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Abstract: In transportation light metal matrix composites (L-MMCs) are used increasingly due to their
improved creep resistance even at higher application temperatures. Therefore, the creep behavior and
failure mechanisms of creep loaded particle reinforced L-MMCs have been investigated intensively.
Until now, creep damage analyses are usually performed ex situ by means of interrupted creep
experiments. However, ex situ methods do not provide sufficient information about the evolution of
creep damage. Hence, in situ synchrotron X-ray 3D-µ-tomography investigations were carried out
enabling time and space resolved studies of the damage mechanisms in particle-reinforced titanium-
and aluminum-based metal matrix composites (MMCs) during creep. The 3D-data were visualized
and existing models were applied, specifying the phenomenology of the damage in the early and
late creep stages. During the early stages of creep, the damage is determined by surface diffusion in
the matrix or reinforcement fracture, both evolving proportionally to the macroscopic creep curve.
In the late creep stages the damage mechanisms are quite different: In the Al-MMC, the identified
mechanisms persist proportional to creep strain. In contrast, in the titanium-MMC, a changeover to
the mechanism of dislocation creep evolving super-proportionally to creep strain occurs.

Keywords: Al-MMC; Ti-MMC; particle reinforced; creep mechanism; in situ experiment;
3D micro-tomography

1. Introduction

Since their first application in the middle of 1970s in the space shuttle-program, metal matrix
composites (MMCs) are commercially used in transport, e.g., automotive and aircraft applications,
especially in engine and turbine parts [1–3]. In this field, the materials are exposed to high
mechanical and thermal loads leading to creep [4]. Due to their lower thermal expansion and good
thermal conductivity, lightweight-MMCs are well-suited for use at creep conditions and particulate
reinforced aluminum- and titanium-based MMCs are frequently investigated until today, e.g., by [5–12].
Creep occurs at constant stress below the yield point and at constant elevated temperatures above 0.3–0.4
TH, with TH being the homologous temperature calculated from the applied temperature T divided by
the melting temperature Tm (TH = T/Tm) [13]. The time-dependent evolution of the strain is usually
shown in a creep curve exhibiting three different creep stages labeled as primary, secondary, and tertiary
creep stages. The different creep stages are defined by the creep rate, which can be determined by many
physical mechanisms, the fundamentals of which are described in, e.g., [14–20]. Here, the creep stages
are labeled as “early” and “late”. These terms refer to the investigated microstructural mechanisms of
void formation and void growth taking place as well as their coincide with the creep strain (Figure 1)
and in this context follow the designation of Greenwood [21].
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are due to the manufacturing process, can occur [22]. However, the curve progression of the 
particular creep curves is essentially similar, e.g., in [22–24]. In the case of the unreinforced metals, 
the relationship of cavitation to the creep curve is well known and described in [17,18]. From this 
literature it is further known that in the early stage, the creep damage is determined by void 
formation and the later creep stage by void growth. The void formation is related to the number of 
voids 𝑵𝒗 and is a function of the strain 𝒇(𝜺), whereas the void growth is related to the void size, 
respectively, the void volume 𝑽𝒗, and is a function of the strain multiplied by time 𝒇(𝜺 ∙ 𝒕) [21]. 
Void formation: 𝑵𝒗 → 𝒇(𝜺) (1) 

Void growth: 𝑽𝒗 → 𝒇(𝜺 ∙ 𝒕) (2) 

Isaac et al. show that with increasing creep time, the number of voids decreases, whereas the 
volume of the voids increases [25]. The investigations and analysis were carried out on a brass alloy, 
Cu–40Zn–2Pb containing three phases: α-brass, β-brass, and a Pb-rich phase, taking time-dependent 
evolution of shape, number, volume, and spatial orientation of voids into account. Spherical, 
ellipsoid, and rod-shaped voids as well as complex shape were divided, whereas the complex shape 
was identified to have the main influence on the creep damage regarding void number and size. 
Additionally, time-dependent changes of the spatial orientation to the loading axis of all void shapes 
from parallel at the beginning to perpendicular at the end of the creep test were found. This was 
assumed to be related to enhanced void growth, but without identifying the dedicated mechanism. 

The morphology of the voids, however, is caused by formation and growth mechanisms. Cocks 
and Ashby defined the three creep mechanisms of grain boundary diffusion, surface diffusion, and 
dislocation creep [18]. The mechanism of grain boundary diffusion is specified as related to spherical 
void shape, the surface diffusion is corresponding to an ellipsoidal void shape with the longest axis 
oriented perpendicular to the load axis, and the dislocation creep is associated to an ellipsoidal void 
shape with the longest axis oriented parallel to the load axis (Figure 2). 
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The formation and development of creep damage in the context of metals is synonymous to
cavitation, whereas in metal matrix composites, additional creep damage like delamination of the
matrix at the interface to the ceramic phases, fracture of particles, as well as growth of pores, which are
due to the manufacturing process, can occur [22]. However, the curve progression of the particular
creep curves is essentially similar, e.g., in [22–24]. In the case of the unreinforced metals, the relationship
of cavitation to the creep curve is well known and described in [17,18]. From this literature it is further
known that in the early stage, the creep damage is determined by void formation and the later creep
stage by void growth. The void formation is related to the number of voids Nv and is a function of the
strain f(ε), whereas the void growth is related to the void size, respectively, the void volume Vv, and is
a function of the strain multiplied by time f(ε·t) [21].
Void formation:

Nv → f(ε) (1)

Void growth:
Vv → f(ε·t) (2)

Isaac et al. show that with increasing creep time, the number of voids decreases, whereas
the volume of the voids increases [25]. The investigations and analysis were carried out on a
brass alloy, Cu–40Zn–2Pb containing three phases: α-brass, β-brass, and a Pb-rich phase, taking
time-dependent evolution of shape, number, volume, and spatial orientation of voids into account.
Spherical, ellipsoid, and rod-shaped voids as well as complex shape were divided, whereas the complex
shape was identified to have the main influence on the creep damage regarding void number and size.
Additionally, time-dependent changes of the spatial orientation to the loading axis of all void shapes
from parallel at the beginning to perpendicular at the end of the creep test were found. This was
assumed to be related to enhanced void growth, but without identifying the dedicated mechanism.

The morphology of the voids, however, is caused by formation and growth mechanisms.
Cocks and Ashby defined the three creep mechanisms of grain boundary diffusion, surface diffusion,
and dislocation creep [18]. The mechanism of grain boundary diffusion is specified as related to
spherical void shape, the surface diffusion is corresponding to an ellipsoidal void shape with the
longest axis oriented perpendicular to the load axis, and the dislocation creep is associated to an
ellipsoidal void shape with the longest axis oriented parallel to the load axis (Figure 2).

In situ micro-tomography focusing on the investigation of the phenomenon of creep damage in
MMCs provide a new insight into the internal material processes under mechanical and/or thermal
loading [26–31].

