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Introduction

Combinatorial optimization captures a wide range of challenges such as infrastructure

design and scheduling of tasks. For a fixed number of possible new infrastructure con-

nections or tasks to schedule, there are exponentially many infrastructure networks and

schedules that can be created from them. This rules out assessing every possible net-

work or schedule for its quality to find the best option as inefficient. Instead, we need

more sophisticated, efficient strategies to find a best network or schedule. Due to the

many daily life occurrences of combinatorial optimization tasks, they can be tracked far

back in history. However, only with the advancement of computers and the develop-

ment of linear programming as a joint solution tool in the 1950’s, they have generated

extensive research [Sch05].

A major challenge for the application of combinatorial solutions is data uncertainty.

If, for example, the construction cost of a connection within a network or the process-

ing time of a job is only known roughly, this may significantly influence the quality

of a solution containing the connection or job. The challenge of optimization with

uncertain input data is the topic of three classical research streams. Robust optimiza-

tion [BTEGN09] considers a fixed set of scenarios for the uncertain data. We evaluate

each solution by the performance it can attain for all possible scenarios. Then, the

evaluation of each solution yields a guarantee on the solution performance, which is

completely independent of the scenario that will occur. Naturally, we aim to find a so-

lution with maximal evaluation. In stochastic optimization [BL97] the set of scenarios

is weighted by a distribution that describes the probability that each scenario occurs.

We compare the expected performance of the solutions to find the best one. It performs

well on average, but it may perform a lot worse for particular, unlikely scenarios. Both

of these areas, robust and stochastic optimization, assume that the set of scenarios is

fixed and the occurring scenario is only revealed after the complete solution has been

determined. Online optimization [BEY98] takes a different approach. Here, there are
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Introduction

no scenarios but instead the input data is revealed sequentially. For example in network

design we have to decide for each connection immediately if it is contained in the solu-

tion or not; without knowledge of how many and which additional connections will be

revealed.

All three approaches treat uncertainty in the input data as a ‘set in stone’ character-

istic of the optimization problem. However, in many contexts it is possible to obtain

exact or more precise data at a certain exploration effort. This is exactly the setting we

investigate in this thesis. Optimization with explorable uncertainty considers combina-

torial problems with uncertain input data, where improved or exact data can be explored

at an additional cost. A combinatorial problem has many feasible solutions. The quality

of a solution depends on the exact input data and thus is unknown when only uncertain

input data is available. When investing in more precise data, we query one data point at

a time for its exact value. This improves the knowledge about the quality of solutions

and consequently allows us to choose a solution of better quality. The goal is to quantify

the trade-off between an investment in more precise data and the resulting quality of the

solution to the optimization problem.

Such models have received little attention in the research community, even though

they regularly occur in practice. A classical application are estimated user demands that

can be specified by undertaking a user survey, but this is an investment in terms of time

and/or cost. Other applications include insufficient information on existing infrastruc-

ture for telecommunication network planning, where a field measurement can reveal the

capacity of an existing connection, or scheduling computer programs on a processor

whose running time could be improved by an unknown amount by a code optimizer.

A major research line in this context asks for the minimum exploration cost to find

an optimal solution for the underlying optimization problem. In a sense, this is the

opposite of robust optimization that aims for the best solution with zero exploration cost.

Uncertain input data can occur in the objective function, then exploration of uncertain

data helps to identify a solution that minimizes or maximizes the objective. A well-

studied example of this model is the minimum spanning tree problem with uncertain

edge weights.

An alternative is to consider uncertain feasibility. Here, a set of possibly feasible

solutions is given and exploring the input data yields additional information about the

feasibility. Either, there is a single feasible solution and finding it with little exploration

cost is the goal, or there are several feasible solutions. Then, data exploration has to
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Introduction

find the feasible solution that maximizes or minimizes the optimization goal. The k-th

smallest value problem is a member of the single feasible solution case, while packing

a knapsack with uncertain item weights falls in the latter category.

Uncertainty exploration also describes the study of trade-offs between solution qual-

ity and exploration cost. Here, one can relax the optimality condition and minimize the

exploration cost to find an approximate solution. Or, given a fixed budget for the un-

certainty exploration, one aims to maximize the quality guarantee one can give for the

solution.

In all of these approaches the exploration cost and the solution quality are assessed

separately, like a bi-criteria optimization problem. A new direction combines these two

in a single objective function. This occurs when both, exploration and solution, use the

same resource – like time, cost, or energy – and thus affect each other. For example in

scheduling, computer programs and a code optimizer that could improve the program’s

running time, both compete for time on the processor.

Related Work

Uncertainty exploration was probably first studied for the maximum and median value

problem [Kah91]. For a set of elements with uncertainty intervals instead of element

weights, find the maximum and median by querying a minimum number of elements

for their exact weight. These are special cases of the k-th smallest value problem, for

which an algorithm using at most OPT + k queries exists [GSS16].

Another line of work considers the minimum spanning tree (MST) problem with un-

certain edge weights [EHK+08]. There is a best-possible, deterministic 2-competitive

algorithm [EHK+08] that can be generalized to the problem of finding a minimum

weight basis of a matroid with uncertain weights [EHK16]. The verification problem

of finding the optimal query set for a given realization of edge weights can be solved

optimally in polynomial time [EH14].

A generalization of this is the cheapest set problem under uncertainty [EHK16].

For a set of elements whose weight is known to lie in an element-individual interval,

find the cheapest set from a family of subsets of the element set. There is no constant-

competitive algorithm for this setting. However, when the parameter d denotes the

largest size of a set in the family, there is an algorithm identifying the cheapest set by

querying less than d ·OPT +d elements [EHK16] and there cannot be a better algorithm.

Further problems studied in this uncertainty model include computing a function
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value [KT01], and combinatorial optimization problems, such as shortest path [FMO+07],

finding the median [FMP+03] and minimum multicut in trees [EHK16]. Geometric

problems were studied on a set of points with uncertain location in the optimization

model [BHKR05] and in the verification version [CH13].

In the offline setting one has to choose a set of queries that ensures to identify an

optimal solution, independent of the underlying, unknown realization. This has been

studied for caching problems in distributed databases [OW00], shortest path [FMO+07],

and finding the median [FMP+03]. These works also initiated the study of trade-offs

between the number of queries and the precision of the solution.

A generalized exploration model was proposed in [GSS16], where upon an element

query, a refined open or trivial subinterval is revealed and thus multiple queries per edge

might be required. They show that the MST algorithm in [EHK+08] can be adapted

and still achieves competitive ratio 2. For k-th smallest value there is a 2(OPT + k)-

competitive algorithm [GSS16].

For the model where a fixed budget for the exploration cost is given, there are deter-

ministic and randomized algorithms for the knapsack problem with uncertain weights

as well as computational experiments [GGI+15].

Research that considers non-uniform query costs has been undertaken on the k-th

smallest value problem [FMP+03]. They consider the described online and offline ver-

sions of the problem and analyze the impact of asking to find the k-th smallest element

only up to a precision given as the input.

There is also a recent survey of the research on uncertainty exploration [EH15].

The model combining exploration cost and solution quality, which we study in

Chapter 5, is inspired by (and draws motivation from) recent work on a stochastic

model of scheduling with testing [Lev16, LMS15, Sha16]. They consider minimizing

the weighted sum of completion times on one machine for jobs whose processing times

and weights are random variables with a joint distribution that are independent and

identically distributed across jobs. In their model, testing a job does not make its pro-

cessing time shorter, it only provides information for the scheduler (by revealing the

exact weight and processing time for a job, whereas initially only the distribution is

known). They present structural results about optimal policies and efficient optimal or

near-optimal solutions based on dynamic programming [LMS15].
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Thesis Outline

In this thesis we investigate the potential, limits, and applicability of optimization with

explorable uncertainty. We present new algorithmic results, lower bounds, and compu-

tational experiments. In Chapter 1, we study the minimum spanning tree (MST) under

uncertainty problem and its extension to matroids using the most popular model for

uncertainty exploration. In a given graph, we know initially for each edge only an in-

terval containing the true edge weight. The true value is revealed upon request (we say

‘query’) at a given cost. The task is to determine a minimum-cost adaptive sequence

of queries to find a minimum weight spanning tree. In the basic setting, we only need

to guarantee that the obtained spanning tree is minimal and we do not need to compute

its actual weight, i. e. , there might be tree edges whose weights we never query, as they

appear in an MST independent of their exact weights. We measure the performance of

an algorithm by competitive analysis. For any realization of edge weights, we compare

the query cost of an algorithm with the optimal query cost. This is the cost for verifying

an MST for a given fixed realization. We distinguish between deterministic algorithms

and randomized ones. Deterministic algorithms have a predefined behavior for any al-

gorithm state, while randomized ones may decide their behavior randomly according

to a fixed probability distribution. This means such an algorithm may choose different

behaviors and thus lead to altered results when run repeatedly. We evaluate randomized

algorithms by their expected performance.

For minimum spanning tree under uncertainty we develop a randomized algorithm

that improves upon the competitive ratio of any deterministic algorithm. This solves an

important open problem in this area [EH15]. We also present the first algorithms for

non-uniform query costs and generalize the results to matroids with uncertain weights,

in both settings matching the best known competitive ratios for MST with uniform query

cost. This showcases many characteristics of the topic and raises two important ques-

tions. Given the algorithms for MST under uncertainty with small competitive ratio,

how is their performance in practice? How far can we extend the problem class beyond

MST and matroids and maintain a small competitive ratio?

In Chapter 2 we answer the first question. We conduct the first practical experi-

ments for MST under uncertainty using data from an application in telecommunications

and uncertainty instances generated from the standard TSPLib graph library. We con-

sider three algorithms presented in Chapter 1 and compare their empirical behavior to

5



Introduction

the theoretical analysis of the algorithms. Among others, we observe that the average

performance and the absolute number of queries are both far from the theoretical worst-

case bounds. Thus, MST under uncertainty and also matroids are well-understood and

can be solved with small exploration cost in theory and practice.

However, we show in Chapter 3 that any generalization increases the competitive ra-

tio. Set systems are given by a ground set of elements together with a family of subsets

of the element set. Initially, we know for each element only an interval containing the

element weight. The true value is revealed upon a query of the element at a given cost.

The task is to determine a minimum-cost adaptive sequence of queries to find a maxi-

mum weight set from the family. As before, we can guarantee that the obtained set has

maximal weight without computing its actual weight and we measure the performance

of an algorithm by competitive analysis. We show that for any set system whose family

of inclusion-wise maximal sets does not equal the basis set of a matroid, no algorithm

has competitive ratio c < 3. Thus, a set system allows an algorithm with competitive ra-

tio 2 if and only if the family of maximal sets equals the basis set of a matroid. We also

show non-constant lower bounds for two special cases: matching with uncertain edge

weights, even on bipartite graphs, and knapsack with uncertain profits. We consider

linear programs with uncertain objective function as a further generalization. Here, we

give an alternative, geometric proof of the lower bound.

In Chapter 4 we study facets of uncertainty exploration that diverge from the clas-

sical model of minimizing the exploration cost to identify a solution that optimizes the

uncertain objective function. The competitive ratio improves for the variant of MST

under uncertainty where the weight of the minimum spanning tree has to be computed.

When queries may return subintervals instead of points and edges can be queried mul-

tiple times, randomization does not improve over deterministic algorithms. At the same

time allowing for non-uniform query costs incurs no loss in performance. We also show

that identifying an approximate MST under uncertainty does not improve the competi-

tive ratio. This means that the trade-off between solution quality and competitive ratio

is constant. Limiting the number of consecutive queries and thus enforcing parallel

queries was proposed as an interesting question in [EH15]. We give a lower bound

and present a non-trivial algorithm for this model. Additionally, we analyze uncertainty

exploration when the feasibility of solutions is uncertain. This includes k-th smallest

value, sequencing, and knapsack with uncertain weights.

Having seen the possibilities and limits of the classical approach for uncertainty ex-
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ploration, we consider a novel model in Chapter 5. We combine the exploration cost

and the solution quality in a single objective function for scheduling jobs on a single

machine. For a set of jobs, the processing time of a job can potentially be reduced (by

an a priori unknown amount) by testing the job. Testing a job takes one unit of time

and may reduce its processing time from the given upper limit (which is the time taken

to execute the job if it is not tested) to any value which is at least 0. The objective is

minimizing the sum of completion times. We give a 2-competitive deterministic algo-

rithm and prove a lower bound of 1.85 on the best possible competitive ratio of any

deterministic algorithm. This lower bound holds even for instances with uniform upper

limits. Furthermore, we show that randomization helps and present a 1.75-competitive

randomized algorithm. We also give a lower bound of 1.62 on the best possible compet-

itive ratio of any randomized algorithm. For the special case of uniform upper limits,

we give a deterministic algorithm that is 1.93-competitive.

We conclude with a summary of the current research state for uncertainty explo-

ration in combinatorial problems and a discussion of interesting open questions.

Notation and Formal Problem Description

We introduce our notation for uncertainty exploration in the classical model for the

minimum spanning tree problem, which is a reoccurring topic in several chapters. All

other problems and models are formally introduced in their respective chapters.

Consider a weighted, undirected, connected graph G = (V, E), with |V | = n and

|E| = m. Each edge e ∈ E comes with an uncertainty interval Ae and possibly a query

cost ce. The uncertainty interval Ae constitutes the only information about e’s unknown

weight we ∈ Ae. We assume that an interval with lower limit Le and upper limit Ue is

either trivial, i. e. , Ae = [Le,Ue], Le = we = Ue, or it is open, Ae = (Le,Ue), Le < Ue.

Closed, non-trivial intervals cannot be allowed as they lead to a non-constant compet-

itive ratio [EHK+08]. We refer to such an instance of our problem as an uncertainty

graph. A realization R is a set of edge weights (we)e∈E where for each edge e ∈ E its

weight we lies in the corresponding uncertainty interval, i. e. , we ∈ Ae.

The task is to find a minimum spanning tree (MST) in the uncertainty graph G for

an a priori unknown, feasible realization R of edge weights. To that end, we may query

any edge e ∈ E at cost ce and obtain its exact weight we according to R. The goal is

to design an algorithm that constructs a sequence of queries that determines an MST at

minimum total query cost. For a realization R of edge weights, a set of queries Q ⊆ E is
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feasible, if an MST can be determined given the exact edge weights for edges in Q only;

that is, given we for e ∈ Q, there is a spanning tree which is minimal for any realization

of edge weights we ∈ Ae for e ∈ E \ Q. We denote this problem as MST with edge

uncertainty and say MST under uncertainty for short. Note that this problem does not

necessarily involve computing the actual MST weight.

We evaluate our algorithms by standard competitive analysis. An algorithm is c-

competitive if, for any realization (we)e∈E, the solution query cost is at most c times

the optimal query cost for this realization. The optimal query cost is the minimum

query cost that an offline algorithm (knowing the realization of edge weights) must

pay to verify an MST. Note that we do not allow an additive term in the competitive

analysis, unless explicitly stated otherwise. The competitive ratio of an algorithm Alg

is the infimum over all c such that Alg is c-competitive. For randomized algorithms

we compare the expected query cost to the optimal query cost. Competitive analysis

addresses the problem complexity evolving from the uncertainty in the input, possibly

neglecting any computational complexity. However, we note that all our algorithms run

in polynomial time unless explicitly stated otherwise.

8



Chapter 1

Explorable Uncertainty for Minimum

Spanning Trees and Matroids

In this chapter, we investigate the minimum spanning tree problem with uncertain

edge weights. It is known that there is a deterministic algorithm with best possible

competitive ratio 2 (Erlebach et al. [EHK+08]). Our main result is a randomized

algorithm with expected competitive ratio 1 + 1/
√

2 ≈ 1.7071, solving the long-

standing open problem whether an expected competitive ratio strictly less than 2 can

be achieved (Erlebach and Hoffmann [EH15]). Based on structural insights into the

problem we design a preprocessing that maximally reduces the data uncertainty and

brings the instance into a special form. A relation between the algorithm and online

bipartite vertex cover is the key for the analysis of the randomized algorithm.

We also present novel results for non-uniform query cost and matroids.

Remark: The results in this chapter are based on joint work with Nicole Megow and

Martin Skutella, published at the European Symposium on Algorithms 2015 [MMS15]

and in SIAM Journal on Computing [MMS17]. Parts of Section 1.2 are joint work with

Jacob Focke and Nicole Megow and published at the Symposium on Experimental

Algorithms 2017 [FMM17].

The minimum spanning tree (MST) problem with uncertain edge weights is a well-

understood example for optimization with explorable uncertainty. A deterministic, best-

possible, 2-competitive algorithm was given by Erlebach et al. [EHK+08] and even ex-

tended to matroids [EHK16]. The verification problem, finding the minimum number

of queries to verify the minimum spanning tree for a fixed realization, can be solved

efficiently [EH14]. This uses a connection to the bipartite vertex cover problem. The

lower bound construction for deterministic algorithms yields a randomized lower bound

of 1.5, which we describe in Section 1.1 and was also noted by [EH15]. This raised the

important open question, whether randomization could improve upon the deterministic

9
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algorithms [EH15]. In this chapter, we answer this question affirmatively and consider

other questions about MST under uncertainty and its extension to matroids.

We start out with presenting lower bounds and an intuitive example in Section 1.1.

The deterministic lower bound on the competitive ratio is 2 [EHK+08] and the random-

ized lower bound 1.5. Our introductory example gives some intuition to the reader, as

it showcases key characteristics of the problem. We continue by presenting a novel pre-

processing that reduces the data uncertainty of an instance and characterizing a class

of instances which it solves completely in Section 1.2. Using the structural properties

gained by the preprocessing, we develop an algorithm framework in Section 1.3 under-

lying both our randomized algorithm as well as the results for non-uniform query cost.

In Section 1.4 we present this randomized algorithm with tight competitive ratio 1.7071,

thus beating the best possible competitive ratio 2 of any deterministic algorithm. One

key observation is that MST under uncertainty can be interpreted as a generalized on-

line bipartite vertex cover problem. A similar connection for a fixed realization of edge

weights was established in [EH14] for the MST verification problem. This allows to

borrow and refine ideas from a recent water-filling algorithm for the online bipartite

vertex cover problem [WW15].

In Section 1.5 we consider the more general non-uniform query cost model in which

each edge has an individual query cost. We observe that this problem can be reformu-

lated within a different uncertainty model, called OP-OP, presented in [GSS16]. The

2-competitive algorithm in [GSS16] is a pseudo-polynomial, 2-competitive algorithm

for our problem with non-uniform query cost. We design new, direct and polynomial-

time algorithms that are 2-competitive and 1.7071-competitive in expectation using the

framework from Section 1.3. To that end, we employ a new strategy carefully balancing

the query cost of an edge and the number of cycles it occurs in.

A natural generalization of MST under uncertainty is finding the minimum weight

basis of a matroid. Erlebach et al. [EHK16] show a 2-competitive deterministic al-

gorithm for this problem. We generalize our results for randomized algorithms and

non-uniform query cost to matroids with uncertain weights, in both settings matching

the best known competitive ratios for MST with uniform query cost. We also present

two deterministic, 2-competitive algorithms that can be interpreted as the best-in and

worst-out greedy algorithm on matroids.

10



1.1 Lower Bounds and Intuition

h: [1, 1]

g: (0, 3)→ 1f: (1, 4)→ 2

h: [1, 1]

g: (0, 3)→ 2f: (1, 4)→ 3

Figure 1.1: Lower bound example with realization R1 (left) and realization R2 (right).

The edge labels “e : (Le,Ue) → we” give edge e’s uncertainty interval (Le,Ue) as well

as its (a priori unknown) weight we in a particular realization.

1.1 Lower Bounds and Intuition

The basis for understanding the behavior of uncertainty intervals and queries is their in-

terplay on a cycle. This simple graph structure showcases both, lower bound examples

and insights about the structure of a feasible query set. Consider a triangle with edge

weights such that one edge is in any MST and the other two have overlapping uncer-

tainty intervals (cf. Figure 1.1). We cannot decide which of the two edges is in the MST

without querying at least one of them. Any deterministic algorithm decides to query

either edge f or edge g first. If it decides to query edge f first, the algorithm has com-

petitive ratio 2 for the realization R1, where the weight of edge f lies in the uncertainty

interval of edge g. As the weight of edge g is not in the uncertainty interval of edge f ,

the optimal query set is {g}. Symmetrically the realization R2 reveals competitive ratio 2

for all algorithms that query edge g first. Thus, as was already observed in [EHK+08],

no deterministic algorithm can achieve a competitive ratio smaller than 2.

Next we consider randomized algorithms for the instance given in Figure 1.1. Each

algorithm queries edge f with a certain probability first. We compute the expected com-

petitive ratio for the two realizations R1,R2 parametrized by this probability. It is easy

to observe that the best randomized algorithm queries both edges with probability 1/2

and has expected competitive ratio 1.5. This surprisingly easy example yields the best

known lower bound on the competitive ratio for randomized algorithms. This lower

bound was independently observed by Erlebach and Hoffmann [EH15].

Theorem 1.1 For minimum spanning tree under uncertainty, no deterministic algo-

rithm can achieve a competitive ratio smaller than 2 and no randomized algorithm can

11
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f : (2, 6)

e1 : (1, 4)

e2 : (1, 4)

e3 : [2, 2]

e4 : (0, 3)

e5 : (0, 2)

Figure 1.2: Cycle with edge f and edges e1, e2, e4 as additional candidates for being

maximal.

achieve a competitive ratio smaller than 1.5.

We observe important problem features when considering a more general cycle (cf.

Figure 1.2). To verify an MST on a cycle, we only need to identify an edge of maximal

weight. That means it has largest upper limit on the cycle and either it has a trivial

uncertainty interval or no other upper limit exceeds its lower limit. Then there is an

MST that does not contain this edge and we can delete it [KV12]. We call such an

edge maximal. If there is no maximal edge in a cycle, an edge f with the largest upper

limit U f is a natural candidate for being maximal. We first observe that for each such

edge f , unless we query it, we cannot prove it is contained in an MST, as it has the

largest upper limit.

Observation 1.2 Given a cycle C, where no edge is known to be maximal, let f be

some edge with largest upper limit U f . Let R be a realization of edge weights, for

which f is in an MST, then f is contained in any feasible query set for R.

We furthermore observe two different possibilities for proving that an edge f with

largest upper limit U f is in no MST. If edge f has the unique largest lower limit, the

only other edges that are candidates for being maximal are the ones whose uncertainty

interval overlaps with that of edge f . In Figure 1.2 these are the edges e1, e2, e4. To find

a maximal edge in the cycle we can query edge f to prove its edge weight is larger than

the upper limit of all other edges. Instead we can also query all edges with overlap-

ping uncertainty interval and show their edge weight does not exceed f ’s lower limit.

If edge f does not have the unique largest lower limit, the latter option is not feasi-

12



1.2 Preprocessing

ble. Thus f must be in any feasible query set. This observation is strengthened and

generalized in Lemma 1.13.

Observation 1.3 Let f be some edge with largest upper limit U f on a cycle C which

does not have a maximal edge.

1. For any realization R, every feasible query set contains edge f or all edges in C

whose uncertainty interval overlaps that of edge f .

2. Unless edge f has the unique largest lower limit L f in C, it is in every feasible

query set for any realization R.

1.2 Preprocessing

We aim to design an algorithm that starts out with a minimum spanning tree for the

particular realization where the weight of each edge is set to its lower limit. All other

edges are considered in order of increasing lower limit and the algorithm iteratively tries

to add an edge to the current spanning tree, thus closing a cycle. By construction, this

cycle is closed by its edge with largest lower limit. The following preprocessing shows

that we can modify any instance such that this edge also has the largest upper limit in

the cycle. In particular, we can apply Observation 1.3 to this edge. We also show how

to adjust the preprocessing such that a maximum number of edges is queried and we

describe a particular class of instances that our preprocessing solves completely.

1.2.1 Preprocessing Algorithm

Given an uncertainty graph G = (V, E), consider the following two MSTs for extreme

realizations. The lower limit tree Tℓ ⊆ E is an MST for the realization wℓ, in which

all edge weights of edges with non-trivial uncertainty interval are close to their lower

limits, more precisely wℓ
e = Le + ε for infinitesimally small ε > 0. Symmetrically, the

upper limit tree Tu ⊆ E is an MST when the same edges have weight wu
e = Ue − ε. Each

of these sets of edge weights defines an order relation of the edges, where the relation

of edges with identical lower (upper) limit is not specified yet. We extend these order

relations to an arbitrary but fixed pair of total orderings denoted by ≺ℓ and ≺u. This

choice may affect the lower limit tree Tℓ and the upper limit tree Tu w.r.t. these orders.
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We investigate at the end of this subsection how this influences the number of queries

made in the preprocessing.

Theorem 1.4 Given an uncertainty graph with lower and upper limit trees Tℓ and Tu,

any non-trivial edge e ∈ Tℓ \ Tu is in every feasible query set for any realization.

Proof. Given an uncertainty graph, let h be an edge in Tℓ \ Tu with non-trivial uncer-

tainty interval. Assume all edges apart from h have been queried and thus have fixed

weight we. As edge h is in Tℓ, we can choose its edge weight such that edge h is in any

MST. We set wh = Lh + ε and choose ε > 0 so small, that all edges with at least the

same weight in wℓ now have a strictly larger edge weight. Symmetrically, if we choose

the edge weight wh sufficiently close to the upper limit Uh, no MST contains edge h.

Consequently we cannot decide whether edge h is in an MST without querying it.

Our algorithm Preprocessing (≺ℓ,≺u), Algorithm 1.1, applies this theorem repeat-

edly to a problem instance. We compute the two trees Tℓ and Tu and then query all

elements in the set Tℓ \ Tu with non-trivial uncertainty interval. This is repeated until

this difference contains only edges with trivial uncertainty interval. After at most m

repetitions, when all edges have been queried, this definitely is the case and thus the

algorithm terminates.

Algorithm 1.1: Preprocessing(≺ℓ,≺u)
Input: An uncertainty graph G = (V, E) and two orderings ≺ℓ,≺u.

Output: A query set Q ⊆ E and the two trees Tℓ,Tu.

1 Q← ∅;

2 Determine Tℓ and Tu according to ≺ℓ and ≺u respectively using Prim’s

algorithm [AMO93];

3 while Tℓ \ Tu contains a non-trivial edge do
4 Query all non-trivial edges in Tℓ \ Tu, and add them to Q;

5 Update Tℓ and Tu;

6 Return the query set Q and the two trees Tℓ,Tu;

Corollary 1.5 Algorithm 1.1 terminates and queries only edges that occur in any fea-

sible query set.
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Figure 1.3: Example displaying the importance of the ordering in Preprocessing(≺ℓ,≺u).

Preprocessing aims at simplifying the input instance, that is, we identify and query

edges that must be queried by any algorithm including the optimal one. Naturally, we

want to query as many such edges as possible before starting the actual algorithm.

The order relation of edges with identical lower limit or identical upper limit remains

unspecified in the definition of ≺ℓ,≺u above. Thus, the upper (lower) limit tree is not

unique and raises the potential for good or bad choices. As an example, consider a graph

of k identical two-edge cycles that are all joined in one node (cf. Figure 1.3). Each cycle

is of the form C = {e1, e2}, where all edges have the same lower limit L and upper limits

U1 < U2. Then, for any ordering ≺u the upper limit tree Tu does not contain e2 for each

of the cycles. For the lower limit ordering ≺ℓ, all orderings are feasible. For the ordering

e1 ≺ e2, we have Tℓ = Tu and the preprocessing does not query any edge. However, for

the ordering e2 ≺ e1 the two trees are disjoint and k edges are queried in the first iteration

of the preprocessing. Observing this significant impact, we define a specific pair of total

orderings ≺L,≺U on the edges and prove that Preprocessing(≺L,≺U) maximizes the total

number of queries made by the algorithm above.

Definition 1.6 (Limit Orders and Trees) Let G = (V, E) be an uncertainty graph and

let e1, . . . , em be an arbitrary but fixed labeling of the edges in E. Then we define two

orderings for the edges in E.

Lower Limit Order:

ei ≺L e j, either if Lei < Le j or if Lei = Le j and one of the following three holds:

1. ei trivial and e j non-trivial

2. Uei > Ue j and e j non-trivial
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3. Uei = Ue j and i < j.

Upper Limit Order:

ei ≺U e j, either if Uei < Ue j or if Uei = Ue j and one of the following three holds:

1. e j trivial and ei non-trivial

2. Lei > Le j and ei non-trivial

3. Lei = Le j and j < i.

We call the corresponding lower and upper limit trees TL and TU .

We show that Preprocessing (≺L,≺U) queries all edges which are in Tℓ \ Tu for any

other pair of orderings ≺ℓ,≺u. As a first step, it is not hard to see that an edge e, which is

contained in Tℓ \ Tu for some fixed orderings ≺ℓ and ≺u, remains in this set independent

from queries of edges other than e.

Lemma 1.7 An edge in Tℓ \ Tu remains in the set Tℓ \ Tu until it is queried.

Proof. Let e be in Tℓ \ Tu. As long as e is not queried, its interval limits do not change.

Querying other edges only increases their lower limits and decreases their upper limits.

Hence, e stays in Tℓ and remains excluded from Tu.

Next we prove that Preprocessing (≺L,≺U) does not terminate while there is a non-

trivial edge e in the set Tℓ \ Tu.

Lemma 1.8 If there is a non-trivial edge in Tℓ \ Tu, then there is also one in TL \ TU .

Proof. Assume there is a non-trivial edge e ∈ Tℓ \ Tu, but TL \ TU contains only trivial

edges. We distinguish three cases.

If e is in TL, it is also in TU . Then there is an edge h which is in the cut in TU \ e

and in the cycle in Tu ∪ e. As it is in the cut, we have Uh ≥ Ue. At the same time, the

cycle shows Uh ≤ Ue, such that the two upper limits must be equal. Then, the fact that

h is in the cut, but not in TU means Le ≥ Lh. If h is trivial, e must also be trivial, which

contradicts our assumption. Otherwise, as we choose h < TU and TL \ TU contains only

trivial edges, edge h is also not in TL. If h is not in the cut TL \e, there must be an edge g

in TL\TU that is in the cut TU \e and in the cycle TL∪h. This edge g is trivial, larger than

e in the ordering ≺U and smaller than h in the ordering ≺L. This means together with the

observations about the bounds of e and h we made above, that we have Ug ≥ Ue = Uh
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and Le ≥ Lh ≥ Lg. Thus e and h are both trivial: a contradiction. Alternatively, we

consider h is in the cut TL \ e, where only edges with lower limit at least as large as Le

are contained. This means Le ≤ Lh and consequently Le = Lh. The edge h is in the cut

TL \ e and in the cut TU \ e, which means we have e ≺L h and e ≺U h. However, this

contradicts that the intervals of e and h are identical.

If e is not in TL and not in TU , then there is an edge h which is in the cut Tℓ \ e and

in the cycle in TL ∪ e. As it is in the cut, we have Le ≤ Lh, and as it is in the cycle we

have Le ≥ Lh. Thus we have Le = Lh and Uh ≥ Ue because of the ordering of ≺L. We

choose h ∈ TL. As TL \ TU contains only trivial edges, edge h is also in TU . If h is not in

the cycle TU ∪ e, there must be an edge g in TL \ TU that is in the cut TU \ h and in the

cycle TL ∪ e. This edge g is trivial, larger than h in the ordering ≺U , and smaller than

e in the ordering ≺L. This means together with the observations about the bounds of e

and h we made above, that we have Ug ≥ Uh ≥ Ue and Lh = Le ≥ Lg. Thus e and h are

both trivial: a contradiction. Alternatively we consider h is in the cycle TU ∪ e, where

only edges with upper limit at most as large as Ue are contained. This means Uh ≤ Ue

and consequently Uh = Ue. Edge h is in the cycle TU ∪ e and in the cycle TL ∪ e, which

means we have h ≺L e and h ≺U e. However, this contradicts that the intervals of e and

h are identical.

Finally, we consider e ∈ TU \ TL. Then there is an edge h in the cut TU \ e and in the

cycle TL ∪ e. This means h ∈ TL \ TU and thus edge h is trivial. Additionally, we have

e ≺U h and h ≺L e, which means Lh ≤ Le ≤ Ue ≤ Uh. However, this is a contradiction

as e is non-trivial.

Combined, Lemmas 1.7 and 1.8 yield that Preprocessing(≺L,≺U) queries every non-

trivial edge in Tℓ \ Tu. This allows us to prove that our preprocessing queries all edges

queried in the preprocessing for some other ordering.

Theorem 1.9 Preprocessing(≺L,≺U) queries the union over all edges queried in Pre-

processing (≺ℓ,≺u) for all orderings ≺ℓ,≺u. Thus, it queries the maximum number of

edges characterized by Theorem 1.4.

Proof. We show by induction that edges queried in Preprocessing (≺ℓ,≺u) are also

queried in Preprocessing (≺L,≺U). By Lemmas 1.7 and 1.8, all edges queried in the

first iteration of Preprocessing (≺ℓ,≺u) are also queried in our specific preprocessing.

Let e be an edge that is queried in iteration i > 1 of Preprocessing (≺ℓ,≺u). Let S be

the set of all edges queried in the previous iterations. Then, by induction, the set S
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is queried by Preprocessing (≺L,≺U). Assume edge e is not queried by Preprocessing

(≺L,≺U). We consider Preprocessing (≺ℓ,≺u) in iteration i and additionally query all

edges which are queried by Preprocessing (≺L,≺U). By Lemma 1.7 edge e is still in

Tℓ \ Tu for this new uncertainty graph. However, this is exactly the uncertainty graph at

the end of Preprocessing (≺L,≺U). Thus, the termination of the algorithm at this point

contradicts Lemma 1.8.

Preprocessing (≺L,≺U) queries only edges in TL \ TU and at the end there are no

non-trivial edges in TL \ TU . The existence of non-trivial edges in TL \ TU increases

the size of every feasible query set, in particular also of the optimal query set. Hence,

it decreases the competitive ratio of an instance. Thus, when analyzing the worst-case

competitive ratio of an algorithm, we can restrict to instances where the preprocessing

does not query any edge. As we choose the same ordering for TL and TU for trivial

edges, this means TL = TU .

Assumption 1.10 Without loss of generality we restrict to uncertainty graphs for which

TL = TU holds.

1.2.2 Instances Solved by the Preprocessing

The preprocessing is a modification of the input instance and intuitively it simplifies

it by removing uncertainty. We note, however, that in theory it can lead to a worse

algorithm performance for specific input. Nevertheless, in the experiments we present

in Chapter 2, the preprocessing generally improves the performance ratio of our algo-

rithms. One class of our data sets is even solved exactly by the preprocessing alone. We

generalize this observation and characterize a family of uncertainty graphs which can

be completely solved by our preprocessing.

Proposition 1.11 For uncertainty graphs, in which every cycle contains only edges

with identical lower limit or only edges with identical upper limit, the algorithm Pre-

processing(≺L,≺U) finds an optimal solution.

Proof. The proof is by contradiction. Assume Preprocessing (≺L,≺U) terminates with

TL and TU and did not find a feasible query set. Then the uncertainty graph has a cycle

C on which it is unclear which edge has the largest weight. All but one edge of C are in

TL. Assume, that originally all edges on the cycle had the same upper limit. If there is

only one edge f with largest upper limit, all other edges on the cycle are trivial. Since
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it is unclear, which edge has largest weight on C, f cannot also have the largest lower

limit. Thus f is non-trivial and in TL \ TU , which is a contradiction. Otherwise, there

are two non-trivial edges e and f on C with largest upper limit, e ∈ TL and f < TU . This

means we can define an alternative ordering ≺u with f ≺u e and thus e < Tu. Thus, for

the preprocessing with orderings ≺L and ≺u we have e ∈ TL \ Tu. By Theorem 1.9 this

means Preprocessing(≺L,≺U) queries e, a contradiction to e being non-trivial.

A cycle with identical lower limits can be treated analogously.

1.3 A New Algorithm Framework

We design an algorithmic framework for MST under uncertainty, which allows to plug

in several different algorithmic cores. It is the basis for both, our randomized algorithm

and our algorithm for non-uniform query costs. The algorithm Framework is an adap-

tion of the deterministic algorithm for the problem presented in [EHK+08] in the sense

that it also relies on the cycle characterization of MSTs: Every edge not in a particular

minimum spanning tree is maximal in the cycle it closes when added to the MST.

Given an uncertainty graph G = (V, E) our algorithm Framework starts with a lower

limit tree TL. We can view this as a first candidate for an MST we want to verify. We

consecutively try to add the other edges f1, . . . , fm−n+1 ∈ R := E \ TL to it in order of

increasing lower limit; in case of ties we prefer the edge with the smaller upper limit.

In every iteration i = 0, . . . ,m − n + 1 we maintain a minimum spanning tree verified

for the already considered edge set Ei := TL ∪ { f1, . . . , fi}. That is, we maintain a nested

chain of subsets ∅ = Q0 ⊆ Q1 ⊆ · · · ⊆ Qm−n+1 such that Qi ⊆ Ei is a feasible query set

for Ei. When we try to add edge fi to the current spanning tree in iteration i, we consider

the cycle Ci it closes and query edges until we find a maximal edge on Ci. Once we find

such an edge, we delete it, as there is an MST not containing this edge. Then we start a

new iteration and take the next edge of the sequence into account. A formal description

of this procedure is given further below in Algorithm 1.2.

This algorithmic structure allows us to prove two lemmas about any feasible query

set and thus, in particular, the optimal feasible query set. The first lemma shows that any

feasible query set for the entire uncertainty graph G = (V, E) also verifies a minimum

spanning tree for the subgraph Gi = (V, Ei). This crucially relies on the fact that we add

edges ordered by increasing lower limit.
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Lemma 1.12 Let i ∈ {0, . . . ,m−n+1}. Given a feasible query set Q for the uncertainty

graph G = (V, E), then the set Q|Ei := Q ∩ Ei is a feasible query set for Gi = (V, Ei).

Proof. For some fixed realization of edge weights, let T be a minimum spanning tree of

G certified by the feasible query set Q. We construct a minimum spanning tree T ′ of Gi

by solely using information provided by the query set Q|Ei .

We first argue that there is a minimum spanning tree of Gi that contains every edge

in T ∩ Ei: Consider an edge e ∈ T ∩ Ei and let U ⊂ V be the subset of nodes in one

of the two connected components obtained by deleting e from T . Since Q is a feasible

query set, it certifies that e has minimal weight among all edges in E connecting U to its

complement V \U. As a consequence, query set Q|Ei certifies that e’s weight is minimal

among all edges in Ei connecting U and V \ U.

We proceed to deal with edges in Ei \ T by distinguishing two cases. The first case

is that adding edge e ∈ Ei \ T to T ∩ Ei closes a cycle C. Then, adding edge e to

tree T closes the same cycle C. Thus, as Q is a feasible query set, it certifies that edge

e is maximal on C. Moreover, since C ⊆ Ei, query set Q|Ei obviously suffices as a

certificate. We can therefore discard every such edge e.

The second case is, that adding edge e ∈ Ei \ T to the spanning tree T closes a

cycle C containing some edge f < Ei. The feasible query set Q certifies that e’s weight

is at least as large as the weight of any edge on C including edge f . Notice that Le ≤ L f

due to our ordering of edges by increasing lower limit. Thus, in order to certify that e’s

weight is not smaller than f ’s weight, its exact weight we must be known.

Summarizing, the query set Q|Ei certifies that edges in T∩Ei can be included into T ′,

certain edges can be safely discarded, and the exact weights of all remaining edges in

Ei are known. The gathered information clearly suffices to find a minimum spanning

tree T ′ and, as a consequence, Q|Ei is indeed a feasible query set for Gi.

In the next lemma we give a precise characterization of the edges which a feasi-

ble query set contains. This characterization is similar to the so-called ’Witness Set

Lemma’, that is used in [EHK+08] for their deterministic algorithm.

Lemma 1.13 For some realization of edge weights, let T be a verified MST of the

graph Gi = (V, Ei) and let C be the cycle closed by adding edge fi+1 to T . Furthermore,

let h be some edge with the largest upper limit in C and g ∈ C \ h be an edge with Ug >

Lh. Then any feasible query set for Gi+1 = (V, Ei ∪ { fi+1}) contains h or g. Moreover,

if Ag is contained in Ah, any feasible query set contains edge h.
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Proof. Consider a minimum spanning tree T ′ for Gi+1. We distinguish two cases de-

pending on edge h being in the tree T ′ or not. If h ∈ T ′, any feasible query set must

identify an edge of larger weight on the cycle C. Edge h has the maximal upper limit Uh

among all edges in C and thus it must be queried for that purpose. Hence, in this case,

edge h is in any feasible query set.

If edge h is not in the tree T ′, then h must have maximal weight in C. In particular,

a query set must verify that h’s weight is at least as large as g’s weight. The uncertainty

intervals of these two edges overlap, and thus any feasible query set contains at least

one of the two edges. Moreover, if g’s uncertainty interval is contained in that of edge h,

querying g does not reveal any information about the ordering of the two edge weights.

Hence, h must be contained in any feasible query set in this case.

The key to our framework is the preprocessing which results in Assumption 1.10, as

it yields structural information for the algorithm.

Lemma 1.14 For some realization of edge weights, let T be a verified MST of the

graph Gi−1 = (V, Ei−1) and let C be the cycle closed by adding edge fi to T . Then edge

fi has the largest upper limit in the cycle C.

Proof. By Assumption 1.10, TL = TU and thus edge fi is not in the upper limit tree TU .

This means, if the tree T has not changed and equals TL, edge fi has the largest upper

limit in the cycle it closes with the tree. If the tree has changed, some edge e ∈ TL on

it has been replaced by an edge f j, j < i, in T . This replacement happened when e and

f j where on a cycle C j and some edges from C j may now be in C. However, as edge e

was deleted, f j’s weight, and the weight or upper limit of all other edges on the cycle C j

must be smaller than the upper limit of the deleted edge e. Thus, the cycle C closed by

edge fi with T now contains other edges, but the upper limits never increase.

Thus, when we apply Lemma 1.13 in the analysis of our algorithm, any edge fi

has the role of edge h in the cycle it closes. This means that any feasible query set

contains either edge fi or all edges with uncertainty interval overlapping that of edge fi.

Moreover, by Observation 1.2, if edge fi is in the tree Ti (the MST we verified for Gi),

then edge fi must have been queried. Consequently, all edges that are not in the lower

limit tree and, in a later iteration, occur as edge g in Lemma 1.13 have already been

queried. We can thus restrict to consider those edges as g-edges that are in TL. We call

them neighbors of fi and let the neighbor set X( fi) contain all edges e ∈ Ci ∩ TL that

have an overlapping uncertainty interval Ue > L fi .
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Corollary 1.15 Given an uncertainty graph G = (V, E) and a realization of edge

weights, let TL be its lower limit tree. Let T be a verified MST of the graph Gi = (V, Ei)

and let C be the cycle closed by adding edge fi+1 to T . Furthermore, let X( fi+1) ⊆ C∩TL

be the neighbor set. Then any feasible query set contains fi+1 or X( fi+1).

Furthermore, Assumption 1.10 yields that after querying edge fi or the neighbor set,

the conditions for the second part of Lemma 1.13 are always fulfilled.

Lemma 1.16 Given a cycle C on which we have queried edge f with the largest lower

limit or all its neighbors X( f ) and still no edge is known to be maximal. Then any

edge e ∈ C with largest upper limit on the cycle (which may now be different from edge

f ) is in any feasible query set.

Proof. We distinguish two cases and show for both that we can apply Lemma 1.13: If

edge f was queried but is still not known to be maximal, its edge weight lies in the

uncertainty interval of e, as edge f has the largest lower limit. If all neighbors of f

were queried, we have e = f . This is because by Assumption 1.10 edge f has the

largest upper limit on C. Furthermore, the edge weight of one of f ’s neighbors lies

in A f , as f is not maximal. Thus, for both cases edge e is in any feasible query set by

Lemma 1.13.

