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Abstract

A Seshaditya,
Assessment and Contributions to Local Hybrid Functionals

The exchange-correlation energy functional (XC) is the most important ingredient of
Kohn-Sham density-functional theory (KS-DFT). Unfortunately this quantity has to be
approximated as the exact functional form is not known. But many mathematical studies
on density functionals have demonstrated conditions to hold for the exact XC functional.
The most important conditions are the stepwise-linearity of the energy (fractional charges),
derivative discontinuity (DD) of XC potential, and spin-constancy condition (fractional
spins). The development of XC functionals which satisfy most of these exact behaviours
is highly desirable for the computation of a wide range of properties with good accuracy
at feasible computational cost. Extensive studies carried out reveal that approximations
developed so far do not satisfy the rigorous set of conditions mentioned above resulting in
poor performance for properties such as enthalpies, band gaps, charge-transfer excitations,
and Rydberg excitations etc.

Local hybrid functionals are a new class of XC approximations where the constant
exact-exchange (EXX) admixture of global hybrid functionals is replaced by a position-
dependent admixture in real space, governed by a local mixing function (LMF). A local
hybrid functional is defined by the choice of local mixing function (LMF) as well as by
the choice of density functional exchange-energy density and the correlation contribution.
Those local hybrids developed so far-, have been tested for various atomic/molecular
properties, and promising results have been obtained. Therefore, it is very important
to carry out studies related to the exact conditions for currently available local hybrid
functionals.

In this work, computations have been performed using different local hybrid functionals
on atomic and molecular systems for testing the fractional charge- and fractional spin-
behaviour. A strongly-correlated local hybrid functional has been constructed along the
lines of Becke’s strong correlation model (B13 + strgC) and evaluated for the strong-
correlation test set. s-d Transfer energies of 3d-transition metal atoms have been computed
using two different formalisms (namely Furche-Perdew and broken-symmetry approaches)
for studying the performance of different local hybrids. These studies will aid in the
refinement of the local hybrid functionals and should provide a basis for their further
development.





Zussammenfassung

A Seshaditya,
Beurteilung und Beiträge zur lokalen Hybridfunktionalen

In der Dichtefunktionaltheorie (DFT) ist das Austausch-Korrelations (’exchange-correlation’,
XC) Energiefunktional von größter Bedeutung. Leider muss das XC-Funktional angenähert
werden, da seine genaue Form nicht bekannt ist. In einer großen Anzahl mathematischer
Arbeiten über Dichtefunktionale sind exakte Eigenschaften des XC-Funktionals ergründet
worden. Zu den ziemlich strengen Eigenschaften gehören die stufenweise Linearität der
Energie (’fraktionale Ladungen’), die Unstetigkeit der Ableitung des XC-Funktionals,
und die Bedingung der ’Spin-Konstanz’ (’fraktionale Spins’). Um eine breite Palette von
Eigenschaften mit guter Genauigkeit und vertretbarem Aufwand zu berechnen, ist die
Entwicklung von XC-Funktionalen, die die meisten dieser exakten Bedingungen erfüllen,
höchst wünschenswert. Umfangreiche Studien zeigen, dass bisher entwickelte Näherungen
nicht die genannten strengen Bedingungen erfüllen, was eine schlechte Beschreibung von
Eigenschaften wie Enthalpien, Bandlücken, Charge-Transfer-Anregungen und Rydberg-
Anregungen zur Folge hat.

Lokale Hybridfunktionale stellen eine neue Klasse von XC-Näherungen dar. Der
Ansatz besteht hier darin, die Beimischung exakten Austauschs (’exact-exchange’, EXX)
im globalen Hybridfunktional durch eine von einer lokalen Mischfunktion (LMF) bes-
timmte ortsabhängige Beimischung zu ersetzen. Definiert wird ein lokales Hybridfunk-
tional durch die LMF, die Wahl der Austausch-Energiedichte sowie der Korrelations-
beiträge zum Dichtefunktional. Die bisher entwickelten lokalen Hybride wurden für
verschiedene atomare/molekulare Eigenschaften getestet, und erzielten vielversprechende
Ergebnisse. Daher ist es sehr wichtig, bezüglich der derzeit verfügbaren lokalen Hybrid-
funktionale Untersuchungen zu den exakten Bedingungen durchzuführen.

Hier werden Berechnungen mit verschiedenen lokalen Hybridfunktionalen an atomaren
und molekularen Systemen durchgeführt, um das Verhalten bezüglich der Frage fraktionaler
Ladungen und fraktionaler Spins zu testen. Die Konstruktion eines stark korrelierten
lokalen Hybridfunktionals nach dem Vorbild von Beckes Modell für starke Korrelation
(’B13 + strgC’) und Tests für fraktionales Spin-Verhalten werden ebenfalls durchgeführt.
s-d Transferenergien von 3d-Übergangsmetallatomen werden unter Verwendung zweier
verschiedenener Formalismen berechnet (’Furche-Perdew’ und ’gebrochene Symmetrie’),
um die Leistung der unterschiedlichen lokalen Hybride zu prüfen. Diese Untersuchungen
werden die Verfeinerung von lokalen Hybridfunktionalen unterstützen und sollten auch
eine Grundlage für deren weitere Entwicklung darstellen.
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Chapter 1

Introduction

Kohn-Sham density functional theory (KS-DFT) has been widely used for electronic struc-

ture calculations of ground-state properties in atoms, molecules and solid state systems.

The important ingredient of this methodology is the exchange-correlation (XC) functional,

which not only accounts for the difference between the classical and quantum mechanical

electron-electron interaction, but also includes the difference in kinetic energy between a

fictitious non-interacting system and the real system [1–3]. Unfortunately this XC term

has to be approximated as the exact functional form is not known. Early developments

include the local density approximation (LDA) which is based on the density at that point

in space, whereas generalized gradient approximations (GGA) [4] take into account the

spatially varying density effects through the gradient of the density. The LDA approxima-

tion produces very good results for solid-state systems, but is not satisfactory for atoms

and molecules: atomisation energies are very poor and band gaps are underestimated [5, 6].

GGA functionals show significant improvement over LDA for total energies, atomisation

energies, and reaction barriers, but typically fail for ionisation potentials (IP) and electron

affinities (EA) [4, 7]. Hybrid density functional methods combine the exchange-correlation

contributions of a conventional LDA/GGA with some part of Hartree-Fock (HF) exchange

[8]. Global hybrid functionals (which have a constant amount of HF exchange and the

popular B3LYP [7] belongs to this class) have been very successful in lowering errors for

heats of formation, barrier heights, and molecular structures mainly due to reduction in

self-interaction error (SIE). But these functionals still exhibit problems for s-d transfer

energies in transition-metal atoms, modelling radicals, charge-transfer complexes, Rydberg

excitations, and van der Waals complexes [9–11]. This suggests that the global hybrid

functionals may be at their limit in providing a flexible compromise between minimi-
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sation of self-interaction errors and adequate simulation of non-dynamical correlation

[9, 12]. Local hybrids are the next generation of hybrid functionals, where the constant

exact-exchange (EXX) admixture is replaced by a position-dependent admixture in real

space, governed by a local mixing function (LMF) [13]. A local hybrid functional is

defined by the choice of local mixing function (LMF) as well as by the choice of density

functional exchange-energy density and correlation contributions [14, 15]. They are con-

ceptually/mathematically rigorous, highly flexible, and computationally efficient (with the

recent semi-numerical implementation [16]).

Along-side the development of XC approximations, many mathematical studies on

density functionals have demonstrated conditions to hold for the exact XC functional. The

basic set of conditions are coordinate-scaling, spin-scaling, viral theorem, and uniform

electron gas (UEG) limit [3, 9]. The next set of conditions which are quite rigorous are the

stepwise linearity of the energy, derivative discontinuities, absence of self-interaction error,

spin constancy (fractional spins), and non-uniform density scaling [5, 17–20]. Develop-

ment of XC functionals which satisfy most of these exact conditions is highly desirable for

the computation of a wide range of properties with good accuracy at a feasible computa-

tional cost. So far the XC approximations (Jacob’s ladder to heaven of chemical accuracy

[21]) developed such as LDA, GGA, meta-GGA, and hybrid functionals gave rather good

results for thermochemistry, structures, and molecular properties. Extensive studies reveal

that these approximations do not satisfy the rigorous set of conditions mentioned above,

resulting in the poor performance for properties such as band gaps, charge-transfer excita-

tions, and Rydberg excited states etc. Thus, it is very important to carry out similar kinds

of studies related to the exact conditions on the so-far developed local hybrid functionals.

Based upon on these studies, refinement of local hybrid functionals and improvement upon

the results obtained for thermochemical, kinetic, and molecular properties can be carried

out further.

The structure of the thesis is outlined as follows. Firstly in Chapter 2, a brief description

of known exact conditions for density functionals, starting with the stepwise linearity of the

total energy from an ensemble formulation, the derivative discontinuity (DD) and the band

gap problem, the fractional occupation approach in DFT, self-interaction errors, and static

correlation error (the spin-constancy condition) are discussed. Further, the concepts of local

hybrid functionals, common local mixing functions (LMF), and range-separated correlation

functionals are also introduced. The idea of strong correlation in DFT and Becke’s B13
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model [22] with strong-correlation correction are discussed. s-d Transfer energies of 3d-

transition metals serve as a good benchmark for testing the performance of XC functionals.

This becomes even more challenging when states with near-degeneracy are involved.

Therefore, a detailed introduction to the formalisms (Furche-Perdew formalism [23] and

broken-symmetry approaches from the Truhlar group [24]) used for the computation of s-d

transfer energies is provided.

In Chapter 3, the self-consistent (SCF) implementation of the common t-LMF and

a post-SCF implementation of Kümmel’s z-LMF are discussed [25]. The first steps

towards the construction of a strongly correlated local hybrid functional on the basis of

Becke’s correlation model with strong-correlation correction (B13 + strgC) [22, 26] are

also presented in detail.

In Chapter 4, s-d transfer energies of the 3d-transition metal atoms have been computed

using the formalisms discussed in Chapter 2. Detailed analyses of the results obtained are

carried out for understanding the performance of local hybrid functionals.

In Chapter 5, an assessment of local hybrid functionals for the stepwise linearity of the

total energy in the ground-state and low-energy excited states for atomic and molecular

systems is performed. Studies related to the fundamental band gap problem and the

ionisation potential (IP) theorem are also discussed in detail [27, 28].

Finally in Chapter 6, results obtained for a strong-correlation test-set using the strongly

correlated local hybrid along with other functionals are presented. Preliminary results

clearly show a poor performance of the strongly correlated local hybrid functional in

comparison to B13 + strgC model. This is mainly attributed to the positive static correlation

energy density in some regions of space resulting in a divergence of the ratio of static

correlation energy to the total correlation energy. In this regard, a construction of strongly

correlated local hybrid functional with calibrated exchange-energy densities (developed

by Alexei Arbuznikov [29]) has been carried out and subsequent results obtained are

discussed.
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Chapter 2

Theoretical Background

Many problems in non-relativistic quantum chemistry rely on finding solutions to the

time-independent Schrödinger equation [30]

ĤΨ = EΨ, (2.1)

where Ĥ is the Hamilton operator of the system and Ψ is wave function of the system.

The electronic Hamilton operator for a system consisting of A nuclei and N electrons, in

atomic units, takes the form (within the Born-Oppenheimer approximation [31]):

Ĥee = T̂ + V̂ne + V̂ee, (2.2)

where T̂ is the kinetic energy, V̂ne is the nuclear-electron interaction, and V̂ee is the electron-

electron interaction. The kinetic energy is given by

T̂ =
N∑
i=1

(
−1

2
∇2
i

)
, (2.3)

where the index i sums over all N electrons of the system. The nuclear-electron attraction

is expressed as

V̂ne = −
N,A∑

i=1,α=1

Zα
riα

, (2.4)

and the electron-electron interaction is given by

V̂ee =

N,A∑
i=1<j

1

rij
. (2.5)

The wave function Ψ is a complicated 3N-dimensional function of space coordinates.

Solving for the exact solution of an N-electron system analytically and numerically is

15



Theoretical Background

impossible, except in the case of one-electron systems. To swim across this great ocean

of impossibilities, various mean-field approximations have been developed. Two of these

approximations, that have achieved tremendous success in quantum chemistry, are the

Hartree-Fock (HF) method and Kohn-Sham density functional theory (KS-DFT).

2.1 Hartree-Fock method

In the Hartree-Fock method, the wave function is approximated with a single Slater

determinant made up of one spin-orbital per electron. The anti-symmetry of the Slater

determinant ensures that the Pauli principle is satisfied with respect to the exchange of

electrons. The expression for Hartree-Fock energy is given by

EHF [{φi}] = TS[{φi}] + Vne[{φi}] + J [{φi}] + EX [{φi}], (2.6)

where the exchange-energy interaction is

EHF
X [{φi}] = −1

2

∑
ij

∫ ∫
φi(r1)φj(r1)φ

∗
i (r2)φ

∗
j(r2)

r12
dr1dr2. (2.7)

But the largest drawback of the HF method is the complete neglect of electron correlation.

The term correlation energy, coined by Löwdin [32] is expressed as

EC = Eexact − EHF . (2.8)

To overcome this drawback, many correlated methods beyond HF such as perturbation

theory (MP2, MP4), coupled cluster theory (CC), configuration interaction (CI), and many

other multireference methods have been developed [33–37]. These methods are rigorous

and can be improved systematically, but are computationally extensive.

2.2 Kohn-Sham density functional theory

The fundamental formulation of DFT lies in the Hohenberg-Kohn theorem [2], which

demonstrates that the ground-state energy of a many-electron system is the functional of

the its density ρ. However the energy functional has to be approximated as the explicit form

is not known. Kohn and Sham [38] came up with an idea of a fictitious non-interacting

reference system of N-electrons (the KS system), with the same density as the interacting

one. The total energy functional is now expressed as

EKS = TS[φKSi ] + Vne[ρ] + J [ρ] + EXC [ρ], (2.9)
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where the terms are the non-interacting kinetic energy (with KS-orbitals), nuclear-electron

attraction, Coulomb electron-electron repulsion, and finally the exchange-correlation

(XC) energy term. Among all these quantities, only the exchange-correlation energy

has to be approximated as no exact functional forms are available. However, many

physical and mathematical constraints have been formulated for the development of these

approximations. These constraints are known as the exact conditions for density functionals

and will be discussed further in detail [1, 3, 39, 40].

2.3 Exchange-correlation (XC) approximations

The exchange-correlation energy (EXC) is separated into two entities, an exchange term

EX and a correlation term EC ,

EXC [ρ] = EX [ρ] + EC [ρ]. (2.10)

The exchange term invokes the interactions between the electrons of same spin and is

usually an approximation to the HF exchange energy. The correlation energy (EC) is

the remaining interaction which contains both kinetic and potential-energy contributions

expressed as,

EC = (T − TS) + (Vee − J − EX). (2.11)

The main success/failure of KS-DFT depends squarely on the quality of the XC approx-

imations and the error cancellation between the approximate exchange and correlation

contributions.

2.3.1 From LDA to GGA

The local-density approximation (LDA) is the simplest approach to represent the exchange-

correlation functional. The only input information employed within the LDA is the electron

density distribution, ρ(r). The general form is expressed as

ELDA
XC [ρ] =

∫
εXC(r)ρ(r)dr. (2.12)

An analytical expression for the uniform electron gas (UEG) exchange energy functional

was derived significantly earlier by Dirac [41]:

ELDP
X [ρ] = −3

4

(
3

π

) 1
3
∫
ρ

4
3 (r)dr. (2.13)
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The correlation energy cannot be expressed analytically, therefore Monte-Carlo simulations

of the UEG correlation energy have been performed [42] that allow one to construct an

analytical ansatz. The widely used ones are the parameterizations of the LDA approach

provided by Vosko, Wilk, and Nusair (VWN) [43] and Perdew-Wang (PW92) [44]. The

spin-polarized extension of LDA, the local spin density approximation (LSDA) is ap-

plied for the description of open-shell systems. The LDA/LSDA approximations provide

reasonable results for systems with slowly varying densities and typically LDA/LSDA

underestimates EX but overestimates EC , resulting in unexpectedly reasonable EXC val-

ues. Usually the LDA approximation overestimates bond strengths, resulting in too short

bond lengths. The generalized gradient approximation (GGA) construction is carried out

by expanding exchange and correlation energies in terms of the density and its gradient

followed by an appropriate real-space cut-off procedure. The GGA exchange-correlation

energy is expressed as

EGGA
XC [ρ] =

∫
f(ρα, ρβ,∇ρα,∇ρβ)dr. (2.14)

The exchange part of a GGA is given by

EGGA
X,σ [ρ] =

∫
εX,σ(r)F (sσ)ρσ(r)dr (2.15)

where F (sσ) is a function of the reduced density gradient sσ,

sσ =
|∇ρσ(r)|

2(3π2)
1
3ρ

4
3
σ (r)

(2.16)

Popular GGA functionals are the Becke exchange (B88) [45] and PBE (Perdew, Burke, and

Ernzerhof) exchange and correlation functionals [4]. In general, GGA methods represent

a significant improvement over the LDA for thermochemistry, activation barriers, total

energies, electric and magnetic properties. But in case of solid-state computations, GGA

functionals do not yield significantly better results than LDA, nor in the calculation of

ionisation potentials and electron affinities. They also suffer from self-interaction errors

(SIE) [46, 47] which limits their applicability.