In this study, time-resolved in situ 3D-analyses by synchrotron X-ray µ-tomography were carried
out to analyze the formation and growth of the cavitation based on the number and the volume as well
as the morphology of the voids during creep to approach the creep mechanisms behind in the early
and late creep stages.
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2. Materials and Methods

2.1. Materials

Discontinuously particle-reinforced metal matrix composites (MMC) based on lightweight metal
matrices of an aluminum-alloy and commercially pure (cp) titanium were investigated (Table 1).
The matrix of the aluminum-based material is a precipitation hardening alloy of the 6xxx-series,
AA6061, reinforced by 22% Al2O3-particles (further referred to as Al-MMC) manufactured by casting,
subsequently followed by hot extrusion and a T6-heat treatment in the overaged condition to prevent
changes of the material during creep. The T6-heat treatment was carried out by a solution heat
treatment at T = 560 ◦C for 30 min and quenched in water, followed by an aging at room temperature
for 93 h, a subsequently aging at T = 160 ◦C for 8 h and overaging at T = 300 ◦C for 2 h as described in
detail by Requena et al. in [23,32,33]. The titanium-MMC is based on a cp-titanium matrix (99.5%)
reinforced by 15% SiC-particles (further referred to as Ti-MMC) manufactured by powder metallurgy
and subsequently hot extruded as described in [34].

Table 1. Investigated materials.

Material Properties AA6061 + 22% Al2O3 cp-Titanium + 15% SiC

matrix material precipitation hardening alloy commercially pure
reinforcement particles particles

manufacturing casting
hot extrusion

powder metallurgical
hot extrusion

heat treatment T6 + over aged -

The distribution of the particles is quite uniform in both light metal matrix composite
(L-MMC)-materials. However, depending on the hot extrusion process, the longitudinal axes of
elongated reinforcement particles tend to be aligned along the extrusion direction (ED) as it can be
derived from micrographs taken by light microscopy (LM) and scanning electron microscopy (SEM)
(Figure 3).
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Figure 3. Longitudinal section, parallel to extrusion axis: (a) Al-MMC (LM); (b) Ti-MMC (SEM). 
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2.2. Miniature Creep Device

In order to perform tomographic investigations on in situ creep experiments under synchrotron
radiation conditions, several boundary conditions have to be fulfilled, in regard to the beamline
specifications at the ID15A beamline at the European Synchrotron Radiation Facility (ESRF, Grenoble,
France). Particularly, the requirements of the rotation table, the detector, as well as the measurement
procedure had to be taken into account. The ultimate load of the rotation table, where the creep device
is mounted, is limited to approx. 10 kg. Depending on the image size of the camera, the size of the
measured volume must be adapted in order to depict the region of interest. Furthermore, the creep
device should be as free of vibrations as possible to prevent blurring within the radiographs.

These boundary conditions were fulfilled by a miniature creep device with a total weight less
than 1 kg developed by TU Berlin, which has been described in detail in [35–37]. The mechanical load
F on the specimen is applied by a vibration-free mechanical spring, whose linear characteristic curve
can be used to calculate and adjust the exact load with an accuracy less than ± 0.1 N. The applied stress
σ is calculated with respect to the cross section A of the sample by

σ =
F
A

(3)

During the creep tests, the elongation ∆l of the samples was measured by a Linear Variable
Differential Transducer (LVDT) (Type SM2-T-KA, WayCon, Taufkirchen, Germany) with a measuring
range of ± 1 mm and a deviation of ± 0.1 µm. The elongation was recorded by data acquisition software.
From that the strain ε of the sample was calculated by

ε =
∆l
l0

(4)

where l0 is the initial length of the gauge volume of the specimen. Further details of the specimen
geometry are given below.

Due to experimental and geometrical specifications considered in the design of the creep device,
the creep test procedure is different to common laboratory equipment: First, the load has to be applied
before starting the heating process. Second, the elongation of the sample cannot be measured directly
at the gauge volume due to the required rotation of the sample during the experiment. Therefore,
the displacement transducer was mounted axially on the top of the miniature creep device. Once the
thermal equilibrium of the entire apparatus is reached, only the extension of the sample is measured.
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2.3. Specimen Preparation and Dimensions

Miniature creep specimens were machined by turning from the hot extruded cylinders.
The longitudinal axis of the specimens corresponds to the extrusion direction. Polishing the surface of
the gauge volume prevented early failure due to roughness. The dimensions of the specimen (Figure 4)
are determined by the experimental conditions given at the beamline. To ensure that the processes
involved can be detected, the size of the volume of interest was adapted to the field-of-view of the
detector (compare Section 2.4). Therefore, a gauge length l0 = 1 mm and a diameter d0 = 1 mm of the
specimen were selected.
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2.4. Experimental Setup at the Synchrotron Facility

The in situ 3D-µ-tomography experiments were carried out at the ID15A at the European
Synchrotron Radiation facility (ESRF, Grenoble, France) using white beam conditions. Due to the
long path of the beam through the experimental hutch an evacuated tube was installed to prevent
scattering effects of the beam with ambient air. The distance from the detector optics to the sample was
100 mm. The DALSTAR 1M60 camera provides a resolution of 1024 × 1024 pixels and a field-of-view of
1.4 mm × 1.4 mm. In the reconstructed 3D-volumes a resolution of 1.6 µm × 1.6 µm × 1.6 µm per voxel
was achieved. For the tomographic measurements on the material AA6061 + 22% (Al2O3)p, for every
tomogram a total of 750 radiographs were recorded with an angular step size of 0.24◦/180◦ rotation
and an exposure time of 1 s each. Therefore, the measurement time for a tomogram was approx.
12 min. On cp-Titanium + 15% (SiC)p, the sample was rotated by an angle of 180◦ with a step size of
0.3◦. About 500 up to 600 radiographs per 180◦ were recorded by an exposure time of 50 milliseconds,
resulting in a measuring time for each tomogram of about 1 or 2 min in total. This enables to obtain
sharp tomograms even in the tertiary creep stage at a high strain rate of the creep samples, in which no
motion artifacts due to measurement occurred.

2.5. Data Processing

The reconstruction procedure of the 3D-volumes is described in [38]. The reconstruction software
of the ESRF computing infrastructure NICE (Networked Interactive Computing Environment, ESRF,
Grenoble, France) including the correction of reconstruction artefacts was applied. Using the software
VGSTUDIO MAX 2.1 (Volume Graphics, Heidelberg, Germany), the reconstructed 3D-data were
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visualized and additionally the size, shape, and orientation of the creep voids were analyzed by the
defect analysis tool.

