Elements of Efficient Data Reduction:
Fractals, Diminishers, Weights and Neighborhoods

vorgelegt von
M. Sc.
Till Fluschnik

an der Fakultiat IV — Elektrotechnik und Informatik
der Technischen Universitit Berlin
zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
- Dr.rer. nat. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Henning Sprekeler
Gutachter: Prof. Dr. Rolf Niedermeier
Gutachter: Prof. Dr. Bart M. P. Jansen
Gutachter: Prof. Dr. Stefan Szeider

Tag der wissenschaftlichen Aussprache: 29. November 2019

Berlin 2020

Zusammenfassung

Algorithmische Losungsverfahren fiir Entscheidungs- oder Optimierungsproble-
me nutzen oft eine Datenvorverarbeitung um eine Eingabeinstanz auf ihren
wesentlichen Kern zu bringen. In der parametrisierten Komplexitét ist diese
Vorverarbeitung definiert als (Problem-) Kernelisierung. Sie gehort zu den meist-
genutzten algorithmischen Werkzeugen. Die vorliegenen Dissertation befasst
sich mit oberen und unteren Schranken fiir polynomielle Kernelisierung (d.h. fiir
Kernelisierung die eine dquivalente Instanz liefert deren Gréfe polynomiell im
Parameter beschrinkt ist) sowie mit Varianten von Kernelisierung, z.B. fiir
polynomzeitlosbare Probleme.

Wir entwickeln eine Familie von Graphen, die sogenannten , T-fractals®, die wie
Fraktale eine selbstéhnliche Struktur haben. Mittels dieser T-fractals beweisen
wir untere Schranken fiir polynomielle Kernelisierung fiir einige Probleme bei
denen es das Ziel ist, durch eine kleine Anzahl von Kantenl6schungen gewisse
Knotendistanzen zu maximieren. Eines dieser Probleme ist das LENGTH-BOUND-
ED EDGE-CUT, dessen polynomielle Kernelisierbarkeit langer offen war.

Zusétzlich erweitern wir das sogenannte ,,Diminisher“-Konzept zum Ausschlie-
Ren polynomieller Kernelisierungsvarianten unter der Annahme dass P # NP ist.
Bei den Varianten handelt es sich um Kernelisierungen, bei denen der Parameter
in der resultierenden Instanz nicht vergrofert werden darf, sprich restriktive
Kernelisierungen. Zunéchst zeigen wir, dass das Diminisher-Konzept auf mehr
als die zuvor bekannten Probleme anwendbar ist. Dariiber hinaus erweitern
wir das Konzept zur Anwendung auf weniger restriktive Kernelisierungen. Wir
stellen dabei fest, dass das erweiterte Konzept zwar oft unter gewissen Annah-
men nicht anwendbar ist, sich jedoch fiir den Bereich der polynomzeitlosbaren
Probleme als nutzbar erweist. In diesem Bereich zeigen wir fiir ein Problem eine
Kernelisierungsdichotomie beziiglich Laufzeit und Grofe der Kernelisierung.

Zuletzt studieren wir klassische Graphprobleme unter Einschrankungen auf
die Nachbarschaft des gesuchten Teilgraphen. Eines unserer Probleme ist das
klassische Problem des Findens eines kiirzesten Weges, der zwei ausgewahlte
Knoten verbindet. Fiir dieses Problem beweisen wir eine Hierarchie von struk-
turellen Graphparametern beziiglich polynomieller Kernelisierung. Einige der
dabei erzielten polynomiellen Kernelisierungen nutzen eine Technik zur Reduzie-
rung von Gewichten in Graphen. Wir prisentieren diese Technik und zeigen neue
Berechnungsprobleme auf, fiir die die Technik anwendbar ist. Zuletzt zeigen
wir noch fiir zwei weitere klasssiche Graphprobleme auf, wie Einschradnkungen

auf die Nachbarschaft der Losungsstruktur sich unter anderem auf polynomielle
Kernelisierung auswirken kénnen.

Abstract

Preprocessing and data reduction are basic algorithmic tools. In parameterized
algorithmics, such preprocessing is defined by (problem) kernelization, where an
equivalent instance (the kernel) is computed in polynomial time and its size can
be upper-bounded only in a function of the parameter value of the input instance.
In this thesis, we study lower and upper bounds on kernelization regarding
polynomial-sized kernels as well as variants of kernelization like kernelization
for polynomial-time solvable problems.

We introduce a new family of fractal-like graphs that we call T-fractals.
Using these T-fractals in a common machinery for proving kernelization lower
bounds, we refute (under some complexity-theoretic assumptions) the existence
of polynomial kernels for some distance-related cut problems. One of these
problems is the LENGTH-BOUNDED EDGE-CUT problem, for which the status
of polynomial kernelization remained unknown for some time.

We underline and extend the usage of the so-called diminisher framework for
excluding restrictive kernels of polynomial size under the assumption of P £ NP.
We prove that the original framework applies to more parameterized problems
than previously known. In order to exclude less restrictive kernels of polynomial
size, we extend the framework. We prove, however, that this extended framework
does not apply to several parameterized problems. Yet, we prove that the
framework applies to polynomial-time solvable problems, yielding first direct
kernelization lower bounds in this class of problems. In addition, we prove a
kernelization dichotomy regarding the running time and the size of the kernel
for the polynomial-time solvable problem of computing the hyperbolicity of a
graph.

Finally, we study classic graph problems under the so-called secluded concept,
where constraints on the neighborhood of the subgraph in question are present.
One of our problems is a secluded variant of the classic problem of finding
a short path connecting two terminal vertices. For this problem, we prove
a hierarchy of polynomial kernelizations regarding several structural graph
parameters. Herein, we obtain polynomial kernels via the so-called “losing
weight” technique. We outline this technique and prove that it applies to more
problems than previously known. Eventually, we study two more problems in
the secluded setup and prove how different constraints on the neighborhood lead
to different complexity-theoretic classifications not only regarding polynomial
kernelizability.

PREFACE

This thesis consists of parts of my research during my time at Technical Univer-
sity of Berlin, Berlin, Germany, in the group “Algorithmics and Computational
Complexity”, Faculty IV, (subsequently referred to as “our research group”) from
June 2015 to June 2019. I am grateful to the DFG, projects DAMM (NI 369,/13)
and TORE (NI 369/18), for their financial support throughout this period.

This thesis is based on and includes contents of the following scientific works
I contributed to.

(1)

(2)

Fractals for kernelization lower bounds, with Danny Hermelin, André Nichter-
lein, and Rolf Niedermeier. Journal: STAM Journal on Discrete Mathemat-
ics [Flu+18al]. Conference: ICALP 2016 [Flu+16].

When Can Graph Hyperbolicity Be Computed in Linear Time?, with Chris-
tian Komusiewicz, George B. Mertzios, André Nichterlein, Rolf Nieder-
meier, Nimrod Talmon. Journal: Algorithmica [Flu+19a]. Conference:
WADS 2017 [Flu-+17b].

The parameterized complexity of finding secluded solutions to some classical
optimization problems on graphs, with René van Bevern, George B. Mertzios,
Hendrik Molter, Manuel Sorge, Ondiej Suchy. Journal: Discrete Optimiza-
tion [Bev+18]. Conference: IPEC 2016 [Bev+17].

On the Computational Complezity of Length- and Neighborhood-Constrained
Path Problems, with Max-Jonathan Luckow. Journal: Information Process-
ing Letters [LF20].

Kernelization Lower Bounds for Finding Constant-Size Subgraphs, with
George B. Mertzios and André Nichterlein. Conference: Computability in
Europe (CiE’18) [FMN18].

Diminishable Parameterized Problems and Strict Polynomial Kernelization,
with Henning Fernau, Danny Hermelin, Andreas Krebs, Hendrik Molter, Rolf
Niedermeier. Journal: Computability [Fer+20]|. Conference: Computability
in Europe (CiE’18) [Fer+18].

(7) Parameterized algorithms and data reduction for the short secluded s-t-
path problem, with René van Bevern, Oxana Yu. Tsidulko. Journal: Net-
works [BFT20]. Conference: ATMOS 2018 [BFT18|.

In the following, I outline chapter by chapter my contributions relating to the
scientific work listed above.

Chapters 2 and 3: These chapters are based on contents from (1) I contributed
to. Danny Hermelin, André Nichterlein, Rolf Niedermeier, and me came
up with the idea to challenge the open problem regarding the polynomial
kernelizability of LENGTH-BOUNDED EDGE-CUT. After several discussions
on the problem, I eventually invented the T-fractal, and together we set
up the framework, worked out the proofs, and wrote all paper versions. I
had the idea for the NP-hardness proof of the planar variants of LENGTH-
BounDED EDGE-CuT, which we finally worked out together, also with
some support by Manuel Sorge. I presented (1) at ICALP’16.

Chapter 4: This chapter is based on contents from (6) I contributed to. This
work was initiated during the research retreat of the Theoretical Computer
Science group of the University of Tiibingen in Sulz (Neckar), September
2016, where Henning Fernau, Danny Hermelin, Andreas Krebs, Hendrik
Molter, Rolf Niedermeier, and me were participating. There, Henning
Fernau proposed the project idea behind (6). All authors from (6) con-
tributed equally to the results from (6) included in this chapter. My major
contributions were to the TERMINAL STEINER TREE problem and to the
MULTI-COMPONENT ANNOTATED II problem. I presented (6) at CiE’18.

Chapter 5: This chapter is based on contents from (6) and from (5) I contributed
to. During the project regarding (6), we wondered about the limits of di-
minishers. Together, we formalized strong diminishers, semi-strict kernels,
observed the connection to the ETH, and wrote down the proofs. My
major contributions to (6) are in this chapter. Later, Rolf Niedermeier
wondered whether diminishers could apply also for polynomial-time solv-
able problems. Upon this question, George B. Mertzios, André Nichterlein,
and me started the project (5). Together, we set up the framework, proved
the results, and wrote down the papers. I presented (5) at CiE’18.

Chapter 6: This chapter is based on contents from (2) I contributed to. The
project started at the research retreat 2016 of our research group, where

viii

the idea was proposed by André Nichterlein and Rolf Niedermeier. The
kernelization upper bound was developed together by all authors. Christian
Komusiewicz and André Nichterlein firstly had the idea for the lower bound
reduction, I was contributing to the proof and to the adaption and proof for

the reduction regarding the parameter maximum degree. I presented (2)
at WADS’17.

Chapter 7: This chapter is based on unpublished content. At our research
group’s retreat in 2018, Matthias Bentert, René van Bevern, and André
Nichterlein approached Oxana Yu. Tsidulko and me with their problem
regarding the polynomial kernelizability of the MIN-POWER SYMMETRIC
CONNECTIVITY problem, and explained their idea of making use of the
technique due to Frank and Tardos [FT87]. Then, I proved an application
of their technique to the problem yielding the polynomial kernel. We then
decided to generalize this observation to some framework, which can be
found in this chapter.

Chapter 8: This chapter is based on contents from (4) and (7) I contributed to.
I proposed to study the problem of finding a two-terminal path in the “small
secluded” setup and further three related setups to Max-Jonathan Luckow,
who finally did his bachelor thesis on this topic. Upon this, I proposed my
idea to focus on the small secluded setup for efficient kernelization (trade-
offs) to René van Bevern and Oxana Yu. Tsidulko, eventually resulting
in (7). Together we obtained the results from (7) contained in this thesis.
My major contribution is the lower bound regarding the parameter fvs+ £.
Oxana Yu. Tsidulko presented (7) at ATMOS’18.

Chapter 9: This chapter is based on contents from (3) I contributed to. I came
up with the idea to study (small) secluded classic graph optimization
problems, which I proposed as a research topic at our research group’s
retreat 2016. All authors from (3) contributed equally to the project.
Results on the secluded variants of the SEPARATOR problem were obtained
together during the time of the retreat (except for the fixed-parameter
tractability result). Ondiej Suchy firstly had the idea for the polynomial
kernel for SECLUDED FEEDBACK VERTEX SET, I was contributing to the
proof. I presented (3) at IPEC’16.

During the time of the thesis, I also contributed to the following.

ix

o The Parameterized Complexity of the Minimum Shared Edges Problem, with Ste-
fan Kratsch, Rolf Niedermeier, Manuel Sorge. Conference: FSTTCS 2015 [Flu+15].
Journal: Journal of Computer and System Sciences [Flu+19b].

e The Minimum Shared Edges Problem on Grid-Like Graphs, with Meike Hatzel, Steffen
Hértlein, Hendrik Molter, Henning Seidler. Conference: WG 2016 [Flu-+17a).

o The complexity of routing with collision avoidance, with Marco Morik, Manuel Sorge.
Conference: FCT 2017 [FMS17]. Journal: Journal of Computer and System Sci-
ences [FMS19].

o Parameterized aspects of triangle enumeration, with Matthias Bentert, André Nichter-
lein, Rolf Niedermeier. Conference: FCT 2017 [Ben+17b]. Journal: Journal of
Computer and System Sciences [Ben+19].

e The Minimum Shared Edges Problem on Planar Graphs, with Manuel Sorge. Unpub-
lished [F'S16].

e Fair Knapsack, with Piotr Skowron, Mervin Triphaus, Kai Wilker. Conference:
AAAT 2019 [Flu+19d].

e A more fine-grained complexity analysis of finding the most vital edges for undirected
shortest paths, with Cristina Bazgan, André Nichterlein, Rolf Niedermeier, Maximilian
Stahlberg. Journal: Networks [Baz+19].

e FExact mean computation in dynamic time warping spaces, with Markus Brill, Vincent
Froese, Brijnesh J. Jain, Rolf Niedermeier, David Schultz. Conference: SDM 2018
[Bri+418]. Journal: Data Mining and Knowledge Discovery [Bri+19].

e Temporal Graph Classes: A View Through Temporal Separators, with Till Fluschnik,
Hendrik Molter, Rolf Niedermeier, Malte Renken, Philipp Zschoche. Conference: WG
2018 [Flu+18b]. Journal: Theoretical Computer Science [Flu+20].

o The Complexity of Finding Small Separators in Temporal Graphs, with Philipp
Zschoche, Hendrik Molter, Rolf Niedermeier. Conference: MFCS 2018 [Zsc+18|.
Journal: Journal of Computer and System Sciences [Zsc+20].

o On (1 + ¢)-approzimate problem kernels for the Rural Postman Problem, with René
van Bevern, Oxana Yu. Tsidulko. Conference: MOTOR’19 [BFT19].

o Multistage Vertexr Cover, with Rolf Niedermeier, Valentin Rohm, Philipp Zschoche.
Conference: IPEC 2019 [Flu+19c]|.

Acknowledgments. I want to thank all my coauthors (listed above) for the
pleasant and effective collaboration. I further want to thank all my current and
former colleagues for the pleasant time and fruitful discussions (in lexicographic
order): Matthias Bentert, René van Bevern, Robert Bredereck, Markus Brill,
Jiehua Chen, Piotr Faliszewski, Vincent Froese, Klaus Heeger, Anne-Sophie
Himmel, Andrzej Kaczmarczyk, Dusan Knop, Leon Kellerhals, Christian Ko-
musiewicz, Junjie Luo, Hendrik Molter, André Nichterlein, Malte Renken, Piotr
Skowron, Manuel Sorge, Nimrod Talmon, Oxana Yu. Tsidulko, Philipp Zschoche.

Special thanks also go to Matthias Bentert, Anne-Sophie Himmel, Leon Keller-
hals, Hendrik Molter, André Nichterlein, Rolf Niedermeier, and Anne Réhrborn,
for their support during the time of writing this thesis.

Very special thanks go to my supervisor, Rolf Niedermeier, for all his support
during the whole time.

Finally, I am grateful to the referees, Bart M. P. Jansen, Rolf Niedermeier,
and Stefan Szeider, for their time and constructive feedback.

I dedicate this thesis to my beloved parents, Monika and Georg.

xi

TABLE OF CONTENTS

1. Introduction
1.1. Invitation to Parameterized Data Reduction
1.1.1. Kernelization Lower Bounds
1.1.2. Variants of Kernelization
1.2. Preliminaries and Notations
1.2.1. Functions and Vectors
1.2.2. Graph Theory
1.2.3. Parameterized Complexity
1.2.4. Complexity-theoretic Coherence and Conjectures

I. Fractals for Kernelization Lower Bounds

2. The “Fractalism’” Technique

2.1. Introduction
2.2. Properties of the T-Fractal

2.2.1. Minimum Edge Cuts

2.2.2. Distances between the Special Vertices
2.3. Directed Variants of T-Fractals
2.4. Edge-Weighted T-Fractal
2.5. Application Manuals for T-Fractals
2.6. Vertex-Deletion Variants
2.7. Concluding Remarks

3. Distance-Related Cut Problems
3.1. Introduction L
3.2. Length-Bounded Edge-Cut
3.2.1. NP-hardness of LBEC on Planar Graphs
3.3. Minimum Diameter Edge Deletion
3.4. Directed Small Cycle Transversal
3.5. Concluding Remarks

EN NI

12
13
15
17

19

23
23
25
26
29
33
35
36
39
40

43
43
45
48
53
59
61

Table of Contents

II. Diminishers and Data Reduction inside P 63
4. Diminishers and Diminishable Problems 67
4.1. Introductiono 67
4.2. Diminisher Framework 69
4.3. Problems without Strict Polynomial Kernels 73
4.3.1. Clique and Biclique 74

4.3.2. Terminal Steiner Tree 78

4.3.3. Multicolored Graph Problems 82

4.3.4. Component-Wise Annotated Graph Problems 84

4.4. Concluding Remarks 87

5. Strong Diminisher: Limits and Applications inside P 89
5.1. Introduction 89
5.2. Semi-Strict Kernels and Strong Diminishers 92
5.2.1. Two Strongly Diminishable Problems. 94

5.2.2. Problems without Strong Diminishers 95

5.3. Strong Diminisher and Kernelizationin P 98
5.3.1. Adapting the Framework 99

5.3.2. Applications of Strong Diminishers Inside P 101

5.3.3. (Turing) Kernelization Upper Bounds 108

5.4. Concluding Remarks 110

6. Data Reduction Inside P: Hyperbolicity 113
6.1. Introduction.o 113
6.2. Definitions and First Observations 116
6.3. A Kernelization Dichotomy regarding Vertex Cover Number . . 118
6.3.1. An Exponential-Size Linear-Time Kernelization 119

6.3.2. SETH-based Subquadratic-Time Lower Bounds 120

6.4. Parameter-Polynomial Linear-Time Parameterized Algorithms 128
6.4.1. Minimum Maximal Path Cover Number 128

6.4.2. Number of Vertices with Degree at least Three 133

6.5. Concluding Remarks 138

Xiv

Table of Contents

III.Losing Weights and Secluded Problems 139

7. Losing Weight for Polynomial Kernelization 143

7.1. Introduction 143

7.2. The Losing-Weight Technique 145

7.3. The Case of the Min-Power Symmetric Connectivity Problem . 147

7.4. The Case of the Small Set Expansion Problem 149

7.5. Linearizable Functions 151

7.6. Concluding Remarks 156

8. The Short Secluded Path Problem 159

8.1. Introduction. 159

8.2. Preliminarieson SSP Lo oo 161

8.3. Weighted SSP and Losing Weights 162

84. Treewidth 167

8.5. Feedback Vertex Number 171
8.5.1. A Polynomial Kernel when combined with the Size of the

Path and of its Neighborhood 171

8.5.2. Polynomial Kernelization Lower Bounds 178

8.6. Vertex Cover Number 185
8.6.1. A Polynomial Kernel when combined with the Size of the

Path’s Neighborhood 185

8.6.2. A Polynomial Kernel for Planar Graphs 187

8.6.3. Polynomial (Turing) Kernelization Lower Bounds 190

8.7. Feedback Edge Set Number 194

8.8. Concluding Remarks 196

9. Secluded Graph Problems: Data Reduction with Neighbor-

hoods 199
9.1. Introduction. 199
9.2. Separator with Small Neighborhood 202
9.2.1. Secluded Separator 202
9.2.2. Small Secluded Separator 205
9.3. Feedback Vertex Set with Small Neighborhood 208
9.3.1. Secluded Feedback Vertex Set 208
9.3.2. Small Secluded Feedback Vertex Set 219
9.4. Concluding Remarks 221

XV

Table of Contents

Outlook

Bibliography
Appendices

A. Problem Zoo

B. Open Problem List

Index

Xvi

223

225

249

251

257

259

CHAPTER 1 o

INTRODUCTION

When we are asked for a given a set of numbers to determine the median,
probably we would first sort the numbers in some, say ascending order. When
we are asked for a given social network to compute a large subset of persons
that are pairwise unknown to each other, probably we would first collect all
persons knowing no one. When we are asked for a given street network with
two designated terminals to compute a short path connecting the terminals,
probably we would first delete all parts from the network that are obviously too
far away from any of our terminals. In many problem-solving tasks, preprocessing
the given input is a natural, fundamental algorithmic tool. As we have seen,
such preprocessing ranges from sorting parts of the input to any form of data
reduction, e.g., taking parts of the input already into our solution or deleting
parts of the input that are irrelevant for solving the task. In this work, our
central concern is efficient preprocessing for parameterized problems:

Definition 1.1. A parameterized problem L C {(z,k) € ¥* x N} is a set of
instances (x,k) € * x N, where x € ¥* for a finite alphabet ¥ and k € N is
referred to as the parameter.

Basically, the task is to decide whether a given input instance (z,k) € ¥* x N
(e.g., an undirected graph and an integer k) is a yes-instance for L (e.g.,
deciding whether there are k vertices covering all edges of the graph), that is,
whether (z,k) € L.

In the field of parameterized complexity analysis and algorithmics, kerneliza-
tion, coined by Downey and Fellows [DF95b], is the main mathematical concept
for provably efficient preprocessing of computationally hard problems to their
“computationally hard core” (the kernel).

1. Introduction

Definition 1.2. A problem kernelization for a parameterized problem L is an
algorithm that, given an instance (z, k) of L, computes in polynomial time an
instance (z/, k") of L (the problem kernel) such that

(i) (z,k) € L if and only if (2/, k") € L, and

(i) |2'| + & < f(k) for some computable function f only depending on k.
We say that f measures the size of the problem kernel, and if f € kM), we say
that L admits a polynomial problem kernel.

Throughout this thesis, we will use kernelization and kernel for short. In the
first formal definition of kernelization [DFS97, Definition 4.7], condition (ii)
of Definition 1.2 was different:

(ii) k" <k and |2'| < f(k) for some computable function f only depending

on k.

In accordance with Abu-Khzam and Fernau [AF06] we refer to this first variant

of kernelization as proper kernelization. As we will see in Part II of this work,

the modification of (ii) in the definition of kernelization to proper kernelization
makes some crucial difference in the study of kernelization lower bounds.

Kernelization has been extensively studied (see, e.g., [FS14, GN07, Kral4,
LMS12|) and it has great potential for delivering practically relevant algorithms
(see, e.g., [Twal7]). Very recently, Fomin et al. [Fom+19] published a book on
kernelization.

Often, kernelization consists of data reduction rules followed by an analysis of
the size of the obtained instance. A reduction rule is, in a nutshell, an algorithm
that turns the input instance into an equivalent instance while guaranteeing for
some properties to hold. A classic example for this is given by the NP-complete
graph problem VERTEX COVER (the “drosophila” of parameterized algorithmics;
see [Fel+18]| for a recent survey), the problem of deciding for a given undirected
graph and an integer k£ whether k vertices suffice to cover all edges of the graph.
A polynomial kernelization for VERTEX COVER yielding a kernel with O(k?)
vertices, going back to the work of Buss and Goldsmith [BG93], consists of the
following two data reduction rules:

(1) Delete every vertex with no edges incident to it from the graph (since such
a vertex can cover no edges).

(2) As long as there is a vertex v adjacent to at least k 4+ 1 other vertices,
delete v and decrease k by one (we have to take v into every k-sized set
covering all edges).

When none of the reduction rules are applicable, the graph still contains at

least one edge, and k is still positive, then either the number of vertices is

in O(k?) or we are facing a no-instance. Note that VERTEX COVER admits
even a kernel with at most 2k vertices [CKJ01] employing more involved data
reduction rules. Generally speaking, many polynomial kernels require more
sophisticated reduction rules, hence considered as “the art of preprocessing”.

Kernelization is not only an important algorithmic tool, but also provides an
alternative definition of fized-parameter tractability':

Lemma 1.1 ([Cai+97, DFS97]). Let L be a decidable parameterized problem.
Then there is a computable function f such that each instance (z,k) of L can be
decided in f(k) - |z|°M) time (that is, L is fived-parameter tractable) if and only
if there is a computable function g such that L admits a kernel of size g(k).

An algorithm with running time f(k) - |#|°() for a parameterized problem L
implies that L has a kernel of size f(k)+k, but in the reverse direction one cannot
always take the same function f. For example, VERTEX COVER parameterized
by the solution size k admits a kernel of O(k?) size but no algorithm running
in O(k?) - |z|°™ time assuming P # NP. Typically one wishes to minimize the
size f(k) of the kernel. This goal leads to the question of what is the smallest
possible kernel size for a given parameterized problem. In particular, do all
fixed-parameter tractable problems have small kernels, say, of polynomial size?

The latter question was answered negatively by Bodlaender et al. [Bod+09]
using a result of Fortnow and Santhanam [FS11] to show that various fixed-
parameter tractable problems, for instance LONGEST PATH parameterized by
the solution size, admit no polynomial kernel unless coNP C NP .1, (which
implies a collapse of the polynomial hierarchy to its third level). This led to
the exclusion of polynomial kernels for various further parameterized problems,
and to several extending works building on the framework of Bodlaender et al.
(see Figure 1.1 for an overview of the brief history of kernelization lower bounds).
In Section 1.1.1, we provide details for kernelization-lower-bound frameworks.

Knowing about kernelization and its lower-bound frameworks, Downey et
al.’s [DFS97, Example 1.2] “An Encounter with a Computational Biologist”
could have been as follows:

“About ten years ago some computer scientists came by and said they
had heard that we have some really cool problems. They showed that
the problems admit no polynomial kernels unless coNP C NPy,
and went away!”

'Downey et al. [DFS97, Lemma 4.8] proved the equivalence of being kernelizable to being
fixed-parameter tractable, where they use one direction from Cai et al. [Cai-+97].

1. Introduction

No-polynomial-kernel results

Bodlaender, Downey, Dell & van Melkebeek [STOC]|[DM10]
Fellows, Hermelin [ICALP][Bod+08b] Hermelin & Wu [SODA][HW12]
Fortnow & Santhanam [STOC|[FS08] Degree Lower Bounds

1st No-Poly-Kernel Framework

gx};le];c:)ll\lﬂ;@ NXI:/pCOIy: i Drucker [FOCS]|[Drul2]
~Distillation & -Lomposition AND-Distillation

\ —

|— f f T T ™1

\ 1 1 1 1 1 1 1
1990’s 2008 / 2010 %)12 2014 2016 2018 2019

Bodlaender, Thomasseé, Hermelin, Kratsch,
Yeo [ESA|[BTY09] Soltys, Wahlstrom,
Polynomial Parameter Wu [IPEC|[Her+13]
Transformation (PPT) WK-hierarchy

Bodlaender, Jansen,
Kratsch [STACS|[BJK11]
OR-Cross-Composition

Chen, Flum,

Miiller [CiE][CFMO09]

1st No-Poly-Proper-Kernel
Framework under P # NP

Figure 1.1.: Overview of the brief history of kernelization lower bounds.

If this interaction had been even more recent, then the computer scientist possibly
would have proved the problem to be WK][1]-hard (and hence conjectured to
admit no so-called Turing kernelization of polynomial size), or to presumably
admit no polynomial-size approximate kernelization scheme.

Facing kernelization lower bounds, researchers have studied variants, mostly
relaxations of kernelization such as partial kernelization [Bet+11b], bikerneliza-
tion [Alo+11], and Turing kernelization [Bin+12, Sch+12]. See Figure 1.2 for an
overview of the brief history of some variants of kernelization. Note that while
kernelization is a special case of, e.g., partial kernelization or bikernelization,
Turing kernelization is an algorithm that decides the input instance for the
given parameterized problem and hence is conceptually different to kernelization.
Indeed, Turing kernelization is more powerful in the following sense: if a param-
eterized problem admits a polynomial kernelization, then it admits a polynomial
Turing kernelization, but the reverse is presumably not true. In Section 1.1.2,
we elaborate on these and several other variants of kernelization in more detail.

In this thesis, we aim for lower and upper bounds on efficient kernelization and
its variants for NP-hard and polynomial-time solvable graph problems. Thereby,

Estivill-Castro, Fellows, Betzler, Guo, Komusiewicz,
Langston, Rosamond [ACiD|[Est+05] Niedermeier [LATIN][Bet-10]

Lokshtanov [Lok09] Partial Kernelization

Fernau, Fomin, Lokshtanov, Raible,

Saur.abh, Villang_er [S.TACS][FGI‘*FOQ] Lokshtanov, Panolan, Ramanujan,
Turing Kernelization Saurabh [STOC][Lok+17]

/\V Lossy Kernelization
s — 1 ‘ 1 ‘ 1 \ i

— \ \ 1 1 1 1 1 1 1 —
1990’s 2006 2008 2010 2012 \2014 2016 2018 2019
Kratsch &
Bodlaender, Downey, Wahlstrohm [SODA|[KW12]
Fellows, Hermelin [JCSS][Bod-+09] Randomized Kernelization
Generalized Kernelization
Alon, Gutin, Kim, Szeider, Fellows, Kulik, Rosamond,
Yeo [Algorithmical[Alo+11] Shachnai [[CALP][Fel +12b]
Bikernelization Fidelity Kernelization

Figure 1.2.: Overview of the brief history of some variants of kernelization.

we will discover that fractals, diminishers, and weights and neighborhoods form
elements in the field of efficient data reduction.

Contributions of this Thesis. In each chapter, in the beginning the contri-
butions therein are outlined. From a high-level perspective, this work contributes
the following.

Part I: Specific properties of graphs admitting a self-similar, fractal-like struc-
ture can be exploited for developing OR-(cross-)composition to exclude
the existence of polynomial kernels assuming coNP ¢ NP /poly even for
restricted inputs like planar graphs. Using fractal-like graphs, like the T-
fractal, in compositions allows for proving polynomial kernel lower bounds
for three distance-related edge cut problems like the LENGTH-BOUNDED
EDGE-CUT problem, hence answering an open question for the latter
problem [GT11].

Part Il: A framework by Chen et al. [CFM11] for excluding proper kernels
of polynomial size assuming P # NP applies to more problems than
previously known. However, strengthening the framework for exclud-
ing a more relaxed variant of proper kernelization of polynomial size

1.

Introduction

fails for several problems assuming the Exponential Time Hypothesis to
hold (Hypothesis 1.10). Yet, the stronger framework enables to exclude
several combinations of fast and small proper kernelizations for parame-
terized problems that are solvable in polynomial time, assuming popular
complexity-theoretic conjectures to hold. Still, this framework does not
allow for exclusions of fast kernelization of any polynomial size, while such
an exclusion can be obtained through running-time lower bounds based
on the Strong Exponential Time Hypothesis (Hypothesis 1.11).

Part Ill: For graph problems related to finding subgraphs fulfilling some prop-

erty (e.g., being a path connecting two designated terminals), additionally
restricting the number of vertices neighboring the subgraph is not only a
natural problem modification, but it also allows for interesting kerneliza-
tion results. While asking for subgraphs with small closed neighborhood
allows to transfer for positive kernelization results, polynomial kerneliza-
tion of finding small-sized subgraphs with small-sized open neighborhoods
is more often excluded unless coNP C NP /.1, In the case of finding a
short path connecting two designated terminals with small-sized open
neighborhood, polynomial kernelization can be obtained by first reducing
to a weighted version of the problem and then employing the losing-weight
technique due to Frank and Tardos [FT87].

The outline of this work is presented in Figure 1.3. In the present chapter,
in Section 1.1 we provide notation and results on parameterized data reduction,

and in Section 1.2 we describe our notation and assumptions, and give basic

definitions and facts. Moreover, we provide a list of decision and optimization
problems relevant to this thesis in Appendix A, and a list of open problems

appearing in this thesis in Appendix B.

1.1. Invitation to Parameterized Data Reduction

In this section, we provide basic definitions, notations, and results from parame-
terized data reduction, in particular kernelization, that are important for this

work. In Section 1.1.1, we give an overview of the theory of kernelization lower

bounds. In Section 1.1.2, we explain variants of kernelization.

1.1. Invitation to Parameterized Data Reduction

] T
I Chapter 7.
Kernelization Inside P Kernelization Upper Bounds | osing
: Weight for
1
I Polynomial
,' Kerneliza-
----- TR .
: 1 +| tion
i | Part II. Part III.
3 R : Chapter 9.
- Chapter 5. Diminishers Losing
Chapter 6. Strong Di. and Data Weights and Chapter 8. Secluded
Data Reduc- inish ‘1 Reduction Secluded -| The Short Graph Prob-
. . minisher:
tion Inside Limits and inside P Problems = Secluded lems: Data
P: Hyperbol- o Path Prob- Reduction
icit, Applications lem with Neigh
il inside P Part L. gh-

Fractals for

{ borhoods

Kerneliza-
g tion Lower
B s
Chapter 4. ounds
Diminishers N
and Di- Chapter 2. Chapter 3.
minishable The “Frac- Distance-
Problems talism” Related Cut Kernelization Lower Bounds
Technique Problems

Figure 1.3.: Tllustrative outline of this thesis. While arrows indicate the order of
appearance in this thesis, dotted lines indicate membership of chapters in parts.
Chapters are arranged according to their correspondence to the fields kernelization
lower and upper bounds, and kernelization of polynomial-time solvable problems
(inside P).

1.1.1. Kernelization Lower Bounds

The first framework for excluding polynomial kernels assuming that coNP ¢
NP /01y by Bodlaender et al. [Bod+09] builds on OR-compositions:

Definition 1.3 ([Bod+09]). An OR-composition for a parameterized problem L
is an algorithm that takes p instances (z1, k), ..., (2p, k), where (z;,k) € £* xN
for all i € {1,...,p}, and constructs in time polynomial in > %, (|2;| + k) an
instance (z',k’) € ¥* x N such that (i) («/,k') € L < (w;,k) € L for
some i € {1,...,p} and (i) ¥ € kOO,

Bodlaender et al. [Bod+09] together with Fortnow and Santhanam [FS11] proved
the following.

1. Introduction

Proposition 1.2 ([Bod+09, FS11]). If a parameterized problem L whose unpa-
rameterized problem is NP-complete admits an OR-composition and a polynomial
kernelization, then NP C coNP/p,p,.

Yap [Yap83| proved that NP C coNP ., is equivalent to coNP C NP1
(see Lemma 1.9), and that if either of them is true, then the polynomial
hierarchy collapses to its third level (see Lemma 1.8).

That replacing “OR” by “AND” in Proposition 1.2 (and hence in Definition 1.3
by restating (i) by “(¢/, k') € L <= (w4,k) € L for every i € {1,...,p}”) also
holds true was proven by Drucker [Drul5].

Bodlaender et al. [BJK14| extended the notion of OR/AND-composition to
OR/AND-cross-composition. The definition of OR/AND-cross-composition uses
the following.

Definition 1.4 ([BJK14]). An equivalence relation R on the instances of an
NP-hard problem L C ¥* is a polynomial equivalence relation if
(i) one can decide for any two instances z,z’ in time polynomial in |z| + |z
whether they belong to the same equivalence class, and
(ii) for any finite set S of instances, R partitions S into (maxcs |z|)
equivalence classes.

Definition 1.5 ([BJK14]). Given an NP-hard problem L C ¥*, a parameterized
problem L’ C ¥* x N, and a polynomial equivalence relation R on the instances
of L, an OR-cross-composition of L into L’ (with respect to R) is an algorithm
that takes p R-equivalent instances zi,...,z, of L and constructs in time
polynomial in Y7, |z;| an instance (z, k) of L' such that

(i) k is polynomially upper-bounded in maxi<;<p |z;| + log(p) and

'

0(1)

(i) (x,k) € L’ <= x; € L for at least one ¢’ € {1,...,p}. (“OR”)
An AND-cross-composition is an OR~cross-composition where (ii) is replaced by
(i) (z,k) € L' < x; € Lfor every i € {l,...,p}. (“AND”)

We remark that we can assume that p = 27 for some ¢ € N since we can pad
the list of instances by copies of any instance to reach a power of two. For
cross-compositions, the connection to coNP C NP, is as before.

Proposition 1.3 ([BJK14]). If an NP-hard problem L OR-cross-composes into
a parameterized problem L', then L' does not admit a polynomial kernel with
respect to its parameterization, unless coNP C NP,

In this work, we mostly employ OR-cross-compositions and Proposition 1.3 to
prove (conditional) kernelization lower bounds.

1.1. Invitation to Parameterized Data Reduction

For “kernelization hardness”, the following works like polynomial-time many-
one reductions work for NP-hard problems.

Definition 1.6 ([BTY11]). Given two parameterized problems L, L’ C ¥* x N,
a polynomial parameter transformation from L to L’ is an algorithm that, given
an instance (z, k) of L, computes in polynomial time an instance (z’, k') of L'
such that (i) (z,k) € L <= (2/,k') € L' and (ii) k¥’ < kM),

Polynomial parameter transformations are hence another tool to conditionally
exclude polynomial kernels.

Proposition 1.4 ([BTY11]). Let L, L' C ¥* x N be two parameterized problems
such that there is a polynomial parameter transformation from L to L', and the
unparameterized version of L and of L' is NP-complete and contained in NP,
respectively. If L' admits a polynomial kernel, then also L admits a polynomial
kernel.

A direct corollary of Proposition 1.4 is that (under the same conditions as in
Proposition 1.4) if L admits no polynomial kernel unless coNP C NP/,
then L' admits no polynomial kernel unless coNP C NP,,.,. We refer
to Dom et al. [DLS14] for an extensive demonstration of polynomial parameter
transformations. Polynomial parameter transformations also transfer so-called
WK][1]-hardness (see next Section 1.1.2).

1.1.2. Variants of Kernelization

In this section, we present some variants of kernelization, namely proper kernel-
ization, bikernelization, partial (bi-)kernelization, and Turing kernelization.

Proper Kernels. As said, the first definition of kernelization [DFS97]| was
the one of proper kernelization [AF06].

Definition 1.7. A proper kernelization is an algorithm that, given an in-
stance (z, k) of a parameterized problem L, computes in polynomial time an in-
stance (z’, k) of L (the proper kernel) such that (i) (z,k) € L <— (2/,k') € L,
(ii) 2’| < f(k) for some computable function f only depending on k, and
(iii) &' < k.

We say that f measures the size of the proper kernel, and if f € k90, we
say that L admits a polynomial proper kernel.

1. Introduction

Indeed, proper kernelization is found in several works (see, e.g., [Fel+12b,
GNO07]) including recent ones (see, e.g., [Lin+17, XK17]) as the definition of
kernelization. We will study proper kernelization only in Part II, Chapter 5, in
the context of polynomial-time solvable, parameterized problems.

In Chapters 4 and 5, Part 11, we will also study relaxations of proper kerneliza-
tion where we replace (iii) in Definition 1.7 by “k’ < k+¢” (we will call this strict
kernelization) and by “k’ < ¢ - k” (we will call this semi-strict kernelization),
where ¢ is some constant.

Bikernels and Partial Kernels. Bikernelization, also known as general
kernelization [Bod+09], is a natural generalization of kernelization:

Definition 1.8 ([Alo+11]). A bikernelization is an algorithm that, given an
instance (x, k) of a parameterized problem L, computes in polynomial time
an instance (2’, k") of some parameterized problem L’ (the bikernel) such that
(i) (z,k) e L <= (2/,k') € L', and (ii) |2'| + ¥’ < f(k) for some computable
function f only depending on k.

That is, a bikernelization with L = L’ is a kernelization, and also notions like
polynomial bikernelization are defined as expected. Note that if we drop the
requirements on the unparameterized versions from Proposition 1.4, then L’
admitting a polynomial kernel implies L to admit a polynomial bikernel.

A partial kernelization is yet another generalization of kernelization, where we
want to bound some dimension of each input instance of our problem. We give
a definition of partial bikernelization, generalizing the definition of Betzler et al.
[Bet-+11b].

Definition 1.9 ([Bet+11b]). Let L,L’ be two parameterized problems. Let
dim: ¥* — N be a computable function. A partial bikernelization (regard-
ing dim) is an algorithm that, given an instance (z,k) of L, computes in
polynomial time an instance (z',k’) of L’ (the partial bikernel) such that
(i) (z,k) € L <= (2',k') € L', and (ii) dim(2’) + ¥* < f(k) for some
computable function f only depending on k.

If L = L, then it is called partial kernelization. Note that partial bikernel-
ization with dim(x) = |z| is a bikernelization. In Part III, Chapter 8, we will
present partial bikernels of polynomial size (again, f is referred to as the size),
where dim will count the number of vertices and edges of a graph.

10

1.1. Invitation to Parameterized Data Reduction

Turing Kernelization. Intuitively, a Turing kernelization is a polynomial-
time algorithm that has access to an oracle that can decide in constant time
instances of small size, that is, of size bounded by some computable function
in the parameter. Formally, it is defined as follows (our definition is due
to Binkele-Raible et al. [Bin+12], see also [Kral4]).

Definition 1.10 ([Bin+12, Kral4]). A Turing kernelization for a parameterized
problem L is an algorithm that decides whether any input instance (z, k) € L in
time polynomial in |x| 4+ k having access to an f(k)-oracle, where an f(k)-oracle
for L is an oracle that decides whether any input instance (z, k) with |z| + k <
f(k) is contained in L in constant time.

A Turing kernelization is a polynomial Turing kernelization if f(k) € kO™,

Estivill-Castro et al. [Est+05] firstly came up with the idea of Turing kernel-
ization, which was then restated by Guo and Niedermeier [GN07] and Fellows
and Guo [Bod+08a], where Guo and Niedermeier named it Turing kernelization,
and Fellows and Guo named it cheat kernelization. The first definition of Turing
kernelization was given by Binkele-Raible et al. [Bin+12], see also [Lok09].

A Turing kernelization can, during its computation, make decisions based
on the answers of the oracle calls, which is referred to as adaptive behavior.
While the first polynomial Turing kernel due to Binkele-Raible et al. [Bin+12]
is non-adaptive, Jansen [Janl7| made use of this adaptive behavior to develop
polynomial Turing kernelization for the LONGEST PATH problem on restricted
input graphs parameterized by the size k of the path.

Hermelin et al. [Her+15] conjecture that LONGEST PATH on general graphs
parameterized by k£ admits no polynomial Turing kernelization. In fact, they
proved the multicolored version of the problem to be WK]1]-complete, where
WK]1] is the first complexity class in the WK-hierarchy of problems conjec-
tured to admit no polynomial Turing kernelization [Her+15]. A problem L
is WK][1]-hard if for all parameterized problems L’ in WKJ1] there is a polyno-
mial parameter transformation from L’ to L. If there is a polynomial parameter
transformation from a WKJ[1]-hard parameterized problem L’ to some parame-
terized problem L, where both unparameterized versions of the problems are
NP-complete, and there is a polynomial Turing kernelization for L, then also L’
admits a polynomial Turing kernelization.

Finally, Witteveen et al. [WBT19] recently studied unconditional separation
between polynomial kernelization and Turing kernelization, as well as between
different types of Turing kernelizations. They proved that there are parameter-
ized problems where (i) one admits a polynomial (adaptive) Turing kernelization

11

1. Introduction

making only one oracle call, but admits no polynomial kernel, (ii) one admits
a polynomial non-adaptive Turing kernelization, but admits no polynomial
(adaptive) Turing kernelization making a constant number of oracle calls, and
(iii) one admits a polynomial adaptive Turing kernelization, but admits no
polynomial non-adaptive Turing kernelization. This hierarchy, in particular (iii),
indicates that the adaptive behavior might be powerful.

1.2. Preliminaries and Notations

We use basic notation from “classic” computational complexity [AB09, GJ79,
Pap94], parameterized complexity [Cyg+15, DF13, FG06, Nie06], and graph
theory [Diel0, Wes00]. We denote by N = {1,2,...} the natural numbers
excluding zero, and by Ny := NU {0}. We denote by Z, Q, and R the sets of
integers, rational numbers, and real numbers, respectively. By Q4 , we denote
the set of positive numbers in Q.

1.2.1. Functions and Vectors

For an algorithm A on input x € ¥* and output in ¥*, we denote by A°(z) =
A(--- A(A(z)) - -), where A appears ¢ > 1 times on the right-hand side of the
equation.

A function f is computable if there exists a Turing machine that on input x,
outputs either f(x) in some time, if x is in the domain of f, or that z is not in
the domain of f, otherwise.

For a vector € R", the {,-norm for p € N of z is defined as [z, =

>y |ziP. The fs-norm (also known as max-norm) of z is defined as ||z|| =
max;e(1,...n} |%il-

For a number z € R, we define by [x] € Z the smallest number in Z that is
at least =, and by |x] € Z the largest number in Z that is at most .

Definition 1.11 (signum). For all x € R, the signum of x is

. xz/|z| ifx#0,
Slgn(w):{ /0| | if 2 =0

We denote by AW B the disjoint union of sets A and B.

12

1.2. Preliminaries and Notations

1.2.2. Graph Theory

Let G = (V, E) be an undirected graph with vertex set V and edge set E C
{{v,w} | v,w € Vv # w}. We say that edge {v,w} € E has endpoints v
and w. We also denote by V(G) and E(G) the vertex and edge set of graph G,
respectively. For a vertex set W C V, we denote by G[W]:= (W,{e€ E | e C
W1) the induced subgraph on W. We denote by G — W := G[V \ W] the graph
obtained from the deletion of the vertex set W from G. For an edge set F' C E,
we denote by V(F):={v eV |Je€ F:v € e} and by G[F] = (V(F), F). We
also denote by G — F = (V,E\ F). If W = {v} (F = {e}), then we also write
G —v (G —e) instead of G —{v} (G —{e}). A vertex v is called isolated if there
is no edge e € F with v € e.

For a vertex v € V, we denote by Ng(v) = {w € V | {v,w} € E} the open
neighborhood of v in G. For a vertex v € V, by Ng[v] := Ng(v)U{v} we denote
the closed neighborhood of v in G. Two vertices u and v are called twins or
false twins if Ng(u) = Ng(v), and true twins if Ng[u] = Ng[v]. For a vertex
set W C V, we define by Ng[W] = |, e Nalv] the closed neighborhood of W
and by Ng(W) := Ng[W]\ W the open neighborhood of W.

A (simple) path P of length ¢ is a graph with vertex set V(P) = {v1,...,ve41}
and edge set E(P) = {{vi,viy1} | i € {1,...,£}}. We refer to vi,v,y1 as the
endpoints of P (we also call P a v1-vg41-path), and to the vertices in V(P) \
{v1,ve41} as the inner vertices of P. Note that if £ > 1, then each of the
endpoints has exactly one neighbor, and if £ > 2, then each of the inner
vertices has exactly two neighbors. For two vertices s,t € V, path P is an
s-t path in G if P is a subgraph of G, v; = s, and vpy; = t. An s-t path
in G is called shortest if there is no s-t path in G of smaller length. We define
by distg(s,t) the length of the shortest s-t path in G. We will also represent
a path P with V(P) = {v1,...,ve+1} and E(P) = {{vi,viz1} | i € {1,...,¢}}
by P = (v1,...,ves1), that is, by a sequence derived from the adjacencies of its
vertices. A graph G is connected if either it only consists of an isolated vertex
or for every two distinct vertices v,w € V(G), there is a v-w path in G. A
component (or connected component) of G is an inclusion-wise maximal connected
induced subgraph of G. The closed g-neighborhood of a vertex v € V(G) in
graph G for ¢ € N is the set N} [v] = {w € V(G) | distg(v,w) < ¢}. Let s,t € V.
A vertex set S C V \ {s,t} is an s-t vertex cut, or also called s-t separator,
if there is no s-t path in G — S. An edge set F C FE is an s-t edge cut if
there is no s-t path in G — F. An s-t vertex/edge cut X is minimal if there

13

1. Introduction

is no s-t vertex/edge cut X’ with X’ C X in G. An s-t vertex/edge cut X is
minimum if there is no s-t vertex/edge cut X’ with | X'| < |X| in G.

A cycle C of length ¢ is a graph with vertex set V(P) = {v1,...,v;} and edge
set E(P) = {{vi,vig1} i€ {1,...., £ —1}} U{{ve,v1}}. A forest is a cycle-free
graph. A tree T is a connected forest. A vertex v € V(T) is a leaf of T if it has
only one neighbor in 7T'.

Definition 1.12. A rooted balanced binary tree of depth 0 with root r is
the graph ({r},0) with designated root r. A rooted balanced binary tree of
depth ¢ € N with root r is the graph obtained from taking two rooted balanced
binary trees with roots r’ and r” each of depth £ — 1, making r adjacent to r’
and to 7", and designating r as the root.

In a tree T with root r, the lowest common ancestor of two vertices z,y € V(T
is the first vertex that appears on both paths from x to r and y to r.

A directed graph G = (V, E) consists of a vertex set V and a set E C {(v,w) €
V xV | v # w} of arcs. (As many notions translate directly from undirected
to directed graphs, we only mention few in the following.) A directed path P
of length ¢ is a directed graph with vertex set V(P) = {v1,...,v,41} and arc
set E(G) = {(vi,viy1) | 1 € {1,...,€}}. A directed cycle, or also called cycle
when considered as a subgraph of a directed graph, of length £+ 1 is a directed
path of length ¢ with additional arc (vey1,v1).

Graph parameters. In Figure 1.4, we give an overview of (some) graph
parameters appearing in this thesis, and the relations between them. The
order £ of G is £(G) = |V|. The diameter of graph G = (V, E) is diam(G) =
max, ey distg(v, w). The degree of a vertex v in G is degq; (v) = |[Ng(v)|. The
maximum degree of G is A(G) = max,cv degq(v), and the minimum degree of G
is §(G) = min,ey degy (v). The degeneracy of G is dgn(G) = maxy cy §(G[V']).
Aset WCVisa

vertex cover if G — W contains no edge;
feedback vertex set if G — W contains no cycle;

dominating set if Ng[W]=1V.

Consequently, the vertex cover number, feedback vertex number, and domination
number are the size of the smallest vertex cover, smallest feedback vertex set,
and smallest dominating set in the graph, respectively. An edge set F' C E is a
feedback edge set if G — F contains no cycle. The feedback edge number is the
size of the smallest feedback edge set in the graph.

14

1.2. Preliminaries and Notations
order £ of the
largest component
cutwidth cw
bandwidth bw

number vc

vertex separation

number vs
«\(

pathwidth pw)
[treewidth tw} [maximum degree A}

feedback
edge set fes

feedback
vertex set fvs

degeneracy dgn

Figure 1.4.: Overview of several structural graph parameters studied in this thesis,
with their relations. An arrow from a parameter p to another parameter p’ means
that there is a function f such that p < f(p’). Refer to Sorge and Weller [SW18] for
details. Note that the vertex separation number equals the pathwidth [Kin92].

Definition 1.13. Given a graph G = (V, E), a tuple T = (T, (Ba)acv (1))
consisting of a tree T and subsets B, C V for all &« € V(T') is a tree decomposition
of G if the following holds: (i) V' = U,ey (1) Ba, (ii) for all e € E there exists
an « € V(T') such that e C By, and (iii) for all v € V, the induced graph T[{a €
V(T) | v € By}] is a tree. The width of T is w(T) = maxaev (1) {|Bal — 1}
The treewidth of G is the minimum width over all tree decompositions of G.

1.2.3. Parameterized Complexity

Let ¥ be some finite alphabet (e.g. ¥ = {0,1}), and let ¥* denote the set of all
finite sequences of elements of 3 (or, strings over). The parameter value of any
instance (z,k) € ¥* x N of a parameterized problem we assume to be encoded
in unary. Hence, the size of the instance (z, k) is in O(|z| + k). We say that an

15

1. Introduction

instance (z, k) is a yes-instance of L if and only if (z, k) € L. Otherwise, we say
that (x,k) is a no-instance of L. We say that two instances (z, k) and (2, k')
of parameterized problems L and L’ are equivalent if (z,k) € L (i.e., (z,k) is
a yes-instance of L) if and only if (2/,k") € L' (i.e., (¢/, k') is a yes-instance
of L').

An algorithm running in f(k) - || time, where f is a computable function
only depending on k, is called a fized-parameter algorithm. A parameterized
problem L is fixed-parameter tractable if there is a fixed-parameter algorithm
solving the problem. The complexity class FPT contains all fixed-parameter
tractable parameterized problems.

A parameterized reduction from a parameterized problem L to a parameterized
problem I’ is a fixed-parameter algorithm that on input (x,k) € ¥* x N,
computes an instance (2, k') such that (i) (z,k) € L < (2/,k) € L, and
(ii) & < g(k), for some computable function g only depending on k. Clearly,
parameterized reductions provide the following:

Lemma 1.5 ([DF95a]). If there is a parameterized reduction from a param-
eterized problem L to a fized-parameter tractable problem L', then L is fixed-
parameter tractable.

The complexity class XP contains all parameterized problems L such that
every instance (z, k) of L can be decided in f(k)-|z|9*) time, where f and g are
some computable function only depending on k. It holds true that FPT C XP.
Inclusionwise, between FPT and XP lies the W-hierarchy, which consists of the
complexity classes W[t], t € N:

FPT C W[1] C W[2] C ... C XP.

Whether FPT = W[1] is unknown, but all inclusions from above are believed to
be strict. A parameterized problem L is W[t]-hard, t € N, if for all parameterized
problems L’ in W[t] there is parameterized reduction from L’ to L.

A parameterized problem is para-NP-hard if the problem is NP-hard for
some constant value of the parameter. For instance, COLORING parameter-
ized by the number k of colors is para-NP-hard since 3-COLORING is NP-
hard. Clearly, if some para-NP-hard parameterized problem is fixed-parameter
tractable, then P = NP. For complexity classes even beyond the class of
para-NP-hard problems, see e.g. the work of Haan and Szeider [HS17].

16

1.2. Preliminaries and Notations

1.2.4. Complexity-theoretic Coherence and Conjectures

The complexity class P/,o1, contains all languages that can be decided by
a polynomial-time Turing machine with polynomial advice?. Similarly, the
complexity class NP/, contains all languages that can be decided by a
polynomial-time nondeterministic Turing machine with polynomial advice, and
the complexity class coNP /o), contains the complement languages of NP /41

For a complexity class C, let NP be the class of all languages that can
be decided by a polynomial-time nondeterministic Turing machine with an
oracle for any problem contained in C. The polynomial hierarchy consists of
the complexity classes XFH = NP1 and P = co-2PH (iee., the complement
of ¥PH) for every i € N, where XFH = IITH = P (cf,, e.g., [HS19, Sto76]). It
holds true that Y2 C $PH and TIPY € IPH for every 7 € N, and it is believed
that all inclusions are strict. We say that the polynomial hierarchy collapses to
its ith level if XPH = Z?H for all 7 > i. The following collapse is immediate.

Lemma 1.6 (folklore). If P = NP, then the polynomial hierarchy collapses
completely, that is, to level zero.

We exhibit the following two collapsing scenarios, firstly proven by Karp and
Lipton [KL82] and Yap [Yap83].

Lemma 1.7 ([KL82|). If NP C P/, then the polynomial hierarchy collapses
to its second level.

Lemma 1.8 ([Yap83|). If coNP C NPy, then the polynomial hierarchy
collapses to its third level.

Lemma 1.8 holds also true if we swap the roles of NP and coNP, due to the
following.

Lemma 1.9 ([Yap83|). coNP C NP/, <= NP C coNP/,,.

For a discussion on the plausibility of coNP C NP /.1, we refer to the work
of Weller [Well3, Appendix A].

2Roughly speaking, for every n € N, the Turing machine on input z of length n is given
additional access to a string (the advice) of size polynomial in n.

17

1. Introduction

Complexity-theoretic Conjectures. We next recall some well-known com-
plexity-theoretic hypotheses and conjectures. The two hypotheses are the
Exponential Time Hypothesis and the Strong Exponential Time Hypothesis.

Hypothesis 1.10 (Exponential Time Hypothesis (ETH) [IP01, IPZ01]). There
exists some fived € > 0 such that 3-CNF-SAT cannot be solved in 25" - (n-+m)°M)
time, where n and m denote the numbers of variables and clauses, respectively.

Note that the ETH implies that there is no algorithm solving 3-CNF-SAT
running in 2°") - (n +m)°® time [TPZ01]. Moreover, the ETH implies FPT #
WI1] [Che+06] and clearly implies P # NP.

Hypothesis 1.11 (Strong Exponential Time Hypothesis (SETH) [TP01, IPZ01]).
For every fized € < 1 there is an integer k € N such that k-CNF-SAT cannot
be solved in O(2°") - (n +m)°W) time, where n and m denote the numbers of
variables and clauses, respectively.

Note that the SETH implies that for every fixed ¢ < 1 there is no O(2") - (n +
m)©M_time algorithm solving CNF-SAT, and that there is no (2 — &)™ - (n +
m)°M-time algorithm solving CNF-SAT, where £ > 0. Moreover, the SETH
implies the ETH [IPZ01].

The following two conjectures concern polynomial-time solvable problems. We
will refer to them only in Chapter 5 (see Appendix A for problem definitions).

Conjecture 1.12 (APSP-conjecture (see, e.g., [AVY18, VW18])). ALL PAIRS
SHORTEST PATHS is not solvable in truly subcubic time, that is, in O(n3~¢) time
for any € > 0, where n denotes the number of vertices of the input graph.

Conjecture 1.13 (3SUM-conjecture [GO95]). 3SUM is not solvable in truly
subquadratic time, that is, in O(n?=¢) time for any ¢ > 0, where n denotes the
number of numbers.

For a short discussion of the conjectures, we refer to Abboud et al. [AVY18S,
Appendix A].

18

Part 1.

Fractals for Kernelization
Lower Bounds

19

OR and AND-(cross-)compositions [BJK14, Bod+09| (Definition 1.5) are tools
for excluding polynomial kernelizations under the assumption that coNP ¢
NP /poly- Some parameterized problems such as® LONGEST PATH parameterized
by the solution size or CLIQUE parameterized by the maximum degree admit a
simple OR-composition by taking the disjoint union of the input graphs. Other
problems seem to require more involved constructions: For instance, SET COVER
parameterized by the universe size [DLS14] or CLIQUE parameterized by the
vertex cover number [BJK14]. Devising OR~ or AND-(cross-)compositions can
be challenging, and the task can be even more challenging when considering
combined parameters.

A problem that resisted several attempts for cross-compositions is the NP-
hard problem LENGTH-BOUNDED EDGE-CUT (LBEC): Given an undirected
graph G = (V, E) with two distinct vertices s,t € V', and two integers k, £ € N,
the question is whether it is possible to delete at most k edges such that the
shortest s-t path is of length at least £. Golovach and Thilikos [GT11] proved
LBEC parameterized by k + £ to be fixed-parameter tractable, but its status
about polynomial kernelization remained open there. In this part, we will resolve
this open question.

We would like to apply the OR-(cross-)composition framework to LBEC.
Suppose we have a sequence of p input instances of LBEC. Following a first
“standard” approach, we concatenate the input instances by identifying the sink
vertex of each instance with the source vertex of its succeeding instance, set the
first source as global source, and set the last sink as global sink. One might
refer to this as “serial composition” (cf. [Flu+19b]). Even if we could manage to
guarantee that edges are only deleted in a subgraph corresponding to a graph of
exactly one input instance, the length of any shortest path would still depend
on the number of input instances.

Following a second “standard” approach, we could introduce a global sink and
source vertex, and make each source and sink vertex from the input instances
adjacent to the global source and sink vertex, respectively. One might refer to
this as a “parallel composition” (cf. [Flu+17a]). This approach would keep the
shortest path between the global source and sink, and hence ¢, small enough.
However, we need to ensure that every shortest path, going through each graph
of the input instances, is of length at least ¢. It follows that the number k of
edge deletions would depend on the number of instances.

3See Appendix A for problem definitions.

21

Summarizing, the parameter k seems to ask for a serial composition and the
parameter £ seems to ask for a parallel composition. What does a composition
look like that is between serial and parallel?

One answer to this question is presented in Chapter 2. We introduce a graph
family that we call T-fractals, and explain its application in OR-(cross-)com-
positions which we baptize “fractalism technique”. Indeed, in the fractalism
technique the graphs of the input instances are combined in a serial fashion,
while a global source and sink vertex in the T-fractal are of short distance to the
input graphs’ source and sink vertices. Hence, the composition can be seen to
be between serial and parallel, yet avoiding each of the issues addressed before:
A cut in the T-fractal is small, and works as an instance selector. Once an
instance is selected, a shortest path only needs to pass the selected instance.
Hence, the edge deletions and the length of a shortest path are both small
enough, as required in the (cross-)-compositions framework.

We introduce in Chapter 2 the graph family of T-fractals and prove its
application in OR-cross-composition. In Chapter 3, employing the fractalism
technique, we show that several parameterized graph modification problems
(including LBEC) and several of their variants (planar, directed, vertex deletion)
admit no polynomial kernels (unless coNP C NP /).

22

CHAPTER 2 .

THE “FRACTALISM” TECHNIQUE

We introduce a graph family that we call T-fractals. We prove several properties
and provide a manual for devising cross-compositions using T-fractals to rule
out polynomial kernels under the assumption coNP ¢ NP /poly-

2.1. Introduction

OR-(cross-)compositions, or in general any kind of hardness reductions, often
require gadgetery in their constructions. In developing OR-cross-compositions,
in particular, gadgets selecting one instance from the set of instances to compose
(so-called instance selection gadgets) often form the key for the construction. In
this chapter, we introduce an instance selection gadget for cross-compositions
in form of a graph family: the triangle fractals (T-fractals for short). In the
next chapter, we prove the application of T-fractals in cross-compositions for
problems that we refer to as distance-related cut problems.

Roughly speaking, a T-fractal can be constructed by iteratively putting
triangles on top of each other (see Figure 2.1 for four examples). Formally,
T-fractals are (iteratively) defined as follows.

Definition 2.1 (iterative). For ¢ € N, the ¢-T-fractal A\, is the graph con-

structed as follows:

(1) Set &g == ({o,7}, {{0,7}}) with {o,7} being a “marked edge” with end-
points o and 7, subsequently referred to as special vertices.

(2) Let F be the set of marked edges.

This chapter is based on (parts of) Fractals for kernelization lower bounds by Till Fluschnik,
Danny Hermelin, André Nichterlein, and Rolf Niedermeier (SIAM Journal on Discrete Mathe-
matics [Flu+18al).

2. The “Fractalism” Technique

(a) (b) ()

g T

Figure 2.1.: T-fractals (a) A1, (b) Ag, (¢) As, (d) As. The two special vertices o
and 7 are highlighted by empty circles. For the T-fractal A4, in (e) the two 3-T-
subfractals A5 (dashed) and A5 (dotted) are illustrated.

(3) For each edge e € F, add a new vertex and connect it by two new edges
with the endpoints of e, and mark the two added edges.

(4) Unmark all edges in F.

(5) Repeat (2)—(4) g — 1 times.

The T-fractal is self-similar, hence fractal-like: zooming in, one can rec-
ognize T-fractals of smaller order (so-called T-subfractals; see Figure 2.1(e)).
Indeed, several graph families like cliques or balanced binary trees are self-
similar. Fractal-likeness leads to an equivalent, recursive definition of T-fractals
(see Definition 2.2 in Section 2.2) which allows for easily proving several of its
graph-theoretic properties. For instance, the T-fractal is outerplanar, of small
diameter, and admits small o-7 edge cuts. In Table 2.1 we give an overview of
several properties.

We describe how T-fractals help for excluding polynomial kernels by providing
a general construction scheme for cross-compositions using T-fractals. To this
end, we first define T-fractals and then discuss several of their properties

24

2.2. Properties of the T-Fractal

Table 2.1.: Overview of some properties of T-fractals (p = 27). Herein, n and m denote
the numbers of vertices and edges, respectively, A denotes the maximum vertex degree,
¢ denotes the size of a minimum o-7 edge cut, tw denotes the treewidth, and diam
denotes the diameter. BBT, denotes a balanced binary tree with p leaves.

n m A 1) tw diam

g-T-fractal p+1 2p—1 2q q+1 <2 <2¢q
BBT, 2p—1 2p — 2 3 1 1 2q

in Section 2.2. Furthermore, we present in Section 2.3 a directed variant and
in Section 2.4 an edge-weighted variant. We provide two “manuals” for an
application of T-fractals in cross-compositions in Section 2.5. Finally, we discuss
a modification of the T-fractal for vertex-deletion problems in Section 2.6.

2.2. Properties of the T-Fractal

The fractal structure of the ¢g-T-fractal A, might be easier to see when consid-
ering the following equivalent recursive definition of A:

Definition 2.2 (recursive). For the base case we define Ag = ({0, 7}, {{0,7}}).
Then, the ¢-T-fractal A\, is constructed as follows. Take two (¢ — 1)-T-
fractals A _; and A, where o/, 7" and o, 7" are the special vertices of A]_;
and A} _;, respectively. Then A, is obtained by identifying the vertices 7/
and ¢”, adding the edge {¢’, 7"}, and setting 0 = ¢’ and 7 = 7" as the special

vertices of Ay.

For A4, we also refer to Aj_; and A7_; from Definition 2.2 as the (¢ — 1)-T-
subfractals of /A,. We remark that we make use of the recursive structure in
later proofs. However, by construction, we immediately obtain the following
(for the latter, see, e.g., [Bod98]).

Observation 2.1. The T-fractal is outerplanar and hence the treewidth of A,
is tw(Ly) < 2 for every g € N.

In the ith execution of (2)-(4) in Definition 2.1, we obtain 2°~! new triangles.
We say that these triangles have depth i. The i-th boundary B; C E(4,),
i€ {l,...,q}, are those edges of the triangles of depth ¢ which are not edges of

25

2. The “Fractalism” Technique

s 0

S .

e e
N S D
1 'i \
‘\” Bl," ~‘\ :/b

.o o Bo hienl P
g T

Figure 2.2.: Highlighting the different boundaries Bg, B1,...,Bs of A4 (see Defini-
tion 2.3) by line-types (solid: Bo; dashed: Bi; dotted: Ba; dash-dotted: Bs; dash-dot-
dotted: Ba).

the triangles of depth i — 1. As a convention, the edge {o, 7} connecting the
two special vertices o and 7 forms the boundary By. We refer to Figure 2.2 for
an illustration of the boundaries in the T-fractal Ay4.

Definition 2.3. For each A, let By = {{o,7}}. The i-th boundary B; C
E(Ly), i € {1,...,q}, of A, is defined as B; = B,_, W B} ;, where B]_,
and B} ; are the (i — 1)-th boundaries of the T-subfractals A} _; and A7_; of
A4, respectively.

By construction, with an easy inductive argument we obtain the following:

Observation 2.2. In every T-fractal, each boundary forms a o-T path, and all
boundaries are pairwise edge-disjoint.

Note that the boundary B, contains p = 29 edges. Thus, the number of edges
in Agis 37 ,2°=29T1 —1=2.p— 1. Further observe that all vertices of A,
are incident with the edges in By, and B, forms a o-7 path. Hence, /A, contains
p + 1 vertices.

2.2.1. Minimum o-7 Edge Cuts

The goal of this subsection is to prove several properties of T-fractals that are
used in later constructions. Some key properties of T-fractals appear in the
context of o-7 edge cuts in A,. To prove other properties, we later introduce
the notion of the dual structure behind the T-fractals.

26

2.2. Properties of the T-Fractal

The minimum edge cuts in A, will play a central role when using T-fractals
in cross-compositions since the minimum edge cuts serve as instance selectors
(see Section 2.5). First, we discuss the size and structure of the minimum
edge cuts in A,.

Lemma 2.3. Every minimum o-1 edge cut in [\, contains exactly one edge of
each boundary and hence is of size ¢+ 1.

Proof. Let C be a minimum o-7 edge cut in A,. Note that the degrees of ¢
and 7 are exactly ¢ + 1, and thus |C| < ¢ + 1. Moreover, the boundaries in A,
are pairwise edge-disjoint and each boundary forms a o-7 path (Observation 2.2).
Since A\, contains ¢+ 1 boundaries, it follows that there are at least ¢+4-1 disjoint
o-T paths in A,. Menger’s theorem [Men27] states that in a graph with distinct
source and sink, the maximum number of disjoint source-sink paths equals the
minimum size of any source-sink edge cut. Thus, by Menger’s theorem, it follows
that |C| > ¢+ 1. Hence |C]| = ¢+ 1. O

Lemma 2.4. Let A}y and A4 be the two (q — 1)-T-subfractals of N, and
let u be the common neighbor of o and 7. Then, for every minimum o-1 edge
cut C in Ay it holds true that C\ {{o,7}} is either a minimum o-u edge cut

m Aq 1, Or a minimum u-T edge cut in Ag71

Proof. Note that since C' is a minimum o-7 edge cut in A, and every o-7
edge cut in A, contains the edge {o, 7}, the edge set C' .= C\ {{o,7}} is a
minimum o-7 edge cut in A, — {{o,7}}. Hence, C’ is a o-u edge cut or a u-T
edge cut in A, — {o, 7}, thus C' N (E(A;_;) U E(A]_;)) # 0. Suppose towards
a contradiction that

Cl=C"NEA,_;)#0and

Cy=C'"NEA]) #0.
If C"is a o-u edge cut in A}_,, then C7 U {{o,7}} is a 0-7 edge cut in A,
with |C{U{{o,7}}| < |C]. If C” is a u-7 edge cut in A} _;, then CyU{{o,7}} is

a o-7 edge cut in A, with |C5U{{o, 7}}| < |C|. Either case yields a contradiction
to the minimality of C. Tt follows that C' C E(A;_;) or C' C E(A]_;). O

Lemma 2.5. There are exactly p = 29 pairwise different minimum o-1 edge cuts
in Ag.

27

2. The “Fractalism” Technique

Figure 2.3.: The T-fractal As (circles and solid lines) with its dual graph (left-hand
side) and its dual structure T3 (right-hand side). Both, the dual graph and the
dual structure are illustrated by squares and dotted lines, where the filled square
corresponds to the vertex dual to the outer face (in the dual graph) or the root (of
the dual structure).

Proof. We prove the lemma by induction on g. For the base case ¢ = 0, observe
that C' = {{o,7}} is the only o-7 edge cut in Ay.

