at the Rx [BMWT00].

For convenience we will refer to the linear pre-coding as Channel Inversion (CI) throughout the

following paragraphs.

Depending on the number of Tx and Rx antennas, CI is performed at the Tx by partly or fully

inverting the channel before transmission using either the equivalent of the ZF or MMSE solution

known from the Rx detection schemes.

The ZF pre-coding matrix is easily obtained by inverting the channel matrix, while the construction

of the optimum MMSE transmit solution is more involved, since the solution with the minimum

transmit power has to be found. Based on the duality of the up-link and down-link channel

[SB02b, BS02a, Sch02] and also [VT03] showed the equivalence of the MMSE detection solution

and the MMSE transmit filter, which minimize the MSE at the Rx while transmitting with

minimum transmit power.

Now, for the following we will write H† for convenience which can be the ZF or MMSE solution,

depending on knowledge at the Tx about the receiver noise power. We then can formalize the

linear pre-coding according to the following formulas:

Down-link Channel Inversion (nT > mR)

Tx pre-processing: xCI
Down = H†d.
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Reconstructed data at Rx

d′ = HxCI
Down + n = d + n. (4.93)

The signals to transmit (d) are pre-processed by a multiplication with H† denoting the Moore-

Penrose pseudo-inverse of H, thus equalizing the SNR in all transmission channels. In this way

each data signal is fully reconstructed at one Rx antenna and forced-to-zero at all other antennas by

destructive interference thus creating parallel channels at the Rx antennas without post-processing

for signal separation.

Up-link Channel Inversion (nT < mR)

For the case of less transmit than receive antennas the number of streams which can be multiplexed

is limited to nT . Then two principle options exist, first performing channel inversion on a reduced

set of receive antennas or second using the well known SVD approach, but instead of water-filling

we compensate the attenuation on the eigen-channel such that all parallel channels will have the

same SNR. The first case is equivalent to the previously described method, but due to the same

numbers of transmit and receive antennas we have to expect a high increase in transmit power.

The second approach uses the following Tx pre-processing: Tx: xCI
Up = VD−1d.

Reconstructed data at Rx

d′ = UH(HxCI
Up + n) = d + UHn. (4.94)

(The matrices U,D,V are derived from singular value decomposition of H (H = UDVH ). [·]H
means Hermitian Conjugate, [·]−1 means inverse matrix.)

Since the receiver has more antennas than data streams to be detected, post processing is necessary

at the BS. Since U and V are unitary matrices no noise enhancement is observed after the linear

operation in (4.94).

Note, that LCI has the advantage that all channels are equalized to the same link quality which

allows the same rate and coding for all multiplexed streams. If a post-processing is given at the Rx

as in (4.94), then a channel inversion with x = VD−1d is simple towards common rate and coding

but already at reasonable SNR an independent rate control and uniform power allocation per

data stream is the SVD-MIMO solution which achieves the optimum sum rate. Therefore channel

inversion makes only sense when the signal processing is constrained to the transmitter/BS alone.

Qualitatively, CI performs like data transmission over a channel with additive white Gaussian

noise (AWGN). To illustrate the BER performance we compare standard Rx detection schemes

(ZF, VBLAST)with CI. The simulation assumes perfect CSI and a Rayleigh block fading channel.

Fig. 4.11 shows the simulated BER of MIMO systems with perfect CSI and BPSK modulation

which use Zero-Forcing (ZF), VBLAST or CI. Taking into consideration that for CI the average

transmit power depends on the number of Tx and Rx antennas [JWHJ01] the abscissa of Fig. 4.11

shows the average transmitted sum power per noise power at one receive antenna to give a fair

comparison of the transmission techniques. CI performs better than ZF with BERs of less than

10−3 but performs worse than VBLAST until a BER of 10−5 or below where the curves cross each
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Figure 4.11: Up-link BER performance for two MIMO systems using ZF (no symbols), VBLAST
without error propagation (◦) and CI (⋆) with 8 Tx antennas and 9 (–) / 16 (- -) Rx
antennas, perfect CSI is assumed.

other. If the antenna diversity is sufficiently high (8 Tx / 16 Rx), all techniques perform quite

similar (dashed curves).

Adaptive Channel Inversion

A very important aspect towards high data throughput and reliable low BERs is the adaptation of

the transmission scheme to the actual channel realization thus avoiding data loss when transmitting

over bad channels. This strategy requires at least little channel knowledge at the Tx or some CSI

which has to be fed back from the receiver but fortunately with LCI CSI is already available at

the Tx. The concept of channel adaptive transmission can be combined with adaptive modulation

and coding to maximize throughput at a desired BER with a common modulation and coding

scheme on all parallel links.

Towards Channel Inversion channel aware means step-wise switching off multiplexed channels until

a reasonable condition number of the reduced channel matrix is reached or the transmit power

enhancement is limited to a value which guarantees a satisfactory SNR at the Rxs. Following this

strategy we can provide a reliable linearly pre-coded transmission which can meet required BER

targets simply by reducing the number of simultaneously multiplexed links according to the rank

of the actual channel.

We call a transmission scheme using Channel Inversion with a variable number of multiplexed

data streams Adaptive Channel Inversion (ACI).

A more sophisticated version of this strategy is realized when ACI is combined with adaptive

bit-loading. Since the whole transmission channel is pre-equalized at the Tx all data streams

will experience the same SINR at the Rx. Therefore bit-loading offers the possibility of trading

BER performance and sum rate against each other. Example: with four antennas a maximum of
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4 data streams can be multiplexed. Assuming that for a certain channel realization 4 × QPSK

modulation (8 bit/s/Hz) can meet a certain maximum BER target. If the reduction to three

parallel links allows a 16-QAM modulation then this mode can be chosen to increase the sum

throughput by 50%.

4.2.4 Non-linear Pre-coding

The equivalent to non-linear decoding strategies e.g. VBLAST can be found in non-linear pre-

coding. Due to a calculation of a pre-coded transmission signal over several iterations the re-

quired transmit power enhancement can be reduced significantly especially if the channel is mal-

conditioned [HSB03].

The effect of transmit power enhancement which appears when pre-coding is applied is the equiv-

alent of the noise power enhancement known from decoding at the receiver side[HPJ+02].

Since all signals to be sent are perfectly known to the transmitter the effect of error propagation

known from iterative decoding structures at the Rx has no equivalent counter-part. Therefore, a

pre-coding with a DFE3 similar structure can achieve a BER performance which can be reached

at the Rx only with a genie-aided DFE structure[Win04]. Furthermore, if full Tx pre-coding is

applied like for a down-link scenario with decentralized Rxs [FWLH02], then the pre-coding order

can be chosen freely because it is not visible to the Rxs.

The technique of non-linear pre-coding can be of great benefit e.g. for the down-link transmission

towards distributed MTs if applied correctly. The potential of transmit power reduction when

using non-linear pre-coding instead of linear pre-coding like ACI will be discussed in more detail

in section 4.2.5.

The Principle of Costa Precoding

A basic result from information theory is Costa’s ”writing on dirty paper result” [Cos83], which

can be informally summarized as follows:

When transmitting over a channel, any interference which is known a priori to the transmitter

does not affect the channel capacity. That means, by appropriate coding, transmission at a rate

equal to the capacity of the channel without this interference is possible.

An illustration of the setup used for the prove this is shown in Fig. 4.12 with the original denomi-

++Encoder Decoder
W

S

X

Z

Y W

Figure 4.12: Block diagram of Costa’s ”Writing on Dirty Paper” Pre-coding.

nations of [Cos83], where the variable W is the message to be transmitted, S is interference known

to the encoder, X is the channel input (which has to satisfy some power constraint), Z additive

3Decision Feedback Equalizer

64



4.2 Pre-coding Strategies

noise, and Y the channel output used by the decoder to produce the estimate Ŵ . Using a random

coding argument it is shown that the capacity of this channel, i.e., the maximum mutual infor-

mation I(W ; Ŵ ), is equal to that of the AWGN channel with the same noise power (equivalently,

the setup in Fig. 4.12 with S = 0).

We can easily extend this to a scheme with multiple interfering sub-channels: Considering these

sub-channels in some arbitrary order, the encoding for the first sub-channel has to be performed

accepting full interference from the remaining channels, since at this point the interference is un-

known. For the second sub-channel, however, if the transmitter is able to calculate the interference

from the first sub-channel, ”Costa pre-coding” of the data is possible such that the interference

from the first sub-channel is taken into account. Generally, in the k-th sub-channel considered,

Costa pre-coding is possible such that interference from sub-channels 1 to k− 1 is ineffective. (In-

terference from the k-th sub-channel back to the previous sub-channels decreases the reliability, or

equivalently the capacity, of those channels, and has to be accounted for by additional measures).

We can apply this result to the present setting of a MIMO channel (cf. also [SB02a]): If the

pre-coding operation contains a Costa pre-coder, no interference can be observed from lower

number sub-channels into higher number sub-channels. This is the same as saying that we can

simply disregard the part of the channel matrix that is below the main diagonal. (In fact, results

concerning the capacity of (MIMO) broadcast channels [WJ01, VJG03, JG04, VT03, CS03] have

shown that Costa pre-coding is an essential ingredient to achieve the capacity of these channels).

In section 4.1.3 we have already made use of the fact that it is possible to subtract already decided

signals before a next decision is made (successive interference cancellation). For a realization

often the channel matrix H is transformed into a lower triangular matrix with an orthonormal

operation (see QLD in sec. 5.2.3). In this way interference from lower-index sub-channels into

higher-index sub-channels is completely eliminated, and together with Costa pre-coding adjusted

to this modified transmission channel matrix, effectively only a diagonal matrix remains for the

transmission.

It turns out that a simple scheme for Costa pre-coding works analog to the feed-back part of

a decision-feedback-equalizer, used here at the transmitter side and with the nonlinear decision

device replaced by a modulo-operation. This scheme is also known as Tomlinson-Harashima

precoding (THP) [Tom71, HM72], and the link between THP and Costa pre-coding was first

explored in [ESZ00].

As a prominent example of non-linear pre-coding for the multiple antenna broadcast channel with

decentralized receivers THP will be visited in more detail in the following subsection.

Tomlinson-Harashima Pre-coding

Tomlinson-Harashima Pre-coding can be seen as the simplest implementation of Costa pre-coding

possible; in [Egg01] this scheme is called ”scalar Costa scheme” and was applied to digital wa-

termarking of arbitrary host signals, e.g., images. In the digital transmission context, however,

this has long been known as Tomlinson-Harashima pre-coding [Tom71, HM72] for inter-symbol-

interference channels [Fis02]. Tomlinson-Harashima pre-coding for MIMO Channels was proposed

in [FWLH02], and independently in [GC02] under the name ”vectored transmission” for DSL sys-

tems; similar ideas can also be found in [CS03].
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4 Multi-Antenna Transmission Schemes

To give a intuitive introduction on how the pre-coding actually works we will assume a complex-

valued transmission model of the type

ỹ = Bx + ñ, (4.95)

where B is the effective transmission matrix, i.e., a transformed version of H such that the

interference which Costa pre-coding, and equivalently THP taken into account is minimized (i.e.,

the upper triangular part of the matrix B is minimized). We additionally assume that the effective

transmission matrix is scaled such that it has unit diagonal, i.e., bkk = 1, k = 1, ..., K. For example,

using the QL decomposition (sec. 5.2.3) of H into

H = FH · S (4.96)

with ( F orthonormal, S lower triangular) we can force the upper triangular part to be zero,

obtaining B = diag(1/s11, ..., 1/sKK)S. We then obtain ỹ = Bx+ñ as the equivalent transmission

channel.

d1
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H

+
y1

x
d

S2P

n1

+

nk

yk

..

.

BS THP -precoding

MTMR

Mt1

+

-

IB -

Mod G F

dMR
ˆ

Figure 4.13: Block diagram of THP for decentralized receivers. d is the parallelized data vector,
x the sent transmission signal, G is the diagonal power allocation or gain matrix and
F is the beam-forming or feed forward matrix, B− I is the feed-back matrix.

Now, the pre-coding procedure analogous to Fig. 4.13 works the following.

Assuming a 4-user example, the pre-coding will be started with the signal for user 1. Then the

following symbol-by-symbol pre-coding is used:

For user 1 we simply send the plain message d1. For user 2 we do not send the plain message d2,

instead we will send the message d2 subtracted by the interference which user 2 will be exposed

from the message sent to user 1. User 3 will have a prepared message which consists of the desired

signal d3 subtracted by the interference from the signals which are sent to user 1 and user 2 and

so on. Since the symbols to be sent are perfectly known to the Tx error propagation is not an

issue here, at least with perfect CSI. Note, that the signals to be send are not straight forward

x1, ..., x4 instead we will use x̃1, ..., x̃4 which are the equivalent representatives in the corresponding

Voronoi-cell which have the minimum transmit energy.

x1 = d1 (4.97)

x2 = d2 −B21x1 (4.98)

x3 = d3 −B31x1 −B32x̃2 (4.99)

x4 = d4 −B41x1 −B42x̃2 −B43x̃3 (4.100)
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This so-called lattice reduction technique is represented by a modulo operation (Mod) in the block

diagram of Fig. 4.13. The darker region in Fig. 4.14 shows the Voronoi-region when 16-QAM

Figure 4.14: Exemplary pre-coding with THP using modulo operations to map signals back into
the basic lattice (Voronoi region).

constellations are used for transmission. We clearly see that the pre-coding with a subtraction

of several values can produce symbols to be sent which are outside the lattice basic cell (dark),

therefore a modulo operation maps those symbols back into the basic cell. This operation is in

principle what makes Costa’s pre-coding of causal known interference possible without enhancing

the transmit power. Note, that when using a modulo operation a slight increase in average transmit

power is experienced since now basically the whole Voronoi region becomes a valid transmit signal

space, therefore

E[x̃H x̃] ≥ E[dHd]. (4.101)

The example in Fig. 4.15 shows 2000 random non-linear pre-coded signals vectors (16-QAM) for

4 users / Rx-antennas. The belonging exemplary channel H is given by

H =









−0.813 + 0.302i 1.735− 1.602i −0.937 + 0.865i 0.417 + 0.181i

−0.817− 0.452i −0.047 + 0.289i −0.481 + 0.229i 1.720 + 0.351i

0.346− 0.770i −0.177− 0.421i 1.278− 0.659i −0.847− 0.659i

−0.125 + 0.788i −0.101− 0.049i 0.435 + 0.797i −0.267 + 0.471i









,

which results in the equivalent effective channel B

B =









0 0 0 0

0.056− 0.145i 0 0 0

0.645 + 0.034i −0.751− 0.110i 0 0

−0.260 + 0.108i 0.187− 0.036i −0.290 + 0.438i 0









used for the pre-coding.

The next step is a signal scaling by the gain matrix G and a multiplication with the beam-forming

matrix F, before the signals are jointly transmitted from the Tx antennas. In the reality of an

application the scaling with G will be performed at the Rx side to avoid an increase in transmit
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Figure 4.15: Pre-coded signals with THP using modulo operations for a 4 data stream example
for a fixed channel. The pre-coded signals are all limited to the basic lattice (Voronoi
region).

power which will cause clipping by the Tx amplifiers. But, the principle remains unchanged.

Furthermore the modulo operation at the Tx has to be cancelled by another modulo operation at

the Rx. Then the received signals are ready for detection, free of cross channel interference due

to the pre-coding.

In principle, now all non-linear decoding techniques as ZF-VBLAST or MMSE-VBLAST can

find their counterpart as pre-coding technique as well. In [Win04] it was shown that MMSE-

Tomlinson-Harashima Pre-coding with VBLAST ordering gives a superior performance compared

to the standard THP which is equivalent to a ZF pre-coding. The VBLAST ordering is a close to

optimum pre-coding order as observed by [HSB03, Win04, Joh04]. A further performance increase

can be obtained by so-called inflated lattice techniques [Win04] which we mention only for the

sake of completeness.

4.2.5 Transmit Power Reduction Strategies

Transmit power reduction is of eminent importance whenever pre-coding techniques are used.

Since this is mainly an option for a down-link scenario from the BS to the MTs, where the BS

has sufficient signal processing power and CSI while several MTs can be supported simultaneously

by spatial multiplexing. This scenario is often denoted as a multi-user down-link or braodcast

scenario with decentralized receivers, implying that the MTs are not able to perform any joint

signal processing.

Multi-User Down-link Strategies

We consider a down-link transmission system with a BS using nT transmit antennas and mR MTs

with one receive antenna each. To have a fair comparison between all schemes we limit ourselves
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4.2 Pre-coding Strategies

to the case of (nT ≥ mR). It has to be noted that the fully decorrelating schemes of LCI, JT, RKI

and THP can only support a maximum number of MTs which equals min(nT , mR) while JCBF

is not limited this way because of its non-fully decorrelating approach.

The channel is assumed to be perfectly known at the BS only. Each of the MTs will be supplied

with an independent data stream and the average signal-to-noise-plus-interference-ratio require-

ments (SINR) are assumed to be the same for all MTs.

The complex valued transmission equation reads

y = Hx + n (4.102)

where yǫCmR is the receive signal vector at the Rx antennas, HǫCmR×nT is the channel matrix

which is assumed to be a flat block fading channel, xǫCnT is the pre-coded and transmitted data

vector dǫCmR and nǫCmR is the independently distributed additive white Gaussian noise at the

Rx with the same variance σ2
N for all MTs. The transmitted signal vector x is given by
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x1

.

.

.

xnT



 =
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 (4.103)

where G is a diagonal power allocation matrix to weigh each data stream individually and the

columns of BF are the unitary beam-forming vectors of each data stream. Therefore if G and

BF are once calculated for the different down-link transmission schemes we are interested in

trace(G) which gives the required sum transmit power for a given channel realization and SINR

requirements.

d1
ˆ

H

+
y1

xd
S2P G

n1

BF

+

nMR

dMR
ˆ

yMR

..

.

BS pre processing

MTMR

MT1

Figure 4.16: Block diagram of joint Tx pre-processing for all data streams. d is the parallelized
data vector, x the sent transmission signal, G is the diagonal power allocation matrix
and BF is the beam-forming matrix.

The transmission block to illustrate the principle of all investigated down-link transmission scheme

is shown in Fig. 4.16. Therefore, in the following we will keep this decomposition of the transmit

preprocessing and discuss the structure of G and BF.

In the following we will give a comparison of several pre-coding strategies towards the transmit

power enhancement. To have a fair comparison between all schemes we limit ourselves to nT > mR

otherwise the power enhancement factor (PEF) might not be limited.
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We define the following measure as Power Enhancement Factor(PEF):

PEF =
E[xHx]

E[dHd]
(4.104)

where x is the transmitted symbol vector and E[xHx] the expectation of the transmit power. d

is the data symbol vector where di corresponds to the message to be sent to the i-th MT.

Linear Channel Inversion (LCI) A linear down-link strategy is LCI [JHJvH01, IHRF04] as intro-

duced in section 4.2.3. Here all pre-coding is done with a one-step pre-distortion of the expected

known transmission channel H. Without knowledge about the actual noise level at the Rx an-

tennas the solution with minimum Tx power is the Moore-Penrose-pseudo-inverse x = H† · d.

Therefore no separate power allocation and beam-forming is performed

BF ·G = H†. (4.105)

d̂ = y = Hx + n = HH†d + n = d + n (4.106)

The new over all channel in (4.106) behaves like fully decorrelated parallel AWGN channels with

the same signal power at all Rx.

The transmission is done in a way that the signal power at the desired receive antenna is one and at

all other antennas spatial nulls have to be placed. This spacial nulling is very power consumptive

if the channel is bad conditioned 4. Therefore LCI may encounter feasibility problems in many

macro cellular scenarios with a large difference in distance between the MTs and the BS or a high

Rician factor. For more details see the discussion on limited transmit dynamics in section 4.3.2.

Besides the actual noise level at the Rx and the given SINR requirements, the necessary transmit

power is determined by the power enhancement factor PEFLCI which describes the amount of

additional transmit power which is necessary when compared to parallel AWGN transmission.

PEFLCI =

rank(H)
∑

i=1

1

λ2
i

= trace(D−2) (4.107)

PEFLCI has to be computed, in general. λi are the singular values (SVs) of H obtained by

singular value decomposition (SVD). Especially, small SVs lead to an increase in the required

transmit power.

For the special case of a pure Rayleigh channel the average of PEFLCI can be given as closed

form solution [JWHJ01]

4A bad conditioned channel is close to singular, then the ratio between highest and lowest singular value
λmax(H)/λmin(H) ≫ 1. Theoretically, best condition is given for λmax(H) = λmin(H) and therefore the
least power is required for down-link transmission.
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Rayleigh: PEFLCI = E





rank(H)
∑

i=1

1

λ2
i



 =
mR

nT −mR
(4.108)

This expression is defined only for nT > mR otherwise the average power is infinite.

Ranked Known Interference (RKI) and Tomlinson Harashima Pre-coding (THP) The recently

proposed non-linear pre-coding scheme of Ranked Known Interference (RKI) [CS01] is reminiscent

of Tomlinson-Harashima Pre-coding (THP) for decentralized receivers [FWLH02]. Both are more

sophisticated schemes which base on iterative cancellation of non-causally known interference at

the Tx à la Costa [Cos83]. The required transmit power is reduced because less spatial nulls have

to be placed than with LCI.

RKI and THP have the following two important differences: 1) as the block length goes to infinity,

the shaping loss can be made arbitrarily small by choosing a sequence of optimal lattice quantizers,

and 2) the modulo-loss can be made arbitrarily small by optimizing the lattice inflation factor.

With standard THP always a pre-coding and shaping-loss is apparent while it can be eliminated

for the standard RKI as shown in [CS01]. For this paper we assume perfect conditions (no pre-

coding & shaping-loss) therefore RKI and THP will result in the same PEFTHP/RKI . A modified

version of RKI which was shown to be optimal in [CS01] for the case nT ≥ mR is equivalent to

the JCBF scheme, proposed by [SB02a].

RKI and THP both base on a QL-type decomposition of the transmission channel

H = F · S (4.109)

where F is a unitary beam-forming matrix and S is a lower triangular matrix. In Fig. 4.13 S

is represented by G and the iterative loop with B − I. The modulo operation satisfies that

the expected interference can be subtracted without an increase of the transmission power. Let

G = (diag S)−1, then the power enhancement factor is given by

PEFTHP/RKI = trace(G2). (4.110)

The transmission is also like parallel AWGN channels with the same signal power at the MTs. In

general, the following holds

trace(G2) ≤ trace(D−2). (4.111)

Since we have no analytical expression for the expectation of trace(G2) we have to simulate

PEFTHP/RKI .

For convenience in comparing the linear and non-linear pre-coding we define the ratio
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PG
RKI/THP
LCI =

PEFLCI

PEFRKI/THP
(4.112)

which reads as power reduction gain of RKI/THP over LCI which is the duality equivalent of the

sensitivity gain at the Rx (how much less power is needed for perfect decision feedback equalization

(DFE) (without error propagation) compared to zero-forcing at the Rx.

It has to be noted that trace(G2) is a function of the actual channel H and the pre-coding order

at the transmitter.

Joint Costa Beam-forming (JCBF) A more general approach which is not confined to nT ≥ mR

is the JCBF algorithm [SB02a]. Here, the solution is found by solving a given SINR optimization

task. The signal received at the i-th mobile terminal is given by

yi = hiui
√

pisi +

mR∑

k=1,k 6=i

hiuk
√

pksk + ni, ∀i (4.113)

where ui is the i-th column of the unitary beam-forming matrix BF and pi the belonging transmit

power for signal si when E[sis
H
i ] = 1. hi is the i-th row of the down-link transmission channel H

from the nT antennas at the BS to the mR mobiles. The first part in (4.113) is the actually desired

signal for user i while the rest consists of the co-channel interference and the user specific receiver

noise ni. We use the notation U = [u1, ...,umR
] and p = [p1, ..., pmR

]T . Finally, σ2
i = E[n2

i ]

denotes the user specific noise power. Defining Ri = hH
i hi, the instantaneous SINR seen by user

i becomes

SINRDL
i (U, p) =

piu
H
i Riui

mR∑

k=1
k 6=i

pkuH
k Riuk + σ2

i

, ∀i. (4.114)

Assuming an encoder order 1...mR, the interference transmitted from the i-th user to the user

k > i is known, thus it can be pre-subtracted at the transmitter prior to submission. This can be

done by quantization-based pre-coding schemes, which have been proposed, e.g. in [WJ01, ESZ00].