2.6. Creep Experiments

The experimental parameters of thermal and mechanical loads were chosen to lead to fracture in
several hours while simultaneously exhibiting characteristic creep behavior. Therefore, creep loading
parameters were selected resulting in creep rates less than 1 × 10−6 s−1 to ensure that no hot tensile tests
are performed [39]. Both materials were investigated at various temperatures and loads. The creep
experiments were conducted in air. The applied temperature was reached after around 1 min and
kept constant for the whole experiment with an accuracy of ± 1 K. Temperature and displacement
of the sample as well as tomograms were recorded during the experiment from the initial state until
creep fracture of each sample. Table 2 shows the selected mechanical and thermal loads as well
as the number of analyzed tomograms, which is due to the number of recorded and in addition to
evaluable tomograms.

Table 2. Creep loading and number of tomograms.

Material Stress
(MPa)

Temperature
(◦C) Number of Analyzed Tomograms

AA6061 + 22% (Al2O3)p

50 300 14
60 300 12
70 300 6

190 200 42

cp-Titanium + 15% (SiC)p

150 510 15
180 510 16
180 480 11

3. Results

3.1. Creep Curve

In Figure 5, the creep data for both MMC-materials are plotted in a diagram of strain ε over time t.
All of the obtained creep curves exhibit a typical creep behavior in the early and late creep stages as
shown in Figure 1. The elastic primary creep stages ahead of the early creep stage show an unusual
creep behavior [18] due to the modified test procedure mentioned above.
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The progression of the creep curves as well as the analyzed creep parameter (Table 3) show a
dependence on temperature and/or stress. The strain at fracture ε f r of the Al-MMC in the range of
4–14% is significantly lower than of the Ti-MMC of ε f r ≈ 40%. The creep test of the Ti-MMC at a
load of σ = 150 MPa and the temperature of T = 480 ◦C was prematurely stopped due to the end of
the beamtime.

Table 3. Creep parameter.

Material
Stress
σ

(MPa)

Temperature
T

(◦C)

Time to
Fracture tfr

(s)

Strain at
Fracture εfr

(%)

Contraction
at Fracture Z

(%)

Min. Creep
Rate

.
εmin

(s−1)

Creep Stage
(% of Time to

Fracture)

Early Late

Al-MMC

50 300 46,350 13.38 4.4 8.2 × 10−7 49 46
60 300 11,970 8.97 7.3 2.7 × 10−6 39 54
70 300 5140 7.66 9.6 4.4 × 10−6 32 63
190 200 20,270 4.62 4.8 8.6 × 10−7 50 45

Ti-MMC
150 510 58,970 36 35 3.16 × 10−6 46 50
180 510 23,130 35 35 3.85 × 10−6 17 71
180 480 73,070 1 25 1 - 1.31 × 10−6 32 1 66 1

1 extrapolated.

3.2. Creep Damage

3.2.1. Total Cavitation

To evaluate the creep damage, several tomograms were taken during creep and the measured
overall cavitation was related to the creep strain at the point of tomogram acquisition. The starting and
the end points of each creep curve and the corresponding cavitation development were compared.
Analyzing an entire creep experiment (early and late creep stages), the cavitation growth of the two
investigated materials show different behaviors: For all investigated mechanical and thermal stresses
in the Al-MMCs, the cavitation growth function is proportional to the creep strain (Figure 6a) as it was
shown before in [40]. This cannot be observed for the Ti-MMC: Considering the entire creep curve
(early and late stage) for all investigated mechanical and thermal stresses, the growth function of the
cavitation is not proportional to the strain (Figure 6b). However, disregarding the development of
cavitation in the late creep stage and adapting the corresponding cavitation development to strain
curve only in the section of the early creep stage, here a proportionality of the cavitation to creep strain
can be seen also (Figure 6c).

Metals 2020, 10, x FOR PEER REVIEW 7 of 23 

 

Table 3. Creep parameter. 

Materi
al 

Stres
s 𝝈 

(MPa
) 

Temperature 𝑻 
(°C) 

Time to 
Fracture 𝒕𝒇𝒓 

(s) 

Strain at 
Fracture 𝜺𝒇𝒓 

(%) 

Contracti
on at 

Fracture 𝒁 
(%) 

Min. Creep 
Rate 𝜺ሶ 𝒎𝒊𝒏 

(s−1) 

Creep Stage 
(% of Time 
to Fracture) 

Early Late 

Al-
MMC 

50 300 46,350 13.38 4.4 8.2 × 10−7 49 46 
60 300 11,970 8.97 7.3 2.7 × 10−6 39 54 
70 300 5,140 7.66 9.6 4.4 × 10−6 32 63 

190 200 20,270 4.62 4.8 8.6 × 10−7 50 45 

Ti-
MMC 

150 510 58,970 36 35 3.16 × 10−6 46 50 
180 510 23,130 35 35 3.85 × 10−6 17 71 
180 480 73,0701 25 1 - 1.31 × 10−6 32 1 66 1 

1 extrapolated. 

3.2. Creep Damage 

3.2.1. Total Cavitation 

To evaluate the creep damage, several tomograms were taken during creep and the measured 
overall cavitation was related to the creep strain at the point of tomogram acquisition. The starting 
and the end points of each creep curve and the corresponding cavitation development were 
compared. Analyzing an entire creep experiment (early and late creep stages), the cavitation growth 
of the two investigated materials show different behaviors: For all investigated mechanical and 
thermal stresses in the Al-MMCs, the cavitation growth function is proportional to the creep strain 
(Figure 6a) as it was shown before in [40]. This cannot be observed for the Ti-MMC: Considering the 
entire creep curve (early and late stage) for all investigated mechanical and thermal stresses, the 
growth function of the cavitation is not proportional to the strain (Figure 6b). However, disregarding 
the development of cavitation in the late creep stage and adapting the corresponding cavitation 
development to strain curve only in the section of the early creep stage, here a proportionality of the 
cavitation to creep strain can be seen also (Figure 6c). 

(a) (b) 

Figure 6. Cont.
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3.2.2. Creep Damage Formation and Growth Mechanism

The total cavitation and its evolution are determined by the number of voids and the void volume
as well as their respective evolution. The void formation is defined by the number of voids Nv as
a function of the strain (Equation (1)) and the void growth by the void volume Vv as a function
of the strain multiplied by time (Equation (2)) [21]. From each tomogram, the total numbers of
voids, their individual size, shape, and orientation related to the load axis were derived. Beyond
Huppmann et al. [40] the formation and growth mechanisms like grain boundary diffusion, surface
diffusion, and dislocation creep were analyzed on the basis of the morphology of the voids (spherical,
ellipsoidal perpendicular, or parallel to the load axis) as previous defined in Figure 2. Furthermore,
void formation and void growth are investigated in the early and late creep stages separately. Due to
blurred tomograms in the late creep stage in the Al-MMC at a stress σ = 70 MPa and temperature
T = 300 ◦C, the development of the voids could not be evaluated.