For the induction step, assume that the statement of the lemma is true
for Ay—1. In Ay, denote by u the (unique) vertex that is adjacent to the two
special vertices o and 7. Let A} _; and A]_; be the two (¢ — 1)-T-subfractals
of Ay, so that A} _; (Aj_;) has the special vertices o and u (v and 7). By
assumption, A, (A]_}) has exactly p/2 = 297" pairwise different minimum
o-u edge cuts (u-7 edge cuts). Moreover, each edge cut in A} _; is different to
each edge cut in A]_;. Observe that for any minimum o-u (u-7) edge-cut C
in Ay (A_1), we have that CU{{o, 7}} is a minimum edge-cut in A,. Hence,
there are at least p = 27 pairwise different minimum o-7 edge cuts C,...,C)
in Ay. Due to Lemma 2.4, we know that there are at most p = 2¢ pairwise
different minimum o-7 edge cuts in AA,. It follows that there are exactly p = 29
pairwise different minimum o-7 edge cuts in A,. O

The Dual Structure

In the following we describe a (hidden) dual structure in A, that is, a balanced
binary tree with p leaves. We refer to Figure 2.3 for an example of the dual
structure in Agz. To talk about the dual structure by means of duality of
plane graphs, we need a plane embedding of ;. Hence we assume that A, is
embedded as in Figure 2.1 (iteratively extended). By T, we denote the dual

28

2.2. Properties of the T-Fractal

structure in A, where the vertex dual to the outer face is replaced by p + 1
vertices (split vertices) such that each edge incident with the dual vertex is
incident with exactly one split vertex. We consider the split vertex incident
with the vertex dual to the triangle containing the edge {o, 7} as the root vertex
of the dual structure T5. Thus, the other split vertices correspond to the leaves
of T,. Note that the depth of a triangle one-to-one corresponds to the depth of
the dual vertex in Tj,.

Observe that there is a one-to-one correspondence between the edges in T}
and the edges in A;. The following lemma states duality of root-leaf paths
in 7, and minimum o-7 edge cuts in A4, demonstrating the utility of the dual
structure Tj.

Lemma 2.6. There is a one-to-one correspondence between root-leaf paths in
the dual structure Ty of Ay and minimum o-1 edge cuts in [\y. Moreover, there
are exactly p = 29 pairwise different minimum o-1 edge cuts in A\,.

Proof. Observe that each path from the root to a leaf in the dual structure T},
corresponds to a cycle in the dual graph. Note that there is a one-to-one
correspondence between minimal edge cuts in a plane graph and cycles in its
dual graph [Diel0, Proposition 4.6.1]. Herein, every cycle in the dual graph that
“cuts” the edge {0, 7} in A\, is a root-leaf path in Tj,. Thus, the only minimal
o-7 edge cuts are those corresponding to the root-leaf paths. By the one-to-one
correspondence of the depth of the triangles in A, and the depth of the vertices
in Ty, these edge cuts are of cardinality ¢ + 1. Hence, by Lemma 2.3, these
edge cuts are minimum edge cuts.

Since |By| = p, there are exactly p leaves in T, and thus there are exactly
p different root-leaf paths in 75. It follows that the number of pairwise different
minimum o-7 edge cuts in A, is exactly p = 2. O

2.2.2. Distances between o and 7

In this subsection, we discuss how edge deletions in T-fractals change the
distances of the vertices in the T-fractal to o and to 7.

Lemma 2.7. Let C be a minimum o-1 edge cut in AN,;. Let {{z,y}} = CnN
B,, where x and o are in the same connected component in Ny — C. Then
dista,—c(o,x) +dista,—c(y, 7) = q.

Proof. We prove the lemma by induction on ¢. For the base case ¢ = 0, observe
that C' = {{o,7}} and distpo,—¢(0,2z) + distp,—c(y,7) = 0.

29

2. The “Fractalism” Technique

(o T g T

Figure 2.4.: The T-fractal A4 without the edge set D = {{o,7}, {0, u}, {u,x}} (left-
hand side) and without the edge set D’ = D U {{z,2}} (right-hand side). Deleted
edges are sketched by dashed lines. For each, the shortest o-7 path is highlighted.
Note that D’ U{{z,y}} or D’U{{y, 2}} forms a minimum o-7 edge cut (see right-hand
side).

For the induction step, assume that the statement of the lemma is true
for Ay—1. Now, let C' be a minimum o-7 edge cut in A,. Hence, {o,7} € C.
Denote by u the (unique) vertex that is adjacent to the two special vertices o

and 7. Let A} _; and A7_; be the two (¢ —1)-T-subfractals of A, so that A} _;
(Ay-1) has the special vertices o and u (v and 7). By Lemma 2.4, C" := C'\
{{o,7}} is either a subset of E(A]_;) or of E(A]_;). Assume w.l.o.g. that C" C

q—1
E(A}_;). It follows from the induction hypothesis that distar | —cr (o,2) +
distA;_l,C/(y,u) = ¢ — 1. Since dista,—c(y,7) = distA;_l,c/(y,u) +1, it
follows that dista,—c (o, x) +dista,—c(y,7) = ¢. O

Remark 2.1. By an inductive proof like the one for Lemma 2.5 or for Lemma 2.7,
one can easily show that the maximum degree A of A, is exactly 2¢ for ¢ > 0.
Moreover, due to Lemma 2.7, the diameter of A, is at most 2g.

Another observation on A, is that any deletion of d edges increases the length
of any shortest o-7 path to at most d + 1, unless the edge deletion forms a
o-7 edge cut.

Lemma 2.8. Let D C E(/A,) be a subset of edges of Ng. If D is not a
o-T edge cut, then there is a o-1 path of length at most |D| + 1 in A, — D.

Proof. We prove the statement of the lemma by induction on ¢. For the

induction base with ¢ = 0, observe that since D is not a o-7 edge cut, it follows
that D = () and, hence, o and 7 have distance one.

30

2.2. Properties of the T-Fractal

For the induction step, assume that the statement of the lemma is true
for Ay—1. Now, let D C E(4,) be a subset of edges of A, such that D is
not a o-7 edge cut. If {o,7} ¢ D, then there is a o-7 path of length one
and the statement of the lemma holds. Now consider the case {o,7} € D.
Denote by u the (unique) vertex that is adjacent to the two special vertices o
and 7. If {o,7} € D, then every o-7 path in A, — D contains v and hence
dista,—p(o,7) = dista,—p(o,u) + dista,—p(u, 7). (If there is no o-u-path
or no u-T-path in A, — D, then D is a o-7 edge cut; a contradiction to the
assumption of the lemma.) Now let A _; and Aj_; be the two (¢ — 1)-T-
subfractals of Ay, so that A;_; (Aj_;) has the special vertices o and u (u
and 7). It follows that D can be partitioned into D = D' U D" U {{o,7}}
with D" C E(A[_;) and D" C E(A]_;). By induction hypothesis, it follows
that there is a o-u path of length at most D[+ 1in A} _; — D" and a u-7 path
of length at most [D"[+11in A]_; — D". Hence, there is a o-7 path of length
at most |D'| +|D"|+2=|D|+1in Ay — D. O

By Lemma 2.8, the distance of the two special vertices o and 7 is upper-
bounded by the number of edge deletions plus one, where the deleted edges do
not form a o-7 edge cut. Hence, if only few edges are deleted in A, then o
and 7 are not far away from each other. The next lemma generalizes this by
stating that the distance of any vertex in A, to o or to 7 is quite small, even if
a few edges are deleted. Here “quite small” means that if O(q) edges are deleted,
then the distance is still in O(g), which is logarithmic in the size of A,.

Lemma 2.9. Let D C E(A,) be a subset of edges of A\,.

(A) If Ay— D is connected, then dista,—p(o,x) < q+[D|+1 for allz € V(D).

(B) If Ay — D has exactly two connected components, with o and T being in
different components, then min,c¢, {dista,_p(z,2)} < q+|D| -1 for
all z € V(4,).

Proof. We prove the two statements (A) and (B) simultaneously with an induc-
tion on depth ¢ of the T-fractal.

The base case is ¢ = 0. For statement (A), observe that D = (). Thus,
since 7 has distance one to o, statement (A) follows. For statement (B), observe
that D = {{o,7}}. Thus, statement (B) holds.

As our induction hypothesis, we assume that (A) and (B) hold for 1,...,¢—1.
We write ITH.(A) and IH.(B) for the induction hypothesis of (A) and (B),
respectively. We introduce some notation used for the induction step for both
statements. Let A4, ¢ > 0, be the T-fractal with special vertices o and 7 and

31

2. The “Fractalism” Technique

let u be the (unique) vertex in A, that is adjacent to o and 7, that is, u is on
the boundary B; of A,. Denote with A _; (A}_;) the left (right) subfractal
of A, with special vertices o and u (v and 7). Furthermore, let D" (D") be the
subset of edges of D deleted in Ap_; (A7_4).

For the inductive step, we consider the two cases of {o,7} ¢ D and {o,7} € D.

Case 1: {0,7} ¢ D. Obviously, this case excludes (B), since o and 7 are in
the same connected component. Thus, we consider the induction step for (A).
Let x be in the left subfractal A} ;. If D" does not form an edge cut in A}_;,
then by IH.(A) it follows that dista; _pi(o,x) <q—1+[D'|+1<q+|D|.
Thus, we consider the case where D’ forms an edge cut in A} _;. Observe that
such an edge cut fulfills the requirements of statement (B) for A}_;. By IH.(B),
it follows that min.e (o3 {dista: _p/(z,2)} <¢—1+|D[-1<q+|D]. If
z = o, then we are done. Thus let z = u, where u is the vertex incident to
both ¢ and 7 in AA,. We know that A, — D is connected, and thus there exists
an u-7 path in the right subfractal Aj_; — D”. By Lemma 2.8, it follows that
distar —pr (u,7) < |D"| + 1. Recall that {o,7} € D. In total, we get

diStAq_D(l‘,O') < diStAirl_D/ (u,) + diStA;’fl—D“ (u,7) +1
<q—-14+|D'|-14+|D"|+1+1=q+|D|

We obtain that dista,—p(x,0) < ¢+ |D| and hence, dista, p(z,7) < ¢+
|D| + 1. In case that = is in the right subfractal A]_;, it follows by symmetry
that dista,_p(z,7) < ¢+ |D| and, hence, dista,_p(z,0) < ¢+ |D| + 1.

Case 2: {0,7} € D. First, we consider the step for statement (A). Let z be
in the left subfractal A}_;. Observe that D’ forms no edge cut in Aj_, since
otherwise the graph is not connected. Thus, A} _; — D’ is connected, and by
IH.(A) it follows that dista; _pr(o,@) <q¢—1+[D'[+1<q+|D|.

Now, let z be in the right subfractal A]_;. Again, D” forms no edge cut
in AY_,. By IH.(A), distar _pr(u,x) < q—1+|D"[+1. Since u and o
are connected in A;d — D', we can apply Lemma 2.8 on u and o. In total,
with D = D" U D" U {{o,7}} we get:

dista,—p(x,0) < distAgil_D/(u,U) + diStA;gl—D“ (u,)

<qg—-1+|D|+1+|D"|+1
<q+|D|.

Next, we consider the step for statement (B). Observe that the edge cut formed
by edges in D cannot form edge cuts in A;% and in Af}l at the same time since

32

2.3. Directed Variants of T-Fractals

(o T

Figure 2.5.: The directed T-fractal A4 (see Definition 2.4).

otherwise there are more than two connected components. Let x be in the left
subfractal and let the edges in D’ form no edge cut in Aj_;. Then, by IH.(A),
it follows that dista; _pi(0,@) < q—1+4[D'|+1 < g+ [D[—1. Thus, let the
edges in D’ form an edge cut in A¢_;. By IH.(B), either dista; | _p/(0,2) <
q—1+|D'|-1 < g+|D|-1, or dista; _ps(u,z) < q—1+|D’[—1. For the latter
case, recall that the edges in D" form no edge cut in Ay_,, that is, A7 _; — D"
is connected. By Lemma 2.8, it follows that distas _p»(u,7) <[D"[+1. In
total, we get:

dista,—p(@,7) < dista; | —pr(z,u) +distay —pr(u,7)
<g¢g—1+|D'|-1+|D"|+1
<q+|D|—-1

The case where z is in the right subfractal follows by symmetry. O

2.3. Directed Variants of T-Fractals

By definition, a T-fractal A, is an undirected graph. The directed variant

of A, denoted by ﬁq, is (recursively) defined as follows (see Figure 2.5 for an
illustration).

Definition 2.4. For the base case we define Ay := ({0, 7}, {(c,7)}). Then, the
directed ¢-T-fractal A, is constructed as follows. Take two directed (g — 1)-T-

/

fractals A} _; and A]_;, where o', 7" and 0", 7" are the special vertices of A} _,

q—1

33

2. The “Fractalism” Technique

and 55717 respectively. Then Aq is obtained by identifying the vertices 7/
and ¢, adding the arc (o/,7"), and setting ¢ = ¢’ and 7 = 7"/ as the special

vertices of A\,.

We can also obtain Aq from A, as follows: Recall that each boundary forms
a o-7 path (Observation 2.2). For each boundary, we direct the edges in the
boundary from o to 7. By this, the obtained boundary forms a directed o-7 path.
Hereby, we transfer the notion of a boundary (Definition 2.3) to the directed
variant.

Observation 2.10. In Aq, vertex o has no incoming arcs and out-degree q+1,
and vertex T has no outgoing arcs and in-degree ¢ + 1. Moreover, A\, is acyclic.

Except for Lemma 2.9, all results from Section 2.2.1 can be transferred to Aq.
Lemmas 2.3 and 2.5 hold since we still have the same degree on ¢ and on 7
and the boundaries still form disjoint (directed) o-7 paths. We define the dual
structure of Aq as the dual structure of the underlying undirected variant A,.
By this, it is not hard to adapt Lemmas 2.6 and 2.7. For the latter result, and
additionally for Lemma 2.8, we make use of the fact that in the undirected case,
we traverse the edges of the undirected A, in the same direction as they are
directed in Aq.

Regarding an equivalent of Lemma 2.9 for the directed variant, with small
effort one can modify the proof of Lemma 2.9 to show the following.

Lemma 2.11. Let D C E(&q) be a subset of arcs of Aq and let x be an
arbitrary vertez in V(&q). Ifz € V(Aq) is reachable from o in Aq — D, then
distArD(o,x) <q+|D|+1.

Proof. We prove the statement with an induction on depth g of the T-fractal.

The base case is ¢ = 0. If x = o, the statement immediately holds. If z = 7,
observe that D = (), since z is reachable from o. Thus, since 7 has distance one
to o, the statement follows.

As our induction hypothesis, we assume that the statement holds for1,...,q—
1. We introduce some notation used for the induction step. Let A4, ¢ > 0, be
the directed T-fractal with special vertices o and 7 and let u be the (unique)
vertex in Aq that is adjacent to o and 7, that is, v is on the boundary B;
of ﬁq. Denote with &;71 (&;’71) the left (right) T-subfractal of Aq with special
vertices o and v (u and 7). Furthermore, let D’ (D”) be the subset of arcs of D
deleted in 5271 (&;’71).

34

2.4. Edge-Weighted T-Fractal

Let x € V(&) be an arbitrary vertex reachable from o in ﬁq — D. For the
inductive step, we consider the two cases of the position of z in A,,.
Case 1: z € V(A[_;). By induction hypothesis, it follows that

distAq_D(U,x) =dist 5, 1_D,(O',£C) <qg-14+|D'|+1<q+|D|.

Case 2: x € V(Agfl). Since x is reachable from ¢ and 7 has no outgoing

arcs, it follows that u is reachable from o as well. By the version of Lemma 2.8
for directed T-fractals, it follows that distx,), (o,u) < |D’| + 1. Together
q—1

with the induction hypothesis, it follows that
diStArD(Uv x) < distA;_FD,(o7 u) + dis’cA;_FD,(u7 T)

<|ID'|+14+q—1+|D"|+1
<g¢+|D|+1. O

Observe that if x reaches 7, then Lemma 2.11 is symmetric.

2.4. Edge-Weighted T-Fractals

The weighted T-fractal is the T-fractal equipped with edge costs, that is, the
cost for deleting an edge in the T-fractal. If all edges in A, are of the same
edge cost ¢ € N, then we write Ay (we drop the superscript if ¢ = 1). In
the remainder, we use the weighted case yet obtain results on the unweighted
case of T-fractals without multiple edges or loops. This is possible due to the
following many-one reduction of the weighted to the unweighted case. Consider
the weighted T-fractal A; with ¢ > 2. To reduce to the case with an unweighted,
simple graph, we replace each edge by ¢ copies of it. Thus, to make two adjacent
vertices non-adjacent, it requires ¢ edge-deletions. To make the graph simple, we
subdivide each of the added edges. We remark that in this way we double the
distances of the vertices in the original T-fractal. Hence, whenever we consider
distances in the fractal with edge cost and the graph obtained by the reduction
above, we have to take into account a factor of two.

Remark 2.2. The treewidth of the graph G obtained by the modification of the
T-fractal described above remains at most two, though it is not necessarily outer-
planar anymore. To see this, observe that outerplanar graphs are series-parallel.
Moreover, a graph obtained by replacing an edge in a series-parallel graph by

35

2. The “Fractalism” Technique

a number of paths with the same endpoints remains series-parallel [Duf65]. It
follows that G has treewidth at most two.

2.5. Application Manuals for T-Fractals

The aim of this section is to provide two general manuals on how to use T-fractals
in cross-compositions. To this end, we introduce two general constructions—one
for undirected graphs and one for directed graphs. We start with the undirected
case.

Construction 2.12. Given p = 29 instances Zi,...,Z, of an NP-hard graph
problem, where each instance Z; has a unique source vertex s; and a unique
sink vertex t;.
(i) Equip A7 with some “appropriate” edge cost ¢ € N.
(ii) Let vg,...,vp be the vertices of the boundary B, labeled by their distances
to o in the o-7 path corresponding to B, (observe that vo = ¢ and v, = 7).
(iii) Incorporate each of the p graphs of the input instances into Ay as follows:
for each i € {1,...,p}, identify s; with vertex v;_; in Ay and identify ¢;
with v; in Ag.

Refer to Figure 2.6 for an illustrative example of Construction 2.12. In
Construction 2.12, the T-fractal works as an instance selector by deleting edges
corresponding to a minimum edge cut, which, by Lemma 2.3, is of size g + 1.
Hence, each minimum edge cut costs c¢- (¢ +1). The idea is that if we choose an
appropriate value for ¢ (larger than the budget in the instances 7y, ...,Z,) and
an appropriate budget in the composed instance (e.g. ¢- (g + 1) plus the budget
in the instances 7y, . .., Z,), then we can only afford to delete at most g+ 1 edges
in Ag. Furthermore, if the at most ¢ + 1 edges chosen to be deleted do not form
a minimum o-7 edge cut in Ay, then, by Lemma 2.8, the shortest o-7 path has
length at most g+ 2. Thus, by requiring in the composed instance that o and 7
have distance more than ¢ + 2, we enforce that any solution for the composed
instance contains a minimum o-7 edge cut in A7. By Lemma 2.6, each such
minimum edge cut corresponds to one root-leaf path in the dual structure 7,
of Ag. Observe that each leaf in the dual structure of A one-to-one corresponds
to an attached source instance. Hence, with an appropriate choice of ¢, the
budget in the composed instance, and the required distance between o and T,
the T-fractal ensures that one instance is “selected”. We say that a minimum

36

2.5. Application Manuals for T-Fractals

s1__ i sa__ to s3__ t3 sa__ ta ss__ ts se__ _l¢ s7__ 17 ss__ 18

« e md T e & T e »

Figure 2.6.: Tllustration of Construction 2.12 with p = 2% = 8. The vertices s1,..., sg
and t1,...,ts indicate the source and sink vertices in the eight input instances,
respectively. We use dashed lines to sketch the input graphs. Below the curved brace,
we sketch the resulting graph of the target instance.

o-1 edge cut in Af selects an instance 7 if the edge cut corresponds to the
root-leaf path with the leaf corresponding to instance Z.

Observation 2.13. Every minimum edge cut C in Ay selects exactly one
instance L. Conversely, every instance I can be selected by exactly one minimum
edge cut.

Moreover, the graph obtained from Construction 2.12 has treewidth bounded
in the maximum input instance size.

Observation 2.14. Let nyax = max;eq1,..) |V(Gi)|, where Gy is the graph

in instance Z;, i € {1,...,p}, from Construction 2.12 and let G be the obtained
graph. Then the treewidth of G is tw(G) < 2 + Nmax.

37

2. The “Fractalism” Technique

Proof. By Observation 2.1, we know that the treewidth of the T-fractal is at
most two. Moreover, we know that the treewidth of the modified T-fractal is at
most two (see Remark 2.2). Considering a tree decomposition of the modified
T-fractal, we replace each bag corresponding to an edge e of the outer boundary
by the set containing all vertices of the instance appended on edge e. Hence, we
obtain a tree decomposition of G of width at most 2 4+ nyax. O]

If Construction 2.12 works as an OR-cross-composition, then Observation 2.14
gives the following (employing Proposition 1.3).

Proposition 2.15. Unless coNP C NPy, any parameterized problem P that
admits an OR-cross-composition for some NP-hard problem L by using Con-
struction 2.12 does not admit a polynomial kernel with respect to the parameter
treewidth tw.

Using the same ideas as above and transferring them to the directed case
yields the following construction with analogous properties.

Construction 2.16. Given p = 29 instances 7y, ...,Z, of an NP-hard problem

on directed acyclic graphs, where each instance Z; has a unique source vertex s;
and a unique sink vertex ;.

(i) Equip &g with some “appropriate” edge cost ¢ € N, where o is the vertex
with no incoming arc.

(ii) Let vg,...,v, be the vertices of the boundary B, labeled by their distances

to o in the o-7 path corresponding to B, (observe that vo = o and v, = 7).

(iii) Incorporate each of the p directed acyclic graphs of the input instances

into AZ as follows: for each i € {1,...,p}, identify s; with vertex v;_1

in &; and identify ¢; with vertex v; in ﬁ;

In Chapter 3, we use Constructions 2.12 and 2.16 in OR~cross-compositions to
rule out the existence of polynomial kernels. We baptize this approach fractalism.
In particular, we provide the source and the target problem, appropriate values
for the edge cost ¢ and the budget in the composed instance, and the required
distance between the special vertices o and 7. Observe that the directed graph
obtained from Construction 2.16 is acyclic. Hence, by Construction 2.16 we can
apply OR-cross-compositions for problems on directed acyclic graphs.

38

2.6. Vertex-Deletion Variants

Figure 2.7.: The vertex deletion variant Ag;‘r’ of T-fractals. Vertex types: empty
diamonds belong to the boundary By, empty triangles belong to the boundary B,
empty circles belong to the boundary Bz2. The squares and dashed lines indicate the
dual structure, where the filled square corresponds to the root. We highlighted vertices
in gray-filled circles that correspond to the vertices in the edge-deletion variant As.

2.6. Vertex-Deletion Variants

We give another modification of the T-fractal such that vertex-deletion variants
can be tackled. We obtain the vertex-deletion variant Ag?d of the T-fractal
from Aj as follows, where d denotes an additional vertex cost. Recall that Ay can
be reduced to an unweighted, simple graph Ag We first obtain Ag =(V'u
V", E') from Ag, where V' denote the vertices not being the product of a
subdivision in the step from Ag to AZ. Next, we describe how to obtain Ag?d
from Ag To this end, we introduce the following notation: given a graph G =
(V,E) and v € V, we say we clone vertex v if we add a new vertex v’ to V
and the edge set {{v/,w} | {v,w} € E} to E. We obtain A% from A¢ by
cloning every vertex in V' d — 1 times (we refer to them as the clones in the
following). We denote by C, C V(AS) the set containing vertex z € V(Ag)
and its clones. We refer to Figure 2.7 for an illustration of the vertex-deletion
variant of T-fractal Ay with edge cost 2 and vertex cost 5.

The vertex cost can be interpreted as a tool to avoid deletion of clones. Herein,
we can set the vertex cost larger than the budget for vertex-deletions in a given
problem instance to avoid any deletion of clones. To this end, note that to

39

2. The “Fractalism” Technique

essentially change the structure of the graph by deleting a vertex having clones,
it is required to delete all clones of the vertex as well.

We remark that the vertex-deletion variant of the T-fractal can be directed in
the same way as the edge-deletion variant of the T-fractal such that the obtained
graph is acyclic. Moreover, we can transfer the notion of boundaries, now being
a set of vertices instead, as well as the dual structure for the vertex-deletion
variant of the T-fractal (see Figure 2.7). Note that in general A?d is not planar,
for example for ¢,d > 3.

One can show that all properties of the edge-deletion variant also hold on
the vertex-deletion variant, replacing edge cuts by vertex cuts (modulo some
constants), while forbidding to delete clones. Again, the latter is reasonable
since in any application we can set the vertex cost larger than the budget for
vertex-deletions. For example, considering any minimum C,-C; vertex cut
in Af]?d, where every vertex in every Cy, x € V(4 ,), is not allowed to be deleted.
One can show that it is of size (¢ + 1) - ¢, using a simple bijection of the edges
in A7 and the corresponding vertex sets in Ag?d.

In addition, one can modify Constructions 2.12 and 2.16 slightly to use the
vertex-deletion variants for vertex-deletion problems. Herein, it is worth to
mention how the merging of the source and sink vertices of the input instances
works. Consider s; and v;_1 as defined in Construction 2.12, and let d € N be
the vertex cost. Note that v;_; is replaced by C' = C,, , with |C| = d. We
remove s; and all incident edges of s;, and add d copies s}, ..., s‘ij of s;. In
addition, if {s;, 2} was an edge we deleted in the previous step, we add the
edges {s!,z} for all j € {1,...,d}. Finally, we identify each s} with one vertex
in C in such a way that each vertex in C' is identified exactly once. We apply
an analogous procedure to the sink vertex ¢; and C,,.

2.7. Concluding Remarks

With the T-fractals we introduced a family of graphs with the property that,
for two special vertices 0 and 7, the number of minimum o-7 edge cuts is
exponential in the cuts’ size. As we will see in the next Chapter 3, this property
will be crucial in working as an instance selector in distance-related cut problems.
We remark that Zschoche [Zsc17] employed the fractalism technique to exclude,
assuming coNP ¢ NP /poly; the existence of polynomial kernels for the problem of
finding s-t separators in temporal graphs. Moreover, Zschoche [Zsc17] proposed

40

2.7. Concluding Remarks

a gadget based on grid graphs that could ensure planarity for the vertex-deletion
variant of the T-fractal. However, the existence of such a variant remains open.

Open Problem 1. Is there a planar vertex-deletion variant of T-fractals
suitable for the fractalism technique?

In general, we are curious about more fractal-like graphs with interesting
properties. In particular, we wonder whether fractal-like graphs are suitable
to answer open problems like whether DIRECTED FEEDBACK VERTEX SET
parameterized by the solution size [Fel+12a| or IMBALANCE parameterized by
the imbalance [LMS13] admit polynomial kernels or not (see also, e.g., [BFSI10,
Cyg+14]).

41

CHAPTER 3 .

DISTANCE-RELATED CUT PROBLEMS

We rule out the existence of polynomial kernels for several graph problems (and
their planar and directed variants) including the LENGTH-BOUNDED EDGE-CUT
problem assuming coNP ¢ NP /poly- To this end, we employ our fractalism
technique described in Chapter 2.

3.1. Introduction

Edge-cut problems are fundamental problems in graph-theoretic research since
decades. One of them is the well-known, polynomial-time solvable MINIMUM
CuT problem, where given a graph G with two designated vertices s and ¢ and
an integer k, the question is whether at most k edge deletions can disconnect s
and ¢. In this chapter, we provide kernelization lower bounds for three NP-
hard, yet fixed-parameter tractable edge-cut problems employing our fractalism
technique described in the previous Chapter 2.

If k edge-deletions do not suffice for disconnecting s and ¢, then one possible
goal is to increase the distance of a shortest path between s and ¢ as much as

possible. This problem then becomes NP-hard [IPS82], and is formally defined
as follows.

This chapter is based on (parts of) Fractals for kernelization lower bounds by Till Fluschnik,
Danny Hermelin, André Nichterlein, and Rolf Niedermeier (SIAM Journal on Discrete Mathe-
matics [Flu+18al).

3. Distance-Related Cut Problems

Table 3.1.: Overview of our results (assuming that coNP ¢ NP ,,.1,). PK stands for
polynomial kernel. T Even for directed acyclic graphs. ! Even when parameterized
by k + £ 4+ tw, where tw denotes the treewidth.

Problem Param. directed undirected
planar planar general

LBEC k+¢ No PK' (Thm. 3.1(i)) No PK* (Thm. 3.1(ii)) (Sec. 3.2)
MDED &k +/ No PK (Thm. 3.9()) No PK¥ (Thm. 3.9(ii)) (Sec. 3.3)
DSCT k+¢ No PK (Thm. 3.15) PK [XZ11] open (Sec. 3.4)

LENGTH-BOUNDED EDGE-CuT (LBEC)

Input: An undirected graph G = (V, E) with two distinct vertices s,t € V|
and two integers k, ¢ > 0.

Question: Is there a subset FF C F of cardinality at most k& such that
distg_p(s,t) > €7

Golovach and Thilikos [GT11]| proved LBEC parameterized by k + ¢ to be
fixed-parameter tractable and asked whether it admits a polynomial kernel, but
its status concerning polynomial kernelization remained open since then.!

The further two edge-cut problems are MINIMUM DIAMETER EDGE DELE-
TION (MDED) and DIRECTED SMALL CYCLE TRANSVERSAL (DSCT). MDED
asks, given an undirected connected graph G = (V, E) and two integers k, ¢,
whether there are at most k edge deletions such that the resulting graph
remains connected and has diameter at least /. DSCT asks, given a directed
graph G = (V, E) and two integers k, ¢, whether there are at most k edge
deletions such that the resulting graph has no cycle of length smaller than £.

Using our fractalism technique, we show that LBEC, MDED, DSCT, and
several of their variants (planar, directed), each parameterized by k -+ ¢, admit
no polynomial kernels assuming coNP ¢ NP /poly- Table 3.1 surveys our no-
polynomial-kernel results and spots an open question. We remark that we also
show that for the undirected (planar) variants, unless coNP C NP /o1, LBEC
and MDED parameterized by k + £ + tw do not admit a polynomial kernel,
where tw denotes the treewidth of the input graph. On the way to obtain our
results, we also prove LBEC to be NP-hard even on planar graphs—a result
that may be of independent interest.

IThe question also appeared in the open problem list of the FPT School 2014, Bedlewo,
Poland [Cyg+14].

44

3.2. Length-Bounded Edge-Cut

As a technical remark, to simplify the presentation we employ T-fractals
with edge costs in our proofs; However, all proofs work also without edge costs
(see Section 2.4) thereby introducing a factor of two for the lengths inside the
T-fractals (in the definition of each distance parameter ¢).

Note that we claim without proof that, except for the planar variants, our
proofs also transfer to the vertex deletion case, both for directed and undirected
graphs (see Section 2.6).

3.2. Length-Bounded Edge-Cut

Our first application of the fractalism technique is the LENGTH-BOUNDED
EDGE-CUT problem [Bai+10], also known as the problem of finding bounded
edge undirected cuts [GT11], or the SHORTEST PATH MOST VITAL EDGES
problem [Baz+19, BNN15, MMG89].

LENGTH-BOUNDED EDGE-CUT is NP-complete [IPS82] and fixed-parameter
tractable with respect to k + ¢ [GT11]. If the budget k, that is, the number k
of edge deletions, is at least the size of any s-t edge cut, then the problem
becomes polynomial-time solvable by simply computing a minimum s-t edge cut.
Thus, throughout this section, we assume that k is smaller than the size of any
minimum s-t edge cut. The generalized problem where each edge is equipped
with a positive length remains NP-hard even on series-parallel and outerplanar
graphs [Bai+10]. The directed variant with positive edge lengths remains NP-
hard on planar graphs where the source and the sink vertex are incident to
the same face [PS16]. Dvorak and Knop [DK18] proved the problem to be
W][1]-hard when parameterized by the pathwidth and solvable in polynomial
time on graphs of bounded treewidth (see also [Knol7|). Here, we prove the
following.

Theorem 3.1. Unless coNP C NP, LENGTH-BOUNDED EDGE-CUT admits
no polynomial kernel when

(i) parameterized by k + £ + tw, even on planar undirected graphs;
(i) parameterized by k + £, even on planar directed acyclic graphs.

To prove Theorem 3.1, we prove LBEC on planar graphs to be NP-hard

(deferred to Section 3.2.1, see Theorem 3.6), where the planar variant of LBEC
is defined as follows.

45

3. Distance-Related Cut Problems

PLANAR LENGTH-BOUNDED EDGE-CUT (PLANAR-LBEC)

Input: An undirected graph G = (V, E) with two distinct vertices s,t € V|
and two integers k, ¢ > 0, where G admits a planar embedding with s
and t being incident to the outer face.

Question: Is there a subset FF C F of cardinality at most k& such that
distg_rp(s,t) > €7

Indeed, in Theorem 3.6, we prove PLANAR-LBEC to be NP-hard on undi-
rected graphs as well as on directed acyclic graphs, where in both cases the
source and sink vertices are incident to the outer face. The property that the
source and the sink vertices are allowed to be incident with the same face in the
input graph allows us to use Constructions 2.12 and 2.16 with a target problem
on planar graphs. We first prove Theorem 3.1(i), that is, we prove the following.

Proposition 3.2. Unless coNP C NP;p,;,,, PLANAR LENGTH-BOUNDED EDGE-
CUT parameterized by k + € + tw admits no polynomial kernel.

We prove Proposition 3.2 using an OR-cross-composition. To this end, we
firstly define a polynomial equivalence relation on PLANAR-LBEC as follows.

Definition 3.1. An instance (G, s;, t;, ki, £;) of PLANAR-LBEC is called mal-
formed if max{k;, ¢;} > |E(G;)|. Two instances (G;, s;,ti, ki, £;) and (G}, s;,t;,
kj;,¢;) of PLANAR-LBEC are R-equivalent if k; = k; and ¢; = ¢;, or both are
malformed instances.

We prove that Definition 3.1 gives a polynomial equivalence relation.

Lemma 3.3. Relation R from Definition 3.1 is a polynomial equivalence relation
on PLANAR-LBEC.

Proof. We can decide whether two instances Z and 7' of PLANAR-LBEC
are R-equivalent in O(|Z| 4+ |Z'|) time. Let S := Sg W Sp C ¥* be a set
of instances, where Sg denotes the not-malformed and Sp denotes the mal-
formed instances. Note that all instances in Sp fall into one equivalence
class. Let Sg contain p instances Iy, ...,Z,, where Z; = (G, s;,t;, ki, £;) for
each i € {1,...,p}. Let k = max;cq1,. 1 ki and let £ = max;eqy,.. 1 4
Clearly, k + ¢ < 2maxzeg |Z|. Hence, there are at most (k + 1) - (¢ + 1) equiva-
lence classes in S¢. It follows that there are most (k+1)-(£+1)+1 equivalence
classes in S. O

We next give the construction for the OR-cross-composition, which is basically
Construction 2.12 from our fractalism technique.

46

3.2. Length-Bounded Edge-Cut

Construction 3.4. Let 7y,...,Z,, where Z; = (G, s;,ti, k,{) for each i €
{1,...,p}, bep =29 g € N, R-equivalent instances of PLANAR-LBEC, where R
is as in Definition 3.1. We construct an instance Z := (G, s, t, k', ') of PLANAR-
LBEC with

K = k*- (log(p) + 1) + k and
= 0+ log(p),

as follows.

Let G denote the graph obtained from the application of Construction 2.12
to Zy,. .., T, with edge cost ¢ := k®. Set s := o and ¢ := 7. This finishes the con-
struction. Note that G is planar, and by Observation 2.14, the treewidth tw(Q)
of G is at most 2 + max;c1,.. py [V(Gi)|. A

It remains to prove that the instance obtained from Construction 3.4 is a
yes-instance if and only if at least one of the input instances is a yes-instance.
Thus, we are ready for the proof of Proposition 3.2.

Proof of Proposition 3.2. We OR-cross-compose p = 29, ¢ € N, R-equivalent
instances I, ...,Z,, where Z, = (G, s;,t;,k,¢) for each i € {1,...,p}, of
PLANAR-LBEC into one instance of PLANAR-LBEC, where R is as in Defini-
tion 3.1. Due to Lemma 3.3, we know that R is a polynomial equivalence relation
on PLANAR-LBEC. We remark that we can assume that £ > 3, since otherwise
PLANAR-LBEC is solvable in polynomial time by counting all edges connect-
ing the source with the sink vertex. Let Z := (G, s,t, k', ¢') be the instance
of PLANAR-LBEC obtained from applying Construction 3.4 given 7, ...,Z,.
We show that Z is a yes-instance if and only if there exists an i € {1,...,p}
such that Z; is a yes-instance.

(<) Let Z;, i € {1,...,p}, be a yes-instance. Following Observation 2.13 in
Section 2.5, let C' be the minimum s-t edge cut in A that selects instance Z;.
Recall that C is of size ¢ + 1 and that the edge cost equals k2. Thus, the
minimum s-t edge cut C has cost (¢ + 1) - k% = (log(p) + 1) - k2.

Note that after deleting the edges in C, the vertices s and ¢ are only connected
via paths through the incorporated graph G;. Since Z; is a yes-instance, we
can delete k edges (equal to the remaining budget) such that the distance of s;
and t; in G; is at least £. Together with Lemma 2.7 in Section 2.2.1, such an
additional edge deletion increases the length of any shortest s-t path in G to at
least £ + log(p) = ¢'. Hence, T is a yes-instance.

47

3. Distance-Related Cut Problems

(=) Let T be a yes-instance, that is, one can delete at most &’ edges in G
such that each s-t path is of length at least ¢. Since the budget allows for
log(p) + 1 edge-deletions in Ag, by Lemma 2.8 in Section 2.2.1, if we do not
cut s and t in A¢, then there is an s-t path of length log(p) + 2. Since ¢ > 3,
such an edge deletion does not yield a solution. Thus, in every solution of Z, a
subset of the deleted edges forms a minimum s-t edge cut in Ay and thus, by
Observation 2.13, selects an input instance.

Consider an arbitrary solution to Z, that is, an edge subset of E(G) of
cardinality at most k' whose deletion increases the shortest s-t path to at
least ¢'. Let Z;, i € {1,...,p}, be the selected instance. Note that any shortest
s-t path contains edges in the selected instance Z;. By Lemma 2.7, we know that
the length of the shortest s-s; path and the length of the shortest ¢;-t path sum
up to exactly log(p). It follows that the remaining budget of & edge deletions is
spent in G; in such a way that there is no path from s; to t; of length smaller
than ¢ in G;. Hence, Z; is a yes-instance. O

Golovach and Thilikos [GT11] showed that LBEC on directed acyclic graphs
is NP-complete. We prove in Section 3.2.1, Theorem 3.6, that PLANAR-LBEC
on directed acyclic graphs, where s and t are incident to the outer face, remains
NP-hard. Using Construction 2.16 instead of Construction 2.12 with PLANAR-
LBEC on directed acyclic graphs as source and target problem, the same
arguments as in the proof of Proposition 3.2 give Theorem 3.1(ii).

Proposition 3.5. Unless coNP C NP),,;,, PLANAR LENGTH-BOUNDED EDGE-
CuT on directed acyclic graphs parameterized by k + ¢ admits no polynomial
kernel.

3.2.1. NP-hardness of LBEC on Planar Graphs

In the following, we consider LBEC on planar graphs. To the best of our
knowledge, it was open whether LBEC remains NP-hard on planar undirected
graphs. This is what we will prove next. In fact, we prove the following, even
stronger result.

Theorem 3.6. LENGTH-BOUNDED EDGE-CuUT is NP-hard even on planar
undirected graphs as well as on planar directed acyclic graphs, where for both
problems s and t are incident to the outer face.

For our proof of the theorem, we need the following definitions of planar
embeddings of graphs.

48

3.2. Length-Bounded Edge-Cut

AT -

Figure 3.1.: A 2-page book embedding (right-hand side) for an example graph (left-hand
side). Note that the example graph is planar and of maximum degree four.

Definition 3.2. A page embedding of a graph G is a planar embedding of G
where all vertices lie on the real line and every edge lies in the upper half R x RT.

Definition 3.3. A graph G = (V, E) admits a k-page book embedding if there
is a partition Fi,..., E}y of the edge set F such that G, = (V| E;) admits a
page embedding for all ¢ € {1,...,k}.

Intuitively, a k-page book embedding of a graph is a drawing of the graph
where all vertices are drawn along the spine of the book, each edge is drawn on
one of the k pages of the book, and each page is crossing-free (see Figure 3.1
for an illustration).

Our proof follows the same strategy as the proof due to Bar-Noy et al.
[BKS95] for LBEC on general graphs, where Bar-Noy et al. [BKS95] reduce
VERTEX COVER to LBEC. We reduce from 3-PLANAR VERTEX COVER, that is,
VERTEX COVER on planar graphs with maximum degree three, which remains
NP-complete [MohO1]. Bekos et al. [BGR14] proved that any planar graph of
maximum degree four allows for a 2-page book embedding. Moreover, Heath
[Hea85] showed that a 2-page book embedding of any planar graph of maximum
vertex degree three can be computed in time linear in the number of vertices of
the input graph. We mainly copy the proof due to Bar-Noy et al. [BKS95] and,
on the way, perform small changes on the gadgets and target parameters. We
describe this in the following.

Construction 3.7. Let Z = (G, k) be an instance of 3-PLANAR VERTEX
COVER. Since we can assume to have a 2-page book embedding, the vertices are

49

3. Distance-Related Cut Problems

drawn along the real line and connected by non-crossing edges lying in the lower
and upper half. Further, we assume that the vertices are labeled from 1 to n,
in the order along the real line. Refer to Figure 3.2 for an illustration of the
following construction. We replace each vertex i by a gadget i as follows. The
gadget i consists of two Pyys, where Py, denotes a simple path with 2k vertices,
and one Py 1, all three identified at their endpoints. We denote the left and
right (identified) endpoint of gadget i by s; and ¢;, respectively. One Py belongs
to the upper half, the other to the lower half. The Psi41 lies along the real
line. We denote the two middle vertices of each of the two Pays by z¥, xf, yi, yf,
where z is left of y, and u and ¢ stand for “upper” and “lower”. We identify ¢,
with s;11 for alli € {1,...,n—1}. We set s := s and ¢ := ¢,,. Moreover, if two
vertices i < j are connected by an edge lying in the upper half, then we connect
the vertex y;' with 2% via a path of length (2k — 1)(j — 7) — 2 (analogously for
edges in the lower half). We denote by G’ the obtained graph. Observe that G’
remains planar. Except for the edges {z¥,y*}, {zf,y¢}, i € {1,...,n}, there
are no edges that are allowed to be deleted (see Bar-Noy et al. [BKS95]).
We set

k' = 2k and
U=k -(2k)+ (n—k)-(2k—1).

Let 7/ = (G,s,t,k',¢') be the resulting instance of PLANAR-LBEC with
forbidden edges. A

Proof of Theorem 3.6. Let T = (G, k) be an instance of 3-PLANAR VERTEX
CoVER. Let 7' = (G',s,t,k',¢") be the instance of PLANAR-LBEC with
forbidden edges obtained from Z by applying Construction 3.7. We prove
that Z is a yes-instance of 3-PLANAR VERTEX COVER if and only if 77 is a
yes-instance of PLANAR-LBEC with forbidden edges.

(=) Let T be a yes-instance, that is, G admits a vertex cover of size at
most k. Let C C V(G) be a vertex cover of size k. We claim that the edge
set X = {{z¥, y}, {zf,y{} | i € C} forms a solution to Z'.

Observe that any s-t path in G’ — X using only edges in the gadgets is of
length at least /. To see this, consider a gadget i with i € C. We know
that {z% y*}, {zf,y{} € X. Hence, the only s;-t; path using only edges in the
gadget i is of length 2k (this is the Pspiq used in the construction). If no
edge in a gadget j is deleted, then any shortest s;-t; path using only edges
in the gadget j is of length 2k — 1 (those correspond to the Puys used in the

50

3.2. Length-Bounded Edge-Cut

(2k—1)-(—i)—2

Figure 3.2.: Illustration of the gadgets in the proof of Theorem 3.6. Here, exemplified
for two vertices i,7 € V with {i,j} € E, and the edge is embedded on the second
(lower) page in the 2-page book embedding of the input graph G = (V, E).

construction). Since |C| = k, any s-t path in G’ — X using only edges in the
gadgets is of length at least k- (2k) + (n — k) - (2k —1) = ¢'.

We have to show that there is no shorter s-t path in G’ — X than any path
using only edges in the gadgets. To this end, let 7,5 € V(G), i < j, be two
adjacent vertices in G, that is, with {i,j} € E(G). Since C is a vertex cover, it
follows that either ¢ € C' or j € C. Let i € C and j & C (the case with j € C
and i ¢ C' is symmetric). We consider the shortest path from s; to ¢; not going
backwards, that is, not appearing in any gadget z with z < ¢ or z > j, and
using the path connecting the gadgets of ¢ and j. Let the path connecting the
gadgets of 4 and j be a lower path, that is, the vertices yf and x? are connected
by the path. Since the edges {xf,y‘} and {z¥ y¥} are deleted, the shortest
path from s; to y! is of length 2k + (k — 1). Then we take the path of length
(2k —1)(j — i) — 2 to get to the gadget of j. Finally, we take the path from z
via edge {:cf, yf} to t; of length (kK — 1) +1 = k. In total, the path is of length

Ak + (2k — 1)(j — i) — 3, (3.1)

and it is the shortest of its kind.
We compare this to the shortest path from s; to ¢; using only edges in the
gadgets. The length of such a path is at most

2%(j —i)— (j—i—k)+ (2k — 1) if j—i>k, and (3.2)
2k(j—i)+ (2k—1) otherwise. (3.3)

o1

3. Distance-Related Cut Problems

We compare (3.1) with each of (3.2) and (3.3). Comparing (3.1) with (3.2), we
have

A+ (2k—1)(j — 1) —3— (2k(j — 1) — (j —i — k) + (2k — 1)) = k — 2.
Comparing (3.1) with (3.3), we have (recall j —i < k)
A+ (2k—1)(G — i) —3— (2k(j — i)+ 2k — 1)) =2k — (j —i) — 2>k — 2.

It follows that there is a path using only edges in the gadgets that is shorter
than the shortest paths using at least one edge not appearing in the gadgets.
Finally note that if both 4,7 € C, then the difference of the path lengths is
even bigger. Observe that using a path connecting gadget i with j+ 1 (ori—1
with j) to get from s; to t; is longer by at least k—1 (or at least k — 3), following
from an analogous argumentation as above. Hence, the shortest path connecting
s with ¢ passes through the gadgets and is of length at least ¢'.

(<) Let I’ be a yes-instance, that is, G’ allows for ¥’ = 2k edge deletions
such that any shortest s-t path is of length at least £. Our first observation
is that in any solution to Z, either none or exactly two (of the allowed) edges
are deleted in any gadget. Suppose that there is a gadget with only one edge
deleted. Then a shortest path through this gadget is of length 2k — 1. Since
2k is the maximum increase of the passing length through a gadget, we get
2K)(kE—=2)+(2k—1)(n—k+2) < (2k)-k+ (2k —1)(n — k) = ¢'. Hence, in
any gadget, either exactly two or zero edges are deleted. Let C' C V(G) be the
set of vertices such that both edges are deleted in the corresponding gadgets.
We claim that C' is a vertex cover of size k in G.

Suppose that there are two gadgets i and j, where ¢ < j, not containing any
deleted edge, that is, {i,7} N C = 0, but {i,j} € E(G). Then the shortest
s;-t; path using the path corresponding to edge {i,j} € E(G) is of length 2k +
(2k —1)(j — i) — 2. The shortest s;-t; path through the gadgets only is of length
at least 2k — 1+ (2k — 1)(j — ¢). Thus, the path using the path connecting the
gadgets i and j is too short by exactly one, and hence, the shortest s-t path is of
length smaller than ¢'. This contradicts the fact that {{z¥, y*}, {z¢, 4y} | i € C}
forms a solution to Z'. It follows that for each edge {i,j} € E(G) we have
|C'N{i,j}| > 0. This is exactly the property of a vertex cover, and thus, C is a
vertex cover in G of size k.

We have shown that PLANAR-LBEC with forbidden edges is NP-hard on
planar, undirected graphs. In analogue with Bar-Noy et al. [BKS95|, to reduce

52

3.3. Minimum Diameter Edge Deletion

to PLANAR-LBEC (without types of edges), we replace each forbidden edge
by k' + 1 (parallel) edges, subdivide each edge, and double ¢ accordingly.
Observe that we can direct all edges from “left to right”. The planarity still
holds, and we obtain a directed acyclic graph. Since we have shown in the proof
that “going backwards” is never optimal, the proof can be easily adapted. Thus,
the problem remains NP-hard on planar directed acyclic graphs. O

3.3. Minimum Diameter Edge Deletion

Our second fractalism application concerns about the following problem intro-
duced by Schoone et al. [SBL87].

MiNiMUM DIAMETER EDGE DELETION (MDED)

Input: A connected, undirected graph G = (V, E), and two integers k, £ > 0.

Question: Is there a subset F' C E of cardinality at most k such that G — F'
is connected and diam(G — F') > £7

The problem was shown to be NP-complete, also on directed graphs [SBL87].
In their NP-hardness-proof for MDED, Schoone et al. [SBL87] reduce from
HaMILTONIAN PATH (HP) to MDED. The reduction does not modify the graph,
that is, the input graph for HP remains the same for the MDED instance. Since
HP remains NP-hard on planar graphs [GJS76], the reduction of Schoone et al.
implies that MDED is NP-hard even on planar graphs.

A simple search tree algorithm yields fixed-parameter tractability with respect
to k+¢:

Theorem 3.8. MINIMUM DIAMETER EDGE DELETION can be solved in O((¢ —
1)*n%(n +m)) time.

Proof. We give a search tree algorithm branching over the possible edge deletions
to prove that MDED is fixed-parameter tractable when parameterized by k + £.
The key observation is that if some instance (G, k, £) of MDED is a yes-instance,
then there exists at least one pair v,w € V of vertices in the graph G — X
such that distg_x (v, w) > ¢, where X is a solution to (G, k, £). Hence, we will
check whether the length of any shortest path between the chosen pair can be
increased to at least ¢ by at most k edge deletions, where an edge is only deleted
if the deletion leaves the graph connected.

To this end, for each pair, apply the branching algorithm provided by Golovach
and Thilikos [GT11]: Find a shortest path and if its length is at most £ — 1,

53

3. Distance-Related Cut Problems

then branch in all cases of deleting an edge on this path and decrease k by one.
In each branch, check whether the graph is still connected. This can be done
in O(n + m) time with a simple depth/breadth first search. Hence, in total we
obtain a branching algorithm running in O(n? - (¢ — 1)*(n + m)) time. Thus,
MDED parameterized by k + £ is fixed-parameter tractable. O

Complementing the fixed-parameter tractability of MDED parameterized
by k + ¢, we show the following.

Theorem 3.9. Unless coNP C NP,,,;,,, MINIMUM DIAMETER EDGE DELE-
TION admits no polynomial kernel when

(i) parameterized by k + £+ tw, even on planar graphs;

(i) parameterized by k + £, even on planar directed graphs.

To prove Theorem 3.9, we give OR-cross-compositions with PLANAR-LBEC as
input problem using Construction 2.12 for Theorem 3.9(i) and Construction 2.16
for Theorem 3.9(ii). We first give the proof of Theorem 3.9(i).

Proposition 3.10. Unless coNP C NP,o,,, MINIMUM DIAMETER EDGE
DELETION on planar graphs parameterized by k + £ + tw admits no polynomial
kernel.

In the proof of Proposition 3.10, we use the following modification of Con-
struction 2.12.

Construction 3.11. Let Z; = (G1,81,t1,k,0),...,Z, = (Gp,Sp, tp, k, £) be
p =29, g € N, R-equivalent instances of the input problem PLANAR-LBEC
on connected graphs, where R is defined as in Definition 3.1. Construct an
instance Z := (G, k', ¢') of MDED with

k' :==k*- (log(p) + 1) + k and

0 :=2-L+log(p) + ¢,

where

L := npmax - (2log(p) +3) + 1 and

max ‘“— V(G;)
e = g, V(G

as follows (refer to Figure 3.3 for an exemplified illustration). Apply Construc-
tion 2.12 with edge cost ¢ := k2. Attach to o as well as to 7 a path of length L

54

3.3. Minimum Diameter Edge Deletion

Figure 3.3.: Cross-composition (Construction 3.11) for MINIMUM DIAMETER EDGE
DELETION with p =8 = 23 and L = 9 - nmax + 1. Dashed lines sketch the graphs in
the p input instances.

each. Denote the endpoint of the path attached to o by ¢’ (where ¢’ # o), and
let 7/ be defined analogously. Let G denote the obtained graph. Note that the
appended paths to the T-fractal do not increase the treewidth tw(G) of G, and
hence by Observation 2.14, it holds that tw(G) < 2 4+ npypax. A

Proof of Proposition 3.10. We OR-cross-compose p = 29, ¢ € N, instances
of PLANAR-LBEC on connected graphs into one instance of MDED. Let
I, = (G, s1,t1,k,0),..., T, = (Gp,sp,tp,k,0) be p = 29, R-equivalent in-
stances of PLANAR-LBEC on connected graphs, where R is defined as in Defi-
nition 3.1. Apply Construction 3.11 in polynomial time to obtain instance Z :=
(G,K',0') of MDED. Finally, for each ¢ € {1,...,p}, add a path of length £+ 1
and identify one endpoint with s; and the other endpoint with ¢;. We show that
7 is a yes-instance of MDED if and only if there exists an i € {1,...,p} such
that Z; is a yes-instance of PLANAR-LBEC on connected graphs.

(<) Let Z;, i € {1, ...,p}, be a yes-instance of PLANAR-LBEC on connected
graphs. Following Observation 2.13, we delete all edges in the minimum edge
cut in Ag that selects instance Z;. Then, we delete edges corresponding to a
solution for Z; without disconnecting the graph G (note that in our final step in
the construction, we added a path of length ¢+ 1 connecting s; and ¢;). Let
X C E(G) be the set of deleted edges. The distance of o and 7 in G — X is at
least log(p)+¢, and thus, the distance of ¢’ and 7’ is at least 2- L+log(p)+¢ = ¢'.

95

3. Distance-Related Cut Problems

Hence, the diameter is at least ¢ after k' edge deletions that leave the graph
connected. It follows that Z is a yes-instance.

(=) Let Z be a yes-instance of MDED, that is, G allows for k' edge deletions
such that the remaining graph is connected and has diameter at least ¢. Let X C
E(G) be a solution. First observe that G — X is connected. Consider the
instances appended to the T-fractal as the artificial (¢ + 1)st boundary of a
(¢+ 1)-T-fractal, where an edge in this boundary has length ny,.x. Thus, we can
apply Lemma 2.9(A) to this artificial (¢ + 1)-T-fractal. Recall that our budget
only allows for log(p) + 1 edge deletions (of cost k?) in Ag. Hence, we get that
the distance to o (and by symmetry to) of every vertex contained either in Ag
or in any appended instance is at most Nyayx - (log(p) +log(p) +3) =L —1. It
follows that distg_x (z,0) < distg_x(0,0’) and distg_x (x, 7) < distg_x (7,7")
for all z € V(G). Moreover, for all z,y € V(G) we have:

distg_x (x,y) < distg_x (z,0) + distg_x (0, 7) + distg_x (7, 9)
< distg_x(0',0) + distg_x (o, 7) + distg_x (7,7)
= diStG_X(U,, T’).

Hence, o/, 7 is the pair of vertices with the largest distance in G — X and,
thus, distg_x(o’,7") > ¢. Observe that distg_x(¢’,7") > ¢ if and only if
distg_x (o, 7) > log(p) 4 £ since every shortest o’-7’ path contains both ¢ and 7.
Following the argumentation in the correctness proof of Proposition 3.2, it
follows that there is an instance Z;, ¢ € {1,...,p}, that is a yes-instance for
PLANAR-LBEC on connected graphs. O

The diameter of a directed graph is defined as the maximum length of a
shortest directed path over any two (ordered) vertices. The diameter of a
directed graph that is not strongly connected equals infinity. Thus, MINIMUM
DIAMETER EDGE DELETION on directed graphs is referred to and defined as
follows:

MINIMUM DIAMETER ARC DELETION (MDAD)

Input: A strongly connected directed graph G = (V, E), and two integers
k, > 0.

Question: Is there is a subset F' C E of cardinality at most k such that
G — F is strongly connected and diam(G — F') > ¢7?

Observe that MINIMUM DIAMETER ARC DELETION on directed planar graphs
parameterized by k + £ is fixed-parameter tractable, as a consequence of the

56

3.3. Minimum Diameter Edge Deletion

proof of Theorem 3.8. Next we prove the problem to presumably admit no
polynomial kernel regarding & + ¢, that is, we prove Theorem 3.9(ii).

Proposition 3.12. Unless coNP C NP),,o1,,, MINIMUM DIAMETER ARC DELE-
TION on directed planar graphs parameterized by k + ¢ admits no polynomial
kernel.

The proof of Proposition 3.12 adapts the ideas of the proof of Proposition 3.10.
Herein, we use the following modification of Construction 2.16.

Construction 3.13. Let Z; = (G1,81,t1,k,0),...,Z, = (Gp, Sp, tp, k, £) be
p =2 g € N, R-equivalent instances of PLANAR-LBEC on directed acyclic
graphs where R is defined as in Definition 3.1. Construct an instance Z =
(G, K',0) of MDAD with

k' = k*- (log(p) + 1) + k and
0 :=2-L+log(p) + ¢,

where
L =1 npax - (2log(p) + 3) + 1 and
o= e |V(G)l,
as follows.

First, we adjust the instances we compose in order to ensure that every vertex
is reachable from the source and reaches the sink, and that we can delete all
the arcs we want without destroying the aforementioned property. For each
arc (v, w) € E(G;), connect v and w by an additional path of length ¢ directed
from v towards w. Apply this for each G;, i € {1,...,p}, and let G} be the
graph obtained from graph G;. Note that the directed graph G’ remains planar
and acyclic. Observe that none of the introduced arcs will be in a minimal
solution for the PLANAR-LBEC instance since they only occur in paths of
length ¢. Hence, Z; is a yes-instance of PLANAR-LBEC on directed acyclic
graphs if and only if (G}, s;,t;,k,¢) is a yes-instance of PLANAR-LBEC on
directed acyclic graphs. Furthermore, in the composed MINIMUM DIAMETER
ARrc DELETION-instance, none of the introduced arcs will be deleted as this
would introduce a vertex without in-going or without out-going arcs and this is
not allowed in the problem setting.

57

3. Distance-Related Cut Problems

Figure 3.4.: Cross-composition (Construction 3.13) for MINIMUM DIAMETER ARC
DELETION parameterized by k + £ with p = 8 = 23. Dashed lines sketch the graphs in
the p input instances.

Apply Construction 2.16 with edge cost ¢ := k? and the following additions
(refer to Figure 3.4 for an exemplified illustration). Attach to o as well as to 7
a path of length L each. Denote the endpoint of the path attached to o by o’
(where o/ #), and let 7/ be defined analogously. Direct all edges in the paths
from o’ towards to o and from 7 towards to 7/, respectively. Moreover, add to
the graph the arc (7/,0'), and the arc (7, 0), the latter with cost &' + 1.

Observe that G is planar, directed, and strongly connected. A

Proof of Proposition 3.12. We OR-cross-compose p = 29, ¢ € N, R-equivalent
instances 71 = (G1,s1,t1,k,¢),...,Z, = (Gp, Sp, tp, k,£) of PLANAR-LBEC
on directed acyclic graphs into one instance of MDAD on directed planar
graphs, where R is defined as in Definition 3.1. Apply Construction 3.13 in
polynomial time to obtain instance Z := (G, k’,¢') of MDAD. We prove that
7 is a yes-instance of MDAD on directed planar graphs if and only if there
exists an 7 € {1,...,p} such that Z; is a yes-instance for PLANAR-LBEC on
directed acyclic graphs.

(=) Let Z be a yes-instance of MDAD. Consider a solution X C E(G)
for the instance Z of MDAD on directed planar graphs. The crucial obser-
vation is that for any two vertices x,y not contained in the attached paths
with endpoints o’ on the one, and 7/ on the other hand, the following holds:
max{distg_x (z,y),distc_x(y,2)} < distg_x(0’,7’). To see this, note that

58

3.4. Directed Small Cycle Transversal

the arc (7,0) has cost ¥’ + 1 and thus (r,0) ¢ X. Since G is strongly con-
nected, both = and y are reachable and reach ¢ and 7. Moreover, ¢ is reachable
from 7 via the arc (7,0). Without loss of generality, let distg_x(z,y) =
max{distg_x(x,y),distg_x (y,z)}. It holds that

distg_x(x,y) < distg_x(x,7) + distg_x (7, 0) + distg_x (0, y)
< f- Nmax * (2 log(p) + 2) +1+4 l- Nmax * (2 IOg(p) + 2)
=20 Npax - (2log(p) +2)+1 < 7.

Herein, recall that we only allow log(p) + 1 arc deletions in ﬁg The second
inequality follows from Lemma 2.11 and the fact that in each graph G; — X the
vertex s; has distance at most £ - nyax to ;.

As a consequence, the vertices at distance ¢/ appear in the paths appended
on o and 7. Among them, note that distg_x(o’,7’) is maximal. Following the
discussion in the proof of Proposition 3.10, the budget has to be spent in such a
way that the arc deletions form a o-7 arc cut in Ag, and the remaining budget
must be spent in such a way that the instance Z; chosen by the cut allows no
s;-t; path of length smaller than ¢. Hence, Z; is a yes-instance.

(<) Let Z; be a yes-instance of PLANAR-LBEC on directed acyclic graphs
and let X' C F(G;) a minimum-size solution. We added to each arc of G; a
directed path of length ¢ and, as discussed above, none of the arcs in these paths
is in X’. Hence, in G; — X' every vertex is still reachable from s; and reaches t;.
Deleting in G the arcs in X’ and the arcs corresponding to the cut selecting Z;
preserves the strong connectivity of G. Let X C E(G) be the set of deleted arcs.
Following the discussion in the proof of Proposition 3.10, distg_x (o, 7") > ¢'.
It follows that Z is a yes-instance of MDAD on directed planar graphs. O

3.4. Directed Small Cycle Transversal

Our third fractalism application concerns the following problem.

DIRECTED SMALL CYCLE TRANSVERSAL (DSCT)

Input: A directed graph G = (V| E), two integers k, ¢ > 0.

Question: Is there a subset F' C E of cardinality at most k£ such that there
is no induced directed cycle of length at most £ in G — F'?

The problem is NP-hard [GL14], also on undirected graphs [Yan78]. The NP-
completeness of DSCT follows by a simple reduction from the FEEDBACK ARC

99

3. Distance-Related Cut Problems

SET problem with an n-vertex graph, where we set ¢ := n and leave the graph
unchanged in the reduction. We remark that the problem is also known as CYCLE
TRANSVERSAL [Bod+16], or ¢-(DIRECTED)-CYCLE TRANSVERSAL [GL14|. The
undirected variant is also known as SMALL CYCLE TRANSVERSAL [XZ11, XZ12].

As for the MINIMUM DIAMETER EDGE DELETION problem, there is a simple
search tree algorithm showing fixed-parameter tractability with respect to k + £.

Theorem 3.14. DIRECTED SMALL CYCLE TRANSVERSAL can be solved in
O(* -n-(n+m)) time.

Proof. We give a search tree algorithm branching over all possible edge deletions
to prove that DSCT parameterized by k + ¢ is fixed-parameter tractable. Let
(G, k,£) be an instance of DSCT. To detect short cycles in G containing a
vertex v € V(G), construct an auxiliary graph G, as follows. Delete v (and all
edges incident to v), and add vy, and veys, and the arcs {(z, vin) | (z,v) € E(G)},
{(Vout, x) | (v,2) € E(G)} as well as the arc (vin, Vous). Now to detect the
shortest cycle in G containing v, compute a shortest vout-vin path in G,,. If a
cycle is too short, then we branch into all possible, at most ¢ different deletions
of an arc of the cycle (beside arc (vin, Vout))-

The depth of the search tree is at most k. Thus, we obtain an O(¢*-n-(n+m))-
time algorithm since constructing for each v € V' the auxiliary graph G, and
then finding a shortest path in unweighted graphs can be done in O(n - (n +m))
time. O

However, the fractalism technique yields the following.

Theorem 3.15. Unless coNP C NP/p,;,,, DIRECTED SMALL CYCLE TRANS-
VERSAL on planar directed graphs parameterized by k + £ admits no polynomial
kernel.

Proof. We OR-cross-compose p = 29, ¢ € N, R-equivalent instances of PLANAR-
LBEC on directed acyclic graphs into one instance of DSCT on planar directed
graphs as follows, where R is defined as in Definition 3.1.

Construction: We apply Construction 2.16 with edge cost ¢ := k2. In addition,
we add the edge (7,0) with edge cost k' + 1, where k' := k? - (log(p) + 1) + k.
We denote by G the obtained graph. We refer to Figure 3.5 for an exemplified
illustration of the construction. Observe that G is not acyclic, and the edge (7, o)
participates in every cycle in G, that is, G without edge (7, 0) is acyclic. Let
(G,K',0') be the target instance of DSCT with ¢ := ¢ + log(p) + 1.

60

3.5. Concluding Remarks

Figure 3.5.: Cross-composition (Theorem 3.15) for DSCT parameterized by k, ¢ with
p =8 = 2%, Dashed lines sketch the graphs in the p input instances.

Correctness: Note that every cycle in G uses the edge (7,0). Since its
edge cost equals k' + 1, the budget does not allow its deletion. Thus, the
crucial observation is that the length of any shortest path from o to 7 must
be increased to at least ¢ + log(p) = ¢ — 1. Hence, the correctness follows
from Proposition 3.5. O

We remark that a straight-forward polynomial parameter transformation from
PLANAR-LBEC on directed acyclic graphs to DSCT on planar directed graphs
where we add a “too expensive” arc from the sink to the source vertex (which is
possible since both vertices lie on the outer face) also proves Theorem 3.15.

3.5. Concluding Remarks

The fractalism technique makes it possible to prove kernelization lower bounds
for parameterized distance-related cut-problems like LENGTH-BOUNDED EDGE-
CuT parameterized by k + ¢ 4 tw, even for restricted inputs like planar graphs.
For the latter, we proved LBEC to be NP-hard on planar graphs. Building on
this, Zschoche et al. [Zsc+18] proved that on planar graphs, the vertex-deletion
variant of LBEC remains also NP-hard. Yet, polynomial kernelization for the
vertex-deletion variant remains open.

Open Problem 2. Does the vertex-deletion variant of LENGTH-BOUNDED
EDGE-CUT parameterized by k + ¢ admit a polynomial kernel on planar graphs?

Remarkably, SMALL CYCLE TRANSVERSAL parameterized by k + £ on planar
undirected graphs admits a polynomial kernel [Bod+16, XZ11]. It remains

61

3. Distance-Related Cut Problems

open whether SMALL CYCLE TRANSVERSAL parameterized by k + ¢ admits a
polynomial kernel in general undirected graphs.

Open Problem 3. Does SMALL CYCLE TRANSVERSAL parameterized by k+ ¢
admit a polynomial kernel in general undirected graphs?

62

Part 11I.

Diminishers and Data
Reduction inside P

63

All kernelization lower bounds derived via the (cross-)composition framework
and polynomial parameter transformations rely on the assumption that coNP ¢
NP /poly, an assumption that, while widely believed in the community, is a
much stronger assumption than P # NP. Chen et al. [CFM11] were the first
to observe a connection of kernelization lower bounds with the gold standard
assumption of P # NP. These lower bounds apply to proper kernelizations, a
variant of kernelization where the parameter value is not allowed to increase in
the kernel. Chen et al. proved three parameterized problems, one of them being
the CNF-SAT problem parameterized by the number n of variables, to admit no
proper kernelization of polynomial size unless P = NP. Hence, a more restrictive
kernelization is excluded under a weaker assumption. The key tool for proving
these bounds are parameter-decreasing polynomial self-reductions [CFM11] that
we will call parameter diminishers (diminishers for short). Roughly speaking, a
diminisher is a polynomial-time algorithm that on any input instance outputs
an equivalent instance where the parameter value is decreased. In the first
chapter of this part, Chapter 4, we underline the applicability of the parameter
diminisher framework. Therein, we prove the framework to apply to so-called
strict kernelizations (where the parameter value is allowed to only increase by
some general constant). We then show many parameterized problems to be
diminishable—and hence, to not admit strict kernelizations of polynomial size
unless P = NP.

Motivated by this finding, it is natural to ask about the limits and further
applications of the diminisher framework. More specifically, we were curious
about the following two questions. Firstly, can diminishers be strengthened
to exclude “less” strict kernelizations (we call those semi-strict kernelization)?
Secondly, can diminishers be employed to prove kernelization lower bounds for
polynomial-time solvable, parameterized problems? In Chapter 5 we target
these questions. To exclude semi-strict kernels of polynomial size, we introduce
a strengthened variant of diminishers: strong diminishers. While we prove two
problems to be strongly diminishable, for several, even diminishable problems,
we prove that strong diminishability breaks the Exponential Time Hypothe-
sis (ETH). Surprisingly, in turn, adapting the strong diminisher framework, we
exclude several fast (e.g., linear-time) and small (e.g., quadratic-size) proper
kernelizations for two polynomial-time solvable, parameterized problems. Herein,
the lower bounds rely on popular conjectures like the APSP-conjecture, the

65

3SUM-conjecture, or the Strong Exponential Time Hypothesis (SETH).? How-
ever, the framework makes it possible to exclude fast proper kernelizations
of some polynomial size, but not of every polynomial size. We complement
our kernelization lower bounds with some straight-forward kernelization upper
bounds (on this way also formalizing the concept of Turing kernelization for
problems in P).

As said, our framework presented in Chapter 5 is not applicable for exclud-
ing fast kernelizations of every polynomial size. In Chapter 6, we study the
polynomial-time solvable HYPERBOLICITY problem for which we prove fast
kernelizations of any polynomial size to presumably not exist. The hyperbolicity
of a graph is, roughly speaking, a number that measures how metrically similar
the graph is to some tree. HYPERBOLICITY is the problem of computing the
hyperbolicity of a given graph. We prove that HYPERBOLICITY parameterized
by the vertex cover number admits a kernelization dichotomy: While it admits
a linear-time computable kernelization of exponential size, it admits no kernel-
ization of subexponential size running in truly subquadratic time assuming the
SETH to hold. The latter implies, in particular, that there is no linear-time
computable kernelization of any polynomial size assuming the SETH to hold.
We complement our kernelization dichotomy by providing data-reduction-based
parameterized linear-time algorithms.

2We point out the roles of ETH and SETH here: While we prove several problems to be not
strongly diminishable assuming the ETH to hold, using strong diminishers we exclude fast
and small proper kernelization assuming the SETH to hold.

66

CHAPTER 4 .

