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Abstract

In systems of globally coupled phase oscillators with sufficiently structured
natural frequencies, a new type of collective behavior is discovered that exists
below the synchronization threshold. The solution type is distinguished by
the appearance of sharp pulses in the mean field amplitude which imply a
temporary high coherence among the phases. This is similar to a process
known in lasers called mode locking that refers to the formation of opti-
cal pulsed by the interaction through a nonlinear optical medium. General
features of mode-locked solutions of coupled phase oscillators are identified
and a classification of the different solution types is provided. The ability
of phase oscillator systems to perform mode locking is investigated with re-
spect to the interaction function, the system size and the realization of the
natural frequencies. It was found that higher harmonics in the Fourier series
of the interaction function play an influential role in the self-organization of
mode-locked solutions. For the simple sinusoidal coupling of the Kuramoto
model, self-organized mode locking could not be observed, though, mode-
locked solutions are found that coexist with phase turbulence. The chaotic
transients that precede mode locking are examined with respect to the in-
teraction function and the system size revealing a supertransient behavior
of type-II, i.e. average transient length grows exponentially with the system
size. The stability and bifurcation scenarios of mode-locked solutions are
studied, displaying an involved picture of the local stability and revealing
intermittency as the typical route from mode locking to phase turbulence.
Close to the stability boundaries of mode-locked solutions, low-dimensional
chaotic attractors can be found that maintain the pulsed behavior with a
jittering of the inter-pulse intervals and pulse heights. In large oscillator
ensembles with a modal structure in the natural frequencies, mode-locked
solutions generally arise in a two-stage process of inner-modal synchroniza-
tion and inter-modal locking. Aside from the modal dynamics, which is cov-
ered by the introduced modal order parameters, the mode-locked solutions
in large ensembles are found to share the characteristics regarding transient
behavior and mean-field dynamics. The notion of mode locking is applied
to intuitively explain the occurrence of coherence echoes that stem from the
application of two consecutive stimuli to a population of oscillators. It is
shown that with repetitive periodic stimulation, fully mode-locked states can
be established that depend substantially on the interaction function. The
non-monotonic behavior of the magnitude of the echoes is revealed and ex-
plained by the evolution of the modal order parameters for a synthetic, fully
mode-locked initial state.



Abstract

In Systemen von global gekoppelten Phasenoszillatoren mit hinreichend regel-
mäßigen natürlichen Frequenzen existiert eine kollektive Dynamik unter-
halb der Synchonisationsschwelle. Die Lösungen sind durch scharfe Pulse
in der Amplitude des Mean-Fields ausgezeichnet, was auf eine ausgeprägte
Phasenkohärenz hindeutet. Dies ähnelt dem Prozess der Modenkopplung
aus der Laserphysik, bei dem es um die Entstehung von Lichtpulsen in nicht-
lineare optischen Materialien geht. Die Eigenschaften von modengekoppelten
Lösungen werden diskutiert und eine Klassifikation der verschiedenen Typen
wird angeführt. Das Vermögen Moden zu koppeln wird im Hinblick auf die
Wechselwirkung, die Systemgröße sowie die natürlichen Frequenzen unter-
sucht. Es zeigt sich, dass höhere Harmonische in der Fourier-Entwicklung
der Wechselwirkung entscheidend zur Selbstorganisation beitragen. Für die
einfache sinusförmige Kopplung des Kuramoto-Modells wurde selbstorgan-
isierte Modenkoppelung nicht beobachtet, dennoch konnte gezeigt werden,
dass die selbigen Lösungen mit Phasenturbulenz koexistieren. Die Eigen-
schaften von chaotischen Transienten werden eingehend untersucht, wobei
sich ein exponentielles Wachstum der mittleren Transientendauern bezüglich
der Systemgröße zeigt und die Transienten als Type-II-Supertransienten klas-
sifiziert werden. Außerdem wird gezeigt, dass die relative Stärke der zweiten
Harmonischen einen erheblichen Einfluss auf die Transientendauern ausübt.
Die Stabilität und die Bifurkationen von modengekoppelten Lösungen wer-
den untersucht, wobei sich ein kompliziertes Verhalten der lokalen Stabilität
zeigt und Intermittenz als typischer Übergang zur Phasenturbulenz identi-
fiziert werden kann. Des Weiteren finden sich an den Stabilitätsgrenzen chao-
tische Attraktoren, welche sich durch Pulsation mit variablen Pulsabständen
und Pulshöhen auszeichnen. In großen Ensemblen mit modalen Frequen-
zverteilungen bilden sich modengekoppelte Lösungen in einem zweistufigen
Prozess heraus, der aus der Synchronisation innerhalb der Moden und der
anschließenden Modenkopplung besteht. Neben der Dynamik innerhalb der
einzelnen Moden, welche durch die eingeführten modalen Orderparameter
beschrieben wird, erhalten die Lösungen ihr Verhalten bezüglich der Dynamik
des Mean-Fields und der Transienten bei. Modenkopplung wird zur intu-
itiven Erklärung von Kohärenz-Echos herangezogen, welche allgemein durch
Stimulation hervorgerufen werden. Es wird gezeigt, dass die Amplituden der
Echos in nicht-monotoner Form abkligen was anhand der modalen Orderpa-
rameter verstanden werden kann. Durch periodische Stimulation wird eine
Verbindung von partieller zu vollständiger Modenkopplung aufgebaut, wobei
der Einfluss verschiedener Stimulustypen diskutiert wird.
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1

Introduction

“We need a dream-world in order to discover the features of the real
world we think we inhabit.”

– Paul Karl Feyerabend, Against Method

1.1 Preamble
The Kuramoto model of coupled phase oscillators which was derived in the
1970s is viewed today as a paradigm in the description of synchronization
phenomena in a diverse range of models involving weakly coupled limit cycle
oscillators [1]. The phenomenon of collective synchronization is pervasive in
the dynamics of nonlinear oscillator systems. However, there is another type
of collective behavior called mode locking that has not been studied before
in the Kuramoto model.

The present work deals with this new type of collective behavior that
is inspired by the dynamics of mode-locked lasers, which are specific laser
systems built to produce short light pulses. The notion of mode-locked so-
lutions in the Kuramoto model supplements the existing knowledge about
the dynamics of phase oscillator systems below the threshold of collective
synchronization. It should be emphasized that mode locking is a general
phenomenon that can be found in a variety of coupled oscillator systems.

The first key ingredient to the mode-locking phenomenon is a global
interaction scheme, which makes the Kuramoto model an ideal candidate.
Secondly, but of the same importance, one has to consider well-structured
natural frequencies which can be, for instance, equidistant. Making use of
these two key ingredients, a new solution type is discovered in the Kuramoto
model, which is characterized by sharp pulses in the Kuramoto order param-
eter, see Fig. 1.1.

1
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Figure 1.1: For equidistant natural frequencies and Kuramoto-type global
coupling, pulsed periodic solutions below the synchronization threshold
K ă KC exist.

By investigating mode locking in the context of the basic phase oscillator
models, general aspects of the phenomenon can be revealed, which are of
importance for the theory of coupled oscillator systems. The present work
complements previous works on mode locking in coupled oscillator systems,
especially regarding situations involving many oscillators [2]. It is shown that
the recently discovered phenomenon of coherence echoes [3], which appears
as a response to external stimulation, can be viewed as a consequence of
mode locking.

1.2 Thesis Overview

Chapter 2

Chapter 2 covers an introduction to globally coupled phase oscillator models
and the phase reduction technique that is used to derive them for weakly-
coupled limit cycle oscillators. The two well-known states of collective syn-
chrony and phase turbulence are briefly presented, while it should be noted
that the presentation is not exhaustive. The subsequent description of circle
maps gives the necessary background from which one can understand oscil-
lator systems that are subject to brief periodic stimulation. To enable the
reader to anticipate connections between the coherence echo phenomenon and
mode locking, the phenomenon is presented in its basic form following [3].
The final section is concerned with the numerical methods used for simula-
tions, dynamical parameter continuation, and the computation of Lyapunov
exponents.
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Chapter 3

Chapter 3 starts with the presentation of the basic model, its properties and
a description of the concept of effective frequency combs, which is identi-
fied as one of the key components for understanding mode-locked structures.
Following that, a characterization of a prototypical mode-locked solution is
given which already allows one to identify some of the general features of
mode locking. Most importantly, it is found that the pulsed mean field of
the prototypical solution has the form of a normalized absolute value of a
Dirichlet kernel. The average magnitude over time of this particular pulse
form turns out to be well below the expected typical value for comparable
states of phase turbulence. Noteworthy, this particular form is analogous to
the time evolution of the intensity of optical pulses.

Formal definitions of the mode-locked solutions are given, which include
the two main types of harmonic and subharmonic solutions. The definitions
can be adapted to other models for the classification of mode-locked solutions.
The mode-locked solutions described are discovered in the Kuramoto model
with equidistant natural frequencies, and how suitable initial conditions can
be generated in order to obtain the solutions is presented. In this case, self-
organized mode locking was not observed, thus coexistence between extensive
chaos and stable mode locking is observed.

Self-organized mode locking is achieved when more involved coupling
functions are considered, including foremost a second harmonic term (Kuramoto-
Daido type models [4]). Here one finds regions in the parameter space where
unique mode-locked solutions develop from randomly chosen initial condi-
tion after chaotic transient episodes. It is shown that the average transient
length critically depends on the presence of the second harmonic term in the
interaction.

A comparison of the rates of expansion and contraction along the stable
mode-locked solutions for both types of interaction functions reveals a subtle
balance between long periods of weakly expanding phase space volumes and
short periods of strong contraction. The comparison especially shows the
impact of the second harmonic on the stability of the pulsed solutions.

The most abundant scenario as to how the stability of a mode-locked so-
lution is lost is by intermittency between phase turbulence and an unstable
pulsed solution appearing as a bursting in the mean field. Along the stability
boundaries of the mode-locked solutions, one can also find strange attractors
that emerge in the breakdown of invariant tori or in period doubling cas-
cades. The solutions in these particular cases remains pulsed and have the
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characteristic properties of low-dimensional chaos, resulting in a jittering of
the inter-pulse intervals and the pulse heights.

Mode-locked solutions are found to exist independently of the system size,
however, the average length of chaotic transients scale exponentially with the
number of oscillators, which conforms to supertransient behavior of type-II
[5]. The supertransient behavior together with the importance of the second
harmonic for self-organized mode locking clarifies to a certain extent why
these solutions have not been described before.

The investigation of randomly and systematically perturbed equidistant
frequency combs reveals that the ability of the system to develop mode lock-
ing can be characterized by the order present in the chosen natural frequen-
cies. This especially highlights the importance of commensurability among
the chosen natural frequencies of the oscillators. Furthermore, it is shown
that mode locking cannot be expected for generic randomly-chosen natural
frequencies even when the underlying frequency distribution is uniform.

With the prospect of applications the mode-locking phenomenon is in-
vestigated for large ensembles of oscillators where the notion of modal order
parameters is introduced to characterize the mode-locking transition in a two-
stage process of inner-modal synchronization and subsequent mode locking.
The stability of the mode locking is investigated with respect to spectral
width within the modes, where prior to the complete breakdown of mode
locking, a curious period-two modulation phenomenon occurs. The modula-
tion is found to be a result of a periodic forcing exerted by the mode-locked
population on the unlocked population and also relies on the presence of the
second harmonic in the interaction.

In the last section, a qualitative comparison to the dynamics of mode-
locked lasers is given where the most important common features and the
points that are either specific to optical or phase oscillator mode locking are
collected.

Chapter 4

Chapter 4 establishes a relationship between mode locking and the coherence
echo phenomenon. The basic coherence echo phenomenon is revisited, where
the emphasis is put on the identification of mode combs, which are charac-
teristic structures affiliated with mode locking. It was discovered that the
echo phenomenon is due to the stimulation of a partially mode-locked initial
condition which appears when at least two consecutive stimuli are applied.

By studying an idealized so-called synthetic mode-locked initial condition,
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it is revealed that the magnitudes of the echoes can behave non-monotonously,
which is explained by using a set of modal order parameters. Furthermore,
it is shown that the global interaction influences the echoes significantly in
this case due to the large coherence of the initial configuration.

It was found that under continued periodic stimulation at regular in-
tervals, fully mode-locked states develop gradually, and that the pulsation
synchronizes to the external stimulation. The ensembles of stimulated os-
cillators are regarded in the coupling free limit, where one can reduce the
system to a collection of circle maps. Here it is shown that the response
to stimulation depends drastically on the initial state of the system, while
the resulting rotation numbers do not. The variation of the pulsation can
be linked to the subharmonically locked oscillators that are always present
in the staircases of the rotation numbers. Employing the global coupling
successively increases the locking plateaus, which directly corresponds to an
increase in the stimulated pulsation. Thus, it is demonstrated that for global
coupling schemes such as the Kuramoto-type sine coupling, the stimulated
mode locking is enhanced.

Chapter 5

In last chapter 5, the findings are summarized and some ideas for future
research are collected.
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2

Background

“Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;”

– Robert Frost, The Road Not Taken

2.1 Models of Coupled Phase Oscillators

Systems of coupled phase oscillators have been established as a paradigm
in the description of collective synchronization phenomena where the enor-
mous variety of coupling schemes and frequency distributions found in the
literature reflect on the wide range of applications. As such, phase oscillator
models can be employed to model biological rhythms; mechanical and elec-
tronic systems, e.g. flashing fireflies [6]; collective stepping of pedestrians on
a bridge [7]; arrays of coupled Josephson junctions [8] or power grids [9]. In
a recent investigation, it was shown that the Lugiato-Lefever equation de-
scribing the formation of optical pulses can be reduced to phase dynamics
while maintaining some of the important features of the model [10]. This
newly established connection between the dynamics of phase oscillators and
mode-locking in optics motivates study mode locking as a new type of col-
lective behavior in systems of coupled phase oscillators. This section serves
as an introduction to phase oscillator models, the phase reduction technique,
the concept of synchronization, and phase turbulence that are necessary to
distinguish and characterize mode locking.

7
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Figure 2.1: Illustration of the direction of the flow for the Adler equation for
|∆ω| ă K and |∆ω| ą K.

2.1.1 Synchronization and the Adler Equation

A straightforward introduction to synchronization can be given by the ex-
ample of the Adler equation [11, 12], which models the synchronization of an
oscillator to the frequency of an external oscillator or drive

9θ “ ω `K sinpθ ´ θextq, (2.1)
9θext “ ωext, (2.2)

where K P R` is the interaction strength, θ, θext P S1 are the phase variables,
and ω, ωext P R are two natural frequencies. Because the interaction depends
only on the phase differences φ “ θ ´ θext, one can rewrite the system for the
phase difference which gives called the Adler equation

9φ “ ∆ω `K sinpφq, (2.3)

where ∆ω “ ω ´ ωext is the detuning or mismatch of the two frequencies.
Equilibria given by ∆ω “ ´K sinpφq correspond to synchronized solutions
where the forced oscillator 9θ “ ωext is entrained accordingly. The region
where the frequency of the driven oscillator becomes identical to the one of
the external drive is called locking cone. Two equilibria exist for |∆ω| ă K
where one is stable and the other is unstable. With |∆ω| ą K, one obtains
the asynchronous evolution of the two phases. The situation for which both
equilibria coalesce in saddle-node bifurcation |∆ω| “ K gives rise to a homo-
clinic orbit.

2.1.2 Weakly-Coupled Oscillators and Phase Reduction

As a starting point, one might want to answer the question of how general
phase oscillator models are, and in particular, in what type of situation one
can make use of them. To give an answer to this question, the approach
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of phase reduction is presented here. The two most important steps of the
approach are the definition of the phase of the limit cycle, and the justifica-
tion that the concept of the phase can be extended in a small neighborhood
around the stable limit cycle, which makes it possible to deal with pertur-
bations. For weakly-coupled and almost identical oscillators, one can then
utilize the method of averaging, which further reduces the interactions to
periodic functions of phase differences.

In the following, a system of two weakly-coupled limit cycle oscillators
is considered to introduce the technique as it has been presented in [1, 13].
Consider the system of weakly-coupled ordinary differential equations given
by

9Xk “ FkpXkq ` εHpXk, Xjq, k, j P t1, 2u, (2.4)

where Xk P RI is the state of the oscillator with index k and 2 ď I P N,
FkpXkq : RI Ñ RI is the right-hand side of the uncoupled oscillator, ε ! 1 is
a small parameter, and HpXk, Xjq : RI ˆ RI Ñ RI is the coupling function.

Furthermore, we assume that the dynamics of the two oscillators only
differ at an order of Opεq, such that, for the uncoupled oscillators one can
write

9Xk “ F pXkq ` εfkpXkq, k P t1, 2u, (2.5)

where fkpXkq : RI Ñ RI denotes the differences of the right-hand side.
To reduce (2.4) to phase dynamics, one first needs to introduce the phases

φk P S1 which parametrize the limit cycles. Both phases φkptq are defined to
progress with a constant speed along the periodic solution X0

kptq “ X0
kpt` T q

that is found for ε “ 0 such that

9φkpXkq “ 1 k P t1, 2u. (2.6)

Let X0
k be any point on the stable limit cycle Γ0 of period T and X̃k P UpΓ

0q

be a small neighborhood of Γ0, that is,
∣∣∣X̃kptq ´X

0
kptq

∣∣∣Ñ 0 as tÑ 8. The
isochrones are the pI ´ 1q-dimensional hypersurfaces filling UpΓ0q, where to
every isochrone there is an associated asymptotic phase on Γ0. With the pe-
riodic mapping P : X̃kptq Ñ X̃kpt` T q, the asymptotic phase can be defined
as φpX̃kq “ limiÑ8 P

ipX̃kq. Details about the existence and certain proper-
ties of the isochrones can be found in [14]. The concept of the isochrones
enables one to define the phase not only on the limit cycle itself, but also
in a small neighborhood around it such that one can use the phase descrip-
tion when also dealing with small perturbations. Letting ε ą 0, applying the
chain rule one formally to φkpXkptqq, and using (2.4), (2.5), (2.6) one obtains

9φkpXkq “ 1` ε∇Xkφk rfkpXkq `HpXk, Xjqs k, j P t1, 2u, (2.7)
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where ∇Xk denotes the gradient with respect to Xk. While Xk and Xj are
generally not known, one can replace them with the X0

kpφkq on the right-hand
side to obtain the lowest order approximation in ε

9φk “ 1` εZpφkq
“

fkpX
0
kpφkqq `HpX0

kpφkq, X
0
j pφjqq

‰

k, j P t1, 2u, (2.8)

where Zpφkq “ ∇Xkφk|Xk“X0
k
is the so-called phase sensitivity function which

can be obtained via the method of the adjoint equation [15, 16].
To apply the method of averaging to (2.8), one first transforms the phases

according to φk “ ω0t` θk, where specifically θk is varying slowly as com-
pared to ω0t. Here, ω0 “ 2π{T is the speed on the limit cycle for ε “ 0 that
is implicitly defined by (2.6). The resulting equations that may then be
averaged over t read

9θk “ εZpω0t` θkq
“

fkpX
0
kpω

0t` θkqq `HpX
0
kpω

0t` θkq, X
0
j pω

0t` θjqq
‰

,
(2.9)

with k, j P t1, 2u, and in particular, all functions are T -periodic in t.

Theorem 2.1.1 (The Averaging Theorem [17]). Considering a dynamical
system of the form

9u “ εgpu, t, εq; u P D Ă RI , 0 ď ε ! 1, (2.10)

where g : RI ˆ Rˆ R` Ñ RI is Cr smooth function with r ě 2. Let g be
bounded on bounded sets and periodic in t with period T . The averaged system
is then defined as

9y “ ε
1

T

ż T

0

gpy, t, 0qdt “: εḡpyq. (2.11)

There exists a Cr change of coordinates u “ y ` εwpy, t, εq under which (2.10)
becomes

9y “ εḡpyq ` ε2g1py, t, εq, (2.12)
where g1 is of period T in t.