Al-MMC

• Void formation

In Figure S1 of the Supplementary Materials, the developments of the mechanisms are shown in
reference to the creep loading presented in Table 2. A mostly linear relationship of the strain to the total
number of cavities equivalent to the void formation was observed in the early and late creep stages and
can be expressed by

ε = Nv0 + B·t (5)

where Nv0 is the initial number of voids and the slope B specifies the increasing number of voids.
This is equivalent to a continuous formation of new voids over the entire creep process (Figure 7).
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significantly less pronounced at high mechanical load and lower temperature. 

In contrast, stress and temperature dependencies were analyzed during the late stages: At a 
temperature of 𝑇 =  300 °C, increasing the stress by ∆𝜎 =  10 MPa leads to a decrease in void 
formation. At lower temperature 𝑇 = 200 °C and higher stress 𝜎 = 190 MPa, the void formation due 
to particle fracture is high, while void formation due to grain boundary diffusion and dislocation 
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Figure 7. Al-MMC, σ = 50 MPa, T = 300 ◦C, void formation: (a) 0.004 t f r; (b) 0.11 t f r; (c) 0.24 t f r;
(d) 0.78 t f r.

For the lowest mechanical load σ = 50 MPa and T = 300 ◦C, a short time before fracture an
inverse exponential function appeared (Figure S1b), which is related to a decrease of the void formation
(Figure 7c,d) due to void growth, which will be discussed later. According to the various shapes of the
voids, the different formation mechanisms and their respective fractions of the total void formation
process were determined. In all stages, void formation is predominantly defined by ellipsoidal voids
oriented perpendicular to the mechanical loading direction (Figure 2a–f), which in [18] was related to
the process of surface diffusion. The visual analyses of the tomograms confirmed, that surface diffusion
takes place in the metallic matrix at low mechanical load (σ = 50, 60, 70 MPa) and higher temperature
(T = 300 ◦C) (Figure 8a). However, at higher load (σ = 190 MPa) and lower temperature (T = 200 ◦C)
this is no longer valid and in the investigated Al-MMC, the ellipsoidal voids oriented perpendicular
to the loading axis were identified to be caused by particle fracture (Figure 8b). Furthermore, in all
investigations the void formation processes by grain boundary diffusion and dislocation creep take
place simultaneously, albeit on a smaller scale.
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In the early stages, all void formation processes in the matrix as well as particle fracture
(Figure S1a,c–e) respectively occurred in the same magnitude and measurement accuracy, independent
of temperature and mechanical load (Figure 9a). As an exception, the grain boundary process is
significantly less pronounced at high mechanical load and lower temperature.

In contrast, stress and temperature dependencies were analyzed during the late stages: At a
temperature of T = 300 ◦C, increasing the stress by ∆σ = 10 MPa leads to a decrease in void formation.
At lower temperature T = 200 ◦C and higher stress σ = 190 MPa, the void formation due to particle
fracture is high, while void formation due to grain boundary diffusion and dislocation creep of the
matrix is low (Figure 9b). This implies that the void formation processes in the later creep stages are
stress and temperature dependent.
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• Void growth

Concurrent to the void formation, void growth takes place in the early and late creep stages.
However, the rates of the total void growth at all investigated creep load parameters are non-linear
(Figure S2). During the early creep stage, the rates predominantly follow an inverse exponential
function (Figure S2a,c,e,f), except at T = 300 ◦C and σ = 70 MPa, where an exponential void growth was
detected (Figure S2e). In the late creep stage, the inverse exponential void growth turns to exponential
growth (Figure S2b,d,g). The exponential void growth Vv is determined by

Vv = Vv0 ·eλt (6)

where Vv0 is the initial void volume and λ the growth constant.
Again, analyzing the development of the individual growth mechanisms in all creep stages,

at T = 300 ◦C and any mechanical stress all mechanisms follow the progression of the total growth
curve. At the temperature T = 200 ◦C, this applies only to the growth mechanism of the gap width
due to particle fracture, while grain boundary diffusion and dislocation creep in the matrix take place
linearly. Hence, comparable to the void formation the main processes of void growth observed are the
surface diffusion at T = 300 ◦C and growth of the gap width due to particle fracture at T = 200 ◦C
(Figure S2).

The individual growth mechanisms as a function of stress and temperature in the early and late
creep stages can be illustrated using the values of the growth constant λ (Figure 10). In the early creep
stages, all growth mechanisms increase with rising stress at T = 300 ◦C. At higher stress σ = 190 MPa
and lower temperature T = 200 ◦C the void growth decreases significantly. Therefore, the void growth
in the early creep stages is depending on stress and temperature (Figure 10a). In the later creep stages,
void growth at higher stress and constant or lower temperature is increasingly determined by the
processes of surface diffusion or the growth of the gap width of particle fractures. This can be derived
from the increasing growth constant λ (Figure 10b). In contrast, the mechanisms of grain boundary
diffusion and dislocation creep decrease. Here, the growth functions change from exponential to
linear functions, the slope B also becomes smaller (Figure 10c). Although it is impossible to derive the
particular fraction of the stress or temperature effect.
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Figure 10. Al-MMC, void growth: (a) early stage, exponential fit; (b) late stage, exponential fit; (c) late
stage, linear fit.

In summary, the developments of void formation as well as growth by the mechanisms of surface
diffusion in the matrix and particle fracture are responsible for the evolution of the total creep damage,
whereas the mechanisms of grain boundary diffusion and dislocation creep in the matrix have a minor
influence in the Al-MMC. Additionally, the creep damage is defined by void formation in the early
stage and by void growth in the late creep stage. The growth functions of total void formation and
void growth of the individual microstructural damage mechanisms predominantly show the same
curve progression.

Ti-MMC

• Void formation

Comparable to the Al-MMC, a linear behavior of the void formation was observed in the early
creep stage, both for the total void formation as well as the individual mechanisms of surface diffusion,
grain boundary diffusion, and dislocation creep (Figure S3a,c,e).

The values of the proportionality factors B at the stress σ = 150 MPa of the total void numbers
as well as the void numbers of the individual mechanisms are lower by a factor 5–6 than those at
σ = 180 MPa. Here, at different temperatures (T = 510 ◦C and T = 480 ◦C) the values are almost
similar. Increasing the stress by ∆σ = 30 MPa consequently causes an enhanced void formation by
all microstructural mechanisms. The diffusion mechanisms and dislocation creep of the matrix are
therefore stress dependent. While the total number of cavities, and thus all mechanisms of the void
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formation, gives no indication of temperature dependence, the individual mechanisms show a slight
temperature dependence. The grain boundary diffusion was observed to increase due to increasing
temperature at constant stress, whereas the mechanisms of surface diffusion and dislocation creep are
declining (Figure 11).
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In the late creep stage, the void formation due to the formation mechanisms—the total void
formation as well as the individual mechanisms—occurs quite differently (Figure S3b,d).