Without increasing transmit power the pre-coded SINR of the i-th user becomes

SINRDL,coded
i (U,p) =

piu
H
i Riui

mR∑

k=i+1

pkuH
k Riuk + σ2

i

, ∀i. (4.115)

Now, the task is to find U and p which satisfy γi ≤ SINRi, ∀i with γi denoting the target SINR

of user i.

The algorithm exploits the duality between the multi-user broadcast channel (BC) and the multi-
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user medium access channel (MAC)[BS02a]. The more complex down-link problem is solved by

solving the belonging ”virtual” uplink problem instead. The algorithm is initialized with the

target SINRs γi for each MT and therefrom it calculates the optimal power allocation p and the

beam-forming matrix U to meet the above requirements. To be conform with the general notation

used in Fig. 4.16 the general power allocation matrix G is given by diag(G) = p and the unitary

beam-forming matrix BF = U.

The JCBF algorithm finds the best MMSE solution therefore it is not restricted to nT ≥ mR.

In [SB02a] it was proven that the JCBF solution is the solution with the minimum power and

therefore it is optimal regarding power efficiency.

The RKI solution which was shown to be optimal for nT ≥ mR is asymptotically identical with

the solution of the optimal JCBF algorithm for SINR→ ∞ except for the signs of the real and

imaginary values of the beam-forming vectors in BF .

If we assume SINR requirement which are relaxed (0 dB or less) which may be realistic for CDMA

systems, then we observe differing solutions. A full decorrelation is not aimed with JCBF therefore

it may achieve a considerable power reduction compared to the fully decorrelating algorithms of

RKI and THP especially for bad conditioned channels

As we have seen already for RKI/THP the power enhancement factor PEFJCBF also depends on

the actual channel H and the pre-coding order.

System Modell for the Numerical Simulations A good case scenario is assumed to be e.g.

a Rayleigh channel which could represent an indoor environment without a line of sight (LOS).

The Rayleigh channel is modelled by H with identically and independently distributed random

complex entries with zero mean and unit variance.

A bad case scenario might be found in a rural environment with little or no multi-path propagation

and only a few local scatterers close to the mobiles. The rural area scenario used in the following

is based on a geometrical model with a λ/2-array at the BS (120◦ aperture) and the MTs are

distributed as follows: 1/3 of the users at a distance of 500 m ±10%, 1/3 at a distance of 5000 m

±10% and the rest is distributed randomly in between. All MTs are surrounded by scatterers

while the BS is without scatterers nearby (e.g. a scenario with the BS positioned on an aerial

mast on top of a hill).

For comparison of the three down-link transmission schemes we distinguish between three scenar-

ios. Scenario I: no limits are put onto the angular distribution of the users within the sector seen

by the BS. This might produce a close to singular channel matrix when two users are situated

inline seen from the BS. Scenario II: we limit the worst case by allowing no users to be active

which have an angular separation less than 2 deg seen from the BS. In scenario III we restrict

∆φ >5 deg. Since LCI and RKI/THP are fully decorrelating schemes bad conditioned channels

would result in a high increase in transmit power. Therefore, in field applications users which

cause the channel to be bad conditioned could be separated by time, frequency or code instead of

spatial multiplexing.

An exemplary outdoor scenario II is depicted in Fig. 4.17 with 15 MTs and 16 Tx antennas at

the BS. The minimum angular separation as seen from the BS is more than 2 deg.
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Figure 4.17: Exemplary setup of 15 mobiles in an outdoor scenario with no multi-pathes from
the environment. The base station has a linear array of 16 Tx antennas and the
sector is 120 deg. See magnification of users vicinity with 8 local scatterers randomly
positioned around each mobile within 30 m radius.

Simulation Results

To compare the linear pre-coding of LCI with the more sophisticated non-linear pre-coding schemes

of RKI/THP and JCBF we do Monte Carlo simulations with random channels according to the

Rayleigh and rural area scenario. We normalize H that trace(HHH) = nT ·mR. The statistics

over the needed sum Tx power is then taken and the average PEF is compared. Without loss of

generality we set all SINR requirements to be identical, nT ≥ mR and the noise at all MTs is set

to one.

Stream Ordering Remember the QL-type decomposition of H = F · S with S being a lower

triangular matrix. When the channel matrix is permuted in its columns then the resulting power

enhancement PEF = trace(G2) with G = (diag(S))−1 is depending on the actual permutation

since the values on diag(G) are changing. To have a fair comparison of the pre-coding schemes

we apply the same stream ordering.

From [VWFin] we know that the VBLAST algorithm finds the permutation PV BLAST where the

lowest entry in diag(S) will be maximized.

PV BLAST = argmax min{|s11|2, ..., |smR,mR
|2} (4.116)

Simulations gave rise to assume that the VBLAST sorting is a close to optimum ordering [WVF02]

even if it not finds the optimal permutation

Popt = argmax
∑

{|s11|2, ..., |smR,mR
|2} (4.117)

which achieves the lowest sum transmit power. Independently, this result towards the suboptimum

ordering of the VBLAST algorithm was also found by [Joh04]. Therefore the VBLAST ordering

will be used for all simulations.

Fig. 4.18 and Fig. 4.19 show the PEFs for the pre-coding techniques LCI/JT, RKI/THP and

JCBF. For the good case (Rayleigh channel, Fig. 4.18 ) the non-linear pre-coding schemes need
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Figure 4.18: Power enhancement factor PEF for LCI, RKI/THP and JCBF compared to parallel
AWGN channels for the good case of a Rayleigh channel. nT = mR + 1, SINR =
0 dB at each mobile

significant less transmit power with rising nT . If nT −mR > 1 and rising then the advantage of

non-linear pre-coding decreases because PEFLCI decreases itself. Therefore, we can outline that

for the Rayleigh channel (e.g. indoor scenario without LOS) the gain of non-linear pre-coding is

maximum when nT −mR is minimum. The dual result is known when changing from a linear to

a non-linear detector with ZF, then the maximum SNR gain is achieved when nT = mR.

In a rural area scenario (Fig. 4.19) standard RKI and THP need much less Tx power than LCI/JT

due to the Costa pre-coding. This power advantage can rise up to several orders of magnitude

depending on the channel conditions (see scenario I and II), while LCI/JT seems not feasible here.

As said before, the probability of channel singularity decreases with a sufficient surplus of transmit

antennas in the Rayleigh channel, this does not hold here, especially in the outdoor scenario I and

II where the channel condition is mainly determined by angular distribution of the users instead

of the no of Tx antennas. Therefore the use of more transmit antennas is not a profitable option

here.

All three scenarios clearly show that the JCBF algorithm (△) performs best. It can benefit from

its SINR optimization with the MMSE criterion and requires therefore the smallest Tx power.

If the channel is well conditioned, e.g. the users are well distinguishable regarding their angular

distribution (scenario III, ∆φij >5 deg) then the difference between RKI/THP and JCBF is quite

small.

We expected from theory that for high SINR requirements the performance and the individual

solutions of RKI/THP and the JCBF algorithm must converge. From our simulations we can

confirm that the calculated power allocation matrices are identical and the beam-formers for each

user in BF are also identical except the signs of the real and the imaginary part. The reason

is seen in the JCBF algorithm itself, which uses only the power of the signals, interferences and

noise , therefore the signs of the beam-formers are not relevant.
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Figure 4.19: Power enhancement factor PEF for LCI, RKI/THP and JCBF compared to parallel
AWGN channels for the bad case of rural scenarios. Scenario I: no limits on the an-
gular distribution of the users, ∆φif ≥ 0 deg; Scenario II: ∆φif > 2 deg; Scenario III:
∆φif > 5 deg - note different dB-scale at the ordinates. nT = mR + 1, SINR = 0 dB
at each mobile

Fig. 4.20 shows the transmit power gain of JCBF against RKI/THP for the example of nT =

10; mR = 9 plotted over the required SINR at the MTs. In the left part of Fig. 4.20 we see

that the gain vanishes for SINR → ∞ because the solutions of RKI/THP and JCBF converge

asymptotically. On the right part of Fig. 4.20 we see the convergence already at approx. 30 dB.

This is due to the the fact that channel singularity is very unlikely for these scenarios and therefore

the MMSE solution of JCBF can’t gain much in the high SINR region.
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Figure 4.20: Power reduction gain of optimal JCBF pre-coding against RKI/THP pre-coding for
various SINR requirements at the MTs (left: rural scenarios I and II, right: rural
scenario III and Rayleigh channel). nT =10, mR=9

4.3 Performance Degradation

4.3.1 Imperfect Channel Estimation

One very important issue for the achievable performance of a real MIMO transmission system is

the available accuracy of the channel knowledge which is needed at the Tx, Rx or at both sides of

the link. Many transmission schemes require accurate channel information e.g. about the degrees

of freedom of the channel or the achievable SINR at the receiver. If those information is affected

by estimation errors, then the performance of the transmission scheme can be severely degraded.

Therefore, the reliability of the achieved channel estimates is of great importance for real world

applications and has therefore to be acquired in an appropriate way.

In the following we focus on the single user MIMO case and investigate how received signals dis-

torted by receiver noise affect the estimation of the channel rank, the singular values and resulting

from this the predicted channel capacity. Furthermore we show how the BER performance with

fixed modulation is degraded by imperfect CSI.

We will start with the affect on the Rx detection with the example of ZF. In the second part

we give a more detailed discussion on the BER performance degradation with erroneous linear

transmit pre-processing due to imperfect channel knowledge at the transmitter.

We assume a channel measurement based on the correlation of orthogonal pilot sequences to

identify each transmit antenna. Suitable sequences might be Hadamard- or Goldsequences as

used for the real-time transmission experiments in chapter 5. For the following let us assume a

correlation based measurement with sequences of length L in a separate time slot before data

transmission.
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Distribution of the Singular Values:

Using the orthogonal pilot sequences the estimate of the channel matrix is given by [HJJ+01a]

Ĥ = H + σerr ·N with σerr =

√
nT

L · SNR
. (4.118)

The channel matrix H and the noise like matrix N are of mR × nT shape each and with i.i.d.

complex Gaussian entries, L: sequence length in symbols, SNR: average SNR at one receive

antenna.

Let A = H ·HH be the covariance matrix of the channel matrix H and let channel estimation

errors cause an estimate of H of

Ĥ = H + ∆H (4.119)

then we estimate the perturbation of the covariance matrix A′ in first order as

A′ = (H + ∆H) · (H + ∆H)H (4.120)

A′ = H ·HH + ∆H ·∆HH

The shift of the SVs of H is then determined by ∆ A = ∆H · ∆HH depending on the origin

and structure of ∆H. If ∆H is a statistically uncorrelated additive error for each hij it can be

written as ∆H = σerr ·N as we introduced above in (4.118).

Then the expectation of the perturbed SVs λ̂i is given by

E

[

λ̂2
i

]

= E
[
λ2

i

]
· (1 + σ2

err) (4.121)

Equation (4.121) shows that the average received signal power which is

trace(H2) =

min(nT ,mR)
∑

i=1

λ̂2
i (4.122)

is overestimated if the system suffers from noteworthy channel estimation errors represented by

σerr. This means a required average SNR at the Rx is not given or adaptive transmission schemes

may suffer degradation because more parallel channels are used than there are actually available.

Another very important issue is that the matrices U and V obtained from SVD in (3.9) also suffer

from the channel estimation errors in a way that the projection of the input signal vector onto the

parallel sub-channels at the Tx and the decorrelation from those sub-channels at the Rx does not

match correctly, therefore co-channel interference occurs, which decreases the actual SINR and the

BER performance. Therefore, if a SVD-MIMO based transmission is realized, appropriate channel

estimation has to be acquired. Furthermore, in case the pre-coding and decoding matrices are

calculated at the Tx and the Rx separately based on independent CSI then ordered SVD can cause

a change in eigenvectors due to the independent disturbance of the SVs, which was discussed by

[LGF02, TLF03]. A successful concept of mitigating those effects is proposed in section 6.2.2

together with the experimental results of measurements with a SVD-MIMO scheme.
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4.3 Performance Degradation

A different approach was proposed by [QUA04]. Here, the transmit pre-coding is performed for

the data and the pilot sequences with a unitary matrix V which might be out-dated or erroneous.

The Rx is equalizing the actual composed channel realization H ·V with an MMSE detector at

the Rx to combat the inter-channel-interference due to the imperfect pre-coding. So, the CSI at

the Rx has to be reasonably well. This quite straight forward concept is discussed for the 802.11n

standard for WLANs.

Capacity and Channel Estimation Errors

If we focus on the effect of the channel estimation errors on the average capacity we can conclude

directly from the distribution of the disturbed SVs given in (4.121).
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Figure 4.21: Average capacity in case of channel estimation errors caused by a correlation based
channel measurement in an i.i.d. Rayleigh channel.

Fig. 4.21 shows that at low SNR where σerr is high, the average capacity will be estimated much

higher than it is actually available by the real channel. This can be explained by the fact that

the channel estimation errors add artificially produced uncorrelated matrix entries which improve

apparently the average capacity. This effect can be reduced significantly by the use of longer pilot

sequences for the channel estimation.

For a given SNR of more than 10 dB the effect of channel estimation errors caused by the corre-

lation based channel measurement becomes negligible for the contemplated MIMO system with

8 Tx and 12 Rx antennas.

Bit Error Rates and Channel Estimation Errors

For BER simulations we assumed perfect CSI and ZF at the Rx like in (3.51). The degradation

of the BER performance in Fig. 4.22 is then mainly caused by the imperfect data de-correlation

at the Rx. This co-channel interference equals a lower SNR so the BER curves are expected to be
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4 Multi-Antenna Transmission Schemes

shifted. In [HJJ+01a] it was shown that under the assumption of uncorrelated data streams this

co-channel interference equals additional noise at the Rx and the data estimate after imperfect

de-correlation can be written as

x′ = x + H†
(

n +

√
nT

L
· ñ
)

. (4.123)
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Figure 4.22: BER performance for a 8x12 MIMO system with channel estimation errors caused by
a correlation based channel measurement with a varying length of the pilot sequence
(BPSK modulated).

The impact of the channel estimation error is similar to additional noise ñ at the receiver which

has the same statistical properties like n but the genuine Rx noise and the noise-like co-channel

interference ñ are not correlated. The worst case of a correlation based channel knowledge is

when the pilot sequence L = nT . This produces a shift of the BER curve of 3 dB as to be seen in

Fig. 4.22.

The effect of channel estimation errors on MIMO systems exploiting CSI at the Tx is investigated

in the following paragraph where channel inversion [HPJ+02] at the Tx is assumed. As expected

the degradation effect is much higher with imperfect pre-procession at the Tx (see Fig. 4.23) than

we find in Fig. 4.22 with ZF at the Rx.

In [Joh04] it was shown that with perfect CSI ZF/MMSE pre-coding at the Tx and ZF/MMSE de-

tection at the Rx perform more or less the same with a slight BER performance advantage for

the Tx pre-processing. With imperfect CSI which has to be assumed for any real transmission

system this performance equality is easily lost when insufficient effort is put into a good channel

measurement, e.g. longer pilot sequences may help.
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4.3 Performance Degradation

Bit Error Rates and Channel Estimation Errors for Linear Pre-coding

If H is the channel matrix for the up-link (nT < mR) then we expect a correlation measurement

based channel estimation error like in (4.118) with

∆H = σerr ·N with σerr =

√
nT

L · SNR
(4.124)

Based on this channel estimation we perform CI in the down-link (the transmission channel is now

the transposed channel HT ). The estimate of the transmitted data symbols can then be written

as:

x′ = HT x̃ + n with: x̃ = (HT + ∆HT )†x (4.125)

Using linear Taylor expansion for the estimated transmit matrix we obtain the following expression

for the Down-link CI

x′ = x + n + σerrN
T (HT )†x. (4.126)

It can be shown that the expectation values of the two following expressions are equal (for a

sufficient number of antennas).

E
[
NT (HT )†x

]
= E

[
H†Nx

]
(4.127)

Using (4.127) we can give an analytical expression for the data estimate at the Rx

x′ = x + n + σerrH
†Nx. (4.128)

The last term of (4.128) is cross-talk which is similar to additional noise that is enhanced by H†

x′ = x + n + H†ñ (4.129)

with ñ: being something which behaves like additional noise but which is independent on noise n

caused by the Rx.

This means that for a pilot sequence of the length L = nT (worst case) and for high SNR (when

the last term is the dominating error term) CI performs with an identical slope like ZF. With

a sufficient long training sequence (L > 32 for the 10x8 example) CI performs better than ZF

but for high SNR there is always a bend in the curve for the BER because of the term H†ñ in

(4.129) which still depends on the antenna diversity gain. At high SNR the second term n can

be neglected and the slope of the curve is dominated by the mR − nT + 1-branch diversity of
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Figure 4.23: Down-link-CI, MIMO 10x8, BPSK, length of sequence L variable.

the MIMO antenna configuration (see Fig. 4.23). The curve for perfect CSI is shifted against

the AWGN curve because of the fact that more average Tx power is needed given by the factor
mR

nT −mR
= 4 (see (4.108)) [JWHJ01].
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Figure 4.24: Sensitivity against channel estimation errors for a BER performance of 10−5 (BPSK)
using ZF, VBLAST and CI, variable sequence length L.

The sensitivity against channel estimation errors for various transmission schemes (ZF, VBLAST,

Down-link-CI, Up-link-CI) is compared in Fig. 4.24. To be consistent we plotted the average

transmitted sum power per noise at one Rx antenna needed to obtain a BER of 10−5 over the

length of the training sequence. It is found that for a 12x8 antenna configuration we need a training
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4.3 Performance Degradation

sequence with L > 16 to achieve the same performance like ZF with perfect CSI (see dotted line).

Up-link-CI and down-link-CI show the same BER performance in front of the decision unit (when

the receive antenna gain is already exploited). Since CI is based on CSI at the Tx in general

a better channel estimation is required than with ZF or VBLAST. Given this and a reasonable

amount of antenna diversity, CI shows a good BER performance with all advantages of its simple

linear algebraic structure.

4.3.2 Limited Transmitter Dynamics

The limitation of transmit power either due to government regulations or in most cases due to a

limited dynamical range of the transmit amplifiers is a very important issue for all transmission

schemes using pre-coding. If the transmit signal exceeds the linear dynamic range of the amplifier,

then non-linear distortions of phase and amplitude of the signal are observed. In the following we

discuss the problem of a limited dynamic range under the simplified assumption of a amplitude

clipping to a maximum value without any phase distortion. In reality the situation is more

complex and there are already proposals on how pre-coding can be made feasible in the non-linear

range of amplifiers and I/Q-modulators [GOdMV04]. Nevertheless, the principle of performance

degradation due to a limited transmitter dynamics can be seen exemplarily with linear channel

inversion or ZF-Tx pre-coding.

Channel Inversion (CI) requires antenna diversity, otherwise the transmitted power is not limited.

This is easily understood when the expectation value of the term x = H†d is discussed. If the

expectation value of the symbols of each data stream E[d2
i ] = 1 and nT > mR (down-link-CI) then

the expectation value of the transmitted power is

E
[
xHx

]
= E

[
dHH†HH†d

]
=

m∑

i=1

1

λ2
i

‖di‖2 (4.130)

E

[
m∑

i=1

1

λ2
i

]

=
1

nT −mR
⇒ E

[
xHx

]
=

mR

nT −mR
(4.131)

with λ2
i being the Eigenvalues of H. This result can be easily checked by simulations for various

antenna number configurations. It is a very important relation which was also studied by [KSS99]

and [TH99] and its general validity could be shown by [JWHJ01] for the case of mR and nT

going to infinity with mR

nT
= const using results from [SB95]. If mR = nT then the average

transmit power in (4.131) goes to infinity. In [JHJvH02] it was shown that (4.131) is valid for any

positive integer number mR, nT with nT 6= mR . Practically this means that CI works only with

a reasonable amount of transmit antenna diversity. The additional antennas reduce the necessary

dynamic range (DR) of the transmitted power, which we define as the peak to average Tx power

per transmit antenna. A small DR is favorable with regard to amplifier requirements and to peak

power. If the input power at the amplifier exceeds a certain level, amplitude clipping and phase

distortions are observed.

Fig. 4.25 shows the simulated pdf of the transmitted power from one Tx antenna if CI is used.

The black curve represents the emitted power distribution for a MIMO system with 12 Tx and
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Figure 4.25: PDF of the transmitted power per Tx antenna for MIMO systems using Down-link-CI
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Figure 4.26: Power clipping for MIMO using Up-link-CI (16-QAM, L=128), various sets of dynamic range (DR)
and antenna diversity

8 Rx antennas, while the red curve is a system with 10 antennas on each side. It is obvious that

the integral above the power clipping line which is also depicted in Fig. 4.25 is significantly smaller

when more Tx antennas are used.

Fig. 4.26 illustrates how clipping at the Tx causes error floors depending on antenna diversity

and on the DR of the amplifier. The floor can be estimated from the DR and from the power
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distribution per antenna like in Fig. 4.25. In general, a dynamic range of Pmax/E [P ] = 20 dB

seems to be sufficient when 12 Tx and 8 Rx antennas are used.

4.3.3 Co-Channel Interference

BER Degradation

In reality, interference with devices operating in the same frequency band like the MIMO system

have to be considered. The received interference power caused by simultaneously transmitted

symbols z is assumed to follow Rayleigh or Rician statistics of the interference channel J

i = J · z. (4.132)

Since the interference channel is not known to the Rx a priori, this means that we have to expect

interference power levels that may vary significantly at different Rx antennas. Furthermore we

assume the interfering signals to be perfectly synchronized in frame and symbol clock with the

data transmission clocks.

The reconstructed symbols can be described as follows

Up-link ZF (nT < mR) d′ = d + H†(n + i) (4.133)

Up-link CI (nT < mR) d′ = d + UH(n + i) (4.134)

Down-link CI (nT > mR) d′ = d + (n + i). (4.135)

For high SNR (n is negligible compared to i ) the performance will be dominated by the signal-

to-interference-ratio (SIR) and an error floor is expected for the BER.

Individual Power Control for Channel Inversion

Since the interference power per Rx antenna may vary significantly and the channel between the

interference sources and the Rx antennas is generally unknown a priori, little can be done by the

Rx. But a simple strategy can help out, at least partially. We propose to measure the relative

noise-plus-interference power per data stream in front of the decision unit at the Rx unit and to

feed back this information to the Tx. With this additional information, the Tx adapts the power

in each data stream at the Tx to equalize the SINR of all data streams.

This Individual Power Control (IPC) requires little data load in the feed-back channel but it allows

reduction of co-channel interference. The best results are reached with up-link-CI (see Fig. 4.27).

Down-link-CI suffers more degradation because no receive diversity is available at the Rx.

Individual Power Control for ZF and VBLAST

Analyzing the effect of IPC for CI, we find that it can be used far more generally.
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Figure 4.27: IPC to combat co-channel interference for a 8x12 MIMO system using up-link CI,
BPSK, two BPSK interference sources. Achievable low BER for SIR > 12dB.

