
Technische Universität Berlin

Institut für Mathematik

Numerical simulation of train traffic in

large networks via time-optimal control

C. Blendinger, V. Mehrmann, A. Steinbrecher and
R. Unger

Technical Report 722-01

Preprint-Reihe des Instituts für Mathematik

Technische Universität Berlin

Report 722-01 February 2002

Abstract

We discuss the mathematical modelling of schedule based rail traffic. The model is
used to develop efficient numerical simulation methods for the time optimal control of a
large number of interacting trains in a large network. The time optimal control is used
to model the realistic behaviour of driving in a network like that of Deutsche Bahn. It is
used to allow a real time simulation with incomplete information on real train velocities.
We present numerical examples that demonstrate the efficiency of the model and the
simulation method.

Keywords. time optimal control, traffic simulation, mathematical modelling

Authors address:

Christoph Blendinger
TLC GmbH,
Weilburger Str. 26,
D-60326 Frankfurt, FRG
Christoph.Blendinger@tlc.de

Volker Mehrmann
Institut für Mathematik, MA 4–5,
Technische Universität Berlin
Str. des 17. Juni 136, D-10623 Berlin, FRG
mehrmann@math.tu-berlin.de

Andreas Steinbrecher
Institut für Mathematik, MA 4–5,
Technische Universität Berlin
Str. des 17. Juni 136, D-10623 Berlin, FRG
steinbrecher@math.tu-berlin.de

Roman Unger
Fakultät für Mathematik,
Technische Universität Chemnitz
D-09107 Chemnitz, FRG
roman.unger@mathematik.tu-chemnitz.de

This research was supported by Bundesministerium für Forschung und Technologie as Project
03-MEM4B1 of the program ‘Neue Mathematische Verfahren in Industrie und Dienstleistun-
gen’,

1 Introduction and Preliminaries

In this paper we discuss the mathematical modelling of schedule-based rail traffic in large rail
networks and present some examples of numerical calculations for this model of rail traffic.

Our motivation is the need for a simulation tool in real-time decision making for dis-
patching units in railway systems. Such dispatching units (e.g. the ”Betriebszentralen” of
German Railways/Deutsche Bahn) have to guide the planned trains according to their sched-
ules. There are some technical devices to trace the current location of the trains. In case of
detecting a deviation of some train from its schedule the dispatching unit is able to change the
departure times, the tracks or routes and within some limits the maximum speed of trains.
Evaluating the proposed dispatching actions needs a powerful simulation tool for human and
even for machine based decision making.

Other duties of a dispatching unit (here not further mentiond) are the handling of train
or line break-downs and the scheduling of extra trains.

In order to simulate the movement of all trains in a network we need a model that describes
the following issues:

• the train movement, i.e., the dynamic equations;

• the constraints for the movement, like e.g. global velocity constraints or the maximum
power of the engine;

• the detailed properties of the pathways of the trains (e.g. local velocity constraints,
slopes);

• restrictions for departure or arrival times due to the schedule;

• the strategies that are used to control the dynamics of the train;

• interaction between the trains induced from the signal system;

• interaction between the trains induced from schedule based dependencies (e.g. connec-
tions for passengers, sequencing of trains).

It should be noted that neither a complete net model of the underlying infrastructure
nor a complete model of the signal system is needed inside the simulation tool. The key
idea of our model is that only the interactions between trains induced by the infrastructural
properties (especially the signal system) are included in this model.

This allows a mathematical formulation of the problem which is prepared for the applica-
tion of efficient (real time) numerical methods to solve the simulation problem.

First we present a standard model for one-train-dynamics without any interactions with
other trains. In a second step we add the different kinds of interactions between trains in a
unifying way as the proposed model of the movement of many trains in a network. For some
prototypic (two-train-)situations the numerical simulation of their movements is shown.

2 One train: a control problem formulation

We use the simple model of the movement of one mass point to model the movement of
a single train as a control problem. We denote the position of a fixed point of the train

1

(preferably the head of the train) at time t by s(t) and the velocity of this point by v(t) and
use the combined position/velocity vector

[

s(t)

v(t)

]

= x(t)

as state of the train at time t. For a given time grid t0, t1, ... we have (initial) conditions
describing the position and/or velocity at times ti

[

s(ti)

v(ti)

]

= x(ti) =

[

si

vi

]

(1)

describing e. g. the beginning of a journey, as well as endpoints or stops.
In this way we can model the movement of every train as a classical linear control problem,

where the control u = u(t) is given by a force F applied to the train. The equations of motion
are then given by Newton’s law

ms̈(t) = F (t) = u(t). (2)

The total force acting on the train consists of several parts:

• A part uf (s, v) depending on position and velocity of the train, which cannot be in-
fluenced by the engineer (or an automatic driving control system). This includes air
resistance and friction as well as gravitational effects driving down-hill or up-hill, see
e.g. [6]. The parameters used in this model are the same as those used in the dynamical
model of RUT-0, the timetable construction program used of Deutsche Bahn.

• A part uv(t) that can be influenced by the engineer and contains the acceleration or
braking force which is constrained by the maximal braking force umin and the maximal
power Pmax of the engine.

