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Abstract 

Prediction of tool wear is essential to maintaining the quality and integrity of machined parts and minimizing 

material waste, for sustainable manufacturing. Past research has investigated deterministic models such as 

the Taylor tool life model and its variations for tool wear prediction. Due to the inherent stochastic nature of 

tool wear and varying operating conditions, the accuracy of such deterministic methods has shown to be 

limited. This paper presents a stochastic approach to tool wear prediction, based on the particle filter. The 

technique integrates physics-based tool wear model with measured data to establish a framework, by 

iteratively updating the tool wear model with force and vibration data measured during the machining process, 

following the Bayesian updating scheme. Effectiveness of the developed method is demonstrated through tool 

wear experiments using a ball nose tungsten carbide cutter in a CNC milling machine. 
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1 INTRODUCTION 

Advances in modern sustainable manufacturing have led to 

better product quality, increased flexibility and productivity [1-

3]. Generally, such benefits are dependent on trouble-free 

operations of the various machine elements [4]. In machining 

industry, 20% of downtime is attributed to tool failures [5]. 

Therefore, tool condition monitoring and life prediction plays 

an important role in resulting improving machine productivity, 

maintaining the quality and integrity of the machined part, 

minimizing material waste, and reducing cost for sustainable 

manufacturing. 

Numerous efforts have been made to develop methods for 

tool condition monitoring and life prediction techniques during 

the past two decades [6, 7]. One common approach to 

assess the machining performance is tool wear/life analysis 

[8]. The relationship between tool life and cutting speed can 

be described by physics-based model, such as the Taylor 

tool life equation [9] and its variations [8], for a selected 

cutting speed. However, the parameters in Taylor tool life 

equation are usually described using deterministic values. 

Therefore, they cannot capture the stochastic properties of 

real machining process and tool-to-tool performance 

variation. On the other hand, its effectiveness is also limited 

on a particular combination of tool and workpiece.  

Increasing demand for system reliability has accelerated the 

integration of sensors into the manufacturing system for 

timely acquisition of the working status of machining tools. A 

general approach is to measure the process parameters that 

are indirectly correlated to the tool performance, such as 

cutting force [10], tool vibration [11], and acoustic emissions 

[12], spindle power [13], etc., then transforms these indirect 

measurements into models for condition and performance 

monitoring [14]. Different models have been developed and 

evaluated for tool wear analysis. For example, a continuous 

hidden Markov model is investigated using the vibration 

measurements for tool wear monitoring [15], An adaptive 

fuzzy neural network and wavelet transform are applied to 

tool wear condition monitoring [16]. A comprehensive review 

on neural network for tool wear monitoring is discussed in 

[17]. In [18], a multi-sensor fusion model for tool condition 

monitoring was developed based on different pattern 

classifiers (e.g., support vector machine, multilayer 

perceptron neural network, radial basis function neural 

network), and analysis results showed that the performance 

of support vector machine outperformed other two 

techniques. These above models are categorized as data 

driven approach. Such model may be accurate for short time 

prediction, but introduce high variation in long-term 

prediction. On the other hand, data driven approach requires 

a substantial amount of historical data to train the model, and 

obtaining the required run-to-failure data is typically a costly 

and time consuming process.  

To tackle this problem, this paper presents a tool life 

prediction method based on Bayesian inference to update the 

physics-based model with online data measurements. The 

parameters in physics-based model are described using 

probability distribution to incorporate the stochastic property 

of machining process into the model. A particle filter based 

recursive filtering scheme is investigated to estimate the 

model parameters and tool state based on data 

measurements for tool life prediction. Tool wear test data 

from ball nose cutters in a CNC machines are analyzed to 

evaluate the presented method. 

The rest of the paper is constructed as follows. After 

introducing the theoretical background knowledge of particle 

filter in Section 2, details of the particle filter based tool life 

prediction model is discussed in Section 3. The selection of 

system model and measurement model based on wear 

growth model and feature extraction/selection is also 

discussed respectively. The effectiveness of the technique is 

experimentally demonstrated in Section 4, based on run-to-

failure data acquired using a ball nose tungsten carbide cutter 
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in a CNC milling machine. Finally, conclusions are drawn in 

Section 5. 

   

2 PARTICLE FILTER 

Particle filter, as one of the sequential Monte Carlo 

techniques, has been widely studied in applications involving 

high nonlinearities and/or non-Gaussianity. Such cases are 

difficult to model based on Kalman filter or its variations [19]. 