Systems which use e.g. ZF or VBLAST at the Rx can also benefit from this technique. Like for CI

the SINR of all data streams can be equalized. This means for the special case of no interference
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Figure 4.28: Bit Error floors for 8x12 MIMO systems with co-channel interference (data BPSK
modulated, ZF at Rx, interference: BPSK or Gaussian)
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sources IPC can balance the effect of noise enhancement caused by H†n. ZF will benefit directly

from an equalization of the noise enhancement (see dotted line in Fig. 4.28) by redistributing the

transmitted power per data stream. A system using VBLAST can be tuned to specific needs. For

example, if we have a very good SNR, the BER can be reduced by transmitting more power into

the data stream that is first to be detected (lowest noise enhancement). This first detected data

stream dominates the BER at high SNR while all latter detected data streams are nearly free of

errors. Note, that this power allocation must be consistent with the dynamic range of the Txs, as

discussed in sec. 4.3.2.

So the technique of IPC is applicable to all MIMO transmission schemes at little expense with

common modulation and coding on all data streams.

The efficiency of IPC depends on the number of antennas, the sort of interference and the number

of interference sources. Generally, IPC works the better the more parallel data streams are to

be balanced. Another important issue is the distribution of the data streams over several Rx

antennas. A high receive diversity improves the efficiency of IPC.

To study how the performance of IPC depends on the interference symbols we did simulations for

the BER (Fig. 4.28). We used interference sources with a Gaussian symbol alphabet or BPSK

/ M-QAM as it was used for the MIMO data transmission. We assume the interfering symbols

to be perfectly synchronized for the simulation. We find in Fig. 4.28 that one interference source

using a Gaussian alphabet causes an error floor three times higher than one or many interference

sources using BPSK or M-QAM modulation. A sufficient number of Gaussian interferers behave

like an interferer using BPSK or M-QAM. This can be explained by the multiplication of only

one Gaussian distributed symbol stream with the Gaussian distributed entries of the interference

matrix resulting in a 2nd-order Bessel distribution for the received interference power. BPSK or

M-QAM symbols transmitted over the same interference channel have a power distribution at the

Rx which is χ2. The superposition of several (8-10) Gaussian interference signals performs similar

like BPSK or M-QAM interference. This makes clear that only for Gaussian interference the

number of sources is of importance. For interference caused by sources using BPSK or M-QAM

alphabets the average SIR per Rx antenna alone determines the error floor. Then in the simple

case of ZF the error floor can be predicted from the curve without interference. We just look at

the BER of an system free of interference at a SNR of the same value as the SIR (see Fig. 4.28).

Example: We assume a SIR of 10 dB, then the bit error floor with interference from synchronous

M-QAM sources will be at the same level as the BER without any interference and an equivalent

SNR of 10 dB which is approximately 3 · 10−3 with ZF and 8 Tx and 12 Rx antennas.

4.4 Channel Adaptive Bit-loading

4.4.1 Single-user MIMO Bit-Loading

We consider a single user MIMO system with nT transmit antennas and mR receive antennas

(nT ≤ mR).

Full CSI at Tx: If perfect CSI is available at the Tx then transmission of one data stream per

channel sub-space was shown to be optimum in sec. ??. The optimum power allocation to minimize
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the sum MSE from (4.22) has a water-filling-like solution. The data streams are coupled into the

spatially orthogonal sub-channels which results in a bit-loading strategy very similar to OFDM. If

the modulation level and/or the power allocation of one data stream is changed it has no effect on

to the SNR of the other data streams. In this way joint bit-loading and power allocation becomes

quite simple.

The bit-loading strategy (BLS) uses finite modulation alphabets and considers a minimum trans-

mission quality (e.g. maximum BER). The BLS finds then the best match of the available SNRs

per data stream and the finite data symbols. In this way we achieve the highest data throughput

under the given constraints.

1. The BLS starts with the optimum solution for the power allocation from (4.22) and computes

the SNR for every sub-stream. Each of the sub-streams is then given the highest modulation

satisfying the BER constraint.

2. The allocated Tx power per data stream is reduced to achieve just the necessary SNR for

each modulation.

3. Test, if taking one bit/Hz/s from one data stream and giving it to another saves power. If

not, proceed to next step.

4. Sum up the remaining power and give it to the stream which can support one more bit/Hz/s

(a higher modulation scheme) while it needs least from the rest power.

5. Continue from 1. to 4. until no positiv rest power is available after an intended modulation

step.

6. Distribute the remaining power in a way that all channels have the same SNR increase.

No CSI at Tx: If no CSI is available at the Tx then the receive signals of all data streams are

entangled (see (4.29)) and uniform power allocation and the transmission of one data stream per

Tx antenna is optimum. Therefore the adaptation of the transmission strategy reduces to power

and rate allocation per antenna (PARC) which is in principle the same as for a Multi-User SIMO

system described in the next subsection 4.4.2.

The power allocation and the belonging bit-loading vector can be calculated at the Rx and fed back

to the Tx via a low bit-rate feedback channel. Alternatively, the bit-loading could be calculated at

the Tx itself, based on CSI attained from a channel measurement into the opposite direction and

further information about the noise level at the Rx. But then the noise level at the Rx has to be

transmitted to the Tx and the allocated modulation has to signalled to the Rx in an appropriate

way. So in the following we always assume a calculation of the bit-allocation at the Rx or BS.

4.4.2 Multi-user SIMO Bit-Loading

In real world transmission systems we have to do adaptive bit-loading to achieve as much through-

put as possible. Therefore we propose an algorithm for MU SIMO bit-loading that follows mainly

the same strategy like in the single user MIMO case with CSI at the Tx and eigenspace signalling

[HB03] as discussed in the last subsection. Additional effort is needed to obtain the cost and gain

functions for one bit upgrade or downgrade of a data stream, since the reconstructed data streams
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are still entangled due to the MMSE solution. In case of a ZF detector at the BS we can follow

the proposed BLS without iterations for the recalculation of the SINR.

Here, more power put on data stream di directly improves the corresponding SINR at the decision

unit, but all other data streams face a decreasing SINR because of rising cross talk from di. The

final solution can be found only after a few iterations. Remember that in the single-user case

[HB03] this was a single step task because the data streams were transmitted over the separated

eigenvectors of H and cross talk was not apparent.

Nevertheless the crucial point is to find the optimal power allocation to initialize the algorithm

which is not easy if the sum rate functional is not concave in p.

Multi-user SIMO Bit-loading Algorithm

1. Start bit loading with the optimum solution from (4.36) or (4.43).

2. Compute the MSEi / SINRi for each sub-stream i from the actual power allocation p and

load it with the highest modulation satisfying the targeted BER constraint.

3. Find the minimum allocated Tx power per data stream to maintain the above computed bit

allocation.

4. Compute cost and gain function for upgrading or downgrading each data stream by one bit.

5. Sum up the remaining power and give it to the stream which supports one more bit/Hz/s (a

higher modulation) while it needs the least from the rest power. This is done by adjusting

the transmit power allocation for all users.

6. Continue from 2. to 6. until no positiv rest power is available after an intended modulation

step.

7. Step over, if already been here with the same bit allocation. Otherwise test, if taking one

bit/Hz/s from one data stream and giving it to another saves power. Downgrade the most

profitable data stream and proceed to step 2.

8. Distribute the remaining power in a way that all channels have the same SNR increase.

The described algorithm can be used in different ways, bit-loading can be performed with and

w/o SIC and a MMSE or ZF detector.

A practical Bit-loading example

For a 2 user example with (nT = 2, mR = 4, σ2
N = 1) and the channel from (4.50) we perform

bit-loading with and without SIC. The very important aspect of error propagation in bit loading

schemes with SIC was ignored for this example. If this problem is tackled properly, error propaga-

tion can be considered within the required SINR for each modulation level and therefore decreases

the sum rate gain achieved with SIC detection. For our example, we therefore assume error free

cancellation of the first layer. The bit-loading algorithm described in 4.4.2 is initialized either with

the optimum power allocation or all power allocations are conducted by stepwise increasing p1

on the cost of p2. The second strategy which is time consuming and would not be practicable in

real applications was done simply to make sure, that all starting values were used as initialization

for the bit-loading. Otherwise we could get stuck in a local maximum or furthermore we would
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try to support two users from the optimum solution while the achievable sum rate with discrete

bit-loading may be higher if only one user is supported. The resulting maximum sum rate with

and without SIC is depicted in Fig. 4.29.

We can state that the optimum power allocation with and without SIC is well suitable as a

starting point for the bit-loading algorithm at least for the two user case. Then we achieve the

maximum sum rate with discrete bit-loading in most of the cases. This optimum starting point can

be calculated straight forward for SIC while more effort is necessary to calculate the theoretical

optimum power allocation without SIC. In some cases another initial power allocation can achieve

a higher sum rate than with the optimum solution as a starting point (dotted line in right part

of Fig. 4.29). This might be explained by the non equidistant power steps in QAM which means

that the bit-loading algorithm can get stuck with certain QAM levels while it finds a higher sum

rate when the initial QAM symbol distribution is different due to a different starting point. Such

deadlocks might be considered in a more complex bit loading algorithm.

The achieved sum rate with uncoded M-QAM bit-loading is depicted in Fig. 4.29. The SINR

penalty compared to the theoretically achievable sum rate is exactly 5.2 dB which corresponds to

the well known SNR gap for uncoded M-QAM with a BER≤ 10−3.
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Figure 4.29: Theoretical sum capacity (solid lines) with MMSE receiver. Throughput with bit-
loading (uncoded M-QAM with / without SIC) 2 user case, fixed channel, various
sum powers Ptotal The rate is limited due to 10 bits as highest modulation level.

4.4.3 Multi-User Down-link

Bit-loading for multi-user down-link scenarios follow the same principle of bit and power allocation

as the single user or MAC schemes.

First, the optimum or suboptimum power allocation has to be computed. Second, the resulting

SINRs at the MTs can be calculated and be used as input parameter for the bit-loading algorithm.

A further assumption is that the MTs do not suffer significantly from interference caused from
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other cells. In reality this external interference level has to be measured by the MTs and transferred

to the BS to avoid rate overload. If the interference level is known to the BS and the interference

is well behaved than this can be included into the power and rate allocation per user as discussed

in section 4.3.3. A more detailed overview on which parameters are used in particular can be

found in table 6.1.

A special form of adaptive bit-loading with common modulation for all data streams occurs when

adaptive channel inversion is used as investigated in experiments in section 6.3.

4.5 Scheduling

Mobile communication often relies on a cellular structure e.g. GSM, UMTS which means that

several users in a cell are supported by one base station. Since the number of users can be large,

user scheduling becomes mandatory to allocate e.g. frequency and time slots in a reasonable

fashion. This task is usually performed by the base station as the central communication point.

This makes clear that multi user scheduling is a crucial point towards throughput optimization

especially if QoS parameters like service quality, availability, delay are to be met by a service

provider.

Transmission systems using several antennas at the BS and the MTs need a more sophisticated

user scheduling since several users can be supported simultaneously by spatial multiplexing. A

theoretical frame work using cross-layer optimization techniques was studied in e.g. [HBH03,

BW02, BW03] and allows an efficient solution of the challenging optimization task of the multi

user scheduling with multiple antennas.

In the following we will focus on the high speed up link essential to meet the increasing through-

put demands for the so-called ”new services” e.g. multi media messages (MMS) which allow the

transmission of pictures and video streams from MTs over the internet or from MTs to MTs.

A detailed discussion of the theoretical framework, which allows a computational efficient opti-

mization in a cross-layer approach is given in [BW04a, WB04a, BW04c, BW04b]. We will only

revisit a few results from this powerful framework which are relevant to derive the fair scheduling

algorithm applied in the experiments in section 6. For the proofs and further results we refer to

the references given above.

The high speed uplink corresponds in terms of information theory to the multiple-access channel

(MAC). We assume K MTs indexed by numbers k = 1, 2, . . . , K, each equipped with multi-

ple transmit antennas. The BS is assumed to have full channel state information (CSI) and

to utilize the MMSE (minimum mean square error) detector with successive interference cance-

lation (SIC). We concentrate on the scheduling policy originating from a cross-layer optimiza-

tion problem including the physical layer (PHY) and the data link layer (DLL). In the PHY-

layer we denote the vector of instantaneous data rates as R(n) = (R1(n), R2(n), . . . , RK(n))

and group the MIMO channel states in the matrix set H(n) = {H1(n),H2(n), . . . ,HK(n)}.
Similarly, we group the instantaneous transmit covariance matrices in the matrix set Q(n) =

{Q1(n),Q2(n), . . . ,QK(n)}. The K! possible SIC-orders are denoted by permutation symbols

πk = πk(1)← πk(2), . . . ,← πk(K), k = 1, 2, . . . , K!, where πk(1) corresponds to the last decoded

link signal, ... and πk(K) to the first decoded link signal. In the DLL-layer we assume the K
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processes of bit arrivals into the buffers to be Poisson. The arrival rates are grouped in the vector

ρ = (ρ1, ρ2, . . . , ρK) and the numbers of bit arrivals in n-th time slot [(n − 1)T, nT ] are grouped

in the vector a(n) = (a1(n), a2(n), . . . , aK(n)). Similarly, we denote the vector of instantaneous

buffer occupancies (bit-queue lengths) as q(n) = (q1(n), q2(n), . . . , qK(n)).

We associate the scheduling policies with mappings of the form

{H(n),q(n), n} −→ φ({H(n),q(n), n}) = {Q(n), πk(n)} (4.136)

and use also the splitted notation φQ({H(n),q(n), n}) = Q(n)

{H(n),q(n), n} −→ φQ({H(n),q(n), n}) = Q(n) (4.137)

and φπ({H(n),q(n), n}) = πk(n)

{H(n),q(n), n} −→ φπ({H(n),q(n), n}) = πk(n) (4.138)

to access separately the assigned transmit covariance matrices and the SIC-order. The principle of

the policy computation is depicted in Fig. 4.30. With the above policy notion and i.i.d.-property

of the fading processes over time it can be easily shown, that the queue system evolves according

to the Discrete Time Markov Chain (DTMC) and the evolution can be described by

qk(n + 1) = [qk(n)−Rk(φ, H(n))T ]+ + ak(n). (4.139)

The objective of our desired policy is associated with the notion of stability of the queue system

in the uplink. In broad terms, the system is called stable if no queue in the system blows up to

infinity during the system evolution. Stability can be characterized by several different definition,

like e.g. weak stability, strong stability, non-evanescence [WB04b] etc., where a special role is

played by so called observation-based stability notion.

Definition 3 (Observation-Based Stability): The system of K queues is called stable, if for

all k = 1, 2, . . . , K holds

lim
M→∞

gk(M) = 0, (4.140)

with

gk(M) = limsup
t→∞

1

t

∫ t

0

1{qk(τ)≥M} τdτ, (4.141)

and

1{qk(τ)≥M} =







1 qk(τ) ≥M

0 elsewhere.
(4.142)

The above stability notion gives rise to the definition of the stability region.

Definition 4 (Stability Region): The stability region D of the system of K queues is the set of

all arrival rate vectors ρ, such that there exists a policy achieving stability in the observation-based

sense for all ρ lying in the interior of D.
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The scheduling policy achieving the largest stability region is the desired policy in this work. It

can be concluded easily, that such policy leads to the best stability behavior in the intuitive sense.

Moreover, a large stability region is also attractive from the system and operators point of view.

It reduces the risk of buffer overflows5 to the minimum, allowing in this way for well-behaved

system operation and reducing operators utility loss, which results from dropping the service for

overflowed links.

It was shown in [BW02], that the largest achievable stability region in the MAC corresponds to

its ergodic capacity region.

Figure 4.30: The routine of computation of a scheduling policy in the MIMO-MAC.

The corresponding scheduling policy is given by the following Theorem [WB04b].

Theorem 5: The largest stability region in the MIMO-MAC with K links is achieved by the

scheduling policy φ̂ satisfying

φ̂ = arg max
φ∈M

K∑

k=1

qk(n)Rk (φ, H(n)) , (4.143)

for all nǫN.

This result appears not surprising for readers familiar with system control and dynamic system

theory since the principle of weighted sum, as in (4.143), occurs in the context of stability optimal

policies in many fields.

However, without specification of the optimal queue system and channel state dependent SIC-

order the realization of policy from the above theorem results in K!-fold computation of optimal

transmit covariance matrices for every possible SIC-order and a final comparison. Such principle

is not practicable for common user numbers in the cell. The following statement provides more

insights in the realization principle.

Theorem 6: The largest stability region in the MIMO-MAC with K links is achieved by the spatial

scheduling policy φ̂S satisfying

φ̂S
Q = argmax

φQ:φ∈M

K∑

k=1

qk(n)Rk (φQ, H(n)) (4.144)

5The buffers are assumed here to be large. Hence, the overflow is assumed to occur when the queue length
approaches infinity.
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and

qπ(1)(n) ≥ qπ(2)(n) ≥ . . . ,≥ qπ(K)(n) ≥ 0, (4.145)

with π = φS
π for all nǫN.

Using the notion of S-rate region Sπ as special region of rates achievable with fixed SIC-order

π, Theorem 6 is easily interpretable in terms of optimization over rates. Precisely, the stability

optimal instantaneous rate vector solves

maxR∈Sπ(H(n))q
T (n)R(n), (4.146)

with π characterized by (4.145). A geometric view is provided with Fig. 4.31, where an exemplary

instantaneous capacity region and S-rate regions of a two-link MIMO-MAC are plotted. The

Figure 4.31: Exemplary instantaneous capacity region of a 2× 2 sum-power constrained MIMO-
MAC with two links (channel matrices generated randomly from the element wise
uniform distribution with average SINR = 6 dB, SIC orders π1 = 1← 2, π2 = 2← 1).
Three exemplary optimization objectives are modelled by lines with normal vectors
corresponding to queue system states.

optimization objectives are associated with queue system states satisfying (4.145) for two different

SIC-orders and both of them. Given any such q(n), the stability optimal rate vector represents the

point of support at the boundary of the capacity region, which pertains to S-rate region Sπk
(H(n))

if φS
π = πk satisfies (4.145). For the symmetric queue system state both SIC orders are stability

optimal and the associated hyperline supports both S-rate regions. Fig. 4.31 makes plausible,

that the boundary part of any S-rate region Sπk
(H(n)), which is supportable by hyperplanes

satisfying (4.145) with π = πk is convex, whereas the complementary boundary parts are in

general non-convex. Moreover, the independence of channel states in (4.145) shows, that the

geometric ”positions” of convex boundary parts of all S-rate regions do not depend on fading

states.
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4.5.1 Multi-user SIMO MAC - Scheduling

In the special case of MTs with only one single antenna the in general iterative calculation of

the power allocation and transmit covariance matrices per user [E.J04] reduces to a per user

power allocation. Furthermore we know from section 4.1.3 that under the assumption of a MMSE

receiver at the BS, perfect channel knowledge and SIC at the receiver the sum capacity functional

shows a concave behavior. This guarantees for a simple search algorithms to maximize the sum

rate. As stated in (4.43) the maximum sum rate is independent on the detection order used for

SIC. The same is valid for the optimum power allocation belonging to the maximum sum rate.

These two facts have an important consequence: By choosing a certain detection order we can

influence the data rates of the individual users while the sum rate remains unchanged. The

later a user is detected the higher is the individual data rate he receives. This behavior is used

by strategies like [BW03, BW04a, YC03], well known from queueing theory. Simulations about

individual achievable rates versus the position of the user in the detection order are shown in

Fig. 4.32 and Fig. 4.33.

Let’s now try to answer the question of practical relevance of fair scheduling for a cellular mobile

network. We assume sets of K mobile users which are chosen out of L users within one cell; with

L > K and a MMSE receiver with SIC at the BS. Then we find:

• Operators interest: find a user set and a belonging power allocation which assure the highest

sum transmission rate (compare C in Fig. 4.37). More transmitted MBytes in the cell mean

more money to be billed.

• Users interest: small and more or less predictable delays according to certain QoS requirements16(compare

D in Fig. 4.37). Reliability in QoS can help to increase the acceptance of new applications.

• Operators and users interest: QoS means a new range of applications. The higher the QoS

the more money the user might be willing to pay.

With multiple antennas at the BS we have the advantage of spatial multiplexing which means we

have the opportunity of fair scheduling without loosing the maximum rate option. This fact is

of great practical relevance. Imagine all users requested a certain quality of service (QoS) which

very often simply means certain limits to real time delays. Here it becomes clear that an operator

is also interested in delay optimized scheduling.

The last and only task is to find the best active user set, because the belonging optimum power

allocation is easy to compute and the detection order results directly from the queue length of the

users. This more general optimization problem including fair scheduling can be formulated with

the following maximization task [BW03] in analogy to (4.144):

f̂ = argmax
K∑

i=1

qiRi(f,H) (4.147)

where qi are the queue states, Ri are the instantaneous rates, H is the actual SIMO channel

6Remark: A systems like QUALCOM CDMA2000 1ev DO which is more or less a TDD system where only the
user with the best channel is served at one time. This can cause tremendous delays for other users which are
e.g. shadowed or far away from the BS. With Multiuser-SIMO fair scheduling appropriate delays and high
throughput can be obtained at the same time.
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matrix and f a queueing policy. The optimum queueing policy f̂ achieves stability of all queues in

the SIMO-MAC. To find the optimum solution still remains time consuming because of the high

number of possible combinations of all users and their detection orders.

Since an exhausting search to maximize the above equation is not always a practical option we

propose a suboptimum but quite straight forward solution as an applicable compromise.

Scheduling Proposal for K users out of L

Let us consider the following scenario. We assume L users in the cell and the BS can support K

users simultaneously. Furthermore we assume that all users (1...L) in the cell have a known data

queue state qi. Now, data throughput maximization aims to find the set of users which receives

maximum throughput but disregards any queueing states. This may lead to queue instability

when the individual queues grow very unequal.

On the other hand a delay optimum approach would favor a set of users with the longest queue

states. This approach tries to minimize the actual queue length of all users but does not consider

the sum rate.

Having said that we see the need to trade both optimizations against each other. One promising

and quite pragmatic approach is to choose one or two users with the longest queue states and add

those users which maximize the sum rate. The detection order to choose is obvious: the user with

the longest queue is detected last and the user with the shortest queue is detected first like in

(4.145). By choosing this scheduling scheme we can support delay limitation (fairness) and still

have a good rate performance. This suboptimum but easy to compute solution provides little less

sum rate than the sum rate optimum approach while keeping the maximum delay limited. For

further details please compare scheduling policies C,D and E in Fig. 4.37 in section 4.5.2.

A variation of this fair scheduling scheme with a linear MMSE detector was implemented in the

real-time MIMO test-bed and the experiments clearly show the advantage and the applicability

of the fair scheduler (see sec. 6.4 for more details).

4.5.2 Numerical Simulations - Scheduling Examples

Detection Order and Achievable Rates

We assume a cell containing 6 users. The channel for a certain time slot is perfectly known to the

BS with 5 Rx antennas. 5 users can be supported simultaneously. So there are 6 sets consisting

of 5 users each. Each set of users can have 5! = 120 detection order permutations.

We randomly choose a user i which is then held fixed after being selected. Next we choose a

certain permutation of the four remaining users. We are now interested in the following: what

happens to his individual rate if he is detected at a certain position before, between or after the

other four co-users? Fig. 4.32 shows the achievable individual capacity of the elected user i if he

is detected first, second,..., last. We clearly see that the individual rate is higher if a certain user

is detected later within a fixed set of users. Per set there are 4! = 24 possible detection orders of

the 4 co-users and then 5 positions for user i.

Fig. 4.33 shows the same but the achievable rate after bit-loading with M-QAM is done. For
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Figure 4.32: ordered capacities with optimum power allocation. User set: 5 out of 6 users in a
cell. All order permutations are depicted.

the bit-loading we assumed uncoded M-QAM modulation and a BER< 10−3. Compared with

Fig. 4.32 we see a smaller rate due to bit-loading but in principle the rule still holds. If user i is

detected later then his achievable rate with bit-loading is higher . The exceptions from this rule

can be explained by the fact that practical bit-loading can only achieve integer valued rates. This

means that the remaining power goes sometimes to other users or in reverse is given from other

users to user i and user i can load one or two more bits. Therefore the rule is broken sometimes.
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Figure 4.33: ordered rates achievable after bit-loading with optimum power allocation as starting
point. User set: 5 out of 6 users in a cell. All order permutations are depicted.
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Fig. 4.34 shows the sum rate for the scenario. We clearly see that the sum rate is independent on

the detection order and is only a function of the chosen user set. With bit-loading the achievable

sum rate is nearly constant. Some detection orders achieve one bit more or less in sum rate. This

means that in principle, assuming optimal power allocation, the constant sum rate rule still holds

with practical bit-loading.
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Figure 4.34: sum capacities and achievable sum rates after bit-loading with optimum power allo-
cation as starting point. User set: 5 out of 6 users in a cell. All order permutations
are depicted.

