
On Eulerian Extension Problems and their Application to
Sequencing Problems

Wiebke Höhn ∗ Tobias Jacobs † Nicole Megow ‡

February 2009, Update: July 2009

Abstract

We introduce a new technique for solving several sequencing problems. We consider Gilmore and
Gomory’s variant of the Traveling Salesman Problem and two variants of no-wait flowshop scheduling,
the classical makespan minimization problem and a new problem arising in the multistage production
process in steel manufacturing.

Our technique is based on an intuitive interpretation of sequencing problems as Eulerian Extension
Problems. This view reveals new structural insights and leads to elegant and simple algorithms and proofs
for this ancient type of problems. As a major effect, we compute not only a single solution; instead, we
represent the entire space of optimal solutions. For the new flowshop scheduling problem we give a full
complexity classification for any machine configuration.

1 Introduction
We present a new technique for analyzing sequencing problems such as no-wait flowshop scheduling prob-
lems and a variant of the Traveling Salesman Problem (TSP). We show that these problems have a natural
interpretation as Eulerian Extension Problems. This leads to new structural insights and new solution meth-
ods. On a high level view, for an instance of a sequencing problem we find a particular Eulerian graph in
which all existing Eulerian circuits represent sequencing solutions with the same cost. In fact, we provide the
entire set of optimal solutions, instead of just a single one. For a non-standard flowshop sequencing problem,
which has not been investigated from an information theoretic point of view, we gain new structural insights
which form the basis for fully settling the complexity status of any particular problem case.

A directed multi-graph G = (V,E) is called Eulerian if it contains a cycle visiting each edge exactly once.
A Eulerian extension is a set of additional edges E ′ for a given (not necessarily connected) multigraph G =
(V,E) such that (V,E∪E ′) is Eulerian. A Eulerian Extension Problem is, generally speaking, the problem of
finding a Eulerian extension minimizing the total cost of additional edges E ′ according to some cost function.
Notice that the classical Chinese Postman Problem (see e.g. [18]) is a special case in which the given graph
is strongly connected and the cost function is based on the cost of paths in the graph. Eulerian extension
problems are generally intractable as straightforward reduction from TSP shows. We investigate Eulerian
Extension Problems for special classes of cost functions arising in the context of the following classes of
sequencing problems.

The TSP is one of the most intensively studied optimization problems; see e.g. [9]. In its full generality
it is highly intractable, however special cases can be solved optimally in polynomial time. One of the
most famous solvable subclasses was studied already four decades ago by Gilmore and Gomory [4]. In
this problem variant, which we denote by G-TSP, each city i is associated with two numbers Ai and Bi

for i = 1, . . . ,n. The cost for traveling from city i to city j is
∫ A j

Bi
f (x)dx if A j ≥ Bi and

∫ Bi
A j

g(x)dx otherwise,

where f ,g are integrable functions satisfying f (x)+g(x)≥ 0, for any x.

∗hoehn@math.tu-berlin.de. Technische Universität Berlin, Germany. Supported by the Deutsche Forschungsgemeinschaft
(DFG) as part of the Priority Program “Algorithm Engineering” (1307).

†jacobs@informatik.uni-freiburg.de. Albert-Ludwigs-Universität Freiburg, Germany.
‡nmegow@mpi-inf.mpg.de. Max Planck Institute for Informatics, Saarbrücken, Germany.

1

Another classical sequencing problem is no-wait flowshop scheduling. In flowshop scheduling, we con-
sider a production process where n jobs J1, . . . ,Jn must pass s production stages L1, . . . ,Ls. Each job J j
consists of s operations each of which is dedicated to a specific stage Li on which it must process for pi j time
units without preemption. Note that we consider operations with zero processing time as infinitely small
operations which require a free machine. Each stage Li has mi identical parallel machines available. The
jobs pass the production stages L1,L2, . . . ,Ls in exactly this order. In a feasible no-wait flowshop schedule,
there is no waiting time allowed between the execution of two consecutive operations of the same job. The
goal is to minimize the makespan Cmax, that is the completion time of the last job. Following the classical
three-field notation [5] we denote this problem by F |nwt |Cmax if there is only a single processor available
on each stage and by FF |nwt |Cmax in the multiprocessor case. In case that the number of stages is fixed to s,
we denote the corresponding processor environments by Fs and FFs, respectively.

In the single processor case, the no-wait condition implies the same job order on each machine stage.
Thus, idle times are uniquely determined by a job order which leads to a natural interpretation as an asym-
metric TSP. In fact, F2 |nwt |Cmax is well-known to be a special case of G-TSP [4, 11]: each job j can be
interpreted as a city with A j = p1 j and B j = p2 j, and the cost function is of Gilmore-Gomory type with f ≡ 1
and g≡ 0.

A structurally quite different sequencing problem concerns no-wait flowshop scheduling with the objec-
tive of minimizing the number of interruptions, i.e., the number of continuous idle time intervals on the last
stage Ls. Here, we refer to idle time as time intervals where a machine is not processing any job during
the actual production process, i.e., the time before the first job and after the last job to be processed on the
particular machine is not considered as idle time. We denote this new objective by G .

This problem is motivated by a particular application in steel production, the continuous casting process,
in which ladles of melted steel have to pass several production stages. The final stage, the casting machine,
plays a special role: the steel must flow continuously into the casting machine. When the flow is broken (we
call it interruption), then the casting machine must be stopped for maintenance and extensive cleaning.
Therefore, practitioners call it their objective to minimize the number of interruptions.

Related work. Gilmore and Gomory [4] derived an algorithm to find an optimal solution for G-TSP. Its
computation time O(n logn) matches the lower bound on the worst case time complexity for any optimal
algorithm solving this problem [13]. A slightly simplified variant of this algorithm has been presented by
Vairaktarakis [16].

Due to its practical importance in production planning, most of the existing literature on no-wait flow-
shops addresses the objective of minimizing the makespan. For an extensive survey on various occurrences
of no-wait constraints in production environments and previous theoretical work we refer to [6]. The special
case of two-stage scheduling F2 |nwt |Cmax can be solved to optimality directly with Gilmore and Gomory’s
algorithm [4, 11]. The complexity status changes if there is more than one processor on one of the two
stages; then the problem becomes strongly NP-hard [15].

The particular problem of scheduling the continuous casting process is investigated from a practical point
of view e.g. in [7, 10, 14], where mathematical programming approaches as well as meta-heuristics and
simulation are considered. To the best of our knowledge, there is no literature on theoretical investigations
on the problem of minimizing the number of interruptions in a no-wait flowshop. The only related theoretical
work we are aware of, enforces the aim for interruption-free scheduling as a hard constraint. In [2, 3], the
authors give complexity and approximation results for openshop and flowshop problems with the objective
to minimize the makespan when no interruption is allowed on any machine. This restriction is much stronger
than what we aim for. In our application, idle times on other stages than the last one, the casting machine,
do not incur extra cost. A more restricted variant of the same problem is considered in [17] with only two
production stages and unit processing times on the first stage such that interruptions can occur only on the
second stage. Even though this processor environment is close to our setting, we do not see how results
could transfer between the makespan minimization problem and our problem of minimizing the number of
interruptions.