Particle filter is a recursive numerical method based on the 

Bayesian inference, where the posterior probability density 

function of a state is represented by a set of random samples 

(named particles) with associated weights [20].  

Considering a nonlinear dynamical system, it can be modeled 

as: 

1 1( , )k k k kx f x u   (1) 

where k is the time index, xk is the base state, fk is the 

nonlinear function of state xk-1, and  μk-1 is the sequence of 

process noise. The objective of prediction is to recursively 

estimate the state xk from measurements zk. The 

measurement model can be described as: 

( , )k k k kz h x v  (2) 

where hk is a nonlinear function representing the relation 

between measurements and state. νk is the sequence of 

measurement noise. Given the measurements z1:k are 

available, the belief p(xk|z1:k) of state xk can be calculated 

based on Bayesian theory through prediction and updating. 

Given the probability density function p(xk-1|zk-1) and 

measurements z1:k-1 at time k-1, the probability density 

function p(xk|zk-1) at time k can be predicted via Chapman-

Kolmogorov equation [20]. 

1: 1 1 1 1: 1 1( | ) ( | ) ( | )k k k k k k kp x z p x x p x z dx       (3) 

here, p(xk|xk-1) = p(xk|xk-1, z1:k-1) which is described in Eq. (1) 

for a first order Markov process. When the measurement zk 

becomes available at time k, the probability density function 

p(xk|z1:k) can be updated through Bayes’ rule. 

1: 1
1:

1: 1

( | ) ( | )
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p z z




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where the likelihood function p(zk|xk) is described in 

measurement model, zk can be used to tune the prior density 

to obtain the posterior density of current state [20]. p(zk|zk-1) is 

the normalizing constant which is calculated as: 

1: 1 1: 1( | ) ( | ) ( | )k k k k k k kp z z p z x p x z dx    (5) 

The above operations describe the recursive Bayesian 

approach for posterior density. However, posterior density 

usually cannot be determined analytically since the analytical 

solution in intractable. To address it, particle filter present an 

approach to approximate the posterior density as [20]: 

0: 1: 0: 0:

1

( | ) ( )
sN

i i

k k k k k

i

p x z x x 


   (6) 

where δ(*) is the Dirac delta function, {
0: , 0,...,i

k sx i N } is the 

random samples with associated weights i

k , Ns is the total 

number of the random samples. k is the time index, i is the 

index number of random samples. There are mainly two 

steps in particle filter method as shown in Figure 1. 

Sequential importance sampling, as the first step, is used to 

approximate the probability distribution since the target 

distribution is usually difficult to obtain directly.  In the first 

step, a number of particles are drawn to represent the 

importance distribution function. The importance weight of 

each particle is calculated accordingly to correct the 

importance distribution function.  Sequential importance 

sampling helps reducing the number of samples required to 

approximate the posterior probability distributions, thus 

increasing the computational efficiency of particle filter. To 

avoid degeneracy of importance weights over time, 

sequential importance resampling as the second step is 

usually performed. The particles are resampled from 

importance distribution with associated normalized 

importance weights. Those particles with a very small weight 

are eliminated, while those particles with high weights are 

duplicated. 

 

: Particles : Eliminated particles

Drawn particles

i = 1, 2, …, Ns

Compute importance weight

Resampling

Move particles

Prediction results

Figure 1. Visualization of sequential importance sampling and 
resampling. 

 

3 TOOL LIFE PREDICTION FRAMEWORK 

The tool life presents stochastic property due to many 

factors, such as different material property and tool-to-tool 

variations. On the other hand, the parameters associated with 

deterministic physics-based models are usually obtained 

from laboratory test, thus could be different from those in 

service due to different operating conditions. In such case, 

The parameters can be described in probability distribution to 

incorporate the stochastic property of too life prediction into 

the model. Particle filter can be applied to estimate both 

system state and model parameters. Hence, a particle filter 

based tool life prediction framework is formulated as shown in 

Figure 2.  Two different types of measurements was used 

including direct measurements (direct indicator of tool wear 

severity, e.g., wear width) and indirect measurements 

(indirect indicator of tool wear severity, e.g., vibration, cutting 

force, etc.). Indirect measurements are acquired online for 

tool condition monitoring, while indirect measurements are 

obtained offline for evaluating the performance of presented 

method. The details of the presented method are discussed 

as follows. 
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Figure 2: Framework of tool life prediction. 