2.3.2 Global hybrid functionals

These methods combine the exchange-correlation of a conventional GGA/LDA method

with some constant amount of exact-exchange admixture [7, 8]. The global hybrid

exchange-correlation energy is given by
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EHybrid
XC = a0E

exx
X + (1− a0)EDFT

X + EDFT
C , (2.17)

where Eexx
X is the exact-exchange energy in the Kohn-Sham formalism obtained by insert-

ing KS orbitals into the HF exchange energy expression. The most popular global hybrid is

the B3LYP functional [7] which contains 20 admixture of exact-exchange. Global hybrid

functionals have been very successful in predicting thermochemistry, molecular structures,

and response properties. However, global hybrids are not flexible enough to describe

different aspects of electronic structure simultaneously (for example in case of energy

barriers high amounts of exact-exchange admixture are needed). Incomplete elimination of

self-interaction errors leads to errors in describing polarizabilities of long chains, charge-

transfer complexes, and Rydberg excitations [47]. Therefore advanced developments have

been proposed which offer flexibility by range-separation of the exchange interaction

(range-separated hybrids) as well as introducing a position-dependent exact-exchange

admixture (local hybrid functionals).

2.3.3 Range-separated hybrid functionals

In this scheme, the electron-electron interaction is partioned into short-range (SR) and

long-range (LR) components:

1

r12
=
erf(ωr12)

r12
+
erfc(ωr12)

r12
, (2.18)

where ω is the screening or range-separation parameter whereas the erf and erfc are the

error function and its complimentary respectively [48, 49]. Based on this idea, the exchange

energies are split as:

EDFT
X = ESR,DFT

X + ELR,DFT
X , (2.19)

Eexx
X = ESR,exx

X + ELR,exx
X . (2.20)

Two different classes of range-separated hybrids have been developed: long-range

corrected hybrids and screened hybrids. The long-range corrected hybrids have exact-

exchange in long range- and short-range DFT exchange [50]. The long-range corrected

PBE (LC-ωPBE) functional is given by

ELC−ωPBE
XC (ω) = Eexx,LR

X (ω) + EPBE,SR
X (ω) + EPBE

C , (2.21)
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where ω = 0.40 bohr−1, is the screening or range-separation parameter. They perform

substanially well for long-range charge transfer, Rydberg excitations, and properties related

to the asymptotic nature of the XC potential [51] .

The other class, screened hybrid functionals retain only the short-range part of exact-

exchange which allows to reduce the computational cost, especially for periodic systems.

The screened hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE) [52] has the

following form:

EHSE
XC (ω) = aexxE

exx,SR
X (ω) + (1− aexx)EPBE,SR

X (ω) +EPBE,LR
X (ω) +EPBE

C . (2.22)

where a is the mixing parameter and ω, the range-separation parameter. The value of the

screening parameter ω, determined by fitting to experimental band gap values in order to

achieve the best possible accuracy for the problem of interest. Therefore, the HSE hybrid

functional predicts much more accurate lattice constants and band gaps than any standard

semilocal functionals [53, 54].

2.4 Local hybrid functionals

Local hybrids are the next level of hybrid functional developments in DFT [13]. Here the

global exact-exchange (EXX) admixture is replaced by a position-dependent admixture in

real space, governed by a local mixing function (LMF) a(r). The general form for local

hybrid functional is given as

Elh
XC =

∑
σ=α,β

∫
[aσ(r)εexxX,σ(r) + (1− aσ(r))εDFTX,σ (r)]dr + EDFT

C . (2.23)

The quantity εexxX,σ, is the exact-exchange energy density defined as

εexxX,σ = −1

2

occ∑
iσ ,jσ

φi(r)φjr

∫
φ∗i (r

′)φ∗jr
′

|r− r′|
dr (2.24)

and the other quantity εDFTX,σ , is the conventional DFT exchange-energy density. Most of

the currently studied local hybrids are based on local exchange (Slater-Dirac exchange

[55]) combined with the semi-local correlation [56],[57].

2.4.1 Local mixing function (LMF)

As stated above, the amount of exact-exchange admixture is made spatially dependent

using a local mixing function. This can give more flexibility than global hybrid functionals
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which in turn are expected to improve the accuracy and applicability range [15, 58–60].

The basic variables that enter the LMFs are the density (ρ), gradient of density (∇ρ),

local kinetic energy density (τ ), von Weizsäcker kinetic energy density (τW ), and spin

polarisation ζ(r) =
ρα(r)−ρβ(r)
ρα(r)+ρβ(r)

. The most popular LMF is the one constructed based on

the ratio of von Weizsäcker kinetic energy density to the local kinetic energy density, the

so-called t-LMF given by

aσ(r) = btσ(r), where tσ(r) = τw,σ(r)/τσ(r). (2.25)

The optimised value (for atomisation energies of the small G2-1 test set) of the LMF

parameter, b = 0.48 [56]. Due to the scaling down of the mixing parameter from 1 to

0.48 the asymptotic behaviour is lost and self-interaction elimination is not complete.

Another type of local mixing function namely s-LMF has been constructed based on the

dimensionless gradient of electron density [57, 61]. The form of s-LMF is given by

aσ(r) = erf(csσ(r)), sσ =
|∇ρσ(r)|

2(3π2)
1
3ρ

4
3
σ (r)

, (2.26)

where ’c’ is the adjustable parameter. The optimal value of ’c’ is 0.22 (obtained for

atomisation energies of G2 test sets). A new LMF construction (denoted as r-LMF) [62],

formulated as

aσ(r) = [1− exp(−btσ − cρ(r)
5
3 )]2 (2.27)

where b and c are parameters with values 1.1275 and 0.01625 respectively. Apart from the

spin-resolved LMFs, the idea of common LMFs for both spin channels is also considered.

This idea is instigated from the construction of LMFs using first principles, the adiabatic

connection (AC) formalism [59]. The AC-LMFs constructed are completely determined by

the uniform scaling properties of the correlation functional. This suggested the existence

of a principal interdependence between exchange and correlation functional used in local

hybrids. The exchange-correlation functional expression with common LMF is given as

Elh
XC =

∫ [
a(r)

∑
σ=α,β

εexxX,σ(r) + (1− a(r))
∑
σ=α,β

εDFTX,σ (r)

]
dr + EDFT

C (2.28)

where a(r) is the common LMF reformulated from simple t-LMF by including total

quantities, given by

a(r) = bt(r), where t(r) = τW (r)/τ(r), and τW (r) =
|∇ρ(r)|2

8ρ(r)
. (2.29)
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Here the local kinetic energy density is an additive quantity,

ρ(r) = ρα(r) + ρβ(r); τ(r) = τα(r) + τβ(r), (2.30)

whereas von Weizsäcker kinetic energy density is non-additve. For closed shell systems,

the common LMF is same as the spin-resolved t-LMF. The optimal value obtained for the

common t-LMF parameter is 0.534 (on the AE6/BH6 test set). The idea of separation of

the correlation energy into dynamical and non-dynamical parts (similar to B05 model [63])

is also considered. Therefore, the expression for local hybrids can be rewritten as

Elh
XC =

∫ [ ∑
σ=α,β

εexxX,σ(r) + (1− a(r))
∑
σ=α,β

(εDFTX,σ (r)− εexxX,σ(r))

]
dr + EDFT

C

=Eexx
X + Elh

NDC + EDC ,

(2.31)

where the second term is the non-dynamical correlation energy (NDC). The idea of common

LMFs for both spin channels is a way to mimic part of the non-dynamical correlation

arising from the opposite spins.

2.4.2 Newer correlation functionals for local hybrids: range

separation and self-interaction reduction (SIR)

The separation of correlation energy into dynamical (DC) and non-dynamical (NDC)

contributions is considerably non-trivial. So, a natural way towards a DC-NDC separation

of the correlation energy is by separating the local spin density approximation (LSDA)

correlation functional into long- and short-range parts along the inter-electronic coordinate

r12. The most widely used range separation schemes are Gaussian error function "erf", its

complement "erfc", and the "erfgau" interaction [49]. The long-range LSDA correlation

is associated with the non-dynamical correlations whereas the short-range LSDA takes

care of the dynamical correlations [58]. Spurious self-interaction errors (SIE) are one of

the main problems of semi-local exchange-correlation functionals, particularly LSDA. In

LSDA correlation, the parameterisation of Perdew and Wang (PW92) [64] has been used.

Only a part of the self-interaction error is removed from the short-range(SR) LSDA. The

self-interaction reduced short-range LSDA (SIR-SR-LSDA) correlation is expressed as

ESIR−SR−SDA
C;µλ =

∫ [
ρeSR−LSDAC,µ [ρα, ρβ]− λ(τw,α/τα)ραe

SR−LSDA
C,µ [ρα, 0]

−λ(τw,β/τβ)ρβe
SR−LSDA
C,µ [0, ρβ]

]
dr,

(2.32)
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where eSR−LSDAC = eLSDAC (rs, ζ)/(1 + c1(rs)µ+ c2(rs)µ
2), and 0 ≤ λ ≤ 1.

Depending on the range separation scheme, range separation parameter (µ), self-

interaction reduction parameter (λ) and the common t-LMF parameter (b), three different

local hybrid functionals have been considered [58]. They are

LRSR1: Local hybrid with LSDA exchange and SIR-SR-LSDA correlation, eq.2.31 with

range separation scheme erfgau, µ = 0.8, λ = 0.646, and b = 0.646.

LRSR2: Local hybrid with LSDA exchange and SIR-SR-LSDA correlation, eq.2.31 with

range separation scheme erf, µ = 0.5, λ = 0.622, and b = 0.622.

LRSR3: Local hybrid with LSDA exchange and SIF-SR-LSDA correlation, eq.2.31 with

range separation scheme erfgau, µ = 0.8, λ = 1.0, and b = 0.709.

Results obtained using these functionals clearly indicate significant improvement of reac-

tion barriers, atomisation energies, binding energies of odd-electron radical cations, and

electron response properties of hydrogen chains [58]. This can be attributed to the large

exact-exchange admixture which reduces the LSDA exchange contributions. More discus-

sions on the local hybrid potential and local mixing functions (LMF) will be discussed in

coming chapters.

2.5 Exact conditions for density functionals

2.5.1 Stepwise linearity of ground-state energy from ensemble-DFT

formalism

The discussion on this topic starts with the question, whether the total energy density

functional is defined only for the densities integrating to an integer number of electrons or

is defined over all densities integrating to a fractional number of electrons. To understand

the concept of fractional electron numbers one can consider an open system which can

exchange electrons with its environment, thus the number of electrons can be fractional on

time average. Fractional electron numbers can be found in systems and processes where

delocalization of an electron occurs over spatially separated fragments. Mermin formulated

an extension of the zero-temperature to the finite-temperature case [65]. This was followed

by the extension of DFT for fractional electron numbers by Perdew, Parr, Levy, and Balduz

[17] using the grand canonical ensemble construction. In the above ensemble method,

the orbital occupation numbers of the standard KS theory remain integer but an ensemble
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is introduced where a fraction of the fragments have N+1 electrons while the rest have

N electrons, where N is an integer. In this formalism the ground-state energy of such

an open system varies linearly when the electron number is varied between two integers

with derivative discontinuities at each integer. The ground-state density and energy of the

system with N+q number of electrons is expressed as,

ρN+q = qρN+1 + (1− q)ρN ; E[ρN+q] = qE[ρN+1] + (1− q)E[ρN ]. (2.33)

This extension is a mathematical formulation which makes a continuous link between N-1,

N, and N+1 number of electrons leading to a relationship between ionisation potential (I),

electron affinity (A), and the DFT energy levels. The derivatives of the energy functional

with respect to the number of electrons are given by,

µ[ρN+q] =
∂E(N)

∂(N)
N+q = −A(N), (2.34)

µ[ρN−q] = [
∂E(N)

∂(N)
]N−q = −I(N). (2.35)

The above equations shows that the chemical potential is constant between the integers

and exhibits a jump on passing through the integer number of electrons [19],[66].

2.5.2 Extension of stepwise linearity to low-energy excited states of

different spin/spatial symmetry

The stepwise linearity condition for the exact functional has also been extended by Yang

and his co-workers [66, 67] to systems in the lowest energy state of a given spin or spatial

symmetry different from the ground-state. Consider a system which is constructed using

an N-electron degenerate lowest energy system with symmetry S and an (N+1)-electron

degenerate lowest energy system with symmetry S’, where these two symmetry states S

and S’ are connected by addition/removal of an electron. The density of such a system is

given by

ρqN+p =

gN∑
i=1

ciρ
S
N,i +

gN+1∑
j=1

djρ
S′

N+1,i (2.36)

where ci and dj are positive and finite integers which satisfy the normalization condition.

Then the exact energy functional is shown to satisfy the following equation

E[
1

q

gN∑
i=1

ciρ
S
N,i +

1

q

gN+1∑
j=1

djρ
S′

N+1,i] =
p− q
q

E[ρSN ] +
p

q
E[ρS

′

N+1], (2.37)
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where q =
∑gN

i=1 ci +
∑gN+1

j=1 dj , p =
∑gN+1

j=1 dj , and q − p =
∑gN

i=1 ci. This piecewise

constraint implies that for the exact functional the total energy is a sum of the HOMO

eigenvalues of the system with 1,2,3,..N electrons. The direct consequence of this is the

rigorous connection between the experimental ionisation potential and electron affinity to

the HOMO and LUMO values [68]. This extension also serves as an initial step for the

combination of fractional charge and fractional spins giving rise to the flat-plane condition

for strongly correlated systems.

2.5.3 Derivative discontinuity and the band gap problem

The linearity condition for the ground-state energy means that the fundamental band gap

of an N-electron system is given as the difference between the ionisation energy (I) and

electron affinity(A),

Egap = [E(N − 1)− E(N)]− [E(N)− E(N + 1)] = I(N)− A(N). (2.38)

The Perdew-Levy formulation of the band gap [69] in terms of the energy functional

derivatives is

Egap = lim
q→0

(µ(N+q) − µ(N−q)), (2.39)

Egap = lim
q→0

{[
δTs[ρ]

δρ(r)

]
N+q

−
[
δTs[ρ]

δρ(r)

]
N−q

+

[
δEXC [ρ]

δρ(r)

]
N+q

−
[
δEXC [ρ]

δρ(r)

]
N−q

}
.

(2.40)

As the above expression shows that only the non-interacting kinetic energy and the

exchange-correlation energy contributes to the discontinuity of the energy functional

derivative. The final expression for the band gap is

Egap = εN+1(N)− εN(N) + ∆XC , (2.41)

where the term ∆XC is the most important discontinuity of the XC potential. The derivative

discontinuity is expressed as the difference in the potentials,

∆XC = νN+q(r)− νN−q(r). (2.42)

Unfortunately this term is absent in all the explicit density functionals, thus resulting in

underestimated band gap values. Alternative realisations of DFT, the generalized Kohn-

Sham (GKS) schemes [28, 70] introduce an interacting model system which incorporates

electron-electron interaction to a certain extent and still can be represented by a single
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Slater determinant. Usually a fraction of the Hartree-Fock exchange (aHF ) is incorporated

into the XC functional. The fundamental band gap within the GKS formalism is given by

I − A = εKSgap + ∆KS
XC = εGKSgap + (1− aHF )∆KS

X + ∆KS
C . (2.43)

Another implication of the piecewise-linearity condition is the IP theorem [71] which

gives the relation between the highest occupied orbital energy (HOMO) and the ionisation

potential (IP):

εHOMO = −I. (2.44)

Satisfaction of the IP theorem also invokes the closely related fundamental property of

the derivative discontinuity (DD) of the exchange correlation energy. Violation of the IP

theorem is related to the central problem in DFT, the self-interaction error (SIE) [47, 72, 73].

It is also related to the wrong asymptotic behaviour of the KS-potential, and affects not just

the asymptotes but even the shape of the potential in the non-asymptotic regions [27, 74].

The ensemble approach is a meaningful one from a physical point of view as no

reference to a fractional number of electrons is made. It also serves as a practical approach

to the problem of open systems as the exchange-correlation energy is defined over the

whole domain of ensemble densities, including fractional number of electrons. However,

there are some objections to this formalism: firstly the ensemble describes a physical

admixture of two non-interacting stable systems rather than one dynamical system of

interest. Secondly, the vanishing chemical hardness between integers renders the concept

of chemical hardness useless for chemistry. Finally this formalism, very much practical for

calculations, but not a favorable methodology for the development of density functionals,

paved the way for the fractional occupation approach in DFT [18, 72, 75].