Bit-loading with fixed Detection Order - 3 user example

Fig. 4.35 shows the achievable sum rate with bit-loading in a 3 user scenario with fixed detection

order. The sum rate is plotted versus the transmit power for fixed channel (top) and versus 100

random channel realizations with fixed transmit power. The noise power per antenna is held fixed

for both scenarios. The normalized correlation7 between all user channels is > 0.5. With lower

correlation the impact of SIC decreases and bit-loading becomes much easier. The extreme is to

be found when all channel vectors are orthogonal then SIC has no impact and the power allocation

to one user does not influence the SINR of the other users.

To characterize the performance of the bit-loading we start the algorithm first with the easy to

calculate optimum PA (blue bullets) and second with all possible PA within a discrete power steps

size (green bullets). The later technique is simply to guarantee that we find the maximum rate with

bit-loading but it would be totally inapplicable in real time. This methods allows to evaluate the

rate performance of our new proposed bit-loading algorithm compared to the maximum achievable

rate.

The blue bullets in Fig. 4.35-Top show the achievable sum rate when the bit-loading algorithm is

7The correlation of the entangled channel vectors a and b is used here in the sense of the normalized scalar
product. 0 ≤ a

|a|
· b

|b|
≤ 1, where 0 means no correlation or a ⊥ b and 1 means full correlation or a ‖ b.
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started with the optimum power allocation obtained by the sum capacity maximization. In some

cases there exist another PA to start with which achieves one bit more. This is due to the fact

that the power steps between each modulation type are not all equal. Therefore the algorithm

can get stuck when started from a certain side. In average the loss is small as we can see in the

Fig. 4.35-Bottom. Here the transmit and noise power are kept constant and 100 channels are

randomly generated. The solid black line depicts the achievable capacity with optimum PA. The

blue bullets show the achievable rate after bit-loading (optimum PA as starting point). Some

green bullets above the blue ones indicate that sometimes we can load one or two bits more if the

loading algorithm is started with some other initialization. The averaged loss over 100 channels

is 0.1 bits/s/Hz which is below 1% because the average sum throughput is about 11 bits/s/Hz.
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Figure 4.35: top: sum capacity and achievable sum rate for 3 users and fixed channel and SIC
order; transmit power is varied. bottom: sum capacity and achievable sum rate for
3 users, fixed transmit power and SIC order; 100 channel realization with correlation
of all user above 0.5

Optimal Power Allocation for fixed Detection Order - 3 user example

We assume a 3 user scenario with fixed channel and fixed detection order for the bit-loading

algorithm. The noise power at the 3 receivers at the BS is identical and kept constant. The solid

lines in Fig. 4.36 show the relative optimal power allocation versus the transmitted sum power.

We see that one user after the other is switched on. At high SNR (high Tx power) the optimum

solutions tends to uniform power allocation as expected from theory. At very low SNR (low Tx

power) only one user is active - single user range as discussed in [BJ02].

The dotted lines represent the allocated power after bit-loading. The zig-zag is due to the integer

valued rate allocation with practical bit-loading. The remaining power after bit-loading is depicted

in dashed black. For high SNR it is about 10% in average. This value is expected to be smaller

when the number of active users increases.
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Figure 4.36: Optimum power allocation for a set of 3 users, fixed channel and fixed SIC order.
Solid lines relative optimum power allocation to reach highest sum capacity - used
as starting value for bit-loading. Dotted lines relative allocated power for user after
bit-loading. The black dashed line depicts the remaining power after bit-loading.

Comparison of various schedulers with respect to delay and throughput

We assume a set of 5 users in a radio cell. 3 of them can form a set of active users which can be

supported simultaneously by the BS. All user have instantaneous data-packet queues which grow

due to independent Poisson distributed arrival processes and which decrease with the transmitted

bits assigned by bit-loading. This is done over 1000 independent random channels (one channel

per timeslot). The normalized correlation between all channel vectors is > 0.5 otherwise the right

detection order is of less importance.

We compare 5 different scheduling policies (A,...,E) towards capacity and throughput after bit-

loading (left column) and the delays and queueing states (right column) of all users in the cell.

The red line in the left column always represents the sum capacity while the blue line represents

the sum throughput after bit-loading (uncoded M-QAM, BER< 10−3).

A: best user only scheduler (similar to CDMA 2000 1ev DO) Scheduler A supports only

one user. This simply considers the channel vectors of all users in the cell. Users which are

shadowed or far from the BS would experience no connection over a long period of time because

always someone else has a better channel. Since the channels are randomly generated all users

are more or less equally supported over the time of 1000 time slots. The achievable rate is the

smallest compared to all other scheduling schemes because here only receive diversity is exploited

and no multiplexing gain can be achieved. In consequence the queueing states grow constantly

which means this scheduler is not stable, queue-wise seen.

B: 3 of 4 cyclic scheduler Scheduler B supports always 3 users simultaneously. We start with

user set 1,2,3 next comes user set 2,3,4 and so on. This scheduler does not exploit any knowledge

about the actual channel state nor it considers any packet-queues at the user nodes to form a user

set. The instantaneous queueing states are only used to determine the optimum detection order.

Still this is not enough to keep the queueing states similar in length nor to stabilize the queue
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length. The queue buffer fill up to over 200 packets. The sum rate is higher then with scheduler

A due to the multiplexing gain.
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Figure 4.37: Comparison of various scheduling policies regarding maximum sum capacity and
queueing states of the users. A maximum of 3 users out of 5 users in the cell are
supported in one time slot. Schemes: A) best user only (capacity criterion), B: 3 of 4
cyclic scheduler, C: maximum sum rate approach and delay considering SIC ordering,
D: Minimum delay approach, E: User with longest queue plus 2 users which maximize
the sum capacity. Left column: Achievable capacity and rate after bit-loading. Right
column: Queueing states of all 5 users versus channels realizations / time slots.

C: max sum rate scheduler Scheduler C selects always those users which form the user set

with the highest sum rate. The queueing states of the users are not important for this selection.

Only after the user set is chosen this knowledge determines the detection order. As expected the

sum capacity and sum rate after bit-loading are the highest of all schedulers and the queues at all

users keep limited. This is due to the high throughput on the one hand and due to the random

channels on the other hand. Still we see queueing states of one user which remain above 30 bits

over a period of about 50 time slots which is equivalent to a noteworthy delay. If a generic channel

model would be used those delays can increase even more.

D: min delay scheduler Scheduler D selects always those three users which have the longest

queue regardless of the actual user channels. In consequence this works like a delay equalizer, all

queues sizes are kept similar. Because the sum rate is not a parameter to form the user set the

average throughput is to small to keep the system within a stable region. Therefore all queues

grow constantly.

E: new proposed fair scheduler Scheduler E selects always the user which has the longest
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instantaneous queue length. Next those two users are added which achieve the maximum sum

rate together with the first selected user.

We see that the sum rate is slightly lower than that of scheduler C but the queues can be kept

much shorter for all users. Therefore this new fair scheduler outperforms all other schedulers

compared here regarding queue length.

Summarizing the information of this comparing figure we clearly see the necessity of a combined

approach for a fair and stable scheduler. Since an optimization over all possible combinations of

users and their detection order is to exhaustive in time we proposed a quite simple scheduling

policy which was exemplarily presented in form of scheduler E.
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5.1 MIMO Algorithms and Optimization

5.1.1 Basic Algorithmic Strategies for Real-Time Multi-Antenna Systems with high Data

Rates

With the perspective of real-time capable algorithm implementation for very high data rates the

complexity of algorithms often becomes a limiting factor. Therefore it is reasonable to search for

solutions which have a high performance and match the capability of a dedicated hardware.

The hybrid FPGA / DSP architecture of the test-bed gives a high flexibility over algorithms used

for data stream separation at the Tx and/or the Rx, rate and power control. Those algorithms are

run on the DSP while the fixed part (e.g. channel estimation, data separation, Mod/Demod, BER)

is performed by the FPGA. The DSP works fully asynchronous and refreshes e.g. the necessary

MMSE weights and/or the bit-loading vector at the Tx-FPGA within a millisecond or less.

Following this divide and rule strategy we are able to support high data rates in a MIMO trans-

mission and still have the flexibility towards algorithms.

To realize this ambitious approach we implemented the high speed matrix vector multiplications

for the reconstruction of the data streams in VHDL on the FPGA and the DSP performs the

calculation of the required matrices. The complexity which can be implemented in the FPGA

is mainly limited by the number of dedicated multipliers, RAM etc. and particularly by the

maximum clock rate at which the design can be routed within the required delay limits. The more

resources are used from the FPGA (70% or more) the more difficult the place & route procedure

becomes. The limiting factor for high speed signal processing in the FPGA is determined by

the ADC, DAC and FFT/IFFT blocks (e.g. OFDM) which run at the highest clock rates which

is limited to 150-200 MHz in reality (Virtex II Pro 100), which equally limits the usable signal

bandwidth to be used for transmission. This means that for high data rates of several 100 Mbit/s

to 1 Gbit/s or more, higher modulation levels and spatial multiplexing are a necessity for spectrally

efficient transmission.

A recent FPGA implementation of MIMO-OFDM at a clock rate of 100 MHz [JFH+05a] allowed a

reliable low mobility transmission with a gross data rate of 1 Gbit/s with 3 Tx and 5 Rx antennas

using 48 active OFDM carriers and 100 MHz bandwidth at 5.2 GHz.

If the data transfer on the parallel bus between DSP and FPGA is optimized, then the calculation

of the detection matrices itself can become the most time consuming part. The received signals of

the current MIMO-OFDM system with 3 Tx and 5 Rx antennas and 48 carriers, are again treated

as real-valued e.g. due to remaining I/Q-imbalances1. Therefore the DSP calculates 48 MMSE

solutions where each matrix has size 10× 6. If we remember that matrix inversions have roughly

1The I/Q mismatch is below 1 degree with a newly improved RF frontend.
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a complexity ∼ N3 for square matrices it becomes clear that the optimization of DSP code is

crucial. If the number of sub-carriers is high (256 or 1024) we will use DSP clusters which can

work in parallel to perform the calculation task still within the channel coherence time. In many

transmission scenarios the channel has only a a few taps (10 or less), hence bout three times as

many sub-carriers would be sufficient to equalize the channel. But for the sake of spectral efficiency

many more OFDM sub-carriers are normally used which now carry redundant information. This

redundancy can be exploited to reduces the MIMO signal processing significantly. A promising

approach is the calculation of an exact solution (e.g. ZF-pseudo-inverse as proposed by [BB04b])

on (L − 1)(NT − 1) + 1 sub-carriers only and to interpolate the filter solutions in between 2. If

this is done in an appropriate trigonometrical fashion [HMW05] the interpolated filter matrices

can reconstruct the multiplexed data streams with high accuracy. The savings in time for the

calculation of the MMSE solutions have to be traded carefully against the additional effort for the

interpolation.

MIMO transmission schemes require specific algebraic procedures to be performed in order to

pre-code or decode the data appropriately. Some useful algorithms are discussed in the following

paragraphs. Most of them were implemented on the DSP in C language and used for the calculation

of the MIMO-filter matrices in the transmission experiments.

5.1.2 DSP - Architecture and Optimization

One of the initial questions to be asked is: what to use - floating point or fixed point arithmetic?

Fixed point DSPs are offered on the market at much higher clock rates (e.g. 1 GHz) than floating

point DSPs (300 Mhz), so one might say let’s take the faster one. But this is only true if all

calculations are performed in the integer domain and the dynamic range is fixed and well known.

If floating types like float or double are used, the mapping to integer numbers is performed

automatically by the compiler. A simple test showed that e.g. a matrix inversion on a 16-bit fixed-

point TI-DSP (1 GHz) performs slower than the 300 MHz 32-bit floating-point DSP (TI6713) by

a factor of 10. A way out is to optimize the mapping by hand using additional knowledge about

the dynamic range etc. A major drawback of this approach is that hand optimized program

code is hard to read and therefore very error-prone and not very flexible to code changes, not to

mention a lot of overhead may occur when different people are contributing to the same algorithm

library without necessarily knowing all details on dynamic range of the possible input and output

values. Furthermore there are no floating point instructions available when it comes to assembler

programming.

Therefore we chose a floating-point architecture (TI6713) with 225 MHz for the test-bed to have

as much algorithmic flexibility as possible.

[Sch04] investigated several MIMO-algorithms in great detail regarding general C-code and assem-

bler optimization. We will limit ourselves to some principle steps which can help to speed up the

2 L denotes the order of the channel and nT the number of transmit antennas. The classical approach of in-
terpolation of the frequency channel estimates by a transfer into time domain, appropriate windowing and a
back transformation to the required number of sub-carriers in the frequency domain improves the accuracy of
the channel estimation but does not help to reduce the calculation effort at all. Note, that the filter envelopes
of analogue or digital filters which are used for image band suppression have to be measured carefully before
interpolation techniques can be exploited. This is important in particular when more than 80% of the OFDM
sub-carriers are used, which can be done with channel adaptive bit-loading.

104



5.2 Matrix Inversion and Decompositions

programs. The optimization was tailored for a TI6713 floating-point DSP, but if the designated

features of other DSP types are considered properly then the optimization process can be followed

in the same manner.

• load program and data into internal memory

• optimize compiler settings (big impact on performance)

• use only one-dimensional arrays

• use optimized library ’fastrts67x.lib’ for divisions, reciprocals, roots etc.

• avoid divisions if possible

• avoid if-then-else branches

• the length of program loops should be constant (especially inner loops)

• place long loops as inner loops (short loops as outer loops)

• optimize cache

• write assembly code

5.2 Matrix Inversion and Decompositions

Mainly all MIMO pre-coding and reception techniques are based on matrix × vector multipli-

cations either in a linear sense or a non-linear sense which means repeating matrix × vector

operations with decisions in between. The required matrices are mostly obtained by matrix de-

compositions or matrix inversions, so the following paragraphs are dedicated to those very im-

portant algebraic algorithms. Since real-time capability is mandatory for high data rate MIMO

applications, speed and numerical stability are of great importance.

5.2.1 The Inverse of a Matrix and the Pseudo-Inverse

In multiple antenna systems the signals coming from all Tx antennas are superimposed at the Rx

antennas. For the separation of these signals e.g. a linear filter can be used. A simple realization

can be achieved with a zero-forcing (ZF) filter while the minimum mean square error (MMSE) is

more complex but considers the noise from the Rx and outperforms ZF especially in the low SNR

region. Both solutions require one matrix inversion.

This linear equalization at the Rx which corresponds to a multiplication of the receive vector y

with a matrix H† the estimates for the transmitted data read

x̂ = H†y = H†Hx + H†n = x + H†n (5.1)

where the ZF-pseudo-inverse of H if mR 6= nT , mR > nT is

H†
ZF = (HHH)−1HH, (5.2)
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or if we considering the receiver noise, additionally, the belonging MMSE filter reads

H†
MMSE = HH(HHH + σ2

N I)−1 (5.3)

where the noise variance σ2
N is assumed to be the same for all receivers for a more convenient

notation. Note, that in general we have to expect different noise variances for each receiver if e.g.

independent automatic gain controls (AGC) are used. Then we have to use







σ2
1 0 0

0
. . . 0

0 0 σ2
mR







instead of σ2
N I.

H†n denotes the noise enhancement due to the linear filter.

Matrix-Inverse By definition, the inverse of a matrix only exist for matrices with the same

number of rows and columns. Let A be a matrix of size mR× nT with mR = nT . Then we define

A−1 the inverse of matrix A if holds

InT
= AA−1 = A−1A (5.4)

where InT
is the unity matrix of size nT × nT .

Pseudo-Inverse If A is of rectangular shape mR × nT with mR ≥ nT then an inverse is not

defined. Therefore a so-called pseudo-inverse has to be computed instead.

A† = (AHA)−1AH (5.5)

where (AHA)−1 has square shape and standard algorithms for matrix inversion are applicable.

A† then satisfies InT
= A†A similar like in (5.4).

Greville’s Method: One straight forward approach to implement the calculation of the inverse

and/ or pseudo-inverse of a matrix especially if the matrix is not necessarily of quadratic shape

is using Greville’s method (page 48 in [Gan86]). This algorithm provides full flexibility in the

number of Tx and Rx antennas and even some columns or rows can be zero vectors.

While the ZF filter from (5.2) can be calculated directly from H instead inverting HHH, the MMSE

filter from (5.3) requires two extra matrix multiplications and the inversion of (HHH +σ2
N I) which

is of size mR ×mR.

Keeping in mind that the computational effort of multiplications and inversions increases by ∼ N3

with N = max(nT , mR) we choose a dimension reduced formulation of the MMSE.

reduced MMSE: H†
MMSE = (HHH + σ̃2

NI)−1HH , (5.6)

where σ̃2
N is the effective noise power per data stream.
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This ”short form” of the MMSE filter needs about half the computational effort compared to the

classical MMSE solution. For instance, if H has size 4x3 then HHH is of size 3x3 and we need

about 33 = 27 operations while HHH is of size 4x4 and 43 = 64 operations are required for the

multiplication.

Furthermore the range issue of the data is very important in the conjunction with algorithms for

the calculation of the pseudo-inverse, since a calculation of HHH doubles the binary range from

e.g. 12 bits to 24 bits which often can decrease the algorithmic stability. This range extension is

not required when Greville’s method is used, so this may be an algorithm of choice for fixed point

implementation.

Frobenius Decomposition: Another algorithm which can be used is based on the a modification

of the Frobenius formula (page 73 in [Gan86]) where the calculation of a pseudo-inverse can be

performed by the calculation of pseudo-inverses of sub-matrices.

(

A B

C D

)−1

=

(

K−1 −K−1BD−1

−D−1CK−1 D−1 + D−1CK−1BD−1

)

(5.7)

where K = A − BD−1C. If the sub-matrices are regular and of square shape (e.g. A) then

inversion can be performed by calculating the elements of the inverse matrix A−1 directly with

a
(−1)
ik =

Aki

‖A‖ . (5.8)

The implementation of (5.8) is quite straight forward up to a matrix size of 4x4 real values. For

instance if the matrix H is of size 6x6 or 8x8 then a decomposition into 3x3 or 4x4 sub-matrices

is advised, respectively.

Example: An implementation carefully matched to the internal structure of the DSP in our test-

bed (TI6713) has reduced this value down to 10 µs (4Tx x 4Rx, real valued). So, in principle a

MIMO system (2Tx x 2Rx, complex valued) using e.g. 48 carriers actively like in 802.11a/g can

be tracked in a total time of less than a millisecond with a single DSP, which is expected to be

sufficient for indoor and pedestrian applications.

If A is of rectangular shape then we can reformulate the expression according to (5.5) A† =

(AHA)−1AH where (AHA)−1 has square shape and (5.8) can be applied again for the matrix

inversion. Additional matrix multiplications are a small price to pay for the reuse of the very

fast algorithm to compute the inverse of a small square matrix. Note, that it is very important

to keep in mind that rounding errors can cause instability of the algorithm if only 32-bit floating

point numbers are used. This can be mitigated by reasonably scaling of the matrix entries before

calculations or using the double format (64-bit) instead.

Alternatively, all sub-matrices can be pseudo-inverted using Greville’s method like discussed be-

fore.

Gauss-Jordan-Elimination: For the special case of the Inversion of a square matrix with full

rank, which is true for the MMSE solution with non-zero noise in (5.3) and (5.6) there is another
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option to obtain an matrix-inverse. Following the outline of page 36 in [PTVF92] Gauss-Jordan

elimination has the advantage of a high numerical stability, especially when full pivoting is used.

Furthermore the structure of the algorithm allows a very efficient manual optimization of the

C-code.

5.2.2 The Singular Value Decomposition

For the case of perfect CSI at the Tx we know that the transmission into the direction of the

eigenvectors of the channel feeds the data streams perfectly into the spatial sub-channels. A power

allocation per data stream e.g. water-filling can be used to meet certain optimization targets as

discussed in sec.4.2.2. The necessary matrices are calculated with a singular value decomposition

(SVD).

Another very important information about the degree of singularity of the channel H can be

derived from the condition number of the matrix. If only an inversion of a matrix is intended then

SVD solution gives the closest to the null space if the channel matrix is singular or very close to

singular. For a more detailed discussion see [PTVF92, GL96].

The SVD methods are based on a theorem of linear algebra, whose proof is beyond our scope:

Any M ×N matrix H whose number of rows M is greater than or equal to its number of columns

N , can be written as the product of an M ×N column-orthogonal matrix U, an N ×N diagonal

matrix D with positive or zero elements, and the hermitian transpose of an N × N orthogonal

matrix V. The various shapes of these matrices will be made clearer by the following tableau:

H = UDVH (5.9)










H











=











U











·







λ1 0 0

0
. . . 0

0 0 λnT






·




 VH




 (5.10)

The matrices U and V are each unitary in the sense that their columns are orthonormal. The

matrix D has a diagonal structure and holds

trace(D2) = trace(HHH) (5.11)

which represents the transmitted power over the transmission channel. The matrix entries λi in D

are called singular values (SV) and correspond to the transmission quality of each sub-channel,

respectively. They are the relevant input parameters for power and bit-allocation algorithms e.g.

water-filling or SVD-MIMO bit-loading.

We define the condition number of a matrix to be Cond = λmax

λmin
. The ”best” condition number

is therefore 1 meaning all singular values are the same or if Cond =∞ than at least one singular

value is zero and one greater than zero. The size of the condition number gives an indication on

possible rank deficiency due to a close to singular structure of the matrix. One practical option is
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e.g. not to load data on weak sub-channels or decrease the number of parallel transmitted data

streams to avoid overloading a rank deficient channel.

The algorithm used for the implementation on the DSP is an adaptation of the svdcmp algorithm

(page 67 of [PTVF92]) which is in fact based on an algorithm from Golub and Reinsch [WR71].

Performing a full SVD has a complexity of approx. O(22N3) which is about one order of magnitude

higher than a QR-decomposition (QRD) which has complexity of approx. O(2
3N3). A recent

proposal by [HK04] suggested the use of iterative QRD based pre-coding in a TDD system with

assumed reciprocal base band channel. Before emitting the data over the air each side performs a

linear pre-coding using a unitary pre-coding matrix QH obtained from a QRD of the transmission

channel measured from the previous and opposite transmission phase. Following this strategy each

side will measure the composed channel of H ·QH
i at iteration step (i) and then decompose this

new channel with QRD. The authors claim, that the obtained unitary matrices Qi soon converge

to the desired matrices V and U from a full SVD. When convergence is achieved after a few

iterations in a ping pong like manner, tracking of time-variations of the channel performs quite

well. This approach seems promising to reduce the required time to calculate the matrices for

the SVD scheme, significantly, but further investigations have to be made towards imperfect base

band channel reciprocity.

5.2.3 The QR- and QL-Decomposition

As discussed in sec. 4.1.3 non-linear decoding and pre-coding can achieve a higher performance

due to a SNR gain or a transmit power reduction, respectively.

A successive interference cancellation (SIC) detector e.g. VBLAST can be reformulated as a

decision feedback equalizer (DFE) which can be composed from matrices derived from a QR

decomposition (QRD) or QL decomposition (QLD). Whether a QRD or a QLD has to be

chosen depends mainly on the fact if the user 1 or user k out of a number of ordered users

(1, 2...k − 1, k) is to be detected first or last.

QRD decomposes e.g. the channel matrix H into a unitary matrix Q and an upper right triangular

matrix R.

