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Abstract—Movie violent content detection e.g., for providing
automated youth protection services is a valuable video content
analysis functionality. Choosing discriminative features for the
representation of video segments is a key issue in designing
violence detection algorithms. In this paper, we employ mid-level
audio features which are based on a Bag-of-Audio Words (BoAW)
method using Mel-Frequency Cepstral Coefficients (MFCC).
BoAW representations are constructed with two different meth-
ods, namely the vector quantization-based (VQ-based) method
and the sparse coding-based (SC-based) method. We choose two-
class support vector machines (SVMs) for classifying video shots
as (non-)violent. Our experimental results on detecting violent
video shots in Hollywood movies show that the mid-level audio
features provide promising results. Additionally, we establish
that the SC-based method outperforms the VQ-based one. More
importantly, the SC-based method outperforms the unimodal
submissions in the MediaEval Violent Scenes Detection (VSD)
task except one visual-based method in terms of average precision.

I. INTRODUCTION

Equipments including DVB set top boxes (terrestrial, cable
or satellite), Tablet PCs, high-speed Internet access or digital
media-streaming devices are now part of the facilities usually
found in the home of many families. Therefore, accessing
online movies through services such as Video-On-Demand has
become extremely easy. Children are, consequently, exposed
to movies, documentaries, or reality shows which have not
necessarily been checked by parents, and which potentially
comprise inappropriate content.

One of these inappropriate contents is violence whose
harmful effect, especially on children has been shown by
psychological studies (e.g., [1]]). Therefore, there is a need
for automatically detecting violent scenes in videos, where
the legal age ratings are not available. Defining the term
“violence”, when applied to characterize movies, is a hard task
and subjective (i.e., person-dependent). In our work, we aim
at sticking to the common definition of violence: “physical
violence or accident resulting in human injury or pain” which
is the definition of “violence” in the MediaEval VSD task [2].

Representing movie segments is an important step in the
task of movie violent content detection as in any pattern recog-
nition task. Existing works for video content understanding
construct higher level representations from the low-level ones
in order to model the relationship between low-level features
and high-level human perception of videos [3]. However,
high-level semantics are difficult to derive and state-of-the-
art detectors are far from perfect. Therefore, using mid-level
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representations may help modeling video segments one step
closer to human perception. Among the plurality of mid-level
representations, bags of features, spatial pyramids, and the
upper units of convolutional networks or deep belief networks
are the popular examples of mid-level representations [4].

The aim of this paper is to investigate the discrimina-
tive power of mid-level audio features which are BoAW
representations based on MFCC and constructed with two
different methods (i.e., VQ-based and SC-based) for modeling
violence in Hollywood movies. We show that promising results
are obtained by both methods, while the SC-based method
performs slightly better than the VQ-based one.

The paper is organized as follows. Section [[I] explores
the recent developments and reviews methods which have
been proposed to detect violence in movies. In Section [III}
we introduce our method for violent content detection. We
provide and discuss evaluation results on Hollywood movies in
Section Finally, we present concluding remarks and future
directions to expand our current approach in Section [V]

II. RELATED WORK

In this section, we briefly discuss methods which are audio
based or audio-visual based for violent content detection in
videos with an emphasis on the audio analysis part of the
discussed methods.

In [5)], Giannakopoulos et al. define violent scenes as
those containing shots, explosions, fights and screams, whereas
non-violent content corresponds to audio segments containing
music and speech. Frame-level audio features both from the
time and the frequency domain such as energy entropy, short
time energy, zero crossing rate, spectral flux and roll-off are
employed. Polynomial SVM is used as the classifier. The
main issue of this work is that audio signals are assumed
to have already been segmented into semantically meaningful
non-overlapping pieces (i.e., shots, explosions, fights, screams,
music, speech). In order to overcome this audio segmentation
issue, we segment audio signal using the visual shots of movies
in our work.