Hence, we can extend the framework by the following two steps on a cycle Ci with-

out an edge that is known to be maximal. First, we call an algorithm Core which some-

how decides between querying edge fi and its neighbor set X( fi). If this query does not

identify a maximal edge, we continue querying edges in the cycle in order of decreasing

upper limit. A formal description of our algorithm is given in Algorithm 1.2.

As pointed out above, the algorithm maintains a verified MST for a subset of the

edges of increasing size. At the end of the algorithm the tree is verified for the complete

edge set E and thus Q is a feasible query set. Framework terminates, as in each iteration

of the while loop an edge is queried. As soon as all edges on a cycle have been queried,

we have certainly identified a maximal edge.

Any edge that is queried within Framework outside algorithm Core is in any fea-

sible query set by Lemma 1.16. Thus the competitive ratio of an algorithm is solely

determined by the query strategy of algorithm Core.

Remark 1.17 Framework together with the following simple Core procedure yields

a variant of the 2-competitive deterministic algorithm by Erlebach et al. [EHK+08]:
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Algorithm 1.2: Framework
Input: An uncertainty graph G = (V, E).

Output: A feasible query set Q.

1 Determine a lower limit tree TL and set the temporary graph Γ to TL;

2 Index the edges in R := E \ TL by increasing lower limit f1, . . . , fm−n+1;

3 Initialize Q = ∅;

4 for i = 1 to m − n + 1 do
5 Add edge fi to the temporary graph Γ and let Ci be the unique cycle closed;

6 Let the neighbor set X( fi) be the set of edges g ∈ TL ∩Ci with Ug > L fi;

7 if X( fi) is not empty then
8 Use algorithm Core to decide between querying fi and X( fi);

9 while no edge in the cycle Ci is known to be maximal do
10 Query an edge e ∈ Ci \ Q with largest upper limit Ue in Ci and add it to

the query set Q;

11 Delete a maximal edge from Γ;

12 Return the query set Q;

Query edge fi and an arbitrary edge with non-trivial uncertainty interval from X( fi), if

such an edge exists. By Corollary 1.15 at least one of the edges queried in each iteration

of Core is in any feasible query set. The iterations query disjoint edge sets of size at

most two, making this a 2-competitive algorithm. It’s main advantage is the fact, that is

does not need to restart after each query pair.

Relation to Vertex Cover

It was already observed by Erlebach and Hoffmann [EHK16] that MST under uncer-

tainty has a close relation to the vertex cover problem. They show that for a fixed real-

ization we can design a bipartite vertex cover graph using the relation of Lemma 1.13.

Then any feasible query set contains a vertex cover of this graph. We generalize the use

of this relation to a complete problem instance. We create a bipartite vertex cover graph

online along the execution of the Framework and thus prove a connection to the online

bipartite vertex cover problem.

In the online bipartite vertex cover problem one side of the bipartite graph is given

(consisting of the so-called offline vertices) and the vertices of the other side appear on-
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line one by one together with their incident edges. In any iteration we have to maintain

a feasible vertex cover of the revealed graph.

For an instance of MST under uncertainty we generate the graph as follows: All

edges of the lower limit tree TL form the offline vertices of the vertex cover graph. Dur-

ing an execution of the algorithm Framework we add the edge fi ∈ R to the temporary

graph Γ such that it closes a unique cycle Ci. Upon adding edge fi in the algorithm, we

add a corresponding vertex to the vertex cover graph and connect this new vertex to all

vertices corresponding to edges in Ci ∩ TL with overlapping uncertainty interval. Thus

the set of neighbors of the new vertex corresponds to the neighbor set X( fi).

Observe that the vertex cover graph we create depends on the realization of the

edge weights. We determine the maximal edge for every cycle Ci and delete it. This

determines which cycle is closed next and thus the next incidences in the vertex cover

graph. Thus, we need to create the vertex cover graph online and cannot do it a priori.

1.4 Randomized Algorithm

In this section we describe a randomized algorithm for MST under uncertainty that

achieves competitive ratio 1 + 1/
√

2 ≈ 1.7071. Our algorithm Random employs the al-

gorithm Framework presented in the previous section and makes use of its vertex cover

interpretation for the algorithm core. We decide how to resolve cycles by maintaining an

edge potential for each edge e ∈ TL. It describes the probability to query an edge. The

edge potentials are increased in every cycle we consider throughout the algorithm. To

determine the increase, we carefully adapt a water-filling scheme presented in [WW15]

for online bipartite vertex cover. This scheme considers all edges queried in Core, but

not those queried in Framework. This is the reason that our algorithm does not achieve

the same competitive ratio as for online bipartite vertex cover. In this section we assume

uniform query cost ce = 1, e ∈ E, and explain the generalization to non-uniform query

costs in Section 1.5.

Our algorithm Core of Random is the procedure that decides which edges to query

on a cycle Ci in Framework. We maintain an edge potential ye ∈ [0, 1] for all edges e ∈

TL which is initially set to 0. We query an edge if its potential exceeds the query bound b,

which we draw uniformly at random from [0, 1] before we start the algorithm Frame-

work. Thus we can interpret the potential as the probability that edge e is queried.

24



1.4 Randomized Algorithm

We identify the following goals for the algorithm design: First, edges in the neighbor

set of fi should be queried with high probability, as they can occur in further neighbor

sets later. Second, if an edge e in the neighbor set is queried with probability ye, edge fi

must be queried at least with probability 1 − ye to ensure feasibility. And third, in

expectation we cannot query more than 1 + α edges per iteration to achieve competi-

tive ratio 1 + α. Here, α is a fixed parameter that is determined later in the analysis.

Formally we achieve these goals by distributing no more than potential α among the

neighbor set X( fi). We distribute the potential among all neighbors such that they reach

an equal level t( fi) ∈ [0, 1] which is as large as possible. This means when we in-

crease ye to max{t( fi), ye} for all neighbors e ∈ X( fi), the total potential increase sums

up to at most α. Now we compare this threshold t( fi) to the query bound b to decide

which edges to query. If b is the larger of the two, we query edge fi and otherwise we

query all neighbors, the edges in X( fi).

Algorithm 1.3: Core of Random
Input: A cycle Ci of the algorithm Framework with its edge fi, neighbor

set X( fi), as well as the edge potentials ye = yi
e and the query bound b.

Output: A feasible query set Q ⊆ Ci.

1 Maximize the threshold t( fi) ≤ 1 s.t.
∑

e∈X( fi) max {0, t( fi) − ye} ≤ α;

2 Increase edge potentials ye := max {t( fi), ye} for all edges e ∈ X( fi);

3 if t( fi) < b then
4 Add edge fi to the query set Q and query it;

5 else
6 Add all edges in X( fi) to the query set Q and query them;

7 Return the query set Q;

The join of the two algorithms Framework and Core of Random together with the

preceding random choice of b and initially setting ye := 0, e ∈ TL, forms the algorithm

Random. This algorithm has competitive ratio 1 + 1/
√

2 ≈ 1.7071 for MST under

uncertainty, if we choose the parameter α to be 1/
√

2.

For the proof of this performance we use an amortized analysis over all cycles closed

during the run of the algorithm. We consider a fixed realization of edge weights and a

corresponding optimal query set Q∗. We denote the potential of an edge e ∈ TL at the

start of iteration i by yi
e and use ye to denote the edge potential after the last iteration
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of the algorithm. We will relate the expected number of queries of Random to the total

edge potential we distribute. For this, we first bound the potential distributed to edges

in TL \ Q∗ by the number of edges in R∩ Q∗ times our parameter α (where R = E \ TL).

Lemma 1.18 Given an instance of MST under uncertainty together with a realization

of edge weights, the edge potentials after an execution of Random, and any feasible

query set Q∗, it holds that ∑
e∈TL\Q∗

ye ≤ α · |R ∩ Q∗|.

Proof. For any edge e ∈ TL \ Q∗, Corollary 1.15 states that all neighboring edges f ∈ R

with e ∈ X( f ) must be in the optimal query set Q∗. The potential ye is the sum of the

potential increases caused by edges f ∈ R with e ∈ X( f ). As in each iteration of the

algorithm the total increase of potential is bounded by α, we have

∑
e∈TL\Q∗

ye =
∑

e∈TL\Q∗

∑
i: fi∈Q∗,
e∈X( fi)

max
{
t( fi) − yi

e, 0
}

≤
∑

i: fi∈R∩Q∗

∑
e∈X( fi)

max
{
t( fi) − yi

e, 0
}

≤
∑

i: fi∈R∩Q∗
α = α · |R ∩ Q∗|.

Similarly, we can bound the sum over 1− t( fi) of all edges fi ∈ R\Q∗. We will see in

the proof of the competitive ratio that 1 − t( fi) is the probability for an edge fi ∈ R \ Q∗

to be queried in Random.

Lemma 1.19 Given an instance of MST under uncertainty together with a realization

of edge weights, thresholds t( fi) determined in Core of Random, and any feasible query

set Q∗, it holds that ∑
i: fi∈R\Q∗

(
1 − t( fi)

)
≤

1
2α
· |TL ∩ Q∗|.

Proof. For an edge fi ∈ R \ Q∗ with t( fi) < 1 we distribute exactly potential α among

its neighbors X( fi) in Algorithm Lines 1 and 2 of the algorithm Core of Random. By

Corollary 1.15, X( fi) is part of the optimal query set Q∗. We consider the share of the

total potential increase each neighbor receives and distribute the term 1− t( fi) according
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to these shares. Hence,∑
i: fi∈R\Q∗

(1 − t( fi)) =
∑

i: fi∈R\Q∗

1 − t( fi)
α

∑
e∈X( fi)

max{t( fi) − yi
e, 0}

=
∑

e∈TL∩Q∗

∑
i: fi∈R\Q∗,

e∈X( fi)

1 − t( fi)
α

(yi+1
e − yi

e) . (1.1)

In the last equation we have used yi+1
e = max{t( fi), yi

e}. We consider the inner sum in

Equation (1.1) and bound the summand from above by an integral from yi
e to yi+1

e of the

function 1−z
α

. This yields a valid upper bound, as the function is decreasing in z and

t( fi) = yi+1
e , unless yi+1

e − yi
e = 0. Hence,∑

i: fi∈R\Q∗,
e∈X( fi)

1 − t( fi)
α

(yi+1
e − yi

e) ≤
∑

i: fi∈R\Q∗,
e∈X( fi)

∫ yi+1
e

yi
e

1 − z
α

dz ≤
∫ 1

0

1 − z
α

dz =
1

2α
.

Now we use this bound in Equation (1.1) and conclude∑
i: fi∈R\Q∗

(
t(1 − t( fi)

)
≤

1
2α
· |TL ∩ Q∗| .

Using these two bounds we can calculate the competitive ratio of the algorithm

Random.

Theorem 1.20 For α = 1/
√

2, Random has competitive ratio 1 + 1/
√

2, which is

approximately 1.7071.

Proof. We consider a fixed realization and an optimal query set Q∗, as before. First,

note that by Lemma 1.16 all edges queried in the algorithm Framework are in Q∗.

Now,observe that the increase of potentials in the algorithm depends on the cycles that

are closed and thus on the realization, but not on the queried edges. In particular, the

edge potentials are chosen independently of the query bound b in the algorithm. There-

fore an edge e ∈ TL\Q∗ is queried with probability P(ye ≥ b) = ye and an edge fi ∈ R\Q∗

is queried with probability P
(
t( fi) < b

)
= 1 − t( fi). Hence, we can bound the total ex-

pected query cost by

E
[
|Q|

]
≤ |Q∗| +

∑
e∈TL\Q∗

ye +
∑

i: fi∈R\Q∗

(
1 − t( fi)

)
.

Applying Lemmas 1.18 and 1.19 to this equation yields total expected query cost

E
[
|Q|

]
≤ |Q∗| + α · |R ∩ Q∗| +

1
2α
· |TL ∩ Q∗| .

Choosing α = 1/
√

2 yields the desired competitive ratio 1 + 1/
√

2 for Random.
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We consider the introductory example described in Figure 1.1 for realization R2, to

show that this algorithm analysis is tight. Random distributes potential α to edge g and

thus queries g first with probability α and f first with probability 1−α. As the realization

has the structure L f < wg < Ug ≤ w f we need two queries if we query edge g first and

one query otherwise. Thus the expected number of queries is 2α+ 1−α, which is 1+α.

The optimal query set has size 1, hence Random has expected competitive ratio 1 + α

for this instance.

1.5 Non-uniform Query Costs

We now turn to the problem MST under uncertainty in which each edge e ∈ E has

associated an individual query cost ce. Without loss of generality we assume ce > 0

for all e ∈ E since querying all other edges does not increase the total query cost. We

adapt our algorithm Random (Section 1.4) to handle non-uniform query costs achieving

the same competitive ratio 1 + 1/
√

2 and then show how to derive a deterministic 2-

competitive algorithm from it.

Before showing the main results, we remark that for rational query costs the problem

can also be transformed into the OP-OP model [GSS16]. This model allows multiple

queries per edge and each query returns an open or trivial subinterval (point). Given an

uncertainty graph, we model the non-uniform query cost ce ∈ Q>0, e ∈ E, in the OP-

OP model as follows: Let m be the smallest constant factor that makes all query costs

integral. Then querying an edge e returns the same interval for m · ce − 1 queries and

returns the exact edge weight upon the m ·ce-th query. Then the 2-competitive algorithm

for the OP-OP model [GSS16] has a running time depending on the query cost of our

original problem.

Theorem 1.21 There is a pseudo-polynomial, deterministic, 2-competitive algorithm

for MST under uncertainty with non-uniform query cost.

1.5.1 Randomization for Non-uniform Query Costs

We generalize the algorithm Core of Random (Section 1.4) to the non-uniform query

costs model. The adaptation is similar to one for the weighted online bipartite vertex

cover problem in [WW15]. For each edge fi ∈ E \ TL with query cost c fi we now dis-

tribute at most α · c fi new potential to its neighborhood X( fi). We obtain Algorithm 1.4,
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Core of Non-uniform Random, by replacing Algorithm Line 1 of Core of Random (Al-

gorithm 1.3) by:

Maximize t( fi) ≤ 1 s.t.
∑

e∈X( fi)

ce ·max{t( fi) − ye, 0} ≤ α · c fi holds.

We use Non-uniform Random to denote the algorithm Framework used together with

Algorithm 1.4: Core of Non-uniform Random
Input: A cycle Ci of the algorithm Framework with its edge fi, neighbor

set X( fi), as well as the edge potentials ye and the query bound b.

Output: A feasible query set Q ⊆ Ci and a maximal edge.

1 Maximize the threshold t( fi) ≤ 1 s.t.
∑

e∈X( fi) ce ·max {0, t( fi) − ye} ≤ α · c fi ;

2 Increase edge potentials ye := max {t( fi), ye} for all e ∈ X( fi);

3 if t( fi) < b then
4 Add edge fi to the query set Q and query it.

5 else
6 Add all edges in X( fi) to the query set Q and query them.

7 Return the query set Q;

Core of Non-uniform Random. We apply exactly the same analysis as presented in

Section 1.4 to prove the competitive ratio of this algorithm. There are non-uniform cost

variants of the two lemmas bounding the potential of the edges in TL and the query

probability of edges in R.

Lemma 1.22 Given an instance of MST under uncertainty together with a realization

of edge weights, the edge potentials after an execution of Non-uniform Random, and

any feasible query set Q∗, it holds that∑
e∈TL\Q∗

ce · ye ≤ α
∑

i: fi∈R∩Q∗
c fi .

Lemma 1.23 Given an instance of MST under uncertainty together with a realiza-

tion of edge weights, the thresholds t( fi) determined in Non-uniform Random, and any

feasible query set Q∗, it holds that∑
i: fi∈R\Q∗

c fi ·
(
1 − t( fi)

)
≤

1
2α

∑
e∈TL∩Q∗

ce.
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Using the same line of arguments as in the proof of Theorem 1.20, we can derive

the following theorem.

Theorem 1.24 For the non-uniform query cost setting our algorithm Non-uniform

Random achieves competitive ratio 1 + 1
√

2
.

1.5.2 Balancing Algorithm

Our polynomial-time algorithm Balance applies the algorithm Framework together

with an adaption of the previously described algorithm Core of Non-uniform Random

to the deterministic setting. We call this new core algorithm Core of Balance. Erlebach

et al. [EHK+08] prove that no deterministic algorithm can achieve competitive ratio less

than 2, even in the uniform cost case. Thus we set the parameter α to 1. The goals

for the algorithm design are the same as before. We prefer to query the neighbor set

of fi, as these edges may appear in several neighbor sets. However, we cannot query the

neighbor set, if the additional cost exceeds c fi to ensure the competitive ratio.

As before we achieve these goals by maintaining an edge potential ye for each

edge e ∈ TL. We reinterpret it as representing the share of the query cost of edge e

for which we have already accounted. As the optimal solution needs to contain either

edge fi or all edges in X( fi), its cost increases exactly by the smaller of the two costs.

We query edge fi, if its query cost is smaller than the not yet covered cost of the neigh-

bors. This is equivalent to a threshold t( fi) < 1. In this case, edge fi covers an additional

cost share of size c fi in the neighbor set and we increase the edge potentials accordingly.

Otherwise, all neighbors e ∈ X( fi) are queried.

Similar to the proof of the competitive ratio of algorithm Random, we divide the

algorithm’s query set into different parts and bound them separately to prove that algo-

rithm Balance is 2-competitive.

Theorem 1.25 Algorithm Balance has competitive ratio 2, which is best-possible.

Proof. For some realization, let Q∗ denote an optimal query set. Consider the query

set Q computed by Balance and let R := E \ TL. Then we can split the query set Q

into three parts Q ∩ Q∗, (TL ∩ Q) \ Q∗ and (R ∩ Q) \ Q∗. For all edges e ∈ TL ∩ Q we
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1.5 Non-uniform Query Costs

Algorithm 1.5: Core of Balance
Input: A cycle Ci of the algorithm Framework with its edge fi, neighbor

set X( fi) as well as the edge potentials ye.

Output: A feasible query set Q ⊆ Ci.

1 Maximize the threshold t( fi) ≤ 1 s.t.
∑

e∈X( fi) ce ·max {0, t( fi) − ye} ≤ c fi;

2 Increase edge potentials ye := max {t( fi), ye} for all e ∈ X( fi);

3 if t( fi) < 1 then
4 Add edge fi to the query set Q and query it;

5 else
6 Add all edges in X( fi) to the query set Q and query them;

7 Return the query set Q;

have ye = 1, hence, ∑
e∈Q

ce =
∑

e∈Q∩Q∗
ce +

∑
e∈(TL∩Q)\Q∗

ce +
∑

i: fi∈(R∩Q)\Q∗
c fi

≤
∑
e∈Q∗

ce +
∑

e∈TL\Q∗
ce · ye +

∑
i: fi∈R\Q∗

c fi .

The first term can be trivially bounded by the cost of Q∗. For the edges in R \ Q∗, we

charge their full query cost in terms of potential to the edges in the neighbor set. We

denote the edge potential at the start of iteration i by yi
e and denote the edge potential

after the last iteration of the algorithm by ye. By Corollary 1.15 we know that X( fi) ⊆ Q∗

for fi < Q∗. Thus we can reformulate∑
i: fi∈R\Q∗

c fi =
∑

i: fi∈R\Q∗

∑
e∈X( fi)

ce

(
yi+1

e − yi
e

)
≤

∑
e∈TL∩Q∗

ce · ye ≤
∑

e∈TL∩Q∗
ce .

For all edges in TL \ Q∗, we apply Lemma 1.22 with α = 1. Thus we get in total∑
e∈Q

ce ≤
∑
e∈Q∗

ce +
∑

e∈TL\Q∗
ce · ye +

∑
i: fi∈R\Q∗

c fi

≤
∑
e∈Q∗

ce +
∑

i: fi∈R∩Q∗
c fi +

∑
e∈TL∩Q∗

ce

= 2
∑
e∈Q∗

ce .

This factor of 2 is best possible for deterministic algorithms, even in the special case of

uniform query costs (cf. Section 1.1, [EHK+08]).
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Remark 1.26 Balance also yields a new 2-competitive algorithm for uniform query

cost. Contrary to the deterministic algorithm U-red in [EHK+08] and the one we de-

scribe in Remark 1.17, this algorithm does not query pairs of edges. Instead, it either

queries edge f or the complete neighborhood X( f ) in a cycle.

1.6 Matroid Basis under Uncertainty

We consider a natural generalization of MST under uncertainty. Given a ground set

of elements and a family of independent sets I ⊆ 2X, we call a matroid M = (X,I)

with an uncertainty interval Ax for each element x ∈ X instead of the element’s weight

an uncertainty matroid. We define a query and its cost exactly as for the MST problem

and refer to the problem of finding a minimum weight matroid basis in an uncertainty

matroid using a minimal number of queries as matroid basis under uncertainty.

Erlebach et al. [EHK16] show that the algorithm U-red [EHK+08] can be applied

to uncertainty matroids with uniform query cost and yields again a competitive ratio

of 2. Similarly, our algorithms Random and Balance can be generalized to matroids

with non-uniform cost.

Theorem 1.27 There are deterministic and randomized algorithms for matroid basis

under uncertainty with non-uniform query cost with competitive ratio 2 and 1+ 1/
√

2 ≈

1.7071, respectively.

In a matroid with known weights we can find a minimum weight basis using greedy

algorithms; we distinguish between best-in and worst-out greedy algorithms (cf. [KV12]).

They are dual in the sense that both solve the problem on a matroid and each takes the

role of the other on the corresponding dual matroid.

The worst-out greedy algorithm iteratively deletes elements whose weight is too

large. We present a worst-out greedy algorithm, Cycle, for uncertainty matroids by

merging ideas from the algorithms Random (Section 1.4) and U-red 2 ( [EHK16]). The

best-in greedy algorithm adds elements in increasing order of weights as long as the

system stays independent. Our best-in greedy algorithm Cut starts with a basis and

iteratively considers the set of elements that could replace one element in the basis.

Among this set, it chooses the element of smallest weight for the final basis.

Proposition 1.28 The algorithms Cycle and Cut are dual to each other in the sense

that they solve the same problem on a matroid and its dual.

32



1.6 Matroid Basis under Uncertainty

We show both algorithms, Cycle and Cut, have competitive ratio 2 for matroid basis

under uncertainty in the following. They start out with one basis, and then iterate among

the family of basis until the optimal one can be identified. This means, the feasibility

structure for sets of smaller cardinality does not affect the behavior of the algorithms.

Thus, our results do not hold only for matroids, but also for some generalizations of

matroids. Namely, set systems whose family of maximal feasible sets equals the basis

family of a matroid. We call such set systems matroid-like.

Remark 1.29 Our results generalize to matroid-like set systems. Well-known exam-

ples that fall into this category are greedoids with the strong exchange property and

∆-matroids (see [KLS91, CK88]).

1.6.1 Algorithm Cycle

The algorithm Cycle is inspired by our algorithm Framework as well as the algorithm

for uncertainty matroids in [EHK16]. To design a greedy algorithm, we avoid the pre-

processing step of the framework and thus do not rely on Assumption 1.10. This makes

the algorithm structurally purer and it yields better run times (cp. Chapter 2, Section 2.3)

but it may increase the absolute number of queries.

We start with a matroid basis and greedily delete elements, if they cannot improve

the basis weight. Analogous to the MST case we define a lower limit matroid basis BL

as a basis for the realization wL, in which all weights of elements with non-trivial uncer-

tainty interval are close to their lower limit, more precisely wx = Lx+ε for infinitesimally

small ε > 0.

Given an uncertainty matroid M = (X,I), Cycle starts with a minimal lower limit

basis BL. We can view this as a first candidate for a minimum weight basis we want

to verify. We consecutively add the other elements f1, . . . , fm−n+1 to it in order of in-

creasing lower limit; in the case of ties we prefer the element with the smaller upper

limit. In every iteration we maintain a minimum weight basis verified for the already

considered element set Xi := BL ∪ { f1, . . . , fi} with corresponding family of independent

sets Ii := {I ∩ Xi|I ∈ I}, i. e. , the matroid Mi := (Xi,Ii). For each element we add, we

consider the minimal dependent set C that is now contained. We query elements from C

until we identify a maximal element in this set, by each time choosing an element with

maximal upper limit f from C and an element g ∈ C \ f with overlapping uncertainty

interval. Note that here element f is not necessarily the just added element fi in the first
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iteration of the while loop, as our uncertainty matroid may not fulfill the equivalent of

Assumption 1.10 for matroids.

Algorithm 1.6: Cycle
Input: An uncertainty matroid M = (X,I).

Output: A feasible query set Q.

1 Determine lower limit basis BL; set the temporary basis Γ to BL;

2 Index all elements in R := X \ BL by increasing lower limit f1, f2, . . . , fm−n+1;

3 Initialize Q := ∅;

4 for i = 1 to m − n + 1 do
5 Add element fi to the temporary basis Γ and let C be the occurring minimal

dependent set;

6 while C does not contain a maximal element do
7 Choose f ∈ C s.t. U f = max{Ue|e ∈ C};

8 Choose g ∈ C \ { f } with Ue > L f ;

9 Add elements f and g to the query set Q and query them;

10 Delete the maximal element x from Γ;

11 Return the query set Q;

The query set the algorithm computes is feasible, as it verifies any element that is

deleted is maximal in a dependent set. It terminates, as in each iteration of the while

loop at least one element is queried. When all elements in a set C have been queried,

we always find a maximal element.

Observation 1.30 Cycle is a worst-out greedy algorithm for matroid basis under un-

certainty.

The structure of Cycle is very similar to our algorithm Framework. In particular, we

once again maintain a partial solution, i. e. a minimum weight basis verified for a subset

of the elements, and extend it by an additional element in every iteration. Hence, it is

not surprising, that we can reprove Lemmas 1.12 and 1.13 for the uncertainty matroid

setting.

Lemma 1.31 Given a feasible query set Q for an uncertainty matroid M = (X,I), then

the set Q|Xi := Q ∩ Xi is a feasible query set for Mi = (Xi,Ii).
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Lemma 1.32 Let B be a verified minimum weight basis of the uncertainty matroid

Mi = (Xi,Ii) and let C be the minimal dependent set contained in B ∪ fi+1. Fur-

thermore, let h be an element with the largest upper limit in C and g ∈ C \ h be

an element with Ug > Lh. Then any query set verifying a minimum weight basis

for Mi+1 = (Xi+1,Ii+1) contains h or g.

In particular, if Ag is contained in Ah, any feasible query set contains element h.

Theorem 1.33 Cycle is 2-competitive for matroid basis under uncertainty.

Proof. The query set Q that Cycle computes is built iteratively. In each step we consider

an element pair f , g and query the previously not queried part of it. This means we can

partition Q into subsets of size at most two and allocate an algorithm iteration to each

of them. By Lemma 1.31 any feasible query set must verify a minimum weight basis in

that iteration. Furthermore, Lemma 1.32 yields that any feasible query set contains at

least one element from the allocated query subset. Using the fact that any query subset

has size at most two, this yields that Q is at most twice as large as any feasible query

set.

1.6.2 Algorithm Cut

While previous algorithms (U-red [EHK+08], our algorithms) iteratively try to identify

the largest-weight element in a dependent set, we now attempt to detect the minimum-

weight element that turns an almost inclusion-wise maximal set into a basis. This yields

a best-in greedy algorithm based on ‘cuts’ that finds a minimum weight basis. Interest-

ingly, we show in Section 4.1 that the same algorithm optimally solves the problem of

computing the exact weight of the MST next to identifying the MST. As a key to our

result, we algorithmically utilize a generalization of the well-known characterization of

MSTs through the cut property – in contrast to previous algorithms which relied on the

cycle property (cf. Random, Balance, Cycle, and U-red [EHK+08]).

In our algorithm Cut we choose a particular upper limit basis BU to start the al-

gorithm. Let BU be a minimal basis for the realization wU , in which all weights of

elements with non-trivial uncertainty interval are close to their upper limit, more pre-

cisely wx = Ux − ε for infinitesimally small ε > 0. We can view this as a first candidate

for a minimum weight basis we want to verify. Let Γ initially be this basis BU . Then

we delete the basis elements g1, . . . , gn from Γ in order of decreasing upper limit; in

the case of ties we prefer the element with the larger lower limit. For each element we
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delete, we consider the set S ⊆ X of all elements that would complete a basis. We query

elements from S until we identify a minimal element in this set. An element is minimal,

if it has smallest lower limit in S and either trivial uncertainty interval or its upper limit

does not exceed the lower limit of any other element in S . We will see that this means

the element is in a minimum weight basis for any realization. Among the elements in S

we always query an element with smallest lower limit g and an element f ∈ S \ g with

overlapping uncertainty interval.

Algorithm 1.7: Cut
Input: An uncertainty matroid M = (X,I).

Output: A feasible query set Q.

1 Determine an upper limit basis BU and set the temporary basis Γ to BU ;

2 Index all elements of BU by decreasing upper limit g1, g2, . . . , gn;

3 Initialize Q := ∅;

4 for i = 1 to n do
5 Delete element gi from Γ;

6 Let S ⊂ X contain all elements x such that Γ ∪ {x} contains a basis;

7 while S does not contain a minimal element do
8 Choose g ∈ S s.t. Lg = min{Le|e ∈ S };

9 Choose f ∈ S \ {g} with L f < Ug;

10 Add elements f and g to the query set Q and query them;

11 Add a minimal element of S to Γ;

12 Return the query set Q;

The query set computed by the algorithm is feasible as it verifies any element in Γ is

minimal in a set S and at least one element from the set S is contained in every basis. It

terminates as in each iteration of the while loop an element is added or queried. When

all elements in a set S have been queried, we always find a minimal element.

Observation 1.34 Cut is a best-in greedy algorithm for matroid basis under uncer-

tainty.

We claim that Cut is dual to our algorithm Cycle in the sense that it behaves ex-

actly as Cycle does on the dual matroid. For a given uncertainty matroid M, the dual

matroid M∗ has the same element set and the set of independent sets contains all sets
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whose complement contains a basis. Thus a basis of the dual matroid is exactly the

complement of a basis of the original matroid.

We will consider the dual matroid with the inverted weight function. With this notion

we mean for any element x ∈ X with weight wx and uncertainty interval (Lx,Ux) we

consider the uncertainty interval (−Ux,−Lx) and weight −wx for the dual matroid.

We first prove that Cut computes a query set verifying a minimum weight basis of

the dual matroid for the inverted weight function.

Theorem 1.35 Cut computes a 2-competitive query set Q verifying a minimum weight

matroid basis for the dual matroid M∗ = (X,I∗) with inverted weight function.

Proof. Cut starts out with an upper limit basis X \ BU of the matroid M. According

to the inverted weight function, this is a lower limit basis of M∗. In the algorithm we

sort the elements of BU by decreasing upper limit. This is the same order as sorting

by increasing lower limit for the inverted weight function. The set S we choose is a

minimal dependent set, i. e. a cycle, in the dual matroid M∗. Exactly as required in

Lemma 1.32, we choose the two elements we query such that one has the largest upper

limit, i. e. the smallest lower limit according to the inverted weight function, and the

other has an overlapping uncertainty interval. Thus, for any element pair we add to the

query set Q, the optimal query set contains at least one of the two elements.

Therefore Cut computes a query set Q that verifies a minimum weight basis of M∗

and has at most twice the size of any query set verifying such a basis.

Theorem 1.36 Cut is 2-competitive for matroid basis under uncertainty.

Proof. We need to prove that the query set Q computed by the algorithm Cut verifies a

minimum weight matroid basis and has at most twice the size of any feasible query set

fulfilling this property. First, we observe that Cut verifies a minimum weight matroid

basis of the dual matroid M∗ with inverted weight function. The complement of a basis

of the dual matroid is a basis of the original matroid M. Hence, the algorithm verifies

a basis of the matroid M of maximum weight for the inverted weight function. This

however, means it verifies a basis of M of minimum weight according to the original

weight function.

The line of arguments above shows that any set verifying a minimum weight matroid

basis of M∗ for the inverted weight function also verifies a minimum weight matroid

basis of M for the original weight function and vice versa. Hence, the family of feasible

query sets is the same for both problems. As the computed query set Q is at most twice
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the size of a feasible query set for a minimum weight matroid basis of M∗, it also has

at most twice the size of a feasible query set verifying a minimum weight matroid basis

of M with inverted weight function.
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Chapter 2

Computational Experiments for

Minimum Spanning Tree with

Explorable Uncertainty

In this chapter, we study the minimum spanning tree (MST) problem with uncertain

edge weights in experiments. This problem has received quite some attention from

the algorithms theory community. We conduct the first practical experiments for MST

under uncertainty, theoretically compare three known algorithms, and compare the-

oretical with practical behavior of the algorithms. Among others, we observe that

the average performance and the absolute number of queries are both far from the

theoretical worst-case bounds. Our experiments are based on practical data from an

application in telecommunications and uncertainty instances generated from the stan-

dard TSPLib graph library.

Remark: The results in this chapter are based on joint work with Jacob Focke and

Nicole Megow. They are published at the Symposium on Experimental Algorithms

2017 [FMM17].

The MST problem, one of the most fundamental and practically relevant combinatorial

optimizations problems, has been investigated intensively in the uncertainty exploration

model from the theoretical perspective. Erlebach et al. [EHK+08] present a determin-

istic algorithm that achieves the optimal competitive ratio 2. A simplification of this

algorithm that omits a repetitive restart by preserving the competitive ratio is presented

in Chapter 1 Section 1.6. Also the existence of a dual algorithm is observed. A ran-

domized algorithm with expected competitive ratio of 1 + 1/
√

2 ≈ 1.7071 is given in

Section 1.4 of Chapter 1, whereas the best-known lower bound is 1.5. It uses a prepro-

cessing presented in Section 1.2 of the same chapter. The offline problem of finding the
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optimal query set for a given realization of edge weights can be solved in polynomial

time [EH14].

Compared to the amount of theoretical research, there is a lack of experiments eval-

uating these results in practice. We are not aware of any experimental results for MST

under uncertainty. A study on the knapsack problem by Goerigk et al. [GGI+15] seems

to be the only work that contains computational experiments conducted in this field.

In this chapter, we theoretically compare three algorithms for MST under uncer-

tainty, make practical experiments, and showcase similarities and differences between

theoretical and practical observations. In Section 2.1 we present our implementation of

the two deterministic algorithms and the randomized algorithm from the previous chap-

ter and compare them theoretically. We also discuss our implementation of the prepro-

cessing we employ for all three algorithms. We show there are instances on which the

deterministic algorithms have opposing behavior, meaning that one algorithm is near-

optimal and the other shows its worst-case performance. Similarly, instances exist on

which the randomized algorithm has opposing behavior to the deterministic algorithms.

We explain the origin of the data for the experiments and the setup for our compu-

tational experiments in Section 2.2. We run the experiments on two different data sets.

The first set of data is from a telecommunication service provider. It describes a problem

that appears when expanding a cable network to a new roll-out area. First, the facility

locations are chosen that need to be connected. The exact connection costs between the

facilities are unknown and can only be explored through costly field measurements. We

find the best MST under uncertainty for these instances. We complement this practical

data by a second data set, which we generate based on graphs available in the well-

known graph library TSPLib [Rei91]. For both data sets we consider instances where

the realizations are uniformly distributed in the uncertainty interval and those with a

binary distribution at the two extreme points of the interval.

In Section 2.3 we describe our experimental results and compare them to the theo-

retical analysis. Our experiments show that the average competitive ratio is small and

the total number of queries as well. Both, the competitive ratio and the variance in the

size of an optimal solution are far from the worst-case. While theoretically there are

instances on which the two deterministic algorithms show opposing behavior, in our

experiments their performance is close to equal for all instances. We show that there are

instances on which the two deterministic algorithms perform better than the randomized

one. Surprisingly, we observe this behavior for the telecommunication data, while for
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the TSPLib data the opposite happens and the randomized algorithm has a significantly

smaller competitive ratio. For the extreme distribution, where for each edge the realiza-

tion is at one of the two endpoints of the interval, the preprocessing completely solves

all instances of the telecommunication data. For the TSPLib data there are instances

where either distribution allows for better performance of the algorithms.

In total, these experiments show that the implementation hurdle is small and our

runtimes are reasonably small, even though we did not optimize on it.

2.1 Algorithm Introduction and Theoretical Com-

parison

In this section we compare known algorithms for MST under uncertainty. The first (de-

terministic) algorithm U-red was introduced by Erlebach et al. [EHK+08]. It achieves

the best-possible competitive ratio of 2. In Section 1.6 we present the two deterministic

algorithms Cycle and Cut with competitive ratio 2 for computing a minimum weight

matroid basis. Applying Cycle to compute an MST can be interpreted as a variant of

U-red without repeated restarts and, thus, we consider here only this simplified vari-

ant. The randomized algorithm Random we describe in Section 1.4 has competitive

ratio 1.7071. Here the best known lower bound is 1.5. For all three algorithms Cy-

cle, Cut, and Random we apply the preprocessing Preprocessing (≺L,≺U) presented in

Section 1.2.

We briefly describe the three algorithms again below and display the pseudo code of

our implementation. Recall that we use the following definitions: An edge is maximal

in a cycle, if it has the largest upper limit and it either has a trivial uncertainty interval

or no other upper limit exceeds its lower limit. Symmetrically, an edge is minimal in a

cut, if it has the smallest lower limit and it either has a trivial uncertainty interval or no

other lower limit is less than its upper limit. For a cycle C where no edge is maximal

and edge f has largest upper limit, we call the set of all edges e ∈ C with Ue > L f the

neighbor set X( f ) of edge f .

Preprocessing. The algorithm Preprocessing (≺L,≺U) takes the lower limit order

≺L and the upper limit order ≺U defined in Section 1.2. The algorithm repeatedly com-

putes the lower limit tree TL and the upper limit tree TU for the two orderings. For
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each pair of trees the non-trivial edges in TL \ TU are queried. This reduces the amount

of uncertainty in the problem instance and ensures a structural property crucial for the

randomized algorithm: For any cycle closed in the algorithm, any feasible query set

contains either the edge with largest upper limit e or all edges with overlapping interval,

i. e. whose uncertainty interval contains the lower limit Le.

Algorithm 2.1: Preprocessing(≺L,≺U)
Input: An uncertainty graph G = (V, E).

Output: A query set Q ⊆ E and the two trees TL,TU .

1 Q← ∅;

2 Determine TL and TU according to ≺L and ≺U respectively using Prim’s

algorithm [AMO93];

3 while TL \ TU contains a non-trivial edge do
4 Query all non-trivial edges in TL \ TU , and add them to Q;

5 Update TL and TU ;

6 Return the query set Q and the two trees Tℓ,Tu;

Deterministic algorithm Cycle. The algorithm Cycle is a worst-out greedy al-

gorithm that is based on the following MST characterization: The largest-weight edge

in a cycle is not in any MST. It starts out with a candidate minimum spanning tree and

then iteratively considers the other edges by increasing lower limit; in case of ties the

the smaller upper limit is preferred. Each additional edge defines a cycle together with

the candidate tree. On this cycle, the two edges with largest upper limit are queried

repeatedly, until we either verify the additional edge has largest weight or we find an

edge of larger weight on the cycle. In the latter case we improve the tree by exchanging

the two edges.

Deterministic algorithm Cut. Cut is the dual algorithm to Cycle, that is defined

by matroid duality. It uses that the minimum-weight edge in a cut is in an MST. Like

in the previous algorithm, Cut starts with a candidate MST, but iteratively considers

the tree edges ordered by decreasing upper limit. Here, we break ties by preferring the

larger lower limit. Deleting a tree edge defines a cut. On this cut we repeatedly query

the two edges with smallest lower limit, until we either verify that the tree edge has the
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Algorithm 2.2: Cycle
Input: An uncertainty graph G with G = (V, E).

Output: A feasible query set Q ⊆ E.

1 Execute the algorithm Preprocessing, which returns TL, TU , Q;

2 Let f1, . . . , fm−n+1 be the edges from E \ TL ordered by increasing lower limit;

3 for i = 1, . . . ,m − n + 1 do
4 Add fi to TL and let C be the cycle closed by fi;

5 while C does not contain a maximal edge do
6 Choose f ∈ C s.t. U f = max{Ue | e ∈ C};

7 Choose g ∈ C \ { f }, with largest upper limit Ug > L f ;

8 Query g and f if they are non-trivial and add them to Q;

9 Delete a maximal edge of C from TL;

10 Return Q;

smallest weight in the cut or find an edge of smaller weight to replace the candidate tree

edge.

Randomized algorithm. The algorithm Random uses the same structure as Cycle.

Starting out with a candidate MST, it iteratively considers the remaining edges and the

cycle they close with the tree. However, the algorithm evaluates on each closed cycle

more carefully which edges should be queried. The preprocessing yields, that on each

such cycle any feasible query set contains either the edge with the largest upper limit,

say f , or all cycle edges whose intervals overlap with that of f . The algorithm either

queries the largest edge or all overlapping edges at once. To balance this decision over

several cycles closed during the algorithm, Random introduces a potential ye for each

edge. In each cycle additional potential is distributed to all overlapping edges such that

they reach an equal level. Depending on the resulting amount of potential, either these

edges or the edge with largest upper limit are queried. This decision is taken randomized

by comparing the potential to a randomly chosen uniform threshold b.

2.1.1 Comparing the Deterministic Algorithms

We show that there are instances on which Cycle and Cut have an opposing perfor-

mance, meaning that one algorithm is near-optimal and the other shows its worst-case
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Algorithm 2.3: Cut
Input: An uncertainty graph G = (V, E).

Output: A feasible query set Q ⊆ E.

1 Execute the algorithm Preprocessing, which returns TL, TU , Q;

2 Let g1, . . . , gn−1 be the edges from TU ordered by decreasing upper limit;

3 for i = 1, . . . , n − 1 do
4 Delete gi from TU and let S be the cut which is created;

5 while S does not contain an always minimal edge do
6 Choose g ∈ S with smallest lower limit Lg = min{Le | e ∈ S };

7 Choose f ∈ S \ {g} with smallest lower limit L f < Ug;

8 Query g and f if they are non-trivial and add them to Q;

9 Add a minimal edge from S to TU ;

10 Return the query set Q;
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Figure 2.1: Different realizations for the class of uncertainty graphs S P lead to different

extremes in the behavior of Cycle and Cut. Edge labels: (Le,Ue)→ we.

performance. Intuitively, the instance is solved by querying the edges of a single cycle

C and Cycle queries pairs of edges on C only. Cut, however, almost exclusively queries

pairs with only one edge in C. The reverse holds for instances, in which it suffices to

query the edges of a single cut.

Our graph class S P consists of a path of edges S and a set of parallel edges P, each

of which closes a cycle with S . We give two realizations R1 and R2 in Figure 2.1. For

R1 the set S is the unique optimal query set and a query set is a feasible solution only if

it contains S . The first cycle closed by the algorithm Cycle contains S and exactly one

edge of P. It queries all edges on this cycle, which is a feasible solution of size |S | + 1.

Cut on the other hand considers cuts of the form P+ {s} with a non-queried edge s ∈ S .

44



2.1 Algorithm Introduction and Theoretical Comparison

There are |S | such cuts. For each, Cut queries a pair of edges as long as there are non-

queried edges left in P. Thus, it queries |S | +min {|S |, |P|} edges. By choosing S and P

of appropriate cardinality we can achieve every performance ratio q ∈ (1, 2] for Cut. In

particular, for |S | ≤ |P| and |S | → ∞, the performance ratio of Cycle approaches 1 and

the ratio of Cut is 2.