Our contribution. We interpret Gilmore and Gomory’s TSP as a Eulerian Extension Problem with a specific
cost function. We present an optimal algorithm which is much simpler than previously proposed ones [4, 16]
and which admits a much simpler and more intuitive analysis (Section 2). Its worst case computation time
is O(n logn) which is best possible [13]. Moreover, our algorithm reveals a structural property that seems
to be inherent in this kind of sequencing problems. Typically, an optimal solution is not unique. With
our method we keep an implicit representation of the set of optimal solutions and defer the selection of a

2

particular tour to the final part of the algorithm. This gives us the opportunity of conveniently accessing all
optimal solutions. Besides the theoretical significance, this is meaningful to practical applications in which
often a secondary optimization criteria plays a role. In this case, one may choose accordingly from the set
of all optimal solutions regarding the first criteria.

Clearly, the optimality result for G-TSP applies directly to the classical two-stage flowshop schedul-
ing problem F2 |nwt |Cmax since it is a special case of G-TSP. This is not the case for the new flowshop
problem F2 |nwt |G . Nevertheless, we show an interpretation as a Eulerian Extension Problem with another
appropriate cost function and derive an elegant and fast optimal algorithm (Section 3). In this case, we obtain
an implicit representation of all optimal solutions in time O(n logn), from which any particular optimum can
be extracted in linear time. The main computation effort lies in sorting all processing times once, and thus,
the algorithm runs in linear time if processing times are already sorted. Moreover, we solve optimally the
generalized problem FF2 |nwt |G with a single machine on the first stage, m1 = 1. Notice, that this result is
a sharp contrast to the makespan variant of the same problem which is known to be strongly NP-hard [15].

In Section 4 we show that the problem on three machine stages F3 |nwt |G is NP-hard. Again an inter-
pretation as Eulerian Extension Problem is crucial. Finally, we complement our results with further findings
that fully reveal the computational complexity of FFs |nwt |G for each value of s and each machine config-
uration m1, . . . ,ms.

2 Solving the Gilmore-Gomory Traveling Salesman Problem
We revisit the variant of the traveling salesman problem denoted by G-TSP in the previous section. Both
algorithms, the original one by Gilmore and Gomory [4] and the improved method proposed by Vairak-
tarakis [16], are based on an interpretation of the problem as a bipartite matching problem, where each city i
corresponds to an edge, the so-called city edge, from point Ai in the first partition to Bi in the second parti-
tion. The goal is to find a minimum cost matching E ′ such that the union of E ′ and the city edges constitute
a cycle. Their algorithms first sort the vertices in both partitions, then compute a minimum cost matching
and finally transform it into a cyclic one using an involved patching algorithm.

Similarly to these approaches, we also model a city i as an edge (Ai,Bi) and call it city edge, and we also
seek to insert a minimum cost set E ′ of additional edges called extension edges such that the resulting graph
contains a Eulerian cycle. The conceptual difference is that we do not consider the graph as bipartite, i.e. we
allow E ′ to contain any possible edge.

Definition 1 (One-Dimensional Eulerian Extension Problem, 1DEE). Given a finite directed graph G =
(V,E) where vertices in V are labeled with real numbers, and given integrable functions f ,g : R → R
with f (x)+ g(x) ≥ 0 for any x ∈ R, the problem 1DEE denotes the task of finding a Eulerian Extension E ′

minimizing ∑(u,v)∈E ′ c(u,v), where

c(u,v) =


u∫
v

f (x)dx u≥ v

v∫
u

g(x)dx v > u .

To avoid overloaded notation, we refer to a vertex by its label.

Theorem 1. G-TSP is equivalent to 1DEE. The reductions can be done in polynomial time.

Proof. Given an instance I of G-TSP, we construct the directed multigraph G = (V,E) of a 1DEE instance I′

as follows: let V =
⋃n

i=1{Ai,Bi} and E =
⋃n

i=1{(Ai,Bi)}. A tour T for I can be directly translated into a
Eulerian extension E ′ for I′ having the same cost: For any city j that is visited immediately after city i, add
an extension edge (Bi,A j) to E ′. The total cost of E ′ equals the cost of the tour T by definition of the cost
functions.

Conversely, given a 1DEE instance I′ with the graph G = (V,E), we construct the G-TSP instance I by
converting each edge (u,v) ∈ E into a city j with A j = u,B j = v. Consider a solution E ′ for I′, and find an
arbitrary Eulerian tour T ′ in V = (G,E ∪E ′). We show that by interpreting the order of the city edges in T ′

as the order of the cities, gives a solution T to the G-TSP instance I of the same cost as E ′.
Let (w1,w2, . . . ,wm) be a sub-path of T ′ traversing only extension edges. We assume w.l.o.g. that w1 <

wm; the reverse case works analogously. Moreover, we can assume that wi < wi+1 for i = 1, . . . ,m− 1.

3

Suppose there exists values wi < wi+1 and wi+1 > wi+2. Then simple calculations show that replacing
edges (wi,wi+1), (wi+1,wi+2) ∈ E ′ by (wi,wi+2) does not increase the cost of the Eulerian extension.

With this observation and the linearity of integrals, the total cost of extension
edges (w1,w2),(w2,w3), . . . ,(wm−1,wm) between successive city edges (∗,w1) and (wm,∗) equals c(w1,wm).
This implies by definition of the cost function that the costs of solutions T and T ′ are equal.

Motivated by the cost function of 1DEE that is defined on vertex labels, we introduce the concept of
minimal edges. Consider a linear ordering of vertices in non-decreasing order of labels. Then we call an
edge (u,v) minimal, if u and v are direct neighbors in this ordering.

Lemma 1. Given a Eulerian extension E ′ for an instance of 1DEE, there is a Eulerian extension E ′′ satisfy-
ing the following properties: E ′′ contains only minimal extension edges, E ′ and E ′′ have the same cost, and
for each Eulerian cycle in E ∪E ′ there is one in E ∪E ′′ where the city edges occur in the same order.

Proof. Let (u,v) be a non-minimal edge in E ′, i.e., there is a vertex w with u < w < v or u > w > v. We
replace (u,v) by (u,w) and (w,v) to obtain E ′′. This preserves the balance of indegree and outdegree for
each vertex, and due to the linearity of the integral the overall cost does not change. Repeatedly performing
this kind of operation for each non-minimal edge we obtain a Eulerian extension that contains only minimal
edges. Analogously, we can replace each edge of a Eulerian cycle in E ∪E ′ by the corresponding path of
minimal edges in E ∪E ′′. This preserves the order of city edges in the cycle.

Let indeg(v) and outdeg(v), v ∈ V , denote the indegree and outdegree of v, respectively. The following
sufficient condition for a Eulerian graph is well-known; see [18].

Lemma 2. A graph G = (V,E) is Eulerian if and only if it is connected and indeg(v) = outdeg(v), for
all v ∈V .