A simplified model ignoring some frictional effects at low velocities (see [6]) shows an
inversely proportional dependency of the maximal acceleration force on the velocity: With
the work W we have the power as P = dW

dt and with W =
∫

F ds we obtain P = Fv.
With constant maximal power Pmax of the engine we obtain for nonzero velocities a maximal
acceleration force of the form umax(v(t)) = Pmax/v(t).

Combining these observations we obtain the constrained control

u = uf (s, v) + uv(t), uv(t) ∈ [umin, umax(v(t))]. (3)

With

x(t) =

[

s(t)

v(t)

]

,

ṡ(t) = v(t),

v̇(t) = a(t) = s̈(t) =
1

m
u(t)

we can describe the dynamics of the train as a linear control problem

ẋ(t) = Ax(t) +Bu(t), (4)

2

or in matrix notation
[

ṡ(t)

v̇(t)

]

=

[

0 1
0 0

] [

s(t)

v(t)

]

+

[

0
1
m

]

u(t), (5)

subject to the constraints (3) as well as other constraints such as

• the maximal velocity vmax(s) and the restriction that the train cannot drive backwards,
i.e.,

v(s(t)) ∈ [0, vmax(s(t))] for s ∈ [s0, sn], (6)

• reaching of a certain position (station) in a certain time window, i.e., there exists t ∈
[tia − εia, t

i
a + εia] such that

s(t) = si and u(t− 0) < 0, v(t) = 0, (7)

or leaving of a position in a certain time window, i.e., there exists t ∈ [til − εil, t
i
l + εil]

such that
s(t) = si and u(t+ 0) > 0, v(t) = 0, (8)

where εia and ε
i
l denote parameters that describes the allowed deviation from the planned

schedule in a certain region of the network and si as in (1).

In order to simulate the behaviour of the train on its journey over a given route through the
network, in principle, we would need to know the position and velocity of the train as initial
conditions as well as the control strategy.

Unfortunately, currently the only information (measurement) that is available from train
movement is the position of the particular train at certain times t̄, when the train passes
detecting devices, i.e., we have (outputs)

y(t) =
[

1 0
]

x(t), for t = t̄, (9)

but we typically do not have the velocity of the train at this time instance.
It is clear that there are many strategies to design controls that yield a certain specified

dynamics.
Typical criteria to design such a control are

• time optimal control,

• energy optimal control,

• following of a reference trajectory,

• minimal deviation from a desired schedule and

• mixed time and energy optimal control.

In this paper we will concentrate on time optimal control because this models a standard
assumption on the driving strategy. For this the path of the train will first be partitioned
into intervals where the velocity constraint is a continuous function. We allow jumps of the
velocity constraints at the end points of these intervals. Stopping points (like stations) will
also be end points of intervals.

3

3 Time optimal control for one train

In this section we introduce an approach for time optimal control of a single train. The
motivation for this is the typical strategy of the engineer to always use the maximal allowed
velocity as well as extremal acceleration or braking forces, respectively. Because, in general,
schedule times are not calculated with technically shortest driving times, this allows for the
engineer to compensate some delays. This assumption defines a well defined system and
allows the determination (from knowledge of the initial position and velocity at certain time
instances tj) of the time the train needs to reach another position with a specified velocity.

We can formulate this for a single train as follows:
Consider the path of a train subdivided in intervals as in Figure 1 with starting point s0

and end point sn.

s s0 1 s 2 s i s n-1 ns

I I1 I i I n-10

Figure 1: Subdivision of the line

The choice of this subdivision is induced from the simplifying assumption, that some data
of the problem (esp. slope and velocity restrictions) are constant on these intervals. But
other reasons for subdivisions are also possible.

The time optimal control problem is then to minimize tn − t0 subject to

ẋ(t) = Ax(t) +B[uf (s, v) + uv(t)],

x(t0) =

[

s0

v0

]

, x(tn) =

[

sn

vn

]

, (10)

uv(t) ∈ [umin(v(t)), umax(v(t))],

with further constraints given by (6). Time window restrictions as (7) and (8) will be omitted
for the consideration here on time optimal control, because they model a more schedule-based
driver strategy.

In this situation one is looking for a control u(t), so that the movement of the train is a
function s = s(t) that connects the point

[

t0
s0

]

with the point
[

tn
sn

]

(see Figure 2) and tn − t0
is to be chosen minimal. The constraints then yield that

• the function s(t) is monotonically nondecreasing, since v(t) ≥ 0;

• the derivative ṡ(t) = v(t) is not larger than the maximally allowed velocity.

To determine the time-optimal control, it is not relevant how long the train has to wait at
a station (due to a constraint) or when it restarts after a stopping point, this just leads to an
offset in the total time, therefore waiting times will be always 0 for simplicity here. A model
incorporating waiting times is gained through a picewise time-shift of the relative times in
such a zero-waiting-time model.

