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Abstract

Many public transportation companies operate their networks period-
ically. One major step in their planning process is to construct a periodic
timetable for one abstract period, independently from times during the
day. In this paper we show that we may evaluate a periodic timetable very
quickly with the number of vehicles required to operate it. This is due to
the fact that the Periodic Assignment Problem (PAP) can be solved by a
greedy approach. It helps us, at least within a genetic algorithm, to cope
with the quadratic objective function in the problem of finding a periodic
timetable requiring as few vehicles as possible.

Keywords: Periodic Assignments, Periodic Timetabling, Vehicle Schedul-
ing in Public Transport

1 Introduction

During the planning process for public transportation companies, two major
tasks are constructing a good timetable and determining a good vehicle schedule.
It is clear that the possibilities for the vehicle schedule depend heavily on the
timetable that has to be operated.

As many companies serve their network periodically, in a first step, the
timetable is only planned for one abstract period of e.g. 60 minutes, indepen-
dently from concrete times during the day. In general, there is one abstract plan
for the peak hours, one for the evenings, one for the week-ends, and possibly
some others.

The problem of scheduling vehicles such that for one day they operate a given
timetable has been extensively investigated by Lobel[2], even for the multi-depot
case. Decisions that have to be made include at which time vehicles should leave
and enter the depots, how they should perform the junction from the peak-hours’
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plan to the evening’s plan, and, last but not least, how to serve the abstract
plan e.g. for the evenings, which may be operated from 7 p.m. until 11 p.m.

The last point is the only one that has the same horizon as the periodic
timetable optimization task, because everything repeats periodically and there-
fore can be considered as one abstract period. Hence, it would be nice to
construct a periodic timetable requiring as few vehicles as possible. But this
leads to a mixed integer quadratic program with linear constraints, see Liebchen
and Peeters[1]. Remains the problem of at least quickly evaluating a periodic
timetable — besides passengers’ waiting times — by the number of vehicles re-
quired to serve the timetable as well.

The purpose of this paper is to show that within every terminus station the
Periodic Assignment Problem (PAP) can be solved by assigning every incom-
ing event greedily — in a FIFO manner — to its nearest unmatched outgoing
event. This permits a quick calculation of the resources required to perform
a periodic timetable. Notice that for the general assignment problem locally
optimal decisions may prevent global optimality. Figure 1 shows that choosing

Figure 1: Local vs. global optimality in the general assignment problem

the minimally weighted arc does not yield a minimal assignment.

This paper is structured as follows: First, a point of time will be identified
such that for any later point of time within the abstract period there are at least
as many arrivals as departures. Starting at this point of time, the optimality of
the FIFO strategy will be established by giving a dual certificate that has the
same objective value. Finally, it will be proven that we may perform the greedy
assignment in any order.

2 A Nice Point to Start From

The problem is as follows. We are given a period length T in which n arrival
events as well as n departure events take place. Denote the points of time of
the arrivals by aq,...,a,, of the departures by dy,...,d,. Assigning event a;
to event d; involves a cost of (d; — a;) mod T'. We want to find an assignment,
or equivalently bipartite perfect matching, of minimal cost. For simplicity, we
assume that all events take place at distinct points of time.

We count the arrivals that occur before time ¢ € [0,T") by the function a(t) :=
#{i|a; < t}. For the departures, we analogously define d(t) := #{j|d; < t}.
The function f(t) := a(t) — d(t) counts how much more arrivals than departures
at the terminus station did take place before time ¢.



Lemma 1. Let t, € {ai,...,a,} minimize the function f, i.e. f(tg) =
min{f(¢)|t € [0,T)}. If we start counting at time tp, then for any point of
time t € [to,to + T'), we have a non-negative number of vehicles waiting at the
terminus station.