DIMINISHERS AND DIMINISHABLE PROBLEMS

In this chapter we present the framework of parameter diminishers, an extension
of parameter-decreasing polynomial self-reductions introduced by Chen et al.
[CFM11]. We prove the framework’s applicability to be of wider range, demon-
strating its relevance for excluding more restrictive kernels of polynomial size
under the assumption of P # NP, an assumption weaker than coNP ¢ NP Jpoly-

4.1. Introduction

In this chapter, we consider a more restrictive variant of kernelization, which we
call strict kernelization, where we demand the output parameter k' to increase
not more than by an additive constant.

Definition 4.1 (Strict kernel). A strict kernelization for a parameterized
problem L is a polynomial-time algorithm that on input (z,k) € ¥* x N
outputs (z/, k') € £* x N, the strict kernel, satisfying:

(i) (z,k)e L — (oK) €L,

(i) |2'| < f(k) for some function f, and

(iii) k¥’ <k + ¢ for some constant ¢ > 0.
We say that L admits a strict polynomial kernelization if f(k) € k().

A strict kernelization can be also understood as a slight relaxation of proper
kernelization (Definition 1.7), where “k’ < k” (Definition 1.7(iii)) is replaced

This chapter is based on (parts of) Diminishable Parameterized Problems and Strict Poly-
nomial Kernelization by Henning Fernau, Till Fluschnik, Danny Hermelin, Andreas Krebs,
Hendrik Molter, and Rolf Niedermeier (Computability [Fer+20]).

4. Diminishers and Diminishable Problems

by “k’ < k + ¢’. While the term “strict” in the definition above makes sense
mathematically, it is actually quite harsh from a practical perspective. Indeed,
data reduction rules involved in known kernelizations rarely ever increase the
parameter value (see, e.g., the surveys [GNO7, Kral4, LMS12]). Furthermore,
strict kernelization is clearly preferable to kernelizations that increase the
parameter value in a dramatic way: Often a fixed-parameter algorithm on the
resulting kernel is applied, whose running time highly depends on the value of
the parameter, and so a kernelization that substantially increases the parameter
value might in fact be useless. Finally, the equivalence with FPT is preserved:
A decidable parameterized problem is solvable in f(k)-|z|°(") time if and only if
it has a strict kernel of size g(k) (where f and g are some computable functions
only depending on k) [CFM11, Proposition 3.2].

Chen et al. [CFM11] developed the first framework, being the central frame-
work of this chapter, to exclude polynomial proper kernels (which they call
parameter non-increasing kernelization) under the assumption of P # NP. The
main concept behind the framework is that of a parameter-decreasing polynomial
self-reduction (which we will call parameter diminisher): a polynomial-time
algorithm that decreases the parameter value of any given instance by at least
one. The crucial connection is that, for an NP-hard parameterized problem, the
existence of a parameter diminisher and a proper (indeed, strict) polynomial
kernel implies P = NP. Chen et al. [CFM11] showed that ROOTED PATH
parameterized by the length of the path and CNF-SAT parameterized by the
number of variables admit no proper polynomial kernel unless P = NP. The
goal of this chapter is to show that the framework by Chen et al. [CFM11]
applies to more parameterized problems, even when replacing proper by strict
kernelization, while excluding strict polynomial kernelization is comparatively
simple for these problems.

We remark that in addition to the results of Chen et al. [CFM11], there
is a kernelization lower bound result by Cygan et al. [CPP16] that relies on
the assumption of P #= NP: Cygan et al. proved that, unless P = NP, EDGE
CLIQUE COVER (see Appendix A), when parameterized by the number k& of
cliques, admits no kernel of subexponential size.

Our Contributions. We build on the work of Chen et al. [CFM11], and
further develop and widen the framework they presented for excluding strict
polynomial kernels (Section 4.2). Using this extended framework, we show that
several natural fixed-parameter tractable problems admit parameter diminishers

68

4.2. Diminisher Framework

and (hence) have no strict polynomial kernels unless P = NP (Section 4.3). The
main result of our work reads as follows.'

Theorem 4.1. Unless P = NP, none of the following fized-parameter tractable
problems admits a strict polynomial kernel:
(i) CLIQUE when parameterized by p € {A,tw,bw, vs,cw};
(7i) BICLIQUE when parameterized by p € {A,tw,bw,vs,cw};
(#4i) TERMINAL STEINER TREE when parameterized by k + |T|;
(iv) MULTICOLORED PATH when parameterized by klog(n) and COLORFUL
GRAPH MOTIF when parameterized by k;
(v) MCA-DEFENSIVE ALLIANCE and MCA-VERTEX COVER each when pa-
rameterized by k;
(Herein, k denotes the solution size, n, A, tw, bw, vs, and cw denote the
number of vertices, the maximum vertex degree, the treewidth, bandwidth, vertex
separation number, and cutwidth of the graph, respectively, and T denotes the
set of terminals.)

We remark that all parameterized problems stated in Theorem 4.1 are either
known to be fixed-parameter tractable or we prove them to be fixed-parameter
tractable. Moreover, for all of the problems one can exclude polynomial kernels
under the assumption that coNP ¢ NP /poly using the (cross-)composition
framework. Our results base on a weaker assumption, but exclude a more
restricted version of polynomial kernels. On the contrary, the composition
framework excludes a more general version of polynomial kernels but requires
a stronger assumption. Hence, our results are incomparable with the existing
no-polynomial-kernel results. However, the diminisher framework provides a
simpler methodology and directly connects the exclusion of strict polynomial
kernels to the assumption that P # NP.

4.2. Diminisher Framework
In this section we present the general framework used in this chapter. Firstly,

we define the central notion of a parameter diminisher extending the parameter-
decreasing polynomial self-reduction introduced by Chen et al. [CFM11].

IFormal definitions of each of these parameterized problems and the used parameters are
given in the following sections; see also Appendix A.

69

4. Diminishers and Diminishable Problems

Definition 4.2 (Parameter diminisher). A parameter diminisher for a pa-
rameterized problem L is a polynomial-time algorithm that maps any in-
stance (x,k) € ¥* x N of L to an instance (z/, k") € ¥* x N of L such that

(i) (z,k)e L — («/,K') e L and

(i) & < k.
A parameterized problem L is diminishable if there is a parameter diminisher
for L.

Thus, a parameter diminisher (or diminisher for short) is an algorithm that
is able to decrease the parameter of any given instance of a parameterized
problem L in polynomial time. The algorithm is given freedom in that it can
produce a completely different instance, as long as it is an equivalent one (with
respect to L) and has a smaller parameter value. Note that, by definition,
the parameter in a parameterized problem is a natural number, and thus the
difference between the obtained parameter and the parameter in the input
instance is at least one. The following theorem was proven first by Chen et al.
[CFM11] (yet regarding polynomial proper kernels).

Theorem 4.2 ([CFML11]). Let L be a parameterized problem such that its
unparameterized version is NP-hard and {(x,k) € L | k < ¢} € P, for some
constant c. If L is diminishable and admits a strict polynomial kernel, then P =
NP.

The idea behind Theorem 4.2 is to repeat the following two procedures until the
parameter value drops below ¢ (see Figure 4.1 for an illustration). First, apply
the parameter diminisher a constant number of times so that when, second,
the strict polynomial kernelization is applied, the parameter value is decreased.
The strict polynomial kernelization keeps the instances small, hence the whole
process runs in polynomial time.

The following type of reductions, which increases the parameter value not
more than by a constant and runs in polynomial time, allows for transferring
diminishability from one parameterized problem to another.

Definition 4.3 (Parameter-constant-increasing reduction). Given two parame-
terized problems L with parameter k and L’ with parameter k', a parameter-
constant-increasing reduction from L to L' is a polynomial-time algorithm that
maps each instance (z, k) of L to an instance (2’,k’) of L’ such that

(i) (z,k) e L < (2/,k')e L', and

(ii) k¥ <k + ¢ for some constant ¢ > 0.

70

4.2. Diminisher Framework

D > |z, kS ()>\x4|
Dd-i-l Dd+1

(1, k1) (w2, k2) (w3, k3) (z4,ky) ... (@ K)
k> k ki+d>ke ko>ky ks+d>ky K <c

Figure 4.1.: Tllustration for the proof of Theorem 4.2 with an input instance (z, k).
Herein, K denotes the strict kernelization with additive constant d and D denotes the
parameter diminisher, respectively. We represent each instance by boxes: the size of a
box symbolizes the size of the instance or the value of the parameter (each dashed
box refers to k).

Note that to transfer diminishability, we need parameter-constant-increasing
reductions between two parameterized problems in both directions—a crucial
difference to other reduction-based hardness results.

Lemma 4.3. Let L and Lo be two parameterized problems such that there
are parameter-constant-increasing reductions from Ly to Lo and from Lo to Ly.
Then Ly is diminishable if and only if Lo is diminishable.

Proof. Let Ly with parameter ki and Lo with parameter ko be two parameterized
problems. Let A; and Ay be parameter-constant-increasing reductions from L
to Lo with constant ¢; and from Lo to Ly with constant ¢y, respectively. Let Do
be a parameter diminisher for Lo. Let (21, k1) be an arbitrary instance of L;.

Apply A; to (x1, k1) to obtain the instance (xa, k) of Lo with ke < k1 + ¢;.
Next, apply D2 to (w2, k) (c1 + c2 + 1)-times to obtain the instance (x4, k)
of Ly with k) < ko — ¢1 — ¢ca < ky — co. Finally, apply As to (x4, k%) to obtain
the instance (z7,k}) of Ly with k] < kb + co < k1. As k} < ki, the above
combination of A;, Do, and A, forms a parameter diminisher for L;. To get
the reverse direction, exchange the roles of L; and Lo. O

Parameter-Decreasing Branching and Strict Composition. To con-
struct parameter diminishers, it is useful to follow a “branch and compose”
technique: Herein, first branch into several subinstances of the input instance

71

4. Diminishers and Diminishable Problems

while decreasing the parameter value in each, and then compose the subin-
stances into one instance without increasing the parameter value by more than
an additive constant. We first give the definitions of parameter-decreasing
branching rule and strict composition, and then show that both combined form
a parameter diminisher.

Branching rules are highly common in parameterized algorithm design, and
they are typically deployed when using depth-bounded search-trees or related
techniques. Roughly speaking, in a parameter-decreasing branching rule one
reduces the problem instance to several problem instances each with smaller
parameter values such that at least one of these new instances is a yes-instance
if and only if the original instance is a yes-instance.

Definition 4.4 (Parameter-decreasing branching rule). A parameter-decreasing
branching rule for a parameterized problem L is a polynomial-time algorithm that
on input (z, k) € ¥* x N outputs a sequence of instances (y1,&’),..., (y, k) €
3* x N such that

(i) (z,k) € L < (y;, k') € L for some i € {1,...,t} and

(i) &' <k.

Recall that composition is the core concept behind the standard kernelization
lower bound framework. Here we use a more restrictive notion of this concept,
where the parameter in the output instance is not allowed to increase by more
than an additive constant to the input parameter:

Definition 4.5 (Strict composition). A strict composition for a parameterized
problem L is an algorithm that receives as input ¢ instances (x1, k), ..., (¢, k) €
¥* x N, and outputs in polynomial time a single instance (y, k') € £¥* x N such
that

(i) (y, k') € L < (x;,k) € L for some i € {1,...,t} and

(ii) k¥ <k + ¢ for some constant ¢ > 0.

If we now combine a parameter-decreasing branching rule with a strict com-
position, then we get a parameter diminisher.

Lemma 4.4. Let L be a parameterized problem. If L admits a parameter-
decreasing branching rule and a strict composition, then it is diminishable.

Proof. Let (x,k) be an instance of a parameterized problem L of size n, ¢ be
the constant associated with a strict composition for L, and t € O(n?), d € N,
be the number of instances computed by the parameter-decreasing branching

72

4.3. Problems without Strict Polynomial Kernels

rule. We recursively apply ¢ 4 1 times the parameter-decreasing branching rule
for L to produce t* instances (z;,k*), where a is a constant depending on ¢
and d only. Note that in each application of the parameter-decreasing branching
rule the parameter is decreased by at least one, and hence k* < k — ¢. The
strict composition receives t® instances and produces in polynomial time an
instance (y, k') with k¥’ < k* + ¢ < k of L which is a yes-instance if and only if
(x,k) is a yes-instance. Hence, the whole procedure is a parameter diminisher
for L. O

Remark 4.1. Lemma 4.4 also holds true if we require in Definitions 4.4 and 4.5
that the equivalence holds for all ¢ € {1,...,¢t}. That is, for parameter-
decreasing branching rule we replace (i) by “(x,k) € L < (y;,k') € L
for all i € {1,...,t}”, and for strict composition we replace (i) by “(y,k’) €
L < (z;,k)e Liorallie{l,... t}"

As an example application of Lemma 4.4 above, we consider the parameter
diminisher for the ROOTED PATH problem parameterized by the length k of the
path due to Chen et al. [CFM11].

RoOOTED PATH

Input: An undirected graph G = (V, E), a vertex r € V, and an integer k €
N.

Question: Is there a path P with endpoint r of length at least k in G7

Let vy, ..., v be the neighbors of r in G. The parameter-decreasing branching
rule for ROOTED PATH constructs from (G, r, k) the set of instances (G—r, vy, k—
1),...,(G—r,v,,k —1). A strict composition for ROOTED PATH takes as input
the instances (G1,71,k), ..., (G, 1, k) and constructs the instance (G, r, k+1),
where G’ is the graph obtained by taking the disjoint union of all G;s and
making all their roots adjacent to a new root vertex r. Combining these two
algorithms—two applications of the parameter-decreasing branching rule and
the strict composition—gives the parameter diminisher for ROOTED PATH.

4.3. Problems without Strict Polynomial Kernels

In this section we prove Theorem 4.1 based on several propositions to follow.
We present parameter diminishers for all problems mentioned in Theorem 4.1,
following the order in which the problems are stated in Theorem 4.1. Thus,
we study CLIQUE and BICLIQUE in Section 4.3.1, TERMINAL STEINER TREE

73

4. Diminishers and Diminishable Problems

in Section 4.3.2, MULTICOLORED PATH and COLORFUL GRAPH MOTIF in Sec-
tion 4.3.3, and MULTI-COMPONENT ANNOTATED II in Section 4.3.4.

4.3.1. Clique and Biclique
We begin with the CLIQUE problem.

CLIQUE

Input: An undirected graph G = (V, E) and an integer k € N.

Question: Is there a vertex set X C V of G such that |X| > k and for all
distinct v, w € X there is {v,w} € E?

Since CLIQUE parameterized by the solution size k is W[1]-complete [DF99|,
we focus on other parameterizations of CLIQUE that yield fixed-parameter
tractability, for instance the maximum degree A of the input graph, where
CLIQUE has a simple fixed-parameter algorithm (exhaustively search in the
closed neighborhood of each vertex individually). Other parameterizations
include treewidth tw = tw(G), bandwidth bw = bw(G), vertex separation vs =
vs(G), and the cutwidth cw = cw(G) of the input graph (refer to Figure 1.4
in Section 1.2 for the parameters’ relation). Our first main result of this section
is the following.

Proposition 4.5. CLIQUE when parameterized by p € {A,tw,bw,vs,cw} is
diminishable.

Observe that if cw < ¢ for some constant ¢, then A < 2¢, and CLIQUE is
fixed-parameter tractable when parameterized by the maximum degree. We
prove Proposition 4.5 via the “branch and compose” technique (see Section 4.2).
For the parameter-branching rule, the following is the underlying construction.

Construction 4.6. Let G = (V, E) be a graph. For each v € V| construct the
subgraph G, := G[Ng(v)] of G induced by the open neighborhood of v in G.
Let G(G) == {G, | v € V}} denote the set of all such graphs. A

In what follows, for each parameter stated in Proposition 4.5 we give its
definition and prove that its value decreases by at least one in each graph in
the set output by Construction 4.6. Note that for every graph the cutwidth cw
upper-bounds each of the other parameters listed in Proposition 4.5. However,
recall that diminishability of a parameter p does not necessarily transfer to
parameters which are upper bounded by p. We begin with the maximum vertex
degree A of the input graph.

74

4.3. Problems without Strict Polynomial Kernels

Observation 4.7. Let G be a graph and G(G) denote the set obtained from
applying Construction 4.6 to G. Then maxgeg(a) A(H) < A(G).

Proof. Observe that for all v € V(G), G, = G[N¢[v]] — v, and hence we have
that A(G,) = A(G[Ng[v]]) — 1 < A(G). O

Next, we consider the parameter treewidth tw (see Definition 1.13).

Lemma 4.8. Let G be a graph and G(G) denote the set of graphs obtained from
applying Construction 4.6 to G. Then maxpeg(a) tw(H) < tw(G).

Proof. For all v € V, denote by G,, the graph G[N¢[v]]. Note that for all v € V|
as G, C G, we have that tw(G,,) < tw(G). Let T = (T, (Ba)aev(r)) denote
a tree decomposition of G of width tw(G). Note that T, = (T, (B,)acv (1)),
where B!, = B, N Ng[v] for all a € V(T), is a tree decomposition of G/, of
width at most tw(G) [Diel0]. We claim that the tree decomposition T, =
(T, (B)acv (), where B}, := B, N Ng(v) for all a € V(T'), of G, has width at
most w(T,) — 1. Suppose not, that is, there is an o € V(T) such that |B}| =
w(T,) + 1 (note that B/, = B, and hence v ¢ B!). Let 5 € V(T) denote
the node in 7' closest to o whose bag contains v in T;, that is, v € Bj
and disty(a, f) = minﬁ'eV(T):1zeB;3, distr (e, 8’). Since v is adjacent to each
vertex in N¢(v), it holds true that for each w € B/, there is a v € V(T such
that {v,w} C B!. By property (iii) of tree decompositions and the choice
of node 3, it follows that B, C Bj. Since v € Bj, we have |B,| < |Bg],
contradicting the choice of a.. Altogether, we have tw(G,) < w(T,) < w(T),) <

tw(G). O
For a vertex set V, a wvertez-ordering is a bijection o: V. — {1,...,|V]}.

The bandwidth of a graph G = (V,E) is defined as the minimum value of

maxy, wieg |0(u) — o(w)| over all vertex-orderings o: V — {1,...,|V|}.

Lemma 4.9. Let G be a graph and G(G) denote the set of graphs obtained from
applying Construction 4.6 to G. Then maxpeg(a) bw(H) < bw(G).

Proof. For all v € V, denote by G/, the graph G[N¢g[v]]. Note that for all v €
V, as G, C G, we have that bw(G)) < bw(G) [DPS02]. Let o: V(G)) —
{1,...,[V(GY)[} be a vertex-ordering for G, with max(,, wyer(ar) |o(w) —o(w)|
being equal to the bandwidth of G, i.e., bw(G},) = max(y wyep(ar) lo(u)—o(w)
Let ¢’ denote the vertex-ordering obtained from ¢ such that o'(w) = o(w)
if o(w) < o(v), and o' (w) = o(w) — 1 if o(w) > o(v) for all w € Ng(v). Tt

(0]

4. Diminishers and Diminishable Problems

follows that for every {z,y} € E(G,) with o(z) < o(v) < o(y), it holds true
that |o'(x) — o'(y)| = |o(x) — o(y)] — 1. Observe that since v is adjacent to
all vertices in Ng(v), for every {z,y} € E(G)) with v ¢ {x,y} and o(y) —
o(x) = maxq, wiepar) |o(w) — o(w)| it holds true that o(z) < o(v) < a(y).
Hence bw(G,) = bw(G,) — 1 < bw(G). O

The vertex separation of a graph G = (V, E) is defined as the minimum
value of max;<;<|v| |Fo,i| over all vertex-orderings o: V' — {1,..., |V}, where
F,, ={ueV]|o(u) <iA3{u,w} € E: o(w) > i}. Note that for every graph
the vertex separation number and the pathwidth are equal [Kin92].

Lemma 4.10. Let G be a graph and G(G) denote the set of graphs obtained
from applying Construction 4.6 to G. Then maxpeg(a) vs(H) < vs(G).

Proof. For all v € V, denote by G, the graph G[N¢g[v]]. Note that for all v €
V, as G, C G, we have that vs(G)) < vs(G) [DPS02]. Let o: V(G)) —
{1,...,nl}, where n}, = |V(G))|, be a vertex-ordering for G/, with vs(G)) =
maX;e(1,... n} |Foil such that o(v) is smallest among all such orderings. Define
the set [:= argmax;cqy .y [Fo,il. We claim that o(v) < for all i € I.

Suppose not, that is, there is an ¢ € I such that o(v) > i. Let j € I de-
note the largest index in I such that o(v) > j. Observe that j = o(v) — 1,
as otherwise |Fy ;| < |F, o(»)—1| since all vertices in V(G),) \ {v} are adja-
cent to v. Let w € V(G)) denote the vertex with o(w) = j. Consider the
vertex-ordering oy, With o, (v) = w, ou(w) = v, and oy, (w) = u for
all u € V(G)) \ {v,w}. Observe that |F,s ;| < |Fy ;| since every vertex u
with o(u) < j is adjacent with v. Moreover, for all i € {1,...,n,}\ {j} it
holds true that |Fy,, ;| = |Fo,i| since {u € V(G)) | o(u) < i} ={u € V(G,) |
ouw(u) < i}, It follows that oy, is a vertex-ordering for G) with vs(G,) =
maxX;e(1,...n} [Fo,,.i| such that ., (v) < o(v), contradicting the choice of .
Hence, we have that o(v) <4 for all ¢ € I.

Let ¢’ denote the vertex-ordering obtained from o such that ¢’(w) = o(w)
if o(w) < o(v), and o'(w) = o(w) — 1 if o(w) > o(v) for all w € Ng(v).
Since G, € Gy, we have that |Fy/ ()| < [Fy o) for all w € V(G,) [DPS02].
Since for all i € I it holds true that o(v) < i, we have that |F, 5/(w)| <
|Fy.o(wy| — 1 for all w € V(G,) such that there is an i € I with o(w) = 1.
Altogether, it follows that vs(G,) < maxie(1,... o}y [For il < vs(G)) < vs(G). O

The cutwidth of a graph G = (V,E) is defined as the minimum value
of max;eq1,... |v|} |Eo,i| over all vertex-orderings o: V' — {1,...,[V|[}, where
E,; ={{u,w} € E|o(u) <i<o(w)}.

76

4.3. Problems without Strict Polynomial Kernels

Lemma 4.11. Let G be a graph and G(G) denote the set of graphs obtained
from applying Construction 4.6 to G. Then maxpgeg(q) cw(H) < cw(G).

Proof. For all v € V, denote by G, the graph G[N¢[v]]. Note that for all v € V,
as G! C @G, we have that cw(G)) < cw(G) [DPS02]. Let o: V(G)) —
{1,...,n,} be a vertex-ordering for G, with cw(G",) = maxi<i<n/ |Ey |, where
n, = |V(G,)|. Let o' denote the vertex-ordering obtained from o such
that o' (w) == o(w) if o(w) < o(v), and o'(w) = o(w) — 1 if o(w) > o(v)
for all w € Ng(v). Note that o is an ordering on the vertices of G,. Since v
is adjacent to each vertex in V(G) \ {v}, it holds that |E, ;/| < |Es ;| — 1
for each j € {1,...,n,} and j' = j, if j < o(v), and j' = j — 1, otherwise. It
follows that cw(G,) < max) <;<|v(aG.)| |Eqr 4| < max <;<n/, |Eyi| = cw(Gl,) <
cw(G).

Construction 4.6 yields a parameter diminisher for parameters tw, bw, vs, cw
and k. Leaving the parameter k aside (for which CLIQUE is W[1]-complete), we
prove our first main result of this section.

Proof of Proposition 4.5. Let (G = (V, E), k) be an instance of CLIQUE. The fol-
lowing is a parameter-decreasing branching rule for (G = (V, E), k): Apply Con-
struction 4.6 to G, and construct for each G, € G(G) the instance (G,,k —1).

We prove that G has a clique of size k if and only if G, has a clique of size
k — 1 for some v € V. Let C be a clique in G with k vertices and v € V(C).
Let C’ .= C — v denote the clique of size k — 1 obtained from C by deleting v.
Since for every w € V(C’) it holds that w € Ng(v), we have ¢’ C G,, and
the claim follows. Conversely, let v € V such that G, contains a clique C’ of
size k — 1. By construction, v € V(C’) as ¢/ C G,, and v is adjacent to all
vertices in G,. It follows that V(C") U {v} forms a clique of size k in G.

Finally, due to Observation 4.7 and Lemmas 4.8 to 4.11, we know that in
each instance the corresponding parameter value decreased.

For the composition step take the disjoint union of all graphs. Formally, on
input instances (G1, k), ..., (G, k), t € N, compute the instance (G- - -WGy, k).
Note that a graph has a clique of size k if and only if one of its connected
components has a clique of size k. Moreover, for all stated parameters it holds
true that their value equals the maximum value of the connected components
of the input graph [Chv+75, DPS02|. Applying Lemma 4.4 completes the
proof. O

(s

4. Diminishers and Diminishable Problems

Next we show that the parameter diminisher presented for CLIQUE can be
adapted to the BICLIQUE problem:

BICLIQUE

Input: An undirected bipartite graph G = (V = AW B, F) and an integer k.

Question: Is there a vertex set X C V of G such that | XNA| = |XNB| =k
and each vertex in X N A is adjacent to each vertex in X N B?

Thus, we have our second main result of this section:

Corollary 4.12. BICLIQUE when parameterized by p € {A,tw,bw,vs,cw} is
diminishable.

Proof sketch. We only present the parameter-decreasing branching rule. The
rest of the proof is analogous to the proof of Proposition 4.5. Let (G =
(AW B,E), k) be an instance of BICLIQUE. The following is a parameter-
decreasing branching rule for (G = (AWB, E), k): For each {v,w} € E, construct
the instance (G w, k — 1) where G, , = G[(Ng(v) \ {w}) U (Ng(w)\ (v))]. O

Corollary 4.12 and Proposition 4.5 together with Theorem 4.2 now prove The-
orem 4.1(i) and (ii).

4.3.2. Terminal Steiner Tree

The well-known STEINER TREE problem is defined as follows: given an undi-
rected graph G = (V, E) with V = NWT (T is called the terminal set) and an
integer k € N, decide whether there is a subgraph H C G with at most k + |T|
vertices such that H is a tree containing all vertices in T". In this section, we
consider the variant TERMINAL STEINER TREE [BMS15, LX02| of STEINER
TREE, which additionally demands the terminal set 7" to be a subset of the set
of leaves of the tree H.

TERMINAL STEINER TREE (TST)

Input: An undirected graph G = (V = NWT, E) and an integer k.

Question: Is there a subgraph H of G such that H is a tree with T" being
its set of leaves?

TST is proven to be NP-complete. We are not aware of any parameterized
complexity study for TST. Hence, for the sake of completeness, in the following
two lemmas we show that TST, when parameterized by the size k + |T| of the
terminal Steiner tree in question, is fixed-parameter tractable and admits no
polynomial kernel unless coNP C NP /.

78

4.3. Problems without Strict Polynomial Kernels

Lemma 4.13. TERMINAL STEINER TREE parameterized by k + |T| is fized-
parameter tractable.

Proof. We give a parameterized reduction from TST to STEINER TREE, each
parameterized by the order of the tree. As STEINER TREE parameterized by k +
|T| is fixed-parameter tractable [DWT71], the claim follows (recall Lemma 1.5).

Let (G = (NWT,E), k) be an instance of TST. We construct an equivalent
instance (G’ = (N'WT, E'), k") of STEINER TREE as follows. Let G’ be initially
a copy of G. For each t € T, apply the following. For each edge {v,t} € E,
remove {v,t} from G’ and add a path of length 2(k+|T'|) to G’ with endpoints v
and t. Set k' = |T'| - (2(k + |T|) — 1) + k. This finishes the reduction. Clearly,
the construction can be done in polynomial time.

We show that (G = (N WT, E),k) is a yes-instance of TST if and only if
(G"=(N"WT,E), k) is a yes-instance of STEINER TREE.

(=) Let H be a terminal Steiner tree in G with at most k + |T| vertices.
We construct a Steiner tree H' in G’ from H with at most k' + |T'| vertices
as follows. Recall that each ¢ € T has exactly one neighbor v; in H. Hence,
obtain H’ by replacing for each ¢t € T the edge {v;,t} € E(H) by the path of
length 2(k + |T|) connecting v; with ¢. It is not difficult to see that H' is a
Steiner tree in G’. Moreover,

\V(H")| = [V(H)| +|T|(2(k +|T]) - 1)
<Ek+|T)+|T|2k+|T)) = 1) =K +|T].

(<) Let H' be a minimum Steiner tree in G’ with at most &'+ |T'| vertices. We
state some first observations on H’. Observe that no inner vertex of the paths
added in the construction step from G to G’ is a leaf of H’ (as otherwise H’
is not minimum). Moreover, as H' contains each ¢t € T, H' contains a path of
length 2(k + |T'|) for each t € T. Suppose that there is a terminal ¢ € T such
that ¢ is not a leaf in H’. Then the number of vertices of H' is

V(H)| > |T|+ (T +1) - (2(k +|T]) - 1)
>|T|-2k+|T) —1)+2(k+1|T]) — 1
>E+(k+|T)) -1
>k + T,

yielding a contradiction. Hence, each terminal ¢ € T forms a leaf in H'. We
show how to obtain a terminal Steiner tree H in G from H’ with at most &k +|T|

79

4. Diminishers and Diminishable Problems

vertices. As each terminal ¢ € T forms a leaf in H’, there is exactly one
neighbor v; € Ng(t) such that H' contains the path of length 2(k 4+ |T)
connecting v; with ¢. Replace for each t € T the path of length 2(k + |T)
connecting vy with ¢ in H by the edge {v,t} € E to obtain H from H'. Note
that H is a terminal Steiner tree. Moreover,

\V(H)| = [V(H)| - |T|- 2k +|T]) - 1)
<|TI+IT]- @+ |T) = 1) + k= |T]- 2k +[T]) - 1)
= k+ 1] 0

Note that STEINER TREE parameterized by k + |T'| is WK[1]-complete [Her+15]
and hence admits no polynomial kernel unless coNP C NP,y

Lemma 4.14. Unless coNP C NP/, TERMINAL STEINER TREE admits no
polynomial kernel.

Proof. We give a polynomial parameter transformation from STEINER TREE
to TST. Let (G = (NWT, E), k) be an instance of STEINER TREE. We construct
instance (G' = (N'WT', E'), k') of TST as follows. Let G’ be initially a copy
of G. Next, for each terminal vertex ¢t € T, add a vertex v; to G’ and make it
adjacent only with ¢t. Denote by T” := {v; | t € T} the set of vertices added
in the previous step. Set N’ :== NUT and k¥’ := k + |T|. This finishes the
construction of (G' = (N'WT',E’), k). We claim that (G = (NWT, E),k)
admits a Steiner tree of size k + |T| if and only if (G’ = (N'WT’, E'), k") admits
a terminal Steiner tree of size k' + |T”|.

(=) Let S be a Steiner tree in G of size k + |T'|. It is not difficult to see that

S = (V(S)UT', E(S) U {{v,,t} € B(G') | t € T})

is a terminal Steiner tree in G’ of size k + |T'| + |T'| = k' + |T"|.

(<) Let S’ denote a terminal Steiner tree in G’ of size ¥’ + |T”|. Note
that 77 C V(S) and as each vertex v, € T” has exactly one neighbor ¢t € T, it
follows that

S:=VE\T, ES)\ {{ve 1} € E(G) [t € T})
is a Steiner tree in G of size k' +|T"| — |T'| = k' =k + |T. O

Notably, the proofs of Lemmas 4.13 and 4.14 imply that TERMINAL STEINER
TREE is complete for WK[1] when parameterized by & + |T.
Finally, we prove our diminishability result for TERMINAL STEINER TREE.

80

4.3. Problems without Strict Polynomial Kernels

Proposition 4.15. TERMINAL STEINER TREE parameterized by k + |T| is
diminishable.

In our proof of Proposition 4.15, we use the following parameter-decreasing
branching rule.

Construction 4.16. Let (G = (NWT, E), k) be an instance of TST with G
being connected, |T| > 3, Ng(t) € T for t € T, and there is no vertex v € N
such that T C Ng(v). Select a terminal t* € T, and let vy, ..., vq denote the
neighbors of t* in G—(T'\{t*}). Construct d instances (G1,k—1),...,(Gq,k—1)
as follows. Define G;, i € {1,...,d}, by G; := G—v;. Turn the vertices in Ng(v;)
in G; into a clique, that is, for each distinct vertices v,w € Ng(v;) add the
edge {v,w} if not yet present. This finishes the construction of G;. It is not
hard to see that the construction can be done in polynomial time. A

Lemma 4.17. Construction 4.16 is a parameter-decreasing branching rule for
TST parameterized by k + |T|.

Proof. Let (G =(NWT,E),k) and (G1,k—1),...,(Gg,k — 1) be as in Con-
struction 4.16. We show that G has a terminal Steiner tree of size k + |T'| if and
only if there is an ¢ € {1,...,d} such that G; admits a terminal Steiner tree of
size k — 1+ |T.

(=) Suppose that G has a terminal Steiner tree H of size k+|T|. Ast* is a leaf
in H, there is exactly one neighbor v;, i € {1,...,d}, being the neighbor of ¢*
in H. Let w be a neighbor of v; in H—T and let A := Ng(v;) (note that t* € A).
Let H; be the tree obtained from H by deleting v; and connecting w with all
vertices in A. Then H; forms a terminal Steiner tree in GG;. Moreover, H; is of
size k — 1+ |T.

(<) Let G; admit a terminal Steiner tree H; of size k — 1+ |T|. As t* is a
leaf in H;, there is exactly one vertex w being the neighbor of t* in H;. We
obtain a terminal Steiner tree H in G from H; as follows. If every edge in H;
is also present in GG, then H = H,; also forms a terminal Steiner tree in G.
Otherwise, there is an inclusion-wise maximal edge set E' C E(H;) such that
E'NE(G) = 0. Observe that by construction, the set of endpoints of E’ forms a
subset of Ng(v;). Let initially H be a copy of H;. Delete from H all edges in E’,
add vertex v; to H, and for each {z,y} € E’, add the edges {z,v;} and {y,v;}.
Note that H remains connected after this step, and the set of leaves remains
unchanged. Finally, compute a minimum feedback edge set in H if necessary.
Observe that since V(H) = V(H;) U{v;}, H forms a terminal Steiner tree of
size k +|T| in G. O

81

4. Diminishers and Diminishable Problems

We are set to prove Proposition 4.15.

Proof of Proposition 4.15. We give a parameter-decreasing branching rule and
a strict composition for TERMINAL STEINER TREE. Together with Lemma 4.4,
the claim then follows. Let (G = (N WT, E), k) be an instance of TST (we can
assume that G has a connected component containing 7'). We make several
assumptions first. We can assume that |T'| > 3 (otherwise a shortest path is
the optimal solution). Additionally, we assume that for all terminals t € T it
holds that Ng(t) € T (as otherwise the instance is a no-instance and we output
a trivial no-instance). Moreover, we can assume that there is no vertex v € N
such that ' C Ng(v), as otherwise we immediately output a trivial yes-instance
if k> 1 or a trivial no-instance otherwise.

For the parameter decreasing branching rule, use Construction 4.16. The
strict composition for TST is as follows. Given the instances (G, k), ..., (G4, k),
compute an instance (G’, k) as follows. Let G’ be initially the disjoint union
of G1,...,Gq. For each t € T, identify its copies in Gy,...,Ggy, say t1,...,tq,
with one vertex ¢ corresponding to ¢. This finishes the construction of G’. Note
that for every i,j € {1,...,d}, i # j, any path between a vertex in G; and a
vertex in G; contains a terminal vertex. Hence, any terminal Steiner tree in G’

contains non-terminal vertices only in G; for exactly one i € {1,...,d}. Thus,
(G', k) is a yes-instance if and only if one of the instances (G1,k), ..., (G4, k)
is a yes-instance. O

4.3.3. Multicolored Graph Problems

In this section, we present a diminisher for the MULTICOLORED PATH and
COLORFUL GRAPH MOTIF problem. First, we present a diminisher for MULTI-
COLORED PATH:

MULTICOLORED PATH (MCP)
Input: An undirected graph G = (V, E) and a vertex coloring col: V' —

{1,...,k}.
Question: Is there a simple path P in G that contains exactly one vertex of
each color?

MCP is NP-complete as it generalizes HAMILTONIAN PATH, and fixed-parameter
tractable (solvable in 2°(*)n? time [AYZ95]) and WK[1]-complete [Her | 15] when
parameterized by k. We prove the problem to be diminishable regarding k.

Proposition 4.18. MULTICOLORED PATH parameterized by k is diminishable.

82

4.3. Problems without Strict Polynomial Kernels

Proof. We give a parameter-decreasing branching rule and a strict composition
for MCP. The result then follows from Lemma 4.4. Let (G = (V, E), col) be an
instance of MCP. Our parameter-decreasing branching rule for (G = (V, E), col)
computes an instance (G(vhvz,w),col’) for each ordered triplet (vy,vq,vs) of
pairwise distinct vertices of V' such that vy, vs,v3 forms a multicolored path
in G. The graph Gy, v,,0,) is constructed from G as follows: Delete from G
all vertices w € V' \ {v2,v3} with col(w) € {col(v1), col(va), col(vs)}. Following
this, only vertices of k — 1 colors remain, and vo and v3 are the only vertices
colored col(vz) and col(vs), respectively. Then delete all edges incident with vg,
apart from {vz,v3}, and relabel all colors so that the image of col for Gy, v,)
is{1,...,k—1}.

Clearly our parameter-decreasing branching rule can be performed in polyno-
mial time. Furthermore, the parameter decreases in each output instance. We
show that the first requirement of Definition 4.4 holds as well: Indeed, suppose
that G has a multicolored path vy, vs,...,v; of length k. Then wvo,..., v is
a multicolored path of length k — 1 in Gy, 4,,05) by construction. Conversely,
suppose that there is a multicolored path wus, ..., ur of length £ — 1 in some
G (v;,v3,05)- Then since vy is the only vertex of color col(vz) in Gy, vy,05), and
since vy is only adjacent to v, without loss of generality it must be that us = vo
and uz = v3. Hence, since v is adjacent to vy in G, and no vertices of us, ..., ug
have color col(v1) in G, the sequence of vy, ug, ..., u; forms a multicolored path
of length k in G.

Our strict composition for MCP is as follows. Given a sequence of in-
puts (Gi,coly),..., (G, coly), the strict composition constructs the disjoint
union G and the coloring function col of all graphs G; and coloring functions
col;, 1 <4 < t. Clearly, (G, col) contains a multicolored path of length % if and
only if there is a multicolored path of length k in some (G;,col;). The result
thus follows directly from Lemma 4.4. O

We are set to prove the first part of Theorem 4.1(iv).

Proposition 4.19. Unless P = NP, MULTICOLORED PATH parameterized
by klog(n) has no strict polynomial kernel.

Proof. Chen et al. [CFM11, Proposition 3.10] proved that if L is a parameterized
problem which can be solved in 2ko(1)|z|o(1) time on any input (x,k), then
L parameterized by k has a polynomial kernel if and only if L parameterized

by klog(]z|) has a polynomial kernel. It is easy to verify that their proof also

83

4. Diminishers and Diminishable Problems

holds for strict polynomial kernels. Thus, as MULTICOLORED PATH can be
solved in 287" nOM) time [AYZ95], the result follows from Proposition 4.18. O

The COLORFUL GRAPH MOTIF problem asks, given an undirected graph G =
(V, E) and a vertex coloring function col : V' — {1,..., k}, whether there exists a
connected subgraph of G containing exactly one vertex of each color. COLORFUL
GRAPH MOTIF is known to be fixed-parameter tractable when parameterized
by k [Bet+11a] and has been used to show that several problems in degenerate
graphs have no polynomial kernels unless coNP C NP /.1, [Cyg+12]. The idea
used in the parameter diminisher for MCP can also be applied to COLORFUL
GRAPH MOTIF.

Proposition 4.20. COLORFUL GRAPH MOTIF parameterized by k is dimin-
ishable.

Proof. We show that there is a parameter-decreasing branching rule and a strict
composition for COLORFUL GRAPH MOTIF. Let (G = (V, E), col) be an instance
of COLORFUL GRAPH MOTIF. Assume that there are only edges between
differently colored vertices. For each {v,w} € E, the parameter-decreasing
branching rule computes an instance (G, .}, col’) where the graph Gow) isa
copy of G where all vertices of colors col(v) and col(w) are removed. Furthermore,
a new vertex v* is added with color col(v*) = col(v) and with edges to all vertices
in Ng(v) U Ng(w) that have not been removed. Clearly, Gy, ,,,} only contains
vertices of k — 1 different colors and is computable in polynomial time. Also, if G
contains a colorful motif {vq,ve} U{vs, ..., vx} where, without loss of generality,
{v1,v2} € E, then Gy,, ,,} contains the colorful motif {v*} U {vs,...,vs}.
Conversely, if a graph Gy, ,,) contains a colorful motif, then it has to contain v*
since it is the only vertex of its color. Let {v*} U{vs,..., v} be a colorful motif
in Gy w3, then {v,w} U{vs,..., v} is a colorful motif in G since v* is adjacent
to some vertex v; in the motif and hence, by construction, v; is adjacent to v or
to w and there is an edge between v and w.

The strict composition constructs the disjoint union of the sequence of inputs.
Clearly, the disjoint union has a colorful motif if and only if one of the input
graphs has a colorful motif. Lemma 4.4 now yields the result. O

4.3.4. Component-Wise Annotated Graph Problems

In the following, we prove that the following family of problems is diminishable.

84

4.3. Problems without Strict Polynomial Kernels

MULTI-COMPONENT ANNOTATED II (MCA-II)

Input: An undirected graph G = (V, E), a vertex subset D C V, and an
integer k.

Question: Is there a vertex set S in a connected component G' = (V', E’)
of G such that (DNV') CSC V' |S\(DNV')| <k, and S fulfills
property II in G'?

Herein, we refer to the set D as the annotated set. The basic idea behind the
diminisher for MCA-II is that we can branch over all possible vertices contained
in a solution and add them to the annotated set. That is, we increase the
annotated set in favor of decreasing the required solution size. We say that a
property IT can be verified in polynomial time, if there is an algorithm that
on any input graph G = (V| E) with vertex subset S C V decides in time
polynomial in the size of G whether S fulfills property II in G.

Lemma 4.21. IfII can be verified in polynomial time, then MULTI-COMPONENT
ANNOTATED I is diminishable.

Proof. The main idea of the parameter diminisher is to extend the set D
of annotated vertices by each possible vertex in the graph. Formally, given
an instance (G = (V,E), D, k), in polynomial time we either return a triv-
ial yes- or no-instance equivalent to (G, D, k) or compute an equivalent in-
stance (G*, D* k — 1) as follows. For each connected component G’ = (V' E'),
check whether D NV fulfills property I, and if so, return a trivial yes-instance.

Otherwise, if D = V| then return a trivial no-instance. If D # V| then we
construct the equivalent instance (G*, D* k — 1). Let G* and D* be initially
empty. For each connected component G’ = (V' E’), consider two cases.
If DNV’ = V', then add a copy of G’ to G*. Otherwise, if DNV’ C V/,
do the following. Let the vertices in V' \ D be enumerated as vy,...,vy,
where ¢ = |V/\ D|. For each vertex ¢ € {1,...,¢}, add a copy G} of G’
to G*. Denote by D? the copy of D in G, and by U;—, j€{1,...,£}, the copies
of the vertices in V’\ D. Add D?U {v!} to D*. This finishes the construction.
We claim that (G, D, k) is a yes-instance if and only if (G*,D*,k — 1) is a
yes-instance.

(=) Let S C V' be a solution for (G, D, k), where G' = (V', E’) forms a
connected component in G. Let v; € S\ D (note that S\ D # 0)). Then there
is a connected component G = (V/, E!) in G* such that D* U {v!} is the set
of annotated vertices in Gj. Let S* denote the copies of S in G}. As G} is
isomorphic to G', S* fulfills property II in G;. Moreover, |S*\ (D*NV/)| =
S\((DAVY U Lo = S\ (DAV)| =1 <k~ 1.

85

4. Diminishers and Diminishable Problems

(<) Let S* C V/ be a solution for (G*,D*,k — 1), where G} = (V/, E})
forms a connected component in G*. Let G’ = (V' E’) be the connected
component in G isomorphic to G}. Let S be the set of vertices whose copy
in G is §*. Clearly, S fulfills property II in G’. Note that there is exactly one
vertex vf € S* N D* such that for its origin v; € V' holds v; & SN D*. It follows
that |S\(DNV')| = |S*\(D*NV))U{vi}| = [S*\(D*NV/)|+1 < k—1+1=k. O

Our first application of Lemma 4.21 is II being a defensive alliance [FROT], a
notion introduced by Kristiansen et al. [KHHO04] (see also [OST18] for a survey
on alliances): Given an undirected graph G = (V| E), a vertex set S is called
a defensive alliance if for all s € S it holds that S forms a majority in the
neighborhood of s, that is, |[Ng[s] NS] > |Ng[s] \ S|. The problem DEFENSIVE
ALLIANCE, where given an undirected graph GG and an integer k, the question
is whether G contains a defensive alliance of size at most k, is NP-complete
and fixed-parameter tractable when parameterized by the solution size k [Ferl?7,
FRO7|. Defensive alliances have the property that if S is a defensive alliance,
then each S’ C S forming a maximally connected subgraph is a defensive
alliance. Hence, the problem variant MCA-DEFENSIVE ALLIANCE is a natural
generalization of DEFENSIVE ALLIANCE (for the generalization, set D = (}). Via
small modifications, one can prove that MCA-DEFENSIVE ALLIANCE remains
fixed-parameter tractable when parameterized by the solution size k. As a result,
MCA-DEFENSIVE ALLIANCE is contained in NP, and hence by Lemma 4.21 we
obtain the following.

Proposition 4.22. MCA-DEFENSIVE ALLIANCE parameterized by k is dimin-
ishable.

Another application of Lemma 4.21 is II being a vertex cover. We point
out that the classic VERTEX COVER problem admits a quadratic kernel when
parameterized by the solution size k [BG93, DF99]. Note that MCA-VERTEX
COVER remains trivially NP-complete and fixed-parameter tractable when
parameterized by the solution size k. However, by Lemma 4.21 and Theorem 4.2,
its kernelizability changes due to the following.

Proposition 4.23. MCA-VERTEX COVER parameterized by k is diminishable.

86

4.4. Concluding Remarks

4.4. Concluding Remarks

Based on results of Chen et al. [CFM11], we proved their basic ideas to be
extendable to a larger class of problems than they dealt with. We showed that
for several natural problems a strict polynomial kernel is as likely as P = NP.
Since basically all observed (natural and practically relevant) polynomial kernels
are strict, this reveals that the existence of valuable kernels may be tighter
connected to the P vs. NP problem than previously expected. As a remark,
Fernau et al. [Fer+18, Proposition 7| proved an adaption of the diminisher
framework for excluding non-uniform strict polynomial kernels assuming NP ¢
P /poty, where NP C P/, implies that the polynomial hierarchy collapses to
its second level (see Lemma 1.7). This indicates that the framework adapts to
notions of kernelizations where different running times are required.

The diminisher framework leaves several challenges for future work. Are
there natural problems where the presented framework is able to refute strict
polynomial kernels while the (cross-)composition framework is not? This possibly
also ties in with the question whether there are “natural” parameterized problems
that admit a polynomial kernel but no strict polynomial kernel.?

We finally list some concrete open problems. We proved TERMINAL STEINER
TREE (TST) to be diminishable. A kind of “dual” problem to TST is the
INTERNAL STEINER TREE problem [Hua+ 13| (where the terminals are not
allowed to be leaves, see Appendix A).

Open Problem 4. Is INTERNAL STEINER TREE parameterized by k + |T|
diminishable?

We proved that MULTICOLORED PATH parameterized by the solution size k is
diminishable. For graph problems, a vertex-coloring seems to help to construct
diminishers. The diminishability of the uncolored version of the problem, and
also of its directed variant, remains open.

Open Problem 5. Is LONGEST PATH parameterized by the solution size k
diminishable?

Finally, we ask the following.

Open Problem 6. Is CONNECTED VERTEX COVER parameterized by k or
HiTrTING SET parameterized by n diminishable?

2Note that Chen et al. [CFM11, Proposition 3.3] presented an artificial parameterized
problem admitting a polynomial kernel but no strict polynomial kernel.

87

4. Diminishers and Diminishable Problems

Whether one can exclude some relaxation of strict (polynomial) kernelization
using a strengthened form of diminishers is addressed in the next Chapter 5.

88

CHAPTER 5 .

STRONG DIMINISHER: LIMITS AND
APPLICATIONS INSIDE P

In this chapter, we develop strong diminishers in order to exclude less strict
kernelizations. We prove that several problems admit no strong diminishers
unless the Exponential Time Hypothesis breaks. However, we prove that strong
diminishers can be used to obtain kernelization lower bounds for polynomial-time
solvable problems.

5.1. Introduction

The diminisher framework (see preceding Chapter 4) applies to a wider range of
parameterized problems than previously known. That is, several parameterized
problems admit no strict polynomial kernels unless P = NP. In this chapter,
we study two adaptions of the diminisher framework.

Firstly, observe that under the weak assumption of P # NP, the diminisher
framework only excludes polynomial kernelization where the parameter value
is allowed to only increase by some constant addend. Hence, we ask for the
following first adaption:

(1) Can we adapt the diminisher framework to exclude “less” strict kernels
(which we will call semi-strict kernels), where we allow the parameter
value to increase by only a constant factor, assuming P # NP?

This chapter is based on (parts of) Diminishable Parameterized Problems and Strict Poly-

nomial Kernelization by Henning Fernau, Till Fluschnik, Danny Hermelin, Andreas Krebs,
Hendrik Molter, and Rolf Niedermeier (Computability [Fer+20]) and Kernelization Lower
Bounds for Finding Constant-Size Subgraphs by Till Fluschnik, George B. Mertzios, and
André Nichterlein (Computability in Europe (CiE’18) [FMN18]).

5. Strong Diminisher: Limits and Applications inside P

Secondly, the idea behind the diminisher framework to work is that a dimin-
isher and a strict polynomial kernelization for a parameterized problem together
form a polynomial-time algorithm deciding every input instance of the problem.
Indeed, if the running times of the diminisher and of the kernelization are known,
then one can derive the running time of the algorithm. Hence, intuitively, if a
problem presumably admits no polynomial-time algorithm for some degree of the
polynomial, yet admits a “fast” diminisher, then the problem also presumably
admits no fast and small kernelization. This observation leads us to problems
that are solvable in polynomial time, where conditional lower bounds on the
running times, relying on popular conjectures like the SETH, the 3SUM-, or
the APSP-conjecture, form an active research field (see, e.g, [AGV15, AV14,
AVW16, Bril4]). Consequently, we ask for the following second adaption:

(2) Can we adapt the diminisher framework to prove conditional kernelization
lower bounds for parameterized, polynomial-time solvable problems?

Although studied mostly for NP-hard problems, it is natural to apply kerneliza-
tion also to polynomial-time solvable problems as done e.g. for finding maximum
matchings [MNN17], and hence is part of the field “FPT in P” [GMN17] dealing
with parameterized algorithms and complexity for problems in P (see also, e.g.,
[AVW16, Flu+17b, Fom+17b, Fom+18]). It is thus also important to know the
limits of kernelization for problems in P.

As every decision problem in P admits a kernelization which simply solves
the input instance and produces a kernel of size O(1) (encoding the yes/no
answer), it is crucial to investigate the trade-off between (i) the size of the
kernel and (ii) the running time of the kernelization algorithm. The following
notion captures this trade-off: An (a,b)-kernelization for a parameterized
problem L is an algorithm that, given any instance (z, k) € ¥* x N, computes
in O(a(]z|)) time an instance (a/, k') such that (i) (z,k) € L < (a/,k') € L
and (ii) |2'| + k' € O(b(k)). In fact, in this chapter we will study proper
(a, b)-kernelization, that is, where the parameter value is not allowed to increase.

Our Contributions. We adapt the diminisher framework (see Chapter 4) for
semi-strict kernelization (Theorem 5.1). Crucial in the adaption is our notion
of strong diminishers (Definition 5.2): diminishers that decrease the parameter
value by some constant factor. On the one hand, we prove two parameterized
problems to be strongly diminishable and hence exclude semi-strict polynomial
kernelization (Theorem 5.2). On the other hand, we prove several parameterized

90

5.1. Introduction

Table 5.1.: Overview of our results. Here, k is interchangeably the order of the largest
connected component, the degeneracy, or the maximum degree.

NEGATIVE WEIGHT TRIANGLE TRIANGLE COLLECTION (TC)

(NWT)
lower No proper (n?®, k%)-kernelization with o, 3 > 1
bounds and « - 8 < 3, assuming;:
(Thm. 5.11) . the SETH, 3SUM-, or
the APSP-conjecture to hold. APSP-conjecture to hold.
kernel Proper (n(3+2)/(1+e) k14 kernelization for every € > 0,
(Thm. 5.26) e.g., proper (n®/3, k3)-kernelization.

problems to admit no strong diminisher unless the Fxponential Time Hypothesis
(ETH) (see Hypothesis 1.10) breaks (Theorem 5.5), and thus answering our first
question (1) in some negative.

We further adapt the diminisher and strong diminisher framework for proper
(a, b)-kernelization of polynomial-time solvable problems. Our results concern
the H-SUBGRAPH ISOMORPHISM (H-SI) problem, where, given an undirected
graph G = (V| E), the question is whether G contains H as a subgraph, for
constant-sized connected graphs H. As a running example, we focus on the
fundamental case where H is a triangle. We present diminishers (along with
conditional kernelization lower bounds) for the following weighted and colored
variants of the problem (our results are summarized in Table 5.1):

NEGATIVE WEIGHT TRIANGLE (NWT)
Input: An undirected graph G with edge weights w: E(G) — Z.
Question: Is there a triangle 7" in G with } g w(e) < 07

TRIANGLE COLLECTION (TC)

Input: An undirected graph G with surjective coloring col : V(G) —
{1,..., [}

Question: Does there for all color-triples C' € ({1,.3.,]“ }) exist a triangle with
vertex set T' = {xz,vy, z} in G such that col(T) = C?

We assume the edge weights for NWT and the values of the coloring for TC to
be upper-bounded polynomially in the number of vertices of the input graph
(and hence of logarithmic encoding length). We consider three parameters

91

5. Strong Diminisher: Limits and Applications inside P

for NWT and TC (in decreasing order): (i) order of the largest connected
component, (ii) maximum degree, and (iii) degeneracy. We prove that both
NWT and TC admit a strong linear-time diminisher for each of these three
parameters. Together with the conditional hardness of NWT and TC (see
below), we then obtain lower bounds on strict kernelization. Thus, we answer
our second question (2) in some affirmative.

NWT and TC are conditionally hard in the following sense: If NWT admits a
truly subcubic algorithm, that is, with running time O(n®~¢) for some ¢ > 0, then
ALL PAIRS SHORTEST PATHS (APSP) also admits a truly subcubic algorithm,
breaking the APSP-conjecture [VW18] (see Conjecture 1.12). A truly subcubic
algorithm for TC breaks the SETH (see Hypothesis 1.10), the 3SUM-conjecture
(see Conjecture 1.13), and the APSP-conjecture [AVY18].

Finally, complementing our lower bounds, we prove some proper (Turing)
kernelization upper bounds (refer to Table 5.1).

5.2. Semi-Strict Kernels and Strong Diminishers

As strict kernels only allow an increase of the parameter value by an additive
constant (Definition 4.1), one may ask whether one can exclude less restrictive
versions of strict kernels for parameterized problems using the concept of
parameter diminishers. Targeting this question, in this section we study scenarios
with a multiplicative (instead of additive) parameter value increase by a constant.
That is, property (iii) in Definition 4.1 is replaced by k" < ¢-k, for some constant c.
We refer to this as semi-strict kernels.

Definition 5.1 (Semi-strict kernel). A semi-strict kernelization for a parame-
terized problem L is a polynomial-time algorithm that on input instance (z, k) €
¥* x N outputs an instance (2', k') € ¥* x N, the semi-strict kernel, satisfying:
(i) (x,k) e L — (2/,K)eL,
(i) |2’| < f(k), for some function f, and
(iii) k¥’ < c -k, for some constant c.
We say that L admits a semi-strict polynomial kernelization if f(k) € kO,

On the one hand, every strict kernelization with constant ¢ is a semi-strict
kernelization with constant ¢ + 1. On the other hand, if a parameterized prob-
lem L admits a semi-strict kernel with constant ¢, then there is not necessarily
a constant ¢’ such that for every input instance (z, k) the obtained parameter
value Kk’ of the output instance (z/, k') is upper-bounded by k + ¢/. Hence, L

92

5.2. Semi-Strict Kernels and Strong Diminishers

does not necessarily admit a strict kernelization. In this sense, Definition 5.1
generalizes strict kernelizations.

To exclude semi-strict kernels of polynomial size under the assumption P #
NP, we prove an analogue of Theorem 4.2 for semi-strict kernelization. To this
end, we introduce a stronger version of our parameter diminisher: Formally, we
replace property (ii) in Definition 4.2 by k' < k/¢, for some constant ¢ > 1. We
refer to this as strong parameter diminishers.

Definition 5.2 (Strong parameter diminisher). A strong parameter diminisher
for a parameterized problem L is a polynomial-time algorithm that on input
instance (z,k) € ©* x N outputs an instance (2/, k") € 3* x N such that

(i) (z,k) e L < (2/,k') € L, and

(ii) k¥ < k/e, for some constant ¢ > 1.

We call a strong parameter diminisher also a strong diminisher for short, and a
parameterized problem admitting a strong diminisher to be strongly diminish-
able.

Remark 5.1. To simplify arguments in subsequent proofs, we often assume
without loss of generality that the constant of any strong diminisher is at least
two. Consider a strong parameter diminisher D with constant 1 < ¢ < 2. Let D’
be the repetition of D exactly [log,.(2)] times. Then D’ is a strong parameter
diminisher with constant ¢’ := ¢/'°8:()1 > 2,

Next, we show an analogue of Theorem 4.2 for semi-strict polynomial kernel-
izations and strong parameter diminishers.

Theorem 5.1. Let L be a parameterized problem such that its unparameterized
version is NP-hard and {(x,k) € L | k < ¢} € P, for some constant ¢ > 1. If L is
strongly diminishable and admits a semi-strict polynomial kernel, then P = NP.

Proof. Let L be a parameterized problem whose unparameterized version is
NP-hard and it holds that {(x,k) € L | k < ¢} € P, for a constant ¢ > 1.
Let D be a strong parameter diminisher for L with constant c¢; > 2 and let
A be a semi-strict polynomial kernelization for L with constant ¢, > 1. We
show that we can solve any instance (z, k) of L, with k being the parameter,
in polynomial time. Let (z, k) be an instance of L. Apply D on (x, k) exactly
cr = [log, (cq + c4)] times to obtain an equivalent instance D" (z, k) = (2, k')
with k" < k/c; < k/(cqa+cq). Observe that the size of (', k') is still polynomial
in the size of (x,k) as ¢, is a constant. Next, apply A on (2, k") to obtain an
equivalent instance (z”,k") with |2”| + k" < k’cl, d>1,and k" < c,-k' <

93

5. Strong Diminisher: Limits and Applications inside P

¢q-k/(co+cq) < k. Repeating the described procedure at most & times produces
an instance (y, k,) of L with k, < ¢, solvable in polynomial time. O

By Theorem 5.1, if we can give a strong diminisher for a parameterized
problem, then it admits no semi-strict polynomial kernel, unless P = NP.

5.2.1. Two Strongly Diminishable Problems

We next study the SET COVER and the HITTING SET problem (see Appendix A
for the problem definitions). We show that SET COVER parameterized by
klog(n), where n denotes the size of the universe, and HITTING SET parameter-
ized by klog(m), where m denotes the size of the set of subsets of the universe,
are strongly diminishable. Hence, due to Theorem 5.1, both admit no semi-strict
polynomial kernelizations unless P = NP.

Theorem 5.2. Unless P = NP, none of the following admits a semi-strict
polynomial kernel:

(i) SET COVER parameterized by klog(n);

(#) HITTING SET parameterized by klog(m).

Note that Hermelin et al. [Her+15] studied these two parameterized problems
in the context of lower bounds regarding Turing kernelization.

Proposition 5.3. SET COVER parameterized by klog(n) is strongly diminish-
able.

Proof. Let (U, F = {F,...,Fn}, k) be an instance of SET COVER and assume
that & > 2 and n = |U| > 5. If k is odd, then we add a unique element to U, a
unique set containing only this element to F, and we set k := k 4+ 1. Hence, we
assume that k is even. The following procedure is a strong parameter diminisher
for the problem parameterized by klog(n).

Let U’ = U and for all F;, Fj create Iy, , = F{UF;. Let 7' = {FY, ., | i # j}
and set k' = k/2. This yields in polynomial time the instance (U’, F', k')
of SET COVER. In the following we show that (U, F, k) is a yes-instance if and
only if (U’, F', k') is a yes-instance. Furthermore, we argue that k’'log(n’) <
(klog(n))/c for some constant ¢ > 1, where n’ = |U’|.

(=) Assume that there is a set cover C = {C1,Cy,...,Cy} C F for U of
size k. Let C' = {C1 U Cy,C3UCy,...,Cr_1 UCk}. Then clearly C' C F' is a
set cover for U’ of size k/2.

94

5.2. Semi-Strict Kernels and Strong Diminishers

(«) Assume that there is a set cover C' = {C1,C3, ..., C})} for U’ of size k/2,
where C = C; U Cy for every i € {1,...,k/2}. Let C = {C;,Cy | 1 <i < k/2}.
Then clearly C C F is a set cover for U of size at most k.

Furthermore, we have that m’ := |F/| = (). It follows that

k+1 k>2 3k
K log(n’) < ;_ log(n+1) < 3Zlog(nle)§§klog((n+1)‘/§/2)
>5
= ?kleg(n)

Note that in the first inequality, we consider the cases in which the instance was
modified such that k is even. It follows that for k > 2 the parameter decreases
by at least a factor of v/3/2 and for k = 2 the parameter diminisher produces
either a trivial yes- or a trivial no-instance (each with a constant number of
vertices). O

A strong parameter diminisher for HITTING SET parameterized by klog(m)
can be constructed in a similar way as we did for SET COVER. However, since
HirTiNG SET and SET COVER are dual in the sense of parameter-constant-
increasing reductions (Definition 4.3), we get the following.

Proposition 5.4. HITTING SET parameterized by klog(m) is strongly dimin-
tshable.

5.2.2. Problems without Strong Diminishers

In Chapter 4, we proved several problems to be diminishable and hence to
exclude strict polynomial kernelization assuming P # NP. In order to exclude
semi-strict polynomial kernels, one may wonder whether these problems are also
strongly diminishable. In the following, we prove that the latter is presumably
not the case, that is, assuming the ETH to hold, there are natural diminishable
problems that admit no strong parameter diminishers. This proves the limits of
strong diminishers.

Theorem 5.5. Assuming the ETH to hold, none of the following is strongly
diminishable:

(i) CNF-SAT parameterized by number of variables;

(ii) ROOTED PATH parameterized by the path length;
(iii) CLIQUE parameterized by p € {A,tw,bw}.

95

5. Strong Diminisher: Limits and Applications inside P

The following lemma is the key tool for excluding strong parameter diminishers
assuming the ETH to hold. Roughly, it states that a strong parameter diminisher
can improve the running time of existing algorithms.

Lemma 5.6. Let L be a parameterized problem. If there is an algorithm
that solves any instance (z,k) of L in 200%) . |2|9M) time and L is strongly
diminishable, then there is an algorithm that solves (z,k) of L in 20(k/f(w.k)) .
|x|f($vk)o(1) + Ty (z, k) time, where f is a Ty-time-computable function mapping
instances (x,k) of L to the natural numbers with the following property: For
every constant ¢ there is a natural number n such that for all instances (x, k)
of L we have that |x| > n implies that f(x, k) > c.

Proof. Let L be a parameterized problem. Let A be an algorithm that solves
any instance (z,k) of L in 2¢°% . |z|°2 time with constants c;,co > 0 and let D
be a strong parameter diminisher for L with constant d > 2. Recall that by
definition of a strong parameter diminisher, the size of the instance grows at
most polynomially each time D is applied. Let b > 1 be a constant such that
the size of the instance obtained by applying D once to (x, k) is upper-bounded
by |z|’. We set ¢ :== min{2,b}. Let f be a Ty-time-computable function such
that f(z,k) > c for all instances (z, k) of L with |z| > ng for some ng € N.

Let (2/, k") be the instance of L obtained by applying D for [log,.(f(z,k))]
times, where f(x,k) is computed in Ty(z,k) time, to instance (z,k) of L
with |z| > ng. We obtain

2’| < |x|bnog€<f(m’k))1 < |x\b210gc('f(x’k)) < |z f@R)™ for some constant ¢z > 1.

Furthermore, the parameter decreases by the constant factor d each time the
diminisher is applied, hence

k= k/dflogc(f(aka)ﬂ < k/dlogc(f(rvk)) < k/legd(f(mvk)) < k/f(x,k).
Finally, applying A on (z’, k') solves (2/, k') in time
ger-k |2/|° < ge1k/f(x,k) | |x|52.f(z,k)03 e 20K/ f(zk)) |x‘f(r,k)o(1). 0

We apply Lemma 5.6 to exclude the existence of strong parameter diminishers
assuming the ETH to hold as follows. Consider a problem where we know a
running time lower bound based on the ETH and we also know an algorithm
that matches this lower bound. Then, due to Lemma 5.6, for many problems

96

5.2. Semi-Strict Kernels and Strong Diminishers

a strong parameter diminisher and a suitable choice for the function f would
imply the existence of an algorithm whose running time breaks the lower bound.

Chen et al. [CFM11] showed that CNF-SAT parameterized by the number n
of variables and ROOTED PATH parameterized by k are diminishable. We show
that we cannot obtain strong diminishability for these problems unless the
ETH breaks. Recall CNF-SAT parameterized by n, the parameterized problem
of deciding whether a given Boolean formula with n variables in conjunctive
normal form is satisfiable.

Proposition 5.7. Assuming the ETH to hold, CNF-SAT parameterized by n
s not strongly diminishable.

Proof. CNF-SAT can be solved in 2" (n +m)?®") time via a brute-force algo-
rithm A, but admits no 2°") time algorithm assuming the ETH to hold. By
Lemma 5.6 with algorithm A and f(¢) = log(n), CNF-SAT parameterized by n
admits no strong parameter diminisher unless the ETH breaks. O

Proposition 5.8. Assuming the ETH to hold, ROOTED PATH parameterized
by k is not strongly diminishable.

Proof. HAMILTONIAN PATH on an n-vertex graph reduces trivially to ROOTED
PATH by adding a universal vertex and taking it as the root and setting the
length of the path &k = n. Assuming the ETH to hold, as HAMILTONIAN PATH
admits no 2°(") time algorithm [LMS11], so does ROOTED PATH. However, there
is an algorithm solving ROOTED PATH in 20F)n°0) time [AYZ95]. Let (G =
(V, E), k) be an instance of ROOTED PATH and set f((G, k)) := log(|V]) = log(n).
By Lemma 5.6 we get an algorithm for ROOTED PATH running in 20(k/leg(r)) .
|G|(1°g(”))o(l) € 2°(") time. Hence, ROOTED PATH parameterized by k admits
no strong parameter diminisher unless the ETH breaks. O

Next, we show that CLIQUE for most parameterizations we considered in Chap-
ter 4, admits no strong parameter diminisher unless the ETH breaks.

Proposition 5.9. Assuming the ETH to hold, CLIQUE parameterized by p €
{A,tw,bw} is not strongly diminishable.

Proof. Let p € {A,tw,bw}. CLIQUE can be solved in 27 - n®() time via a
dynamic programming (brute-force) algorithm A, but admits no 2°*) time
algorithm unless the ETH breaks [LMS11]. Note that p € O(n). By Lemma 5.6
with algorithm A and f(G, k) =log(|V]) = log(n), CLIQUE parameterized by p
admits no strong parameter diminisher unless the ETH breaks. O

97

5. Strong Diminisher: Limits and Applications inside P

Note that we do not obtain this result for CLIQUE parameterized by the
cutwidth cw, since cw(G) € O(n?), where n is the number of vertices of G.
Hence, we leave open whether CLIQUE parameterized by cw admits a strong
diminisher.

Finally, note that it is not hard to observe that if we can exclude a strong
parameter diminisher for a problem L parameterized by k assuming the ETH to
hold, then we can exclude a parameter diminisher for L parameterized by log(k)
assuming the ETH to hold. Thus, it would be interesting to know whether
there is a way to exclude the existence of parameter diminishers avoiding this
exponential gap between the parameterizations.

5.3. Strong Diminisher and Kernelization in P

In contrast to NP-hard problems, only little is known about kernelization lower
bounds for problems in P. To the best of our knowledge all known kernelization
lower bounds follow trivially from the corresponding lower bounds of the running
time: For instance, in the next Chapter 6, we prove that assuming the SETH to
hold, the hyperbolicity of a graph cannot be computed in 2°(%) . n2=¢ time for
any € > 0, where k denotes the vertex cover number. Abboud et al. [AVW16]
proved a similar result for computing the diameter of a graph: assuming the
SETH to hold, the diameter of a graph cannot be computed in 2°0) . p2—¢
time for any ¢ > 0, where k denotes the treewidth of the graph. It follows that
both problems admit no (n?~¢,2°(%))-kernelization—a kernel with 2°(*) vertices
computable in O(n?~¢) time—since such a kernelization yields an algorithm
running in O(2°%) 4+ n?=¢) time.

Next we initiate a systematic approach to derive kernelization lower bounds
for problems in P regarding “fast and small” proper kernelization.

Definition 5.3 (Proper (a, b)-kernelization). A proper (a, b)-kernelization for a
parameterized problem L is an algorithm that given any instance (z, k) € £* xN
computes in O(a(|z])) time an instance (', k') such that

(i) (x,k) e L < (o', k) €L,

(ii) |='| + & € O(b(k)), and

(iil) k' < k.

Recall that for problems in P, both the size of the kernel and the kernelization
running time are important.

98

5.3. Strong Diminisher and Kernelization in P

Figure 5.1.: An example undirected graph with edge weights. The highlighted edges
form a triangle of negative (total) weight.

5.3.1. Adapting the Framework

To adapt the framework of (strong) diminishers to exclude proper polynomial
kernelization, we need to adapt the notion of (strong) diminishers.

Definition 5.4 (a-diminisher). An a-diminisher for a parameterized problem L
is an algorithm that given any instance (z,k) € ¥* x N in O(a(|x|)) time either
decides whether (x, k) € L or computes an instance (z’, k') such that

(i) (z,k)e L < («/,K') € L, and

(i) &' <k.
A strong a-diminisher for L is an a-diminisher for L with ¥ < k/c for some
constant ¢ > 1.