The most common type of approach used violent content
detection in videos is fusing audio and visual cues at either
feature- or decision-level. Wang et al. [6] apply Multiple
Instance Learning (MIL) (MI-SVM [7]) using color, textual
and MFCC features. Video scenes are divided into video shots,
where each scene is formulated as a bag and each shot as an
instance inside the bag for MIL. Color and texture features



are used for the visual representation of video shots, while
MFCC is used for the audio representation. More specifically,
mean, variance and first-order differential of each dimension of
MFCC are employed for the audio representation. As observed
from their results [6]], using color and textural information in
addition to MFCC slightly improves the performance.

Giannakopoulos et al. [8], in an attempt to extend their
approach based solely on audio cues [5], propose to use a
multi-modal two-stage approach. In the first step, they perform
audio and visual analysis of segments of one second duration.
In the audio analysis part, audio features such as energy
entropy, ZCR, MFCC are extracted and the mean and standard
deviation of these features are used to classify scenes into
one of seven classes (violent ones including shots, fights and
screams). In the visual analysis part, average motion, motion
variance and average motion of individuals appearing in a
scene are used to classify segments as having either high or
low activity. The classifications obtained in this first step are
then used to train a k-NN classifier.

In [9], a three-stage method is proposed. In the first stage,
the authors apply a semi-supervised cross-feature learning
algorithm [10] on the extracted audio-visual features such as
motion activity, ZCR, MFCC, pitch, thythm features for the
selection of candidate violent video shots. In the second stage,
high-level audio events (e.g., screaming, gun shots, explosions)
are detected via SVM training for each audio event. In the third
stage, the outputs of the classifiers generated in the previous
two stages are linearly weighted for final decision. The method
was only evaluated on action movies. However, violent content
can be present in movies of all genres (e.g., drama). The
performance of this method in genres other than action is,
therefore, unclear.

Lin et al. [11]] train separate classifiers for audio and
visual analysis and combine these classifiers by co-training.
Probabilistic latent semantic analysis is applied in the audio
classification part. Spectrum power, brightness, bandwidth,
pitch, MFCC, spectrum flux, ZCR and harmonicity prominence
features are extracted. An audio vocabulary is subsequently
constructed by k-means clustering. Audio clips of one sec-
ond length are represented by the audio vocabulary. This
method also constructs mid-level audio representations with a
technique derived from text analysis. However, this approach
presents the drawback of only constructing a dictionary of
twenty audio words, which prevents having a precise repre-
sentation of the audio signals of video shots. In the visual
classification part, the degree of violence of a video shot is
determined by using motion intensity, the (non-)existence of
flame, explosion and blood appearing in the video shot. This
method was also evaluated only on action movies. Therefore,
the performance of this solution in genres other than action is
uncertain.

To summarize, MFCC is proven to be effective in video
content analysis. The following two points define possibilities
for improvement. First, the video violent content analysis
methods that employ MFCC to represent video segments
mostly use low-level features such as mean and standard
deviation based on MFCC. Second, some problems exist
concerning the construction of mid-level audio representations
as in [1L1]. In our current framework, we only exploit the audio
modality of videos to detect violent segments, since sound

effects are essential elements which film-makers make use of
in order to stimulate people’s perception. Our approach differs
from the aforementioned works in the following aspects: (1)
we stick to a broad definition of ‘“violence” [12], (2) we
evaluate our approach on a diverse benchmarking dataset
[2] (i.e., not a restricted dataset which contains only action
movies), (3) we construct mid-level audio representations by
a BoAW approach with two different coding schemes (i.e.,
vector quantization and sparse coding), and (4) we show that
these mid-level audio representations provide promising results
and the sparse coding-based BOAW method outperforms the
unimodal submissions in the MediaEval VSD task except one
visual-based method in terms of average precision.

III. THE VIOLENCE DETECTION METHOD

The representation of video shots and the learning of a
violence model are the two main components of the method
which we discuss in detail in the following two subsections.