2.5.4 Fractional occupations in DFT

Another approach for treating fractional electron numbers is by having fractional occupa-

tions in DFT. In this approach the usual Kohn-Sham equation, which was derived only for

integer occupation number, is considered. But the orbital occupation numbers (fi) entering

into the total-energy expression through the kinetic energy and the charge density, are

allowed to be fractional. The energy expression is given by,

E = −1

2

∑
i

fi〈φi|∇2|φi〉+

∫
ν(r)ρ(r)dr +

1

2

∫ ∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 + EXC [ρ(r)],

(2.45)
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where the density is given by

ρ(r) =
∑
i

fi|φ|2. (2.46)

Here the Kohn-Sham system is no longer a single determinant, but instead a linear com-

bination of Kohn-Sham Slater determinants. The importance of choosing the occupation

numbers that minimize the total energy is given by Janak’s theorem [76] which states that

the change in total energy with respect to orbital occupation is given as

∂E[ρ]

∂fi
= εi, (2.47)

where εi is the orbital energy with fi occupation number. By allowing the occupation

numbers to be fractional, lowering of energy of the system can be achieved by transfering

an infinitesimal amount of charge from higher energy orbitals to those with lower energy.

This is purely a mathematical approach that allows properties of functionals to be studied

in the vicinity of integer particle number thereby giving information about the physical

picture of an integer number of electrons [18].

2.5.5 Self-interaction error in DFT

Self-interaction errors (SIE) plays a crucial role in DFT with approximate XC functionals.

This is mainly due to the spurious interaction of an electron with itself [46]. The SIE leads

to wrong dissociation limits, low reaction barriers and overestimation of intermolecular

interaction of some charge-transfer complexes . For a one-electron system the electron-

electron interaction should be exactly zero

J [ρ] + EXC [ρ] = 0. (2.48)

Unfortunately most of the approximate XC functionals violate this condition and for

systems with more than one electron the SIE definition is quite complicated. Using the

scaling relations, Yang and Zhang [12] have shown that the SIE increases in case of a

fractional number of electrons. For a q-electron system the electron density in terms of the

one-electron density is given as,

ρq = qρ1, where 0 ≤ q ≤ 1. (2.49)

Now the new scaling relation for the SIE free exchange-correlation energy is given as

EXC [qρ1] = q2EXC [ρ1]. (2.50)
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But most of the approximate functionals do not obey this relation. The exchange functionals

in LDA and BLYP instead follow the inequality

EX [qρ1] < q2EX [ρ1]. (2.51)

Since the negative exchange term dominates the exchange-correlation energy, the SIE

would be even more negative according to the above relation for a fractional number of

electrons. Therefore in general, SIE increases for systems with a fractional number of

electrons. This erroneous behaviour of DFAs results in energies which are too low for any

system [66, 72].

2.5.6 Static correlation error

Static correlation in DFT mainly arises due to the mixing of near degenerate and absolute

degenerate states with the reference Slater determinant. Treatment of such systems within

KS-DFT is believed to be a task cut out for the exchange-correlation functional and can be

understood using fractional spins. The extension of DFT to fractional-spin states and the

derivation of the spin-constancy condition for exact energy functional has been carried out

by Yang and his co-workers [20]. Similar to fractional electron numbers, fractional-spin

states can arise when ensembles of degenerate states with integer spins are considered.

For an N-electron system with g-fold degenerate densities (ρi, i = 1, 2, ..g), the ensemble

density is given by

ρ =

g∑
i=1

Ciρi, where 0 ≤ Ci ≤ 1 and
g∑
i=1

Ci = 1. (2.52)

The spin constancy condition is expressed as,

E

[
g∑
i=1

Ciρi

]
= E[ρj] = E0(N), j = 1, 2, . . . , g, (2.53)

which means that the energy of the exact functional for fractional-spin states is equal to

the degenerate pure-spin state energies and is a constant. For example, in the case of an

H-atom with two degenerate spin states α (ms = +1/2) and β (ms = −1/2), the spin

constancy condition is written as

E [ρ(1, 0)] = E [ρ(0, 1)] = E

[
ρ(

1

2
,
1

2
)

]
= E [ρ(γ, 1− γ)] , 0 < γ ≤ 1

2
. (2.54)

Even though this seems to be a very trivial condition, all density functional approximations

produces fractional-spin errors. These failures are very much apparent in systems such as
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a stretched H2 molecule. This fractional-spin error (or the static correlation error) plays an

important role in the physics of strong correlation which will be discussed next.

2.6 Strong correlation in DFT

The ability to describe dissociating chemical systems using spin- and spatially symmetric

single Slater determinants is considered as the hallmark of strongly correlated DFT methods.

Consider the dissociation of an H2 molecule using spin-unrestricted and spin-restricted

formalisms. For the unrestricted case each dissociated hydrogen atom has one electron in

the H1s atomic orbitals with either up or down spin causing undesirable symmetry breaking.

In case of spin restricted orbitals, each dissociated hydrogen atom has half an electron with

spin up and another half with spin down in the H1s atomic orbital. The electronic states

with fractional spins are attributed to the large static correlation (strong correlations) in

DFT. These systems require multi-determinant reference states in order to describe the

dissociating behavior using symmetry restricted orbitals. The exact density functional

should give identical energies for both spin restricted and unrestricted cases. In fact,

the exact ground-state energy functional for any given linear combination of degenerate

ground-state densities should result in the same energy (flat-plane behavior). This is a

very stringent condition not satisfied by the conventional density functionals (nor by HF

theory). Therefore, it is of great importance to develop exchange-correlation functionals

which can also describe strongly correlated systems. Becke has recently proposed a model

based on his previous B05 model which includes static, dynamic, and strong-correlation

contributions combined with exact-exchange. In this new model (B13) [22, 26], the

exchange-correlation functional is composed of exact-exchange and a specifically tailored

correlation functional

EB13
XC = Eexx

X + EB13
C . (2.55)

The correlation energy (EB13
C ) is composed of the static (B05 model) and a modified B88

dynamic correlation energy [63],

EB13
C = EstatC

B05 + EdynC
B88 . (2.56)

Both terms can be further separated as parallel-spin and opposite-spin correlations

EB05
statC =aoppstatCU

opp
statC + aparstatCU

par
statC ,

EB88
dynC =aoppdynCU

opp
dynC + apardynCU

par
dynC .

(2.57)
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In the above equation the correlation functional is made up of purely potential energy terms

and the semi-empirical fitting coefficients aoppstatC , aparstatC , aoppdynC , and apardynC . The potential

energy terms are given by

U opp
statC =

∫
uoppstatC(r)dr,

Upar
statC =

∫
uparstatC(r)dr,

U opp
dynC =

∫
uoppdynC(r)dr,

and

Upar
dynC =

∫
upardynC(r)dr.

(2.58)

The B13 correlation model is very good to describe static correlations in molecules at

equilibrium, but cannot handle dissociating molecules with restricted (symmetry adapted)

orbitals. To capture these strong correlations a simple correction term was introduced into

the B13 model [22],

EB13
XstrgC = Eex

X + EB13
C + ∆EB13

strgC . (2.59)

Usually, the strong-correlation energy functional is given by the expression

EB13
strgC =

∫
αC(r)uC(r)dr, (2.60)

where the term αC can be expressed as a polynomial

αc(r) ∼=
N∑
n=0

cnx
n(r), x(r) =

uoppstatC(r) + uparstatC(r)

uC(r)
,

uC(r) = uoppstatC(r) + uparstatC(r) + uoppdynC(r) + upardynC(r).

(2.61)

The strength of the correlation depends on the term x(r), a dimensionless parameter

measuring the relative importance of the static correlation potential-energy density to the

total correlation potential-energy density. The first two terms of the expression [Eq.2.59]

are the total potential-energy contributions to the correlation with different coefficients, so

the strong-correlation correction begins at second order

EB13
strgC = EB13

C + ∆EB13
strgC , (2.62)

where the correction term is given as

∆EB13
strgC =

N∑
n=2

cn

∫
xn(r)uc(r)dr. (2.63)
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In general one or two correction terms are sufficient to capture the strong-correlation effects

(i.e., N=2,3). The testing of this model has been carried out on a stringent strong-correlation

test set using numerical (post-LSDA) computations [22, 26]. The strong-correlation test

set is that for each open-shell atom, two cases are considered, spin-depolarised (SDP) and

free atom (FA). For a carbon atom with an open 2p shell, the two cases are

Free-atom occupancies : (2pxα)1(2pyα)1(2pzα)0(2pxβ)0(2pyβ)0(2pzβ)0

Spin-depolarised occupancies : (2pxα)
1
2 (2pyα)

1
2 (2pzα)0(2pxβ)

1
2 (2pyβ)

1
2 (2pzβ)0

For the exact functional the spin-depolarised (SDP) energy should be equal to the

free-atom (FA) energy and the value of ∆E should be zero

∆E = Espin−depolarised − Efree−atom. (2.64)

By considering a balanced set of G2/97 atomization energies of Curtiss, Raghavachari,

and Pople [11] and strong-correlation test set of 28 atoms (H-Br), the best-fit coefficients

obtained for the static correlation, dynamic correlation and the strong-correlation correction

terms are of the order 0.5-0.7. Results (mean errors (ME) and mean absolute errors (MAE))

have been obtained for HF, GGA, B13, and B13 with strong-correlation correction (two

strong-correlation correction terms (N=2,3)) approaches. Mean errors and mean average

errors obtained by B13 (XstrgC) model are six times better than for GGA functionals and

an order of magnitude better than for the B13 model [26]. Construction of a local hybrid

functional with strong-correlation correction along these lines has been considered and

will be discussed in detail in Chapter 3.

2.7 s-d Transfer energies

s-d Transfer energies have been considered an excellent qualitative benchmark for com-

putational models in transition-metal (TM) chemistry. For the example of 3d-elements,

the accuracy of the methods employed depends mainly on the balanced description of

the 4s and 3d one-electron states [77–79]. Unfortunately, an accurate prediction of these

atomic excitations for transition-metal atoms becomes very complicated, especially in the

open-shell cases [80–82]. This is mainly due to the presence of several low-lying electronic

states with different spin/orbital occupancy close to the reference Slater determinant. In

general, HF gives good results for the atomic systems Sc-Cr, but fails miserably for later
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3d-series atoms due to strong differential correlation effects. Therefore DFT methodologies

come in handy as they cover these correlation effects to a certain extent. Harris and Jones

[83], in their early work using the LSDA, recognised that the s-d transfer energies have

been underestimated by an average of -1.0 eV. Computations using GGA and meta-GGA

functionals have worsened the results for atoms Sc-Fe, but the errors remained constant

for other atoms [82]. Global hybrids tend to give less negative mean signed errors (MSE)

and lower mean average errors (MAE), due to the exact-exchange admixture shifting the

excitation energies to larger values. The source of errors for the functionals are mainly

due to the problems with the simulation of non-dynamical correlation (NDC) and the

presence of self-interaction errors (SIE) [84–87]. There is also a general tendency of all

XC approximations to favour one configuration over the other which results in errors for

s-d transfer energies. Therefore, it is of great importance to test the performance of local

hybrid functionals for these difficult cases. Here, two different approaches have been used

for the computation of s-d transfer energies. The first is the formalism proposed by Furche

and Perdew [23] which uses a symmetry-constrained procedure for multi-determinant

states. In the other formalism given by Truhlar and his co-workers [24], broken-symmetry

approaches are used for states with multi-determinant character.

2.7.1 Furche-Perdew formalism

The protocol for the Furche-Perdew formalism consists of two steps [23]. In the first

step calculations are performed self-consistently using Oh symmetry. In the second

step, whenever fractional occupations are present (due to degenerate orbitals in higher

symmetry), transformation of the orbitals from Oh to C1 symmetry and then averaging the

non-self-consistent energies of the multiplet components are performed. This procedure

allows for a maximum symmetry breaking without mixing of s and d states. In general, eg

orbitals are used for fractional occupations.

2.7.2 Broken-symmetry approaches

It has been common knowledge that open-shell KS-DFT calculation features spatial and

spin symmetry breaking which results in the mixing of s and d orbitals for 3d-transition-

metal atoms. Recently extensive studies on 3d-transition metals have been carried out

by Truhlar and coworkers [24] using broken-symmetry approaches. In those studies, the
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closed shell atomic states have been computed using the Kohn-Sham approach for the

lowest energy solutions. But in the case of open-shell states which have a partially filled

sub-shell, there can be several low-energy states with different spin multiplicities, and the

lowest-energy solutions to the unrestricted-KS equations are often the broken-symmetry

solutions. These electronic states are classified into nominally single-determinant (NSD)

states and intrinsically multi-determinant (IMD) states. The NSD states are those with

total spin equal to half the number of nominally single occupied orbitals (S = nSO
2

)

(nominally means orbitals in an unrestricted computation where α and β of an electron

pair are not identical). The energy of NSD state is always the SCF energy of the state with

Ms = S. The IMD states are those with total spin less than half the number of nominally

single occupied orbitals (S < nSO
2

). For example, consider the Fe atom with states

Fe(5F , 4s13d7) and Fe(3F , 4s13d7). In the state Fe(5F ) all the four unpaired electrons

occupy the α-orbitals whereas the state Fe(3F ) has three dα and one sβ electrons. The

possible IMD and their corresponding NSD states considered for each atom are shown in

Table 2.1. Out of all possible IMD states, experimental data are available only for four

atomic systems, namely Cr, Fe, Co, and Ni. For obtaining the energy of an IMD state

three different ways have been used, namely the variational method, the weight-average

broken-symmetry (WABS) method, and the reinterpreted broken-symmetry (RBS) method

[24, 88].

Atom IMD states corresponding NSD states
Ca d1s1(1D) d1s1(3D)
Sc d2s1(2F ) d2s1(4F )
Ti d3s1(3F ) d3s1(5F )
V d4s1(4D) d4s1(6D)
Cr d5s1(5S) d5s1(7S)
Mn d6s1(4D) d6s1(6D)/d5s2(6S)
Fe d7s1(3F ) d7s1(5F )/d6s2(5D)
Co d8s1(2F ) d8s1(4F )/d7s2(4F )
Ni d9s1(1D) d9s1(3D)/d8s2(3F )

Table 2.1: The IMD and NSD states

Variational method

In this approach the energy of the IMD state is computed as the energy of the stably

optimised SCF computation of the state with Ms = S,

EV ar
IMD(nSO, S,MS) = ESCF

IMD(nSO, S,MS = S). (2.65)
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For example, consider the Co atom IMD state with configuration 3d84s1(2F ). The stably

optimised SCF energy of the IMD state Co(2F , 3d84s1) is taken as the variational energy.

Weighted-average broken-symmetry approach (WABS)

The main aspect of this method is that the states which are intrinsically multi-determinantal

(IMD) are actually considered to be a mixture of states with different multiplicities. In the

NSD state all single (unpaired) electrons are filled into the α-orbitals whereas in the IMD

state one or more unpaired electrons occupy the β-orbital. The energy for the IMD state in

generalization to other multiplicities is

EWABS
IMD (nSO, S,MS) =ESCF

NSD(nSO, S =
nSO

2
,MS =

nSO
2

)

− k[ESCF
NSD(nSO, S =

nSO
2
,MS =

nSO
2

)

− ESCF
IMD(nSO, S,MS = S)],

(2.66)

where k = 2SHS
(〈S2〉HS−〈S2〉BS)

. The above formula, given by Yamaguchi [88], has been

popular for broken-symmetry calculations. The IMD states for each atom are given in

Table 2.1. For certain atomic configurations such as Mn(6D, 4s13d6), Fe(3F , 4s13d7),

Co(4F , 4s13d8), and Ni(3D, 4s13d9) there are two possible NSD states with the same

number of unpaired electrons. In the case of Fe(3F, 4s13d7), the IMD state has three dα

electrons and one sβ electron. There are two possibilities for the NSD state, Fe(5D, 4s23d6)

and Fe(5F, 4s13d7). Here the Fe(5D, 4s23d6) state is considered for NSD as it is lower

in energy than Fe(5F, 4s13d7). Similarly for the Co atom, computations are carried out

using Co(4F, 4s23d7) as the NSD state. For the Ni atom there are two possible NSD

states, d9s1(3D) or d8s2(3F ) of which (3D) is considered as the NSD state due its relative

stability. Still there is an underlying issue about the spatial orbitals being the same for both

the NSD and the IMD states as there are cases stated for Fe and Co, where this is not true.