We use the problem NEGATIVE WEIGHT TRIANGLE (NWT) (see Figure 5.1 for
an illustrative example), parameterized by the order k of the largest component,
as a running example for the adapted framework of using a-diminishers to
exclude proper kernels of polynomial size. Recall that the unparameterized
version of this problem is as hard as APSP [VW18]. We wonder whether there
is a proper (n + m, k)-kernelization for NWT parameterized by the size k of the
largest component. Given an input (G = (V, E),w, k) of NWT such a proper
kernelization produces in O(n + m) time an equivalent instance (G',w’,k’)
with |G'| + |w'| + k¥ € O(k) and k¥’ < k. We will prove that such a proper
kernelization would yield a truly subcubic algorithm for APSP.

Now assume that NWT parameterized by k admits a proper (n + m,k)-
kernelization and a strong (n + m)-diminisher. The basic idea of the whole
approach is the same as before: alternately apply the diminisher and the kernel.
While the diminisher will halve the size of the connected components at the cost
of increasing the size of the instance, the proper kernel bounds the size of the
instance in O(k) without increasing k. Thus, after log(k) rounds of applying a
strong diminisher and a proper kernel we arrive at an instance Z with constant-

99

5. Strong Diminisher: Limits and Applications inside P

size connected components. Then, we can use even a simple brute-force algorithm
to solve each connected component in O(1) time which gives an O(n + m)-time
algorithm to solve the instance Z. Altogether, with log(k) < log(n) rounds,
each requiring O(n +m) time, we arrive at an O((n+m)log(n))-time algorithm
for NWT. This implies a truly subcubic algorithm for APSP, thus contradicting
the APSP-conjecture [VW18]. In general, we have the following.

Theorem 5.10. Let L be a parameterized problem with parameter k such that
each instance with parameter k < c for some constant ¢ > 0 is a trivial instance
of L. If L with parameter k admits a proper (a,b)-kernelization and
(i) an a-diminisher, then any instance (x, k) is solvable in O(k - (a(a(b(k))) +
a(|z])) time;
(ii) a strong a-diminisher, then any instance (x,k) is solvable in O(log(k) -

(a(a(b(k))) + a(|x])) time.

Proof. Let (z,k) be an instance of L with parameter k. Let K be a proper
(a,b)-kernelization and D be an a-diminisher. Apply K on (z,k) to obtain
an instance (2/,k’) with |2/| + ¥ < b(k) and &/ < k. This step requires
O(a(]z])) time. Next, until ¥’ < ¢, apply K o D iteratively. Each iteration
requires at most O(a(b(k))) time for the a-diminisher, and since the size of the
resulting instance is upper-bounded by O(«(b(k))), the subsequent kernelization
requires O(a(a(b(k)))) time. Since in each iteration, the value of k' decreases
by one, there are at most k iterations. (If D is a strong a-diminisher, then
the number of rounds is log.(k) € O(log(k)).) Finally, if ¥’ < ¢, then the
algorithm decides the obtained instance in constant time. Hence, the algorithm
requires O(k - a(a(b(k))) + a(]z|)) time to decide (z,k). (If D is a strong a-
diminisher, then the algorithm requires O(log(k) - a(a(b(k))) + a(|z])) time to
decide (z,k).) O

Again, as for the (strong) diminisher framework in the context of NP-hard
problems, a-diminishability does not necessarily propagate through the parame-
ter hierarchy.

Reductions for Transferring Kernels. There are two issues when using
the strategy of polynomial parameter transformations to transfer results of
Theorem 5.10 along polynomial-time solvable problems: First, we need to require
the transformation to be computable “fast” enough and that the parameter does
not increase (k' < k). Second, in order to transfer a proper kernel we need to
show a reverse transformation from L’ to L which again is computable “quickly”

100

5.3. Strong Diminisher and Kernelization in P

enough and does not increase the parameter. Hence, we essentially need to
show that the two problems L and L’ are equivalent under these restrictive
transformations.

5.3.2. Applications of Strong Diminishers Inside P

In this section, we present (strong) diminishers for H-SUBGRAPH ISOMORPHISM
(H-SI) for connected H with respect to the structural parameters (i) order ¢ of
the largest connected component, (i) maximum degree A, and (iii) degeneracy d.
Observe that d < A < £ in every graph. These (strong) diminishers lead to our
following main result.

Theorem 5.11. If NWT (TC) parameterized by k being the
(i) order & of the largest connected component,
(i) maximum degree A, or
(#ii) degeneracy d
admits a proper (n®, k®)-kernel for constants a, > 1 with a - 8 < 3, then the
APSP-conjecture (the SETH, the 3SUM-, and the APSP-conjecture) breaks.

Parameter Order of the Largest Connected Component. In the follow-
ing, we prove a linear-time strong diminisher regarding the parameter order of
the largest connected component for problems of finding constant-size subgraphs
(with some specific property).

Proposition 5.12. NWT and TC parameterized by the order £ of the largest
connected component admit a strong (n + m)-diminisher.

The idea behind our diminisher is depicted as follows: for each connected
component, partition the connected component into small parts and then take
the union of not too many parts to construct new (connected) components
(see Figure 5.2 for an illustration of the idea with H being a triangle). Formally,
we employ the following.

Construction 5.13. Let H be an arbitrary but fixed connected constant-size
graph of order ¢ > 1. Let G = (V, E) be a graph with the largest connected
component being of order £. First, compute in O(n + m) time the connected
components G1, ..., G, of G. Then, construct a graph G’ as follows.

Let G’ be initially the empty graph. If £ < 4c, then set G’ := G. Otherwise,
if £ > 4c, then construct G’ as follows. For each connected component G; =

101

5. Strong Diminisher: Limits and Applications inside P

G[VIuVv3uVv?d
G Vl Vl
V2 T T V6
Vi / A oo
2 v V3y V3y zV°® V3y zV°®
T & %
1 1
V3 Yy 7/ V5 |4 v
o7 V2 eu Q\.x Ve
°
z V5 z V5
V4 V4 V4

Figure 5.2.: Schematic illustration of the idea behind our diminisher for the parameter
order of the largest connected component (see Construction 5.13). On the left-hand side,
a connected graph G is depicted whose vertex set is partitioned into six parts V,..., V5
and that contains a triangle on the vertices z € V!, y € V3 and z € V°. Right
of G, the induced subgraphs G[V*' U V2 U V3] for some {a1,as2,as} € ({1"5"6}) are
depicted.

(Vi, E;), do the following. If the connected component G; = (V;, E;) is of order at
most £/2, then add G; to G'. Otherwise, if n; := |V;| > £/2, then we partition V;
as follows. Without loss of generality let V; be enumerated as V; = {v},... vl
For every p € {1,...,4c}, define

VP = {v] € V; | gmod 4c = p — 1}.

This defines the partition V; = V! @ --- & V¢ Then, for each {ay,...,a.} €
({1";’40}), add the graph G[V,"* U...UV;*] to G'. This completes the construc-
tion. A

For the following two lemmas, let H be an arbitrary but fixed connected
constant-size graph with ¢ > 1 vertices and let G = (V, E) be a graph with the
largest connected component having order .

Lemma 5.14. Construction 5.13 outputs in O(n +m) time a graph G' with
connected components of order at most max{§/2,4c}.

Proof. If £ > 4c, then note that [n;/(4c)| < |VP| < [n;/(4e)] for all p €
{1,...,4c}. Moreover, |V U...UV*| <c-[n;/(4e)] < E/4+c < &/2. The

102

5.3. Strong Diminisher and Kernelization in P

size of G' is O((*°)(n +m)) = O(n +m) as c is constant. It is not difficult to
see that G’ can be constructed in O(n + m) time. O

Lemma 5.15. Graph G contains a subgraph F = (Vg, Er) isomorphic to H if
and only if G', returned by Construction 5.13, contains a subgraph F' = (Vi., E},)
isomorphic to H, where Vi, and EY are copies of Vg and Er in G', respectively.

Proof. Clearly, as G’ is a disjoint collection of induced subgraphs of G and H
is connected, if G’ contains a subgraph isomorphic to H, then also G does.
Let G contain a subgraph F isomorphic to H. If £ < 4¢, then G’ = G
contains F'. Otherwise, if £ > 4c, then consider the following two cases. If F' is
contained in a connected component in G of size at most £/2, then F' is also
contained in G’. Otherwise, F' is contained in a connected component G; of size
larger than £/2. Let V(F) C V,"* U... UV for some {aq,...,a.} C ({1"'6"46})
(recall that F' contains ¢ vertices). Then F' is a subgraph of G[V/** U...UV%] C
G'. O

With H being a triangle (¢ = 3) while asking for negative weight, due
to Lemmas 5.14 and 5.15, we get a strong (n + m)-diminisher for NWT. When
asking for a specific vertex-coloring, this also yields a strong (n + m)-diminisher
for TC.

Proof of Proposition 5.12. Given an edge-weighted graph G = (V, E,w), we
apply Construction 5.13 to G with H being a triangle (note that ¢ = 3) to
obtain G’. We introduce the edge-weights w’ to G’ by assigning for each
edge e € E its weight to all of its copies ¢’ € F(G’). By Lemma 5.14, G’ is
constructed in linear time. By Lemma 5.15 and the definition of w’, G’ contains
a negative weight triangle if and only if G does. Hence, this procedure is a
strong linear-time diminisher with respect to the order £ of the largest connected
component, as (by Lemma 5.14) either £’ < £/2, or ¢’ < 4¢ (implying G’ = G),
where in the latter case our strong diminisher decides whether G’ contains a
triangle of negative weight in O(n) time.

For TC, the proof works analogously except that for each vertex v € V|, we
color its copies in G’ with the color of v. O

There is a straight-forward O(£? - n)-time algorithm for NWT and TC: Check
for each vertex all pairs of other vertices in the same connected component.
However, assuming the APSP-conjecture to hold (and the SETH to hold for
TC) there are no O(n®~¢)-time algorithms for any ¢ > 0 [AVY18, VW18].

103

5. Strong Diminisher: Limits and Applications inside P

Combining this with our diminisher in Proposition 5.12 we can exclude certain
proper kernels as shown next.

Proof of Theorem 5.11(i). By Proposition 5.12, we know that NWT parame-
terized by £ admits a strong (n 4+ m)-diminisher. Suppose that NWT admits a
proper (n®,&%)-kernel for a > 1,3 > 1 with o - 8 = 3 — &g, €0 > 0. It follows
by Theorem 5.10 that NWT is solvable in t(n, &) € O(£5*log(€) + n®) time.
Observe that log(§) € O(£°t) for 0 < &1 < go. Together with £ < n and
a-fB=3—¢e we get t(n,&) € O(n3°) with e = g9 — &1 > 0. Hence, the
APSP-conjecture breaks [VW18].

The proof for TC works analogously. O

Parameter Maximum Degree. The following is what we prove next.

Proposition 5.16. NWT and TC parameterized by mazimum degree A admit
a strong (n + m)-diminisher.

The diminisher described in Construction 5.13 does not necessarily decrease
the maximum degree of the graph. We thus adapt the diminisher to partition
the edges of the given graph (using a (not necessarily proper) edge-coloring)
instead of its vertices. Furthermore, if H is of order ¢, then H can have up
to (;) < ¢? edges. Thus, our diminisher considers all possibilities to choose ¢?
(instead of ¢) parts of the partition. For the partitioning step, we need the

following.

Lemma 5.17. Let G = (V, E) be a graph with mazimum degree A and let b € N.
One can compute a (not necessarily proper) edge-coloring col: E — N with less
than 2b colors

e in O(b(n+ m)) time such that

e cach vertex is incident to at most [A/b] edges of the same color.

Proof. The (not necessarily proper) edge-coloring can be computed in O(b(n +
m)) time with a simple generalization of a folklore greedy algorithm to compute
a proper edge-coloring (b = A): Consider the edges one by one and assign each
edge the first available color. Observe that at any considered edge each of the
two endpoints can have at most b — 1 unavailable colors, that is, colors that
are used on [A/b] other edges incident to the respective vertex. Hence, the
greedy algorithm uses at most 2b — 1 colors. The algorithm stores at every
vertex an array of length b — 1 to keep track of the number of edges with the

104

5.3. Strong Diminisher and Kernelization in P

respective colors. Thus, the algorithm can for each edge simply try all colors at
each edge in O(b) time. Altogether, this gives O(b(n + m)) time to compute
the edge-coloring. O

Construction 5.18. Let H be an arbitrary but fixed connected constant-
size graph of order ¢ > 1. Let G = (V,E) be a graph with maximum de-
gree A. First, employ Lemma 5.17 to compute a (not necessarily proper)
edge-coloring col: E — N with 4¢? < f < 8¢? many colors (without loss of
generality we assume S(col) = {1,..., f}) such that each vertex is incident to
at most [A/(4c?)] edges of the same color.

Now, construct a graph G’ as follows (see Figure 5.3 for an illustration).
Let G’ be initially the empty graph. If A < 4¢?, then set G/ := G. Otherwise,
if A > 4c?, then construct G’ as follows. We first partition E: Let EP be the
edges of color p for every p € {1,..., f}. Clearly, E = E'W...w E/. Then, for
each {a1,...,a.2} € ({1"6‘2"”), add the graph (V, E** U...U E%?) to G'. This
completes the construction. A

For the following two lemmas, let H be an arbitrary but fixed connected
constant-size graph with ¢ > 1 vertices and let G = (V, E) be a graph with
maximum degree A.

Lemma 5.19. Construction 5.18 outputs a graph G’ in O(n + m) time with
mazimum degree A(G') < max{A/2,4c*}.

Proof. If A > 4c?, then each vertex is incident to at most [A/(4c?)] edges of EP
forall p € {1,..., f}. Thus, in (V, E“* U...U E®%?) the maximum degree is at
most ¢+ [A/(4c?)] < A/4+c? < A/2. Using Lemma 5.17 with b = 4¢? € O(1),
it is not difficult to see that G’ is constructed in O(n 4+ m) time. O

Lemma 5.20. Graph G contains a subgraph F = (Vg, Er) isomorphic to H if
and only if G', returned by Construction 5.18, contains a subgraph F' = (Vi., E},)
isomorphic to H, where Vi, and EY are copies of Vg and EFr in G', respectively.

Proof. Clearly, as G’ is a disjoint collection of subgraphs of G and H is connected,
if G’ contains a subgraph isomorphic to H, then also G does. Let G contain a
subgraph F isomorphic to H. If A < 4c?, then G’ = G contains F. Otherwise,
if A > 4c?, then let E(F) C E“ U...UE%? for some {ai,...,a.:2} C ({1"5'2"”)

(recall that F' contains at most ¢? edges). Then F is a subgraph of (V, E% U
.. UE%) C G O

105

5. Strong Diminisher: Limits and Applications inside P

Figure 5.3.: Schematic illustration of the idea behind our diminisher for the parameter
maximum degree. Line patterns indicate edge colors (see Construction 5.18). On the
left-hand side, a graph G is depicted containing a triangle on three differently colored
edges. Right of GG, several subgraphs of G are depicted, where G followed by three
lines of pairwise different patterns indicates the subgraph of G obtained by removing
all edges with color different to each of the three colors corresponding to the line
patterns.

Proof of Proposition 5.16. Given an edge-weighted graph G = (V, E,w), we
apply Construction 5.18 to G with H being a triangle (note that ¢ = 3) to
obtain G’. We introduce the edge-weights w’ to G’ by assigning for each
edge e € E its weight to all of its copies ¢/ € E(G’). By Lemma 5.19, G’
is constructed in linear time. By Lemma 5.20 and the definition of w’, G’
contains a negative weight triangle if and only if G does. Hence, this procedure
is a strong linear-time diminisher with respect to the maximum degree, as (by
Lemma 5.19) either A(G’) < A/2, or A(G’) < 4c?, where in the latter case
our strong diminisher decides whether G’ contains a triangle of negative weight
in O(n) time.

For TC, the proof works analogously except that for each vertex v € V, we
color its copies in G’ with the color of v. O

The proof of Theorem 5.11(ii) finally works analogously to the proof of Theo-
rem 5.11(i).

106

5.3. Strong Diminisher and Kernelization in P

Parameter Degeneracy. For a graph G, the degeneracy d = dgn(G) of G
is the smallest number such that there is an ordering of the vertices with each
vertex v having at most d neighbors ordered after v. Such an ordering is called
degeneracy ordering, and can be computed in linear time [MB83|. For the
parameter degeneracy, the diminisher follows the same idea as the diminisher
for the parameter maximum degree (see Construction 5.18). The only difference
between the two diminishers is how the partition of the edge set is obtained.

Construction 5.21. Let H be an arbitrary but fixed constant-size graph of
order ¢ > 1. Let G = (V, E) be a graph with degeneracy d. First, compute a
degeneracy ordering o in O(n 4+ m) time. Construct a graph G’ as follows.
Let G’ be initially the empty graph. If d < 4c?, then set G’ := . Otherwise,
if d > 4¢?, then construct G’ as follows. First, for each vertex v € V, we
partition the edge set E, = {{v,w} € F | 0(v) < o(w)} going to the right of v
with respect to o into 4¢? parts. Let E, be enumerated as {e1,..., e|g,|}- For
each v, we define EP := {e; € E, | i mod 4c¢* = p— 1} for every p € {1,...,4c?}.
Clearly, E, = E} & --- W B}’ Next, we define E? = J, o, E? for every
p € {l,...,4c%}. Clearly, E = ¥, s> B” = W< pcye2 W,oep EF. Then, for

each {ay,...,a.2} € ({1";"24“2}), add the graph (V, Bt U...U E%?) to G’. This
completes the construction. A

Proposition 5.22. NWT and TC parameterized by degeneracy admit a strong
(n + m)-diminisher.

For the following two lemmas, let H be an arbitrary but fixed connected
constant-size graph of order ¢ > 1 and let G = (V, E) be a graph with degener-
acy d.

Lemma 5.23. Construction 5.21 outputs a graph G’ in O(n + m) time with
degeneracy at most max{d/2,4c?}.

Proof. If d > 4c?, then for each p € {1,...,4¢?}, the degeneracy of F :=
(V,EP) is at least |d/(4c?)] and at most [d/(4c?)]. To see this, consider F
with ordering o (computed in the construction) on its vertices V(F'). Then,
for each v € V(F), exactly ||E,|/(4c®)| < |EP| < [|E,|/(4c?)] vertices w
with o(w) > o(v) are incident with v in F. As |E,| < d, the claim follows.
Moreover, the degeneracy of (V, E® U...U E%2) is at most ¢ - [d/(4c?)] <
d/4+ c? < d/2. Tt is not difficult to see that G’ is constructed in O(n + m)
time. O

107

5. Strong Diminisher: Limits and Applications inside P

Lemma 5.24. Graph G contains a subgraph F = (Vg, Er) isomorphic to H if
and only if G', returned by Construction 5.21, contains a subgraph F' = (Vi., E},)
isomorphic to H, where Vi, and Ey are copies of Vi and Ep in G', respectively.

Proof. Clearly, as G’ is a disjoint collection of subgraphs of G, if G’ contains
a subgraph isomorphic to H, then also G does. Let G contain a subgraph F
isomorphic to H. If d < 4¢?, then G’ = G contains F. Otherwise, if d > 4c?,
then let E(F) C E“* U...U E% for some {aj,...,a:2} C ({17"0"2402}) (recall
that F contains at most ¢ edges). Then F is a subgraph of (V, E“U...UE%2) C
G'. O

Proof of Proposition 5.22. Given an edge-weighted graph G = (V, E,w), we
apply Construction 5.21 to G with H being a triangle (note that ¢ = 3) to
obtain G’. We introduce the edge-weights w’ to G’ by assigning for each
edge e € E its weight to all of its copies ¢’ € E(G’). By Lemma 5.23, G’ is
constructed in linear time. By Lemma 5.24 and the definition of w’, G’ contains
a negative weight triangle if and only if G does. Hence, this procedure is a
strong linear-time diminisher with respect to degeneracy, as (by Lemma 5.23)
either d’ < d/2, or d’ < 4c?, where in the latter case our strong diminisher
decides whether G’ contains a triangle of negative weight in O(n) time.

For TC, the proof works analogously except that for each vertex v € V|, we
color its copies in G’ with the color of v. O

The proof of Theorem 5.11(iii) finally works analogously to the proof of The-
orem 5.11(i).

5.3.3. (Turing) Kernelization Upper Bounds

We complement our results on kernelization lower bounds by showing straight-
forward (proper) kernelization results for H-SUBGRAPH ISOMORPHISM for con-
nected constant-size H to show the limits of any approach showing kernelization
lower bounds.

Turing Kernelization. For the parameters order of the largest connected
component and maximum degree, we present (a, b)-Turing kernelizations:

Definition 5.5. An (a,b)-Turing kernelization for a parameterized problem L
is an algorithm that decides every input instance (z, k) in time O(a(|x|)) given
access to an oracle that decides whether (', k') € L for every instance (z/, k')

108

5.3. Strong Diminisher and Kernelization in P

with |2/| + k¥’ < b(k) in constant time. We call an (a, b)-Turing kernelization
proper if the oracle decides whether (a/,k’) € L for every instance (2/,%’)
with |2/| + k' < b(k) and k¥’ < k in constant time.

Note that the diminisher framework in its current form cannot be applied
to exclude (proper) (a,b)-Turing kernelizations. In fact, it is easy to see that
H-SUBGRAPH ISOMORPHISM for connected constant-size H parameterized by
the order ¢ of the largest connected component admits a proper (n + m, &?)-
Turing kernelization, as each oracle call is on a connected component (which
contains O(€) vertices and at most O(£2) edges) of the input graph. We present
a proper (a,b)-Turing kernelization for H-SI for connected constant-size H
parameterized by maximum degree A.

Proposition 5.25. H-SUBGRAPH ISOMORPHISM for connected H of order c
parameterized by mazimum degree A admits a proper (n- A - (A —1)l¢/21 A
(A — 1)L/2))-Turing kernelization, where n denotes the number of vertices in
the input graph.

Proof. Let (G = (V, E)) be an input instance of H-SUBGRAPH ISOMORPHISM
and let A denote the maximum degree in GG. For each vertex v € V, we
create the subgraph G, that is the subgraph induced by the closed |c¢/2]-
neighborhood Ng/ 2] [v] of v (we refer to these as subinstances). In each subin-
stance the graph is of size at most 2A - (A — 1)1/2] | is of maximum degree at
most A, and each subinstance can be constructed in time linear in its size.

The algorithm outputs yes if and only if there is at least one subinstances
containing H. This results in a total running time of O(n - A - (A — 1)L¢/2]).

Finally, we prove that G contains H if and only if there exists a vertex v € V
such that G, contains H.

(«) Since G, is an induced subgraph of G for every v € V, if G,, contains a
subgraph isomorphic to H, so does G.

(=) Recall that H is connected and of order c¢. Hence, there is a vertex u €
V(H) such that disty(u,w) < |¢/2] for every w € V(H). Let v be the vertex
in G that corresponds to v in H. Then G, contains H since G, is induced on
all vertices in G that are of distance at most |¢/2] from v. O

Running-time Related Proper Kernelization. For NP-hard problems, it
is well-known that a decidable problem is fixed-parameter tractable if and only
if it admits a kernel [DF13]. In the proof of the only if-statement, one derives a
kernel of size only depending on the running time of a fixed-parameter algorithm

109

5. Strong Diminisher: Limits and Applications inside P

solving the problem in question. We adapt this idea to derive a proper kernel
where the running time and size admit such running time dependencies.

Theorem 5.26. Let L be a parameterized problem admitting an algorithm
solving each instance (x,k) of L in k- |z| time for some constant ¢ > 0. Then
for every e > 0, L admits a proper (|z|*+¢/(1+2) k1+e) Lkernel.

Proof. Let € > 0 arbitrary but fixed. If k'™ > |z|, then the size of the
instance is upper-bounded by k'*¢ + k. Otherwise, if k17¢ < |z|, then we
can compute a constant-size kernel (trivial yes-/no-instance) in k¢ - |z| <
|z|¢/(Fe) || = |z +¢/(+2) time, where the first inequality follows from the
fact that k' < |2| <= k < |2|1/(1F9), O

NWT and TC are both solvable in O(k? - n) time (k being the order & of
the largest connected component, the maximum degree A, or the degener-
acy d [CN85]). Together with Theorem 5.26 we obtain several kernelization
results for NWT and TC, for instance, with ¢ = 2:

Corollary 5.27. NWT admits a proper (n5/3, d®)-kernel when parameterized
by the degeneracy d of the input graph.

5.4. Concluding Remarks

We showed how different strong diminishers behave for NP-hard and polynomial-
time solvable problems:

(a) While for some NP-hard problems, we can exclude strong diminishers for
several parameterizations assuming the ETH to hold,

(b) for some polynomial-time solvable problems, using strong diminishers we
can exclude proper (a, b)-kernelizations for several parameterizations assum-
ing the APSP-conjecture, the 3SUM-conjecture, or the SETH to hold.

Regarding (a), we proved CLIQUE to be not strongly diminishable for several
parameters (assuming the ETH to hold), but we left open the following case.

Open Problem 7. Assuming the ETH to hold, does CLIQUE parameterized
by the cutwidth cw admit a strong diminisher?

110

5.4. Concluding Remarks

Our framework and results regarding (b) are a first step for studying kernel-
ization lower bounds for polynomial-time solvable parameterized problems, and
hence contributes to the (young) field of “FPT in P”. However, our framework
leaves wide space for future work as discussed in the following.

Recall that for NEGATIVE WEIGHT TRIANGLE parameterized by the degener-
acy d, we proved a proper (n®,d%)-kernel with a - 3 = 5 (Corollary 5.27) and
the lower bound of « - 8 < 3 (Theorem 5.11(iii)). Future work could be to close
this gap.

Open Problem 8. Is there a proper (n®,d?)-kernel with 3 < a- 3 < 5 for
NEGATIVE WEIGHT TRIANGLE or TRIANGLE COLLECTION each parameterized
by the degeneracy d?

Moreover, our framework does not provide to exclude kernelizations where we
allow the parameter value to increase, and, possibly more evidently, of any
polynomial size in some specific, say linear, running time. In the next chapter,
we prove a problem to admit an exponential-size linear-time kernelization but no
subexponential-size linear-time kernelization assuming the SETH to hold. The
latter is derived “indirectly” from an SETH-based running-time lower bound. We
wonder whether there is a (modification of our) “direct” framework, possibly an
adaption of the (cross-)composition framework, to provide such lower bounds?

111

CHAPTER

DATA REDUCTION INSIDE P: HYPERBOLICITY

In this chapter, we study the polynomial-time solvable HYPERBOLICITY problem.
We prove a kernelization dichotomy of the problem when parameterized by the
vertex cover number: in linear time, we can compute a kernel of exponential size,
while unless the SETH breaks, no subexponential-sized kernel can be computed
in subquadratic time. We complement our study on HYPERBOLICITY with three
parameterized algorithms each with a running time depending linearly on the
input size yet polynomially on the parameter.

6.1. Introduction

Gromov hyperbolicity [Gro87] is a popular attempt to capture and measure
how metrically close a graph is to being a tree. For a graph, the (Gromov)
hyperbolicity is a non-negative number § that can be defined via a four-point
condition: Considering a size-four subset {a,b, ¢, d} of the vertex set of a graph,
one takes the (non-negative) difference between the two largest of the three
sums ab + cd, ac + bd, and ad + bc, where wWo denotes the length of a shortest
path between vertices v and v in the given graph. The hyperbolicity § is the
maximum of these differences over all size-four subsets of the vertex set of the
graph. For every tree, this maximum over the differences is zero, and § = 0
means that the graph metric indeed is a tree metric (see Figure 6.1 for two
graphs with 6 = 0). Hence, the smaller § is, the more metrically tree-like the
graph is.

This chapter is based on (parts of) When Can Graph Hyperbolicity Be Computed in Linear
Time? by Till Fluschnik, Christian Komusiewicz, George B. Mertzios, André Nichterlein, Rolf
Niedermeier, and Nimrod Talmon (Algorithmica [Flu+19a]).

6. Data Reduction Inside P: Hyperbolicity

(a) (b)
Vg V3 Vo V3 Vo U3 Vs Vg v 3 s)
e b * Q@ A s
\ 7 N 7 N 7
) N7) || | |
U1 V4 U1 1/2 1/2 U4 (¥ 7’ 7’ (2
S e--—-H----e ~ o v
AN U1 o Vg U1 Vg Vg \./
Y N
‘ » A)
Vg Vs Vg Vs V7 v7

Figure 6.1.: Tllustration of metric-likeness to trees of two graphs ((a) a clique and (b)
some block graph). Right of each of the two graphs, the tree describing the graph’s
metric is depicted. Dashed edges (each having length 1/2) and rectangular nodes are
additionally present in the trees.

The study of hyperbolicity is motivated by the fact that many real-world
graphs are tree-like from a distance metric point of view [AD16, Bor+15]. This
is due to the fact that many of these graphs (including Internet application
networks or social networks) possess certain geometric and topological char-
acteristics. Hence, for many applications (see, e.g., Borassi et al. [Bor+15]),
including the design of efficient algorithms, it is useful to know the hyperbol-
icity of a graph. Typical hyperbolicity values for real-world graphs are below
five [AD16]. Notably, the graph parameter treewidth—measuring tree-likeness
in a non-metrical way—is unrelated to the hyperbolicity of a graph.

For an n-vertex graph, the definition of hyperbolicity via the four-point con-
dition directly implies a simple (brute-force) O(n*)-time algorithm to compute
its hyperbolicity. It has been observed that this running time is too slow for
computing the hyperbolicity of large graphs as occurring in applications [AD16,
BCH16, Bor+15, FIV15]. On the theoretical side, it was shown that relying
on some (rather impractical) matrix multiplication results, one can improve
the upper bound to O(n3%) [FIV15]. Moreover, roughly quadratic running
time lower bounds are known [BCH16, FIV15]. It is also known [CD14] that
the problem of deciding whether a graph is 1-hyperbolic and the problem of
deciding whether a graph contains a cycle of length four either both admit
an O(n3~¢)-time algorithm, for some ¢ > 0, or neither does. The best known
practical algorithm, however, still has an O(n?)-time worst-case bound but
uses several clever tricks when compared to the straightforward brute-force
algorithm [Bor-+15]. Indeed, empirical studies with this algorithm suggest an
O(mn) running time behavior, where m denotes the number of edges in the
graph. Furthermore, there are heuristics for computing the hyperbolicity of
a given graph [CCL15]. Cohen et al. [Coh+17| studied computing the hy-

114

6.1. Introduction

perbolicity with a given clique-decomposition. In this context, they proved
that computing the hyperbolicity of the subgraphs induced by the parts of the
clique-decomposition yields a 1-additive approximation. Moreover, they proved
that the hyperbolicity of an outerplanar graph can be computed in linear time.

The guiding principle in this chapter is to explore the possibility of data
reduction for faster algorithms for computing the hyperbolicity in relevant
special cases. To this end, we employ the framework “FPT in P” [GMN17,
MNN17] of parameterized complexity analysis applied to the polynomial-time
solvable hyperbolicity problem. In the “FPT in P” program, one often aims
for developing linear-time parameterized algorithms, that is, algorithms with
running times of the form f(k) - ||, where |z| denotes the input size and f(k)
is some computable function only depending on the parameter k (referred to
as L-FPT running time). A linear-time parameterized algorithm is parameter-
polynomial if f(k) € k() (referred to as PL-FPT running time). Note that for
the metric parameters diameter and hyperbolicity, linear-time algorithms are
unlikely for any dependency on the parameter [BCH16].

Our Contributions. Our main result is the following kernelization dichotomy
for HYPERBOLICITY regarding the parameter vertex cover number:

Theorem 6.1. HYPERBOLICITY admits
(i) a 290 _size O(n + m)-time kernelization, and
(ii) no 2°F)-size O(n?~%)-time kernelization, for any € > 0, unless the SETH
breaks,
where k denotes the vertex cover number.

Building on Theorem 6.1(ii), we also prove that there is no kernel computable
in truly subquadratic time of any size upper-bounded by a function in the
maximum vertex degree, again assuming the SETH to hold. We point out
that our kernelization lower bound regarding vertex cover number implies lower
bounds for many other well-known graph parameters such as feedback vertex
number, pathwidth, and treewidth, which can be much smaller than the vertex
cover number (see Figure 1.4 in Chapter 1).

On the positive side, we prove for three natural graph parameters PL-FPT
running times through data reduction (see Table 6.1 for an overview). These
three graph parameters are (i) the covering path number, that is, the minimum
number of paths which cover all vertices, where only the endpoints have degree
greater than two, (ii) the feedback edge number, and (iii) the number of graph

115

6. Data Reduction Inside P: Hyperbolicity

Table 6.1.: Summary of our algorithmic results. Herein, k denotes the parameter
and n and m denote the number of vertices and edges, respectively. RR abbreviates
“Reduction Rule” used in the respective result. ' “together with Reduction Rule 6.1”.

Parameter Running time
covering path no. O(k(n +m)) + k*(log(n))°® (Thm. 6.19, RR 6.3")
feedback edge no. O(k(n +m)) + k*(log(n))°® (Thm. 6.20, RR 6.3")

no. of > 3-deg vertices O(k%(n +m)) + k3(log(n))°™) (Thm. 6.22, RR 6.4")

vertices of degree at least three. Note that these three parameters are unrelated
to the vertex cover number and can be arbitrarily larger than the vertex cover
number (consider any biclique K ., any biclique K3 ,,, and any cycle C,,).

6.2. Definitions and First Observations

Let G = (V,E) be graph and a,b,c,d € V. We define Dy := ab + cd, Dy =
ac + bd, and D3 = ad + bc (referred to as distance sums). Moreover, we define
d(a,b,c,d) = |D; — D;| if D < min{D,, D;}, for pairwise distinct 4, j,k €
{1,2,3}. If any two vertices of the quadruple {a,b,c,d} are not connected by a
path, then we set 6(a, b, ¢, d) :== 0.1 The hyperbolicity of G = (V, E) is defined
as 0(G) = maxg p c.acv{d(a, b, c,d)}. We refer to Figure 6.2 for two illustrative
examples. Note that by our definition, if G is not connected, then §(G) computes
the maximal hyperbolicity over all connected components of G. We say that
the graph is §-hyperbolic for some & € N if it has hyperbolicity at most §. That
is, a graph is d-hyperbolic? if for each quadruple a,b,c,d € V we have

ab + cd < max{ac + bd, ad + bc} + 6.
Formally, the HYPERBOLICITY problem is defined as follows.

HYPERBOLICITY
Input: An undirected graph G = (V, E) and a positive integer ¢.
Question: Is G §-hyperbolic?

I This case is often left undefined in the literature. Our definition, however, allows to consider
also disconnected graphs.

2Note that there is also a slightly different definition where graphs that we call §-hyperbolic
are called 26-hyperbolic [CCL15, MP14]; we follow the definition of Brinkmann et al.
[BKMO1].

116

6.2. Definitions and First Observations

........ _D1 :ab+cd
— Dy =ac+ bd
---D3=ad+bc

Figure 6.2.: Two illustrative examples for the four-point condition. On the left-hand
side, a path Pjg with 16 vertices is depicted. On the right-hand side, a cycle Cig
with 16 vertices is depicted. For each of the two graphs, some quadrupel {a,b,c,d}
and the corresponding distance sums (dotted, solid, and dashed lines) are illustrated.
Indeed, §(Pi6) = 0, here indicated by the equally largest two distance sums D3 (solid)
and D3 (dashed). The situation changes in the case of a Ci6 (that is, the Pig with
one additional edge connecting the endpoints). We have 6(C16) = 8, here indicated by
the largest distance sum Ds (solid) and the two equally smallest distance sums D1
(dotted) and D3 (dashed).

The following Lemmas 6.2 to 6.4 and Reduction Rule 6.1 will be useful later.
For any quadruple {a, b, ¢, d}, Lemma 6.2 upper-bounds d(a, b, ¢, d) by twice the
distance between any pair of vertices of the quadruple. Lemma 6.3 considers
graphs for which the hyperbolicity equals the diameter. Reduction Rule 6.1
deletes degree-one vertices, and its correctness relies on Lemma 6.4.

Lemma 6.2 ([CCL15, Lemma 3.1]). d(a,b,c,d) < 2-min,4ye{a,b,c,d} {00}

An implicit proof of the following lemma is given by Mitsche and Pralat
[MP14]. We provide a direct proof of our particular statement.

Lemma 6.3. Let G be a graph with diameter h and §(G) = h. Then for each
quadruple a,b,c,d € V(G) with §(a,b, c,d) = h, it holds that exactly two disjoint
pairs are at distance h and all the other pairs are at distance h/2.

Proof. Let a,b,c,d € V(G) be some arbitrary quadruple with §(a, b, ¢,d) = h.
Without loss of generality, assume Dy = ab + cd and D; > max{D,, D3}. By
Lemma 6.2 we have min,yefa,b,c,ay{@0} > h/2, and hence max{ Dy, D3} >
h/24+h/2 = h. Tt follows that h = Dy —max{Ds, D3} < D1—h and thus D; > 2h.

117

6. Data Reduction Inside P: Hyperbolicity

Since G is of diameter h, we get ab = cd = h. Moreover, max{D,, D3} = h and,
together with min,_ye(qp.c,qy {80} > h/2, we obtain that each other distance
equals h/2. O

The following lemma immediately follows from a result due to Cohen et al.
[Coh-+17, Theorem 5.

Lemma 6.4. Let G = (V, E) be a graph with |V| > 4 and with a vertex v € V
such that the number of connected components in G — {v} is larger than in G.

Let Ay,...,Ap denote the connected components in G — {v}. Then there is
an i € {1,...,£} such that 6(G) = §(G — V(4;)).

Lemma 6.4 gives rise to the following degree-1 data reduction rule.

Reduction Rule 6.1. As long as there are more than four vertices, remove
vertices of degree at most one.

Lemma 6.5. Reduction Rule 6.1 is correct and can be exzhaustively applied in
linear time.

Proof. Lemma 6.4 immediately proves the correctness of Reduction Rule 6.1.
We apply Reduction Rule 6.1 in linear time as follows. First, as long as there are
more than four vertices, delete degree-zero vertices. Second, collect all vertices
with degree at most one in linear time in a list L. Then, as long as there are
more than four vertices, iteratively delete degree-one vertices and put their
neighbor into L if it has degree at most one after the deletion. Each iteration
can be applied in constant time. Thus, Reduction Rule 6.1 can be applied
exhaustively in linear time. O

We call a graph reduced if Reduction Rule 6.1 is not applicable.

6.3. A Kernelization Dichotomy regarding
Vertex Cover Number

In this section, we study HYPERBOLICITY with respect to the parameter vertex
cover number. We prove Theorem 6.1 by providing an exponential-size linear-
time kernelization (Section 6.3.1) and a subexponential-size subquadratic-time
kernelization lower bound, assuming the SETH to hold (Section 6.3.2). Building
on the latter, we prove no subquadratic-time kernelization of any size in the
maximum vertex degree to exist, assuming the SETH to hold (Theorem 6.13).

118

6.3. A Kernelization Dichotomy regarding Vertex Cover Number

vertex cover W

Figure 6.3.: Illustration to Reduction Rule 6.2 with a vertex cover W and the in-
dependent set G — W (enclosed by dashed rectangles). The partition of G — W
regarding the neighborhoods in W' is sketched by enclosing dotted rectangles. Here,
each rectangular-shaped vertex and its incident edges (gray) will be deleted by an
application of Reduction Rule 6.2.

6.3.1. An Exponential-Size Linear-Time Kernelization

We prove that HYPERBOLICITY can be solved in time linear in the size of the
graph and exponential in the size k of a vertex cover. This result is based on a
linear-time computable kernel consisting of O(2*) vertices. Note that there is a
simple greedy linear-time algorithm computing a vertex cover of size at most
twice the vertex cover number (see, e.g., [PS82]).

Proposition 6.6. There is an algorithm that maps any instance of HYPER-
BOLICITY with n vertices, m edges, and vertex cover number k in O(n+m) time
to an equivalent instance of HYPERBOLICITY of size 200,

Proposition 6.6 can be obtained by exhaustively applying the following data
reduction rule (see Figure 6.3 for an illustration).

Reduction Rule 6.2. If there are ¢ > 4 vertices vy, ...,ve € V with the same
(open) neighborhood N(vi) = N(vq) = ... = N(vg), then delete vs, ..., vy.

We next show that the above reduction rule is correct, can be applied in linear
time, and leads to a kernel for the parameter vertex cover number.

Lemma 6.7. Reduction Rule 6.2 is correct and can be applied exhaustively in
linear time. Furthermore, if Reduction Rule 6.2 is not applicable, then the graph
contains at most k 4 4 - 2% vertices and O(k - 2%) edges, where k is the vertex
cover number.

Proof. Let G = (V, E) be the input graph with a vertex cover W C V of size k
and let vy,...,v, € V, £ > 4, be vertices with the same open neighborhood.

119

6. Data Reduction Inside P: Hyperbolicity

First, we prove the correctness of Reduction Rule 6.2, that is, that §(G[V \
{vs,...,v¢}]) = 6(G). Consider two vertices v;, v; with the same open neighbor-
hood, and consider any other vertex u. The crucial observation is that uv; = wv;.
This means that the two vertices are interchangeable with respect to the hy-
perbolicity. In particular, if v;,v; € V have the same open neighborhood, then
d(vi, z,y, 2) = 0(vj,x,y, 2) for every z,y, z € V\{v;,v;}. As the hyperbolicity is
obtained from a quadruple, it is sufficient to consider at most four vertices with
the same open neighborhood. We conclude that 6(G[V \ {vs,...,v¢}]) = 6(G).

Next we show how to exhaustively apply Reduction Rule 6.2 in linear time.
To this end, we apply in linear time a partition refinement [HP10] to compute a
partition of the vertices into twin classes. Then, for each twin class we remove
all but four (arbitrary) vertices. Overall, this can be done in linear time.

Since the size of the vertex cover |W| < k, it follows that there are at most 2"
pairwise-different neighborhoods (and thus twin classes) in the independent
set V'\ W. Thus, if Reduction Rule 6.2 is not applicable, then the graph consists
of the vertex cover W of size k plus at most 4-2F vertices in V' \ W. Furthermore,
since W is a vertex cover, it follows that the graph contains at most k2 + 4k - 2%
edges. O

With Reduction Rule 6.2 we can compute in linear time an equivalent instance
having a bounded number of vertices. Applying to this instance the trivial O(n?)-
time algorithm yields the following.

Corollary 6.8. HYPERBOLICITY can be computed in O(2** +n + m) time,
where k denotes the size of a vertex cover of the input graph.

6.3.2. SETH-based Subquadratic-Time Lower Bounds

We show that, unless the SETH breaks, the 2°*) + O(n + m)-time algorithm
of Corollary 6.8 cannot be improved to an algorithm even with running time 2°(%).
n?~¢ for any € > 0. This also implies that, assuming the SETH to hold, there
is no kernel with 2°(%) vertices computable in O(n?~¢) time, that is, the kernel
obtained by applying Reduction Rule 6.2 presumably cannot be improved
asymptotically. The proof follows by a linear-time many-one reduction from the
following problem:

120

6.3. A Kernelization Dichotomy regarding Vertex Cover Number

ORTHOGONAL VECTORS

Input: Two sets A and B each containing n binary vectors of length ¢/ =
O(logn).

Question: Are there two vectors @ € A and b € B such that @ and b are
orthogonal, that is, such that there is no position 4 for which a@[i] =

-,

Bli] = 17

Williams and Yu [WY14| proved that the SETH breaks if ORTHOGONAL
VECTORS can be solved in O(n?~¢) time for some € > 0. We provide a linear-
time reduction from ORTHOGONAL VECTORS to HYPERBOLICITY where the
graph G constructed in the reduction contains O(n) vertices and admits a
vertex cover of size O(log(n)) (and thus contains O(n - log(n)) edges). The
reduction then implies that, unless the SETH breaks, there is no algorithm
solving HYPERBOLICITY in time polynomial in the vertex cover number and
linear in the size of the graph. We mention that Borassi et al. [BCH16] showed
that, assuming the SETH to hold, HYPERBOLICITY cannot be solved in O(n?~¢)
time for some ¢ > 0. The instances constructed in their reduction, however,
have a minimum vertex cover of size {)(n). Note that our reduction is based
on ideas from the reduction of Abboud et al. [AVW16, Theorem 1.7] for the
DIAMETER problem.

Proposition 6.9. Unless the SETH breaks, HYPERBOLICITY cannot be solved
in 2°F) . n2=¢ time, even on graphs with O(nlog(n)) edges, diameter four, and
domination number three. Here, k denotes the vertex cover number of the input
graph.

Construction 6.10. Let (A4, B) be an instance of ORTHOGONAL VECTORS.
We construct an instance (G,d) of HYPERBOLICITY in linear time, where
graph G is constructed as follows (we refer to Figure 6.4 for an illustration of
the construction).

Make each @ € A into a vertex a and each b € B into a vertex b of G, and
add two vertices for each of the ¢ dimensions, that is, add to G the vertex sets

A={a|dc A}, C={c,...,ce}, and
B:={b|be B}, D= {di,...,de},

and make each of C' and D a clique. Next, connect each a € A to the vertices
of C in the natural way, that is, add an edge between a and ¢; if and only
if d[¢] = 1. Similarly, add an edge between b € B and d; € D if and only

121

6. Data Reduction Inside P: Hyperbolicity

[BS

<@

Figure 6.4.: Illustration of the construction described in the proof of Proposition 6.9.
Ellipses indicate cliques, rectangles indicate independent sets. Multiple edges to an
object indicate that the corresponding vertex is incident to each vertex enclosed within
that object.

if bi] = 1. Moreover, add the edge set {{c;,d;} |i € {1,...,£}}. This part will
constitute the central gadget of our construction.

Our aim is to ensure that the maximum hyperbolicity is reached for 4-
tuples (a, b, ¢,d) such that a € A, b € B, and @ and b are orthogonal vectors. The
construction of G is completed by adding two paths (ua,u,up) and (va,v,vp),
and making u4 and v adjacent to all vertices in AUC, and upg and vg adjacent
to all vertices in BU D. A

We state two observations on the graph obtained from Construction 6.10. We
first observe some structural properties of the graph. Recall that if every vertex
of GG is either contained in or adjacent to a vertex in a set X, then X forms a
dominating set.

Observation 6.11. Graph G obtained from Construction 6.10 (i) contains

O(n) vertices, O(n-log(n)) edges, (ii) has diameter four, (i) has the dominating
set {ua,up,v}, and () has the vertex cover V\ (AU B) of size O(log(n)).

122

6.3. A Kernelization Dichotomy regarding Vertex Cover Number

Our second observation is on specific distances in the graph regarding the
vertices u,v and v4,vp,us,up.

Observation 6.12. Let G be the graph obtained from Construction 6.10. Then
(i) each vertex in AUBUCUD is at distance two to each of uw and v, (i1) va and
vp are at distance three to u, (iii) ua and up are at distance three to v, and
(iv) u and v are at distance four.

Proof of Proposition 6.9. We reduce any instance (/T, E) of ORTHOGONAL VEC-
TORS to an instance (G, §) of HYPERBOLICITY, where graph G is obtained from
applying Construction 6.10.

By Observation 6.11, we know that G admits a vertex cover of size O(log(n)).
We complete the proof by showing that (A, B) is a yes-instance of ORTHOGONAL
VECTORS if and only if G has hyperbolicity at least § = 4.

(=) Let (A, B) be a yes-instance, and let @ € A and b € B be a pair
of orthogonal vectors. We claim that 6(a,b,u,v) = 4. Since @ and b are
orthogonal, there is no i € {1,...,¢} with @i] = b[i] = 1 and, hence, there is
no path connecting a and b only containing two vertices in C'U D, and it holds
that ab = 4. Moreover, we know that 7o = 4 and that au = bu = av = av = 2.
Thus, §(a,b,u,v) =8 —4 =4, and G is 4-hyperbolic.

(<) Let S = {a,b,c,d} be a set of vertices such that §(a,b,c,d) > 4. By
Lemma 6.2, it follows that no two vertices of S are adjacent. Hence, we assume
without loss of generality that ab = cd = 4. Observe that all vertices of C
and D have distance at most three to all other vertices. Similarly, each vertex
of {ua,va,up,vp} has distance at most three to all other vertices. Consider
for example u4. By construction, ua is a neighbor of all vertices in AUC U {u}
and, hence, u4 has distance at most two to v4 and to all vertices in D. Thus,
u4 has distance at most three to v, B, up and v and therefore to all vertices
of G. The arguments for v4, up, and vg are symmetric.

It follows that S € AU BU{u,v}, and therefore at least two vertices in S are
from AU B. Thus, assume without loss of generality that a is contained in A.
By the previous assumption, we have that ab = 4. This implies that b € B
and @ and b are orthogonal vectors, as every other vertex in V'\ B is at distance
three to a and each b’ € B with b/ being non-orthogonal to @ is at distance three
to a. Hence, (4, B) is a yes-instance. O

Remark 6.1. With Construction 6.10, the hardness also holds for the variants
of HYPERBOLICITY in which we fix one vertex (u) or two vertices (v and v). The

123

6. Data Reduction Inside P: Hyperbolicity

reduction also shows that approximating the hyperbolicity of a graph within a
factor of 4/3 — & cannot be done in strongly subquadratic time or in PL-FPT
running time with respect to the vertex cover number.

Next, we adapt the above reduction to obtain the following hardness result
on graphs of bounded maximum degree.

Theorem 6.13. Unless the SETH breaks, HYPERBOLICITY cannot be solved
in f(A)-n27¢ time, where A denotes the mazimum degree of the input graph.

We introduce the following notation that we will use in the proof of Theorem 6.13.

Definition 6.1 (Matching paths). For two sets of vertices X and YV with |X| =
|Y'|, we say that we introduce matching paths if we connect the vertices in X
with the vertices in Y with paths with no inner vertices from X UY such that
for each x € X, x is connected to exactly one y € Y via one path and for
each y € Y, y is connected to exactly one x € X via one path.

The following construction used in the proof of Theorem 6.13 is basically
Construction 6.10 where several edges are replaced by binary trees, which
are then connected via matching paths. The resulting graph will then have
maximum degree five.

Construction 6.14. Let G’ be the graph obtained from the graph from Con-
struction 6.10 after deleting all edges. For each x4, « € {u,v}, add two binary
trees, T;* with n leaves and height at most [log(n)], and T.C, with ¢ leaves
and height at most [log(¢)]. Connect each tree root by an edge with x 4. Next
introduce matching paths between A and the leaves of TfA such that each
shortest path connecting a vertex in A with x4 is of length

h:=2([log(n)] +1) + 1.

Similarly, introduce matching paths between C and the leaves of Tl.cA such that
each shortest path connecting a vertex in C with x 4 is of length h. Apply the
same construction for x5, € {u,v}, B, and D.

For z € AU B, we denote by |z|; the number of 1’s in the corresponding
binary vector Z. Moreover, for ¢; € C, we denote by |¢;| the number of vectors
in A with a 1 as its ith entry. For d; € D, we denote by |d;| the number of
vectors in B with a 1 as their ¢th entry.

For each vertex a € A, add a binary tree with |a|; leaves and height at
most [log(]al1)] and connect its root by an edge with a. For each ¢ € {1,..., ¢},

124

6.3. A Kernelization Dichotomy regarding Vertex Cover Number

add a binary tree with |¢;| leaves and height at most [log(|¢;|)] and connect its
root by an edge with ¢;. Next, construct matching paths between the leaves
of all binary trees introduced for the vertices in A on the one hand, and the
leaves of all binary trees introduced for the vertices in C' on the other hand,
such that the following holds: (i) for each a € A and ¢; € C, there is a path only
containing the vertices of the corresponding binary trees if and only if @[] = 1,
and (ii) each of these paths is of length exactly h. Apply the same construction
for B and D.

Next, for each i € {1,...,¢}, add a binary tree with ¢ — 1 leaves and height
at most [log(¢ —1)] and connect its root by an edge with ¢;. Finally, add paths
between the leaves of all binary trees introduced in this step such that (i) each
leaf is incident to exactly one path, (ii) for each 4,5 € {1,...,£}, i # j, there is
a path only containing the vertices of the corresponding binary trees, and (iii)
each of these paths is of length exactly h. Apply the same construction for D.

Finally, for each i € {1,...,¢}, connect ¢; with d; via a path of length h.
Moreover, for z € {u,v}, connect x4 with x and = with xp each via a path of
length h. This completes the construction of G.

Observe that the number of vertices in G is at most the number of vertices
in the graph obtained from G’ by replacing each edge with paths of length h.
As G’ contains O(n log(n)) edges, the number of vertices in G is in O(n log?(n)).
Finally, observe that the vertices in C'U D are the vertices of maximum degree
which is five. A

Before we prove Theorem 6.13, we discuss some properties of G, the graph
obtained from some instance (z‘f, §) of ORTHOGONAL VECTORS using Construc-
tion 6.14.

Firstly, we discuss the distances of several vertices in G. Observe that «
and v are at distance 4h. For x € {u,v}, the distance between = and x4 or zp
is h, and the distance between x4 and xp is 2h. The distance from any ¢ € C
to any d € D is at least h and at most 2h. Moreover, the distance between
any a € A and b € B is at least 3h and at most 4h. We have the following

Lemma 6.15. For any a € A and b € B, ab = 4h if and only if @ and b are
orthogonal.

Proof. (<) Let @ and b be orthogonal. Suppose that there is a shortest path P
between a and b of length smaller than 4h. Observe that any shortest path
between a and b containing u or v is of length 4h. Hence, P contains vertices
in CUD. As the shortest paths from a to C, C' to D, and D to b are each of

125

6. Data Reduction Inside P: Hyperbolicity

length h, the only shortest path containing vertices in C'U D of length smaller
than 4h is of the form (a,c;,d;,b) for some ¢; € C and d; € D (recall that the
shortest path between any two vertices in C or in D is of length h). Hence,
@ and b have both a 1 as their ith entry, and thus are not orthogonal. This
contradicts the fact that @ and b form a solution. It follows that ab = 4h.

(=) Let @ and b be not orthogonal. Then there is an i € {1,...,¢} such
that a[i] = b[i] = 1. Hence, there is a path (a,¢;,d;,b) of length 3h < 4h. O

Let PY denote the set of inner vertices of the shortest path connecting =
and zy, for x € {u,v}, Y € {4, B}. Define

M=AUBUCUDU{z,za,2p |z € {u,v}} and
M*:={pe P’ |xec{uv},Y €{A B}}.

So far, we know that the only vertices that can be at distance 4h are those
in AUBU{u,v}.

Lemma 6.16. The vertex set AU B U {u,v} UM™* is the only set containing
vertices at distance 4h. Moreover, G is of diameter 4h.

Proof. Consider any vertex p € V(G) \ M. Then p is contained in a shortest
path between two vertices z and y in M at distance h. Moreover, max{pz,py} =:
R < h.

We first discuss the case where p € M*. By symmetry, let p € P, Observe
that for ¢ € PP with vg = up holds pg = 4h.

Let p ¢ MUM*. We claim that for all vertices ¢ € V(G) it holds that pg < 4h.
Suppose not, so that there is some ¢ € V(G) with pg > 4h. Observe that ¢ is not
contained in a shortest path between z and y. It follows that Tq > 4h — h' > 3h
or yq > 4h — h' > 3h. Let z € {z,y} denote the vertex of minimal distance
among the two, and let Z denote the other one. Note that since h is odd, the
distances to z and z are different.

Case 1: g € M. Then z,q € AU B, where z and ¢ are not both contained
in A or B. Recall that p ¢ M U M* and, hence, the case z,q € {u,v} is not
possible. By symmetry, assume z € A and ¢ € B. As Zq > 3h, it follows that
z=y¢; € C for some i € {1,...,¢} with 1 = 2[i] # ¢[i], or Z € {ua,va}. Hence,
the distance of Z to ¢ is at most the distance of z to ¢, contradicting the choice
of z.

Case 2: ¢ ¢ M. Then ¢ is contained in a shortest path between two
vertices #’,y’ € M of length h. Moreover, max{qz’,qy’'} = h" < h. Consider

126

6.3. A Kernelization Dichotomy regarding Vertex Cover Number

a shortest path between p and ¢ and notice that it must contain z and 2’ €
{2',y'}. Tt holds that zz" > 4h — h/ — h” > 2h. By symmetry, assume z € A,
and 2z’ € DU {up,vp} (recall that p ¢ M U M*). Then Zz is in C U {ua,va},
and hence of shorter distance to ¢, contradicting the choice of z.

We proved that pg < 4h for all p € V(G)\ (M UM™*), ¢ € V(G). We conclude
that the vertex set AU B U {u,v} U M™* is the only set containing vertices at
distance 4h. Moreover, G is of diameter 4h. O

We are set to prove our second main result.

Proof of Theorem 6.13. Let (A, B) be an instance of ORTHOGONAL VECTORS
and let (G,6) be the instance of HYPERBOLICITY obtained from (A, B) us-
ing Construction 6.14. We claim that (A, E) is a yes-instance of ORTHOGONAL
VECTORS if and only if G has hyperbolicity at least § = 4h.

(=) Let @€ Aand b € B be orthogonal. We claim that é(a, b, u,v) = 4h.
Observe that ww = 4h, and that ab = 4h by Lemma 6.15. The remaining
distances are 2h by construction, and hence 6(G) = §(a, b, u,v) = 4h.

(<) Let 6(G) = 4h and let w,z,y, z be a quadruple with é(w, z,y, z) = 4h.
By Lemma 6.3, we know that there are exactly two pairs of distance 4h and,
hence, by Lemma 6.16 we have {w,z,y,2} C AU BU {u,v} UM*. We claim
that {w,z,y,z} N (M* U {u,v})| < 2. By Lemma 6.3, we know that, out
of w,x,y, z, there are exactly two pairs at distance 4h and all other pairs
have distance 2h. Assume that [{w,z,y,z} N (M* U {u,v})| > 3. Then, at
least two vertices are in PA U PP U {v} or in P2 U P2 U {u}. Observe that
any two vertices in P2 U PP U {v} or in P2 U PP U {u} are at distance
smaller than 2h, but this contradicts the choice of the quadruple. It follows
that [{w,z,y,z} N (M* U {u,v})| < 2. We may thus assume without loss of
generality that w,x € AU B. As each vertex in A is at distance smaller than
3h to any vertex in A U {u,v} U M*, it follows that the other vertex is in B.
Applying Lemma 6.15, we have that w and z are at distance 4h if and only if @
and & are orthogonal; hence, the statement of the theorem follows. O

We remark that Bentert et al. [Ben+19] define a parameterized problem to be
general problem hard if, intuitively speaking, its unparameterized version is at
least as hard as the problem for some constant values of the parameter. Hence
in these terms, Proposition 6.9 and Theorem 6.13 prove HYPERBOLICITY to be
general problem hard regarding the parameters diameter, minimum dominating
set, and maximum degree.

127

6. Data Reduction Inside P: Hyperbolicity

6.4. Parameter-Polynomial Linear-Time
Parameterized Algorithms

In this section, we provide parameter-polynomial linear-time parameterized
algorithms with respect to the parameters minimum maximal path cover number
(formally defined below), feedback edge number, and number of vertices with
degree at least three. We first describe a parameter-polynomial linear-time
parameterized algorithm for the minimum maximal path cover number. We
then obtain parameter-polynomial linear-time parameterized algorithms for the
other two parameters by proving that through specific data reduction rules,
the number of maximal paths can be upper-bounded by a polynomial in the
respective parameter value.

6.4.1. Minimum Maximal Path Cover Number

We first give the definition of maximal paths and then discuss graphs that can
be covered by maximal paths.

Definition 6.2 (Maximal path). Let G be a graph and P be a path in G.
Then, P is a mazimal path if the following hold: (1) P contains at least two
vertices; (2) all inner vertices of P have degree two in Gj; (3) both endpoints
of P have degree at least three in G.

The minimum mazimal path cover number is the minimum number of maximal
paths needed to cover the vertices of a given graph. A pending cycle in a graph
is an induced cycle in G with at most one vertex of degree larger than two. A
pending cycle with no vertex of degree larger than two is called isolated. While
not all graphs can be covered by maximal paths (e.g., edgeless graphs), graphs
which have minimum degree two and contain no pending cycles can be covered
by maximal paths (this follows by, e.g., a greedy algorithm which iteratively
starts a path with an arbitrary uncovered vertex and exhaustively extends it
arbitrarily; since there are no isolated cycles and the minimum degree is two,
we eventually hit at least one vertex of degree three). The next data reduction
rule handles pending cycles.

Reduction Rule 6.3. Let T = (G,d) be an instance of HYPERBOLICITY
with C C G being a pending cycle of G. If 6(C) > §, then return that T is a
no-instance, and otherwise, delete from G all vertices v € V(C') with deg(v) = 2
and their incident edges.

128

6.4. Parameter-Polynomial Linear-Time Parameterized Algorithms

The correctness of Reduction Rule 6.3 follows immediately from Lemma 6.4.
We refer to a reduced graph G with no pending cycles as cycle-reduced. Based
on Reduction Rule 6.3, we have the following.

Lemma 6.17. There is a linear-time algorithm that given an instance Z = (G, 9)
of HYPERBOLICITY, either decides I or computes an instance (G',9) equivalent
to T and a set P(G') such that G' C G is cycle-reduced and P(G') C P(G) is
the set of all mazximal paths in G’ of length at least three.

Proof. First, we apply Reduction Rule 6.1 to have a graph with no vertices of
degree at most one. Next, we employ the linear-time algorithm by Bentert et al.
[Ben+18, Lemma 6| towards computing the set of all pending cycles and the set
of maximal paths. Herein, instead of storing the pending cycles, in each iteration
of the algorithm where a pending cycle Cy,4 is found, we apply Reduction
Rule 6.3. Note that for a cycle Cypy, with p € N and ¢ € {0,1,2,3} it holds
true that §(Cyptq) = 2p — 1 if ¢ = 1, and §(Cap1q) = 2p otherwise [KMO2].
If the deletion of the cycle causes a vertex to have degree one, then, starting
at this vertex, we iteratively delete vertices of degree one along the path (as
long as there are more than four vertices). Then we continue in the algorithm
of Bentert et al. [Ben+18]. O

Based on the linear-time approximation algorithm given in the next lemma,
we assume in the following that we are given a maximal path cover.

Lemma 6.18. There is a linear-time 2-approximation algorithm for the mini-
mum mazimal path cover number for cycle-reduced graphs.

Proof. The algorithm operates in two phases. In the first phase, we employ
Lemma 6.17 to obtain set of all maximal paths of length at least two.

The second phase, when all vertices of degree two are already covered, ideally
we would find a matching between those uncovered vertices of degree at least
three. To get a 2-approximation we arbitrarily select a vertex of degree at
least three, view it as a path of length zero, and arbitrarily extend it until it is
maximal. This finishes the description of the linear-time algorithm.

For correctness of the first phase, the crucial observation is that each vertex
of degree two has to be covered by at least one path. For the second phase, the
factor two follows since each maximal path can cover at most two vertices of
degree at least three. O

129

6. Data Reduction Inside P: Hyperbolicity

Now we are ready to present a parameter-polynomial linear-time parameter-
ized algorithm for HYPERBOLICITY with respect to the minimum maximal path
cover number.

Theorem 6.19. Let G = (V, E) be a cycle-reduced graph and k be its minimum
mazximal path cover number. Then, HYPERBOLICITY can be solved in O(k(n +
m)) + k*(log(n))°M) time.

In the subsequent proofs, we denote for any path P with u,v € V(P) by uv|p
the distance of u to v on P.

Proof. We use Lemma 6.18 to get a set P of at most 2k maximal paths which
cover G. By initiating a breadth-first search from each of the endpoints of those
maximal paths, we can compute the pairwise distances between those endpoints
in O(k(n +m)) time. Thus, for the rest of the algorithm we assume that we
can access the distances between any two vertices which are endpoints of those
maximal paths in constant time.

Let (a,b,c,d) be a quadruple such that d(a,b,c,d) = 6(G). Since the set P
covers all vertices of G, each vertex of a, b, ¢, and d belongs to some path P € P.
Since |P| < 2k, there are O(k*) possibilities to assign the vertices a, b, ¢, and d
to paths in P. For each possibility we compute the maximum hyperbolicity
respecting the assignment, that is, we compute the positions of the vertices on
their respective paths that maximize §(a, b, ¢, d). We achieve this by formulating
an integer linear program (ILP) with a constant number of variables and
constraints whose coefficients have value at most n.

To this end, denote by P, € P the path containing x € {a,b,c,d}. We assume
for now that these paths are different and discuss subsequently the case that
one path contains at least two vertices from a,b,c,d. Let x; and x5 be the
endpoints of P, for each = € {a,b, ¢, d}. Furthermore, denote by mp the length
of a path P € P, that is, the number of its edges. Without loss of generality
assume that Dy > Dy > D3. We now compute the positions of the vertices
on their respective paths that maximize D; — D> by solving an ILP. Recall
that 770|p, denotes the distance of v to v; on P,. Thus, T10|p, +003|p, = mp,,
and 710|p, > 0 and vv3|p, > 0. The following is a compressed description of
the ILP containing the minimum function in some constraints. We describe
hereafter how to remove it.

130

6.4. Parameter-Polynomial Linear-Time Parameterized Algorithms

maximize: Dy — Do
subject to: Di=ab+cd
Dy =ac+bd
D3 = ad + be
Dy > Dy > Ds
Vo € {a,b,c,d} : mp, = T1Z|p, + T2Z|p, (6.1)
Va,y € {a,b,c,d} : Ty = iyjrg{i&}(mm + Ty; + 9lp,) (6.2)

First, observe that the ILP obviously has a constant number of variables: Ty, for
all z,y € {a,b,c,d}, x # y, T;Z|p,, for all x € {a,b,c,d} and j € {1,2}, and D,
j € {1,2,3}. The only constant coefficients are T;y; for =,y € {a,b,c,d}
and 4,7 € {1,2} and obviously have value at most n — 1. To remove the
minimization function in (6.2), we use another case distinction: We simply
try all possibilities of which value is the smallest one and adjust the ILP
accordingly. For the case that for some x,y € {a,b,c,d} the minimum in (6.2)
is Zy@|p, + Ty + Yy yle, with i, 5" € {1,2}, we replace this equation by the
following:

Ty = T p, + Toly + Ui Hlp,

zry S xix|Pw +$Zyj +W|Py7 17] € {152}5 (%]) 7é ('L'/,j/).

There are four possibilities of which value is the smallest one, and we have to
consider each of them independently for each of the (g) = 6 pairs. Hence, for
each assignment of the vertices a, b, ¢, and d to paths in P, we need to solve
4 - 6 = 24 different ILPs in order to remove the minimization function. Since
each ILP has a constant number of variables and constraints, solving them
takes LOW) time where L = O(log(n)) is the total size of the ILP instance (e.g.,
by using an algorithm of Lenstra [Len83]).

It remains to discuss the case that at least two vertices of a, b, ¢, and d are
assigned to the same path P € P. We show the changes exemplified for the case
that a, b, and ¢ are mapped to P, € P. The adjustments for the other cases
can be done in a similar fashion. We assume without loss of generality that the
vertices aq, a, b, ¢, ay appear in this order in P (allowing a = a7 and ¢ = as). The

131

6. Data Reduction Inside P: Hyperbolicity

objective function as well as the first four lines of the ILP remain unchanged.
Line (6.1) is replaced with the following:

mp, = aidlp, + ab|p, + bc|p, + caz|p,

mp, = did|p, + dda|p,

To ensure that (6.2) works as before, we add the following (recall that P, =
Pb = PC):

aaz|p, = ab|p, + be|p, + caz|p,
mm =aialp, +%|Pa
bbs|p, = belp, +caz|p,
¢ic|p, = ayalp, + ablp, + be|p,

Ce3|p, = caz|p, O

Feedback Edge Number. We next present a parameter-polynomial linear-
time parameterized algorithm with respect to the parameter feedback edge
number k. The idea is to show that a graph that is cycle-reduced contains O(k)
maximal paths.

Theorem 6.20. HYPERBOLICITY can be solved in O(k(n+m))+k*(log(n))°™
time, where k is the feedback edge number.

Proof. The first step of the algorithm is to apply the algorithm of Lemma 6.17.
After this step, if the input instance is not yet decided, we can assume our input
graph to be cycle-reduced.

Denote by X C F a minimum feedback edge set for the cycle-reduced
graph G = (V, E) and observe that | X| < k. We will show that the minimum
maximal path cover number of G is in O(k). More precisely, we show the slightly
stronger claim that the number of maximal paths in G is in O(k).

Observe that all vertices in G have degree at least two since G is cycle-reduced.
Thus, every leaf of G — X is incident with at least one edge in X, which implies
that there are at most 2k leaves in G — X . Moreover, since G — X is a forest, the
number of vertices with degree at least three in G — X is at most the number of
leaves in G — X and thus at most 2k. This implies that the number of maximal
paths in G — X is at most 2k (each maximal path corresponds to an edge in
the forest obtained from G — X by contracting all degree-two vertices).

132

6.4. Parameter-Polynomial Linear-Time Parameterized Algorithms

We now show that the number of maximal paths in G is linear in k by showing
that an insertion of an edge into any graph H increases the number of maximal
paths by at most three. First, note that each edge can be part of at most
one maximal path in any graph. If each endpoint of the edge to insert is of
degree two in H, then the number of maximal paths increases by three. In
the case that at least one endpoint is of degree at least three or at most one
the insertion increases the number of maximal paths by at most two. Thus G
contains at most 5k maximal paths. The statement of the theorem now follows
from Theorem 6.19. O

6.4.2. Number of Vertices with Degree at least Three

We show a parameter-polynomial linear-time parameterized algorithm with
respect to the number k of vertices with degree at least three. To this end, we
use the following data reduction rule additionally to the linear-time algorithm
of Lemma 6.17 to upper-bound the number of maximal paths in the graph
by O(k?) (with the goal to employ Theorem 6.19).

Reduction Rule 6.4. Let G = (V, E) be a graph, u,v € VG23 be two vertices of
degree at least three, and Py, be the set of mazximal paths in G with endpoints u
and v. Let P2, C Py, be the set containing the shortest path, the four longest

even-length paths, and the four longest odd-length paths in Pyy. If Puy \ P2, # 0,
then delete in G all inner vertices of the paths in Py, \ P2,

Lemma 6.21. Reduction Rule 6.4 is correct and can be exhaustively applied in
linear time.