Although the surface diffusion is the main mechanism of void formation, the dislocation creep
gains influence. A decreasing of the void formation by surface diffusion leads to a decreasing of the total
void formation, despite being partially compensated by increase of dislocation creep. The mechanism of
grain boundary diffusion still plays a minor role in the process of total cavitation formation. A graphical
comparison of the fit parameters in the late creep stages is not possible due to the different functions
(linear, exponential, bounded above, as well as decreasing).

• Void growth

In the early creep stages, the total void growth as well as the individual growth mechanisms
follow the same functional rule bounded above (Figure S4a,c,e). The main process of void formation
is the surface diffusion. Its progression of the growth curve is almost congruent to the total void
growth. The growth curve of the growth mechanism by grain boundary diffusion is also congruent,
albeit with a significantly lower proportion. Hence, the values of the growth constants λ were found
to be similar (Figure 12a). Furthermore, increasing the stress results in higher growth rates of the
mechanism by dislocation creep independent from temperature. Comparing the void volumes in the
early creep stages at the same value ε·t = 2 × 103 [1·s] illustrates the effect of stress and temperature
on void growth: Increasing the stress by ∆σ = 30 MPa from 150 to 180 MPa at constant temperature
T = 510 ◦C results in a ten-fold higher growth of the void volume (Figure S4b,d). When keeping the
stress constant at σ = 180 MPa and decreasing the temperature by ∆T = 30 K from 510 ◦C to 480 ◦C,
this results in an approximate halving of the void volume (Figure S4c,e).

All curves of the total void volumes and the individual mechanisms at T = 510 ◦C can be
approximated by an exponential growth function in the later creep stages. Compared to the void
formation processes, the effect of the surface diffusion is decreasing, while the dislocation creep becomes
the main process determining void growth (Figure S4b,d). Figure 12b shows that the enhancement of
the stress results in higher growth rates of the total void volume. In sum, this is caused in particular by
a higher proportion of the dislocation creep mechanism, but is reduced by a decreasing growth rate of
the surface diffusion, while grain boundary diffusion remains more or less constant.
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Figure 12. Ti-MMC, void growth, exponential fit: (a) early stage; (b) late stage.

In summary, for the Ti-MMC, the development of the void formation as well as void growth in
the early stage is mainly determined by surface diffusion, while in the progressing of creep in the
late creep stage the dislocation creep becomes the predominant mechanism. The latter can also be
visually taken from the tomography images based on the elliptical pore orientation along the load axis
in Figure 13, where the void development in the late creep stage is shown.
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Figure 13. Ti-MMC, σ = 150 MPa, T = 510 ◦C, 2D longitudinal section through tomogram: (a) 0.94 t f r;
(b) 0.95 t f r; (c) 0.96 t f r; (d) 0.98 t f r.

Similar to the Al-MMC, the grain boundary diffusion has a minor influence on void formation
and void growth.
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4. Discussion

4.1. Creep Curve and Parameter

In the absence of repeated measurements, the plausibility of the creep parameters, such as creep
time t f r, minimum creep rate

.
εmin, strain at fracture ε f r, as well as contraction at fracture Z of the

individual in situ experiments on miniature samples, and thus also the plausibility of the creep
mechanisms taking place have to be estimated. Comparative studies on miniature and standardized
samples were carried out by different authors observing similar creep behavior, e.g., [41–46]. However,
in the literature a downsizing of standardized sample geometries maintaining the proportions was
used. In the study presented here, this cannot be complied. Fulfilling the boundary conditions due to
the field of view of the detector at the synchrotron X-ray facility, the gauge length of the miniature
creep samples inserted is equal to the diameter of the sample. In this context, the two differences
to standardized creep tests shall be discussed: First, the geometry of the miniature creep specimen.
Second, the modified test procedure due to these requirements of the tomography experiments.

An unusual elastic primary creep stage occurred ahead of the early creep stage with a decreasing
creep rate. Applying the same miniature creep device used here, [25,40] observed an unusual elastic
primary creep behavior also, but do not provide any explanation for this. A similar creep behavior in
the elastic primary stage was observed in the literature as well [25,40–42]. Using standard tensile testing
machines, [41,42] attribute apparently negative strain rates to the fact that the miniature specimens
are aligned in the specimen holders when the mechanical load is applied. Whereas in the secondary
and tertiary creep stages, good agreement of the creep curves of miniature samples and standard
samples were found. Alignment issues concerning the specimen holder, which could be affecting the
primary creep stage can be excluded in our investigations, since the sample is already subjected to the
mechanical load before heating.

While there is a lack of literature regarding the cp-titanium matrix material to estimate the
plausibility of the creep measurements presented here, the obtained creep parameters of the Al-MMC
(Table 3) were found to be comparable to results presented in the literature using standardized samples
of the same material [5,23]. The values of the time to fracture t f r and the Norton-plot obtained in
our investigations are in good agreement with the literature (Figure 14a,b). In contrast, the strains at
fracture ε f r are larger compared to values presented in the literature (Figure 14c). According to the
guidelines of European Committee for Standardization (CEN) regarding the estimation of uncertainties
in creep tests, the calculation of a reference length is recommended for the assessment of the resulting
error [47]. However, the miniature specimen’s geometry and the assumption of a stress exponent n = 5
(n = 4.6 [5], n = 5.4 [23]) as specified by CEN, the calculation of the reference length results in merely a
small change in the measured length, which does not explain the magnitude of the difference.

In addition to the geometry factor of the specimens, the modified creep test procedure, must be
taken into account. Broeckmann et al. explains the influence of the testing temperature on the
strain rate curve for Al-MMC [5]. They related large deviations in the results of various authors at
temperatures higher than T = 300 ◦C to the different durations of the heating and preheating phases in
the test. In the present work, the heating phase was kept very short due to the experimental boundary
conditions. It can therefore be assumed, that the results deviating from the literature are caused by,
among other things, the different heating procedures of the experiments. Since the elongation of the
miniature sample was measured out of the gauge volume, the thermally induced total expansion of
the miniature creep device during the heating process at already applied mechanical stress has to be
taken into account. This affects the elastic primary creep stage, thus apparently negative strain occurs.
Due to higher test temperatures, this effect is more pronounced in the Ti-MMC (Figure 5b) than in the
Al-MMC (Figure 5a). After reaching the thermal equilibrium (7–10 min) and passing the minimum
of the creep curve in the subsequent defined early and late creep stages, only the elongation of the
sample is measured. However, since this measurement related artifact can neither be quantified nor
estimated with conventional methods, the magnitude of the strains in the initial (elastic primary) stage
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suggest that the experimental procedure may be responsible for the higher strains of the miniature
specimens compared to the standard specimens.Metals 2020, 10, x FOR PEER REVIEW 15 of 23 

 

  
(a) (b) 

(c) 

Figure 14. Creep parameter: (a) creep diagram; (b) Norton-diagram; (c) strain at creep fracture. 