Let indeg(V ′) denote the indegree of a subset V ′ ⊆ V , i.e., the number of edges (u,v) ∈ E with u /∈ V ′

and v ∈ V ′. Let the outdegree outdeg(V ′) be defined analogously. We state a necessary condition based on
indegree and outdegree of vertex subsets.

Lemma 3. If a graph G = (V,E) is Eulerian, then indeg(V ′) = outdeg(V ′) for any subset of vertices V ′ ⊆V .

Proof. We prove the statement by showing a more general result.

indeg(V ′)−outdeg(V ′)

=
(

∑
v∈V ′

indeg(v)−|{(u,v) | u,v ∈V}|
)
−

(
∑

v∈V ′
outdeg(v)−|{(v,u) | u,v ∈V}|

)
= ∑

v∈V ′
indeg(v)− ∑

v∈V ′
outdeg(v)

The basic idea for our algorithm solving 1DEE is as follows: We restrict ourselves to solutions consisting
only of minimal edges. First, we identify an edge set that any such feasible solution must contain. We obtain
a set of connected components each of which is Eulerian. In the second step, we add a minimum cost edge
set that connects all components while keeping them Eulerian.

Algorithm 1
1: Sort all vertices in V in non-increasing order of their labels.
2: Let E ′ = /0. For i := 1 to n−1 do

Consider v, the i-th vertex in the ordering, and denote its direct successor by v′. Compute b(v) =
indeg(v)−outdeg(v) with respect to the graph (V,E ∪E ′).
If b(v) > 0, then add b(v) copies of the minimal edge (v,v′) to E ′, otherwise, add −b(v) copies of
the minimal edge (v′,v) to E ′.

3: Let G1, . . . ,Gk denote the connected components of the graph (V,E ∪E ′). If k ≥ 2, construct the undi-
rected, connected component graph H by contracting each Gi, i = 1, . . . ,k, to a single vertex in H. For
any minimal edge (u,v) /∈ E ′ with u ∈ Gi and v ∈ G j we add an undirected edge (Gi,G j) to H with
weight c(u,v)+ c(v,u).
Compute a Minimum Spanning Tree (MST) T in H. For each edge (u,v) ∈ T , add both associated
directed, minimal edges (u,v) and (v,u) to E ′.

4

Lemma 4. Algorithm 1 chooses in Step 2 only edges that are necessary for any feasible Eulerian extensions
that consist only of minimal edges.

Proof. We prove that after any iteration of Step 2 in Algorithm 1, E ′ consists only of necessary edges. In
any iteration, the algorithm inserts |b(v)| edges between a vertex v and its direct successor v′ in the given
ordering. Consider some iteration and the corresponding vertices v and v′. Let V ′ = {u∈V |u≤ v}. Lemma 3
provides the necessary condition that indeg(V ′) = outdeg(V ′) in the given graph when enhanced by any
Eulerian extension. Before inserting additional edges, we have indeg(u) = outdeg(u) for any u ∈ V ′ \ {v}
in the current graph (V,E ∪E ′). Since we are restricted to minimal extension edges, any Eulerian extension
must add |indeg(V ′)− outdeg(V ′)| appropriately oriented edges between v and v′. The algorithm inserts
exactly the required number of edges since |indeg(V ′)−outdeg(V ′)|= |indeg(v)−outdeg(v)|= b(v).

Theorem 2. Algorithm 1 solves 1DEE optimally in time O(n logn).

Proof. By Lemma 1 we can restrict our attention to Eulerian extensions consisting only of minimal edges.
Let E1 denote the set of extension edges chosen by Algorithm 1 by the end of Step 2. Each vertex i =
1, . . . ,n− 1 has equal in- and outdegree in the graph (V,E ∪E1). By the handshaking argument this also
holds for the last vertex. If (V,E ∪E1) is connected, then it is Eulerian by Lemma 2. Applying additionally
Lemma 4 we have proven that E1 is a necessary and sufficient set of edges and thus optimal.

Otherwise, (V,E∪E1) consists of multiple strongly connected components G1, . . . ,Gk each of them being
Eulerian. By Lemma 4 any optimal solution must contain E1. The algorithm now finds a set of additional
minimal extension edges of minimum total cost that connects all components and ensures that the graph
is Eulerian. Notice, that if we add a single extension edge (u,v) to connect two components Gi and G j,
then by Lemma 3 and the restriction to minimal edges (Lemma 1), we additionally need to add the reverse
edge (v,u) to ensure that the resulting graph is Eulerian. Therefore our algorithm considers in Step 3 all
relevant edges to connect G1, . . . ,Gk and assigns cost for adding both, forward and backward edge. Thus,
the MST solution on the accordingly constructed graph H corresponds to a minimum cost edge subset that
connects all components and keeps the graph Eulerian.

Concerning the runtime of the algorithm, we note that the connected component graph H in Step 3 can
be constructed in O(n) because the vertices are already sorted by their labels (Step 1). Consider all vertices
in the given order starting from the vertex with smallest index. Suppose v ∈ Gi. If v’s direct successor v′

belongs to a different connected component G j 6= Gi, then add an undirected edge between the corresponding
vertices Gi and G j in H. With this observation, the runtime of our algorithm is dominated by sorting the
input and computing an MST which can be done in O(n logn).

The reduction from G-TSP to 1DEE (Proof of Theorem 1) implies that for each solution to G-TSP there
is a Eulerian tour in a solution to the corresponding 1DEE instance. In this Eulerian tour, the city edges are
traversed in exactly the same order as the cities are traversed in the G-TSP solution. By Lemma 1 there is a
Eulerian extension consisting only of minimal edges which admits such a tour. This implies that we do not
loose any optimal G-TSP tour when restricting ourselves to minimal edge extensions.

If the minimum spanning tree computed in Step 3 of Algorithm 1 is unique, then the optimal set of
Eulerian extension edges E ′ is unique under the restriction to minimal edges. Since this does not restrict
the space of optimal solutions for the corresponding G-TSP instance, each Eulerian cycle in the extended
graph (V,E ∪E ′) corresponds to an optimal solution for G-TSP. If there is more than one MST, then each of
them represents a subset of all optimal G-TSP solutions.

3 Solving Two-Stage No-wait Flowshop Problems
While the makespan minimization problem F2 |nwt |Cmax can be solved directly as a special case of G-TSP
with Gilmore-Gomory type cost functions f ≡ 1, g≡ 0, there is no way to express the interruption related ob-
jective function G as special functions f and g in G-TSP. Nevertheless, we show that the problem F2 |nwt |G
has an interpretation as a Eulerian Extension Problem, which leads to a fast and elegant algorithm.

We define a cost function for a Eulerian Extension Problem in which extension edges (u,v) with u <
v account for interruptions on the second machine. We call such extension edges up edges. We denote
extension edges (u,v) with u > v as down edges.

5

Definition 2 (G -related One-Dimensional Eulerian Extension Problem, G -1DEE). Given a finite directed
graph G = (V,E) where the vertices in V are labeled with real numbers, the problem G -1DEE is to find a
Eulerian extension for G minimizing the number of up edges.

As in Section 2, we call a down edge (u,v) minimal if u and v are direct neighbors in a linear ordering
of V by non-decreasing labels. Furthermore, we denote an up edge (u,v) as maximal if u has the minimum
label and v has the maximum label in V .