The system (2.9) fulfills the requirements of the averaging theorem, there-
fore the averaged system is given by

9θk “ ε
“

ωk ` H̄pθj ´ θkq
‰

k, j P t1, 2u, (2.13)

where H̄pθj ´ θkq and ωk are

H̄pθj ´ θkq “
1

T

ż T

0

Zpω0t` θkqHpX
0
kpω

0t` θkq, X
0
j pω

0t` θjqqdt, (2.14)

ωk “
1

T

ż T

0

Zpω0t` θkqfkpX
0
kpω

0t` θkqqdt, (2.15)

here H̄ : S1 Ñ S1 is a general periodic function of the phase difference.
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2.1.3 The Kuramoto Model

Kuramoto made a substantial extension to the concept of collective synchro-
nization in coupled oscillator systems in [1] when he first successfully treated
the transition to collective synchrony of a system of globally-coupled phase
oscillators in the continuum limit. A short introduction and an extensive
review of the Kuramoto model can be found in [18, 19]. Kuramoto realized
that an analytic treatment of the collective synchronization problem is pos-
sible by truncating the interaction function in (2.13) after the first sinusoidal
harmonic. Additionally, he chose the number of oscillators N to be arbitrar-
ily large and normalized the interaction accordingly, which led him to the
Kuramoto model of globally coupled phase oscillators

9θk “ ωk `
K

N

N
ÿ

j“1

sinpθj ´ θkq, k “ 1, . . . , N, (2.16)

where K P R denotes the coupling strength, N P N is the number of oscilla-
tors, and ωk P R are the natural frequencies. The all-to-all sinusoidal inter-
action can be expressed by the means of a single complex order parameter
given by

ηptq “ RptqeiΨptq :“
1

N

N
ÿ

j“1

eiθjptq P C, (2.17)

such that one can rewrite the system as follows

9θk “ ωk `
K

2i

`

ηptqe´iθkptq ´ η̄ptqeiθkptq
˘

,

“ ωk ´KR sinpθk ´Ψq, (2.18)

where η̄ denotes the complex conjugate of the order parameter. The mod-
ulus of the order parameter is a natural measure of phase coherence, which
is why R is also referred to as the coherence radius. In the case that the
natural frequencies ωk follow a normalized symmetric unimodal distribution
gpω ` ωcq “ gp´ω ` ωcq with average frequency ωc, the system can be trans-
formed into a co-rotating frame by applying θk Ñ θk ` ωct. For steady state
solutions Rptq “ const. in the co-rotating frame, one can set Ψ “ 0. Here,
the order parameter effectively becomes a parameter in the evolution of each
unit such that one is faced with a solvable self-consistency problem.

His self-consistency approach allowed Kuramoto to derive the critical cou-
pling strength KC “ 2{pπgp0qq at which a branch of partially synchronized
solutions bifurcates from the state of incoherence given by R “ 0. Close to
the bifurcation, the order parameter was found to exhibit square root scal-
ing law, which for the standard Cauchy distribution gpωq “ 1{pπp1` ω2qq
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Figure 2.2: Transition from incoherence K ă KC to partial synchrony
K ą KC for the natural frequencies drawn from a standard Cauchy distribu-
tion gpωq.

is R “
a

p1´KC{Kq. The corresponding second order phase transition to
synchrony is illustrated in Fig. 2.2.

2.1.4 Daido’s Extension of the Coupling Function

The simplifying assumption of a first harmonic interaction function which
is surprisingly adequate in a variety of applications was extended by Daido
[4] to include higher order Fourier components in the interaction function.
For phase reduced models of weakly-coupled limit cycle oscillators, Daido’s
extension is of great importance because it covers a much wider range of
models. However, the more general form comes with the price that the
theory of collective synchronization is already much more involved. This is
illustrated by the fact that clustered states may appear [20]. Just to name one
example, the interaction functions between weakly-coupled Hodgkin-Huxley
neurons in the corresponding phase model were found to contain the first
four harmonics [21]. The general Kuramoto-Daido model of globally-coupled
phase oscillators has the form

9θk “ ωk `
K

N

N
ÿ

j“1

hpθj ´ θkq, k “ 1, . . . , N, (2.19)

with a 2π-periodic interaction function that can be expressed in the form of
a Fourier series

hpθq “
8
ÿ

q“1

“

hpsqq sinpqθq ` hpcqq cospqθq
‰

, (2.20)
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where a constant term with q “ 0 is omitted without a loss of generality, and
the superscripts psq,pcq indicate sine and cosine-like harmonics. Furthermore,
with hq “ ph

pcq
q ´ ih

psq
q q{2 for q ą 0 and h´q “ h̄q, where the overbar denotes

the complex conjugate, this can be written as

hpθq “
ÿ

qPZ

hqe
iqθ, (2.21)

The mean field description of the model comprises the generalized complex
order parameters

ηqptq “ Rqptqe
iΨqptq :“

1

N

N
ÿ

j“1

eiqθjptq P C, (2.22)

where q is the degree of the harmonic. Applying the generalized order pa-
rameters, the model becomes

9θk “ ωk `
K

N

N
ÿ

j“1

ÿ

qPZ

hqe
iqpθj´θkq (2.23)

“ ωk `K
ÿ

qPZ

hqηqe
´iqθk , (2.24)

for which the collective synchronization transition in the thermodynamic
limit was successfully treated in a self-consistency approach similar to the
one used by Kuramoto. Daido found that the critical coupling in the ther-
modynamic limit is

KC “
2h
psq
1

πgpωCqpph
psq
1 q

2 ` ph
pcq
1 q

2q
, (2.25)

where gpωCq is the distribution function of the ωk evaluated at the entrain-
ment frequency. A crucial restriction Daido makes on the coupling function
is that there is only one minimum and one maximum, which means that
the first harmonic is much stronger than the other terms in the interaction.
This assumption assures a certain similarity to the Kuramoto-type coupling.
Furthermore, note that the synchronization theory presented is strictly only
valid in the thermodynamic limit N Ñ 8. The quantities Rq and Ψq charac-
terize the collective behavior of the system. While R1ptq quantifies the degree
of total phase synchronization corresponding to a monopole distribution of
the oscillators, the higher order parameters measure higher order moments
of the distribution of the oscillators. For instance in R2ptq, the emergence of
dipole shape configurations can be seen [1, 22].
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2.1.5 Extensive Chaos Below the Synchronization Thresh-
old

The typical behavior of a system of phase oscillators below the synchro-
nization threshold K ă KC is a state of phase turbulence presenting a large
number of positive Lyapunov exponents [23]. The extensive nature of the
phase turbulence was shown in some detail in numerical experiments, how-
ever, raising the question of whether this situation would not be sensitive
to the chosen realization of the natural frequencies. It was found that the
specific realizations of the frequencies in finite size systems influence the syn-
chronization transition in the way that oscillators with frequencies closest to
each other tend to synchronize first [24].

Of special importance for the present work are equidistant natural fre-
quencies which might be interpreted as a special realization of frequencies
that conforms with a uniform frequency distribution. Even for this partic-
ular frequency realization, the incoherent state is the typical solution to be
observed in the Kuramoto model. The transition to synchrony for this type
of realization was found to be a first-order phase transition for which correc-
tions to the continuum limit synchronization threshold could be established
[25]. In the recent past, great accomplishments regarding the incoherent state
for random frequencies in finite size systems and in the continuum limit were
made [26, 27] such that the picture of a stable incoherent state below the syn-
chronization threshold and the bifurcation scenario conjectured by Kuramoto
to collective synchrony could be confirmed.

However, caution is advised because incoherence is not the only possi-
ble type of behavior below the threshold of collective synchronization. For
equidistant or nearly equidistant natural frequencies, mode locking exists for
K ă KC , which is a new type of collective behavior. Although equidistant
natural frequencies are uniform, it is clear that they are exceptional and
fundamentally different from randomly chosen frequencies. The equidistant
frequencies, as opposed to randomly chosen frequencies, conform to the con-
cept of hyperuniformity regarded in the frequency domain [28].

2.2 Circle Maps Mode Locking and Resonances

In mathematics, a particular notion of mode locking appears in the context of
circle maps. The main difference to the notion of mode locking that is known
in laser physics is that it usually does not refer to a collective phenomenon.
Circle maps and phase oscillator models are deeply related such that one can
expect to find connection and relations between helpful concepts. In this



2.2. CIRCLE MAPS MODE LOCKING AND RESONANCES 15

regard, the most important candidate is that of the rotation numbers, which
is related in phase oscillator systems to the average frequencies.

In this section, the Arnold circle map and globally-coupled circle maps
are presented. For the Arnold circle map, the notions of the rotation number
and resonant locking are of primary interest, while the extension to coupled
circle maps allows promoting ideas about extensivity and collective types of
behavior.

2.2.1 Arnold Circle Map

A circle map is a time discrete mapping on the circle with one of the most
prominent examples being the Arnold circle map [29, 30]

θν`1 “ θν ` 2πω `K sinpθνq mod 2π, (2.26)

where ν P N is the discrete time index, θ P S is the phase variable, ω P r´1, 1s
is the natural phase increment, and K P r0, 1s is the strength of the nonlinear-
ity. The common approach to studying the dynamics of this system involves
the so-called rotation number, which is a fundamental quantity in the study
of circle maps and defined by

Wω,Kpθ̃0q :“ lim
νÑ8

θ̃ν ´ θ̃0

2πν
, (2.27)

where θ̃ P R denotes the phase variable lifted to the universal cover of S. The
rotation number corresponds to the average number of rotations of the circle
map per iteration, which can be seen as an analog to the average angular
velocity of a phase oscillator. It is known that for (2.26), the limit (2.27)
indeed exists and further that it is independent of θ̃0 [30].

The distinction between periodic and quasiperiodic motion is made by
the rotation number, which is rational Wω,K P Q in the periodic case, and
irrational in the quasiperiodic case. Starting from the linear case K “ 0, one
obtains periodic motion only for ω values which are exact rationals corre-
sponding to elements of the Farey sequence

Fi :“

"

p

q
: p, q coprime, 0 ď p ă q ă i

*

, (2.28)

where i P N in this context will be called the Farey order. Interestingly, for
increasing 1 ě K ą 0, one finds regions around the exact rational ω P YiPNFi
where the rationality of the rotation number is maintained. A comparison be-
tween the rotation number and the natural phase increment reveals a Devil’s
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Figure 2.3: Devil’s staircase with multiple locking plateaus in W pωq for the
Arnold circle map (2.26) with K “ 1.

staircase, see Fig. 2.3. By extending the staircase in K direction, locking
cones also known as Arnold tongues appear, which are regions of rational
rotation numbers in the space spanned by K and ω. Note that with increas-
ing Farey order, the areas of the tongues decrease. While the Arnold circle
map (2.26) is only concerned with a single phase variable, it is interesting to
discuss the situation of multiple coupled phase variables.

2.2.2 Globally-Coupled Circle Maps

By extending the number of maps and involving a global coupling scheme,
one obtains globally-coupled circle maps as introduced by Kaneko [31]

θν`1pkq “ θνpkq `
K

N

n
ÿ

j“´n

sinpθνpjq ´ θνpkqq mod 2π, (2.29)

where k P t´n, . . . , nu denotes the map index of the N “ 2n` 1 coupled
circle maps. The one dimensional circle map is therefore extended to an
N -dimensional system of globally-coupled circle maps with coupling similar
to the sine coupling of the Kuramoto model (2.16). Similar to the order
parameter used to describe the interaction in the Kuramoto model, one can
use

ην “ Rνe
iΨν :“

1

N

n
ÿ

k“´n

eiθνpkq P C. (2.30)

Using this order parameter to rewrite (2.29) results in

θν`1pkq “ θνpkq ´KRν sinpΨν ´ θνpkqq mod 2π. (2.31)
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In this particular example, all of the units are identical in the sense that
the natural phase increments are all zero. Introducing a heterogeneity in the
model results in

θν`1pkq “ θνpkq ` 2πωk `
K

N

n
ÿ

j“´n

sinpθνpjq ´ θνpkqq mod 2π, (2.32)

where ωk P r´1, 1s denotes the different natural phase increments. Locking
and therefore the appearance of periodic motion in the context of the Arnold
circle map (2.26) referred to Wω,K P Q, which is depending on the phase
increment ω and the nonlinearity K. In the case of coupled maps (2.32),
one would similarly be interested in studying the relationship between the
different ωk and K to identify periodic, quasiperiodic, and chaotic regimes,
as well as collective types of behavior.

The notion of the rotation numbers can be carried over in the context of
the multiple circle maps by defining the rotation numbers

Wωk,Kpθ̃0pkqq :“ lim
νÑ8

θ̃νpkq ´ θ̃0pkq

2πν
, (2.33)

which results in a rotation vectorW “ pW p´nq, . . . ,W pnqq P RN if the limits
exist. The rotation number for the single circle map (2.26) was noted to be
independent of the initial condition, which is not necessarily true for mutually
coupled maps. Note that the rotation vector does not always exist, however,
in that cases one can still form what is called a rotation set [2].

For systems of coupled circle maps, the commensurability between all
entries of the rotation vector becomes a necessary condition for a periodicity.
It assures that all the rotation numbers are rationally related pairwise

W pjqp “ W pkqq, @j, k P t´n, . . . , nu, (2.34)

where p, q P N. The intriguing part is now that one does not know when
the global interaction warrants the stabilization of the resonances among the
rotation numbers. Even for the case that one chooses the natural phase
increments ωk, mutually resonant the interaction has to support the locking
dynamically.

In particular, when the phase increments are equidistant ωk “ k{n for N
coupled maps (2.32), the system allows for a special type of solution with a
peculiar collective behavior. The solution is characterized by a pulsation of
the coherence that is measured by Rν . After multiple iterations with small
coherence, a rapid increase in a pulse-like fashion is observed, see Fig. 2.4. To
obtain the presented solution, one has to use initial conditions that have large
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initial coherence pR0 « 1q. The presented model of globally-coupled maps is
certainly interesting, however, it is meant only to illustrate the generic nature
of the solution types that will be discussed for time-continuous systems. The
pulsing solution is in fact a stroboscopic analog to pulsed solutions that can
be found in time-continuous systems.

As pointed out in [31], coupled circle maps can be viewed as a prototypical
system that develops extensive chaos. The same is true for coupled phase
oscillator systems where among the presented phase turbulence, other exotic
chaotic states known as Chimeras have been found for more involved coupling
schemes [32, 33]. Although not much is known about the solution presented
in Fig. 2.4, it is clear that the recurrently increasing values of Rν are a
manifestation of a collective type of behavior.

2.3 The Coherence Echo Phenomenon

This section serves as a brief introduction to an echo-type response phe-
nomenon that was found in systems of coupled oscillators [3, 34]. Similar
echo phenomena have been known for awhile in the field of plasma physics
[35, 36] and as spin echoes in systems with nuclear magnetic dipoles in an
inhomogeneous external magnetic field [37]. The basic phenomenon can be
found by applying two stimuli separated by a time distance τ to a large
ensemble of phase oscillators with random natural frequencies. It is then
observed that increased coherence reappears after the second stimulus at
integer multiples of τ . The reappearing coherence echoes are found to disap-
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pear quickly at higher multiples of τ . The term coherence echo is chosen to
stress the fact that the response is seen in the modulus of the first complex
order parameter, the coherence radius R1ptq.

2.3.1 Stimulation of Ensembles of Phase Oscillators

The idea behind stimulation is that an instantaneous external action is ap-
plied to the system state for a brief period of time or instantaneously. For
simplicity, the stimuli considered are so-called delta stimuli, which cause an
instantaneous change of the system state at a specific impact time t “ t0.
A delta stimulus adjusts the system state according to an action function
h : S1 Ñ S1 while otherwise not influencing the system’s evolution, which
makes this type particularly convenient for use in simulations. The prepara-
tion of the system state is done by the transformation

θpt`0 q “ θpt´0 q ´ hpθpt
´
0 qq, (2.35)

where at t “ t0 the system state is transformed from θpt´0 q to θpt
`
0 q for all

oscillators in a discontinuous fashion. The types of action functions hp¨q
considered may be written as a Fourier series

hpθq “
ÿ

lPZ

hle
ilθ. (2.36)

The chosen action function has a strong influence on the coherence echoes, in
particular, regarding their magnitude. In order to recover the effect presented
in [3], one can use (2.36) including the first two odd harmonics

hpθq “
sinpθq ` sinp2θq

2
. (2.37)

2.3.2 Coherence Echoes in Kuramoto-Type Systems

A system of globally-coupled phase oscillators (Kuramoto-type), below the
synchronization threshold K ă KC and with natural frequencies that are
drawn from a Gaussian distribution is considered. The system will typically
evolve towards a state of phase turbulence [23]. Application of two stimuli
of the form (2.37) at t0 and t1 are sufficient to observe coherence echoes.
The system responds with a coherence echo at approximately t1 ` τ , where
τ “ t1 ´ t0. The outcome of a numerical experiment for the system described
is presented in Fig. 2.5, where the action of the stimuli is indicated, as well
as the reappearance of increased coherence at t “ t1 ` τ . Additionally, the
modulus of the second order parameter R2ptq is presented, which shows a
sudden increase at t “ t1 ` τ{2. This will also be identified as a main feature
of mode-locked solutions.
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2.4 Numerical Methods

Implementations of the numerical experiments for this work are done in C++
and make use of the libraries Armadillo, Boost [38, 39], and employ paral-
lelization schemes from OpenMP [40].

2.4.1 Simulations

Explicit scheme

Simulations of differential equations are performed with a forward-explicit
fourth order Runge-Kutta scheme [41]. Given an autonomous initial value
problem 9x “ fpxptqq with initial value xp0q “ x0, one can iterate the system
forward in time from t0 “ 0 to t1 “ h in a discrete fashion. The increment
of the independent variable with each step is called step size h. Although in
many applications methods with adaptive step size are preferable, such meth-
ods were not required in the context of this work. To obtain the approximate
solution, one has to reapply the following iterative equation

xi`1 “ xi ` h
1

6
pk1 ` 2k2 ` 2k3 ` k4q , (2.38)
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here xi is the previous state and k1, k2, k3, k4 are evaluations of the r.h.s. at
pk1, k2, k3, k4q “ pfpxiq, fpxi ` hk1{2q, fpxi ` hk2{2q, fpxi ` hk3qq. The scheme
presented is preserving invariant subspaces, which can lead to numerical
trapping [42]. To avoid this problem appropriately, small perturbations are
frequently applied in order to allow the system to diverge if instabilities
transvere to the invariant subspaces appear. A second option to handle the
problem of numerical trapping is to break the system symmetries by applying
small quenched disorder in the natural frequencies.

Poincaré sections and maps

An important concept in the study of dynamical systems is that of Poincaré
return maps. For the study of an N -dimensional dynamical system given by
a system of differential equations, an N´1-dimensional hyperplane is cho-
sen that adequately dissects the phase space. The consecutive returns of
the trajectory to the Poincaré section generate a discrete map that is called
Poincaré return map. The return time Tν , where ν P N, are the evolution
times between crossings of the Poincaré section, and are often used to illus-
trate Poincaré maps. For a periodic orbit, the restriction to a Poincaré map
lifts the phase shift symmetry resulting in a fixed number of section crossings.
The number of crossings generally depends on the particular Poincaré section
that is chosen, and should therefore be chosen with care. During the numer-
ical simulations, the Poincaré maps are studied in order to identify regimes
of periodic, quasiperiod or chaotic motion and characterize bifurcations.

In principle, one can always make use of what is known as Henon’s trick,
which refers to a transformation of the time into a dependent variable suffi-
ciently close to the section crossing in order to arrive with machine precision
on the chosen Poincaré section [43, 44]. Although this approach is generally
possible once the system is sufficiently close to the hyperplane where the Ja-
cobian is expected to be invertible, a linear approximation is often sufficient
and will be used here.

Parameter scans

To detect bifurcations of solutions in numerical simulations, parameter scans
can be performed where a system parameter is adapted and structural changes
of the solution are observed. The adaptation of the parameter is usually per-
formed adiabatically, which means that the parameter changes are small and
succeeded by sufficiently long transients such that the system converges back
to a stable regime. Due to the peculiar stability properties of the periodic
solutions discussed in this work, a small extension of the basic procedure in
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performing parameter scans is presented.
Periodic and chaotic trajectories can exhibit different rates of expansion

and contraction at different points in phase space, such that perturbations of
a parameter can have different effects depending on the exact moment when
they are applied. In practice, this is often handled by making sufficiently
small parameter steps in the scan. Smaller parameter increments, on the
other hand, can increase the length of the computation of the scan substan-
tially, making it sometimes favorable to vary the chosen parameter increment
in different parameter regions of the scan. To obtain a reliable and detailed
parameter scan, one typically has to restart the procedure and adjust the
parameter steps.

The method of slow adaptation of a parameter can help to alleviate both
problems at the same time by distributing the parameter change equally over
a certain time window. In this way, perturbations are spread more evenly
over the periodic orbit or on the chaotic attractor. The advantage of the
procedure is that one needs less a priori knowledge of the stability properties
of solutions.

Considering the initial value problem

9x “ fpx, pq, xp0q “ x0, (2.39)

where p P R is a parameter and x P RN is an N -dimensional state vector,
and f : RN ˆ RÑ RN is a continuous function. The basic approach of a
parameter scan is to adjust parameter p at the time moment τ

p` “ p´ `∆p (2.40)

where p´ and p` are the parameter values right before and after the adapta-
tion, and ∆p P Rzt0u corresponds to the finite size parameter increment. The
procedure described is the commonplace approach to investigate bifurcation
scenarios in numerical simulations where ∆p is also sometimes varied along
a scan.