Proof. (Running time) In linear time we compute the set VG23 of all vertices
with degree at least three. Then for each v € VG23 we do the following. Starting
from v, we perform a modified breadth-first search that stops at vertices in VGZS.
Let R(V5?,v) denote the visited vertices and edges. Observe that R(VZ>,v)
consists of v, some degree-two vertices, and all vertices of Vg?’ that can be
reached from v via maximal paths in G. Furthermore, with the breadth-first
search approach we can also compute for all u € R(VGZB7 v) N VG?S with u # v
the number of maximal paths between v and v and their respective lengths.
Then, in time linear in |R(V§37 v)|, we remove the paths in Py, \ P2, for all u €

133

6. Data Reduction Inside P: Hyperbolicity

R(VG?S,U) n VG?S. Thus, we can apply Reduction Rule 6.4 for each v € VG?S
in O(|R(V537 v)|) time. Altogether, the running time is in

O(Y IR(VE?v)) = O(n+m),
v€V§3

where the equality follows from the fact that each edge and each maximal path
in G is visited twice by the modified breadth-first search.

(Correctness) Let G = (V, E) be the input graph, let P € Py, \ P, be a
maximal path from u to v whose inner vertices are removed by the application of
the data reduction rule, and let G’ = (V’, E’) be the resulting graph. We show
that 6(G) = 6(G’). The correctness of Reduction Rule 6.4 follows then from
iteratively applying this argument. First, observe that since P2 contains the
shortest maximal path of P, it follows that w and v have the same distance in G
and in G’. Furthermore, it is easy to see that each pair of vertices w,w’ € V'
has the same distance in G and in G’ (Reduction Rule 6.4 removes only paths
and does not introduce degree-one vertices). Hence, we have that §(G) > §(G’)
and it remains to show that 6(G) < 6(G).

Let a,b,c,d € V be four vertices defining the hyperbolicity of G, that is,
§(G) = d(a,b,c,d). If P does not contain any of these four vertices as inner
vertices, then we are done. Thus, assume that P internally contains at least one
vertex from {a,b,c,d}. (We say in this proof that a path @ internally contains
a vertex z if z is an inner vertex of ().) We next distinguish four cases regarding
the number of vertices of {a,b, c,d} that are internally contained in P (we refer
to Figure 6.5 for illustrations of the cases I-III and subcases therein).

Case I: P internally contains one vertex of {a,b,c,d}. Without loss of
generality assume that P internally contains a. We show that we can replace a
by another vertex a’ in a path P’ € P2, such that &(a,b,c,d) = 6(a’,b,c,d).
Since P internally contains a, we can choose P’ as one of the four (odd/even)-
length longest paths in P2, such that

e mp/ —mp is non-negative and even (either both lengths are even or both
are odd) and

e P’ contains no vertex of {b, c,d}.

Since P is removed by Reduction Rule 6.4, it follows that mp < mp. We
choose a’ on P’ such that ua'|p: = ualp + (mp — mp)/2. Observe that this
implies that a’v|pr = @v|p + (mpr — mp)/2 and thus

M|P—M|P :w|P1 —%‘p/.

134

6.4. Parameter-Polynomial Linear-Time Parameterized Algorithms

;k\ : (mp/ —m,p)/2

"*/ : (mp// —mp)/2

Figure 6.5.: Illustrations to the cases I-III and the subcases therein in the proof
of Lemma 6.21.

Recall that
Dy == ab+ cd, Dy :=a@c + bd, and D3 == ad + be.

Denote with Dj, Dj, and D} the respective distance sums resulting from
replacing a with a’, for example D} = a’b+ cd. Observe that by the choice of a’
we increased all distance sums by the same amount, that is, for all ¢ € {1,2,3}
we have D, = D; + (mp —mp)/2. Since 6(a,b,c,d) = D; — D; for some i,j €
{1,2,3}, we have that

5(G") = 8(d,b,c,d) = Dj — Dy = 6(a,b,c,d) = §(G).

Case II: P internally contains two vertices of {a,b,c,d}. Without loss of
generality, assume that P internally contains a and b but not ¢ and d, and a is
closer to u on P than b. We follow a similar pattern as in the previous case and
again use the same notation. Let P’, P” € Py, be the two longest paths such
that both P’ and P” do neither internally contain ¢ nor d and both mpr — mp
and mpr — mp are even. We distinguish two subcases.

135

6. Data Reduction Inside P: Hyperbolicity

Case II-1: D; is not the largest sum (D7 < D or D; < Ds). We
replace a and b with @’ and &’ on P’ such that ua’|p: = ualp + (mp — mp)/2
and ub/|pr = ub|p + (mp: —mp)/2. Thus, D} = D; since ab = a’b/. However,
for i € {2,3} we have D, = D; + (mp: —mp)/2. Since either Dy or D3 was the
largest distance sum, we obtain

§(G) = 6(a,b,¢,d) = D; — D; < D — Djjy = 6(a’, ', ¢,d) = 6(G")

for some i € {2,3}, j,5' € {1,2,3}, i # j, and ¢ # j’.

Case II-2: D; is the largest sum (D7 > Dy and Dy > D3). We need another
replacement strategy since we did not increase D in case (II-1). In fact, we
replace a and b with two vertices on different paths P’ and P”. We replace a
with o’ on P’ and b with &' on P” such that ud/|pr = walp + (mp: —mp)/2
and b'v|pr = bv|p + (mpr — mp)/2. Observe that for ¢ € {2,3} it holds that

D; =D, + (mp/ — mp)/2 + (mpw — mp)/2
Moreover, since a’ and b’ are on different maximal paths, we also have
ab < min {7a|p + zb|p}
ze{u,v
— min {W|p/ —|—W|p//} _ mpr —mp _ mpr — mp
ze{u,v} 2 2

— Al H
=a't,

where the last equality is due to the fact that {u,v} forms an a’-b' separator
in G'. Thus D} > Dy + (mp: —mp)/2+ (mpr —mp)/2. It follows that

8(G) = d6(a,b,¢c,d) = Dy — Dy < D} — D} = (d',V,c,d) = 5(G")

for some j € {2,3}.

Case III: P internally contains three vertices of {a,b,c,d}. Without loss
of generality, assume that P internally contains a, b, and ¢ but not d and
that among a, b, c vertex a is the closest vertex to u on P and c is the closest
vertex to v on P (that is, a, b, c appear in this order on P). We distinguish two
subcases.

Case III-1: ac|p = ac. We follow a similar pattern as in case (I) and use the
same notation. Again, there is a P’ € P2, such that mp, —mp is even and non-
negative and P’ does not contain d. We replace each vertex a, b, ¢ as in case (I),

136

6.4. Parameter-Polynomial Linear-Time Parameterized Algorithms

that is, for each = € {a, b, ¢} we choose 2’ on P’ such that uz’|p; = uz|p+(mp —
mp)/2. Observe that only the distances between d and the other three vertices
change. Thus, we have again for all i € {1,2,3} that D, = D; + (mp — mp)/2
and hence §(G) = §(G").

Case III-2: ac|p > ac. We use again a similar strategy as in case (I) and
use the same notation. Again, there is a P’ € P, such that mp/ — mp is even
and non-negative and P’ does not contain d. We replace the vertices a,b,c
with a’, b, ¢ on P’ such that

e Vulp = bulp + (mp —mp)/2, and
o m‘p/ :%lp—‘r (mpl —mp)/2.

Note that since @c¢|p > @c, it follows that the distances not involving b (re-
spectively b') remain unchanged, that is, @ac = a/¢/, ad = a'd, and cd = c/d.
Furthermore, all distances involving b (respectively b') increase by (mp, —mp)/2,
that is, bz = b/z — (mp: — mp)/2 for each x € {a,c,d}. Thus, we have again
for all ¢ € {1,2,3} that D} = D; + (mp: — mp)/2 and hence §(G) = §(G’).

Case IV: P internally contains all four vertices of {a,b,c,d}. We consider
two subcases.

Case IV-1: the union of the shortest paths between these four vertices
induces a path. In this case, we have 6(G) = 0 and thus trivially §(G) < 6(G’).

Case IV-2: the union of the shortest paths between these four vertices
induces a cycle C. As before, there is a path P’ € P, such that mp/ —mp is
non-negative and even. Let @) denote the shortest path on C between u and v.
Observe that @ contains no vertex in {a,b, ¢, d} and is present in G’. Denote
by C’ the cycle formed by @ and P’. Note that |C’| > |C| since mp > mp.
Moreover, (|C’| —|C|) mod 2 = 0 since (mps — mp) mod 2 = 0, and hence the
cases C = Cy, and C’' = Cyp4q for some p € N are excluded. Thus, it holds
true that §(C’) > 6(C). It follows that 6(G’) > 6(C") > 6(C) = 6(a,b,c,d) =
(@). O

Observe that if the graph G is reduced with respect to Reduction Rule 6.4
after Lemma 6.17 was applied, then for each pair u,v € VG?S there exist at most
nine maximal paths with endpoints u and v. Thus, G contains at most O(k?)
maximal paths. Employing Theorem 6.19 we arrive at the following.

137

6. Data Reduction Inside P: Hyperbolicity

Theorem 6.22. HYPERBOLICITY can be solved in O(k?(n+m))+kS(log(n))°™
time, where k is the number of vertices with degree at least three.

6.5. Concluding Remarks

We proved HYPERBOLICITY parameterized by the vertex cover number to admit
a (single-)exponential-size linear-time kernel, but no subexponential-size truly-
subquadratic-time kernel unless the SETH breaks. The latter result is derived
from a running time lower bound, which implies no kernelizations in linear time
of any polynomial size. We wonder what is possible in quadratic time:

Open Problem 9. Does HYPERBOLICITY admit a problem kernel computable
in quadratic time of size polynomial (or subexponential) in the vertex cover
number?

We proved PL-FPT algorithms for HYPERBOLICITY regarding three param-
eters each being incomparable to the vertex cover number. Each of these
algorithms bases on data reduction in the parameterized algorithmic sense,
supporting the importance of this kind of preprocessing also for polynomial-time
solvable problem.

Finally, Williams et al.’s [Vas+15] conjectured Q(n?)-time lower bound for
4-INDEPENDENT SET transfers to HYPERBOLICITY [Flu+19a]. Challenging the
conjecture, we pose the following:

Open Problem 10. Is HYPERBOLICITY solvable in truly subcubic time?

138

Part I11.

Losing Weights and Secluded
Problems

139

In a given graph, finding some subgraph fulfilling some property is a basic
algorithmic task. Motivated by security applications, one may wish to have only
few vertices with direct access to the subgraph (that is, neighboring the vertices
of the subgraph). When asking for the closed neighborhood to be small, this
problem modification is known as secluded, coined by Chechik et al. [Che+17]
for the modification of the problems of finding a two-terminal path, that is,
a path connecting two terminals (SECLUDED PATH), and of finding a Steiner
tree (SECLUDED STEINER TREE). While Chechik et al. [Che+17] obtained
complexity classification and approximation results for the two mentioned
problems, Fomin et al. [Fom+17a] studied the two problems from a parameterized
complexity perspective. Interestingly, while a shortest two-terminal path in
a given graph can be found in polynomial time, SECLUDED PATH is not only
NP-hard, but also admits no kernel of size polynomial in the vertex cover
number (unless coNP C NP /,,1,). So, the following question arises: How do the
computational and parameterized complexity—in particular, the kernelizability—
of well-known graph problems like finding short paths, small separators, or
small feedback vertex sets, change when one additionally seeks to restrict the
neighborhood size of their solution vertex sets?

Asking for the closed neighborhood of a vertex set to be small gives no control
on the size of the set or of its open neighborhood: finding a two-terminal
path with small closed neighborhood may allow for a long path with small
open neighborhood, or for a short path with large open neighborhood. By
this observation, our first modification to the secluded setup yields the “small
secluded” setup, where we demand the size of both the vertex set and its open
neighborhood to be small. Chapter 8 is devoted to the SMALL SECLUDED
PATH problem, where kernelization lower and upper bounds regarding several
(combined) parameters are provided. In Chapter 9, we elaborate more on the
difference between the non-secluded, secluded, and small secluded setup. To
this end, we apply the setups to the examples of finding two-terminal separators
and feedback vertex sets.

In our study of SMALL SECLUDED PATH, it turned out that the following
strategy leads to efficient and effective preprocessing: We first shrink the number
of vertices and edges of the graph in our input instance while introducing vertex
weights. This hence gives us an instance of a vertex-weighted problem. We
then, secondly, employ a technique of Frank and Tardos [FT87] to shrink these
introduced vertex weights. Lastly, we employ that the class NP is closed under
polynomial-time many-one reductions and map our vertex-weighted instance
back to an instance without vertex weights, that is, of our original problem.

141

Our strategy hence uses the technique of Frank and Tardos [FT87] to obtain a
polynomial kernelization for an unweighted problem. This, together with the
work by Etscheid et al. [Ets+17] and Marx and Végh [MV15], underlines the
applicability of the “losing-weight technique” of Frank and Tardos [FT87] for
polynomial kernelization.

In Chapter 7, we describe the technique of Frank and Tardos [FT87|. Moreover,
we show that the technique applies also for problems where the goal function
is, at first glance, not linear, and hence enlarge the application domain of the
technique.

142

CHAPTER 7 .

LOSING WEIGHT FOR POLYNOMIAL
KERNELIZATION

In this chapter, we explain the technique of “losing weight” due to Frank and
Tardos [FT87], discuss its role in parameterized algorithmics for obtaining
kernels of polynomial size, and prove that it not only applies to problems with
linear goal functions, but also to those with goal functions that are, at least at
first glance, not linear.

7.1. Introduction

In the early eighties, Grotschel et al. [GLS81] employed the famous ellipsoid
method by Khachiyan [Kha79, Kha80] for the WEIGHTED INDEPENDENT
SET (WIS) problem: Given an undirected graph G = (V,E) with vertex
weights w = (w(v))yey € QY find a set U C V such that U is an independent
set and maximizes), ., w(v). Grotschel et al. [GLS81] proved WIS to be solv-
able in polynomial time on perfect graphs. The running time of their algorithm,
however, depends on the length of (the encoding of) the maximum vertex-weight
in the input. Hence, one may wonder: Is WIS on perfect graphs solvable
in polynomial time where the running time is independent of the maximum
vertex-weight in the input?!

Frank and Tardos [FT87] answered this question in the affirmative by proving
a losing-weight technique. The technique employs a “preprocessing algorithm”
that, exemplified for WIS, does the following: Compute in time polynomial in

IThe question can be restated as follows: Given the weakly polynomial time algorithm of
Grotschel et al. [GLS81], is WIS on perfect graphs solvable in strongly polynomial time?

7. Losing Weight for Polynomial Kernelization

the number n of graph vertices and (the encoding length of) the input maximum
vertex-weight some vertex weights @ with small entries, that is,

(a) where the length of (the encoding of) the maximum entry in @ is polyno-
mially upper-bounded in n,

such that the quality of all solutions and non-solutions is preserved, that is,

(b) for every two (independent) sets U, U’ C V' we have that) ., w(v) >
> very w(v) if and only if Y7 @w(v) > >0 0 ().

Hence, when first applying the losing-weight technique and then the algorithm
of Grotschel et al. [GLS81], WIS on perfect graphs is solved in time inde-
pendent of the input maximum vertex-weight. Notably, the preprocessing
algorithm makes use of the simultaneous Diophantine approximation algorithm
due to Lenstra et al. [LLL82].

To the best of our knowledge, Frank and Tardos’ technique appeared in
parameterized algorithmics the first time in the work of Fellows et al. [Fel+08].
However, Fellows et al. employed the technique to obtain fixed-parameter
algorithms running in polynomial space. Marx and Végh [MV15] firstly observed
the connection of the losing-weight technique with polynomial kernelization.
They proved a polynomial kernel utilizing the losing-weight technique for the
MINIMUM-COST EDGE-CONNECTIVITY AUGMENTATION BY ONE problem,
where, given an undirected, (k — 1)-edge-connected graph G = (V, E), edge
set E*, two weight functions w: E* =+ N and ¢: E* = R, U {+o0}, and k,p €
N, the task is to find a set I C E* with) _pw(e) < p such that the
graph (V, EU F) is k-edge-connected and } __, c(e) is minimum. Interestingly,
their kernelization first increases the size of the instance and introduces additional
edge weights. Marx and Végh state about the technique of employing the losing-
weight technique that

“[...] this technique seems to be an essential tool for kernelization of
problems involving costs.”

Subsequently, Etscheid et al. [Ets+17] proved polynomial kernels for several
weighted problems using the losing-weight technique, supporting Marx and
Végh’s statement by making the losing-weight technique an important tool for
obtaining polynomial kernels for weighted problems. Notably, in Chapter 8 we
apply the losing-weight technique to kernelize an unweighted problem. While
such an application was seemingly not done before, our underlying approach of
introducing weights is close to Marx and Végh’s approach.

144

7.2. The Losing-Weight Technique

Our Contributions. We give a brief introduction into the losing-weight
technique for polynomial kernelization. Moreover, we show that the technique
applies to obtain polynomial kernels for problems with goal functions not linear
in the solution size (note that for the three problems mentioned above, the goal
function is linear in the solution size). To this end, we introduce the notion of
linearizable functions.

7.2. The Losing-Weight Technique

The preprocessing algorithm of Frank and Tardos [FT87] provides the following
central result of this chapter and key tool in the subsequent Chapter 8 (sign
denotes the signum function, see Definition 1.11).

Proposition 7.1 ([FT87, Section 3|). There is an algorithm that, on input w €
Q¢ and integer N, computes in polynomial time a vector @ € Z* with

(i) ||, < 24d° Nd(d+2) gyeh, that

(ii) sign(w'b) = sign(w'b) for all b € Z¢ with ||b], < N — 1.

Recall our description of the losing-weight technique in Section 7.1 on the
example of WIS. We briefly explain how (a) and (b) from the description relate
to Proposition 7.1. While the correspondence between (a) and Proposition 7.1(i)
is immediate, that (b) corresponds to Proposition 7.1(ii) is less obvious: Let u =
(u(v))vev,u' = (u'(v))vev € {0,1}V] be the vectors representing the sets U
and U’ respectively, that is, u(v) = 1 if and only if v € U (analogously for v’
and U’). Then Y, ., w(v) =u'w and Y, oy w(v) = u/Tw. By this, observe
that the “if-and-only-if” statement in (b) can be rewritten as u'w — u/Tw >
0 < uw'@w—uT®w >0. With b := u —« (note that ||b]|, < 2|V|) the
correspondence to Proposition 7.1(ii) now becomes clear.

Next, we give some first observations on and an example application of
Proposition 7.1. First observe that the signum of weights is maintained.

Observation 7.2. For N > 2, Proposition 7.1 gives sign(w ' €;) = sign(w ' €;)
for each i € {1,...,d}, where & € Z% is the vector that has 1 in the i-th
entry and zeroes in the others. Thus, one has sign(w;) = sign(w;) for each
ie{l,...,d}.

Moreover, observe that the order relation between the weights is also maintained.

145

7. Losing Weight for Polynomial Kernelization

Observation 7.3. For N > 3, Proposition 7.1 gives sign(w' (¢; — €;)) =
sign(@' (€; — €;)) for each i,j € {1,...,d}. Thus, one has w; —w; >0 <=
W; —W; >0 for each i € {1,...,d}.

One may wonder whether Proposition 7.1 also works for decision rather
than optimization problems. Indeed, the application to decision problems is
a direct corollary, first stated by Marx and Végh [MV15] and then formalized
by Etscheid et al. [Ets+17], by observing that the value given along in the
description of the decision problem can be “attached” to the weight vector.

Corollary 7.4 (|[Ets+17]). There is an algorithm that, on input (w,k) € Q4+
with w € Q? and integer N, computes in polynomial time a vector (), k) € Z4+1
with 0 € Z¢ and

(i) 1810, JF] < 2960+0° NDE) such that
(ii) sign(w'b— k) =sign(@ b — k) for all b € Z¢ with ||bl|, < N — 2.

Moreover, whenever we are facing a weighted problem with a linear goal func-
tion, that is, for example finding some set S such that) __gw(s) is minimized
(or maximized), the application of Proposition 7.1 is often immediate. So it
is for the well-known KNAPSACK problem, as first proven by Etscheid et al.
[Ets+17], yet solving a long-standing open question for this problem [Cyg+14].

Ezample 7.1. Recall the KNAPSACK problem: Given a set X = {1,...,n} of
n items with weights w = (w;);e(1,....ny € Q" and values v = (v;)ieq1,....ny € Q",
and rational numbers k, ¢ € Q, the question is whether there is a subset S C
X of items such that >, qw; < kand), gv; > £. A direct application
of Corollary 7.4 to each of (w, k) and (v,p) with d =n and N = n + 2 yields a
problem kernel of size polynomial in n. <

One may wonder whether an application as outlined in Example 7.1 works
also for goal functions that are stated in a non-linear way. Recall that b
in Proposition 7.1 represents all solution candidates. However, if your goal
function is not immediately of the form w b, an application of Proposition 7.1
is not directly clear. Yet, we prove an application for some problems with goal
functions stated in a non-linear way in the next two sections.

146

7.3. The Case of the Min-Power Symmetric Connectivity Problem

(a) (b)

a,b a,¢c a,d byc bd cd

g
w
oo
-~
—
[\]
—
(e}

8 10 a 1 1 1 0 0 0

b 1 0 0 1 1 0

c 0 1 0 1 0 1

b d 0 0 1 0 1 1

a 7 d T= 2 0 0 1 1 0

Figure 7.1.: Illustrative example for MIN-POWER SYMMETRIC CONNECTIVITY and
the application of Proposition 7.1. (a) depicts an edge-weighted undirected example
graph, and (b) shows its incidence matrix (z,y is short for edge {z,y}), the vector &
of edge-weights, and the vector Z representing the solution indicated by thick edges
in (a).

7.3. The Case of MIN-POWER SYMMETRIC
CONNECTIVITY

Consider the following NP-hard optimization problem from survivable network
design [Alt+06, CPS04].

MIN-POWER SYMMETRIC CONNECTIVITY (MI1P0OSYCo0)
Input: A connected undirected graph G = (V, E) and edge weights w: E —
N

Task: Find a connected spanning subgraph 7' = (V| F') of G that minimizes

max w({u,v}). (7.1)
ey {u,v}eF

The goal function (7.1) is, at first sight, not linear in F' in the following sense:
Let E = {ey,...,en} be enumerated and the weight w be represented as a vector
w € N™ such that @; = w(e;). Let b € {0,1}™ be the vector representing the
edge set F of a solution T'= (V, F), that is, b; = 1 if and only if e; € F. Then,

the value @' b is not equal to Y, oy maxg, ,1er w({u,v}). See Figure 7.1(a)
for an example.

However, we can circumvent this issue (arising from the max-function in the
goal function) and still apply Proposition 7.1. To this end, observe that we only

147

7. Losing Weight for Polynomial Kernelization

need to change the representation of a solution. An edge e € F contributes
its weight to (7.1) each time a vertex v incident to e “pays” for e, that is,
e is of maximum weight among the edges in F for v. Hence, a solution can
be represented as vector in b € {0,1,2}™, with b; = z if x € {0, 1,2} of its
incident vertices declare e; to be the edge they pay the weight for, that is,
which is incident and of maximum weight to them in the solution T' = (V, F).
See Figure 7.1(b) for an example. Notably, this change of the representation of
a solution only changes the domain of the vector b, and hence the value of IV in
the application of Proposition 7.1 by a factor of two. Eventually, we obtain the
following.

Lemma 7.5. There is an algorithm that, on any input instance (G = (V, E), w)
of MIPOSYCoO with m = |E|, computes in time polynomial in |(G,w)| an
instance (G, w) of MIPOSYCO such that

(i) @l < 247" - (2m +2)"("*2) and

(i) a connected subgraph T = (V, F) of G is an optimal solution for (G,w) if
and only if T is an optimal solution for (G,w).

Proof. Without loss of generality, we consider the edges of G as enumerated E =
{e1,...,em} and the weight functions w, @ as (column) vectors in N™ such
that w; = w(e;) and w; = w(e;) for all ¢ € {1,...,m}. We apply Proposition 7.1
with d = m and N = 2m + 1 to the weight vector w to obtain the weight
vector w. From Proposition 7.1 immediately follows (i), that is, ||@]. <
24m* . (2m + 1)m(m+2) Moreover, recall that @; > 0 for all i € {1,...,m} due
to Observation 7.2. Next, we prove that also (ii) holds true, that is, a connected
graph T'= (V, F') is an optimal solution for (G,w) if and only if T is an optimal
solution for (G,).

Let T = (V,F) be a connected subgraph of G and let ¢r: V — F be a
mapping such that ¢r(v) € argmaxy, ,1cpw({u,v}) for all v € V. Observe
that) oy maxy, pyer w({u,v}) = > oy w(er(v)). Let vector s € {0,1,2}™
represent for each edge e the number of its endpoints mapped by ¢ to e. Formally,
for each i € {1,...,m} we have

si=|{v €eilp(v) =ei}l

For a connected subgraph T = (V,F’) of G, let ¢ and s’ € {0,1,2}™
be derived analogously. Note that the cost of 7' and 7" is s'w and (s') Tw,

148

7.4. The Case of the Small Set Expansion Problem

respectively. Define b := s — s’. Note that for each ¢ € {1,...,m} it holds true
that —2 < b; < 2, and hence ||b||; < 2m = N —1. Moreover, from Proposition 7.1
we have sign(b"w) = sign(b' @), or, equivalently,

sTw— () Tw<0 <= (s—¢) w<

0
PRl T <0 = sTo—(s) @ <0.

Finally, note that due to Observation 7.3, both T and T’ are still correctly
represented by s and s’ given w, that is,

max w({u,v}) = Z W(¢p7r(v)) = s' @,and

F
veV {uv}e

veV
w D 1T~
- ’ = D
(max, @({uv}) = > @(ér () =1
veV vev

Remark 7.1. We can easily adapt Lemma 7.5 to shrink weights for an in-
stance (G,w,k) of the decision variant of MIPOSYCo by employing Corol-
lary 7.4.

Bentert et al. [Ben+17a| proved a polynomial-time algorithm that maps any
instance of MIPOSYCO to an instance where the number of vertices and edges is
linear in the feedback edge number fes, but (the encoding lengths of) the weights

in the obtained instance are not necessarily upper-bounded (polynomially) in fes.
Combining their result with Lemma 7.5 yields the following.

Corollary 7.6. MiIPoSYCo admits a kernel of size polynomial in the feedback
edge number of the input graph.

7.4. The Case of SMALL SET EXPANSION

Next, consider the following optimization problem [Ban+14, RS10].

149

7. Losing Weight for Polynomial Kernelization

SMALL SET EXPANSION (SSE)

Input: An undirected graph G with edge weights w : E(G) — Q4.

Question: Find a non-empty subset S C V(G) of size at most |S| < n/2
that minimizes

1 Z w(e), (7.2)

‘S| ee(S,V(G)\S)

where (S,V(G) \ S) denotes the set of all edges with exactly one
endpoint in S.

Observe that the goal function (7.2) is not linear in a solution vertex set.
However, the value of interest for a vertex set S can be represented by w ' s for a
fractional vector s € {0, ﬁ}‘E (@I, where s is different to zero if and only if the

corresponding edge is in the edge cut (S, V(G)\ S). Yet, fractional numbers are
not captured by Proposition 7.1. However, we can derive the following where
we define

Q, = {g | plyg € {0,...,r}, q #0}. (7.3)

Proposition 7.7. There is an algorithm that, on input w € Q% and integer r €
N, computes in polynomial time a vector @ € Z* with

(i) ||@]| o, < 2% (r2 - d 4+ 1)" N2 sych that

(i3) sign(w'b) = sign(@b) for all b € Q.

Proof. Apply Proposition 7.1 with N = 7!-7-d + 1 to obtain a vector @ € Z¢
with

13|, < 244 N+ = 94 (o g 4 1)Ad+2) < 94" (12 g 4)rd(d+2)

such that sign(w ' b) = sign(@ "b) for all b € Z¢ with ||b]|, < N —1. Let b* € QZ.
We have

sign(w'b*) = sign(@ ' b*) <= r!-sign(w'b*) = 7! sign(@d ' b*)
> sign(w' (r!-b*)) = sign(@ ' (r! - b*))

— sign(w' V) = sign(@ '),

where for b = 7! - b* holds true that ' € Z% and ||b/||, <7!-7-d=N—-1. O

150

7.5. Linearizable Functions

Now, with Proposition 7.7, we get the following.

Lemma 7.8. There is an algorithm that, on any input instance (G = (V, E), w)
of SSE with n == |V| and m = |E|, computes in time polynomial in |(G,w)|
an instance (G, w) of SSE with w € N™ such that

(i) @] <2 - (nt - m 4 1) mm42) ang

(i) a set S CV is an optimal solution for (G,w) if and only if S is an optimal
solution for (G,).

Proof. Without loss of generality, we consider the edges of G as enumerated E =
{e1,...,emn} and the weight functions w and @ as (column) vectors in Q" and
in N™ respectively, such that w; = w(e;) and @W; = W(e;) for all i € {1,...,m}.
We apply Proposition 7.7 with d = m and r = n%. Let S C V, and let s €
{0, |1?|}m be the vector corresponding to the edges in the cut (S, V' \ S), that
is, s; # 0 if and only if ¢; € (S,V \ S). Let S’ C V be another set, and
let " € {0, ﬁ}m with s} # 0 if and only if e; € (S’,V'\ §’). Define b := s — ¢

Note that |s; — s}| = ||‘|g5|/51 - ‘S‘S |‘é|‘ |S|‘,9|| % 1,| }, and hence b; € Q2.
We thus get

stw—()Tw<0 <= (s—5)w<0

Prop. 7.7 . e Iy

LS s -0 <0 = sTw—(s) @ <0. O

We are not aware of any study on SSE from a parameterized algorithmics
point of view.

7.5. Linearizable Functions

The cases of MIPOSYCO and SSE show that problems with non-linear goal
functions still allow an application of the losing-weight technique. A natural
question is what characterizes these goal functions. Both of our cases have
in common that for any weight vector w, the goal function’s value for every
solution s can be represented as b] w with by being a vector associated with s.
Moreover, to apply the losing-weight technique, we also need that if we change
the weight vector to a “smaller” weight vector w, then the goal function’s value
is still represented for solution s as b] @ and vice versa. That is, we want that
the goal function’s value for w is b/ w if and only if the goal function’s value

151

7. Losing Weight for Polynomial Kernelization

for @ is b, @. What we described so far is captured in the following (recall (7.3)
for the definition of Q).

Definition 7.1. A function f: L x Q¢ — Q with L C £* is a-linearizable,
a € N, if for all w € Q¢ it holds true that

(A) for all x € L there exists b, € Q¢ such that f(z,w) = b} w, and

(B) for all w’ € Q% for which sign(8"Tw) = sign(8Tw’) for all B € Q% holds, it
holds true that f(z,w) =b]w <= f(z,w') =blw'

We prove next that the losing-weight technique applies to problems with
a-linearizable goal functions, that is, for any weight vector we can compute in
time polynomial in the input size a “smaller” weight vector such that solutions
are preserved.

Proposition 7.9. Let f: LxQ% — Q with L C £* be an a-linearizable function,
and let w € Q. Then we can compute in time polynomial in the encoding length
of w and «, a vector W € Z* such that

(i) 8l <2 (404 - d + 1)274+D), gnd

(i) f(z,w)> fly,w) < f(z,®) > f(y,©) for all z,y € L.

Proof. Apply Proposition 7.7 with r = 2a2 to obtain the vector @. Since f
is a-linearizable, by (A) we know that for every z,y € L there are b,, b, € Q2
such that f(z,w) = b, w and f(y,w) = b, w. Moreover, for b := b, — b, we
have b € anz. Next we have that

Faw) — fyw) >0 L5 (b, —b)Tw

7

>0
ML, —b,) B >0

(B) . .

— f(:z:,w)—f(y,w)ZO,

where the last equivalence follows from the fact that for @, by Proposition 7.7,
for all 3 € QF , we have sign(3"w) = sign(8'®), and hence from (B) we get
f(z, @) =b] @ and f(y,@):b;—@. O

Intuitively, Proposition 7.9 yields the following: if we know that our goal
function is a-linearizable, then we can employ the losing-weight technique
where the encoding length of the computed weight vector is polynomially upper

152

7.5. Linearizable Functions

bounded in a and the dimension d. To easily employ Proposition 7.9, we only
need to determine whether our goal function is a-linearizable, and, in particular,
determine «. In fact, in what follows, we show that a-linearizable functions are
functional composable: if a function is some specific function, say the maximum,
of an a-linearizable function, then it is o'-linearizable for some «o’. This allows
for recognizing whether a function is a-linearizable by only looking at the
functions it is composed of. In the following we define several of these functional
compositions, and exemplify its usage on MIPOSYCo and SSE.

Revisiting the Case of MIPoSYCo. The goal function in M1IPoSyCo is
composed of a sum over maxima. We prove that these compositions preserve
linearizability.

Lemma 7.10. Let f: L x Q% —» Q, and f' : L' x Q¢ — Q be two functions
where L' encodes some set U and L encodes the set {X C U | | X| < n} for
some n € N. If f' is a-linearizable, then

(i) f(X,w) =3 cx f'(z,w) is n-ala-linearizable;
(i) f
(iii) f

Proof. (i): Since f’ is a-linearizable, by (A) for f’ we know that for every x € L’
there is b, € Q% such that f’(z,w) = b,"w. Hence, we have

f(X’w) = Z f'(x,w) = Z b;—rw = (Z b;)Tw = b}w,

zeX reX zeX

where by € Q%_,,. That is, (A) holds for f. To prove (B) for f, let @ € Q¢ such

that sign(8"Tw) = sign(8T®) for all 3 € Q¢ _,,. Note that due to (B) for f/, we
have

(X, w) = max,ex f'(z,w) is 2a2-linearizable;
(X, w) = mingex f'(x,w) is 2a2-linearizable.

flz,w) =bw = f(z,®) =, (7.4)
since sign(8 T w) = sign(8 @) holds for all 3 € Q¢ C Q¢ It follows that

f(X,w) =byw < Z fz,w) = Z AR

reX zeX
S Pad) = S Wa — f(X,d)=bka,
rzeX reX

153

7. Losing Weight for Polynomial Kernelization

and hence (B) follows.
(ii): Since f’ is a-linearizable, by (A) for f’ we know that for every x € L’
there is b, € Q2 such that f'(z,w) = b."w. Hence, we have

f(X,w) = rmrleaf)%(f'(:r,w) = Iwnea)%(b;—rw =blw=biw,

where 2* € argmax,.x b, w and by € Q. That is, (A) holds for f. To
prove that (B) holds for f, let @ € Q% such that sign(8w) = sign(3' @) for
all 3 € Q¢ .. Note that due to (B) for f/, we have

fla,w) = w <= f'(e,®) = b @, (7.5)
since sign(8 T w) = sign(BT®) holds for all 8 € Q¢ C Q§a2. Moreover, for y € X
let f'(y,w) = b} w. Let b:= b} — b, and note that b € Qf .. Hence, by the
choice of W, it holds true that b"w > 0 if and only if b"@ > 0. Thus, with (7.5)

and by the choice of z* we have f/(z*,w) > f'(y,w) <= [f'(a*, @) > f'(y,)
for all y € X, and hence

/ _ T / ~\ T
gnea;((f (z,w) =bw < glea)}((f (x,w) = b, W. (7.6)

It follows that
f(X,w) =byw <= mg)({f’(x,w) =blw
€9 ma f'(v, @) = VL0 = f(X,5) = by,
TE

and hence (B) follows.
(iii): Follows analogously to (ii). O

We explain the use of our machinery for MIN-POWER SYMMETRIC CONNEC-

TIVITY. First observe that we can rewrite the goal function to fit our notion as
follows. Let F), :={e € F |v € e} and F :={F, | v € V}. Then

h(F,w) = g g(Fy,w), with g(F,w) = malg(w(e).
ec
F,eF

Clearly, with E = {ey,...,en} the function f: E x Q™ — Q, f(e;,w) — w; is
1-linearizable: On the one hand, we have that f(e;,w) = & w (recall that &;
denotes the unit vector with the ith entry being one). On the other hand, for

154

7.5. Linearizable Functions

all w' € Q™ it holds true that f(e;,w) =& w <= f(e;,w') = & w' (in fact,
this even holds true without any conditions on w'’).

Due to Lemma 7.10(ii), we know that the function ¢g(F,w) = maxecr f(e, w)
is 2-linearizable. Finally, due to Lemma 7.10(i) (with L’ = 2F and n = |V]),
we know that the function h(F,w) = >, 7 g(Fy,w) is 2! - 2m-linearizable.
Employing Proposition 7.9, we get in polynomial time a vector @w € Z™ such
that

o |||, €200 los(m) and
e for any two connected subgraphs T' = (V, F), T/ = (V, F') of G, we have

max w({u,v}) > max w({u,v}) <=
eV {u,v}eF v {u,v}eF

max w({u,v}) > max w({u,v}),
eV {u,v}eF v {u,v}eF

that is, optimal solutions are preserved under w. Altogether, we reproved
Lemma 7.5.

Revisiting the Case of SSE. The goal function in SSE is a multiplication
of a number and a sum. By Lemma 7.10(i), we already know that the sum
preserves linearizability. However, we also need to prove whether, and if how,
linearizability is preserved under multiplying by some number.

Lemma 7.11. Let f, f': L x Q% — Q where L is equipped with some func-
tion ¢: L — Qp \ {0}, where n € N. If ' is a-linearizable, then f(x,w) =
c(x) - f'(x,w) is «- n-linearizable.

Proof. Since f’ is a-linearizable, by (A) for f’ we know that for every x € L
there is b, € Q% such that f’(z,w) = b."w. Hence, we have

flz,w) = c(@)f'(z,0) = e(x) - b w = (c(z) - 0,) Tw = by w,

where b, € Q2_, proving (A). Let @ € Q7 such that sign(8"Tw) = sign(8' @)
for all 3 € Q?,. Note that we have f'(z,w) = (by/c(x))Tw <= f'(z,®) =
(by/c(x)) Tw. It follows that

=
&
S
~
I
S
e
S
=
w®
S
~
I
—
S
2
~
Q
—~~
8
~—
—
-
g

155

7. Losing Weight for Polynomial Kernelization

and hence (B) follows. O

We now explain the usage of our machinery for SSE. Let Eg := (S, V' \ S) for
all SCV. Let L={(S,Es) | SCV,1<|5|<n/2}. Let ¢: L - Q, \ {0}, c:

(S, Eg) — ﬁ Then

(. Es).w) = r70((S. Bs)ow). with g((S,Es).u) = 3 w(e)
ecEg

We already now that w : E — Q is 1-linearizable. Moreover, by Lemma 7.10(i)
we know that g is m-linearizable. Finally, due to Lemma 7.11, we arrive at h
being n - m-linearizable. Finally employing Proposition 7.9 reproves Lemma 7.8.

A Brief Summary. We introduced a-linearizable functions (Definition 7.1).
Due to Lemmas 7.10 and 7.11, we can recognize some a-linearizable functions
by simply looking at how the functions are composed. Further, we proved that
if a problem has an a-linearizable goal function, the losing-weight technique
applies (Proposition 7.9). However, note that in Lemma 7.10(i), we obtain a
factorial in the “«”. This is not the case if we replace Q,, in Definition 7.1 by Z,
where

Z,={pel]|lpl €{0,...,7}}. (7.7)

This replacement while more restrictive, appears to be often sufficient like in
the case of MIPOSYCo0, and also allows for “chaining up sums” while keeping «
polynomially bounded.

The functional compositions preserving linearizability we detected are taking
a sum, a maximum or minimum, or scaling (by some factor). We are curious
about other compositions of functions preserving linearizability.

7.6. Concluding Remarks

The losing-weight technique due to Frank and Tardos [FT87] emerges as a key
ingredient for obtaining polynomial kernelization for weighted parameterized
problems. While Etscheid et al. [Ets+17] and Marx and Végh [MV15] proved the
usefulness of the technique for several problems with linear goal functions, we
proved the technique to be applicable to problems with non-linear goal functions,
like the MIN-POWER SYMMETRIC CONNECTIVITY problem. Moreover, in the

156

7.6. Concluding Remarks

next chapter we use the technique for an unweighted problem (via introducing
weights similar to Marx and Végh [MV15], and hence reducing to a weighted
problem).

As Etscheid et al. [Ets+17] already pointed out, one direction for future
work could be to improve on the upper bound in Proposition 7.1(i). Another
direction, seemingly not addressed so far, aims on the running time. Note that
Frank and Tardos [FT87] state no explicit running time of their algorithm,
and Lenstra et al. [LLL82, Proposition 1.26] state that their simultaneous
Diophantine approximation algorithm, which forms a subroutine in Frank and
Tardos’ technique, runs in O(d%(log(||w|))°™)) time. Hence, we are curious
about the following.

Open Problem 11. Can Proposition 7.1 be executed in quadratic, or even
linear time?

Very recently, Eisenbrand et al. [Eis+19] reconsidered Frank and Tardos’
technique in the context of integer programming. They give a non-constructive
improvement on Proposition 7.1 shaving off to a dlog(d) exponent in the
upper bound. However, it is not explained how to use this for polynomial
kernelization, since formally we have to construct the kernel (here, the weight
vector). Eisenbrand et al. use some oracle-machinery and state that non-
constructiveness suffices for this machinery. Inspired by that, we wonder whether
Frank and Tardos’ technique can be used in developing polynomial Turing
kernelizations.

157

CHAPTER

THE SHORT SECLUDED PATH PROBLEM

We study the SHORT SECLUDED PATH problem for the possibility of efficient
data reduction regarding several (structural) parameters and prove several lower
and upper bounds. Herein, we achieve two kernelization upper bounds via the
losing-weight technique.

8.1. Introduction

Finding (the length of) a shortest path between two terminal vertices in an
undirected graph is a fundamental problem. In addition to tasks like route
planning, finding shortest paths is an inherent task in computing several graph
measures, like centrality of a vertex or the diameter of a graph. It is folklore
that a shortest path between two terminal vertices s and ¢ can be computed
in linear time. In this chapter, we study the following NP-hard variant of the
classic problem of finding a shortest s-t path.

SHORT SECLUDED PATH (SSP)

Input: An undirected graph G = (V, F) with two distinct vertices s,t € V|
and two integers k > 2 and ¢ > 0.

Question: Is there an s-t path P in G such that |V(P)] < &k
and [No(V(P))| < €7

This chapter is based on (parts of) On the computational complexity of length- and
neighborhood-constrained path problems by Max-Jonathan Luckow and Till Fluschnik (Infor-
mation Processing Letters [LF20]) and Parameterized algorithms and data reduction for the
short secluded s-t-path problem by René van Bevern, Till Fluschnik, and Oxana Yu. Tsidulko
(Networks [BET20]).

8. The Short Secluded Path Problem

In other words, we want to find a short path connecting the terminals s and ¢
such that the number of vertices adjacent to the path is small. Thus, the
problem is motivated by safe routing through transportation networks—taking
a short route with few interventions is of smaller risk.

SSP is similar to the SECLUDED PATH problem, introduced by Chechik et al.
[Che+17], that, given an undirected graph G = (V| E) with two designated
vertices s,t € V, vertex-weights w : V — N, and two integers k,C € N,
asks whether there is an s-t path P such that the size of the closed neighbor-
hood | N[V (P)]| < k and the weight of the closed neighborhood w(Ng[V (P)]) <
C. While SSP is unweighted, it distinguishes between the number of vertices in
the path and in its open neighborhood, in contrast to SECLUDED PATH.

In this chapter, we aim for efficient data reduction for SSP regarding the
parameters k and ¢, several structural graph parameters like treewidth, and
their combinations.

Related Work. Luckow [Lucl7] (see also [LF20]) first defined SHORT SE-
CLUDED PATH and proved it to be NP-hard, W[1]-hard regarding k, and para-
NP-hard regarding /.

Chechik et al. [Che+17] mostly studied SECLUDED PATH in the context of
approximation algorithms. In addition to SECLUDED PATH, they introduced
the SECLUDED STEINER TREE problem and proved it to be NP-complete.
Fomin et al. [Fom+17a] studied the parameterized complexity of SECLUDED
PATH and SECLUDED STEINER TREE. They proved that SECLUDED PATH
admits kernels with size polynomial in the combination of k and the feedback
vertex number. Moreover, they proved that SECLUDED PATH admits no kernel
with size polynomial in the vertex cover number.

Golovach et al. [Gol+17] studied the “small secluded” scenario for finding
connected induced subgraphs with given properties. They proved that if the
requested property is characterized through finitely many forbidden induced
subgraphs, then the problem is fixed-parameter tractable when parameterized
by the size ¢ of the open neighborhood. Their result does not generalize to SSP,
since SSP is NP-hard even for ¢ = 0 [LF20, Lucl7].

Our Contributions. Our results and the outline of this chapter are sum-
marized in Figure 8.1. We study four (structural) parameters, each of them
combined with k, ¢, and k + £. For two of our results, namely Theorems 8.25
and 8.31, we employ the losing-weight technique (Proposition 7.1) described

160

8.2. Preliminaries on SSP

(‘fes (rnm. s31) J+ &)+)+k+e) (section 8.7)
<[ve)+ K (Thm. 8.28))+ € (Thm. 8.22))+ k + £) (Section 8.6)
(fIs)+ & V€ (Thm. 8.17))+ k + € (Thm. 8.11)) (Section 8.5)
(tw)+ &)+)+ b+ € (Thm. 8.5)) (Section 8.4)

Figure 8.1.: Overview of the existence of polynomial kernelization (arrows relate pairs
of parameters, cf. Figure 1.4). A white box depicts the existence of a polynomial kernel
and a gray box depicts an exclusion of a polynomial kernel (unless coNP C NP ,y).

in the previous chapter. Notably, in both cases, the technique is applied to
an unweighted problem. We describe our application of the technique in more
detail in Section 8.3.

Our negative results on kernelization for SSP regarding the vertex cover
number ve are stronger than the corresponding result of Fomin et al. [Fom+17a]
for SECLUDED PATH: we prove that SSP parameterized by vec+r is WK][1]-hard
and admits no polynomial kernel even in bipartite K, ,-subgraph-free graphs.

8.2. Preliminaries on SSP

In this section, we first prove SSP to be fixed-parameter tractable when param-
eterized by the combination of the number of vertices in the solution path and
its open neighborhood size.

Theorem 8.1. SHORT SECLUDED PATH admits an O((k + £)*) - n®M) -time
algorithm and hence is fized-parameter tractable when parameterized by k + £.

Proof. Let T = (G = (V, E), s,t,k,£) be an instance of SSP. We partition V =
R W B such that R :== {v € V | deg(v) > k+ ¢+ 1}. Clearly, no solution
s-t path can contain any vertex from R. Apply the following branching tree
algorithm. Starting at s, consider all neighbors of s and branch on vertices
from B but not from R, that is, only on vertices of degree at most k + ¢, and
proceed recursively. Stop branching at depth & — 1 (s is by convention at depth
zero). Observe that every s-t path with at most k vertices is found in the
branching, and we can verify in polynomial time whether the size of the open
neighborhood of the found path is at most ¢ (return that Z is a yes-instance

161

8. The Short Secluded Path Problem

in this case). As we only branch on vertices from B, we have at most (k + £)*
nodes in our branching tree. If the whole branching tree is explored without
returning that Z is a yes-instance, then return that Z is a no-instance. Hence,
we can decide Z for SSP in O((k + £)F) - n®M) time. O

Note that we will prove SSP to admit no kernel of size polynomial in k + ¢
unless coNP C NP /o1, (Theorem 8.5). Further, from now on we can assume
that the input graph is connected due to the following.

Reduction Rule 8.1. If G has more than one connected component, then
delete all components except the one containing both s and t or, if such a
component does not exist, return that the instance is a no-instance.

8.3. Weighted SSP and Losing Weights

We achieve two of our polynomial kernels via an auxiliary vertex-weighted
variant of SSP. Our vertex-weighted variant of SSP allows each vertex to
have three weights, where x(v) contributes to the length of the path, and A(v)
and n(v) contribute to the number of neighbors. It is defined as follows.

VERTEX-WEIGHTED SHORT SECLUDED PATH (VW-SSP)

Input: An undirected graph G = (V, F) with two distinct vertices s,t € V|
two integers k > 2 and ¢ > 0, and vertex weights k : V - N, A: V —
Np, and n: V — Ny.

Question: Is there an s-t-path P with >y (py £(v) < kand 3°, v (py n(v)+

ZveN(V(P)) A(v) </ in G?

Note that an instance of SSP can be considered to be an instance of VW-
SSP with unit-weight functions x and A and the zero-weight function 7. As
a convention throughout this chapter, for any set X C V', we write v(X) for
Y owex V(@) for every v € {x, A, n}.

Now, the idea behind the two polynomial kernels via VW-SSP can be
summarized as follows (refer to Figure 8.2):

1. Shrink the number of vertices and edges while introducing vertex-weights
and hence constructing a vertex-weighted instance.

2. Shrink the vertex-weights using the losing-weight technique (Proposi-
tion 7.1) such that their encoding lengths is upper-bounded polynomially
by the number of vertices in the graph.

162

8.3. Weighted SSP and Losing Weights

vertices € O(p) |Z.,] € O(p) || € p°®

Figure 8.2.: High-level sketch of our approach to achieve polynomial kernels. Z and Z’
denote instances of SSP (white boxes), and Z,, and Z,, denote instances of VERTEX-
WEIGHTED SHORT SECLUDED PATH (gray boxes).

3. Apply a polynomial-time many-one reduction to map the vertex-weighted
instance to an instance of SSP.

Step 1 of our outlined algorithm consists of parameter-specific data reduction
rules. We describe Steps 2 and 3 in more detail in the remainder of this section.

Step 2: Shrinking Weights. To shrink the weights of an VW-SSP instance,
we apply Proposition 7.1 and Observation 7.2 to the weights of VW-SSP.

Lemma 8.2. An instance T = (G = (V,E),s,t,k,{,\,k,1m) of VERTEX-
WEIGHTED SHORT SECLUDED PATH with n := |V| can be reduced in polynomial
time to an instance T' = (G, s, t, k', 0/, N, k',n') of VW-SSP such that

(i) k', & (0), 0, N (0), 1 (v) € {0,...,24Cn+1" . (4 2)@En+D @431 for eqeh,
vertexv € V, and

(i) T is a yes-instance if and only if ' is a yes-instance.

Proof. We denote the weight functions A\, X', k, x’, , and 1’ as column vectors
in N such that v, = y(v) for each v € V and v € {x, A\, n}.

We apply Proposition 7.1 with d = 2n + 1 and N = n + 2 separately
to the vectors (n,\,¢) € N*"*1 and (k,{0}",k) € N?"*1 to obtain vectors
(', N, ") € Z*"*L and (x',{0}", k") € Z*>"*! in polynomial time.

(i) This follows from Proposition 7.1, with d = 2n + 1 and N =n + 2, and
from Observation 7.2 since (1, A, £) and (k, {0}, k) are vectors of non-negative
numbers.

(ii) Consider an arbitrary s-t path P in G and two associated vectors z,y € Z",
where

0 otherwise.

1 ifveV(P), 1 ifveN(V(P)) and
‘r’U = . y’U =
0 otherwise,

163

8. The Short Secluded Path Problem

Observe that ||(z,{0}",—1)|1 < |(z,y,—1)|]1 <n+1. Sincen+1< N -1,
Proposition 7.1 gives sign((z,y, —1) T (n, A, £)) = sign((z,y, —1) " (', N, £")), be-
ing equivalent to

S+ D> A <L = D> Hw+ Y N <L,

veV (P) veEN(V(P)) veV(P) vEN(V(P))

and sign((x, {0}", —1) T (k, {0}", k)) = sign((z, {0}, —1) T (x’, {0}", k")), being
equivalent to

ZH(’U) <k Zm'(v) <FK. O

veP veP

Step 3: Reducing back. For reducing back, we give a polynomial-time
many-one reduction from any instance of VW-SSP being of the following
specific structure.

Definition 8.1. An instance (G = (V, E), s,t,k, ¢, A, k,n) of VW-SSP is called
simplified if there is a set A C V such that

(ii) AM(v)=1forallv eV,
(iii) n(v) > € and k(v) =1 for all v € A, and

(iv) in G — A, every vertex v with x(v) > 1 has exactly two neighbors u and w,
with k(u) = k(w) = 1, and each having degree at most two and being
distinct from s and t.

Next we show that for any given simplified instance of VW-SSP, we can
compute in linear time an equivalent instance of SSP whose number of vertices
only depends on k and 7.

Proposition 8.3. Any simplified instance (G = (V, E), s, t, k, L, A\, k,7n) of VW-
SSP with given A CV can be reduced to an equivalent instance of SSP with at
most M = rk(V') + n(V') vertices in time linear in M + |E)|.

To prove Proposition 8.3, we use the following construction.

164

8.3. Weighted SSP and Losing Weights

Figure 8.3.: Illustrative example to Construction 8.4. On the left-hand side, an input
graph with vertex weights (indicated by different vertex shapes) is depicted. on the
right-hand side, the graph obtained after applying Construction 8.4 (green vertices
indicate added vertices) is shown. Vertices enclosed in the gray solid rectangle form
the set A.

Construction 8.4. Let (G = (V, E),s,t,k,{, A\, k,n) be a simplified instance
of VW-SSP with given set A C V as in Definition 8.1. Construct an in-
stance (G',s',t',k,£) of SSP as follows (see Figure 8.3 for an illustrative ex-
ample). Let G’ be initially a copy of G. For each v € V with k(v) > 1,
let {v',v"} = Ng_a(v), replace v by a path P, with x(v) vertices, make one
endpoint adjacent to v/, and the other endpoint adjacent to v”/. Next, for
each v € V, add a set U, of n(v) vertices. If x(v) = 1, then make each u € U,
only adjacent to v. If k(v) > 1, then make each u € U, only adjacent to
some vertex x on P,. Finally, for each v € V' \ (AU {s,t}) with x(v) > 1
and A, = Ng(v) N A # (), make each w € A, adjacent with some vertex x
on P,. This finishes the construction of G’. Observe that the construction can
be done in O(M + |E]) time and (G, s,t, k,{) consists of M vertices. A

Proof of Proposition 8.3. Let T = (G, s,t,k, ¢, \,k,n) be a simplified instance
of VW-SSP with G = (V,E) and given set A C V as in Definition 8.1.
Apply Construction 8.4 to compute instance Z' := (G', s, t, k, £) of SSP with at
most M = (V) + n(V) vertices in time linear in M + |E|. We claim that Z is
a yes-instance if and only if 7’ is a yes-instance.

(=) Let Z be a yes-instance and P := (v1, v, ...,vq) with v1 = s and v, =
t be a solution s-t path. Let W C V(P) denote the vertices in P with x(v) > 1.
We claim that the path P’ obtained from P by replacing each vertex v € W by P,

165

8. The Short Secluded Path Problem

is a solution s-t path to Z’. First, observe that |V (P')| = |[V(P)\W|+x(W) < k.
It remains to prove (recall that A(v) =1 for all v € V)

INa:(V(P)| = [Na(V(P)| + Y U] = IN(V(P))| + > _n(v)

veV (P') veV(P)

To this end, it is enough to prove Ne/(V(P')) = Na(V(P)) W W,cy (pr) Uo-
First observe that no vertex in A is in V(P) since n(v) > ¢ for all v € A.
Thus, no vertex in A is contained in V(P’). For each v € W let v’ and v”
be the only two neighbors of v in G — A. Then, for each v € W, we have
Ne/(V(P))\ {v/,v"} = Ng(v) \ {v',v"}, since the neighbors of v in A coincide
with the neighbors of V(P,) in A. Thus,

Ne(V(P') = <NG'(V(P)\W)\ U V(Pv)) U U We(VP)\ {',0"})

veW veW
u H U
veV (P)
= (Na(V(PAWI\W)U | (Ne@)\{ v He | U,
veW veEV (P)
— U U,.
VeV (P)

(<) Let 7' be a yes-instance and let P’ be a solution s-t path. Note that
all vertices in P, for v € V with k(v) > 1 are of degree two in G' — (AU U,)
and distinct from s and ¢. Hence, if a vertex of P, is contained in P’, then all
vertices from P, are contained in P’. Let W C V denote the set of vertices v
with k(v) > 1 such that P, is a subpath of P’. We claim that the path P
obtained from P’ by replacing each path P, by v € W is a solution s-t path for Z.
First, observe that x(V(P)) = |V(P")| — Zvew [V(P)|+ (W) =|V(P)| <k.
Second, similarly as in the above direction, since Z is simplified, we have

INa(VP)I+ D a(w) = INa(V(P)+ Y U

veEV(P) veEV(P)
= [N/ (V(P'))| < L. O

166

8.4. Treewidth

Figure 8.4.: Tllustrative example of Construction 8.6 with p = 4 instances with
graphs G1,...,G4.

8.4. Treewidth

We proved SSP parameterized by k + ¢ to be fixed-parameter tractable (The-
orem 8.1). Complementing this, we prove that, unless coNP C NP /.1, SSP
admits no kernel of size polynomial in k£ + £. In fact, this holds true even when
the parameter is additionally combined with the treewidth of the input graph:

Theorem 8.5. Unless coNP C NP0, SHORT SECLUDED PATH admits no
kernel with size polynomial in tw 4+ k + £, even on planar graphs with maximum
degree siz.

We prove Theorem 8.5 using an OR-cross-composition. The construction is as
follows (refer to Figure 8.4 for an illustrative example).

Construction 8.6. Let p be a power of two, and let Z; = (Gj, s, t;, ki, £;),
i € {1,...,p}, be instances of SSP such that each G; is a planar graph of
maximum degree five and has a planar embedding with s; and ¢; on the outer
face. Without loss of generality, the vertex sets of the graphs G1,...,G), are
pairwise disjoint, and, for all ¢ € {1,...,p}, we have |V(G;)| = n, {; = ¢,
k; =k, and k,¢ < n (this is a polynomial equivalence relation). We construct
an instance Z = (G, s,t, k', ¢') of SSP, where

k' =k + 2log(p) + 2,
0=+ 2log(p),

and the graph G is as follows. Graph G consists of Gy, ..., G, and two rooted
balanced binary trees T and T; with roots s and ¢, respectively, each having p

167

8. The Short Secluded Path Problem

(a) o (b)]

‘{.‘15-97}‘ ‘{h2~,h3}H{}LZ-,}M}H{}LSJLG}

[{92,95}] [{92, 94}] [{55 96} {5, 7}

(c) {s,t}

{87927t7h2} {87957t7h’5}

93 g7

{92, 93, h2, b3, Vi} | | {92, 91, ho, ha, Vot | | {9, 96, ha, he, Va} | | {g, g7, ha, bz, Vi) |

Figure 8.5.: Overview of the tree decompositions (sets in boxes refer to the bags),
exemplified for p = 4 input instances. (a) and (b) display the tree decomposition for T
and T}, respectively. (c) displays the tree decomposition T (and Ts; when removing V;
for i € {1,...,4}). Here, V; represents the set of vertices in the input graph G;.

leaves. Let gi,...,g92p—1 and hi,...,ho,—1 denote the vertices of Ty and T
enumerated by a depth-first search starting at s and ¢, respectively. Moreover,
let a1,...,ap and by,...,b, denote the leaves of Ty and T} as enumerated in
each depth-first search mentioned before. Then, for each ¢ € {1,...,p}, graph G
contains the edges {a;, s;} and {b;,¢;}. This finishes the construction. A

We first prove that the graph computed in Construction 8.6 has treewidth at
most n + 3. We then prove that the instance computed in Construction 8.6 is a
yes-instance if and only if one of the input instances is a yes-instance.

Lemma 8.7. LetZ;, i € {1,...,p}, and T = (G, s,t, k', ¢') be as in Construc-
tion 8.6. Then tw(G) < n+ 3.

Proof. We give a tree decomposition (see Definition 1.13) of width at most n+ 3
for G as illustrated in Figure 8.5:

First, we construct a tree decomposition Ts = (T, ;) of Ts with bags as
follows. Let parent, (v) denote the parent of v € V/(T%) (where parenty (s) = s).
For each v € V(Ts), let Bs(v) = {v} U {parents (v)}. Then Ty is a tree
decomposition of width one. Let T; = (T3, 8;) be the tree decomposition for T}
constructed analogously.

168

8.4. Treewidth

We now construct a tree decomposition Tg; = (T, B5¢) for the disjoint union
of Ty and Ty as follows: take T' = Ty and, for each ¢ € {1,...,2p — 1}, let
Bst(gi) = Bs(g:)UB:(h;), where g; and h; are the vertices of Ty and T} according
to the depth-first search labeling in Construction 8.6. As Ty and T} are tree
decompositions of two vertex-disjoint trees Ts and T}, respectively, and {g;, g;} is
an edge of T if and only if {h;, h;} is an edge of T}, T is a tree decomposition
for the disjoint union of Ty and T;. The width of Ty, is three.

Now, recall that, for ¢ € {1,...,p}, the graph G; in G is adjacent to exactly
one leaf a; of T and one leaf b; of T;. Hence, by adding V(G;) to bag S(a;), con-
taining both a; and b; for each ¢ € {1,...,p}, we obtain a tree decomposition T
of G from Ty, of width at most n + 3. Hence, we have tw(G) < n + 3. O

Next we prove Construction 8.6 to construct an equivalent instance.

Lemma 8.8. Let Z;, i € {1,...,p}, and T be as in Construction 8.6. Then T
is a yes-instance if and only if Z; is a yes-instance for some i € {1,...,p}.

In the proof of Lemma 8.8, we will use the following observation on the graph
obtained from Construction 8.6.

Observation 8.9. Let G with terminals s and t be the graph obtained from Con-
struction 8.6. Then every s-t path contains at most one terminal pair s;,t; for
some i € {1,...,p}.

Proof. We prove the statement by induction on ¢, where p = 29. For ¢ = 1,
the observation holds immediately. For the induction step, assume that the
statement holds for g—1 > 1. Let GG with terminals s and ¢ be the graph obtained
from Construction 8.6 with p = 29. Recall that we labeled both rooted balanced
binary trees by a depth-first search and connected the leaves with the instances
in the same order in each tree. Hence, G — {s,t} contains two components G*
and G2, where G' and G? are the graphs obtained from Construction 8.6
with p = 2971, Let s',#! denote the terminals for G', and s%,t? denote the
terminals for G2. By the inductive assumption, every s'-t! path contains at
most one terminal pair s;,t; in Gl7 and every §2-t2 path contains at most one
terminal pair s;,¢; in G2. Since every s-t path in G contains either s! (and then
also t') or s? (and then also t?), every s-t path contains a subpath which is
either an s'-t' path or an s2-t? path. Thus, the claim follows. O

Proof of Lemma 8.8. (<) Let Z;, i € {1,...,p}, be a yes-instance, and let P;
be a solution s;-t; path in G. Let P;; denote the unique path with endpoints s

169

8. The Short Secluded Path Problem

and a; in T,. Note that |V (Ps ;)| = log(p) + 1. Similarly, let P,; denote the
unique path with endpoints ¢ and b; in T;. Note that |Np, (Ps ;)| = log(p), as
each vertex in P; ; except s and o; are of degree three in T, and s has one unique
neighbor not in P, ;. With the same argument, we have | N, (P, ;)| = log(p).
Let

Vpi = V(Pz) U V(Pg 1) U Vr(F)Z t) and

))

Epi = E(Pl) U E(Ps,i) U E(Piﬂg) U {{ai, Si}, {ti, bl}}

We claim that the path P = (Vp,, Ep,) is a solution s-t path in G. By con-
struction, P contains at most &k’ vertices: Note that V(P;) UV (P, ;) UV (P; ;)
contains at most k + 2log(p) + 2 vertices. Moreover, we have |Ng(P)| =
N1, (Ps)| + [Nz, (Pit)| + [Ne, (Pi)| < 2log(p) +£ =1

(=) Let T be a yes-instance, and let P be a solution s-t path in G. We claim
that there is a subpath P; C P such that P; is a solution s;-t; path in G;, for
some i € {1,...,p}. Observe that P must contain at least one leaf in Ty and one
leaf in T;. Hence, |V (P)NV(Ts)| > log(p) + 1 and |V(P) NV (Ty)| > log(p) + 1.
Moreover, s; € V(P) if and only if ¢, € V(P), as P has only endpoints s and ¢,
and {s;, t;} separates V(G;)\{s;, t;} from V(G)\V(G;). Hence, let i € {1,...,p}
such that a; € V(P) (and hence b; € V(P)). Let P; be the subpath of P with
endpoints s; and t;. Clearly, V(P;) C V(G}). We claim that P; is a solution
si-t; path in G;. First, suppose |V(P;)| > k. Then we have

V(P)| = [V(P)n V(L) + [V(P)N V(T + [V(F)]
>k +2(log(p) + 1) = K/,

contradicting the fact that P is a solution s-t path in G.

Due to Observation 8.9, we know that s; and ¢; are the only terminals
contained in P. It follows that T,[V(P) N V(Ts)] is the unique path in Ty
with endpoints s and a;, and T;[V(P) NV (T})] is the unique path in 7} with
endpoints ¢ and b;. Moreover, |N7 (V(P))| = |Nr,(V(P))| = log(p). Finally,
suppose that |[Ng, (V(F;))| > ¢. Then we have

[Ne(V(P))| = [N, (V(P)| + N1, (V(P))| + [Ne, (V(£)))
> (+ 2log(p) =¥,

contradicting the fact that P is a solution s-t path in G. We conclude that P;
is a solution s;-t; path in G;, and hence, Z; is a yes-instance. O]

170

8.5. Feedback Vertex Number

To prove Theorem 8.5, we only need that the variant of SSP described
in Construction 8.6 as input problem is NP-hard.

Theorem 8.10 (Luckow and Fluschnik [LF20]). SHORT SECLUDED PATH
18 NP-complete even on graphs of maximum degree five that admit a planar
embedding with terminals s and t being on the outer face.

Lemmas 8.7 and 8.8 and Theorem 8.10 at hand, we are ready to prove that
Construction 8.6 is an OR~cross-composition, yielding Theorem 8.5.

Proof of Theorem 8.5. For i € {1,...,p}, p being a power of two, let I; =
(Gi, si,ti, ki, £;) be instances of SSP such that each G; is a planar graph of
maximum degree five and has a planar embedding with s; and ¢; on the outer
face, and for all i € {1,...,p}, |V(Gy)| = n, ky = k, £; = £, and k,£ < n.
Apply Construction 8.6 to obtain instance Z := (G, s,t, k', £') in time polynomial
in "7 | |Z;]. Due to Lemma 8.7, we know that tw(G)+k"+¢' € (n+log(p))°™).
Due to Lemma 8.8, we know that Z is a yes-instance if and only if Z; is a

yes-instance for some i € {1,...,p}. Hence, Construction 8.6 is an OR-cross-
composition. Finally, from Theorem 8.10 together with Proposition 1.3, the
statement follows. O

As a final remark, SSP is fixed-parameter tractable when parameterized by
the treewidth [BFT20].

8.5. Feedback Vertex Number

In this section, we study the parameter feedback vertex number fvs combined
with ¢ and k+£. We prove in Section 8.5.1 kernels with size polynomial in fvs+k+
¢ via our technique described in Section 8.3. Moreover, we prove in Section 8.5.2
that dropping k is presumably impossible for polynomial kernelization, that is,
unless coNP C NP1, there is no kernel of size polynomial in fvs + £. Note
that in Section 8.6.3, we prove that, unless coNP C NP /.1, no kernel of size
polynomial in the vertex cover number exists, implying the same for fvs + k.

8.5.1. A Polynomial Kernel with O(fvs - (k + ()?) Vertices

We show that SSP admits a kernel with a number of vertices cubic in the
parameter fvs + £ + k.

171

8. The Short Secluded Path Problem

Theorem 8.11. SHORT SECLUDED PATH admits a kernel of size polynomial
in fvs + k + £ with O(fvs - (k + £)?) vertices.

In a nutshell, we will construct a simplified instance of VW-SSP by shrinking
the number and sizes of the trees in the graph after removing a feedback vertex
set. Herein, we store information on each shrinking step in the vertex weights.
To shrink the sizes of the trees, we delete leaves (as their number upper-bounds
the number of vertices of degree at least three) and replace maximal paths
consisting of degree-two vertices by shorter paths. The number of vertices
and edges as well as the vertex weights will be upper-bounded polynomially
in fvs + k + £. Finally, we employ Proposition 8.3 on the simplified instance of
VW-SSP to compute an instance of SSP where the number of vertices and
edges is upper-bounded polynomially in fvs + & + /.

Let G = (V, E) be the input graph with V' = FW W such that F is a feedback
vertex set with s,¢ € F (hence, G[W] is a forest). Let 3 := |F|. We distinguish
the following types of vertices of G (see Figure 8.6 for an illustration).

R C F is the subset of vertices in F' with more than k£ + ¢ neighbors or more
than ¢ + 2 degree-one neighbors. Since no vertex of R is part of any
solution path, we refer to the vertices in R as forbidden.

Y C W is the subset of vertices in W containing all vertices that have at
least one neighbor in F' that is not forbidden, that is, all vertices v
with N(v) N F ¢ R. We call the vertices in Y good.

T is the set of connected components of H := G[W], all of which are trees.

Towards proving Theorem 8.11, we will first prove the following, and then strip
the weights using Proposition 8.3.

Proposition 8.12. For any instance of SSP we can compute in polynomial
time an equivalent simplified instance of VW-SSP with O(fvs - (k + ¢)) vertices,
O(fvs® - (k + £)) edges, and vertex weights in O(k + £).

We will interpret the input SSP instance as an instance of VW-SSP with unit-
weight functions x and A and the zero-weight function 7. For an exemplified
illustration of the following Reduction Rules 8.3 to 8.5, we refer to Figure 8.6.
The first reduction rule ensures that each forbidden vertex remains forbidden
throughout our application of all reduction rules. It is clearly applicable in
linear time.

172

8.5. Feedback Vertex Number

RR 8.4 $

Figure 8.6.: Exemplified illustration of the partition into forbidden (white square,
adjacent degree-one vertices are omitted) and good (gray round) vertices, and for the
application of Reduction Rules 8.3 to 8.5 (abbreviated by RR; indicated by dotted
boxes). The vertices enclosed in the light-gray rectangle are all vertices in the feedback
vertex set F'.

Reduction Rule 8.2. For each v € R, set n(v) =+ 1.

Since each vertex in F'\ R has degree at most k + ¢, by the definition of good
vertices, we have the following.

Observation 8.13. The number of good vertices is |Y| < B(k + £).

Since a solution path has neither vertices nor neighbors in any tree T € T
containing no vertex of Y, we delete such trees.

Reduction Rule 8.3. Delete all trees T € T with V(T)NY = 0.

Note that if Reduction Rule 8.3 is not applicable, then each tree in T contains
a vertex from Y, which gives |T| < (k + £) due to Observation 8.13.

The following data reduction rule deletes degree-one vertices in trees that are
not in Y, since they cannot be part of a solution path (yet can neighbor it).

Reduction Rule 8.4. If there is a tree T € T and v € V(T)\'Y with
Nr(v) = {w}, then set n(w) = min{f + 1,n(w) + 1} and delete v.

173

8. The Short Secluded Path Problem

Updating n(w) to the minimum of ¢ 4+ 1 and n(w) + 1 is correct due to the
following: if a vertex has any weight at least £ + 1, then the vertex is equally
excluded from any solution path as having weight ¢ + 1.