The reverse holds for realization R2. In this case a feasible query set has to contain

P, Cut finds a solution of size |P| + 1, and Cycle queries |P| +min {|S |, |P|} edges.

Observation 2.1 For any rational q ∈ (1, 2], there exist a graph in the class S P and a

realization such that Cycle (Cut) is near-optimal whereas Cut (Cycle) yields a perfor-

mance ratio of q.

Thus, theoretically the query set sizes can vary greatly for Cycle and Cut. However,

we do not observe this behavior for any of the instances in the experiments we present

in Section 2.3.

2.1.2 Comparing Randomized and Deterministic Algorithms

We show that Random can be optimal for worst-case instances of Cycle and Cut, and –

somewhat surprisingly – the reverse is also possible.

Consider a cycle with three edges f , g, h with uncertainty intervals (1, 4), (0, 3) and

[1, 1] respectively. Further, edge f has weight 3 and edge g has weight 1. Then, Random

terminates with a single query of either f or g, while Cycle and Cut both query f and g.

Observation 2.2 There are instances, for which Random finds an optimal solution,

while Cycle and Cut achieve their worst-case ratio of 2.

A similar instance evokes the reverse performance behavior. Consider a cycle C

with k edges ei with interval (0, 3), one edge g with interval (0, 4) and one edge f with

interval (1, 5). We choose the weights as wei = 2 and wg = w f = 3. Then Cycle and

Cut query only edges f and g, which is optimal, but Random yields its worst-case ratio

1 + 1/
√

2 for k → ∞.

Observation 2.3 There exists a family of uncertainty graphs, for which Cycle and Cut

perform optimally, whereas Random asymptotically shows its worst case behavior.
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2.1.3 Variation in the Size of an Optimal Solution

We investigate the variance of the optimal number of queries, OPT , under different

realizations for a fixed input instance. We give an example instance in which small

perturbations in the realization significantly change the value of OPT .

Consider a cycle C of length m consisting of an edge f with uncertainty interval

(1, 4) and m−1 identical edges {g1, . . . , gm−1} with uncertainty interval (0, 3) and weight

2. If we set the weight of f to be 3, it suffices to query f and OPT = 1. On the

other hand, if the weight of f is 2, all edges in C have to be queried and OPT = m.

Interestingly, we do not observe this large variance in our experiments (see Section 2.3:

The optimal solution).

Observation 2.4 For a fixed uncertainty graph OPT can vary greatly even for minor

changes of the underlying realization.

2.2 Experimental Data

First, note that there is an inherent difficulty with practical experiments for exploration

uncertainty. For a practical application the uncertainty intervals might be known as well

as the exact edge weights of the queried edges. To decide the optimal number of queries

necessary, one needs the exact edge weights for all edges. However, in practice there

is no reason to explore additional edges after the solution has been found. Thus, even

though we have practical data we need to generate a part of the instance.

Telecommunication. For the telecommunication data we are given 5 different graphs

of varying size with up to 1000 nodes. For each of them we have two different sets

of uncertainty intervals. In the first set, the terrain data, we consider the building cost

uncertainty that arises from different terrains. The cost of a connection is limited by the

construction cost per meter cable through a field and the construction cost under a paved

street times the length of the connection. We draw the exact edge weight uniformly

distributed in the interval. In this uncertainty setting, exploring the exact weight of an

edge represents the time or cost investment it takes to identify the terrain of a particular

connection. The second setting assumes that the terrain of the connection is known,

but it is uncertain if existing infrastructure is available or not. As a result the interval

ranges from almost no building cost due to existing infrastructure to a fixed building
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cost, which is roughly known in advance. The exact edge weight follows a two-point

distribution close to the two endpoints of the interval. We call this the extreme setting

and maintain the ratio of 20% small weight to 80% large weight that is observed in

practice.

TSPLib. We consider the 19 graphs for the symmetric traveling salesman problem

TSP of the library TSPLib that have at most 100 nodes. They are usually used for

TSP computations, but we compute their minimum spanning trees. The library contains

the exact edge weights and we need to create corresponding uncertainty intervals. We

choose the interval size proportional to the weight of each edge, which is a natural

approach that we also observe in the telecommunication data. We experiment with the

ratio between interval size and exact edge weight, let us call this ratio d, to generate

difficult instances. As before, we consider intervals such that the realization is either

uniformly distributed or two-point distributed at the two extremes. For an edge with

weight w we draw the lower limit L uniformly at random in ((1 − d) · w,w) in the

uniform case and set the upper limit U to L + d · w. In the extremal case we choose the

lower limit close to the edge weight w such that L < w or we choose the upper limit

U close to w with w < U each with probability 1/2. Then we choose the other limit

accordingly. We computed the average competitive ratio of all three algorithms for the

two distributions and various values for d between 0.001 and 0.5 for 190 uncertainty

graphs; see Figure 2.9. As we are interested in a worst-case behavior, we choose for

our experiments a uniform value d = 0.065 for which all algorithms have a rather large

competitive ratio.

As one aspect of our experimental analysis, we investigate for a given graph the

variance of certain parameters. We distinguish between the two data types: For the

telecommunication data the realization inside the uncertainty interval changes, while

for the TSPLib data the location of the fixed length uncertainty interval around the also

fixed realization changes.

2.3 Experimental Algorithm Analysis

For the detailed analysis we draw 100 uncertainty intervals/realizations for each graph

in a data set, which yields 4800 instances in total. We perform our experiments with 20

repetitions of Random per instance, as more repetitions did not alter the average per-
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Figure 2.2: Size of the optimal solution OPT divided by the number of edges on the

y-axis and the uncertainty graphs sorted by data set and increasing number of edges on

the x-axis.

formance. For each of the instances we compute the number of edges, the size of the

query set in the preprocessing, the size of the optimal solution, the size of the query set

for each of the three algorithms, the runtime of the three algorithms as well as that of

the preprocessing. For Random we additionally compute the average number of edges

on a cycle closed in the algorithm and the average number of edges on an algorithm

cycle that have an uncertainty interval overlapping the one of the edge with largest up-

per limit. For the latter two parameters, we could not find a relation to the algorithm’s

performance. We summarize our experimental results in the following subsections. We

make our code and the complete input and output data available on [Dat].

2.3.1 The Optimal Solution

The size of the optimal solution OPT , that is, the minimum number of queries to find an

MST, naturally grows with the size of the instance. To analyze a correlation, we consider

the number of edges m as the instance size and determine the parameter OPT/m; see

Figure 2.2. There are instances among the telecommunication data for which the ratio

OPT/m is as large as 0.5 and other ones where it is very small. Among this small

number of instances the parameter behavior seems arbitrary. For the TSPLib data the

ratio OPT/m is a lot smaller and it decreases when m increases. Our theoretical analysis

in Section 2.1.3 shows that for a single instance the behavior of this parameter can

change between 1/m and 1. We do observe great variance for some instances of the

telecommunication data, but very small variance for the TSPLib data. The variance is

always far from the theoretical maximum variance.
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Figure 2.3: Average performance, i. e. the ratio of the algorithm query set size over the

optimal query set size, for the three algorithms and the two data sets.

2.3.2 Comparing Deterministic and Randomized Algorithms

For the telecommunication data the competitive ratio of all three algorithms has roughly

the same average (see Figure 2.3). Averaging over all telecommunication instances

Cycle and Cut both have competitive ratio 1.18 and Random has the slightly worse

competitive ratio of 1.22. For the TSPLib data, the two deterministic algorithms have

equal average competitive ratio 1.37, which is significantly larger than that for the

telecommunication data. Random has a notably smaller competitive ratio of 1.11 on

average, that is even smaller than the ratio for the telecommunication data.

All average competitive ratios are far from their theoretical worst-case guarantee

which is 2 for both deterministic algorithms and approximately 1.7071 for Random.

It is somewhat surprising, that despite the significant improvement of our randomized

over the deterministic algorithms for the TSPLib data, there is no improvement for the

telecommunication data. This means the usefulness of randomization depends on the

considered data set. For the telecommunication data our way of randomization may

even worsen the performance. This might seem counter-intuitive, but we give a theoret-

ical explanation in Section 2.1.2.

2.3.3 Comparing the Deterministic Algorithms

In Section 2.1.1 we show that there can be a large difference between the performance

ratio of Cycle and Cut, even to the extreme case where one has ratio 1 and the other

has ratio 2. However, as displayed in Figure 2.3, their average performance is identical
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Figure 2.4: Number of instances with performance difference between Cycle and Cut

rounded to 1/10.

for all graphs and both data sets. On an instance by instance comparison, the two ratios

are equal for 98% of all instances we evaluate (cp. Figure 2.4). The largest difference

between performance ratios we observe in our experiments are seven instances with

difference 0.33 and one with difference 0.7.

2.3.4 Variance in Performance

We compare the average performance of an algorithm to the worst performance among

the best 25% of performances as well as the worst performance among the best 75%

of all performances. Figures 2.5 and 2.6 show that the variance increases with the

average performance ratio of an uncertainty graph and it is greater for the deterministic

algorithms than for Random. As the variance is equal for Cycle and Cut, we only

display the graph for Cycle. For almost every graph individually, the variance between

the different instances is very small.

2.3.5 Worst-Case Instances

Both deterministic algorithms have competitive ratio 2. In our experiments, this worst-

case ratio is attained for some instances for which the optimal query number is at

most 10. As displayed in Figure 2.7, for the telecommunication data the worst-case

is attained only on the pathological example of Graph 4 consisting of a single cycle.

However, the 7 smallest of the 19 graphs of the TSPLib data showcase instances with

performance ratio 2. There are graphs, for which more than half of the instances show-

case a worst-case ratio 2, but for others it is only a small percentage. The number of
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Figure 2.5: Variance of the average performance of Cycle for each uncertainty graph

by displaying the 25% quantile, the average, and the 75% quantile of the algorithm

performance.

Figure 2.6: Variance of the average performance of Random for each uncertainty graph

by displaying the 25% quantile, the average, and the 75% quantile of the algorithm

performance.

cases of ratio 2 roughly decreases with the number of edges in the graph. This is not

symmetric to the case of performance ratio 1. There are more instances and more graphs

for which there are instances which the algorithms solve optimally.

2.3.6 Comparing the Distributions

Preprocessing (≺L,≺U) solves all telecommunication data instances with extreme dis-

tribution. We prove this theoretically in Section 1.2 and observe that it is due to the

interval structure and not the distribution. In general, the share of instances solved by

the preprocessing significantly increases from uniform to extreme distribution. For the
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(a) Number of instances with competi-

tive ratio 2.

(b) Number of instances with competitive ratio 1

Figure 2.7: Instances with best-possible and worst-possible competitive ratio.

Figure 2.8: Share of instances solved by the preprocessing

TSPLib data the share increases from 0.014 to 0.15 and for the telecommunication data

it is 0.33 for the uniform and 1 for the extreme distribution, as displayed in Figure 2.8.

Additionally, we observe that the absolute number of queries almost always de-

creases, when changing from uniform to extreme distribution for all telecommunication

instances and all algorithms. However, for the TSPLib data the behavior varies and

for each graph there are instances where the uniform distribution has a smaller query

number and others where the extreme distribution has a smaller query number.

2.3.7 Interval Size

To create the TSPLib data, we experimented with different interval sizes. Figure 2.9

shows that the algorithms’ performance changes greatly with the chosen ratio d of in-

terval size over edge weight. For very large parameter d, almost all intervals overlap
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Figure 2.9: Average performance of the three algorithms for the TSPLib data for differ-

ent values of the parameter d = interval size over exact edge weight.

and their edges must be queried. For very small d, however, only few intervals overlap

and almost no queries are required. This is true for any algorithm, and thus, it explains

why Cycle, Cut and Random have an average competitive ratio close to 1 for very small

and very large d.

2.3.8 Runtime

We run our experiments on a Linux system with an AMD Phenom II X6 1090T (3.2 GHz)

processor and 8 GB RAM. Together, the three algorithms take about 1200 milliseconds

to compute. The preprocessing dominates the runtime with a duration of 770 millisec-

onds on average. On a one-by-one comparison Cycle and Random have similar average

runtimes of around 20 milliseconds, but Cut’s average runtime is around 350 millisec-

onds. As expected, the runtime increases with the graph size. In total, our data set of

400 instances up to a size of 70 vertices or 3000 edges can be generated and solved in

roughly four hours. As we did not optimize the implementation in terms of runtime, we

expect that also larger instances can be solved in reasonable time.
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Algorithm 2.4: Random
Input: An uncertainty graph G = (V, E).

Output: A feasible query set Q.

1 Execute the algorithm Preprocessing, which returns TL, TU , Q;

2 Set the temporary graph Γ to TL and index the edges in R := E \ TL by increasing

lower limit f1, . . . , fm−n+1;

3 Initialize ye = 0, ∀e ∈ E, and choose b uniformly at random in [0, 1];

4 for i = 1 to m − n + 1 do
5 Add edge fi to the temporary graph Γ and let Ci be the unique cycle closed;

6 Let the neighbor set X( fi) be the set of edges g ∈ TL ∩Ci with Ug > L fi;

7 if X( fi) is not empty then
8 Maximize the threshold t( fi) ≤ 1

s.t.
∑

e∈X( fi) max {0, t( fi) − ye} ≤ 1 + 1/
√

2;

9 Increase edge potentials ye := max {t( fi), ye} for all edges e ∈ X( fi);

10 if t( fi) < b then
11 Add edge fi to the query set Q and query it;

12 else
13 Add all edges in X( fi) to the query set Q and query them.

14 while no edge in the cycle Ci is known to be maximal do
15 Query an edge e ∈ Ci \ Q with largest upper limit Ue in Ci and add it to

the query set Q;

16 Delete a maximal edge from Γ;

17 Return the query set Q;
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Chapter 3

Limits of Optimization with Explorable

Uncertainty

In this chapter we consider set systems with uncertain element weights. In general,

there is no constant-competitive algorithm [EHK16], so we investigate arbitrary, but

fixed set systems. We provide a full combinatorial characterization of set systems

that allow competitive ratio 1 and 2. In particular, we prove set systems allow a 2-

competitive algorithm if and only if they are matroid-like, i. e. their family of maximal

sets equals the basis set of a matroid. For any other set system there cannot be an

algorithm with competitive ratio c < 3.

We also present non-constant lower bound constructions for two special cases of set

systems: matching with uncertain edge weights and knapsack with uncertain element

profits. For linear programming we consider uncertain coefficients of the objective

function and describe a geometric lower bound construction.

Remark: The results in this chapter are based on joint work with Nicole Megow and

Martin Skutella.

Optimization with explorable uncertainty expands far beyond minimum spanning trees

and matroids under uncertainty. In this chapter we focus on the limits of optimization

under explorable uncertainty, proving strong lower bounds on the competitive ratio for

various problem classes. This is in sharp contrast to the previous chapters, where we

described algorithms with a small, constant competitive ratio.

We consider set systems with explorable uncertainty as a generalization of matroids.

This also generalizes many other well-known problems such as knapsack, matching, and

shortest paths. A set system consists of a ground set of elements of uncertain weight

together with a family of sets. We aim to find a maximum weight set of this system.

In [EHK16] it is shown, that no constant-competitive algorithm exists for this general

problem class. Here, the adversary is very powerful, as it chooses the set system, the
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uncertainty intervals and the realization. We consider arbitrary, but fixed set systems

and thus restrict the adversary to choosing the uncertainty intervals and realization. This

approach has also been considered in algorithmic game theory. For congestion games,

it has been shown that convergence of best-response strategies and the occurrence of the

Braess paradox depends on the combinatorial structure of the strategy spaces [ARV08,

FGH+15].

We call a set system matroid-like, if its family of inclusion-wise maximal sets equals

the basis set of a matroid and show competitive ratio 2 can be attained only for matroid-

like set systems. We study parametrized algorithms and lower bounds using d, the

largest cardinality of a set, as a parameter. Erlebach et al. [EHK16] show a lower bound

of 2d on the competitive ratio and an algorithm matching this bound. A well-known

family of set systems are matchings with uncertain edge weights. Using the parameter

d to describes the largest cardinality of a matching, we establish a tight lower bound of

2d on the competitive ratio, even for instances of bipartite matching.

A second family of set systems is described by the knapsack problem with uncer-

tain profit of the elements. It has previously only been studied in the uncertainty ex-

ploration model where a fixed budget for the query cost is given and the weights are

uncertain [GGI+15]. We require to find the optimal knapsack packing and minimize the

query cost, as before. For any two primes r1 , r2 we give a problem-specific lower

bound instance of knapsack with uncertain profits for which no algorithm uses less than

(r1 + r2) · OPT queries.

Linear programs with uncertain objective function have not been studied to the best

of our knowledge. Given a constraint system and an objective function with uncertainty

intervals for its coefficients, we aim to find an optimal solution of this linear program

querying as few coefficients of the objective function as possible for their exact value.

This generalizes set systems, which means for arbitrary dimension d there is no algo-

rithm with competitive ratio smaller than d, which is trivially tight. We give a new,

geometric proof of this lower bound. From the geometric interpretation we develop a

relaxed model, where queries for arbitrary convex combinations of the coefficients are

allowed. However, we show even in this new model no algorithm has competitive ratio

less than d, the number of coefficients in the objective function.

This chapter is organized as follows: In Section 3.1 we show the combinatorial

structure of set systems yields lower bounds for the competitive ratio. We also give

parametrized lower bounds for matching and knapsack as special families of set sys-
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tems. In Section 3.2 we consider the even more general structure of linear programs

with uncertain objective function.

3.1 Set Systems

We consider set systems with explorable uncertainty as a generalization of matroids. A

set system (E,F ), consists of a ground set of elements E together with a family F ⊂ 2E

of sets and a positive weight function w : E → R+. We aim to find a maximum weight

set of this system. In the uncertainty setting, we replace the weight of each element by

an uncertainty interval Ae. Let B be the set of all sets of maximum cardinality, we call

these sets basis. The basis set together with all other inclusion-wise maximal sets forms

the set of maximal setsM.

Remark 3.1 Alternative to the restriction to positive weight functions, we could also

modify the model to allow negative weights. However, in this case we need to restrict

to finding a maximum weight maximal set. By inverting all weights, this is the cheapest

set problem.

Set systems are a generalization of minimum spanning tree with positive weight

function, as we can define the cycle-free edge sets as the set family and invert the weight

function such that a spanning tree with largest weight is an MST for the original weight

function. Thus, the lower bound construction in [EHK+08] proves that if we allow

closed uncertainty intervals, the competitive ratio is unbounded. Consequently, we re-

strict to open or trivial uncertainty intervals, as in the previous section. We use A△B to

denote the symmetric difference between two sets, that is the union of the two sets A \ B

and B \ A.

3.1.1 Set Systems with Competitive Ratio at most 2

Set systems are a generalization of minimum spanning trees. Thus the lower bound

extends and there cannot be a deterministic algorithm with competitive ratio c < 2 or

a randomized algorithm with competitive ratio c < 1.5. We strengthen this statement

and show that the same bounds hold for almost all fixed set systems if the adversary can

only choose the uncertainty intervals and the realization.
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Theorem 3.2 For any set system (E,F ) with more than one maximal set, there is

a set of uncertainty intervals and weights, such that no deterministic algorithm has

competitive ratio c for c < 2 and no randomized algorithm has expected competitive

ratio c < 1.5.

Proof. Choose two maximal sets A, B, A , B which maximize the size of A ∩ B. Then

there is at least one element a ∈ A \ B and one element b ∈ B \ A. We choose the

uncertainty intervals of all elements, such that only the two sets A and B are candidates

to have maximum weight. For this let ε > 0 be so small, that |A△B| · ε < 1 holds and let

the weights be

we =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 ∀e ∈ E \ (A ∪ B)

10 ∀e ∈ A ∩ B

ε ∀e ∈ (A△B) \ {a, b}

Aa = (0, 3) Ab = (2, 5).

We define a constant x to be 10·|A∩B|+2. Then the set B has weight strictly larger than x,

independent of the weight of element b. We first show that for any realization either the

set A or the set B has maximum weight. Any inclusion-wise maximal set C, which does

not contain the complete intersection A ∩ B, has weight less than the maximum sum of

all elements minus 10. This is 10 · |A ∩ B| + 3 + 5 + 1 − 10 = x − 3, which is strictly

smaller than x. Hence, it has smaller weight than the set B independent of the realization.

Thus, the set C is not a candidate to have maximum weight. Observe furthermore, that

as A and B have maximal intersection by assumption, any set containing the complete

intersection additionally contains only elements of weight 0. Thus, these sets also have

weight less than x and consequently also less than B. Hence, either the set A or the set B

has maximum weight for this interval set.

The weight of set A is strictly less than x + 2 and the weight of set B is strictly

larger than x. Thus, if either element a has weight less than 1 or element b has weight

larger than 4, one element suffices to prove B is the set of maximum weight in the

independence system. We define two realizations, such that for each, querying one

element solves the instance but querying the other doesn’t:

Ra : wa = 1 Rb : wa = 2

wb = 3 wb = 4.

Any deterministic algorithm queries the two elements with uncertain weight either in

the order a, b or in the opposite order. Each of the two algorithms, is no better than 2-

competitive for one of the two realizations above. Any randomized algorithm queries
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element a first with some probability p ∈ [0, 1]. It is p + 2(1 − p)-competitive for real-

ization Ra and 2p+ (1− p)-competitive for realization Rb. The value p = 0.5 minimizes

the maximum of these two ratios. For p = 0.5, the algorithm is 1.5-competitive for both

realizations. Thus, no algorithm has better performance than 1.5. This completes the

proof.

Corollary 3.3 For minimum spanning tree under uncertainty, this means for any graph

with at least one cycle, i.e. that is not a tree, there is a set of uncertainty intervals and

weights such that no algorithm is better than 2-competitive in the deterministic setting

and none is better than 1.5-competitive in the randomized setting.

Remark 3.4 For set systems that have only one maximal set, no queries are necessary

and thus there is an exact algorithm.

3.1.2 Lower Bound 3 for Non-Matroids

For minimum spanning tree and matroids we achieve competitive ratio 2 with algorithms

presented in [EHK+08] and [EHK16]. We show, that once the family of maximal sets

does not induce a matroid, there is no 2-competitive algorithm. In the classical book

by Schrijver [Sch02] we find the following characterization of maximal sets M of a

matroid:

∀A, B ∈ M, a ∈ A \ B exists e ∈ B \ A for which (B \ e) ∪ a ∈ M. (3.1)

Note that this means in particular, that all maximal sets have the same size. Our con-

struction uses a pair of maximal sets with maximal intersection that violate this axiom

and gives an instance of uncertainty intervals for the elements. We use k to denote the

size of the symmetric difference between these two sets.

Theorem 3.5 Let (E,F ) be a set system and M its set of maximal sets. If Equa-

tion (3.1) is violated by a pair of maximal sets A, B ∈ M with |A△B| = k and for any

maximal set A∩B ⊆ C holds |C∩(A∪B)| < min{|A|, |B|}, then there is a set of uncertainty

intervals and weights such that no c-competitive algorithm for c < k exists.

Proof. Let A, B be a pair of maximal sets for which Equation (3.1) does not hold and

let a be the described element in A \ B. We first show that we can assume without loss

of generality, that the only candidate sets to have maximum weight, are the sets A and

B. We choose a large constant M and add M/|A \ B| to all elements in A \ B and add
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M/|B \ A| to all elements in B \ A. To elements in A ∩ B we add the constant M2. For

sufficiently large M this ensures any maximum weight set contains A ∩ B and that we

can neglect all elements not in A ∪ B. We add the constant M + |A ∩ B| · M2 to the sets

A and B and thus do not change their relation. All other maximal sets C with A∩ B ⊆ C

have size |C| < min{|A|, |B|}, as we neglect elements not in A ∪ B. Thus, their weight

increases by at most |A∩ B| ·M2 + |M|/|B \ A| · |C ∩ B \ A|+ |M|/|A \ B| · |C ∩ A \ B|. This

is at most |A ∩ B| · M2 + M · (min{|A|, |B|} − 1)/min{|A|, |B|}. Then, for large enough M,

none of these sets C is a candidate to be maximal. Consequently, either A or B must be

maximal. We neglect the elements in A ∩ B in the following, as they do not determine

which of the two sets has larger weight. We choose the following set of uncertainty

intervals (Le,Ue) for the elements

we ∈ (|A|/|B|, |A|/|B| + 1) ∀e ∈ B

we ∈ (0, 1) ∀e ∈ A \ {a}

wa ∈ (0, 1.5).

Then, the weight of the set B is larger than |A| and the weight of the set A is smaller

than |A| + 0.5. We now define k = |A△B| many realizations which each have a different

element that is contained in any feasible query set. Let realization Rx, x ∈ A△B, have

the following weights for a small ε > 0:

we =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩Le + ε ∀e ∈ B \ {x}

Ue − ε ∀e ∈ A \ {x}
wx =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩Ue − ε x ∈ B

Le + ε x ∈ A
.

Any algorithm queries one element from A△B as the last element. Let x be this element.

Then the algorithm needs at least k queries for the realization Rx, as any feasible query

set for this realization contains element x. The optimal query set is {x}, and thus the algo-

rithm is not better than k-competitive. This shows, that there cannot be a c-competitive

algorithm for c < k.

We observe, that for any set system that is not matroid-like, there are at least 3

elements in the symmetric difference A△B. If all maximal sets have the same cardinality,

we even have |A△B| ≥ 4.

Corollary 3.6 Any set system that is not matroid-like allows a set of uncertainty inter-

vals such that the competitive ratio is at least 3.
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Corollary 3.7 Any set system that is not matroid-like and whose set of maximal sets

contains only elements of the same cardinality, allows a set of uncertainty intervals

such that the competitive ratio is at least 4.

Corollary 3.8 In general, there cannot be any constant-competitive algorithm for find-

ing a maximum weight set system under uncertainty.

This yields strong lower bounds on optimization in this uncertainty model for a large

class of problems. In the next subsections we consider two special cases in more detail:

the matching problem and the knapsack problem.

3.1.3 Matching under Uncertainty

Matching under uncertainty is defined analogue to minimum spanning tree under un-

certainty. We are given a graph and instead of edge weights we are provided with

uncertainty intervals for all edges, in which the exact edge weight lies. We aim to find

an algorithm that needs to query as few edges as possible to find the maximum weight

matching. This is special family of set systems.

The maximum weight matching problem without the uncertainty addition is solvable

in polynomial time on arbitrary graphs. However, we establish a strong lower bound for

matching under uncertainty using Theorem 3.5 for set systems. The set of all matchings

of a graph defines a set system, where the maximal sets are the inclusion-wise maximal

matchings. We note that the structure of the maximal sets is determined purely by the

graph structure and not by the intervals. We give a bipartite graph proving that the

competitive ratio is unbounded for matching under uncertainty. This is particularly

surprising, as typically bipartite matching is a very easy problem.

Theorem 3.9 For any constant c > 0 there is a bipartite instance of matching under

uncertainty, for which no algorithm is c-competitive.

Consider the graph with m = 2k edges displayed in Figure 3.1. The graph has

exactly two inclusion-wise maximal matchings Ma = {a1, .., ak} and Mb = {b1, ..., bk},

each with cardinality k. They are disjoint, and thus |Ma△Mb| = m. No other matching

has cardinality k and thus we can apply Theorem 3.5. This means there is a set of

uncertainty intervals, such that any algorithm has competitive ratio at least m, ruling out

any constant-competitive algorithm.
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Figure 3.1: Matching graph with competitive ratio 2k

Remark 3.10 Consider a parametrization by the maximum cardinality d of a matching.

Then, the lower bound is 2d, which is best-possible, as the algorithm for cheapest set

under uncertainty by Erlebach et al. [EHK16] is 2d-competitive. They provide a refined

analysis which allows an additive term in the competitive analysis. In this model their

algorithm uses no more than d · OPT + d queries. Our lower bound states at least

OPT + 2d − 1 queries are necessary, which means for this refined analysis the result is

not tight.

3.1.4 Knapsack with Uncertain Profits

The knapsack problem asks to find a maximum profit packing of items for a fixed size

knapsack. Items are defined by a weight and a profit and a feasible packing is one

in which the sum of the weights of the chosen items does not exceed the knapsack

size. Instead of exact profits, knapsack with uncertain profits provides an individual

uncertainty interval for the profit of each item. We aim to minimize the number of items

we query for their exact profit to determine the most profitable knapsack packing.

We show a non-constant lower bound for knapsack with uncertain profits. However,

in this case we cannot apply Theorem 3.5 for set systems directly, but we need to design

a more sophisticated lower bound instance instead.

Theorem 3.11 For any two primes r1 < r2, there is an instance of knapsack with

uncertain profits, for which no algorithm is c-competitive for any c < r1 + r2.
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Proof. Let r1 < r2 be two primes larger than c. We define an instance with two different

types of items.

Type ē: r2 items of weight r1 with profit interval
(
r1, r1 +

1
r2

)
.

Type e: r1 items of weight r2 with profit interval
(
r2 −

1
r1
, r2 + ε

)
.

Let the knapsack size B be r1 · r2. Then all items ē have joint weight r1 · r2 = B and

thus form a feasible packing of profit between r1 · r2 and r1 · r2 + 1. Another feasible

packing are all items e, as their total weight is r1 · r2 = B. The cost of this packing is

between r1 · r2 − 1 and r1 · r2 + r1ε.

We choose ε, such that any other feasible packing has profit smaller than r1r2. To

show this is possible, we first observe, that the ratio pi/wi is bounded by 1+ 1/(r1r2) for

both item types. Furthermore, we observe that any packing that contains some items ē

and some items e has total weight at most B − 1, as we chose r1 and r2 to be primes.

Thus we can bound the total profit of such a mixed packing by

∑
pi ≤

(
1 +

1
r1r2

)∑
wi ≤

(
1 +

1
r1r2

)
(r1r2 − 1) = r1r2 −

1
r1r2

.

Hence, only the two first-mentioned packings are candidates to have maximum profit.

For ε < 1/(2r2r1), we can define r1 + r2 realizations, that each have a distinct single

item necessary and sufficient to prove that the first packing has maximum profit. For

realization Rx let all items ē have weight close to their lower limit and all items e have

weight close to their upper limit. However, item x has weight 1+1/(r1r2), if it is of type

ē, and weight r2 − 1/(r1r2) if it is of type e. Thus, this yields a lower bound of r2 + r1 on

the competitive ratio of any algorithm.

Remark 3.12 Consider a parametrization by the parameter d, the maximum number

of items in a feasible knapsack packing. Then, the cheapest set algorithm by Erlebach

et al. [EHK16] is 2d-competitive. Assuming the twin primes conjecture, which states

that there is an infinite number of primes p for which p + 2 is also prime [Guy13], our

lower bound on the competitive ratio is 2d − 2, which is almost tight.

Erlebach et al. make a refined analysis of their algorithm by allowing an additive

term in the competitive analysis. In this model their algorithm uses no more than d ·

OPT +d queries. Our lower bound states at least OPT +r1+r2−1 queries are necessary,

which means for this refined analysis a large gap remains.
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3.2 Linear Programs

In this section we consider linear programs with explorable uncertainty. Given a con-

straint system Ax ≤ b and an objective function c ∈ R with uncertain coefficients

ci ∈ Ii ⊂ R, each in an individual uncertainty interval. We call I = I1 × · · · × Id ⊂ Rd

the uncertainty box. The aim is to find an optimal solution of this linear program by

querying as few coefficients of the objective function as possible for their exact value.

As before, we compare any algorithm’s performance to the optimal number of queries

necessary to determine a vector x satisfying Ax ≤ b and maximizing cT x. Contrary to

set systems, here, we allow negative weights.

Linear programs have a geometric description as polyhedra. Given a linear program,

the inequalitites Aix ≤ bi describe hyperplanes in Rd. These hyperplanes define a poly-

hedron P, the feasibility region of x. We assume P is bounded and thus a polytope.

Then P is the convex hull conv(V) of the set of extreme points V of the polytope. For

a given objective function c, there is always an extreme point v ∈ V maximizing cT x.

We call such an extreme point maximal for c. For each extreme point v ∈ V , we define

a polyhedral cone Cv = {y ∈ Rd
⏐⏐⏐ yT v = max yT x : x ∈ P} that contains all vectors y for

which this extreme point is maximal. In polytopal geometry, the collection of all these

cones Cv, v ∈ V , is referred to as the normal fan of the polytope P [Zie12]. We interpret

the question of determining the correct extreme point for an uncertain objective function

c as identifying a cone Cv in which c lies.

Linear programs are a generalization of set systems, as we can associate to each set

its incidence vector. This yields a collection of vectors V , whose convex hull defines

a polytope P. Then, the hyperplanes bounding this polytope form a constraint system

Ax ≤ b. Each element corresponds to one dimension and thus the uncertainty intervals

of the elements correspond to the uncertainty intervals of the objective function. The

polytopes that are described by independence systems are binary polytopes, as their

vertices have only 0 and 1 entries. Linear programs generalize this in several ways.

First, they include vectors with integer entries larger than 1. This is a description of

independence systems with multiplicities, where each element can occur more than once

in a set. Additionally, linear programs also allow real entries.

We observe that, as P is a polytope and thus convex and bounded, no cone can

contain an angle of 180 degrees or more.
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3.2.1 Dimension 1

One-dimensional linear programs describe a very restricted class of linear programs. It

contains the class of set systems with a single element, that clearly also have a unique

inclusion-wise maximal set. We remark in Section 3.1 that no query is necessary for

these set systems if the weights are positive. For linear programs we allow negative

coefficients in the objective function and thus this is not always true. Still, there is an

exact algorithm. Observe first, that the set of feasible solutions is a segment in the one-

dimensional space. Thus it has at most two extreme points, one being maximal for a

positive objective function and the other for a negative one.

Proposition 3.13 There is an exact algorithm for finding the optimal vector x maxi-

mizing a linear program with uncertain objective function.

Proof. If there is only one feasible point or the uncertainty interval of the objective

function is trivial, no queries are necessary to determine the maximal extreme point.

The same holds, when the uncertainty interval I1 of the objective function does not

contain the origin. Without a query it is clear which is the maximal extreme point. If the

origin is contained in I1 and there are two extreme points, then there is a positive and a

negative realization for c making opposite extreme points maximal. Hence, any feasible

solution needs a query to decide which of the two extreme points is maximal.

3.2.2 Dimension d

For linear programs in arbitrary dimension d there is no general, efficient algorithm.

In [EHK16], Erlebach et al. give a lower bound for the cheapest set problem under

uncertainty. They allow an additive term in the competitive ratio and show that, if the

maximum cardinality of a set in the instance is k, there is no algorithm performing better

than k · OPT + k. Their example for the additive part of the ratio has 2k elements and

the optimum needs only a single query. Thus, in the context of linear programs this

example has dimension d = 2k and yields a purely multiplicative lower bound of d on

the competitive ratio.

We give a geometric proof of the same lower bound and depict the main components

of the proof for dimension d = 2 in Figure 3.2.
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Figure 3.2: Example of Theorem 3.14 for d = 2.

Theorem 3.14 For any d ≥ 2 there is a linear program Ax ≤ b with d variables

defining a polytope P = conv(V) and there is an uncertainty box I for the objective

function c, such that any algorithm has competitive ratio at least d.

Proof. Let the polytope P be the convex hull of the unit vectors e1, . . . , ed, the origin 0,

and the vector v = 1−ed, where 1 is the all-ones vector. Then, for non-negative objective

functions either ed or v attains the maximum. Thus, we consider the hyperplane H :

x1 + · · · + xd−1 − xd = 0 separating the two cones Ced and Cv of the conic partition. We

design an uncertainty box I such that this hyperplane cuts off exactly one corner of the

uncertainty box and each part of the box is contained in one cone. Let Ii = (0, 1) for

1 ≤ i < d and Id = (d − 1.5, d). Then all objective vectors in I on the same side ofH as

ed are in Ced and thus are maximized at the extreme point ed. All other vectors lie in Cv

and for them v is the optimal extreme point. The objective value of ed is in the interval

(d − 1.5, d) and for v the objective value lies in the interval (0, d − 1).

Now, for a small ε > 0, we consider d realizations that all deviate in one coordinate

from the vector c = (1 − ε, . . . , 1 − ε, d − 1.5 + ε). For realizations Ri, 1 ≤ i < d, we

set ci = ε and for realization Rd we set cd = d − ε. Observe that for each of these

realizations, querying coordinate i decides that the objective function lies in the cone

Ced , but querying any of the other coordinates does not decide it. Any algorithm queries

one of these coordinates i last for the realization c. Then, the algorithm needs d queries

for realization Ri, but the optimal solution uses only one query.

If we require the origin to be contained in the uncertainty box, we cannot make the

construction above, as then the uncertainty box necessarily intersects all cones. How-

ever, we can modify the construction to get the same lower bound. We give an intuitive
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explanation: Consider a polytope, with a sharp corner (all angles < 90) pointing in di-

rection of the all ones vector. Then, the corresponding cone of the conic partition is

larger than one hyperquadrant of the space. This means we can design an uncertainty

box, for which all its corners apart from one lie in this cone.

Corollary 3.15 There is a linear program Ax ≤ b defining a polytope P = conv(V)

and there is an uncertainty box I for the objective function c with 0 ∈ I, such that any

algorithm has competitive ratio at least d.

3.2.3 Querying in Arbitrary Directions

Given the strong lower bounds for linear programming with explorable uncertainty, we

adapt the model slightly and we add a new type of queries. Querying in arbitrary di-

rections means, we allow queries of the form ’
∑

i aixi = ?’ instead of only axis-parallel

queries. These queries can be interpreted geometrically, as cutting the uncertainty box

I with a hyperplane orthogonal to the vector a. The result of the query yields the point,

where the hyperplane intersects with the direction of the vector. It thus reduces the

problem to the intersection of the uncertainty box with this hyperplane. We show, that

also in this altered model the lower bound on the competitive ratio is d.

Theorem 3.16 Given a linear program with uncertain objective function, any algo-

rithm determining the maximal extreme point with queries in arbitrary directions has

competitive ratio at least d.

Proof. Let P be the hypercube polytope {x ∈ Rd
⏐⏐⏐ |xi| ≤ 1} and let I = (−1, 1)d be the

uncertainty box for the objective function c. Consider an arbitrary, fixed algorithm. We

design a realization, that it is 0 for the first d − 2 queries of the algorithm. For each

query we restrict the uncertainty box to the intersection with the hyperplane defined by

the query. If answering the d − 1-th query with 0 would yield a segment of an axis-

parallel ray, we return ε close to 0 for this query, otherwise the return value is 0. After

d−1 queries, the uncertainty box is restricted to a segment of a ray. As almost all queries

returned 0, the ray passes either through the origin or very close to the origin. Let r be

the direction of this ray. The polytope is the hypercube with 0 at the center. Thus, its

conic partition is separating Rd into its hyperquadrants. Then, the point c−, where the

ray r enters the uncertainty box is in a different cone of the conic partition than the point

c+, where the ray leaves the uncertainty box. This means the algorithm cannot decide in

which cone the objective function lies without a d-th query.
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To ensure there is an efficient optimal strategy, we choose δ > 0 so small that the

vector (1 − δ)c− has length larger than 1. This is possible, as we ensured ci is not axis-

parallel. Let this vector be the realization of the objective function. Then, an optimal

strategy is to query in direction c−. This yields exactly the vector length, which is

greater than 1 by construction. The hyperplane defined by this query lies outside of

the unit ball around the origin. It intersects the uncertainty box I, but none of the

coordinate axis are intersected inside the uncertainty box. As the conic partition of the

polytope is exactly defined by the hyperquadrants, the hyperplane intersects only one

cone Cv inside the uncertainty box. Thus, the extreme point v is proven to maximize the

uncertain objective function with a single query.
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Chapter 4

Interesting Facets of Uncertainty

Exploration

In this chapter we study uncertainty exploration beyond the classical model of min-

imizing the exploration cost to identify a solution that maximizes the uncertain ob-

jective function. For MST under uncertainty we show identifying an α-approximate

MST is as difficult as identifying a true MST, so there is no trade-off. When queries

are allowed to return subintervals next to points, surprisingly, randomization does not

allow for a competitive ratio smaller than 2. We present a deterministic algorithm for

non-uniform query cost achieving the same ratio. Limiting the number of consecutive

queries by r, and thus enforcing parallel queries, we give a lower bound of m1/r and

present a max{2,m/(2r − 1)}-competitive algorithm.

Furthermore, we present new results for three problems with uncertain feasibility: k-

th smallest value, sequencing, and knapsack with uncertain weights. We also show an

exact algorithm for computing the MST and its weight under uncertainty.

Remark: The results in this chapter are based on joint work with Nicole Megow and

Martin Skutella. Section 4.1 and Section 4.2 were published at the European Sympo-

sium on Algorithms 2015 [MMS15] and in SIAM Journal on Computing [MMS17].

The latter also contains parts of Section 4.6.

The classical model of uncertainty exploration is minimizing the exploration cost to

identify a solution that maximizes the uncertain objective function. In this chapter we

study facets of uncertainty exploration that diverge from this classical model. We dis-

cuss relaxing the solution quality and limiting the number of consecutive queries that

are allowed. Furthermore, we present new results for problems with uncertain feasibility

and consider queries that may return subintervals instead of points.

We first consider restrictions of the solutions for MST under uncertainty. Khanna

and Tan [KT01] study appoximating the sum or average of a set of uncertain elements
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Interesting Facets of Uncertainty Exploration

and Charikar et al. [CFG+02] present results for AND/OR trees and some generaliza-

tions. We show for the model that asks not only to identify the MST, but also to compute

its exact weight a 1-competitive algorithm. Then we a relaxed model, slightly deviating

from the ones considered in the literature. We call an algorithm α-approximate if, for

any realization (we)e∈E, the query set Q found by the algorithm identifies a spanning

tree of weight at most α times the weight of an MST. The approximation ratio of an

algorithm ALG is the infimum over all α, such that ALG is α-approximate. Note that

an α-approximate algorithm does not necessarily compute the approximate weight of

an MST. We compare to a weak adversary and consider an optimal solution that has to

identify a true, i. e. 1-approximate, MST. We prove, independent of the approximation

ratio α, no improvement in the competitive ratio is possible in this model. Hence, there

is essentially no trade-off between exploration cost and solution quality.

Uncertain feasibility describes the setting where the objective function is known ex-

actly, but input data that decides upon the feasibility of solutions is uncertain. Either,

a single feasible solution exists and finding it with little exploration cost is the goal, or

there are several feasible solutions. Then, using data exploration we have to find the

feasible solution that maximizes or minimizes the optimization goal. We study three

problems of this kind: k-th smallest value, sequencing, and knapsack with uncertain

weights. The first is: Given a set of n elements with uncertain weight, identify an ele-

ment with k-th smallest value using a minimum number of queries that reveal the exact

weight of an element. In a non-trivial problem, without queries it is not clear which

is an element with k-th smallest value and thus a feasible solution. This question was

first considered by Kahan [Kah91] for k = 1 and k = ⌈n/2⌉, asking to identify all k-th

smallest elements. Gupta et al. [GSS16] discuss k-th smallest value where one feasi-

ble solution has to be identified. They describe an algorithm with additive performance

guarantee OPT + k and an example proving no algorithm has multiplicative competitive

ratio better than k · OPT . This yields lower bound OPT + k − 1 for additive perfor-

mance guarantees. We improve the analysis of their algorithm by one, which shows it

is best-possible.

In the sequencing problem, which has previously not been studied according to our

knowledge, one aims to sort a set of elements of uncertain weight. We show this is

a special case of the minimum spanning tree problem with vertex uncertainty, where

each vertex is only known to lie in a given uncertainty area. Erlebach et al. [EHK+08]

give a 4-competitive algorithm for this problem. We also observe a relation between
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sequencing and vertex cover and employ this to design a 2-competitive algorithm, which

is best-possible.