In addition to the geometry factor of the specimens, the modified creep test procedure, must be 
taken into account. Broeckmann et al. explains the influence of the testing temperature on the strain 
rate curve for Al-MMC [5]. They related large deviations in the results of various authors at 
temperatures higher than 𝑇 = 300 °C to the different durations of the heating and preheating phases 
in the test. In the present work, the heating phase was kept very short due to the experimental 
boundary conditions. It can therefore be assumed, that the results deviating from the literature are 
caused by, among other things, the different heating procedures of the experiments. Since the 
elongation of the miniature sample was measured out of the gauge volume, the thermally induced 
total expansion of the miniature creep device during the heating process at already applied 
mechanical stress has to be taken into account. This affects the elastic primary creep stage, thus 
apparently negative strain occurs. Due to higher test temperatures, this effect is more pronounced in 
the Ti-MMC (Figure 5b) than in the Al-MMC (Figure 5a). After reaching the thermal equilibrium (7–
10 min) and passing the minimum of the creep curve in the subsequent defined early and late creep 
stages, only the elongation of the sample is measured. However, since this measurement related 
artifact can neither be quantified nor estimated with conventional methods, the magnitude of the 
strains in the initial (elastic primary) stage suggest that the experimental procedure may be 
responsible for the higher strains of the miniature specimens compared to the standard specimens. 

Hence, the results of the in situ creep tests carried out here are comparable with results on 
standard samples. Additionally, all of the obtained creep curves show well-known dependencies due 
to mechanical load and temperature [39] (Table 3, Figure 5). These findings demonstrate the 
plausibility of the experimental results presented in this study, and in turn, imply that the creep 
mechanisms taking place are reliable as well. 
  

Figure 14. Creep parameter: (a) creep diagram; (b) Norton-diagram; (c) strain at creep fracture.

Hence, the results of the in situ creep tests carried out here are comparable with results on
standard samples. Additionally, all of the obtained creep curves show well-known dependencies due
to mechanical load and temperature [39] (Table 3, Figure 5). These findings demonstrate the plausibility
of the experimental results presented in this study, and in turn, imply that the creep mechanisms taking
place are reliable as well.

4.2. Creep Mechanisms

The ductility of materials during creep is characterized by the strain at fracture ε f r and the
contraction at fracture Z, which are influenced by the creep loading, the microstructure, and the
creep mechanisms.

Compared to the Ti-MMC, the Al-MMC material exhibited lower strain ε f r and contraction Z
at fracture (Table 3), indicating a less ductile creep behavior. Even at room temperature, cp-titanium
(grades 1–4) exhibits strain at fracture ε f r = 15–30% and contraction at fracture Z = 25–35% [48,49].
At an elevated temperature T = 510 ◦C for cp-Titanium, Luster et al. report values of ε f r = 50% and
Z = 85% [50]. In the literature, the presence of particles as a reinforcing phase is considered to promote
creep resistance compared to the non-reinforced Ti-matrix alloy, resulting in less ductility [9,51].
As ductility decreases, the strain and necking at fracture are lower as well. Literature findings and
the results presented here (ε f r = 35% and Z = 35%, Table 3), therefore indicate, that the addition of
15% SiC particle reinforcement in the cp-titanium-based MMC increases creep strength and limits
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plastic deformation of the matrix. This was described in [52] as well. Light microscopy images of
the necking area, taken after the creep test, reveal a microstructural change in the matrix additionally
to creep pores compared to the initial state (Figure 15): Up to a distance of approx. 400 µm from
the fracture surface, a partially recrystallized microstructure and grains stretched in the direction
of loading were found (Figure 15a), caused by both the test temperature and the stress states in the
necking area [48]. Usually this is accompanied by an increase in ductility and plastic deformation in
this region. In contrast, the microstructures further away from the fracture surface show the structure
of the initial state (Figure 15b).
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These findings are supported by the classification of creep fracture mechanical properties according
to [17]. From this, two characteristic microstructural changes are expected in the matrix of the Ti-MMC
in the temperature range T ≥ 0.3·Tm: First, the formation and growth of voids following the power-law
and second, dynamic recovery or recrystallization. The occurrence of recrystallization is indicated
by the formation of new grains at former grain boundaries, as well as an accompanying process
of softening. Grain formation results in a reduced dislocation density and in a reduced associated
back stress (threshold stress). Likewise, the newly formed grains can evolve in directions allowing
macroscopically homogeneous plastic deformation [53]. Various researchers investigated the creep
behavior of pure titanium as well as titanium-alloy-based composites at comparable creep loading
and consistently report the dislocation climb as the main creep mechanism [9,54,55]. Additionally,
investigating a TiC particulate reinforced Ti-6Al-4V-alloy composite [9] identified a pronounced late
creep stage, which was found here also. The high creep fracture strains and the strong necking of the
Ti-MMC creep specimens investigated in this work are most likely results of these processes.

For the Al-MMC, an incipient necking was detected at the beginning of the early creep stage already.
But, finally in the Al-MMC, the contraction at fracture (ZAl−MMC = 4.4–9.6%) remains significantly
below the values of the Ti-MMC (ZTi−MMC ≈ 35%). In the case of Ti-MMC, however, the necking does
not start until the transition from the early to the late creep stage. Based on the tomograms, the area of
necking was identified as showing the most creep damage due to porosity (Figure 16). Longitudinal
sections taken from the tomograms and illustrating different creep stages verify the creep damage.
Different absorption coefficients of the particles and the matrix of both MMCs result in distinguishably
different grey values. Both in the initial state of the Al-MMC (Figure 16a) and during transition from
the early to the late creep stage in the Ti-MMC (Figure 16c) the cavitation is low, while both materials



Metals 2020, 10, 1034 17 of 23

have significantly higher cavitation a short time before fracture (Figure 16b,d). The overview displayed
here illustrates the orientation of the cavities perpendicular (= surface diffusion, Figure 16b) or parallel
(= dislocation creep, Figure 16d) to the load axis.

Metals 2020, 10, x FOR PEER REVIEW 17 of 23 

 

Additionally, investigating a TiC particulate reinforced Ti-6Al-4V-alloy composite [9] identified a 
pronounced late creep stage, which was found here also. The high creep fracture strains and the 
strong necking of the Ti-MMC creep specimens investigated in this work are most likely results of 
these processes. 