Proof. For an easier notation without the modulo operator, we shift all
events by an offset —tg, or T' — ¢ respectively:

~ Clz'—t(), ifclz'zt(]
@i -= { a; +T —tg, ifa; <ty (1)
i d; — to, if d; >ty
dj T { dj+T—t0, lfdj < to (2)

Count by f(t) the number of vehicles waiting at the terminus station with
respect to the events @; and d;. We show that

VO<t<tg: f(t-i-T—to):f(t)—f(to)ZO and

Vig<t<T: f(t—to) = f(t) = f(to) 2 0.

For the case ty < t, we have:

flt—to) = a(t—to) —d(t—to)
= #lilai<t—to}—#{jld; <t—to}
(Equation 1: @; < T —to = a; = a; — to)
= #ilto <ai <t} —##{jlto < d; <t}
= a(t) — a(to) — (d(t) — d(to))
= f(t) — f(to)-

The case t < ty is slightly more technical. There, we have:

Ft+T —to) at+T —to) —d(t +T — to)
= #ila<t+T —to} —#{j|dj <t+T —to}
= #{ila<T—to} +#{i|T—to < <t+T —to} —
—#{jld; <T —to} —#{j|T —to <dj <t+T —to}
(Equation 1: @; >T —tg = a; = a; + T — tg)
= #{ila; >t} +#{i|a; <t} —
—#{jld; > to} — #{jld; <t}
= (n—#{ilai <to}) +a(t) — (n—#{jld; <to}) —d(?)
—alto) + a(t) + d(to) — d(t)
f(&) = f(to)-

[ |

By Lemma 1, we know that corresponding to the events a; and Jj, at any

point of time, there have been at least as many arrivals as departures. Or,

in other words, at any point of time, there can be a non-negative number of
vehicles waiting within the terminus station.



3 Proving Optimality

From the preceeding section we may assume w.l.o.g. that for any point of time,
we have at most as many departures as arrivals. We refer to an arc (4,7) in
the bipartite arrival/departure graph as forward arc, if 0 < a; < d; < T and as
backward arc, if 0 < dj < a; <T. The cost of a forward arc (i, j) is dj — a;, and
dj + T — a; for a backward arc.

Hence the FIFO strategy, which leads to the assignment

Vizl,...,n: az-—>d,-,

uses only forward arcs.

Theorem 1. The FIFO assignment is an optimal periodic assignment, when
starting at time 2o.

Proof. To prove optimality of this assignment, we consider the linear pro-
gramming relaxation of the assignment problem. This is well known to be totally
unimodular, i.e. has the same optimal value as the combinatorial problem. Thus
we can prove optimality by providing a dual certificate for the optimality of the
LP relaxation. Rockafellar[4] gives a combinatorial motivation for the same dual
certificate.

The primal linear program to be studied is

min cx

st. Btz=1
Bz =-1
z >0,

where Bt and B~ are the submatrices of the node-arc-incidence matrix

Bt
(7]
of the assignment graph, carrying the positive resp. negative entries, or in other

words, the departure resp. arrival nodes. The vector 1 denotes the all-one
vector. The corresponding dual linear program can be formulated as

n (3

max . uj— y
i=1

J=1
st uj—v; <wiy, Ya=(i,5) € A

3)

In our special case of periodic assignments, the events’ points of time fulfill
all the requirements, when starting to count at an appropriate point of time, cf.
lemma 1. Since the cost w;; of arc a = (4, j) was defined to be at least d; — a;,
the events’ points of time are feasible to the dual program (3). And as the FIFO-
assignment makes no use of backward arcs, the primal cost of the assignment

18
n

Ddi—a) =) di-Y a,
i=1 i=1

i=1

which equals the dual objective of the required dual node values. |



4 Any Point is a Nice Point

The example in figure 2 shows that different orderings of the arrival events may
lead to different greedy FIFO assignments. Assume a period length of T' = 4,

0 1

L

2 3
Figure 2: Different orders lead to different periodic assignments

arrivals at times a; = 0 and as = 1, deparuteres at times d; = 2 and dy = 3. If
we start at time 0, we assign a; to di. But if we start at time 1, we just get the
other possible assignment.