Third, we consider the knapsack problem with uncertain weights. We are given a set

of items, each with uncertain weight but certain profit, and a knapsack size. Any set of

items whose combined weight does not exceed the knapsack size, is a feasible solution.

However, as the weights are uncertain, so is which sets of items are feasible. Contrary

to the previous two examples of uncertain feasibility, there is usually more than one

feasible item set, so we aim to find the one which maximizes the profit. There seems to

be no previous work exactly in this model, but Goerigk et al. [GGI+15] consider a fixed

query budget and optimize the quality of a feasible solution that they can guarantee.

Also, identifying the optimal solution or an approximate solution can be interpreted as

uncertain feasibility. Then, even the feasibility criterion is uncertain without queries.

For knapsack with uncertain weights the feasibility criterion is the knapsack size, and

this is known. We show a parametrized algorithm for knapsack with uncertain weights.

If d is the maximum number of items in a possibly feasible knapsack packing, the

algorithm has competitive ratio d, which is best-possible.

For both models, uncertain objective function and uncertain feasibility, we consider

the aspect of parallelization, as suggested in [EH15]. Given a fixed bound r on the

allowed number of rounds of consecutive queries, this forces some queries to be made

in parallel. How large is the loss in the competitive ratio which is incurred by this

parallelization? A special case is the offline problem, where only one round is allowed.

Thus, for MST under uncertainty we have to choose a query set that suffices to identify

an MST independent of the realization. This is related to the verification problem, which

asks for a query set that verifies an MST for a given, fixed realization. Erlebach and

Hoffman give a polynomial algorithm for the verification problem [EH14] and we show

there is also a polynomial time algorithm for the offline problem. For the more general

model with r rounds, we prove m/2 rounds suffice to achieve competitive ratio 2, where

m is the number of edges in the uncertainty graph. A more involved analysis yields an

improved algorithm with performance max{2,m/(2r − 1)}. We also briefly consider the

k-th smallest value problem and sequencing under the aspect of parallelization.

Finally, we study the OP-OP model proposed by Gupta et al. [GSS16], where a

query to an edge e does not necessarily reveal the exact edge weight, but may reveal

a new uncertainty interval, a subinterval of the previous one, instead. Here, the input

is a sequence of intervals A1
e ⊇ A2

e ⊇ . . . and the query set is a multiset of the edges.
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Interesting Facets of Uncertainty Exploration

Gupta et al. [GSS16] give a deterministic algorithm with competitive ratio 2. We prove

randomization does not allow for an improvement over worst-case competitive ratio 2.

However, even for non-uniform query cost competitive ratio 2 can be obtained.

This chapter is structured as follows: In Section 4.1 we study MST under uncer-

tainty where the exact weight of an MST has to be determined. Then we show identi-

fying an approximate MST is as difficult as a true MST in terms of competitive ratio in

Section 4.2. Problems with uncertain feasibility, which includes the k-th smallest value

problem, sequencing, and knapsack with uncertain weights, are described in Section 4.3.

We return to MST under uncertainty to study the offline problem in Section 4.4. In Sec-

tion 4.5 we generalize this and consider parallelization, which means querying edges

for a fixed number of rounds r. Finally, in Section 4.6, we consider the OP-OP model

introduced by Gupta et al. [GSS16], where queries can return subintervals.

4.1 Computing the Optimal Solution Value

In this section we give an optimal polynomial-time algorithm for computing the exact

MST weight in an uncertainty graph. Given an uncertainty graph we aim to identify

an MST and compute its weight using a minimum number of queries. We call this

optimization problem MST weight under uncertainty.

We adapt the algorithm Cutwe present in Section 1.6 of Chapter 1. In our algorithm

Cut-Weight, Algorithm 4.1, we consider a spanning tree Γ and iteratively delete its

edges. In each iteration, we consider the cut which is defined by the two halves of the

tree and query edges in increasing order of lower limits until we have identified and

queried a minimal edge in the cut. That means an edge which is in an MST for any

feasible realization. Then we exchange the tree edge with the minimal edge.

Theorem 4.1 The algorithm Cut-Weight finds the optimal query set for MST weight

under uncertainty in polynomial-time.

Proof. We show for every edge we query, that it is in any feasible query set. Assume

there is an edge g which contradicts this. Then, let T be the MST which does not contain

this edge. We query edge g in the algorithm, when it has the smallest lower limit in a

cut S . At least one edge f ∈ S is in the MST T and T \ f ∪ g is also a spanning tree. As

the cut S does not contain a minimal edge when g is chosen in Cut-Weight, edge f has

current upper limit U′f > Lg. As we also have Lg ≤ L f , this means if the edge weight
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4.1 Computing the Optimal Solution Value

Algorithm 4.1: Cut-Weight
Input: Uncertainty graph G = (V, E).

Output: A feasible query set Q.

1 Find a spanning tree Γ and let Q := ∅;

2 Index the edges of Γ by e1, e2, . . . , en−1;

3 for i = 1 to n − 1 do
4 Delete ei from Γ;

5 Let S be the cut containing all edges in G between the two components of Γ;

6 while S does not contain a minimal edge with trivial uncertainty interval do
7 Choose g ∈ S such that Lg = min{Le|e ∈ S };

8 Query g and add it to Q;

9 Add a minimal edge in S to Γ;

10 Return the query set Q;

of g is sufficiently close to its lower limit, we can exchange g with edge f and reduce

the weight of the tree T . Thus edge g must be in the feasible query set to ensure the

spanning tree is minimal.

The query set the algorithm computes is feasible, as it verifies any edge that is chosen

for the MST is minimal in a cut. The algorithm queries all edges of the MST, as any

edge finally in the tree was a minimal edge with trivial uncertainty interval for some cut

in the algorithm. It terminates, because in each iteration of the while loop one edge is

queried. At the latest, when all edges in a cut have been queried, we find a minimal

edge. It runs in polynomial time, as we query one edge in each iteration and there is a

polynomial number of edges.

It may seem surprising that the cut-based algorithm solves the problem optimally,

whereas cycle-based algorithms do not. However, there is an intuitive explanation. The

cycle-based algorithms identify the edge of maximum weight on a cycle, which is not

in the tree. Informally speaking, they have a bias to query edges not in the MST. In

contrast, Cut-Weight considers cuts in the graph and identifies the minimum weight

edge in each cut, which characterizes an MST.

We note that our result immediately extends to matroids.

Theorem 4.2 There is an algorithm that determines an optimal query set for matroid

basis weight under uncertainty and computes the exact weight of the basis.
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Interesting Facets of Uncertainty Exploration

f : (1 − 1
2α , α

2 + α)

g : (0, α + 1
α
)

Figure 4.1: Lower bound example for α-approximate MST under uncertainty.

4.2 Approximation

We return to the model, in which we only have to verify an MST, but not compute

its weight. We consider an approximate variant in which we relax the requirement

that an online algorithm must guarantee an exact MST and allow it to compute an α-

approximate MST instead. More precisely, an algorithm is α-approximate if its query

set Q ⊆ E identifies a spanning tree that has weight at most α times the weight of

an MST for any realization of edge weights we ∈ Ae for e ∈ E \ Q. As before, we

evaluate an algorithm’s performance by competitive analysis. Note, we only relax the

verification requirement for the algorithm, not for the optimum we compare with. The

optimal query set still needs to verify an exact MST in the uncertainty graph. We show

that despite this significant relaxation of the verification requirements for the algorithm,

no performance improvement is possible – for any approximation factor α.

Theorem 4.3 For any α > 1, there is no α-approximate algorithm for MST under

uncertainty with competitive ratio c < 2. Furthermore, there is no randomized α-

approximate algorithm for MST under uncertainty with competitive ratio c < 1.5.

Proof. Consider the uncertainty graph displayed in Figure 4.1 for a fixed approximation

ratio α > 1. Any deterministic algorithm queries either edge f or edge g first. For each

of the two choices, we give a realization which does not give enough information to de-

termine an α-approximate MST without a second query, whereas an optimal algorithm

can compute the exact MST with a single query. This yields a lower bound of 2 on the

competitive ratio.

Realization R1 has weights w f = 1,wg = 1/(2α). Then the optimal query set

is {g} and has size one. Any algorithm which queries edge f first, cannot verify an α-

approximate MST after one query. The algorithm has not yet queried edge g but has to
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4.3 Uncertain Feasibility

choose an α-approximate MST for all possible edge weights of edge g. However, edge f

is not an α-approximate MST for wg = 1/(2α) and edge g is not an α-approximate MST

for wg = α + 1/(2α). Thus the algorithm also needs to query edge g and consequently

uses twice as many queries as the optimal algorithm.

Symmetrically we consider the realization R2, where edge { f } is the optimal query

set and the edges have weights w f = α2 + 1/α,wg = α. Here, an algorithm querying

edge g first cannot verify an α-approximate MST, as edge f is not an α-approximate

MST for w f = α
2 + 1/α and edge g is not an α-approximate MST for w f = 1 − 1/(3α).

Hence, again the algorithm needs two queries while an optimal algorithm needs only

one query to find an MST.

Any randomized algorithm chooses the algorithm f g with some probability p and

g f otherwise. This means it needs 2p+ (1− p) queries in expectation for realization R1

and p + 2(1 − p) queries in expectation for realization R2. The maximum of these two

terms is minimized for p = 1/2. Then this algorithm needs 1.5 queries in expectation

for each of the two realizations. As before, the optimal query set has size 1 for both

realizations, yielding a lower bound 1.5 on the competitive ratio.

4.3 Uncertain Feasibility

In this section we consider three problems where the feasibility of a solution is uncer-

tain. The k-th smallest value problem asks to identify the element with k-th smallest

weight among a set of elements with uncertain weight. Here, there is only one solu-

tion that is valid, so there is no cost associated with a solution. We give a tight analysis

yielding performance guarantee OPT +k−1 algorithm, where OPT denotes the optimal

number of queries. This improves the previous analysis by one. Similarly, we consider

the sequencing problem, where we aim to sort a set of elements of uncertain weight.

Here we give a best-possible 2-competitive algorithm. Last, we consider the knapsack

problem with uncertain weights. We are given a set of items, each with uncertain weight

but certain profit, and a knapsack size. Any set of items whose combined weight does

not exceed the knapsack size, is a valid solution. However, as the weights are uncertain,

so is which sets of items are valid. Here, there is usually more than one valid item set, so

we aim to find the one which maximizes the profit. We show a parametrized algorithm

for knapsack with uncertain weights. If d is the maximum number of items in a possibly
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Interesting Facets of Uncertainty Exploration

feasible knapsack packing, the algorithm has competitive ratio d, which is best-possible.

4.3.1 k-th Smallest Value

We consider the optimization problem k-th smallest value under uncertainty. Given a

set of n elements, each with an uncertainty interval Ae in which its weight lies. We can

query each element for its exact weight and aim to minimize the number of queries until

the k-th smallest element can be verified. In this whole section we assume k ≤ n/2, as

the cases with larger k can be solved symmetrically.

This problem has previously been studied by Kahan and Gupta et al. Kahan [Kah91]

shows that we can find the k-th smallest element from a set of n elements with compet-

itive ratio OPT + 1, if we ask to output all solutions. Gupta et al. [GSS16] observe that

the same holds if we are required to output the lexicographically smallest solution. For

the more general case asking for an arbitrary solution, they give an algorithm with per-

formance OPT + k, which yields competitive ratio k. They also observe that we cannot

improve upon competitive ratio max{2, k}, if we do not allow an additive term. As their

example has OPT = 1, this means if we allow an additive term, any algorithm needs at

least OPT +max{1, k − 1}.

We describe the algorithm for the k-th smallest value problem presented by Gupta et

al. [GSS16]. Our adapted analysis shows the algorithm needs OPT + k−1 queries. This

improves the previous result by 1, but is of particular interest, as it yields a tight result.

The algorithm k-th smallest value [GSS16] works in two phases. First, we aim to

find the set with the k smallest elements. For this we repeatedly choose the first k ele-

ments ordered by lower limits. Among these we then query the element with the largest

upper limit. We repeat with choosing the first k elements in order of increasing lower

limits, if the set of the k smallest elements is still not defined. Otherwise, we move to

the second step, in which we find the largest element among these k elements. Here, we

repeatedly sort the elements by increasing upper limit and then query the element with

largest upper limit. The algorithm terminates once the k-th smallest element has been

found and all elements that were queried form the query set Q. A formal description of

this procedure is given in Algorithm 4.2.

For the algorithm analysis, let Q∗ be the optimal query set, Q = Q1 ∪ Q2 be the

query sets of the algorithm, and let f1, ..., fn be the total order of the elements. The

optimal query set Q∗ identifies the k-th smallest element. Thus it defines the set of the

k − 1 smallest elements and that of the k smallest elements. To make the notation more
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4.3 Uncertain Feasibility

Algorithm 4.2: k-th smallest Value
Input: A set of elements X = {e1, ..., en} with uncertain weight.

Output: A query set Q, such that by considering the exact element weight wi for

all elements ei ∈ Q and the uncertainty interval for all others defines a

k-th smallest element.

1 Initialize Q := ∅,Q1 := Q2 := ∅;

2 while we cannot distinguish the k-th smallest elements from the rest do
3 Sort the elements by lower limits and reindex such that Lp1 ≤ Lp2 ≤ · · · ≤ Lpn;

4 Set S ′ = {p1, ..., pk};

5 Order the elements in S ′ such that Uq1 ≤ · · · ≤ Uqk ;

6 Add element qk to Q1 and query it;

7 while we cannot identify the k-th smallest element do
8 Query the element with largest upper limit in S ′ and add it to Q2;

9 Set Q = Q1 ∪ Q2;

10 Return the element with largest upper limit in S ′;

compact, denote { f1, . . . , fk} by Fk.

Lemma 4.4 For any element e ∈ E \ Fk holds: e ∈ Q⇒ e ∈ Q∗.

Proof. Let e be an element which is not among the first k elements in the total order and

that is queried in the algorithm. Then e is not queried in the second loop of the algorithm,

as all these are among the first k elements in the total order. Hence, element e is in the

query set Q1 of the algorithm. When e is queried in the algorithm, it has one of the k

smallest lower limits. If e is not in the optimal query set Q∗, no additional element can

be provably smaller. Thus e is among the smallest k elements identified by Q∗, which

equals the set Fk. This contradicts our assumption.

Lemma 4.5 For k ≥ 2 holds: If we have Fk ⊆ Q, then Q∗ ∩ Fk contains at least one of

the first k elements.

Proof. We assume for contradiction Q∗ ∩ Fk = ∅. Note first, that in [GSS16] they show

that Algorithm 4.2 queries at most OPT + 1 elements for the second loop of, where

we find the element of largest value of a set (cf. their Lemma 6.1). As we assume the

optimal query set contains none of the first k elements in the total order, this means the

set Q2 of the algorithm has size at most 1. By assumption, all elements in Fk are queried
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Interesting Facets of Uncertainty Exploration

in the algorithm. Thus, either all k or just k − 1 elements of the set Fk are queried in the

set Q1 and thus in the first algorithm loop.

If Q1∩Fk has size k, the uncertainty interval of all these elements overlaps that of fk.

Any element with an upper limit smaller than w fk cannot be in Q1, as it never has the

largest upper limit among any set of k elements. To prove fk has larger weight than all

these elements, the optimal query set Q∗ needs to contain either fk or all other elements.

As we assume k ≥ 2, all other elements means at least one element. This contradicts

our assumption.

If Q1∩Fk has size k−1, the set Q2 must have size exactly 1. When this one element

is queried in Algorithm Line 8, we have already identified the k smallest elements,

and k − 1 of them have been queried, as they are in Q1 ∩ Fk. The k-th smallest element

cannot be identified, as otherwise the algorithm would terminate. However, the optimal

solution considers the same set of the k smallest elements and does not query any of

these elements by assumption. This yields a contradiction.

Theorem 4.6 For a set of n elements with uncertain weight, Algorithm 4.2 finds the

k-th smallest element using at most OPT+max{1, k − 1} queries.

Proof. We split the algorithm query set into the part intersecting Fk and the rest. By

Lemma 4.4, the latter part is at most as large as the optimal solution without Fk.

|Q| = |Q \ Fk| + |Q ∩ Fk| ≤ |Q∗ \ Fk| + |Q ∩ Fk|.

For k = 1 this completes the proof, as |Q∗ \ Fk| ≤ |Q∗| and |Q ∩ Fk| ≤ 1. Otherwise,

Lemma 4.5 yields that |Q ∩ Fk| ≤ |Q∗ ∩ Fk| + k − 1 holds. Thus, for k ≥ 2, we have

|Q| ≤ |Q∗ \ Fk| + |Q∗ ∩ Fk| + k − 1 = |Q∗| + k − 1.

4.3.2 Sequencing

We consider the problem of sorting n elements e1, ..., en by increasing weight. Each

element has an uncertainty interval Ai and reveals upon a query its exact edge weight wi.

We aim to minimize the number of queries until the total order of the elements has been

decided and call this problem sequencing under uncertainty. First, observe that we can

interpret this as a minimum spanning tree problem with vertex uncertainty. Here each

element represents a vertex, which lies on the real line in the given uncertainty area.

The MST between the vertices, is exactly the tree, where each vertex is connected to
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· · ·

Figure 4.2: Sequencing instance considered in the proof of Theorem 4.8

its nearest neighbors. Knowing the nearest neighbors, in turn defines the sorting of the

elements. Erlebach et al. [EHK+08] show a 4-competitive algorithm for finding an MST

in the vertex uncertainty setting. This result immediately translates to sequencing under

uncertainty.

Theorem 4.7 There is a 4-competitive algorithm for sequencing under uncertainty.

Erlebach et al. [EHK+08] furthermore show for MST with vertex uncertainty, that

competitive ratio 4 is best-possible. However, the lower bound construction uses two

dimensions, while our sorting construction is on the line. Thus the lower bound does

not transfer to sequencing under uncertainty. We show a lower bound of 2 on the

competitive ratio and argue that this cannot be improved even if we allow an additive

term in the performance guarantee. Then, we give an algorithm attaining this bound.

Theorem 4.8 No deterministic algorithm for sequencing under uncertainty has com-

petitive ratio c for c < 2, even if we allow additive terms in the performance guarantee.

Proof. Assume for contradiction, we have an algorithm which queries no more than

c · OPT + d elements with c < 2 and d arbitrary, where OPT denotes the optimal

number of queries. Then, consider an instance with 2⌈(d + 1)/(2 − c)⌉ elements. Let

the uncertainty intervals be Ai = (i, i + 1.5) for i even and Ai = (i − 0.5, i + 1) for i

odd, as displayed in Figure 4.2. Then any two consecutive intervals Ai, Ai+1 overlap for

even i and these are the only existing overlaps. Any deterministic algorithm queries

for each of these pairs one of the two intervals first. As each two overlapping intervals

are symmetric, we can assume without loss of generality that the algorithms always

queries the interval with even index first. Now consider the realization, where wi = i+1

for i even and wi = i + 0.5 for i odd. The algorithm queries all elements for this

instance, while the optimal query set contains only the elements with odd index, which

are ⌈(d + 1)/(2 − c)⌉ in this case. Thus, the algorithm queries twice as many queries

as the optimal solution. This is smaller than c · OPT + d if and only if OPT does not

exceed ⌈d/(2 − c)⌉. However, by construction this is not the case. Thus, this contradicts

the claimed performance of the algorithm.
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We present an algorithm Overlap Vertex Cover, Algorithm 4.3, which we show to

achieve best-possible competitive ratio 2. We first create an overlap graph by introduc-

ing a node for each element we want to sort and an edge between any two elements with

overlapping uncertainty interval. These are the element pairs, for which their order in

the sorting is not decided yet. We find a maximal matching of the graph greedily and

query these elements. Observe that this subset of the elements is also a vertex cover of

the overlap graph. Last we query all elements whose uncertainty interval contains the

weight of a different element.

Algorithm 4.3: Overlap Vertex Cover
Input: A set of elements X = {e1, ..., en} with uncertain weight.

Output: A feasible query set Q.

1 Initialize Q := ∅;

2 Create an overlap graph G = (X, E) with the elements as vertices and an edge

between any two elements with overlapping uncertainty interval;

3 Compute a maximal matching greedily and let S be the set of all vertices in the

matching;

4 Add S to Q and query all elements in S ;

5 forall elements ei ∈ X \ S do
6 if there is an element e j ∈ Q with w j ∈ Ai then
7 Query element ei and add it to Q;

8 Return the query set Q;

Theorem 4.9 Overlap Vertex Cover computes a feasible query set Q for sequencing

under uncertainty in polynomial time and the size of Q is at most twice the size of the

smallest feasible query set.

Proof. Observe first, that Overlap Vertex Cover computes a feasible query set. For all

elements in Q we reveal their exact element weight and thus their ordering is clear. For

any other element e all elements with overlapping uncertainty interval are in Q and their

element weight does not lie in the uncertainty interval of element e. Thus, we can decide

for each of them if its element weight is smaller, equal, or larger than that of element e.

This means that we can decide upon the position of element e in the ordering.

Consider now a feasible query set Q∗ of minimum size. All elements that are added
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to Q in Algorithm Line 7 are contained in any feasible query set, as we cannot decide

if element e j occurs before or after element ei without querying ei. Thus, these element

are also in the optimal query set Q∗. This means any element in Q \ Q∗ is queried

in Algorithm Line 4. We observe that the set S = Q \ Q∗ has at most twice as many

elements as are edges in a maximal matching of the overlap graph. The number of edges

in a maximal matching is a lower bound on the size of a minimum vertex cover, which

yields that S is at most twice as large as a minimum vertex cover. Any feasible query

set must query at least one element from each overlapping pair. Thus, the minimum size

vertex cover of the overlap graph is a lower bound on the size of the query set Q∗. As S

is at most twice as large as the minimum vertex cover, at least half of its elements are

contained in Q∗. Consequently we have |Q \ Q∗| ≤ |Q∗|. Thus, we can conclude

|Q| = |Q ∩ Q∗| + |Q \ Q∗| ≤ 2|Q∗|.

The algorithm runs in quadratic time, as we can compute a maximal matching greedily

in linear time and the loop over all elements in X \ S takes quadratic time.

An algorithm for sequencing under uncertainty also yields an algorithm for a sim-

ple scheduling problem. Given one machine and n jobs with processing times p1, . . . , pn

and weights w j, . . . ,wn, find an ordering of the jobs that minimizes the weighted sum

of completion times. In the explorable uncertainty model the coefficients of the objec-

tive function are replaced by uncertainty intervals. Thus, we replace the weights by

uncertainty intervals A1, . . . , An. Now, the task is to minimize the number of queries

for the exact weight of a job to determine an optimal schedule. It is well-known that

the optimal strategy schedules the jobs by decreasing ratio w j/p j, commonly referred

to as Smith’s Rule [Smi56]. Any ordering of the jobs that violates this rule, increases

the objective function. Thus, to determine an optimal schedule, any feasible query set

must determine the total ordering of the elements according to w j/p j. Algorithm 4.3 has

competitive ratio 2 for sorting elements with explorable uncertainty and thus we have

the following theorem for scheduling on one machine.

Theorem 4.10 Algorithm 4.3 can be modified to find the optimal schedule for 1||
∑

w jC j

with uncertain weights with competitive ratio 2.

Remark 4.11 For uncertain processing times p j instead of weights, we get the same

result. For a job j with uncertainty interval (L j,U j) for its processing time, the ratio

w j/p j lies in the interval (w j/U j,w j/L j). If we choose this as the uncertainty interval
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for an instance with uncertain weights instead of processing times, and give processing

time 1 to the job, this describes the same problem.

4.3.3 Knapsack with Uncertain Weights

Similar to the knapsack problem with uncertain profits, which we defined in Section 3.1.4

of Chapter 3, consider a set of n items and a knapsack size B. Each item i has uncertain

weight in its uncertainty interval Ai and a fixed profit pi. We can query each element for

its exact weight. We aim to minimize the number of queries necessary, until the most

profitable, valid packing can be identified. For a query set Q a packing is valid, if the

sum of its item weights does not exceed the knapsack size B for any realization of item

weights wi ∈ Ai for i < Q. We call this problem knapsack with uncertain weights.

We first observe that this problem has unbounded competitive ratio. For this, con-

sider all possibly valid knapsack packings sorted by decreasing profit. For the most

profitable packing, we need to definitely decide if its weight exceeds the knapsack size

or not.

Theorem 4.12 For any constant c > 0 and any algorithm, there is an instance of

knapsack with uncertain weights for which the algorithm is not c-competitive.

Proof. Consider a knapsack problem with n identical items 1, . . . , n, each with uncertain

weight in the interval Ai = (0, 1) and profit pi = 1. For some small 0 < ε < 1/n, let

the knapsack size be n − 1 + ε. Then the knapsack packing containing all elements is

possibly valid. Let the realization be such that there is exactly one item i with weight ε

and all other items have weight 1 − ε. Then, packing all elements is valid and the only

optimal packing. To verify its validity, it is necessary and sufficient to query item i.

The algorithm cannot distinguish between the items and thus it queries item i last for

some choice of i. Thus, it queries n items, while the optimal solution is to query only

item i.

As we cannot find a general constant-competitive algorithm, we parametrize our

instance. Let d be the size of the largest possibly valid knapsack packing. We first

observe, that if there are several disjoint packings that are possibly valid and have the

same weight, the competitive ratio is also unbounded. Thus, we further restrict the

instance, such that all packings have unique weight. Now, we can apply the cheapest set

algorithm and improve its analysis for knapsack problems. By the analysis in [EHK16],
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Algorithm 4.4: Cheapest Set for Knapsack with UncertainWeights
Input: An set of items with uncertain weight and a knapsack size B.

Output: A query set Q that verifies a provably maximum profit feasible

knapsack packing P.

1 Let Q = ∅ and i = 1;

2 Sort the possibly feasible packings by decreasing profit P1, . . . Pk;

3 while Pi is not provably feasible and i ≤ k do
4 Query all items in Pi and add them to Q;

5 if Pi is not feasible then
6 Increase i by 1;

7 if i > k then
8 Return there is no feasible knapsack packing;

9 else
10 Return the query set Q and the most profitable feasible packing Pi.

the cheapest set algorithm has competitive ratio d · OPT + d. We show, for knapsack

with uncertain weights this competitive ratio is d.

Theorem 4.13 Given an instance of knapsack with uncertain weights in which the

maximum number of items in a possibly valid knapsack packing is d, then Algorithm 4.4

is d-competitive, which is best-possible.

Proof. Let Q be the query set of Algorithm 4.4 and Q∗ the optimal query set. We

compare the queries of the algorithm in each iteration to Q∗. In each iteration we query

a possibly but not provably valid packing P. If P is the optimal packing, Q∗ contains at

least one item of P to prove its validity. If P is not the optimal packing, Q∗ contains at

least one item to prove P is not a valid packing. The algorithm queries at most d items

in each iteration.

By the example in the proof of Theorem 4.12, this algorithm is best possible for the

parameter d.

Remark 4.14 Contrary to previous problems, the proof for the algorithm does not

rely on the fact that the intervals are open or trivial. Thus, for knapsack with uncertain

weights we can also allow closed, non-trivial uncertainty intervals.
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4.4 The Offline Problem

We consider a variant of MST under uncertainty, where we cannot await the return

value of the queries. Thus, we need to decide for one set of edges to query, such that

independent of the realization this edge set will reveal a minimum spanning tree. We

call this the offline problem, as no decisions can be taken after some edge weights are

revealed. It is closely related to the verification problem described in [EHK16], where

given an uncertainty graph and a fixed realization, they aim to compute the minimum

number of queries necessary to verify a minimum spanning tree. A feasible query set

for the offline problem has to verify an MST, independent of the revealed realization.

Thus, the union of the solutions of the verification problem over all realizations is a

feasible solution for the offline problem. We aim to find the smallest of these solutions.

Given an uncertainty graph we would like to find the set of edges we have to query to

find an MST independent of the realization. We give an algorithm that finds the edge

set we need to query in polynomial time.

We first divide the edges into three sets, those edges that appear in an MST for every

realization, those that do not appear in a minimum spanning tree for any realization and

those that are sometimes part of an MST. We prove that the latter set is exactly the set

of edges that we have to query to solve the problem. We call this algorithm Offline and

give a formal description in Algorithm 4.5.

As we do not analyze the competitive ratio of this algorithm, but only it’s running

time, the restriction to open intervals is not necessary, here. To simplify the notation,

we assume all uncertainty intervals are closed. If they were open, we choose a value

smaller than the next larger lower limit (larger than the next smaller upper limit) and this

way order the weights in the same way they would be ordered by choosing the lower

(upper) limit of closed intervals.

We will prove three lemmas about the algorithm to show it finds the optimal query

set. We first prove the claim that all edges in M appear in an MST, independent of

the realization. Then we argue that the edges of N do not appear in an MST of any

realization. Third, we show the edges in neither of the two groups are in any feasible

query set.

Lemma 4.15 Any edge f ∈ M is in an MST for any realization.

Proof. Assume there exists a realization for which edge f is not in an MST. Then there

exists a cycle, where all edges have edge weight smaller than that of edge f . We consider
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Algorithm 4.5: Offline
Input: An uncertainty graph U = (V, E).

Output: A provably minimal spanning tree T ⊆ E.

1 for each f ∈ E do
2 Choose U f for w f and Le for we of all other edges;

3 if f ∈ MST then
4 Add f toM;

5 Choose L f for w f and Ue for we of all other edges;

6 if f < MST then
7 Add f to N ;

8 Query all edges in E\(M∪N);

9 Run Kruskal’s Algorithm to find a minimum spanning tree of G and return it;

this cycle and compare the edge weights to the realization chosen in Algorithm Line 2

for edge f . In this realization the edge weight of all edges of the cycle apart from f is

smaller and that of edge f is larger, thus edge f is also not in an MST for this realization.

This is a contradiction to f ∈ M.

Lemma 4.16 Any edge f ∈ N is not in an MST for any realization.

Proof. Symmetric to Lemma 4.15, we assume there exists a realization for which edge f

is in an MST. Then, edge f is the minimal edge in some cut S . When we decrease the

weight of edge f to its lower limit and increase the weight of all other edges in the cut S ,

edge f is still minimal in the cut. Thus, it is in an MST, independent of the edge weight

of all edges that are not in the cut S . This means, f is in an MST for the realization

chosen in Algorithm Line 5 for edge f . However, this is the only time when f could be

added to N , so we have a contradiction to f ∈ N .

Lemma 4.17 For all edges f ∈ E\(M∪ N) exists a realization in which f is in any

feasible query set.

Proof. We consider the realization described in Algorithm Line 2 and a corresponding

MST T . Then edge an edge f ∈ E\(M ∪ N) is maximal in the cycle C in T ∪ f . If

the uncertainty interval of edge f overlaps with any of the edge weights on the cycle,

edge f is in any feasible query set. Thus, we assume this is not the case. This means

we can reduce the weight of edge f to L f without changing the MST T . If we increase
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the weights of all other edges on C to their upper limit, edge f is still maximal on C.

However, this means f is also maximal on this cycle for the realization considered in

Algorithm Line 5, which is a contradiction.

Theorem 4.18 Algorithm 4.5 finds the optimal solution for the offline variant of MST

under uncertainty using the minimum number of queries possible. It runs in polynomial

time.

Proof. The three lemmas above prove that all edges queried in the algorithm are in any

feasible query set and that the queried elements form a feasible query set.

The algorithm iterates over all edges. For each edge, we perform two runs of

Kruskal’s Algorithm that has running time O(n log n). This means the for each loop

has running time O(n2 log n). The last run of Kruskal’s Algorithm is dominated by this

running time of the for each loop.

4.5 Parallelization

Until now we have analyzed optimization with explorable uncertainty, where we could

await the return value of each query before deciding which edge to query next and the

one where were we could not await the return value of any query. In this section we

show what changes when there is a bound on the number of times we can query edges.

This means that sometimes we have to query more than one edge at the same time and

that we have to decide which edges to query together. A query set now means to query a

specific set of edges of arbitrary size. We can use the weights of the edges in one query

set to which edges to choose for the next query set and the total number of query sets

is bounded by a parameter r. The case we have analyzed until now, is when there are

as many rounds allowed as there are elements or edges. Here, we achieve a worst case

competitive ratio of 2 for MST under uncertainty and algorithm performance OPT+k−1

for k-th smallest value under uncertainty.

4.5.1 MST with Explorable Uncertainty

For MST under uncertainty we have seen two algorithms with competitive ratio 2 and

a randomized algorithm with competitive ratio 1.7071 in Chapter 1. In this section, we

only consider deterministic algorithms. If there are m edges in a graph, these algorithms
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finish after at most m rounds. We first analyze an adaption of the algorithms Framework

and Cycle that yields competitive ratio m/r. Then, we give a lower bound construction

and last we describe an improvement of the previous algorithm.

The algorithm Cycle from Section 1.6 uses at most m rounds to find a minimum

spanning tree, as it queries at least one edge in each round. It has competitive ratio

2. We give an adapted algorithm Parallel Cycle that has competitive ratio ⌈m/r⌉ for

r ≤ ⌈m/2⌉ rounds and competitive ratio 2 for larger round number r. The original al-

gorithm Cycle usually queries two edges per round, but sometimes it only queries a

single edge. Our adaption ensures the algorithm queries two edges in every round. Ad-

ditionally, in the last round we query all unqueried edges. One could consider applying

the algorithm Preprocessing from Section 1.2 before executing Cycle. However, in the

preprocessing we might query only one edge per round and it is unclear how to adapt

the preprocessing. Thus, we do not employ the preprocessing. We use the structure

of the algorithm Framework from Section 1.3 which also is the base for the algorithm

Cycle. Our adapted algorithm Parallel Cycle starts with a lower limit tree TL and it-

eratively adds the other edges by increasing lower limit. In each cycle, we consider the

two edges f and g with largest upper limit. If both edges have not been queried, the

query set has two edges as desired. However, sometimes the second edge chosen in the

algorithm, g, has a trivial uncertainty interval. In this case we choose an arbitrary edge

with non-trivial uncertainty interval and query it together with edge f . We display the

pseudo-code in Algorithm 4.6.

Lemma 4.19 Given an uncertainty graph G with m edges and a positive integral con-

stant 1 ≤ r ≤ m. Algorithm 4.6, Parallel Cycle, achieves competitive ratio max{2, m
r }.

Proof. We first show that at least one edge from any edge pair { f , g} queried in the al-

gorithm is in any feasible query set. Whenever we query an arbitrary edge, this is either

already in the temporary graph Γ, or it has not yet been added. If it is already in Γ, this

does not change the proofs from the algorithm Framework in Section 1.3, as in Γ any

edge can be queried or unqueried. If we query an edge that is not yet in Γ, it is added to Γ

at some point, even though it has already been queried. The order in which edges are

added, appears only in the proof of Lemma 1.13. There, we use the fact, that the edges

are added according to their original intervals by increasing lower limit. This property

has not changed, so the proof goes through as before. In the cycle itself, adding and

edge f which has already been queried is the same as if edge f was queried after it was

added. Thus, also here the proofs remain valid. This means Parallel Cycle computes
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Algorithm 4.6: Parallel Cycle
Input: An uncertainty graph G = (V, E) and a maximal number of allowed

rounds r.

Output: A feasible query set Q.

1 Determine lower limit tree TL and set the temporary edge set Γ to TL;

2 Index all edges in E \ TL by increasing lower limit f1, f2, . . . , fm−n+1;

3 Initialize Q := ∅ and k := 0;

4 for i = 1 to m − n + 1 do
5 Add edge fi to the temporary edge set Γ and let C be the occurring cycle;

6 while C does not contain a maximal edge do
7 if k < r then
8 Choose f ∈ C s.t. U f = max{Ue|e ∈ C};

9 Choose g ∈ C\{ f } with Ue > L f ;

10 if g has trivial uncertainty interval then
11 Rechoose g as an arbitrary edge with non-trivial uncertainty

interval;

12 Add elements f and g to the query set Q, query them and increase k

by 1;

13 else
14 Add all unqueried elements to the query set Q, query them and

increase k by 1;

15 Delete the maximal edge in C from Γ;

16 Return the query set Q;

a query set Q that verifies a minimum spanning tree and at least one edge from any pair

of edges queried at the same time is in any feasible query set.

In each round apart from the last one, exactly two elements are queried that have

not been queried previously. In the last round all remaining edges are queried. Thus, if

r ≥ ⌈m/2⌉, or if the algorithm terminates before round r, in each round two edges are

queried. We show the algorithm has competitive ratio 2 in this case, by considering each

round individually. If in one round the two edges f and g are chosen as in the algorithm

Framework, any feasible query set contains at least one of them by Lemma 1.12 in

Section 1.3. Otherwise, the edge f is queried with an arbitrary other edge. In this
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e1
e2

e3
...

em

em

em−1

em−2

· · ·

e2

e1

Figure 4.3: Graphs for the lower bound construction.

case, edge g has trivial uncertainty interval. As edge f is not maximal in this cycle, the

uncertainty interval of edge f must contain the weight of edge g. Then edge f is in any

feasible query set by Lemma 1.13. Thus, for any round at least one of the queried edges

is in any feasible query set. As no edge with trivial uncertainty interval is queried, the

edge sets queried in the algorithm are disjoint. For each round at least one of the queried

edges is in any feasible query set, thus the competitive ratio of the algorithm is 2.

If the algorithm proceeds to round r < ⌈m/2⌉, the optimal query set contains at

least r edges. The algorithm may query all edges that have not been queried yet in

round r and thus it queries at most m edges in total. This yields competitive ratio of m/r

for this case.

To construct a lower bound, we consider the graphs displayed in Figure 4.3, where

edges are labeled by increasing lower limit. We describe a family of algorithms for such

graphs and show it contains the best-possible algorithms. We describe the construction

for the graph on two nodes, but the same ideas can be applied to the cycle graph using

matroid duality as described in Section 1.6. Without loss of generality we assume the

smallest upper limit is larger than the lower limit of edge em. Otherwise, we can simplify

the graph and delete all edges with lower limit larger than the smallest upper limit,

as they are definitely not in a minimum spanning tree. We call the resulting set of

uncertainty intervals mutually overlapping.

Our algorithm family Parallel Algorithm on Two Nodes, Algorithm 4.7, queries

the edges ordered by increasing lower limits. Given a fixed number of rounds r, it

receives an index sequence 0 = ℓ0 ≤ ℓ1 ≤ · · · ≤ ℓr = m and it queries edges, such

that after round i the ℓi edges with smallest lower limit have been queried. The special

graph structure means we must query edges until we find the edge with minimal weight
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to identify an MST. Thus, we need to find an edge whose upper limit is at most as

large as the smallest lower limit of the other edges in the graph, i. e. a minimal edge.

By assumption, the edges are mutually overlapping. Thus, there are two possibilities

to show this. Either we query the edge itself and all edges whose interval contains the

edge’s weight, or we query all edges but the minimal one and their weight lies above

the upper limit of the minimal edge. The latter is only possible, if the minimal edge has

the unique smallest upper limit.

Algorithm 4.7: Parallel Algorithm on Two Nodes
Input: An uncertainty graph as in Figure 4.3 (left), the number of allowed query

rounds r, and a sequence of indices 0 = ℓ0, ℓ1, . . . , ℓr = m.

Output: A feasible query set Q after r rounds.

1 Index all edges by increasing lower limit e1, e2, . . . , em;

2 Initialize Q =: ∅ and i := 0;

3 while no MST is verified do
4 Query all edges e j with j ≤ ℓi that have not been queried and add them to the

query set Q;

5 Increase i by 1;

6 Return the query set Q;

Theorem 4.20 Given an uncertainty graph on two nodes and m edges and a bound

r ≤ m/2 on the number of query rounds, the algorithm Parallel Algorithm on Two

Nodes with index sequence 0 = ℓ0, ℓ1, . . . , ℓr = m has competitive ratio

max
i=1,...,r

{
m

m − 1
,
ℓi+1

ℓi + 1

}
.

Proof. The algorithm is correct, as it terminates either when an MST is verified, or after

round r. In the latter case, all edges are queried and thus it is ensured that a minimum

spanning tree can be identified.

By construction, the algorithm has queried ℓi edges after round i. To compare this

with the optimal number of queries, we distinguish two cases: When the smallest edge

weight is larger than Lem , all edges apart from the one with smallest upper limit must

be queried to find the minimal edge. Then, any feasible query set contains at least

m − 1 edges and the algorithm queries at most m edges. Otherwise, there exists an edge

which has edge weight at most Lem . Then, to prove that an edge is minimal, all edges
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whose interval overlaps with its edge weight need to be queried. This is the set of edges

e1, . . . ek up to a fixed index k. Thus, if the algorithm finishes in round i, the edges up

to index ℓi−1 do not suffice to verify an MST. Hence, any feasible query set has size at

least ℓi−1 + 1. The algorithm queries ℓi edges. This means, the competitive ratio of the

algorithm is

max
i=1,...,r

{
m

m − 1
,

ℓi

ℓi−1 + 1

}
.

Remark 4.21 For the sequence 0 = ℓ0, ℓi = mi/r for i = 1, . . . , r, Parallel Algorithm

on Two Nodes has competitive ratio max{m/(m − 1),m1/r} for m ≥ 2.

By duality, the dual algorithm has the same competitive ratio for the dual graph,

which is a cycle Cm, as displayed in Figure 4.3 (right). We will use this dual algorithm

in the next section as a subroutine and thus give its pseudo-code here for completeness.

Algorithm 4.8: Parallel Algorithm on a Cycle
Input: An uncertainty graph as in Figure 4.3 (right), the number of allowed

query rounds r and a sequence of indices 0 = ℓ0, ℓ1, . . . , ℓr = m.

Output: A feasible query set Q after r rounds.

1 Index all edges by decreasing upper limit e1, e2, . . . , em;

2 Initialize Q := ∅ and i := 0;

3 while no MST is verified do
4 Query all edges e j with j ≤ ℓi that have not been queried and add them to the

query set Q;

5 Increase i by 1;

6 Return the query set Q;

Now we prove that Parallel Algorithm on Two Nodes is the best-possible algo-

rithm for an uncertainty graph on two nodes with mutually overlapping intervals and

describe the best-possible index sequence ℓ0, ℓ1, . . . , ℓr.

Theorem 4.22 Given two positive integral constants m ≥ 2 and r ≤ ⌈m/2⌉. Any

algorithm has competitive ratio in Ω(α1), where α1 is the second positive, real root of

α(αr − (m + 1)) +m. Algorithm 4.8 attains this competitive ratio for the index sequence

ℓi = (αi+1
1 − α1)/(α1 − 1) for 1 ≤ i < r.
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Proof. We show the best sequence of ℓi for i = 1, . . . , r is choosing ℓi =
∑i

j=1 α
j
1 as

defined in the theorem and then show this algorithm is best-possible on the instance. Let

α be the competitive ratio of ParallelAlgorithm on TwoNodes. As in the construction

above, when the algorithm terminates it has queried ℓi edges and the optimal solution

has size at least ℓi−1+1. Then, we must have ℓi/(ℓi−1+1) ≤ α for all indices i = 1, . . . , r.

This means we need ℓ1 ≤ α, ℓ2 ≤ α2 + α, ℓ3 ≤ α3 + α2 + α, which generalizes to

ℓi ≤
∑i

j=1 α
j. At the same time, all m edges need to be queried after r rounds, which

means ℓr ≥ m. Thus we get two equations for ℓr:

ℓr ≥ m ℓr ≤

r∑
j=1

α j = (αr+1 − α)/(α − 1).

The smallest α which fulfills both equations is the second positive, real root of α(αr −

(m + 1)) + m.