Combining the observations, we obtain the optimal control problem to minimize tn − t0
subject to

ẋ(t) = Ax(t) +B[uf (s, v) + uv(t)],

4

s0

t0

tn

si si+1 ssn

t i

t i+1

t

Figure 2: Time-path-lines of a train in the s-t-plane

x(t0) =

[

s0

v0

]

,

x(tn) =

[

sn

vn

]

,

v(s(t)) ∈ [0, vmax(s(t))],

uv(t) ∈ [umin, umax(v(t))]. (11)

Using the classical theory of optimal control [5] we can reformulate this problem as the
problem to minimize a cost functional

J(u) = φ(x(tf), tf) +

tf
∫

t0

f0(t, x, u) dt (12)

subject to constraints. Here φ(x(tf), tf) describes an optimization criteria at the end point
and f0(t, x, u) is the cost function with respect to state and control at a certain time t ∈ [t0, tf].
In case of time optimal control φ(x(tf), tf) ≡ 0 and f0(t, x, u) ≡ 1. These constraints are first

5

of all equality constraints

ẋ = f(x, u) f : R2 × Rk → R2,

x(t0) = x0 ∈ R,

Ψ(x(tf), tf) = 0, Ψ : R2 × R+ → Rq, (13)

withe some given function Ψ. Here tf ∈ R+ is free, q ≤ n and the term φ(x(tf), tf) in J is a
weighting of the final state, which implies that in φ only those 2− q components of x should
be weighted that are not fixed in Ψ.

Furthermore, we may have inequality constraints for the controls and for the states

C(x(t), u(t), t) ≤ 0 C : R2 × Rk × R+ → Rl (14)

as well as extra conditions at interior points

Nj(x(tij), tij) = 0 N : Rn × R+ → Rq, ij ∈ {0, 1, . . . , n}, j = 1, . . . , p

If we assume that all conditions are sufficiently often differentiable then we can define the
following Hamiltonian

H(x, u, λ) = f0(t, x, u) + λT f(x, u) (15)

λ : [0, tf]→ R2

as well as an auxillary function

Φ(x, t, ν) = φ(x, t) + νTΨ(x, t) ν ∈ Rq

that connects fixed end points with free end points that will be weighted in the cost functional.
We then obtain, see [5], the following necessary conditions for an optimal control

Hx(x̄, ū, λ̄)(x− x̄) ≥ 0 ∀x(·),
Hu(x̄, ū, λ̄)(u− ū) ≥ 0 ∀u(·),

where Hx and Hu denote the partial derivatives with respect to x and u, respectively.
In this way the optimal control problem is turned into a boundary value problem that we

could solve using classical methods for boundary value problems.
But to determine the solution of this boundary value problem it is necessary to determine

the switching points for the control that determine the inhomogeniety and hence the solution,
see [5]. If these switching points are known, then we have a multi-point boundary value prob-
lem that we could approach by finite-element, finite difference or multiple-shooting methods
[1].

Once these switching points have been determined, however, it is well known [5] that
the time-optimal control is given by a bang-bang control, where the control always switches
between its extremal values in the constraints.

This simplifies the solution in the time-optimal case significantly and we will use this
approach here. But we should note that for all other optimality criteria it is necessary to
solve a boundary value problem. This will be the topic of further investigations.

6

4 Calculation of switching points

In this section we discuss the numerical computation of switching points. There are three
types of possible switching points:

• points where the velocity or the acceleration of the train reaches the boundary of the
constraints interval, while not being on the constraint before;

• points where the boundary of constraint intervals is left;

• points where the control switches from acceleration to braking to meet other constraints.

The computation of the switching points is done by determining the intersections of the
trajectories of the velocity constraints and the trajectories obtained with extremal control.

The solution of this problem is quite simple if the following assumptions hold:

Assumption 1 a) Constraints in one path interval do not have any influence on the con-
trol in previous intervals. This condition would assure that the points where the control
leaves the extremal value can be determined successively backwards from the following
block. Figure 3 shows a situation where this assumption is violated.

b) The increase in the velocity constraint is not too large, so that the control is able to follow
it until the next possible point, where braking has to set in, see Figure 4. This would
ensure that in every block there is at most one point where the constraint is reached and
one where the constraint is left.

c) When the velocity constraint is decreasing, then the control of maximal braking is able
to follow this constraint.

For simplicity we, furthermore, assume that in every interval the velocity constraint is
given by a piecewise polynomial of degree at most 3,

vmax(s) = p0 + p1s+ p2s
2 + p3s

3. (16)

If these assumptions hold, then we have the following methods to determine the switching
points.

4.1 Reaching the constraint

We consider first the situation that the current velocity in a path point si is smaller than the
constraint vmax(s

i) and assume that we know the time instance ti at which the train is in the
point si, the current velocity v(ti) as well as the control uv = umax(v(ti)).

We want to determine the time tri for which vri := v(tri) = vmax(s(t
r
i)). Here we assume

that s(tri) ≤ si+1, otherwise we are not able to reach the constraint. We define the monotone
function

σ(t) := vmax(s(t))− v(t) (17)

and obtain the time instance, where the constraint is reached, i.e., when σ(t) is zero. Thus,
we have a root finding problem that can be solved by classical root-finding methods [2, 8],
like the bisection method, Newton’s method or fix-point iterations. A comparison of different
methods will be the topic of further investigations, here we concentrate on the following
bisection method.