Reinterpreted broken-symmetry approach (RBS)

In this method, for each IMD state an artificial NSD state (post-SCF state labelled as

PSCF) is obtained using the same orbitals as in the IMD state. The RBS approach is more

physically justified as it makes sure that both the IMD and NSD states considered have

the same spatial orbitals [24]. For example, in the case of Fe(3F, 4s13d7) IMD state, the

corresponding NSD state considered is the stabilized quintet, Fe(5D, 4s23d6). But using

the same orbitals as in the Fe(3F ) state, an artificial NSD state (PSCF) can be obtained
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by flipping the spin of one or more singly occupied orbitals. The spin flipping is carried

out by identifying the virtual orbital of other spin that is most similar in energy to the spin

orbital intended to flip. Thus the PSCF state obtained have the same spatial orbitals as the

IMD state. The equations for the RBS are given as

ERBS
IMD(nSO, S,MS) =EPSCF

NSD (nSO, S =
nSO

2
,MS =

nSO
2

)

− k[EPSCF
NSD (nSO, S =

nSO
2
,MS =

nSO
2

)

− ESCF
IMD(nSO, S,MS = S)],

(2.67)

where k = 2SHS
(〈S2〉HS−〈S2〉BS)

. There are cases where the PSCF state in RBS approach has

different orbitals to the NSD state in the WABS approach. In the case of Fe(3F, 4s13d7) the

PSCF state is obtained by flipping the spin of the sβ electron and for the Co(2F, 4s13d8)

the PSCF state is obtained by flipping the dβ electron in the IMD state. In case of

Co(2F , 4s13d8) and Ni(1D, 4s13d9), some functionals on spin flipping can give a PSCF

state with energy higher than the unflipped state in order of 100 kcal/mol [89]. This is

due to very different highest-energy occupied orbitals for α and β electrons. In such

cases broken-symmetry approaches must not be used. Detailed discussions on the results

obtained for s-d transfer energies using the above formalisms are carried out in Chapter 4.
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Chapter 3

Implementation

3.1 Self-consistent implementation of common LMFs

The idea of local hybrid functionals using common LMFs for both the spin channels,

has been proposed for the simulation of some of the non-dynamic correlation (NDC)

arising from opposite-spin electrons [Sec.2.4.1]. Previously, spin-polarized t-LMFs and

s-LMFs have been constructed to obtain the cross terms between the two spin channels

[15]. Also, to achieve separation of the correlation energy into dynamical (DC) and

non-dynamical (NDC) contributions, construction of local hybrids with range-separated

correlation functionals have been done [58]. Self-consistent (SCF) implementations of

these developments are very important for the computation of properties. Local hybrids

with the spin-channel t-LMF, s-LMFs, r-LMFs, and range-separated correlation functionals

had already been implemented self-consistently (in a local version of Turbomole program)

[56–58]. Along similar lines, the SCF implementation of common t-LMFs has been carried

out here.

In the KS scheme, the XC potential is defined as a functional derivative:

νXC(r) =
δEXC
δρ(r)

. (3.1)

For LDA/GGA functionals the functional derivative is obtained in a straightforward

way, whereas for the hybrid functional, due to the orbital-based exact-exchange term, it

is not so trivial. The local hybrid functional comprises an orbital-based exact-exchange

term and the density-dependent DFT exchange-correlation term [Eq.2.23]. Due to the

orbital-dependent term, the KS potential is evaluated using functional derivatives with
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respect to the orbitals (FDOs). The substitution relation between the functional derivatives

and KS-potential is given as

ν lhXC,σ(r)φi,σ(r)← 1

2

δElh
XC

δφi,σ(r)
. (3.2)

This substitution generates a non-local and non-multiplicative exchange contribution to the

local hybrid potential defined by its operation on a particular orbital whose form is:

ν̂exxX,σφi,σ(r) = −
occ∑
jσ

φj,σ(r)

∫
φj,σ(r

′
)φi,σ(r

′
)

|r− r′ |
dr

′
. (3.3)

The non-local potential implies that electrons in different orbitals move in different po-

tentials. Direct use of this non-local and non-multiplicative exchange potential represents

a step outside the KS formalism (the GKS formalism [70]). The expression for the

exchange-correlation part of the local hybrid KS-potential is given as:

1

2

δElh
XC

δφi,σ(r)
=

1

2
[a(r)ν̂exxX,σφi,σ + ν̂exxX,σ(a(r)φi,σ)] + [(1− a(r))νDFTX,σ + νDFTC,σ (r)]φi,σ(r)

+
1

2
∆εX

∂a(r)

∂φi,σ(r)
− 1

2
∇
[
∆εX

∂a(r)

∂∇φi,σ(r)

]
+∇a(r).

∂εDFTX,σ

∂∇ρσ
φi,σ(r)

− 1

2

[(
∇
∂εlhX,σ
∂τσ

)
.∇+

∂εlhX,σ
∂τσ∇2

]
φi,σ(r),

(3.4)

where ∆εσX = εexxσ,X − εDFTσ,X , and ∆εX =
∑

σ=α,β

∆εσX .

The first two terms in the above expression are the non-local exact-exchange terms

(evaluated numerically on the grid or analytically by using the resolution of the identity

(RI) [90]). The next two terms include the local exchange potential weighted by the

common LMF and the local correlation potential. The other three terms are the derivatives

of the LMF multiplied by semi-local exchange energy densities. The last two terms in the

expression are the derivatives with respect to τ (while the LSDA exchange and correlation

energy densities do not depend on τ , but the LMF does). The Fock matrix element for the

exchange in a given atomic basis is given by

FX,σµν =

∫
χµ ν̂X,σ χν dr. (3.5)

The partial derivatives of the common t-LMF with respect to the density ρ, to the absolute
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square of the density gradient |∇ρ|2, and to the local kinetic energy density τ :

∂a

∂φi
=
∂a

∂ρ

∂ρ

∂ρi
+

∂a

∂|∇ρ|2
∂|∇|2

∂φi
= 2

∂a

∂ρ
φi + 4

∂a

∂|∇ρ|2
∇ρ.∇ρi,

∂a

∇φi
=

∂a

∂|∇ρ|2
∂|∇ρ|2

∂ρi
+
∂a

∂τ

∂τ

∂∇φi
=
∂a

∂ρ
∇φi + 4

∂a

∂|∇ρ|2
(∇ρ)φi,

∂a

∂ρ
= −a

ρ
,

∂a

∂|∇ρ|2
=

a

|∇ρ|2
,

∂a

∂τ
= −a

τ
.

(3.6)

Applying the partial integration technique and gradients of the LMF or the DFT

exchange-energy density, the Fock matrix element for the exchange is expressed as

FX,σµν =
1

2

[ ∫
χµ a ν̂exxX,σ χν +

∫
χµ ν̂

exx
X,σ(a χν)

]
+

∫
χµ∆εX

∂a
∂ρ
χν

+2

∫
[1− a]

∂εDFTX,σ

∂|∇ρσ|2
∇ρσ.∇(χµχν) + 2

∫
∆εX

∂a
∂|∇ρ|2

∇ρ.∇(χµχν)

+

∫
χµ[1− a]

∂εDFTX,σ

∂ρσ
χν +

1

2

∫
∆εX

∂a
∂τ
∇χµ.∇χν .

(3.7)

The Fock matrix elements for the common LMF differ from those of the spin-channel

LMF only in the LMF and its derivatives. This implementation has been carried out in

a local version of the Turbomole program (TBM5.10 local version developed for local

hybrids) [56, 91].

Implementation procedure

The required changes have been made to the Turbomole/dftlib directory.

Step 1: the first set of changes made for setting the common LMF as an input for the

calculations. The file modified for this purpose is gridin.f.

Step 2: the next set of changes are for the evaluation of common LMF and its derivatives

on the grid. the files modified for this purpose are lmfscf_r1.f and lmfscf_ u1.f.

Step 3: Fock matrix evaluation: in case of closed shell system the common t-LMF is equal

to the spin-channel t-LMF, so no changes have been made to the code. But the closed shell

case can be used for testing the implementation by performing an open-shell calculation

on a closed shell system as both calculations should give the same values.

Step 4: Fock matrix evaluation: a separate Fock matrix for the common t-LMF has been
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dftlib

 gridin.f 
Changes to be made for common LMF input

lmfscf_r1.f
Evaluation of common t-LMF quantities for closed shell

lmfscf_u1.f
Evaluation of common t-LMF quantities for open shell

Closed or Open shell 

xclyhb.f
Subroutine for local hybrid 

lochyb_u1.f
For open shells (common t-LMF potential is included here)

lochyb_r1.f
For closed shells (no changes are made)

Figure 3.1: Flowchart for the SCF implementation of common t-LMF. The subroutines lmfscf-r1.f,
lmfscf-u1.f, xclyhb.f, lochyb-u1.f, and lochyb-r1.f are the ones added for the purpose of local
hybrids (in TBM5.10 local version developed for local hybrid functionals).
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included along with the existing spin-channel LMFs. The file modified for this purpose is

lochyb_ u1.f.

3.1.1 Testing

For any correct SCF implementation, the final SCF energy should always be lower than

that of first iteration energy. For this initial test, SCF calculations have been performed on

the G2-1 test set and the energy differences have been obtained (between final SCF and first

iteration energies). The energy differences clearly show that the first criterion is satisfied.

Further tests of the implementation have been carried out by performing computations

on the atomic systems like helium, beryllium, neon, and calcium. For these atoms, both

closed and open-shell cases, the final SCF energies have been found to be exactly the same

(upto 6 decimal digits).

3.2 Post-SCF implementation of a new local mixing

function

A new local hybrid functional has been developed by the Kümmel and coworkers [25]

which is one-electron self-interaction free and has the correct asymptotic behaviour. The

new local hybrid is expressed as

Elh
XC =

∫
[εexxX (r) + f(r)(εslX(r)− εexxX (r))]dr + Esl

C , (3.8)

where the local mixing function f(r) is given as

f(r) =
1− τW (r)

τ(r)
ζ2(r)

1 + ct2(r)
. (3.9)

The LMF can be reformulated (in relation to the eq.2.) and denoted as z-LMF

a(r) = 1− f(r). (3.10)

Here the terms are the usual von Weizäcker kinetic energy density τW (r), the local

kinetic energy density τ(r), and the spin polarization ζ(r). The quantity t2(r), based on

the reduced density gradient defined as
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t2(r) :=

(
π
3

)1/3
ao|∇ρ(r)|2

16Φ2(ζ(r))ρ7/3(r)
, (3.11)

where a0 is the Bohr radius and the quantity Φ(ζ(r)) = 1
2
[(1 + ζ)2/3 + (1 − ζ)2/3]. The

LMF aims to fulfil the high density limit as t2 →∞ and also, the LMF do not consider

two spatially identical orbitals with opposite spins as a one-orbital region which meant

that the one-electron and one-spin-orbital regions are clearly defined. There is a difference

between the one-electron and one-spin-orbital regions and strictly these two regions do

not coincide as the interacting system and KS system has only the total electron density in

common. The value of LMF goes to 1 when τ(r)→ τW(r) for one-spin-orbital densities.

The above LMF has only one free parameter c, which affects the amount of exact-exchange

used in a calculation and the freedom of varying this parameter can be used to explore the

properties of the functional.

3.2.1 Self-interaction (SI) corrected correlation functional

Together with the LMF, a self-interaction corrected correlation functional has also been

proposed:

Esl
C =

∫
[1− d(r)]εLSDAC (r)dr, (3.12)

where the quantity d(r) is defined as

d(r) =
τW (r)

τ(r)
ζ2(r). (3.13)

The correlation functional is one-electron SI-free, ensures the correct asymptotic

behaviour at |r| → ∞, and for regions of slowly varying density reduces to LSDA [25].

The functional is completely one-electron self-interaction free when d(r) tends to 1, thereby

reducing the XC functional only to exact-exchange term. This term cancels the Hartree

repulsion avoiding the unwanted local correlation for one-orbital regions.
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Figure 3.2: z-LMFs behaviour plotted along the bond axis in the F2 Molecule (in each case the
LMF parameter c value is given in parenthesis). F atomic nuclei are positioned at -1.34 and 1.34 on
the x-axis at equilibrium distance.

Details

The implementation of z-LMF and the related self-interaction corrected correlation has

been carried out in a local version of Turbomole program in post-SCF manner. Earlier the

Kümmel group had fitted the free parameter for each system (only for a set of diatomic

molecules) using techniques like D-fitting (dissociation energy) and E-fitting (experimental

total energy). Reoptimization of the free parameter using the weighted minimization of

MAEs for the AE6-BH6 atomisation energies and reaction barrier test sets (for polyatomic

molecules) gives the free parameter value 1.6875 with the MAE 5.0984 kcal/mol.
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Figure 3.3: z-LMFs behaviour plotted along the bond axis in the CO Molecule (in each case the
LMF parameter c value is given in parenthesis). Carbon and oxygen atomic nuclei are positioned at
-1.24 and 0.93 on the x-axis at equilibrium distance.

z-LMF with different free parameters have been plotted (1D-plots along the bonding

axis) for molecules F2, and CO, to study the LMF behaviour in different regions of space.

The LMF plots for all the three molecules are shown in Figures 3.2-3.4. z-LMFs (with

different c parameters) attain maximum values closer to 1 near the nuclei regions. For the

F2 molecule, all LMFs have pronounced local maxima in the bonding regions whereas,

this is not the case for the CN molecule. In case of the CO molecule, local maxima are

found in the bonding region for all the LMFs (linear proportionality dependence with the

z-LMF parameter). The LMF plots clearly indicate that large z-LMF parameter (c), is

required for better description in the bonding regions. Finally all the z-LMFs approach the

value 1 asymptotically (asymptotes around 12 a.u not shown in the plots) [25, 92].

3.3 A strongly correlated local hybrid

Based upon Becke’s development of a real-space strong corrrelation model (B13+strgC)

[Sec.2.6], construction of a local hybrid functional with a strong correlation correction has
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been carried out. The general form of a typical local hybrid functional is given as

Elh
XC = Elh

X + Esl
dynC . (3.14)

The local hybrid exchange term is expressed as

ELh
X =

∑
σ=α,β

∫
[aσ(r)εexxX,σ(r) + (1− aσ(r))εslX,σ(r)]dr, (3.15)

and the quantity Esl
dynC represents any suitable semi-local correlation functional which

takes care of the dynamical correlation. The terms in the local hybrid exchange are the

semi-local exchange energy density εslX,σ(r), exact-exchange energy density εexxX,σ(r), and

aσ(r) is a suitable local mixing function (LMF). On reformulation of the local hybrid

exchange energy expression, we have

ELh
X = Eexx

X +
∑
σ=α,β

∫
[(1− aσ(r))(εslX,σ(r)− εexxX,σ(r))]dr, (3.16)

where the static correlation may be defined as

ELh
statC =

∑
σ=α,β

∫
[(1− aσ(r))(εslX,σ(r)− εexxX,σ(r))]dr. (3.17)

Formally the above static correlation term only includes parallel-spin contributions. Switch-

ing from spin-channel LMFs to common LMFs (which contains cross-spin terms) allows

to mimic better some of the opposite-spin static correlation. The formal static correlation

of local hybrids with common LMFs is given by

ELh
statC =

∫
[(1− a(r))

∑
σ=α,β

(εslX,σ(r)− εexxX,σ(r))]dr. (3.18)

On comparison with the B13 model, ELh
statC replaces EB05

statC , whereas a general Esl
dynC

replaces the particular semi-local EB88
dynC . The strong-correlation corrected local hybrid

functional is expressed as

ELh
XstrgC = Elh

XC + ∆ELh
strgC . (3.19)

The formulation of a strong-correlation correction is analogous to the B13 model, except

that the correlation contributions are not separated in the same fashion as in the B13

model. Moreover in the B13 model only potential energy contributions are employed.

Allowing different weights for the static and dynamic correlation energy densities, and
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after transformation of the potential energy density terms using the "adiabatic connection"

formula [22], the correction term is given by:

∆ELh
strgC =

N∑
n=2

c̃n

∫
x̃n(r)ε̃LhC (r)dr, (3.20)

where

x̃(r) =
εLhstatC(r)

εLhstatC(r) + dεsldynC(r)
, ε̃LhC (r) = εLhstatC(r) + dεsldynC(r), d =

astatC
adynC

, and c̃n =
cn

astatC
.

(3.21)

The above expression is the final form of a strong-correlation correction with two

parameters d and c̃n (needed to be optimised based on further studies).

3.3.1 Implementation details

The implementation of a strong-correlation correction for local hybrid functionals has been

carried out in a local version of the Turbomole program in post-SCF manner. Two new

sub-routines (for closed- and open-shell cases) have been added consisting of all the terms

needed for the strong-correlation correction. Detailed discussion on computations and

results with this type of functional are provided in Chapter 6.
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Chapter 4

Assessment of s-d Transfer

Energies for 3d-Transition-Metal

Atoms

s-d Transfer energies serve as a good benchmark for the XC approximations in DFT

[Sec.2.7]. Preliminary tests (post-SCF calculations) had been carried out using local hybrid

functionals with different local mixing functions (normal and spin-polarised) [93] as they

are expected to provide a reasonable balance between non-dynamical correlation and

minimisation of self-interaction errors. While post-SCF computations usually are not too

far from self-consistent ones, in the present case self-consistent (SCF) computations are

important as s-d transfer energies turn out to be very sensitive to the orbitals used. Therefore

SCF computations with local hybrids have been carried out on 3d-transition-metal atoms

for the excitation energies, using the formalisms discussed earlier [Sec.2.7]. Previously,

extensive studies have been carried out on the performance of B3LYP functional for the

excitation energies [23, 77, 87]. These studies suggest that the B3LYP reproduces the

qualitative features of experimental trends and also hint that for good estimation of s-d

transfer energies considerable amount of exact-exchange (EXX) is needed which can

provide a balanced description of s and d orbitals. Therefore computations have also been

carried out with the B3LYP functional for comparison purposes.