 

3.1 System model 

System model is needed to describe system’s state evolving 

behavior which could not be measured through online 

sensing. For Tool life prediction, wear width could be the 

indicator of wear severity.  In [21], it showed the relationship 

between the wear rate and the changes of applied load. It can 

be expressed as:  

m

c
d Z N V

dt H
   (7) 

where H is the hardness of the softer in the pair of tool and 

work piece. Z represents the wear coefficient depending upon 

the materials and temperatures in contact. Vc is the velocity 

of rubbing, m is a constant depending on the nature of the 

layer removed, N denotes the normal load on surface [22]. 

Normal load can be considered as proportional to the wear 

width [21], which as be approximated as wear width ν. In tool 

life prediction, it is usually difficult to estimate these 

coefficients. To circumvent the problem, an empirical model 

is developed by representing the defect dimension as spall 

area x [4]: 

md C
dt

    (8) 

Here, the model parameters C and m need to be determined. 

The model can be rewritten in the form of a state transition 

function: 

1

1 1 1
km

k k k kC dt  

     (9) 

The model parameters mk-1, Ck-1 as well as damage state νk 

are estimated and updated using particle filter, based on 

measurement model. 

 

3.2 Measurement model 

During the tool wear process, the actual wear width is 

generally unknown without interrupting the machining 

operation. On the other hand, the data analysis of vibration 

and cutting force has been widely employed for tool condition 

monitoring and remaining life prediction, since tool wear 

propagation can be well reflected by its vibration and cutting 

force. However, due to the typically low signal to noise ratio, it 

is difficult to model the relationship between raw data and tool 

wear width (denoted by measurement function hk in Eq. 2). 

To tackle the problem, feature extraction is performed to 

reduce the data dimensionality without losing the information 

of tool wear signature. The relationship between extracted 

feature and defect size is expected to be modeled using a 

simple function.  

Different features from the time and frequency domains could 

be extracted. Based on prior studies [23], statistical features 

are more sensitive to the tool wear. Eight different statistical 

features from vibration and force data are extracted including 

mean value, root mean square (RMS), variance, maximum 

value, crest factor (CF), Kurtosis, peak to average ratio 

(P/AR), skewness as summarized in Table 1. Different 

features represent different information about tool conditions. 

For example, RMS is a measure for the magnitude of a 

varying quantity. It is also related with the energy of the 

signal. Skewness is used to characterize the degree of signal 

asymmetry of the distribution around its mean, and Kurtosis 

indicates the spikiness of the signal.  

Generally, it is difficult to determine which feature is more 

sensitive to tool conditions. A good feature should present 

consistent trend with defect propagation. In this study, 

Pearson Correlation coefficient is adopted to select features. 

Pearson correlation coefficient is a statistical measure of 

independence of two or more random variables which is 

defined as: 

2 2

( )( )

( ) ( )

i i

i

i i

i i

x x z z

PCC
x x z z

 


 



 
 (10) 

where x is the actual wear width, z is the extracted feature. 

The feature with highest correlation coefficient is selected as 

the one of interest.     

Table 1: Summary of extracted features 

Features Expression 

Mean value 
1

1
N

i

i

X x
N





   

RMS 
2 2 2

1 2(( ) / )RMS NX sqrt x x x N   
 

Variance 
2

var
1 ( )i

N

X x X
N



   

Maximum max( )M iX x  

CF /F M RMSC X x  

Kurtosis  
41 ( ) /KURT i

N

X x
N

     

P/AR /PAR MX X X


  

Skewness  
3

1 i
SKEW

N

x
X

N


 


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4 EXPERIMENTAL STUDY 

4.1 Experimental setup 

To experimentally analyze the performance of the developed 

particle filter-based tool life prediction method, a set of tool 

wear test data measured from a high speed CNC machine 

(Roders Tech RFM760) while performing drying milling is 

analyzed [14]. The spindle speed was 10,400 rpm. A two-flute 

ball nose tungsten carbide cutter was tested to mill a 

workpiece of stainless steel (HRC52) in down milling 

operations. The feed rate was set as 1,555 mm/min. The 

workpiece has been pre-processed to remove the original 

skin layer containing hard particles. A Kistler quartz 3-

component platform dynamometer was mounted between the 

workpiece and machining table to measure the cutting forces. 