7

s i−1 s
i

s
i+1

v
[m/s]

computed jump−off−point

correct
jump−off−point

Figure 3: Assumption 1a) for velocity constraint

Algorithm 1 Bisection method to compute the time instance where the velocity constraint is
reached.

Input: Tolerance for accuracy ε, starting stepsize ∆t and initial values ti, s
i and vi.

Output: Numerical value for time instance tri and for location sri , where the constraint
is reached.

1. Set t̂0 = ti and x0 = [si, vi]T .

2. Set t̂1 = t̂0 +∆t.

3. Determine σ(t̂1) (17) by solving the initial value problem

ẋ(t) = Ax(t) +B[uf (x1(t), x2(t)) + umax(x2(t))], t ∈ [t̂0, t̂1] (18)

x(t̂0) = x0.

4. If |σ(t̂1)| < ε then set tri := t̂1, s
r
i := x1(t̂1) = s(t̂1) and STOP.

5. If σ(t̂1) < 0, then half the stepsize ∆t := 1
2∆t.

6. If σ(t̂1) > 0, then we have not reached the constraint yet. Set x0 = x(t̂1), t̂0 := t̂1.

7. GOTO Step 2.

For the numerical implementation of the bisection method we note the following:

1. If the constraints cannot be reached in the given interval, then we have to check whether
it is possible that the computation of the switching point tri leads to sri > si+1. In this
case we move through the interval with maximal velocity.

2. It is possible to choose the parameters so that the optimal control becomes u = uf +
umax = 0. This is the case if the train is in a very steep climb. In this case the control
is assumed to stay 0 and hence the train stays (under the assumption that the braking
force can prevent it from going backwards). We then stop the bisection method with
an error message.

8

v
[m/s]

s
i+1

vmax

v(t) jump−off−point
"forbidden"

Figure 4: Assumption 1b) for velocity constraint

4.2 Leaving the constraint

If the velocity constraint drops at the end of a block, i.e., if vmax(s
i+1 + 0) < vmax(s

i+1 − 0),
then it is necessary to leave the constraint earlier and to determine the switching point (tli, s

l
i),

where the train has to leave the constraint.
In this case we run the computation backwards and start at si+1 with the maximal velocity

limit from the right, moving with a variable negative control. Again we use a bisection method
to do the root-finding. As starting values we may use t = 0 and s = 0. Via the solution of
the initial value problem

ẋ(t) = Ax(t) +B[−uf (x1(t), x2(t))− umin(x2(t))],

x(0) =

[

0

vmax(si+1 + 0)

]

, (19)

we obtain s(t) = x1(t) the length of the path from si+1 to the switching point. To determine
vmax, however, we need the absolute path, hence we determine vmax as vmax(s

i+1 − s(t)).
Apart from this change we may use Algorithm 1 with (19) instead of (18) and we determine
the position sli of the switching point, the velocity at the switching point (which is the maximal
velocity in this point) and the necessary absolute time tb needed for the braking to meet the
constraint in the following interval. The real time instance tli, where the switching takes place
is determined later. Note that Assumption 1 guarantees that always a switching point sli
exists in the given interval [si, si+1].

Let us assume now that sri ≤ sli. This implies that also tri ≤ tli, since s(t) is a continuous
and monotonically non-decreasing function.

We still need to determine the time period that will pass while being on the velocity
constraint, i.e., tli − tri . Again we use a root-finder to determine this period as a root of the
function

σ(t) := s(t)− sli, (20)

9

where s(t) is the solution of the initial value problem

ṡ(t) = vmax(s(t)),

s(tri) = sri .

This corresponds to using the velocity vmax(s(t)) in the interval [sri , s
l
i].

Let the root of σ be given by td. Then we obtain the time point where we have to leave
the constraint as tli := tri + td and the total travel time in the i-th block as the sum of the time
to reach the constraint, the time td on the constraint and the time to reach the end point of
the block, i.e., tri − ti + td + tb.

Our modelling concept realizes the safety concept for the interaction of the different trains
through the creation of alternative velocity constraints which are switched on and off dynam-
ically during the simulation. In other words every train is either constrained by hard velocity
constraints which arise from the infrastructure and can be precomputed off-line before the
simulation or by velocity constraints set by the other trains during the simulation. For this
reason it is sufficient to determine the points where velocity constraints are reached or when
the train has to leave the constraint. The third possibility that a train has to start braking
before it even reaches the constraint cannot happen after the hard velocity constraints have
been computed.

0

500

1000

1500

2000

2500

0 20 40 60 80 100 120 140 160t [s]

s [m]
s(t)

Figure 5: s-t diagram for problem, where constraint is reached.

In Figures 5 and 6, we depict the trajectories s(t) and v(t) for an example where the
constraint is reached.

5 Problems without Assumption 1

Unfortunately the intervals in realistic train networks can have very small length, so that
Assumption 1 cannot always be guaranteed. For this reason we propose a different strategy
for the determination of the points where to leave the constraints.

10

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160t [s]

v
[m/s]

v(t)
vmax(t)

Figure 6: v-t diagram for problem, where constraint is reached.

We build a list with all right velocity constrains vmax(si + 0) at all end points si of the
block and store the list in vmaxr[i].