To prove the Parallel Algorithm on Two Nodes with this index sequence is best-

possible, we distinguish two cases. If some edge has weight at most Lem , then the order

in which the edges are queried in Parallel Algorithm on Two Nodes is optimal. We

choose the best-possible distribution of indices with the index sequence above, as then

all inequalities are fulfilled with equality. Otherwise the smallest edge weight is larger

than Lem . Then all edges apart from e1 must be queried to find the minimal edge. Thus

any feasible query set contains at least m − 1 edges and Parallel Algorithm on Two

Nodes queries at most m edges. However, m/(m−1) is less than the bound α if and only

if r > log(2)/log(m/(m − 1)). For m ≥ 2 and r ≤ m/2, this is never the case.

Improving the Algorithm

On the lower bound example, we can improve upon our general algorithm performance

m/r by a lot. This raises the question if there is a better, general algorithm. We give such

an algorithm under the restriction that the instance fulfills the preprocessing condition

TL = TU . As before, we employ the main ideas of the algorithm Framework. However,

we query four edges in each round, instead of two and still prove that at least two of

these edges occur in any feasible query set. The key observation is, that either both

edges chosen in the current cycle are in any feasible query set, or it is clear which is the

next cycle that will be closed. This allows us to choose such an edge set of four edges

almost always. Alternatively, there can be a second pair of edges for which at least one

edge is in any feasible query set independent of the edge weights of the other edges,

which we call independent witness set. This also allows us to query four edges. Last,
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we show that if neither of these two constructions exists, then the uncertainty graph

essentially is one of the two graphs in Figure 4.3. This in turn means we can apply

Algorithm 4.7 or Algorithm 4.8 as our query strategy.

We call our algorithm Parallel MST (Algorithm 4.9). As in the algorithm Frame-

work, we start with a lower limit tree TL and let this be our temporary edge set Γ.

Iteratively, we add the other edges ordered by increasing lower limit.

Definition 4.23 For an edge h ∈ E \ TL, we consider the set of edges that have not

occurred in any cycle before edge h is added to Γ and lie in the cycle which edge h

closes. If the uncertainty interval of such an edge j overlaps with that of edge h, the two

form an independent witness set.

Whenever a cycle C is closed in Γ in iteration i, we consider the two edges f1, g1 ∈

C with largest upper limits in Parallel MST. By Lemma 1.13 from Section 1.3, any

feasible query set contains one of them. We query them together with two additional

edges. If there is an independent witness set, we query these two edges additionally.

Otherwise, we consider the edge ei+1 that will be added next to Γ. We try to find an

edge g2 either in the cycle ei+1 closes if f1 is deleted or in the cycle C, such that at least

two edges from { f1, ei+1, g1, g2} occur in any feasible query set. If no such edge exists,

we contract or delete all edges which are definitely in or not in an MST and apply one

of the two algorithms Parallel Algorithm on Two Nodes or Parallel Algorithm on a

Cycle. To count the number of times we query four edges, we use the variable k.

To prove the algorithm performance, we first show that for an independent witness

set, any feasible query set contains at least one of the two edges.

Lemma 4.24 Any feasible query set contains at least one of the edges in an indepen-

dent witness set.

Proof. Let the independent witness set contain the two edges {h, j} and let h be the

edge that is not in TL. We consider the cycle which edge h closes with Γ. As edge

j does not occur in any cycle before edge h is added to Γ, it is on the cycle which h

closes, independent of which edges are deleted before edge h is added. By Lemma 1.14

from Chapter 1, the assumption TL = TU yields that edge h, the edge which is newly

added to Γ, has the largest upper limit in the cycle it closes. Thus, as edge j will be in

the same cycle independent of the previous deleted edges and j’s uncertainty interval

overlaps that of edge h, at least one of the two edges is in any feasible query set by

Corollary 1.15.
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Algorithm 4.9: ParallelMST
Input: An uncertainty graph G = (V, E) and the max. number of query rounds r.

Output: A feasible query set Q after r rounds.

1 Determine a lower limit tree TL and set the temporary graph Γ to TL;

2 Index all edges in E \ TL by increasing lower limit e1, e2, . . . , em−n+1;

3 Initialize Q := ∅ and k := 0;

4 for i = 1 to m − n + 1 do
5 Add edge ei to the temporary graph Γ and let C be the occurring cycle;

6 while C does not contain a maximal edge e and k < r do
7 Choose f1 ∈ C such that U f1 = max{Ue|e ∈ C};

8 Choose g1 ∈ C\{ f1} such that Ug1 = max{Ue|e ∈ C\ f1};

9 if any following cycle contains an independent witness set {h, j} then
10 Add f1, g1, h, j to the query set Q and query them;

11 else if there exists g2 ∈ C\{ f1, g1} with Ug2 > max{L f1 , Lg1} such

that {ei+1, g1} or {ei+1, g2} is a witness set in the cycle closed by edge ei+1,

if edge f1 is deleted from C then
12 Add f1, ei+1, g1, g2 to the query set Q and query them;

13 else
14 if Ug1 < Lei+1 then
15 Apply the algorithm Parallel Algorithm on a Cycle on the cycle

C with index sequence ℓ1 = 2, ℓi = 2 + 4(i − 1) for

i = 1, . . . , r − k − 1 and ℓr−k = |C|;

16 Return the query set Q;

17 else
18 Contract all edges in C \ { f1, g1}, add the remaining edges to Γ and

apply the algorithm Parallel Algorithm on Two Nodes on the

remaining graph with index sequence ℓ1 = 2, ℓi = 2 + 4(i − 1) for

i = 1, . . . , r − k − 1 and ℓr−k = 3 + m − n − i;

19 Return the query set Q;

20 Increase k by 1;

21 Delete the edge with largest upper from Γ;

22 if k = r then
23 Query all edges In E that have not been queried and add them to Q;

24 Return the query set Q;
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Thus, if the algorithm queries edges in Algorithm Line 10, any feasible query set

contains at least two of the four edges the algorithm queries.

If no independent witness set can be found in an iteration i, we use the following

insight: If edge f1 is not deleted from the cycle, but some other edge, then both edges f1

and g1 occur in any feasible query set. Otherwise, consider the cycle C′ which is closed

by the next edge ei+1, if f1 is deleted from C.

If there is an edge g2 ∈ C \ { f1, g1} such that either the uncertainty intervals of edges

ei+1, g2 overlap and g2 is on C′, or the uncertainty intervals of both, f1, g2 and of ei+1, g1,

overlap and g1 is on C′, we query these four edges. To capture both cases, we call the

two edges {g1, g2} by {g, h}, without specifying which edge is which. We show that at

least two of the edges f1, ei+1, g, h occur in any feasible query set.

Lemma 4.25 Consider a cycle C in iteration i of the algorithm together with a pair

of edges { f1, g} in C, where edge f1 has the largest upper limit in the cycle C and the

interval of edge g overlaps that of edge f1. Let ei+1 be the next edge added to Γ and

let h ∈ C \ { f1, g} be an edge with overlapping uncertainty interval in the next cycle, if

edge f1 is deleted from the cycle C. Furthermore, let either g or h achieve maxe∈C\ f1 Ue

and assume the intervals of h and g overlap. If |{ f1, ei+1, g, h}| = 4 holds, then an optimal

query set contains at least two of these four edges.

Proof. By Lemma 1.13 at least one of the edges f1, g is in any feasible query set. We

distinguish if edge f1 is maximal in the cycle C or not. If edge f1 is maximal, then

at least one of the two edges f2, h is in any feasible query set by Lemma 1.13. As

|{ f1, f2, g, h}| = 4, the two edge pairs are disjoint and thus any feasible query set contains

at least one edge from each pair.

If edge f1 is not maximal in the cycle C, it is in any feasible query set by Obser-

vation 1.2. The next edge with largest upper limit in C is either edge g or edge h and

it’s uncertainty interval overlaps that of the other edge. Then, at least one of these two

edges is in any feasible query set by Lemma 1.13.

Theorem 4.26 Given an uncertainty graph G for which we cannot identify a minimum

spanning tree. If no set of four edges can be found that fulfills the conditions of Lem-

mas 4.24 and 4.25, then we can contract and delete edges until one of the two graphs in

Figure 4.3 remains.

Proof. If we cannot identify a minimum spanning tree in the graph G, then the algorithm

Parallel MST finds an edge pair { f1, g1} in a cycle C where no edge is maximal, such
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f
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hk

Figure 4.4: Graph obtained from G after contracting edges in the MST.

that f1 has the largest upper limit in C and g1’s uncertainty interval overlaps that of edge

f1. We denoted the edges that have not yet been added to Γ by h1, ..., hk and maintain

their ordering such that Lh1 ≤ Lh2 ≤ ... ≤ Lhk . As edge f1 is added to Γ before h1,

L f1 ≤ Lh1 holds. Furthermore, either Ug1 ≤ Lh1 holds or all edges e ∈ C \ { f1, g1} have

upper limit at most L f1 .

By assumption, there is no edge pair fulfilling the conditions of Lemma 4.24. Thus,

all edges not in the cycle C apart from the edges h1, . . . , hk either do not occur in any

cycle or their upper limit is smaller than the lower limit of the first edge hi closing a

cycle they appear in. This means these edges are definitely in an MST, as for j > i the

lower limits of h j. For simplicity, we contract them. This turns all edges hi into chords

of the cycle C.

By assumption there is also no edge fulfilling the conditions of Lemma 4.25 with

the edges f1, g1 and h1 = ei+1. Thus, all edges other than g1 in the cycle C must have an

upper limit so small that their uncertainty interval does not overlap with that of edge h1.

Furthermore, either g1’s interval does not overlap with h1’s uncertainty interval, or all

other cycle edges have upper limit at most L f1 . In the first case, once the maximal

edge in C is deleted, all other edges have upper limit at most Ug1 < Lh1 . Thus, all

edges h1, . . . , hk are maximal in their cycle and thus can be deleted from the graph.

The resulting graph is the cycle graph from Figure 4.3 (right). In the other case, all

edges apart from f1 and g1 on the cycle do not overlap with f1’s interval. Consequently,

they are definitely in the minimum spanning tree and can be contracted. The left over

graph is the parallel graph in Figure 4.3 (left). It consists of only two nodes joint by the

edges f1, g1, h1, ..., hk.

For the graphs displayed in Figure 4.3, the two algorithms Parallel Algorithm on

Two Nodes and Parallel Algorithm on a Cycle find a minimum spanning tree in few

rounds.

This concludes the prerequisites to prove the algorithm performance.
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Theorem 4.27 Given an uncertainty graph and a number of allowed rounds r, Algo-

rithm 4.9 has competitive ratio at most max{2,m/(2r − 1)}.

Proof. If the algorithm always executes Algorithm Line 10 or Algorithm Line 12 and

uses k < r rounds, in every iteration exactly four edges are queried. Here, the optimal

solution has at least 2k edges by Lemmas 4.24 and 4.25, which yields a competitive

ratio of 2. If the algorithm uses r rounds, at most m edges are queried and the optimal

solution has size at least 2r. However, if the algorithm turns to Algorithm Line 18 after

some rounds, then for one round we query only two edges from which at least one is in

any feasible query set by Theorem 4.20. In the next rounds we query four edges again,

out of which at least two are in any feasible query set by the same theorem. Thus, if the

algorithm terminates in round k < r it has competitive ratio 2. If it takes r rounds, an

optimal query set has size at least 2r− 1 and the algorithm queries at most m edges.

4.5.2 Parallelization of k-th smallest value

We consider the k-th smallest value problem again. Given a set of n elements, each with

uncertainty interval Ai, we aim to find the k-th smallest of these elements by querying

as few elements as possible for their exact value. In the parallelization model, we are

given a fixed maximum number of r rounds to find the k-th smallest element. As before,

we assume k ≤ n/2 as all results transfer to larger k by symmetry.

For a lower bound depending on the number of rounds r, we observe that finding

the largest value is actually exactly the problem of finding a minimum spanning tree on

a cycle, e.g. finding the largest weight edge on a cycle. As finding the k-th smallest

value of an instance with k − 1 intervals smaller than all others is equivalent to finding

the smallest value of the rest of the set, we also have a lower bound ⌈(n − k + 1)1/r⌉ on

the competitive ratio. Combined, this yields the following lower bounds:

Lemma 4.28 Given r rounds and a set of n elements with uncertain weight, no al-

gorithm that computes the k-th smallest value of the set in r rounds has competitive

ratio c < max{2, k,
⌈
(n − k + 1)1/r

⌉
}.

We first consider the special case k = 1. Finding the smallest value of a set is the

same as finding the minimum spanning tree of a graph with two nodes connected by

parallel edges. Hence, we can apply our algorithm Parallel Algorithm on Two Nodes

for this case, which is best-possible.
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Theorem 4.29 There is a max{n/(n − 1), ⌈n1/r⌉}-competitive algorithm for the small-

est/largest value problem in r rounds and this is best-possible.

If we consider an additive performance guarantee for Parallel Algorithm on Two

Nodes, we choose index sequence ℓi = i ·n/r. Then, if the algorithm terminates in round

i it queries ℓi elements. At the same time an optimal solution contains at least ℓi−1 + 1

elements. Thus, the performance guarantee is OPT + n/r− 1 for any i, which means the

index sequence is best-possible.

Theorem 4.30 There is an algorithm that finds the smallest/largest value of a set of

elements with uncertain weight, which uses at most OPT + max{1, ⌈n/r⌉ − 1} queries

and this is best-possible.

For k > 1, we give an algorithm based on the same idea as Parallel Algorithm on

Two Nodes. Parallel k-th Smallest Value. Our algorithm Algorithm 4.10, sorts all

elements by lower limits and queries the elements in this order. In each round j, we

query the elements up to index ℓ j, according to a sequence of indices ℓ j that are given

as the input. As soon as we can identify the k-th smallest element at the end of a round,

the algorithm terminates.

Algorithm 4.10: Parallel k-th Smallest Value
Input: A set of elements X = {e1, ..., en} and a sequence of indices

0 = ℓ0 ≤ ℓ1 ≤ · · · ≤ ℓr = n.

Output: A feasible query set Q.

1 Initialize Q := ∅, j := 1;

2 Sort the elements by lower limits and reindex them such

that Le1 ≤ Le2 ≤ · · · ≤ Len;

3 while no k-th smallest element is identifiable do
4 Set Q = {e1, ..., eℓ j} and query the new elements;

5 Increase j by 1;

6 Return the query set Q;

Theorem 4.31 Given r rounds, a set of n elements of uncertain weight and an index

k ≥ 1. Let α1 equal the first real root of (αr+1 − k(αr − α) − αn − α) + n that is at

least k. Then Algorithm 4.10 with ℓ j = (α j+1
1 − k(α j

1 − α1) − α1)/(α1 − 1) computes the
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k-th smallest value with multiplicative competitive ratio α1 and this is the best-possible

choice of ℓ j. For k = 1 we have α1 = n1/r.

Proof. Let Q∗ be the optimal query set and Q be the query set of the algorithm. Let i+1

be the round after which the algorithm finishes and denote with Qi the query set of the

algorithm at the end of round i. Let x be the element of k-th smallest value. In Algo-

rithm 4.10 we query elements ordered by increasing lower limit. Thus we always query

the unqueried elements with smallest lower limit next. If all elements with Le ≤ wx have

been queried, we can identify the k-th smallest element. This means we have Le ≤ wx

for all elements in Qi. In Section 4.3.1 we have already considered the k-th smallest

value problem. Similar to Lemma 4.4, also for this algorithm holds |Qi| ≤ |Q∗ ∩ Qi| + k.

This is because any element e , x with wx ∈ (Le,Ue) must be in any feasible query set

and there are at most k − 1 elements with smaller upper limit than wx. The algorithm

starts round i+ 1 and thus at least one element from X \Qi must be in the optimal query

set. Consequently |Qi| ≤ |Q∗| + k − 1. Let α be the competitive ratio of Algorithm 4.10.

Then we need |Q| = ℓi+1 ≤ α · |Q∗| for any 0 ≤ i < r, as the algorithm can terminate in

any round i + 1. Using our bound on the size of |Q∗|, this means we need

|Q| = ℓi+1 ≤ α · |Q∗| ≤ α · (ℓi − k + 1) ≤ αi+1 − (k − 1)
i∑

t=1

αt =
αi+2 − k(αi+1 − α) − α

α − 1
.

The algorithm must finish after at most r rounds and in the worst case all n elements

must queried. Hence we need

ℓr ≥ n and ℓr ≤
αr+1 − k(αr − α) − α

α − 1
.

The root α1 is the smallest value fulfilling both of these inequalities.

To attain an algorithm with good additive performance we use a different index

function ℓ j.

Theorem 4.32 Given r rounds, a set of n elements of uncertain weight and an index

k ≥ 1, Algorithm 4.10 with ℓ j = j ·max{k, ⌈n/r⌉} computes the k-th smallest value using

at most OPT+k − 1 +max{k, ⌈n/r⌉} queries.

Proof. Let Q∗ be the optimal query set and Q be the query set of the algorithm. Let i be

the round after which the algorithm finishes and for each round j < i denote with Q j the

query set of the algorithm at the end of round j. Let x be the element of k-th smallest

value. By the same argumentation as in the proof of Theorem 4.31, we have |Q j| ≤
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Figure 4.5: Example that Theorem 4.32 is almost tight.

|Q∗|+ k − 1 for j < i. For each round j ≥ 1 the algorithm’s query set Q j has size at most

j ·max{k, ⌈n/r⌉}. Thus we have for i ≥ 2 for the algorithm query set Q

|Q| = |Qi−1| +max{k, ⌈n/r⌉} ≤ |Q∗| + k − 1 +max{k, ⌈n/r⌉}.

For i = 1 we have |Q| = max{k, ⌈n/r⌉} ≤ max{k, ⌈n/r⌉} · |Q∗|.

In Figure 4.5 we display an example that proves that this analysis is almost tight for

Algorithm 4.10. Consider 2k elements, where k−1 elements have interval (0, 5), another

k − 1 elements have interval (3, 7) and there are two additional elements x with interval

(1, 6) and y with interval (2, 4). Let the realization give weight 1 to all small elements,

weight 6 to all large elements and weights wx = 5 and wy = 3 to the other two elements.

Then Algorithm 4.10 first queries the k elements with smallest lower limit. These are

the k − 1 small elements as well as the element x. Once their weight is revealed, the

k-th smallest element can not be identified. It could be any of the k elements that have

not been queried yet. In the next round, the algorithm queries these k elements and then

identifies element y as the k-th smallest element. Thus, the algorithm needs 2k queries

to find the k-th smallest element. However, it suffices to query the two elements x and y

to prove that y is the k-th smallest element. Hence, the optimal query set has size 2 and

algorithm performance is OPT + 2k − 2.

4.5.3 Sequencing

For sequencing under uncertainty our algorithm Overlap Vertex Cover needs only

2 rounds. Thus, there is no trade-off between algorithm performance and number of

rounds for r ≥ 2. For a single round we show the competitive ratio can get arbitrarily

large. Consider one element e0 with uncertainty interval A0 = (0, n+ 1) and n additional

elements e1, ..., en with uncertainty interval Ai = (i, i + 1) for i = 1, ..., n. Given just one
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round, an algorithm must query all intervals to ensure after this round the ordering is

unique. However, for example for the realization where w0 = 1, the optimal query set

contains just element e0. Thus the competitive ratio is n + 1 here.

Theorem 4.33 Given a set of n elements of uncertain weight and a round number r,

Overlap Vertex Cover, Algorithm 4.3, has competitive ratio 2 if r ≥ 2 and for r = 1 it

has competitive ratio n. In both cases it is best-possible.

We can find the set of elements we need to query if we only allow 1 round in poly-

nomial time, as these are all elements with non-zero degree in the overlap graph. This

is also the set of all elements, that might potentially be in the optimal query set.

4.6 Alternative Query Types

We consider the extension of our query model, in which a query to an edge may re-

turn an open subinterval of the current uncertainty interval instead of a point. In this

model, several queries to one edge might be necessary. The model was first analyzed

in [GSS16] under the name OP-OP model, meaning the original uncertainty intervals

are open intervals or points and the query output as well. They show for MST under

uncertainty that the deterministic 2-competitive algorithm by Erlebach et al. [EHK+08]

extends to the OP-OP model without any loss in the competitive ratio. We analyze the

OP-OP model for randomized algorithms and show the surprising fact, that no improve-

ment over competitive ratio 2 is possible using randomization. For non-uniform query

cost, we show that we cannot use the algorithm Balance presented in Section 1.5.2. We

give a new algorithm that attains competitive ratio 2, proving that there is no loss in the

algorithm performance from the uniform query cost model allowing only points to the

non-uniform query cost model with intervals.

4.6.1 Randomized Algorithms

We consider a randomized problem instance (G,R, p), that is an uncertainty graph G

together with a family of feasible realizations R and a probability distribution p on these

realizations. We use R ∼p R to denote a realization R drawn from R according to p. For

such a randomized instance, we show that for no deterministic algorithm the expected
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f : (1, 3)

g : (0, 2)

Figure 4.6: Lower bound example for OP-OP randomized

ratio of ALG/OPT is less than 2. Applying a variant of Yao’s Principle [Yao77,BEY98],

this yields that no randomized algorithm has competitive ratio smaller than 2.

Theorem 4.34 (Variant of Yao’s Principle [BEY98, Thm. 8.5]) Let A denote the

class of all deterministic algorithms and let F be the family of all randomized instances

(G,R, p) for a minimization problem. Then any randomized algorithm has a competitive

ratio c for which holds

c ≥ min
ALG∈A

ER∼pR

[
ALG(G,R)
OPT (G,R)

]
∀(G,R, p) ∈ F .

Consider the uncertainty graph depicted in Figure 4.6, with two edges f and g join-

ing the same pair of vertices and uncertainty intervals A f = (1, 3) and Ag = (0, 2). For

a fixed parameter n ∈ Z>0 we first define the family Rn of 2n feasible realizations and

then give a probability distribution on them. Let realization R j reveal for j − 1 queries

to edge f uncertainty interval (1, 3) and for the j-th query interval [2, 2]. Here the un-

certainty interval of edge g stays (0, 2) for n queries and turns to the trivial uncertainty

interval [1, 1] upon the n + 1-st query. Symmetrically let realization R− j reveal edge

weight [1, 1] upon the j-th query to edge g and edge weight [2, 2] with the n+1-st query

to edge f . Then the optimal strategies for realizations R j and R− j on G are to query

edge f or respectively edge g repeatedly for j times and thus make j queries in total.

We define a randomized instance (G,Rn, p) by giving a distribution p over the re-

alizations in Rn. Let each of the 2n realizations R j and R− j, j = 1, . . . , n, occur with

probability P(R j) = P(R− j) = 1/2n in the distribution p.

Consider the algorithm ALG, that alternates between querying edge f and edge g. If

we denote by f i, gi the i-th query to edges f and g, the query sequence of the algorithm

is: f 1, g1, f 2, g2, . . . , f n, gn. We compute the competitive ratio of ALG and then show its

performance is best-possible.

Lemma 4.35 The Algorithm ALG defined above has competitive ratio at least 2.
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Proof. Consider the randomized instance (G,Rn, p) for n ∈ Z>0 defined above. We

show algorithm ALG has competitive ratio 2 when n tends to infinity. The algorithm

ALG needs 2 j − 1 queries when realization R j occurs, as it queries edge f for the j-th

time after querying both edges j − 1 times. For realization R− j it needs 2 j queries. The

optimal query set has size j for both realizations R j and R− j. Thus the competitive ratio

for the randomized instance (G,Rn, p) is:

ER∼pRn

[
ALG(G,R)
OPT(G,R)

]
=

n∑
j=1

P(R j)
2 j − 1

j
+

n∑
j=1

P(R− j)
2 j
j
= 2 −

1
2n

n∑
j=1

1
j
.

The sum expresses the harmonic number Hn, which has growth less than 1/n, and thus

we get

ER∼pRn

[
ALG(G,R)
OPT(G,R)

]
= 2 −

1
2n
· Hn

n→∞
−→ 2.

This proves Algorithm ALG has competitive ratio at least 2 on the randomized instance

(G,Rn, p) and thus also in general.

Lemma 4.36 No algorithm performs better than ALG on the randomized problem ins-

tance Rn with probability distribution p.

Proof. We observe first, that any algorithm obeying the principle that one edge is queried

for the i-th time only after the other edge has been queried for i − 1 times has the same

competitive ratio as ALG, as the family of realizations Rn and the probability distribu-

tion p are symmetric in f and g.

Now consider an algorithm ALG1 not obeying this principle. Its query sequence

contains edges f and g each n times in an arbitrary order. By definition it has a point

in the query sequence, where the number of queries to edge f and to edge g differs by

at least 2. Then the query sequence also contains two consecutive queries whose query

numbers differ by at least 2. Without loss of generality assume their order is gy, f x and

y ≥ x + 2 for two integers x and y. We define a new algorithm ALG2 and show that it

has strictly smaller competitive ratio. Let ALG2 be the algorithm where we switch these

two queries gy, f x and that thus contains the sequence f x, gy.

The number of queries of ALG1 and ALG2 coincides for all realizations R < {Rx,R−y}.

Using the linearity of expected values, this means the difference of the two competitive
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ratios simplifies to

ER∼pRn

[
ALG2(G,R)
OPT(G,R)

]
− ER∼pRn

[
ALG1(G,R)
OPT(G,R)

]
= ER∼pRn

[
ALG2(G,R) − ALG1(G,R)

OPT(G,R)

]
=

P(R−y) · 1
OPT(G,R−y)

−
P(Rx) · 1

OPT(G,Rx)
.

The number of queries for realization Rx is one larger for Algorithm ALG1 than for

ALG2. For realization R−y it is the other way around. Hence, we get

ER∼pRn

[
ALG2(G,R)
OPT(G,R)

]
− ER∼pRn

[
ALG1(G,R)
OPT(G,R)

]
=

1
2n

(
1
y
−

1
x

)
=

x − y
2nxy

< 0.

This yields that the performance of ALG2 is strictly better than the performance of

ALG1. Any algorithm that queries f and g alternatingly has competitive ratio 2 and any

other algorithm is not best-possible. Thus algorithm ALG with competitive ratio 2 is

best-possible for the randomized instance (G,Rn, p).

We apply Yao’s Principle (Theorem 4.34) to Lemma 4.36 to prove our claim.

Theorem 4.37 There is no randomized algorithm for MST under uncertainty in the

OP-OP model with competitive ratio c < 2.

Corollary 4.38 The 2-competitive deterministic algorithm which is presented by Gupta

et al. [GSS16] has best-possible competitive ratio, even among randomized algorithms.

4.6.2 Non-uniform Query Cost

We first show that Balance is not necessarily 2-competitive with queries returning subin-

tervals. Then we present a new algorithm with competitive ratio 2 that can handle more

general queries. It carefully computes the query cost we can save with each element, if

we do not query it.

We consider two triangles sharing one edge with three distinct edges f , g, h as dis-

played in Figure 4.7. Balance starts with the lower limit tree TL containing the two

edges of weight 1 and edge f . We add the other edges by increasing lower limit and

thus add edge g before edge h. This means the first closed cycle is C. Edges f and g

will be queried in the algorithm until one of the two is maximal in the cycle. This means

Balance makes 6 queries for the following interval sequences:

(1, 9)→ (5, 9)→ (7, 9)→ [8, 8]

(2, 10)→ (6, 10)→ (8, 10)→ (9, 10).
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C

1

g:(2, 10)f:(1, 9)

1

h:(3, 4)

Figure 4.7: Example for Balance.

Once g has been deleted, edge h is added and the cycle with f and h occurs. Imme-

diately, edge f is maximal and we find a minimal spanning tree with the two edges of

weight 1 and edge h. An optimal strategy would have queried edges f and g only once

and then realized that they are dominated by edge h. Thus, two queries suffice to solve

the instance. It is clear that the weights of edges e and f can be adapted such that for

any competitiveness factor k we have a counter example.

Observation 4.39 Balance is not constant factor competitive if intervals are allowed

as query output.

We present an alternative algorithm Interval Handler that computes a minimum

spanning tree with non-uniform query costs and intervals as query output. It merges

ideas from the algorithm U-red of Erlebach et al. [EHK+08], our algorithm Balance

presented in Section 1.5, and the verification algorithm from [EH14]. Algorithm 4.11,

Interval Handler, starts with a lower limit tree TL and then iterates over the edges by

increasing lower limit as before. However, in each cycle we consider the edge pair of

the two edges with largest upper limit instead of the neighborhood. We introduce a

value ve ∈ R≥0 for every edge, that counts the query cost accumulated by edges in a pair

with it. In a sense, the term ce − ve characterizes the potential query cost we may save

by not querying edge e. At first the potential saved query cost for each edge is its query

cost. When the edge occurs in a cycle pair, the potential saved query cost decreases, as

not querying the one edge means we have to query the other. All edges that contribute

to ve must be queried if e is not queried. For each edge pair in the algorithm, we decide

to query the edge e that has a smaller potential save of query costs if it is not queried.

The edge f that has the larger potential save in query cost, is not queried in this step.

Then we increase the value of the edge f we did not query by ce − ve. A key feature of
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the algorithm, is that after an edge is queried its value is set back to 0 and the algorithm

is restarted, but the value of the other edges is not reset.

Algorithm 4.11: Interval Handler
Input: An uncertainty graph G = (V, E).

Output: A feasible query set Q.

1 Initialize the value ve at 0 for every edge e ∈ E and set Q := ∅.;

2 Let TL be the lower limit tree and index remaining edges by increasing lower

limit e1 ≤ e2 ≤ · · · ≤ em−n+1;

3 Let Γ be TL;

4 for i = 1 to m − n + 1 do
5 Add ei to Γ;

6 while Γ has a cycle C do
7 if C contains an always maximal edge e then
8 Delete e from Γ;

9 else
10 Choose f ∈ C s.t. U f = max{Ue|e ∈ C};

11 Choose g ∈ C\ f s.t. Ug = max{Ue|e ∈ C\ f };

12 if Ag is trivial then
13 Query edge f , add it to Q and set v f = 0;

14 else if c f − v f ≥ cg − vg then
15 Query edge g, add it to Q, add cg − vg to v f , and set vg = 0;

16 else
17 Query edge f , add it to Q, add c f − v f to vg, and set v f = 0;

18 Restart the algorithm in Algorithm Line 2;

19 Return the query set Q;

Algorithm 4.11 outputs a minimal spanning tree, as after the last restart all edges

have been considered only maximal edges in cycles have been deleted and a spanning

tree remains. It terminates because in each iteration of the cycle loop in Algorithm

Line 6 one cycle edge is queried or deleted and after a finite number of queries to each

edge its interval reduces to a point. At the latest, when all edges in the graph have trivial

uncertainty interval, we find an always maximal edge in each cycle.
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We want to show that Interval Handler has competitive ratio 2. For this, we first

observe that after each query to an edge its value is reset to 0. Then, the algorithm

restarts, but maintains the value of all other edges. Thus, querying an edge is as if the

edge is deleted and replaced by a parallel edge with an uncertainty interval that is either

the same or contained in the old interval. This simplifies the instance in the sense than

any feasible query set for the original uncertainty graph is also a feasible query set for

the uncertainty graph after some edge is queried. We make the following observation

concerning the restart of our algorithm Interval Handler.

Observation 4.40 An edge that is in any feasible query set in some run j of Interval

Handler, is also in any feasible query set for the original graph G.

Thus, for the proof of the algorithm performance, we treat multiple queries to one

edge as if they would be queries to different, parallel edges. Interval Handler behaves

exactly like Framework and thus we can apply Lemma 1.13 from Section 1.3 to each

run of the algorithm. Together with Observation 4.40 we can formulate a corollary to

Lemma 1.13.

Corollary 4.41 Given an uncertainty graph G, then any feasible query set contains at

least one of the two edges f and g chosen by Interval Handler. Furthermore, if Ag is

trivial, any feasible query set contains edge f .

As in [EH14], we create a forest H using this property. We create the graph solely for

the purpose of the proof. This means we observe the algorithm behavior for a particular

problem instance and build the graph depending on this. For each edge in the algorithm

we create one node. Whenever an edge is queried, we create a second node for a possible

second query of this edge. We add an edge between two nodes, when they occur as an

edge pair in Algorithm Line 15 or Algorithm Line 17 of Algorithm 4.11. Let an edge

that is queried in this step of the algorithm be the child of the edge it is paired up with

at that time. The partner has not been queried, which means the graph is cycle-free.

By construction, any feasible query set contains at least one of the two vertices of

every edge in H.

Observation 4.42 Let H be the graph defined as described above from a run of Inter-

val Handler. Then the set of edges queried by an optimal solution contains a vertex

cover of H.
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Let us consider a tree T of this forest H. We show we can bound the query cost of

the algorithm in T by twice the query cost of the optimal solution restricted to the edges

of T . We need the following notation: Let T be the defined tree, then we denote with Te

the subtree that has node e as its root. If r is the root of a tree T , then T = Tr holds. We

define C(e) as the set of all children of e and GC(e) as the set of all grand children.

The tree is structured in such a way that there is a relation between the query cost

and the values of the child and parent nodes. A child a is queried when it appears in

a pair with its parent b in the algorithm. In Algorithm Line 15 or Algorithm Line 17,

respectively, the term ca − va is added to the value vb. In no other situation anything is

added to its value. Therefore vb is the sum of the term ca − va over all children a of b.

Additionally we know that ce − ve is non-negative in any state of the algorithm.

Observation 4.43 For the tree T and a node e of the tree, it holds that ce ≥ ve =∑
f∈C(e)

(
c f − v f

)
.

Any edge that is the child of another edge is queried in the algorithm. Thus, the tree

T has at most one edge that is not queried, its root. For all edges b ∈ T that are queried,

we consider their subtree S b. We relate the optimal cost of this subtree OPT (S b) to the

optimal cost OPT (S b

⏐⏐⏐b ∈ OPT ), if b is required to be contained in OPT .

Lemma 4.44 For an edge b that is queried in Algorithm Line 15 or Algorithm Line 17

of Interval Handler and its set of related edges S b holds

OPT (S b

⏐⏐⏐b ∈ OPT ) = cb − vb + OPT (S b).

Proof. We use induction on the number of generations contained in S b. If the set S b

contains only edge b, the value of edge b is zero. This means the optimal query set

for S b is either empty, or b, if edge b is required to be included in the optimal solution.

Hence,

OPT (S b

⏐⏐⏐b ∈ OPT ) = cb = cb − 0 + 0 = cb − vb + OPT (S b).

For an edge b with non-empty children set C(e), the optimal solution containing edge

b has cost cb plus the optimal solution of the subtrees which have b’s children as their

root. Applying induction and Observation 4.43 for vb, this yields

OPT (S b) = cb +
∑

e∈C(b)

OPT (S e) = cb −
∑

e∈C(b)

ce − ve +
∑

e∈C(b)

OPT (S e)

= cb − vb + OPT (S b

⏐⏐⏐b < OPT ).
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For any edge a ∈ T we apply Lemma 4.44 to its children, to get the following

corollary:

Corollary 4.45 For an edge b ∈ T of Interval Handler and its set of related edges S b

holds

OPT (S b) =
∑

e∈C(b)

ce +
∑

e∈GC(b)

OPT (S e).

If the root of T is not queried in the algorithm, the algorithm cost is the sum of the

query cost of all other edges in the tree. We show the optimal query cost restricted to T

is at most twice as large.

Lemma 4.46 If T contains more than one edge of the uncertainty graph, for any

edge a ∈ T and its set of related edges S a, then holds

2 · OPT (S a) = va − ca +
∑
e∈S a

ce.

Proof. We use induction on the number of generations contained in the set of related

elements S a. If edge a does not have any grandchildren, we apply Corollary 4.45 and

Observation 4.43 to obtain

2 · OPT (S a) = 2 ·
∑

e∈C(a)

ce =
∑

e∈C(a)

ce +
∑

e∈C(a)

ce − ve =
∑
e∈S a

ce − ca + va.

For an edge a with non-empty grandchildren set we also apply Corollary 4.45. Then we

apply induction to get

2 · OPT (S a) = 2 ·
∑

e∈C(a)

ce +
∑

e∈GC(a)

2 · OPT (S e)

= 2 ·
∑

e∈C(a)

ce +
∑

e∈GC(a)

⎡⎢⎢⎢⎢⎢⎢⎣ve − ce +
∑
h∈S e

ch

⎤⎥⎥⎥⎥⎥⎥⎦ .
By repeated application of Observation 4.43 this yields

2 · OPT (S a) =
∑

e∈C(a)

ce − ve +
∑
e∈S a

ce − ca = va − ca +
∑
e∈S a

ce.

If the algorithm queries the root of the tree T , it is queried in Algorithm Line 13

of the algorithm. Then, by Corollary 4.41, the optimal solution also contains the edge

corresponding to the root.
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Lemma 4.47 For an edge a that is queried in Algorithm Line 13 of Interval Handler

and its set of related edges S a holds

2 · OPT (S a) ≥
∑
e∈S a

ce.

Proof. We use induction on the number of generations in the set S a. If edge a does

not have any children, the optimal solution is equal to the sum of the query cost of

all edges in the set S a. If the set of the children of edge a is non-empty, we apply

Corollary 4.45 and use the fact that the value of an edge does not exceed the edge cost

(Observation 4.43) to obtain

2 · OPT (S a) = 2 · ca + 2 ·
∑

e∈C(a)

OPT (S e) ≥ ca + va + 2 ·
∑

e∈C(a)

OPT (S e)

= cb +
∑

e∈C(a)

[ce − ve + OPT (S e)] .

For the children of a, Lemma 4.46 holds. Thus, we can conclude

2 · OPT (S a) = ca +
∑

e∈C(a)

∑
h∈S e

c f =
∑
e∈S a

ce.

This completes all preliminaries to prove the algorithm performance.

Theorem 4.48 Interval Handler, Algorithm 4.11, achieves competitive ratio 2 in the

OP-OP model where queries may return intervals.

Proof. We consider the forest H that is defined by a run of the algorithm. It partitions

the edges into a family of trees. For each tree T where the algorithm does not query the

edge a corresponding to the root node, its query cost is the sum of the query costs ce

for all e ∈ T \ a. By Lemma 4.46 this is at most twice the optimal cost restricted to T .

For each tree T in which the root a is queried by the algorithm, Lemma 4.47 proves that

the algorithm query cost does not exceed twice the optimal query cost restricted to this

edge set. As the trees of the partition are disjoint, this concludes the proof.

Remark 4.49 A factor 2 for the competitive ratio is best-possible for deterministic

algorithms, as it is a lower bound for the uniform query cost case.
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Chapter 5

An Adversarial Model for Scheduling

with Testing

In this chapter, we consider a novel model for scheduling with explorable uncertainty.

In this model the processing time of a job can potentially be reduced (by an a priori

unknown amount) by testing the job. Testing a job j takes one unit of time and may

reduce its processing time from the given upper limit p̄ j (which is the time taken

to execute the job if it is not tested) to any value between 0 and p̄ j. This setting

is motivated e.g. by applications where a code optimizer can be run on a job before

executing it. We consider the objective of minimizing the sum of completion times.

All jobs are available from the start, but the reduction in their processing times as

a result of testing is unknown, making this an online problem that is amenable to

competitive analysis. The need to balance the time spent on tests and the time spent

on job executions adds a novel flavor to the problem.

We give first and nearly tight lower and upper bounds on the competitive ratio for de-

terministic and randomized algorithms. We also show that minimizing the makespan

is a considerably easier problem for which we give optimal deterministic and random-

ized online algorithms.

Remark: The results in this chapter are based on joint work with Christoph Dürr,

Thomas Erlebach, and Nicole Megow, published at Innovations in Theoretical Com-

puter Science 2018 [DEMM18]. A full version is maintained at arXiv [DEMM17].

Previously, in the area of explorable uncertainty the execution of queries was assessed

separately from the actual optimization problem being solved, yielding a bi-criteria op-

timization problem. However, when queries as the optimization goal use the same re-

source like time, cost, or energy and thus affect each other, there is a joint objective

function. This is a new direction for optimization with explorable uncertainty applicable

to all areas where uncertainty exploration and solution compete for the same resource.
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Our model scheduling with testing is a first example of uncertainty exploration with

a single objective function. We consider single machine scheduling with n jobs. Every

job can optionally be tested prior to its execution. A job that is executed without testing

has processing time p̄ ∈ Q+, while a tested job has some processing time in [0, p̄] that

is initially unknown. It takes unit time to test a job, which reveals its processing time.

Tested jobs can be executed at any time after their test. Unless otherwise noted, we

consider the sum of completion times as the minimization objective. Testing a job gains

information and possibly reduces the processing time of a job, but it may also delay the

completion times of many jobs. Thus, the challenge is to find the right balance between

tests and executions.

For the standard version of this single-machine scheduling problem, i.e., without

testing, it is well known that the Shortest Processing Time (SPT) rule is optimal for

minimizing the sum of completion times. Our adversarial model is inspired by (and

draws motivation from) recent work on a stochastic model of scheduling with testing

introduced in [Lev16, Sha16]. They consider the problem of minimizing the weighted

sum of completion times on one machine for jobs whose processing times and weights

are random variables with a joint distribution, and are independent and identically dis-

tributed across jobs. In their model, testing a job does not make its processing time

shorter, it only provides information for the scheduler (by revealing the exact weight

and processing time for a job, whereas initially only the distribution is known). They

present structural results about optimal policies and efficient optimal or near-optimal

solutions based on dynamic programming.

There is a range of application settings where an operation that corresponds to a test

can be applied to jobs before they are executed. For example, consider the execution

of computer programs on a processor. A test could correspond to a code optimizer that

takes unit time to process the program and potentially reduces its running-time. The

upper limit of a job describes the running-time of the program if the code optimizer

is not executed. Another application is the transmission of files over a network link.

Running a compression algorithm may reduce the size of a file significantly, but the file

can also be incompressible (e.g., if it is already compressed). More generally, in some

systems, a job can be executed in two different modes, a safe mode and a quick mode.

While the safe mode is always possible, the quick mode is not possible for every job

and a test is necessary to determine it.

As a final application area, consider settings where a diagnosis can be carried out to
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competitive ratio lower bound upper bound

deterministic algorithms 1.8546 2 Threshold

randomized algorithms 1.6257 1.7453 Random

det. alg. on uniform instances 1.8546 1.9338* Beat

det. alg. on extreme uniform instances 1.8546 1.8668 Ute

det. alg. on extreme uniform instances
1.8546 1.8552 Ute

with p̄ ≈ 1.9896

Table 5.1: Contributions for minimizing the sum of completion times. (* holds asymp-

totically)

determine the exact processing time of a job. For example, fault diagnosis can determine

the time needed for a repair job, or a medical diagnosis can determine the time needed

for a consultation and treatment session with a patient. Assume that the person that

carries out the diagnosis is the same person that executes the job and they must be

allocated to a job for an uninterruptible period that is guaranteed to cover the actual

time needed for the job. If the diagnosis takes unit time, we arrive at our problem of

scheduling with testing.

For scheduling with testing on a single machine with the objective of minimizing

the sum of completion times, we present a 2-competitive deterministic algorithm and

prove that no deterministic algorithm can achieve competitive ratio less than 1.8546 in

Section 5.2 We present a 1.7453-competitive randomized algorithm, showing that ran-

domization provably helps for this problem in Section 5.3 and also give a lower bound

of 1.626 on the best possible competitive ratio of any randomized algorithm. Both lower

bounds hold even for instances with uniform upper limits where every processing time

is either 0 or equal to the upper limit. We call such instances extreme uniform instances.

In Section 5.4 we investigate such instances. We give a 1.8668-competitive algorithm.