A simple but effective extension of this basic procedure is to distribute
the adaptation of the parameter over a time interval of finite length tad. The
simulation step size h is taken to be fixed and one chooses tad such that
tad{h P N. Starting at time t “ τ , before the next tad{h simulation steps of
the scheme (2.38), the parameter is adapted by

p` “ p´ `
∆ph

tad
, (2.41)

where ∆ph{tad can be as small as machine precision. The procedure can in
principle also be formulated for methods with adaptive step size. Compared
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to the basic procedure, where one only has to specify the desired parameter
increment ∆p, the distributed adaptation requires the additional time span
tad over which the parameter change takes place. The procedure described
is not only interesting to study stable periodic solutions with complicated
structure, but also when chaotic attractors are explored that exhibit diffi-
cult stability properties. The method should be considered when switching
between several stable attractors by small perturbations is possible.

For periodic solutions and potentially unstable solutions, it is clear that
numerical bifurcation theory [17, 45] and path-following methods, e.g. pseudo-
arclength continuation as implemented in AUTO or DDE-BIFTOOL [46, 47,
48, 49], are the most reliable tools and should if possible be preferred to
direct simulations.

However, note that for large systems or when investigating chaotic attrac-
tors, simulations are frequently used due to their simplicity. To investigate,
for instance, the properties of a chaotic attractor with numerical continua-
tion methods one would have to study a representative collection of unstable
periodic orbits within the attractor, which is not a straightforward task. In
large systems and for long periodic orbits, it is further likely to encounter
problems related to computer memory.

2.4.2 Lyapunov Spectra

Lyapunov exponents measure the average rate of contraction and expansion
on an attractor in a dynamical system by means of the evolution of generic
perturbations in the tangent spaces. Given an autonomous dynamical system

9x “ fpxq, (2.42)

where x P RN is the N -dimensional state vector, fp¨q is a continuously differ-
entiable vector field one can obtain a solution xptq for a given initial condition
xp0q “ x0. After the passage of a sufficiently long transient time, the solution
is assumed to reache a periodic orbit or a chaotic attractor. To investigate
the stability of the solution, one can use orbits that are arbitrarily close by
xptq`uptq and compute the linearized evolution of the perturbations along
xptq which is given by

9u “ Jpxptqquptq, (2.43)

where J is the Jacobian matrix evaluated along the orbit xptq. Integrating
(2.43) leads to the tangent map uptq “Mx0ptqu0 where Mx0ptq is the time-
dependent transition matrix. The stability properties of xptq can be obtained
by solving for the eigenvalues ofMx0ptq

TMx0ptq, which are µ2
1 ě ¨ ¨ ¨ ě µ2

N ě 0.
So far these depend in principle on the initial values x0. However, it was
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proven by Oseledets [50, 51] that for ergodic dynamical systems the Lyapunov
exponents exist and that they are with probability one independant of x0

λk “ lim
tÑ8

1

t
log µkptq k P t1, . . . , Nu. (2.44)

The complete set tλ1, . . . , λNu is called the Lyapunov spectrum, which is an
invariant [50, 52].

Finite-time Lyapunov exponent

Lyapunov exponents in the usual sense are obtained for solutions that are
already on a stable attractor, and therefore one computes the spectrum for
the dynamical system and the specific attractor. Transients are pieces of
solutions of dynamical systems where, in particular, an attractor has not
been reached. Since transients by definition only exist for a finite time,
the computation of the Lyapunov exponents does not make sense per se.
However, finite-time quantities in the fashion of Lyapunov exponents can be
calculated to gain insight. The so-called the finite-time Lyapunov exponent
can be utilized to characterize transient behavior [53]. For different initial
points along the transient xpt0q, xpt1q, . . . one computes the leading Lyapunov
exponent for a short time window of length τ

λftptiq “ lim
tÑti`τ

1

τ
log µ1ptq. (2.45)

Chaotic transients of two basic types can be distinguished by the dynam-
ics of the finite-time Lyapunov exponent λftptq. Type-I chaotic transients
are characterized by a gradual decrease of the finite-time exponent, while for
type-II transients, the finite-time exponent fluctuates around a certain value
before it suddenly approaches zero, usually within the length of the chosen
window.

Continuous Gram-Schmidt orthonormalization

In order to compute Lyapunov exponents for an attractor of a dynamical sys-
tem, one has to deal, at least in numerical investigations, with the difficulty
that without a procedure for orthonormalization, the matrix of the eigenvalue
problem of the variational equations becomes ill-conditioned. This happens
because in the general case the eigenvalues of the matrix diverge exponen-
tially over time. To circumvent this problem, in numerical computations, it
is common practice to use a Gram-Schmidt orthonormalization at regular
intervals while storing the exponents for each interval [54, 55].
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It is an interesting concept to include an orthonormalization procedure
into the integration of the system such that orthonormalization is provided
in a continuous fashion [56, 57]. Considering the dynamical system governed
by the evolution equation

9x “ fpxq, (2.46)

where x P RN , the idea is that the dynamical system can be augmented with
a time-dependent orthonormal frame, which consists of orthonormal vectors
Eptq “ te1ptq, . . . , eNptqu. With this orthonormal frame one can write the
matrix elements of the Jacobian as Jlm “ pel, Jemq, where p¨, ¨q denotes the
inner product in RN . Further, one introduces the stabilized matrix elements
Lmm “ Jmm ` βppem, emq ´ 1q, Llm “ Jlm ` Jml ` 2βpel, emq and a real val-
ued vector Λ “ tΛ1ptq, . . . ,ΛNptqu. The augmented system is written as

9x “ fpxq,

9em “ Jem ´
ÿ

lďm

elLlm m “ 1, . . . , N, (2.47)

9Λm “ Jmm m “ 1, . . . , N.

It is proven that for an initial point x0 for which the Lyapunov spectrum
exists and Λp0q “ 0 for stability parameter β ą ´λN for almost any initial
frame Ep0q the evolution of (2.47) gives the Lyapunov spectrum

lim
tÑ8

1

t
Λmptq “ λm m “ 1, . . . , N. (2.48)

In this way, one can obtain the Lyapunov spectrum by integrating the aug-
mented system (2.47). It is also possible to apply the method for an orthonor-
mal frame with a dimension smaller than the system’s dimension whether or
not the complete spectrum is needed.
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3

Mode Locking in Systems of
Globally-Coupled Phase
Oscillators

“Science may be described as the art of systematic oversimplifica-
tion.”

– Karl Raimund Popper, The Logic of Scientific Discovery

3.1 Globally-Coupled Phase Oscillators with Equidis-
tant Natural Frequencies

In this section, the basic phase oscillator system in which mode-locked solu-
tions are observed is introduced and important quantities to classify solution
types are presented. Analogous to the mode-locking phenomenon in optics,
a global interaction is considered that is of the Kuramoto-Daido type (2.19).
The second crucial ingredient of mode-locking phenomenon will be a set of
equidistant natural frequencies, a so-called frequency comb.

The basic system which exhibits mode-locked solutions is given by

9θk “ ωk `
K

N

n
ÿ

j“´n

rγ sinpθj ´ θkq ` p1´ γq sinp2pθj ´ θkqqs , (3.1)

where N “ 2n` 1 is the number of oscillators, k P t´n, . . . , nu is the oscilla-
tor index, K P R`0 the coupling strength, and γ P r0, 1s is a balancing factor
that is used to vary the relative strength of the two harmonic interaction
terms. Note that the Kuramoto model is obtained by setting γ “ 1. The

27
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ω−n= − 1 ω0 = 0 ωn=1
k∆ω

(frequency comb) ∆ω

Figure 3.1: Illustration of an equidistant comb of natural frequencies with
pN “ 9q in (3.2).

natural frequencies ωk are chosen to form an exactly equidistant frequency
comb as depicted in Fig. 3.1.

ωk “ k∆ω, (3.2)

with the frequency spacing ∆ω, which gives a set of different but commensu-
rable natural frequencies. The equidistant frequencies are considered to be
normalized to the interval r´1, 1s such that the smallest and largest natural
frequencies are ´1 and 1, respectively. With this normalization, the spacing
between the natural frequencies becomes ∆ω “ 2{pN ´ 1q “ 1{n. Normal-
izing the natural frequencies in this way fixates for which parameter values
the different types of solutions can be found. This is highly desirable when
studying the systems with a varying number of oscillators, because regions
where mode-locked solutions appear will also coincide. Note that the restric-
tion to an odd number of oscillators has no significant implications on the
mode-locking phenomenon.

To support the self-organized mode locking, it turns out to be important
to include higher Fourier harmonics of the interaction. In terms of the gen-
eral Kuramoto-Daido model (2.19), the model considered (3.1) is a minimal
extension that besides hpsq1 ‰ 0 only includes hpsq2 ‰ 0. This is interesting be-
cause the interaction functions obtained in phase models often include higher
harmonics, e.g. the aforementioned phase-reduced model of weakly coupled
Hodgkin-Huxley neurons [21]. Note that the theory developed by Daido
describing the synchronization threshold only holds for N Ñ 8 and γ « 1.
Regarding the specific interaction function with the first two harmonics, re-
cent results show that the evolution of the order parameter can be found on
a corresponding center manifold [58]. For the specific interaction function
with two harmonics, one can rewrite the model (3.1) using Daido’s first and
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Figure 3.2: Interaction between two oscillators at phase difference φ given
by the interaction function (3.4). Several balancing values are shown in the
corresponding colors γ “ 1, 4

5
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2
. For 1 ą γ ě 2{3 the interaction is strictly

attractive, whereas for γ ă 2{3 it becomes repulsive for |φ mod π| « π.

second complex order parameter (2.22) to obtain

9θk “ ωk ´K rR1γ sinpθk ´Ψ1q ` R2p1´ γq sinp2θk ´Ψ2qs . (3.3)

The shape of the interaction function

The parameter γ P r0, 1s is used to balance between the strength of the two
harmonics in the interaction function

fpφq “ γ sinpφq ` p1´ γq sinp2φq, (3.4)

where φ “ θk ´ θj denotes the phase difference between two oscillators with
arbitrary indices j, k P t´n, . . . , nu. The dependence of the shape of the inter-
action function on γ is illustrated in Fig. 3.2. For 1 ą γ ě 2{3, the interaction
between two oscillators is purely attractive, while for values γ ă 2{3, regions
of repulsive interaction appear for |φ mod π| « π. Before the interaction be-
comes repulsive, decreasing γ has the effect of weakening the interaction for
oscillators that are separated by distances of |φ mod π| « π. This behavior
can be understood as a localization of the interaction in the sense that when
the phases are relatively close to each other their attraction is stronger.

3.1.1 System and Solution Symmetries

The system has a phase shift symmetry such that a constant phase added to
all oscillators does not affect the dynamics. In principle, the system can be
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regarded in phase differences which alleviates the phase shift symmetry

φk “ θk ´ θ0 for all k P t´n, . . . , nu, (3.5)

where φ0 becomes trivial and can be discarded. This leaves an N´1-dimensional
system in phase differences which reads

9φk “ ωk `
K

N

n
ÿ

j“´n

rfpφj ´ φkq ´ fpφjqs , (3.6)

where fp¨q is the interaction function (3.4), cf. Fig. 3.2.
Due to the symmetry of the natural frequencies ωk “ ´ω´k, the system

is equivariant with respect to

σ : θk Ñ ´θ´k for all k P t´n, . . . , nu. (3.7)

This means that an n-dimensional invariant torus exists, whose stability
properties have been investigated using renormalization group methods un-
der certain non-resonance conditions for the natural frequencies in the regime
K Ñ 0 [59]. To show the systems equivariance under (3.7), it is sufficient to
test it for the sum of the first harmonic interactions for the right hand side
of one oscillator

σ

˜

K

N

n
ÿ

j“´n

γ sinpθj ´ θkq

¸

“
K

N

n
ÿ

j“´n

γ sinpσpθjq ´ σpθkqq. (3.8)

Evaluating σ for both sides and omitting the constant factors results in

´

n
ÿ

j“´n

sinpθ´j ´ θ´kq “
n
ÿ

j“´n

sinp´θ´j ` θ´kq. (3.9)

The symmetry invariant subspace includes all solutions of the form

φkptq “ ´φ´kptq for all k P t1, . . . , nu, (3.10)

where φk “ θk´θ0 is the phase difference with respect to the central oscillator.
The distance χ to this symmetry invariant manifold can be monitored in order
to detect symmetry breaking bifurcation

χ “
1

n

g

f

f

e

n
ÿ

k“1

pφk ` φ´kq2. (3.11)



3.2. PROTOTYPE MODE-LOCKED SOLUTION 31

3.1.2 Effective Frequencies and Effective Frequency Combs

Assuming that the following limits exist, one may define the average or ef-
fective frequencies as

Ωk :“ lim
tÑ8

1

t

ż t

0

9θkpτqdτ “ lim
tÑ8

θkptq ´ θkp0q

t
, (3.12)

where in (3.12), each phase is considered on the universal cover of the circle
θk P R. In the case of a periodic solution, one can instead take the aver-
age over a single period, where it is clear that the effective frequencies are
mutually commensurable. Furthermore, the effective relative frequencies are
defined as

Ωk,j :“ Ωk ´ Ωj for all k ‰ j. (3.13)

Analogous to frequency spacing ∆ω in the equidistant comb of natural fre-
quencies (3.2), the nearest neighbor relative-effective frequencies define the
effective frequency spacings

Ωk`1,k :“ Ωk`1 ´ Ωk for all k P t´n, . . . , n´ 1u. (3.14)

It is possible that the effective frequency spacings also form an equidistant
comb

Ωk`1,k “ ∆Ω for all k P t´n, . . . , n´ 1u. (3.15)

3.2 Prototype Mode-Locked Solution
As a first step towards the notion of mode-locked solutions, it is illustrative
to present a prototype-pulsed solution for a system of uncoupled rotators
9θk “ ωk, which means pK “ 0q in (3.1). For these free rotators, it is clear
that due to the resonantly chosen natural frequencies (3.2), all possible so-
lutions are periodic with period T “ 2π{∆ω. Note that all of these periodic
solutions are neutrally stable with respect to perturbations of the phases.
The evolution of the order parameters is explicitly given by

ηqptq “
1

N

n
ÿ

j“´n

eiqpθjp0q`∆ωjtq. (3.16)

Assuming identical initial conditions, e.g. θjp0q “ 0 for all j, a prototypical
pulsed solution in R1ptq is realized. The moduli of the order parameters for
this initial condition are

Rqptq “
1

N

∣∣∣∣∣
sinppn` 1

2
qq∆ωtq

sinp q∆ωt
2
q

∣∣∣∣∣ “
|Dnpq∆ωtq|

N
, (3.17)
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Figure 3.3: The time traces R1ptq and R2ptq for the system (3.1) with N “ 21
and K “ 0 and identical initial conditions (top and middle panels). The
instantaneous frequencies 9θk “ k∆ω are presented in color (bottom panel).

where Dnp¨q is the Dirichlet kernel of order n and q P t1, 2u. The phases
of the order parameters Ψ1ptq and Ψ2ptq jump between 0 and π whenever
R1ptq “ 0 or R2ptq “ 0, respectively. The time traces R1ptq and R2ptq of an
example with N “ 21 oscillators are shown in Fig. 3.3.

The behavior is sensitive to the choice of the initial phases, and more-
over for small quenched disorder in the form of a detuning of the natural
frequencies, the pulses decay, cf. Fig. 3.4.

A heuristic observation for the prototypical mode-locked solution is that
the time-averaged order parameter 〈R1ptq〉T “ 1

T

şT

0
R1ptqdt with period T , is

in particular much smaller than 1{
?

2n` 1 as presented in Fig. 3.5.

3.3 Definitions of Mode-Locked Solutions

3.3.1 Equidistant Mode-Locked Solutions

In general, mode-locked solutions are expected to exhibit the following two
characteristics:

i) Recurrent pulses of R1ptq « 1 that appear at regular intervals.

ii) The effective frequencies form a comb.
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Figure 3.4: Disappearance of the pulses for slightly detuned natural frequen-
cies ωk “ k∆ω `Dζk, where ζk P r´1, 1s are independent uniform random
numbers and D “ 0.01 is the amplitude of the detuning.
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To distinguish between the various types of mode-locked solutions that have
been discovered in this work, we start by defining the most basic solution
which is called an equidistant mode-locked solution.

Definition 1. An equidistant mode-locked solution is a periodic solution of
period T such that

Ωk “

〈
9θkptq

〉
T
“ k∆Ω for all k P t´n, . . . , nu, (3.18)

where ∆Ω ‰ 0 is the spacing of the resulting equidistant effective frequency
comb. Furthermore, the number of distinct pulses p within one complete
period is defined as the number of Poincaré events for any of the sections
given by

θk ´ θk`1 “ 0 for all k P t´n, . . . , n´ 1u. (3.19)

The pulse peaks are then defined as the p largest occurrences in the time
trace R1ptq for t P rt0, t0 ` T s. In the case of pp ą 1q, the solution is called
modulated. The period of the solution is T “ p2π{∆Ω.

For an equidistant mode-locked solution, the effective frequency spacings
are of the form (3.15), and because of ∆Ω ‰ 0 the following no entrainment
condition holds

Ωk,j “ Ωk ´ Ωj ‰ 0 for all k ‰ j. (3.20)

This type of mode-locked solution is intuitively the one that is most expected
due to the choice of equidistant natural frequencies.

3.3.2 Harmonic Mode-Locked Solutions

The equidistant mode-locked solution can be understood as an example of
the more general class of so called harmonic mode-locked solutions.

Definition 2. A harmonic mode-locked solution is a periodic solution of
period T such that the effective frequency spacings (3.14) are

Ωk`1,k P t∆ΩjujPt1,...,su for all k P t´n, . . . , n´ 1u, (3.21)

where t∆Ωjuj is ordered and s is the number of different non-zero spacings
that are all integer multiple of ∆Ω1

∆Ωj “ rj∆Ω1 for all j P t1, . . . , su, (3.22)

where rj P Ną0. Furthermore, let tpkuk be the numbers of Poincaré events
within one complete period for the sections given by

θk ´ θk`1 “ 0 for all k P t´n, . . . , n´ 1u. (3.23)
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The number of pulses p is defined via the maximal number of counts

p :“ max
k

n´1
ÿ

j“´n

δpjpk , (3.24)

where δpjpk is the Kronecker delta. The pulse peaks are then defined as the p
largest occurrences in the time trace R1ptq for t P rt0, t0 ` T s.

3.3.3 Subharmonic Mode-Locked Solutions

In addition to harmonic effective frequency combs, there is the possibility
to obtain pulsed periodic solutions with a subharmonic effective frequency
comb. Subharmonic refers to the fact that different rationally-related effective
frequency spacings appear in the comb.

Definition 3. A subharmonic mode-locked solution is a periodic solution of
period T such that the effective frequency spacings (3.14) are

Ωk`1,k P t∆ΩjujPt1,...,su for all k P t´n, . . . , n´ 1u, (3.25)

where t∆Ωjuj is ordered and s is the number of different non-zero spacings.
The spacings are rationally related

∆Ωj “ rj∆Ω1 for all j P t2, . . . , su, (3.26)

where 1 ă rj P Q and there is at least one j such that rj R N. Furthermore,
let tpkuk be the numbers of Poincaré events within one complete period for
the sections given by

θk ´ θk`1 “ 0 for all k P t´n, . . . , n´ 1u. (3.27)

The number of pulses p is defined via the maximal number of counts

p :“ max
k

n´1
ÿ

j“´n

δpjpk , (3.28)

where δpjpk is the Kronecker delta. The pulse peaks are then defined as the p
largest occurrences in the time trace R1ptq for t P rt0, t0 ` T s.

Lemma 3.3.1. Subharmonic mode-locked solutions of the type Def. 3 are
modulated pp ą 1q.
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Proof. Assuming a solution of type Def. 3 with period T and w.l.o.g. s “ 2.
From (3.28) it follows that if pk ą 1 for all k P t´n, . . . , n´ 1u ùñ p ą 1.
Periodicity demands that

şT

0
Ωk`1,kdt “ pk2π. Take k1, k2 P t´n, . . . , n´ 1u,

k1 ‰ k2 with Ωk1`1,k1 “ ∆Ω1, Ωk2`1,k2 “ ∆Ω2 and ∆Ω1 ă ∆Ω2. If now
pk2 “ 1 ùñ

şT

0
Ωk1`1,k1dt ă

şT

0
Ωk2`1,k2dt “ 2π one finds a contradiction with

periodicity. Further, one has ∆Ω2 “ r2∆Ω1 with 1 ă r2 P QzN, therefore
pk1 “ 1 implies the contradiction 2π “

şT

0
Ω1dt “

şT

0
Ω2{r2dt ‰ 2π.

3.4 Self-Organization of Mode-Locked Solutions
In the following, it is shown how the global coupling scheme of (3.1) is able
to stabilize pulsed solutions and even enables their self-organized appearance
is presented, which is facilitated by the second harmonic interaction term
pγ ă 1q. The results presented here were partially published in [60].

3.4.1 Mode Locking in the Kuramoto Model with Equidis-
tant Natural Frequencies

The most basic form of global interaction in the model is achieved by setting
γ “ 1, which corresponds to the coupling of the Kuramoto model. In the
following details on mode-locked solutions for systems with Kuramoto-type
coupling are presented, and the basic mechanism of stabilization of the pulsed
periodic order parameter is described. The critical coupling strength of the
synchronization transition at KC for finite-size systems with equidistant nat-
ural frequencies and Kuramoto-type coupling has been established in [25],
giving an upper bound for the coupling strength up to which mode-locked
solutions can potentially be found p0 ď K ă KCq.