All computations have been carried out using local versions of Turbomole program

modified (TBM5.10 by Hilke Bahmann and Alexei Arbuznikov) for local hybrid imple-

mentations [91]. Results obtained using LDA based local hybrid functionals with different

LMFs such as t-LMF, s-LMF, r-LMF, and common t-LMF using a numerically evaluated
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potential are reported here [Sec.2.4.1]. Three different local hybrids,namely LRSR1,

LRSR2, and LRSR3 [Sec.2.4.2], constructed using a range-separated LSDA correlation

functional with partial self-interaction correction and common t-LMF have also been tested

[58]. In all these computations quadruple zeta valence plus polarization (QZVP) quality

basis sets have been used.

4.1 Furche-Perdew formalism

For the FP formalism, values of Mean signed errors (MSE) and mean average errors (MAE)

obtained for different functionals are tabulated (Tables 4.1 and 4.2). The experimental

values are corrected for relativistic effects [23, 80, 93] to allow comparison with the present

nonrelativistic computations (reference values).
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Atom Excitations Reference B3LYP t-LMF s-LMF r-LMF
Values (0.48) (0.22) (1.1275,0.01625)

Ca d0s2(1S) - d1s1(3D) 2.44 1.88 1.77 1.64 1.78
Sc d1s2(2D) - d2s1(4F ) 1.33 0.68 0.47 0.34 0.50
Ti d2s2(3F ) - d3s1(5F ) 0.69 0.22 -0.13 -0.28 -0.09
V d3s2(4F ) - d4s1(6D) 0.11 -0.16 -0.72 -0.85 -0.68
Cr d4s2(5D) - d5s1(7S) -1.17 -1.44 -2.05 -2.15 -1.97
Mn d5s2(6S) - d6s1(6D) 1.97 1.48 1.38 1.35 1.45
Fe d6s2(5D) - d7s1(5F ) 0.65 0.18 0.05 -0.15 0.13
Co d7s2(4F ) - d8s1(4F ) 0.17 -0.09 -0.32 -0.60 -0.16
Ni d8s2(3F ) - d9s1(3D) -0.33 -0.31 -0.72 -0.99 -0.48
Ni d9s1(3D) - d10(1S) 1.57 1.73 1.55 1.37 1.76
Cu d9s2(2D) - d10s1(2S) -1.85 -1.86 -2.25 -2.50 -1.94

MSE -0.30 -0.60 -0.76 -0.48
MAE 0.33 0.60 0.76 0.51

Table 4.1: s-d Transfer energies (eV) using the Furche-Perdew formalism. The experimental values
are corrected for relativistic effects. Here different local hybrid functionals are represented by the
LMFs with the values of LMF parameters in parenthesis.

Atom Excitations Reference common t-LMF LRSR1 LRSR2 LRSR3
Values (0.534)

Ca d0s2(1S) - d1s1(3D) 2.44 1.80 2.14 2.14 2.14
Sc d1s2(2D) - d2s1(4F ) 1.33 0.47 0.80 0.78 0.72
Ti d2s2(3F ) - d3s1(5F ) 0.69 -0.08 0.19 0.18 0.22
V d3s2(4F ) - d4s1(6D) 0.11 -0.66 -0.36 -0.30 -0.37
Cr d4s2(5D) - d5s1(7S) -1.17 -2.01 -1.78 -1.31 -1.43
Mn d5s2(6S) - d6s1(6D) 1.97 1.50 1.59 1.56 1.65
Fe d6s2(5D) - d7s1(5F ) 0.65 0.08 0.24 0.23 0.30
Co d7s2(4F ) - d8s1(4F ) 0.17 -0.22 -0.26 -0.27 -0.24
Ni d8s2(3F ) - d9s1(3D) -0.33 -0.59 -0.70 -0.69 -0.68
Ni d9s1(3D) - d10(1S) 1.57 1.69 1.52 1.50 1.53
Cu d9s2(2D) - d10s1(2S) -1.85 -2.16 -2.20 -2.20 -2.19

MSE -0.52 -0.40 -0.35 -0.35
MAE 0.54 0.40 0.35 0.35

Table 4.2: s-d Transfer energies (eV) using the Furche-Perdew formalism. The experimental values
are corrected for relativistic effects. LRSR1, LRSR2, and LRSR3 are three different local hybrids
constructed using the range-separated LSDA correlation functional and the common t-LMF.

The results obtained clearly show that B3LYP is the best performing functional among

the tested ones with MAE and MSE values -0.30 eV and 0.33 eV respectively. Studies on

the performance of B3LYP functional for the s-d transfer energies suggest that even though

errors are large, the experimental trends are remarkably well reproduced [87, 94, 95]. But

49



Assessment of s-d Transfer Energies for 3d-Transition-Metal Atoms

in the case of V and Co atoms, even the sign of computed excitation energies is predicted

to be opposite to that of the experimental ones. MSEs and MAEs obtained using different

local hxbrids are larger in comparison to the ones obtained with B3LYP functional. The

main source of errors for these functionals is the wrong prediction of the ground state in

Ti, V, and Co atoms. For other atoms such as Cr, Ni(3D − 1S), and Cu, the computed

values have the same sign as the experimental ones but suffer from overestimation (more

positive or more negative values than the experimental ones). The MSEs and MAEs

obtained using local hybrids with range-separated correlation functionals are very close in

magnitude to the B3LYP ones. Local hybrid functionals constructed with range-separated

LSDA correlation give much better values than B3LYP for cases such as Ca, Sc, Mn, Fe,

and Ni(3D − 1S). This could be due to the self-interaction reduction in the short-range

correlation which gives larger s and d orbital separations [23]. However in the case of

Ca, Sc, Mn, and Fe atoms for all the functionals considered, there is an underestimation

on an average of 0.5 eV. Also all the tested functionals fail to predict the correct ground

state for V and Co atoms. This could be mainly due to presence of several low-lying

states which needs very good simulation of non-dynamical correlation (NDC) by the XC

approximations. One approach of solving this problem is by performing computations

using local hybrids constructed with more advanced exchange and correlation functionals

[29] which are expected to be needed for proper handling of simulation of the NDC and

reduction in the SIE. There are also broken-symmetry approaches developed for suspect

multi-determinant states which are utilized for the s-d transfer energy computations and

discussed in detail below.

4.2 Broken-symmetry approaches

The functionals tested are the same as those tested for the Furche-Perdew formalism.

Full minimisation of the wavefunction has been carried out with C1 symmetry constraint.

In addition to the excitations considered for the Furche-Perdew formalism, five more

excitations involving the IMD states of Cr, Fe, Co, and Ni atoms have also been considered

(Table 4.3) [24]. Experimental values are corrected for the relativistic effects [80, 81, 96]

and the spin-orbit couplings are averaged out using the degeneracy-weighted formula [95].

Due to the relativistic correction the reference value of Ni(d8s2(3F )−d9s1(1D)) transition

differs (goes from 0.3 eV to -0.05 eV) from the one reported in ref.[24].
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Atom Excitations Reference Values
Ca d0s2(1S) - d1s1(3D) 2.42
Sc d1s2(2D) - d2s1(4F ) 1.30
Ti d2s2(3F ) - d3s1(5F ) 0.66
V d3s2(4D) - d4s1(6D) 0.07
Cr d4s2(5D) - d5s1(7S) -1.20
Cr d4s2(5D) - d5s1(5S) -0.27
Mn d6s2(4D) - d6s1(6D) 1.93
Fe d6s2(5D) - d7s1(5F ) 0.61
Fe d6s2(5D) - d7s1(3F ) 1.24
Co d7s2(4F ) - d8s1(4F ) 0.11
Co d7s2(4F ) - d8s1(2F ) 0.58
Ni d8s2(3F ) - d9s1(3D) -0.38
Ni d9s1(3D) - d10(1S) 1.49
Ni d8s2(3F ) - d9s1(1D) -0.05
Ni d9s1(1D) - d10(1S) 1.21
Cu d9s2(2D) - d10s1(2S) -1.90

Table 4.3: s-d Transfer energies (eV) for states including the IMD excitations. The reference values
are corrected for relativstic effects and the spin-orbit couplings are averaged out.

4.2.1 Variational method

Computations have been carried out for all the excitations given in Table 4.3. The list

also includes excitations involving the IMD states for the atoms Cr, Fe, Co, and Ni. For

verifying the lowest-energy solutions, calculations have been performed starting with

several different initial guesses. The excitation energies are tabulated below.
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Atom Excitations Reference B3LYP t-LMF s-LMF r-LMF
Values (0.48) (0.22) (1.1275,0.01625)

Ca d0s2(1S) - d1s1(3D) 2.42 1.91 1.67 1.64 1.68
Sc d1s2(2D) - d2s1(4F ) 1.30 0.73 0.52 0.34 0.33
Ti d2s2(3F ) - d3s1(5F ) 0.66 0.22 -0.13 -0.28 -0.09
V d3s2(4D) - d4s1(6D) 0.07 -0.22 -0.77 -0.85 -0.73
Cr d4s2(5D) - d5s1(7S) -1.20 -1.45 -2.04 -2.15 -1.97
Cr d4s2(5D) - d5s1(5S) -0.27 -0.66 -0.92 -0.98 -0.77
Mn d6s2(4D) - d6s1(6D) 1.93 1.51 1.39 1.35 1.45
Fe d6s2(5D) - d7s1(5F ) 0.61 0.27 0.02 -0.12 0.17
Fe d7s2(5D) - d7s1(3F ) 1.24 0.70 0.62 0.32 0.56
Co d7s2(4F ) - d8s1(4F ) 0.11 -0.09 -0.32 -0.60 -0.16
Co d8s2(2F ) - d8s1(4F ) 0.58 0.19 -0.20 -0.33 0.25
Ni d8s2(3F ) - d9s1(3D) -0.38 -0.39 -0.78 -0.94 -0.56
Ni d9s1(3D) - d10(1S) 1.49 1.82 1.62 1.77 1.84
Ni d8s2(3F ) - d9s1(1D) -0.05 -0.26 -0.62 -0.76 -0.38
Ni d9s1(1D) - d10(1S) 1.21 1.68 1.46 1.62 1.66
Cu d9s2(2D) - d10s1(2S) -1.90 -1.87 -2.22 -2.50 -1.95

MSE -0.23 -0.53 -0.64 -0.41
MAE 0.34 0.58 0.73 0.51

Table 4.4: s-d Transfer energies (eV) using the variational approach.The reference values are
corrected for relativistic effects and spin-orbit couplings are averaged out. Here different local
hybrid functionals are represented by the LMFs with the values of LMF parameters in parenthesis.
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Atom Excitations Reference common t-LMF LRSR1 LRSR2 LRSR3
Values (0.534)

Ca d0s2(1S) - d1s1(3D) 2.42 1.79 1.80 1.80 1.84
Sc d1s2(2D) - d2s1(4F ) 1.30 0.73 0.86 0.84 0.72
Ti d2s2(3F ) - d3s1(5F ) 0.66 0.11 0.19 0.18 0.22
V d3s2(4D) - d4s1(6D) 0.07 -0.49 -0.42 -0.43 -0.37
Cr d4s2(5D) - d5s1(7S) -1.20 -1.74 -1.69 -1.68 -1.63
Cr d4s2(5D) - d5s1(5S) -0.27 -0.80 -0.77 -0.79 -0.80
Mn d6s2(4D) - d6s1(6D) 1.93 1.46 1.59 1.56 1.62
Fe d6s2(5D) - d7s1(5F ) 0.61 0.24 0.25 0.30 0.30
Fe d7s2(5D) - d7s1(3F ) 1.24 0.73 0.50 0.50 0.53
Co d7s2(4F ) - d8s1(4F ) 0.11 -0.31 -0.26 -0.27 -0.24
Co d8s2(2F ) - d8s1(4F ) 0.58 -0.02 0.04 0.03 0.04
Ni d8s2(3F ) - d9s1(3D) -0.38 -0.79 -0.76 -0.76 -0.68
Ni d9s1(3D) - d10(1S) 1.49 1.54 1.58 1.57 1.53
Ni d8s2(3F ) - d9s1(1D) -0.05 -0.65 -0.62 -0.63 -0.62
Ni d9s1(1D) - d10(1S) 1.21 1.40 1.45 1.43 1.44
Cu d9s2(2D) - d10s1(2S) -1.90 -2.23 -2.20 -2.20 -2.19

MSE -0.43 -0.39 -0.40 -0.38
MAE 0.46 0.43 0.44 0.42

Table 4.5: s-d Transfer energies (eV) using the variational approach. The experimental values are
corrected for relativistic effects and the spin-orbit couplings are averaged out. LRSR1, LRSR2, and
LRSR3 are three different local hybrids constructed using the range-separated LSDA correlation
functional and the common t-LMF [ref. Sec.2.4.2.].

The results obtained are very similar to the Furche-Perdew formalism for all the excita-

tions involving NSD states. This is due to both methodologies having the same procedure

for the NSD states except for the symmetry difference (Oh VS C1) used for computations.

In case of excitations involving the IMD states, for the Cr atom all functionals yielded

significantly too negative values whereas in the case of the Fe-atom IMD states, the trend

is reversed. For the Co atom, B3LYP and the r-LMF values obtained are closer to the

experimental ones whereas the other functionals (t-LMF, s-LMF, and common t-LMF) give

values with opposite sign. In the case of Ni, local hybrids with range-separated functionals

and common t-LMF show better results than the B3LYP functional for the Ni((1D)− (1S))

excitation, but in the case of the Ni((3F )− (1D)) excitation B3LYP outperforms all other

functionals. Out of all possible excitations involving the IMD states, the Co atom is the

most complicated case (t-LMF, s-LMF, and the common t-LMF do not predict the correct

order of states). In general for the IMD states, the variational method gives results which

are farther from the experimental ones than the broken-symmetry methods discussed below.
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4.2.2 Weighted-average broken-symmetry approach (WABS)

For WABS calculations only those atoms with excitations involving IMD states have been

considered. Several computations have been carried out with different possibilities for both

the NSD and IMD states to ensure the lowest-energy solutions. The results are tabulated

below.

Atom Excitations Reference B3LYP t-LMF s-LMF r-LMF
Values (0.48) (0.22) (1.1275,0.01625)

Cr d4s2(5D) - d5s1(5S) -0.27 -0.51 -0.70 -0.62 -0.52
Fe d7s2(5D) - d7s1(3F ) 1.24 0.86 0.84 0.71 0.75
Co d8s2(2F ) - d8s1(4F ) 0.58 0.34 0.27 0.23 0.47
Ni d8s2(3F ) - d9s1(1D) -0.05 -0.12 -0.45 -0.54 -0.19
Ni d9s1(1D) - d10(1S) 1.21 1.55 1.28 1.42 1.46

MSE -0.12 -0.29 -0.30 -0.15
MAE 0.25 0.32 0.39 0.25

Table 4.6: s-d Transfer energies (eV) using the WABS method. The experimental values are
corrected for relativistic effects and the spin-orbit couplings are averaged out. Here different local
hybrid functionals are represented by the LMFs with the values of LMF parameters in parenthesis.

Atom Excitations Reference common t-LMF LRSR1 LRSR2 LRSR3
Values (0.534)

Cr d4s2(5D) - d5s1(5S) -0.27 -0.61 -0.64 -0.62 -0.63
Fe d7s2(5D) - d7s1(3F ) 1.24 0.99 0.67 0.67 0.69
Co d8s2(2F ) - d8s1(4F ) 0.58 0.17 0.20 0.20 0.19
Ni d8s2(3F ) - d9s1(1D) -0.05 -0.49 -0.48 -0.48 -0.51
Ni d9s1(1D) - d10(1S) 1.21 1.25 1.30 1.29 1.33

MSE -0.28 -0.33 -0.33 -0.33
MAE 0.30 0.37 0.36 0.38

Table 4.7: s-d Transfer energies (eV) using the WABS method.The reference values are corrected
for relativistic effects and the spin-orbit couplings are averaged out. LRSR1, LRSR2, and LRSR3
are three different local hybrids constructed using the range-separated LSDA correlation functional
and the common t-LMF [ref. Sec.2.4.2.].

The results obtained using the WABS formalism clearly show an improvement over

the variational method (comparing only with excitations involving the IMD states from

the variational method). The B3LYP and r-LMF functionals, exhibit the lowest MAEs

and MSEs, and all the other tested functionals also have the correct sign. That is, for the

Co-atom excitation, local hybrids with t-LMF, s-LMF, and common t-LMF exhibit change

in the order of states compared to the variational method. In case of the Ni excitations, the

trend is very similar to the variational method, but the values are improved.
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4.2.3 Reinterpreted broken-symmetry approach (RBS)

This approach is mainly important in the case of Fe, Co, and Ni atoms, due to different

orbitals for the NSD and PSCF states. In case of the Cr atom both the NSD and PSCF

states have the same set of orbitals. The results are tabulated below.