For the Al-MMC, an incipient necking was detected at the beginning of the early creep stage 
already. But, finally in the Al-MMC, the contraction at fracture ( 𝑍஺௟ିெெ஼ =  4.4–9.6%) remains 
significantly below the values of the Ti-MMC (𝑍்௜ିெெ஼ ≈ 35%). In the case of Ti-MMC, however, the 
necking does not start until the transition from the early to the late creep stage. Based on the 
tomograms, the area of necking was identified as showing the most creep damage due to porosity 
(Figure 16). Longitudinal sections taken from the tomograms and illustrating different creep stages 
verify the creep damage. Different absorption coefficients of the particles and the matrix of both 
MMCs result in distinguishably different grey values. Both in the initial state of the Al-MMC (Figure 
16a) and during transition from the early to the late creep stage in the Ti-MMC (Figure 16c) the 
cavitation is low, while both materials have significantly higher cavitation a short time before fracture 
(Figure 16b,d). The overview displayed here illustrates the orientation of the cavities perpendicular 
(= surface diffusion, Figure 16b) or parallel (= dislocation creep, Figure 16d) to the load axis. 

 
𝜎 

  
(a) (b) 

  
(c) (d) 

Figure 16. Tomogram, 2D longitudinal section, contraction during creep: (a) Al-MMC, 𝜎 = 50 MPa, 𝑇 = 300 °C, initial state; (b) Al-MMC, 𝜎 = 50 MPa, 𝑇 = 300 °C at 0.996 𝑡௙௥; (c) Ti-MMC, 𝜎 = 150 
MPa, 𝑇 = 510 °C at 0.77 𝑡௙௥; (d) Ti-MMC, 𝜎 = 150 MPa, 𝑇 = 510 °C at 0.99 𝑡௙௥. 

Taking the time-resolved 3D-visualization into account, the mechanisms specified above can be 
assigned to different creep stages. During creep cavities predominantly oriented perpendicular to the 
load direction persist in the Al-MMC, since no mechanism change occurs in the material. This applies 
to the mechanism of surface diffusion in the matrix as well as to the mechanism of particle fracture. 
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Figure 16. Tomogram, 2D longitudinal section, contraction during creep: (a) Al-MMC, σ = 50 MPa,
T = 300 ◦C, initial state; (b) Al-MMC, σ = 50 MPa, T = 300 ◦C at 0.996 t f r; (c) Ti-MMC, σ = 150 MPa,
T = 510 ◦C at 0.77 t f r; (d) Ti-MMC, σ = 150 MPa, T = 510 ◦C at 0.99 t f r.

Taking the time-resolved 3D-visualization into account, the mechanisms specified above can be
assigned to different creep stages. During creep cavities predominantly oriented perpendicular to the
load direction persist in the Al-MMC, since no mechanism change occurs in the material. This applies
to the mechanism of surface diffusion in the matrix as well as to the mechanism of particle fracture.
In Figure 17a,b, the mechanism of surface diffusion at σ = 50 MPa and T = 300 ◦C is represented at
different points in time in 2D and 3D. The small cavities oriented slightly perpendicular to the load axis
in the matrix at 0.77 t f r evolve to clearly perpendicular oriented voids, which already have the shape
of micro cracks (Figure 17a). The detailed 3D-view (Figure 17b) illustrates only the biggest approx.
15 voids in the last sharp tomogram before creep fracture. Every micro crack oriented perpendicular to
the load axis coalesced by bridging from smaller cavities oriented perpendicular (Figure 17b, right:
side view, top view) corresponding to the development of void formation and growth in the matrix
(Figures 9 and 10, S1 and S2). In Cu-40Zn-2Pb-brass, cavity coalescence was detected in the late creep
stage of voids formed in the early creep stage by [56–58], too.
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At higher stress 𝜎 = 190 MPa and lower temperatures 𝑇 = 200 °C, the predominant process of 
particle fracture was observed to occur in larger particles in the very early creep process already at 
0.03 𝑡௙௥ (Figure 17c, left). Additionally, fractures of smaller particles occur as well, but are detected 
later during creep (Figure 17c, marked by red circle). Furthermore, void growth by surface diffusion 
develops by void formation as well as growth evolving from production-related pores (Figure 17c, 
marked by yellow circle). However, at these loading conditions surface diffusion provides only a 
minor contribution to creep damage compared to particle fracture. 

Comparing the growth rates of the void formation as well as void growth in the Ti-MMC in the 
early and late creep stages, an indication of the starting conditions of necking can be derived from 

Figure 17. Al-MMC, creep damage, longitudinal section: (a) 2D, surface diffusion, σ = 50 MPa,
T = 300 ◦C, left: 0.77 t f r, right: 0.98 t f r; (b) 3D, surface diffusion, σ = 50 MPa, T = 300 ◦C, 0.98 t f r;
(c) particle fracture, σ = 190 MPa, T = 200 ◦C, left: 0.03 t f r, right: 0.98 t f r.

At higher stress σ = 190 MPa and lower temperatures T = 200 ◦C, the predominant process of
particle fracture was observed to occur in larger particles in the very early creep process already at
0.03 t f r (Figure 17c, left). Additionally, fractures of smaller particles occur as well, but are detected
later during creep (Figure 17c, marked by red circle). Furthermore, void growth by surface diffusion
develops by void formation as well as growth evolving from production-related pores (Figure 17c,
marked by yellow circle). However, at these loading conditions surface diffusion provides only a
minor contribution to creep damage compared to particle fracture.

Comparing the growth rates of the void formation as well as void growth in the Ti-MMC in the early
and late creep stages, an indication of the starting conditions of necking can be derived from the mechanism
change from surface diffusion to dislocation creep (Figures 9 and 11, S3 and S4). The pronounced necking
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in the Ti-MMC was observed to be related to the changeover of the previously dominant mechanism
by surface diffusion to dislocation creep. Whereas the void growth by surface diffusion develops
proportional to creep strain, the dislocation creep is resulting in pronounced disproportionately high
void growth (Figures S4 and 18), and so resulting in disproportional creep strain. As an example,
Figure 18 shows the time frame at approx. 0.77 t f r, where the changeover of the mechanisms related
to the start of the necking as well as the transition from the early to late creep stage at σ = 150 MPa
and T = 510 ◦C is visible. The necking is marked by a dark grey arrow. The 3D images illustrate
the changeover of the cavity orientation (Figure 18, right): At 0.77 t f r the void formation via surface
diffusion is usually still oriented perpendicular to the load axis (Video S1, showing the approx.
15 biggest voids), whereas at 0.98 t f r, the void growth by dislocation creep is finally parallel oriented
(Video S2, showing the approx. 15 biggest voids).
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Cocks and Ashby specified in their model for the coupling mechanism of surface diffusion and
dislocation creep, that in the early part of the void growth is controlled by diffusion and as the voids
become larger, the power-law creep takes over. The changeover of the mechanisms takes place reaching
a critical area fraction [18]. Since the creep damage was determined in 3D in the present work, the
critical volume fraction Vs

t , at which the change occurs, can be derived from the tomography data.
At the creep load σ = 150 MPa and T = 510 ◦C, this critical volume fraction Vs

t = 0.228% for the
mechanism change from surface diffusion to dislocation creep is reached at the time of approx. 0.77 tcr

and strain ε0.77 t f r ≈ 15% (Figures 6b and 18, Figures S3b and S4b). At this strain value, exponential
void formation and void growth starts by the dislocation creep mechanism due to the decreasing of
surface diffusion. The disproportionately high growth in cavitation is due to the acceleration of the
creep rate in the necking region resulting in an increasing net section stress causing the mechanism
change [18].
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5. Conclusions