Destabilization of pulses by small coupling

A natural starting point to look for stable mode-locked solutions is the regime
of small coupling K « 0. However, by starting from identical initial condi-
tions, no stable pulsed solutions could be obtained in the small coupling
regime. Note that since the presented prototypical solution (3.17) is a non-
hyperbolic periodic orbit, there is no guarantee that for small coupling simi-
lar stable periodic solutions are to be found. The scenario in mind is that of
locking cones connected to K “ 0 for exactly resonant natural frequencies,
inside of which stable pulsed solutions exist. Although the scenario described
is intuitive, no stable pulsed solutions could be found in the small coupling
regime.
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Figure 3.6: Approach to the symmetric synchronous solution for
K “ 1.4 ą KC « 1.313 and the final system state projected in the complex
plane. The final state is a good initial condition to find mode-locked solu-
tions.

Preparation of initial conditions for mode locking

While for K « 0 no stable pulsed solutions could be obtained, in the in-
termediate coupling regime 0 ď K ă KC , mode-locked solutions are found
that conform to different previously-defined types. In order to obtain mode-
locked solutions for a system with Kuramoto-type coupling pγ “ 1q one has
to prepared the initial conditions carefully. Even all-identical initial condi-
tions, which seems like a natural first attempt, are often insufficient to reach
a stable mode-locked solution. A second attempt, which turns out to be a
good general choice, is to set K Á KC and obtain a symmetric synchronized
solution as an initial condition. An example of this type of initial condition
is presented in Fig. 3.6.

The initial conditions are then taken for different values of the coupling
strength K to find regions of stable mode locking. After the passage of an
initial transient, the maximal value in the time trace of R1ptq and its average
〈R1ptq〉t are computed, from which the mode-locked solutions can be identi-
fied, cf. Fig. 3.7. The figure shows three characteristically different regions
which are comprised of synchronized solutions, incoherence, and mode-locked
solutions.

For synchronous solutions, which are found at large coupling strength val-
ues, R1ptq “ const. such that 〈R1ptq〉t “ maxtR1ptq. Mode-locked solutions
on the other hand exhibit very large pulse peaks, where the largest peak corre-
sponds to maxtR1ptq « 1, while the time-averaged coherence radius 〈R1ptq〉t
is very small. The small value of 〈R1ptq〉t is characteristic for mode-locked
solutions, as it was mentioned in the discussion of the prototype solution,
cf. Fig. 3.5. The averaged coherence radius is especially useful to quickly
distinguish between incoherence and mode-locking. For a mode-locked so-
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Figure 3.7: Starting from initial conditions Fig. 3.6, the time traces R1ptq are
processed for different coupling strength K for fixed system size N “ 21. The
quantities maxtR1ptq and 〈R1ptq〉t are plotted and two disconnected regions
of different types of mode-locked solutions are found in the central region
where the harmonic solution is in particular of the equidistant type Def. 1.

lution, the averaged fluctuations are suppressed, meaning that 〈R1ptq〉t is
significantly smaller than in the case of incoherent solutions.

A similar investigation for different system size N P t51, 71, 91u shows
that the qualitative picture does not change when the number of oscilla-
tors is increased, cf. Fig. 3.8. The noticeable difference is that the regions
of subharmonic and harmonic mode-locked solutions are now forming one
connected plateau such that they are bordering each other.

Equidistant mode-locked solution in the Kuramoto model

The harmonic mode-locked solutions indicated in Fig. 3.7 are of the equidis-
tant type and fulfill Def. 1. One example at coupling strength K “ 0.91
and N “ 21 is presented in Fig. 3.9. The left panels show the time traces
R1ptq and R2ptq. At the pulse peaks, the interaction is particularly strong
maxtR1ptq « 1 and all phases are pulled towards the mean phase. This is
also visible in the bottom panel where the instantaneous angular velocities
9θk for all oscillators are plotted over time in form of a color map. At the
occurrences of the pulses, the instantaneous velocities change significantly,
resulting in a reorganization that stabilizes the mode-locked solution. In be-
tween the pulses, the oscillators evolve with angular velocities close to their
natural frequency. The effective frequency spacing ∆Ω is smaller than the
spacing of the natural frequencies ∆ω such that the period increases by the
nonlinear interaction.
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Subharmonic mode-locked solution in the Kuramoto model

In addition to the equidistant mode-locked solution, subharmonic mode-
locked solutions of type Def. 3 are obtained at lower values of K in Fig. 3.7.
This solution type exhibits a more intricate relationship between the effective
frequencies and frequency spacings. It is shown in lemma 3.3.1 that these so-
lutions are always modulated, meaning that the inter-pulse intervals and the
magnitudes of the pulse peaks vary. In the simplest case of a subharmonic
mode-locked solution that is also the one found here, one has two different
effective frequency spacings such that

Ωk`1,k P t∆Ω1,∆Ω2u for all k P t´n, . . . , n´ 1u. (3.29)

In the example for K “ 0.765 that is shown in Fig. 3.10, the two spac-
ings fulfill a rational relation ∆Ω1{∆Ω2 “ 7{8 and the period is given by
T “ 2π8{∆Ω1 “ 2π7{∆Ω2. During one complete period, the sections given
by (3.27) are counted pk “ 8 for k P t´n` 1, . . . , n´ 2u and pk “ 7 for k P t´n, n´ 1u
times. This means that the solution has p “ 8 distinct pulses, which are also
visible in the time trace R1ptq in Fig. 3.10 (a). In the plot of the effective
frequency spacings, cf. Fig. 3.10 (c), one sees that the spacings on the edges
are different from the rest.

Although it is conceivable to obtain effective frequency combs with more
than two different spacings, the commonly observed subharmonic solutions
for equidistant natural frequencies are of the form (3.29). In panel (b), the
return times Tν are plotted against the next return times Tν`1 for the section
θ´n ´ θ´n`1 “ 0. For another section, e.g. θ´n`1 ´ θ´n`2 “ 0, additional
crossings would be observed in the pTν , Tν`1q-plane.

Performing parameter scans for the system in order to explore bifurca-
tions of the solutions is especially difficult for mode-locked solutions with
Kuramoto-type coupling due to a high sensitivity of the solution to finite
size perturbations. The origin of the high sensitivity of the mode-locked
solutions comes from the strong variation of the interaction at the pulses
and between them. Due to this peculiar property of the solutions, the exact
time when the change of the parameter is applied matters and can lead to a
divergence from the periodic solution.

To perform the parameter scan, the previously described approach of the
slow adaptation of a parameter (2.41) is applied. In this way, one is able to
perform a dynamical continuation of the solution and discover bifurcations
of the stable mode-locked solutions. The subharmonic mode-locked solution
shown in Fig. 3.10 is investigated in a parameter scan for increasing coupling
strength, cf. Fig. 3.11. While the initial subharmonic solution shows p´n “ 7
crossings of the Poincaré section, see Fig. 3.10 (b), the solution undergoes a
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Figure 3.10: The time trace R1ptq of the subharmonic mode-locked solution
for pK, γq “ p0.765, 1q and N “ 21, in panel (a). The return times Tν and
next return times Tν`1 to the section θ´n ´ θ´n`1 “ 0 are shown in (b). The
effective frequency spacings presented in (c) are of the subharmonic type
conforming to Def. 3, with two different spacings s “ 2 in (3.25).

period tripling giving p´n “ 21 and a consecutive period doubling p´n “ 42,
before phase turbulence emerges. In Fig. 3.11 (a), a zoom in on one of the
crossings is shown starting shortly before the period tripling occurs. Note
that after the period doubling occurs (green) the total period of the solution
is already of order Op103q. In the panels (b) and (c) of Fig. 3.11, one repre-
sentative of all of the different solutions is shown in a 2-dimensional plot of
Tν`1 against Tν .

Even though the parameter increments are already small ∆p “ 10´7,
adapting the parameter at a random moment of the periodic orbit frequently
destabilizes the solution and one observes phase turbulence to appear for
different coupling strength values. By employing the slow adaptation proce-
dure (2.41), one is able to observe the bifurcations and dynamically follow
the stable mode-locked solutions. The time interval of the adaptation scheme
used for the simulation presented in Fig. 3.11 is tad “ 25 ¨ 103 with the time
step size h “ 0.01, resulting in an increment of 4.0 ¨ 10´14 at each time step
during the adaptation interval.

Beyond the presented periodic mode-locked solutions that already have
a complicated structure, low-dimensional chaotic attractors that support so-
lutions with comparable properties exist. Examples of such solutions are
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Figure 3.11: The top panel shows a parameter scan for increasing K starting
from the solution Fig. 3.10. In particular, it is only a zoom into the vicinity
of one of the seven different return times. In the bottom panels consecutive
return times Tν and Tν`1 are presented for the different solution types in the
color according to the upper panel.

presented for the system, including a second harmonic interaction term be-
cause there, the stability properties of the solutions are improved.

Coexistence of mode locking and incoherence in the Kuramoto
model

Previous work on finite size Kuramoto models with equidistant natural fre-
quencies and first harmonic coupling function was mostly focused on the
desynchronization transition and extensive chaos found below the synchro-
nization threshold [24, 23]. Corresponding extensive Lyapunov spectra are
shown in Fig. 3.12. The horizontal axis for the spectra is normalized to
the interval r0, 1s to illustrate the extensivity. The extensive spectra can be
found for other values of the coupling strength, however, for the parameter
values presented, phase turbulence coexists with the equidistant mode-locked
solution, cf. Fig. 3.13.

The procedure used to find the mode-locked solutions reveals that there
are indeed periodic solutions to be found in the same parameter region where
typically extensive Lyapunov spectra are obtained, starting from random
initial conditions. For intermediate system sizes, e.g. N “ 21 presented in
Fig. 3.13, one does not usually observe convergence to mode-locked solutions
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Figure 3.12: Extensive Lyapunov spectra for system sizes N P t21, 31, 41u
found from random initial data and pK, γq “ p0.91, 1q.

starting from random initial data even for simulations as long as 107 time
units. It is noteworthy that a symmetrization of the effective frequencies
seems to occur for long simulation times Ωk “ ´Ω´k. Similarly, the sub-
harmonic mode-locked solution found for pK, γq “ p0.91, 1.0q, see Fig. 3.10
coexists with phase turbulence. It is not clear whether the phase turbu-
lence in the parameter regions described could be merely long-living chaotic
transients. However, in the simulations for many initial conditions, no con-
vergence to a mode-locked solution could be observed.

The coexistence is especially important when parameter scans like the
one for the subharmonic mode-locked solutions presented in Fig. 3.11 are
performed. Without the described procedure of the slow adaptation of the
parameter, mode-locked solutions are often destabilized whereas the system
remains in phase turbulence.

3.4.2 Mode locking in the Kuramoto Model with Sec-
ond Harmonic Interaction

It is interesting that the simple Kuramoto-type coupling pγ “ 1q can stabilize
the pulsed solutions starting from initial conditions that are suitably chosen
when at the same time, they are difficult to investigate due to their sensitivity
to perturbations and the coexistence of phase turbulence. It is clear that
when models for specific applications are considered coupling functions with
several harmonics are more general, thus it is interesting to go beyond the
Kuramoto-type coupling and investigate the effects that more complicated
coupling functions have on mode-locked solutions.

In contrast to the coexistence found for the systems with first harmonic
coupling, including a second harmonic in the interaction changes the picture
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and N “ 21 (left) and the effective frequency spacings in the corresponding
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significantly in a way that one achieves self-organization to mode-locked so-
lutions in extended regions of the parameter space pK, γq. By letting pγ ă 1q
in (3.1) the second harmonic coupling is activated and its influence is inves-
tigated by varying the balancing parameter γ.

Globally-stable mode-locked solution

With pγ ă 1q, extended regions in parameter space pK, γq now appear where
mode-locked solutions exist and develop from random initial data. Due to
self-organized mode locking, the model becomes interesting to study the
emergence of the pulsed solutions and explore their relations with phase
turbulence. The local stability of the mode-locked solutions that will be
discussed in detail reveals a stabilization mechanism that is exclusively at-
tributed to the presence of the second harmonic. For balancing values γ ą 2{3,
one often finds unique mode-locked solutions and sometimes solutions that
appear as pairs with a broken central mode symmetry (3.10). For γ ă 2{3,
on the other hand, one frequently encounters multistability that is supported
in particular by the repulsive interaction, cf. Fig. 3.2.

Influence of the second harmonic on the emergence of mode locking

To study the influence of the second harmonic interaction on the emergence
of mode-locked solutions, the system is investigated for varying balancing pa-
rameter γ. The main question to be addressed here is how the specific values
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data point represents an average obtained from 200 random initial conditions
with convergence to a mode-locked solution of type Def.1 with p “ 1 for each
initial condition within 106 time units.

of γ and N influence the average length of the chaotic transient preceding
the mode locking.

For different values of the coupling strength K P t1.2, 1.25, 1.3u, system
sizes N P t21, 25, 31u, and varying γ, the system is initialized 200 times with
independent random initial conditions for every γ, after which the resulting
transient times are averaged. The averaged transient times 〈τtr〉 are plotted
on a logarithmic axis and exhibit drastic growth for increasing γ that has
an exponential tendency, cf. Fig. 3.14 (a)–(b). For the presented parameter
values in the figure, all tested initial conditions converged to a mode-locked
solution of the type Def.1 with p “ 1 within 106 time units. This means
the collection of data is stopped for transients that are either too long, or
for more complicated mode-locked solutions. For γ ă 2{3, one can see some
non-monotonous features that are due to the multistability of many different
mode-locked solutions.

An interesting feature regarding the double zero of the interaction func-
tion is prominent in (a), where at γ “ 2{3 for N “ 31 transient times increase
and a sharp local maximum appears. In principle, one can also look for gen-
eral types of pulsed solutions by tracking the rolling average of the order
parameter. It is already indicated that a larger number of oscillators tends
to give longer average transient times, which will be discussed later on.
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Local expansion rates of phase space volumes

To further explore the impact of the second harmonic and the improvement
of the stability of the mode-locked solutions, the local expansion rates along
periodic solutions for the cases pK, γq “ p0.91, 1q and pK, γq “ p1.25, 0.7q are
compared. The term local rate of expansion refers to the rate of expansion of
phase space volume that a small ball of initial conditions around a trajectory
experiences according to the linearized flow. Unlike in Hamiltonian systems
where according to Liouville’s theorem, phase space volume is preserved un-
der the phase flow [61], dissipative dynamical systems can exhibit regions of
local contraction or expansion. Since the eigenvalues of the Jacobian matrix
J give the local exponential rates of expansion in all eigendirections, the rate
of expansion of phase space volume is given as the sum of the eigenvalues
which will be presented normalized to the systems dimension

Λptq “
1

N
tr
`

J |θptq
˘

, (3.30)

where N is the dimension of the complete phase space and J is the Jacobian
matrix which is evaluated at the particular points θptq P RN .

As a side note, it is easy to see that since there exists a non-singular
matrix P with PJP´1 “M , where M has Jordan normal form, one also has
that trJ “ trM “

řN
i“1 λi with λi being the eigenvalues of J , which is why

the desired quantity is obtained by computing the trace of the Jacobian for
each point along a particular solution in (3.30).

A necessary condition for a periodic solution is that
şT

0
dtΛptq ď 0. How-

ever, locally, the quantity Λptq can be alternatingly expanding or contracting
even for a stable periodic orbit such as the mode-locked solutions. The time-
dependent quantity (3.30) can be used to identify episodes along the orbits
where perturbations contract or diverge. Additionally, one can monitor the
maximal eigenvalue to assure in case of volume contraction that the contrac-
tion is indeed happening in all directions.

For the two stable mode-locked solutions found for pK, γq “ p0.91, 1q,
pK, γq “ p1.25, 0.7q and N “ 21, the normalized rate of expansion Λptq as
well as the maximal instantaneous eigenvalue maxλiptq are plotted aside the
corresponding time traces of the order parameters, see Fig. 3.15. It is ap-
parent that in both cases, the main contribution to the stabilization of the
periodic solution comes from the coherence pulses. By including the second
harmonic interaction, the contraction at the time of the coherence pulses
is increased due to simultaneous maxima in R1ptq and R2ptq. Furthermore,
the additional maximum in the R2ptq leads to a contraction of phase space
volume that occurs at approximately half the period between the pulses in



3.5. BIFURCATIONS OF MODE-LOCKED SOLUTIONS 47

−1

−0.6

−0.2

0.2

0.6

200 220 240 260 280

t

0
0.2
0.4
0.6
0.8

1 (K, γ) = (1.25, 0.7)

−0.6

−0.2

0.2

190 210 230 250 270 290

Λ
,

m
ax
λ
i

t

0
0.2
0.4
0.6
0.8

1

R
1

(K, γ) = (0.91, 1.0)

Λ
maxλi

R1
R2

Λ
maxλi

Figure 3.15: The upper panels show the time traces R1ptq and R2ptq where for
Kuramoto-type coupling (left), the second order parameter has been omitted.
On the bottom, the normalized expansion rates of phase space volume Λptq
(3.30) and the maximal instantaneous eigenvalue maxλiptq are presented.

R1ptq. For the first harmonic coupling, the volumes are strictly expanded
between the coherence pulses. In fact, without the second harmonic, one
finds a long plateau with a small and almost constant rate of expansion.

In comparison, the system including the second harmonic interaction ex-
hibits more erratic behavior during the second half of the period. Interest-
ingly, the more erratic fluctuations lead to smaller rates of expansion com-
pared to the constant plateau during the first half of the period. For the
second half of the period, it is to be noted that although phase space vol-
umes expand less, the maximal eigenvalue exhibits increase. A close look at
the time trace R2ptq in the second half of the orbit suggests that the decline
of the expansion rate is accompanied by an increase in R2ptq, which means
that the second harmonic exerts an influence even apart from the pulses. For
a larger number of oscillators, the fluctuations of the expansion rate in the
second half of the period level off, which is illustrated in Fig. 3.16 for the
system pK, γ,Nq “ p1.25, 0.7, 91q.

3.5 Bifurcations of Mode-Locked Solutions

This section is concerned with the typical bifurcation scenarios that are ob-
served when K is varied. The previously used approach of a slowly varying
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Figure 3.16: Top panels: time traces of the order parameters, for N “ 91
oscillators. Bottom panel: normalized expansion rates of phase space volume
Λptq (3.30) and the maximal instantaneous eigenvalue maxλiptq.

parameter (2.41) for the Kuramoto-type coupling γ “ 1 could be used again.
However, due to the improved convergence and stability properties of the
solutions, it is not necessary. The Poincaré section condition that is used
marks the passage of the two fastest oscillators with indices n´ 1 and n

θn ´ θn´1 “ 0. (3.31)

A representative parameter scan performed for varying K at fixed γ “ 0.82
for a system consisting ofN “ 21 oscillators is presented in Fig. 3.17. Therein,
times between consecutive section crossings are plotted against the coupling
strength and the distance to the symmetry invariant subspace (3.11) at the
particular crossings is recorded. The scanning is performed for increasing
(blue) and decreasing (orange) parameter values in order to discover mul-
tistability. After each parameter change, the system is perturbed in the
direction transverse to the symmetry invariant subspace to avoid numerical
trapping. In regions where the return times Tν are vastly scattered, the sys-
tem is in a state of phase turbulence while in the other regions, one finds
several kinds of mode-locked solutions.

The largest periodic window corresponds to equidistant mode-locked so-
lutions according to Def. 1. While most solutions of the branch are invari-
ant under the central mode symmetry (3.7), a period doubled solution with
broken symmetry is found that demonstrates a symmetry breaking period
doubling for an equidistant mode-locked solution. In this case, the number
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of distinct pulses increases from p “ 1 to p “ 2. The eventual destabilization
of the solutions of the central branch will be discussed in detail below.

The stabilization of the mode-locked solutions in the narrow windows
for larger coupling strength is attributed to mode merging. Mode merging
refers to a violation of the no entrainment condition (3.20), such that for
some j, the effective spacing becomes zero ∆Ωj “ 0. Accordingly, this type
of solution is called a merged mode-locked solution. An example of this type
of solution is shown in Fig. 3.18 for pK, γ,Nq “ p1.38, 0.82, 21q. The solution
lies on the invariant subspace with central mode symmetry (3.11) with χ “ 0,
which implies that symmetry-related oscillators have merged. In the present
example, the oscillators with the indices 2 and 1 as well as ´2 and ´1 have
merged. One observes that the pulse in R2ptq at half the period between the
pulses in R1ptq has become much less pronounced.
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3.5.1 Chaotically-Modulated Solution Through Torus Break-
down

The right stability boundary of the largest mode locking window in Fig. 3.17
is given by a torus bifurcation, where a stable invariant torus of mode-locked
solutions emerges. Sampling return times Tν to the Poincaré section (3.31)
for the mode-locked solutions on the torus give closed curves in the two-
dimensional representation of Tν against Tν`1. In the usual way, solutions
can be quasiperiodic when the torus is densely covered or periodic when there
is locking on the torus. Correspondingly, the solutions exhibit a periodic or
quasiperiodic modulation of the pulses.