Then we go backwards through all intervals of the whole train line to classify whether the
intervals have normal lengths or are too short.

We begin in the last point of the whole line and determine the point sln, where the
constraint has to be left in the last interval. If this point is in the interval, then we mark this
interval as normal and proceed to the second last interval and so forth. If it is not possible to
reach the point where we leave the constraint in the interval, we determine the actual velocity
v∗ in si−1, and correct the list of maximal right velocities at an interval boundary by setting
vmaxr[i− 1]= v∗. Then we mark this interval as short and proceed.

In this way we know that in a short interval the velocity constraint is given by the braking
curve and in all normal intervals Assumption 1a) is valid. See Figure 7.

6 A special case

In this section we discuss the time optimal control in a realistic situation, where several
simplifications hold. This special case, that was considered in a project of the last author at
TLC GmbH, is as follows:

• Within one interval the maximally allowed velocity is a constant function of the position.

• The forces that describe the acceleration and braking process are constant functions of
the position and continuous functions of the velocity.

• At the end points of blocks jumps in the velocity constraints and the exterior forces are
allowed.

11

Under these simplifications the computation of switching points simplifies significantly
even without Assumption 1. We again have to determine the points where the velocity
constraint is reached and left.

6.1 The adaption of velocity constraints

Due to the fact that the negative acceleration a during the braking process is assumed con-
stant, we do not have to solve a differential equation, but merely an integration is sufficient.

If we are in a block i at a possible switching point ssi with velocity vsi and start at time
t0 = 0 then we have

v(t) = at+ vsi ,

s(t) =
a

2
t2 + vsi t+ ssi .

In order to achieve a velocity v(t̃) = ṽ by braking, we obtain a necessary time

t̃ =
ṽ − vsi
a

and a switching point

ssi = s̃− a

2
(t̃)2 − vsi t̃ with s̃ = s(t̃).

Usually we have t̃ = ti+1, s̃ = si+1 and ṽ = vmax(si+1 + 0).
If ssi > si then we have found a point where we have to leave the velocity constraint, see

Figure 6.
If the block is short, i.e., ssi ≤ si then we have to correct the maximal velocity at the

beginning of the block to the velocity v∗ that we can maximally allow to reach the maximally
allowed velocity at the end of the block, see Figure 7.

Using the equations of motion

v(t) = at+ v∗,

s(t) =
a

2
t2 + v∗t+ si.

we obtain v∗ in terms of the unknown travel time

v∗ = ṽ − at̃. (21)

Then with

s̃ =
a

2
t̃2 + (ṽ − at̃)t̃+ si

we obtain the necessary time for braking from the quadratic equation

0 = t̃2 − 2ṽ

a
t̃− 2(si − s̃)

a

with the solutions

t̃1,2 =
ṽ

a
±
√

ṽ2

a2
+

2(si − s̃)

a
.

12

ŝ
~
s

v̂

*
v

~
v

v

s

v_max(s)
v(s)

P
S
frag

rep
lacem

en
ts

Determination of v∗ in short intervals

Figure 7: Correction of vmax in short blocks

A short calculation yields that the relevant solution is given by

t̃ =
ṽ

a
+

√

ṽ2

a2
+

2(si − s̃)

a

and we have determined v∗ by (21). We enter this into the list and note that in this interval
full braking is necessary.

It should be noted that in intervals with full braking we can determine in a similar fashion
the maximal velocity, see Figure 8. The velocity constraint in such an interval with left
maximal velocity vi is then given by

vmax(s) = a

[

−vi
a
+

√

v2
i

a2
− 2(si − s)

a

]

+ vi

= −vi + a

√

v2
i

a2
− 2(si − s)

a
+ vi

= a

√

v2
i

a2
− 2(si − s)

a

⇔ vmax(s) =
√

v2
i − 2a(si − s). (22)

In the numerical implementation it may happen that due to roundoff errors we obtain small
complex values. To guarantee that this does not happen we use

vmax(s) =
√

|v2
i − 2a(si − s)|.

In Figures 9 and 10 we depict the original and the corrected vmax(s). In the following we
use vmax(s) to denoted the corrected maximal velocity.

13

Determination of vmax(s) on braking curves

ŝ
~
s

v̂

s

vmax(s)

s

vmax(s)

v

Figure 8: vmax(s) as braking curves

0

20

40

60

80

100

120

26 28 30 32 34

km
/h

Kilometer

The given vmax(s)

Figure 9: vmax(s) before correction

0

20

40

60

80

100

120

26 28 30 32 34

km
/h

Kilometer

The corrected vmax(s)

Figure 10: vmax(s) after correction

6.2 The simulation process for one train

We also have several simplifications in the simulation process. If we start at a boundary
point of a block with a velocity equal to the maximal velocity and if umax(v) ≥ −uf (s, v),
then we obtain for vmax(s) = const a travel time of t = intervallength

vmax
. If vmax(s) is not

constant, then due to the constant acceleration we get t = vnew−vold

a
, where vold = vmax(s)

und vnew = vmax(s+ intervallength).
In both cases the initial velocity in the next block is given by the maximal velocity on the

left side of the next block.
If the initial velocity is not on the upper constraint, i.e., v ∈ [0, vmax), or if umax(v) <

−uf (s, v) , then we solve the system

ṡ = v,

v̇ =
1

m
(umax(v) + uf (s, v)),

14

s(0) = s0,

v(0) = v0

until we go beyond the right boundary of the block or until v(s(t)) ≥ vmax(s(t)).
As numerical integration methods we have tested the forward Euler-method with constant

and variable stepsize as well as a fourth order Runge-Kutta-method with a simple extrapola-
tion based stepsize control [8, 2].