Atom Excitations Reference B3LYP t-LMF s-LMF r-LMF
Values (0.48) (0.22) (1.1275,0.01625)

Cr d4s2(5D) - d5s1(5S) -0.27 -0.52 -0.73 -0.62 -0.58
Fe d7s2(5D) - d7s1(3F ) 1.24 0.94 0.93 0.58 0.66
Co d8s2(2F ) - d8s1(4F ) 0.58 0.31 0.22 0.18 0.32
Ni d8s2(3F ) - d9s1(1D) -0.05 -0.20 -0.59 -0.74 -0.48
Ni d9s1(1D) - d10(1S) 1.21 1.63 1.42 1.65 1.75

MSE -0.11 -0.29 -0.33 -0.21
MAE 0.28 0.38 0.51 0.42

Table 4.8: s-d Transfer energies (eV) using the RBS method. The experimental values are corrected
for relativistic effects and the spin-orbit couplings are averaged out. Here different local hybrid
functionals are represented by the LMFs with the values of LMF parameters in parenthesis.

Atom Excitations Reference common t-LMF LRSR1 LRSR2 LRSR3
Values (0.534)

Cr d4s2(5D) - d5s1(5S) -0.27 -0.62 -0.66 -0.63 -0.64
Fe d7s2(5D) - d7s1(3F ) 1.24 0.86 0.71 0.70 0.68
Co d8s2(2F ) - d8s1(4F ) 0.58 0.13 0.16 0.14 0.13
Ni d8s2(3F ) - d9s1(1D) -0.05 -0.61 -0.59 -0.59 -0.60
Ni d9s1(1D) - d10(1S) 1.21 1.37 1.42 1.40 1.43

MSE -0.32 -0.33 -0.34 -0.34
MAE 0.38 0.42 0.41 0.43

Table 4.9: s-d Transfer energies (eV) using the RBS method. The experimental values are corrected
for relativistic effects and the spin-orbit couplings are averaged out. LRSR1, LRSR2, and LRSR3
are three different local hybrids constructed using the range-separated LSDA correlation functional
and the common t-LMF [ref. Sec.2.4.2.].

In this procedure, the excitation energies for Cr do not vary much from the WABS

results due to the presence of same set of orbitals for the NSD and PSCF states. In case

of Fe, the results do change, but very slightly (on the order of 0.05-0.1 eV) for all the

functionals due to energetically very close IMD and PSCF states for Fe. For the Co atom,

the results are underestimated in comparison to the WABS approach due to the energy

difference between the IMD and PSCF states. In the case of Ni, the excitation energies

are overestimated (more negative in case of d8s2(3F ) − d9s1(1D) and more positive in

case of d9s1(1D)− d10(1S) excitations) due to the slightly wider energy gap between the
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IMD and PSCF states. The reason for Co and Ni atomic states having a wide energy gap is

the spin-flip which creates PSCF states with very high energies. Studies by Truhlar and

co-workers [24] reported that certain functionals can increase the energy gap by 50-100

kcal/mol, and therefore broken-symmetry approaches should not applied to these kind of

systems.

4.3 Conclusions

The Furche-Perdew formalism invokes a complicated symmetry-constrained approach for

the balanced description of non-dynamical correlation for multi-determinantal states. In

this formalism the B3LYP performs somewhat better than the local hybrid functionals

studied here. However, the results obtained using local hybrids with range-separated

correlation (along with common t-LMF) are comparable to those of the B3LYP, due to

large EXX admixture. For atomic systems Ti, V, and Co, the Furche-Perdew formalism

fails to predict the correct order of the states due to their multi-determinantal ground state

character. For Ca, Sc, Mn, and Fe atom cases, all functionals tested using this formalism

underestimate these values by 0.5 eV on an average.

The variational method gives results very similar to the Furche-Perdew formalism for

excitations involving NSD states. Along with the B3LYP functional, good results have

been obtained using local hybrids with range-separated correlation functionals and the

common t-LMF. Similar to the Furche-Perdew formalism, the major discrepancies arise

in the case of the Co atom for all tested functionals (the sign of the excitation energies

is wrongly predicted). For the IMD excitations, the variational method gives values with

large errors.

Broken-symmetry approaches offer another way of dealing with the non-dynamical

correlations in multi-determinantal cases. In these approaches, for excitations involving

IMD states, results obtained using the WABS approach are better in comparison to the

variational approach. The values for the Fe atom excitations are still underestimated (0.3

eV). In case of Co, the results are very much improved and B3LYP predicts a value closer

to the experimental ones. Local hybrids with range-separated correlation perform better

than the B3LYP functional for the Ni(d9s1(1D)− d10(1S)) excitation.

Finally computations have been carried out using the RBS approach where an artificial
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state is obtained (denoted as PSCF) by flipping the spin of the singly occupied orbital in

the IMD state. This makes sure that both the IMD and PSCF states have the same orbitals.

The results obtained are very similar to the results from the WABS approach except for

Co and Ni, as expected due to the different orbitals involved. As explained above, the

RBS and the WABS methods have different orbitals for NSD states only for Fe and Co

cases. In this sense both methods are quite similar, except that the RBS is physically more

justified than the WABS. The above studies suggest that the RBS and WABS approaches

are very important for resolving broken-symmetry problems and should be applied for

appropriate cases. Also further development of local hybrids with more refined exchange

and correlation functionals [29] will be advantageous for the computation of s-d transfer

energies of the transition-metal atoms.
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Chapter 5

Evaluation of Fractional Charge

Behaviour for Local Hybrid

Functionals

The concept of fractional charges in DFT has been introduced to discuss the stepwise-

linearity of the total energy for the exact functional [Sec.2.5]. Fractional charges can

be observed in ensembles or open systems where electrons can be exchanged with the

environment [17, 18, 97]. Fractional charges in DFT provide an efficient assessment for

the delocalisation error of the XC functional. Delocalisation error is the tendency of the

XC functional to over delocalise the added charge resulting in the convex behavior of

the total energy. Such a delocalisation resulting in the convex behaviour corresponds to

the deviation from the stepwise-linearity of the energy. This is also related to the self-

interaction error (SIE), central to DFT with approximate XC functionals [12, 46, 98]. The

SIE for one-electron is defined exactly, but there is an ambiquity regarding its definition

for the many-electron case. A many-electron self-interaction free functional can be

understood as one which gives not only exact linearity of the total energy between integer

numbers but also accurate energies at the integer numbers [12, 66, 99]. The SIE of density

functionals is responsible for problems in the computation of band gaps, reaction barriers,

and charge-transfer excitation energies. The other exact condition related to stepwise-

linearity condition is the ionisation potential (IP) theorem [28, 74]. This states that the

highest occupied KS eigenvalue should be equal to the negative of the ionisation potential.

This requires the correct asymptotic behavior of the XC potential i.e. Vxc → −1
r

as r →∞.

Unfortunately, many density functional approximations do not satisfy the above mentioned
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conditions and these deficiencies are connected to common failures of density functional

approximations [67, 100, 101].

Previously, local hybrid functionals and range-separated local hybrids have been tested

for stepwise-linearity of the energy to assess delocalisation errors [102]. Performance of

these functionals for delocalisation errors (also referred to as integrated many-electron

self-interaction errors) has been found to be satisfactory. In this perspective, assessement

of other local hybrid functionals (constructed using common t-LMF and range-separated

correlation functionals [56–58]) for the stepwise-linearity of the ground state and its

extension to low-lying excited states have been carried out in this chapter. Implications

of stepwise-linearity on the fundamental band gap, derivative discontinuity, and the IP

theorem have already been explained [Sec.2.5]. For further assessment, studies related to

the fundamental band gaps computed using the energy differences (integer gap) and the

derivative differences (derivative gap) are also carried out. In the last section, validation of

the IP theorem is performed by studying the behaviour of frontier orbital energies with

regard to the fractional electron numbers [68, 103].

5.1 Tests of systems for fractional electron number

Computations have been carried out with fractional electron numbers for the assessment of

stepwise-linearity of the ground and lowest-energy excited states for different spin/spatial

symmetry. A local version of Turbomole program (modified for local hybrid implemen-

tations) have been used for carrying out all the computations [91, 104]. Atomic systems

like carbon, oxygen, vanadium, and copper have been considered for testing. The CH2

molecule (both the triplet and singlet states), which has been studied extensively using

highly correlated methods [67, 105], is also considered for testing. Local hybrid functionals

based on LSDA exchange and VWN correlations along with t-LMF (with LMF parameters

0.48, 0.70, and 1.0), s-LMF(0.22), r-LMF(1.1275,0.01625), and common t-LMF with

LMF parameter value 0.534 (denoted as com-t-LMF(0.534)) [Sec.2.4.1] have been tested.

Local hybrid functionals constructed using LSDA exchange and range-separated correla-

tion functional (denoted as LRSR1, LRSR2, LRSR3 depending on the parameters) along

with the common t-LMF have also been assessed [Sec.2.4.2]. Recently proposed self-

interaction-free local hybrid functional using Kümmel-LMF (denoted as z-LMF(1.6785)

in the Figures) along with the self-interaction corrected correlation functional also been as-
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sessed for fractional charge behaviour [Sec.3.2] [25]. Self-consistent (SCF) computations

have been performed (except in the case of local hybrid with z-LMF and self-interaction

corrected correlation [Sec.3.2]) using a numerical potential with no spherical symmetry

constraint. Basis sets aug-cc-pV5Z have been used in case of the atomic systems and the

QZVP (uncontracted) basis sets for the CH2 molecule. The energies for each system have

been computed by varying the electron number in steps of 0.1. Always the spin orbital

with highest energy (HOMO) is occupied fractionally [76]. For every tested functional, the

exact behaviour has been constructed by straight-line interpolation of the energy values

obtained at integer points. Deviations from the stepwise-linearity of energy for different

functionals have been plotted against the electron number of the system. The computational

procedure is elaborated using the carbon atom as test case.

5.1.1 Carbon

The ground-state electronic configuration is 1s22s22p2, corresponding to an open shell

triplet (3P ). C1 symmetry is used in all computations on the carbon atom. Starting with

the neutral carbon atom, the number of electrons is varied such that it results in an anionic

(2S) and a cationic (2P ) state. The plots for the ground-state energy difference versus the

electron number for different functionals are shown in Figures 5.1 and 5.2. The figures

clearly show that all the tested functionals exhibit almost a straight line behaviour going

from the electron number 5 to 6. From neutral atom to anion all density functionals shows

convex behaviour whereas the HF method displays concave behaviour.

Deviation values obtained are the true measure of delocalisation error for the tested

functionals. They are shown in Figures 5.3 and 5.4. The plots clearly show that local hybrid

with t-LMF(1.0) gives the minimum deviation from the exact behaviour. This is due to 100

exact-exchange admixture in the exchange energy which balances out the localisation and

delocalisation behaviours. As stated earlier HF shows the opposite behaviour to the DFT

functionals. There is also a clear trend of deviations getting lower as the average amount of

exact-exchange admixture increases. Usually the magnitude of deviations are larger in the

cationic part (even though they show almost straight line behaviour) in comparison with

the values for 6 to 7 due to large energy differences (magnitude of IP values are generally

greater than the EA values). Local hybrid functionals with t-LMF(0.70), s-LMF(0.22),

and the ones with range-separated correlation functional (LRSR1, LRSR2, LRSR3) give

deviations very close to each other (with the curves sometimes even overlapping). Among
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the functionals using range-separated correlation, LRSR3 is the one with low deviation

values due to the large prefactor for the t-LMF and full eliminination of self-interaction in

the short-range correlation functional [Sec.2.4.2].
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Figure 5.1: Electronic energies of carbon (3P ) versus electron number. The exact curve is based
on the experimental IP and EA values.
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Figure 5.2: Electronic energies of carbon (3P ) versus electron number. The exact curve is based
on the experimental IP and EA values.
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Figure 5.3: Deviation from the exact straight-line energy dependence with different functionals for
carbon (3P ). The values are computed assuming correct energies for a given functional at integer
values.
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In case of the carbon atom, the two unpaired electrons in 2p orbitals can spin-pair

giving rise to a low-lying singlet excited state (1D). Ionisation of this singlet (1D) results

in the doublet state cation (2P ) and addition of an electron will result in the formation of

a doublet anionic state (2S). Computations similar to the ground-state carbon (3P ) have

been carried out and the deviations from the exact behaviour are plotted in Figure.5.4.

Deviation plots for the singlet state also show a very similar trend to that of the triplet

case. The local hybrid functional with t-LMF(1.0) gives the smallest deviations followed

by t-LMF(0.70). Local hybrid functionals with range-separated correlation functionals

containing the self-interaction reduction in short-range correlation also show very good

results (among them minimum deviations by LRSR3 functional with full self-interaction

elimination in correlation functional). The z-LMF with self-interaction corrected corre-

lation also shows deviations closer to the local hybrids with range-separated correlation

functionals.
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Figure 5.4: Deviation from the exact straight-line energy dependence with different functionals for
carbon (1D). The values are computed assuming correct energies for a given functional at integer
values.
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5.1.2 Oxygen

The oxygen atom has a triplet (3P ) ground state and a low-lying singlet excited state (1D).

Removal of an electron from the triplet state results in a quartet state (4S) cation and from

the singlet state it results in a doublet-state (2D) cation. Addition of an electron to both

the singlet and triplet state results in a doublet-state (2P ) anion. Further addition of an

electron to the triplet ground state results in a singlet-state (1S) dianion with fully filled

2p-orbitals. For all computations C1 symmetry is used. Plots of deviations from the exact

straight-line behaviour for the triplet and singlet states are shown in Figures 5.5 and 5.6.

In the case of triplet, going from cation to neutral atom, the t-LMF(1.0) gives deviations

close to zero already approaching the numerical noise in the calculations. The z-LMF

shows deviations which are lower than the values for local hybrids with range-separated

correlation. From neutral atom to anion, the t-LMF with parameters 0.7 and 1 show less

deviations in comparison with the other tested functionals. In case of singlet excited-

state (1D), the qualitative trends are very much similar to the triplet ones with minimum

deviations given by local hybrids with the t-LMF(1.0) followed by z-LMF(1.6875) and

t-LMF(0.70) respectively.
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Figure 5.5: Deviation from the exact straight-line energy dependence with different functionals for
oxygen (3P ). The values are computed assuming correct energies for a given functional at integer
values.
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Figure 5.6: Deviation from the exact straight-line energy dependence with different functionals for
oxygen (1D). The values are computed assuming correct energies for a given functional at integer
values.
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5.1.3 Vanadium

The ground-state (4F ) has an electronic configuration [Ar]4s23d3 with several low-lying

electronially excited states. Therefore the low-lying state (6D) with an electronic config-

uration of [Ar]4s13d4 is also considered for computations. In case of the ground-state,

varying the electron number results in a cation (5F ), and an anion (5D). The low-lying

excited state (6D) can give rise to two different cationic as well as anionic states. Different

cationic states 3d4(5D) or 4s13d3(5F ) arise depending on the removal of electron from

either an 4s or 3d orbital. Similarly, addition of an electron to either a 4s or 3d orbital

results in the anionic states 4s23d4(5D) or 4s13d5(7S). In case of vanadium, all computa-

tions have been carried out using Oh symmetry. The results are shown in Figures 5.7 to

5.9. For the ground-state (4F ) going from the electron number 22 to 23, HF shows the

usual localisation error with deviation values close to zero. Surprisingly, the s-LMF(0.22)

gives almost similar deviations as the t-LMF(1.0 followed by the z-LMF(1.6875). For the

low-lying excited state (6D), Figure 5.8 shows deviations obtained by addition/removal

of 4s-electron and Figure 5.9 shows deviations obtained when an 3d-electron is added or

removed from the (6D) state.

Usually the magnitude of deviations is larger going from the cation to the neutral atom,

but here many functionals show larger deviations in the anionic part. This is mainly due to

functionals giving overestimated energy values for anions. In all these cases, the minimum

deviations are shown by either t-LMF(1.0) or z-LMF(1.6875) with interchanging curves.

The unclear trends for behaviour of different local hybrids are due to the many-electron

SIE with the 3d-electrons invovled. Specially, the asymmetric behaviour of z-LMF can be

due to the explicit inclusion of spin-polarisation which changes the functional behaviour

from nonlocal to purely local [99, 106].
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Figure 5.7: Deviation from the exact straight-line energy dependence with different functionals
for vanadium (4F ). The values are computed assuming correct energies for a given functional at
integer values.
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Figure 5.8: Deviation from the exact straight-line energy dependence with different functionals for
vanadium (6D). Here the cationic and anionic state configurations are 3d4(5D) and 4s23d4(5D)
respectively. The values are computed assuming correct energies for a given functional at integer
values.
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Figure 5.9: Deviation from the exact straight-line energy dependence with different functionals for
vanadium (6D). Here the cationic and anionic state configurations are 4s13d3(5F ) and 4s13d5(7S)
respectively. The values are computed assuming correct energies for a given functional at integer
values.
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5.1.4 Copper

The ground-state is a doublet (2S) with the electronic configuration [Ar]4s13d10. Copper

also has a low-lying doublet state (2D) with configuration [Ar]4s23d9. The doublet

ground-state on ionisation gives a singlet (1S) with 3d10 configuration. Addition of an

electron to the doublet-state results in the formation of a singlet (1S) with the configuration

[Ar]3d104s2. The low-lying excited state (2D) on ionisation results in a triplet state (3F )

with configuration [Ar]4s23d8 and upon electron addition gives a fully filled singlet state

(1S). Computations involving the copper atom have been performed using Oh symmetry.