Definition 4. An equidistant mode-locked solution on an invariant torus is
a solution that exists on an invariant torus with the property that when there
is locking on the torus, the solution obeys Def. 1.

Otherwise, the solution has quasiperiodic modulation and there is an in-
finite number of distinct pulses. Choosing any one of the Poincaré sections

θk ´ θk`1 “ 0 for all k P t´n, . . . , n´ 1u, (3.32)

the return times Tν and next-return times Tν`1 are on a closed curve in the
pTν , Tν`1q-plane for all ν P N. There is an upper bound Tb to the return
times Tν with |Tν ´ Tb| ă ε for some small ε and the time trace R1ptq for
t P rt0, t0 ` Tbs for any t0 contains at least one pulse, where the pulse peak is
defined as the maximal value within the interval.
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A close up of the family of mode-locked solutions on an invariant torus
for varying K together with a collection of several two-dimensional embed-
dings in the pTν , Tν`1q-plane is presented in Fig. 3.19. Panel (a) shows the
parameter scan for increasing and decreasing parameter values in blue and or-
ange, respectively. Vertical colored lines indicate parameter values for which
two-dimensional embeddings are supplied in (b)–(c). For small values of the
coupling strength, the solutions are of the type Def. 4, see panel (b). Panel
(c) shows the two-dimensional representation of the attractor corresponding
to the parameter value of the green vertical line, where a low-dimensional
chaotic attractor has emerged via torus breakdown. The solution exhibits a
chaotic modulation of the pulses that appears as a jittering of the inter-pulse
intervals and pulse peaks.

For further increased coupling, the chaotic attractor collapses in an inverse
cascade of period doublings to a periodic orbit with five distinct section
crossings, which itself exists as a pair of solutions with broken symmetry
φptq and φ̃ptq that satisfy

φkptq “ ´φ̃´kptq, for all k P t1, . . . , nu, (3.33)

with φk “ θk ´ θ0 and φ̃k “ θ̃k ´ θ̃0. In (b), the progressive deformation of
the torus can be seen, where as K is increased five distinct folding regions
appear along the contour for the largest presented coupling (dark-red). Note
that the number of folding regions corresponds to the number of peaks p “ 5
of the equidistant mode-locked solution that appears after the inverse cas-
cade. Eventually, also the p “ 5 mode-locked solution loses its stability and
an intermittent transition to phase turbulence occurs. The low-dimensional
chaotic attractor represented in pTν , Tν`1, Tν`2q is shown in Fig. 3.20. The
Lyapunov spectrum of the attractor has been obtained for a total integration
time of 2 ¨ 105 units, cf. Fig. 3.21. One finds one positive Lyapunov exponent
as well as two zero exponents, where one is attributed to the time shift along
the attractor, i.e. in the longitudinal direction, whereas the second one is due
to the phase shift symmetry of the whole solution. The rest of the spectrum
has a complicated structure compared to the spectra found for the exam-
ples of phase turbulence, which look smooth in comparison, see Fig. 3.12.
In particular, one finds in the negative part of the spectrum several pairs
of exponents that are identical up to the numerical precision of the proce-
dure. An estimate of the attractor dimension by the Kaplan-York-Formula
[62] gives DKY « 3.015, where the resulting dimension has to be reduced by
one in order to account for the phase shift symmetry.
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Figure 3.19: Close up into the parameter scan from Fig. 3.17 highlighting
the emergence of an invariant torus of equidistant mode-locked solutions
(Def. 4). Panel (a): return times Tν against coupling strength K, increasing
and decreasing parameter in blue and orange, respectively. Panel (b)–(c) two-
dimensional embeddings Tν against Tν`1 for the parameter values indicated
by the colored vertical lines in (a).
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Figure 3.20: Attractor of chaotically-modulated mode-locked solution from
Fig. 3.19 (c), for K “ 1.282375 represented in pTν , Tν`1, Tν`2q, where the
height in Tν`2 is also color coded.
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Figure 3.21: Lyapunov spectrum of the chaotic attractor from Fig. 3.20.
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3.5.2 Transition to Phase Turbulence Through Inter-
mittency

The connection between regimes of phase turbulence and mode-locked solu-
tions is found to be of an intermittency type. A particularly well suited ex-
ample to demonstrate this connection is the intermittent transition to phase
turbulence that occurs at K ă 1.137 « Kb in the parameter scan in Fig. 3.17,
which is the second stability boundary of the largest mode locking region in
the scan. Following the branch of unstable solutions, one sees that where it
has become unstable pK ă Kbq, the return times Tν accumulate around an
approximate value of the period of the unstable solution. This corresponds to
the intermittent returns to mode locking from episodes of phase turbulence.
The intermittent behavior that compares to scenarios described in [63, 64, 65]
is due to a weakly unstable mode-locked solution that is recurrently visited
after episodes of phase turbulence.

An example of the alternation between phase turbulence and pulsation
is illustrated in Fig. 3.22. To identify episodes of pulsing behavior where
the system is close to the unstable mode locking, one can use the rolling
average of R1ptq, which is plotted in red in Fig. 3.22. The length T of the
time window over which the rolling average is computed should be close to
the approximate inter-pulse interval of the underlying unstable mode-locked
solution

〈R1ptq〉T “
1

T

ż t

t´T

R1pτqdτ. (3.34)

For a varying distance from the bifurcation point Kb « 1.137, the average
length of the mode locking episodes 〈τML〉 demonstrate a power-law behavior
that is typical for intermittency , cf. Fig. 3.23.

〈τML〉9 |K ´Kb|´α , (3.35)

where the critical exponent is estimated to be α « 0.27, which is related to
properties of the underlying unstable periodic orbit, see [66].

Parameter survey for mode-locked solutions

For a system of N “ 21 oscillators, simulations are performed for different pa-
rameter pairs pK, γq starting from prepared initial conditions akin to Fig. 3.6.
After passage of an initial transient, maxtR1ptq and 〈R1ptq〉t are recorded and
used to identify regions with pulsed solutions, as was already done in Fig. 3.8.
The resulting landscape of the values is presented in Fig. 3.24. Mode-locked
solutions are found where the coloring is dark blue in the left and yellow in
the right panel. The landscape presented helps to identify regions of mode
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Figure 3.22: Time trace of R1ptq (blue) that appears like a bursting of the
mean field and the rolling average (3.34) (red) at pK, γq “ p1.12, 0.82q shows
alternation between phase turbulence and an unstable mode-locked solution.
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Figure 3.23: The average duration of the intermittent mode locking 〈τML〉
with respect to the distance to the bifurcation |K ´Kb| in a double logarith-
mic plot demonstrates the power-law scaling of intermittency.
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Figure 3.24: Starting from prepared synchronous initial conditions,
maxtR1ptq and 〈R1ptq〉t reveal the abundance of mode-locked solutions for
different parameter values.

locking and discern them from regions of phase turbulence or synchronous
solutions. The survey does not allow to make a distinction between the dif-
ferent types of mode-locked solutions. However, their abundance is clearly
demonstrated.

To identify regions of periodic solution, one can calculate the largest
Lyapunov exponent λ1, cf. Fig. 3.25. One notes that the positive maximal
Lyapunov exponent is very small at lower coupling values K, while it is an
order of magnitude bigger for the large coupling values (yellow regions). The
chosen system dimension is still relatively small, which means that finite-size
effects are still part of the picture. Creating a survey for a larger system, e.g.
N “ Op102q, is not being done because of the long computational times.

3.5.3 Classification of Chaotic Transients

By choosing the combs of natural frequencies to be normalized to the interval
r´1, 1s for any system size N “ 2n` 1, the critical coupling of the synchro-
nization transition KC is fixed up to finite-size effects. In this setup, the
number of oscillators directly scales the spacing of the natural frequencies by
∆ω “ 1{n which then gives a rough approximation of the expected period

T pNq « πpN ´ 1q. (3.36)
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Figure 3.25: Starting from the same initial conditions as in Fig. 3.24, with
N “ 21, the largest Lyapunov exponent λ1 is calculated for different param-
eter values over an interval of 2.5 ¨ 104 time units.

This approximation refers to the exact period of the prototypical solution
T “ 2π{∆ω. The period of the mode-locked solution with K ą 0 is in gen-
eral slightly longer. Although the existence of mode-locked solutions does not
depend on the system size, the average length of the chaotic transients in the
system depends heavily on N . With increasing system size, an exponen-
tial increase in the average chaotic transient time is observed, cf. Fig. 3.26.
The data is collected by averaging over many transients for different random
initial conditions. The exponential growth cannot be explained by the lin-
ear relationship (3.36). The growth of the average transient time is instead
related to the exponential increase in phase space volume when additional
oscillators are added. The averaged transient times follow the exponential
relation

〈τtr〉 “ AeκN . (3.37)

In the example presented for fixed system parameters pK, γq “ p1.2, 0.7q, one
finds the exponent κ « 0.107 and A « 158. The transients are classified as
type-II chaotic supertransients [5, 67, 53, 68], i.e. the transition from the
turbulent phase to mode locking is abrupt. The types of transients can
be distinguished from the evolution of the finite-time Lyapunov exponent
(2.45) along the transient trajectory. The finite-time Lyapunov exponent
λftptq together with the time trace R1ptq for a system of 21 oscillators with
pK, γq “ p1.2, 0.85q are presented in Fig. 3.27. The type-II transients char-
acteristically maintain a certain magnitude of the finite-time Lyapunov ex-
ponent before one observes a quick decent to zero within the length of the
chosen time window. Similarly, Chimeras states in spatially extended finite
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Figure 3.26: Averaged lengths of the chaotic transients are shown on the
ordinate logarithmic axis against varying system sizes for fixed parameter
pK, γq “ p1.2, 0.7q. For each data point, at least 300 different initial condi-
tions are used to obtain the average.

size systems were found to be type-II chaotic supertransients [69], where
after exponentially long chaotic transients, the collapse of the incoherent
phase occurs. Type-I transients in comparison would show a gradual decline
of λftptq starting from the beginning of the trajectory. Such a progressive
decent process is in general recognized as an aging of the system state.

To illustrate that mode-locked solutions indeed still exist for large N ,
two examples obtained from prepared initial conditions for N “ 201 and
pK, γq “ p0.91, 1.0q and p1.2, 0.7q are given in Fig. 3.28. Because of the rapid
growth of the average transient times with N , normal computation times can
easily be exceeded by orders of magnitude before convergence to mode locking
takes place. In this way, the true asymptotic state of the system can be
hidden behind the exponentially long-living chaotic transients, and therefore
it is likely that such state can be overlooked in simulations. Extrapolating
the average transient time in Fig. 3.26 for the given example with system
parameters pK, γq “ p1.2, 0.7q leads, for instance, to an expected transient
time of order ttr « 1011. Regarding the case with γ “ 1, phase turbulence
was not observed to be transient even for small N .
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Figure 3.27: Convergence to a mode-locked solution and evolution of the
finite-time Lyapunov exponent for N “ 21 and pK, γq “ p1.2, 0.85q where the
time window for computation of the finite-time exponents λftptq has a length
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Figure 3.28: The time traces R1ptq, R2ptq and R3ptq for the mode-
locked solutions with N “ 201 oscillators, pK, γq “ p0.91, 1.0q (left) and
pK, γq “ p1.2, 0.7q (right). R3ptq is the modulus of the third complex order
parameter with q “ 3 in (2.22).
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3.6 Detuned Combs of Natural Frequencies
Exactly equidistant frequency combs correspond to an idealized situation
that in general can be perturbed in a random or systematic fashion. One finds
that the phenomenon of mode-locking is robust with respect to both types of
perturbations. The transitions from stable mode-locking to phase turbulence
with quenched disorder are also of the intermittency type described.

3.6.1 Frequency Combs with Quenched Disorder

For the prototype solutions, it was presented that small quenched disorder
leads to the degradation of the pulsed solution, see Fig. 3.4. The effect of
the quenched disorder can be compensated by the global interaction which
is therefore able to stabilize the mode-locked solutions. In this case, during
the appearance of a pulse, the contraction is strong enough to adjust for the
individual detuning.

The natural frequencies including a quenched disorder term are given by

ωj “ ∆ωpj `Qζjq, j P t´n, . . . , nu, (3.38)

where ∆ω “ 1{n is the equidistant spacing, Q is the amplitude of the fre-
quency perturbations, and ζj are random independent perturbations, for in-
stance, drawn from a Gaussian or a uniform distribution. A relabelling of the
oscillators is always possible such that ω´n ď ω´n`1 ď ¨ ¨ ¨ ď ωn, although the
cases that are considered here have perturbations that are much smaller than
the equidistant spacing ∆ω. The average frequency spacing of the perturbed
comb is given by 〈∆ωj〉 “ |ωn ´ ω´n| {2n, which should also be close to the
spacing ∆ω.

It turns out that the transient time behavior is mostly unaffected by the
quenched disorder, as it is governed by the system size scaling (3.37). For
sufficiently small Q, the system exhibits mode locking since for Q “ 0, the
original unperturbed frequency comb is retrieved. The breakdown of the
mode-locked solution can be observed by successively increasing Q, which
for a particular realization of the quenched disorder is shown in Fig. 3.29.
Note that the mode-locked and turbulent regimes are separated by a thin
layer exhibiting intermittency.

The resilience of mode-locked solutions to quenched noise in the frequen-
cies can be quantified with respect to Q in the form of a probability to obtain
a realization that converges to a mode-locked solution P pQq “ uconv{u where
uconv denotes the number of realizations that converge to a mode-locked so-
lution and p denotes the total number of realization considered. To sample
over many realizations and Q efficiently, the system size should be small,
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Figure 3.29: Return times Tν to the Poincaré section (3.31) demonstrate the
transition from a mode-locked solution to phase turbulence with increasing
Q. The system is specified by pN,K, γq “ p21, 1.2, 0.7q.

however, it is clear that for small N , the relevance of finite-size effects in-
creases. Fixing the system size and parameters to pN,K, γq “ p21, 1.2, 0.7q
for Q “ 0, one recovers a stable mode-locked solution of the type Def. 1. The
different realizations of the frequency perturbations are drawn from a stan-
dard normal distribution N p0, 1q. As the initial condition, the mode-locked
solution for Q “ 0 is used, which in most cases is an adequate guess that can
be precomputed. To achieve a good sampling, the total number of realiza-
tions of the quenched disorder is u “ 104. The procedure reveals a smooth
phase transition from systems that exhibit mode locking to systems that are
with high probability unable to maintain the pulsed solutions, see Fig. 3.30.
For the presented study, only solutions with p “ 1 in Def. 1 were regarded,
which excludes all modulated and especially also subharmonic mode-locked
solutions Def. 3. Including solutions with a larger number of peaks could
affect the steepness of the phase transition.

To obtain a measure of the strength of the perturbation, one can calculate
the nearest equidistant frequency comb to any perturbed comb like (3.38).
The set of all equidistant frequency combs can be defined as

M :“ tx P R2n`1 : xj “ ν ` j∆νu with j P t´n, . . . , nu, (3.39)

where any frequency comb is defined by the number of different frequencies
N “ 2n` 1, the comb offset ν P R and the spacing ∆ν P R`{t0u. Given a
perturbed comb (3.38), one can define the distance to an element x PM as

dpω, xq :“ ‖ω ´ x‖L2 , (3.40)

where ω P R2n`1 is the perturbed comb. An equidistant frequency comb that
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Figure 3.30: The probability of a system with a perturbed frequency comb to
converge to mode locking for different perturbation strength Q. The system
is specified by pN,K, γq “ p21, 1.2, 0.7q.

minimizes this distance xmin PM can be found

xmin :“ min
xPM

dpω, xq. (3.41)

From the partial derivatives of (3.40) with respect to ν and ∆ν, one obtains
the following two conditions for the minimum

n
ÿ

j“´n

pj∆ω ` ζj ´ ν ´ j∆νq “ 0, (3.42)

n
ÿ

j“´n

jpj∆ω ` ζj ´ ν ´ j∆νq “ 0. (3.43)

The first condition (3.42) can be used to compute ν where one uses that j∆ω
and j∆ν vanish symmetrically in the sum, hence

1

N

n
ÿ

j“´n

ζj “ ν, (3.44)

the comb offset is therefore given by the average of the realization. After-
wards, ν can be used to solve for ∆ν in the second condition (3.43)

n
ÿ

j“´n

j2∆ν “
n
ÿ

j“´n

jpj∆ω ` ζj ´ 〈ζj〉q. (3.45)
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The sums that include the spacings are
n
ÿ

j“´n

j2∆ν “ ∆ν
npn` 1qp2n` 1q

3
, (3.46)

n
ÿ

j“´n

j2∆ω “ ∆ω
npn` 1qp2n` 1q

3
. (3.47)

Eventually, one finds the spacing of the closest equidistant comb

∆ν “ ∆ω `
3

npn` 1qp2n` 1q

n
ÿ

j“´n

jpζj ´ 〈ζj〉q. (3.48)

Proceeding in a similar fashion, one can now compute the probability that
the system with a perturbed frequency comb ω and dmin “ dpω, xminq is con-
verging to a mode-locked solution. Here again, only solutions of the type
Def. 1 with p “ 1 are regarded. The number of realizations that support
mode locking uconv within a small range of the distances relative to the total
number of sampled realizations in that particular range ud give the probabil-
ity P pdminq “ uconv{ud, which is presented in Fig. 3.31. For large distances
between the perturbed comb and the set of equidistant combs, the system
loses the ability of mode locking.

In contrast to the transition that follows by increasing Q, the criterion
including the minimal distance to the set of equidistant frequency combs can
be used to access the mode locking quality of individual frequency combs in
a statistical fashion regarding the distance. A similar access to the ability of
mode locking for an individual frequency comb is attained by looking at the
kurtosis of the individual realizations. The influence of quenched disorder on
the stability of mode-locked solutions has been demonstrated as a smooth
phase transition in terms of Q and dmin “ dpω, xminq. The complex underlying
problem is the interrelation between perturbations of the frequencies which is
in general difficult to access. As a vivid illustration of the complexity of this
task, an example is presented where disjointed regions of stable mode locking
appear for one particular realization of the quenched disorder, cf. Fig. 3.32.

3.6.2 Frequencies with Systematic Detuning

Systematic detuning takes an equidistant frequency comb and applies a
spreading or a compression to the natural frequencies depending on the os-
cillator index. Here, a cubic dependence on the index is considered, which
preserves the symmetry with respect to the central frequency

ωk “ ∆ωpk `Dk3
q, k P t´n, . . . , nu, (3.49)
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Figure 3.31: Probability of a system with a perturbed frequency comb
to converge to a mode-locked solution depending on the distance to the
nearest equidistant frequency comb dmin, for the system configuration
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lands of mode-locked solutions to exist. The system parameters are
pN,K, γq “ p21, 1.2, 0.7q.
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where ∆ω “ 1{n is the equidistant linear spacing and D is the amplitude of
the detuning.

For zero detuning D “ 0, the equidistant frequencies are retrieved such
that for appropriate system parameters, mode locking is recovered. The
two choices D ă 0 and D ą 0 correspond to compression or attenuation of
the frequencies compared with the unperturbed comb. Very small values
of D can compromise index ordering of the frequencies in the comb (3.49),
which is avoided for D that fulfills D ą 1

k3´pk`1q3
ensuring ωk ă ωk`1 for all

k P t´n, . . . , n´ 1u. In the regions, where this condition is violated, mode
merging occurs frequently and the detuning dominates the linear frequency
spacing which will not be considered further.

For detuning amplitudes D « 0, one finds a region of equidistant mode-
locked solutions, cf. Fig. 3.33. A simple definition of the pulse width tp is the
elapsed time between certain points on the slope of the pulse of, for instance,
specified magnitude 3

4
maxtR1ptq. The cubic static detuning turns out to

have a marginal effect on the pulse width tp. The pulse width is primarily
influenced by the number of oscillators. Because the number of oscillators is
constant, the pulse width does not vary significantly.

For negative detuning amplitudes D ă 0, corresponding to a comb com-
pression, the pulse width increases. This is attributed to the fact that for
compressed frequency combs, the oscillators are closer to synchronization
where pulses tend to be elongated. In the opposite way, one can observe that
for attenuation of the frequencies, the pulses become shorter as the oscillators
are further away from being synchronized.

For further increasing D in either direction, the mode-locked solutions are
found to destabilize in two different breakdown scenarios, see Fig. 3.34. In the
figure, the averaged order parameter 〈R1ptq〉t is presented to identify mode
locking regions, and the effective frequency combs are shown to distinguish
the two different pathways to phase turbulence.

For D ă 0 in a gradual process, the outermost oscillators start to unlock
from the pulsed solution. However, for various detuning values, the unlocked
oscillators are close enough to achieve subharmonic mode locking with the
rest of the population such that periodicity is reestablished and solutions is
of the type Def. 3.