Lemma 5. Given a Eulerian extension E ′ for an instance of G -1DEE with G = (V,E), there is a Eulerian
extension E ′′ satisfying the following properties: E ′′ contains only minimal down edges and maximal up
edges, E ′ and E ′′ have the same cost, and for each Eulerian cycle in (V,E ∪E ′) there is one in (V,E ∪E ′′)
where the edges from E appear in the same order.

Proof. Non-maximal up edges (u,v) are can be replaced with the edges (u′,v′),(v′,v),(u,u′), where (u′,v′)
is the maximal up edge. The two other new edges point downwards, so the total number of up edges
is preserved. As soon as all up edges are maximal, non-minimal downward edges can be replaced with
minimal ones as described in the proof of Lemma 1.

Theorem 3. F2 |nwt |G can be reduced to G -1DEE in polynomial time.

Proof. We construct an instance I′ = (V,E) of G -1DEE from an F2 |nwt |G instance I by defining V =⋃n
i=1{p1i, p2i} and by adding a job edge (p1i, p2i) to E for each job Ji, i = 1, . . . ,n. We add another maximal

up edge, serving as a dummy job between the first and last job in the tour.
In the following we show that an optimal solution to I′ contains k up edges (in addition to the dummy

edge above) if and only if an optimal solution to I causes k interruptions.
Consider a schedule for I. For simplicity, we assume that jobs are scheduled in increasing order of their

indices. We add an extension edge (p2i, p1i+1) to E ′ for i = 1, . . . ,n− 1. This way we obtain a number of
up edges equal to the number of interruptions caused by the schedule. Let (u,v) be the maximal dummy
up edge of the instance I′. Adding the down edges (p2n,u),(v, p11), we obtain an extension admitting the
Eulerian cycle p11, p12, p21, p22, . . . , p2n,u,v, p11.

Consider an optimal solution E ′ to I′. We employ Lemma 5 assuming that all down edges are minimal
and all up edges are maximal. We convert the set E ′ into a solution to I by scheduling the jobs in the order
in which the corresponding job edges appear in some Eulerian cycle in (V,E ∪E ′), starting with the first job
after the dummy job edge. By construction, any job edge can be reached from the dummy edge by down
edges only, and conversely, we can reach the dummy from any job edge also by using only down edges.

Whenever an interruption appears between two consecutive jobs, there is at least one other up edge
between the corresponding job edges in the cycle. There is also at most one up edge between two consecutive
job edges as otherwise up edges could be removed from the extension together with a sequence of down
edges. Therefore, the number of interruptions is k.

Intuitively, our algorithm for solving G -1DEE proceeds as follows: first, it determines the minimum
number of up edges that are necessary and sufficient for achieving balanced indegree and outdegree at each
vertex. They are inserted together with the suitable set of down edges. Then, the algorithm checks if the
resulting graph is strongly connected. If not, one additional up edge and the respective sequence of down
edges suffice to achieve the desired connectivity.

Algorithm 2
1: Sort all vertices in V in non-decreasing order of their labels.
2: Let vi be the i-th vertex in the ordering and let Vi := {u ∈ V |u ≤ vi}. Compute bmax :=

maxi=1,...,n−1{0,b(vi)}, where b(vi) := indeg(Vi)−outdeg(Vi).
3: Initialize E ′ as the set containing bmax copies of the maximal up edge (v1,vn).
4: For i := 1 to n−1, add bmax−b(vi) minimal down edges (vi+1,vi) to E ′.
5: If (V,E ∪E ′) is not strongly connected, add one further maximal up edge (v1,vn) and minimal down

edges {(vi+1,vi) | 1≤ i≤ n−1} to E ′.

With similar techniques as in the previous section we prove the following result.

6

Lemma 6. Algorithm 2 chooses in Step 3 and 4 only edges that are necessary for any feasible Eulerian
extension that consist only of minimal down edges and maximal up edges. The two steps effectuate that
indeg(v) = outdeg(v) for each v ∈V in (V,E ∪E ′).

Proof. Let vi be the vertex maximizing b(vi) in Step 2 of the algorithm. Lemma 3 states that there must
be max{0,b(vi)} = bmax edges from Vi to V \Vi in any feasible Eulerian extension. As these edges are up
edges, they have to be maximal due to our restriction. They are inserted by the algorithm in Step 3.

After Step 3, we have indeg(Vi)− outdeg(Vi) = b(vi)− bmax ≤ 0 in the graph (V,E ∪E ′) for each i =
1, . . . ,n−1. So from Lemma 3 follows that for the graph to be Eulerian there must be b(vi)−bmax additional
edges from V \Vi to Vi. Such edges are down edges, and due to our restriction to minimal ones, they must
be copies of the edge (vi+1,vi). Inserting them is exactly what Algorithm 2 does in Step 4.

As soon as Step 4 has been executed, we have indeg(Vi) = outdeg(Vi) for 1 ≤ i ≤ n, and in partic-
ular indeg(v1) = outdeg(v1). Since indeg(Vi)− outdeg(Vi) = ∑

i
j=1 indeg(v j)− outdeg(v j) (see proof of

Lemma 3), it follows inductively that indeg(vi) = outdeg(vi) for all i.

Theorem 4. Algorithm 2 solves G -1DEE optimally in time O(n logn). Steps 2-5 take only linear time.

Proof. By Lemma 5 it suffices to consider only maximal up edges and minimal down edges as extension
edges. Let E1 be the set of edges chosen by the algorithm by the end of Step 4. By Lemma 6, E1 is a subset
of any feasible Eulerian Extension for G, and we know that the indegree and outdegree of each node is
balanced in (V,E ∪E1). If this graph is strongly connected, it is Eulerian (Lemma 2), and thus, Algorithm 2
is optimal.

Otherwise, at least one additional extension edge, i.e., either a maximal up edge or a minimal down edge,
must be added. Suppose, we add a minimal down edge, say (vi+1,vi), then we have indeg(Vi)−outdeg(Vi) =
1 in the resulting graph. From Lemma 3 follows that we need an additional up edge for re-establishing
balanced indegree and outdegree for each node. Thus, to establish connectivity in (V,E ∪E1) it is necessary
to add an up edge. It is easy to see that with one additional up edge the set of minimal down edges inserted
in Step 5 of the algorithm is necessary and sufficient to re-establish the balancedness of each node’s indegree
and outdegree. The resulting graph (V,E∪E ′) contains the cycle v1,vn,vn−1, . . . ,v1 and is therefore strongly
connected.

The runtime of the algorithm is dominated by the time for sorting, O(n logn), in Step 1. The remaining
steps require linear computation effort; in particular, values b(vi) can be computed in Step 2 as b(v1) =
indeg(v1)−outdeg(v1) and b(vi) = b(vi−1)+ indeg(vi)−outdeg(vi) in linear time. Although E ′ can contain
up to O(n2) edges after Step 4, the number of distinct edges is linear. For this reason it also takes linear time
to determine whether the graph is strongly connected or not in Step 5.