In the special case where the upper limit of all jobs is ≈ 1.9896, the value used in our

deterministic lower bound construction, that algorithm is even 1.8552-competitive. For

the case of uniform upper limits and arbitrary processing times, we give a deterministic

1.9338-competitive algorithm. We summarize the results for this objective function in

Table 5.1. Finally, we present tight results for the simpler problem of minimizing the

makespan in scheduling with testing in Section 5.5. Calculations performed with the

help of mathematica are provided as appendices.
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5.1 Problem Definition and Preliminaries

The problem of scheduling with testing is defined as follows. We are given n jobs to

be scheduled on a single machine. Each job j has an upper limit p̄ j. It can either be

executed untested (taking time p̄ j), or be tested (taking time 1) and then executed at an

arbitrary later time (taking time p j, where 0 ≤ p j ≤ p̄ j). Initially only p̄ j is known

for each job, and p j is only revealed after j is tested. The machine can either test or

execute a job at any time. The completion time of job j is denoted by C j. Unless noted

otherwise, we consider the objective of minimizing the sum of completion times
∑

j C j.

If the processing times p j that jobs have after testing are known, an optimal schedule

is easy to determine: Testing and executing job j takes time 1 + p j, so it is beneficial to

test the job only if 1 + p j < p̄ j. In the optimal schedule, jobs are therefore ordered by

non-decreasing min{1 + p j, p̄ j}. In this order, the jobs with 1 + p j < p̄ j are tested and

executed while jobs with 1+ p j ≥ p̄ j are executed untested. For jobs with 1+ p j = p̄ j it

does not matter whether the job is tested and executed, or executed untested.

As before, we use competitive analysis to evaluate our algorithms. We denote by

ALG the objective value (cost) of the schedule produced by an algorithm and by OPT

the optimal cost. An algorithm is ρ-competitive or has competitive ratio at most ρ, if

ALG/OPT ≤ ρ for all instances of the problem. For randomized algorithms, ALG is

replaced by E[ALG] in this definition.

When we analyze an algorithm or the optimal schedule, we will typically first argue

that the schedule has a certain structure with different blocks of tests or job completions.

Once we have established that structure, the cost of the schedule can be calculated by

adding the cost for each block taken in isolation, plus the effect of the block on the

completion times of later jobs. For example, assume that we have n jobs with upper

limit p̄, that αn of these jobs are short, with processing time 0, and (1−α)n jobs are long,

with processing time p̄. If an algorithm (in the worst case) first tests the (1 − α)n long

jobs, then tests the αn short jobs and executes them immediately, and finally executes

the (1 − α)n long jobs that were tested earlier (see also Figure 5.1), the total cost of the

schedule can be calculated as

(1 − α)n2 +
αn(αn + 1)

2
+ αn(1 − α)n +

(1 − α)n((1 − α)n + 1)
2

p̄,

where (1−α)n2 is the total delay that the (1−α)n tests of long jobs add to the completion

times of all n jobs, αn(αn+1)
2 is the sum of completion times of a block with αn short jobs
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p p p p p11 1 1 1 1
1-α α

ALG: 11
1-α

Figure 5.1: Typical schedule produced by an algorithm. White jobs are tests and grey

jobs are actual jobs. The completion time of a job is depicted by a thick bar. Test and

execution of a job might be separated. A job of length 0 completes immediately after its

test.

that are tested and executed, αn(1−α)n is the total delay that the block of short jobs with

total length αn adds to the completion times of the (1 − α)n jobs that come after it, and
(1−α)n((1−α)n+1)

2 p̄ is the sum of completion times for a block with (1 − α)n job executions

with processing time p̄ per job.

Lower limits. A natural generalization of the problem would be to allow each job

j to have, in addition to its upper limit p̄ j, also a lower limit ℓ j, such that the processing

time after testing satisfies ℓ j ≤ p j ≤ p̄ j. We observe that the presence of lower limits has

no effect on the optimal schedule, and can only help an algorithm. As we are interested

in worst-case analysis, we assume in the following that every job has a lower limit of 0.

Any algorithm that is ρ-competitive in this case is also ρ-competitive in the case with

arbitrary lower limits (the algorithm can simply ignore the lower limits).

Jobs with small p̄ j. We will consider several algorithms and prove competitive-

ness for them. We observe that any ρ-competitive algorithm may process jobs with

p̄ j < ρ without testing in order of increasing p̄ j at the beginning of its schedule.

Lemma 5.1 Without loss of generality any algorithm ALG (deterministic or random-

ized) claiming competitive ratio ρ starts by scheduling untested all jobs j with p̄ j < ρ in

increasing order of p̄ j. Also worst-case instances for ALG consist solely of jobs j with

p̄ j ≥ ρ.

Proof. We transform ALG into an algorithm ALG′ which obeys the claimed behavior

and show that its ratio does not exceed ρ. Consider an arbitrary instance I. Let J be

the sequence of jobs j with p̄ j < ρ ordered by increasing p̄ j. We divide the sequence J

into J0J1, where J0 consists of the jobs j with 0 ≤ p̄ j < 1 and J1 consists of the jobs j

with 1 ≤ p̄ j < ρ. ALG′ starts by executing the job sequence J untested. In a worst-case

instance all these jobs have processing time 0. By optimality of the SPT policy OPT

115



An Adversarial Model for Scheduling with Testing

also schedules J0 first and untested, and then schedules J1 tested spending time 1 on

each job. The ratio of the costs of these parts is

ALG′(J)
OPT (J)

< ρ,

where the inequality follows from p̄ j/min{1, p̄ j} < ρ for all j ∈ J. Let len denote the

length of a schedule. Then by the same argument we have

len(ALG′(J))
len(OPT (J))

< ρ.

Let I′ be the instance I without the jobs in J and let k be the number of jobs in I′.

We assume k > 0 otherwise we are done with the proof. Since I′ contains only jobs with

upper limit at least ρ, we have ALG(I′) = ALG′(I′). Then holds

ALG′(I) = ALG′(J) + k · len(ALG′(J)) + ALG′(I′)

OPT (I) = OPT (J) + k · len(OPT (J)) + OPT (I′).

From these (in)equalities we conclude

ALG(I)
OPT (I)

≤ ρ⇒
ALG′(I)
OPT (I)

≤ ρ

ALG(I)
OPT (I)

≥ ρ⇒
ALG′(I)
OPT (I)

≤
ALG(I′)
OPT (I′)

.

This means if ALG is ρ competitive then so is ALG′ and that there are worst-case in-

stances for ALG only with jobs having upper limit at least ρ.

Increasing or decreasing ALG and OPT. We sometimes consider worst-case in-

stances consisting of only a few different job types. The following proposition allows

us to do so in some cases.

Proposition 5.2 Fix some algorithm ALG and consider a family of instances described

by some parameter x ∈ [ℓ, u], which could represent p j or p̄ j for some job j or for some

set of jobs. Suppose that both OPT and ALG are linear in x for the range [ℓ, u]. Then

the ratio ALG/OPT does not decrease for at least one of the two choices x = ℓ or x = u.

Moreover, if OPT and ALG are increasing in x with the same slope, then this holds for

x = ℓ.

Proof. The proof follows from the fact that an expression of the form ALG/OPT =

(a + bx)/(a′ + b′x) is monotone in x. Indeed its derivative is

a′b − ab′

(a′ + b′x)2
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whose sign does not depend on x. The last statement follows from the fact that if

ALG > OPT and 0 < δ ≤ OPT , then (ALG − δ)/(OPT − δ) > ALG/OPT .

We can make successive use of this proposition to show useful properties on worst-

case instances.

Lemma 5.3 Suppose that there is an interval [ℓ′, u′] such that OPT schedules all jobs

j with p j ∈ [ℓ′, u′] either all tested or all untested and this independent of the actual

processing time in [ℓ′, u′]. Suppose this also holds for ALG. Moreover suppose that

both OPT and ALG are insensitive to changes of the processing times in [ℓ′, u′] which

maintain the ordering of processing times. Then there is a worst-case instance for ALG

where every job j with p j ∈ [ℓ′, u′] satisfies p j ∈ {ℓ
′, u′}.

Proof. Fix some worst-case instance for the algorithm ALG. Let S be the set of jobs

j with p j = x. Let ℓ be the largest processing time strictly smaller than x or ℓ′ if x is

already the smallest processing time or if this would make ℓ smaller than ℓ′. Also let

u be the largest processing time strictly larger than x or u′ if x is already the largest

processing time or if this would exceed u′. Formally ℓ = max({ℓ′} ∪ {pi : pi < x})

and u = min({u′} ∪ {pi : pi > x}). Since the schedules are preserved when changing

the processing times of S , both costs ALG and OPT are linear in x within [ℓ, u]. Now

we can use Proposition 5.2 to show that there is a worst-case instance where all jobs

in S have processing time either ℓ or u. In both cases we have reduced the number of

distinct processing times strictly being between ℓ′ and u′. By repeating this argument

sufficiently often we obtain the claimed statement.

5.2 Deterministic Algorithms

Scheduling jobs on one machine to minimize the sum of completion times can be solved

optimally using the Shortest Processing Time (SPT) rule. In our adversarial model with

testing, the optimal schedule follows this principle and tests all jobs for which the test

reduces the processing time by at least 1. Any algorithm has to decide online which jobs

to test and in which order to execute the jobs. At each time point it only knows the upper

limit of all jobs and the processing time of the jobs that have been tested. We show a

natural algorithm that achieves competitive ratio 2. Then we prove that no deterministic

algorithm has competitive ratio less than 1.8546.
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5.2.1 Algorithm Threshold

We show a competitive ratio of 2 for a natural algorithm that uses a threshold to decide

whether to test a job or execute it untested.

Algorithm (Threshold) First, jobs with p̄ j < 2 are scheduled in order of non-decreasing

upper limits without test. Then all remaining jobs are tested. If the revealed processing

time of job j is p j ≤ 2 (short jobs), then the job is executed immediately after its test.

After all remaining jobs have been tested, the pending jobs (long jobs) are scheduled in

order of increasing processing time p j.

By Lemma 5.1 we may restrict our competitive analysis w.l.o.g. to instances with

p̄ j ≥ 2. Note, that on such instances Threshold tests all jobs. From a simple interchange

argument it follows that the structure of the algorithm’s solution in a worst-case instance

is as follows:

• Test phase: The algorithm tests all jobs that have p j > 2, and defers them.

• Short jobs phase: The algorithm tests short jobs (p j ≤ 2) and executes each of

them right away. The jobs are tested in order of non-increasing processing time.

• Long jobs phase: The algorithm executes all deferred long jobs in order of non-

decreasing processing times.

An optimal solution will not test jobs with p j + 1 ≥ p̄ j. It sorts jobs in non-decreasing

order of values min{1 + p j, p̄ j}.

First, we analyze and simplify worst-case instances.

Lemma 5.4 There is a worst-case instance for Threshold in which all short jobs with

p j ≤ 2 have processing time either 0 or 2.

We give a proof without modifying upper limits, which is not necessary in this sec-

tion but will come handy later when we analyze Threshold for arbitrary uniform upper

limits.

Proof. Consider short jobs that are tested by both, the optimum and Threshold, i.e.,

short jobs with p j < p̄ j − 1. We argue that we can either decrease the processing time of

a short job j to 0 or increase it to min{2, p̄ j − 1} without decreasing the worst-case ratio.

Consider Threshold and let ℓ be the first short job with pℓ < min{2, p̄ℓ − 1} and let i be

the last short job with pi > 0.
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Suppose i , ℓ. Let ∆ = min{pi,min{2, p̄ℓ − 1} − pℓ}. We decrease pi by ∆ and

at the same time increase pℓ by ∆. The value ∆ is chosen in such a way that either pi

will become 0 or pℓ will be min{2, p̄ℓ − 1}, as desired. The schedule produced by the

algorithm will be the same except that jobs ℓ, . . . , i − 1 complete ∆ units later. In the

optimal schedule ℓ and i are scheduled in opposite order. Suppose we keep the schedule

fixed when changing the processing times of jobs i and ℓ. Then i’s completion time as

well as those of jobs between i and ℓ decreases. In an optimal schedule jobs might be

re-ordered, but this only improves the total objective further. Hence, the total ratio of

objective values does not decrease.

Now, assume i = ℓ, i.e., there is exactly one short job with processing time pi

strictly between 0 and min{2, p̄i − 1}. We argue that either increasing or decreasing pi

to min{2, p̄i − 1} or 0 will not decrease the worst-case ratio. Such a change ∆ does not

change the order of jobs in the algorithm’s solution and thus the change in the objective

is ∆ times the number of jobs completing after i. In an optimal solution, there are

untested short or long jobs which are scheduled between short tested jobs and their

relative order with i may change when i is in-/decreased by ∆. However, let us consider

a possibly not optimal schedule that simply does not adjust the order after changing i.

Then the change in the objective is linear in ∆ in the above-given range, as it is for the

algorithm, and thus, by Proposition 5.2, either increasing or decreasing pi by ∆ does

not decrease the ratio of objective values. Now, the truly optimal objective value is not

larger and thus, the true worst-case ratio is not smaller.

Now, we may assume that all short jobs remaining with processing times different

from 0 and 2 are untested in the optimum solution because their processing time is at

least p̄ j − 1. Again, the optimum does not test those jobs, and hence, increasing the

processing time to 2 has no impact on the optimal schedule, while our algorithm’s cost

only increases. Thus, the worst-case ratio increases.

Threshold tests all jobs and takes scheduling decisions depending on job processing

times p j but independently of upper limits of jobs. Since all short jobs have p j ∈ {0, 2},

we can reduce all their upper limits to p̄ j = 2 without affecting the algorithm schedule,

whereas it may only improve the optimal schedule. In particular we may assume now

the following.

Proposition 5.5 There is a worst-case instance in which all short jobs have p̄ j = 2 and

execution times are 0 or 2.
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Figure 5.2: Worst case instance for Threshold.

Lemma 5.6 There is a worst-case instance in which long jobs with p j > 2 satisfy

p j = p̄ j = 2 + ε for infinitesimally small ε > 0.

Proof. For all long jobs, which are tested in the optimal schedule, we reduce the upper

limit to p̄ j = 1 + p j. This does not change the algorithm’s solution, but the optimum

may as well run those previously tested jobs also untested and without changing its

total objective value. Now the optimum solution runs all long jobs without testing them.

Thus, increasing the processing time of long jobs to p j = p̄ j does not affect the optimum

cost whereas the algorithm’s cost increase.

Proposition 5.5 implies that all long jobs are scheduled in the same order by the

algorithm and an optimum without any small jobs in between. Then, setting p̄ = 2 + ε

decreases the objective values of both algorithms by the same amount and thus does not

decrease the ratio.

Now we are ready to prove the main result.

Theorem 5.7 Algorithm Threshold has competitive ratio at most 2.

Proof. We consider worst-case instances of the type derived above. Let a be the number

of short jobs with p j = 0, let b be the number of short jobs with p̄ j = p j = 2, and let c

be the number of long jobs with p̄ j = 2 + ε, see Figure 5.2.

Threshold’s solution for a worst-case instance first tests all long jobs, then tests and

executes the short jobs in decreasing order of processing times, and completes with the

executions of long jobs. The total objective value ALG is

ALG = (a + b + c)c + b(b + 1)/2 · 3 + 3b(a + c) + a(a + 1)/2 + a · c + c(c + 1)/2 · (2 + ε).

An optimum solution tests and schedules first all 0-length jobs and then executes the

remaining jobs without tests. The objective value is

OPT = a(a + 1)/2 + a(b + c) + b(b + 1)/2 · 2 + 2bc + c(c + 1)/2 · (2 + ε).
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Figure 5.3: Lower bound construction

Simple transformation shows that ALG ≤ 2 · OPT is equivalent to

2ab + 2c2 ≤ a2 + b2 + a + b + c(c + 1)(2 + ε) ⇔ 0 ≤ (a − b)2 + a + b + c2ε + c(2 + ε),

which is obviously satisfied and the theorem follows.

5.2.2 Deterministic Lower Bound

In this section we give a lower bound on the competitive ratio of any deterministic

algorithm. The instances constructed by the adversary have a very special form: All

jobs have the same upper limit p̄, and the processing time of every job is either 0 or p̄.

Consider instances of n jobs with uniform upper limit p̄ > 1, and consider any

deterministic algorithm. We say that the algorithm touches a job when it either tests the

job or executes it untested. We re-index jobs in the order in which they are first touched

by the algorithm, i.e., job 1 is the first job touched by the algorithm and job n is the last.

The adversary fixes a fraction δ ∈ [0, 1] and sets the processing time of job j, 1 ≤ j ≤ n,

to:

p j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩0 , if j is executed by the algorithm untested, or j > δn

p̄ , if j is tested by the algorithm and j ≤ δn
.

We call a job j is called short if p j = 0 and long if p j = p̄.

We assume the algorithm knows p̄ and δ, which can only improve the performance

of the best-possible deterministic algorithm. Note that with δ and p̄ known to the al-

gorithm, it has full information about the actions of the adversary. Nevertheless, it is

still non-trivial for an algorithm to decide for each of the first δn jobs whether to test

it (which makes the job a long job, and hence the algorithm spends time p̄ + 1 on it

while the optimum executes it untested and spends only time p̄) or to execute it untested

(which makes it a short job, and hence the algorithm spends time p̄ on it while the

optimum spends only time 1).
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Let us first determine the structure of the schedule produced by an algorithm that

achieves the best-possible competitive ratio for instances created by this adversary, as

displayed in Figure 5.3.

Lemma 5.8 The schedule of a deterministic algorithm with best possible competitive

ratio has the following form, where λ, ν ≥ 0 and ν + λ ≤ δ: The algorithm first executes

νn jobs untested, then tests and executes λn long jobs, then tests (δ − ν − λ)n long jobs

and delays their execution, then tests and executes the remaining (1 − δ)n short jobs,

and finally executes the (δ − ν − λ)n delayed long jobs that were tested earlier.

Proof. It is clear that the algorithm will test the last (1 − δ)n jobs and execute each

such job (with processing time 0) right after its test, as executing any of them untested

does not affect the optimal solution but increases the objective value of the algorithm.

Furthermore, consider the time t when the algorithm tests job j0. From this time until the

end of the schedule, the algorithm will test and execute the last (1 − δ)n jobs (spending

time 1 on each such job), and execute all the long jobs that were tested earlier but not

yet executed (spending time p̄ > 1 on each such job). As the SPT rule is optimal

for minimizing the sum of completion times, it is clear that from time t onward the

algorithm will first test and execute the (1 − δ)n short jobs and afterwards execute the

long jobs that were tested but not executed before time t.

Before time t, the algorithm touches the first δn jobs. Each of these can be executed

untested (let νn be the number of such jobs), or tested and also executed before time t

(let λn be the number of such jobs), or tested but not executed before time t (this happens

for the remaining (δ − ν − λ)n jobs). To minimize the sum of completion times of these

jobs, it is clear that the algorithm first executes the νn jobs untested (spending time p̄ per

job), then tests the λn long jobs and executes each of them right after its test (spending

time 1 + p̄ per job), and finally tests the remaining (δ − ν − λ)n long jobs.

The cost of the algorithm in dependence on ν, λ, δ and p̄ can now be expressed as:

ALG(ν, λ, δ, p̄) = n2/2 · [ p̄ν2 + 2p̄ν(1 − ν) + (1 + p̄)λ2 + 2(1 + p̄)λ(1 − ν − λ)

+ 2(δ − ν − λ)(1 − ν − λ) + (1 − δ)2 + 2(1 − δ)(δ − ν − λ) + p̄(δ − ν − λ)2
]
+ O(n).

The optimal schedule first tests and executes the (ν+1−δ)n short jobs and then executes

the (δ− ν)n long jobs untested. Hence, the optimal cost, which depends only on ν, δ and

p̄, is:

OPT (ν, δ, p̄) = n2/2 · ((ν + 1 − δ)2 + 2(ν + 1 − δ)(δ − ν) + p̄(δ − ν)2
)
+ O(n).
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Figure 5.4: The competitive ratio ρ1 (left) and ρ2 (right).

As the adversary can choose δ and p̄, while the algorithm chooses ν and λ, the value

ρ = max
δ,p̄

min
ν,λ

lim
n→∞

ALG(ν, λ, δ, p̄)
OPT (ν, δ, p̄)

gives a lower bound on the competitive ratio of any deterministic algorithm in the limit

for n→ ∞. By making n sufficiently large, the adversary can create instances with finite

n that give a lower bound that is arbitrarily close to ρ.

Theorem 5.9 No deterministic algorithm can achieve a competitive ratio below 1.8546.

This holds even for instances with uniform upper limit where each processing time is ei-

ther 0 or equal to the upper limit.

Proof. We use the help of mathematica to optimize the choice of δ and p̄. First, we

compute the best response of the algorithm for any fixed δ and p̄ and find there are two

local minima. If the algorithm chooses λ = 0 and ν = δ, we have

ρ1 =
−p̄2(1 − δ)2 + (2 − δ)δ + p̄(2 − δ(2 − δ))

1 + ( p̄ − 1)δ2 .

For δ < 1−1/ p̄, this is the only local minimum and it is at most 1.75 for any adversarial

choice of δ ∈ [0, 1−1/p̄) and p̄ ∈ [1.5, 2]. For δ ≥ 1−1/p̄, a second local minimum ex-

ists where the first derivative of the ratio in λ is 0 and ν = 0. In this case the competitive

ratio is

ρ2 = 1 + ( p̄ − 1)(2 − δ)δ.

We display both functions in Figure 5.4. The best-response algorithm has the minimum

of these two functions as its competitive ratio. To maximize the competitive ratio, we
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choose p̄ depending on δ, such that ρ1 = ρ2. Then the competitive ratio only depends

on δ and equals

ρ =
−2 − (2 − δ)δ(−2 + δ2 +

√
δ
√

8 + (−2 + δ)δ(10 + δ(−3 + 4(−2 + δ)δ)))
2(−1 + (−2 + δ)(−1 + δ)δ(1 + δ))

.

It attains its maximum when δ is the only real root in the interval [0, 1] of the polynomial

−18 + 93δ − 212δ2 + 277δ3 − 197δ4 + 26δ5 + 82δ6 − 75δ7 + 20δ8 + 8δ9 − 6δ10 + δ11.

This is approximately 0.6307 and yields a lower bound of roughly 1.8546 as displayed

in Figure 5.5.

5.3 Randomized Algorithms

Randomization is a useful tool in adversarial models. It weakens an advantage the ad-

versary has over an algorithm, which some consider unfair. Namely, given several jobs

with equal upper limit, they are indistinguishable for any algorithm and thus occur in

their worst-possible order in an adversarial sequence. For the optimal solution they

are distinguishable by the processing time they reveal after a test. Randomization now

allows an algorithm to choose one of the indistinguishable jobs at random, which im-

proves upon the worst-case ordering. Additionally, randomized algorithms may also

take any other decision such as testing, executing, or delaying a job at random.

We describe an algorithm that uses only the first of these two possibilities and show

in expectation it performs better than any performance guarantee a deterministic algo-

rithm can achieve. Using Yao’s principle we also prove a lower bound on the competi-

tive ratio of randomized algorithms.
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5.3.1 Algorithm Random

We refine the ideas we used for the deterministic algorithm Threshold to design a ran-

domized algorithm. As before we define a threshold T to decide whether to test a job

or to execute it untested. The order in which the jobs are tested is random. We use a

second threshold E to distinguish jobs that we execute immediately after their test and

those whose execution we delay. While for Threshold the two thresholds are the same,

here they will turn out to be different.

Algorithm (Random) The randomized algorithm Random has parameters 1 ≤ T ≤ E

and works in three phases. First, it executes all jobs with p̄ j < T without test in order of

increasing p̄ j. Then it tests all jobs with p̄ j ≥ T in uniform random order. Each tested

job j is executed immediately after its test if p j ≤ E and is deferred otherwise. Finally,

all deferred jobs are executed in order of increasing processing time.

We analyze the competitive ratio of Random, and optimize the parameters T, E such

that the resulting competitive ratio is T . By Lemma 5.1 we restrict to instances with

p̄ j ≥ T for all jobs. Then, the schedule produced by Random can be divided into two

parts. Part (1) contains all tests, of which those that yield processing time p j at most

E are immediately followed by the job’s execution. Part (2) contains all jobs that have

been tested and have processing time larger than E. These jobs are ordered by increasing

processing time. Jobs in the first part are completed in an arbitrary order.

Lemma 5.10 There is a worst-case instance for Random containing only the following

four jobs types: jobs with upper limit p̄ j = T and processing time p j ∈ {0,T }, jobs with

upper limit and processing time p̄ j = p j = E and those with upper limit and processing

time p̄ j = p j = E + ε.

Proof. We take an arbitrary instance and modify the upper limits and processing times

until only these four job types remain. First observe that we can assume p̄ j = max{p j,T }

for all jobs. Reducing p̄ j to this value does not change the cost or behavior of Random,

but may decrease the cost of OPT . Let ϵ > 0 be an arbitrary small number such that

p j ≥ E + ϵ for all jobs j with p j > E. These jobs are executed by Random in part (2)

of the schedule in non-decreasing order of processing time. The same holds for OPT ,

which by the SPT Rule also schedules these jobs at the end in exactly the same order.

Hence, if we set p̄ j = p j = E+ ϵ for all these jobs, then we reduce the objective value of
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Figure 5.6: Worst case analysis of the algorithm Random.

Random and of OPT by the same amount. By Proposition 5.2 this transformation only

increases the competitive ratio of the algorithm.

We apply Lemma 5.3 to show that for all jobs j with p j ∈ [T, E] we can in fact

assume p j ∈ {T, E}. The use of the lemma is a bit subtle as the output of Random is

a distribution of schedules. For each fixed order the conditions of the statement of the

lemma are satisfied. As the expected completion time of Random is a linear combination

of the objective values over each of the n! orders, the lemma holds.

Now we turn to jobs j with p̄ j = T and p j ≤ T . For the jobs with 0 ≤ p j ≤ T − 1,

the same argument implies that p j ∈ {0,T − 1}. Jobs j with p̄ j = T and T − 1 ≤

p j ≤ T are not tested in OPT . Therefore, increasing their processing time to p j = T

does not change OPT but increases the cost of Random and consequently increases the

competitive ratio.

In conclusion, a worst case instance is described completely by the number of jobs

n and fractions α, β, γ ∈ [0, 1] as follows, see Figure 5.6.

• A 1 − α − β − γ fraction of the jobs have p̄ j = T and p j = 0. (type 0 jobs)

• An α fraction of the jobs have p̄ j = p j = T . (type T jobs)

• A β fraction of the jobs have p̄ j = p j = E. (type E jobs)

• A γ fraction of the jobs have p̄ j = p j = E + ϵ for some arbitrarily small ϵ > 0.

(type E+ jobs)

We first consider the expected algorithm cost and omit ϵ for simplicity. We denote by

L := n + Tαn + Eβn the length of part (1). This means that for a job j of type 0,T or E,

the expected time its test starts is (L−1− p j)/2 and hence its expected completion time,

which is 1+ p j time units later, is (L+1+ p j)/2. Jobs completed in the second part have

all the same processing time. The i-th job that is completed in part (2) has completion
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time L + Ei. Thus, the expected objective value of Random can be expressed as

E[ALG] = n2/2 · [(1 − γ)(1 + Tα + Eβ)2 + 2γ(1 + Tα + Eβ) + Eγ2
]

+ n
/
2 ·

[
1 − γ + Tα + Eβ + Eγ)

]
.

By the SPT rule, the optimal schedule first tests and executes all jobs of type 0. Then

it executes the jobs of type T, E and E+ jobs without test in that order. Hence the

optimal objective value is stated as follows, where every other expression represents

the total completion times of some job type followed by the delay these jobs induce on

subsequent job types and the linear terms in n follow at the end

OPT = n2/2 · [(1 − α − β − γ)2 + 2(1 − α − β − γ)(α + β + γ) + Tα2 + 2Tα(β + γ)

+Eβ2 + 2Eβγ + Eγ2
]
+ n

/
2 ·

[
(1 − α − β − γ) + Tα + Eβ + Eγ

]
.

Theorem 5.11 The algorithm Random has competitive ratio at most 1.7453, if we

choose T ≈ 1.7453 and E ≈ 2.8609. The exact, best-possible, parameter choices are T

equals the root of the polynomial −1− 16T + 20T 2 + 36T 3 − 52T 4 + 16T 5 in [1.5, 2] and

E =
T
(
3 − 8T + 4T 2)

T − 1
.

Proof. We say that fractions α, β, γ are valid if and only if α, β, γ ≥ 0 and α+ β+ γ ≤ 1.

The algorithm is T -competitive, if T · OPT − E[ALG] ≥ 0 for all n ≥ 0 and all valid

fractions α, β, γ. The costs can be written as E[ALG] = n2

2 E[ALG2] + n
2 E[ALG1] and

OPT = n2

2 OPT2 +
n
2OPT1 for

E[ALG2] = 1 + γ + E
(
β + βγ + γ2

)
+ T (α + αγ)

E[ALG1] = 1 − γ + βE + γE + αT

OPT2 = 1 + (β + γ)2(E − 1) + α2(T − 1) + 2α(β + γ)(T − 1)

OPT1 = 1 − α − β − γ + βE + γE + αT.

The inequality T · OPT2 − ALG2 ≥ 0 is a necessary condition, as it describes the

competitive ratio for n → ∞. We use it to find the optimal choice for T and E. Then

we prove for these values also T ·OPT1 − ALG1 ≥ 0 holds for all valid α, β, γ fractions,

which means Random is T -competitive. We denote the first inequality by G:

G =T ·
[
1 + (β + γ)2(E − 1) + α2(T − 1) + 2α(β + γ)(T − 1) − α − αγ

]
− γ − 1 − E

(
γ2 + βγ + β

)
.
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Figure 5.7: Validity region for (α, β, γ).

We want to find parameters T, E with minimal T such that G(T, E, α, β, γ) ≥ 0 for all

valid fractions, i.e. α, β, γ ≥ 0 with α + β + γ ≤ 1. We call this the validity polytope for

α, β, γ, see Figure 5.7. For this purpose we made numerical experiments which gave us

a range where the optima could belong, namely T ∈ [1.71, 1.78], E ∈ [2.82, 2.89].

Our general approach consists in identifying values (α, β, γ) which are local min-

ima for G. Each of these points (α, β, γ) generates a condition on T, E of the form

G(T, E, α, β, γ) ≥ 0. The optimal pair (T, E) is then the pair with minimal T satisfying

all the generated conditions.

We prove in the following lemma, that Figure 5.8 depicts the conditions that need

to be fulfilled. The Conditions (5.2) and (5.4) are most restrictive. We compute their

left-most crossing point and find the best choices are T equals the root in [1.5, 2] of the

polynomial −1−16T +20T 2+36T 3−52T 4+16T 5 and E is T
(
3−8T +4T 2)/(T −1). This

is approximately T ≈ 1.7453 and E ≈ 2.8609. We conclude the proof by considering

the inequality T · OPT1 − ALG1 ≥ 0 which is

γ(E − 1)(T − 1) + β(E − 1)t + (1 − α(2 − T ))T − 1 − βE ≥ 0.

Taking the derivative of the left hand side reveals that it is decreasing in α and increasing

in β and γ for the chosen values T, E. Hence the expression is minimized at α = 1, β =

0, γ = 0, where its value is T (T − 1) − 1 > 0. Therefore, given Lemma 5.12, we have

proven the theorem.

Lemma 5.12 T ≈ 1.7453 and E ≈ 2.8609 is the parameter pair with smallest T , for

which G is non-negative everywhere in the validity polytope.

Proof. We partition the validity polytope. First; we consider the open region {(α, β, γ)|0 <

α, 0 < β, 0 < γ, α + β + γ < 1}. Then; we consider the four open facets on the border
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Figure 5.8: Regions where conditions (5.1):blue, (5.2):orange, (5.4):green and (5.8):red

are satisfied by points (T, E), with T ranging horizontally and E ranging vertically.

defined by the equations α + β + γ = 1, α = 0, β = 0, γ = 0. Finally, we consider the 6

closed edges that form the edges of the polytope. Note that the vertices of the polytope

(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0) belong each to several edges.

open polytope. The second order derivatives of G in α, β, γ are

∂2G
∂2α
= 2T (T − 1)

∂2G
∂2β
= 2T (E − 1)

∂2G
∂2γ
= 2T (E − 1) − 2E,

which are all positive in the considered T - and E-range. Hence, a local minimum

on the open polytope must be a point (α, β, γ) that is a root for the derivative in

each of the three directions. Hence, we choose

α = β − γ +
1 + γ

2(T − 1)
β =

1 + γ − 2γT
2T

γ =
(E(T − 1) − T )(2T − 1)

E(T − 1) + T
.

For this point the condition G ≥ 0 translates into the following condition on T, E:

E2(T − 1)2 + T (2T − 1) − ET 2 ≥ 0. (5.1)

open facet α + β + γ = 1. In that case the derivative of G in β is 1 − α(E − T ). This

means that G is linear in β, and no local minimum lies inside of the triangle. Note

that in the degenerate case α = 1/(E − T ) the value of G is independent of β,

hence it is enough to consider an equivalent point on the boundary, which will be

considered below.

open facet γ = 0. In this case the extreme values of G for α and β are

α =
1

2(T − 1)
− β β =

1
2T

,
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which both have positive second derivative. Then, the condition G ≥ 0 translates

into the following condition on T, E:

1
T − 1

+ 4(T − 1) −
E
T
≥ 0. (5.2)

open facet α = 0. In this case the extreme β value for G is

β =
E + γE + 2γT − 2γET

2T (E − 1)
.

However, then the second order derivative of G in γ is

∂2G
∂2γ
= −

E2

2T (E − 1)
,

which is negative. Hence, there is no local minimum in this open facet.

open facet β = 0. The extreme α and γ values for G are

α =
1 + 3γ − 2γT

2(T − 1)
γ =

(2 − T )(2T − 1)
4E(T − 12) − T (5 − 4T (2 − T ))

.

In the considered region for (T, E) the value of α + γ exceeds 1, and is therefore

outside the boundaries of the triangle.

edge (α, β, γ) = (x, 1 − x, 0) for 0 ≤ x ≤ 1. The extreme point for x is

x = 1 −
1

2T

and it is a local minimum. For this point the condition G ≥ 0 translates into the

condition

T (T − 1) −
3
4
−

E
4T
≥ 0. (5.3)

edge (α, β, γ) = (x, 0, 1 − x) for 0 ≤ x ≤ 1. The extreme point

x =
2ET + 2T − 2T 2 − 2E − 1

2(E − T )(T − 1)
,

is a local minimum. It generates the condition

4E(1 − (2 − T )T 2) − (2T (T − 1) − 1)2 ≥ 0. (5.4)

edge (α, β, γ) = (0, x, 1 − x) for 0 ≤ x ≤ 1. Here, G is linearly increasing in x. Hence,

a local minimum is reached at x = 0, generating the condition

E(T − 1) − 2 ≥ 0. (5.5)
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edge (α, β, γ) = (x, 0, 0) for 0 ≤ x ≤ 1. The extreme point for x is

x =
1

2(T − 1)
,

which is a local minimum and generates the condition

4T − 5 −
1

T − 1
≥ 0. (5.6)

edge (α, β, γ) = (0, x, 0) for 0 ≤ x ≤ 1. The extreme point for x is

x =
E

2T (E − 1)
,

which is a local minimum and generates the condition

4(T − 1) −
E2

T (E − 1)
≥ 0. (5.7)

edge (α, β, γ) = (0, 0, x) for 0 ≤ x ≤ 1. The extreme point

x =
1

2(ET − E − T )
,

is a local minimum. It generates the condition

T − 1 −
1

4(ET − E − T )
≥ 0. (5.8)

The parameters T and E describe the algorithm and thus we want to find values T, E

that satisfy all Conditions (5.1) to (5.8) and minimize T . In the considered region for

T and E, the conditions (5.3) and (5.5) to (5.7) are always satisfied. Hence, we focus

on the remaining conditions. The optimal point lies on the intersection of the left hand

sides of Conditions (5.2) and (5.4). Then one can compute that choosing E = T
(
3 −

8T + 4T 2)/(T − 1) and T as the root to the following polynomials of degree 5 in the

interval T ∈ [1.5, 2] is optimal:

−1 − 16T + 20T 2 + 36T 3 − 52T 4 + 16T 5.

Numerically, we obtain the optimal parameters T ≈ 1.7453 and E ≈ 2.8609.

5.3.2 Lower Bound for Randomized Algorithms

In this section we give a lower bound on the best possible competitive ratio of any ran-

domized algorithm against an oblivious adversary. We do so by specifying a probability
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distribution over inputs and proving a lower bound on E[ALG]/E[OPT ] that holds for

all deterministic algorithms ALG. By Yao’s principle [Yao77, BEY98] this gives the

desired lower bound. Note that we use a different variant of Yao’s principle than in

Section 4.6 in Chapter 4, where we consider E[ALG/OPT ].

The probability distribution over inputs with n jobs has a constant parameter 0 < q <

1 and is defined as follows: Each job j has upper limit p̄ j = 1/q > 1, and its processing

time p j is set to 0 with probability q and to 1/q with probability 1 − q.

First, observe that we only need to consider algorithms that schedule a job j imme-

diately if the job has been tested and p j = 0. Furthermore, we only need to consider

algorithms that never create idle time before all jobs are completed. We claim that any

such algorithm satisfies E[ALG] ≥ n2/(2q) for all n.

Lemma 5.13 Any algorithm that schedules a job j immediately if the job has been

tested and p j = 0 and never creates idle time before all jobs are completed satisfies

E[ALG] ≥ n2/(2q) for all n.

Proof. We prove this by induction on n. Let ALG(k) denote the objective value of the

algorithm ALG executed for a random instance with k jobs that is generated by our

probability distribution for n = k (i.e., all k jobs have p̄ j = 1/q and p j is set to 0 with

probability q and to 1/q otherwise).

Consider the base case n = 1. If ALG executes job 1 without testing, then ALG(1) =

1/q. If ALG tests the job and then necessarily executes it right away, since there are

no other jobs, then E
[
ALG(1)

]
= 1 + (q · 0 + (1 − q) · (1/q)) = 1/q. In both cases,

E
[
ALG(1)

]
= 1/q ≥ n2/(2q).

Now assume the claim has been shown for n−1, i.e., E
[
ALG(n−1)

]
≥ (n−1)2/(2q).

Consider the execution of ALG on an instance with n jobs, and distinguish how the

algorithm handles the first job. Without loss of generality, assume that this job is job 1.

Case 1: ALG executes job 1 without testing (completing at time C1 = 1/q), or it

tests jobs 1 and then executes it immediately independent of its processing time. In the

latter case job 1 has expected completion time E
[
C1

]
= 1 + (1 − q)/q = 1/q. After

the completion of job 1, the algorithm schedules the remaining n − 1 jobs, which is a

random instance with n − 1 jobs. Hence, the objective value is

E
[
C1

]
+ E

[
C1

]
(n − 1) + E

[
ALG(n − 1)

]
= 1/q + (n − 1)/q + E

[
ALG(n − 1)

]
≥ n/q + n2/(2q) − n/q = n2/(2q).
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Case 2 ALG tests job 1 and then executes it immediately if its processing time is

0, but defers it if its processing time is 1/q. Assume first, that if p1 = 1/q then ALG

defers the execution of p1 to the very end of the schedule. We have

E
[
ALG(n)

⏐⏐⏐p1 = 0
]
= 1 + (n − 1) + E

[
ALG(n − 1)

]
and

E
[
ALG(n)

⏐⏐⏐p1 = 1/q
]
= n + E

[
ALG(n − 1)

]
+ E

[
len

(
ALG(n − 1)

)]
+ 1/q,

where len
(
ALG(n − 1)

)
is the length of the schedule for n − 1 jobs. Note that every

job contributes 1/q to the expected schedule length no matter whether it is tested (in

which case it requires time 1 for testing and an additional expected (1 − q)/q time

for processing) or not (in which case its processing time is 1/q for sure). Therefore,

E
[
len

(
ALG(n − 1)

)]
= (n − 1)/q. So we have:

E
[
ALG(n)

]
= q ·

(
n + E

[
ALG(n − 1)

])
+ (1 − q)

(
n + n/q + E

[
ALG(n − 1)

])
= qn + n + n/q − qn − n + E[ALG(n − 1)]

= n/q + E
[
ALG(n − 1)

]
≥ n2/(2q).

Finally, we need to consider the possibility that p1 = 1/q and ALG defers job 1, but

schedules it at some point during the schedule for the remaining n − 1 jobs instead of

at the very end of the schedule. Assume that ALG schedules job 1 in such a way that k

of the remaining n − 1 jobs are executed after job 1. We compare this schedule to the

schedule where job 1 is executed at the very end of the schedule. Let K be the set of the

k jobs that are executed after job 1 by ALG. Note that the jobs in the set K can be jobs

that are scheduled without testing (and thus executed with processing time 1/q), jobs

that are tested and executed after the execution of job 1 (so that the expected time for

testing and executing them is 1/q), or jobs that are tested before the execution of job 1

but executed afterwards (in which case their processing time must be 1/q, since jobs

with processing time 0 are executed immediately after they are tested). Hence, moving

the execution of job 1 from the very end of the schedule ahead of k job executions will

change the expected objective value as follows: The expected completion time of job 1

decreases by k/q, and the completion time of each of the k jobs in K increases by 1/q.

Therefore, E
[
ALG(n)

]
is the same as when job 1 is executed at the end of the schedule,

and we get E
[
ALG(n)

]
≥ n2/(2q) as before.
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Theorem 5.14 There is no randomized algorithm with competitive ratio c < 3/23 ·(
9 + 2

√
3
)
≈ 1.6257.

Proof. We first consider the cost of the optimal schedule. Let Z denote the number of

jobs with processing time 0. Note that Z is a random variable with binomial distribution.

The optimal schedule first tests and executes the Z jobs with p j = 0 and then executes

the n − Z jobs with p j = 1/q untested. Hence, the objective value of OPT is:

Z(Z + 1)
2

+ Z(n − Z) +
(n − Z)(n − Z + 1)

2q
.

Using E
[
Z
]
= nq and E

[
Z2] = (nq)2 + nq(1 − q), we obtain

E
[
OPT

]
=

n2

2

(
1
q
+ 3q − 2 − q2

)
+ O(n).

Since we have E
[
ALG

]
≥ n2/(2q), we obtain a lower bound for randomized algo-

rithms against an oblivious adversary by applying Yao’s principle [Yao77, BEY98]. In

the limit for n→ ∞ this is
1/q

1/q + 3q − 2 − q2 .

The expression attains its maximum for the parameter q = 1 − 1
/√

3 ≈ 0.4226. Then,

this yields a lower bound of 3/23 ·
(
9 + 2

√
3
)
≈ 1.6257.

5.4 Deterministic Algorithms for Uniform Upper

Limits

One of the striking questions for scheduling with testing is if there is a deterministic

algorithm with performance better than 2. We present two algorithms that achieve this

for special instance classes. First we consider instances with uniform upper limit. We

combine our algorithm Threshold with a new algorithm Beat that cleverly handles in-

stances with upper limit roughly 2 and show this yields competitive ratio 1.9338. Our

second algorithm, Ute is for extreme uniform instances. They have a uniform upper

limit and all processing times are either 0 or the upper limit. We use these instances in

the construction of the deterministic lower bound and Ute is nearly tight on this lower

bound instance. In general, on extreme uniform instances we prove Ute has competitive

ratio 1.8668.
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5.4.1 An Improved Algorithm for Uniform Upper Limits

In this section we present an algorithm for instances with uniform upper limit p̄ that

achieves a ratio strictly less than 2. We present a new algorithm Beat that performs

well on instances with upper limit roughly 2, but its performance becomes worse for

larger upper limits. Thus, in this case we employ the algorithm Threshold presented in

Section 5.2.1.

To simplify the analysis, we consider the limit of ALG(I)/OPT (I) when the number

of jobs n approaches infinity. We say that an algorithm ALG is asymptotically ρ∞-

competitive or has asymptotic competitive ratio at most ρ∞ if the following holds:

lim
n→∞

sup
I

ALG(I)
OPT (I)

≤ ρ∞.