In contrast to that for D ą 0, the mode-locked solution loses its stability
abruptly, after which the frequency spacings follow a parabola as expected
for the cubic detuning. A solution survey for a system of N “ 21 at pairs
of pK, γq and fixed D “ ´0.000065 is shown in Fig. 3.35. The parameter
regions, where mode-locked solutions are found agree to a large extent with
the landscape for the equidistant frequency comb Fig. 3.24.
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Figure 3.33: Equidistant mode-locked solutions (Def. 1) for
pN,K, γq “ p21, 1.2, 0.7q. The combs of natural frequencies are pre-
sented on the top left, where color and symbol relate to the top right panel
which shows the normalized pulse width tp{T . Time traces R1ptq (bottom
panel): different colors relate to the top right panel. For the purple and the
yellow solutions, the central mode symmetry is broken, χ ą 0 in (3.11).
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Figure 3.34: Breakdown of mode locking for varying D with system param-
eters being pN,K, γq “ p21, 1.2, 0.7q. Left panel: 〈R1〉t indicates regions of
mode locking. Right panels: effective frequency spacings in corresponding
symbols to the left. Blue symbols correspond to equidistant solutions Def.1,
green symbols to subharmonic solutions Def.3, and red symbols indicate non-
periodic solutions. The outermost green triangle spacings are omitted due to
their scaling.
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Figure 3.35: For a system with N “ 21 and systematic detuning amplitude
D “ ´0.000065 in (3.49), a simulation is performed for pairs of pK, γq. The
initial state is generated by letting K ą KC . After an initial transient,
maxtR1ptq and 〈R1ptq〉t are recorded.

3.7 Mode Locking in Large Ensembles

Up to this point, the considered models include a rather small number of
oscillators, where every oscillator has its own very distinct natural frequency.
From the applications point of view, it is of great importance to also consider
models consisting of large numbers of oscillators where the natural frequen-
cies come from some frequency distribution.

In this section, frequency distributions are considered that have a mul-
timodal appearance. Mode-locked solutions, similar to Def. 1, are found
that show the typical behavior of pulses in the coherence radius R1ptq. The
emergence of mode-locked solutions in large ensembles of globally-coupled
phase oscillators is discussed, where the main aspect of difference is that of
modal synchronization, which is a necessary ingredient in the process of mode
locking in large systems.

3.7.1 Multimodal Frequency Distributions and Modal
Order Parameters

The natural frequencies of the model are given by

ωk,j “ ∆ωpk `Qζk,jq, k P t´n, . . . , nu, j P t1, . . . ,Mu, (3.50)
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where k is called the mode index, j is the oscillator index within each mode, Q
is the amplitude of the random detuning, and ζk,j are independent random
numbers drawn from a standard normal distribution. A mode is defined
accordingly as the set of all oscillators with modal index k.

The total number of oscillators is N “ p2n` 1qM , where each mode con-
sists of M oscillators with frequencies distributed around the equidistant
frequencies ωk “ ∆ωk. In this way, the average natural frequencies of the
modes are almost equidistant. The variance from the equidistant average
mode frequencies is Q2. For the natural frequencies to maintain a comb
structure, one has to require Q2 ! ∆ω such that the modes are well sepa-
rated. It is expected that at a certain level of Q, mode locking will no longer
be possible due to the loss of the modal structure.

The system equations of the large ensembles read

9θk,j “ ωk,j `
K

N

n
ÿ

p“´n

M
ÿ

q“1

rγ sinpθp,q ´ θk,jq ` p1´ γq sinp2pθp,q ´ θk,jqqs .

(3.51)
In order for the predefined modes to make sense, the separation condition
Q2 ! ∆ω should hold. The modal synchronization level can be attained by
the modal order parameters

ηq,k “ Rq,ke
iΨq,k :“

1

M

M
ÿ

j“1

eiqθk,j , q P t1, 2u, (3.52)

where mode k is synchronous, when R1,kptq « 1. At large values of Q, the
modal structure as a general prerequisite for mode locking is certainly de-
stroyed and mode locking is no longer possible. For self-organized mode
locking, the second harmonic as previously discussed is significant, and suit-
able parameter values such as pK, γq “ p1.2, 0.7q should be considered.

Concerning the study of continuum limit descriptions by means of the
Ott-Antonson ansatz [70], note that due to the second harmonic in the in-
teraction function, the ansatz cannot be applied here. Although one can in
principle drop the second harmonic for the sake of this particular obstacle
with the self-organization of mode locking crucially depending on the sec-
ond harmonic, the most interesting feature of the system would be lost. It
has been shown that the Ott-Antonsen ansatz is applicable to multimodal
frequency distributions [71, 72] where it is claimed that complicated chaotic
dynamics can be expected.

Aside from the potential to observe chaotic dynamics, it is expected that
stable mode-locked states can be found following the recipe for setting up
suitable initial conditions for mode locking.
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3.7.2 Self-Organization to Mode-Locked Solutions

From the discussion of the basic system (3.1), one expects the length of the
preceding transients of mode locking to scale exponentially with the number
of modes 2n` 1. The properly balanced second harmonic of the interaction
that made the mode-locked solutions emerge from random initial configura-
tions is again crucial so that the parameters of the interaction are fixed to
pK, γq “ p1.2, 0.7q.

For large ensembles, mode locking essentially becomes a two-stage process
where modal synchronization precedes the locking of the modes. When the
modal synchronization is low, the phenomenon of mode locking in general
appears less pronounced or even breaks down completely. It is found that
in principle, partially synchronized modes also adhere to mode locking. In
Fig. 3.36, the emergence of a mode-locked solution is presented for a system
consisting of 15 modes, where each mode consists of 5000 oscillators such that
the average natural frequency of the modes are very close to the equidistant
ωk “ ∆ωk. The detuning amplitude is set to Q “ 0.01, resulting in well-
separated modes, cf. histogram of the natural frequencies Fig. 3.36, with
Q2 ! ∆ω “ 1{7.

To demonstrate the two processes of modal synchronization and mode
locking, both the modal (3.52) and the complete order parameters are recorded.
The modal synchronization increases most significantly at the times when
R1ptq is large. There is a tendency that the modes on the edge of the comb
synchronize last.

A close-up of the final mode-locked solution shown in Fig. 3.37 reveals a
breathing behavior, where preceding to the mode-locking pulses some of the
modal order parameters decrease before, on the falling edge of the pulse, all
modal synchronization level R1,kptq increase again. Between the pulses, the
modal synchronization slowly decreases until a stabilizing effect governed by
the second harmonic appears halfway between the pulses in R1ptq. This con-
forms with the stabilizing influence on mode locking by the second harmonic
that has previously been demonstrated, cf. Fig. 3.15. In large ensembles,
the second harmonic has the additional effect of contributing to the modal
synchronization level at the half of the inter-pulse interval. Note that the
mode-locked solution shows a particularly strong breathing of the modes with
indices k “ ´3 and k “ 0. It is curious that the breathing strength is not
ordered by the mode index. This is related to the fact that on the rising edge
of the pulse, the modal phases Ψq,k are not ordered by the indices.

The tendency that the modal synchronization appears first for the more
central modes is illustrated for a transient in a system with 31 modes, cf.
Fig. 3.38. Here, one also sees that the transient time is longer, which on av-
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Figure 3.36: The system (3.51) with system parameters
pK, γ,Qq “ p1.2, 0.7, 0.01q, and 2n` 1 “ 15 modes consisting of M “ 5000
oscillators is initialized with random uniform phases. The time traces
R1ptq, R2ptq, and the modal order parameter R1,kptq (3.52) are presented
for the modes k P t´7, . . . , 0u. The histogram of the natural frequencies
illustrates that the modes are well separated.

erage scales exponentially with the number of modes p2n` 1q. The additional
contribution to the transient times that come from the modal synchronization
prior to the locking is expected to scale subexponentially.

3.7.3 Stability with Respect to the Spectral Width

The detuning amplitude Q characterizes what will be called the spectral width
of the modes. It tells what range of natural frequencies are attributed to a
specific mode and whether the modes are clearly distinguishable from each
other. To approach the value of Q for which the mode-locked solutions
destabilize initial conditions close to the mode-locked state are used, the
initial conditions are obtained by first increasing the coupling strength above
critical pK “ 1.5 ą KCq. Instead of making a parameter scan in Q, multiple
simulations are performed for different values starting from the prepared
initial state.



3.7. MODE LOCKING IN LARGE ENSEMBLES 71

0
0.2
0.4
0.6
0.8
1

R
1
,R

2

0.85

0.9

0.95

1

600 620 640 660 680 700

R
1
,k

t

R1
R2

k = −7
k = −6
k = −5
k = −4

k = −3
k = −2
k = −1
k = 0

Figure 3.37: A close-up of the breathing behavior of the modal order param-
eter R1,kptq (3.52) of the mode-locked solution, in Fig. 3.36. Some modes
show a strong decline in modal synchrony preceding the pulse.
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Figure 3.38: The system (3.51) with the system parameters
pK, γ,Qq “ p1.2, 0.7, 0.01q, and 2n` 1 “ 31 modes consisting of M “ 5000
oscillators is initialized with random uniform phases. The time
traces R1ptq, R2ptq, and the modal order parameters R1,kptq (3.52) for
k P t´15,´12,´10,´5u are presented. The bottom panel shows a his-
togram of the natural frequencies with distinct modes.
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When the detuning is increased to Q “ 0.032, one observes that the mode-
locked solution becomes modulated, cf. Fig. 3.39. In the example shown, the
number of oscillators is N “ 3 ¨ 105. The solution shows smaller pulse peaks
of approximately R1 « 0.8 and significant fluctuations of the modal order
parameters R1,kptq (3.52).

In the histogram of the natural frequency, one sees a strong overlap be-
tween the different modes. To understand the origin of the modulation it is
essential to look at the histogram of the effective frequencies (bottom panel).
The histogram shows the primary effective frequency comb, which is given
by the histogram boxes that reach the top and are further cut off.

Apart from the primary effective frequency comb, a substantial number
of oscillators with non-matching frequencies is present. Furthermore, a sec-
ondary comb has emerged, which is the reason for the modulation of the
solution. The secondary frequency comb has the same spacing as the pri-
mary one, while it is shifted by ∆Ω{2 with respect to it. It therefore adds to
one pulse constructively by increasing R1ptq while decreasing it at the next
pulse, hence causing the specific type of modulation. Both effective frequency
combs can also be seen in a plot of pΩk,j, ωk,jq, cf. Fig. 3.41.

For a sufficiently broad spectral width pQ “ 0.04q, the mode-locked solu-
tion eventually breaks down, albeit some modes still maintain a significant
modal synchronization, see Fig. 3.40. The prepared initial conditions decay
over several pulses and the predefined modes mostly desynchronize.

3.7.4 Coexistence of Mode-Locked Solutions and Modal
Turbulence

In systems with Kuramoto-type coupling pγ “ 1q no additional increase in
the modal synchronization is generated between the pulses in R1ptq due to
the absence of the second harmonic. To find mode-locked solutions in the
system with pK, γ,Qq “ p0.96, 1.0, 0.01q, N “ 75 ¨ 103, and 2n` 1 “ 15, cf.
Fig. 3.42, one has to initialize the system with properly prepared initial con-
ditions. The increase in the modal synchronization is an important part of
the stabilization of the mode-locked solutions, since the modal synchroniza-
tion has to be large R1,k « 1 in order to have modes that can perform the
locking.

The self-organized emergence of mode-locked solution from random initial
conditions, as observed for the Kuramoto-Daido type coupling pγ ă 1q, could
not be observed, which agrees with the previous findings of coexistence of
mode locking and phase turbulence for γ “ 1. In Fig. 3.43, one sees how
modal synchronization is achieved without locking between the modes. This
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Figure 3.39: The system (3.51) consisting of N “ 3 ¨ 105 oscillators,
p2n` 1 “ 15q modes, and with the parameters pK, γ,Qq “ p1.2, 0.7, 0.032q
is initialized with prepared initial conditions. The time traces R1ptq, R2ptq,
and the modal order parameters R1,kptq (3.52) for k P t´7, . . . , 0u are pre-
sented. The histograms of natural frequencies and the effective frequencies
are shown. Note the locking of a shifted frequency comb in the effective
frequencies.
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Figure 3.40: For further increased spectral width Q “ 0.04, in the system
studied shown in Fig. 3.39, the modal synchronization breaks down. The time
traces R1ptq, R2ptq, and modal order parameters R1,kptq (3.52) are presented
for k P t´7,´3,´1, 0u. The histogram of the natural frequencies shows that
the modes overlap substantially.

Figure 3.41: The effective frequencies Ωk,j against the natural frequencies
ωk,j for the solution shown in Fig. 3.39.
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Figure 3.42: For a system (3.51) with Kuramoto-type coupling
pK, γ,Qq “ p0.96, 1.0, 0.01q, and p2n` 1 “ 15q modes consisting of
pM “ 5000q oscillators, stable mode-locked solutions can be found from
prepared initial conditions.

stresses the fact that modal synchronization is not sufficient for the emergence
of mode-locked states, as the modal phases Ψ1,kptq exhibit complex behavior
while there is large modal synchronization overall.

3.8 Mode Locking in Optical Systems

The phenomenon of mode locking in laser systems, which has been known
since the 1960s, refers to the formation of optical pulses. The diversity of
mode locking laser devices is large, and even physically different mechanisms
classified as active or passive are known to achieve the phenomenon [73, 74,
75, 76]. In the context of optics, light that is emitted inside the optical
resonator propagates repeatedly around the cavity, where by constructive
interference, a spectrum of resonant frequencies the so-called cavity modes
emerges.

When the gain bandwidth of the laser medium is sufficiently broad, mul-
tiple cavity modes can be brought above the lasing threshold at which point
the laser is in multi-modal operation. The number of amplified cavity modes
can be enormous. For example, the bandwidth of a Ti:sapphire laser typically
supports hundreds of thousands of modes, which in mode-locked operation
results in ultra short light pulses [77, 78]. Mode locking is achieved when
a sufficient number of cavity modes develop a fixed phase relationship such
that they form a light pulse. In the example of the Ti:sapphire laser, mode
locking is achieved by inserting a Kerr lens into the resonator that exerts a
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Figure 3.43: For the system used in Fig. 3.42 with the parameters
pK, γ,Qq “ p0.96, 1.0, 0.01q, N “ 75 ¨ 103, and 2n` 1 “ 15, starting from
random initial data modal synchronization is achieved pR1,kptq « 1q with-
out locking the modes.
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self-focusing effect on fields of high intensity that is in favor of the emergence
of pulses.

While more traditional mode-locked lasers rely on a specific gain medium
in order to produce an optical frequency comb, the so-called Kerr frequency
combs do not share this particular limitation. The generation of a Kerr
frequency comb exploits the Kerr effect inside an optical resonator to produce
a frequency comb from a continuous wave pump field, which is accurately
described by the Lugiato-Lefever equation [79]. The tremendous advantage
of this approach is that frequency combs can be produced around almost any
given pump field that does not rely on a specific gain medium [80].

3.8.1 The Phase-Reduced Lugiato-Lefever Equation

In the field of pattern formation in nonlinear optics, the Lugiato-Lefever
model is considered a paradigm, where the formation of localized structures
such as optical pulses or solitons can be described by the model. The basic
setup of the model consists of a cavity with a nonlinear optical medium
that is driven by an external coherent pump field [79]. The Lugiato-Lefever
equation describes the evolution of the intracavity field that arises in the
setup presented [81]

B

Bt
Apt, ηq “ i

3
ÿ

kě1

ζk
k!

ˆ

i
B

Bη

˙k

Apt, ηq ´ iΓ |Apt, ηq|2 Apt, ηq ´ ∆ω0

2
Apt, ηq,

(3.53)
where Aptq P C denotes the time-dependent intracavity field, ζk are the nor-
malized dispersion coefficients, η P r´π, πs is the angle that parametrizes the
cavity length, Γ is the four-wave mixing gain coefficient, and ´∆ω0{2 is a
linear loss term. Significant amplification inside the cavity is possible for
frequencies that are close to resonance with the cavity length. A discrete set
of resonant cavity modes leads to the ansatz

Apt, ηq “
N
ÿ

p

Ape
ip´pη`φpptqq, (3.54)

where p is the mode index, Ap are the corresponding amplitudes, and φp
are phase factors that include the effects of dispersion. Following [10] by
inserting the discrete modal ansatz (3.54) in both sides of (3.53) leads to
equations that describe the evolution of the phases and the amplitudes of all
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discrete modes

9φp “
3
ÿ

kě1

ζk
k!
ppqk ´ Γ

N
ÿ

l,m,n

Alnmpδ
ln
mp cospφlnmpq, (3.55)

9Ap “ ´
∆ω0

2
´ Γ

N
ÿ

l,m,n

Alnmpδ
ln
mp sinpφlnmpq, (3.56)

where φlnmp “ φl ´ φm ` φn ´ φp, Alnmp “
a

AlAmAn{Ap, and δlnmp is a gener-
alized Kronecker symbol that gives unity for l ` n´m´ p “ 0, which is a
constraint that refers to the conservation of energy. Under the assumption
that the amplitudes of the emerging modes reach a steady state, a reduc-
tion to a phase model can be considered [10, 82]. As can be seen from
(3.55), the resulting interaction terms in accordance with four-wave mixing
and the conservation of energy include not only two-phase differences, like
in the Kuramoto-type coupling, but combinations of four phases, which are
considerably more complicated. Pulses obtained from a dissipative optical
resonator, as it is modeled by the Lugiato-Lefever equation, are important
for a wide range of applications. However, it should be noted that in models
of passively mode-locked lasers [73, 75, 76], the nonlinearity responsible for
the self-phase modulation can also adhere to a cubic form suggesting the
involvement of similar dynamics.

3.8.2 A Qualitative Comparison of the Mode-Locking
Phenomena

One of the central questions to ask is whether complicated phase interac-
tions, including three or four different phases, are necessary for mode locking
in phase oscillators. As it is demonstrated, the much simpler two-phase dif-
ferences of the coupling in the Kuramoto model is already sufficient. This
means that from the perspective of mode-locked oscillator systems, much
simpler interaction functions than the one in (3.55) can be considered. The
most important similarity between both models, (3.1) and (3.55), is perhaps
the global nature of the interaction.

The frequency comb, whose formation is of great importance in optics, is
considered as a supplied structural part in the model (3.1). Therefore, it is
clear that effects that involve the generation of frequencies, like the four-wave
mixing, cannot be covered by the model.

One of the most striking similarities between mode-locking in optics and
in coupled phase oscillator models is the prolongation of the period by the in-
teraction, which refers to ∆Ω ă ∆ω for an equidistant mode-locked solution
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Def. 1. At the pulse peak of the mode-locked solution where R1ptq is maxi-
mal, the phases are pulled strongly towards the mean phase, which causes a
prolongation of the total period. Similarly, a delay in the period of an optical
pulse of a passively mode-locked laser appears because of the involvement of
a saturable absorber. In this case, during each round trip the absorber is first
non-transparent for the initial part of the pulse while it becomes saturated,
and thus transparent for the later part. This has the similar effect of an
increase in the inter-pulse interval length through the nonlinearity.

Another phenomenon that is known from mode-locked lasers is pulse jit-
tering, which means that the pulse peaks and the inter-pulse intervals appear
with small variation. An analog of this phenomenon is the appearance of
chaotic mode-locked solutions, cf. Fig. 3.20.

Among the most important characteristics of optical pulses are the width
and the shape of the pulse, which are influenced by multiple different quan-
tities. The width of an optical pulse depends primarily on the number of
frequencies present in the comb and the frequency spacing which is immedi-
ately transferable to mode-locked phase oscillators.

Quenched disorder and effects of dispersion are influential in the prop-
erties of optical pulses, therefore perturbations of the natural frequencies
in (3.1) are considered. It is shown that adding quenched disorder to the
equidistant natural frequencies (3.38), the system loses its ability to achieve
pulses. A similar effect in optical fibers is the pulse degradation through
small random contributions to the chromatic dispersion along the fiber [83].
The systematic variation of the natural frequencies (3.49) with dependance
on the mode index was conceived in order to emulate the effects of disper-
sion, which turned out to have only a small effect on the pulse shape for
mode-locked phase oscillators.

The modes of an optical pulse typically have a certain spectral width.
A multimodal distribution of the natural frequencies is considered (3.50)
for which numerically stable mode-locked solutions are obtained. By the
presence of the second harmonic and a sufficiently large spectral width Q,
one observes that the pulsed solution acts as a periodic forcing that has the
ability to stimulate the mode locking of a secondary frequency comb, cf.
Fig. 3.41. This results in a period doubling of the mode-locked solutions,
which is similar to period doubling in mode-locked lasers.
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4

Coherence Echoes and Mode
Locking

“The ability to perceive or think differently is more important than
the knowledge gained.”