In situ synchrotron X-ray 3D-micro-tomography enables non-destructive evaluation of creep
damage in light-metal matrix composites (L-MMCs). From the tomograms, time and spatial resolved
creep damage development can be determined and analyzed qualitatively as well as quantitatively.
Qualitative findings revealed information about size, shape, and orientation of the creep voids
providing the responsible creep mechanisms, whereas the quantitative results were used to analyze
the time-dependent development in the early and late creep stages. The 3D-visualization of the creep
damage furthermore allowed the characterization of the creep mechanisms as a function of the creep
loading. The creep damage developed proportionally to the creep strain, indicating the mechanism of
surface diffusion in the matrix and particle reinforcement fracture independent from the creep stage.
Super-proportional development of creep damage and thus the creep strain was found to be related to
the mechanism of dislocation creep.

The aluminum-matrix provides higher resistance to dislocation movement due to precipitation
hardening, and as a consequence, less ductility is related to less total cavitation. In contrast, the
commercially pure titanium-matrix with a reduced resistance to dislocation movement exhibits large
ductility as well as high total cavitation.

Future work regarding data analysis will focus on the coalescence of individual cavities during
creep as a function of creep loading and time. Future experiments will aim for higher spatial and
temporal resolution to prevent blurred tomograms due to high creep strain a short time to fracture.
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Figure S1: AA6061 + 22% Al2O3, pore formation, Figure S2: AA6061 + 22% Al2O3, pore growth, Figure S3:
Ti-MMC, pore formation, Figure S4: Ti-MMC, pore growth, Video S1: Ti-MMC at 0.77 tfr, Video S2: Ti-MMC at
0.77 tfr.
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46. Dymáček, P.; Jarý, M.; Dobeš, F.; Kloc, L. Tensile and Creep Testing of Sanicro 25 Using Miniature Specimens.
Materials 2018, 11, 142. [CrossRef]

47. Comité Européen de Normalisation. Part 3: The Evaluation of Uncertainities in Creep Testing. In Measurement
Uncertainties in Mechanical Tests on Metallic Materials: CEN Workshop Agreement; Comité Européen de
Normalisation: Brussels, Belgium, 2005.

48. Peters, M. Titan und Titanlegierungen; 3., Völlig neu Bearb., Aufl.; Wiley-VCH: Weinheim, Germany, 2002;
ISBN 9783527611089.

49. Handbuch Konstruktionswerkstoffe. Auswahl, Eigenschaften, Anwendung; 2., überarb. Aufl.; Moeller, E. (Ed.)
Hanser: München, Germany, 2014; ISBN 978-3-446-43169-0.

50. Luster, D.R. Creep Properties of Titanium. Materials and Methods: The Metalworking Industries’ Engineering
Magazine; 1953; pp. 199–203.

51. Zhu, S.J.; Lu, Y.X.; Wang, Z.G.; Bi, J. Creep behavior of TiC-particulate-reinforced Ti alloy composite.
Mater. Lett. 1992, 13, 199–203. [CrossRef]

52. Davis, L.C.; Allison, J.E. Micromechanics effects in creep of metal-matrix composites. Metall. Mater. Trans. A
1995, 26, 3081–3089. [CrossRef]

53. Skrotzki, B. Mechanical Loading of Light Alloys at Elevated Temperature; Zugl.: Bochum, Univ.; Habilitation,
2000, Als Ms. gedr; VDI-Verlag: Düsseldorf, Germany, 2001; ISBN 978-3-18-362905-3.

54. Ranganath, S.; Mishra, R.S. Steady state creep behaviour of particulate-reinforced titanium matrix composites.
Acta Mater. 1996, 44, 927–935. [CrossRef]

55. Tsang, H.T.; Chao, C.G.; Ma, C.Y. Effects of volume fraction of reinforcement on tensile and creep properties
of in-situ MMC. Scr. Mater. 1997, 37, 1359–1365. [CrossRef]

http://dx.doi.org/10.3139/146.400017
http://dx.doi.org/10.1016/j.compscitech.2008.03.018
http://dx.doi.org/10.1126/science.1106778
http://www.ncbi.nlm.nih.gov/pubmed/15802600
http://dx.doi.org/10.1063/1.1884194
http://dx.doi.org/10.3139/146.110277
http://dx.doi.org/10.1007/s11661-006-9007-3
http://dx.doi.org/10.1016/j.msea.2013.07.067
http://dx.doi.org/10.3390/ma11010142
http://dx.doi.org/10.1016/0167-577X(92)90220-E
http://dx.doi.org/10.1007/BF02669438
http://dx.doi.org/10.1016/1359-6454(95)00242-1
http://dx.doi.org/10.1016/S1359-6462(97)00251-0


Metals 2020, 10, 1034 23 of 23

56. Borbély, A.; Dzieciol, K.; Sket, F.; Isaac, A.; Di Michiel, M.; Buslaps, T.; Kaysser-Pyzalla, A.R. Characterization
of creep and creep damage by in-situ microtomography. JOM 2011, 63, 78–84. [CrossRef]

57. Isaac, A.; Sket, F.; Borbély, A.; Sauthoff, G.; Pyzalla, A.R. Study of Cavity Evolution During Creep by
Synchrotron Microtomography Using a Volume Correlation Method. Pract. Metallogr. 2008, 45, 242–245.
[CrossRef]

58. Isaac, A.; Dzieciol, K.; Sket, F.; Di Michiel, M.; Buslaps, T.; Borbély, A.; Pyzalla, A.R. Investigation of
creep cavity coalescence in brass by in-situ synchrotron x-ray microtomography. In Developments in X-Ray
Tomography VI, Proceedings of the Optical Engineering + Applications, San Diego, CA, USA, 10 August 2008;
Stock, S.R., Ed.; SPIE: Paris, France, 2008; p. 70781J.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11837-011-0117-z
http://dx.doi.org/10.3139/147.100382
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Materials 
	Miniature Creep Device 
	Specimen Preparation and Dimensions 
	Experimental Setup at the Synchrotron Facility 
	Data Processing 
	Creep Experiments 

	Results 
	Creep Curve 
	Creep Damage 
	Total Cavitation 
	Creep Damage Formation and Growth Mechanism 


	Discussion 
	Creep Curve and Parameter 
	Creep Mechanisms 

	Conclusions 
	References