We remark that the optimal solution to G -1DEE is always unique, because the objective function only
depends on the number of up edges, and – assuming that all up edges are maximal – the set of down edges is
uniquely determined by their number. As a consequence of the reduction given in the proof of Theorem 3 and
Lemma 5, the extension E ′ computed by Algorithm 2 implicitly represents all optimal schedules. Since there
may be O(n2) many extension edges E ′, computing an Eulerian tour in the graph obtained by Algorithm 2
may also require quadratic time.

Corollary 1. Any problem instance of F2 |nwt |G can be solved optimally in time O(n2).

The above algorithm can be applied also to the two-stage flowshop problem to minimize the number of
interruptions with more than one machine on the second stage.

Theorem 5. Any problem instance I of FF2 |nwt |G with a single processor on the first stage, m1 = 1, can
be solved optimally in time O(n logn).

Proof. Given an instance I of problem FF2 |nwt |G with m1 = 1, we consider an instance I′ which equals I
restricted to single machines on both stages, i.e., m′

1 = m′
2 = 1. We find an optimal solution S′ for I′ with r′

interruptions. This can be done efficiently by Theorem 4 and gives a feasible solution for I. Now, we
construct an improved feasible schedule S for instance I with r = max{0,r′−m2 +1} interruptions: if there
is an interruption in S′ then we move the next block of interruption-free processing jobs to an unused machine
of the second stage; we repeat until all interruptions are resolved or until all m2 machines are used in S. This
reduces the number of interruptions by m2−1 or less if r′ < m2−1.

7

The solution S is optimal for I. To see that, assume for the sake of contradiction there is an optimal
solution S∗ with less interruptions r∗ < r. Then the corresponding schedule can be transformed into a feasible
one for instance I′ with r′′ < r′ interruptions. Run the set of jobs using machine mi in S∗ consecutively
for i = 1, . . . ,r∗−1 using only one processor at the second stage. This gives a feasible solution S′′ for I′ with
at most m2−1 interruptions more, i.e., r′′ ≤ r∗+(m2−1) < r +m2−1. This contradicts the optimality of
schedule S′ for I′ with r′ ≥ r +m2−1 interruptions.

4 Complexity of Minimizing the Number of Interruptions
In contrast to the polynomial time solvable problems with two machine stages in Section 3, the problem
becomes strongly NP-hard in any other case.

Theorem 6. The problem FFs |nwt |G is strongly NP-hard for any constant number of stages s ≥ 3 and
arbitrary constant numbers of machines. The same is true for FF2 |nwt |G with m1 > 1.

The proof follows by combining NP-hardness results for four particular problem classes (machine con-
figurations). The problem F3 |nwt |G , which plays a key role, is considered in Section 4.1; to show hardness,
we utilize a two-dimensional generalization of the G -1DEE. The remaining problem classes are considered
in Section 4.2.

In the proofs, we actually give reductions to a decision variant of the problem under consideration,
i.e., we ask if an interruption-free solution exists. We denote the decision problem by E0 (F3 |nwt |G) .
Obviously, the NP-completeness of the decision problem implies NP-hardness of the optimization variant.
Moreover, it rules out the existence of an approximation algorithm, unless P=NP. We remark here, that our
proofs can easily be extended to show that the optimization problem remains strongly NP-hard under the
assumption that every solution has at least one interruption.

4.1 Hardness for scheduling on three stages
We show that the problem F3 |nwt |G is strongly NP-hard. To show this result, we consider a natural two-
dimensional interpretation of G -1DEE in which each vertex has two labels which can be seen as points
in R2. We define the G -related two dimensional Eulerian Extension Problem (G -2DEE) as follows.

Definition 3 (G -2DEE). Given a directed graph G = (V,E) with vertices V ⊂R+
0 ×R+

0 , determine whether
there exists a Eulerian extension E ′ for G using only down edges {(u,v) | u,v ∈V, u≥ v component-wise}.

We show that the problem G -2DEE is strongly NP-complete by reduction from the Three-Dimensional
Matching Problem (3DM).

Definition 4 (Three-Dimensional Matching, 3DM). Given a set U ⊆M1×M2×M3 of triples, where M1, M2
and M3 are pairwise disjoint and have the same number k of elements, decide whether U contains a sub-
set U ′ ⊆U with |U ′|= k and no two elements of U ′ agree in any coordinate.

Here we assume w.l.o.g. that any element of M1 ∪M2 ∪M3 appears in at least one triple of U . The
problem 3DM is well-known to be strongly NP-complete [8]. Our reduction to G -2DEE borrows ideas from
the reduction of 3DM to a weighted tour problem given by Röck [12] in order to show the NP-hardness of
the flowshop problem F3 |nwt |Cmax .

Theorem 7. The problem G -2DEE is strongly NP-complete.

Proof. Denote the edges in a solution E ′ of G -2DEE as extension edges. Note, that in contrast to the
one-dimensional case, extension edges in this setting only contain down edges. We say that two points
u,v ∈ R+

0 ×R+
0 are independent, if neither (u,v) nor (v,u) can be an extension edge due to the constraint

specified in Definition 3.
Consider two rectangles A = [xmin,xmax]× [ymin,ymax], A′ = [x′min,x

′
max]× [y′min,y

′
max] in R+

0 ×R+
0 . We

say that A and A′ are independent if any two points u ∈ A, v ∈ A′ are independent. Formally, A and A′ are
independent if and only if either xmax < x′min and ymin > y′max, or xmin > x′max and ymax < y′min.

A point v = (vx,vy) is reachable from another point u = (ux,uy) if (u,v) is a down edge, and v is one-way
reachable from u if it is reachable from u, but u is not reachable from v. Formally, v is reachable from u
if ux ≥ vx and uy ≥ vy. One-way reachability is obtained by additionally demanding u 6= v.

8

vmin

vmax

a|U |2

a33

a32

a23

a22

a13

a12
a11A1

A2

A3

A|U |

a21

a31

a|U |3

a|U |1....k

Figure 1: 2DEE representation of a 3DM instance.

Given an instance U ⊆M1×M2×M3 of 3DM with |M1|= |M2|= |M3|= k, we construct an equivalent
G -2DEE instance (V,E) as follows: Let {A1, . . . ,A|U |} be a collection of pairwise independent rectangles.
For i = 1, . . . , |U |, define three points ai1,ai2,ai3 ∈ Ai such that ai2 is one-way reachable from ai1, and ai3
is one-way reachable from ai2. We define the set of vertices as V =

⋃
i=1,...,|U |{ai1,ai2,ai3}∪{vmin,vmax},

where vmin is such that it is one-way reachable from any other vertex in V , and vmax is such that any other
vertex in V is one-way reachable from it. Formally, the vertex set can be implemented as vmin = (0,0), vmax =
(|U |+1, |U |+1), and ai j = (4i− j,4(|U |+1− i)− j) for 1≤ i≤ |U | and j ∈ {1,2,3}.