One might ask if the solution quality of the greedy assignment varies under
different orderings. But we will show that our shifting has only been necessary
for the formal proof. In practice, we may apply the greedy assignment to any
order of the arrival events.

Definition. For a given ordering of the arrival events, the greedy assignment
matches the current arrival event to its nearest unmatched departure event.

Corollar 1. For every ordering, the associated greedy assignment is an
optimal periodic assignment.

Proof. From the previous section we know that we can only get worse, if a
backward arc has to be involved, because then we get a duality gap of at least T'.
Assume that an assignment that arises by applying our greedy approach contains
a backward arc (ag,d;). Let (ag,d;) be the first backward arc to be chosen by
the algorithm, hence d; < ay.

Consider the last unmatched departure event dy in [0,7). We know dy <
ay, since otherwise a; would be matched with dy instead of d;. The claim
is that then f(dy + €) < 0, which would contradict implications of lemma 1.
Say that the number of matched departures after dy is M > 0. Since dy has
been unmatched, hence available, when any of those were matched, they were
matched by M arrivals that reside after dy. By definition, there is no further
departure event after dg, but at least the event ay as one additional arrival event.
Hence, a(do+€) < n—(M+1), but d(do+¢€) = n— M. Thus, f(do+e¢) < —1<0,
which contradicts the definition of our value tg. |

Hence, no matter which order we apply, every arrival event may be assigned
to the earliest unmatched departure. This can be interpreted as follows: By
definition, at time to it is possible that there are no vehicles waiting at the
terminus station. Since every backward arc would imply a vehicle to wait at
time tp9, we know that in an optimal assignment any vehicle must not wait at
the terminus station at time ¢g.



5 Further Remarks

For the case where lines with different periods share one terminus station, we
could ask if we may avoid expanding the lines to their least common multiple
period, and assign only lines with the same period. Unfortunately, in general
this does not give an optimal solution.

Consider an example with one line being operated every 10, another one
every 15 minutes.

arrival 00 02 10 17 20
departure | 01 08 16 18 28

Applying the FIFO rule to the single events occuring within the least common
multiple of the two lines’ periods, the total vehicle waiting time sums up to 1+
6+6+1+8 = 22 minutes. If the vehicles were required to continue on lines that
are operated in the same interval, a total waiting time of 3-8+2-14 = 52 minutes
would have arosen. Calculating on the greatest common divisor of the periods
of the unexpanded arcs’ endpoints does not help: The plan

arrival 00 02 10 17 20
departure | 05 07 15 22 25

implies a total vehicle waiting time of 5-5 = 25 minutes, whereas it seems
to be advantagious when avoiding expansion to the least common multiple by
calculating on the greatest common divisor of the four original events.

Notice that any two periodic assignments always differ by an integer multiple
of the period. This can easily be seen by investigating the few possible cases
when switching two pairs’ assignments.

Finally, we do not need to restrict ourselves to assignments within one single
terminus station. Even connecting trips of vehicles may be considered. We just
have to increase the minimal amount of time that has to elapse from the arrival
of the vehicle on one line to the time when it is ready for its next departure on
a line starting at a different station. The only thing we have to ensure is that
within every group we are dealing with the same number of arrival events as
departure events, and that within such a group, any arrival may be matched
with any departure.

6 Conclusions

We considered the problem of calculating the amount of rolling stock required
to operate a periodic timetable. Even if we allow line changes of vehicles within
their terminus stations, we are able to quickly calculate the vehicles’ total wait-
ing time during one abstract period, which indeed implies the number of vehicles
required to serve the timetable. Although for the general assignment problem
the greedy approach has to fail, in our special case of assigning periodically
incoming events to periodically leaving events, it leads to an optimal periodic
assignment.



This observation has a deep impact for the genetic algorithm proposed by
Nachtigall and Voget[3] for solving instances of the Periodic Event Scheduling
Problem. Although genetic algorithms require to evaluate a huge number of
potentially feasible solutions, we may introduce the very important quantity of
the exact amount of vehicles required to perform a periodic timetable, because
we know how to compute it sufficiently fast.
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