H = Q ·R (5.12)










H











=











Q











·







r11 · · · r1k

0
. . .

...

0 0 rkk







(5.13)

while QLD decomposes H into a unitary matrix Q̃ and a lower left triangular matrix L.
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H = Q̃ · L (5.14)










H











=











Q̃











·







l11 0 0
...

. . . 0

lk1 · · · lkk







(5.15)

The columns of Q and Q̃ or orthonormal.

Example: The construction of the two matrices is algorithmically straight forward. For conve-

niences we denote h1 to be the first column of H. For QRD we start from the left. The first

column in Q is the normalized first column from H. The normalization factor r11 is given by

|h1| = (hH
1 · h1)

1/2 which denotes the norm of h1.

h1 = q1r11 (5.16)

r11 = |h1| (5.17)

Next h2 is projected onto q1 and subtracted from h2. The result obtained from the normalization

is then q2.

h2 − (hH
2 · q1)q1 = q2r22 (5.18)

r12 = hH
2 · q1 (5.19)

r22 = |h2 − (hH
2 · q1)q1| (5.20)

Next we project the third column h3 onto q1 and q2 and normalize the third column in Q.

q3r33 = h3 − (hH
3 · q1)q1 − (hH

3 · q2)q2 (5.21)

r33 = |h3 − (hH
3 · q1)q1 − (hH

3 · q2)q2| (5.22)

r13 = h3 · q1 (5.23)

r23 = h3 · q2 (5.24)

If H has more than 3 columns the procedure has to be continued further on.

Sorted QLD: For many non-linear detection or pre-coding strategies it is mandatory to control

the detection/pre-coding order, properly. Therefore the appropriate ordering, e.g. V-BLAST

ordering, has to be obtained by a sorting algorithm. This can be done in advance of the QLD or

together with the QLD itself. In principle, a calculation of the whole V-BLAST algorithm has

to be performed despite the fact that only the detection order is of interest. Since the classical

V-BLAST detection requires one matrix inversion per decoding step it has a total complexity
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which grows with

∼ nT ·m3
R. (5.25)

A pre-sorting algorithm proposed by [WBR+01] avoids inversions and performs much better than

random or fixed ordering for little numbers of detection layers. The main drawback of this algo-

rithm compared to the optimum ordering is to be seen in the fact that the ordering is calculated

more or less backwards and based on the columns of H instead of a forward calculation based on

the rows of H† as done in the original V-BLAST algorithm. This results in the very undesired

effect that the first layer to be detected is not necessarily the layer which has the best SINR and

therefore error propagation is more likely.

To avoid suboptimum ordering while still exploiting the low complexity of the QLD, a post-sorting

algorithm from [WBKK03] can solve the problem. The degree of sorting of the diagonal entries

in the lower triangular matrix L gives an indication of how far the pre-sorting differs from the

optimum V-BLAST sorting (optimum ordering: the diagonal entries in L appear in ascending

order). If suboptimum sorting is detected the post-sort algorithm rearranges the sorting in the

QLD and guaranties optimum ordering in the end. Since a post-sorting is not always required

and mainly the first layers have to be detected in the right order, the combined pre-sort and

post-sort algorithm is a good alternative to achieve V-BLAST ordering without performing the

whole V-BLAST algorithm.

The entries of (diag(L))−1 represent the noise enhancement for each detection layer with the SIC

detector and can be used directly for the power and bit-loading algorithms.

To complete the calculation of all matrices required for a QLD-based DFE structure we further

have to calculate the weight feed-forward matrix GF and feed-back matrix B− I

GF = (diag(L))−1 ·QH (5.26)

B− I = (diag(L))−1 · L− I (5.27)

For the experiments described in 6.2.2 a sorted QLD algorithm was used including the sorting

routine motivated by the above algorithms from [WBKK03]. It has to be noted that if MMSE-SIC

is to be used the original matrix H has to be expanded by an nT × nT noise weighted identity

matrix and the QLD has to be performed on this expanded matrix H̃ which has size (mR+nT )×nT

with nT = 3 and mR = 4 in the following example:

H̃ =
















h11 h12 h13

h21 h22 h23

h31 h32 h33

h41 h42 h43

σN 0 0

0 σN 0

0 0 σN
















(5.28)

Beside the given examples many more algorithms were optimized, implemented on the test-bed

and evaluated towards numerical stability and speed [Sch04]. Fig. 5.1 gives a short overview

111



5 Real-Time Algorithms

including QR and QL decomposition.

linear

ZF

#transmitter  = #receiver

LU-Decomposition (LUD)

Crout
Doolittle
Gauss-Algorithm

Inverse (I)

Gauss-Jordan (GJ)
LU-D + Forward-and Backsubstitutionecomposition
Gauss-Algorithm. + Backsubstitution

Pseudoinverse (PI)

Moore-Penrose (MP)

+ matrix multiplication. (symmetric) + matrix multiplication
Gauss-Jorden for symmetric. positive definite matrices (GJsym)

Choleski- +Decomposition Forward-and Backsubstitution
+ matrix multiplication. (symmetric) + matrix multiplication

MMSE

#transmitter #receiver£

Pseudoinverse (PI)

Moore-Penrose (MP), see above

#transmitter #receiver£

Greville

with QR-Decomposition (QRD)
Gram-Schmidt-QRD + matrix multiplication (triangular matrix)

SIC

ZF

QR-Decomposition (QRD)

Householder (Ho)

MMSE

non linear

QR- (QRD)Decomposition

Gram-Schmidt (GS)

V-BLAST

ZF

with Pseudoinverse (PI)

Moore-Penrose (MP), see above
with QR- (QRD)Decomposition

Householder-QRD + Inverse ( )triangular matrix

MMSE

with Pseudoinverse (PI)

Moore-Penrose (MP), see above
with QR- (QRD)Decomposition

Gram-Schmidt-QRD + Inverse ( )triangular matrix

MIMO-Detection Schemes

Gram-Schmidt (GS)

Householder (Ho)

Inverse (I)

Figure 5.1: Algorithms and detection schemes implemented on a TI6713 DSP.

5.2.4 Complexity and Performance Analysis

To evaluate and compare algorithms we have to characterize the complexity or the computationally

required effort. Very often the measure is given in flops (floating point operations), where the
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definitions are varying among different authors. Instead we will compare all algorithms by the

amount of required multiplications. Since additions mostly occur in pairs with multiplications we

only have to count the latter.

Reciprocal values (1/X), square roots (
√

X) and reciprocal square roots (1/
√

X) are counted

separately, since their computation needs more cycles on the DSP. In the algorithmic optimization

process the minimization of those operations has a high priority. Unavoidable divisions will always

be replaced by reciprocal values. All algorithms are used on matrices of size m× n and

mn3 + n2| n 1/X, n 1/
√

X (5.29)

denotes an algorithms consisting from mn3 + n2 multiplications (additions), n reciprocal values

and n reciprocal roots. In the table 5.1 [Sch04] the complexity of several algorithms is summarized.

Algorithm Multiplications (Additions) 1/X
√

X 1/
√

X

ZF-I-LUD 1

3
n3 − 1

3
n n

ZF-I-GJ n3 − n n

ZF-PI-Greville 3

2
mn2 + 1

2
mn n

ZF/MMSE-PI-MP 3

2
mn2 + 1

2
n3 + 1

2
mn + 1

2
n2 − n n

MMSE-PI-QRD-GS 3

2
mn2 + 1

3
n3 + 3

2
mn + 7

6
n n

ZF-SIC-QRD-Ho mn2 − 1

3
n3 + mn + 1

3
n n n

ZF-SIC-QRD-GS mn2 + mn n n

MMSE-SIC-QRD-Ho mn2 + n2 + n n n

MMSE-SIC-QRD-GS mn2 + 1

3
n3 + mn + n2 + 2

3
n n n

ZF/MMSE-VBLAST-PI 1

8
n4 + mn2 + 5

12
n3 + mn − 1

8
n2 − 5

12
n 1

2
n2 + 1

2
n

ZF-VBLAST-QRD-Ho 3mn2 − 5

6
n3 + 3mn + n2 − 1

6
n n 3n 3n

MMSE-VBLAST-QRD-GS 2mn2 + 3

2
n3 + 2mn + 3n2 + 3

2
n n n 2n

MMSE-VBLAST-QRD opt. 3

2
mn2 + n3 + 1

2
mn + 7

2
n2 − 1

2
n 2n 2n 2n

Table 5.1: Complexity of some basic MIMO algorithms, depending on the number of n Tx and m
Rx antennas

Fig. 5.2 illustrates a complexity comparison of typical MIMO algorithms based on real multiplica-

tions. It is clearly to be seen that complex calculations 3 reduce the complexity significantly but

can only be exploited when the I/Q-imbalance is negligible. On the other hand, real valued SIC

detection offers exploitable performance gains even without I/Q-imbalance as shown in [FW03].

In graph(3) we can see that the classical V-BLAST algorithm (green triangles) based on ZF- or

MMSE-matrix inversions, which is in principle an O(N4) algorithm, will be outperformed by the

QRD pre- and post-sort approach (red bullets) proposed by [WBR+01] only for large numbers

of antennas N ≥ 10 when a complex calculation would be performed. For the real valued signal

processing a comparable complexity is achieved at about 6 Tx and Rx antennas. So the computa-

tional gain is more to be seen in a sense that the post-sorting algorithm has to be run only when

the detection order has to be tracked permanently e.g. with fixed rate transmission. In case of

adaptive bit-loading, the detection order is only once computed for every bit-loading procedure

and is then held fixed till the next bit-loading, hence most of the time QRD is sufficient for track-

3when a complex valued channel matrix is transferred to the real-valued equivalent, the number of rows and
columns double. Matrix inversion have complexity of order O(N3) where N is the number of Tx antennas.
The real representation needs 23 ·n3 real multiplications while the complex valued inversion needs N3 complex
multiplications which equals 4 ·N3 real multiplications. Therefore, the total complexity difference is a factor of
2 which can be seen in the graphs of Fig. 5.2.
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Figure 5.2: Computational complexity of several algorithms used for linear (graph 1/2) and non-
linear(graph 3/4) MIMO processing. Left: matrices are real valued, Right: matrices
are complex valued. All multiplications are counted as real valued multiplications.

ing the channel. Therefore the additional expenses for the V-BLAST ordering now and then are

less burden to the time budget.

So by carefully counting all necessary operations a principle performance prediction with e.g.

rising matrix size can be given. A implementation of the algorithms on a DSP might give different

results since every dedicated DSP architecture supports some algorithmic structures better than

others. Therefore the experienced programmer matches the algorithm implementation to the

computational strength of a specific DSP type. Still limitations like a certain number of possible

parallel assembly instructions or a limited cache size can cause that even slight changes in the

code (e.g. loop length or matrix size) can change the number of required cycles significantly.

Fig. 5.3 shows the algorithm speed implemented on the TI6713 DSP for a single carrier system
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Figure 5.3: Measured cycles on TI6713 DSP displayed in µs for linear (left) and non-linear (right)
MIMO algorithms. Top: Single Carrier system; bottom: OFDM system with 48 active
sub-carriers.

(top) and an OFDM system where 48 sub-carriers (bottom) are active, hence 48 channel matrices

have to be inverted. Several linear detection algorithms are depicted in the left figures while

the right figures show the performance of some algorithms used for non-linear detection. All

algorithms are performed with real valued calculation. For a 48 sub-carrier OFDM the run time

exceeds the 1 ms (indoor environment) level already for small numbers of antennas (N < 6) even

for the linear schemes. This shows that further acceleration including assembly programming,

multiple DSP and / or interpolation techniques are inevitable.

The dashed curve in Fig. 5.3 (bottom) marked with stars denotes the measured performance for an

implementation of a Wiener Filter as proposed in [Wie49] to smooth a noise distorted frequency

response with 48 sub-carriers. Here, the measured channel estimates for each matrix element of the
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channel matrix are transformed into the time domain then appropriately windowed followed by a

transformation back into the frequency domain. A similar computational effort is to be expected

when a filter interpolation is desired to save time for the filter calculation for each sub-carrier

separately. Then the calculation of the filter matrices might be dominated by the interpolation

procedure instead of the MIMO algorithm, which can offer gain in computation time especially

when many OFDM sub-carriers are used.

The frequency selective channel matrices H satisfy FIR property and can be interpolated by a

polynomial of degree L, where L is the number of relevant channel taps in the time domain. Recent

work from [BB04b, CBB+05] proposed to exploit this property for the interpolation of MIMO

filters, namely ZF and QR decomposition. In [BB04b] the ZF filter matrices were constructed

using Cramer’s rule and the interpolation was performed on the adjoints and determinants which

also fulfill the FIR property but with higher order (∼ L ·nT ). In [CBB+05] the idea was extended

to QRD which is an essential part for e.g. SIC or sphere decoding. In general, the matrices Q and

R are IIR due to divisions in the construction procedure. Nevertheless, there exist an invertible

mapping to matrices Q̃ and R̃ which satisfy the FIR property ( degree ∼ 2 · L · nT ) and can

therefore be interpolated.

There is still further investigation needed if there are other ways to perform interpolation on

the MIMO filters themselves. In general, those MIMO filters (e.g. ZF, MMSE, QRD) have IIR

property and can not be interpolated by a polynomial of finite degree. Nevertheless, when the

channel is enhanced by e.g. receive antenna diversity (channel hardening) the bandwidth in which

singularities occur is in general distrbuted over several sub-carriers. When the system is using

adaptive bit-loading we only need knowledge about the sub-carriers which have noise enhancement

above a certain threshold and which then are not used for transmission. Therefore, we don’t need

a proper detection filter for those sub-carriers, thus filter interpolation has not to be correct at

those tones. It would be of great practical value to know how to choose a suitable sample grid to

prevent overseeing filter singularities.

The black square in the left figures depicts the performance which was achieved with an exemplary

assembly code optimization for 2 Tx and 2 Rx antennas (4 × 4 matrix real valued). This mea-

surement together with an assembly design for an 8 × 8 real-valued matrix were used to predict

the assembler performance for some MIMO algorithms. The estimated run-times (in µs) for an

OFDM system with 48 sub-carriers are collected in table 5.2 from [Sch04].

no of antennas nT ×mR

2 × 2 3 × 3 4 × 4 5 × 5 6 × 6 7 × 7 8 × 8

ZF-I-LUD 25 48 86 140 220 330 460
ZF-I-GJ 36 88 180 330 550 840 1200
ZF-PI-Gr 49 130 270 490 820 1300 1900
MMSE-PI-MP 90 160 350 640 1100 1700 2500
MMSE-PI-QRD-GS 66 170 360 660 1100 1700 2400

ZF-SIC-QRD-Ho 55 110 190 310 480 710 1000
MMSE-SIC-QRD-GS 53 130 270 490 800 1200 1800

ZF/MMSE-VBLAST-PI 86 240 540 1000 1800 3000 4700
ZF-VBLAST-QRD-Ho 170 350 620 1000 1600 2300 3300
MMSE-VBLAST-QRD-GS 140 310 600 1000 1600 2500 3500

Table 5.2: Assembler program run-time (prediction) in µs for some detection schemes (real valued)
for a MIMO-OFDM system with 48 active sub-carriers

116



5.2 Matrix Inversion and Decompositions

Assuming an OFDM frame length of 2 ms which is adapted to a nomadic indoor environment

with small and medium sized office rooms we define 1 ms to be the critical computational time

which should not be exceeded to guarantee that the next frame can be detected with a new filter

based on the channel estimation in the actual frame. We can expect that for quadratic antenna

configurations ZF filters with up to 8×8 antennas and MMSE- pseudo inverses up to 5×5 antenna

configuration can be calculated with an optimized assembler implementation in one DSP. Non-

linear detection seems to be feasible with up to 6 × 6 antennas without optimum ordering. If,

additionally a V-BLAST ordering is required for every filter, then the matrix size is limited to a

4× 4 antenna configuration.

MIMO-OFDM configurations with higher antenna numbers can be supported with one TI6713

DSP only when the channel coherence time is much longer (quasi static scenarios) or alternatively

a DSP cluster must be used to partition the calculation effort sub-carrier-wise and work in parallel.

5.2.5 A Practical Bit-loading Algorithm

Channel adaptive bit-loading is a key element to achieve a reliable data throughput when CSI

is available. Since, in general bit-allocation information has to be fed back to the transmitter,

which costs time in itself, we need an appropriate bit-loading algorithm which calculates the bit-

allocation at low computational cost. This can be ideally done when certain values e.g. H† from

the channel tracking can be reused for the calculation of the bit-allocation, especially if many

carriers have to be loaded with data as e.g. for a MIMO-OFDM system. In accordance with the

approach from 4.4 we calculate the optimum power allocation for the maximum sum throughput.

Except for the case of fully decorrelating schemes like SVD, ZF or ZF-SIC the achievable SINRs

of the parallel data streams are entangled and the optimization algorithm may require several

iterations to achieve the optimum power allocation. Those additional iterations can be traded

against computation time, if needed.

For the following bit-loading algorithms we assume a rate control per antenna or per user/data

stream rate with an individual power constraint per antenna which can be motivated by the

limitation of the transmit amplifier at each antenna. We distinguish between simple bit-loading

without power control and bit-loading with power control. When the latter is used optimum or

close to optimum power allocation is calculated before the bit-allocation is performed.

Power allocation: The calculation of an optimum power allocation for the initialization of the

bit-loading algorithm as proposed in 4.1.2 results in a uniform power allocation (UPA) for the

high SNR region which perfectly fits with the individual power constraints induced by the limited

amplifier power per Tx antenna. This can be motivated by the fact that at high SNR the optimum

power allocation even with water-filling is UPA. Furthermore we derived in 4.1.5 that with SIC

detection and individual power constraint the sum rate is always maximized by transmitted with

the maximum individual power of each user.
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Bit-loading for linear detection and pre-coding

For the case of a linear ZF or MMSE detector / pre-coding the achievable SNR or SINR after

the MIMO-detector is given by the rows of the pseudo-inverse H†. A comparison with look-up

tables gives the number of bits which can be transmitted with this antenna under a desired BER

constraint.

If one or more channels are found to be allocated with zero bits, then stepwise data streams /

Tx antennas will be switched off (for simplicity in a practical implementation we choose the row

of H† with biggest norm) and a reduced H† has to be calculated.

We proceed until all remaining data streams are loaded with at least one bit each.

Bit-loading with eigenvector signalling (SVD-MIMO) means the specific loading data streams

instead off Tx antennas. The loading parameter is given by the inverse of the eigenvalues of H

and additional power weights from a water-filling solution.

The obtained bit-loading vector is transmitted to the Tx via a feed-back link.

A recent implementation of channel adaptive bit-loading per antenna and per OFDM sub-carrier

in a Gigabit-Test-bed allowed additional power redistribution among the OFDM tones always

keeping in mind a reasonable power back-off for the OFDM crest-factor to prevent transmit signal

degradation. Furthermore it was found that in combination with adaptive bit-loading more tones

can be loaded with data. In practice, virtual tones at the band edges (20 % of the OFDM tones

e.g. in standard 802.11) are in general not be used for data transmission which helps to reduce

out-of-band interference and relax the pulse-shaping requirements. With channel adaptive bit-

loading these tone can also be used for data transmission and the lower SINR due to e.g. analog

filter characteristics is considered automatically in the modulation scheme.

Bit-loading for non-linear detection and pre-coding

We assume the detection or pre-coding order to be held fixed or to be calculated with the V-BLAST

algorithm.

The expected noise enhancement or SINR value for each layer is given by the entries in (diag(L))−1

which are already available from the QLD. A comparison with the same look-up tables used with

the MMSE detector gives the number of bits which can be transmitted with this antenna under a

desired BER constraint.

If one or more channels are found to be allocated with zero bits, then stepwise channels will be

switched off (we choose the column of H which has no bit allocation and is detection earlier than

the other streams ), then a reduced QLD has to be calculated.

We proceed until all remaining data streams are loaded with at least one bit each.

The obtained bit-loading vector is again transmitted to the Tx via a feed-back link.

Channel measurements in static and dynamic MIMO channels [JPN+02] showed that the channel

has to be tracked within a time span of the order of the inverse doppler spread while the bit-

loading can happen on a much slower time scale e.g. every 100 ms seemed to be sufficient in

indoor scenarios. This is due to the fact that the movement of antennas themselves or of close and
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dominant reflectors nearby cause mainly phase variations which are compensated by the channel

tracking, while the rank of the channel and the SINR of each channel remain almost unchanged.

A new bit-allocation requires a change in the SINR of a channel of some dBs, remembering that the

difference between two QAM modulations steps is about 6 dB. Considering these facts, bit-loading

can be performed on a much slower time scale than the channel tracking.

The finally implemented bit-loading algorithm for the transmission experiments roughly works as

follows.

1. Calculate the the DFE-matrices / pseudo-inverse corresponding to the channel matrix H.

2. Calculate the noise enhancement per data stream

SIC:PN
i = 1/l2ii obtained from QL-decomposition of H

MMSE:PN
i = h†

ih
†H
i ) (h†

i is the i-th row of H†

SVD: PN
i = D−2

ii obtained from SVD of H

ACI/JT: Pi = α2 given by scaling for 12 bit ADC.

3. For all streams do:

Find maxPN
i (maximum noise enhancement).

Decide if PN
i is below a certain ”On-Level”

if NO: switch off modulation and cancel belonging column from H proceed to 1.)

if NO and ACI/JT: find maximum row norm in H† and cancel belonging column from H

proceed to 1.)

if YES: allocate BPSK and proceed to next PAM-level if P N
i <”On-Level”/4 → 4-PAM,

PN
i <”On-Level”/16→ 8-PAM, PN

i <”On-Level”/64→ 16-PAM

4. If all streams have a bit-allocation, transmit bit-loading vector to FPGA and exit.

The parameter ”On-Level” is adjustable to the targeted maximum average BER. With additional

power control the BERs could be controlled more precisely but this was not implemented for these

experiments since a sum power constraint was not investigated. The step size for the modulation

levels is motivated by the fact that e.g. 2-PAM and 4-PAM achieve the same BER at an average

SNR about 6 dB apart. Implementation penalties can be estimated based on BER measurements

and this can be taken into account to fine-tune the actual step size. Those parameters are made

available in a look-up table for certain BER targets.

5.2.6 A new Fair Scheduling Algorithm

The scheduling problem arises if many users (e.g. K) have to be supported exceeding the number

of BS antennas. Since, pure spatial multiplexing can not solve the task a scheduling in space and

time is needed in a single-carrier system 4.

The fair scheduler described in the following has knowledge about the actual channel state (channel

estimator, PHY level) and required QoS e.g. average data rate of each user (DLL). We assume

4In multi-tone transmission schemes like OFDM the multi-user scheduler can be extended to the frequency domain
(OFDM-A). For CDMA systems the code domain offers an additional degree of freedom.
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linear MMSE or SIC decoding or pre-coding. We try to achieve a high sum throughput and a

limited queue length for all users at the same time.

Since, the optimum scheduling policy may require time consuming calculations we proposed and

implemented a very pragmatic approach, which looses little against the optimum solution.

At high SINR we choose k users with the longest queue state (e.g. k = 1 or 2) and add further

mR−k users to form a set of users which will be supported simultaneously by spatial multiplexing.

The mR − k users are chosen to achieve maximum sum rate with the k users chosen first. This

approach considers the longest queues, the sum throughput given by the channel and reduces the

search space significantly.

If SIC detection or non-linear pre-coding is performed the detection / pre-coding order is chosen

according to (4.145) to ensure higher individual rates for users with longer queues.

Given this set of users, bit-loading is performed as described before. When the bit-allocation is

calculated the bit-loading vector is transmitted to the users, including the ”no-transmit” signals

for all users not supported at this frequency in the same time slot.

The scheduling algorithm scales with ∼ (L−k)!
(mR−k)! in general, which means that in reality it is

applicable mainly for a reasonable small number of users exceeding the number of BS antennas.