In addition, three Kistler piezo accelerometers were mounted 

on the workpiece to measure the machine tool vibrations 

during the cutting process, in the  x-, y-, and z- directions, 

respectively [14]. Figure 3 shows a diagram of the 

experimental setup.  
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CNC Milling Machine
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Tool Wear

Charge 
Amplifier
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BNC Cable
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x

yz

Vx Vy Vz

Fx Fy Fz

 

Figure 3. Schematic diagram of experimental setup. 

During tool wear test, force and vibration data in three 

directions (x, y, z) was recorded at the sampling frequency 12 

kHz using NI PCI1200 data acquisition and was then saved in 

a computer. The flank wear of each individual tooth was 

measured by a LEICA MZ12 microscope after finishing each 

surface (cutting depth 0.2 mm). A total of 300 data files were 

collected to record the tool wear process. The features 

discussed in Table 1 were computed and extracted from 

force and vibrations signals in these 300 data files to 

construct the measurement model. Figure 4 shows the 

extracted normalized features from force signal in the y-

direction, and measured normalized flank wear. From these 

features, a saw-tooth-like behavior is identified, which can be 

attributed to the switching of the cutting layers during the 

machining experiments. Such switching operation is modeled 

as measurement noise in the measurement model. Next, 

Pearson correlation coefficient between each feature and 

actual wear was calculated as shown in Table 2.  

The mean of force signal in the y-direction was selected to 

construct the measurement model, since it has the highest 

correlation coefficient (0.959). To study the effect of fusing 

multiple features to possibly improve the correlation, feature 

fusion based on the Principal Component Analysis (PCA) 

was also performed in this study, and a correlation coefficient 

of 0.956 with the tool wear length was obtained. Since this 

value is lower than 0.959, the mean force in the y-direction 

was selected to construct the measurement model. 

Table 2: Correlations between the extracted features and 

actual tool wear length 

 Force Vibration 

 X Y Z X Y Z 

Mean  0.885 0.959 0.942 0.943 0.936 0.955 
RMS 0.878 0.949 0.942 0.942 0.936 0.956 

Variance 0.911 0.944 0.943 0.937 0.935 0.947 
Maximum 0.928 0.912 0.947 0.934 0.928 0.949 

CF 0.707 0.799 0.599 0.892 0.868 0.897 
Kurtosis 0.182 0.703 0.514 0.655 0.527 0.582 

P/AR 0.414 0.880 0.662 0.432 0.539 0.591 
Skewness 0.106 0.766 0.494 0.690 0.555 0.666 

 

The measurement model is given as: 

k k kz x v   (11) 

where zk represents the extracted feature, e.g. mean value of 

force signal in y-direction, xk denotes the system state, 

characterized by tool wear width. vk is the measurement 

noise. 

In the system model, a tool wear growth model is needed by 

taking into consideration the model parameters as a 

probabilistic distribution. In this study, the model parameters 

C and m shown in Eq. 9 are modeled as uniform 

distributions. Based on the tool wear growth model (denoted 

by Eq. 9) and measurement model (denoted by Eq. 11), 

particle filter is performed to predict the tool wear growth. 

Figure 5 shows the low-term (45 steps ahead) prediction 

result using particle filter. It is found that the median of 

predicted tool wear width is close to follow the trend of actual 

wear width of tool. The maximum error between the median 

of predicted tool wear width and the actual wear width is 

around 5%, thus confirming the effectiveness of presented 

method for long-term tool life prediction. 
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Figure 4. Extracted features from force sensor in y-direction. 

5 CONCLUSIONS 

Prediction of tool life is an integral part in achieving 

sustainable manufacturing by improving a machine system’s 

overall reliability, thus requires comprehensive and 

systematic study. This paper presents a particle filter-based 

tool life prediction framework. A physical-based tool wear rate 

model is chosen as the system model, which described the 

governing physics of the tool wear process. The mean value 

from force signal is selected as the feature of interest to 

construct the measurement model, based on the correlation 
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criterion. The performance of the developed method is 

demonstrated b using wear tests of ball nose tungsten 

carbide cutters in a CNC milling machine, and good result 

has been received. A broad range of experiments will be 

performed as future studies to investigate the robustness of 

the particle filter based method, under different operating 

conditions.  
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Figure 5. Predicted tool wear using particle filter. 
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