– David Bohm, New Scientist

This chapter is dedicated to the development of the correspondence be-
tween coherence echoes and mode locking. The coherence echo phenomenon
was first reported for globally-coupled phase oscillators with Kuramoto-type
coupling in [3]. A brief illustration of the basic response phenomenon is
shown in Fig. 2.5. As a necessary ingredient to observe coherence echoes,
it was found that at least two stimuli have to be applied to the incoherent
state. Although the precise shape of the action function (2.36) of the stimuli
is of minor importance in order to obtain the phenomenon, it was observed
that a second harmonic contribution in the stimulus action function leads
to qualitatively more distinct echoes. A recent experimental realization of
the phenomenon in a system of stimulated chemical oscillators emphasizes
its universal character [34].

It turns out that mode locking offers an intuitive way to explain the ap-
pearance of coherence echoes. The stimulation procedure induces a partially
mode-locked state within a large population of oscillators which decays over
time due to the stability of the incoherent state albeit recurrent increased lev-
els of coherence are observed. It will be shown that the system configuration
established by two stimuli indeed corresponds to a frequency comb struc-
ture which is mode-locked, and that the coherence echoes are remnants of
such a partially mode-locked initial condition. Idealized mode-locked initial
conditions are investigated to better understand the complicated echo phe-
nomenon where the general non-monotonic character of the magnitudes of

81
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the coherence echoes is revealed. To bridge between the partial and the ideal-
ized mode-locked initial conditions, sequences of stimuli at regular intervals
are considered that progressively increase the level of modal synchroniza-
tion and show the transition from a partial to a complete stimulated mode
locking.

4.1 Globally-Coupled Phase Oscillators with In-
stantaneous Stimulation

The system equations without stimulating pulses have the form

9θk “ ωk `
K

N

N
ÿ

j“1

rγ sinpθj ´ θkq ` p1´ γq sinp2pθj ´ θkqqs , (4.1)

where k is the oscillator index, N is the total number of oscillators, K and γ
are the coupling strength and the balancing parameter, respectively, and ωk
are the natural frequencies given by

ωk “ ζk, k P t1, . . . , Nu, (4.2)

where ζk are independent random numbers drawn from a uniform distribution
Up´1, 1q. The coupling strength is considered below the synchronization
threshold K ă KC such that the system evolves incoherently exhibiting
small finite-size fluctuations that scale roughly like R1ptq « Op1{

?
Nq. When

a stimulus impacts the system at the time t “ tp, the state of the system is
changed by the following transformation rule

θkpt
`
p q “ θkpt

´
p q ´ hpθkpt

´
p qq, (4.3)

where θkpt´p q and θkpt
`
p q denote the phases of the oscillator with index k

immediately before and after the stimulus.
Two different types of action functions hp¨q are considered for the stimuli.

The first is similar to what has been used in [3]

h1pθq “ εpα sinpθq ` p1´ αq sinp2θqq, (4.4)

where ε is the amplitude and α P r0, 1s is an additional balancing between
the contributions from both harmonics. This type of action function is par-
ticularly interesting in order to study the impact of the form of the stimulus
by varying α. For the action functions (4.4), varying α changes not only the
position of the maximum, but also influences its magnitude. For α ą 2{3 the
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Figure 4.1: Changing the balancing α shifts the position of the maximum
θmax “ tθ P r0, πq : Bθh1pθq “ 0,maxθPr0,πq h1pθqu. For α ă 2{3 a minimum
also appears at θmin “ tθ P r0, πq : Bθh1pθq “ 0,minθPr0,πq h1pθqu within the in-
terval θ P r0, πq. The right panel shows the corresponding value of h1pα, θmaxq

with ε “ 1.

function (4.4) has a single maximum at θmax within the interval θ P r0, πs,
while for α ă 2{3 an additional minimum at θmin appears, see Fig. 4.1.

The second type of action function to be considered resets phases within
a small interval of length 2ρ around θ “ 0 back to zero at the time of the
impact

h2pθq “

#

θ, |θ| ď ρ,

0, |θ| ą ρ,
(4.5)

where for the present formulation of h2p¨q, θ are considered to be in interval
p´π, πs. This particular type of stimulus synchronizes the oscillators either
identically to zero, or leaves them unaffected.

4.1.1 Transport Pattern Resulting from a Single Stim-
ulus

Applying a single stimulus to the system (4.1) at time t “ t1 results in a
stripe pattern in the plot of pωk, θkq, see Figs. 4.2 and 4.3, where the action
functions (4.5) and (4.4) are used, respectively. It is necessary to understand
this stripe pattern in order to explain the effect of a second stimulus at a
later time.

The system with N “ 50 ¨ 103 oscillators, natural frequencies according
to (4.2), and pK, γq “ p0.5, 1q is simulated, where at the time t “ t1 “ 50,
a single stimulus is applied. In both figures, the time traces R1ptq, R2ptq,
and snapshots of pωk, θkq at the times pt0, t`1 , t2, t3q “ p0, 50`, 53, 60q are pre-
sented.

Applying the action function (4.5) with ρ “ π{2 results in a desolated
region around a perfect phase synchronized stripe at t “ t`1 immediately after
the stimulus, where the oscillators that are reset to zero, those for which
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∣∣θkpt´1 q
∣∣ ď ρ, are colored in red, cf. Fig. 4.2. The stripe generated at t`1 has

a vertical inclination and according to the natural frequencies, it tilts over
time. In the case K “ 0, the stripe’s inclination β evolves according to

βptq “ arccospt{pt2 ` 1qq, (4.6)

which means that at any given time t ą t`1 , the stripe pattern is equidistant
in ω with ∆ω “ 2π{pt1 ´ tq.

Note that for K ą 0, one can observe a twisting of the stripe due to the
nonlinear interaction. Although the twisting of the stripe can be strong, de-
pending on R1pt

`
1 q immediately after the stimulus and on K, as R1ptq decays

rapidly, the evolution might be regarded as linear for the most part. The pre-
cise form of the twisting is due to the nonlinearity exerting a stronger effect
on the oscillators that deviate more quickly from θk “ 0 after the stimulus.
Over time the stripe wraps around the circle, which creates multiple stripes
as depicted in the snapshot for t “ t3.

The effect of the nonlinear coupling is significant only shortly after the
stimulus, when R1ptq is largest. This means that although there is in general
some influence of the nonlinearity, at later times, the effects of the nonlinear
coupling diminish and may potentially be discarded completely.

The action function h1 (4.4) with pε, αq “ p1.0, 1.0q has an effect on all of
the phases, which means that there will not be a completely desolated region
after the stimulus. In this case, the coloring of the oscillators in the snapshots
is as follows: oscillators with

∣∣θkpt´1 q
∣∣ ď θmax are colored in red. Especially

in the snapshot at t “ t2, the twisting of the stripe can be identified.

4.1.2 Coherence Echoes Appearing After Two Stimuli

The coherence echo phenomenon, as presented in [3, 34], is a result of the
application of two stimuli. For simplicity and in the prospect of application,
the stimuli are taken to be identical. Following a first stimulus, applied at
time t “ t´1 , a second stimulus at t “ t´2 establishes the mode locking of an
equidistant frequency comb within the whole oscillator population.

To identify the oscillators that are forming the frequency comb, the col-
oring of the oscillators is proceeded after the second stimulus. We denote an
oscillator with index k as marked by a stimulus at t´1 if

∣∣θkpt´1 q
∣∣ ď θmax in

the case of h1 and
∣∣θkpt´1 q

∣∣ ď ρ in the case of h2.
The oscillators that are marked for both stimuli create a stimulated fre-

quency comb due to the presence of the equidistant stripe pattern generated
after the first stimulus. The spacing of the frequency comb is ∆ω “ 2π{τ
with τ “ t2 ´ t1 being the time separation between the stimuli. The fre-
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Figure 4.2: The system (4.1) with pK, γ,Nq “ p0.5, 1.0, 50 ¨ 103q is simu-
lated and a single stimulus h2 (4.5) is applied with ρ “ π{2 at t´1 “ 50´.
The time traces R1ptq, R2ptq, and snapshots of pωk, θkq at the times
pt0, t

`
1 , t2, t3q “ p0, 50`, 53, 60q are presented.

quency comb can be illustrated in a plot of pωk, θkq immediately after the
second stimulus at t “ t`2 .

In the following examples with N “ 50 ¨ 103 oscillators, the stimuli are
applied at t´1 “ 50´ and t´2 “ 80´, with a coupling strength of K “ 0.5, and
only first harmonic coupling γ “ 1. The stimulus types used are specified by
ρ “ π{2 and pε, αq “ p0.65, 0.5q, in the respective cases for h2 and h1.

In Fig. 4.4 and Fig. 4.5, the time traces of R1ptq and R2ptq as well as
snapshots of pωk, θkq at the times pt`1 , t

`
2 , t3, t4q “ p50`, 80`, 95, 110q are pre-

sented.
In the snapshot at t “ t`1 , the coloring is green for the unmarked and

red for the marked oscillators at t “ t´1 . After the second stimulus at t “ t`2 ,
additional coloring is applied only to the oscillators that are marked at t “ t´2 ,
where red becomes blue and green becomes purple.

The stimulated frequency comb is now given as the set of the blue oscil-
lators after t “ t`2 . Comparing the snapshots at t “ t`2 for the two different
stimuli h1 and h2, one sees that the stimulated frequency comb generated
with h2 is sharp in θ due to the phase resetting character, while for h1, it
remains connected to the initial stripe pattern.

In the snapshot at t “ t3, which corresponds to the time t “ t2 ` τ{2, one
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Figure 4.3: The system (4.1) with pK, γ,Nq “ p0.5, 1.0, 50 ¨ 103q is sim-
ulated and a single stimulus h1 (4.4) is applied with pε, αq “ p1, 1q at
t´1 “ 50´. The time traces R1ptq, R2ptq, and snapshots of pωk, θkq at the
times pt0, t`1 , t2, t3q “ p0, 50`, 53, 60q are presented.

can see that the stimulated frequency comb is the reason for the increase in
R2ptq. In the final snapshots at t “ t4, denoting the time of the first coherence
echo, one sees how the blue stripes are alined in phase, independently of
whether h1 or h2 is used. In this way, the mode-locking picture gives an
intuitive explanation for the appearance of the coherence echo. When one
compares the blue stripes in the snapshots at t “ t`2 and t “ t4, one sees that
a spreading occurs, which is attributed mostly to the linear dispersion.

4.2 Synthetic Mode-Locked Initial Conditions

The system state that is prepared after the two stimuli at t “ t1 and t “ t2
is only a partially mode-locked state because not all oscillators that have
natural frequencies matching those of the blue group are phase synchronized
at t “ t`2 , see snapshot Fig. 4.4.

In the following, the echo phenomenon is investigated by employing a
special so-called synthetic mode-locked initial condition. After preparation of
this initial condition, a sequence of echoes can be observed in a simulation.
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Figure 4.4: The system (4.1) with pK, γ,Nq “ p0.5, 1.0, 50 ¨ 103q is sim-
ulated and stimuli h2 (4.5) with ρ “ π{2 are applied at t´1 “ 50´ and
t´2 “ 80´. The time traces R1ptq, R2ptq, and snapshots of pωk, θkq at the
times pt`1 , t

`
2 , t3, t4q “ p50`, 80`, 95, 110q are presented. Coloring for t ě t2:∣∣θkpt´1 q

∣∣ ď ρ and
∣∣θkpt´1 q

∣∣ ď ρ (blue),
∣∣θkpt´1 q

∣∣ ą ρ and
∣∣θkpt´1 q

∣∣ ď ρ (purple).
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Figure 4.5: The system (4.1) with pK, γ,Nq “ p0.5, 1.0, 50 ¨ 103q is simu-
lated and stimuli h1 (4.4) with pε, αq “ p0.65, 0.5q are applied at t´1 “ 50´

and t´2 “ 80´. The time traces R1ptq, R2ptq, and snapshots of pωk, θkq
at the times pt`1 , t

`
2 , t3, t4q “ p50`, 80`, 95, 110q are presented. Coloring

for t ě t2:
∣∣θkpt´1 q

∣∣ ď θmax and
∣∣θkpt´2 q

∣∣ ď θmax (blue),
∣∣θkpt´1 q

∣∣ ą θmax and∣∣θkpt´2 q
∣∣ ď θmax (purple).
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Definition 5. The synthetic mode-locked initial conditions are given by

θkp0q “

#

0, for ωk PM

θk P r´π, πs, uniform,
(4.7)

where k P t1, . . . , Nu is the oscillator index. The oscillators with ωk PM
form a mode comb

M :“ Ynj“´nMj, with Mj :“ rj∆ω ´∆m, j∆ω `∆ms, (4.8)

where j P t´n, . . . , nu is called the mode index, ∆ω is the equidistant fre-
quency spacing between the modes, and 2∆m is the spectral width of each
mode with 2∆m ă ∆ω. The oscillator with index k belongs to mode j if
|ωk ´ j∆ω| ď ∆m.

The number of oscillators present in each mode depends on the chosen fre-
quency distribution gpωq as well as on the comb parameters p∆ω,∆mq. The
frequency distribution taken here is uniform, covering the interval p´1.02, 1.02q
and the comb parameters are p∆ω,∆mq “ p0.1, 0.02q. The peculiar range of
the frequency distribution is such that the edge modes with indices n and ´n
are fully supported. The frequency spacing together with the range of the
frequency distribution fixes the number of modes that are populated with
oscillators to 2n` 1 “ 21.

An example of the time evolution of the synthetic mode-locked initial
condition described with system parameters pK, γ,Nq “ p0.95, 0.7, 5 ¨ 104q is
shown in Fig. 4.6, where the time traces R1ptq, R2ptq together with snapshots
of pωk, θkq at the times pt0, t1, t2, t3q “ p0, 0.91, 32.48, 64.11q are presented. In
the snapshots, the oscillators colored in red belong to the prescribed mode
comb with frequencies ωk PM .

One sees that the synthetic mode-locked initial conditions produce an
echo type phenomenon in R1ptq comparable with the echoes found after stim-
ulation. The two main differences are that the underlying linear transport
pattern as a remnant of the first stimulus is not present and that the modes
contain all the oscillators with matching natural frequencies.

The magnitudes of the echoes are not behaving monotonously, which is
demonstrated in the example, see Fig.4.6, where the third echo is absent,
while at later times, echoes appear with considerable magnitude.
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Figure 4.6: Time traces R1ptq, R2ptq, and snapshots of pωk, θkq at
the times pt0, t1, t2, t3q “ p0, 0.91, 32.48, 64.11q are presented. The initial
state at t “ t0 is a synthetic mode-locked initial condition, cf. Def. 5
with p∆ω,∆mq “ p0.1, 0.02q, and the system parameters are given by
pK, γ,Nq “ p0.95, 0.7, 5 ¨ 104q.
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4.2.1 Non-Monotonously Decaying Echoes of the Syn-
thetic Mode-Locked Initial Conditions

To understand the demonstrated non-monotonous behavior of the magnitude
of the echoes, cf. Fig. 4.6, the uncoupled system with K “ 0 for the same
synthetic mode-locked initial conditions Def. 5 with p∆ω,∆mq “ p0.1, 0.02q
is investigated here. For this purpose we define the complex modal order
parameters as

η1,jptq “ R1,jptqe
iΨ1,jptq :“

1

Nj

ÿ

k if ωkPMj

eiθkptq, (4.9)

where Nj is the total number of oscillators in the jth mode for which it holds
that ωk P rj∆ω ´∆m, j∆ω `∆ms.

In the continuum limit pNj Ñ 8q, (4.9) can be computed explicitly as

R1,jptqe
iΨ1,jptq “

ż 8

´8

dω

ż 2π

0

eiθFjpθ, ω, tqdθ, (4.10)

where Fjpθ, ω, tq is the distribution function for the oscillators of the jth
mode. The distribution function is further normalized

ż 2π

0

Fjpθ, ω, tqdθ “ gjpωq, (4.11)

where gjpωq is the frequency distribution of the jth mode that is uniform
and normalized

gjpωq “

#

1
2∆m

, for ω PMj,

0, else.
(4.12)

The initial data at time t “ t0 “ 0 for all oscillators of the jth mode is
θkpt0q “ 0. Because there is no interaction, one can readily write down the
evolution of the distribution function on the universal cover θ P R

Fjpθ, ω, tq “

#

gjpωq
1

2∆mt
, for θ P rpj∆ω ´∆mqt, pj∆ω `∆mqts,

0, else.
(4.13)

Hence, the jth complex modal order parameter becomes

R1,jptqe
iΨ1,jptq “

ż 8

´8

dω

ż 8

´8

eiθgjpωq
1

2∆mt
dθ

“
1

2∆mt

1

i

“

eipj∆ω`∆mqt ´ eipj∆ω´∆mqt
‰

, (4.14)
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The total complex order parameter in the continuum limit for the syn-
thetic mode-locked initial conditions Def. 5 can be computed using (4.14)

R1ptqe
iΨ1ptq “ A

1

2n` 1

n
ÿ

j“´n

1

2∆mt

1

i

“

eipj∆ω`∆mqt ´ eipj∆ω´∆mqt
‰

, (4.15)

where A corresponds to the fraction of oscillators of the system that forms
the mode comb.

The results of a simulation of the synthetic mode-locked initial condition
Def. 5 with p∆ω,∆mq “ p0.1, 0.02q and the system parameters pK,Nq “
p0, 5 ¨ 104q are presented in Fig. 4.7. The time traces R1ptq, R2ptq, and
R1,jptq (4.9) for j P t´10,´8,´6,´4,´2, 0u are plotted together with the
results from the continuum limit (4.15) and (4.14). One sees from (4.14) that
the phases of the modal order parameters Ψ1,jptq become identical at times
t “ tp “ p 2π

∆ω
with p P N at which times the modes interfere constructively.

Furthermore, phase flips of Ψ1,jptq by π occur at the times t “ tq “ q 2π
2∆m

with q P N, when (4.9) go through zero. Combining these two conditions one
can explain the absence of the fifth echo in R1ptq by the coincidence of both

p

q
“

∆ω

2∆m

, (4.16)

which is fulfilled by the used parameter values for the fifth echo p “ 5 and
the second phase flip q “ 2.

That the nonlinear coupling indeed has a crucial effect on the echoes can
be seen in Fig. 4.8, where R1ptq, R2ptq, and R1,jptq are presented for the
system specified by pK, γ,Nq “ p0.95, 0.7, 5 ¨ 104q. The decrease of R1,jptq is
radically altered by the first two echoes, where R1ptq is the largest. The rates
at which the modes disperse become smaller due to the increase of the modal
synchronization during the pulses. While the decrease of R1,jptq varies sig-
nificantly for different j, one may notice that even so the third echo vanishes
the modal order parameters are of considerable magnitude. This means that
the modal phases Ψ1,jptq are not aligned to interfere constructively.
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Figure 4.7: Starting the simulation from the synthetic mode-locked initial
condition Def. 5 with p∆ω,∆mq “ p0.1, 0.02q and pK,Nq “ p0, 5 ¨ 104q, the
time traces R1ptq, R2ptq, and R1,jptq (4.9) for j P t´10,´8,´6,´4,´2, 0u as
well as the results for the continuum limit (4.15) and (4.14) are presented.
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Figure 4.8: Starting the simulation from the synthetic mode-
locked initial condition Def. 5 with p∆ω,∆mq “ p0.1, 0.02q and
pK, γ,Nq “ p0.95, 0.7, 5 ¨ 104q, cf. Fig. 4.6, the time traces R1ptq, R2ptq, and
R1,jptq (4.9) for j P t´10,´8,´6,´4,´2, 0u are presented.



94 4. COHERENCE ECHOES AND MODE LOCKING

4.2.2 Influence of the Global Coupling on the Synthetic
Mode-Locked Initial Conditions

While the complex behavior of the magnitude of the echoes has been demon-
strated and fully explained for the case K “ 0, it is shown in Fig. 4.8 that
there is a significant impact by the nonlinear coupling. Simulations of the
synthetic initial condition with p∆ω,∆mq “ p0.1, 0.02q are systematically per-
formed for a system with N “ 5 ¨ 104 and random independent uniform nat-
ural frequencies gpωq “ Up´1, 1q.

The ratio R1pt1q{R1pt3q and the recurrence time τ “ t3 ´ t1 for varying
coupling strength K and balancing factor γ are presented in Fig. 4.9. Note
that the first maximum of R1ptq occurs shortly after the initialization at
t “ t1. For fixed γ “ 0.7 (top panel), a minimal ratio R1pt1q{R1pt3q appears
at intermediate coupling strength values pK « 0.9q. For varying γ (bottom
panel) at fixed K “ 0.95, the magnitude of the echo increases considerably
when both harmonics are present. The timings pτ “ t3 ´ t1q (right panels)
are clearly depending on the coupling strength K and the balancing of the
harmonics γ with a minimum at γ « 2{3, cf. Fig. 4.9. Although this clarifies
the influence of the nonlinear coupling on the synthetic mode-locked initial
conditions to a certain extent, it should be noted that such initial states
are idealized in the sense that the modal order parameters are initialized to
R1,jp0q “ 1. Surprisingly, one observes that the synthetic mode-locked initial
conditions allow for the ratio R1pt1q{R1pt3q ă 1, meaning that the first echo
even exceeds the initial state’s coherence.
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Figure 4.9: Simulations of the synthetic mode-locked initial condition Def. 5
with p∆ω,∆mq “ p0.1, 0.02q for N “ 5 ¨ 104 oscillators are presented by plot-
ting the ratio of the maximum after initialization R1pt1q and the first echo
R1pt3q, as well as recurrence times τ “ t3 ´ t1 for all the parameter values
used.
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4.3 Stimulated Mode-Locked Solutions

The synthetic mode-locked initial conditions and the initial state obtained
after two stimuli are mostly different with respect to the level of modal syn-
chronization. For the synthetic initial state, all oscillators of a prescribed
mode comb Def. 5 are initially at identical phases while with two stimuli,
only a partially mode-locked state is formed.