If one of the stopping criteria (right boundary or maximal velocity) is reached then we
used linear or polynomial interpolation of the computed values to determine the values at the
boundary or we used Newton’s method to determine the points where we reach the constraint.

A special treatment is necessary for stopping points (like in a station) which have zero
interval length or intervals where the slope of the track is too large so that the end of the
interval cannot be reached.

6.3 Numerical examples

In the following we leave off measurement units. The data are measured in kg, N, m, m/s,
m/s2,

As a first test case we consider a hyperbolic accelerating force. Consider the system

ṡ = v,

v̇ =
1

m
u(v),

where

u(v) =
250000

v
.

We obtain the system

v̇ = α
1

v
with α :=

250000

m
,

vv̇ = α, vv̇ =
1

2
˙(v2), w := v2,

ẇ = 2α,

w = 2αt+ C1.

Hence

v(t) =
√

2αt+ C1

and with

ṡ = v =
√

2αt+ C1

we obtain

s(t) =
2

3

(2αt+ C1)
3

2

2α
+ C2.

With initial values s(0) = 0 and v(0) = 1 we get C1 = 1 and C2 = − 2
6α .

15

With a mass m of the train of 500 000 kg, we get α = 1
2 and

s(t) =
2

3
(t+ 1)

3

2 − 2

3
,

v(t) =
√
t+ 1.

Starting in t = 0 with s(0) = 0 and v(0) = 1, we reach the maximal velocity of 30 m/s
after 899 s and 17999.33 m.

v(899) =
√
899 + 1 = 30,

s(899) = 2
3(899 + 1)

3

2 − 2
3 = 17999.33.

In an analogous way we constructed another example with an interval of length 5332.67m
in which no constraint is reached and where the interval is left after t = 399 s with velocity
v = 20.0 m/s.

Some results of the numerical tests are given in Section 11.1. Another testcase used
realistic data of the network of Deutsche Bahn and is referenced as testcase 22127-1013, see
Section 11.2.

7 Several interacting trains

In this section we discuss the simulation of several (nz) trains that interact with each other
via a security concept (e.g. a fixed block signal system) which prevents a train from entering
in a certain block until any other train has left this block.

In the following we assume that the path that a specific train takes through the network
is fixed a priori.

The path of the train with index i, where i = 1, . . . , nz is given by an interval Li :=
[si0, s

i
f] ⊂ R. Associated with this path are the following piecewise continuous functions

(which in the special case of Section 6 are piecewise constant):

• the maximal velocity vimax : Li → R+
0 ,

• the slope of the track ωi : Li → R.

For every train there is also given a maximal negative (braking) acceleration aimin ∈ R−.
The state of each train is given again as

xi(t) :=

[

si(t)

vi(t)

]

,

where si(t) is the position and vi(t) is the velocity of the i-th train at time t.
We now describe a mathematical model for the safety concept (which is in accordance

with a fixed block safety concept). For this concept the paths Li, of all trains i = 1, ..., nz are
divided into mi

s safety blocks Sij ⊂ Li, j = 1, . . . ,mi
s. This partitioning into blocks is at first

independent of the subdivision depicted in Figure 1.
It should be noted that every individual train has its own string of safty blocks. It may

happen that different trains use (in some order) the same physical piece of track but then this
block has different labels for the different trains. One duty of the safety concept via velocity
constraints described below is to have a modeling concept at hand which incorporates the

16

information which trains may not use the same physical blocks at the same time as data into
the simulation procedure.

In a classical signal system with pre- and main signal (see e.g. [6]) every block extends
from a pre-signal to the overnext main-signal, because

1. this is the region which a train uses exclusively under normal operating conditions and

2. at the end of such a block the train stops if ”Stop” is signalled.

In other fixed block safety systems (e.g. LZB) a similar choice of such blocks is also possible
with the same criteria.

The safety concept is described using braking curves

bij : S
i
j → R+

0 (23)

that are monotonically decreasing functions which satisfy bij(s) = 0 at the right boundary

of Sij . These curves act as state-dependent velocity constraints. In general they may be

chosen as linear functions with slope aimin. Switching these braking curves on and off - this
is equivalent to switching the related signal between ”Stop” and ”Go” - by position of all the
trains in consideration realizes the safety concept. This does not model the full behavior of
the signal system, but is the correct intrinsic mechanism induced from other trains.

Furthermore, for every safety block we have an indicator function

χij : Rnz → {0, 1, 2, ...}, (24)

that satisfies

χij(s
1, . . . , snz)

{

= 0 if the train i may leave block j,
> 0 if one of the other trains prevents the train i from leaving block j.