Here, a pre-selection of users can help to reduce the computational effort. For instance, some users

are allocated to frequency f1 while other users are allocated to frequency f2. Now, the scheduling

tasks can be solved independently and in parallel.
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6.1 The Real-Time MIMO Test-bed

The real-time MIMO test-bed described here was developed in the German HyEff project. The

goal was to show the feasibility of MIMO in real-time on a single carrier link, and to speed-up

the signal processing in this first step beyond the natural limits set by the temporal dispersion

found in typical indoor channels. Various architectures were evaluated therefore and a promising

approach is implemented and fully operational now (see Fig. 6.1). This prototype has been shown

with real-time transmission experiments at the Globecom conference in San Francisco in December

2003.

Figure 6.1: Real-time MIMO test-bed at a presentation at Globecom 2003.

6.1.1 General Concept of the Multi-Antenna Test-bed

To exploit the multiplexing and diversity potential of multi-antenna systems a higher effort of

base band signal processing is a prerequisite. To match those signal processing requirements a

hybrid design was chosen for the test-bed. The main base band signal processing units consist of a

FPGA for very fast matrix vector multiplications and a DSP for a flexible implementation of more

sophisticated algorithms. This base band design concept unites real-time high data rate capability

and a high flexibility regarding the detection and pre-coding algorithms under investigation. The

D/A and A/D converters use duplex mode and are integrated on a special board which is plugged

on to the FPGA board.

The RF frontend uses direct up- and down-conversion (DUC/DDC) and uses a center frequency

of 5.2 GHz for the local oscillator (LO). Further details are given in the following paragraphs.
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6.1.2 Description of the Transmitter and Receiver
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Figure 6.2: Principle of the real-time MIMO test-bed.

Transmitter: In the setup under investigation we use four transmit antennas. The 5.2 GHz radio

hardware has a bandwidth of roughly 100 MHz and it performs direct analog up-conversion using

four I/Q mixers each followed by +20 dBm power amplifier (ZRON-8G, Mini Circuits). The

BB/RF transmit chain is depicted in Fig. 6.3.

ZRON

Figure 6.3: Base band to RF transmitter chain.

Up to four independent complex valued data streams may so be transmitted over the air. The

data generation and the modulation are realized within a Xilinx Virtex 2 FPGA with 8 million

gates. The output signals are DA converted with 12-bit resolution and used to modulate the

carrier. The reason to use FPGAs instead of DSPs is the need to process multiple data streams

in one single unit, particularly at the Rx. The limited number of in- and output ports of current

DSPs may not allow multiple high data rate streams in parallel. Due to the FPGA realization, all

the signal processing must be carefully programmed in VHDL to allow a proper timing control.

The periodically transmitted signal consists of a pre-amble and a data block. Each I and Q branch

of the Tx antennas is tagged with a different 127-bit Gold sequence transmitted in BPSK format

in the preamble. The length of the pilots is intentionally oversized in the experimental system to

get precise channel estimates. The pilots are followed by a pseudo-random data block with 1024

symbols on each stream. The modulation of the data is independently set on each I and Q branch

with up to 16 PAM levels. The modulation is individually controlled via a binary vector, where

the branches may be switched off if needed.

Receiver: The received signals from 5 antennas are directly down-converted using analog I/Q

demodulators and digitized using 12-bit AD converters. The BB/RF transmit chain is depicted

in Fig. 6.4.
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Figure 6.4: RF to Base band receive chain.

The analog design creates a severe I/Q imbalance which has to be taken into account in the entire

system concept. In principle, we treat the complex-valued MIMO base-band system with 4 Txs

and 5 Rxs as a real-valued system having 8 Txs and 10 Rxs. This strategy can be omitted in case

of digital up- and down-conversion.

Alternatively, I/Q imbalance can be compensated at each transmit and receive antenna after a

careful calibration is done. This is of ever greater importance for OFDM schemes due to additional

cross talk between the image frequencies. For the SISO OFDM case [LT04] proposed an automatic

estimation of the IQ-imbalances but this concept is not applicable straight forward for multiple

antennas. Therefore our concept of real valued data separation can be used here as well but now the

symbols on sub-carrier fi have to be reconstructed together with the symbols from sub-carrier −fi

[Yla03] which expands the detector matrix e.g. MMSE filter by a factor of 4. For a MIMO-OFDM

system with 4 Tx and 5 Rx antennas this means a real valued matrix with 2(2nT )×2(2mR) = 320

entries has to be computed and processed in real-time with the received data vector. In case that

the number of multipliers in the FPGA is limited, then an I/Q pre-equalization at the Tx antennas

and an I/Q equalization at the Rx antennas is a reasonable alternative, but careful calibration is

needed in advance. For a small base band signal bandwidth digital up- and down-conversion is

another favorable option.

Figure 6.5: MIMO signal processing at the receiver. The A/D converters are directly connected
to the FPGA hidden behind the A/D boards (left). A DSP (right) is connected to the
FPGA via a parallel bus.

6.1.3 FPGAs - for High Speed Parallel Signal Processing

Channel estimation: In the Rx FPGA (8 Mio. gates), 80 correlation circuits (CC) are imple-

mented using the known training sequences. Since binary pilot sequences are used, the CCs need

no multiplication. The next bit in the sequence may eventually change the sign of the signal to

be accumulated and then the CC switches from addition and subtraction. Additional CCs based
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on unused sequences are used to estimate the noise variance of each receive branch. The new

channel estimates are immediately available after the last bit in the training sequence and stored

in dedicated registers. These registers are read-out by a separate DSP (Texas Instruments 6713)

connected to the FPGA via a parallel bus (24 bit flat ribbon cable). The DSP is used to calculate

the coefficients of e.g. a linear MMSE filter which are then sent back to the dedicated weight

registers in the FPGA via the same link. The read and write operations of the DSP are fully

asynchronous to the transmitted frame structure, enabled by back-up register pages.

MIMO detection : Two linear detection schemes, ZF and MMSE are implemented in the Rx-

FPGA as a matrix-vector multiplication unit to separate the spatially multiplexed data streams.

Note that for a 4 × 5 MIMO system this unit consumes 80 dedicated multipliers, which sets an

upper limit to the numbers of antennas depending on the FPGA size (Virtex II, Virtex II Pro

70/100 etc.). If a matrix × vector multiplication of bigger size has to be performed, then e.g. a

row-wise multiplication of H† · y can help to overcome the limited number of multiplier units.

For non-linear detection like SIC and V-BLAST a decision feed-back equalizer (DFE) structure

was implemented. The feed-forward matrix GF uses the same matrix block as for the linear

equalization and after symbol decision the decided symbols are feed-back by a multiplication

with a triangular feed-back matrix B − I. The DFE design was implemented such that for the

detection of one symbol vector the DFE loop is passed several times until the last element of the

symbol vector is detected. With 8 real valued data streams the maximum symbol rate of this

DFE design is limited to 1 MSymbol per second, due to 25 MHz FPGA system clock. A way out

to support higher symbol rates the DFE detection unit can be run at a higher system clock rate

(100-150 MHz) and the structure can be set up in parallel at the cost of more multiplication units.

The DFE design enabled a fair comparison of several detection schemes by simply loading different

solution into the matrices e.g. for ZF and MMSE the feed-back matrix B− I is loaded with zeros.
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Figure 6.6: Block diagram of DFE structure inside the Rx-FPGA including channel estimation
(correlation unit), MIMO detector (DFE), PAM demodulator and a BER/FER unit.

MIMO pre-coding: Several MIMO transmission schemes like SVD-MIMO or Joint Transmis-

sion / Linear Channel Inversion require spatial pre-coding at the transmitter. The spatial pre-

coding was implemented in the Tx-FPGA after the parallel PAM modulation block with a matrix
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6.1 The Real-Time MIMO Test-bed

multiplication unit similar to that from the Rx but using only 64 dedicated multipliers. The

matrix entries are calculated by the DSP as well and loaded via the 24 wide DSP-FPGA parallel

bus.

Demodulation: The separated streams are demodulated using hard decisions in each I- and Q-

branch. The eye pattern in a single I-branch after multiplication of the receive vector with the

weight matrix is shown in Fig. 6.7. The symbol rate was 5 Mio. symbol vectors per second. The

jitter-like artefact of 40 ns width is caused by unsynchronized DA conversion with a sample rate

of 25 MHz.

The decoupled data streams are shown in the right of Fig. 6.7. The upper two streams were allo-

cated to BPSK and the 3rd and the 4th data stream carry 4-PAM. The belonging I/Q constellation

diagrams are depicted in the middle.

The temporal dispersion in the multi-path indoor channel obviously sets the upper limit to the

maximal symbol rate, which refers to an overall data rate of 40 Mbit/s with QPSK and 120 Mbit/s

with 64-QAM modulation on all four Tx antennas (8 bit/s/Hz and 24 bit/s/Hz). The channel

impulse response can be seen in the spikes of Fig. 6.7 when changing from symbol to symbol.

The signal processing itself could support even higher rates and more complex schemes like e.g.

MIMO-OFDM can be implemented on the reconfigurable signal processing platform as well.

Figure 6.7: Left: Eye pattern after the separation of streams with 3 Tx and 4 Rx (QPSK mod-
ulation on all streams, 30 Mbit/s)). Middle: Complex signal constellations. Right:
Reconstructed streams at the Rx.

Bit Error Measurements are performed automatically on all data streams based on a comparison

of the separated and demodulated signals at the Rx and the data coming from the PRBS-data

generator also programmed inside the Rx-FPGA. The error measurement is performed on bit and

frame level as well. Finally, the DSP reads out the bit and frame error rates (BER and FER,

respectively) and displays them on an external PC monitor.

Synchronization between Tx and Rx was realized by two cables, one for the symbol clock and

one for the frame clock. The synchronization between the two clock signals was roughly adjusted

by comparing the signal edges at an oscilloscope and then fine tuned inside the FPGA with help of

adjustable delays. Since the channel impulse response causes spikes with exponential decay when

changing from symbol to symbol the symbol are sampled at about 70% to 80% of its length. By
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6 Real-Time Transmission Experiments

this adjustment a reliable channel measurement could be achieved up to symbol rates of close to

10 Msymbols/s.

Synchronization will be performed over the air interface in future but was not the central part in

this very basic transmission setup.

6.1.4 DSPs - Exploiting Flexibility

Channel tracking: With respect to higher mobility, it becomes critical in general to track the

MIMO channel sufficiently fast. The most challenging part becomes the weight calculation when

there are a few dozens of carriers and for each of them a weight matrix has to be calculated.

Appropriate algorithms for the implementation on a DSP are discussed in section 5.2.4. If those

weights are available within one or a few milliseconds channel tracking is expected to be fast

enough for indoor and pedestrian applications.

Bit-loading or Rate Control is calculated at the Rx. The DSP calculates the actual possible

PAM constellation based on the expected noise enhancement after the decorrelation. This is

equivalent to the SINR in front of the demodulator. Here, different noise enhancement in I and

Q are caused by I/Q imbalances. Therefore, we control the modulation independently for the

I- and Q-part of each symbol by using PAM instead of M-QAM. This higher channel adaptivity

translates directly into a higher throughput and link reliability.

Feed-back link: Based on the channel estimates, the DSP may calculate the optimal modulation

in each stream. Note, that at the time of the experiments described in this thesis the test-bed was

operating in simplex mode. So the loading vector was sent back to the Tx FPGA via a parallel

bus, thus realizing an ideal feed-back link.

6.1.5 Transmit and Receive Configurations

Thanks to the reconfigurability of the test-bed we can run a wide range of transmission schemes

on the platform, we simply calculate different solutions for the transmit pre-coding or/and the

receive decoding in the DSP and load the matrices to the Tx- and the Rx-FPGA. So, the flexible

algorithmic part is performed by the DSP while the FPGAs simple do always the same straight

forward matrix × vector multiplications with the actually loaded solutions from the DSP.

To bring more transparency into all possible transmit and receive configurations the following table

will help. Tab. 6.1 has to be read in the following way. The first column gives the transmission

scheme under investigation and the belonging up-link (UP) or down-link (DL) scenario where it

can be applied to. The next two columns contain the matrices which are loaded into the Tx- and

the Rx-FPGA. The column modulation contains the modulation levels which are assigned e.g. per

antenna, per data stream etc. The last column contains the parameter for the bit-loading which

is specific for all schemes. This parameter represents the expected noise enhancement or SINR in

front of the decision unit which is used for the bit-allocation. The scaling parameter α used for

the Adaptive Channel Inversion (ACI) is necessary to limit the transmitted signals to the 12-bit

ADC range.
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6.2 Spacial Multiplexing and Antenna Diversity

Transmission- Transmit- Receive- Modulation Bit-loading
Scheme Processing Processing Alphabet Parameter

PARC I ZF / MMSE: H† Mod per Antenna diag(H† · H†T
)

(UL) SIC: GF,B − I 0-/2-/4-/8-/16-PAM (diag(L))−2 (QLD)

SVD-MIMO V UT · D−1 Mod per data stream diag(D−2) (SVD)
(UL/DL) 0-/2-/4-/8-/16-PAM

ACI / JT H†/α α · I same Mod for all α2 from 12-bit-
(DL) active streams DAC scaling

0-/2-/4-/8-PAM

Multi-User- I ZF / MMSE: H† Mod per User diag(H† · H†T
)

Scheduling 0-/2-/4-/8-PAM
(UL)

Table 6.1: Transmit- and Receive Configurations of the Multi-Antenna Test-bed

6.2 Spacial Multiplexing and Antenna Diversity

We remember the definitions of the antenna diversity gain d from (3.45) and spatial multiplexing

gain r from (3.44) and replace SNR→ ∞ with high SNR for practical reasons. In the following

subsections we investigate the achieved antenna diversity read from the measured BERs and the

sum throughput and the spatial multiplexing gain obtained from the experimental data in the

high SNR region.

6.2.1 Measurements on Antenna Diversity

All measurements were done in our lab with the dimensions HxLxW: 3m × 7m × 5m. The Tx

antennas were mounted on a pole about the middle of the room 1m below the ceiling. The Rx

antennas were mounted on a tripod which can be driven along a rail across the room.

The MIMO Antennas used throughout all experiments were self made triple antennas as pro-

posed in [JPN+02] and depicted in Fig. 6.8(left). We used 4 Tx antennas and 4 or 5 Rx antennas

chosen from the 4 antenna triples at the Tx and Rx.

Figure 6.8: Left: close-up of MIMO Triple antenna for 5.2 GHz used in the experiments, right:
triple patch antenna suitable for device corners.

The receive antennas were mounted on a tripod and driven by a little electric motor thus enabling

varying speed and reproducible channel statistics with high accuracy. The trek was 5 meters long

and the min/max distance between Tx and Rx was 1.5 m and 3 m respectively.
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6 Real-Time Transmission Experiments

Channel Statistics: We performed channel measurements over the whole length of the trek across

the room. About 2 · 103 channel realizations were monitored and file logged. The 10× 8 channel

matrices were normalized to unit channel gain and decomposed by singular value decomposition

(SVD).

Fig. 6.9 shows the singular value (SV) distribution. The distribution (right) clearly reflects the

I/Q-imbalance discussed in section 6.1. The 8 SVs of the real-valued channel matrix H should

be pairwise degenerated, e.g. SV 1 and SV 2 should be identical. Due to the I/Q imbalance this

degeneracy is split up and we find 8 different SVs instead of 2 × 4. This effect can be modelled as

an additive noisy channel estimation error ∆H on the real-valued channel matrix H. Furthermore

we see the increase of the smallest SVs when we add one more antenna. This shift in the SV

distribution was discussed in detail by [HJJ+01a, JWHJ01] and explains the improvement of the

BER performance generally described by a rising diversity order for high SNR (see also discussion

on antenna diversity in section 3.5.1).

We can conclude from these results that a sufficient channel statistics is found in the chosen

environment which is in accordance to the extensive channel measurements conducted at 5.2 GHz

(bandwidth 120 MHz) [JPN+02]. Now, further experiments to study the diversity gain and the

effect of channel adaptive rate control could be conducted.
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Figure 6.9: Channel statistics along 5 m trek across the lab. The distribution of the singular
values is shown for a 4x5 MIMO configuration at the right. The shift of the smallest
SVs can be seen in logarithmic scale on the left.

The BER Diversity Order for a MIMO system with nT transmit and mR receive antennas is

expected to follow [TV01]

log BER

log SNR
= −β, for SNR →∞ (6.1)

where β = mR − nT + 1 when linear receive filters e.g. ZF or MMSE [J.G00, JJR94] are used or

their non-linear extensions like VBLAST [PV02].

To check the achievable diversity order during transmission we performed BER measurements

averaged over a sufficient set of channel realizations. Each BER curve was measured with a
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6.2 Spacial Multiplexing and Antenna Diversity

certain fixed number of Tx and Rx antennas, such that the configuration with the smallest/highest

diversity were 4x4 and 2x5 antenna configurations. The Rx antenna-set is driven cross the room

with a constant speed of 4 cm/s. The start and the end were marked on the floor and the antennas

looked into fixed directions in all experiments. The automatic gain control was switched off at

the receivers, thus contributing a constant noise figure to the receive branches. The receive SNR

was then adjusted by additional attenuators at the transmit antennas (see attenuator values at

x-axis). The behavior of the averaged uncoded bit error rate (BER) is depicted in Fig. 6.10. The
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Figure 6.10: Uncoded BERs for various Tx/Rx configurations in the Lab.

slope of the curves at high SNR represents the diversity order of (6.1) which agrees very well with

simulation results in i.i.d. Rayleigh and Rician channels [HJJ+01a]. During all measurements

only one person was operating the system avoiding unnecessary movements about 2 m away from

the Rx antennas. By this means all measurements could be reproduced very accurately. Fig.6.11
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Figure 6.11: Measured uncoded BERs with ZF and MMSE detection with 3 Tx antennas and 3
or 4 Rx antennas.
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shows the achievable BER performance with the two linear detection schemes ZF and MMSE. The

MMSE solution, which considers the measured and therefore known receiver noise outperforms the

ZF solution by 3-5 dB on the SNR scale. Algorithmically this means very little additionally effort

in the DSP (30% extra time for the calculation of the MMSE solution) but the gain regarding

SNR or transmit power is significantly. As we see in the figure the diversity order is the same for

ZF and MMSE and follows (6.1) as expected from the theory.

Linear and non-linear detection schemes were compared in the following experiments. The Tx

was transmitting QPSK modulated pilots and data streams, one from each Tx antenna and the

receiver used a linear or non-linear detection unit in the FPGA.

For the linear detection schemes only the feed-forward matrix of the DFE was loaded with the

ZF- or MMSE-solution while all elements of the feed-back matrix were set to zero. The non-linear

detection schemes used both the feed-forward and the feed-back matrix loaded with the appropriate

solutions calculated by the DSP. In this way we can directly compare different detection algorithms

without changing the FPGA design which is favorable towards comparability between different

experimental setups. Even a very carefully designed VHDL-code can behave differently if place-

and-route constraints are slightly varied. Fig.6.12 shows the measured BER performance of the
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Figure 6.12: Measured uncoded BERs with ZF, MMSE, ZF-VBLAST and MMSE-VBLAST de-
tection with 4 Tx antennas and 4 or 5 Rx antennas.

linear detection schemes ZF and MMSE and their non-linear extension of ZF-SIC and MMSE-SIC

each using the VBLAST ordering which is optimum regarding BER performance at high SNR. The

results show that at very low SNR the non-linear scheme performs similar like its linear counter-

part since error propagation is severe in this region and the interference cancellation which is the

beneficial element of the non-linear schemes can not improve the BER performance of the layers

detected later.

At high SNR we see a significant improvement of the BER performance especially to be seen in

a higher diversity decay. Theoretically this performance improvement increases with the number

of detection layers which are included in the successive interference cancellation process and is

less prominent the more diversity is already in the system. This means that in a rich multi-path
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6.2 Spacial Multiplexing and Antenna Diversity

environment SIC can gain most for quadratic antenna configurations (nT = mR) with a high

number of detection layers.

Theory further predicts that at very high SNR the slope of the BER with SIC follows also (6.1)

because here only the first detected layer causes the error and all layers detected after are error-

free. The first layer has no diversity gain yet, which explains the final slope of the BER curve. This

behavior can not be seen in the measurement results since this effect is expected to be evident at

very high SNR or at very low BER respectively. This region was not covered by the experimental

setup, because any further increase of transmit power would result in exceeding the dynamic input

range either of the RF-chain or of the ADCs.

Note that in general precise measurements of very low BERs are very difficult because the bit errors

are mainly caused by the fading statistics instead of the noise statistics of the receiver amplifiers.

On the one hand, in practical measurements it is very hard to reproduce the exact fading behavior

during each run across the room because already small changes in the room (e.g. a small change

of the position of the person conducting the measurements) do not change the fading statistics in

general but can cause minor changes in the depth of certain fading coefficients which can cause

a slightly different number of errors. On the other hand we have only a rather limited number

of transmitted bits which are about 200 - 1000 measured BER blocks containing 100 frames with

1000 symbol vectors each. The number of transmitted bits with 4 QPSK modulated data streams

is then 1.6 · 108 or 8 · 108 . This means that one single bit error results in a BER of 6.25 · 10−9 or

1.25 · 10−9, respectively. The confidence interval of the BER (error bars) reduces with the number

of independent error events κ by
√

κ, this means that we need at least 100 bit errors (distributed

over different data streams or/and frames, assuming Poisson distribution) to decrease the error

bar down to 10 %. Keeping this in mind we have to conclude that measured BERs below 10−6

may have a low or limited confidence towards interpretation.
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Figure 6.13: Measured uncoded BERs with MMSE-SIC detection with 4 Tx antennas and 4 Rx
antennas. The detection order is varied.

Fig.6.13 and Fig.6.14 show the dependence of the BER performance on the detection order. The

best order (red), VBLAST proposed by [Fos96] detects always the data stream with the best SINR
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Figure 6.14: Measured uncoded BERs with MMSE-SIC detection with 4 Tx antennas and 5 Rx
antennas. The detection order is varied.

in each detection step. This guarantees a minimum possible BER for each detection layer and in

direct consequence also minimum error propagation.

The anti-VBLAST ordering (green), which always picks the stream with the worst SINR achieves

the worst BER in each layer and the worst error propagation as well. This can result in a weaker

average BER performance than the corresponding linear detection scheme as to be seen in both

figures. A fixed ordering (e.g. [1,2,3,4,5,6,7,8], blue curves in both figures) will always result in

a better performance than the underlying linear detection scheme itself because the first layer

has the same error probability like the linear scheme and all layers detected after will profit from

the stepwise diversity increase with each layer. Since the first layer will not be necessarily the

worst channel all the time due to channel variations, we still find a better performance despite the

additional bit errors caused by error propagation.

These experimental results with fixed modulations verify that SIC with fixed ordering or preferably

random ordering is always beneficial compared to the corresponding linear scheme even if we have

to face error propagation from layer to layer. An ordering which will always loose (anti-VBLAST)

over a sufficient channel statistics requires channel knowledge and can be avoided easily.

In case of SIC, the detection ordering looses its importance when channel aware bit-loading is

applied on top, since the BER for each layer is assured by the bit-loading algorithm. Each layer is

loaded according to its achievable SINR and the achievable sum rate under sum power constraint

is constant as shown in [HLB03]. Here, the detection order offers a new dimension towards

controlling the individual rates of each data stream without loosing sum throughput. This can

be exploited for multi-user scenarios with one transmit antenna at each terminal as shown in the

experiments described in section 6.4.
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6.2.2 Measurements on Channel Adaptive Rate Control

Bit-Loading Algorithm: Bit-Loading is an important means to reach a reliable channel through-

put. The criterion for the allocated modulation level per data stream is based on the noise

enhancement seen after the data separation using either a linear or non-linear detection scheme.

This SINR criterion is used to predict the BER for a certain modulation. The algorithm described

in section 4.4.2 [HLB03] calculates the optimum power allocation to maximize the sum rate under

the assumption of sum power constraint and successive interference cancellation. For the experi-

ments this algorithm was adapted to individual power constraint and various detection schemes

e.g. linear MMSE or MMSE with SIC. For a detailed description of the algorithms be referred to

sec. 5.2.5.