Correctness proof. Let T = (G, s,t,k, ¢, \,k,n) be an instance of VW-SSP
and let 7' = (G', s, t, k, £, A\, k,n’) be the instance of VW-SSP obtained from
applying Reduction Rule 8.4. Let v € V(T)\Y with T € T be the vertex deleted
by the application of Reduction Rule 8.4. We claim that Z is a yes-instance if
and only if 7’ is a yes-instance.

(=) Let P be a solution s-t path in G. We know that v is different
from s and t, and, since v ¢ Y, that {w} = Nr(v) = Ng(v) \ R. Hence,
v g€ V(P). If w¢ V(P), then P is a solution s-t path in G'. If w € V(P), then
7' (w) =n(w) +1 < £ and

Y W@+ Na(VP) = Y @) +nw)+ 1+ [Ne(V(P)| -1
zeV(P) zeV (P)\{w}
< /.

Hence, P is a solution s-t path in G’.

(<) Let P be a solution s-t path in G'. Since G' = G — {v}, we know
that P is an s-t path in G with }Z i pys(v) < k. If w ¢ V(P), then P
is a solution s-t path in G. If w € V(P), then n(w) +1 = n'(w) < ¢
and 3 ey (py (%) + [Na(V(P)| = ey py ' (2) + 1+ [Ne (V(P))| =1 < &
Hence, P is a solution s-t path in G. O

Lemma 8.14. Reduction Rules 8.3 and 8.4 are exhaustively applicable in linear
time.

Proof. For each tree T in G — F, do the following. As long as there is a not-good
degree-one vertex v € V(T')\Y, delete v. This is clearly doable in O(|V (T)|) time.
When no vertex remains, apply Reduction Rule 8.3. Otherwise, Reduction
Rule 8.4 is exhaustively applied on T'. Since) .., |V(T)| = |W]|, the claim
follows. O

If none of Reduction Rules 8.3 and 8.4 is applicable, the leaves of each tree are
all good vertices. Recall that the number of leaves in a tree upper-bounds the
number of vertices of degree at least three in the tree. Hence, to upper-bound
the number of vertices in the trees, it remains to upper-bound the number
of degree-two vertices in the tree. The next data reduction rule deletes these
degree-two vertices by shrinking so-called mazimal-edgy paths.

174

8.5. Feedback Vertex Number

Definition 8.2. We call an a-b path in a tree T edgy if it contains no good
vertex and no vertex w with deg,(w) > 3. We call an a-b path @ mazimal-edgy
if there is no edgy path containing () with more vertices than Q.

Reduction Rule 8.5. Let T € T and let Q C T be a maximal-edgy a-b path
in T with |[V(Q)| > 3. Let K .=V (Q) \ {a,b}. Then, add a vertex x and the
edges {x,a} and {x,b}. Set k(z) = min{k + 1,x(K)} and n(z) = min{l +
1,n(K)}. For each w € Ng(K) N R, add the edge {x,w}. Delete all vertices
in K.

Correctness proof. Let T = (G, s,t,k,{,)\, k,n) be an instance of VW-SSP
and let 7/ = (G', s, t, k, £, \,k',n’) be the instance of VW-SSP obtained from
applying Reduction Rule 8.5. Let T' € T and let @ C T be the maximal-edgy
a-b path in T being changed to the maximal-edgy a-b path @’ by the application
of Reduction Rule 8.5. We claim that Z is a yes-instance if and only if 7’ is a
yes-instance.

(=) Let Z be a yes-instance and P be a solution path in G. Note that, by
construction of G’, for each X C V(G)\ (RUV(Q)), we have Ng(X) = Ng (X).
Thus, if V(Q) NV (P) = 0, then P is also a solution path in G’. Hence,
assume that V(Q) NV (P) # 0. Since @Q contains no good vertex and no vertex
of degree at least three in T, it follows that V(Q) C V(P). Moreover, we
have k'(z) = k(K) < k and n/(z) = n(K) < {. For the path P’ in G’ obtained
from P by replacing V(Q) by V(Q’), we have

K (V(P) = &' (V(P)\{2}) + &' (2) = 6(V(P)\ K) + K(K) = &(V(P)),
Ner(V(P') = (Ner (V(P)\ {z}) \ {z}) U (Ne () \ {a, b})

= (Ne(V(P)\ K)\ K)U (Ng(K) \ {a,b}) = Ne(V(P)), and
n'(V(P) =n'(x) + 0’ (V(P')\ {z}) = n(K) + n(V(P) \ K) = n(V(P)).

(8.1)

(<) Let 7’ be a yes-instance and P’ be a solution path in G'. If V(Q') N
V(P') = (), then P’ is also a solution path in G. Hence, assume that V(Q’) N
V(P') # 0. Since Q" contains no good vertex and no vertex of degree at
least three in T, it follows that V(Q') C V(P’). Moreover, we have «'(z) =
k(K) <k and n'(z) = n(K) < £. Let P be the path in G obtained from P’
by replacing V(Q') by V(Q). We have x(V(P)) = s'(V(P')), Na(V(P)) =
Ner(V(P')), and n(V () = of (V(P)) by (8.1) O

175

8. The Short Secluded Path Problem

Lemma 8.15. If Reduction Rules 8.3 and 8.4 are not applicable, then Reduction
Rule 8.5 is exhaustively applicable in linear time. Moreover, no application of
Reduction Rule 8.5 makes Reduction Rule 8.3 or Reduction Rule 8.4 applicable
again.

Proof. If Reduction Rules 8.3 and 8.4 are not applicable, then every maximal
path of degree-two vertices in G — F' containing no good vertices is a maximal-
edgy path. Hence, employ the following. Let Z be the set of all degree-two
vertices in G — F and Z’ be a working copy of Z. As long as Z' # (), do
the following. Select any vertex v € Z’ and start a breadth-first search that
stops when a good vertex or a vertex of degree at least three is found. Apply
Reduction Rule 8.5 on the just identified maximal-edgy path (if it contains more
than three vertices). Delete all the vertices found in the iteration from Z'.
Since no application of Reduction Rule 8.5 deletes a good vertex or creates
a vertex of degree one, no application of Reduction Rule 8.5 makes Reduction
Rule 8.3 or Reduction Rule 8.4 applicable. O

We prove next that if none of Reduction Rules 8.3 to 8.5 is applicable, the trees
are small in the sense that the number of vertices in the tree is linear in the
number of good vertices.

Lemma 8.16. Let T € T be such that none of Reduction Rules 8.3 to 8.5 is
applicable. Let Yp :=Y NV(T) denote the set of good vertices in T. Then T
has O(|Yr|) vertices, each of weight in O(k +).

Proof. We first show that, if none of Reduction Rules 8.3 and 8.4 is applicable,
then V(T') = Yr W V3 WlHoe o V(Q), where V3 denotes the set of all vertices w
not in Y with degp(w) > 3 and Q denotes the set of all maximal-edgy paths
in 7. Note that the sets Yr, V3, and Wy o V(Q) are pairwise disjoint (by
Definition 8.2, no edgy path contains a good vertex or a vertex of degree at least
three). Suppose V(T') = YrwVawlt oo V(Q)WX. We show that X = (). Due to
Reduction Rules 8.3 and 8.4, the only vertices in 7" of degree one are good vertices.
It follows that X contains only degree-two vertices, none of which are good.
Since every vertex in V(T') \ Yr of degree two is contained in a maximal-edgy
path, it follows that X is empty. It follows that V(T) = Yr & Vs Wl o V(Q).
To finish the proof we upper-bound the number of vertices in V3 and in all paths
in Q linearly in |Y7|.

Again, due to Reduction Rules 8.3 and 8.4, every degree-one vertex is in Yr.
Hence there are at most |Y7| degree-one vertices in T, and thus |V3| < |Y7|.

176

8.5. Feedback Vertex Number

Moreover, |Q| < 2|Yr|. Due to Reduction Rule 8.5, for every Q € Q we
have |[V(Q)| < 3. It follows that |V(T)| < 2|Yr| + 6[Yr| = 8|Yr|. Due to
Reduction Rules 8.4 and 8.5, each vertex v in T has x(v) < k41 and n(v) < £+1,
and hence is of weight in O(k + £). O

We are now ready to prove Proposition 8.12. In a nutshell, we approximate a
minimum feedback vertex set in linear time [Bar+98], then apply Reduction
Rules 8.3 to 8.5 exhaustively in linear time (Lemmas 8.14 and 8.15), and finish
the proof using Lemma 8.16.

Proof of Proposition 8.12. Compute a feedback vertex set F of size § < 4 - fvs
in linear time [Bar+98|. Then apply Reduction Rules 8.3 and 8.4 exhaustively
in linear time (Lemma 8.14), and finally Reduction Rule 8.5 exhaustively in
linear time (Lemma 8.15).

Now, consider a graph G to which no data reduction rules are applicable
and let T1,...,T} denote the trees in G — F. By Lemma 8.16, each T; has
O(|Yr,|) vertices, each of maximal weight in O(k + ¢), where Y, =Y NV (T;).
Thus, the number of vertices and edges in G — F' is

h h

Yoy =Y oy nv(T))) = O(|Y]) COB - (k+ 1)),

i=1 i=1

where the last inclusion follows from Observation 8.13. It follows that there
are O(B2 - (k+ 1)) edges in G. Altogether, G has O(B - (k + £)) vertices, each of
weight in O(k + ¢), and O(8? - (k + £)) edges. Moreover, the obtained instance
is simplified (with A = R, see Definition 8.1). O

Combining Proposition 8.12 with Proposition 8.3, we now prove the main result
of this section.

Proof of Theorem 8.11. Let T = (G, s,t,k,¢) be an instance of SSP. Employ
first Proposition 8.12 to obtain a simplified instance Z' := (G, s, t, k, £, A\, K, 1)
of VW-SSP, and then Proposition 8.3 to obtain instance Z" := (G”,s', ', k’, ¢)
of SSP. We know that G’ has O(fvs - (k + £)) vertices, O(fvs” - (k 4 £)) edges,
and vertex weights in O(k + ¢). Hence,

V(G| = w(V(G) + n(V(G") € Otvs - (k +) - k + fvs - (k + £) - £)

177

8. The Short Secluded Path Problem

8.5.2. Polynomial Kernelization Lower Bounds
regarding fvs + ¢

In the previous section, we proved a kernel for SSP with size polynomial
in fvs + k + £. We will see that, unless coNP C NP/, we cannot drop /£
here, as a kernel with size polynomial in fvs + k would also be polynomial in vc
(Theorem 8.28, see also Remark 8.1). In this section, we prove that, unless
coNP C NP1y, we cannot drop k either:

Theorem 8.17. Unless coNP C NP/, SHORT SECLUDED PATH admits no
kernel with size polynomial in fvs + £.

To prove Theorem 8.17, we OR-cross-compose (see Definition 1.5) the MULTI-
COLORED CLIQUE problem into SSP.

MULTICOLORED CLIQUE (MCC)

Input: An undirected k-partite graph G = (V =V, ¢... 0V, E).

Question: Is there an vertex set X CV of size k in G with | X NV;| =1 for
all i € {1,...,k} and all vertices in X are pairwise adjacent in G?

In fact, we will cross-compose the NP-hard [Cyg+15, Fel+09] special case of
MULTICOLORED CLIQUE where instances G = (V = V3 W ... WV, E) with
By = {{u,v} € E|u € Vi, v € V;} satisfy

o |Vi|=|Vj]forl<i<j<k,

o |[Ef | = |Epy | foralll <i<j<kand1<i <j <k, and

e have at least k + 1 vertices.
For the OR-cross-composition, we use the following polynomial equivalence
relation on instances of MULTICOLORED CLIQUE.

Lemma 8.18. Let two MULTICOLORED CLIQUE instances G = (V = V1 @
WV E) and G = (V! =V W... 9 V], E') be R-equivalent if and only
if |V = |V'|, |[E| = |E'|, and k = k. Then, R is a polynomial equivalence
relation.

Proof. Deciding whether G and G’ are R-equivalent is doable in O(|V| + |V'| +
|E| + |E’|) time. Now, let S C X* be a set of instances and n := max,cg |z|.
There are at most n°() different vertex set sizes, edge set sizes, and partition
sizes of the vertex sets, resulting in at most n®() equivalence classes. O

We next describe the OR-cross-composition.

178

8.5. Feedback Vertex Number

Figure 8.7.: A high-level sketch of Construction 8.19. Vertices enclosed in rectangles
are added in step 3, vertex h is added in step 4, vertices s and ¢ are added in step 7,
and some illustrative edges between the gadgets are drawn which are introduced in
steps 5 and 6 of Construction 8.19. For illustrations and details of the gadgets labeled I
and II, see Figure 8.8(a) and (b), respectively.

Construction 8.19. Let G, = (Vi = Vi1 W... 0 Vi, Ei),...,Gp = (V, =
VpaW.. .6V, E,) be p=29, q € N, R-equivalent MULTICOLORED CLIQUE
instances. Let n denote the number of vertices and by m denote the number
of edges in each instance. Moreover, let Vo; = {v},,...,v};}, and E, =
L+Jl§i<j§k Eq iy with Eq ;57 = {eiy{i’j}, ol eﬁ,{z}j}} for all a € {1,...,p}.
Construct the following SSP instance (G, s,t, k', £) with graph G (refer to
Figures 8.7 and 8.8 for an illustration). Let G be initially empty, and let

- ()

M=k+|E| - K+q+2, and
L=p-n-m+2-(M+K-M*+q-M?).
We build G step by step:
1. Add ¢+ 1 paths Ay, ..., Agq1, where V(4y) = {ay1,..., a0y} with a1
and a, ; being the endpoints. For each y € {1,...,¢q}, add the ver-

tex set Uy, = {uy,0,uy,1}, and make each vertex of U, adjacent to a1,
and ay41,1. Define U := ngl Uy. See Figure 8.8(a).

179

8. The Short Secluded Path Problem

(a) o=
u U I |
()= L path
= (~<©}—<©}——)- - (G)
A1 A2 Aq+1
U1,1 Uq,1
(b)
Fi (Beq12y) Fo (Beq13)) Fr (B {pp—1})

Figure 8.8.: Illustrations and details for the gadgets labeled I and II in Figure 8.7.
(a) Details for the gadget labeled I which is introduced in step 1 of Construction 8.19.
(b) Details for the gadget labeled II which is introduced in step 2 of Construction 8.19.
For P, and F,, in parentheses we indicate to which sets of the input graphs they
correspond (where e is a placeholder for every element in {1,...,p}). Each star shape
in (a) and (b) depicts a star graph which is introduced in step 8 of Construction 8.19.

2. Add K + 1 paths By,...,Bg41, where V(B,) = {b.1,...,b, 1} with b, 1
and b, ;, being the endpoints. For each z € {1,..., K}, add the vertex
set I, = {el,...,e?} and make each vertex in F, adjacent to b, 1,,b,11.1.
Define F' = Ule F,. Choose an arbitrary bijection 7: {1,...,K} —
Hi,jy | 1 <@ < j < k). We say that e} corresponds to the z-th
edge e? € Eqry foralla € {1,...,p}. See Figure 8.8(b).

a,n(y)
3. Add p paths Py, ..., P, such that P, has vertex set
V(P,) = {vg’i [ie{l,...,k}, de{l,...,r}} and edge set
E(Pa) = {{visva i} 11 € {1l .k —1}}
U U {{vii,vt‘fjl} |de{l,...,r—1}}.

1<i<k

180

8.5. Feedback Vertex Number

8.

We say P, corresponds to the vertices in V in the a-th graph G,. Next, for
each a € {1,...,p+ 1}, add a path of three vertices wq 1, Wq, 2, We,3 With
edges {wq,1, W 2}, {Wa 2, Wa,3}. Make wy 1 adjacent to agy1,r, and wpy1.3
adjacent to by,;1. For each 1 < a < p+ 1, make w,1 adjacent to vy_; .
For each 1 < a < p+1, make w3 adjacent to v, ;.

. Add one vertex h and for each a € {1,...,p+ 1} make w,, 2 adjacent to h.

. For each a € {1,...,p}, make each v € V(P,) adjacent to the vertex

in F' corresponding to an incident edge. That is, if vii is incident with

edge eg/{i ;1> then make vd ; adjacent to vertex e where z = 71 ({i, j}).

. For each a € {1,...,p}, make each v € V(P,) adjacent to the vertices

in U as follows: Let ajas - - - a4 be the 0-1-string of length g encoding the
number a — 1 in binary. Then, make each v € V(P,) adjacent to each
vertex in the set {u; 4, | ¢ € {1,...,q}}. Note that for each u € U, we have
that if N(u) NV (P,) # 0 for some a € {1,...,p}, then N(u) D V(P,).
Moreover, for each u € U we have |[{a € {1,...,p} | N(u)NV(P,) # 0} =
p/2.

. Add s and t. Make ¢ adjacent to bx1,,. Make s adjacent to all vertices

except the vertices in (J2_, V(P,).

For each vertex v € F U U, add M? vertices only adjacent to v.

Finally, set ¥’ == (¢ + K +2)L+q¢+ (p—1)n+3(p+1)+ K +1 and £ =
M+ K- -M?+q- M2 A

Before we prove that the instance Z obtained from Construction 8.19 is a yes-
instance if and only if at least one input instance is a yes-instance, we prove
some crucial properties of solutions to Z in the case that Z is a yes-instance.

Lemma 8.20. Let (G, s,t,k',£) be the SSP-instance obtained from Construc-
tion 8.19 and let (G, s,t, k',) be a yes-instance. Let P be a solution s-t path
in G. Then the following hold:

(i) P contains each path Q € {As,..., Agy1,B1,...,Bkt+1} and a subpath

of A1 as subpath. Moreover, the first vertex on P after s is in V(A1) \

{aLL}.

181

8. The Short Secluded Path Problem

(i) [V(P)NUy| =|V(P)NF,|=1 forallye{l,...,q}, z€{1,...,K}.

(itt) Let v € Uy, for some y € {1,...,q} be contained in the path P, and
let ({v',v,0"}, {{v/,v},{v,v"}}) be a subpath of P where the distance
from v' to s in P is smaller than the one from v or v". Then v’ = ay 1
and v" = ayy11.

(iv) Let v € F, for some z € {1,...,K} be contained in the path P, and
let ({v',v,0"},{{v,v},{v,0v"}}) be a subpath of P where the distance
from v' to s in P is smaller than the one from v or v"'. Then v’ =b,
and v =byq11.

Proof. (i): From each path Q € {As, ..., Ag41,B1,...,Bx41}, atleast L—0 >/
vertices must be contained. Since the inner vertices of @) are only adjacent to
vertices in () and s, it follows that @ is a subpath of P. Moreover, also at
least L — ¢ > ¢ vertices from A; must be contained in P. Hence, a subpath
of Ay is a subpath of P. From the latter, we observe that the first vertex on P
after s is in V(A1) \ {a1,.}.

(ii): From (i), we know that each path Q € {As,...,A¢11,B1,...,Bry1}
is a subpath of P, and the first vertex on P after s is in V(4;1) \ {a1,.}-
IfQ =A4,, 2 <y < g+ 1, then we know that a,; is only incident with
vertices in Uy_1 U{s} U {a, 2}. It follows that for each U, at least one vertex is
contained in P. If Q = B,, 2 < z < K+1, then we know that b, ; is only incident
with vertices in F,_; U{s} U {b,2}. It follows that for each F, at least one
vertex is contained in P. Suppose there is a set X € {Uy,..., Uy, F1,..., Fk}
such that at least two vertices from X are contained in P. Recall that, by
construction, each vertex in U U F has M? degree-one neighbors. Then P has
at least M? - (’;) + M? - g+ M? > ¢ neighbors, yielding a contradiction. Hence,
we know that for each U; and F} exactly one vertex is contained in P.

(iii): Let v € Uy for some y € {1,...,¢}. Suppose that v" # a, 1, (for v, this
works analogously). We know that P contains A; as a subpath. Hence, a, 1, is
adjacent to the other vertex in U, \ {v} on P, yielding a contradiction to (ii).

(iv): In the same way as (iil), we can prove the claim for v € F, for some z €
{1,...,K}. O

We next prove that the instance obtained from Construction 8.19 is a yes-
instance if and only if at least one input instance is a yes-instance.

Lemma 8.21. Let Gi,...,G)p be p = 29 instances of MULTICOLORED CLIQUE
that are R-equivalent, where ¢ € N. Let (G,s,t, k', £) be the SSP-instance

182

8.5. Feedback Vertex Number

obtained from Construction 8.19. Then at least one instance G, is a yes-
instance if and only if (G, s,t, k', £) is yes-instance for SSP.

Proof. (=) Let G, be a yes-instance for some a € {1,...,p} and let C be a
clique of order k in G,. Construct an s-t path P as follows: P starts at s, then
goes to aq 1, follows along the vertices only in Aj,..., A44+1 and U until ag41,1,
while selecting the vertices in U such that only the vertices corresponding
to V(G,) are not in the neighborhood yet. This is possible since, for each b €
{1,...,p}, only one of u, ¢ and u, ; is adjacent to the vertices in V(P). Next,
follow the vertices in V(Py),...,V(P,), avoiding the vertices in V(FP,) by
using wg. 2, N, Wet1,2. Then follow, starting at b;,; towards bx 1,7 and then
to t by only selecting the vertices corresponding to the edges in C'. This path
contains
2 vertices s and t,
(g +1) - L vertices which are all vertices from the set A; W... W Ag4q,
q vertices from the set U,
(p—1) -n vertices which are all vertices from Wyery 1 oy V(Fa),
3(p+1) — 1 vertices which are all vertices from wg 1, Wa,2, B, Wat1,2, Wat1,3,
and L‘!’Jbe{l,“,7p}\{a7a+1}{wb,l7wb,27wb,3}a
(K +1) - L vertices which are all vertices from the set By W... W Bgy1, and
K vertices, one from each F,, z € {1,...,K}.
That is, P contains

24 (q+1) - L+qg+(p—-1)n+Bp+1)—-1)+(K+1)- L+ K<k

vertices. Moreover, path P is neighboring
q - M? degree-one vertices neighboring U, i.e., M? degree-one vertices from
each of the ¢ vertices from U in P,
K - M? degree-one vertices neighboring F, i.e., M? degree-one vertices from
each of the K vertices from F in P,
k vertices on the path P, (those corresponding to the vertices of clique C'),
|E| — K vertices in F,
q vertices from U, and
2 vertices wq,3 and Wq41,1-
That is, P is neighboring

q-M*+K-M?>4+k+|E|-K+q+2=q M*+K -M*>+M</{

vertices. Hence, P is a solution s-t path in G.

183

8. The Short Secluded Path Problem

(<) Let (G, s,t, k', £) be a yes-instance for SSP. Let P be a solution s-t path.
We claim that if P contains a vertex in V(P,) for some a € {1,...,p}, then it
contains all vertices in V(P,). Suppose not, that is, there is an a € {1,...,p}
such that 1 < |V(P)NV(P,)| < n. Note that N(V(P,)) C UUFU{wg 3, Wat1,1}-
Since 1 < |[V(P) NV (F,)| < n, there is a vertex v € V(P,) NV (P) such that
at least one of its neighbors in V(F,) is not contained in V(P). It follows that
in P, v is adjacent to a vertex in U U F. This contradicts Lemma 8.20(iii).

From Lemma 8.20(ii) and (iii), we know that P contains [E| — (§) + ¢ +
M? . (’;) + M? - g neighbors not contained in A; U(J?_, V(P,). By the values
of k' and ¢, we know that either exactly one P, is not contained in P, or there
are n + 2 vertices from A; being not contained in P. In the latter case, we have
at least

n+2—|—|E—(§>+q+M2-(§>+M2-q>M+M2- <§>+M2~q:£

neighbors (recall that n > k), yielding a contradiction. It follows the former
case: there is exactly one P, being not contained in P. It follows that h € V(P)
and w3, Wet1,1 € N(V(P)).

By Lemma 8.20(ii), from each F, there is exactly one vertex contained
in P. Moreover, for each z € {1,...,K} and for each v € F, it holds true
that |V(P,) NN (v)| > 2. Hence, |[IN(V(P))NV(P,)| > k, as K edges cannot be
distributed among fewer than k vertices. It follows that A; is a subpath of P.

Since [N(V(P)\V(P,)| = |E| — (§) + ¢+ M? - (§) + M? - g+ 2, it follows
that there must be exactly k vertices in V(P,) neighboring P. This witnesses a
clique of order k in G, and the statement follows. O

We are ready to prove the main result of this section.

Proof of Theorem 8.17. Due to Lemma 8.18, we know that R is a polynomial
equivalence relation on the instances of MULTICOLORED CLIQUE. Let G1,...,G)
be p = 29, ¢ € N, R-equivalent instances of MULTICOLORED CLIQUE. We
construct an instance (G, s, t, k', £) of SSP by applying Construction 8.19 in time
polynomial in Y ?_, |G,|. By Lemma 8.21, we have that (G, s,t,k’,¢) is a yes-
instance if and only if G, is a yes-instance for some a € {1,...,p}. Theset W =
UUF U{s,h,t} forms a feedback vertex set with |W| < 2logp + K - z, that
is, |W| is upper-bounded by a polynomial in |G,| + logp for any a € {1,...,p}.
Moreover, £ = M + M? . (g) + M?logp, where M ==k + |E| — (g) +logp+2is
upper-bounded by a polynomial in |G,| + logp. Altogether, we described an

184

8.6. Vertex Cover Number

OR-cross-composition from MULTICOLORED CLIQUE into SSP parameterized
by fvs 4+ ¢, and the statement follows. O

8.6. Vertex Cover Number

In the previous section, we proved a kernel for SHORT SECLUDED PATH with
number of vertices being cubic in fvs + k + ¢. This gives a kernel for SSP with
number of vertices cubic in ve+£ (recall that ve denotes the vertex cover number):
We have fvs < ve, and it is not hard to see that one can assume k < 2vc + 1.

Remark 8.1. A vertex cover contains at least |k/2] vertices of a path with
k vertices. Thus, a polynomial parameter transformation of SSP parameterized
by vc to SSP parameterized by vc + k can safely reduce k so that k < 2ve + 1.

First, in Section 8.6.1, we strengthen the previously mentioned (cubic) kernel
and prove a kernel with number of vertices quadratic in vc 4+ ¢. Secondly,
in Section 8.6.2, we prove a polynomial kernel whenever the input graph is K. .-
subgraph-free, with being a constant. Finally, in Section 8.6.3, we prove that
presumably, we can drop neither ¢ from the parameterization vc + £ nor the
restriction on the input graph (K, ,-subgraph-freeness) to obtain polynomial
kernelization regarding vc.

8.6.1. A Polynomial Kernel with O(vc - (vc + ¢)) Vertices

In this section, we prove the following polynomial kernel.

Theorem 8.22. SHORT SECLUDED PATH admits a linear-time computable
kernel with O(ve - (ve + £)) vertices.

Let (G = (V,E),s,t, k,£) be an instance of SSP. Let C C V be a vertex
cover of size vc. Define the set

R={veV|degg(v) >+2vc+2} CV

of vertices v € V of degree at least £ 4+ 2vc + 2 in the instance graph. Note
that R C C and hence |R| < vc. Note that no vertex from R can appear in a
solution path, hence we can do the following (which we will use later on).

Reduction Rule 8.6. For each v € R, add a set W,, of £ + 1 vertices and
make each only adjacent with v.

185

8. The Short Secluded Path Problem

Note that we can apply Reduction Rule 8.6 in linear time. The correctness
of Reduction Rule 8.6 results immediately from the following.

Observation 8.23. Before and after the application of Reduction Rule 8.6, no
vertex in R is contained in an s-t path P with |V (P)| <k and |[N(V(P))| < £.

Proof. Let G and G’ denote the graph before and after the application of
Reduction Rule 8.6, respectively. Let v € R. Since degq(v) > £ + 2vec + 2
and k < 2vc + 1, for every s-t path P with |V(P)| < k and v € V(P) it holds
true that |Ng(P)| > |[Ng()| = |V(P)| > £+ 1. In G', v has £ + 1 degree-1
neighbors all distinct to s and ¢. Hence, for every s-t path P with v € V(P) it
holds true that |Ng/(P)| > £ + 1. It follows that every vertex of R is excluded
from every s-t path P with |V(P)| <k and [N(V(P))|<{inGorin G'. O

Clearly, if a vertex is only neighboring vertices excluded from every solution
path (that is, contained in R), then this vertex is also excluded from every
solution path. We make use of this observation in the following way.

Reduction Rule 8.7. If there is a verter v € V \ ,cp({s,t,v} U W,)
with N(v) C R, then delete v.

Lemma 8.24. Reduction Rule 8.7 is correct and can be exhaustively applied in
linear time.

Proof. (Correctness) Let G = (V, E) and G’ denote the graph before and after
application of Reduction Rule 8.7, respectively, and let v € V'\ U,cz({s,t,v} U
W,) such that v € V(G) \ V(G’). We claim that (G, s,t, k,£) is a yes-instance
of SSP if and only if (G', s,t,k,{) is a yes-instance of SSP.

(=) Let P be a solution s-¢ path in G. Since RNV (P) = () (Observation 8.23)
and Ng(v) C R, we have Ng(v) N V(P) =0 and hence v € V(P). Thus, P is
an s-t path in G’. Moreover, since Ng(v) N V(P) = 0, we have |[Ng(V (P))| =
|[Ne: (V(P))|. Hence, P is also a solution s-t path in G'.

(<) Let P be a solution s-t path in G'. Since V(G’') C V(G), P is also an s-t
path in G. Moreover, since RN V(P) = () (Observation 8.23) and Ng(v) C R,
we have Ng(v) NV(P) = 0 and hence |[Ng(V (P))| = |Ne/(V(P))|. It follows
that P is also a solution s-t path in G.

(Runmning time) We can find and delete all vertices v € V\U, cg({s,t,v} UW,,)
with N(v) C R in linear time. Since deleting any of these vertices only affects
vertices in R, Reduction Rule 8.7 is not applicable anymore. O

186

8.6. Vertex Cover Number

Proof of Theorem 8.22. Let T = (G = (V, E), s,t,k,£) be an instance of SSP
and let vc = ve(G). If for v € {s,t} we have that v € R or N(v) C R,
then output a trivial no-instance (due to Observation 8.23). Let 7/ = (G’ =
(V',E'),s,t,k,0) be the instance obtained from Z by applying first Reduction
Rule 8.6 and then Reduction Rule 8.7 exhaustively. Due to the correctness
of Reduction Rules 8.6 and 8.7, we know that 7 is a yes-instance of SSP if
and only if 77 is a yes-instance of SSP. It remains to prove that the number of
vertices of G’ is in O(ve - (ve + {)).

Note that R C V(G'). Let W = {J,cp W, and let ¢’ be a minimum-
cardinality vertex cover for G’ —W. Note that |C’]| < ve since G’ —W C G. Due
to Reduction Rule 8.7, each vertex in V' \ (RUW) has at least one neighbor not
contained in R U W, Hence, each vertex in the independent set V' \ (C' U W)
has a neighbor in ¢’ \ R. We have:

[V \N(C"UW)| < |C'\R|-(2ve + £+ 1) <vc- (2ve+ £+ 1),
[(C"UW)| <|C'|+|R|-((+1) <vc+ve- (£+1),

and finally, [V'| = |[V'\ (C"UW)| + |(C" UW)| € O(vc - (ve + £)). O

8.6.2. A Polynomial Kernel for Planar Graphs

In this section, we show that we can reduce any instance of SSP in K, .-
subgraph-free graphs to an equivalent instance with size polynomial in the
vertex cover number of the input graph. In the next section, we prove that this
does not generalize to general graphs.

Theorem 8.25. For each constant r € N, SHORT SECLUDED PATH in K, ,-
subgraph-free graphs admits a kernel with size polynomial in the vertex cover
number of the input graph.

Note that SSP is trivially polynomial-time solvable in K ;-subgraph-free graphs.
The proof of Theorem 8.25 for r > 2 consists of basically the same three steps
our technique from Section 8.3 consists of (see Figure 8.2). However, note
that herein, we will not construct and reduce back from a simplified instance
of VW-SSP. We explain the three steps briefly.

1. In linear time, we transform an n-vertex instance of SSP into an equivalent
instance of VW-SSP with O(vc") vertices.

187

8. The Short Secluded Path Problem

2. Using %Qmma 8.2, in polynomial time, we shrink the vertex weights
to 200v¢™") 5o that their encoding length is in O(ve®").

3. Since SSP is NP-complete in K, ,-subgraph-free graphs with r > 2 [BFT20,
LF20] we can, in polynomial time, reduce the shrunk instance back to
an instance of the unweighted SSP in K. ,-subgraph-free graphs. Since
the reduction runs in polynomial time, the obtained instance is of size
polynomial in vc.

Our data reduction will be based on removing twins. As the first step towards
proving Theorem 8.25, we will show that the following data reduction rule, when
applied to an instance of SSP with a K, ,-subgraph-free graph for constant r,
gives an instance of VW-SSP with O(vc") vertices.

Reduction Rule 8.8. Let (G = (V,E),s,t, k,{,k, A\ n) be an instance of VW-
SSP with unit weights k and X\, and zero weights 1, and G being a K, ,.-subgraph-
free graph. For each mazimal set U C V \ {s,t} of twins such that |U| > r,
delete |U|—r vertices of U from G, and, for an arbitrary remaining vertex v € U,
set A(v) =|U|—r+1 and k(v) =k + 1.

Lemma 8.26. Reduction Rule 8.8 is correct and can be applied in linear time.

Proof. All maximal sets of twins can be computed in linear time [HPV9§]. It is
now easy to check which of them has size larger than r and to apply Reduction
Rule 8.8.

To prove that Reduction Rule 8.8 is correct, we prove that its input in-
stance 7 = (G, s,t,k, ¢, k,\,n) is a yes-instance if and only if its output in-
stance 7' = (G, s,t,k, ¢, ', X', n) is a yes-instance. Herein, note that 7 is the
zero function, so we will ignore it in the rest of the proof.

(=) Let Z be a yes-instance and let P be a solution s-t path such that
Yvev(p) Bv) S kand 3o oy (py Av) < €in G. Let U € V' \ {s,t} be an
arbitrary set of twins with |U| > r. Since G is K, ,-subgraph-free, it holds true
that |[N(U)| < r—1. Thus, P contains at most |[N(U)| —1 < r — 2 vertices of U.
Reduction Rule 8.8 reduces U to a set U’ with r vertices, where only one of the
vertices v € U’ has weight «'(v) > 1. Thus, without loss of generality, we can
assume that P uses only the r — 1 vertices v € U N U’ with «/(v) = 1. Hence,

Z k(v) = Z K (v) = |V(P)NU]|. (8.2)

VeV (P)NU veV (P)NU

188

8.6. Vertex Cover Number

Moreover, if P uses a vertex of U, then it also uses a vertex of N(U) and, hence,
U\V(P)C N(V(P)). Thus,

Yo AWM= 2w =2 XY= > X)) gy

vENg(V(P))NU veU\V(P) veU'\V(P) vENqg (V(P))NU’

since |[U \ U’| = |U| — r and there is a vertex v € U' N U that has A(v) =1
on the left-hand side of (8.3) but X (v) = |U| —r + 1 on the right-hand side
of (8.3). From (8.2), (8.3), and the arbitrary choice of U, it follows that P is an
s-t pat.h with 37 v (py £'(v) <k and 3 c v pyy A'(v) < £in G'. Thus, T' is
a yes-instance.

(<) Let 7’ be a yes-instance and let P be a solution s-¢{ path such that
Yvevp) K (v) < kand 35y py A(v) < Lin G'. Let U C V' \ {s,t} be a
set of twins in G reduced to a subset U’ in G’ by Reduction Rule 8.8. The
only vertex v € U’ with weight x’(v) > 1 = k(v) has '(v) = k+ 1 and thus
is not on P. Yet, if P uses vertices of U’, then v € U'\ V(P) C Ng/ (V(P))
and U\ V(P) C Ng(V(P)). Thus, (8.2) and (8.3) apply and, together with the
arbitrary choice of U, show that P is an s-t path with }_, i (p) £(v) < k and
> ven(v(py Mv) <€ in G and, thus, 7 is a yes-instance. O

We now prove the upper bound on the number of vertices that remain after
Reduction Rule 8.8.

Proposition 8.27. Applied to an instance of SSP with a K, ,-subgraph-free
graph with vertex cover number vc, Reduction Rules 8.1 and 8.8 yield an instance
of VW-SSP on at most (vc + 2) + r - (vc + 2)" vertices in linear time.

Proof. Let (G' = (V' E'),s,t,k, £, N, k’,n) be the instance obtained from ap-
plying Reduction Rules 8.1 and 8.8 to an instance (G, s,t,k, ¢, A, K, 7).

Let C be a minimum-cardinality vertex cover for G’ that contains s and ¢,
and let Y =V’ \ C. Since G’ is a subgraph of G, one has |C| < ve¢(G') +2 <
ve(G)+2 = ve+2. It remains to upper-bound |Y|. To this end, we upper-bound
the number of vertices of degree at least r in Y and of degree exactly 7 in Y for
each i € {0,...,r — 1}. Note that vertices in Y have neighbors only in C.

Since Reduction Rule 8.1 has been applied, there are no vertices of degree
zero in Y. Since Reduction Rule 8.8 has been applied, for each ¢ € {1,...,r—1}
and each subset ¢’ C C with |C’| = i, we find at most r vertices in Y whose
neighborhood is C’. Thus, for each ¢ € {1,...,r — 1}, the number of vertices
with degree ¢ in Y is at most 7 - (I?\).

189

8. The Short Secluded Path Problem

Finally, since G is K, ,-subgraph-free, any r-sized subset of the vertex cover C
has at most 7 — 1 common neighbors. Hence, since vertices in Y have neighbors
only in C, the number of vertices in Y of degree at least r is at most (r—1)- (lf‘).
We conclude that

r—1

VI <|Cl+(r—1)- ('f') +rey <|f|) <(ve+2)+r(ve+2). O

i=1

To finish the proof of Theorem 8.25, it remains to first shrink the weights and
then reduce VW-SSP back to SSP on K, ,-subgraph-free graphs.

Proof of Theorem 8.25. Since SSP is trivially polynomial-time solvable in K ;-
subgraph-free graphs, we assume r > 2 in the following. Using Proposition 8.27
and Lemma 8.2, we reduce any instance Z of SSP on a K, ,-subgraph-free
n-vertex graph for constant r with vertex cover number vc to an equivalent
instance Z' of VW-SSP on O(vc") vertices whose weights are upper-bounded
by 20(ve™") Thus, the overall encoding length of Z’ is O(vc*"). Since SSP is NP-
complete even in planar graphs [LF20] and thus in K3 s-subgraph-free graphs,
and in K> o-subgraph-free graphs [BFT20], we can in polynomial time reduce Z’
to an equivalent instance Z* of SSP on K, ,-subgraph-free graphs. Since the
running time of the reduction is polynomial, the size of Z* is polynomial in the
size of 7' and, hence, polynomial in vc. O

Finally, observe that r appears in the degree of the polynomial upper-bounding
the size of the kernel and hence, we have shown polynomial kernels for SSP
parameterized by vc in K, ,-subgraph-free graphs only for constant r. Indeed,
in the next section we prove that, unless coNP C NP /.1y, there is no kernel of
size polynomial in both vc and 7.

8.6.3. Polynomial (Turing) Kernelization Lower Bounds

In the preceding sections, we have seen that SSP allows for kernels of size
polynomial in vc+£ (Section 8.6.1) and in vc if the input graph is K. ,-subgraph-
free for some constant r (Section 8.6.2). A natural question is whether one can
loosen the requirement of combining with ¢ or of r being constant. We will answer
in the negative. Indeed, the following shows that, unless every parameterized
problem contained in the complexity class WK[1] admits a polynomial Turing
kernelization [Her+ 15|, SSP admits no Turing kernelization of size polynomial
inve4r.

190

8.6. Vertex Cover Number

Theorem 8.28. Even in bipartite graphs, SHORT SECLUDED PATH is WK/1]-
hard when parameterized by vc, where vc is the vertex cover number of the input
graph.

Remark 8.2. Since every graph is K, ,-subgraph-free for r > vc, from Theo-
rem 8.28 it follows that for SSP in K, ,-subgraph-free graphs, there is no kernel
with size polynomial in vc + r unless coNP C NP /1y

Theorem 8.28 also holds regarding the parameter vc + k (see Remark 8.1).
However, recall that a kernel of size polynomial in ve + £ exists (Section 8.6.1).

To prove Theorem 8.28, we use a polynomial parameter transformation
(Definition 1.6) of MULTICOLORED CLIQUE parameterized by klogn [Her+15]
into SSP parameterized by vc. Our polynomial parameter transformation of
MULTICOLORED CLIQUE into SSP uses the following gadget.

Definition 8.3 (z-binary gadget). A z-binary gadget for some power z of two is
aset B ={uj,us,...,us log(z)} of vertices. We say that a vertex v is p-connected
to B for some p € {0,...,z— 1} if v is adjacent to u, € B if and only if there is
a “1” in position q of the string that consists of the binary encoding of p followed
by its complement.

Ezample 8.1. The binary encoding of 5 followed by its complement is 101010.
Thus, a vertex v is 5-connected to an 8-binary gadget {u1,...,us} if and only
if v is adjacent to exactly wuy,us, and us. Also observe that, if a vertex v is
g-connected to a z-binary gadget B, then v is adjacent to exactly half of the
vertices of B, that is, to log z vertices of B.

Construction 8.29. Let G = (V4,Va,..., Vi, E) be an instance of MULTI-
COLORED CLIQUE with n vertices. Without loss of generality, assume that
V; = {v},v2, ... v} for each i € {1,...,k}, where 71 is some power of two (we
can guarantee this by adding isolated vertices to G). We construct an equivalent

instance (G', s,t,k',¢") of SSP, where

k k
=2 <2> +1, (= |E| - <2> + klog 7,

and graph G' = (V' E’) is as follows (see Figure 8.9 for an illustration).
Vertex set V' consists of vertices s, t, a vertex v, for each edge e € E, ver-

tices wy, for each h € {1,..., (’;) — 1}, and mutually disjoint 7-binary vertex

191

8. The Short Secluded Path Problem

By By B3 By,

%/—/
2log |V1| stars

Figure 8.9.: Illustration of the polynomial parameter transformation. White vertices
indicate the vertices in the vertex cover.

gadgets Bi,..., By, each vertex in which has ¢/ 4+ 1 neighbors of degree one.
We set

B:=B, W By ... By,
E* ={v.€eV'|e€ E},
Eij = {vy € E" |z € V,y € Vj}, and
W::{wh|1§h§(§)—1}.

The edges of G are as follows. For each edge e = {v},v}} € E, vertex v € Ej ;
of G’ is p-connected to B; and g-connected to B;. Vertex s € V' is adjacent to all
vertices in F4 o and vertex t € V' is adjacent to all vertices in Ej_1 5. Finally, to
describe the edges incident to vertices in W, consider the lexicographic ordering
of the pairs {(i,7) | 1 < i < j < k}. Then, vertex w, € W is adjacent to
all vertices in E; ; and to all vertices in Ej/ j, where (4, 7) is the h-th pair in
the ordering and (i',j’) is the (h + 1)-st. This finishes the construction. The
construction clearly can be done in polynomial time. A

We prove that Construction 8.29 is a polynomial parameter transformation.

Lemma 8.30. Construction 8.29 is a polynomial parameter transformation
from MULTICOLORED CLIQUE parameterized by klogn to SSP parameterized
by ve.

192

8.6. Vertex Cover Number

Proof. LetT' == (G', s,t, k', £') be the SSP instance created by Construction 8.29
from a MULTICOLORED CLIQUE instance G = (V1 W... W Vg, E). We show that
ve € (klog(n))?M. The vertex set of G partitions into two independent sets

X ={s,t} UW U B and
Y = N(;/(B) UE™.

Hence, X is a vertex cover of G'. Its size is 2klog(n) + (g) + 2. It remains to
show that G is a yes-instance if and only if 7’ is a yes-instance.

(=) Let E(C) be the edge set of a clique C of order k in G. For each
1 <i<j <k, E(C) contains exactly one edge e between V; and V;. Thus,
Ec = {v. € E* | e € BE(C)} is a set of () vertices—exactly one vertex
of E; ; for each 1 <4 < j < k. Thus, by Construction 8.29, G’ contains an
s-t-path P = (Vp, Ep) with |[Vp| < k': its inner vertices are Ec UW, alternating
between the sets Ec and W. To show that (G',s,t,k’,¢') is a yes-instance, it
remains to show |Ng/(Vp)| < 0.

Since P contains all vertices of W, one has Ng/(Vp) C BU (E* \ E¢), where
|E*\ Ec| = |E| - (§). To show |Ng/(Vp)| < ¢, it remains to show that
|Na/(Vp) N B| < klog(n). To this end, we show that |[Ng/(Vp) N B;| < log(n)
for each ¢ € {1,...,k}.

The vertices in W U {s, ¢} have no neighbors in B. Thus, let i € {1,...,k} be
fixed and consider arbitrary vertices v.,,v., € Ec such that Ng/(ve,) N B; # 0

and Ng/(ve,) N B; # 0 (possibly, e; = e2). Then, e; = {v],v]} and ez =

{vf/, v;-l,’}. Since C is a clique, e; and ey are incident to the same vertex of V;.
Thus, we have p = p’. Both v., and v,, are thus p-connected to B; and hence
have the same log(7n) neighbors in B;. It follows that |[Ng/(Vp)| < ¢ and, hence,
that 7’ is a yes-instance.

(<) Let P = (Vp, Ep) be an s-t path in G’ with |Vp| <k’ and |[Ng/ (Vp)| < £'.
The path P contains no vertex of B, since each of them has ¢’ + 1 neighbors
of degree one. Thus, the inner vertices of P alternate between vertices in W
and in E* and we get Ng(Vp) = (E* \ Vp) U (N (Vp) N B). Since P contains
one vertex of F; ; for each 1 < i < j < k, we know |E* \ Vp| = |E| — (g)
Thus, since |[N(Vp)| < ¢, we have |[N(Vp) N B| < klog(n). We show that the
set E(C) :={e € E | v, € Vp N E*} is the edge set of a clique C in G. To
this end, we show that, for each i € {1,...,k}, any two edges e1,es € E(C)
with ey NV, # 0 and es N V; # () have the same endpoint in V;: then E(C) is a
set of (g) edges on k vertices and thus C forms a clique of order k in G.

193

8. The Short Secluded Path Problem

For each 1 < ¢ < j < k, P contains exactly one vertex v € E; ;, which has
exactly log(7) neighbors in each of B; and B;. Thus, from |Ng/(Vp) N B| <
klog(n) it follows that |Ng/(Vp) N B;| = log(n) for each ¢ € {1,...,k}. It
follows that, if two vertices v., and v., on P both have neighbors in B;, then
both are p-connected to B; for some p, implying that the edges e; and ey of G
share endpoint v?. We conclude that C is a clique of order k in G. Hence, G is
a yes-instance. O

We are set to prove Theorem 8.28.

Proof of Theorem 8.28. MULTICOLORED CLIQUE parameterized by klog(n) is
known to be WK|[1]-complete [Her-15] and, hence, to admit no polynomial kernel
unless coNP C NP1, Since Construction 8.29 is a polynomial parameter
transformation from MULTICOLORED CLIQUE parameterized by klog(n) to SSP
parameterized by vc (Lemma 8.30), it thus follows that SSP parameterized by vc
is WK[1]-hard and admits no polynomial kernel unless coNP C NP .. O

8.7. Feedback Edge Set Number

In this section, we show that we can reduce any instance of SSP to an equivalent
instance of VERTEX-WEIGHTED SHORT SECLUDED PATH (VW-SSP) with
number of vertices linear in the feedback edge number fes. We hereby allow a
trade-off between the running time and the size of the resulting instance. The
first reduction runs in linear time and creates vertices with weights in O(k + ¢).
The second reduction, following our technique described in Section 8.3, runs
in polynomial time and creates vertex weights that can be encoded using
O(fesg) bits. Thus, when finally reducing back to SSP using Proposition 8.3,
we obtain a problem kernel of size O(fes - (k + ¢)) using the first reduction and
a problem kernel of size polynomial in fes using the second reduction.

Theorem 8.31. SHORT SECLUDED PATH admits a kernel
(i) with size O(fes - (k + £)) computable in linear time, and
(i) with size polynomial in fes computable in polynomial time.

We first prove the following intermediate result.

Proposition 8.32. For any instance of SSP we can compute in linear time an
equivalent simplified instance of VW-SSP with 16fes+9 vertices, 17fes+8 edges
and vertex weights in O(k + £).

194

8.7. Feedback Edge Set Number

Our proof of Proposition 8.32 is similar to the proof of the kernel of size
polynomial in fvs + k 4+ ¢ (Proposition 8.12).

Let F be a feedback edge set of size fes in G = (V,E). By Reduction
Rule 8.1, we may assume G to be connected. Thus, T':== G — F' is a tree. Let
Y ={veV]|veeec F}U{s,t} denote the set of vertices containing s and ¢
and all endpoints of the edges in F. We call the vertices in Y good. In the
following, we will interpret the input SSP instance as an instance of VW-SSP
with unit weight functions x and A and the zero weight function n. Our two
reduction rules we state next are simplified versions of Reduction Rules 8.4
and 8.5 (see Section 8.5.1) with 7 = {T'} and R = ().

Reduction Rule 8.9. If there is a vertex v € V(T)\'Y with Nr(v) = {w},
then set n(w) = min{f + 1,n(w) + 1} and delete v.

Reduction Rule 8.10. Let Q@ C T be a mazimal-edgy a-b path with |V (Q)| > 3
in T and let K == V(Q) \ {a,b}. Then, add a vertex x and the edges {x,a}
and {x,b}. Set k(x) = min{k + 1,x(K)} and n(x) == min{f + 1,n(K)}. Delete
all vertices in K.

The correctness of Reduction Rules 8.9 and 8.10 follows immediately from the
correctness of Reduction Rules 8.4 and 8.5. Moreover, due to Lemmas 8.14
and 8.15 in Section 8.5.1, we can first apply Reduction Rule 8.9 exhaustively
in linear time, and then apply Reduction Rule 8.10 exhaustively in linear time
without making Reduction Rule 8.9 applicable again. After applying Reduction
Rules 8.9 and 8.10 exhaustively, we have the following.

Observation 8.33. Let T be such that none of Reduction Rules 8.9 and 8.10
is applicable. Then G has at most 8|Y| — 7 vertices and 8|Y| — 8 + |F| edges,
where each vertex is of weight in O(k + £).

Proof. Due to Reduction Rule 8.9, every leaf of T" is in Y. Hence, there are at
most 2|Y| — 1 vertices in T of degree not equal to two. Since T is a tree, there
are at most 2|Y| — 2 paths connecting two vertices being good or of degree at
least three. Due to Reduction Rule 8.10, these paths contain at most three
vertices. It follows that there are at most 8|Y| — 7 vertices in T, each of weight
in O(k + ¢), and, consequently, at most 8|Y | — 8 edges in T. As T only differs
from G by F, it follows that G has at most 8|Y| — 8 + |F'| edges. O

We are set to prove Proposition 8.32.

195

8. The Short Secluded Path Problem

Proof of Proposition 8.32. Let T = (G, s,t,k,£) be an instance of SSP. Com-
pute a minimum feedback edge set F' of size fes := |F| in G in linear time (just
take the complement of a spanning tree). Compute the set Y of good vertices.
First apply Reduction Rule 8.9 exhaustively in linear time. Next, apply Reduc-
tion Rule 8.10 exhaustively in linear time. Let 7' := (G, s, t, k, £, \, 5, 17) denote
the obtained instance of VW-SSP. Observe that due to Reduction Rule 8.10,
T’ is simplified (with A = (), see Definition 8.1). Due to Observation 8.33, we
know that G’ has at most 8|Y| — 7 vertices and 8|Y| — 8 + fes edges, where each
vertex is of weight in O(k + £). Note that Y| < 2fes + 2. Hence, G’ has at most
16fes + 9 vertices, 17fes + 8 edges, and vertex weights in O(k + £). O

Having shown Proposition 8.32, we can now prove Theorem 8.31. We will employ
Proposition 8.3 for Theorem 8.31(i) and Lemma 8.2 for Theorem 8.31(ii).

Proof of Theorem 8.31. Let T = (G,s,t,k,¢) be an instance of SSP. Em-
ploy Proposition 8.32 to obtain a simplified instance Z' = (G', s,t, k, £, \, k, 1)
of VW-SSP, where G’ has at most O(fes) vertices and edges, where each
vertex is of weight in O(k + ¢). Employing Proposition 8.3 yields an in-
stance Z" = (G",s',t', k", £") of SSP in time

k(V(G))+n(V(G")) + |E(G")| € O(fes - (k + 0)).

Due to Proposition 8.3, it follows that G” has at most M vertices, yielding (i).

For statement (ii), apply Lemma 8.2 (instead of Proposition 8.3) to obtain
from 7’ an instance Z* = (G', s, t, k', ¢/, N, k', ') of VW-SSP with &/, ¢, and
all weights encoded with O(fes®) bits. Since VW-SSP is NP-complete, there is a
polynomial-time many-one reduction to SSP. Employing such a polynomial-time
many-one reduction on instance Z* yields statement (ii). O

8.8. Concluding Remarks

When not only asking for a two-terminal path to be short, but additionally to
have few vertices neighboring it, one turns a polynomial-time solvable problem
into an NP-hard problem. For SSP, we proved a polynomial kernelization
hierarchy (see Figure 8.1) regarding the combination of its problem-specific
parameters (numbers &k and ¢ of vertices in the path and neighboring it, respec-
tively) and four structural parameters (treewidth, feedback vertex and edge
number, and vertex cover number).

196

8.8. Concluding Remarks

Table 8.1.: Overview of Luckow and Fluschnik’s [LF20] results (two included here in
this chapter): W[1]/W/2]-h., p-NP-h., noPK abbreviate W[1]/W[2]-hard, para-NP-
hard, no polynomial kernel unless coNP C NP, respectively. * (even on planar
graphs) b (even on planar graphs with maximum vertex degree seven)

Problem Parameterized Complexity
k 14 k+¢
SHORT SECLUDED PATH XP, W[1]-h. p-NP-h.® FPT /noPK"
(Thms. 8.1 and 8.5)
LoNG SECLUDED PATH p-NP-h.® p-NP-h.* p-NP-h.®
SHORT UNSECLUDED PATH XP, W[2|-h. open FPT /noPK®
LoNG UNSECLUDED PaTH p-NP-h.@ p-NP-h.® open/noPK"

Interestingly, our hierarchy suggests that combining with ¢ is more powerful
for polynomial kernelization than combining with k. However, we wonder
whether there is a (natural) parameter p “between” feedback vertex number
and feedback edge number such that a polynomial kernel with this parameter is
presumably excluded but any combination with k or ¢ allows for a polynomial
kernelization.

Future work could also perform a study of other restrictions on the numbers
of vertices in the path and neighboring it. Next to SSP, three more variants
of the two-terminal path problem, that is, asking for long paths and large
neighborhoods, are studied [LF20] (see Table 8.1; refer to Appendix A for
problem definitions). Remarkably, all four variants are proven to be NP-complete,
and hence, indistinguishable regarding their classic computational complexity.
Yet, they seem to be distinguishable through their parameterized complexities
regarding k, £, and their combination k + £. Answering the two open questions
in Table 8.1 would settle whether these pairwise different (complexity-theoretic)
fingerprints exist.

Open Problem 12. What is the parameterized complexity of SHORT UNSE-
CLUDED PATH parameterized by ¢ and of LONG UNSECLUDED PATH parame-
terized by k + €7

Notably, the pairwise different fingerprints would already exist if the two pa-
rameterized problems were contained in XP. Besides, we wonder how SHORT

197

8. The Short Secluded Path Problem

UNSECLUDED PATH, for instance, classifies regarding structural parameters
possibly combined with k and /.

198

CHAPTER

SECLUDED GRAPH PROBLEMS: DATA
REDUCTION WITH NEIGHBORHOODS

In this chapter we continue the study of polynomial kernelization for more classic
graph problems when additionally demanding the size of the neighborhood of
the solution set to be small, that is, in the secluded setup. Herein, we focus on
parameterizations that are given with each problem definition, more precisely,
on the parameters size of the solution, size of the closed or open neighborhood,
and their combination.

9.1. Introduction

In the previous Chapter 8, we studied the problem of finding a short s-t path
when additionally limiting the exposure of the solution as measured by the size
of the neighborhood. We can also limit the exposure of a solution of several
other optimization problems on graphs where one searches for a minimum or
maximum cardinality subset of vertices and edges satisfying certain properties.
Limiting the exposure is motivated by safely sending sensitive information
through a network [Che+17] or by the search for segregated communities in
social networks [Gae04, IT005]. In addition to being a natural constraint in the
above applications, restricting the exposure of the solution may also yield more
efficient algorithms [HKS15, Hiif+09, IT005, Kom+09]. Our aim in this chapter

This chapter is based on (parts of) The parameterized complexity of finding secluded solu-
tions to some classical optimization problems on graphs by René van Bevern, Till Fluschnik,
George B. Mertzios, Hendrik Molter, Manuel Sorge, and Ondfej Suchy (Discrete Optimiza-
tion [Bev+18]).

9. Secluded Graph Problems: Data Reduction with Neighborhoods

is to study the classic computational and parameterized complexity of secluded
variants of classic combinatorial optimization problems in graphs.

Following Chechik et al. [Che+17], the first way we measure the exposure of
a solution S is by the size of the closed neighborhood Ng[S] of S in the input
graph G. Given a predicate II(G, S) that determines whether S is a solution
for input graph G, we study the following general problem.

SECLUDED II

Input: An undirected graph G = (V, F) and an integer k € N.

Question: TIs there a vertex subset S C V such that S satisfies II(G, S) and
[NalS]| < k7

In some cases, it may be necessary to control the size of the solution and its
neighborhood independently, as we did for SHORT SECLUDED PATH in Chapter 8.
Hence, the second way we measure the exposure of the solution is the size of
the open neighborhood Ng(S) = Ng[S] \ S. We thus introduce and study the
complexity of the following problem.

SMALL SECLUDED II

Input: An undirected graph G = (V| E) and two integers k > 1,¢ > 0.

Question: Is there a vertex subset S C V such that S satisfies II(G, S),
|S| < k, and |Ng(S)| < €7

In this chapter, we study SECLUDED II and SMALL SECLUDED II with II
being the problems of finding a small s-t separator (s-t SEPARATOR) and a
small feedback vertex set (FEEDBACK VERTEX SET).

Our Contributions. Our results are summarized in Table 9.1. We prove
SECLUDED s-t SEPARATOR and SECLUDED FEEDBACK VERTEX SET to remain
polynomial-time solvable and NP-hard, respectively, and the latter to admit a
polynomial kernel regarding k. SMALL SECLUDED s-t SEPARATOR, however, we
prove to be NP-hard, to presumably admit no polynomial kernel regarding k + ¢,
and to be W([1]-hard when parameterized by k or by ¢, where W[1]-hardness
regarding ¢ also holds true for SMALL SECLUDED FEEDBACK VERTEX SET.

Related Work. In Chapter 8, we already reason on the problems of finding
a short s-t path in the secluded setup (see Section 8.1).

The small secluded concept can be found in the context of separator problems
in graphs [FGK13, Mar06]. One of these problems is CUTTING k VERTICES,
where, given an undirected graph G = (V, E) and two integers k > 1 and £ > 0,

200

9.1. Introduction

Table 9.1.: Overview of the classic and parameterized complexity of our (secluded)
problems. P, NP-c., FPT, PK, noPK, and W[1]-h. stand for containment in the class
P, NP-complete, fixed-parameter tractable, a polynomial kernel exists, no polynomial
kernel exists unless coNP C NP1, and W[1]-hard, respectively. T [Bev18]

Complex. Parameterized Complexity

k L k+¢
SECLUDED
s-t SEPARATOR P
FEEDBACK VERTEX SET NP-c. FPT, PK
SMALL SECLUDED
s-t SEPARATOR NP-c. W[1]-h. W[1]-h. FPT', noPK
FEEDBACK VERTEX SET NP-c. open W[1]-h. open

the question is whether there is a non-empty set S C V such that |S| = k and
INa(S)| < ¢. The problem is NP-hard [BJ92] and W[1|-hard regarding k +
¢ [Mar06]. If set S must induce a connected subgraph in G, then the problem
becomes fixed-parameter tractable regarding k + ¢ while staying W/1]-hard
regarding k and regarding ¢ [Mar06]. Fomin et al. [FGK13] studied the variant
of CUTTING k VERTICES where one requires |S| < k (resembling our small
secluded concept). This variant is W[1]-hard regarding k but fixed-parameter
tractable regarding ¢ [FGK13]. We remark that we observed the latter for
none of our studied small secluded problems.! The problem variant CUTTING
AT MoOST k£ VERTICES WITH TERMINAL, where S has to contain a given
vertex s € V, is W[l]-hard regarding k and regarding ¢ yet fixed-parameter
tractable regarding k + ¢ [FGK13].

The concept of isolation states that the solution (vertex set) should have
few edges to (instead of few neighbors in) the rest of the graph. The concept
is studied for edge-weighted graphs [Dow-+03], for finding (isolated) dense
subgraphs like cliques [ITO05], and also from a parameterized algorithmics point
of view [HKS15, Hiif+09, Kom+-09].

SMALL SECLUDED II can be seen as special cases of FIXED CARDINALITY
OPTIMIZATION [Bru+06, Cai08, CCC06, KS15]. Hence, from the literature

INote that for short or long paths with small or large open neighborhood, fixed-parameter
tractability regarding £ is neither observed, see Table 8.1 in Chapter 8.

201

9. Secluded Graph Problems: Data Reduction with Neighborhoods

on FIXED CARDINALITY OPTIMIZATION [Bev-+18] one can derive results for
secluded problems.

Secluded Concepts and their Relations. Concerning the classic computa-
tional complexity, the SMALL SECLUDED variant of a problem is at least as hard
as the non-secluded problem, by a simple reduction in which we set £ = n, where
n denotes the number of graph vertices. Since this reduction is a parameterized
reduction with respect to k, parameterized hardness regarding k also transfers.
Furthermore, observe that hardness also transfers from SECLUDED II to SMALL
SECLUDED II for all problems II, since SECLUDED II allows for a parameterized
Turing reduction to SMALL SECLUDED II: try out all &’ and ¢’ with k = k' +¢'.

Observation 9.1. SECLUDED II parameterized by k is parameterized Turing
reducible to SMALL SECLUDED II parameterized by k + £ for all predicates 11.

Additionally, tractability results (in particular polynomial-time solvability and
fixed-parameter tractability) transfer from SMALL SECLUDED II parameterized
by k + ¢ to SECLUDED II parameterized by k. Thus, for the SMALL SECLUDED
variant of the problems, interesting cases are those where the base problem
(deciding whether input graph G contains a vertex set S of size k that satisfies
II(G, S)) is tractable or where the size ¢ of the open neighborhood is a parameter.

9.2. s-t Separator with Small Neighborhood

In this section, we show that SECLUDED s-t SEPARATOR is in P (Section 9.2.1),
while SMALL SECLUDED s-t SEPARATOR is NP-hard and W|[1]-hard when param-
eterized by the size k of the solution or by the size ¢ of the open neighborhood
(Section 9.2.2). Moreover, when parameterized by k + ¢, while being fixed-
parameter tractable [Bev+18], we prove SMALL SECLUDED s-t SEPARATOR to
not allow for polynomial kernels (unless coNP C NP /,1y).

9.2.1. Secluded s-t Separator

In this section we prove the following problem to be polynomial-time solvable.

SECLUDED s-t SEPARATOR (SstS)

Input: An undirected graph G = (V, E), two distinct vertices s,t € V, and
an integer k > 0.

Question: Is there an s-t separator S C V' \ {s,t} such that |[Ng[S]| < k?

202

9.2. Separator with Small Neighborhood

distg(z, A") =2

Figure 9.1.: Tllustration to Lemma 9.3 with input graph G on the left-hand side and
the constructed graph G’ on the right-hand side (both graphs are sketched by ellipses).
An s-t separator S containing a vertex x and its open neighborhood is indicated for G.
The s'-t' separator S’ corresponding to S is indicated for G’, separating into the
parts A" and B’.

Theorem 9.2. SECLUDED s-t SEPARATOR is solvable in polynomial time.

In order to prove Theorem 9.2, we show that it is enough to compute a
separator of size k in the third power of a graph that is obtained from G by
adding two new terminals and making one adjacent to s and one to t. The x-th
power of a graph G is obtained by adding edges between vertices that are at
distance at most « in G (this can be done in polynomial time), formally:

Definition 9.1. For « € N the z-th power of a graph G = (V, E) is a graph
G’ = (V, E') where for each pair of distinct vertices u,v € V we have {u,v} € E’
if and only if distg(u,v) < x.

The following is the key ingredient behind the proof of Theorem 9.2.

Lemma 9.3. Let G = (V,E) be an undirected graph with two distinct ver-
tices s,t € V.. Let G’ be the third power of the graph G”, where G" is obtained
from G by adding two vertices s',t' and two edges {s', s}, {t,t'}. Then there is an
s-t separator S in G with |N[S]| < k if and only if there is an s'-t' separator S’
with |S'| <k in G'.

We refer to Figure 9.1 accompanying (the proof of) Lemma 9.3.

Proof. (=) Let S be an s-t separator in G with |[Ng[S]| < k. Observe that S
is also an s'-t’ separator in G' as every path in G” from s’ must go through s
and every path to ¢’ must go through t. We claim that S’ = Ng[S] is an

203

9. Secluded Graph Problems: Data Reduction with Neighborhoods

s'-t' separator in G’. Suppose towards a contradiction that there is an s’-t' path
P = (po,p1,-..,pq) iIn G' — 5’. Let A’ be the set of vertices of the connected
component of G —S containing s’ and let a be the largest index such that p, € A’
(note that pg = s’ € A" and p, =t' ¢ A’ by definition). It follows that p,41 ¢ A’
and, since {pg,pat1} € E’, there is a po-pa+1 path P’ in G” of length at most
three. As we have p, € A" and p,41 € V' \ (AU S’) and G[A'] is a connected
component of G” — S, there must be a vertex x € S on P’. Since neither p,
nor pa41 isin 8’ = Ng[S], it follows that dist(pa,) > 2 and distg(pat1,) > 2.
This contradicts P’ having length at most 3.

(<) Let S’ be an s'-t' separator in G’ of size at most k. Let A’ be the
vertex set of the connected component of G’ — S’ containing s’. Consider the
set S ={ve S |distgr(v,A") = 2}. We claim that S is an s-t separator in G
and, moreover, that Ng[S] C S’ and, hence, |[Ng[S]| < k. As to the second part,
we have S C S’ by definition. Suppose towards a contradiction that there is a
vertex u € Ng(S)\ S’ that is a neighbor of v € S. Then, since distg (v, A') = 2,
we have distgr (u, A’) < 3. Thus, u has a neighbor in A’ in G’, and hence u is
in A’. This implies that distg~ (v, A”) = 1, contradicting the choice of v. Hence,
Ng[S] € S’ and thus |[Ng[S]| < k.

It remains to show that S is an s-t separator in G. For this, we prove
that S is an s’-t’ separator in G”. Note that S contains neither s nor t,
since otherwise S’ O N¢[S] contains s’ or t/, contradicting S’ being a subset
of V(G")\{s',t'}. It follows that S’ must be also an s-t separator in G. Assume
towards a contradiction that there is an s’-t’ path in G” — S. This implies that
there is a path from A’ to t' in G’ — S. Let ¢ :=distgr_g(¢', A’) and let P be
a corresponding shortest path in G — S. Let us denote P = (po, . ..,p,) with
pg =t and po € A'. If distg (¢, A’) < 3, then ¢’ has a neighbor in A" in G',
and thus it is in A’ contradicting the fact that S’ is an s’-¢' separator in G’.
As t' = pg, we have ¢ > 3. Since distg (po, A’) = 0, distgr(pg, A") > 3, and
distgr (piy1, A') < distgr (ps, A')+1 for every i € {0, ...q—1}, there is an index a
such that distg~(pa, A’) = 2. Note that each vertex v with distg~ (v, A") < 3
is either in A’ or in S’. If p, is not in S/, then p, is in A’, contradicting our
assumptions on P and ¢ as a > 2. Hence we have distgr (pa, A’) = 2 and p, is
in §’. Tt follows that p, is in S, contradicting the choice of P. O

Proof of Theorem 9.2. By Lemma 9.3, we know that we can decide SstS on
graph G by computing the size of a minimum s’-¢’ separator in G’ (see Lemma 9.3
for the description of G’). A minimum two-terminal separator can be computed

204

9.2. Separator with Small Neighborhood

in polynomial time using standard methods like network flows (see, e.g., [KT06]),
for instance. Thus, Theorem 9.2 follows. O

9.2.2. Small Secluded s-t Separator

In this section we prove two hardness results for the following problem:

SMALL SECLUDED s-t SEPARATOR (SSstS)

Input: An undirected graph G = (V, E), two distinct vertices s,t € V', and
two integers k > 0, £ > 0.

Question: Is there an s-t separator S C V' \ {s,t} such that |S| < k and
[Na(S)| < €7

We show that, in contrast to SECLUDED s-t SEPARATOR, the above problem is
NP-hard. Moreover, we prove the problem to be W[1]-hard when parameterized
by k or by £. Finally, we prove SSstS to admit no kernel of size polynomial
in k + £ unless coNP C NP,

Theorem 9.4. SMALL SECLUDED s-t SEPARATOR is NP-hard and W[1]-hard
when parameterized by k or by L.

In the proof of Theorem 9.4, we give a polynomial parameter transformation
from the following problem:

CUTTING AT MOST k VERTICES WITH TERMINAL

Input: An undirected graph G = (V, E), a vertex s € V, and two integers
k>1,0>0.

Question: Is there a set S C V such that s € S, [S| <k, and |Ng(S)| < €7

Fomin et al. [FGK13] proved CUTTING AT MOST k VERTICES WITH TERMINAL
to be NP-hard and W[1]-hard when parameterized by k or by ¢.

Construction 9.5. Let Z = (G = (V, E), s,k,£) be an instance of CUTTING
AT MOST k VERTICES WITH TERMINAL. We construct an instance 7' =
(G, 8", t', k', ') of SSstS equivalent to Z as follows. Let initially be G’ := G.
Add two vertices s’ and ' and two edges {s',s} and {s,t'} to G’. Finally, set
k' ==k and ¢ := £ 4+ 2. Clearly, the construction can be done in polynomial
time. A

Proof of Theorem 9.4. We give a polynomial parameter transformation from
CUTTING AT MOST k VERTICES WITH TERMINAL to SSstS. Let Z = (G =

205

9. Secluded Graph Problems: Data Reduction with Neighborhoods

(V,E), s, k,£) be an instance of CUTTING AT MOST k VERTICES WITH TER-
MINAL and let 7' := (G', ', ¥/, k', ') be the instance of SSstS obtained from 7
by Construction 9.5. We show that Z is a yes-instance of CUTTING AT MOST
k VERTICES WITH TERMINAL if and only if 7’ is a yes-instance of SSstS.