Algorithm (Beat) The algorithm Beat balances the time testing jobs and the time exe-

cuting jobs while there are untested jobs. A job is called short if its running time is at

most E = max{1, p̄ − 1}, and long otherwise. Let TotalTest denote the time we spend

testing long jobs and let TotalExec be the time long jobs are executed. We iterate testing

an arbitrary job and then execute the job with smallest processing time either, if it is a

short job, or if TotalExec + pk is at most TotalTest. Once all jobs have been tested, we

execute the remaining jobs in order of non-decreasing processing time.

We analyze the performance of Beat below and show that the adversary gives jobs

with p j ∈ {0, E, p̄} and at most one job with p j ∈ (E, p̄) in order of decreasing p j in a

worst-case instance. This enhances our understanding of the structure of the schedules

produced by Beat and OPT . We will prove that the asymptotic competitive ratio of Beat

for p̄ ≤ 3 is at most

ρBEAT
∞ =

1 + 2(−2 + p̄) p̄ +
√

(1 − 2 p̄)2(−3 + 4 p̄)
2(−1 + p̄)p̄

.

This function decreases, when p̄ increases. Alternatively, for small upper limit we can

execute each job without test. Then there is a worst-case instance where all jobs have

processing time p j = 0. The optimal schedule tests each job only if the upper limit p̄ is

larger than one and executes it immediately. For p̄ < 1 this means the competitive ratio

is 1 and otherwise it is p̄, which monotonously increases. Thus, we choose a threshold

T1 ≈ 1.9338 for p̄, where we start applying Beat: the fixpoint of the function ρBEAT
∞ .

For some upper limit p̄ > 3 the performance behavior of Beat changes and the

asymptotic competitive ratio increases in our analysis below. Thus, we employ the
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Figure 5.9: Competitive ratio depending on p̄.

algorithm Threshold from Section 5.2.1 for larger upper limits. Recall that for p̄ > 2

Threshold tests all jobs, executes those with p j ≤ 2 immediately and defers the other

jobs. We argue that there is a worst-case instance with short jobs that have processing

time 0 or 2 and long jobs with processing time p̄ j = p̄ and that no long job is tested in

an optimal solution. This will allow us to prove

ρT HRES H
∞ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−3+ p̄+

√
−15+p̄(18+p̄)

2( p̄−1) if p̄ ∈ (2, 3)
√

3 ≈ 1.73 if p̄ ≥ 3
.

The function for small p̄ is a monotone function decreasing from 2 to
√

3 in the limits for

p̄ ∈ (2, 3). We choose the threshold, where we change from applying Beat to employing

Threshold at T2 ≈ 2.2948, the crossing point of the two functions ρBEAT
∞ and ρT HRES H

∞

describing the competitive ratio of Beat and Threshold in the interval (2, 3).

Algorithm Execute all jobs without test, if the upper limit p̄ is less than T1 ≈ 1.9338.

Otherwise, if the upper limit p̄ is greater than T2 ≈ 2.2948, execute the algorithm

Threshold. For all upper limits between T1 and T2, execute the algorithm Beat.

The function describing the asymptotic competitive ratio depending on p̄ is dis-

played in Figure 5.9. Its maximum is attained at T1, which is a fixpoint.

Theorem 5.15 The asymptotic competitive ratio of our algorithm is ρ∞ = T1 ≈ 1.9338,

which is the only real root of 2p̄3 − 4 p̄2 + 4p̄ − 1 −
√

(1 − 2p̄)2(4 p̄ − 3).

Analysis of Beat

The algorithm Beat balances the time testing jobs and the time executing jobs while

there are untested jobs. A job is called short if its running time is at most E = max{1, p̄−
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1}, and long otherwise. Let TotalTest denote the time we spend testing long jobs and let

TotalExec be the time long jobs are executed. We iterate testing an arbitrary job and then

execute the job with smallest processing time either, if it is a short job, or if TotalExec

+pk is at most TotalTest. We call this the first part of the schedule. Once all jobs have

been tested, we execute the remaining jobs in order of non-decreasing processing time.

This is the second part of the schedule. The pseudo code is shown in Algorithm 5.1.

Algorithm 5.1: Beat
Input: A set of n jobs with uniform upper limit p̄.

Output: A schedule of tests and executions of all jobs.

1 TotalTest← 0; // total time of executed tests

2 TotalExec← 0; // total time of executed jobs

3 while there are untested jobs do
4 k ← tested, not executed job with minimum pk; // pk = ∞ if no such

job

5 if TotalExec + pk ≤ TotalTest then
6 Execute k;

7 TotalExec← TotalExec + pk;

8 else
9 j← untested job with minimum p̄ j;

10 Test j;

11 if p j ≤ E then
12 Execute j;

13 else
14 TotalTest← TotalTest + 1;

15 Execute all remaining jobs in order of non-decreasing p j;

We make a structural observation about the algorithm schedule for a worst-case

instance.

Lemma 5.16 The adversary gives jobs with p j ∈ {0, E, p̄} and at most one job with

p j ∈ (E, p̄) in order of decreasing processing time p j.

Proof. We first consider the ordering of test results. For a fixed number of short and

long jobs, moving the test result of a short job towards the end of the algorithm does not
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affect the optimal cost. For the algorithm cost, the test of a short job can either move

behind the test of a long and delayed job or behind the test and execution of a long job.

In the first case, the algorithm cost increases by 1, in the second case it increases by the

processing time difference between the long and the short job, which is non-negative.

Thus, it increases in both cases, which means short jobs are the last test results in an

adversarial sequence.

Long jobs have processing time larger than E ≥ p̄ − 1, which means they are not

tested in the optimal schedule. Hence, increasing their processing time does not increase

the optimal cost. For the delayed jobs, increasing their processing time to p̄ increases

the algorithm cost, but does not change the schedule, so in an adversarial sequence all

delayed jobs have p j = p̄. For the executed jobs, note that no two jobs are executed

without a test in between, as their processing time is larger than one, the length of a

test. Thus we can assume they are each tested immediately before their execution. An

adversarial sequence presents them ordered by decreasing processing time. We want to

show they all have processing time p̄. For this, we use the following iterative procedure:

While the last long and executed job is followed by the test of a long job, we increase

its processing time until either p j = p̄ or it is followed by the test of a short job. Then

we reorder the executed jobs by decreasing processing time. Otherwise, if there is more

than one executed job with p j < p̄, we shift processing time from the last long executed

job to the one before. This increases the completion time of the first of the two jobs but

does not change the completion time of any other job. Once the last long executed job’s

processing time decreases to E it becomes a short job and does not change the algorithm

schedule. We repeat these steps until there is at most one long and executed job with

p j < p̄, the last one, and it is followed by tests of short jobs.

Finally, we observe that in the algorithm and in the optimal schedule all short jobs

with p j ∈ [0, p̄ − 1] are tested independent of their actual processing time. Also, the

execution order of the algorithm and the optimal schedule solely depend on the ordering

of the processing times. Therefore, Lemma 5.3 implies that short jobs have processing

times either 0 or p̄ − 1. To conclude, we can assume without loss of generality that all

short jobs with processing time at least p̄−1 are not tested in the optimal solution. Then,

increasing their processing time to E does not change the optimal cost. It increases

the algorithm cost, so in a worst-case adversarial sequence all short jobs have p j ∈

{0, E}.

Consequently, the schedule produced by Beat consists of the following parts, see
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Figure 5.10: Structure of schedules produced by BEAT and OPT.

also Figure 5.10:

• The tests of the λ fraction of jobs, that are long jobs, interleaved with executions

of the η fraction of jobs, that are also long jobs and that are executed during the

“while there are untested jobs” loop.

• The tests and immediate executions of the short jobs, which is a σ = 1−λ fraction

of all jobs. Let δ be the fraction of short jobs with p j = E.

• The executions of the ψ = λ− η fraction of jobs, that are delayed long jobs, in the

“execute all remaining jobs” statement.

OPT consists of the following parts (in this order), see also Figure 5.10:

• The tests and immediate executions of the (1 − δ)σ fraction of jobs that are short

with p j = 0.

• The untested executions of the δσ fraction of jobs which are short and have pro-

cessing time E and the λ fraction of jobs that are long.

We note that TotalTest has value λn when all long jobs are tested, so the execution

time of long jobs in the first part, which is at least p̄(nη− 1)+E by Lemma 5.16, cannot

exceed λn. As long jobs have p j > E ≥ 1, there are always as least as many long jobs

tested as are executed. Thus, TotalExec never decreases below TotalTest − p̄, as then

some job can be executed. Hence, we have

p̄η ≤ λ + O(1/n) < p̄η + O(1/n). (5.9)

Furthermore, we have λ = η + ψ, which yields

ψ ≤ (1 − 1/ p̄) λ + O(1/n). (5.10)

We first consider the algorithm schedule.
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Lemma 5.17 For a fraction δ ∈ [0, 1] of short jobs with processing time p j = E, we

can bound the algorithm cost by

ALG ≤
n2

2
·

[
λ2

(
p̄ + 2 −

1
p̄

)
+ σ2((1 + E)(2δ − δ2) + (1 − δ)2)

+ 2λσ
(
2 +

(
1 −

1
p̄

)
(1 + Eδ)

) ]
+ O(n).

Proof. There is an η fraction of long jobs completed in the first part of the algorithm

schedule, each executed, when TotalExec+p j ≤ TotalTest in the algorithm. Thus, the

completion time of the i-th such job is at most 2ip̄ + 1. The sum of these completion

times is p̄η2n2 +O(n). A fraction of δσ jobs is short and has p j = E. They are executed

before the other (1 − δ)σ fraction of jobs with p j = 0 is executed. This means the

completion times of the short jobs contribute

n2/2 · [(1 + E)δ2σ2 + (1 − δ)2σ2 + 2(1 + E)δσ(1 − δ)σ
]
+ O(n)

= n2/2 · [σ2((1 + E)(2δ − δ2) + (1 − δ)2)] + O(n).

Additionally there is an ψ fraction of jobs, which are executed at the end of the schedule,

each with processing time p̄. Thus their contribution to the algorithm cost is p̄ψ2n2/2 +

O(n). The execution of the fraction σ of short jobs starts latest at time nλ+ p̄nη, and the

execution of the fraction ψ of jobs is delayed by at most nλ + p̄nη + (1 + Eδ)nσ. Thus,

the total objective value of Beat is at most:

ALG ≤ n2/2 · [2p̄η2 + σ2((1 + E)(2δ − δ2) + (1 − δ)2) + p̄ψ2

+2(λ + p̄η)σ + 2
(
λ + p̄η + (1 + Eδ)σ

)
ψ
]
+ O(n).

By Equations (5.9) and (5.10), we know that η ≤ λ/p̄ + O(1/n) and ψ ≤ (1 − 1/ p̄) λ +

O(1/n). Together with η + ψ = λ, this yields the desired bound.

Lemma 5.18 For uniform upper limit p̄ ∈ [1.5, 3], the asymptotic competitive ratio of

Beat is at most

1 + 2(−2 + p̄)p̄ +
√

(1 − 2p̄)2(−3 + 4p̄)
2(−1 + p̄) p̄

.

Proof. We bounded the algorithm cost in Lemma 5.17 and thus first consider the op-

timal cost. In OPT, first a fraction (1 − δ)σ of the short jobs is tested and executed

with processing time 0. Then the remaining fraction δσ of short jobs is executed with
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processing time p̄ without test. Thus their contribution to the sum of completion times

is

n2/2 · [σ2
(
(1 − δ)2 + p̄δ2 + 2δ(1 − δ)

)]
+ O(n) = n

/
2 ·

[
σ2

(
(p̄ − 1)δ2 + 1

)]
+ O(n).

All long jobs are executed untested at the end of the schedule and take p̄ time units.

Their sum of completion times is p̄λ2n2/2 + O(n) and they are each delayed by σn(1 +

( p̄ − 1)δ)), giving:

OPT = n2/2 · [λ2 p̄ + σ2
(
(p̄ − 1)δ2 + 1

)
+ 2λσ (1 + ( p̄ − 1)δ)

]
+ O(n).

Then, the asymptotic competitive ratio ρ∞ for upper limit p̄ in [1.5, 3] is

ρBEAT
∞ =

λ2
(
p̄ + 2 − 1

p̄

)
+ σ2

(
(1 + E)(2δ − δ2) + (1 − δ)2

)
+ 2λσ

(
2 +

(
1 − 1

p̄

)
(1 + Eδ)

)
p̄λ2 + σ2 (

( p̄ − 1)δ2 + 1
)
+ 2λσ (1 + ( p̄ − 1)δ)

.

For σ = 0 or λ = 0 this fulfills the claim. For the other values we set σ = αλ so the

ratio becomes:

p̄ + 2 − 1
p̄ + α

2
(
(1 + E)(2δ − δ2) + (1 − δ)2

)
+ 2α

(
2 +

(
1 − 1

p̄

)
(1 + Eδ)

)
p̄ + α2 (

( p̄ − 1)δ2 + 1
)
+ 2α (1 + ( p̄ − 1)δ)

.

We take the term to mathematica to bound it. For the case 1.5 < p̄ < 2 we show that the

adversary chooses δ = 0 and α such that the first derivative in α equals 0. Otherwise, in

the case 2 ≤ p̄ ≤ 3, we show for δ = 0 that we get exactly the same expression as for

p̄ < 2. We prove the adversary chooses this case, which means the competitive ratio is

bounded by the following function

ρBEAT
∞ ≤

1 + 2(−2 + p̄) p̄ +
√

(1 − 2 p̄)2(−3 + 4 p̄)
2(−1 + p̄)p̄

.

5.4.2 Analysis of Threshold for Uniform Upper Limits

In this section we analyze Algorithm Threshold (see Section 5.2.1) for instances with

uniform upper limit p̄ > 2 and derive a competitive ratio as a function of p̄.

Recall that for p̄ > 2, Threshold tests all jobs. It executes a job immediately if

p j ≤ 2, and defers it otherwise. We have proved in Lemma 5.4 that we may assume

that all jobs with p j ≤ 2 have execution times either 0 or 2. We also argued that in a

worst case, Threshold first tests all long jobs, i.e., jobs j with p j > 2, then follow the

short jobs with tests (first length-2 jobs and then length-0 jobs), and finally Threshold

executes the deferred long jobs in increasing order of processing times.
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An optimum solution tests a job j only if p j + 1 < p̄. We show next that such long

jobs to be tested in an optimal solution do not exist.

Lemma 5.19 There is a worst-case instance with short jobs that have processing times

0 or 2 and long jobs with processing time p j = p̄. Furthermore, none of the long jobs is

tested in an optimal solution.

Proof. Consider an instance with short jobs with processing times 0 or 2 (Lemma 5.4).

We may increase the processing time of untested long jobs to their upper limit p̄ with-

out changing the optimal schedule. This cannot decrease the worst-case ratio as the

algorithm’s objective value can only increase.

It remains to consider the long jobs that are tested by an optimal solution. We show

that we may assume that those do not exist. This is trivially true if 2 < p̄ < 3. Then

testing a long job j costs 1 + p j > 3 which is greater than running the job untested at

p̄ < 3, and thus, an optimal solution would never test it.

Assume now that p̄ ≥ 3. Threshold schedules any long job after all short jobs;

first it runs long tested jobs with total execution time 1 + p j < p̄ in non-decreasing

order of p j and then the untested jobs with execution time p̄. As all untested jobs have

processing time p j = p̄, we may assume that the algorithm and the optimum schedule

long jobs in the same order. Reducing the processing times of all tested long jobs to

2 + ε for infinitesimally small ε > 0 does not change the two schedules and thus, by

Proposition 5.2, the ratio of the objective values of the algorithm and the optimum does

not decrease.

Now, we argue that reducing the processing times of tested long jobs from 2 + ε

to 2 (thus making them short jobs) does not affect the optimal objective value, because

ε is infinitesimally small, and can only increase the objective value of the algorithm.

Consider the first long job that is tested by the optimum and the algorithm, say job ℓ.

Consider the worst-case schedule of our algorithm for the new instance in which ℓ is

turned into a short job with effectively the same processing time. Job ℓ is tested and

scheduled just before the short jobs with p j = 0 instead of after them. Let a be the

number of those short jobs. Then this change in pℓ to 2 improves the completion time

of job ℓ by a and increases the completion time of a jobs by 2, so the net change in the

objective value of the algorithm is 2a − a = a ≥ 0. The argument can be repeated until

no tested long jobs are left.
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Theorem 5.20 For uniform upper limit p̄ > 2, Algorithm Threshold has an asymptotic

competitive ratio at most

ρT HRES H
∞ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−3+ p̄+

√
−15+ p̄(18+ p̄)

2( p̄−1) if p̄ ∈ (2, 3)
√

3 ≈ 1.73 if p̄ ≥ 3
.

The function for small p̄ is a monotone function decreasing from 2 to
√

3 in the limits

for p̄ ∈ (2, 3).

Proof. Consider a worst-case instance according to Lemma 5.19. Let αn denote the

number of short jobs of length 0, let βn be the number of short jobs of length 2, and let

γn be the number of long jobs with p j = p̄. There are no other jobs, so α + β + γ = 1.

Recall, that we may assume that Threshold’s schedule is as follows: first γn tests, βn

tests and executions of length-2 jobs, then tests and executions of αn length-0 jobs,

followed by the execution of long jobs with p j = p̄. The objective value is

ALG = n2/2 · [2γ(α + β + γ) + β2 · 3 + 2 · 3β(α + γ) + α2 + 2αγ + γ2 · p̄
]
+ O(n).

(5.11)

To estimate the objective value of an optimal solution, we distinguish two cases for

the upper limit p̄.

Case: p̄ > 3. In this case, an optimal solution would test all short jobs, first the

length-0 jobs and then the length-2 jobs. Then all long jobs follow without testing them

(Lemma 5.19). Using the above notation, we have an optimal objective value

OPT = n2/2 · [α2 + 2α(β + γ) + β2 · 3 + 2 · 3βγ + γ2 · p̄
]
+ O(n).

Using γ = 1 − α − β, the asymptotic competitive ratio for any p̄ > 3 can be bounded by

2 − α2 − 2αβ + (4 − 3β)β + p̄(−1 + α + β)2

−α2 + α(2 − 6β) − 3(−2 + β)β + p̄ (−1 + α + β)2 ,

which has its maximum at
√

3 for α =
(
3 −
√

3
)
/2 and β =

(√
3 − 1

)
/2.

Case: p̄ ≤ 3. In this case, an optimal solution tests only short jobs with p j = 0 and

executes all other jobs untested, also short jobs with p j = 2. The value of an optimal

schedule is

OPT = n2/2 · [α2 + 2α(β + γ) + p̄ · β2 + 2p̄ · βγ + p̄ · γ2
]
+ O(n).
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111 p p1 p
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γ 1-γ
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if γ≥1-β:

OPT:

11 p p1 p 1

1-γ γ

ALG
if γ≤1-β:

Figure 5.11: The schedule produced by UTE and the optimal schedule.

With the value of Threshold’s solution given by Equation (5.11), the asymptotic com-

petitive ratio is

ρT HRES H
∞ =

α2 + 3β2 + 8βγ + α(6β + 4γ) + γ2(2 + p̄)
α2 + 2α(β + γ) + (β + γ)2 p̄

.

Using mathematica we verify that this ratio has its maximum at the desired value

ρT HRES H
∞ ≤

−3 + p̄ +
√
−15 + p̄(18 + p̄)

2(p̄ − 1)
.

5.4.3 Nearly Tight Algorithm for Extreme Uniform Instances

We present a deterministic algorithm for the restricted class of extreme uniform in-

stances, that is almost tight for the instance that yields the deterministic lower bound.

An extreme uniform instance consists of jobs with uniform upper limit p̄ and processing

times in {0, p̄}. Our algorithm Ute attains asymptotic competitive ratio ρ ≈ 1.8668 for

this class of instances.

Algorithm (Ute) If the upper limit p̄ is at most ρ, then all jobs are executed without test.

Otherwise, all jobs are tested. The first max{0, β} fraction of the jobs are executed im-

mediately after their test. The remaining fraction of the jobs are executed immediately

after their test if they have processing time 0 and are delayed otherwise, see Figure 5.11.

The parameter β is defined as

β =
1 − p̄ + p̄2 − ρ + 2 p̄ρ − p̄2ρ

1 − p̄ + p̄2 − ρ + p̄ρ
. (5.12)

Theorem 5.21 The competitive ratio of Ute is at most ρ = 1+
√

3+2
√

5
2 ≈ 1.8668.
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Proof. If the upper limit p̄ is at most ρ, by Lemma 5.1 the algorithm has competitive

ratio p̄, which fulfills the claim. Thus, we assume in the following p̄ ≥ ρ. An instance

is defined by the job number n, an upper limit p̄, and a fraction γ such that the first γ

fraction of the jobs tested by Ute have processing time p̄, while the jobs in the remaining

1 − γ fraction have processing time 0. Thus, the optimal cost is

OPT = n2/2 · [γ2 + p̄(γ − 1)2 + 2γ(1 − γ)
]
+ n

/
2 ·

[
γ + p̄(1 − γ)

]
.

The algorithm chooses β so as to have the smallest ratio ρ. With the chosen fixed value

of ρ, the value β from Equation (5.12) is a decreasing function in p̄ for p̄ ≥ ρ. Hence,

there is a threshold value p∗ such that β( p̄) ≤ 0 for all p̄ ≥ p∗. For ρ ≈ 1.8668 we have

p∗ ≈ 2.796. We derive the best value β for the algorithm by analyzing the competitive

ratio for n → ∞ and later consider the linear terms separately. For the algorithm cost,

we distinguish three cases depending on the ranges of p̄ and γ. The case that makes the

analysis tight is ρ ≤ p̄ ≤ p∗ and γ ≤ 1 − β, which we discuss next. The other cases are

treated in the following Lemmas 5.22 and 5.23.

Consider for now β and ρ as some undetermined parameters which will be optimized

in the analysis of this case. The schedule of Ute begins with a β fraction of the jobs that

are tested and executed with processing time p̄ followed by a γ fraction of the jobs that

are tested and executed with processing time 0. The latter are delayed by (1 − γ)n tests

and βn executions of length p̄. Last, there is a (1 − β − γ) fraction of jobs delayed by n

tests and β executions of length p̄ and executed with processing time p̄. Thus, we have

ALG = n2/2 · [( p̄ + 1)β2 + γ2 + p̄(1 − β − γ)2 + 2(1 − γ + p̄β)γ + 2(1 + p̄β)(1 − β − γ)
]

+ n
/
2 ·

[
( p̄ + 1)β + γ + p̄(1 − β − γ)

]
.

The adversary chooses p̄, the algorithm chooses β depending on p̄ and the adversary

chooses γ dependent on p̄ and β. Thus, we can express the competitive ratio for this

case as

ρ = max
ρ≤ p̄≤p∗

min
β

max
γ≤1−β

lim
n→∞

ALG
OPT

.

Using mathematica, we show that the optimal choices are

γ =
−p̄ + β p̄ − ρ + p̄ρ

(ρ − 1)(p̄ − 1)
, β =

1 − p̄ + p̄2 − ρ + 2p̄ρ − p̄2ρ

1 − p̄ + p̄2 − ρ + p̄ρ
, p̄ = ρ,

which explains our choice of β. Then, we have

ρ =
1 +

√
3 + 2

√
5

2
≈ 1.8668.
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For the linear terms in n, it is easy to check for our choice of β and ρ

(p̄ + 1)β + γ + p̄(1 − β − γ)
γ + p̄(1 − γ)

≤ ρ

holds for all γ ∈ [0, 1 − β] and ρ ≤ p̄ ≤ p∗. This completes the proof assuming the

subsequent Lemmas 5.22 and 5.23 hold.

Lemma 5.22 For p̄ > p∗ Ute has competitive ratio ρ ≈ 1.8668.

Proof. In this case β ≤ 0 and Ute first tests and postpones the first 1− γ fraction of jobs

(all of length p̄) and then tests and executes the remaining γ fraction (all of length 0).

Thus, the cost for the algorithm is

ALG = n2/2 · [γ2 + p̄(1 − γ)2 + 2(1 − γ)γ + 2(1 − γ)
]
+ n

/
2 ·

[
γ + ( p̄ + 1)(1 − γ)

]
.

The ratio is at most ρ, if g ≥ 0 for

g := 2
/
n · (ρOPT − ALG)

= −3 + 2γ − 2nγ + nγ2 + p(−1 + γ)(−1 − n + nγ)(−1 + ρ) + γρ + 2nγρ − nγ2ρ

+ γ2(p̄ − 1)(ρ − 1) + p̄(ρ − 1) + 2γ( p̄ + ρ − p̄ρ) − 1.

The expression g is increasing in p̄ as its derivative is
(
1 + n(1 − γ)

)
(1 − γ)(ρ − 1) > 0.

Therefore we can assume for the worst case p̄ = p∗. Now we observe that g is convex

in γ as the second derivative is n
(
1 +

√
4ρ − 3

)
> 0. Hence, the adversary chooses the

extreme point for g in γ, namely

γ =
−1 +

√
4ρ − 3

1 +
√

4ρ − 3
.

With these choices of p̄ and γ the expression g has the form

g =
3 − 2(2 − ρ)ρ −

√
4ρ − 3

2(ρ − 1)
.

We show g is positive for ρ ∈ [1.6, 2] and n ≥ 1, which proves competitive ratio ρ for

this case.

Lemma 5.23 For ρ ≤ p̄ ≤ p∗ and γ ≥ 1 − β algorithm Ute has competitive ratio

ρ ≈ 1.8668.
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Proof. In this case the algorithm does not postpone the execution of jobs. The first 1−γ

fraction of jobs have processing time p̄ and the last γ fraction jobs have processing time

0. Therefore the cost of Ute is

ALG = n2/2 · [(p̄ + 1)(1 − γ)2 + γ2 + 2( p̄ + 1)γ(1 − γ)
]
+ n

/
2 ·

[
( p̄ + 1)(1 − γ) + γ

]
.

We analyze the quadratic and the linear terms in n separately. The ratio of the quadratic

terms is at most ρ, if we have g2 ≥ 0 for

g2 := 2
/
n2 · lim

n→∞

(
ρOPT − ALG

)
= −1 − (1 − γ2) p̄ +

(
p̄ − (2 − γ)γ( p̄ − 1)

)
ρ.

The value of β is maximized at p̄ = ρ, which is approximately β∗ := 0.2869. We observe

that g2 is decreasing in γ and thus consider γ = 1 − β. For this choice g2 is positive for

p̄ ∈ [1.7, p∗]. Therefore, we have shown that the ratio is at most ρ for the quadratic

terms.

For the linear terms, the ratio is at most ρ, if g1 ≥ 0 for

g1 := −1 + γρ + p̄(−1 + γ + ρ − γρ).

This is increasing in p̄, and for p̄ = ρ it is positive.

Remark 5.24 The deterministic lower bound 1.8546 (Theorem 5.9 in Section 5.2.2)

uses the upper limit p̄ ≈ 1.9896. Plugging this choice of p̄ into Equation (5.12) shows

that Ute has asymptotic competitive ratio ρ∞ ≈ 1.8552 on this instance, which is almost

tight.

5.5 Optimal Testing for Minimizing the Makespan

We consider scheduling with testing with the objective of minimizing the makespan, i.e.,

the completion time of the last job that is processed. This objective function is special,

as the time each job runs on the machine has a linear contribution to the makespan. This

yields that for any algorithm that treats each job independent of the position where it

occurs in the schedule, there is a worst-case instance containing only a single job.

Lemma 5.25 If an algorithm that treats each job independent of the position where it

occurs in the schedule is ρ-competitive for one-job instances, it is ρ-competitive also for

general instances.
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Proof. Let an instance I with n jobs j1, . . . , jn and an arbitrary algorithm as in the

statement of the lemma be given. Then the makespan ALG(I) equals the sum of the

makespans, if we split the instance into one-job instances. By assumption, the algo-

rithm is ρ-competitive for each one-job instance. Thus, we have

ALG(I) =
n∑

i=1

ALG({ ji}) ≤
n∑

i=1

ρ · OPT ({ ji}) = ρ · OPT (I).

We apply Lemma 5.25 to describe a deterministic algorithm with competitive ratio

ρ = ϕ, the golden ratio, and show this is best-possible.

Theorem 5.26 Testing each job j if and only if p̄ j > ϕ ≈ 1.6180 is an algorithm with

competitive ratio ρ = ϕ, which is best-possible.

Proof. By Lemma 5.25 we just need to consider an instance consisting of a single job.

Let that job have upper limit p̄ and processing time p. If the algorithm does not test the

job, then p̄ ≤ ϕ. If p̄ ≤ 1, the optimal schedule also executes the job untested, and the

competitive ratio is 1. If p̄ > 1, the makespan of the algorithm is p̄ ≤ ϕ and the optimal

makespan is at least 1, because the optimal makespan is minimized if the job is tested

in the optimal schedule and reveals p = 0. Thus, the ratio is at most ϕ.

If the algorithm tests the job, then its makespan is 1+ p, while the optimal makespan

is min{ p̄, 1 + p}. In the worst case, the job has processing time p = p̄. Then the ratio

is (1 + p̄)/ p̄, which decreases when the upper limit p̄ increases. Thus, it is at most

(1 + ϕ)/ϕ = ϕ.

To show this is best-possible, consider an instance with a single job with upper limit

ϕ. Any algorithm that does not test this job has competitive ratio at least ϕ, as the

optimal makespan is 1 if the job has processing time 0. Any other algorithm tests the

job. If the job has processing time ϕ, the competitive ratio is (1 + ϕ)/ϕ = ϕ.

This shows that there is an algorithm that approaches the optimal processing time

up to a factor ϕ. However, it does not know the optimal job ordering. Therefore this is

not a ϕ-approximation for the sum of completion times.

Next we consider randomized algorithms. We first show that no randomized algo-

rithm can have competitive ratio ρ < 4/3.

Theorem 5.27 No randomized algorithm has competitive ratio ρ < 4/3 for minimizing

the makespan of an instance of scheduling with testing.

148



5.5 Optimal Testing for Minimizing the Makespan

Proof. We want to apply Yao’s principle [Yao77] and give a randomized instance for

which no deterministic algorithm is better than 4/3-competitive. Consider a one-job

instance with p̄ = 2. Let the job have p = 0 and p = 2 each with probability 0.5.

The deterministic algorithm that does not test the job has expected makespan 2 and the

deterministic algorithm testing the job also has expected makespan 2. The expected

optimal solution size is 3/2. Thus, the instance yields the desired bound.

For minimizing the makespan, the order in which jobs are treated is irrelevant by

Lemma 5.25. Thus, the only decision an algorithm has to take is whether to test a

job. Consider a job with upper limit p̄. We show that the algorithm that executes the job

untested if p̄ ≤ 1 and otherwise tests it with probability 1−1/( p̄2− p̄+1) is best-possible.

Theorem 5.28 Our randomized algorithm testing each job with p̄ > 1 with probability

1 − 1/( p̄2 − p̄ + 1) has competitive ratio 4/3, which is best-possible.

Proof. By Lemma 5.25 we just need to consider an instance consisting of a single job.

If its upper limit p̄ satisfies p̄ ≤ 1, the algorithm executes the job untested, which is

optimal. Therefore, assume for the rest of the proof that p̄ > 1.

Note that Proposition 5.2, which was stated in the context of minimizing the sum

of completion times, holds also for single-job instances where the objective is the

makespan, because for one job the two objectives are the same. If 0 < p < p̄ − 1,

we observe that the optimal makespan and the expected makespan of the algorithm de-

pend linearly on p, so by Proposition 5.2 we can set p to 0 or p̄ − 1 without decreasing

the competitive ratio. Now, if p̄ − 1 ≤ p < p̄, observe that increasing p to p̄ increases

the expected makespan of the algorithm but does not affect the optimum. Therefore, we

can assume that p ∈ {0, p̄} in a worst-case instance.

Let us first consider the case p = p̄. Then the optimal solution schedules this job

without test. Thus, the ratio of algorithm length over optimal length is

ρ =
E
[
ALG

]
OPT

=

(
1 −

1
p̄2 − p̄ + 1

)
p̄ + 1

p̄
+

1
p̄2 − p̄ + 1

=
p̄2

p̄2 − p̄ + 1
.

Otherwise, we have p = 0. Then we have

ρ =
E
[
ALG

]
OPT

=

(
1 −

1
p̄2 − p̄ + 1

)
+

1
p̄2 − p̄ + 1

p̄ =
p̄2

p̄2 − p̄ + 1
.

This function is maximized at p̄ = 2, which yields competitive ratio 4/3.

149





Conclusion

Uncertainty exploration is an emerging research field in combinatorial optimization with

strong ties to robust and online optimization. This makes it theoretically interesting and

the numerous practical applications give it additional relevance. The classical model

describes the data uncertainty as intervals, whose exploration yields the exact value at

a fixed cost and asks to minimize the exploration cost to identify an optimal solution.

In this thesis we describe new algorithms and lower bounds for this classical model

and demonstrate its applicability in practice. We study variants of the classical model

and showcase their potential. Then we propose combining the solution quality with the

exploration cost in a single objective function as a new promising model for uncertainty

exploration. We conclude with discussing the most important open questions in the field

and point to interesting directions for future research.

For minimum spanning tree under uncertainty in the classical model the determinis-

tic problem complexity is well-understood and there is a polynomial time algorithm for

the verification problem. We show that randomized algorithms can beat the determin-

istic performance bounds, but there remains a gap between lower bound 1.5 and upper

bound 1.707 on the best-possible competitive ratio for randomized algorithms. The

current greedy approach consecutively consider the edges, but the example proving the

analysis is tight suggests that a more global approach yields potential for improvement.

For the use of uncertainty exploration in practice it is desirable to have more compu-

tational experiments for the variety of problems that have been studied theoretically. We

describe a class of instances that the preprocessing solves optimally. However, it would

be important to understand on which instances the randomized algorithm performs bet-

ter than the deterministic ones and vice versa as well as determining general instance

characteristics that influence the performance of the algorithms.

We fully characterize set systems with competitive ratios 1 and 2, but there is no

understanding of other families of set systems with constant competitive ratio. Our
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lower bound construction employs a notion of disjointness of a set system. We consider

two inclusion-wise maximal sets for which no other maximal set lies in the union and

contains the complete intersection. The largest cardinality of the symmetric difference

of two such sets equals the lower bound on the competitive ratio. It would be interesting

to find optimization problems that have a small disjointness. Furthermore, to understand

if this is the correct measure of difficulty, algorithms for such set systems are necessary.

It is very surprising and might appear unsatisfactory, that the usually easy bipar-

tite matching problem has unbounded competitive ratio in the uncertainty setting. The

parametrization by the cardinality of the largest maximal set that was proposed by Er-

lebach et al. [EHK16] does not seem to capture the problem difficulty better for our

multiplicative definition of competitive ratio. However, research using an additive com-

petitive ratio seems more promising. Here, wide gaps remain for both, bipartite match-

ing and knapsack with uncertain profit.

The geometric interpretation of linear programs under uncertainty yields a new per-

spective to study uncertainty exploration. For example, the question to decide if a linear

program allows a realization where the optimal solution queries a single element, seems

intriguing. Geometrically expressed this asks the following: Given a space of dimen-

sion d and a family of cones that all originate at the origin, is there a d − 1 dimensional

hyperplane through the origin that does not intersect any of the cones?

There are several models to study trade-offs between the exploration cost and the

solution quality. We study minimizing the exploration cost to find an α-approximate so-

lution and show first results when there is an upper limit on the number of consecutive

queries and instead parallel queries are necessary. One could also consider a fixed maxi-

mum number of parallel queries and minimize the number of rounds until a solution can

be identified. Goerigk et al. [GGI+15] propose to optimize the solution quality given a

fixed cost budget for the exploration. All these models have only been studied for few

optimization problems and a thorough understanding of their advantages, drawbacks,

and relation to each other is desirable.

In this thesis uncertain data is described by intervals and either a query yields the

exact data or a new, possibly smaller, uncertainty interval. An interesting variant is to

allow fractional queries. Paying cost x then decreases the interval size by x · Ae ei-

ther on a chosen side or symmetrically. This allows the algorithm to reduce the interval

incrementally by ε fractions and if the algorithm chooses the same intervals as in the op-

timal solution, they will be reduced by the same amount. Similar to the classical model,
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the crucial decision is which intervals to reduce and in which order. It appears, such

fractional queries may describe a nice intermediate model to resemble an LP solution.

A key to the algorithmic results in this thesis and a limiting factor for our lower

bounds is the understanding of the optimal solution. The verification problem, comput-

ing an optimal solution for a fixed realization, is usually solvable in polynomial time.

However, we are not aware of any results that bound the size of the optimal solution for

a fixed uncertainty graph, but arbitrary realization. The main question is, if it is NP-hard

to determine the best-possible lower bound.

Beyond the classical approach to uncertainty exploration we propose to combine the

exploration cost and the solution quality in a single objective function. Our adversar-

ial model for scheduling with testing shows that this leads to interesting questions with

many applications. An immediate open question from our results is whether it is pos-

sible to achieve competitive ratio below 2 for minimizing the sum of completion times

with a deterministic algorithm for arbitrary instances. Further interesting directions for

future work include the consideration of job-dependent test times or other scheduling

problems such as parallel machine scheduling or flow shop problems. More generally,

the study of problems with explorable uncertainty in settings where the costs for query-

ing uncertain data directly contribute to the objective value is a promising direction for

future work.
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Deterministic Lower Bound
Our lower bound construction considers an instance with uniform upper limit p > 1 and the processing 

time of every job is either 0 or p. The adversary fixes a fraction δ ∈ [0,1] and sets the processing time of 

a job to p, if and only if the job is tested by the algorithm and among the first δ fraction of jobs that is 

either tested or executed untested.

We assume the algorithm knows p and δ, which can only improve the performance of the best-possible 

deterministic algorithm. The schedule of a deterministic algorithm with best possible competitive ratio 

has the following form, where λ, ν  ≥ 0 and ν + λ ≤ δ : The algorithm first executes ν n jobs untested, 

then tests and executes λ n long jobs, then tests (δ - ν - λ) n long jobs and delays their execution, then 

tests and executes the remaining (1 - δ) n short jobs, and finally executes the (δ - ν - λ) n delayed long 

jobs that were tested earlier. Thus competitive ratio in the limit for n→ ∞ is

Clearp, λ, δ, ν, λsol, δsol, sol;
ρ =

1 + 2 δ 1 - ν p + δ2 p - 1 + 2 ν ν + p - 2 + λ2 + 2 λ ν + p - 1 - δ p  1 + p - 1 (δ - ν)2;

Finding the extreme point of the algorithm cost in λ.

λsol = SimplifySolveD[ρ, λ] ⩵ 0, λ

λ → 1 + p -1 + δ - ν

Considering the second derivative, yields that this is a minimum of the algorithm cost, as the result is 

positive

SimplifyDD[ρ, λ], λ

2

1 + -1 + p (δ - ν)2

We check when this minimum is in the feasible region for λ.

λ = λ /. λsol1;
FullSimplifyλ ≤ δ - ν, Assumptions → δ ≤ 1 && p >= 1.5

True

The condition for λ ≥ 0 is: 1- p (1 - δ) - ν ≥ 0

We treat this as a condition on u. Thus, this value for λ yields the best algorithm cost, when ν fulfills the 

condition above. We now find the minimum when ν violates the condition. We have seen above, that the 

first derivative in λ is positive, meaning the function increases with λ. Thus, the optimal choice for the 

other case is λ = 0. This splits the analysis of ν into the cases ν in [0, 1 - p(1 - δ)) and ν in [1 - p(1 - δ), δ].

Case 1 : ν ∈ [0, 1 - p (1 - δ))

This case exists if the interval is not empty. This is the case either if δ = 1 or if 1 - 1/p < δ.

Reduce1 - p 1 - δ > 0 && 0 ≤ δ ≤ 1, δ

p < 1 && 0 ≤ δ ≤ 1 || p ≥ 1 && -1 + p
p

< δ ≤ 1
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FullSimplify[ρ]

-p2 -1 + δ2 + p 2 + -2 + δ δ - (δ - ν) -2 + δ + ν
1 + -1 + p (δ - ν)2

We consider the change in the algorithm cost as well as the optimal cost, if we decrease ν by ϵ. Then, 

the algorithm cost changes by  - 2 ν ϵ + ϵ^2 + 2 ϵ. The optimal cost changes by (p - 1) (-2 ν ϵ + ϵ^2 + 2δ 

ϵ), which is positive for any ϵ > 0 independent of δ and ν as we have ν ≤ δ. We want to apply Lemma 5.3 

to show decreasing ν also decreases the competitive ratio.Thus we need to show ΔALG/ Δ OPT ≤ 

ALG/OPT. Here we use, that we already know p ≥ Φ, the golden ratio.

Δ ALG

Δ OPT
=

ϵ^2 + 2 ϵ (1 - ν)
(p - 1) (ϵ^2 + 2 ϵ (δ - ν)) ≤ 1

p - 1
<

1

Φ = Φ <
ALG

OPT

Thus, we can decrease the competitive ratio by decreasing ν. The amount ϵ by which we can decrease 

is independent of ν, so we can decrease until ν = 0. Hence, the optimal choice for the algorithm is ν = 0. 

We call the competitive ratio for this case ρ1.

ν = 0;

ρ1 = FullSimplify[ρ]

-p2 -1 + δ2 - -2 + δ δ + p 2 + -2 + δ δ
1 + -1 + p δ2

Case 2 : ν ∈ [1 - p (1 - δ), δ]
We show the second case always exists, as p must be larger than 1.

Reduce1 - p 1 - δ ≤ δ && 0 ≤ δ ≤ 1, p

p ∈ Reals && 0 ≤ δ < 1 && p ≥ 1 || δ ⩵ 1

Clear[p, δ, ν]; λ = 0;

FullSimplify[ρ]

1 + -1 + p δ2 + 2 ν -2 + p + ν + δ 2 - 2 p ν
1 + -1 + p (δ - ν)2

νsol = SolveD[ρ, ν] ⩵ 0, ν

ν →
-6 + 2 p - 4 δ + 4 p δ + 6 δ2 - 8 p δ2 + 2 p2 δ2 -√6 - 2 p + 4 δ - 4 p δ - 6 δ2 + 8 p δ2 - 2 p2 δ22 - 4

-4 + 6 p - 2 p2 + 4 δ - 6 p δ + 2 p2 δ -4 + 2 p - 2 δ - 2 p δ2 + 2 p2 δ2 + 2 δ3 - 2 p δ3 
2 -4 + 6 p - 2 p2 + 4 δ - 6 p δ + 2 p2 δ, ν → -6 + 2 p - 4 δ + 4 p δ + 6 δ2 -

8 p δ2 + 2 p2 δ2 +√6 - 2 p + 4 δ - 4 p δ - 6 δ2 + 8 p δ2 - 2 p2 δ22 -

4 -4 + 6 p - 2 p2 + 4 δ - 6 p δ + 2 p2 δ -4 + 2 p - 2 δ - 2 p δ2 + 2 p2 δ2 + 2 δ3 - 2 p δ3 
2 -4 + 6 p - 2 p2 + 4 δ - 6 p δ + 2 p2 δ
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ν = ν /. νsol1;
Plot3D0, ν, 1, p, 1.7, 2, δ, 0, 1, AxesLabel → Automatic
ν = ν /. νsol2;
Plot3D0, ν, 1, p, 1.7, 2, δ, 0, 1, AxesLabel → Automatic

Clearly the first solution is not feasible, as ν is negative, so we choose the second solution. We plot the 

second derivative to see if it is a minimum or maximum.
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Clear[ν];
sol = FullSimplifyDD[ρ, ν], ν;
ν = ν /. νsol2;
Plot3Dsol, 0, p, 1.7, 2, δ, 0, 1, AxesLabel → Automatic

The second derivative in ν is positive at the extreme point. Thus, it is a minimum and the algorithm will 

choose the extreme point for ν if it is feasible.