A. Representation of Videos

Among the plurality of audio features, MFCC features
are shown to be indicators of the excitement level of video
segments [13]. Therefore, we employ these features as low-
level audio features. For the representation of video shots,
we use mid-level audio features based on MFCC (i.e., BOAW
approach). We apply the BoAW approach with two different
coding schemes, namely vector quantization-based (VQ-based)
and sparse coding-based (SC-based). The feature extraction
process is illustrated in Figure [T[a).

1) Audio Representation by Vector Quantization: The con-
struction of the VQ-based audio dictionary is illustrated in
Figure We follow an unsupervised way of constructing
the audio dictionary. First, we cluster MFCC feature vectors
extracted from video shots with a k-means clustering, in which
the centroid of each of the k clusters is treated as an audio
word. For the dictionary construction, we sampled 400 x k
MEFCC feature vectors from the training data (this figure has
experimentally given satisfactory results).

Once an audio vocabulary of size k (k = 1000 in this work)
is built, each MFCC feature is assigned to the closest audio
word in terms of Euclidean distance. Subsequently, a histogram
is computed for each video shot extracted from movies in the
training dataset and the related video shot is represented by a
BoAW histogram representing the audio word occurrences.

2) Audio Representation by Sparse Coding: The construc-
tion of the SC-based audio dictionary is also illustrated in Fig-
ure 2] We employ the dictionary learning technique presented
in [[14]]. The advantage of this technique is its scalability to very
large datasets with millions of training samples which makes
the technique well suited for our work. In order to learn the
dictionary of size k (k = 1000 in this work) for sparse coding,
200 x k MFCC feature vectors are sampled from the training
data (this figure has experimentally given satisfactory results).
In the coding phase, we construct the sparse representations
of audio signals by using the LARS algorithm [15]. Given
an audio signal and a dictionary, the LARS algorithm returns
sparse representations for MFCC feature vectors. In order to
generate the final sparse representation of video shots which
are a set of MFCC feature vectors, we apply the max-pooling
technique.
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Fig. 1. (a) The generation process of vector quantization-based (VQ-based) and sparse coding-based (SC-based) audio representations for video shots of movies.

(b) The learning phase of the method.

B. Violence Detection Model

We train a pair of two-class SVMs in order to learn
violence models. One SVM model is constructed using VQ-
based audio features, and the other model is constructed
using SC-based audio features. In the learning step, the main
issue to deal with is the problem of imbalanced data. In the
training dataset, the number of non-violent video shots is
much higher than the number of violent ones. This results
in the learned boundary being too proximate to the violent
instances. Consequently, the SVM shows the tendency to
classify every sample as non-violent. Different strategies to
“push” this decision boundary towards the non-violent samples
exist. Although more sophisticated methods dealing with the
imbalanced data issue have been proposed in the literature (see
[16] for a comprehensive survey), we choose to perform ran-
dom undersampling to balance the number of violent and non-
violent samples in the current framework. The undersampling
method which was proposed by Akbani et al. [17] appears
to be particularly adapted to the application context of our
work. In [17], different under- and oversampling strategies
are compared on 10 different UCI datasetsﬂ According to the
results, SVM with undersampling strategy provides the most
significant performance gain over standard two-class SVMs.
In addition, the efficiency of the training process is improved
as a result of the reduced training data and, hence, is scalable
to large datasets comparable to the ones used in the context
of our work.

Uhttp://archive.ics.uci.edu/ml/

IV. PERFORMANCE EVALUATION

The experiments presented in this section aim at comparing
the discriminative power of VQ- and SC-based mid-level
audio representations for the detection of violent content in
movies. We also compare our method with a baseline method
provided by the MediaEval VSD task organizers [2] and the
methods in the MediaEval VSD task which also stick to the
same violence definition. Approaches discussed in Section
follow a different definition of “violence” such that a direct
comparison could be misleading.

A. Dataset and Ground Truth

The dataset consists of 32.708 video shots from 18 Hol-
lywood movies of different genres (ranging from extremely
violent movies to movies without violence), where each video
shot is labeled as violent or non-violent. The dataset is divided
into a training set consisting of 26.138 video shots from
15 movies and a test set consisting of 6.570 video shots
from the remaining 3 movies. Table || summarizes the main
characteristics of the dataset in more detail. The movies of
the training and test set were selected in such a manner that
both training and test data contain movies of variable violence
levels (extreme to none).