(25)
This means that in case that χij > 0, the train i has to stop at the end of the block S ij .

More precisely, the positive values of χij are chosen as the number of conditions preventing

the train from leaving block Sij ; this may be other trains or a priori set of conditions. These
indicator functions may change their values only if a train enters or leaves a safety block. It
should be noted that these χij depend in fact only on the position variable si in xi.

If a train enters a safety block then for all other associated blocks (these are the safety
blocks of other trains that use this physical piece of track) the indicator function is increased
by 1, i.e., either the main signal is switched to ”Stop” or stays in this position.

If a train leaves a safety block then the value of the indicator functions of the other
associated blocks is reduced by 1 if it was positive.

Since a safety block extends from a pre-signal to the overnext main-signal it is clear that
every train is at least in one and at most in two safety blocks, see Figure 11.

In order to simplify the model in the case the train is only in one of these blocks we
introduce a dummy-block S0 with the property that

χ0(s
1(t), . . . , snz(t)) = 0 ∀t,

i.e., in such a block a braking curve is never active. Inserting this dummy-block, if necessary,
we can achieve that every train is always exactly in two safety-blocks, see Figure 12.

17

V VH H HV

S

S

Sj+1

j+2

j+3

V ... pre-signal H ... main-signal

jS

Figure 11: Distribution of safety blocks of one train over its path

V VH H HV

S

S j+3

V ... pre-signal H ... main-signal

j+2S j

S 0 S j+1

S 0

S 0

S 0

Figure 12: Inclusion of dummy-blocks

These two safety-blocks will be locally labeled with 1 and 2 and then using the functions

σi : {1, 2} × Li → {0, 1, . . . ,mi
s} (26)

the mapping of the local labels to the global labels of the momentary position of train i is
realized.

In this way there exist three locally active velocity restrictions for every train, the maximal
velocity vimax(s

i) as well as those given by the braking curves, i.e., velocities achieved with
maximal braking

vimax1(t, s
i) :=

{

bi
σ(1,si)

if χij(s
1(t), . . . , snz(t)) > 0

+∞ otherwise
,

vimax2(t, s
i) :=

{

bi
σ(2,si)

if χij(s
1(t) · · · snz(t)) > 0

+∞ otherwise
.

The relevant restriction virel(t, s
i) for all trains i, i = 1, . . . , nz is then the minimum of

these 3 restrictions

virel(t, s
i) := min{vimax(s

i), vimax1(t, s
i), vimax2(t, s

i)}. (27)

The indicator functions χij(s
1(t), . . . , snz(t)) are defined specifically to describe the number

of active blockings of the safety block j of train i at time t. If χij(s
1(t), . . . , snz(t)) = 0 then

this block is open and a train can leave this block. If χij(s
1(t) · · · snz(t)) = k with k 6= 0, then

18

there exist k blockings. Typically (e.g. if two trains follow each other), then k = 1, but there
exist circumstances, when k may be larger (e.g. if one train has to let several other trains
pass near a crossing). Every safety block is associated with exactly one train. Because of the
monotonicity and continuity of the si(t) the values of χij(t) may change only at times where
a train enters resp. leaves a block.

A more systematic way to define χij(t) is therefore to describe its changes. This can be
modelled via a point-set map.

Definition 1 Let M be a set and P(M) the power set of M . A mapping F :M → P(M) is
called point-set map if every m ∈M is mapped to some subset Fm ⊂M .

Let βi ∈ Nmi
s

0 be the vector with the number of blockings for all safety blocks related to
train i at a certain time. At initial time t0 this vector will be initialized with values βij ∈ N0.

Furthermore we have the point-set maps

block : {1, ..., nz} × N → P({1, ..., nz} × N),

unblock : {1, ..., nz} × N → P({1, ..., nz} × N),

which are defined here on the set of indices for the blocks as the basic set. (Using the set of
blocks itself as the basic set would lead to an equivalent definition.)

In a preprocessing step these point-set maps are stored in a table representing the relevant
information of the interconnections in the network and some extra data. As an example see
Tables 1 and 2.

If train i enters a block j at some time, we can determine the blocking conditions of the
relevant other safety blocks using these tables from the old values of βkl as

βkl := βkl + 1 ∀(k, l) ∈ block(i, j).

Analogously, if train i leaves a block j at some time, we obtain the unblocking of other safety
blocks as

βkl := max{βkl − 1, 0} ∀(k, l) ∈ unblock(i, j).

Therefore at every time t the value of βkl represents the value of χkl since the last event (time of
block leaving or block entering of some train) where the value of χkl may have changed. This
means that χkl is piecewise constant between such events and has jumps of integer heights
(mostly from {+1,−1}) at these event times. It should be noted that the point-set map block

may also be used to construct initial values βij from the initial positions si(t0) of all trains.

In the implementation this two dimensional indexing, e.g. Sij , χ
i
j or βij , is stored in an

one dimensional array, e.g. Sk, χk or βk with k = (0,)1, ...,
nz
∑

i=1
mi
s.