For constructing the edge set E, let U = {U1, . . . ,U|U |} be an arbitrary enumeration of the triples in U .
For any element b ∈ M j, j = 1,2,3, we add edges to (V,E) that constitute a directed cycle. That cycle,
called Cb, includes exactly all vertices ai j where b is the jth component of Ui. Consequently, E contains 3k
pairwise vertex-disjoint cycles. The construction of E is completed by adding k edges from vmin to vmax, see
Fig. 1.

In the following, we assume that E ′ is a solution to the G -2DEE problem instance (V,E). A Eulerian
tour (V,E ∪E ′) traverses (vmin,vmax) exactly k times. The following two points state crucial properties of
such a tour.

1. Let P = vmax, . . . ,vmin be a path in (V,E ∪E ′) that is part of a Eulerian tour and does not include the
edge (vmin,vmax). Then all edges in P∩E are contained in not more than three different cycles Cb1

, Cb2
and Cb2

.

2. Any Eulerian tour in (V,E ∪E ′) includes each cycle Cb as a contiguous sub-tour.

For showing the first property, consider some edge in P that belongs to a cycle Cb with b ∈ M j. There
are only three possibilities to continue P after the sink ai j of the edge has been reached. If P continues using
another edge from E, then, due to the vertex-disjointness of the cycles, that edge also belongs to Cb. If P
continues with an edge from E ′, then, due to the independence and reachability properties of V , that next
edge will be either (ai j,vmin) or (ai j,ai j′) with j′ > j. In the former case, P ends. In the latter case, P can
enter a new cycle Cb′ with b′ ∈M j′ , but j′ is strictly larger than j. In other words, each time P enters a new
cycle Cb, b ∈M j, the index j strictly increases. As j ≤ 3, the first property follows.

Since there are k edges (vmin,vmax) and 3k cycles Cb, it follows from the first property that each cycle can
be entered at most once, because otherwise some cycles would remain not entered at all. Thus, in a Eulerian
tour each cycle must be completely traversed as soon at it is entered, yielding the second property.

Thus, a Eulerian tour leaves each cycle Cb at the same vertex it entered it. It follows that between
any two consecutive traversals of (vmin,vmax), three cycles Cb1

,Cb2
,Cb3

are traversed, each time starting
and ending inside the same rectangle Ai. So the Eulerian extension of (V,E) has to have the form E ′ =⋃

h=1,...,k{(vmax,aih1),(aih1,aih2),(aih2,aih3),(aih3,vmin)}, where i1, . . . , ik are such that each cycle Cb can be
traversed. This is the case if and only if no two aih j and ai

h′ j belong to the same cycle, which is equivalent
to Ui1

, . . . ,Uik
constituting a matching.

Now we are ready to show NP-completeness for F3 |nwt |G respective its decision vari-
ant E0 (F3 |nwt |G) .

9

Theorem 8. It is NP-complete to decide whether there is an interruption-free schedule for an instance of
F3 |nwt |G .

Proof. We show the NP-completeness of the decision problem E0 (F3 |nwt |G) by reduction from G -2DEE.
Our proof has the following structure: We first give an interpretation of our scheduling problem as an
extension problem. Then we fix a set of properties that are only satisfied by G -2DEE instances representing
a scheduling problem instance in that way. Finally, we prove that any G -2DEE instance can be transformed
into an equivalent instance satisfying these properties.

Consider a set of jobs J1, . . . ,Jn. A schedule without interruptions corresponds to a permutation
J

σ(1), . . . ,Jσ(n) of the jobs, where for 1 ≤ i < n job J
σ(i+1) can be scheduled after J

σ(i) without causing
an idle time on the third machine. This is the case if and only if p3σ(i) ≥ p2σ(i+1) and p3σ(i) + p2σ(i) ≥
p2σ(i+1) + p1σ(i+1).

In terms of our extension problem, this means that the point (p2σ(i+1), p2σ(i+1) + p1σ(i+1)) is reach-
able from the point (p3σ(i), p3σ(i) + p2σ(i)). We associate every job J j with an edge from (p2 j, p2 j + p1 j)
to (p3 j, p3 j + p2 j). In the consequence, there is an interruption-free schedule of J1, . . . ,Jn if and only if the
induced graph (V0,E0) admits an extension E ′ such that there is a path traversing each edge exactly once.
This is the case if and only if there is a Eulerian extension of the graph (V,E) = (V0 ∪{vmin,vmax},E0 ∪
{(vmin,vmax)}), where vmin (vmax) is such that it is smaller (greater) than all other elements of V in both
coordinates.

We call a graph G∗ = (V ∗,E∗) with V ∗ ⊂ R+
0 ×R+

0 legal, if it represents a scheduling instance in the
way we have just described. Respectively, an edge is called legal if it represents some job from a scheduling
instance. It is not hard to observe that for an edge to be legal it suffices that it has the form ((x,y),(x′,x+x′))
with x≤ y. In other words, the source and sink vertex of a legal edge are above the bisectrix, and for a given
source there is only one degree of freedom for the choice of the sink. For a graph to be legal it suffices that
it is induced by Ê ∪{(vmin,vmax)}, where Ê is a set of legal edges, and vmin and vmax are like defined in the
preceding paragraph.

We complete our reduction by describing in Lemma 7 how to legalize an arbitrary instance G = (V,E)
of G -2DEE, that is, to transform it into a legal instance G∗ = (V ∗,E∗), where G admits a Eulerian extension
if and only if G∗ does.

Lemma 7. Each instance of G -2DEE can be legalized in polynomial time.

Proof. First, we ensure that every vertex is above the bisectrix and no vertex has coordinates (0,0). This is
achieved by vertically shifting the whole graph by xmax = max{x | (x,y) ∈ V}+ 1. Technically, we obtain
the graph G1 = (V1,E1) by adding xmax to the second coordinate of every vertex. As this does not change
the reachability relation between any pair of vertices, G and G1 are equivalent in the sense of G -2DEE.

In the second transformation step, we eliminate all illegal edges. Let edge (u,v) = ((ux,uy),(vx,vy))∈E1
be illegal. Let ymax = max{y | (x,y) ∈V1}+1. We enhance V1 by the vertices w1 = (ymax−ux,ymax), w2 =
(0,ymax), w3 = (ymax,ymax) and w4 = (vy−vx,ymax). Then, we replace (u,v) with the edges (u,w1),(w2,w3)
and (w4,v), see Fig. 2.

Straightforward observation shows that all new edges are legal and any possible tour in a Eulerian exten-
sion must traverse the path u,w1,w2,w3,w4,v. Thus, the modified graph admits a Eulerian extension if and
only if G1 does.

We obtain the graph G2 = (V2,E2) by iteratively eliminating every illegal edge from G1. Note that
each such elimination causes ymax to increase by one. Still G2 does not necessarily represent a flow-
shop scheduling instance, as there has to be an edge (vmin,vmax). We take care of this requirement in
the last step of transformation. Let u = (ux,uy) ∈ V2 be an arbitrary vertex. We insert vmin = (0,0)
and vmax = (ymax,ymax) into V2, where ymax = max{y | (x,y) ∈ V2}+ 1. Furthermore, we insert w1, w2
and w4 defined like in the transformation from G1 to G2. Note that w3 has already been inserted as vmax.
Then, the edges (u,w1), (w2,vmin), (vmin,vmax) and (w4,u) are added to E2.