The ground truth for the dataset was generated by 7 human
assessors. Violent movie segments are annotated at the frame
level (i.e., violent segments are defined by their starting and
ending frame numbers). In the dataset, automatically generated
shot boundaries with their corresponding key frames are also
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TABLE 1. THE CHARACTERISTICS OF TRAINING AND TEST DATASETS
(THE NUMBER OF MOVIES AND VIDEO SHOTS, THE NUMBER AND
PERCENTAGE OF VIOLENT AND NON-VIOLENT VIDEO SHOTS)

Dataset Movies Shots Violent Non-violent

Train 15 26.138 | 3.201 (12.25%) | 22.937 (87.75%)
Test 3 6.570 715 (10.88%) 5.855 (89.12%)
Whole 18 327708 | 3.916 (11.97%) | 28.792 (88.03%)

provided for each movie. A detailed description of the dataset
and the ground truth are given in [12].

B. Experimental Setup

We employed the MIR Toolbox v1.4E| to extract the 13-
dimensional MFCC features. Frame sizes of 40 ms without
overlap are used to align with the 25-fps video frames. The
features are extracted as explained in Section

We employed the SPAMS toolboxﬂ in order to compute
sparse codes which are used for the generation of SC-based
mid-level audio representations.

We trained the two-class SVMs with a Radial Basis Func-
tion (RBF) kernel using libsvnﬂ as the SVM implementation.
Training was performed using audio features extracted at the
video shot level. More specifically, we trained one SVM using
VQ-based mid-level audio features and another SVM using
SC-based mid-level audio features as input. SVM parameters

Zhttps://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/
mirtoolbox

Shttp://spams-devel.gforge.inria.fr/
Ahttp://www.csie.ntu.edu.tw/~cjlin/libsvmm/

were optimized by 5-fold cross-validation on the training data.
Our approach was evaluated using a training-test split. In
order to account for the problem of imbalanced training data,
we performed undersampling by choosing random non-violent
samples.

C. Evaluation

Precision and recall are metrics based on the results
obtained for the whole list of video shots of the movies.
Metrics other than precision and recall are, however, required
to compare the performance of the VQ- and SC-based mid-
level representations, since the ranking of violent shots is
more important for our use case (i.e., providing a ranked list
of violent video shots to the user). As evaluation metrics,
therefore, we used average precision at 20 and 100 which are
also official metrics used in the MediaEval VSD task and R-
precision which can be seen as an alternative to the precision
at k metric in information retrieval. The values 20 and 100
for the computation of average precision at k are reasonable,
since a user will only have a look at the video shots that are
presented in the first few pages of the returned list.

D. Results and Discussions

Table [MI] reports the average precision at 100 values for
the baseline method (i.e., random classification) and for our
approach based on VQ- and SC-based mid-level audio repre-
sentations. In Table [l Dead Poets Society is a movie in the
test dataset having the lowest number of violent video shots
(approximately 2% of all video shots within the movie). Fight
Club is a movie in the test dataset having more violent video
shots compared to Dead Poets Society (around 13% of all
video shots). Independence Day is a movie having the most
violent video shots in the test dataset (around 14.5% of all
video shots). The results show that significant improvement is
achieved with our approach compared to the baseline method
in terms of average precision at 100.