The results are shown in Figures 5.10 to 5.11. For the ground-state (2S), the results clearly

show that the t-LMF(1.0) is the one with minimum deviation followed closely by the

t-LMF(0.70) and z-LMF(1.6875).

In case of low-lying doublet (2D) state, the best performing functional is z-LMF(1.6875)

followed closely by t-LMF(1.0). Addition of an electron to both the ground and low-lying

doublet states results in the same singlet (1S) state. Even then the tested functionals do not

show the same trend (the deviation values are larger for the excited state) due to different

set of orbitals getting filled fractionally i.e 4s or 3d orbitals respectively for ground and

excited states .
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Figure 5.10: Deviation from the exact straight-line energy dependence with different functionals
for copper (2S). The values are computed assuming correct energies for a given functional at
integer values.
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Figure 5.11: Deviation from the exact straight-line energy dependence with different functionals
for copper (2D). The values are computed assuming correct energies for a given functional at
integer values.

77



Evaluation of Fractional Charge Behaviour for Local Hybrid Functionals

5.1.5 The CH2 molecule

In case of the CH2 molecule, the two non-bonding electrons on the carbon atom can share

an a1 orbital forming a singlet (1-A1) state and a triplet (3-B1) state depending on the

occupation of the a1 and b1 orbitals. Both the singlet and triplet states on ionisation gives

the same cationic (2-A1) state and on electron addition gives the same anionic (2-B1)

state. The energy difference between these two states is very much dependent on the

structure (bond angle of H-C-H) [105]. Depending on the H-C-H bond angle, the highest

eigenvalue orbital for singlet and triplet can be any of these a1(α), b1(α), and a1(β) orbitals.

For simplifying the structural complications, geometry with H-C-H bond angle 131° has

been considered for both singlet and triplet cases. For the triplet (3-B1) state, fraction of

an electron is removed from the b1(α) orbital to form a cation and for anion formation the

fraction of an electron is added to a1(β) orbital. Similarly for the singlet case the fraction

of electron is removed from the a1(β) orbital for the cation case and for anion formation

electron is added to the b1(α) orbital. The results are shown in Figures 5.12 and 5.13.

In the case of triplet (3-B1), the t-LMF(1.0) shows minimum deviation with an os-

cillatory behaviour going from neutral molecule to anion. This could be due to the full

EXX admixture resulting in localisation rather than delocalisation. The deviation plots

for the singlet state (1-A1) clearly shows that t-LMF(1.0) has a minimum deviation fol-

lowed closely by t-LMF(0.7). Local hybrid functional with range-separated correlations

also show results closer to the t-LMF(0.7) for both the singlet and triplet states. For the

singlet state, deviations are very large for the z-LMF(1.6875) due to the overestimated

energy values in between integers (this is due to the numerical instabilities of post-SCF

computations and closely spaced orbital energies).
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Figure 5.12: Deviation from the exact straight-line energy dependence with different functionals
for CH2 (3-B1). The values are computed assuming correct energies for a given functional at
integer values.
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Figure 5.13: Deviation from the exact straight-line energy dependence with different functionals
for CH2 (1-A1).The values are computed assuming correct energies for a given functional at integer
values.
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Assessment of local hybrids for fractional electron number clearly show good estimates

for the delocalisation errors. But the above deviations from stepwise-linearity reveal

to a large extent only the one-electron SIE, which is a specific manifestation of many-

electron SIE. In this scenario, studies related to the fundamental band gaps, IPs, and EAs

computed using the energy differences and derivative differeneces with different local

hybrid functionals are carried out for greater understanding of the many-electron SIE

problem.

5.2 The fundamental band gap problem

The fundamental band gap of any system is given by the difference between the ionisation

potential (IP) and electron affinity (EA) [17, 27, 28, 67, 68, 103]. These two are related to

the fundamental processes of electron addition (EA) and removal (IP) which are themselves

computed as energy differences (referred to as the integer gap) [Eq.2.37]. The band gap

can also be computed as the derivative difference (derivative discontinuity at N0)between

left and right derivative of the energy at integer electron number. The expressions for the

left and right derivatives of the energy are given by,

δE

δN
N0−δ =

E(N0)− E(N0 − δ)
δ

= −IP,N0 − 1 < N ≤ N0, (5.1)

δE

δN
N0+δ =

E(N0 + δ)− E(N0)

δ
= −EA,N0 − 1 < N ≤ N0, (5.2)

This derivative difference can be expressed as the difference between the KS eigen-

values corresponding to the HOMO and LUMO. However, the above band gap lacks an

important contribution, derivative discontinuity expressed as the difference in the XC

potentials [Sec.2.5]. For exact functional the derivative gap and the integer gap should be

the same. Computations are carried out on carbon (3P ), oxygen (3P ), and the CH2 (3-B1)

molecule (basis sets and symmetry constraints remain the same as in tests for fractional

charge behaviour). For derivative difference computations, the value of δ chosen is 0.001

[103]. The results are tabulated below (Tables 5.1 to 5.3).
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Carbon (3P )
Eint IP EA Ederiv IP EA

HF 10.35 10.80 0.45 12.65 11.95 -0.71
PBE 9.94 11.54 1.60 0.53 6.10 5.58

B3LYP 10.16 11.46 1.30 3.06 7.25 4.20
t-LMF(0.48) 10.05 11.65 1.60 3.82 8.02 4.20
t-LMF(0.70) 10.11 11.63 1.52 6.05 8.90 2.85
t-LMF(1.0) 10.20 11.61 1.41 7.93 10.13 2.20

s-LMF(0.22) 10.08 11.60 1.52 3.76 7.62 3.86
r-LMF 10.05 11.61 1.60 3.28 7.73 4.45

com-t-LMF(0.534) 10.04 11.60 1.56 4.35 8.25 3.90
LRSR1 10.04 11.49 1.46 5.09 8.57 3.48
LRSR2 10.03 11.52 1.49 4.87 8.48 3.61
LRSR3 10.02 11.45 1.42 5.44 8.72 3.28

z-LMF(1.6875) 10.00 11.23 1.23 6.06 8.82 2.76
Expt. 10.00 11.26 1.26 10.00 11.26 1.26

Table 5.1: IP, EA, and the fundamental band gap values (in eV) using the energy differences and
derivative differences for carbon (3P ).

Oxygen (3P )
Eint IP EA Ederiv IP EA

HF 12.73 12.02 -0.71 16.55 14.19 -2.35
PBE 12.62 14.06 1.44 1.13 7.57 6.45

B3LYP 12.72 14.03 1.31 4.16 9.15 4.99
t-LMF(0.48) 12.51 13.89 1.37 6.36 10.52 4.16
t-LMF(0.70) 12.61 14.02 1.41 9.16 11.99 2.83
t-LMF(1.0) 12.81 13.82 1.01 13.01 14.05 1.04

s-LMF(0.22) 12.49 13.77 1.28 5.73 9.51 3.78
r-LMF 12.48 13.85 1.37 5.82 10.25 4.43

com-t-LMF(0.534) 12.51 14.01 1.50 5.49 10.05 4.56
LRSR1 12.44 13.80 1.36 6.30 10.36 4.06
LRSR2 12.43 13.84 1.41 6.04 10.25 4.22
LRSR3 12.38 13.69 1.31 6.67 10.49 3.82

z-LMF(1.6875) 12.75 13.45 0.70 8.81 10.71 1.90
Expt. 12.15 13.61 1.46 12.15 13.61 1.46

Table 5.2: IP, EA, and the fundamental band gap values (in eV) using the energy differences and
derivative differences for oxygen (3P ).

The band gaps computed using the energy differences are very close to the experimental

ones for all the tested functionals. In all the test cases, the IP values computed using

different functionals are very close to the experimental values. The EA values computed

are also in good agreement with the experimental ones except for the CH2 molecule, where

the values obtained are somewhat underestimated for all functionals.
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CH2 (3-B1)
Eint IP EA Ederiv IP EA

HF 11.25 9.72 -1.3 11.15 8.81 -2.35
PBE 10.46 10.59 0.13 5.74 9.07 3.33

B3LYP 10.28 10.38 0.10 6.73 9.34 2.61
t-LMF(0.48) 10.56 10.64 0.07 7.28 8.85 1.58
t-LMF(0.70) 10.64 10.60 -0.04 7.99 8.52 0.53
t-LMF(1.0) 10.76 10.41 -0.21 8.97 8.09 -0.88

s-LMF(0.22) 10.60 10.61 0.01 7.08 8.15 1.07
r-LMF 10.53 10.61 0.09 7.00 8.71 1.71

com-t-LMF(0.534) 10.29 10.53 0.24 7.38 9.61 2.23
LRSR1 10.24 10.41 0.17 7.61 9.58 1.96
LRSR2 10.24 10.37 0.13 7.55 9.60 2.06
LRSR3 10.25 10.45 0.20 7.73 9.57 1.85

z-LMF(1.6875) 10.40 10.23 -0.17 7.82 7.71 -0.11
Expt. 9.78 10.40 0.62 9.78 10.40 0.62

Table 5.3: IP, EA, and the fundamental band gap values (in eV) using the energy differences and
derivative differences for CH2 (3-B1).

Results obtained using the derivative differences approach are very poor in comparison

to the values obtained using energy differences for all test cases. Some of the local hybrid

functionals with r-LMF or s-LMF show appreciatively underestimated values for both the

IPs and EAs. The errors can be a rough estimate for the missing derivative discontinuity of

the approximate functional [Sec.2.5.3]. Local hybrids with t-LMF(0.7) and t-LMF(1.0)

IP exhibit values which are in reasonable agreement with the experimental ones. There

is a clear trend of IP and EA values obtained closer to the experimental as the amount of

EXX increases in the functional. Usually the derivative values for the EA are severely

underestimated or overestimated /off the mark in comparison to experimental ones, leading

to large errors in the band-gap calculations. In principle, fractional electron numbers

should only affect the frontier orbital energies (neglecting the orbital relaxations) [76, 107].

Therefore studies on the behaviour of frontier orbital energies versus the electron number

for different local hybrid functionals are presented in the next section (z-LMF has not been

assessed due to the post-SCF implementation).
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5.3 Frontier orbital energies versus electron number:

the IP theorem

In exact KS-DFT, the IP theorem states that the ionisation potential equals the exact KS

eigenvalue corresponding to the highest occupied molecular orbital of a system at N0, an

integer number of electrons [Sec.2.5]. The IP theorem is the DFT version of Koopmans’

theorem [71, 74, 108]. In general, Koopmans’ theorem for HF theory gives meaning to all

occupied and unoccupied orbitals whereas the IP theorem gives only precise meaning for

a single KS-eigenvalue, corresponding to the HOMO [27, 69, 109]. Studies carried out

by Wang and co-workers [68] show that the for the exact functional, the eigenvalue of the

lowest unoccupied molecular orbital (LUMO) in DFT is equal to the electron affinity (EA)

value. The stepwise-linearity condition of the energy implies that the following equations

hold

εf = εHOMO = −IP,N0 − 1 < N ≤ N0, (5.3)

εf = εLUMO = −EA,N0 ≤ N < N0 + 1. (5.4)

This jump in the orbital eigenvalues is connected to the discontinuity of the XC potential

[28, 67, 68].
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Figure 5.14: Frontier orbital energies of carbon (3P ) versus the electron number. All functionals
except for PBE clearly show the shift in eigenvalues on crossing the integer number.

Plots of the frontier orbital energies versus the electron number for carbon (3P ),
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Figure 5.15: Frontier orbital energies of oxygen (3P ) versus the electron number. All functionals
except for PBE clearly show the shift in eigenvalues on crossing the integer number.
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Figure 5.16: Frontier orbital energies of CH2 (3-B1) versus the electron number. All functionals
clearly show the shift in eigenvalues on crossing the integer number with HF giving more accurate
one.
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oxygen (3P ), and CH2 (3-B1) are shown in Figures 5.12 to 5.15, respectively. The

main observation of these studies is the jump in the orbital eigenvalues as they cross

the integer number of electrons and constancy of the orbital eigenvalues in between the

integers [27, 68]. All tested functionals, except for PBE (is almost continuous) exhibit the

necessary discontinuity in the eigenvalues on crossing the integer number of electrons,

more so with larger exact-exchange admixture. In all the test cases, the HF frontier orbital

energies decrease between integers with increase of fractional electron numbers, whereas

the DFT approximations mostly show an increase. The local hybrid with t-LMF(1.0) also

exhibits the best constancy between integer occupations. Local hybrid functionals with

range-separated correlation also exhibit a reasonable discontinuity but a nonnegligible

increase in the orbital eigenvalues in between integers. The situation is very similar for

t-LMF(0.7). These studies clearly indicate that for proper description of IPs and EAs

using orbital eigenvalues, a large amount of EXX admixture along with the discontinuity

contributions from the correlation part is necessary [25, 28, 110, 111].

5.4 Conclusions

An assessment of local hybrid functionals for the stepwise linearity of the ground and

low-lying excited states in atomic and molecular systems has been carried out. Apart from

several local hybrid functionals, standard functionals and methods such as the HF, PBE,

and B3LYP have also been used for comparison purposes. Further studies on the energy

derivatives and frontier-orbital eigenvalues have also been carried out for understanding

the many-electron self-interaction errors. Evaluations for the stepwise-linearity condition

clearly suggest that local hybrids do exhibit reduced delocalisation errors due to the

EXX admixtures, compared to standard DFAs. The results obtained clearly show that in

general the local hybrid with an unscaled t-LMF exhibits best performance in most of the

cases. This has to be seen in the context of inferior performance for thermochemistry,

compared to some of the other local hybrids with lower EXX admixture. Results obtained

using the z-LMF are in many cases comparable to the best performing functionals (with

some numerical noise possibily SCF computations could improve the results). Local

hybrids with range-separated correlation functionals (LRSR1, LRSR2, LRSR3) show

improved performance compared to the simplest early local hybrids, due to their larger

overall EXX admixture. Studies related to the computation of fundamental band gaps,
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IPs, and EAs using the energy and derivative differences also showed similar performance

for local hybrid functionals. Finally, studies on the behaviour of frontier orbital energy

eigenvalues versus fractional electron numbers (satisfaction of the IP theorem) clearly

show the missing discontinuity contributions (to what extent depends on the functional)

and the close relationship between SIE of the functionals and the orbital eigenvalues.
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Chapter 6

Evaluation of Static Correlation

Error for Local Hybrid Functionals

in Atoms

Assessment of local hybrid functionals for fractional spin behaviour is as relevant as the

evaluation of those for fractional charges. Fractional spins can arise in the case of systems

with near and absolute degeneracies, and may also be considered as ensembles of integer

spin-states. The exact condition of spin constancy has been established by Wang and

co-workers [20]. Deviation from this exact behaviour is know as static correlation error or

fractional spin error [Sec.2.5]. Fractional spins are very crucial in the simulation of non-

dynamical (also know as strong or static) correlation [112]. Within the single-determinant

KS scheme, proper treatment of strong correlations remains a challenging problem [100].

For this reason, many approaches have been proposed to incorporate the non-dynamical

correlation and extend the true KS-DFT beyond a single-determinant methodology [113–

117]. Quite recently, Becke proposed a density functional based on his B13 model with

strong-correlation correction for atoms [22, 26]. Construction of a local hybrid functional

based on this model along with strong-correlation corrections has already been discussed

[Sec.3.3]. In this chapter assessment of local hybrid functionals for static correlation errors

along with the detailed analysis of the results obtained are carried out.
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6.1 Performance of local hybrids for strong-correlation

test sets

One way of testing for strong correlation performance is to consider, for a given atom, if

the usual spin-polarised or free-atom (FA) configuration has the same energy as the spin-

depolarised atom configuration (SDP) [26]. Difference between the computed energies of

these configurations are a measure of the static correlation error [Sec.2.6]. Computations

have been performed using local hybrid functionals (LSDA based ones with common

t-LMF and range-separated correlation functional) with and without the strong-correlation

correction [Sec.3.3]. Errors are also obtained using standard methods such as the HF,

PBE, and B3LYP. All computations have been performed in a post-SCF (PSCF) manner

using the LSDA orbitals (for the convenience of comparison with results from B13 and

B13(XstrgC) models which used numerical post-LSDA) on open-shell atomic systems

from hydrogen (H) to fluorine (F) [22, 26]. Errors and mean absolute errors (MAE) (in

kcal/mol) are reported in Table 6.1. Intial tests have been carried out using only one

strong-correlation correction term with parameters c̃2 = 0.526 and d = 1.