As the new vertices are above the bisectrix, the new edges are legal, and the resulting graph G∗ =
(V ∗,E∗) contains an edge from vmin to vmax, it represents an instance of F3 |nwt |G . Any Eulerian tour
traverses the cycle u,w1,w2,vmin,vmax,w4,u as a closed sub-tour. Hence, G2 and G∗ are equivalent G -2DEE
instances.

10

v

ymax

u

w1 w4w2

w3

Figure 2: The edge (u,v) is replaced with the legal edges (u,w1), (w2,w3), and (w4,v).

4.2 More hardness results
First we consider flexible flowshops with two machine stages. We show by reduction from 3-PARTITION
that minimizing the number of interruptions is strongly NP-hard if the first stage contains two machines and
the second stage only one.

Definition 5 (3-PARTITION). Given a set A of 3m elements from N+ with B/4 < a < B/2 for all a ∈ A,
where B := 1

m ∑a∈A a, decide whether A can be partitioned into m disjoint sets A1, . . . ,Am with ∑a∈Ai
a = B

for i = 1, . . . ,m.

It is well known that 3-PARTITION is NP-complete in the strong sense, see [1].

Theorem 9. The problem E0 (FF2 |nwt |G) with m1 = 2 and m2 = 1 is strongly NP-complete.

Proof. Given a 3m-element instance A of 3-PARTITION, we construct an instance I of E0 (FF2 |nwt |G)
with m1 = 2 and m2 = 1. For any a ∈ A we choose a job in I with processing times 1 and a on the first and
second stage, respectively. To partition these jobs, we add m + 1 auxiliary jobs having processing times B
on the first stage and 0 on the second stage.

We show that in a schedule without interruptions, there is no point in time at which two auxiliary jobs
are processed in parallel on the first stage. First notice, that two auxiliary jobs running fully in parallel must
cause an interruption (i) with any job scheduled before them, because no job in I has processing time B on
the second stage, and (ii) with any job scheduled after them, because no job in I has processing time 0 on the
first stage. Now, assume that there are auxiliary jobs J1 and J2 with start times S1 < S2 < S1 +B, which, as a
consequence, fully block the first stage during [S2,S1 +B). Since all jobs in I have positive processing times
on the first stage, no job can start at S1 +B on the second stage, and thus, an idle time after J1 is unavoidable.

Therefore, we may assume that in any schedule without interruptions all auxiliary jobs are processed on
the same machine in the first stage. This induces m gaps of length at least B between the auxiliary jobs on
the second stage. These gaps can be filled with the remaining jobs if and only if A is a yes-instance.

Now, we generalize this NP-completeness result and combine it with the single machine case in Theo-
rem 8. The following two lemmata show that E0 (FFs |nwt |G) with any constant number of stages s ≥ 2
and constant numbers of machines, except s = 2 and m1 = 1, is also strongly NP-complete.

Lemma 8. Consider E0 (FFs |nwt |G) with a constant number of stages s ≥ 2. Then any variant of this
problem with constant numbers of machines m1, . . . ,ms where ms = 1 can be reduced to any other problem
variant with constant numbers of machines m′

i, i = 1, . . . ,s, satisfying m′
i ≥ mi, m′

s = 1, and m′
k > mk for

some k < s.

Proof. We consider E0 (FFs |nwt |G) with a constant number of stages s ≥ 2 and constant numbers of
machines. Given an instance I of a problem variant with numbers of machines mi, i = 1, . . . ,s, where ms = 1,
we build an instance I′ of a problem variant with numbers of machines m′

i, satisfying m′
i ≥ mi, m′

s = 1,
and m′

k > mk for some k < s. In addition to the original jobs J of I, we choose auxiliary jobs for I′ which
force the jobs from J to use only mi machines on stage Li. For blocking a stage Li with m′

i > mi accordingly,
we add 2m′

i−mi jobs with processing time p = max j∈J ∑
s−1
i=1 pi j +∑ j∈J ps j on stage Li, and 0 elsewhere. We

11

p

Ls

Lk

q ∑
n
j=1 ps j

Figure 3: Arrangement of auxiliary jobs in a schedule without interruptions (Lem. 8). Original jobs have to
be processed in dotted slots.

p

Ls

q

Figure 4: Schedule without interruptions for I′. (Lem. 9)

denote the auxiliary jobs corresponding to Li by Ai. For an arbitrary auxiliary job Jmod ∈ Ai, we modify the
processing time on the last stage to q = p−∑ j∈J ps j.

Given a schedule without interruptions for I′, we consider the sub-schedule of auxiliary jobs. Observe,
that the idle times on the last stage in this sub-schedule sum up to at most ∑ j∈J ps j, since otherwise they could
not be filled with the jobs J in the total schedule. For an arbitrary but fixed k ∈ {1, . . . ,s}, we examine the
arrangement of jobs in Ak. By its cardinality, there is a machine in stage Lk that processes a subset Ãk ⊆ Ak
of at least two jobs. Due to the largest possible length of idle times on the only machine of the last stage, Ãk
does not contain more than two jobs. Thus, the jobs from Ãk generate an idle time of length exactly p on
the last stage. Since no further idle times are allowed, the remaining jobs from Ak and the other auxiliary
jobs must be scheduled such that they exactly meet the previous jobs on the last stage. In particular, the
job Jmod must be scheduled such that it is processed at the beginning of the idle time, produced by the two
jobs from Ãk that are processed on the same machine on Ls. Thus, we can assume that the auxiliary jobs are
arranged as in Fig. 3.

By definition of p and q there exists a schedule without interruptions for the instance I′ if and only there
exists one for the instance I.

Lemma 9. Consider E0 (FFs |nwt |G) with a constant number of stages s ≥ 2. Then any variant of this
problem with constant numbers of machines m1, . . . ,ms can be reduced to any other problem variant with
constant numbers of machines m′

i, i = 1, . . . ,s, satisfying m′
s ≥ ms and m′

i = mi for i = 1, . . . ,s−1.

Proof. We reduce the problem E0 (FFs |nwt |G) with constant numbers of machines m1, . . . ,ms to another
variant of this problem with machine numbers m′

i, i = 1, . . . ,s, satisfying m′
s ≥ ms and m′

i = mi elsewhere.
Given an instance I of the former problem with set of jobs J, we build an instance I′ of the latter problem
by adding auxiliary jobs to the instance I: We choose ms jobs with processing time q = max j∈J ∑

s
i=1 pi j

on the last stage, and 0 on all other stages. Furthermore, we add m′
1 m′

s jobs with processing time p >
(ms +1)q+∑ j∈J ps j on stage L1, and 0 elsewhere. We denote these jobs with Jq

aux and Jp
aux, respectively.

If there exists an interruption-free schedule S for I, then the schedule in Fig. 4 shows how to arrange the
jobs from I′ without idle times on the last stages: The jobs from Jp

aux are scheduled in blocks of m′
1 jobs which

are processed in parallel on the first stage and on the same machine in the last stage. With sufficiently long
idle times between these blocks, we can process after ms of them first a job from Jq

aux and then a sub-schedule
that corresponds to a last stage machine in S.