TABLE II. AVERAGE PRECISION AT 100 FOR THE BASELINE AND OUR
MID-LEVEL AUDIO METHODS (VQ: VECTOR QUANTIZATION, SC: SPARSE
CODING)

Movie Baseline VQ-based Audio SC-based Audio
Dead Poets Society 2.17% 15.6% 13.1%
Fight Club 13.27% 29.2% 41.03%
Independence Day 13.98% 72.2% 79.1%

Although currently we only exploit the audio and disregard
the visual modality of videos to detect violent segments, the
method where we represent video shots with VQ-based mid-
level audio features (VQ-based Audio in Table @) manages to
be in the top 35% of the methods in the MediaEval VSD task.
The other method where we represent video shots with SC-
based mid-level audio features (SC-based Audio in Table |H[)
manages to be in the top 30% of the methods in the MediaEval
VSD task. In addition, the SC-based Audio method (SC-based
Audio in Table [[), among approaches making use of only one
modality (unimodal, i.e., either audio or visual taken alone),
ranks second among 16 other unimodal submissions in the
MediaEval VSD task in terms of average precision. Table [IT]]
provides a comparison of our approach with the best run of
participating teams in the MediaEval VSD task.
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TABLE III.

AVERAGE PRECISION (AP) AT 100 FOR THE BEST RUN OF TEAMS IN THE MEDIAEVAL VSD TASK AND OUR METHODS (VQ: VECTOR

QUANTIZATION, SC: SPARSE CODING, SIFT: SCALE INVARIANT FEATURES TRANSFORM, STIP: SPATIAL-TEMPORAL INTEREST POINTS)

Team Features Modality Method APat100
ARF Color, texture, audio and concepts audio-visual | Multi-layer perceptron 0.651
Shanghai-Hongkong trajectory-based features, SIFT, STIP, MFCC audio-visual | SVM with chi-squared kernel + temporal smoothing 0.624
TEC color, motion, acoustic audio-visual | Bayesian network with temporal integration post-processing | 0.618
TUM Acoustic energy and spectral, color, texture, optical flow | audio-visual SVM with linear kernel 0.484
SC-based Audio (ours) BoAW with sparse coding audio SVM with RBF kernel 0.444
VQ-based Audio (ours) BoAW with vector quantization audio SVM with RBF kernel 0.387
LIG-MRIM color, texture, bag of SIFT and MFCC audio-visual | Fusion of SVMs and k-NNs with conceptual feedback 0.314
NII Visual concepts learned from color and texture visual SVM with RBF kernel (with chi-square distance) 0.308
DYNI-LSIS Multi-scale local binary pattern visual SVM with linear kernel 0.125

Table[[V]shows average precision (at 20 and 100) as well as
R-precision for both SVMs with VQ- and SC-based mid-level
audio features. From the results in Table [[V] we observe that
the SC-based mid-level representation provides more precise
detections.

TABLE IV. AVERAGE PRECISION (AP) AT K (K =20 AND 100) AND

R-PRECISION (RP) ON THE TEST DATASET

Method
VQ-based Audio
SC-based Audio

APat20
0.489
0.537

RPat20
0.445
0.483

APati00
0.387
0.444

RPat100
0.355
0.366

In order to assess the performance of our VQ- and SC-
based method in more detail, we also investigated the average
precision at k (k = 20 and 100) and R-precision values for
each movie in the test dataset. In Table [V] these values are
presented for Independence Day in the test set. We observe
that both the SC-based method and the VQ-based one performs
well, which demonstrates the potential of the mid-level audio
representations.

TABLE V. AVERAGE PRECISION (AP) AT K (K = 20 AND 100) AND

R-PRECISION (RP) ON Independence Day

Method APat20
VQ-based Audio 1
SC-based Audio 0.938

RPat20
0.907
0.925

APat100
0.722
0.791

RPat100
0.616
0.712

Table [VI| presents the average precision at 20 and at
100 and the corresponding R-precision values for Dead Poets
Society. The VQ-based method leads to slightly better results
in terms of precision on this movie.

TABLE VI. AVERAGE PRECISION (AP) AT K (K = 20 AND 100) AND

R-PRECISION (RP) ON Dead Poets Society

Method
VQ-based Audio
SC-based Audio

APat20 | RPat20 | APat100 | RPat100
0.230 0.156 0.156 0.156
0.148 0.1 0.13 0.1

In Table we provide the average precision at 20 and
at 100 and the related R-precision values for Fight Club.
Contrary to the results in Table [VI] the VQ-based method is
outperformed by the SC-based one.