Adaptive Bit-Loading with linear detection: The impact of adaptive bit-loading without trans-

mit pre-coding which is also commonly known as per antenna rate control (PARC) [CLH+03,

HFG+04c] was investigated in the following scenario.

We chose a fixed transmit power for all Tx antennas of +12dBm ±1.2dB. Then fixed modulation

(8x BPSK) and Adaptive Bit-loading (Off, BPSK, 4-PAM) are compared for a fixed amplifier

gain at the Rx (AGC is switched off). The antennas are adjusted to the antenna post in random

directions which are not changed over the whole experiment. At the receiver we use either 5 or

4 Rx antennas. Each experiment is conducted along the same trek, over the same distance and

with the same speed of 4 cm/s. The transmit power was adjusted with variable attenuators.

Adaptive bit-loading is performed every 100 ms which appears to be sufficient at the given speed.

The FPGA counts the transmitted bits per data stream, bit errors and frame errors over a set

of 100 frames with 1000 data symbols each (pilot symbols of 128 bits are omitted for the BER

calculation). The results are stored and transferred to the DSP and file-logged on the hard drive.

Since we average over 100 frames the minimum temporal resolution for error bursts is about 125 ms

@1 MSym/s and 25 ms @5 MSym/s.

Fig. 6.15 shows the achievable spectral efficiency versus the position along the trek using PARC.

It is obvious that the spectral efficiency is increased when the Tx and Rx are close together

(about position 2500 - 3000). At the beginning of the trek channel realizations are found which

do not allow a transmission of 8 bits/s/Hz at a BER< 10−3, therefore data streams are switched

off and the sum efficiency drops down to 4 bits/s/Hz. If 5 Rx antennas are used the average

spectral efficiency rises from 11.0 bits/s/Hz to 13.2 bits/s/Hz while the constant QPSK modulation

system transmits only 8 bits/s/Hz (dashed line). The inset shows the empirical cumulative density

function of the spectral efficiency of the scenarios. The highest achievable payload data rate was

65.4 Mbits/s with a symbol rate of 5 MSym/s.

Fig. 6.16 shows BERs along the measurement trek for the 4x4 MIMO system using BPSK only

(top) and PARC (bottom). In the upper figure we clearly see error-free sections around position

2500 where the Tx and the Rx are very close together. Around position 200 (maximum distance)

we find the channel in a rather singular state causing very high BERs over an extended time. This

effect can be mitigated by PARC by simply switching one or two data streams off resulting in a

diversity gain which improves the BER immediately. If the BER and FER is averaged over the

whole scenario we reach a very comparable average BER of 5.1 ∗ 10−3 for PARC and 6.5 ∗ 10−3
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Figure 6.15: Achieved spectral efficiency with PARC and antenna configurations 4x4 or 4x5.
Modulation levels: Off, 2-/4-PAM

Conf. 4x4 4x4 4x5 4x5
Mod. BPSK PARC BPSK PARC

bits/s/Hz 8 11.01 8 13.22
BER 6.5 ∗ 10−3 5.1 ∗ 10−3 3.2 ∗ 10−5 2.5 ∗ 10−4

FER 0.094 0.124 0.047 0.056

Table 6.2: Achieved rates and BERs with various antenna configurations and fixed rate (QPSK)
or PARC with 0-/2-/4-PAM

for BPSK only. The measurement was repeated with 5 Rxs and the results are summarized in

Tab. 6.2.

The FER seems to be significantly higher than the BER due to the frame length of 1000 symbols.

A shorter frame length translates directly into a lower FER.

Fig. 6.17 gives more insight into the fact that the BER of the 4x4 case with PARC is slightly

better than with BPSK only. If the cdf of the BERs is used we see the curves crossing (marked

with circle). Here, the effect of extended exposure to bad channels dominates the BER of the

4x4 BPSK system and error free sections can not compensate the accumulated errors. The PARC

scheme avoids high data rate transmission over bad channels and can profit from this strategy.

The 4x5 case shows clearly that the BPSK system profits significantly from the diversity gain

while the PARC system benefits as well but if a certain SNR level is reached the modulation

scheme is switched to 4-PAM to trade better BER performance against higher throughput.

The experimental results show that already adaptation with few modulation levels (e.g. OFF,
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Figure 6.17: Empirical CDF of BERs with and w/o PARC.

BPSK, 4-PAM) can achieve a significant improvement towards sum throughput while the BER is

kept comparable to the fixed rate transmission scheme. A further increase of the sum throughput is

realized when higher modulation levels (8-PAM, 16-PAM) are included in the bit-loading algorithm

which was measured in later experiments where channel adaptive bit-loading was combined with
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ACI/JT (Fig.6.23) or MMSE, VBLAST and SVD (Fig.6.19).

The initial transmission experiments with adaptive per antenna rate control (OFF, BPSK, 4-PAM)

already achieved peak data rates up to 80 Mbits/s and a peak spectral efficiency of 16 bits/s/Hz.

The measurement data show that in stationary scenarios or with low mobility extensive periods

of rank degradation of the channel can occur which may produce heavy error bursts when full

spatial multiplexing is performed with fixed modulation. This effect can be mitigated by adapting

the allocated modulation per Tx antenna / user according to the actual channel quality or by

exploiting a significant number of diversity antennas at the receiver which cause a kind of channel

”hardening”. Exploiting adaptive bit-loading with 4 Tx and 5 Rx antennas we measured an

average throughput improvement of about 65%.

Furthermore we find that the effects of imbalanced I/Q caused by analog direct up- and down-

conversion are well compensated by processing the channel as real-valued. In consequence, rate

adaptation has to be performed independently for I and Q (see left in Fig.6.18) to guarantee

certain BER targets in each branch and as a side effect we have bit-wise steps for the sum rate

instead of 2-bit steps as with complex QAM signal constellations.

Figure 6.18: Screen shots of reconstructed data symbols from Tx 1 (yellow) and Tx 2 (green).
Modulations were 2-16 PAM, left: 16-QAM and 256-QAM as highest modulation
level. middle: I/Q imperfections can require different modulations in I and Q. right:
16-QAM and 64-QAM. MIMO transmission 2× 4 in narrowband channel of approx.
1 MHz in indoor scenario.

Adaptive Bit-Loading with Successive Interference Cancellation: In order to obtain more in-

sight on how much throughput gain can be achieved in reality by applying successive interference

cancellation techniques we conducted throughput measurements with linear MMSE and MMSE

with SIC and furthermore with SVD-MIMO which will be described in the next paragraph. To

allow a fair comparison all schemes were used with the same antenna configuration of 4 Tx and

5 Rx antennas. Furthermore the Rx antennas were moved always the same path through the

room to guarantee the same channel realizations for all three schemes. The transmitter had a

per antenna power constraint and the receiver used the DFE-MIMO detector implemented in the

FPGA. All transmit and detection matrices as well as the bit-loading were computed by the DSP.

In contrast to the observations with the fixed rate BER measurements where significant error

propagation was observed especially in rank deficient channels, we now find no such behavior any

more. Error propagation is still an issue but strongly limited due to the target BER assured by

the bit-loading algorithm.
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Furthermore we expect that in combination with adaptive bit-loading the SIC order is of little or

no importance as long as it is matched to the actual bit-allocation. The theoretical result from

4.43 predicted that we can use any SIC order without loosing sum capacity. This conservation

law of the sum capacity was found to hold at least in principle also in practice for the low and

mid SNR range, meaning that the bit-loading algorithm operates in the mid range of the available

modulation formats. When the system is operated at the highest modulation levels we observed

a decrease in throughput when not using the V-BLAST ordering. The simple explanation for this

effect is to be seen in the fact that the first detected data stream has the best SNR of all streams

at this detection step but could achieve a further improved SNR when detected later. In case the

best stream will be allocated already the highest possible signal constellation e.g. 256-QAM when

detected first, we would eventually have to allocate 512-QAM if detected later to conserve the

overall sum rate which is exceeding the available QAM range. Having said this we can conclude,

that the SIC ordering can be used to control individual antenna or user rates but at high SNR

the V-BLAST ordering still provides the highest avarage throughput.

SVD-MIMO transmission: As discussed in section 3.2 the channel capacity with CSI at the Tx

and the Rx is higher than with CSI only at one end of the link. The appropriate transmission

strategy for joint signal processing at the Tx and the Rx is realized with the SVD-MIMO trans-

mission or Eigenvalue signalling. In the SVD-MIMO mode each data stream is transmitted from

all antennas and feed into one of the orthogonal sub-spaces by sending into the direction of the

Eigenvectors of H as discussed in section 4.1.1. At the Rx the mixed signals at the Rx antennas are

decoupled from the sub-spaces by a multiplication with UT obtained from SVD. Now, bit-loading

is not performed on a per antenna basis but on a per data stream basis and the channel quality

(SNR) is determined by the reciprocal value of the eigenvalues of HHH .

This means that a bad conditioned MIMO channel can have one or two small Eigenvalues which

allow no transmission satisfying certain BER targets. Nevertheless the other Eigenvalues are not

affected by this and the transmission over their eigenspaces still works very reliable. This allows

a significant higher throughput especially at low SNR.

The SVD transmission experiments use the unitary matrix V as preprocessing matrix at the Tx

which contains the eigenvectors of the channel H. At the Rx UT is used and a rescaling with the

reciprocal value of the belonging eigenvalue is performed.

The pre-coding matrix V is calculated by the DSP at the Rx by SVD and send to the Tx FPGA via

cable thus enabling a perfect fit of the pre-coding matrix V and its belonging decoding counterpart

U.

When V, D and U are calculated separately at different sides of the link based on an independent

channel measurement, precautions have to be taken to assure that all transmit and receive vectors

and the belonging eigenvalues fit together. Otherwise, e.g. if a sorted SVD (the order of the

eigenvalues in D is in rising or decreasing order) is used, signals can be scaled in a wrong way

or the sign can be changed. This observation was made by [LGF02, TLF03] based on numerical

simulations with sorted SVD calculated independently at each side of the link, but this can not

be assessed as a critical problem from our point of view.

A change in the sign can be prevented by forcing the first row in V to be of non-negative elements.

137



6 Real-Time Transmission Experiments

Furthermore we don’t need a strict ordering towards the size of the eigenvalues, instead all valid

eigenvalues (those which will carry data) are shifted to the left and transmission is performed over

the leftmost valid eigenvalue and the belonging eigenvectors.

20 15 10 5 0

0

5

10

15

20

25

Modulation: QPSK/16-/64-/256-QAM

Symbol rate: 1 MHz

targeted average BER = 10
-2

 linear MMSE

 MMSE-SIC

 SVD-MIMO

 SVD-MIMO 64QAM cut-off

 MMSE-SIC 64QAM cut-off

 A
v
e
ra

g
e
 S

p
e
c
tr

a
l 
E

ff
ic

ie
n

c
y
 [

b
it

/s
/H

z
]

Attenuation at all Tx [dB]

Figure 6.19: Comparison of the achieved average sum rate with 4 Tx and 5 Rx antennas with
linear MMSE or MMSE-SIC and SVD-Eigenvalue transmission. Since the modulation
level was loaded independently in the real and imaginary part also intermediate levels
between e.g. QPSK and 16-QAM were used.

Fig. 6.19 shows the measured sum throughput with a BER≤ 10−2 with three transmission schemes:

red: SVD-MIMO, green: MMSE-VBLAST at Rx and black: linear MMSE at Rx. At very low

SNR the latter two schemes achieve similar low throughput which can be explained that with both

schemes most of the time only one or two data streams are switched on and SIC can not gain

much. At high SNR SIC gains upto 3 bits additional throughput compared to the linear MMSE

due to the SINR increase for later detected layers. The SVD scheme outperforms the other two

other schemes by a higher throughput even at high SNR values. Note that from theory we would

expect a similar throughput performance for SVD-MIMO and MMSE-SIC, which is known to be

capacity achieving as well [VG97] (see also Fig. 3.8 in chapter 3.2). The observed difference at

high SNR is to be explained by error propagation which can become significant due to symbol by

symbol decisions and furthermore due to the uncoded transmission. Since we perform adaptive

bit-loading in such a manner that all layers meet a certain BER target, we have to consider the

effect of error propagation in the bit-loading algorithm. The weaker the BER decay (diversity

slope) the more extra transmit power is necessary to fulfill the target. As an example let’s assume

a BER target of 10−3 for all layers. Since all layers including the last layer shall meet this BER

target, we have to set the BER target for each layer lower such that including error propagation

we will satisfy the targeted BER. Assuming 4 Tx and 5 Rx antennas and a multiplexing of 4 data

streams we can expect a BER diversity order ∼ SNR−2. If we had a 100% error propagation

then as a rule of thumb the last layer would suffer from 3/4 of possibly propagated errors and

1/4 of own decision errors meaning that we should set the target BER to 1
4 · 10−3. At the given

diversity slope this corresponds to an SNR loss of approximately 3-4 dB, something comparable

to the measurements. This SNR loss is expected to increase to about 6-8 dB with 4 Tx and 4 Rx
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6.2 Spacial Multiplexing and Antenna Diversity

antennas.

Generally, this means that the SNR loss against the water-filling or SVD-MIMO scheme increases

with the number of layers / transmit antennas and decreases with the number of extra receive

antennas / degree of receive diversity. Furthermore the correlation of the data streams influences

the error propagation, e.g. orthogonal transmit channel vectors don’t propagate errors from one

detection layer to another. So in reality the SNR margin has to be found by averaging over a

statistical ensemble of channels and can later be adopted automatically if the channel entanglement

is changing in different deployments.

At low SNR SVD-MIMO achieves a tremendous relative gain compared to MMSE and MMSE-

SIC. This high throughput advantage can be explained that with SVD one data stream is coupled

into one eigenmode of the channel. The other two schemes couple each data stream into all

eigenmodes depending on the actual channel realization, which means in average 1/4 of each data

stream. At very low SNR when only one complex stream is transmitted in all schemes MMSE

and SIC transmit only 1/4 of their one and only stream over the best eigenmode. In average this

should result in a disadvantage of about 6 dB on the SNR scale which is roughly the measured

value at low SNR.

The dashed lines in Fig. 6.19 show the behavior when the maximum modulation level is limited to

8-PAM or 64-QAM, respectively. The maximum rate saturates already within our measurement

range and shows that the achievable maximum slope for the average throughput which means

maximum achieved spatial multiplexing gain is determined by limited modulation levels. With

a M-ary QAM level of 1024 (if implementable in multi-antenna schemes) a smaller gap between

theory and practice towards the spatial multiplexing gain might be achievable in principle.

6 8 10 12 14 16 18 20 22 24 26 28 30

0.0

0.2

0.4

0.6

0.8

1.0

 SVD-MIMO

 MMSE-SIC

 MMSE

Attenuation at all antennas 0 dB

Symbol rate: 1 MHz

QPSK, 16-/64-/256-QAM

targeted average BER = 10
-2

E
m

p
ir

ic
a
l 
c
d

f

Spectral Efficiency [bits/s/Hz]

Figure 6.20: Empirical cdf of the achieved average sum rate with 4 Tx and 5 Rx antennas with
linear MMSE, MMSE-SIC and SVD-Eigenvalue transmission. Attenuation at all Tx
antennas = 0 dB, meaning maximum transmit power over the air.

Fig. 6.20 shows the empirical cumulative distribution function of the measured sum throughput at

the highest possible SNR point. We see that the fitted curve is steepest for the SVD-MIMO and

has the longest tail at low rates for the linear MMSE. This is in good accordance with capacity
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simulations from the measured channels. Especially at low outage probabilities the three schemes

have a huge difference in throughput. Example: Outage = 0.01 MMSE: 11 bit/s/Hz, MMSE-SIC:

17 bit/s/Hz and SVD-MIMO: 21 bit/s/Hz.

6.3 Adaptive Channel Inversion (Down-link)

The main focus of the following experiments was to show that an implementation of a down-link

transmission scheme with pre-coding is feasible and what can be achieved in terms of BER and

throughput performance in this very first experiment. To make live easier and to overcome the

reality of non-reciprocity in the baseband channel with the actually used RF-chain, we measured

the channel from the BS (Tx) to the MTs (Rx) during a training sequence. Next the DSP calculates

the linear pre-coding matrix (ZF or MMSE) and loads the matrix over a parallel bus into the Tx

FPGA. This means that the pre-coding solution is calculated at the receive side, which would not

be an option in a real communication system, since a transmission of the matrix values over a

feed back channel would require a huge bandwidth and the transmission of the matrix could be

erroneous due to the fading channel. Nevertheless this quite ideal experimental configuration gives

us an upper performance limit of what can be achieved with pre-coding and spatial multiplexing

in the broadcast channel.

To get closer to real world field applications there are still some obstacles to be taken, namely first

the CSI has to be obtained by a measurement into the opposite direction (MTs to BS). This will

be automatically solved when the test-bed is upgraded to TTD duplex mode. Second, we have

to assure reciprocity in the base band channel, which will be solved with a reciprocal transceiver

design, which was proposed only recently [JKI+04]. The reciprocal transceivers [HHI+04] are

currently calibrated and the upgrade of the test-bed with reciprocal transceivers at both sides

is expected to be operational in the next few months. The new test-bed will allow a direct

measurement of how much performance will be lost due to the imperfections of reciprocity in the

base band channel.

All measurements were done in our lab with the dimensions HxLxW: 3m × 7m × 5m. The Rx

antennas were mounted on a pole about the middle of the room 1m below the ceiling. The BS/Tx

antennas were mounted on a tripod which can be driven along a rail across the room.

Since we have only one Rx FPGA available at the moment, 4 Rx units were implemented in

parallel and we perform channel estimation and receive signal scaling in one unit as in a single

user MIMO system. Nevertheless we can treat the Rx antennas like decentralized receivers which

are distributed over the lab.

In a practical transmission system the CSI will have to be acquired by a pilot transmission into

the up-link and relying on the reciprocity of the channel. The ideal feedback of CSI to the Tx in

our test-bed shows the potential of transmit pre-processing for the first time in an over the air

experiment to our knowledge. The results can be understood as a upper performance bound due

to the best achievable CSI at the Tx.

The transmitter was driven by an electric motor thus enabling varying speed and reproducible

channel statistics with high accuracy. The trek was 5 meters long and the min/max distance

between Tx and Rx was 1.5 m and 3 m respectively.
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Channel Statistics: We performed channel measurements over the whole length of the trek across

the room. About 2∗103 channel realizations were monitored and file logged. The measurement was

done twice with maximum power and without transmitting any signal, respectively, to measure the

noise ground at the ADCs for the estimation of the actual system SNR. With maximum transmit

power and averaging over the whole trek we found an average measurement SNR per Rx antenna

of 38 dB due to the high correlation gain from 128 pilot symbols which can be exploited for the

very precise channel estimation.

Required Transmit Power: The measured channel matrices are then pseudo-inverted and all pre-

coding matrices are evaluated to study the transmit power enhancement. This is in analogy to the

noise enhancement per data stream which determines the SNR for a classical MIMO systems in

the up-link. We use the same measure of the power enhancement factor (PEF) defined in (4.104)

[HSB03] by normalizing the transmit power per antenna by the factor of the
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Figure 6.21: Required transmit power statistics for LCI along 5 m trek across the lab. The CDF
of the power enhancement factor depending on the Tx antenna diversity (4x1...4x4)
is depicted from left to right. Normalization is performed by averaging the required
Tx power over the whole trek and all antennas. The arrows indicate the digital range
when 4...12 or 6...12 bits resolution for the pre-coding matrix are used at the DACs.

Tx power averaged over all antennas and all channels. This measure allows to predict the system

performance under the constraint of a limited dynamic range of the Tx amplifiers and of the DACs

at the Tx.

Fig. 6.21 depicts the CDFs for different transmit diversity. If a 4x4 MIMO system is chosen to

be run with LCI we would need DACs with a minimum of 16 bits to provide the required digital

dynamics of 43 dB necessary for this curve (outage 0.1%).

Since all real-world transmission systems will have a limited transmit power range the achievable

SNR is always determined by the power limit of one antenna. This limitation causes a similar

behavior for the slope of the BER as we found from simulations with fixed sum transmit power.

This explains that the uncoded BER curves in Fig. 6.22 for 1 to 4 data streams with LCI are
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Figure 6.22: Uncoded BERs for Linear Channel Inversion with fixed numbers of 4 Tx and varying
number of Rxs (1...4). Dotted lines indicate expected diversity for fixed transmit
power constraint.

shifted along the x-axis (Tx antenna attenuation) and have a slope according to a nT −mR + 1

diversity gain as discussed in section 3.4. The dotted lines in Fig. 6.22 indicate the expected

diversity order for high SNR. Those BER measurements are found to be in very good agreement

with analytical predictions and simulation results. A higher probability of exceeding the maximum

transmit power with reduced transmit diversity translates directly into a weaker slope for the BER,

which gives advantage to a configuration with more transmit diversity. If we would assume only

an average sum power limit then we would expect AWGN like BER curves which are only shifted

on the SNR axis by 3 dB if the number of streams is doubled. We clearly see transmit diversity is

the crucial element for the application of LCI/JT to avoid system degradation due to the limited

dynamic range of the transmitter.

Adaptive Channel Inversion: The channel-aware bit-loading combines transmit diversity and

common modulation level control. In Fig.6.23 we see that the adaptive bit-loading algorithm avoids

overloading weak down link channels thus ensuring reliable BER performance for each transmitted

data stream. This is done by controlling the number of supported users and the modulation level.

By this strategy we find a spectral efficiency which ranges from 4-18 bit/s/Hz with an average of

9.6 bit/s/Hz. This means a payload data throughput of 18-80 Mbit/s ( 5 MSymbols/s ) with an

average uncoded BER below 10−3.

The experimental results show that ACI is a feasible and suitable transmission scheme for the

broadcast channel with decentralized receivers when there is only limited signal processing capa-

bility is available at the MTs due to only one Rx antenna per terminal. This allows for very cost

efficient MTs since the SP is performed by the BS.

The crucial point is a reliable CSI at the BS which has to be acquired with a channel measurement

into the opposite direction. A further requisite is the reciprocity of the base band channel which

can not be taken for granted for a standard RF-chain where different amplifiers and I/Q-mixers are
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Figure 6.23: Spectral efficiency with Adaptive Channel Inversion. Top: Sum Rate, bottom: rate
for user 1, right: CDFs of the spectral efficiency

used for transmission and reception. The recently proposed transmission design with reciprocal

transceivers [JKI+04] allows a pre-coding for a TTD broadcast scenario especially for WLAN

applications which are of great demand for hot spot applications assuring perfect downwards

compatibility with MTs with only one antenna.

6.4 Multi-User SIMO Scheduling (Up-link)

The scheduling policies discussed before are implemented in the real-time demonstration test bed

at HHI. We will present the experimental setup of the test bed (Fig. 6.24) which is based on a

hybrid setup of FPGAs and a DSP at the BS.
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6.4.1 Measurement Results

In the following we show measurement results on achievable data throughput, delay and buffer size

with real-time channel adaptive bit-loading and scheduling. The performance of several scheduling

policies was measured in an experiment and was then evaluated with regard to sum throughput,

delay (queueing state) under certain QoS (BER and average rate) requirements of the individual

users. We show the pros and cons of each scheduler depending on the available SNR at the BS.

The real-time data transmission was performed with up to 5 MSymbols/s and up to 64-QAM

modulation.
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Figure 6.25: Achieved average spectral efficiency with different scheduling schemes. BS: 3 Anten-
nas and 4 users with one antenna each.

The transmission scenario consists of 4 users which are distributed in the lab, assuming the same

average individual rate request during the measurement. The BS is equipped with only 3 antennas,

meaning that spatial multiplexing can be performed with up to 3 users maximum. The BS is moved

over 5 meters (speed approx. 5 cm/s) across the room on a railway-like construction to ensure the

same channel realizations for all experiments. This reproducibility is viable for the comparison of

different schemes.