Reduceν ≤ δ && 0 ≤ δ ≤ 1 && 1 ≤ p ≤ 2

False

However, the extreme point is never feasible, as we need to ensure ν ≤ δ. The function is monotonely 

increasing in ν for ν ≤ δ, as the extreme point is at a larger value of ν. Thus, the optimal choice for the 

algorithm is ν = δ. For all δ ∈ [0, 1] this yields ν ∈ [1 - p ( 1 - δ), δ]. We call the competitive ratio for this 

case ρ2.
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ν = δ; ρ2 = FullSimplify[ρ]
Plot3Dρ2, 2, p, 1.7, 2, δ, 0, 1

1 - -1 + p -2 + δ δ

For δ < 1 - 1/p there is only one local minimum. This yields the ratio ρ2, which is monotonely increasing 

in δ. Thus, the adversary chooses δ → 1 - 1/p.

Limitρ2, δ → 1 - 1  p
Maximize%, 1 ≤ p ≤ 2, p

1

p2
- 1
p
+ p

7
4
, p → 2

Otherwise, both ρ1 and ρ2 are local minima and the algorithm chooses the parameter choice attaining 

the minimum of the two options. Thus, either one ratio dominates the other, or the adversary chooses 

the range of p and δ for which they are equal, to maximize the minimum. We show the latter is the case 

and compute the value p depending on δ for which the two ratios are equal.
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Plot3Dρ1, ρ2, 2, p, 1.7, 2, δ, 0, 1, AxesLabel → Automatic
psol = FullSimplifySolveρ1 - ρ2 ⩵ 0, p

p → -2 - 4 δ + δ2 + 4 δ3 - 2 δ4 + δ 8 + -2 + δ δ 10 + δ -3 + 4 -2 + δ δ  
2 -1 + -2 + δ -1 + δ δ 1 + δ,

p → -2 + 4 δ - δ2 - 4 δ3 + 2 δ4 + δ 8 + -2 + δ δ 10 + δ -3 + 4 -2 + δ δ  
2 -1 + -2 + δ -1 + δ δ 1 + δ

Plotp /. psol1, p /. psol2, 2,
δ, 0, 1, PlotLabels → "Expressions", PlotRange → 2

p /. psol〚1〛

p /. psol〚2〛

2

0.2 0.4 0.6 0.8 1.0

-2

-1

1

2

We see the first solution is the only feasible one. We plot the ratio and compute the value δ, for which it 

is maximal.
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p = p /. psol1; Plotρ, 2, δ, 0, 1, PlotLabels → "Expressions"

ρ

2

0.2 0.4 0.6 0.8 1.0

1.2

1.4

1.6

1.8

2.0

FullSimplify[ρ]

-2 + -2 + δ δ -2 + δ2 + δ 8 + -2 + δ δ 10 + δ -3 + 4 -2 + δ δ  
2 -1 + -2 + δ -1 + δ δ 1 + δ

δsol = FullSimplifySolveD[ρ, δ] ⩵ 0
N[%]

δ → 2, δ → Root-18 + 93 #1 - 212 #12 + 277 #13 -

197 #14 + 26 #15 + 82 #16 - 75 #17 + 20 #18 + 8 #19 - 6 #110 + #111 &, 1,
δ → Root-18 + 93 #1 - 212 #12 + 277 #13 - 197 #14 + 26 #15 + 82 #16 -

75 #17 + 20 #18 + 8 #19 - 6 #110 + #111 &, 3,
δ → Root-18 + 93 #1 - 212 #12 + 277 #13 - 197 #14 + 26 #15 + 82 #16 -

75 #17 + 20 #18 + 8 #19 - 6 #110 + #111 &, 6,
δ → Root-18 + 93 #1 - 212 #12 + 277 #13 - 197 #14 + 26 #15 + 82 #16 -

75 #17 + 20 #18 + 8 #19 - 6 #110 + #111 &, 7

δ → 2., δ → -2.06867, δ → 0.630665,
δ → 0.441156 - 0.748886 ⅈ, δ → 0.441156 + 0.748886 ⅈ

Only the third solution is feasible. We show that for this value, the condition p < 1/(1 - δ) is fulfilled.

δ = δ /. δsol3; Reducep < 1  1 - δ

True

N[ρ]

1.85463
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Analysis of RANDOM
Compared to the LATEX document, the variables T and E are written in lower case, as the keyword E is 

reserved in Mathematica.

We show in Lemma 5.10 that there is a worst-case instance that consists of four different types of jobs.

(1 - α - β - γ) n jobs j with ub_j = t, p_j = 0  (type 0)

α n jobs j with ub_j = t, p_j = t (type t)

β n jobs j with ub_j = e, p_j = e (type e)

γ n jobs j with ub_j = e + ϵ, p_j = e + ϵ (type e+)

for an arbitrary small ϵ > 0, which we will omit in the expressions below.

The algorithm RANDOM tests in a first part all jobs in random order, executes immediately those of size 

0, t or e, and defers those of size e+epsilon. In the second part all deferred jobs are executed. The 

algorithm cost and the optimal cost are

Clearα, β, γ, t, e, p;
ALG = 1 - γ n n + 1 + t α n + e β n  2 +

t α n  2 + e β n  2 + γ n n + t α n + e β n + e γ n γ n + 1  2;

Apart
ALG,

n

1

2
n 1 + t α + e β - γ + e γ + 1

2
n2 1 + t α + e β + γ + t α γ + e β γ + e γ2

OPT = 1 - α - β - γ n 1 - α - β - γ n + 1  2 + 1 - α - β - γ n (α + β + γ) n +

t α n α n + 1  2 + t α n (β + γ) n + e β n β n + 1  2 + e β n γ n + e γ n γ n + 1  2 ;

Apart
OPT,

n

1

2
n 1 - α + t α - β + e β - γ + e γ +

1

2
n2 1 - α2 + t α2 - 2 α β + 2 t α β - β2 + e β2 - 2 α γ + 2 t α γ - 2 β γ + 2 e β γ - γ2 + e γ2

Our analysis will be in two parts. Both ALG and OPT are expressions of the form n^2 ALG_2 +n ALG_1 

and n^2 OPT_2 + n OPT_1. In the first part we analyze the ratio ALG_2/OPT_2 and in the second part 

the ratio ALG_1/OPT_1.

Part 1: Quadratic Part of the Ratio
We want to show that ALG_2 ≤ t OPT_2 or in other words t OPT_2 - ALG_2 ≥ 0. Let’s denote the left 

hand side by ‘goal’.
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goal =

FullSimplifyt 1 - α2 - 2 α β - β2 - 2 α γ - 2 β γ - γ2 + β2 e + 2 β γ e + γ2 e + α2 t + 2 α β t + 2 α γ t -

1 + γ + β e + β γ e + γ2 e + α t + α γ t

-1 - γ - e β + β γ + γ2 + t2 α α + 2 (β + γ) - t -1 + α2 - -1 + e (β + γ)2 + α 1 + 2 β + 3 γ

guess = t → 1.74, e -> 2.86

t → 1.74, e → 2.86

We want to characterize t , e such that for all valid (α, β, γ) holds G(t, e, α, β, γ) ≥ 0. These points t, e 

must satisfy G(t, e, α, β, γ) ≥ 0 for all local minima (α, β, γ). Hence we have to find all local minima in the 

feasible region. Such a point can lie inside the region or on the boundary. In the analysis we will distin-

guish between the inner region, 2-dimensional open boundaries and 1-dimensional boundaries.

RegionPlot3Dα + β + γ ≤ 1, α, 0, 1, β, 0, 1, γ, 0, 1

Case 3D: Open Polytope

A local minimum (α, β, γ) which is not on the boundary must in particular be a local minimum in all 3 axis 

α, β, γ. We show that with the assumptions we made on T, E the 2nd derivative in α or β or γ is positive. 

DDgoal, α, α

-2 t + 2 t2

DDgoal, β, β

2 -1 + e t
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DDgoal, γ, γ

-2 e + 2 -1 + e t

The second derivative is indeed is positive in all three variables. Hence, we replace each variable with 

the extreme point for the goal.

sol = FullSimplifySolveDgoal, α ⩵ 0, α

α → 1 - 2 -1 + t β + 3 - 2 t γ
2 -1 + t 

Clear[α]; α = α /. sol1;

sol = FullSimplifySolveDgoal, β ⩵ 0, β

β → 1 + γ - 2 t γ
2 t



Clear[β]; β = β /. sol1;

sol = FullSimplifySolveDgoal, γ ⩵ 0, γ

γ → e -1 + t - t -1 + 2 t
e -1 + t + t



Clear[γ]; γ = γ /. sol1;

FullSimplifygoal

e2 -1 + t2 - e t2 + t -1 + 2 t
e -1 + t + t

We keep only the numerator of the fraction, since the denominator is positive. This yields a first condition.

cond1 = FullSimplifygoal e t - 1 + t ≥ 0

e2 -1 + t2 + t -1 + 2 t ≥ e t2

Case 2D: α + β + γ = 1

Clear[α, β, γ]; γ = 1 - α - β; FullSimplifygoal

-2 + α + -1 + t e -1 + α2 - t -2 + α α + β + -e + t α β

The considered region is defined by 0 ≤ α, 0 ≤ β and α + β ≤ 1.

FullSimplifyDgoal, β

1 - e α + t α

Since the goal is linear in β, a local minimum is on the boundary of the region, either for β = 0 or for β = 1 

- α. These cases are analyzed later.
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Case 2D: γ = 0

Clear[α, β, γ]; γ = 0; FullSimplifygoal

-1 - e β + t 1 + α -1 + -1 + t α + 2 -1 + t α β + -1 + e β2

We first consider the second derivative in α. As it is positive, the extreme point in α is a local minimum 

and we choose this value for α.

FullSimplifyDDgoal, α, α

2 -1 + t t

sol = FullSimplifySolveDgoal, α ⩵ 0, α

α → 1

2 -1 + t - β

α = α /. sol1

1

2 -1 + t - β

Similarly we proceed for β.

FullSimplifyDDgoal, β, β

2 e - t t

sol = FullSimplifySolveDgoal, β ⩵ 0, β

β → 1

2 t


β = β /. sol1

1

2 t

If this point is feasible, i.e. fulfills 0 ≤ α, 0 ≤ β, α + β ≤ 1, this yield a second condition.

FullSimplify[α + β]
FullSimplify[α]
FullSimplify[β]

1

2 -1 + t
1

2 -1 + t t

1

2 t

cond2 = FullSimplify goal ≥ 0

1

1 - t
+ 4 t ≥ 4 + e

t
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We will need this condition later, so we call the lefthandside LHS2.

LHS2 = goal;

Case 2D: α = 0

Clear[α, β, γ]; α = 0; FullSimplifygoal

-1 - γ - e β + β γ + γ2 + t 1 + -1 + e (β + γ)2

We first consider the second derivative in β. As it is positive, the extreme point in β is a minimum and we 

choose this value for β.

FullSimplifyDDgoal, β, β

2 -1 + e t

sol = SolveDgoal, β ⩵ 0, β

β → e + e γ + 2 t γ - 2 e t γ
2 -1 + e t



β = β /. sol1

e + e γ + 2 t γ - 2 e t γ
2 -1 + e t

The second derivative in γ is negative. Hence, the local minimum of this triangle is on the boundary of 

the triangle.

FullSimplifyDDgoal, γ, γ

e2

2 t - 2 e t

Case 2D: β = 0

Clear[α, β, γ]; β = 0; FullSimplifygoal

-1 + t2 α α + 2 γ - γ 1 + e γ - t -1 + α + α2 + 3 α γ + γ2 - e γ2

We first consider the second derivative in α. As it is positive, the extreme point in α is a minimum and we 

choose this value for α.

FullSimplifyDDgoal, α, α

2 -1 + t t

sol = SolveDgoal, α ⩵ 0, α

α → 1 + 3 γ - 2 t γ
2 -1 + t 

α = α /. sol1

1 + 3 γ - 2 t γ
2 -1 + t
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FullSimplifyDDgoal, γ, γ

4 e -1 + t2 + t -5 - 4 -2 + t t
2 -1 + t

For γ we cannot say immediately if the second derivative is positive. We consider the extreme point.

sol = FullSimplifySolveDgoal, γ ⩵ 0, γ

γ → -2 + t -1 + 2 t
-4 e -1 + t2 + t 5 + 4 -2 + t t

γ = γ /. sol1

-2 + t -1 + 2 t
-4 e -1 + t2 + t 5 + 4 -2 + t t

Plot3Dα + γ, 1, t, 1.71, 1.78, e, 2.82, 2.89

The considered point is outside the triangle for the range (T,E) we are interested in, thus it does not 

matter if it is a minimum or a maximum in γ.

Case 1D: (α, β, γ) = (x, 1 - x, 0)

Clear[α, β, γ]; α = x; β = 1 - α; γ = 0; FullSimplifygoal

-1 + e 1 + t -1 + x -1 + x - t 1 + t -2 + x x

We consider the second derivative in x. As it is positive, the extreme point in x is a minimum and we 

choose this value for x.

FullSimplifyDDgoal, x, x

2 e - t t
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sol = SolveDgoal, x ⩵ 0, x

x → -1 + 2 t

2 t


So x is between 0 and 1 as we desired.

x = x /. sol1

-1 + 2 t

2 t

cond3 = FullSimplifygoal ≥ 0

- 3

4
- e

4 t
+ -1 + t t ≥ 0

Case 1D: (α, β, γ) = (x, 0, 1 - x)

Clear[α, β, γ, x]; α = x; β = 0; γ = 1 - x; FullSimplifygoal

-2 + x + -1 + t e -1 + x2 - t -2 + x x

We consider the second derivative in x. As it is positive, the extreme point in x is a minimum and we 

choose this value for x.

FullSimplifyDDgoal, x, x

2 e - t -1 + t

sol = SolveDgoal, x ⩵ 0, x

x → -1 - 2 e + 2 t + 2 e t - 2 t2

2 e - t -1 + t 

x = x /. sol1

-1 - 2 e + 2 t + 2 e t - 2 t2

2 e - t -1 + t
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Plot3D0, x, 1, t, 1.71, 1.78, e, 2.82, 2.89

This is good, be cause x is in [0, 1] as we desired.

cond4 = FullSimplifygoal 4 e - t t - 1 ≥ 0

-1 - 2 -1 + t t2 + 4 e 1 + -2 + t t2 ≥ 0

We will need this condition later, so we call the lefthand side LHS4.

LHS4 = goal;

Case 1D: (α, β, γ)=(0, x, 1 - x)

Clear[α, β, γ, x]; α = 0; β = x; γ = 1 - x; FullSimplifygoal

-2 + e -1 + t + x

The local minimum is at x=0.

x = 0;

cond5 = FullSimplifygoal ≥ 0

e t ≥ 2 + e

Case 1D: (α, 0, 0)

Clear[α, β, γ, x]; β = 0; γ = 0; FullSimplifygoal

-1 + t - t α + -1 + t t α2

We compute the second derivative in α and see that it is positive.
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FullSimplifyDDgoal, α, α

2 -1 + t t

sol = FullSimplifySolveDgoal, α ⩵ 0, α

α → 1

2 -1 + t

The extreme point in α is in [0,1] and thus feasible.

α = α /. sol1

1

2 -1 + t

FullSimplifygoal

- 5

4
+ 1

4 - 4 t
+ t

cond6 = FullSimplify4 goal ≥ 0

1

1 - t
+ 4 t ≥ 5

Case 1D: (0, β, 0)

Clear[α, β, γ, x]; α = 0; γ = 0; FullSimplifygoal

-1 + t - e β + -1 + e t β2

We compute the second derivative in β and see that it is positive.

FullSimplifyDDgoal, β, β

2 -1 + e t

sol = SolveDgoal, β ⩵ 0, β

β → e

2 -1 + e t


β = β /. sol1
e

2 -1 + e t

We ensure that the value for β is feasible.
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Plot3D0, β, 1, t, 1.71, 1.78, e, 2.82, 2.89

cond7 = FullSimplifygoal ≥ 0

4 + e2

-1 + e t
≤ 4 t

Case 1D: (0, 0, γ)

Clear[α, β, γ, x]; α = 0; β = 0; FullSimplifygoal

-1 + t + -1 + e t γ2 - γ 1 + e γ

We compute the second derivative in γ and see that it is positive.

DDgoal, γ, γ

-2 e + 2 -1 + e t

sol = SolveDgoal, γ ⩵ 0, γ

γ → 1

2 -e - t + e t

γ = γ /. sol1

1

2 -e - t + e t

cond8 = FullSimplifygoal ≥ 0

-1 + t + 1

4 e + 4 t - 4 e t
≥ 0
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Finding optimal T,  E satisfying all conditions
We first show that conditions 3, 5, 6, and 7 are fulfilled for all values of (T, E) we consider.

Clear[α, β, γ, x]; RegionPlotcond3, t, 1.71, 1.78, e, 2.82, 2.89

1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78

2.82

2.83

2.84

2.85

2.86

2.87

2.88

2.89

RegionPlotcond5, t, 1.71, 1.78, e, 2.82, 2.89

1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78

2.82

2.83

2.84

2.85

2.86

2.87

2.88

2.89
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RegionPlotcond6, t, 1.71, 1.78, e, 2.82, 2.89

1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78

2.82

2.83

2.84

2.85

2.86

2.87

2.88

2.89

RegionPlotcond7, t, 1.71, 1.78, e, 2.82, 2.89

1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78

2.82

2.83

2.84

2.85

2.86

2.87

2.88

2.89

For the other conditions, we show that condition 2 and 4 are most restrictive.
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RegionPlotcond1, cond2, cond4, cond8,
t, 1.71, 1.78, e, 2.82, 2.89, PlotLegends → "Expressions"

1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78

2.82

2.83

2.84

2.85

2.86

2.87

2.88

2.89

cond1

cond2

cond4

cond8

The point which fulfills both conditions 2 and 4 and has smallest T is the point where both conditions are 

tight.

cond2

cond4

1

1 - t
+ 4 t ≥ 4 + e

t

-1 - 2 -1 + t t2 + 4 e 1 + -2 + t t2 ≥ 0

We set condition 2 equal to zero to find the dependence between T and E.

sole = SolveLHS2 ⩵ 0, e

e → t 3 - 8 t + 4 t2
-1 + t



We set E to this value. Additionally condition 4 has to be tight, so we solve for T to find the best choice.

e = e /. sole1; solt = FullSimplifySolveLHS4 ⩵ 0, t

t → Root-1 - 16 #1 + 20 #12 + 36 #13 - 52 #14 + 16 #15 &, 1,
t → Root-1 - 16 #1 + 20 #12 + 36 #13 - 52 #14 + 16 #15 &, 2,
t → Root-1 - 16 #1 + 20 #12 + 36 #13 - 52 #14 + 16 #15 &, 3,
t → Root-1 - 16 #1 + 20 #12 + 36 #13 - 52 #14 + 16 #15 &, 4,
t → Root-1 - 16 #1 + 20 #12 + 36 #13 - 52 #14 + 16 #15 &, 5
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Nsolt

t → -0.600748, t → -0.0586886, t → 0.688139, t → 1.47604, t → 1.74526

Only one of the solutions is in the interval [1.5, 2], so we choose this one.

t = t /. solt5; Nt
N[e]

1.74526

2.86091

Part 2: Linear Part of the Ratio

Clearα, β, γ, t, e, p, goal;
goal = FullSimplifyt 1 - α - β - γ + β e + γ e + α t - 1 - γ + β e + γ e + α t

-1 + t2 α + γ - e (β + γ) - t -1 + 2 α + β - e β + γ - e γ

We consider the first derivative to find the extreme point in α, β, and γ.

Dgoal, α
N% /. sole /. solt5

-2 t + t2

-0.444583

Dgoal, β
N% /. sole /. solt5

-e - 1 - e t

0.386867

Dgoal, γ
N% /. sole /. solt5

1 - e - 1 - e t

1.38687

The first derivative in α is negative and for the other two variables it is positive, so the worst case is α = 1 

and β = γ = 0.

goal /. α → 1, β → 0, γ → 0

-1 - t + t2
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N% /. sole /. solt5

0.30068

This means that for the chosen values of T, E we have ALG_1/OPT_1 ≤ T. Since we also have 

ALG_2/OPT_2 ≤ T, the expression (n^2 ALG_2 + n ALG_1 )/(n^2 OPT_2 + n OPT_1) is at most T as 

well.
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Analysis of BEAT for 1.5<p<2
Clearα, p, δ, δ2, ratio, R1, R2, αsol, δsol;

BEAT is an algorithm for instances with uniform upper limit p. We show its competitive ratio is 

bounded by the following function

1 + 2 -2 + p p + 1 - 2 p2 -3 + 4 p

2 -1 + p p
;

With BEAT, we aim to balance the time testing jobs and the time executing jobs while there are 

untested jobs. A job is called short if its running time is at most E = max {1, p - 1} and long otherwise. 

We iterate testing an arbitrary job and then execute the job with smallest processing time either, if it 

is a short job, or if the difference between the total time that long jobs have been tested and the total 

time long jobs have been executed exceeds the job’s processing time. Once all jobs have been 

tested, we execute the remaining jobs in order of non - decreasing processing time.

We are in the case that the uniform upper limit p is less than 2, which means all jobs with processing 

time larger than 1 are long jobs (E=1 in the notation of the paper). Let α > 0 be the ratio between 

long and short jobs and let 0 ≤ δ ≤ 1 be the fraction of short jobs with processing time 1. We show in 

Lemma 9 and 10 that the asymptotic competitive ratio is

ratio = p + 2 - 1  p + α^2 2 2 δ - δ^2 + 1 - δ^2 + 2 α 2 + 1 - 1  p 1 + δ 
p + α^2 p - 1 δ^2 + 1 + 2 α 1 + p - 1 δ;

FullSimplify
ratio

-1 + p2 - 2 α 1 + δ + p 2 + α 6 + α + 2 1 + α δ - α δ2
p p 1 + α δ2

- α -1 + δ 2 + α + α δ

The function ratio is maximal for δ = 0, δ = 1 or where the first derivative is 0, so we distinguish these 

three cases.

Case: δ=0

δ = 0; Collectratio , α

2 - 1

p
+ p + 2 3 - 1

p
 α + α2

p + 2 α + α2

We find the extreme point in α of this function and show the second derivative is negative. This 

means we have a maximum and we do not need to consider the two interval bounds for α.

αsol = FullSimplifySolveDratio, α ⩵ 0, α

α → -1 + 2 p + -1 + 2 p2 -3 + 4 p
2 - 4 p

, α → 1 - 2 p + -1 + 2 p2 -3 + 4 p
-2 + 4 p



We plot the two solutions to see which is feasible. 
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Clearα1; α1 = α /. αsol1; α2 = α /. αsol2;
Plotα1, α2, 0, p, 1.5, 2, PlotLabels → "Expressions"

α1

α2

0
1.6 1.7 1.8 1.9 2.0

-1.5

-1.0

-0.5

0.5

Clearly, α1 is not feasible as it is negative. Thus, the ratio for δ = 0 has a single maximum or mini-

mum in the feasible range for α.

Clear[α]; δ2 = FullSimplifyDDratio, α, α

-
2 -1 + 2 p -4 + p 5 + 6 α - α 6 + α 3 + 2 α

p p + α 2 + α3

α = α2; Plotδ2, 0, p, 1.5, 2, PlotLabels → "Expressions"

δ2

0
1.6 1.7 1.8 1.9 2.0

-0.8

-0.6

-0.4

-0.2

The second derivative is negative and thus the extreme point of a is a maximum, as we claimed. 

This yields a lower bound on the ratio, which we call R1. Out of interest, we plot it.

R1 = FullSimplifyratio
PlotR1, 2, p, 1.5, 2, PlotLabels → "Expressions"

1 + 2 -2 + p p + 1 - 2 p2 -3 + 4 p
2 -1 + p p

R1

2

1.6 1.7 1.8 1.9 2.0

1.94

1.96

1.98

2.00
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Case: δ = 1

Clear[δ, α]; δ = 1; Collectratio, α

2 - 1

p
+ p + 2 2 + 2 1 - 1

p
 α + 2 α2

p + 2 p α + p α2

We consider the first derivative in α to show the function is monotonically decreasing for increasing α.

FullSimplifyDratio, α

-
2 -1 + p -1 + p + 2 α

p2 1 + α3

As we have p > 1 and α > 0, both the numerator and the denominator of the function are positive. 

Hence, the first derivative is negative for all feasible values of α and p. This means the function is 

monotonically decreasing for increasing α. It’s maximal value thus is attained for α = 0. This yields a 

second lower bound on the ratio, which we call R2.

α = 0; R2 = FullSimplifyratio
PlotR2, 2, p, 1.5, 2, PlotLabels → "Expressions"

-1 + p 2 + p
p2

2

R2
1.6 1.7 1.8 1.9 2.0

1.80

1.85

1.90

1.95

2.00

Case: δ at the Extreme Point

As the third case we consider the value of δ, for which the first derivative in δ of the ratio function is 0.

Clear[α, δ]; δsol = FullSimplifySolveDratio, δ ⩵ 0, δ

δ → -α 1 + 2 α + p -3 - 6 α + p 2 + p + α 6 + α +

√α2 -3 1 + 4 α + p 14 + p5
+ 2 p4 -2 + α 4 + α + 4 α 17 + α 5 + 2 α +

p3 10 + α -24 + α 2 + α 6 + α + 2 p2 1 + α 46 + α 13 + 2 α 4 + α -

p 19 + 2 α 64 + α 27 + 2 α 7 + α  2 -1 + p α2 -1 + p 2 + α,
δ → -α 1 + 2 α + p -3 - 6 α + p 2 + p + α 6 + α +

√α2 -3 1 + 4 α + p 14 + p5
+ 2 p4 -2 + α 4 + α +

4 α 17 + α 5 + 2 α + p3 10 + α -24 + α 2 + α 6 + α +

2 p2 1 + α 46 + α 13 + 2 α 4 + α - p 19 + 2 α
64 + α 27 + 2 α 7 + α  2 -1 + p α2 -1 + p 2 + α

We first show the second solution is not in the feasible interval for δ.
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Clear[δ]; δ = δ /. δsol2 ;

Plot3Dδ, 0, α, 0, 100, p, 1.5, 2, AxesLabel → Automatic

We check if δ is feasible for the first solution (we need 0 ≤ δ ≤1).

Clear[δ]; δ = δ /. δsol1 ;

Plot3Dδ, 0, 1, α, 0, 100, p, 1.5, 2, AxesLabel → Automatic

We see δ is feasible if the variable α is not too small. Otherwise, there is no extreme point of ratio in 

the feasible interval for δ, which means one of the previous two cases δ = 0 and δ = 1 discovered 

the maximum. Consider the ratio.
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Plot3Dratio, 2, α, 0, 100, p, 1.5, 2, AxesLabel → Automatic

We observe the competitive ratio increases when a decreases, independent of the upper limit p. 

Thus, the adversary chooses the smallest feasible value for α. However, for this value, we have δ = 

0, which is the case we have already considered above. Thus we do not get a new bound on the 

competitive ratio for this case.

Summary

We found two bounds on the competitive ratio: R1 and R2. We plot them to show R1 is always larger 

in the interval for p which we consider. Thus R1 is the bound we obtain.

PlotR1, R2, 2, p, 1.5, 2, PlotLabels → Automatic

R1

2

R2
1.6 1.7 1.8 1.9 2.0

1.80

1.85

1.90

1.95

2.00
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Analysis of BEAT for 2 ≤ p < 3
Clearα, p, δ, αsol, δsol, R1, R2;

BEAT is an algorithm for instances with uniform upper limit p. We show its competitive ratio is bounded 

by the following function

1 + 2 -2 + p p + 1 - 2 p2 -3 + 4 p

2 -1 + p p
;

With BEAT, we aim to balance the time testing jobs and the time executing jobs while there are untested 

jobs. A job is called short if its running time is at most E = max {1, p - 1} and long otherwise. We iterate 

testing an arbitrary job and then execute the job with smallest processing time either, if it is a short job, 

or if the difference between the total time that long jobs have been tested and the total time long jobs 

have been executed exceeds the job’s processing time. Once all jobs have been tested, we execute the 

remaining jobs in order of non - decreasing processing time.

We are in the case that the uniform upper limit p is at least 2, which means all jobs with processing time 

larger than p -1 are long jobs (E = p - 1 in the notation of the paper). Let α > 0 be the ratio between long 

and short jobs and let 0 ≤ δ ≤ 1 be the fraction of short jobs with processing time p - 1. We show in 

Lemma 9 and 10 that the asymptotic competitive ratio is

ratio = p + 2 - 1  p + α^2 p 2 δ - δ^2 + 1 - δ^2 + 2 α 2 + 1 - 1  p 1 + p - 1 δ 
p + α^2 p - 1 δ^2 + 1 + 2 α 1 + p - 1 δ;

FullSimplify
ratio

-1 - 2 α + p 2 + p + α 6 + α + 2 -1 + p α -1 + p + p α δ - -1 + p p α2 δ2 
p p 1 + α δ2

- α -1 + δ 2 + α + α δ

The function ratio is maximal for δ = 0, δ = 1 or where the first derivative is 0, so we distinguish these 

three cases.

Case : δ = 0

δ = 0; Collectratio , α

2 - 1

p
+ p + 2 3 - 1

p
 α + α2

p + 2 α + α2

This is exactly the same expression we had for small p. Thus, this case also yields the same lower 

bound R1 on the asymptotic competitive ratio of the algorithm.
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R1 =
1 + 2 -2 + p p + 1 - 2 p2 -3 + 4 p

2 -1 + p p
;

PlotR1, 2, p, 2, 3, PlotLabels → "Expressions"

2

R1
2.2 2.4 2.6 2.8 3.0

1.85

1.90

1.95

2.00

Case: δ = 1

Clear[δ, α]; δ = 1; Collectratio, α

2 - 1

p
+ p + 2 2 + 1 - 1

p
 p α + p α2

p + 2 p α + p α2

We consider the first derivative in α, to show the function is monotonically decreasing for increasing α.

FullSimplifyDratio, α

-
2 -1 + p + p α

p2 1 + α3

As we have p > 1 and α > 0, both the numerator and the denominator of the function are positive. 

Hence, the first derivative is negative for all feasible values of α and p. This means the function is mono-

tonically decreasing for increasing α. It’s maximal value thus is attained for α = 0. This yields a second 

lower bound on the ratio, which we call R2.

α = 0; R2 = FullSimplifyratio
PlotR2, 2, p, 2, 3, PlotLabels → "Expressions"

-1 + p 2 + p
p2

2

R2
2.2 2.4 2.6 2.8 3.0
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Case: δ at the ExtremePpoint

As the third case we consider the value of δ, for which the first derivative in δ of the ratio function is 0.

Clear[α, δ]; δsol = FullSimplifySolveDratio, δ ⩵ 0, δ

δ → --1 + p α -1 - 2 α + 2 p 1 + p + α 4 + α +√-1 + p2 α2 5 + 4 α +

4 p 1 + α -7 - 4 α + p 11 + p2 1 + α + 2 α 6 + α + p 1 + α -4 + α 2 + α 
2 -1 + p2 α2 -1 + p 2 + α, δ → --1 + p α -1 - 2 α + 2 p 1 + p + α 4 + α +

√-1 + p2 α2 5 + 4 α + 4 p 1 + α -7 - 4 α + p 11 + p2 1 + α + 2 α 6 + α +

p 1 + α -4 + α 2 + α  2 -1 + p2 α2 -1 + p 2 + α

We first show the second solution is not in the feasible interval for δ.

Clear[δ]; δ = δ /. δsol2 ;

Plot3Dδ, 0, α, 0, 100, p, 2, 5, AxesLabel → Automatic

We check if δ is feasible for the first solution (we need 0 ≤ δ ≤ 1).
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Clear[δ]; δ = δ /. δsol1 ;

Plot3Dδ, 0, 1, α, 0, 100, p, 2, 5, AxesLabel → Automatic

We see the first solution is feasible if the variable α is not too small. Otherwise, there is no extreme point 

of ratio in the feasible interval for δ, which means one of the previous two cases δ = 0 and δ = 1 discov-

ered the maximum. Let us consider the competitive ratio for δ at the extreme point.
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Plot3Dratio, 2, α, 0, 100, p, 2, 5, AxesLabel → Automatic
Plot3Dratio, 2, α, 0, 100, p, 2, 3, AxesLabel → Automatic

We observe the competitive ratio increases when α decreases for p between 2 and 3. However, for 

larger p the behavior changes and the competitive ratio even exceeds 2 for p larger 4. We apply the 

algorithm BEAT only for p less than 3, where the competitive ratio increases when α decreases. Thus, 

the adversary chooses the smallest feasible value for α. For this value, we either have δ = 0, if this is 

attained for α > 0. Otherwise, the maximal ratio is attained for the limit of α going to 0. However, we 

observed in the plot above that δ = 0 is always attained for α > 0. Thus, the second case never occurs. 

The first case we have already considered above (δ = 0). Thus we do not get a new bound on the ratio 

for δ being the extreme point.

Summary

We found two bounds on the competitive ratio: R1 and R2. We plot them to show R1 is always larger in 
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the interval for p which we consider. Thus R1 is the bound we obtain.

PlotR1, R2, 2, p, 2, 5, PlotLabels → Automatic
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Analysis of the algorithm UTE 
UTE is an algorithm for instances with uniform upper limit p for all jobs and the additional restriction that 

all precessing times are either 0 or p. It is parameterized by some function β. We show it has competitive 

ratio ρ for such instances. 

UTE behaves as follows: If the upper limit p is at most ρ, all jobs are executed without test. Otherwise, all 

jobs are tested. The first max{0, β} fraction of the jobs is executed immediately after its test. The other 

jobs are delayed, unless they have size 0.

The parameters β and ρ are

Clear[ρ, p, β, γ];

βguess =
1 - p + p2 - ρ + 2 p ρ - p2 ρ

1 - p + p2 - ρ + p ρ
;

ρguess =
1

2
1 + 3 + 2 5 ;

The adversary chooses p and a fraction γ, such that the last γ fraction of the tests of UTE returns process-

ing time 0 and all jobs tested before have processing time p.

By Proposition 1 we can assume p > ρ.

Plotβguess /. {ρ → ρguess}, p, 1.5, 4

2.0 2.5 3.0 3.5 4.0

-0.2

-0.1

0.1

0.2

0.3

0.4

0.5

We observe that β is decreasing in p, until some root, which we call pstar. Also between 1.5 and pstar 

the value of β does not exceed 1.

sol = Solveβguess ⩵ 0, p
Nsol /. {ρ → ρguess}

p → 1 - 2 ρ + -3 + 4 ρ
2 1 - ρ , p → -1 + 2 ρ + -3 + 4 ρ

2 -1 + ρ 

p → 0.357644, p → 2.79608
The second root is the one that is relevant for us.
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pstar = p /. sol2;

The sum of completion times of the optimal schedule can be described as :

OPT2 := n^2  2 γ^2 + p * 1 - γ^2 + 2 γ 1 - γ;
OPT1 := n  2 γ + p 1 - γ;
OPT := OPT2 + OPT1;

We distinguish three cases depending on p and γ. By Proposition 1, we only have to consider p ≥ ρ.

Case p ≤ pstar and g ≤ 1 - β

We treat the quadratic part of ALG and OPT separately from the linear part.

Clearp, γ, ALG2;
ALG2 :=

n^2  2 p + 1 β^2 + γ ^2 + p 1 - β - γ^2 + 2 1 - γ + p β  γ + 2 1 + p β 1 - β - γ;
goal2 = 2  n^2 FullSimplifyρ OPT2 - ALG2 

-2 - -2 + β β + γ2 - -2 + γ γ ρ + p -1 + γ -2 β + -2 + γ -1 + ρ + ρ
The ratio is at most ρ if goal is non-negative. Hence the adversary tries to minimize goal2 choosing p 

and γ, while the algorithm wants to maximize it or at least make it non-negative choosing β and ρ.

We show goal2 is convex in γ.

FullSimplifyDDgoal2, γ, γ

2 -1 + p -1 + ρ
Hence, the adversary chooses the extreme point.

sol = SolveDgoal2, γ ⩵ 0, γ
Nsol /. { ρ → ρguess, p → ρguess, β → βguess /. { ρ → ρguess, p → ρguess}}

γ → -p + p β - ρ + p ρ
-1 + p -1 + ρ

γ → 0.381966
The extreme point γ is feasible, so we select it. 

γ = γ /. sol1;
FullSimplifyDDgoal2, β, β

-2 - 2 p2

-1 + p -1 + ρ
Since goal2 is concave in β, the algorithm would like to choose an extreme point.
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Clear[β];
sol = FullSimplifySolveDgoal2, β ⩵ 0, β
Nsol /. { ρ → ρguess, p → ρguess}

β → 1 - p + p2 - -1 + p2 ρ
1 - ρ + p -1 + p + ρ 

β → 0.286961
This is exactly the value we choose for β.

β = β /. sol1;

goal2 now only depends on ρ and p. We show that goal2 is increasing in p and in ρ. We need this 

function for goal2 later, so we call it goalsave.

goalsave = FullSimplifygoal2;

Plot3Dgoal2, 0, ρ, 1.6, 2, p, 1.6, 4, AxesLabel → Automatic

Hence, the adversary chooses p = δ. We plot goal2 with this p to show p = ρ is the right choice.

p = ρ; Plotgoal2, ρ, 1.6, 2
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To ensure goal2 is always positive, we need to choose the root of this goal as ρ.

sol = Solvegoal2 ⩵ 0, ρ
N[%]

ρ → 1

2
1 - ⅈ -3 + 2 5 , ρ → 1

2
1 + ⅈ -3 + 2 5 ,

ρ → 1

2
1 - 3 + 2 5 , ρ → 1

2
1 + 3 + 2 5 

ρ → 0.5 - 0.606658 ⅈ, ρ → 0.5 + 0.606658 ⅈ, ρ → -0.86676, ρ → 1.86676
The forth root is the one relevant to us and it is the value we proposed as ρguess.

The linear algorithm cost is

Clear[p, γ]; ALG1 := n  2 p + 1 β + γ + p 1 - β - γ;
ApartFullSimplifygoal1 = 2  n ρ OPT1 - ALG1, γ

--1 + p γ -1 + ρ + -1 - p3 + ρ - p2 ρ + p3 ρ - p ρ2 + p2 ρ2

1 - p + p2 - ρ + p ρ
This is decreasing in γ, so we set γ = 1 - β and show that for ρguess goal1 is always positive.

γ = 1 - β; ρ = ρguess;
Plotgoal1, p, 1.7, 2.8
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0.75

0.80

0.85

Case p>pstar

In this case max{β, 0} = 0 and UTE first tests and postpones the first 1 - γ fraction of jobs (all of length p) 

and then tests and executes the remaining γ fraction (all of length 0). Thus the algorithm cost ALG is

Clear[ρ, p, γ];
ALG := n^2  2 γ^2 + p 1 - γ^2 + 2 1 - γ γ  + n  2 2 1 - γ + γ +  p + 1 1 - γ ;

Apartgoal = FullSimplify2  n ρ OPT - ALG , p

-3 + 2 γ - 2 n γ + n γ2 + p -1 + γ -1 - n + n γ -1 + ρ + γ ρ + 2 n γ ρ - n γ2 ρ
The ratio is at most ρ if goal ≥ 0.
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FullSimplifyDgoal, p

-1 + n -1 + γ -1 + γ -1 + ρ
Goal is increasing in p. Hence the worst case instance is realized at p=pstar.

p = pstar;

FullSimplifyDDgoal, γ, γ

n 1 + -3 + 4 ρ 

The goal is convex in γ. Hence the adversary will choose the extreme point of goal in γ.

sol = SolveDgoal, γ ⩵ 0, γ

γ → -5 + 2 n + -3 + 4 ρ + 2 n -3 + 4 ρ
2 n 1 + -3 + 4 ρ  

γ = γ /. sol1; FullSimplifygoal

-11 - 2 ρ + 5 -3 + 4 ρ + 4 n 1 + n -1 + ρ 1 + -3 + 4 ρ   4 n 1 + -3 + 4 ρ 

We show goal is increasing in ρ and n.

Plot3D0, goal, ρ, 1.6, 2, n, 1, 100

Furthermore, goal is positive for all feasible n and ρ, thus the ratio is at most ρguess also in this case.

Case p ≤ pstar and γ > 1 - β

In this case the algorithm tests and executes the first 1-γ fraction of the jobs (of length p). We consider 

the linear and the quadratic terms in n separately. For the algorithm cost we have
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Clear[p, γ, ρ];
ALG2 := n^2  2 p + 1 1 - γ^2 + γ ^2 + 2 p + 1 1 - γ  γ;
FullSimplifygoal2 = 2  n^2 FullSimplifyρ OPT2 - ALG2

-1 - -2 + γ γ ρ + p -1 + γ 1 + γ + -1 + γ ρ
We show the function β is decreasing in p and ρ.

Plot3D0, β, 1, ρ, 1.6, 2, p, 1.6, 2.5, AxesLabel → Automatic

Thus β is always smaller than the value it attains for p = ρ and ρ = ρguess.

βmax = βguess /. {ρ → ρguess} /. {p → ρguess}

- 3 + 2 5 + 3

4
1 + 3 + 2 5

2

- 1

8
1 + 3 + 2 5

3  - 3 + 2 5 + 1

2
1 + 3 + 2 5

2

N[%]

0.286961

We set ρ to the value we promise and show goal2 is decreasing in γ.
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ρ = ρguess;
Plot3D0, goal2, γ, 1 - N[βmax], 1, p, 1.6, 2.8, AxesLabel → Automatic

Thus, we set γ = 1 - β to show the goal is always positive.

γ = 1 - N[β]; Plotgoal2, p, 1.7, 2.8
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For the linear terms, we define goal1.

Clear[ρ, γ, p]; ALG1 = n  2 p + 1 1 - γ + γ ;
Apartgoal1 = FullSimplify2  n ρ OPT1 - ALG1, γ

-1 - p + p ρ - γ (-p - ρ + p ρ)
The function goal1 is increasing in p, so we plot it for p = ρ.
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ρ = ρguess; p = ρ;
Plotgoal1, γ, 1 - N[βmax], 1
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This is always positive, as we desired.

Performance for p of the lower bound instance
We take the upper limit p, that yields the general lower bound on deterministic instances and compute 

the competitive ratio UTE has for this instance.

Clear[n, p, γ, ρ];
ψ = NRoot97 - 503 #1 + 1029 #12 - 1237 #13 + 566 #14 +

984 #15 - 2521 #16 + 2948 #17 - 2130 #18 + 965 #19 - 250 #110 + 28 #111 &, 4

1.98962

In this case p is larger than ρ and smaller than pstar. goalsave is goal for this case. 

FullSimplifygoalsave

-1 - p3 + ρ + -1 + p2 p ρ + -1 + p ρ2

1 - ρ + p -1 + p + ρ
goal always has to be positive, so we choose ρ such that this is zero.

sol = Solve0 ⩵ goalsave, ρ
Nsol /. {p → ψ}

ρ → -1 - p + 2 p2 - p3 + -3 + 6 p - 3 p2 - 6 p3 + 10 p4 - 4 p5 + p6

2 -1 + p ,

ρ → 1 + p - 2 p2 + p3 + -3 + 6 p - 3 p2 - 6 p3 + 10 p4 - 4 p5 + p6

2 1 - p 

ρ → 1.85519, ρ → -4.83465
The first solution is the only valid one and it almost matches the lower bound of 1.8546.
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