TABLE VII. AVERAGE PRECISION (AP) AT K (K =20 AND 100) AND
R-PRECISION (RP) ON Fight Club
Method APat20 RPat20 APat100 RPat100
VQ-based Audio 0.237 0.273 0.282 0.292
SC-based Audio 0.523 0.427 0.41 0.288

An illustration of the situations where our method performs
well and the situations where it fails is provided in Figure[3|and
Figure ] respectively. These samples and their corresponding

results demonstrate that our method is able to suitably detect
violent content such as fights (e.g., Figure [3(a) showing the
keyframe of a man being dragged on the floor by another
man and yelling loudly) and disasters with explosions (e.g.,
Figure [3[b) showing the keyframe of an explosion inside
a building). Video shots which contain no excitement, e.g.,
containing a man giving a speech (Figure [3{c)) or strong music
in the background (Figure [3[(d)) are also easily classified as
non-violent.

On the other hand, the method wrongly classifies a video
shot as violent when the video shot contains very strong sounds
or exciting moments such as a plane taking off (Figure f{a)) or
loud ringing bells (Figure Ekb)). The most challenging violent
video shots to be detected are the ones which are “violent”
according to the definition of violence within the MediaEval
VSD task, but actually only contain actions such as self-
injuries, or other moderate actions such as an actor pushing or
hitting slightly another actor (e.g., Figure [f{d)). Our method is
also unable to detect violent video shots which are “violent”
according to the definition of violence, but which contain no
audio cues exploitable for the identification of violence (e.g.,
Figure fc) showing the keyframe of a man bleeding).

Fig. 3. The keyframes of sample video shots from the test dataset which are
correctly classified. Frame (a) represents a man being dragged and yelling (true
positive), (b) an explosion inside a building (true positive), (c) a man giving
a speech (true negative) and (d) strong background music (true negative)

One significant point which can be inferred from the
overall results is that the average precision variation of the
proposed method is high for movies of varying violence levels.
Additionally, the method performs better when the violence
level of a movie is higher. The difference between the results
obtained from Fight Club and Independence Day in the test
set (Tables [V] and is most probably due to the nature
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Fig. 4. The keyframes of sample video shots from the test dataset which are
wrongly classified. Frame (a) represents a plane taking off (false positive) (b)
loud ringing bells (false positive) (c) a man bleeding (false negative) and (d)
a man pushing slightly another man (false negative)

of the violent content present in these movies. The violent
actions present in Fight Club are under-represented in the
training dataset and, consequently, no related audio word(s)
could be extracted for these actions. In other words, violent
content in Fight Club has no proper representation in terms of
audio words.

To summarize, experiments presented in this section show
that, on the one hand, the VQ- and SC-based mid-level audio
representations provide promising results in terms of average
precision, and, on the other hand, that the SC-based one
outperforms both the VQ-based and the unimodal submissions
in the MediaEval VSD task except one visual-based method
in terms of average precision.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach for movie violent
content detection at video shot level. We employed mid-level
audio features based on BoAW, where we first extract MFCC
features and subsequently apply two coding schemes (i.e.,
vector quantization and sparse coding). We have shown that
mid-level audio features provide promising results and that
the sparse coding-based BoAW outperforms the unimodal sub-
missions in the MediaEval VSD task except one visual-based
method in terms of average precision. Incited by the promising
results obtained for this work, we currently investigate the
construction of more sophisticated mid-level representations
for video content analysis. The current method only exploits
the audio modality for content representation. An interesting
research question is whether augmenting the feature set by
including visual features (both low-level and mid-level ones)
helps further improving classification. Hence, in future work,
we plan to study the representation of videos with multi-modal
features. In addition, we aim to extend our approach to user-
generated videos. Different from Hollywood movies, these
videos are not professionally edited, e.g., in order to enhance
dramatic scenes. Thus, focusing on such content will shed light
on the significance of actual sounds that are produced in real
violent scenes such as street fights or explosions.
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