In the following, a train of stimuli is applied to the system at regular in-
tervals of length τ , which is considered a natural extension to the application
of two stimuli. The train of stimuli is implemented by applying the mapping
of the phases with h1p¨q or h2p¨q at times t “ pτ “ tp with p P N giving

θkpppτq
`
q “ θkpppτq

´
q ` h1,2pθkpppτq

´
qq, (4.17)

where k P t1, . . . , Nu is the oscillator index, ppτq´, and ppτq` denote the
times immediately before and after the stimuli, respectively.

The repetitive stimulation of the form described brings the system into
a so-called stimulated mode-locked state where the main difference with the
application of just two stimuli is the emergence of a fully locked mode comb
in contrast to a partially locked mode comb. Periodically stimulated systems
appear in a variety applications, which makes it particularly interesting to
study the stimulated mode-locked solutions.

4.3.1 Accumulation of a Stimulated Fully-Locked Mode
Comb

Periodic simulation of the system (4.1) with pK, γ,Nq “ p0.95, 2{3, 5 ¨ 104q

at times t “ pτ “ tp with τ “ 30 for (4.5) h2 with ρ “ π{8 is performed and
the simulation results are presented in Fig. 4.10. One sees that the magni-
tude of the stimulated pulses R1pt

`
p q increases over time and further, that the

maxima synchronize with the stimulation times (dotted lines). In a series of
snapshots of pωk, θkq at times t P tt1, t5, t15, t30u the formation of thin deso-
lated horizontal regions is observed. The oscillators with the corresponding
natural frequencies form a stimulated mode comb that resembles the mode
comb from Def. 5.
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Figure 4.10: Time traces R1ptq and R2ptq of a stimulated mode-locked solu-
tion excited by a pulse train (4.5), h2 with ρ “ π{8, and τ “ 30. The system
(4.1) with pK, γ,Nq “ p0.95, 2{3, 5 ¨ 104q and independent random natural
frequencies ωk sampled from the uniform distribution Up´1, 1q are initial-
ized at uniform initial conditions. Snapshots of pωk, θkq at four different
times t P tt1, t5, t15, t30u demonstrate the accumulative process.

4.3.2 Stimulated Mode Locking and Circle Maps

It is of primary interest to access the magnitude of the modulus of the order
parameter R1ppτ

`q at times t “ pτ` immediately after the stimuli. In the
following, the coupling strength is set to zero pK “ 0q such that for each
oscillator, the phase evolution for increasing p is given by a circle map of the
form

θkppp` 1qτ`q “ θkppτ
`
q ` ωkτ ´ h1,2pθkppτ

`
q ` ωkτq mod 2π, (4.18)
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with k P t1, . . . , Nu and h1,2p¨q denoting either kind of stimulus action func-
tions (4.4) or (4.5).

Arnold circle maps

By taking h1 with pα, εq “ p1, εq in (4.18), one obtains an Arnold circle map
(2.26) for each oscillator, where ε corresponds to the strength of the nonlin-
earity. Therefore one can expect that in dependence on ε, Arnold tongues
emerge from the set of natural frequencies that are rationally related to the
forcing frequency ωf “ 1{τ .

One important observation at this point is that although the effective
frequencies form a Devil’s staircase independent of the initial conditions [30],
see Fig. 4.11 (a), the resulting pulse pattern R1ppτ

`q depends crucially on
the chosen initial conditions. For the system (4.18) with N “ 5 ¨ 105, τ “ 30,
and h1 with pα, εq “ p1, 0.5q, the corresponding R1ppτ

`q are presented start-
ing from identical and uniform initial conditions, (b) Fig. 4.11, respectively.
One sees a clear difference in the pulse heights R1ppτ

`q and the variations
depending on the chosen initial conditions. The oscillators that are subhar-
monically locked with the stimuli (small plateau), see inset Fig. 4.11 (a),
appear at only every second stimulus with the same phase. This means that
in particular, they can be in either one of the positions at the times pτ`
for uniform initial conditions while they have to be in the same for identical
initial conditions, which explains the larger variations in R1ppτ

`q.
Taking a second harmonic contribution into the stimuli pα “ 0.5q results

in a stronger build-up regime where the corresponding pulsation strength
increases over time, see Fig. 4.12. Furthermore, one observes that the sub-
harmonic plateaus in the staircase increase in width relative to the harmonic
ones.

Discontinuous circle maps

The second stimulus type (4.5) in comparison has different characteristics
because of its discontinuity, which can have important implications on the
response to the stimulation. While the existence and uniqueness of the ro-
tation number for circle maps with discontinuities was proven in [84] in the
context of set-valued maps, it will be enough at this point to identify some
of the features that arise due to (4.5).

The first observation one can make for applying (4.5) periodically is that
when ωk is an integer multiple of the forcing frequency ωf “ 1{τ (harmonic
resonances) after applying the first stimulus, a fixed point is reached. For
rationally related ωk such that pωk “ qωf where p, q are coprime as in (2.28)
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Figure 4.11: The system (4.18) with N “ 5 ¨ 105, τ “ 30, and h1 with
pα, εq “ p1, 0.5q is iterated. Panel (a) shows the resulting effective frequencies
Ωεpωq forming a Devil’s staircase. Panel (b) shows R1ppτ

`q for the initial
iterates.
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Figure 4.13: The system (4.18) with N “ 5 ¨ 105, τ “ 30, and h2 with ρ “ π{8
is iterated. Panel (a) shows the resulting effective frequencies Ωρpωq. Panel
(b) shows R1ppτ

`q for the initial iterates.

with p ă q ă i, the periodic point of the map is reached after at most i
iterates. For non-resonant ωk the situation is different, and it depends on
the initial condition θkp0´q and on the exact relationship between ωk and the
forcing frequency when a periodic point will be reached first. It is clear that
the non-resonant ωk will eventually be mapped to zero, as they all correspond
to rotations with irrational rotation numbers (without stimulation). This
means that after an initial transient, all maps will reach a periodic orbit and
there will be no irrational rotation numbers. Accordingly, Ωρpωq becomes
discontinuous. An example for h2 with ρ “ π{8, τ “ 30, and N “ 5 ¨ 105 is
given in Fig. 4.13. Here, the importance of the initial condition for R1ppτ

`q

is especially apparent from the strong variations in the pulses for identical
initial conditions.

Subsequent echoes after termination of the stimulation

For the periodically forced system, it has already been demonstrated that
over time, a fully mode-locked comb is developed, cf. Fig. 4.10. When the
periodic stimulation is discontinued, one observes a subsequent disaggrega-
tion of the mode comb which is accompanied by echoes.

For the stimulation with (4.5), an emergent mode comb is found that
adequately explains the pulsation pattern R1ppτ

`q. The oscillators that are
locked in the stimulated mode comb fulfill

ωk PM :“ YjMj, Mj :“ r∆ωj ´∆m,∆ωj `∆ms, (4.19)
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where ∆ω “ 2π{τ is the equidistant spacing, j P Z is the mode index, and
∆m “ ρ{τ is the spectral width. The stimulated mode comb is similar to the
one given in Def. 5.

The system (4.18) with N “ 5 ¨ 105, τ “ 30, and h2 with ρ “ π{8 is iter-
ated, where the stimulation is discontinued after p “ 250. The modulus of
the order parameter for the comb (4.19) R1,Mppτ

`q is computed and appro-
priately normalized to CMR1,Mppτ

`q, where CM is obtained as the number
of oscillators in the comb relative to system size N . One observes a close re-
semblance with the response in the total order parameter R1ppτ

`q after the
stimulation has ended, which shows that the echoes originate substantially
from the stimulated mode comb, see Fig. 4.14.

4.3.3 Effect of the Global Interaction on Stimulated Mode-
Locked States

In addition to the complicated structures found for pK “ 0q, the impact of
the coupling on the stimulated mode locking is investigated here. It is found
that the global interaction increases the response to the stimulation.

In contrast to iterating the circle maps (4.18), studying the system (4.1)
increases the time needed for adequate simulations significantly. To limit the
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Figure 4.15: The system (4.1) with N “ 5 ¨ 104, varying coupling strength
K, and γ P t0.5, 1.0u is stimulated with (4.4) h1, pα, εq “ p1, 1q. The system
is initialized for each pair pK, γq with independent random uniform initial
conditions, and an initial transient of 104 time units is disregarded. On the
left, Ωkpωkq around ωk “ 0 is shown for different coupling strength values. On
the right, one finds the averaged pulse magnitudes

〈
R1pt

`
p q
〉
in dependence

of K.

computational efforts, the step size is increased to h “ 0.1 and the number of
oscillators is N “ 5 ¨ 104. The system is set to random independent uniform
initial conditions for each simulation, which, as shown in Fig. 4.13, already
has a large impact on the response to the stimulation. For the natural fre-
quencies, a fixed realization is drawn from a uniform distribution Up´1, 1q
and taken for all simulations.

We study the impact of coupling strength K and the balancing factor γ on
the average magnitude of the stimulated pulses

〈
R1pt

`
p q
〉
. In each simulation

an initial transient of 104 time units is disregarded, which corresponds to a
total 333 stimuli for τ “ 30. Afterwards, the simulation of the system is con-
tinued for at least another 5 ¨ 104 time units, where the effective frequencies
Ωkpωkq (3.12) and the averaged pulse heights

〈
R1pt

`
p q
〉
are obtained.

System (4.1) for different K and γ P t0.5, 1.0u is stimulated by h1 with
pα, εq “ p1.0, 1.0q. A close-up on the effective frequencies Ωkpωkq around
ωk “ 0 and the averaged pulse heights

〈
R1pt

`
p q
〉
are presented in Fig. 4.15.

For both balancing values γ P t0.5, 1.0u, one observes an increase in the aver-
age pulse heights

〈
R1pt

`
p q
〉
with increasing coupling strength K that is also

reflected in the growth of the locking plateaus in Ωkpωkq.
For the stimulus types (4.4) h1 with pα, εq “ p0.7, 1.0q and (4.5) h2 with
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`
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〉
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ρ “ π{8, the numerical experiment is performed for γ P t0.5, 0.7, 1.0u. The
recorded averaged pulse heights

〈
R1pt

`
p q
〉
are shown in Fig. 4.16. For both

stimulus types, the pulsation becomes stronger when the second harmonic
interaction is included γ ă 1. The large difference in the magnitudes between
the cases h1 and h2 is due to the large amplitude ε “ 1. Especially for h2

it should be noted that early on pK ą 0.1q, the magnitude of the stimulated
pulsation starts to decline for γ “ 1. This indicates that the second harmonic
coupling which already plays a crucial role for self-organized mode locking
significantly influences the appearance of stimulated mode-locked solutions.
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Discussion

“We can only see a short distance ahead, but we can see plenty there
that needs to be done.”

– Alan Turing, Computing machinery and intelligence

Inspired by the field of laser physics, a new type of collective behavior
showing sharp pulses in the coherence radius R1ptq in systems of globally
coupled phase oscillators (3.1) has been discovered and classified. Analogous
to optical pulses that typically exhibit extreme peak intensities, the pulses
of mode-locked phase oscillators exceed the coherence values at the onset of
collective synchronization.

It is found that self-organization is facilitated by the presence of a second
harmonic coupling term, which is a minimal extension to the coupling in the
Kuramoto model. In the Kuramoto, model mode-locked solutions and phase
turbulence are found to be coexisting.

The prototypical mode-locked solution (3.17) presented reveales general
features of mode locking such as the suppression of fluctuations between
pulses in R1ptq and the appearance of a distinct maximum in R2ptq following
half a period after each pulse. From this perspective, it is the natural first
step to extend the interaction function by a second harmonic in order to
support the mode-locking phenomenon. The interesting question whether
mode-locked solutions with K ą 0 are connected to the prototype presented
at K “ 0 was not confirmed. Various types of mode-locked solutions have
been classified as harmonic or subharmonic by comparing the structure of the
effective frequencies. The given definitions can be used as a starting point to
classify mode-locked solutions in similar systems.

To gain insight into the local stability properties of the solutions, a com-
parison of the rates of expansion of phase space volume around different
mode-locked solutions (3.30) is presented, revealing that the second harmonic

103



104 5. DISCUSSION

indeed gives an additional contration along the orbit. The primary mech-
anism that stabilizes the mode-locked solutions is identified as the episode
of strong contraction during the pulses in R1ptq. Especially, it should be
noted that for the Kuramoto-type coupling there is a strict expansion of
phase space volumes between the pulses, which means that perturbations
are growing. An interesting question that is related to the field of oscillator
networks is to what extent non-locally coupled systems can exhibit mode
locking. It is a natural assumption that mode locking will persist in almost
completely connected networks. A viable suggestion to approach this prob-
lem is to remove a fraction of the connection between oscillators at random
until the mode locking breaks down.

The stability issues that appeared during the parameter scans for the
system with Kuramoto-type coupling led to a small extension of the proto-
col for performing parameter scans, which bears the conceptual difference
that the parameter perturbations are not applied at a specific time, but dis-
tributed along the trajectory. The approach is recommendable, especially for
solutions with complicated stability properties such as the mode-locked solu-
tions and in cases where parameter perturbations induce switchings between
multistable states.

The classification of the transients as type-II supertransients, cf. Fig. 3.27,
suggests that in the development of mode locking the solutions remains ex-
tremly complex until a suitable configuration in phase space is reached where-
upon the pulsation quickly grows and saturates. The exponential growth of
the average transient times with increasing system size (3.37) is also in agree-
ment with this assessment. Interestingly, the average transient times are also
found to be strongly influenced by the relative strength of the second har-
monic, which is marked by the impairment of the self-organizing mechanism
without the second harmonic γ “ 1. Note that by including even higher har-
monics in the interaction, the average transient times can be further reduced,
which has been tested but not studied in more detail.

The loss of stability of mode-locked solutions is found to be accompa-
nied by intermittency creating a bursting behavior in R1ptq, as the solution
switches between mode locking and phase turbulence. The scaling of the
intermittent behavior depends in particular on the properties of the unstable
mode-locked solution, thus one will usually find different exponents to the
power law (3.35) in different parameter regimes. Although unstable mode-
locked solutions most likely exist for the system with Kuramoto-type cou-
pling, intermittency is not observed, since typically trajectories do not make
close enough approaches to the mode-locked solution after phase turbulence
has appeared.

In the vicinity of the stability boundaries of mode-locked solutions, low-



105

dimensional chaotic attractors are found on which the system maintains
pulses in R1ptq while exhibiting a jittering of the inter-pulse intervals and
heights. The exact recurrent phase relationship is destroyed as a result, but
there is a trapping of the recurrent phase relationship in a certain region in
phase space.

The investigation of randomly perturbed equidistant natural frequencies
(3.38) showed that mode locking can persist under small quenched disorder,
where it is also shown that the smallness can be quantified in terms of the dis-
tance to the set of equidistant frequency combs (3.39). The most important
result that is indicated by the approach is that generic randomly chosen real-
izations of uniformly distributed frequencies are unlikely to be able to achieve
mode locking. An interesting direction for furhter reseach is the stabilization
of mode-locked solutions for detuned frequency combs by pulsed periodic
stimulation. The way devised to search for mode-locked solutions is helpful
in investigating networks of oscillators below the synchronization threshold
regarding possible periodic solution or chaotic attractors that are otherwise
difficult to find due to exponentially growing average transient times.

For systematically perturbed frequency combs (3.49), two different break-
down scenarios were discovered, showing a gradual degradation of mode lock-
ing for the compressed natural frequencies where the effective frequencies
readjust to different subharmonic combs multiple times, and the other ex-
hibiting an instantaneous complete breakdown for attenuated natural fre-
quencies.

Mode locking is found to appear in large ensembles with a suitable multi-
modal structure in the natural frequencies (3.50). The dynamics of the order
parameters for such systems (3.51) closely resemble what has been obtained
for (3.1) and other features, such as the average transient time scaling that
can be transfered immediately.

The self-organization of mode locking in the large ensembles follows upon
the inner-modal synchronization. The introduced modal order parameters
further reveal an interesting breathing behavior during the pulses.

For increasing spectral broadening Q in (3.50), the breakdown of mode
locking follows as expected, and a mechanism causing a period-two modula-
tion prior to the breakdown has been discovered. The intuitive explanation
of which is that with the increased Q, oscillators start to unlock from their
respective modes and are drifting. The pulsed solution acts as a forcing that
stimulates the drifting oscillators, a small fraction of which again locks to a
frequency comb with spacing ∆Ω that is shifted by ∆Ω{2. The formation
of the secondary comb in the example is facilitated to a large extent by the
second harmonic coupling. This appears as a general mechanism for how the
modulation of mode-locked solutions occurs in large ensembles.
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The second harmonic coupling is again essential for self-organized mode
locking such that without the second harmonic, mode-locked solutions were
only found for suitable initial conditions. Unfortunately, the Ott-Antonsen
ansatz cannot be applied to the system including the second harmonic, which
drastically minimizes the toolbox available to studying the continuum limit.
For a multimodal system with first harmonic coupling, the Ott-Antonsen
ansatz in principle works such that one can obtain mode-locked solutions
by following the procedure described for preparing the initial conditions. For
improperly chosen initial conditions, however, one typically encounters modal
turbulence, cf. Fig. 3.43.

The last chapter is concerned with coherence echoes and their relation
to mode-locked solutions. The coherence echo phenomenon is attributed to
the presence of a partially mode-locked state that is being formed through
the application of at least two successive stimuli to a large population of
oscillators with randomly chosen natural frequencies. Partial in this case
refers to the fact that not all oscillators with frequencies matching those
of the stimulated comb are locked. In the case of small stimuli, one might
want to disregard the nonlinear effects completely as they are in [34]. In the
mode-locking picture, the recurrence time between echoes is understood in a
natural way as the inverse of the mode spacing of the stimulated mode-locked
comb.

For the studied synthetic mode-locked initial state Def. 5, it is shown
that the magnitude of the echoes behave in a non-monotonous fashion and
that the interaction exerts a strong impact on the echoes with respect to the
coupling strength and the second harmonic contribution. The non-monotonic
behavior of the magnitude of the coherence echoes can be found for the
partially mode-locked states formed by two stimuli, cf. Fig. 4.4. While the
basic echo phenomenon and the non-monotonous behavior of the magnitude
of the echoes can be explained on a linear level, it is also clear that for a fully
mode-locked initial condition like Def. 5, the nonlinear coupling becomes
more significant due to the magnitude of R1p0q.

It is demonstrated that by applying a pulsed periodic stimulation to the
ensembles of phase oscillators, the partially mode-locked state that is accessed
by two consecutive stimuli gradually develops until a fully-locked mode comb
is formed. The formation of the fully-locked mode comb is indepedent of the
stimulus type, however, the precise parameters can have a great impact on
the stimulated pulsed solution. It is shown that in the zero coupling limit,
where the evolution for each oscillator can be reduced to a circle map, com-
plex structures in the effective frequencies arise through stimulation. While
the effective frequencies developed are independent of the initial conditions, it
is clearly shown that the collective response R1ppτ

`q varies extremely for dif-
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ferent initial conditions. Here, it is especially noteworthy that stimulation of
identical initial conditions results in a significant increase of the fluctuations
of R1ppτ

`q as compared to the stimulation of uniform initial conditions.
Including the global interaction as well pK ą 0q, increases the magnitude

of the stimulated pulses, which directly relates to a growth of the locking
plateaus. Besides the impact of the global coupling in general, it was also
found that the second harmonic γ ă 1 significantly increases the strength of
the stimulated pulsed solutions.

The general question that stands behind mode locking is, how a large
number of oscillators has to interact in order to form and sustain a recurrent
phase relationship conforming to a momentary high coherence measure. In-
spired by the dynamics of mode-locked lasers, global coupling schemes were
chosen and found to be suitable to accomplish this task. The discovery of
mode locking as a collective phenomenon in the general setup of globally-
coupled phase oscillators with Kuramoto or Kuramoto-Daido type coupling
gives a new perspective on the dynamics of coupled phase oscillators below
the synchronization threshold K ă KC . The generality of the investigated
phase oscillator models indicates that the phenomenon is accessible in a wide
range of systems that feature a global interaction scheme and sufficiently-
structured natural frequencies.
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