Fig. 6.25 shows the achievable average sum rate along the 5m trek across the room. The 3 of

4 cyclic scheduler (black) is outperformed by the fair scheduler (red) and the max. capacity

approach (blue) in the high SNR region. With decreasing SNR the fair scheduler degrades below

the cyclic scheduler since the sum rate is here dominated by the user which has the worst average

channel. The best user only scheme shows the lowest cut-off rate while the other schemes tends

to reach three times as much at high SNR.

Fig. 6.26 displays the possible average throughput per user. The filled symbols represent the

averaged rate of the best user and the open symbols the average rate of the worst user. Here, over

the whole SNR range the newly proposed fair scheduler achieves the highest QoS (average rate)-

highest minimum average rate per user. This rate, at least can be assured (open circles) to all

users. This clearly shows that already with today’s hardware simple but efficient fair scheduling

algorithms can be implemented.
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Figure 6.26: Average spectral efficiency per user with different scheduling schemes. filled symbols:
user with best rate, open symbols: user with lowest rate. Note, that the min rate can
be assured to all users as a QoS.
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Figure 6.27: Comparison of theoretical and experimental results. Simulated and measured sum
throughput with bit-loading. Simulation on Rayleigh channels (dashed lines), simula-
tion on the measured channels (solid lines), measured throughput in the experiment
(•).

Fig. 6.27 depicts the comparison of the sum throughput achieved in the experiment (circles) with

the expected throughput on the measured channel along the 5m trek in the lab (solid lines) and

a simulated Rayleigh channel (dotted lines). The slope of 3 bit/s/Hz per 3 dB SNR increase is

not found in the experiment which is due to the fact that before full spatial multiplexing can

be exploited the sum rate is cut-off due to the limited level of the QAM modulation. A similar

behavior was observed in the sum rate experiments depicted in Fig. 6.19 where the cutoff rate

limited the slope of the throughput curve. Therefore the measurement results coincide very well

with what can be expected from the theory to be seen in Fig. 3.10 in section 3.4.

The experimental results shows clearly that channel aware bit-loading and scheduling are key
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factors to exploit the high capacity of the multi-path channel in a multi-user scenario efficiently.

We could show that multi-antenna techniques are applicable already on today’s hardware by

implementing channel aware bit-loading and scheduling on a real-time experimental test-bed. We

achieved an average spectral efficiency of 17 bit/s/Hz with 3 BS antennas and 4 users which means

85 Mbit/s average payload data rate in the up-link with an assured uncoded average BER≤ 10−3.
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7.1 Conclusions

In this thesis, real-time capable transmission schemes for single-user and multi-user multiple-

antenna wireless systems were studied where the emphasis was put on the single carrier flat-fading

case. We started with a general optimization of several transmission strategies and developed algo-

rithms for multi-antenna systems including channel aware bit-loading and multi-user scheduling.

A selection of basic multi-antenna transmission schemes was implemented in a real-time MIMO

test-bed and the performance was evaluated from the measured experimental results.

The following topics were covered and the following results were derived:

• In chapter 3 we made basic considerations for the implementation of multiple antenna tech-

niques in WLAN systems. We pointed out that a reasonable antenna diversity might dras-

tically improve the BER performance and makes the wireless connection over the fading

channel more reliable. In scenarios with a strong LOS component we have to expect perfor-

mance degradations in general due to rank deficiency of the MIMO channel. The performance

loss can be limited by an adaptation of the transmission to the actual number of degrees of

freedom.

• In chapter 4 we discussed optimum transmission schemes for the single-user MIMO scenario,

the multi-user multiple access channel and the multi-user broadcast channel. We could show

that channel knowledge should be exploited for an appropriate adaptation of the transmission

scheme to the instantaneous channel states. Several sources of performance degradation

observed in real-world applications were discussed and strategies to limit or combat the

performance loss were proposed. We developed real-time capable bit-loading and multi-user

scheduling strategies which are key elements for an efficient exploitation of the available

bandwidth in real systems.

• Chapter 5 discussed the basic algorithms for MIMO base band signal processing and their

potential towards optimization on standard DSPs.

• Chapter 6 was dedicated to the real-time transmission experiments. We introduced the

reconfigurable MIMO test-bed and some configurations of relevance for the experiments.

We showed measurement results on antenna diversity with fixed rates using linear and non-

linear detection which coincide very well with numerical simulation based on statistical fading

models. Furthermore, we showed the throughput gains which can be obtained from channel

aware transmission using adaptive bit-loading and power control. A sum rate comparison of

linear and non-linear detection schemes and SVD-MIMO transmission was given from the

measurement results.

Furthermore, we showed a first implementation of adaptive channel inversion for a broadcast
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scenario with decentralized receivers and an implementation of a fair multi-user scheduling

scheme in space and time for the multiple access channel.

The measurements indicated that channel aware transmission schemes are key factors for a

spectrally efficient exploitation of the radio channel. Pre-coding techniques based on CSI

at the transmitter increase the system performance dramatically, which could be shown in

the experiments on adaptive channel inversion and SVD-MIMO transmission. Finally, we

could show that implementations of advanced multi-user scheduling algorithms can be run

in real-time, offering high sum throughput and limited data queues for the individual users.

7.2 Open problems and future work

7.2.1 MIMO transmission in frequency selective channels

A recent transmission of 1 Gbit/s with low mobility in a standard office environment [JFH+05a]

proved that MIMO algorithms developed in this thesis for the flat fading case could be trans-

ferred to a MIMO-OFDM system at little time expense. Minor optimization of MIMO algorithms

matched to the computational capabilities of the MIMO-OFDM test-bed allowed such high rates

(1 Gbit/s) with spatial multiplexing of three data streams.

A further increase in the number of OFDM-tones will linearly increase the complexity for the

MIMO filter calculation. Therefore, parallel computing with several DSPs or even a filter cal-

culation inside the FPGA are approaches at hand. The first option is mainly hardware limited

(number of DSPs which can be connected to a DSP star architecture with reasonable effort) while

the second requires fixed point implementation in most cases which is the right way to go for a

final product implementation but it is very time consuming and error-prone for an experimental

test-bed where algorithmic flexibility is highly desired.

For TDD systems exploiting MIMO-OFDM and multi-antenna capabilities at the MTs as well,

the optimum transmission strategy of SVD-MIMO with water-filing / adaptive bit-loading can be

exploited. To reduce the high computational effort of a full SVD at both ends of the link, including

ambiguity of the calculated beam-forming vectors at each side an iterative ping-pong-like strategy

[HK04] could be applied. The proposal of [HK04] suggests to pre-code in the i-th step with QH
i

obtained from a QRD of HQH
i−1 which was received from the opposite direction. After a few

TDD frames the Qi converge to the desired V and U from SVD at much lower computational

cost which is very important for MIMO-OFDM with many sub-carriers.

The MIMO decoding at each receiver side can be performed with a linear MMSE detector which

is optimum when the pre-coding matrix converges to the input eigenvectors of the channel matrix

H. Since, in general the compound channel HQH
i−1 is much easier to decode with a linear MMSE

than H alone, due to reduced noise enhancement, this strategy appears to be always advantageous

even if pre-coding is only possible at one side of the link.

If joint signal processing at each link side is not possible for some reason then simple detection

schemes with a good BER performance should be used. Proposals from [WF03, WBKK04a,

WBKK04b] using lattice-reduction aided detectors show convenient performance with parallel

148



7.2 Open problems and future work

detection. Nevertheless, it is still an open problem how to find the optimum or close-to-optimum

matrix decomposition needed for this scheme under real-time constraints.

Furthermore channel interpolation techniques might be exploited to improve the accuracy of

the channel estimates [SCP+04, HSJ+05] or to calculate MIMO filters more efficiently [HSJ+05,

BB04b, CBB+05] since adjacent OFDM-tones are highly correlated.

7.2.2 Achieving reciprocity in base band

A prerequisite for an efficient exploitation of pre-coding techniques at the transmitter side is

accurate channel knowledge at the transmitter. In static or quasi-static channels this might be

achievable even with a transmission of the channel estimates or filter coefficients from the receiver

via a feed-back link. But with shorter channel coherence times the required capacity of this feed-

back will not be negligible at one hand and the CSI can easily become outdated on the other

hand.

Therefore, a TDD multiplexing scheme offers the utilization of the channel measurement already

available at the transmitter from a previous transmission in the opposite direction, at least in

principle. Despite the fact that the radio channel between the antenna pairs is reciprocal (the

uplink channel is the transpose of the down-link channel), this does not hold necessarily for the

corresponding base band equivalent. The obvious reasons are different amplifiers, mixers and

filters for the uplink and down-link transmission.

To achieve a sufficient reciprocity also for the base band channel a careful and desirable fully

automatic hardware calibration is needed which allows to compensate the reciprocity-mismatch

by appropriate base band signal processing. Another approach [JKI+04] proposed reciprocal

transceivers which reduce the calibration effort to a reasonable minimum.

When reciprocity can be guaranteed also in the base band then full duplex TTD mode opera-

tion with pre-coding for Eigenmode Signalling and / or the down-link broadcast channel can be

exploited.

7.2.3 Combatting Dirty RF effects with signal processing

In practical transmission systems often low-cost of-the-shelf hardware components are used. The

ideally assumed complex valued signal model with perfect frame and symbol synchronization will

then be severally violated. In direct consequence the performance can degrade significantly if

no counter measures are taken. In the flat-fading case we simply could perform all BB SP as

real-valued but this is not sufficient e.g. with OFDM when I/Q imbalances can cause severe cross

talk between image carriers. Those and many other Dirty-RF effects [GFZ04] can be compensated

by BB processing when an accurate mismatch estimation is performed in advance. For the case

of OFDM [WF04a, WF04c, WF04b] proposed several approaches while [BB04a] discussed the

degrading effect of phase noise on the channel estimation.

Having said this, it becomes clear that the compensation of ”dirty” effects caused by low-cost

hardware will become increasingly more important in base band signal processing.
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7.2.4 Channel coding for adaptive Transmission with multiple antennas

A very important aspect towards the implementation of adaptive transmission schemes is an

appropriate channel coding to fulfill the BER and delay requirements of various applications. In

static or slow time variant channels, channel adaptive transmission allows to decompose the MIMO

channel in parallel AWGN channels with predictable SNR. Therefore, we need channel coding more

suited for AWGN channels than for channels with slow or fast fading. Furthermore the particular

code design depends heavily on the overall used error correction scheme implemented in higher

layers e.g. ARQ, Hybrid-ARQ or no ARQ. Let us give an example for illustration: ARQ works

optimum at a frame error rate of about 10−1, hence the FEC has to be chosen to perform well at

this working point. If no ARQ scheme is used then the FEC must correct as many errors as possible

without help from replicas of lost packets. Let us assume a raw BER of 10−3 and a targeted BER

of 10−6 after the FEC for a certain application, then e.g. LDPC [Gal62, LTS00, ZPBF04] codes

can be used if the block length is reasonably large (1000 - 5000 bits) even with high codes rates (0.8

or 0.9). The advantage of LDPC codes is to be seen in a high code rate achievable which improves

directly the spectral efficiency for the data payload. This concept of combining channel adaptive

MIMO transmission with LDPC codes seems very promising for data streaming applications which

allow a reasonable amount of processing latency.

Other applications like voice over IP or video conferences may have quite stringent delay require-

ment, therefore FEC needs to perform according to the required BER for the application and at

the same time meet the delay constraints. In reality, this means often a tradeoff between decoding

complexity of the FEC algorithm (the faster the better towards short latency) and the achievable

code rate. Therefore, often convolutional codes with low code rates e.g. 1/2 are used which means

complex Viterby decoding at the receiver but this is a standard technique, implemented in many

commercial systems e.g. UMTS.

Other proposals prefer Reed-Solomon-codes or product accumulate codes e.g.[LNG04] due to their

low decoding complexity and their easily adjustable code rate between 1/2 and 1 which is very

favorable for an efficient and fine granular implementation of adaptive modulation and coding

(AMC).

In MIMO systems, the new dimension space allows for space-time codes (STC) in stead of the

classical coding with interleaving in the time domain. STCs have in general moderate code rate

but many of them are very easy to decode, which is favorable for limited latency and processing

complexity.

Multi-antenna systems in frequency selective channels can exploit additional diversity from the

frequency domain, which can be incorporated in the codes design. So a joint optimization over

three dimension has to be performed in order to develop low complexity space-time-frequency-

codes well suited for different working points (e.g. SNR, BER/FER targets etc.) and radio channel

propagation environment with varying parameters like e.g. delay spread and doppler.

7.2.5 Channel Tracking for Higher Mobility

The ITU-R Recommendation M.1645 states that ’potential new radio interface(s) will need to

support data rates of up to approximately 100 Mbit/s for high mobility such as mobile access and
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up to approximately 1 Gbit/s for low mobility such as nomadic/local wireless access’. Both aims

are only achievable with a wider bandwidth and MIMO techniques. MIMO-OFDM is supposed to

be a good candidate for 4G due to its relatively easy base band signal processing. Nevertheless,

signal processing at high mobility in itself is challenging with MIMO and more challenging towards

processing capability of the hardware when many OFDM-tones are used.

Due to the long coherence time of the channel in stationary scenarios the OFDM frame length can

be chosen within some ms, and still the overhead from pilots for the measurement of the MIMO

channel is acceptably low. This changes dramatically, when the channel is changing much faster

due to high mobility of the user.

Still, all MIMO filters have to be updated within the now much shorter channel coherence time,

but the same amount of pilot symbols transmitted now more often decreases the spectral efficiency

significantly. One possible option are pilots scattered over the frame and the sub-carriers, allowing

MIMO channel estimates at different time instances at different sub-carriers. As long as the phase

evolution over time increases linearly, the separated data symbols after the MIMO detector can

be phase compensated after.

Alternatively, blind channel and phase tracking based on detected data might help to reduce the

pilot overhead, but short feed-back rates are a stringent requirement.
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P.1 Properties of the Real-Valued Model

This appendix gives an overview on the properties of the mappings between the complex-valued

model and the real-valued model.

Hc 7−→ H =

[

ℜHc −ℑHc

ℑHc ℜHc

]

(P.1)

C
Kc×Kc −→ R

2Kc×2Kc = R
K×K (P.2)

and

xc 7−→ x =

[

ℜxc

ℑxc

]

(P.3)

C
Kc −→ R

2Kc = R
K (P.4)

For details on the transformation from complex-valued vectors and matrices see also [Tel99]:

HH
c ⇐⇒ HT (P.5)

‖ xc ‖2=
Kc∑

k=1

|xc,k|2 =

Kc∑

k=1

(
(ℜxc,k)2 + (ℑxc,k)2

)
=

K∑

k=1

x2
k =‖ x ‖2 (P.6)

From this follows directly

trace(xcx
H
c ) = trace(xxT ) (P.7)

HcGc = Fc ⇐⇒ HG = F (P.8)
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yc = Hcxc + nc ⇐⇒ y = Hx + n (P.9)

trace(HHT ) = 2trace(HcH
H
c ) (P.10)

If ℜxc and ℑxc are independent vectors of independent random variables with variance σ2 = σ2
c/2

each,

E[xcx
H
c ] = σ2

cI⇐⇒ E[xxT ] =
σ2

c

2
I (P.11)

Due to the factor of 2 in (P.10) and (P.11) or(P.14) we still have

E[trace(xcx
H
c )] = σ2

c trace(I) = E{trace(xH
c xc)} = Kcσ

2
c

= Kσ2 = E[trace(xT x)] = E[trace(xxT )] = σ2trace(I) (P.12)

where the dimensions of the identity matrices are Kc and K = 2Kc, respectively.

P.2 A mathematical measure of correlation

Following the outline of sec.2.2.2. in [E.J04] we take two arbitrarily chosen transmit correlation

matrices R1
T and R2

T with the constraint that trace(R1
T ) = trace(R2

T ) = nT which is equivalent

to

nT∑

l=1

λT,1
l =

nT∑

l=1

λT,2
l , (P.13)

with λT,1
l , 1 ≤ l ≤ nT , and λT,2

l , 1 ≤ l ≤ nT , are the eigenvalues of the covariance matrix R1
T and

R2
T , respectively.

This constraint regarding the trace of the correlation matrix RT is necessary because the compar-

ison of two transmission scenarios is only valid if the average path loss is equal. Without receive

correlation, the trace of the correlation matrix can be written as

trace(RT ) =

nT∑

i=1

(
E
[
HHH

])

ii
=

nT∑

i=1

E
[
|hi|2

]
. (P.14)

However, the RHS of (P.14) is the sum of the average path loss from the transmit antenna i =

1...nT . In order to study the impact of correlation on the achievable capacity separately, the

average path loss is kept fixed by applying the trace constraint on the correlation matrices R1
T

and R2
T .

We will say that a correlation matrix R1
T is more correlated than R2

T with descending ordered

eigenvalues λT,1
1 ≥ λT,1

2 ≥ ... ≥ λT,1
nT
≥ 0 and λT,2

1 ≥ λT,2
2 ≥ ... ≥ λT,2

nT
≥ 0 if

m∑

k=1

λT,1
k ≥

m∑

k=1

λT,2
k 1 ≤ m ≤ nT − 1. (P.15)
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The measure of correlation which we will introduce is defined in a natural way: the larger the

first m eigenvalues of the correlation matrices are (with the trace constraint in (P.14)), the more

correlated is the MIMO channel. As a result, the most uncorrelated MIMO channel has equal

eigenvalues, whereas the most correlated MIMO channel has only one non-zero eigenvalue which

is given by λ1 = nT .

Before proceeding with our definition of ’more correlated’ in terms of the eigenvalue distribution

of the channel covariance matrix, we give the necessary definitions we will need in the following.

Definition 5: For two vectors x,y ∈ Rn with descending ordered components x1 ≥ x2 ≥ ... ≥
xn ≥ 0 and y1 ≥ y2 ≥ ... ≥ yn ≥ 0 one says that the vector x majorizes the vector y and writes

x ≻ y if

m∑

k=1

xk ≥
m∑

k=1

yk , m = 1, ..., n− 1. and

n∑

k=1

xk =

n∑

k=1

yk.

The next definition describes a function Φ which is applied to the vectors x and y with x ≻ y:

Definition 6: A real-valued function Φ defined on A ⊂ Rn is said to be Schur-convex on A if

x ≻ y on A⇒ Φ(x) ≥ Φ(y).

Similarly, Φ is said to be Schur-concave on A if

x ≻ y on A⇒ Φ(x) ≤ Φ(y).

Example: Suppose that x,y ∈ Rn
+ consists of positive real numbers and the function Φ is defined

as the sum of the squared components of the vectors, i.e. Φ2(x) =
∑n

k=1 |xk|2. Then, it is easy to

show that the function Φ2 is Schur-concave on Rn
+, i.e. if x ≻ y⇒ Φ2(x) ≤ Φ2(y).

We will need the following lemma (see [MO79, Theorem3.A.4]) which is sometimes called Schur’s

condition. It provides an approach for testing whether some vector valued function is Schur-convex

or not.

Lemma 1: Let I ⊂ R be an open interval and let f : In → R be continuously differentiable.

Necessary and sufficient conditions for f to be Schur-convex on In are

f is symmetric on I
n (P.16)

and

(xi − xj)

(
∂f

∂xi
− ∂f

∂xj

)

≥ 0 for all 1 ≤ i, j ≤ n. (P.17)

Since f(x) is symmetric, Schur’s condition can be reduced as in [MO79, p. 57]

(x1 − x2)

(
∂f

∂x1
− ∂f

∂x2

)

≥ 0. (P.18)
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From Lemma 1 follows that f(x) is a Schur-concave function on In if f(x) is symmetric and

(x1 − x2)

(
∂f

∂x1
− ∂f

∂x2

)

≤ 0. (P.19)

The definition of Schur-convexity and Schur-concavity can be extended if another function Ψ :

R → R is applied to Φ(x). Assume that Φ is Schur-concave, if the function Ψ is monotonically

increasing then the expression Ψ(Φ(x)) is Schur-concave, too. If we take for example the function

Ψ(n) = log(n) for n ∈ R+ and the function Φp from the example above, we can state that the

composition of the two functions Ψ(Φp(x)) is Schur-concave on Rn
+. This result can be generalised

for all possible compositions of monotonically increasing as well as decreasing functions, and Schur-

convex as well as Schur-concave functions. For further information about majorization theory see

[MO79].

The following definition provides a measure for comparison of two correlation matrices.

Definition 7: The transmit correlation matrix R1
T is more correlated than R2

T if and only if

m∑

l=1

λT,1
l ≥

m∑

l=1

λT,2
l for m = 1...nT , and

nT∑

l=1

λT,1
1 =

nT∑

l=1

λT,2
2 . (P.20)

One says that the vector consisting of the ordered eigenvalues λT
1 majorizes λT

2 , and this relation-

ship can be written as λT
1 ≻ λT

2 like in Definition 1.

Remark I: It can be shown that vectors with more than two components cannot be totally

ordered. So there are examples of correlation vectors that cannot compared using our Definition 7,

e.g. λ1 = [0.6, 0.25, 0.15] and λ2 = [0.55, 0.4, 0.05]. This is a problem of all possible orders for

comparing correlation vectors. Majorization induces only a partial order.

Note that our definition of correlation in Definition 7 differs from the usual definition in statistics.

In statistics a diagonal covariance matrix indicates that the random variables are uncorrelated.

This is independent of the auto-covariances on the diagonal. In our definition, we say that the

antennas are uncorrelated if in addition to statistical independence, the auto-covariances of all

entries are equal. This difference to statistics occurs because the direction, i.e. the unitary matrices

of the correlation have no impact on our measure of correlation. Imagine the scenario in which all

transmit antennas are uncorrelated, but have different average transmit powers because of their

amplifiers. In a statistical sense, one would say the antennas are uncorrelated. Our measure of

correlation says that the antennas are correlated, because they have different transmit powers.

The measure of correlation in Definition 7 is more suitable for the analysis of the performance

of multiple antenna systems, because different transmit powers at the antennas obviously have a

strong impact on the performance. In this thesis, these effects are considered.

This measure of correlation allows us to analyze the impact of correlation on the various perfor-

mance metrics introduced in chapter 2 in single-user MIMO systems under different types of CSI.

In the following, the measure of correlation is applied to transmit correlation matrices RT and to

receive correlation matrices RR as well.

Remark II: As mentioned above, the case in which the transmit antennas are fully correlated

corresponds to λT
1 = nT , λT

2 = ... = λT
nT

= 0. The case in which the transmit antennas are fully

uncorrelated corresponds to λT
1 = λT

2 = ... = λT
nT

= 1. This illustrates that the expression in
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(P.20) can be used as a measure for correlation.

Example: At this point, we give another example for the measure of correlation. Assume the

situation in figure (P.1). We have two different correlation scenarios. In scenario A and B the

largest two eigenvalues (λA
1 = λB

1 and λA
2 = λB

2 ) are equal. The smallest three eigenvalues in

scenario B are equal (λB
3 = λB

4 = λB
5 ) but in scenario A the smallest three eigenvalues are unequal

(λA
3 > λA

4 > λA
5 ). In addition to this, the sum of all eigenvalues in scenario A and B is equal.

Applying the order which is introduced in Definition 3, eigenvalue vector A majorizes eigenvector

B (λA ≻ λ
B).

EIGENVALUESEIGENVALUES

Scenario A Scenario B

λ λ λ λ λ1 2 4 53 λ λ λ λ λ1 2 4 53

Figure P.1: Example correlation matrix eigenvalue distribution.

Scenario B applies for all eigenvalue distributions λ with fixed λ1 and λ2 and equal trace the

’smallest’ eigenvalue distribution, i.e. λB ≺ λ for all λ with

λ1 + λ2 +

nT∑

k=3

λk = 1

and for λB with

1− λB
1 − λB

2

nT − 2
= λB

3 = ... = λB
nT

.
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