Error values obtained for local hybrids are very close to the B13 values. Unfortu-

nately, performance of local hybrids with the strong-correlation corrections is very poor in

comparison to the B13 (XstrgC) model. In some test cases, for local hybrids with strong-

correlation correction, the error values are larger in magnitude due to underestimated

spin-depolarised (SDP) configuration energies (too negative). The B13 (XstrgC) model

included two strong-correlation correction terms, the second and third order giving almost

similar error values. Including the third order correction to local hybrids deteriorate the

results further (values are not shown in tables as in many cases unphysical total energies

have been obtained). In the local hybrid formalism, key ingredients for the simulation

of non-dynamical correlation are the exact-exchange and the semi-local exchange energy

densities [58]. The local hybrids used for Table 6.1 do not account for calibration of

exchange-energy densities and thus feature ill-defined non-dynamical correlation energy

terms. Therefore, in the following local hybrid functionals based on advanced exchange

and correlation functionals (GGA-based local hybrids), along with calibrated exchange-

energy densities have been utilised for the strong-correlation test sets as they can improve

the definition of non-dynamical correlation energy [29, 118]. In the next section, detailed

discussions on calibration of exchange-energy densities along with strong-correlation tests
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are carried out.

Table 6.1: Errors and mean absolute errors (MAE) obtained using different local hybrid functionals
for strong-correlation tests. The values for B13 and B13 (XstrgC) models are used for comparison.

H Li B C N O F MAE a

HF 90.6 36.3 69.0 185.6 354.4 252.1 129.6 159.7
PBE 25.7 6.7 11.5 34.1 71.9 73.4 9.7 33.3

B3LYP 33.7 9.9 21.6 60.6 121.0 41.7 32.6 45.9
B13 37.0 9.0 23.7 67.8 133.6 97.1 48.6 59.5
B13 2.4 -2.4 2.9 6.0 8.7 12.2 10.9 6.5

(XstrgC)
Lh-LSDA b 52.1 15.8 31.5 79.0 147.4 92.4 39.3 65.4

Lh-LSDA-SIR-SRc c 58.0 17.4 35.3 88.1 163.3 119.2 45.7 75.4
Lh-LSDA 101.7 -1.9 53.9 -5.9 -19.1 -9.5 -21.5 30.5
(XstrgC) d

Lh-LSDA-SIR-SRc 40.7 14.1 40.9 151.2 91.1 -436.1 -187.6 137.4
(XstrgC)

aValues in kcal/mol
bLh-LSDA: Eq.2.17 with common t-LMF and b = 0.534
cLh-LSDA-SIR-SRc: Eq.2.21 with range-separation scheme erfgau, µ = 0.8, λ = 1.0, and b = 0.713.
dXstrgC (strong-correlation correction): Eq.3.20 with c̃2 = 0.526 and d = 1
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6.2 Calibration of exchange-energy densities

The exchange-energy densities are not uniquely defined in DFT. Any non-vanishing

function which integrates to zero can alter the exchange-energy density while keeping the

integrated energy constant. In the case of local hybrid functionals, this is not the case due

to the local mixing function (LMF) which contributes to the integrated energy [29, 119].

The properties of the calibration function have been extensively studied along with their

effect on the energy functional [40, 120]. Calibration functions containing only semi-local

quantities may be obtained as divergence of a field, given by equation

Gσ = ∇.Fσ, (6.1)

where the expression for field Fσ is given by,

Fσ = f(sσ)ρ−1/3σ ∇ρσ. (6.2)

In the above expression the quantity sσ is the dimensionless density gradient (Eq.2.25)

and f(sσ), an appropriate damping function. The explicit form of the calibration function

is expressed as

Gσ = ρ−1/3σ {f ′
(sσ)sσ[

∇ρσ.∇|∇ρσ|
|∇ρσ|

− 4

3

|∇ρσ|2

ρσ
] + f(sσ)[∇2ρσ −

1

3

∇|∇ρσ|2

ρσ
]}. (6.3)

The calibration function with an appropriate damping function f(sσ), and its derivative

are expressed as

f(sσ) = sσ
p exp(−ηs2σ), (6.4)

f
′
(sσ) = f(sσ)(

p

sσ
− 2ηsσ), (6.5)

where p is the power factor and η is the Gaussian decay exponent. The formulation of

a GGA-based local hybrid with calibration function (CF) and common t-LMF

Elh−GGA−cG
XC =

∑
σ=α,β

∫ [
εexxX,σ(r) + (1− a(r))(εDFTX,σ (r)− εexxX,σ(r) + aX∆εGGAxX,σ + cGσ(r))

]
dr

+ELSDA
C + aC∆EGGAc

C ,

(6.6)
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where the quantities ∆εGGAxX,σ and ∆EGGAc
C are gradient corrections to exchange and cor-

relation, respectively, with coefficients aX and aC [29, 118, 119]. Based on the above

framework for local hybrids with GGA functionals and calibrated exchange-energy densi-

ties, three different functionals have been considered for testing. They are outlined as

1. Lh-LSDA-cG: Local hybrid with LSDA exchange and correlation along with cali-

bration function (Eq.6.7 with LMF parameter value b = 0.534, aX = 0, aC = 0, η = 0.096,

and c-parameter = -0.00493).

2. Lh-PBE-cG: Local hybrid with PBE exchange and correlation along with calibration

function (Eq.6.7 with LMF parameter value b = 0.455, aX = 1.0, aC = 1.0, η = 0.12, and

c-parameter = -0.00364).

3. Lh-BLYP-cG: Local hybrid with Becke (B88) exchange and Lee-Yang-Parr (LYP)

correlation along with calibration function (Eq.6.7 with LMF parameter value b = 0.404,

aX= 0.9, aC = 0.81, η = 0.096, and c-parameter = -0.00630).

Results obtained using calibrated local hybrids are reported in Table 6.2 (error values

in kcal/mol). Reduction in the static correlation error for these functionals can be expected

due to the better description of non-dynamical correlation energies by the calibrated

exchange-energy densities [29, 118]. Even then the error values for different calibrated

local hybrids with strong-correlation correction are enormous in comparison to the B13

(XstrgC) model [22, 26]. The main reason for these large errors could be due to the

spurious positive non-dynamical correlation (NDC) energy for atoms [121, 122]. For

identifying the problems related to strong-correlation correction, detailed studies on the

real-space grid quantities such as the non-dynamical and total correlation energy densities,

strong-correlation parameter x̃(r), and the integrated non-dynamical correlation (NDC)

energies, are carried out on the test atoms.
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H Li B C N O F MAE
B13 37.0 9.0 23.7 67.8 133.8 97.1 48.6 59.5
B13 2.4 -2.4 2.9 6.0 8.7 12.2 10.9 6.5

(XstrgC)
Lh-LSDA-cG 52.1 17.0 34.5 85.4 158.3 100.3 43.8 70.2
Lh-LSDA-cG 101.7 -14.1 40.9 151.1 191.6 363.2 334.2 190.2

(XstrgC)
Lh-PBE-cG 52.4 7.4 32.2 79.4 147.6 70.5 41.7 61.6
Lh-PBE-cG 59.1 -12.7 24.8 57.9 110.5 173.9 138.7 78.9

(XstrgC)
Lh-BLYP-cG 32.6 -5.6 32.6 79.7 145.9 93.9 41.1 60.1
Lh-BLYP-cG 46.4 11.7 36.7 61.3 183.5 122.6 190.2 93.2

(XstrgC)
Table 6.2: Errors and mean absolute errors (MAE) obtained using advanced local hybrid functionals
(GGA-based) with calibrated exchange-energy densities for strong-correlation tests. All the values
are in kcal/mol.

6.3 Studies related to the non-dynamical correlation

(NDC) energies of test-atoms

For understanding the shortcomings related to the local hybrids with strong-correlation

correction, the integrated NDC energy contributions to the total energy for each test

atom (both FA and SDP cases) have been computed using advanced functionals with and

without calibrated exchange-energy densities. The results are shown in Tables 6.3 and

6.4. In case of free-atom (FA) configurations, the integrated NDC energy contributions are

mostly positive for local hybrids with or without calibration function (except for oxygen

and fluorine atoms: Lh-PBE-cG functional shows negative values). The values obtained

for functionals with calibration are always lower than the one including the calibration

function. For spin-depolarised (SDP) configurations, integrated NDC energy contributions

are negative in all the test-atoms cases for Lh-PBE, Lh-PBE-cG, Lh-BLYP, and Lh-BLYP-

cG functionals (Lh-LSDA and Lh-LSDA-cG show all positive values). The values become

more negative in those cases where the calibration function has been included. These

studies clearly indicate that the inclusion of calibration function for exchange-energy

densities reduces significantly the positive non-dynamical correlation energy contributions.

Notably, however, the spurious positive NDC energies for LSDA-based local hybrids

are so large that calibration cannot correct for this very much. This is due to the generally
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underestimated exchange energies at LSDA level.

Functional H Li B C
FA SDP FA SDP FA SDP FA SDP

Lh-LSDA 12.28 -15.12 71.86 57.60 155.06 121.27 200.26 103.59
Lh-LSDA-cG 12.28 -15.12 68.55 53.89 143.87 108.66 185.51 85.74

Lh-PBE 1.77 -30.81 6.94 -9.88 13.13 -25.15 13.38 -90.36
Lh-PBE-cG 1.77 -30.81 5.17 -11.33 8.62 -30.44 5.55 -99.07
Lh-BLYP 2.12 -33.67 9.54 -7.46 19.40 -17.57 23.39 -84.07

Lh-BLYP-cG 2.12 -33.67 5.93 -13.15 4.50 -32.25 9.38 -93.73
Table 6.3: Integrated NDC energy contributions to the total energy (in kcal/mol) for first-row
atoms: both free-atom (FA) and spin-depolarised (SDP) cases.

Functional N O F
FA SDP FA SDP FA SDP

Lh-LSDA 247.87 59.54 296.25 145.55 343.47 255.82
Lh-LSDA-cG 229.60 35.18 275.23 118.12 316.46 225.64

Lh-PBE 16.21 -186.26 8.85 -150.08 6.72 -89.66
Lh-PBE-cG 6.14 -198.61 -2.06 -165.03 -15.86 -107.63
Lh-BLYP 27.96 -180.27 22.71 -140.21 17.84 -75.52

Lh-BLYP-cG 13.48 -204.58 8.88 -162.53 3.69 -93.54
Table 6.4: Integrated NDC energy contributions to the total energy in (kcal/mol) for first-row
atoms: both free-atom (FA) and spin-depolarised (SDP) cases.

The main reason for the shortcomings of the local hybrids with strong-correlation

correction is not the positive value of integrated NDC energies itself, but rather the positive

NDC energy densities in certain regions of space. The dimensionless strong-correlation

parameter x̃(r), being ratio of NDC energy-density to the sum of the NDC and dynamical

correlation energy-densities, must interpolate smoothly between weakly-correlated to

strongly-correlated cases (i.e. values from 0 to 1 in certain regions of space) [22, 26].

Divergences occur in the strong-correlation parameter (x̃(r) does not smoothly interpolate

between 0 to 1) in regions of space where the value of total correlation energy-density is

close to 0 (sum of the NDC and dynamical correlation energy-densities). This behaviour

is clearly visible in the plots (Figure 6.1) for the strong-correlation parameter x̃(r) value

along the grid points studied for the carbon atom (both FA and SDP configurations).
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Figure 6.1: Strong-correlation parameter x̃(r) value along the grid points for the carbon atom.
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6.4 Conclusions

The values obtained for static correlation errors using local hybrids (LSDA based ones)

along with strong-correlation correction (only to second order) are not satisfactory in

comparison to that of the B13 (XstrgC) model. Advanced local hybrids (GGA-based)

with calibrated exchange-energy densities along with strong-correlation correction have

also been tested as they provide an improved definition for the non-dynamical correlation

energy. Even with these calibrated local hybrid functionals the desired results have not

been obtained. For a deeper understanding of problems related to the strong-correlation

correction model, integrated NDC energy contributions to the total energy for test-atoms

have been analysed. Further investigation into the real-space quantities such as the total

correlation energy densities, and strong-correlation parameter x̃(r), reveal the divergences

(strong-correlation parameter x̃(r) not being bound within 0 to 1) in the model due to

spurious positive NDC energy densities. The positive sign of NDC energy density is a

fundamental problem which requires more precise methodology and deeper understanding

for the simulation of non-dynamic/static correlation in KS-DFT. Therefore the construction

of a strong-correlation parameter x̃(r) which interpolates smoothly from uncorrelated to

strongly correlated i.e with values in the range [0, 1] in real space, is highly necessary for

the development of strongly-correlated local hybrid functionals based on the ideas of the

B13(XstrgC) model.
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Chapter 7

Summary and Outlook

The main scope of this work has been the assessment of local hybrid functionals for

fundamental properties of the exact functional. The stepwise linearity of the energy for

ground and low-lying excited states, the IP theorem, and the spin-constancy conditions

have been assessed using different local hybrid functionals. Key understandings have been

obtained regarding the failures of local hybrid functionals upon assessment for the above

properties.

The fractional-charge behaviour of different local hybrid functionals (including local

hybrids with range-separated correlation functionals along with common t-LMF) have

been evaluated for the assessement of self-interaction errors (both one- and many- electron

SIE). The Kümmel-LMF (denoted as z-LMF) along with one-electron self-interaction

elimination in the correlation part (implemented in a post-SCF manner) also been assessed

for the stepwise-linearity behaviour. Closer investigation of the results clearly indicate that

the local hybrids with 100 exact-exchange admixture (EXX) (t-LMF(1.0)) show minimum

deviation from the stepwise-linearity. Detailed studies on the results obtained for IPs, EAs,

and the band gap values using the energy and their derivatives differences reiterated similar

trends to that of fractional charge behaviour. Assessment of the IP theorem clearly shows

that the local hybrid functionals possess the desired derivative discontinuity but lack the

required amount of correlation contribution, thereby resulting in errors.

Fractional spins play a very crucial role in understanding the static correlation error.

Based on the ideas of Becke’s B13 (XstrgC) strong-correlation model, translated into

the local hybrid framework, local hybrids with strong-correlation correction have been

implemented in a post-SCF manner. Evaluation of static correlation errors for local
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hybrid functionals have been carried out using strong-correlation test sets. Local hybrids

(LSDA based with common t-LMF and range-separated correlation functionals) gave

error values very similar to that of global hybrids (B3LYP). Upon inclusion of strong-

correlation correction (only to second order), obtained results did not show any significant

improvement and even deteriorated in many cases. Even GGA-based local hybrids with

calibrated exchange-energy densities along with strong-correlation correction also did not

provide the desired results. The main reason for the failures are positive static correlation

energy densities leading to divergences in the strong-correlation model (x̃(r) parameter

being ratio of static correlation to the total correlation energy-densities is not within [0,1]

range). This points towards future improvements of local hybrids needed as basis for

strong-correlation models.

Computation of s-d transfer energies for 3d-metal atoms using different local hybrid

functionals gave good estimates of the self-interaction errors and problems with an inaccu-

rate description of non-dynamical correlation. Within the Furche-Perdew (FP) formalism,

local hybrids with range-separated correlation functionals (along with common t-LMF)

produced results which are comparable to those of the B3LYP. Major discrepancies arose

in case of atoms such as Ti, V, and Co, due to the failure of formalism to predict the

correct order of the states which are multi-determinantal in character. Broken-symmetry

approaches namely, the weighted average broken symmetry (WABS) and the re-interpreted

broken symmetry (RBS) approaches have been used for the cases involving inherently

multi-determinantal (IMD) states in the Cr, Fe, Co, and Ni atoms. For the IMD excitations,

results obtained using the WABS and the RBS approaches for local hybrids were found to

be very similar. Local hybrids with range-separated correlation functionals showed better

performance than B3LYP for some excitations involving IMD states.

Development of XC funtionals satisfying the exact conditions is highly desirable for the

simulation of systems of interest in chemistry and condensed-matter physics. Fallacies of

DFT methodology in regard to the strongly correlated systems, Mott insulators, and band

gaps in general, are related to the violation of exact functional properties by the density

functionals. Fulfilment of stepwise-linearity of total energy (related to many-electron

self-interaction error) without any explicit corrections to the local hybrid functionals is

highly appealing (ensuring that the developed local hybrids do exhibit the desired derivative

discontinuity). This would in turn be very beneficial, as such local hybrids can retain the

previous advantages and also have better applicability for wider range of properties. It
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is expected that improved local mixing functions including suitable ingredients, as well

as the proper calibration of the employed exchange-energy densities, will provide the

necessary improvements. Satisfaction of the IP theorem is also an important condition

which dictate the performance of XC functional for several electronic properties. While a

number of local hybrids have now been tested for exact conditions and s-d transfer energies

of 3d-metal atoms, such tests should also be performed for the coming generations of

functionals, in particular when suitable, advanced calibration functions are used, e.g. the

most recent ones based on successive partial integration steps. Finally, the successful

construction of strongly-correlated local hybrid functionals will be of great importance for

solving the static correlation (strong correlation) problem in DFT.
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