(=) Let Z be a yes-instance and let S C V(G) be a solution to Z, that is,
s €85, |S] <k, and |[Ng(S)| < £. We claim that S is also a solution to Z'.
Since s € S and s’ and t’ are both only adjacent to s, S separates s’ from t’
in G'. Moreover, |S| < k = k' and, as Ng/(S) = Ng(S) U {s',t'}, we have
|[Na/(S)| <€+ 2=/{. Hence, S’ is a solution to Z’, and 7’ is a yes-instance.

(«=) Let Z’ be a yes-instance and let S” C V(G')\{s’,t'} be an s'-t’ separator
in G" with |§'] < k" and |Ng/(S")| < ¢. We claim that S’ is also a solution
to Z. Note that |S’| < k' = k. Since S’ is an s'-t separator in G’ and s’ and ¢’
are both adjacent to s, it follows that s € S” and s',¢ € Ng/(S’). Thus, we
have s € S’ and

ING(S)| = [Ner— (w01 (S)| = [Nar ()| =2 < 0/ —2=1¢.

Hence, S’ is a solution to Z proving Z being a yes-instance.

Note that &’ and #' only depend on k and /¢, respectively. Since CUTTING
AT MoOST k VERTICES WITH TERMINAL parameterized by k or by ¢ is W[1]-
hard [FGK13], it follows that SSstS parameterized by k or by £ is W[1]-hard. O

Note that the above reduction seemingly fails when asking for secluded inclusion-
wise minimal separators. Thus, studying this question could be future work.

We proved SSstS to be W[1]-hard when parameterized by &k or by . When
parameterized by k + ¢, however, SSstS is fixed-parameter tractable [Bev+18|.
We show that, unless coNP C NP /1, SSstS admits no kernel of size polynomial
ink+ ¢

Theorem 9.6. Unless coNP C NP/, SMALL SECLUDED s-t SEPARATOR
parameterized by k + £ admits no polynomial kernel.

We prove Theorem 9.6 using an OR-cross-composition with the following relation
on the input instances.

Definition 9.2. An instance Z = (G,s,t,k,¢) of SSstS is malformed if
max{k,l} > |V(G)|. Two instances T = (G, s,t,k,¢) and ' = (G', s', ¢/, k', ')
are R-equivalent if they are both malformed, or k = k" and £ = ¢'.

The following is immediate.

206

9.2. Separator with Small Neighborhood

Observation 9.7. Relation R from Definition 9.2 is a polynomial equivalence
relation for SSstS.

The following will form our OR-cross-composition.

Construction 9.8. Let 7,...,Z,, with Z, = (Gy, 84,14, k,) for every ¢ €
{1,...,p}, be R-equivalent, not malformed instances of SSstS. We construct
the instance Z = (G, s1, 1, k, £) of SSstS as follows. Initially, let G be the
disjoint union of Gi,...,Gp, that is G = G1 W ... W G,. Identify each ¢, with
sq41 for all ¢ € {1,...,p — 1}. Call the obtained vertex sty, ¢ € {1,...,p —1}.
For each sty, ¢ € {1,...,p — 1}, add a set W, of k + ¢+ 1 vertices, and make
each adjacent to st,. Refer to s; also as s and as stg, and refer to t, also as t
and as st,. The construction is clearly doable in polynomial time. A

Proof of Theorem 9.6. We apply an OR-cross-composition with input problem
SSstS to SSstS parameterized by k+¢. Let Z,,. .., Z,, with Z, = (Gy, 54, tq, k,)
for every q € {1,...,p}, be R-equivalent, not malformed instances of SSstS.
Let Z = (G, s1,tp, k,¢) be the instance of SSstS obtained from Zi,...,Z,
by Construction 9.8. We claim that 7 is a yes-instance of SSstS if and only if
there exists ¢ € {1,...,p} such that Z, is a yes-instance of SSstS.

(<) Let Z, for some ¢ € {1,...,p} be a yes-instance of SSstS. Let S C
V(G¢)\{54,tq} be an s,-t, separator of size at most k in G such that |[Ng, (S)| <
¢. By construction of G, for all V! C V(G,) \ {sr,t.}, r € {1,...,p}, it holds
that Ng(V') = Ng, (V'). Moreover, since G is obtained by a “serial” composition
of Zy,...,1,, every s-t path in G contains s = stg, st1,...,stp_1,stp, =t in this
order. Hence, any vertex set V' C V(G,)\ {s, t,} separating st,_; and st, in G,
r € {1,...,p}, also separates s and ¢t in G. Altogether, S is an s-t separator
in G of size at most k with [Ng(S5)| = [Ng,(S)| <£. Thus, T is a yes-instance
of SSstS.

(=) Let Z be a yes-instance of SSstS, and let S C V(G) \ {s,t} be a
minimal s-t separator (of size at most k) such that |[Ng(S)| < ¢. Observe
that SN {st1,...,st,_1} = 0, since every st,, r € {1,...,p — 1}, is adjacent
to at least k + ¢ + 1 vertices. Moreover, since every vertex contained in Wy,
q € {1,...,p}, is of degree one and hence not participating in any minimal
s-t separator in G, no vertex from W is contained in S since S is chosen as
minimal. We claim that there exists a ¢ € {1,...,p} with S C V(Gy) \ {s¢,tq}-
Following the argumentation above, since S separates s and t, there is at
least one r € {1,...,p} such that S separates st,._; and st.. Let ¢ be the
minimal index such that S separates st,—1 and st, Suppose that there is an

207

9. Secluded Graph Problems: Data Reduction with Neighborhoods

r # ¢ such that SNV(G,) \ {sr,t,} # 0. Since S separates s from stg,
S'=5SN(V(Gy) \ {sq,tq}) is an s-t separator of G of size smaller than S. This
contradicts the minimality of S. Hence, S C V(G,) \ {sq,t4}. Since S separates
stq—1 and sty in G, it follows that S separates s, and ¢, in G;. Together with
|S| < k and Ng,(S) = Ng(S) implying |[Ng(S)| < £, it follows that Z, is a
yes-instance. O

9.3. Feedback Vertex Set with Small
Neighborhood

In this section, we study secluded versions of the FEEDBACK VERTEX SET (FVS)
problem, which asks, given a graph GG and an integer k, whether there is a set F' C
V(G) with |F| < k such that G — F contains no cycle. We prove SECLUDED
FEEDBACK VERTEX SET to be NP-complete and to admit a kernel of size
polynomial in the size k of the closed neighborhood (Section 9.3.1), and SMALL
SECLUDED FEEDBACK VERTEX SET to be W[1]-hard when parameterized by
the size ¢ of the open neighborhood (Section 9.3.2).

9.3.1. Secluded Feedback Vertex Set

We show in this section that the problem below is NP-hard and admits a
polynomial kernel.

SECLUDED FEEDBACK VERTEX SET (SFVS)
Input: An undirected graph G = (V| E) and an integer k > 0.
Question: Is there aset S C V such that G— S is cycle-free and |[Ng[S]| < k?

We first prove the NP-hardness.
Theorem 9.9. SECLUDED FEEDBACK VERTEX SET s NP-hard.

The proof is by a reduction from FVS and works by attaching to each vertex in
the original graph a large set of new degree-one neighbors.

Proof. We provide a polynomial-time many-one reduction from FEEDBACK
VERTEX SET. Let (G = (V, E), k) be an instance of FEEDBACK VERTEX SET.
We construct an equivalent instance (G’ = (V’, E’), k') of SFVS as follows. Let
initially G’ := G. For each vertex v € V add a set W,, of n? vertices and make

each adjacent to v. Let W = J, oy, W,. Observe that each vertex in W has

208

9.3. Feedback Vertex Set with Small Neighborhood

degree one and thus is never part of a cycle in G’. Further, set k' == k- (n? +n).
We claim that (G, k) is a yes-instance of FVS if and only if (G', k') is a yes-
instance of SFVS.

(=) Let S C V be a feedback vertex set in G. Then S forms a feedback vertex
set in G’. Moreover, we have k vertices, each having at most n? + n neighbors.
Thus, |Ng/[9]] < k- (n? +n) = k. It follows that (G’, k") is a yes-instance
of SFVS.

(<) Let S be a minimal solution to (G’, k'), that is, S is a feedback vertex set
in G’ such that |[Ng/[S]| < k' and S\ {v} is not a feedback vertex set in G’ for
every v € S. By minimality of S, and since no vertex in W appears in any cycle
in G’, S does not contain any vertex in W. Hence, S C V and thus |S| < k as
each vertex v € V has at least n? neighbors from W, in G’. Since S forms a
feedback vertex set in G’, S also forms a feedback vertex set in G. It follows
that (G, k) is a yes-instance of FVS. O

On the positive side, SF'VS admits a kernel of size polynomial in &, and hence
remains fixed-parameter tractable when parameterized by k:

Theorem 9.10. SECLUDED FEEDBACK VERTEX SET admits a kernel with
O(k®) wvertices.

In the remainder of this section, we describe the data reduction rules that yield
the polynomial kernel. The reduction rules are inspired by the kernelization
algorithm for the TREE DELETION SET problem given by Giannopoulou et al.
[Gia+16]. On a high-level, our approach consists of the following three steps:

1. Compute a subgraph H that contains all vertices participating in the
cycles of the input graph G.

2. Delete vertices outside of H not neighboring any vertex in H (Reduction
Rule 9.1), replace long paths of degree-two vertices in H by paths of length
three (Reduction Rule 9.2), and shrink for every vertex excluded from any
solution the number of neighbors outside of H to at least k (Reduction
Rule 9.3).

3. Check whether there are too many cycles only intersecting in one ver-
tex (Reduction Rule 9.4) or in two vertices (Reduction Rule 9.5), where
in either case conclude that we are facing a no-instance.

Finally, after the graph is reduced by the above steps, we analyze the size of
the reduced graph via decomposing its set of vertices.

209

9. Secluded Graph Problems: Data Reduction with Neighborhoods

For our first step of our approach, we start by introducing the following
notation.

Definition 9.3 (2-core [Sei83]). A 2-core of a graph G is a maximum sub-
graph H of G such that for each v € V(H) it holds true that degy (v) > 2.

Note that a 2-core H of a given graph G is unique and can be found in polynomial
time [Sei83|. If H is a 2-core of G, then we use
degy(v), ifve V(H),
de =
Brjov) {o, itod V(H).

Observation 9.11. Let G be a graph, H its 2-core, and C' a connected compo-
nent of G — V(H). Then |[Na(C)NV(H)| <1 and [Nc(H)NV(C)| < 1.

Proof. We only prove the first statement (the second statement follows anal-
ogously). Towards a contradiction, assume that |[Ng(C) NV (H)| > 2. Then,
there are vertices z,y € V(H) with « # y such that = and y have neigh-
bors a,b € V(C). If a = b, then G' = G[V(H) U {a}] is a subgraph of G such
that degq/ (v) > 2 for every v € V(G’), contradicting the choice of H as the
2-core of G. If a # b, then, since C is connected, there is a path Pg in C
connecting a and b. Thus, G' = G[V(H) UV (P¢)] is a subgraph of G such that
degq (v) > 2 for every v € V(G'), again contradicting the choice of H as the
2-core of G. O

Note that only the vertices in the 2-core are involved in cycles of G. However,
the vertices outside the 2-core can influence the size of the closed neighborhood
of the feedback vertex set.

For step two of our approach, we apply the following reduction rules to our
input instance with G given its 2-core H. First, we introduce the following
notation: we say that a feedback vertex set F' in G is

o secluded if [Ng[F]| < k, and
o minimal if F'\ {v} is not a secluded feedback vertex set in G for all v € F.
Our first reduction rule concerns vertices not neighboring H.

Reduction Rule 9.1. If degyo(v) =0 for every v € Ng(u], then delete u.

Correctness proof. (=) Let F be a minimal secluded feedback vertex set in G.
Since deg g|o(v) = 0 for all v € Ng[u], none of them is involved in a cycle. Hence,

210

9.3. Feedback Vertex Set with Small Neighborhood

Nglu] N F = . In particular, it follows from Ng(u) N F = () that u & Ng[F].
Hence, F is a secluded feedback vertex set in G — {u} as well.

(<) Let F be a minimal secluded feedback vertex set in G, = G — {u}.
We have to show that F' is a secluded feedback vertex set in G as well. First
observe that since degpo(v) = 0 for all v € Ng[u], H is also the 2-core
of G,,. As only vertices in H participate in cycles of G, and F' is chosen as
minimal, none of the vertices Ng(u) C V(G,,) is contained in F'. It follows that
|INg[F]| = |Ng,[F]| <k, and thus F' is a secluded feedback vertex set in G as
well. O

Note that, if Reduction Rule 9.1 has been exhaustively applied, then dego(v) =
0 implies that v has exactly one neighbor which is contained in the 2-core of
the graph.

Next, we replace any long path in H of degree-two vertices by a path of length
three.

Reduction Rule 9.2. If (vg,v1,...,0¢,ve4+1) @S a path in the input graph
such that ¢ > 3, degpo(vi) = 2 for every i € {1,...,0}, degpjo(vo) > 2,
and degyo(ver1) > 2, then let 1 = min{degg(vi) | i € {1,...,£}} —2 and
remove vertices v1,...,vy and their neighbors not in the 2-core. Then introduce
two vertices uy and ug with edges {vo, w1}, {u1,us}, and {ua,vi41}, v vertices
connected to uy, and r vertices connected to us.

Correctness proof. (=) Let F be a minimal secluded feedback vertex set in G,
and let G’ be the graph obtained from G by applying Reduction Rule 9.2.
We distinguish three cases of how F intersects {vo,...,ve+1}. The case where
Fn{vg,...,ve41} =0 is trivial.

Suppose F'N{vy,...,ve} # 0. Since degpo(v;) =2 for all i € {1,..., ¢}, each

of the vertices vy, ..., vy participates in the same set of cycles of G. Hence, it
follows that F N {v1,...,v,} = {vy} for some ¢ € {1,...,¢}. Moreover, the set
of cycles where vq,...,vp appear in is a subset of the set of cycles where vg

appears in and a subset of the set of cycles where vyy; appears in. Hence, due
to minimality of F' we have that v, € F implies v9 € F' and vey1 € F. Due
to the definition of r, the number of neighbors of v, not in the 2-core is at
least 7. Then F' = (F \ {vq}) U{u1} is a secluded feedback vertex set of G’
with |F’| = |F| and |Ng[F]| > |Ng/ (F")|.

Suppose F'N{v1,...,ve} =0 but FN{vg,ves1} # . Then |F N {vy,veq1}] =
INg[F|N{vi,ve}| = |Nev [F]N{ur, uz}|. It follows that F is a secluded feedback
vertex set in G’ with |Ng/[F]| = |Ng[F]|.

211

9. Secluded Graph Problems: Data Reduction with Neighborhoods

(<) Let F be a minimal secluded feedback vertex set in G'. We dis-
tinguish three cases of how F intersects {vg,u1,u2,v¢11}. The case where
Fn {1}0, Uy, UQ,U[J,_l} = () is trivial.

Suppose that FN{u1,us} # 0. Since F is minimal, either uy or us is contained
in F, since both vertices participate in the same set of cycles in G’. Without loss
of generality, let u; € F. Moreover, F' N {vg,v,} = (), as otherwise '\ {u1} is a
smaller secluded feedback vertex set in G’, contradicting the minimality of F.
By the choice of r, there exists ¢ € {1, ..., ¢} such that degs(vq) —2 = 7. Then
F' = (F\ {u1}) U{v,} is a feedback vertex set in G with |[Ng[F']| = |N¢/ [F]|.

Suppose that F N {vg,ver1} # 0. Since F' is minimal, it follows that F N
{u1,us} = 0. Observe that F is also a feedback vertex set in G, as vy and vgyq

participate in every cycle containing any vertex in {v1,...,ve}. Since |F N
{vo,ve41}| = |Ne [F] N {u1,ua}| = |[Ng[F] N {v1,ve}], it follows that |Ng[F]| =
|Nc/[F]|. Hence, F is a secluded feedback vertex set in G. O

Finally in this second step of our approach, we delete neighbors of high-degree
vertices (which are excluded from any solution).

Reduction Rule 9.3. If there is v € V(G) with deg(v) > max{k, degyo(v)},
then remove one of the neighbors of v being not contained in the 2-core.

Correctness proof. First observe that, as degs(v) > k, vertex v cannot be
contained in any secluded feedback vertex set. As additionally degq(v) >
degy)o(v), we know that there is a vertex w € Ng(v) \ V/(H). Since w is not in
the 2-core, it is not involved in the cycles of G. Since deg(v) > k, removing w
from G results in degg_g,,(v) > k and hence, v cannot be contained in any
secluded feedback vertex set of G — {w}. Altogether, G has a feedback vertex
set F' with |[Ng[F]| < k if and only if G — {w} has a feedback vertex set F’
with |NG,{w}[FIH <k. O

For step three of our approach, let petal(x) for € V(G) denote the maximum
cardinality of a set of cycles where each cycle contains x and any two cycles are
vertex-disjoint except for z. Our first reduction rule in this step is the following.

Reduction Rule 9.4. If there is a vertez x € V(G) such that petal(z) > [%],

then output that (G, k) is a no-instance of SFVS.
Correctness proof. There are at least [g] cycles in G, which are vertex-disjoint
except for . Assume that G allows a feedback vertex set F' with |Ng[F]| < k.

Clearly, F' must contain at least one vertex in each of the cycles. Thus Ng[F]

212

9.3. Feedback Vertex Set with Small Neighborhood

must contain at least three vertices of each cycle. As only = can be shared
among these triples, we get [Ng[F]| > 2-[£] + 1 > k. It follows that G admits
no secluded feedback vertex set. O

Our last reduction rule in this third step of our approach deals with the case
when there are too many cycles intersecting in exactly two vertices.

Reduction Rule 9.5. Let x,y be two vertices of G. If there are at least k
internally vertex-disjoint paths of length at least two with endpoints x and y
in G, then output that (G, k) is a no-instance of SFVS.

Correctness proof. Observe that if neither « nor y belong to a feedback vertex
set F' of GG, then we need at least k — 1 vertices to hit all the cycles, since
otherwise there are at least two distinct paths P, P, of length at least 2
between z and y with (V(P) UV (P2)) N F = @ and thus the graph induced
by V(P1) UV (P2) U {x,y} contains a cycle. Since each of the k — 1 vertices has
at least two vertices in its open neighborhood and only the vertices x and y can
be shared among these, the closed neighborhood contains at least k 4 1 vertices.
Moreover, the open neighborhood of both x and y contains one vertex from
each of the k paths. Hence, their closed neighborhood is of size at least k + 1
and they cannot be included in the solution. O

We proved that all Reduction Rules 9.1 to 9.5 are correct. Note that Reduction
Rules 9.1 to 9.3 and 9.5 can be applied trivially in polynomial time. Reduction
Rule 9.4 can be applied exhaustively in polynomial time due to the following.

Proposition 9.12 ([Thol0]). Let G be a graph and x be a vertex of G. In
polynomial time we can either find a set of £ + 1 cycles only intersecting in x
(proving that petal(z) > £+ 1) or a set of vertices Z C V(G) \ {x} of size at
most 20 intersecting every cycle containing x.

An instance (G, k) of SFVS is called reduced if none of the Reduction Rules 9.1
to 9.5 can be applied. Following the proof by Giannopoulou et al. [Gia+16],
we first give a structural decomposition lemma, then upper-bound the size
of components of the decomposition, and finally upper-bound the number of
components in the decomposition to obtain the polynomial kernel for SFVS
parameterized by k. We start with the following structural decomposition
lemma, which identifies the set B.

213

9. Secluded Graph Problems: Data Reduction with Neighborhoods

Lemma 9.13. There is a polynomial-time algorithm that, given a reduced
instance (G, k) of SFVS, either correctly decides that (G, k) is a no-instance or
finds two sets F' and M’ such that, denoting B = F U M’, the following holds:

(i) F is a feedback vertex set of G.
(i) Each connected component of G — B has at most 2 neighbors in M’.

(iii) For every connected component C in G — B and x € B, |[Ng(x)NC| <1,
that is, every vertex x of B has at most one neighbor in every connected
component C' of G — B.

(iv) |B| < 4k? + 2k.

Similarly to Giannopoulou et al. [Gia+16], we also make use of the following.

Definition 9.4. For a rooted tree T and vertex set M in V(T') the lowest
common ancestor-closure (LCA-closure) lcac(M) is obtained by the following
process. Initially, set M’ = M. Then, as long as there are vertices x and y

in M’ whose lowest common ancestor w is not in M’, add w to M’. Finally,
output M’ as the LCA-closure of M.

Fomin et al. [Fom+12] proved the following properties of an LCA-closure.

Lemma 9.14 ([Fom+12]). Let T be a tree and M C V(T). If M’ = lcac(M),
then |M'| < 2|M| and for every connected component C of T—M', |Np(C)| < 2.

We continue with proving our structural decomposition lemma.

Proof of Lemma 9.13. Note that if there is a feedback vertex set of G with
closed neighborhood of size at most k, then it is also a feedback vertex set
in G of size at most k. Thus, we can apply the 2-approximation algorithm for
FEEDBACK VERTEX SET on G due to Bafna et al. [BBF99] to find in polynomial
time a feedback vertex set F' of G. If |F| > 2k, then we output that (G, k) is a
no-instance of SFVS. Hence, we assume |F| < 2k in the following. Since F' is
a feedback vertex set in G, property (i) is trivially fulfilled. Moreover, G — F'
is a collection of trees T4, ...,T;. We select for each of the trees T; some root
vertex v; € V(T;). It remains to construct the set M’ such that F'U M’ fulfills
conditions (ii)—(iv).

Recall that the instance (G, k) is reduced. Hence, Reduction Rule 9.4 is not
applicable, and thus petal(z) < (%W for every x € F'. We apply Proposition 9.12

214

9.3. Feedback Vertex Set with Small Neighborhood

to each vertex in v € F, obtaining a set Z, C V(G) \ {v} intersecting each cycle
containing v with |Z,| < k. Let

7z = Z1U...UZ|F|,
M, =V (T;)N Z for every ¢ € {1,...,¢},
M = lcac(M;) for every i € {1,...,¢}, and

M= |J M
i€{1,...,0}

Observe that |Z| < 2k? and, due to Lemma 9.14, that | M| < 2|M;|. It follows
that
M < Y IMI< Y 2Mi| <2|Z] <4k

Moreover, let B := F U M’ (note that F N M’ =). For every connected
component C in G — B it holds that |[Ng_r(C)| < 2 (hence, property (ii) is
fulfilled). Altogether, |B| = |F| + |M'| < 2k + 4k?, yielding property (iv). It
remains to show that property (iii) is fulfilled.

Let C be a connected component of G — B and = € B some vertex. Suppose
that = has two neighbors in C. Then C, := C' U {z} induces a cycle in G as C
is connected. If « € F, then this contradicts the set Z, C Z C M’ U (F \ {z})
hitting every cycle containing z. If © € M’, then this contradicts the set F
hitting each cycle in G. Hence, property (iii) is fulfilled. O

Next, we show that if B is as in Lemma 9.13, then the size and the number
of the connected components in G — B is polynomially upper-bounded in the
size k of the closed neighborhood of the feedback vertex set in question. We
first upper-bound the size of each connected component in G — B as follows.

Lemma 9.15. Let (G, k) and B be as in Lemma 9.13, and let C be a connected
component of G — B. Then the number |V (C)| of vertices of the connected
component C' is at most (12k + 7)(k + 1).

Proof. Le H be the 2-core of G. We distinguish two cases on the size of Cy =
V(C)NV(H), namely |Cg| = 0 on the one hand, and |Cy| > 0 on the other
hand.

Case 1: |Cy| =0. Observe that C' is a connected component in G — V(H).
Hence, by Observation 9.11, there is at most one vertex in C adjacent to H.
If x € V(C) is adjacent to H, then no other vertex of C is adjacent to H.

215

9. Secluded Graph Problems: Data Reduction with Neighborhoods

Suppose that |V (C)| > 1. Since C' is connected, there is a vertex u € V(C) such
that Nglu] C G — V(H), contradicting the fact that the instance is reduced
regarding Reduction Rule 9.1. Hence, |V(C)| < 1.

Case 2: |Cy| > 0. Recall that (G, k) is reduced. On the one hand, due
to Reduction Rule 9.1, we know that every vertex in C' — V(H) has a neighbor
in C'y. On the other hand, due to Reduction Rule 9.3, each vertex in C'y has at
most k neighbors in C — V(H). Hence, it follows that |V(C)| < (k+ 1) - |Cgl.
It remains to upper-bound the number of vertices in C'y. To this end, we count
the number of vertices in G[Cy] having degree 1, 2, and at least 3 in G[Cy] in
the following.

Let D}, C Cy be the set of vertices in G[Cy] having degree exactly one.
Since Dy C V(H), it holds that dego(v) > 2 for each v € Dj;. Since there is
exactly one neighbor of v in G[Cy], at least one other neighbor is contained in
V(H)N B. Let Be denote the vertices of C' having at least one neighbor in B.
Note that D}, C Be. Due to Lemma 9.13(ii), C has at most two neighbors in
M’ (recall B = F U M'). Moreover, due to Lemma 9.13(iii), each vertex in B
has at most one neighbor in C. It follows that |Bo| < |F| + 2 < 2k + 2, and
hence |Dy| < 2k + 2.

Let DI%S C Cq be the set of vertices in G[Cy] having degree at least three.
Since G[Cy] is acyclic (recall that F' C B is a feedback vertex set), it follows
that D} forms the leaves in G[Cy]. We know that on trees the number of
inner vertices of degree at least three is at most the number of leaves minus one.
Hence, |D7°| < |Dy| —1 <2k +1.

Let D;IQ = Bc U D%S. Observe that Cp \ D;f only contains vertices having
degree exactly two in G[Cp|. Moreover, these vertices participate only in paths
connecting vertices in Dy, Since |D;?| < 2k + 2 + 2k + 1 = 4k + 3, and
G[Cy] is acyclic, there are at most 4k + 3 — 1 = 4k + 2 many of these paths.
Moreover, due to Reduction Rule 9.2, these paths contain at most two inner
vertices. Hence, |Cy| < |Cy \ D| + |D2| <2+ (4k +2) + 4k +3 =12k + 7.
It follows that |[V(C)| < (k+1)-|Cx| < (k+1) - (12k+ 7). O

Having an upper bound on the sizes of the set B and of each connected
component in G — B, it remains to count the number of connected components
in G — B. With the next lemma, we give an O(k3) upper bound on the number
of connected components in G — B.

Lemma 9.16. Let (G, k) and B be as in Lemma 9.13. Then the number of
connected components in G — B is at most 15k3 + 8k? — k — 1.

216

9.3. Feedback Vertex Set with Small Neighborhood

Proof. We partition the connected components of G — B by the number of their
neighbors in B, namely in those that have exactly one neighbor and in those
that have at least two neighbors in B. For z,y € B, denote by

C, the set of connected components in G — B having vertex x as their only
neighbor in B, and by

C.y the set of connected components having at least x and y as their neighbors
in B.

Observe that the set of connected components of G — B is exactly |J, .5 Cs U
U{x yycB Cay, and hence the number of connected components of G — B is at
most |U,ep Cal + | U4 43¢ Cayl- Further observe that

| Cal < |BIk < 4K% + 2k°. (9.1)
zeB

Hence, it remains to upper-bound the cardinality of | {(e.y}CB Cay. To this end,

observe that
U cw= U v U ey U Cu. (9.2)

{e}CB {e.y}CF rEF,yeM’ {w.yyCM

=:C! —C2 =C3

Notice that the equality is still true if we replace C? by C? := 2 \ C3, since C?
appears in the union on the right hand-side. Hence, in the remainder of this
proof, we upper-bound the size of the sets C!, C?, and C3. Observe that for C!,
we have

IcY| < (2’“) (k+1) =2k + k? — k. (9.3)

Next we upper-bound the size of C2. To this end, let z € F be some fixed
vertex in F'. Consider the set S, of vertices y € M’ such that there are at least
two connected components of G — B neighboring both x and y. Observe that
for each y € S, the set of connected components in C? neighboring both z
and y is unique, as otherwise there is a connected component in C? containing
two vertices in M’ and hence belonging to C3, contradicting our definition
of C? = (2 \ C3. Since for each y € S, there are at least two connected
components in C2, they together with z and y form a cycle in G. Hence, due

217

9. Secluded Graph Problems: Data Reduction with Neighborhoods

to Reduction Rule 9.4, the number of vertices in S, is at most k/2. On the other
hand, since each such component provides a separate path of length at least
two between x and y, there are at most k connected components neighboring
both z and y for any y € S, due to Reduction Rule 9.5. Finally, observe
that the number of vertices y € M’ such that there is at most one connected
component of G — B neighboring with both = and y is trivially upper-bounded
by |M'| < 4k?. Altogether, we obtain that (recall that |F| < 2k)

€% < (4K? + (k/2)(k + 1)) < 2k(4k> + (k/2)(k + 1)) = 9K + k2. (9.4)
zeF

Last, we upper-bound the size of C3 = U{fc,y}CM’ Czy. Observe that due
to Lemma 9.13(ii), for each z,y € M’, each connected component C € Cay is
only neighboring « and y out of M’, that is, Ng(C) N M’ = {x,y}. Moreover,
since C'is connected, x and y are connected via a path within C. It is well-known
that if there are at least r paths connecting vertex pairs out of r vertices in a
graph, then there is a cycle in the graph. Hence, since F' is a feedback vertex
set in G, there are at most |M’| — 1 connected components in C3. Thus, we
obtain that (recall that |M’| < 4k?)

IC?| < |M'| —1<4k*—1. (9.5)
Altogether, the number of connected components in G — B is at most

(9.1),(9.2)
U Cl+1 | Cul < "4k +28>+[C'+]C% +|C°

zeB {z,y}CB
(9.3)-(9.5)
< AR 2k 42K 4+ K2 — k4 93 + K2
+4k% -1
= 15k +8k?—k—1. O

Finally, putting everything together, we can prove the main result of this
section.

Proof of Theorem 9.10. Let (G', k) be the input instance of SFVS. Compute
the 2-core H of G. Apply Reduction Rules 9.1 to 9.5 exhaustively to obtain an
equivalent instance (G, k) such that (G, k) is reduced. Next, apply Lemma 9.13
and either report that (G, k) is a no-instance or obtain the set B = F U M’

218

9.3. Feedback Vertex Set with Small Neighborhood

in G with |B| < 4k? + 2k. Let C denote the set of connected components
in G — B. By Lemma 9.16, we know that |C| < 15k3 + 8k% — k — 1. Moreover,
due to Lemma 9.15, for each C € C it holds that |[V(C)| < (k+1)-(12k+7). It
follows that the number of vertices in G is at most

Bl +[C] - max [V(C)] < 4k + 2k + (15K> + 8k —k — 1) - (k4 1) - (12k +7)
€ O(k°). O

9.3.2. Small Secluded Feedback Vertex Set

In this section, we prove that the small secluded variant of FEEDBACK VERTEX
SET is W][1]-hard when parameterized by £.

SMALL SECLUDED FEEDBACK VERTEX SET (SSFVS)

Input: An undirected graph G = (V, E) and two integers k, .

Question: Is there a set S C V such that G — S is cycle-free, |S| < k, and
[Na(S)| < €7

Theorem 9.17. SMALL SECLUDED FEEDBACK VERTEX SET is W/1/-hard with
respect to .

We provide a parameterized reduction from the MULTICOLORED INDEPENDENT
SET (MIS) problem:

MULTICOLORED INDEPENDENT SET (MIS)

Input: An undirected k-partite graph G = (V =V W... WV, E).

Question: Is there an independent set X C V of size k in G with | X NV;| =1
forallie {1,...,k}?

Fellows et al. [Fel+09] proved MIS to be W[1]-hard when parameterized by
the size k of the independent set. In our proof of Theorem 9.17, we use the
following.

Construction 9.18. Let G = (V = V1 W...WV}, E) be an instance of MIS with
|Vi| > 2 and no edge {v,w} € E with v,w € V;. We create an instance (G', k', £)
of SSFVS with &' := |[V| — k and £ := k + 1 as follows (refer to Figure 9.2 for
an illustrative sketch).

Initially, let G’ := G. For each i € {1,...,k} turn V; into a clique, that is,
add the edge sets {{a,b} | a,b € V;,a # b}. Next, add to G’ a vertex v and a
set L of k' + ¢ vertices. Finally, connect each vertex in V' U L to u by an edge. A

219

9. Secluded Graph Problems: Data Reduction with Neighborhoods

k' 4 ¢ vertices in L
/_/E

DU

1% ’Uil \UU? N Vi

{vi,vj} € E(G)

Figure 9.2.: Illustrative sketch of the construction of graph G’ on an input graph G =
(V=Vid..." Vg, E) as used in the proof of Theorem 9.17. The rectangles indicate
cliques with vertex sets V;, i € {1,...,k}.

We are set to prove our main result of this section.

Proof of Theorem 9.17. Let G = (V =V W... WV, E) be an instance of MIS.
We can assume that for each i € {1,...,k} we have |V;| > 2 and there is no edge
{v,w} € E with v,w € V;. Let (G', k', ¢) be the instance of SSFVS obtained
from G by Construction 9.18. We prove that (G, k) is a yes-instance of MIS if
and only if (G',k’,¢) is a yes-instance of SSFVS.

(=) Let (G, k) be a yes-instance of MIS and let X C V with |X| =k be a
multicolored independent set in G. We delete all vertices in S := V(G')\ (X ULU
{u}) from G’. Observe that |S| = |V| — k = k’. Moreover, Ne:(S) =k +1=14¢.
Since there is no edge between any two vertices in X, G — S forms a star with
center u and k' + ¢ + 1 + k vertices. Since every star is acyclic, (G', k', {) is a
yes-instance of SSFVS.

(<) Let (G',K',£) be a yes-instance of SSFVS and let S C V(G') be a
solution. Observe that G'[V; U {u}] forms a clique of size |V;| + 1 for each
i € {1,...,k}. Since Ng/[u] > k' + £+ 1, we have that u ¢ S. Hence, all
but at most one vertex in each V; must be deleted. Since k' = |V| — k and
|[Vi| > 2 for every i € {1,...,k}, S contains exactly |V;| — 1 vertices of V;
for each i € {1,...,k}. Hence, |S| = |V| -k and Ng/(S) = k+1 = £. Let
X =V \ S denote the set of vertices in V not contained in S. Recall that
|X| =k and | X NV;| =1 for every i € {1,...,k}. Next, suppose there is an
edge between two vertices v, w € X. Since u ¢ S and u is incident to all vertices

220

9.4. Concluding Remarks

in V, the vertices u,v,w form a triangle in G’. This contradicts the fact that
S is a solution for (G',k’,¢), that is, that G’ — S is acyclic. It follows that
E(G'[X]) = 0, that is, no two vertices in X are connected by an edge. Together
with | X| =k and | X NV;| =1 for every i € {1,...,k}, it follows that X forms
a multicolored independent set in G. Thus, (G, k) is a yes-instance of MIS. O

9.4. Concluding Remarks

We studied two well-known graph problems in the secluded setup. It seems that
the “secluded” prefix alone still allows for tractability results: SECLUDED s-t SEP-
ARATOR remains polynomial-time solvable, and SECLUDED FEEDBACK VERTEX
SET still admits a polynomial kernel, yet with O(k®) vertices (Theorem 9.10).
As to the latter, we wonder whether this can be improved:

Open Problem 13. Does SECLUDED FEEDBACK VERTEX SET admit a kernel
with O(k®) vertices where ¢ < 57

In turn, the “small secluded” prefix seems to make problems harder: SMALL
SECLUDED s-t SEPARATOR is NP-hard and even hard to preprocess regard-
ing k + ¢, and SMALL SECLUDED FEEDBACK VERTEX SET is W[1]-hard when
parameterized by £. As to the latter, we left open its parameterized complexity
regarding k and k + £.

Open Problem 14. Is SMALL SECLUDED FEEDBACK VERTEX SET fixed-
parameter tractable when parameterized by k or by k + ¢7 If so, does it admit
a polynomial kernel?

Asking for a secluded dominating set makes little sense since, by definition,
the closed neighborhood of a dominating set forms the whole graph. This is
not true for a g-dominating set with ¢ > 2, that is, a set of vertices such that
its closed g-neighborhood forms the whole graph. Now, asking for a secluded
g-dominating set makes mathematically sense. Indeed, one can even ask for
p-secluded g-dominating sets with p < ¢. Here p-secluded means that the size
of the closed p-neighborhood should be small (where p can be understood as
security measure in safe routing, for instance). These problems admit different
complexity classifications depending on whether p < [Bev+18] (see Table 9.2
for a summary). We restate one open case:

Open Problem 15. What is the parameterized complexity of SMALL p-
SECLUDED ¢-DOMINATING SET with p > 4 when parameterized by £?

221

9. Secluded Graph Problems: Data Reduction with Neighborhoods

Table 9.2.: Overview of the results [Bev+18] for g-dominating set in the p-secluded
setups. FPT and noPK stand for fixed-parameter tractable and no polynomial kernel

unless coNP C NP1y, respectively.

p~q Parameterized Complexity
k 14 k+2¢
p-SECLUDED
g-DOMINATING SET p <4 W[2]-hard - -
q-DOMINATING SET p > 2 FPT, noPK - -
SMALL p-SECLUDED
¢-DOMINATING SET p < 4 — — W[2]-hard
¢-DOMINATING SET p > 4 W/[2]-hard open FPT, noPK

Motivated by the results on p-secluded g-dominating sets, future work could be
the study of p-SECLUDED II and SMALL p-SECLUDED II.

222

OUTLOOK

Beside the fifteen concrete open problems (see Appendix B), this thesis paves the
way for seeking for more fractal-like structures exploitable in cross-compositions,
investigating trade-offs between running times and sizes of kernelizations, in
particular for polynomial-time solvable problems, and widening the range of
applicability of the losing-weight technique. Moreover, it underlines the study
of neighborhood-constrained graph optimization problems as fruitful objects for
discovering the mentioned trade-offs while employing the losing-weight technique.
We elaborate on what is said in some more detail.

We were not able to employ the T-fractal to refute the existence of polynomial
kernelization for the DIRECTED FEEDBACK VERTEX SET problem. In contrast
to DIRECTED SMALL CYCLE TRANSVERSAL, we need to hit each, not only
short cycles. Notably, the directed variant of a T-fractal admits the property
that many cycles intersect in few vertices, which then, in turn, might work as
instance selector. This is promising, yet possibly not enough for a non-existence
proof. We wonder whether some different fractal-like graph is required for a
(cross-)composition, if one exists.

The diminisher framework is widely applicable, even for polynomial-time
solvable problems. Further applications of the diminisher framework are of
interest, for instance for variants of kernelization where different (to polynomial)
running times are allowed. Moreover, we wonder about any connection of the
diminisher framework and polynomial Turing kernelization.

The losing-weight technique due to Frank and Tardos [FT87] is not only ap-
plicable to weighted problems with linear goal functions, but also to unweighted
problems and problems with non-linear, but what we call a-linearizable goal
functions. Extending the range of applicability of the technique is future work.
Moreover, we wonder about a losing-weight technique that applies to polynomial-
time solvable problems. To this end, both running time and quality (regarding
the obtained weight vector’s encoding length) might be improved in order to
achieve non-trivial results.

Several of this thesis’ contributions are mostly “negative”, that is, fall into
the field of kernelization lower bounds. This, in turn, also motivates for further
developing variants of kernelization. There are several promising variants of

9. Secluded Graph Problems: Data Reduction with Neighborhoods

kernelization in the literature, for instance “lossy” kernelization [Lok-+17], just
to name a most recent one. We think that polynomial Turing kernelizations that
rely on the adaptive power given to them, while only very few are known, form
a promising direction for research. What seems to be missing here are some
sort of meta theorems (see, e.g., [Bod-+16, EGS18, GSS16]), basic frameworks,
or possibly a deeper understanding of this “hidden” adaptive power.

224

BIBLIOGRAPHY

[AB09]

[AD16]

[AF06]

[AGV15]

[Alo+11]

[Alt+06]

[AV14]

[AVW16]

Sanjeev Arora and Boaz Barak. Computational Complezity - A Modern
Approach. Cambridge University Press, 2009 (cited on p. 12).

Muad Abu-Ata and Feodor F. Dragan. “Metric tree-like structures in real-
world networks: an empirical study”. In: Networks 67.1 (2016), pp. 49-68.
por: 10.1002/net.21631 (cited on p. 114).

Faisal N. Abu-Khzam and Henning Fernau. “Kernels: annotated, proper
and induced”. In: Proceedings of the 2nd International Workshop on Param-
eterized and Ezxact Computation (IWPEC’06). Vol. 4169. Lecture Notes in
Computer Science. Springer, 2006, pp. 264-275. po1: 10.1007/11847250 24
(cited on pp. 2, 9).

Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. “Sub-
cubic equivalences between graph centrality problems, APSP and diameter”.
In: Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’15). SIAM, 2015, pp. 1681-1697. por: 10.1137/1.97816
11973730.112 (cited on p. 90).

Noga Alon, Gregory Z. Gutin, Eun Jung Kim, Stefan Szeider, and Anders
Yeo. “Solving MAX-r-SAT above a tight lower bound”. In: Algorithmica
61.3 (2011), pp. 638-655. po1: 10.1007,/300453-010-9428-7 (cited on pp. 4,
5, 10).

Ernst Althaus, Gruia Célinescu, Ion I. Mandoiu, Sushil K. Prasad, N.
Tchervenski, and Alexander Zelikovsky. “Power efficient range assignment
for symmetric connectivity in static ad hoc wireless networks”. In: Wireless
Networks 12.3 (2006), pp. 287-299. por: 10.1007/s11276-005-5275-x (cited
on p. 147).

Amir Abboud and Virginia Vassilevska Williams. “Popular conjectures
imply strong lower bounds for dynamic problems”. In: Proceedings of
the 55th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’14). IEEE Computer Society, 2014, pp. 434-443. por1: 10.1109/FO
(CS.2014.53 (cited on p. 90).

Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. “Ap-
proximation and fixed parameter subquadratic algorithms for radius and
diameter in sparse graphs”. In: Proceedings of the 27th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’16). Society for Industrial and

https://doi.org/10.1002/net.21631
https://doi.org/10.1007/11847250_24
https://doi.org/10.1137/1.9781611973730.112
https://doi.org/10.1137/1.9781611973730.112
https://doi.org/10.1007/s00453-010-9428-7
https://doi.org/10.1007/s11276-005-5275-x
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1109/FOCS.2014.53

Bibliography

[AVY18]

[AYZ95)

[Bai-+10]

[Ban+14]

[Bar-+98]

[Baz+19]

[BBF99)

[BCH16]

[Ben+17a]

226

Applied Mathematics, 2016, pp. 377-391. por: 10.1137/1.9781611974331.c
h28 (cited on pp. 90, 98, 121).

Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. “Matching
triangles and basing hardness on an extremely popular conjecture”. In:
SIAM Journal on Computing 47.3 (2018), pp. 1098-1122. por: 10.1137/15
M1050987 (cited on pp. 18, 92, 103).

Noga Alon, Raphael Yuster, and Uri Zwick. “Color-coding”. In: Journal
of the ACM 42.4 (1995), pp. 844-856. por: 10.1145/210332.210337 (cited
on pp. 82, 84, 97).

Georg Baier, Thomas Erlebach, Alexander Hall, Ekkehard Ko&hler, Petr
Kolman, Ondrej Pangrac, Heiko Schilling, and Martin Skutella. “Length-
bounded cuts and flows”. In: ACM Transactions on Algorithms 7.1 (2010),
p. 4. pot: 10.1145/1868237.1868241 (cited on p. 45).

Nikhil Bansal, Uriel Feige, Robert Krauthgamer, Konstantin Makarychev,
Viswanath Nagarajan, Joseph Naor, and Roy Schwartz. “Min-max graph
partitioning and small set expansion”. In: STAM Journal on Computing
43.2 (2014), pp. 872-904. por: 10.1137/120873996 (cited on p. 149).

Reuven Bar-Yehuda, Dan Geiger, Joseph Naor, and Ron M. Roth. “Approx-
imation algorithms for the feedback vertex set problem with applications
to constraint satisfaction and Bayesian inference”. In: SIAM Journal on
Computing 27.4 (1998), pp. 942-959. por: 10.1137/S0097539796305109
(cited on p. 177).

Cristina Bazgan, Till Fluschnik, André Nichterlein, Rolf Niedermeier, and
Maximilian Stahlberg. “A more fine-grained complexity analysis of finding
the most vital edges for undirected shortest paths”. In: Networks 73.1
(2019), pp. 23-37. potL: 10.1002/net.21832 (cited on pp. x, 45).

V. Bafna, P. Berman, and T. Fujito. “A 2-approximation algorithm for the
undirected feedback vertex set problem”. In: STAM Journal on Discrete
Mathematics 12.3 (1999), pp. 289-297. por: 10.1137,/S0895480196305124
(cited on p. 214).

Michele Borassi, Pierluigi Crescenzi, and Michel Habib. “Into the square:
on the complexity of some quadratic-time solvable problems”. In: Electronic
Notes in Theoretical Computer Science 322 (2016), pp. 51-67. por: 10.101
6/j.entcs.2016.03.005 (cited on pp. 114, 115, 121).

Matthias Bentert, René van Bevern, André Nichterlein, and Rolf Nieder-
meier. “Parameterized algorithms for power-efficient connected symmetric
wireless sensor networks”. In: Proceedings of the 13th International Sym-
posium on Algorithms and Experiments for Wireless Sensor Networks

https://doi.org/10.1137/1.9781611974331.ch28
https://doi.org/10.1137/1.9781611974331.ch28
https://doi.org/10.1137/15M1050987
https://doi.org/10.1137/15M1050987
https://doi.org/10.1145/210332.210337
https://doi.org/10.1145/1868237.1868241
https://doi.org/10.1137/120873996
https://doi.org/10.1137/S0097539796305109
https://doi.org/10.1002/net.21832
https://doi.org/10.1137/S0895480196305124
https://doi.org/10.1016/j.entcs.2016.03.005
https://doi.org/10.1016/j.entcs.2016.03.005

[Ben+17b]

[Ben+18]

[Ben+19]

[Bet+10]

[Bet+11a)

[Bet+11b]

[Bev+17]

(ALGOSENSORS’17). Vol. 10718. Lecture Notes in Computer Science.
Springer, 2017, pp. 26-40. por: 10.1007 /978-3-319-72751-6 3 (cited
on p. 149).

Matthias Bentert, Till Fluschnik, André Nichterlein, and Rolf Niedermeier.
“Parameterized aspects of triangle enumeration”. In: Proceedings of the
21st International Symposium on Fundamentals of Computation Theory
(FCT’17). Vol. 10472. Lecture Notes in Computer Science. Springer, 2017,
pp. 96-110. por: 10.1007,/978-3-662-55751-8 9 (cited on p. x).

Matthias Bentert, Alexander Dittmann, Leon Kellerhals, André Nichter-
lein, and Rolf Niedermeier. “An adaptive version of Brandes’ algorithm
for betweenness centrality”. In: Proceedings of the 29th International Sym-
posium on Algorithms and Computation (ISAAC’18). Vol. 123. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2018, 36:1-36:13. DOI:
10.4230/LIPIcs.ISAAC.2018.36 (cited on p. 129).

Matthias Bentert, Till Fluschnik, André Nichterlein, and Rolf Niedermeier.
“Parameterized aspects of triangle enumeration”. In: Journal of Computer
and System Sciences 103 (2019), pp. 61-77. por: 10.1016/j.jcss.2019.02.004
(cited on pp. x, 127).

Nadja Betzler, Jiong Guo, Christian Komusiewicz, and Rolf Niedermeier.
“Average parameterization and partial kernelization for computing medi-
ans”. In: Proceedings of the 9th Latin American Symposium on Theoretical
Informatics (LATIN’10). Vol. 6034. Lecture Notes in Computer Science.
Springer, 2010, pp. 60-71. po1: 10.1007 /978-3-642-12200-2 7 (cited
on p. 5).

Nadja Betzler, René van Bevern, Michael R. Fellows, Christian Komusiewicz,
and Rolf Niedermeier. “Parameterized algorithmics for finding connected
motifs in biological networks”. In: IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics 8.5 (2011), pp. 1296-1308. DpoI:
10.1109/TCBB.2011.19 (cited on p. 84).

Nadja Betzler, Jiong Guo, Christian Komusiewicz, and Rolf Niedermeier.
“Average parameterization and partial kernelization for computing medi-
ans”. In: Journal of Computer and System Sciences 77.4 (2011), pp. 774—
789. por: 10.1016/j.jcss.2010.07.005 (cited on pp. 4, 10).

René van Bevern, Till Fluschnik, George B. Mertzios, Hendrik Molter,
Manuel Sorge, and Ondiej Suchy. “Finding secluded places of special
interest in graphs”. In: Proceedings of the 11th International Symposium
on Parameterized and Ezxact Computation (IPEC’16). Vol. 63. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2017, 5:1-5:16. DoOI:
10.4230/LIPIcs.IPEC.2016.5 (cited on p. vii).

227

https://doi.org/10.1007/978-3-319-72751-6_3
https://doi.org/10.1007/978-3-662-55751-8_9
https://doi.org/10.4230/LIPIcs.ISAAC.2018.36
https://doi.org/10.1016/j.jcss.2019.02.004
https://doi.org/10.1007/978-3-642-12200-2_7
https://doi.org/10.1109/TCBB.2011.19
https://doi.org/10.1016/j.jcss.2010.07.005
https://doi.org/10.4230/LIPIcs.IPEC.2016.5

Bibliography

[Bev+18]

[BFS10]

[BFT18

[BFT19)

[BFT20]

[BGY3]

[BGR14]

[Bin+12]

228

René van Bevern, Till Fluschnik, George B. Mertzios, Hendrik Molter,
Manuel Sorge, and Ondfej Suchy. “The parameterized complexity of finding
secluded solutions to some classical optimization problems on graphs”. In:
Discrete Optimization 30 (2018), pp. 20-50. por: 10.1016/j.disopt.2018.05
.002 (cited on pp. vii, 199, 201, 202, 206, 221, 222).

Hans L. Bodlaender, F. V. Fomin, and S. Saurabh. Open Problems in Pa-
rameterized and Exact Computation — WorKer 2010. Tech. rep. available
at http://fpt.wdfiles.com/local--files/open-problems/open-problems.pdf.
2010 (cited on p. 41).

René van Bevern, Till Fluschnik, and Oxana Yu. Tsidulko. “Parameterized
algorithms and data reduction for safe convoy routing”. In: Proceedings of
the 18th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems (ATMOS’18). Vol. 65. OpenAccess Series in
Informatics (OASIcs). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
Aug. 29, 2018, 10:1-10:19. por1: 10.4230/OASIcs. ATMOS.2018.10 (cited
on p. viii).

René van Bevern, Till Fluschnik, and Oxana Yu. Tsidulko. “On (1+¢)-
approximate data reduction for the rural postman problem”. In: Proceedings
of the 18th International Conference on Mathematical Optimization The-
ory and Operations Research (MOTOR’19). Vol. 11548. Lecture Notes in
Computer Science. Springer, 2019, pp. 279-294. por: 10.1007,/978-3-030-2
2629-9 20 (cited on p. x).

René van Bevern, Till Fluschnik, and Oxana Yu. Tsidulko. “Parameterized
algorithms and data reduction for the short secluded s-t-path problem”. In:
Networks 75.1 (2020), pp. 34-63. por: 10.1002/net.21904 (cited on pp. viii,
159, 171, 188, 190).

Jonathan F. Buss and Judy Goldsmith. “Nondeterminism within P”. In:
SIAM Journal on Computing 22.3 (1993), pp. 560-572. por: 10.1137/0222
038 (cited on pp. 2, 86).

Michael A. Bekos, Martin Gronemann, and Chrysanthi N. Raftopoulou.
“Two-page book embeddings of 4-planar graphs”. In: Proceedings of the
31st International Symposium on Theoretical Aspects of Computer Science
(STACS’14). Vol. 25. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2014, pp. 137-148. por: 10.4230 /LIPIcs. STACS.2014.137
(cited on p. 49).

Daniel Binkele-Raible, Henning Fernau, Fedor V. Fomin, Daniel Loksh-
tanov, Saket Saurabh, and Yngve Villanger. “Kernel(s) for problems with
no kernel: on out-trees with many leaves”. In: ACM Transactions on Algo-

https://doi.org/10.1016/j.disopt.2018.05.002
https://doi.org/10.1016/j.disopt.2018.05.002
http://fpt.wdfiles.com/local--files/open-problems/open-problems.pdf
https://doi.org/10.4230/OASIcs.ATMOS.2018.10
https://doi.org/10.1007/978-3-030-22629-9_20
https://doi.org/10.1007/978-3-030-22629-9_20
https://doi.org/10.1002/net.21904
https://doi.org/10.1137/0222038
https://doi.org/10.1137/0222038
https://doi.org/10.4230/LIPIcs.STACS.2014.137

[BJ92|

[BJK11]

[BJK14]

[BKMO1]

[BKS95]

[BMS15]

[BNN15]|

[Bod+08a]

rithms 8.4 (2012), p. 38. por: 10.1145/2344422.2344428 (cited on pp. 4,
11).
Thang Nguyen Bui and Curt Jones. “Finding good approximate vertex

and edge partitions is NP-hard”. In: Information Processing Letters 42.3
(1992), pp. 153-159. por: 10.1016/0020-0190(92)90140-Q (cited on p. 201).

Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. “Cross-
composition: a new technique for kernelization lower bounds”. In: Pro-
ceedings of the 28th International Symposium on Theoretical Aspects of
Computer Science (STACS’11). Vol. 9. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2011, pp. 165-176. por1: 10.4230/LIPIcs.STACS.2
011.165 (cited on p. 4).

Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. “Kerneliza-
tion lower bounds by cross-composition”. In: SIAM Journal on Discrete
Mathematics 28.1 (2014), pp. 277-305. por: 10.1137 /120880240 (cited
on pp. 8, 21).

Gunnar Brinkmann, Jack H. Koolen, and V. Moulton. “On the hyperbolicity
of chordal graphs”. In: Annals of Combinatorics 5.1 (2001), pp. 61-69. DOI:
10.1007/s00026-001-8007-7 (cited on p. 116).

Amotz Bar-Noy, Samir Khuller, and Baruch Schieber. The Complezity of
Finding Most Vital Arcs and Nodes. Tech. rep. College Park, MD, USA,
1995 (cited on pp. 49, 50, 52).

Ahmad Biniaz, Anil Maheshwari, and Michiel H. M. Smid. “On the hardness
of full Steiner tree problems”. In: Journal of Discrete Algorithms 34 (2015),
pp. 118-127. por: 10.1016/j.jda.2015.05.013 (cited on p. 78).

Cristina Bazgan, André Nichterlein, and Rolf Niedermeier. “A refined
complexity analysis of finding the most vital edges for undirected shortest
paths”. In: Proceedings of the 9th International Conference on Algorithms
and Complexity (CIAC’15). Vol. 9079. Lecture Notes in Computer Science.
Springer, 2015, pp. 47-60. por: 10.1007 /978-3-319-18173-8 3 (cited
on p. 45).

Hans L. Bodlaender, Erik D. Demaine, Michael R. Fellows, Jiong Guo,
Danny Hermelin, Daniel Lokshtanov, Moritz Miiller, Venkatesh Raman,
Johan van Rooij, and Frances A. Rosamond. Open Problems in Parame-
terized and Ezxact Computation — IWPEC 2008. Tech. rep. , Utrecht, The
Netherlands, 2008 (cited on p. 11).

[Bod+08b] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny

Hermelin. “On problems without polynomial kernels (extended abstract)”.
In: Proceedings of the 35th International Colloguium on Automata, Lan-

229

https://doi.org/10.1145/2344422.2344428
https://doi.org/10.1016/0020-0190(92)90140-Q
https://doi.org/10.4230/LIPIcs.STACS.2011.165
https://doi.org/10.4230/LIPIcs.STACS.2011.165
https://doi.org/10.1137/120880240
https://doi.org/10.1007/s00026-001-8007-7
https://doi.org/10.1016/j.jda.2015.05.013
https://doi.org/10.1007/978-3-319-18173-8_3

Bibliography

[Bod+09]

[Bod+16]

[Bod98]

[Bor+15]

[Bri+18]

[Bri+19]

[Bril4]

[Bru+06]

230

guages and Programming (ICALP’08). Vol. 5125. Lecture Notes in Com-
puter Science. Springer, 2008, pp. 563-574. po1: 10.1016/j.jcss.2009.04.001
(cited on p. 4).

Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny
Hermelin. “On problems without polynomial kernels”. In: Journal of Com-
puter and System Sciences 75.8 (2009), pp. 423-434. po1: 10.1016/j.jcss.20
09.04.001 (cited on pp. 3, 5, 7, 8, 10, 21).

Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx,
Saket Saurabh, and Dimitrios M. Thilikos. “(Meta) Kernelization”. In:
Journal of the ACM 63.5 (2016), 44:1-44:69. por: 10.1145/2973749 (cited
on pp. 60, 61, 224).

Hans L. Bodlaender. “A partial k-arboretum of graphs with bounded
treewidth”. In: Theoretical Computer Science 209.1-2 (1998), pp. 1-45. poIL:
10.1016,/S0304-3975(97)00228-4 (cited on p. 25).

Michele Borassi, David Coudert, Pierluigi Crescenzi, and Andrea Marino.
“On computing the hyperbolicity of real-world graphs”. In: Proceedings
of 28rd Annual European Symposium on Algorithms (ESA’15). Vol. 9294.
Lecture Notes in Computer Science. Springer, 2015, pp. 215-226. DOI:
10.1007/978-3-662-48350-3\ 19 (cited on p. 114).

Markus Brill, Till Fluschnik, Vincent Froese, Brijnesh J. Jain, Rolf Nie-
dermeier, and David Schultz. “Exact mean computation in dynamic time
warping spaces”. In: Proceedings of the 2018 SIAM International Con-
ference on Data Mining (SDM’18). Society for Industrial and Applied
Mathematics, 2018, pp. 540-548. por: 10.1137/1.9781611975321.61 (cited
on p. x).

Markus Brill, Till Fluschnik, Vincent Froese, Brijnesh J. Jain, Rolf Nie-
dermeier, and David Schultz. “Exact mean computation in dynamic time
warping spaces”. In: Data Mining and Knowledge Discovery 33.1 (2019),
pp. 252-291. por: 10.1007/s10618-018-0604-8 (cited on p. x).

Karl Bringmann. “Why walking the dog takes time: Fréchet distance has
no strongly subquadratic algorithms unless SETH fails”. In: Proceedings of
the 55th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’14). 2014, pp. 661-670. pot: 10.1109/FOCS.2014.76 (cited on p. 90).

Maurizio Bruglieri, Matthias Ehrgott, Horst W. Hamacher, and Francesco
Maffioli. “An annotated bibliography of combinatorial optimization prob-
lems with fixed cardinality constraints”. In: Discrete Applied Mathematics.
Proceedings of the 2nd Cologne/Twente Workshop on Graphs and Com-
binatorial Optimization (CTW 2003) 154.9 (2006), pp. 1344-1357. potr:
10.1016/j.dam.2005.05.036 (cited on p. 201).

https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1145/2973749
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1007/978-3-662-48350-3_19
https://doi.org/10.1137/1.9781611975321.61
https://doi.org/10.1007/s10618-018-0604-8
https://doi.org/10.1109/FOCS.2014.76
https://doi.org/10.1016/j.dam.2005.05.036

[BTY09]

[BTY11]

[Cai+97]

[Cai08]

[cCCo6]

[CCL15]

[CD14]

[CFMO9)

[CFM11]

[Che+06]

Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. “Kernel bounds
for disjoint cycles and disjoint paths”. In: Proceedings of 17th Annual
European Symposium on Algorithms (ESA’09). Vol. 5757. Lecture Notes
in Computer Science. Springer, 2009, pp. 635—646. po1: 10.1007/978-3-642
-04128-0 57 (cited on p. 4).

Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. “Kernel bounds
for disjoint cycles and disjoint paths”. In: Theoretical Computer Science
412.35 (2011), pp. 4570-4578. por: 10.1016/j.tcs.2011.04.039 (cited on p. 9).

Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fellows.
“Advice classes of parameterized tractability”. In: Annals of Pure and
Applied Logic 84.1 (1997), pp. 119-138. por: 10.1016/S0168-0072(95)00020
-8 (cited on p. 3).

Leizhen Cai. “Parameterized complexity of cardinality constrained opti-
mization problems”. In: The Computer Journal 51.1 (2008), pp. 102-121.
pot: 10.1093/comjnl/bxm086 (cited on p. 201).

Leizhen Cai, Siu Man Chan, and Siu On Chan. “Random separation:
A new method for solving fixed-cardinality optimization problems”. In:
Proceedings of the 2nd International Workshop on Parameterized and Exact
Computation (IWPEC’06). Vol. 4169. Lecture Notes in Computer Science.
Springer, 2006, pp. 239-250. po1: 10.1007/11847250 22 (cited on p. 201).

Nathann Cohen, David Coudert, and Aurélien Lancin. “On computing the
Gromov hyperbolicity”. In: ACM Journal of Ezxperimental Algorithmics 20
(2015), 1.6:1-1.6:18. por: 10.1145/2780652 (cited on pp. 114, 116, 117).

David Coudert and Guillaume Ducoffe. “Recognition of Cy4-free and 1/2-
hyperbolic graphs”. In: STAM Journal on Discrete Mathematics 28.3 (2014),
pp. 1601-1617. por: 10.1137/140954787 (cited on p. 114).

Yijia Chen, Jorg Flum, and Moritz Miiller. “Lower bounds for kernelizations
and other preprocessing procedures”. In: Proceedings of the 5th Conference
on Computability in Europe (CiE’09). Vol. 5635. Lecture Notes in Computer
Science. Springer, 2009, pp. 118-128. pot: 10.1007/978-3-642-03073-4 13
(cited on p. 4).

Yijia Chen, Jorg Flum, and Moritz Miiller. “Lower bounds for kernelizations
and other preprocessing procedures’. In: Theory of Computing Systems
48.4 (2011), pp. 803-839. por1: 10.1007,/s00224-010-9270-y (cited on pp. 5,
65, 67-70, 73, 83, 87, 97).

Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. “Strong com-
putational lower bounds via parameterized complexity”. In: Journal of

231

https://doi.org/10.1007/978-3-642-04128-0_57
https://doi.org/10.1007/978-3-642-04128-0_57
https://doi.org/10.1016/j.tcs.2011.04.039
https://doi.org/10.1016/S0168-0072(95)00020-8
https://doi.org/10.1016/S0168-0072(95)00020-8
https://doi.org/10.1093/comjnl/bxm086
https://doi.org/10.1007/11847250_22
https://doi.org/10.1145/2780652
https://doi.org/10.1137/140954787
https://doi.org/10.1007/978-3-642-03073-4_13
https://doi.org/10.1007/s00224-010-9270-y

Bibliography

[Che+17]

[Chv+T75]

[CKJO1]

[CN85]

[Coh+-17]

[CPP16]

[CPS04]

[Cyg+12]

[Cyg+14]

[Cyg+15]

232

Computer and System Sciences 72.8 (2006), pp. 1346-1367. po1: 10.1016/j
.jess.2006.04.007 (cited on p. 18).

Shiri Chechik, Matthew P. Johnson, Merav Parter, and David Peleg. “Se-
cluded connectivity problems”. In: Algorithmica 79.3 (2017), pp. 708-741.
por: 10.1007/s00453-016-0222-7 (cited on pp. 141, 160, 199, 200).

J Chvéatalova, AK Dewdney, NE Gibbs, and RR Korfthage. The Bandwidth
Problem for Graphs—A Collection of Recent Results. Tech. rep. CS 7502.
Department of Computer Science, Southern Methodist University, 1975
(cited on p. 77).

Jianer Chen, Iyad A. Kanj, and Weijia Jia. “Vertex cover: further observa-
tions and further improvements”. In: Journal of Algorithms 41.2 (2001),
pp. 280-301. poL: 10.1006/jagm.2001.1186 (cited on p. 3).

Norishige Chiba and Takao Nishizeki. “Arboricity and subgraph listing
algorithms”. In: SIAM Journal on Computing 14.1 (1985), pp. 210-223.
pol: 10.1137/0214017 (cited on p. 110).

Nathann Cohen, David Coudert, Guillaume Ducoffe, and Aurélien Lancin.
“Applying clique-decomposition for computing Gromov hyperbolicity”. In:
Theoretical Computer Science 690 (2017), pp. 114-139. pot: 10.1016/j.tcs
.2017.06.001 (cited on pp. 114, 118).

Marek Cygan, Marcin Pilipczuk, and Michal Pilipczuk. “Known algorithms
for edge clique cover are probably optimal”. In: STAM Journal on Computing
45.1 (2016), pp. 67-83. po1: 10.1137/130947076 (cited on p. 68).

Andrea E. F. Clementi, Paolo Penna, and Riccardo Silvestri. “On the
power assignment problem in radio networks”. In: Mobile Networks and
Applications (MONET) 9.2 (2004), pp. 125-140. por: 10.1023/B:MONE.0
000013624.32948.87 (cited on p. 147).

Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Woj-
taszczyk. “Kernelization hardness of connectivity problems in d-degenerate
graphs”. In: Discrete Applied Mathematics 160.15 (2012), pp. 2131-2141.
por: 10.1016/j.dam.2012.05.016 (cited on p. 84).

Marek Cygan, Daniel Lokshtanov, Fedor Fomin, Bart M. P. Jansen, Lukasz
Kowalik, Daniel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket
Saurabh. Open problems of the FPT School 2014, 17-22 August 2014,
Bedlewo, Poland. Tech. rep. Available at http://fptschool.mimuw.edu.pl/o
pl.pdf. 2014 (cited on pp. 41, 44, 146).

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel
Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameter-

https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/10.1007/s00453-016-0222-z
https://doi.org/10.1006/jagm.2001.1186
https://doi.org/10.1137/0214017
https://doi.org/10.1016/j.tcs.2017.06.001
https://doi.org/10.1016/j.tcs.2017.06.001
https://doi.org/10.1137/130947076
https://doi.org/10.1023/B:MONE.0000013624.32948.87
https://doi.org/10.1023/B:MONE.0000013624.32948.87
https://doi.org/10.1016/j.dam.2012.05.016
http://fptschool.mimuw.edu.pl/opl.pdf
http://fptschool.mimuw.edu.pl/opl.pdf

[DF13]

[DF95a]

[DF95b]

[DF99]

[DFS97]

[Die10]

[DK18]

[DLS14]

[DM10]

[Dow-+03]

ized Algorithms. Springer, 2015. por: 10.1007,/978-3-319-21275-3 (cited
on pp. 12, 178).

Rod G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Texts in Computer Science. Springer, 2013. por: 10.1007/978-
1-4471-5559-1 (cited on pp. 12, 109).

Rodney G. Downey and Michael R. Fellows. “Fixed-parameter tractability
and completeness I: basic results”. In: STAM Journal on Computing 24.4
(1995), pp. 873-921. por: 10.1137/S0097539792228228 (cited on p. 16).

Rodney G. Downey and Michael R. Fellows. “Parameterized computational
feasibility”. In: Feasible Mathematics II. Progress in Computer Science
and Applied Logic. Vol. 13. Birkh&duser Boston, 1995, pp. 219-244. por:
10.1007/978-1-4612-2566-9 7 (cited on p. 1).

Rodney G. Downey and Michael R. Fellows. Parameterized Complezity.
Monographs in Computer Science. Springer, 1999 (cited on pp. 74, 86).

Rodney G. Downey, Michael R. Fellows, and Ulrike Stege. “Parameterized
complexity: a framework for systematically confronting computational
intractability”. In: Proceedings of a DIMACS Workshop on Contemporary
Trends in Discrete Mathematics: From DIMACS and DIMATIA to the
Future. Vol. 49. Discrete Mathematics and Theoretical Computer Science
(DIMACS). DIMACS/AMS, 1997, pp. 49-100. po1: 10.1090/dimacs/049 /04
(cited on pp. 2, 3, 9).

Reinhard Diestel. Graph Theory. 4th. Vol. 173. Graduate Texts in Mathe-
matics. Springer, 2010 (cited on pp. 12, 29, 75).

Pavel Dvorak and Dusan Knop. “Parameterized complexity of length-
bounded cuts and multicuts”. In: Algorithmica 80.12 (2018), pp. 3597-3617.
por: 10.1007/s00453-018-0408-7 (cited on p. 45).

Michael Dom, Daniel Lokshtanov, and Saket Saurabh. “Kernelization lower
bounds through colors and IDs”. In: ACM Transactions on Algorithms 11.2
(2014), 13:1-13:20. por: 10.1145/2650261 (cited on pp. 9, 21).

Holger Dell and Dieter van Melkebeek. “Satisfiability allows no nontrivial
sparsification unless the polynomial-time hierarchy collapses”. In: Proceed-
ings of the 42nd ACM Symposium on Theory of Computing (STOC’10).
ACM, 2010, pp. 251-260. por1: 10.1145/1806689.1806725 (cited on p. 4).

R. Downey, V. Estivill-Castro, M. Fellows, E. Prieto, and F. Rosamond.
“Cutting up is hard to do: the parameterized complexity of k-Cut and
related problems”. In: Electronic Notes in Theoretical Computer Science 78
(2003), pp. 209-222. por1: 10.1016/S1571-0661(04)81014-4 (cited on p. 201).

233

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1137/S0097539792228228
https://doi.org/10.1007/978-1-4612-2566-9_7
https://doi.org/10.1090/dimacs/049/04
https://doi.org/10.1007/s00453-018-0408-7
https://doi.org/10.1145/2650261
https://doi.org/10.1145/1806689.1806725
https://doi.org/10.1016/S1571-0661(04)81014-4

Bibliography

[DPS02]

[Drul2]

[Druls|

[Duf65]

[DW71]

[EGS18|

[Bis+19]

[Est-+05]

[Bts+17]

[Fel+-08]

234

Josep Diaz, Jordi Petit, and Maria J. Serna. “A survey of graph layout
problems”. In: ACM Computing Surveys 34.3 (2002), pp. 313-356. DOI:
10.1145/568522.568523 (cited on pp. 75-77).

Andrew Drucker. “New limits to classical and quantum instance compres-
sion”. In: Proceedings of the 53rd Annual IEEE Symposium on Foundations
of Computer Science (FOCS’12). IEEE Computer Society, 2012, pp. 609
618. pot: 10.1109/FOCS.2012.71 (cited on p. 4).

Andrew Drucker. “New limits to classical and quantum instance compres-
sion”. In: STAM Journal on Computing 44.5 (2015), pp. 1443-1479. por:
10.1137/130927115 (cited on p. 8).