On the other hand, given a schedule for I′ without interruptions, we can construct a schedule without
interruptions for I. In the following we call jobs with processing time 0 on the stages L1, . . . ,Ls−1 zero-jobs.
We claim that in any interruption-free schedule for I′ every machine on the last stage processes first one or
more jobs from Jp

aux, second a zero-job and third an interruption-free sequence of jobs from J∪ Jq
aux (which

may also include jobs from Jp
aux).

12

We consider a schedule for I′ that does not contain an interruption. Then, the last stage idle times in the
sub-schedule induced by the jobs Jp

aux do not equal or exceed p, by definition of p. Thus, there is no pair of
jobs from Jp

aux that is processed on the same machine on the first and last stage. In particular, every first stage
machine processes exactly m′

s jobs from Jp
aux. Hence, given a machine on the first and last stage, there is a

unique job from Jp
aux which is processed on both machines. As a consequence, the m′

1 jobs from Jp
aux, that

are processed on a particular machine M on the last stage, use every machine in the first stage for processing
exactly one job.

Let c be the first completion time of these jobs, and let J ∈ Jp
aux be a job completing at that time. Since

idle times on the last stage must be compensable with the jobs from I′, none of the jobs from Jp
aux on M

completes after d = c + ms q + ∑ j∈J ps j. Thus, these jobs block the first stage during [d− p,c). This yields
two characteristics for schedules without interruptions: First, J can be followed on machine M only by
zero-jobs. And second, by

∣∣[d− p,c)
∣∣ = p−ms q+ ∑

j∈J
ps j > q = max

j∈J

s

∑
i=1

pi j,

no job can be processed before J on M. Since the jobs from Jp
aux have processing time 0 on the last stage, all

further jobs from J∪Jq
aux on M follow the zero-job without idle time. This completes the proof of the claim.

Given a schedule for I′ with the properties claimed above, we show how to construct an interruption-free
schedule for the instance I. Consider all machines on the last stage that process a job from J∪ Jq

aux. If there
is a machine that processes more than one job from Jq

aux, then we move the sequence of jobs, starting with
the second job from Jq

aux (ignoring the jobs from Jp
aux), to a machine on the last stage, that processes no job

from Jq
aux. Since the jobs from Jq

aux are zero-jobs, this does not create an interruption on the new machine. If
there occur conflicts with other jobs, then we delay sub-schedules corresponding to some machines on the
last stage. In case that a machine processes only jobs from J, but no job from Jq

aux, then by our claim, the
first job is a zero-job. Hence, we can move the sequence of jobs from J to another machine, which already
processes a job from Jq

aux. Thus, we may assume, that there are at most ms machines on the last stage that
process jobs from J and each of these machines processes one job from Jq

aux. If the job from Jq
aux is not

the first one in the sequence of jobs from J∪ Jq
aux, then we can move the subsequence starting with it to the

beginning. Since the first job in the sequence and the job from Jq
aux are zero jobs, this creates no interruption.

Finally, we obtain a schedule for I′, that uses only ms machines on the last stage, and in which the jobs of J
are processed without interruption. This yields an interruption-free schedule for the instance I.

Theorem 6 is proven by combining the results of this subsection with Theorem 8.

5 Further remarks
We introduced the concept of interpreting sequencing problems as Eulerian Extension Problems. This view
does not only lead to elegant and fast algorithms, it also allows an implicit representation of all optimal
solutions for particular problem classes. We believe that our technique influences also other algorithmic
frameworks for related problems, and moreover, it raises interesting potential for multi-criteria optimization.

As a first step towards multi-criteria optimization, consider both objective functions, G and Cmax. Already
simple examples (even on two stages) show that schedules with optimal makespan may have the maximum
number of interruptions whereas there exist idle time free schedules. For the two-stage variants of these
problems, our technique provides us an implicit representation of all optimal solutions from which one
could choose accordingly. Referring to a full version of this paper, we only mention here, that an algorithm
that solves the interruption problem optimally, yields a schedule of makespan no greater than twice the
minimum makespan, giving a trivial (1,2)-approximation for the bicriteria objective (G ,Cmax). Moreover,
it follows from the NP-completeness of F2 |nwt,m2 ≥ 2 |Cmax [15] that approximating such problems with
a (c,1)-guarantee is NP-hard for any constant c≥ 1.

References
[1] M. R. Garey and D. S. Johnson. Computers and intractability. Freeman, 1979.

13

[2] K. Giaro. NP-hardness of compact scheduling in simplified open shop and flowshop. European Journal of Opera-
tional Research, 130:90–98, 2001.

[3] K. Giaro and M. Kubale. Compact scheduling of zero-one time operations in multi-stage systems. Discrete Applied
Mathematics, 145:95–103, 2004.

[4] P. C. Gilmore and R. E. Gomory. Sequencing a one state-variable machine: A solvable case of the traveling
salesman problem. Operations Research, 12:655–679, 1964.

[5] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and approximation in
deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5:287–326, 1979.

[6] N. G. Hall and C. Sriskandarajah. A survey of machine scheduling problems with blocking and no-wait in process.
Operations Research, 44(3):510–525, 1996.

[7] I. Harjunkoski and I. Grossmann. A decomposition approach for the scheduling of a steel plant production. Com-
puters and Chemical Engineering, 25:1647–1660, 2001.

[8] R. M. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher, editors, Complexity of
Computer Computations, pages 85–103. Plenum Press, 1972.

[9] E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys. The Traveling Salesman Problem: A Guided Tour
of Combinatorial Optimization. John Wiley & Sons, 1985.

[10] D. Pacciarelli and M. Pranzo. Production scheduling in a steelmaking-continuous casting plant. Computers and
Chemical Engineering, 28(12):2823–2835, 2004.

[11] S. S. Reddi and C. V. Ramamoorthy. On the flow-shop sequencing problem with no wait in process. Operational
Research Quarterly, 23(3):323–331, 1972.

[12] H. Röck. The three-machine no-wait flow shop is NP-complete. Journal of the Association for Computing Ma-
chinery, 31(2):336–345, 1984.

[13] G. Rote and G. J. Woeginger. Time complexity and linear-time approximation of the ancient two-machine flow
shop. Journal of Scheduling, 1(3):149–155, 1998.

[14] C. Schwindt and N. Trautmann. Scheduling the production of rolling ingots: industrial context, model, and solution
method. Int. Trans. Operational Research, 10(6):547–563, 2003.

[15] C. Sriskandarajah and P. Ladet. Some no-wait shops scheduling problems: complexity aspect. European Journal
of Operational Research, 24(3):424–438, 1986.

[16] G. L. Vairaktarakis. Simple algorithms for gilmore–gomory’s traveling salesman and related problems. J. of
Scheduling, 6(6):499–520, 2003.

[17] Z. Wang, W. Xing, and F. Bai. No-wait flexible flowshop scheduling with no-idle machines. Operations Research
Letters, 33:609–614, 2005.

[18] D. B. West. Introduction to Graph Theory. Prentice-Hall, 2nd edition, 2001.

14