Richard J Duffin. “Topology of series-parallel networks”. In: Journal of
Mathematical Analysis and Applications 10.2 (1965), pp. 303-318. DoOI:
https://doi.org/10.1016,/0022-247X(65)90125-3 (cited on p. 36).

S. E. Dreyfus and R. A. Wagner. “The Steiner problem in graphs”. In:
Networks 1.3 (1971), pp. 195-207. po1: 10.1002/net.3230010302 (cited
on p. 79).

Eduard Eiben, Robert Ganian, and Stefan Szeider. “Meta-kernelization
using well-structured modulators”. In: Discrete Applied Mathematics 248
(2018), pp. 153-167. po1: 10.1016/j.dam.2017.09.018 (cited on p. 224).

Friedrich Eisenbrand, Christoph Hunkenschréder, Kim-Manuel Klein, Mar-
tin Koutecky, Asaf Levin, and Shmuel Onn. “An algorithmic theory of
integer programming”. In: CoRR abs/1904.01361 (2019). arXiv: 1904.01361
(cited on p. 157).

Vladimir Estivill-Castro, Michael R. Fellows, Michael A. Langston, and
Frances A. Rosamond. “FPT is P-time extremal structure I”. In: Algorithms
and Complezity in Durham 2005 - Proceedings of the First ACiD Workshop,
8-10 July 2005, Durham, UK. Vol. 4. Texts in Algorithmics. King’s College,
London, 2005, pp. 1-41 (cited on pp. 5, 11).

Michael Etscheid, Stefan Kratsch, Matthias Mnich, and Heiko Ré&glin.
“Polynomial kernels for weighted problems”. In: Journal of Computer and
System Sciences 84.Supplement C (2017), pp. 1-10. por: 10.1016/j.jcss.201
6.06.004 (cited on pp. 142, 144, 146, 156, 157).

Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Frances A. Rosa-
mond, and Saket Saurabh. “Graph layout problems parameterized by vertex
cover”. In: Proceedings of the 19th International Symposium on Algorithms
and Computation (ISAAC’08). Ed. by Seok-Hee Hong, Hiroshi Nagamochi,
and Takuro Fukunaga. Vol. 5369. Lecture Notes in Computer Science.

https://doi.org/10.1145/568522.568523
https://doi.org/10.1109/FOCS.2012.71
https://doi.org/10.1137/130927115
https://doi.org/https://doi.org/10.1016/0022-247X(65)90125-3
https://doi.org/10.1002/net.3230010302
https://doi.org/10.1016/j.dam.2017.09.018
http://arxiv.org/abs/1904.01361
https://doi.org/10.1016/j.jcss.2016.06.004
https://doi.org/10.1016/j.jcss.2016.06.004

[Fel+09]

[Fel+12a]

[Fel+12b]

[Fel418]

[Fer4-09]

[Fer+18]

[Fer+-20]

[Fer17]

Springer, 2008, pp. 294-305. po1: 10.1007/978-3-540-92182-0 28 (cited
on p. 144).

Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane
Vialette. “On the parameterized complexity of multiple-interval graph
problems”. In: Theoretical Computer Science 410.1 (2009), pp. 53-61. DOIL:
10.1016/j.t¢s.2008.09.065 (cited on pp. 178, 219).

Michael R. Fellows, Jiong Guo, Daniel Marx, and Saket Saurabh. “Data
Reduction and Problem Kernels (Dagstuhl Seminar 12241)”. In: Dagstuhl
Reports 2.6 (2012), pp. 26-50. po1: 10.4230/DagRep.2.6.26 (cited on p. 41).

Michael R. Fellows, Ariel Kulik, Frances A. Rosamond, and Hadas Shachnai.
“Parameterized approximation via fidelity preserving transformations”. In:
Proceedings of the 39th International Colloquium on Automata, Languages,
and Programming (ICALP’12). Vol. 7391. Lecture Notes in Computer
Science. Springer, 2012, pp. 351-362. pol: 10.1007/978-3-642-31594-7 30
(cited on pp. 5, 10).

Michael R. Fellows, Lars Jaffke, Aliz Izabella Kiraly, Frances A. Rosamond,
and Mathias Weller. “What is known about vertex cover kernelization?” In:
Adventures Between Lower Bounds and Higher Altitudes - Essays Dedicated
to Juraj Hromkovi¢ on the Occasion of His 60th Birthday. Vol. 11011.
Lecture Notes in Computer Science. Springer, 2018, pp. 330-356. DOI:
10.1007/978-3-319-98355-4 19 (cited on p. 2).

Henning Fernau, Fedor V. Fomin, Daniel Lokshtanov, Daniel Raible, Saket
Saurabh, and Yngve Villanger. “Kernel(s) for problems with no kernel:
on out-trees with many leaves”. In: Proceedings of the 26th International
Symposium on Theoretical Aspects of Computer Science (STACS’09). Vol. 3.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2009, pp. 421-
432. por: 10.4230/LIPIcs.STACS.2009.1843 (cited on p. 5).

Henning Fernau, Till Fluschnik, Danny Hermelin, Andreas Krebs, Hendrik
Molter, and Rolf Niedermeier. “Diminishable parameterized problems and
strict polynomial kernelization”. In: Proceedings of the 1/th Conference on
Computability in Europe (CiE’18). Vol. 10936. Lecture Notes in Computer
Science. Springer, 2018, pp. 161-171. por: 10.1007/978-3-319-94418-0 17
(cited on pp. vii, 87).

Henning Fernau, Till Fluschnik, Danny Hermelin, Andreas Krebs, Hendrik
Molter, and Rolf Niedermeier. “Diminishable parameterized problems and
strict polynomial kernelization”. In: Computability 9.1 (2020), pp. 1-24.
pol: 10.3233/COM-180220 (cited on pp. vii, 67, 89).

Henning Fernau. “Extremal kernelization: a commemorative paper”. In: Pro-
ceedings of the 28th International Workshop on Combinatorial Algorithms

235

https://doi.org/10.1007/978-3-540-92182-0_28
https://doi.org/10.1016/j.tcs.2008.09.065
https://doi.org/10.4230/DagRep.2.6.26
https://doi.org/10.1007/978-3-642-31594-7_30
https://doi.org/10.1007/978-3-319-98355-4_19
https://doi.org/10.4230/LIPIcs.STACS.2009.1843
https://doi.org/10.1007/978-3-319-94418-0_17
https://doi.org/10.3233/COM-180220

Bibliography

[FGO6]

[FGK13]

[FIV15]

[Flu+15]

[Flu-+16]

[Flu+17a]

[Flut17b]

[Flu+18a)

236

(IWOCA’17). Vol. 10765. Lecture Notes in Computer Science. Springer,
2017, pp. 24-36. por: 10.1007/978-3-319-78825-8 3 (cited on p. 86).

Jorg Flum and Martin Grohe. Parameterized Complexity Theory. Springer,
2006. pot: 10.1007/3-540-29953-X (cited on p. 12).

F. Fomin, P. Golovach, and J. Korhonen. “On the parameterized complexity
of cutting a few vertices from a graph”. In: Proceedings of the 38th Inter-
national Symposium on Mathematical Foundations of Computer Science
(MFCS’13). Vol. 8087. Lecture Notes in Computer Science. Springer, 2013,
pp. 421-432. po1: 10.1007/978-3-642-40313-2 38 (cited on pp. 200, 201,
205, 206).

Hervé Fournier, Anas Ismail, and Antoine Vigneron. “Computing the
Gromov hyperbolicity of a discrete metric space”. In: Information Processing
Letters 115.6-8 (2015), pp. 576-579. por: 10.1016/].ipl.2015.02.002 (cited
on p. 114).

Till Fluschnik, Stefan Kratsch, Rolf Niedermeier, and Manuel Sorge. “The
parameterized complexity of the minimum shared edges problem”. In:
Proceedings of the 35th IARCS Annual Conference on Foundation of Soft-
ware Technology and Theoretical Computer Science (FSTTCS’15). Vol. 45.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2015, pp. 448-462. DOI:
10.4230/LIPIcs. FSTTCS.2015.448 (cited on p. x).

Till Fluschnik, Danny Hermelin, André Nichterlein, and Rolf Niedermeier.
“Fractals for kernelization lower bounds, with an application to length-
bounded cut problems”. In: Proceedings of the 43rd International Collo-
quium on Automata, Languages, and Programming (ICALP’16). Vol. 55.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2016, 25:1—
25:14. pot: 10.4230/LIPIcs.ICALP.2016.25 (cited on p. vii).

Till Fluschnik, Meike Hatzel, Steffen Héartlein, Hendrik Molter, and Hen-
ning Seidler. “The minimum shared edges problem on grid-like graphs”. In:
Proceedings of the 43rd International Workshop on Graph-Theoretic Con-
cepts in Computer Science (WG’17). Vol. 10520. Springer, 2017, pp. 249—
262. por: 10.1007,/978-3-319-68705-6 19 (cited on pp. x, 21).

Till Fluschnik, Christian Komusiewicz, George B. Mertzios, André Nichter-
lein, Rolf Niedermeier, and Nimrod Talmon. “When can graph hyperbolicity
be computed in linear time?” In: Proceedings of the 15th International
Symposium on Algorithms and Data Structures (WADS’17). Vol. 10389.
Lecture Notes in Computer Science. Springer, 2017, pp. 397-408. DoOI:
10.1007/978-3-319-62127-2 34 (cited on pp. vii, 90).

Till Fluschnik, Danny Hermelin, André Nichterlein, and Rolf Niedermeier.
“Fractals for kernelization lower bounds”. In: SIAM Journal on Discrete

https://doi.org/10.1007/978-3-319-78825-8_3
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/978-3-642-40313-2_38
https://doi.org/10.1016/j.ipl.2015.02.002
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.448
https://doi.org/10.4230/LIPIcs.ICALP.2016.25
https://doi.org/10.1007/978-3-319-68705-6_19
https://doi.org/10.1007/978-3-319-62127-2_34

[Flu+18b]

[Flu+19a]

[Flu+19b]

[Flu+19c]

[Flu+19d]

[Flu+20]

[FMN18]

[FMS17]

Mathematics 32.1 (2018), pp. 656—681. po1: 10.1137/16M1088740 (cited
on pp. vii, 23, 43).

Till Fluschnik, Hendrik Molter, Rolf Niedermeier, and Philipp Zschoche.
“Temporal graph classes: a view through temporal separators”. In: Pro-
ceedings of the 44th International Workshop on Graph-Theoretic Concepts
in Computer Science (WG’11). Vol. 11159. Lecture Notes in Computer
Science. Springer, 2018, pp. 216-227. pot: 10.1007/978-3-030-00256-5 18
(cited on p. x).

Till Fluschnik, Christian Komusiewicz, George B. Mertzios, André Nichter-
lein, Rolf Niedermeier, and Nimrod Talmon. “When can graph hyperbolicity
be computed in linear time?” In: Algorithmica 81.5 (2019), pp. 2016-2045.
pol: 10.1007/s00453-018-0522-6 (cited on pp. vii, 113, 138).

Till Fluschnik, Stefan Kratsch, Rolf Niedermeier, and Manuel Sorge. “The
parameterized complexity of the minimum shared edges problem”. In:
Journal of Computer and System Sciences 106 (2019), pp. 23-48. DpoI:
10.1016/j.jcss.2018.12.002 (cited on pp. x, 21).

Till Fluschnik, Rolf Niedermeier, Valentin Rohm, and Philipp Zschoche.
“Multistage vertex cover”. In: Proceedings of the 14th International Sym-
posium on Parameterized and Ezxact Computation (IPEC’19). Vol. 148.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2019, 14:1—
14:14. por: 10.4230/LIPIcs.IPEC.2019.14 (cited on p. x).

Till Fluschnik, Piotr Skowron, Mervin Triphaus, and Kai Wilker. “Fair
knapsack”. In: Proceedings of the 33rd AAAI Conference on Artificial
Intelligence (AAAI’19). AAAT Press, 2019, pp. 1941-1948. por: 10.1609/a
aai.v33i01.33011941 (cited on p. x).

Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and
Philipp Zschoche. “Temporal graph classes: a view through temporal
separators”. In: Theoretical Computer Science 806 (2020), pp. 197-218.
pol: 10.1016/j.t¢s.2019.03.031 (cited on p. x).

Till Fluschnik, George B. Mertzios, and André Nichterlein. “Kernelization
lower bounds for finding constant-size subgraphs”. In: Proceedings of the
14th Conference on Computability in Furope (CiE’18). Vol. 10936. Lecture
Notes in Computer Science. Springer, 2018, pp. 183-193. por: 10.1007/978
-3-319-94418-0 19 (cited on pp. vii, 89).

Till Fluschnik, Marco Morik, and Manuel Sorge. “The complexity of routing
with few collisions”. In: Proceedings of the 21st International Symposium on
Fundamentals of Computation Theory (FCT’17). Ed. by Ralf Klasing and
Marc Zeitoun. Vol. 10472. Lecture Notes in Computer Science. Springer,
2017, pp. 257-270. por: 10.1007/978-3-662-55751-8 21 (cited on p. x).

237

https://doi.org/10.1137/16M1088740
https://doi.org/10.1007/978-3-030-00256-5_18
https://doi.org/10.1007/s00453-018-0522-6
https://doi.org/10.1016/j.jcss.2018.12.002
https://doi.org/10.4230/LIPIcs.IPEC.2019.14
https://doi.org/10.1609/aaai.v33i01.33011941
https://doi.org/10.1609/aaai.v33i01.33011941
https://doi.org/10.1016/j.tcs.2019.03.031
https://doi.org/10.1007/978-3-319-94418-0_19
https://doi.org/10.1007/978-3-319-94418-0_19
https://doi.org/10.1007/978-3-662-55751-8_21

Bibliography

[FMS19]

[Fom-+12]

Till Fluschnik, Marco Morik, and Manuel Sorge. “The complexity of routing
with collision avoidance”. In: Journal of Computer and System Sciences
102 (2019), pp. 69-86. por: 10.1016/j.jcss.2019.01.001 (cited on p. x).

F. Fomin, D. Lokshtanov, N. Misra, and S. Saurabh. “Planar F-deletion:
approximation, kernelization and optimal FPT algorithms”. In: Proceedings
of the 53rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS’12). IEEE Computer Society, 2012, pp. 470-479. po1: 10.1109/FO
(CS.2012.62 (cited on p. 214).

[Fom+17a] Fedor V. Fomin, Petr A. Golovach, Nikolay Karpov, and Alexander S.

Kulikov. “Parameterized complexity of secluded connectivity problems”.
In: Theory of Computing Systems 61.3 (2017), pp. 795-819. por: 10.1007 /s
00224-016-9717-x (cited on pp. 141, 160, 161).

[Fom+17b] Fedor V. Fomin, Daniel Lokshtanov, Michal Pilipczuk, Saket Saurabh, and

[Fom+18]

[Fom+-19]

[FRO7]

[FS08]

[FS11]

238

Marcin Wrochna. “Fully polynomial-time parameterized computations for
graphs and matrices of low treewidth”. In: Proceedings of the 28th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’17). SIAM, 2017,
pp. 1419-1432. por: 10.1137/1.9781611974782.92 (cited on p. 90).

Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, Michal Pilipczuk, and
Marcin Wrochna. “Fully polynomial-time parameterized computations for
graphs and matrices of low treewidth”. In: ACM Transactions on Algorithms
14.3 (2018), 34:1-34:45. por: 10.1145/3186898 (cited on p. 90).

Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi.
Kernelization: Theory of Parameterized Preprocessing. Cambridge Univer-
sity Press, 2019. por: 10.1017/9781107415157 (cited on p. 2).

Henning Fernau and Daniel Raible. “Alliances in graphs: a complexity-
theoretic study”. In: Proceedings of the 33rd Conference on Current Trends
in Theory and Practice of Computer Science (SOFSEM’07), Volume II.
Institute of Computer Science AS CR, Prague, 2007, pp. 61-70 (cited
on p. 86).

Lance Fortnow and Rahul Santhanam. “Infeasibility of instance compression
and succinct PCPs for NP”. In: Proceedings of the 40th Annual ACM
Symposium on Theory of Computing (STOC’08). ACM, 2008, pp. 133-142.
Dol: 10.1145/1374376.1374398 (cited on p. 4).

Lance Fortnow and Rahul Santhanam. “Infeasibility of instance compression
and succinct PCPs for NP”. In: Journal of Computer and System Sciences
77.1 (2011), pp. 91-106. por: 10.1016/j.jcss.2010.06.007 (cited on pp. 3, 7,
8).

https://doi.org/10.1016/j.jcss.2019.01.001
https://doi.org/10.1109/FOCS.2012.62
https://doi.org/10.1109/FOCS.2012.62
https://doi.org/10.1007/s00224-016-9717-x
https://doi.org/10.1007/s00224-016-9717-x
https://doi.org/10.1137/1.9781611974782.92
https://doi.org/10.1145/3186898
https://doi.org/10.1017/9781107415157
https://doi.org/10.1145/1374376.1374398
https://doi.org/10.1016/j.jcss.2010.06.007

[FS14]

[FS16]

[FT87]

[Gae04]

[Gia+16]

[GJ79]

[GJST6]

[GL14]

[GLSS1]

[GMN17]

Fedor V. Fomin and Saket Saurabh. “Kernelization methods for fixed-
parameter tractability”. In: Tractability: Practical Approaches to Hard
Problems. Cambridge University Press, 2014, pp. 260-282 (cited on p. 2).

Till Fluschnik and Manuel Sorge. “The minimum shared edges problem on
planar graphs”. Available on arXiv:1602.01385. 2016 (cited on p. x).

Andrés Frank and Eva Tardos. “An application of simultaneous diophan-
tine approximation in combinatorial optimization”. In: Combinatorica 7.1
(1987), pp. 49-65. por1: 10.1007/BF02579200 (cited on pp. ix, 6, 141-145,
156, 157, 223).

Marco Gaertler. “Clustering”. In: Network Analysis: Methodological Foun-
dations [outcome of a Dagstuhl seminar, 13-16 April 2004/. Ed. by Ulrik
Brandes and Thomas Erlebach. Vol. 3418. Lecture Notes in Computer
Science. Springer, 2004, pp. 178-215. por: 10.1007/978-3-540-31955-9 8
(cited on p. 199).

Archontia C. Giannopoulou, Daniel Lokshtanov, Saket Saurabh, and Ondfej
Suchy. “Tree deletion set has a polynomial kernel (but no OPTCW ap-
proximation)”. In: STAM Journal on Discrete Mathematics 30.3 (2016),
pp. 1371-1384. por: 10.1137/15M 1038876 (cited on pp. 209, 213, 214).

Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979 (cited
on p. 12).

Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. “Some
simplified NP-complete graph problems”. In: Theoretical Computer Science
1.3 (1976), pp. 237-267. por: 10.1016,/0304-3975(76)90059-1 (cited on
p. 53).

Venkatesan Guruswami and Euiwoong Lee. “Inapproximability of feed-
back vertex set for bounded length cycles”. In: Electronic Colloquium on
Computational Complezity (ECCC) 21 (2014), p. 6 (cited on pp. 59, 60).

Martin Grétschel, Laszlo Lovéasz, and Alexander Schrijver. “The ellipsoid
method and its consequences in combinatorial optimization”. In: Combina-
torica 1.2 (1981), pp. 169-197. por: 10.1007/BF02579273 (cited on pp. 143,
144).

Archontia C. Giannopoulou, George B. Mertzios, and Rolf Niedermeier.
“Polynomial fixed-parameter algorithms: a case study for longest path on

interval graphs”. In: Theoretical Computer Science 689 (2017), pp. 67-95.
por: 10.1016/.t¢s.2017.05.017 (cited on pp. 90, 115).

239

https://doi.org/10.1007/BF02579200
https://doi.org/10.1007/978-3-540-31955-9_8
https://doi.org/10.1137/15M1038876
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1007/BF02579273
https://doi.org/10.1016/j.tcs.2017.05.017

Bibliography

[GNO7]

[GO95]

[Gol+17]

[Gro87]

[GSS16]

[GT11]

[Hea85]

[Her+13]

[Her+15]

[HKS15]

240

Jiong Guo and Rolf Niedermeier. “Invitation to data reduction and problem
kernelization”. In: ACM SIGACT News 38.1 (2007), pp. 31-45. por: 10.11
45/1233481.1233493 (cited on pp. 2, 10, 11, 68).

Anka Gajentaan and Mark H. Overmars. “On a class of O(n?) problems
in computational geometry”. In: Computational Geometry: Theory and
Applications 5 (1995), pp. 165-185. po1: 10.1016/j.comgeo.2011.11.006
(cited on p. 18).

Petr A. Golovach, Pinar Heggernes, Paloma T. Lima, and Pedro Mon-
tealegre. “Finding connected secluded subgraphs”. In: Proceedings of the
12th International Symposium on Parameterized and Ezxact Computation
(IPEC’17). Vol. 89. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fiir In-
formatik, 2017, 18:1-18:13. por: 10.4230/LIPIcs. IPEC.2017.18 (cited
on p. 160).

Mikhael Gromov. “Hyperbolic groups”. In: Essays in Group Theory, MSRI
Publ., vol. 8. Springer New York, 1987, pp. 75-263 (cited on p. 113).

Robert Ganian, Friedrich Slivovsky, and Stefan Szeider. “Meta-kernelization
with structural parameters”. In: Journal of Computer and System Sciences
82.2 (2016), pp. 333-346. por: 10.1016/j.jcss.2015.08.003 (cited on p. 224).

Petr A. Golovach and Dimitrios M. Thilikos. “Paths of bounded length
and their cuts: parameterized complexity and algorithms”. In: Discrete
Optimization 8.1 (2011), pp. 72-86. por: 10.1016/j.disopt.2010.09.009
(cited on pp. 5, 21, 44, 45, 48, 53).

Lenwood Scott Heath. “Algorithms for Embedding Graphs in Books”. PhD
thesis. University of North Carolina at Chapel Hill, USA, 1985 (cited
on p. 49).

Danny Hermelin, Stefan Kratsch, Karolina Soltys, Magnus Wahlstrém,
and Xi Wu. “A completeness theory for polynomial (Turing) kernelization”.
In: Proceedings of the 8th International Symposium on Parameterized and
Ezact Computation (IPEC’13). Vol. 8246. Lecture Notes in Computer
Science. Springer, 2013, pp. 202-215. pot: 10.1007/978-3-319-03898-8 18
(cited on p. 4).

Danny Hermelin, Stefan Kratsch, Karolina Soltys, Magnus Wahlstrém, and
Xi Wu. “A completeness theory for polynomial (Turing) kernelization”. In:
Algorithmica 71.3 (2015), pp. 702-730. po1: 10.1007/s00453-014-9910-8
(cited on pp. 11, 80, 82, 94, 190, 191, 194).

F. Hiiffner, C. Komusiewicz, and M. Sorge. “Finding highly connected

subgraphs”. In: Proceedings of the 41st Conference on Current Trends
in Theory and Practice of Computer Science (SOFSEM’15). Vol. 8939.

https://doi.org/10.1145/1233481.1233493
https://doi.org/10.1145/1233481.1233493
https://doi.org/10.1016/j.comgeo.2011.11.006
https://doi.org/10.4230/LIPIcs.IPEC.2017.18
https://doi.org/10.1016/j.jcss.2015.08.003
https://doi.org/10.1016/j.disopt.2010.09.009
https://doi.org/10.1007/978-3-319-03898-8_18
https://doi.org/10.1007/s00453-014-9910-8

[HP10]

[HPV9S]

[HS17]

[HS19]

[Hua+13]

[Hiif +09]

[HW12]

[T1005]

[1PO1]

Lecture Notes in Computer Science. Springer, 2015, pp. 254-265. DOI:
10.1007/978-3-662-46078-8 21 (cited on pp. 199, 201).

Michel Habib and Christophe Paul. “A survey of the algorithmic aspects of
modular decomposition”. In: Computer Science Review 4.1 (2010), pp. 41—
59. por: 10.1016/j.cosrev.2010.01.001 (cited on p. 120).

Michel Habib, Christophe Paul, and Laurent Viennoti. “A synthesis on
partition refinement: a useful routine for strings, graphs, boolean matrices
and automata”. In: Proceedings of the 15th Annual Symposium on Theoret-
ical Aspects of Computer Science (STACS’98). Vol. 1373. Springer, 1998,
pp- 25—-38. por: 10.1007/BFb0028546 (cited on p. 188).

Ronald de Haan and Stefan Szeider. “Parameterized complexity classes
beyond para-NP”. In: Journal of Computer and System Sciences 87 (2017),
pp. 16-57. por: 10.1016/j.jcss.2017.02.002 (cited on p. 16).

Ronald de Haan and Stefan Szeider. “A compendium of parameterized
problems at higher levels of the polynomial hierarchy”. In: Algorithms 12.9
(2019), p. 188. por: 10.3390/a12090188 (cited on p. 17).

Chao-Wen Huang, Chia-Wei Lee, Huang-Ming Gao, and Sun-Yuan Hsieh.
“The internal Steiner tree problem: Hardness and approximations”. In:
Journal of Complezity 29.1 (2013), pp. 27-43. pot: 10.1016/j.jc0.2012.08.0
05 (cited on p. 87).

F. Hiiffner, C. Komusiewicz, H. Moser, and R. Niedermeier. “Isolation
concepts for clique enumeration: comparison and computational experi-
ments”. In: Theoretical Computer Science 410.52 (2009), pp. 5384-5397.
pol: 10.1016/j.tcs.2009.05.008 (cited on pp. 199, 201).

Danny Hermelin and Xi Wu. “Weak compositions and their applications
to polynomial lower bounds for kernelization”. In: Proceedings of the 23th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’12). So-
ciety for Industrial and Applied Mathematics, 2012, pp. 104-113. poI:
10.1137/1.9781611973099.9 (cited on p. 4).

H. Ito, K. Iwama, and T. Osumi. “Linear-time enumeration of isolated
cliques”. In: Proceedings of 13th Annual European Symposium on Algorithms
(ESA’05). Vol. 3669. Lecture Notes in Computer Science. Springer, 2005,
pp- 119-130. por: 10.1007/11561071 13 (cited on pp. 199, 201).

Russell Impagliazzo and Ramamohan Paturi. “On the complexity of k-SAT”.
In: Journal of Computer and System Sciences 62.2 (2001), pp. 367-375.
por: 10.1006/jcss.2000.1727 (cited on p. 18).

241

https://doi.org/10.1007/978-3-662-46078-8_21
https://doi.org/10.1016/j.cosrev.2010.01.001
https://doi.org/10.1007/BFb0028546
https://doi.org/10.1016/j.jcss.2017.02.002
https://doi.org/10.3390/a12090188
https://doi.org/10.1016/j.jco.2012.08.005
https://doi.org/10.1016/j.jco.2012.08.005
https://doi.org/10.1016/j.tcs.2009.05.008
https://doi.org/10.1137/1.9781611973099.9
https://doi.org/10.1007/11561071_13
https://doi.org/10.1006/jcss.2000.1727

Bibliography

[IPS82]

[IPZ01]

[Iwal7]

[Janl7]

[Kha79]

[Kha80]

[KHHO4]

[Kin92]

[KL82]

[KMO02]

[Knol7]

[Kom+09]

242

Alon Itai, Yehoshua Perl, and Yossi Shiloach. “The complexity of finding
maximum disjoint paths with length constraints”. In: Networks 12.3 (1982),
pp. 277-286. poI: 10.1002/net.3230120306 (cited on pp. 43, 45).

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. “Which prob-
lems have strongly exponential complexity?” In: Journal of Computer and
System Sciences 63.4 (2001), pp. 512-530. po1: 10.1006/jcss.2001.1774
(cited on p. 18).

Yoichi Iwata. “Linear-time kernelization for feedback vertex set”. In: Pro-
ceedings of the 44th International Colloquium on Automata, Languages,
and Programming (ICALP’17). Vol. 80. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2017, 68:1-68:14. pot: 10.4230,/LIPIcs.ICALP.201
7.68 (cited on p. 2).

Bart M. P. Jansen. “Turing kernelization for finding long paths and cycles
in restricted graph classes”. In: Journal of Computer and System Sciences
85 (2017), pp. 18-37. por: 10.1016/j.jcss.2016.10.008 (cited on p. 11).

Leonid G Khachiyan. “A polynomial algorithm in linear programming”.
In: Doklady Academii Nauk SSSR. Vol. 244. 1979, pp. 1093-1096 (cited
on p. 143).

L.G. Khachiyan. “Polynomial algorithms in linear programming”. In: USSR
Computational Mathematics and Mathematical Physics 20.1 (1980), pp. 53—
72. DOI: https://doi.org/10.1016,/0041-5553(80)90061-0 (cited on p. 143).

P. Kristiansen, S. M. Hedetniemi, and S. T. Hedetniemi. “Alliances in
graphs”. In: Journal of Combinatorial Mathematics and Combinatorial
Computing 48 (2004), pp. 157-177 (cited on p. 86).

Nancy G. Kinnersley. “The vertex separation number of a graph equals its
path-width”. In: Information Processing Letters 42.6 (1992), pp. 345-350.
pol: 10.1016,/0020-0190(92)90234-M (cited on pp. 15, 76).

Richard M. Karp and Richard Lipton. “Turing machines that take advice”.
In: L’Enseignement Mathématique 28.2 (1982), pp. 191-209 (cited on p. 17).

Jack H. Koolen and Vincent Moulton. “Hyperbolic bridged graphs”. In:
European Journal of Combinatorics 23.6 (2002), pp. 683—699. por: 10.1006
/eujc.2002.0591 (cited on p. 129).

Dusan Knop. “Structural properties of graphs and efficient algorithms: Prob-
lems Between Parameters”. PhD thesis. Univerzita Karlova, Matematicko-
fyzikalni fakulta, 2017 (cited on p. 45).

C. Komusiewicz, F. Hiiffner, H. Moser, and R. Niedermeier. “Isolation
concepts for efficiently enumerating dense subgraphs”. In: Theoretical

https://doi.org/10.1002/net.3230120306
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.4230/LIPIcs.ICALP.2017.68
https://doi.org/10.4230/LIPIcs.ICALP.2017.68
https://doi.org/10.1016/j.jcss.2016.10.008
https://doi.org/https://doi.org/10.1016/0041-5553(80)90061-0
https://doi.org/10.1016/0020-0190(92)90234-M
https://doi.org/10.1006/eujc.2002.0591
https://doi.org/10.1006/eujc.2002.0591

[Kral4]

[KS15]

[KT06]

[KW12]

[Len83|

[LF20]

[Lin+17]

[LLL82]

[LMS11]

[LMS12]

Computer Science 410.38-40 (2009), pp. 3640-3654. por: 10.1016 /j.tc
$.2009.04.021 (cited on pp. 199, 201).

Stefan Kratsch. “Recent developments in kernelization: a survey”. In: Bul-
letin of the EATCS 113 (2014), pp. 58-97 (cited on pp. 2, 11, 68).

Christian Komusiewicz and Manuel Sorge. “An algorithmic framework for
fixed-cardinality optimization in sparse graphs applied to dense subgraph
problems”. In: Discrete Applied Mathematics 193 (2015), pp. 145-161. por:
10.1016/j.dam.2015.04.029 (cited on p. 201).

Jon M. Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley,
2006 (cited on p. 205).

Stefan Kratsch and Magnus Wahlstrém. “Compression via matroids: a ran-
domized polynomial kernel for odd cycle transversal”. In: Proceedings of the
23th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’12).
Ed. by Yuval Rabani. STAM, 2012, pp. 94-103. por: 10.1137/1.9781611973
099.8 (cited on p. 5).

Hendrik W. Lenstra. “Integer programming with a fixed number of vari-
ables”. In: Mathematics of Operations Research 8 (1983), pp. 538-548. por:
10.1287 /moor.8.4.538 (cited on p. 131).

Max-Jonathan Luckow and Till Fluschnik. “On the computational complex-
ity of length- and neighborhood-constrained path problems”. In: Informa-
tion Processing Letters 156 (2020), p. 105913. por: 10.1016/j.ipl.2019.105913
(cited on pp. vii, 159, 160, 171, 188, 190, 197).

Mugang Lin, Qilong Feng, Jianer Chen, and Wenjun Li. “Partition on trees
with supply and demand: kernelization and algorithms”. In: Theoretical
Computer Science 657 (2017), pp. 11-19. por1: 10.1016/j.tcs.2016.06.044
(cited on p. 10).

Arjen Klaas Lenstra, Hendrik Willem Lenstra, and Laszlé Lovasz. “Fac-
toring polynomials with rational coefficients”. In: Mathematische Annalen
261.4 (1982), pp. 515-534 (cited on pp. 144, 157).

Daniel Lokshtanov, Daniel Marx, and Saket Saurabh. “Lower bounds based
on the exponential time hypothesis”. In: Bulletin of the EATCS 105 (2011),
pp. 41-72 (cited on p. 97).

Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. “Kernelization
- preprocessing with a guarantee”. In: The Multivariate Algorithmic Rev-
olution and Beyond - Essays Dedicated to Michael R. Fellows on the
Occasion of His 60th Birthday. Vol. 7370. Lecture Notes in Computer
Science. Springer, 2012, pp. 129-161. pot: 10.1007/978-3-642-30891-8 10
(cited on pp. 2, 68).

243

https://doi.org/10.1016/j.tcs.2009.04.021
https://doi.org/10.1016/j.tcs.2009.04.021
https://doi.org/10.1016/j.dam.2015.04.029
https://doi.org/10.1137/1.9781611973099.8
https://doi.org/10.1137/1.9781611973099.8
https://doi.org/10.1287/moor.8.4.538
https://doi.org/10.1016/j.ipl.2019.105913
https://doi.org/10.1016/j.tcs.2016.06.044
https://doi.org/10.1007/978-3-642-30891-8_10

Bibliography

[LMS13] Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. “Imbalance is
fixed parameter tractable”. In: Information Processing Letters 113.19-21
(2013), pp. 714-718. por: 10.1016/j.ipl.2013.06.010 (cited on p. 41).

[Lok+17] Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh.
“Lossy kernelization”. In: Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing (STOC’17). ACM, 2017, pp. 224-237.
pol: 10.1145/3055399.3055456 (cited on pp. 5, 224).

[Lok09] Daniel Lokshtanov. “New methods in parameterized algorithms and com-
plexity”. PhD thesis. University of Bergen, Norway, 2009 (cited on pp. 5,
11).

[Lucl?] Max-Jonathan Luckow. “Paths under Neighborhood Constraints—Algorithms
and Complexity”. Bachelor’s Thesis. Institut fiir Softwaretechnik und The-
oretische Informatik, TU Berlin, 2017 (cited on p. 160).

[LX02] Guo-Hui Lin and Guoliang Xue. “On the terminal Steiner tree problem”.
In: Information Processing Letters 84.2 (2002), pp. 103-107. por: 10.1016
/S0020-0190(02)00227-2 (cited on p. 78).

[Mar06] D. Marx. “Parameterized graph separation problems”. In: Theoretical
Computer Science 351.3 (2006), pp. 394-406. por: 10.1016/j.t¢s.2005.10.00
7 (cited on pp. 200, 201).

[MB83] David W. Matula and Leland L. Beck. “Smallest-last ordering and clustering
and graph coloring algorithms”. In: Journal of the ACM 30.3 (1983),
pp. 417-427. por: 10.1145/2402.322385 (cited on p. 107).

[Men27] Karl Menger. “Uber regulire Baumkurven”. In: Mathematische Annalen
96.1 (1927), pp. 572-582 (cited on p. 27).

[MMG89] Kavindra Malik, Ashok K. Mittal, and Santosh K. Gupta. “The k most
vital arcs in the shortest path problem”. In: Operations Research Letters 8.4
(1989), pp. 223-227. por: 10.1016/0167-6377(89)90065-5 (cited on p. 45).

[MNN17] George B. Mertzios, André Nichterlein, and Rolf Niedermeier. “The power
of linear-time data reduction for maximum matching”. In: Proceedings of the
42nd International Symposium on Mathematical Foundations of Computer
Science (MFCS’17). Vol. 83. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
fir Informatik, 2017, 46:1-46:14. por: 10.4230/LIPIcs. MFCS.2017.46
(cited on pp. 90, 115).

[MohO1] Bojan Mohar. “Face covers and the genus problem for apex graphs”. In:
Journal of Combinatorial Theory, Series B 82.1 (2001), pp. 102-117. por:
10.1006/jctb.2000.2026 (cited on p. 49).

244

https://doi.org/10.1016/j.ipl.2013.06.010
https://doi.org/10.1145/3055399.3055456
https://doi.org/10.1016/S0020-0190(02)00227-2
https://doi.org/10.1016/S0020-0190(02)00227-2
https://doi.org/10.1016/j.tcs.2005.10.007
https://doi.org/10.1016/j.tcs.2005.10.007
https://doi.org/10.1145/2402.322385
https://doi.org/10.1016/0167-6377(89)90065-5
https://doi.org/10.4230/LIPIcs.MFCS.2017.46
https://doi.org/10.1006/jctb.2000.2026

[MP14]

[MV15]

[Nie06]

[OST18]

[Pap94]

[PS16]

[PS82]

[RS10]

[SBL87]

[Sch+12]

[Seig3)

[Sto76]

Dieter Mitsche and Pawel Pralat. “On the hyperbolicity of random graphs”.
In: The Electronic Journal of Combinatorics 21.2 (2014), P2.39 (cited
on pp. 116, 117).

Daniel Marx and Laszlo A. Végh. “Fixed-parameter algorithms for minimum-
cost edge-connectivity augmentation”. In: ACM Transactions on Algorithms
11.4 (2015), 27:1-27:24. por: 10.1145/2700210 (cited on pp. 142, 144, 146,
156, 157).

Rolf Niedermeier. Invitation to Fized-Parameter Algorithms. Oxford Uni-
versity Press, 2006 (cited on p. 12).

Kahina Ouazine, Hachem Slimani, and Abdelkamel Tari. “Alliances in
graphs: parameters, properties and applications—a survey”. In: AKCFE
International Journal of Graphs and Combinatorics 15.2 (2018), pp. 115—
154. por: https://doi.org/10.1016/j.akcej.2017.05.002 (cited on p. 86).

Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994 (cited on p. 12).

Feng Pan and Aaron Schild. “Interdiction problems on planar graphs”. In:
Discrete Applied Mathematics 198 (2016), pp. 215-231. por: 10.1016/j.da
m.2015.05.036 (cited on p. 45).

Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimiza-
tion: Algorithms and Complexity. Prentice-Hall, 1982 (cited on p. 119).

Prasad Raghavendra and David Steurer. “Graph expansion and the unique
games conjecture”. In: Proceedings of the 42nd ACM Symposium on Theory
of Computing (STOC’10). ACM, 2010, pp. 755-764. por: 10.1145/1806689
.1806792 (cited on p. 149).

Anneke A. Schoone, Hans L. Bodlaender, and Jan van Leeuwen. “Diameter
increase caused by edge deletion”. In: Journal of Graph Theory 11.3 (1987),
pp. 409-427. por: 10.1002/jgt.3190110315 (cited on p. 53).

Alexander Schéfer, Christian Komusiewicz, Hannes Moser, and Rolf Nieder-
meier. “Parameterized computational complexity of finding small-diameter
subgraphs”. In: Optimization Letters 6.5 (2012), pp. 883-891. por: 10.1007
/$11590-011-0311-5 (cited on p. 4).

S. Seidman. “Network structure and minimum degree”. In: Social Networks
5.3 (1983), pp. 269-287. por: 10.1016/0378-8733(83)90028-X (cited on
p. 210).

Larry J. Stockmeyer. “The polynomial-time hierarchy”. In: Theoretical
Computer Science 3.1 (1976), pp. 1-22. por: 10.1016,/0304-3975(76)90061-
X (cited on p. 17).

245

https://doi.org/10.1145/2700210
https://doi.org/https://doi.org/10.1016/j.akcej.2017.05.002
https://doi.org/10.1016/j.dam.2015.05.036
https://doi.org/10.1016/j.dam.2015.05.036
https://doi.org/10.1145/1806689.1806792
https://doi.org/10.1145/1806689.1806792
https://doi.org/10.1002/jgt.3190110315
https://doi.org/10.1007/s11590-011-0311-5
https://doi.org/10.1007/s11590-011-0311-5
https://doi.org/10.1016/0378-8733(83)90028-X
https://doi.org/10.1016/0304-3975(76)90061-X
https://doi.org/10.1016/0304-3975(76)90061-X

Bibliography

[SW18|
[Tho10]

[Vas+15]

[VW1§|

[WBT19)

[Wel13]

[Wes00]

[WY14]

[XK17]

[XZ11]

[XZ12]

246

Manuel Sorge and Mathias Weller. The graph parameter hierarchy. 2018
(cited on p. 15).

S. Thomassé. “A 4k? kernel for feedback vertex set”. In: ACM Transactions
on Algorithms 6.2 (2010). por: 10.1145/1721837.1721848 (cited on p. 213).

Virginia Vassilevska Williams, Joshua R. Wang, Ryan Williams, and
Huacheng Yu. “Finding four-node subgraphs in triangle time”. In: Proceed-
ings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’15). STAM, 2015, pp. 1671-1680. pot: 10.1137/1.9781611973730.111
(cited on p. 138).

Virginia Vassilevska Williams and R. Ryan Williams. “Subcubic equiva-
lences between path, matrix, and triangle problems”. In: Journal of the
ACM 65.5 (2018), 27:1-27:38. por: 10.1145/3186893 (cited on pp. 18, 92,
99, 100, 103, 104).

Jouke Witteveen, Ralph Bottesch, and Leen Torenvliet. “A hierarchy of
polynomial kernels”. In: Proceedings of the 45th International Conference on
Current Trends in Theory and Practice of Computer Science (SOFSEM’19).

Vol. 11376. Lecture Notes in Computer Science. Springer, 2019, pp. 504—
518. por: 10.1007/978-3-030-10801-4 39 (cited on p. 11).

Mathias Weller. “Institut fiir Softwaretechnik und Theoretische Informatik,
TU Berlin”. PhD thesis. Berlin Institute of Technology, 2013 (cited on
p. 17).

Douglas B. West. Introduction to Graph Theory. 2nd ed. Prentice Hall,
2000 (cited on p. 12).

Ryan Williams and Huacheng Yu. “Finding orthogonal vectors in discrete
structures”. In: Proceedings of the 25th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’14). SIAM, 2014, pp. 1867-1877. por:
10.1137/1.9781611973402.135 (cited on p. 121).

Mingyu Xiao and Shaowei Kou. “Kernelization and parameterized al-
gorithms for 3-path vertex cover”. In: Proceedings of the 14th Annual
Conference on Theory and Applications of Models of Computation (TAMC
2017). Vol. 10185. Lecture Notes in Computer Science. Springer, 2017,
pp. 654-668. po1: 10.1007/978-3-319-55911-7 47 (cited on p. 10).

Ge Xia and Yong Zhang. “On the small cycle transversal of planar graphs”.
In: Theoretical Computer Science 412.29 (2011), pp. 3501-3509. por: 10.10
16/§.6¢s.2011.02.040 (cited on pp. 44, 60, 61).

Ge Xia and Yong Zhang. “Kernelization for cycle transversal problems”.
In: Discrete Applied Mathematics 160.7-8 (2012), pp. 1224-1231. por:
10.1016/j.dam.2011.12.024 (cited on p. 60).

https://doi.org/10.1145/1721837.1721848
https://doi.org/10.1137/1.9781611973730.111
https://doi.org/10.1145/3186893
https://doi.org/10.1007/978-3-030-10801-4_39
https://doi.org/10.1137/1.9781611973402.135
https://doi.org/10.1007/978-3-319-55911-7_47
https://doi.org/10.1016/j.tcs.2011.02.040
https://doi.org/10.1016/j.tcs.2011.02.040
https://doi.org/10.1016/j.dam.2011.12.024

[Yan78]

[Yap83|

[Zsc+18]

[Zsc+20]

[Zsc17]

Mihalis Yannakakis. “Node- and edge-deletion NP-complete problems”. In:
Proceedings of the 10th Annual ACM Symposium on Theory of Computing
(STOC™18). ACM, 1978, pp. 253-264. DoI: 10.1145/800133.804355 (cited
on p. 59).

Chee-Keng Yap. “Some consequences of non-uniform conditions on uniform
classes”. In: Theoretical Computer Science 26 (1983), pp. 287—-300. DOI:
10.1016/0304-3975(83)90020-8 (cited on pp. 8, 17).

Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier.
“The complexity of finding small separators in temporal graphs”. In: Proceed-
ings of the 43rd International Symposium on Mathematical Foundations
of Computer Science (MFCS’18). Vol. 117. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2018, 45:1-45:17. por1: 10.4230/LIPIcs.M
FCS.2018.45 (cited on pp. x, 61).

Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier.
“The complexity of finding small separators in temporal graphs”. In: Journal
of Computer and System Sciences 107 (2020), pp. 72-92. por: 10.1016/j.jc
55.2019.07.006 (cited on p. x).

Philipp Zschoche. “On Finding Separators in Temporal Graphs”. MA thesis.
Institut fiir Softwaretechnik und Theoretische Informatik, TU Berlin, 2017
(cited on p. 40).

247

https://doi.org/10.1145/800133.804355
https://doi.org/10.1016/0304-3975(83)90020-8
https://doi.org/10.4230/LIPIcs.MFCS.2018.45
https://doi.org/10.4230/LIPIcs.MFCS.2018.45
https://doi.org/10.1016/j.jcss.2019.07.006
https://doi.org/10.1016/j.jcss.2019.07.006

Appendices

249

APPENDIX A .

PROBLEM ZO0OO

3SUM

Input: Numbers z1, ..
O(n?).

Question: Are there distinct 4,5,k €
{1,...,n} such that x; +x; +x) = 07

., Ty € Z with |z] €

ALL PaIrs SHORTEST Parns (APSP)

Input: An undirected graph G = (V, E)
with O(log(|V]))-bit edge weights.

Task: Compute the lengths distg (v, w) of a
shortest v-w path in G for each pair
of vertices v,w € V.

BicLiQuE

Input: An undirected bipartite graph G =
(V=AW B, E) and an integer k.

Question: Is there a vertex set X C V of G
such that [X NA| = |XNB|=kand
each vertex in X N A is adjacent to
each vertex in X N B?

CLIQUE

Input: An undirected graph G = (V| E) and
an integer k£ € N.

Question: Is there a vertex set X C V of
G such that |X| > k and for all dis-
tinct v,w € X there is {v,w} € E?

CNF-Sar

Input: A Boolean formula ¢ in conjunctive
normal form (CNF).

Question: Is ¢ satisfiable?

CoLorrFUL GRAPH MOTIF

Input: An undirected graph G = (V, E), an
integer k, and a vertex coloring func-
tion col : V. — {1,...,k}.

Question: Is there a vertex set X C V such
that G[X] is connected and X con-
tains exactly one vertex of each color?

CoNNECTED VERTEX COVER

Input: An undirected graph G = (V, E) and
an integer k.

Question: Is there a vertex set X C V in
G with | X| < k and each edge of G
is incident to at least one vertex in
X and G[X] is connected?

CutTING k VERTICES

Input: An undirected graph G = (V, E) and
two integers k > 1 and ¢ > 0.

Question: Is there a non-empty set S C V
such that |S| = k and [Ng(S)| < €7

CuTTING AT MosT k VERTICES WITH TER-

MINAL

Input: An undirected graph G = (V, E), a
vertex s € V, and two integers k > 1,
£>0.

Question: Is there a set S C V such
that s € S, |S| < k, and |Ng(S)| <
0?7

A. Problem Zoo

DirECTED PATH

Input: A directed graph G = (V, E) and an
integer k.

Question: Is there a directed path P of
length at least k in G7

DirecTED SMALL CYCLE TRANSVERSAL

(DSCT)

Input: A directed graph G = (V, E), two
integers k, £ > 0.

Question: Is there a subset ' C E of car-
dinality at most k such that there is
no induced directed cycle of length
at most £ in G — F?

DEFENSIVE ALLIANCE

Input: An undirected graph G = (V, E) and
an integer k.

Question: Is there a vertex set X C V
in G with |X| < k such that for
each vertex z € X it holds true
that |Ng[o] N X] > [Ngle] \ X|?

DoMINATING SET

Input: An undirected graph G = (V, E) and
an integer k.

Question: Is there a vertex set X C V of G
such that | X| < k and Ng[X]=V?

EpGE CLIQUE COVER

Input: An undirected graph G = (V, E) and
an integer k € N.

Question: Can all edges F of G be covered
by k subgraphs of G each forming a
clique?

GRrAPH MoTIF

Input: An undirected graph G = (V| E), an
integer k, a vertex coloring function
col: V — {1,...,k}, and a multiset
M of elements in {1,...,k}.

Question: Is there a |M|-vertex set X CV
such that G[X] is connected and the
set of colors of the vertices in X
match exactly M?

HAMILTONIAN PATH

Input: An undirected graph G = (V, E).

Question: Is there a path in G that visits
each vertex exactly once?

252

HitTing SET

Input: Given a universe U, a family F C 2U
of subsets of U, and an integer k.

Question: Is there a subset U’ C U such
that |[U’| < k and FNU’ # (for all
FeF?

INDEPENDENT SET

Input: An undirected graph G = (V, E) and
an integer k.

Question: Is there a vertex set X C V of
G such that |X| > k and G[X] is
edge-free?

INTERNAL STEINER TREE

Input: An undirected graph G = (V =
N WT, E) and an integer k.

Question: Is there a subgraph H of G such
that H is a tree with T" being part of
its internal vertices?

k-CNF-Sar

Input: A Boolean formula ¢ in conjunctive
normal form (CNF) with at most k
literals in each clause.

Question: Is ¢ satisfiable?

LencTH-BounDpED EpGE-CuT (LBEC)

Input: An undirected graph G = (V, E)
with two distinct vertices s,t € V,
and two integers k,£ > 0.

Question: Is there a subset F©¥ C FE of
cardinality at most k such that
distg_p(s,t) > £7

LoNGEsT PaTH

Input: An undirected graph G = (V, E) and
an integer k.

Question: Is there a path P of length at
least k in G?

LonGg UnsecLubpep Patu (LUP)

Input: An undirected graph G = (V, E)
with two distinct vertices s,t € V,
and two integers kK > 2 and £ > 0.

Question: Is there an s-t path P in G such
that [V(P)| > k and [Ng(V(P))| >
£?

MiniMuM DiaMETER ARc DELETION

(MDAD)

Input: A strongly connected directed graph
G = (V, E), and two integers k, £ > 0.

Question: Is there is a subset ¥ C FE
of cardinality at most k such that
G — F is strongly connected and
diam(G — F) > ¢?

MiNniMUuM DiaMETER EDGE DELETION

(MDED)

Input: A connected, undirected graph G =
(V, E), and two integers k, ¢ > 0.

Question: Is there a subset F' C E of cardi-
nality at most k such that G — F'is
connected and diam(G — F) > £7

MIN-PowER SYMMETRIC CONNECTIVITY

(M1PoSyCo)

Input: A connected undirected graph G =
(V, E) and edge weights w: E — N.

Task: Find a connected spanning sub-
graph T = (V,F) of G that mini-
mizes D oy max(y, ,yer w({u,v}).

MurricoLorReED CLIQUE (MCC)

Input: An undirected k-partite graph G =
(V=V1ErJ...LﬂVk,E).

Question: Is there an vertex set X C V
of size k in G with | X NV;| =1 for
alli € {1,...,k} and all vertices in X
are pairwise adjacent in G?7

MULTICOLORED INDEPENDENT SET (MIS)

Input: An undirected k-partite graph G =
(VZVlL‘H...L‘rJVk,E).

Question: Is there an independent set X C
V of size k in G with | X NV;| =1 for
alli e {1,...,k}?

MurricoLorReED Patu (MCP)

Input: An undirected graph G = (V, E)
and a vertex coloring col: V. —
{1,...,k}.

Question: Is there a simple path P in G
that contains exactly one vertex of
each color?

Murti-CoMPONENT ANNOTATED II (MCA-

)

Input: An undirected graph G = (V, E), a
vertex subset D C V, and an inte-
ger k.

Question: Is there a vertex set S in a con-
nected component G’ = (V', E’) of G
such that (DNV’) C S C V/,
[IS\(DNV")| < k, and S fulfills prop-
erty IT in G'?

MCA-DEFENSIVE ALLIANCE

Input: An undirected graph G = (V, E), a
vertex subset D C V, and an inte-
ger k.

Question: Is there a vertex set S in a con-
nected component G’ = (V/, E’) of G
such that (DNV’) C S C V/,
IS\ (DNV’")| <k, and S is a de-
fensive alliance in G'?

MCA-VERTEX COVER

Input: An undirected graph G = (V, E), a
vertex subset D C V, and an inte-
ger k.

Question: Is there a vertex set S in a con-
nected component G’ = (V/, E’) of G
such that (DNV’) C § C V/,
IS\ (DNV")| <k, and S is a vertex
cover of G'?

NeGATivE WEIGHT TRIANGLE (NWT)

Input: An undirected graph G with edge
weights w: E(G) — Z.

Question: Is there a triangle T in G with
Yeer(r) wle) <07

ORTHOGONAL VECTORS

Input: Two sets A and B each containing n
binary vectors of length £ = O(logn).

Question: Are there two vectors @ € A
and b € B such that @ and b are
orthogonal, that is, such that there is
no position 4 for which afi] = bli] =
1?

253

A. Problem Zoo

Pranar LenNcTH-BoUnDED EDGE-CuUT

(PLaNAR-LBEC)

Input: An undirected graph G = (V, E)
with two distinct vertices s,t € V,
and two integers k,¢ > 0, where G
admits a planar embedding with s
and ¢ being incident to the outer face.

Question: Is there a subset FF C FE of
cardinality at most k such that
distg_p(s,t) > £7

RooTeED PaTH

Input: An undirected graph G = (V, E), a
vertex r € V, and an integer k € N.

Question: Is there a path P with endpoint r
of length at least k in G7

SEcLUDED FEEDBACK VERTEX SET

(SFVS)

Input: An undirected graph G = (V, E) and
an integer k > 0.

Question: Is there a set S C V such that
G — S is cycle-free and |Ng[S]| < k?

SECLUDED s-t SEPARATOR (SstS)

Input: An undirected graph G = (V, E),
two distinct vertices s,t € V, and an
integer k > 0.

Question: Is there an s-t separator S C
V '\ {s,t} such that |[Ng[S]| < k?

SEcCLUDED II

Input: An undirected graph G = (V, E) and
an integer k € N.

Question: Is there a vertex subset S C V
such that S satisfies II(G,S) and
INGIS]| < k?

SECLUDED PaTH

Input: An undirected graph G = (V, E)
with two distinct vertices s,t € V,
vertex-weights w: V' — N, and two
integers k,C € N.

Question: Is there an s-t path P such
that the size of the closed neigh-
borhood |Ng[V(P)]] < k and
the weight of the closed neighbor-
hood w(Ng[V(P)]) < C?

254

SET COVER

Input: A universe U, a family of sets F C
2V and an integer k.

Question: Is there a subset C C F such that
IC] <k and U =Upee C7

SHORT SECLUDED PaTH (SSP)

Input: An undirected graph G = (V,E)
with two distinct vertices s,t € V,
and two integers kK > 2 and £ > 0.

Question: Is there an s-t path P in G such
that |[V(P)| < k and |Ng(V(P))| <
07

SMALL SECLUDED FEEDBACK VERTEX SET

(SSFVS)

Input: An undirected graph G = (V| E) and
two integers k, £.

Question: Is there a set S C V such that
G — S is cycle-free, |S| < k, and
ING(S)| < £2

SMALL SECLUDED s-t SEPARATOR (SSstS)

Input: An undirected graph G = (V, E),
two distinct vertices s,t € V, and
two integers k > 0, £ > 0.

Question: Is there an s-t separator S C
V \ {s,t} such that |S| < k and
ING(S)| < €2

SMALL SECLUDED II

Input: An undirected graph G = (V| E) and
two integers k > 1,£ > 0.

Question: Is there a vertex subset S C V
such that S satisfies II(G, S), |S| < k,
and |Ng(S)| < €7

SmaLL SET Expansion (SSE)

Input: An undirected graph G with edge
weights w : E(G) — Q.

Question: Find a non-empty subset S C
V(G) of size at most |S| < n/2 that
minimizes

5>
| |eE(S,V(G)\S)
where (S, V(G)\S) denotes the set of

all edges with exactly one endpoint
in S.

w(e),

SHORT UNSECLUDED PaTH (SUP)

Input: An undirected graph G = (V, E)
with two distinct vertices s,t € V,
and two integers k > 2 and £ > 0.

Question: Is there an s-t path P in G such
that [V(P)| < k and [Ng(V(P))| >
£?

TERMINAL STEINER TREE (TST)

Input: An undirected graph G = (V =
NWT,E) and an integer k.

Question: Is there a subgraph H of G such
that H is a tree with T' being its set
of leaves?

TriaNGLE CoLLEcTION (TC)

Input: An undirected graph G with sur-
jective coloring col V(G —
{1,...,f}.

Question: Does there for all color-triples
C e ({1"1',’"”) exist a triangle with
vertex set T = {z,y,2} in G such
that col(T) = C?

VERTEX COVER

Input: An undirected graph G = (V| E) and
an integer k.

Question: Is there a vertex set X C V in G
with | X| < k and each edge in E is
incident to at least one vertex in X7

VERTEX-WEIGHTED SHORT SECLUDED

Paru (VW-SSP)

Input: An undirected graph G = (V, E)
with two distinct vertices s,t € V,
two integers k > 2 and £ > 0, and ver-
tex weights k : V. — N, A: V — No,
and 1 : V — Np.

Question: Is there an s-t-path P
with > cy(pyr(v) <k and
2vev(p) M)+ 2 e n(v(py) Av) <
£in G?

255

APPENDIX

OPEN PROBLEM LiISsT

Open Problem 1. Is there a planar vertex-
deletion variant of T-fractals suitable for the
fractalism technique?

Open Problem 2. Does the vertex-deletion
variant of LENGTH-BouNnDED EDGE-CUT pa-
rameterized by k+£ admit a polynomial kernel
on planar graphs?

Open Problem 3. Does SmaLL CycCLE
TRANSVERSAL parameterized by k + ¢ ad-
mit a polynomial kernel in general undirected
graphs?

Open Problem 4. Is INTERNAL STEINER
TREE parameterized by k + |T'| diminishable?

Open Problem 5. Is LoNGEsST PATH param-
eterized by the solution size k diminishable?

Open Problem 6. Is CONNECTED VERTEX
CoVER parameterized by k or HiTTING SET
parameterized by n diminishable?

Open Problem 7. Assuming the ETH to
hold, does CLIQUE parameterized by the
cutwidth cw admit a strong diminisher?

Open Problem 8. Is there a
proper (n®,d?)-kernel with 3 < a-8 < 5

for NEGATIVE WEIGHT TRIANGLE or TRIAN-
cLE COLLECTION each parameterized by the
degeneracy d?

Open Problem 9. Does HYPERBOLICITY ad-
mit a problem kernel computable in quadratic
time of size polynomial (or subexponential)
in the vertex cover number?

Open Problem 10. Is HyPERBOLICITY solv-
able in truly subcubic time?

Open Problem 12. What is the parameter-
ized complexity of SHORT UNSECLUDED PATH
parameterized by £ and of Lone UNSECLUDED
PatH parameterized by k + £7

Open Problem 13. Does SECLUDED FEED-
BACK VERTEX SET admit a kernel with O(k¢)
vertices where ¢ < 57

Open Problem 14. Is SMALL SECLUDED
FeEEDBACK VERTEX SET fixed-parameter
tractable when parameterized by k or by k+£7
If so, does it admit a polynomial kernel?

Open Problem 15. What is the parame-
terized complexity of SMALL p-SECLUDED g¢-
DowmiNaTING SET with p > % when parame-
terized by £7

INDEX

P2k7 50

Np, 12

NP /polys 17

/polys 17

coNP /a1y, 17

FPT, 16

WK][1]-complete, 82

W[t], 16

XP, 16, 197

T-fractal, 23, 56
directed, 33
weighted, 35

2-core, 210

3SUM-conjecture, 18, 92

algorithm
branching, 53, 161
fixed-parameter, 16
APSP-conjecture, 18, 92
arc, 14

balanced binary tree, 14, 25, 167
bandwidth, 74, 75
bikernelization, 10
partial, 10, 163
book embedding, 49
boundary, 26, 56
breadth-first search, 133
budget, 45

component, 13

connected, 13
composable, 153
computable, 12
connected, 13

p-, 191

strongly, 56
covering path number, 115

cross-composition, 8, 23, 167, 171, 178, 185,

206, 207

cut, 13
edge, 13
vertex, 13
cutwidth, 74, 76
cycle, 14

data reduction, 68
defensive alliance, 86
degeneracy, 101
degeneracy ordering, 107
diameter, 14, 24, 56
diminisher, 70

a-, 99

strong, 93

strong a-, 99
distance sums, 116
dominating set, 14
domination number, 14
dual graph, 29
dual structure, 28

edge cuts, 24
ellipsoid method, 143
endpoint, 13
equivalent, 16

ETH, 18

Exponential Time Hypothesis, 18, 91

exposure, 199

feedback edge number, 14, 115
feedback edge set, 14
feedback vertex number, 14, 171
feedback vertex set, 14, 177, 184
minimal, 210
secluded, 210
fixed-parameter tractability, 3, 53

fixed-parameter tractable, 16, 79, 161, 171

forbidden, 172
forest, 14

259

INDEX

four-point condition, 113
FPT in P, 90, 111, 115
fractalism, 38, 43

gadget
binary, 191
general problem hard, 127
good, 172, 195
graph
directed, 14
directed acyclic, 48
power, 203

hyperbolicity, 113
Gromov, 113

induction, 28-31, 169
instance, 1

no-, 16

yes-, 16
integer linear program, 130
internally, 134
isolated, 13, 128
isolation, 201

kernelization, 1
(a, b)-, 90
proper, 2, 9, 65
proper (a,b)-, 98
semi-strict, 92
strict, 67

L-FPT, 115

LCA-closure, 214

leaf, 132

linearizable, 152

losing weight, 143

losing-weight, 162

lowest common ancestor, 14, 214

malformed, 46

matching paths, 124

maximal path, 128

maximal-edgy, 175

maximum degree, 74, 101

Menger’s theorem, 27

minimum maximal path cover number, 128

260

neighborhood
closed, 13, 160
closed ¢-, 13
open, 13, 160
norm, 12
lp-, 12
max-, 12

outer face, 48, 171
outerplanar, 24, 25, 35

page embedding, 49
para-NP-hard, 16
parameter, 1
parameter-constant-increasing reduction, 70,
95
parameter-decreasing branching rule, 72
parameterized algorithm
linear-time, 115
parameter-polynomial linear-time, 115,
128, 132, 133
parameterized problem, 1
parameterized reduction, 16, 79
partition refinement, 120
path, 13
directed, 14
shortest, 13
two-terminal, 141
pending cycle, 128
petal, 212
PL-FPT, 115
planar embedding, 171
polynomial equivalence relation, 8, 46, 167,
178, 207
polynomial hierarchy, 17
collapse, 17
polynomial parameter transformation, 9, 80,
185, 191, 192, 205
problem
MIN-PowER SYMMETRIC CONNECTIV-
ITY, 147
SMALL SET EXPANSION, 150
k-CNF-Sar, 18
3-CNF-Sar, 18
3-PrLaNAR VERTEX COVER, 49
3SUM, 18
ALL PAIrRs SHORTEST PaTHs, 18, 92

INDEX

BicLiQuE, 69, 78

CNF-Sar, 18, 95

CLIQUE, 69, 74, 95

CoLorruL GrRAPH MoOTIF, 69, 84

CutTING k VERTICES, 200

CuTrTING AT MOST k& VERTICES WITH
TERMINAL, 205

CycLE TRANSVERSAL, 60

DEFENSIVE ALLIANCE, 86

DirecTED SMALL CYCLE TRANSVER-
SAL, 60

EbpGE CLIQUE COVER, 68

FEEDBACK ARcC SET, 60

FEeeEDpBACK VERTEX SET, 200, 208, 214

Fixep CARDINALITY OPTIMIZATION, 201

HamiuroNiaN PatH, 53

HypERBOLICITY, 113

INTERNAL STEINER TREE, 87

LeNGgTH-BounDED EDpGE-CuUT, 21, 43

LoNg SEcLUDED Path, 197

LoNng UNSECLUDED Path, 197

MCA-DEFENSIVE ALLIANCE, 69, 86

MCA-VErTEX COVER, 69, 86

MiNiMUM DIAMETER ARC DELETION,
56

Murri-CoMPONENT ANNOTATED II, 85

MuvrricoLoreED CLIQUE, 178, 191

MULTICOLORED INDEPENDENT SET, 219

MurricoLoRED PaTH, 69, 82

NecAaTIVE WEIGHT TRIANGLE, 91

ORTHOGONAL VECTORS, 121

PrLanar LEncTH-BounDED EDpGE-CuUT,
46

RooTED PatH, 73, 95

SeEcLubED II, 200, 202

SECLUDED s-t SEPARATOR, 202

SECLUDED FEEDBACK VERTEX SET, 208

SHORT UNSECLUDED PaATH, 197

SMmALL CycLE TRANSVERSAL, 60

SMALL SEcLUDED II, 200, 202

SMALL SECLUDED $-t SEPARATOR, 202,
205

SMALL SECLUDED FEEDBACK VERTEX
SET, 208, 219

STEINER TREE, 78

TERMINAL STEINER TREE, 69, 78

TrEE DELETION SET, 209

TrIANGLE COLLECTION, 91
VERTEX COVER, 2, 49, 86
WEIGHTED INDEPENDENT SET, 143
weighted, 144, 162

reduced, 118
cycle-, 129
reduction
many-one, 163, 196, 208
reduction rule, 2
data, 2, 118, 119, 128, 162, 173, 175, 185,
186, 188, 195, 210-213

secluded

p-, 221
separator, 13
series-parallel, 36
SETH, 18, 92
signum, 12, 145
simplified, 164, 172, 177
strict composition, 72
strong diminishers, 90
Strong Exponential Time Hypothesis, 18
subfractals, 24, 25

trade-off, 90, 194
tree, 14
binary, 14, 124
tree decomposition, 15, 168
treewidth, 15, 25, 35, 74, 75, 167, 168
triangle fractals, 23
truly subcubic, 92
Turing kernelization, 11
(a,b)-, 108
adaptive, 11
polynomial, 11
twin, 13, 120, 188
false, 13
true, 13

unary, 15

vertex cover, 14

vertex cover number, 14, 185
vertex separation, 74, 76

vertex-ordering, 75, 76

W-hierarchy, 16

261

	Title page
	Zusammenfassung
	Abstract
	Preface
	Table of Contents
	1 Introduction
	1.1 Invitation to Parameterized Data Reduction
	1.1.1 Kernelization Lower Bounds
	1.1.2 Variants of Kernelization

	1.2 Preliminaries and Notations
	1.2.1 Functions and Vectors
	1.2.2 Graph Theory
	1.2.3 Parameterized Complexity
	1.2.4 Complexity-theoretic Coherence and Conjectures

	I Fractals for Kernelization Lower Bounds
	2 The ``Fractalism'' Technique
	2.1 Introduction
	2.2 Properties of the T-Fractal
	2.2.1 Minimum Edge Cuts
	2.2.2 Distances between the Special Vertices

	2.3 Directed Variants of T-Fractals
	2.4 Edge-Weighted T-Fractal
	2.5 Application Manuals for T-Fractals
	2.6 Vertex-Deletion Variants
	2.7 Concluding Remarks

	3 Distance-Related Cut Problems
	3.1 Introduction
	3.2 Length-Bounded Edge-Cut
	3.2.1 NP-hardness of LBEC on Planar Graphs

	3.3 Minimum Diameter Edge Deletion
	3.4 Directed Small Cycle Transversal
	3.5 Concluding Remarks

	II Diminishers and Data Reduction inside P
	4 Diminishers and Diminishable Problems
	4.1 Introduction
	4.2 Diminisher Framework
	4.3 Problems without Strict Polynomial Kernels
	4.3.1 Clique and Biclique
	4.3.2 Terminal Steiner Tree
	4.3.3 Multicolored Graph Problems
	4.3.4 Component-Wise Annotated Graph Problems

	4.4 Concluding Remarks

	5 Strong Diminisher: Limits and Applications inside P
	5.1 Introduction
	5.2 Semi-Strict Kernels and Strong Diminishers
	5.2.1 Two Strongly Diminishable Problems
	5.2.2 Problems without Strong Diminishers

	5.3 Strong Diminisher and Kernelization in P
	5.3.1 Adapting the Framework
	5.3.2 Applications of Strong Diminishers Inside P
	5.3.3 (Turing) Kernelization Upper Bounds

	5.4 Concluding Remarks

	6 Data Reduction Inside P: Hyperbolicity
	6.1 Introduction
	6.2 Definitions and First Observations
	6.3 A Kernelization Dichotomy regarding Vertex Cover Number
	6.3.1 An Exponential-Size Linear-Time Kernelization
	6.3.2 SETH-based Subquadratic-Time Lower Bounds

	6.4 Parameter-Polynomial Linear-Time Parameterized Algorithms
	6.4.1 Minimum Maximal Path Cover Number
	6.4.2 Number of Vertices with Degree at least Three

	6.5 Concluding Remarks

	III Losing Weights and Secluded Problems
	7 Losing Weight for Polynomial Kernelization
	7.1 Introduction
	7.2 The Losing-Weight Technique
	7.3 The Case of the Min-Power Symmetric Connectivity Problem
	7.4 The Case of the Small Set Expansion Problem
	7.5 Linearizable Functions
	7.6 Concluding Remarks

	8 The Short Secluded Path Problem
	8.1 Introduction
	8.2 Preliminaries on SSP
	8.3 Weighted SSP and Losing Weights
	8.4 Treewidth
	8.5 Feedback Vertex Number
	8.5.1 A Polynomial Kernel when combined with the Size of the Path and of its Neighborhood
	8.5.2 Polynomial Kernelization Lower Bounds

	8.6 Vertex Cover Number
	8.6.1 A Polynomial Kernel when combined with the Size of the Path's Neighborhood
	8.6.2 A Polynomial Kernel for Planar Graphs
	8.6.3 Polynomial (Turing) Kernelization Lower Bounds

	8.7 Feedback Edge Set Number
	8.8 Concluding Remarks

	9 Secluded Graph Problems: Data Reduction with Neighborhoods
	9.1 Introduction
	9.2 Separator with Small Neighborhood
	9.2.1 Secluded Separator
	9.2.2 Small Secluded Separator

	9.3 Feedback Vertex Set with Small Neighborhood
	9.3.1 Secluded Feedback Vertex Set
	9.3.2 Small Secluded Feedback Vertex Set

	9.4 Concluding Remarks

	Outlook
	Bibliography
	Appendices
	A Problem Zoo
	B Open Problem List

	Index