8 Interaction between trains

In this section we discuss the modelling of different kinds of interactions between trains in
a network. In order to do this we distinguish two types of blockings for certain intervals,
blockings due to safety constraints and blockings that are related to the order in which trains
are allowed to pass certain common parts of a network, like e.g. priority rules for different
trains. These two kinds of blocking safety blocks of trains may be given as input data by
appropriate initial settings of the vector β := (βij)i,j , the initial configuartion, and definitions
of the point-set maps block and unblock as shown by the following prototypic examples.

19

8.1 Consecutive trains on one line

If one train follows another on the same track, in the model as well as in reality it has to be
guaranteed that the second train does not catch up with the first one. There is some freedom
in the choice of the used combinations of the initial configuration for β, the definitions of the
block/unblock point set maps and the assumed minimal starting times of the two trains.
The difference in these choices will not be in the effective behavior of the simulation but in
the way the local phenomena of the signal system are represented.

We assume for this example that we havemi
s safety blocks for train i, i = 1, 2, that for both

trains all safety blocks are the same in their position on the line and that m1
s = m2

s =: ms.
It follows that S1

j and S2
j , j = 1, . . . ,ms denote the same physical pieces of the track, see

Figure 13.

V H V H V H V H

S

S

S

V H V H V H V H

Sj

S

S

j−1

j−2

j

j−1

j−2

Path of the first train:

Path of the second train:
Inhibitions (active braking curves)

1

1

1

2

2

2

V ... pre−signal H ... main−signal

Figure 13: Two consecutive trains on the same line

First we will pursue that initially the whole line is blocked for the second train and the
first train opens the blockings when it leaves appropriate safety blocks. Therefore we choose
the following initial configuration for β:

βij =

{

0 i = 1,
1 i = 2.

(28)

Consider the situation that the first train has just left the block S1
j . According to the

principle, that there has to be at least one red signal between two consecutive trains, the
second train is allowed to use the complete block labeled S2

j (this is physically seen the same

block as S1
j for the first train), which means that the braking curve in the block of the second

train associated with S2
j−1 can be switched off. Hence the first train unblocks S2

j−1 as leaving

the block S1
j and the point-set maps block(i,j) and unblock(i,j) have the following form:

block(i, j) = ∅ i = 1, 2, j = 1, . . . ,ms (29)

20

unblock(i, j) =







∅ i = 1, j = 1,
{(2, j − 1)} i = 1, j = 2, . . . ,ms,

∅ i = 2.
(30)

The induced behavior here is independent of the initial states of the trains resp. their
minimal starting times. The first train (using the blocks S1

j) will travel always as first,
because otherwise any block of the second train would remain blocked. The effect of this
modelling is a kind of keeping some distance (here one block, but any number of blocks is
possible) between the two trains, but it does not reflect the intrinsic mechanisms of the locally
acting fixed block safety system.

The second model starts with the construction of the block/unblock maps to catch
completely the local effects of the safety system independent of the actual sequence of trains.
It is based on the principle cited above (at least one red main signal between two consecutive
trains): When the first train is in block S1

j but not in S1
j−1, then the second train is not

allowed to enter the block S2
j . This is guaranteed by activating the braking curve associated

with S2
j−1. As long as the train is in the intersection of S2

j−1 and S2
j−2, the braking curve

in S2
j−2 has to be active. These arguments are valid also by interchanging the two trains.

Because of the choice of the blocks such that every train should use them exclusively, the
unblocking is completely analogous to the blocking concept and we obtain the two identical
point-set maps

block(i, j) =







∅ i = 1, 2 j = 1,
{(2, j − 1)} i = 1, j = 2, . . . ,ms,
{(1, j − 1)} i = 2, j = 2, . . . ,ms,

(31)

unblock(i, j) =







∅ i = 1, 2 j = 1,
{(2, j − 1)} i = 1, j = 2, . . . ,ms,
{(1, j − 1)} i = 2, j = 2, . . . ,ms.

(32)

With these (with respect to i) fully symmetric point set maps one gets a realistic behavor
for any realistic choice of initial conditions: The initial configuration of β should reflect the
starting positions of the trains, e.g. if train 1 starts in block S1

1 and train 2 starts in block S2
2

at the same minimal starting time then

βij =

{

1 i = j = 1,
0 otherwise.

(33)

is a consistent choice of β, which leads to the desired simulation behavior, where train 1
follows train 2 and will never catch up. Interchanging the two trains or choosing different
minimal starting times for the two trains may also modeled with such a simple choice of β
(where only one block is initially blocked) together with the same point-set maps (31), (32).
This model is useful if one does not know a priori the sequencing of trains on the common
track.

A third model may be used if it is (as extra input data) known which train will be ahead
(say train 1) and which will follow (say train 2). Then a local but (in i) nonsymmetric
definition of the point-set maps may be choosen as follows:

block/unblock(i, j) =







∅ i = 1, 2 j = 1,
{(2, j − 1)} i = 1, j = 2, . . . ,ms,

∅ i = 2, j = 2, . . . ,ms,
(34)

21

but in this case initial conditions as in (33) are not useful, because they produce an unrealistic
behavior even in the case train 1 is faster than train 2. But if the trains start in the correct
sequencing (say train 1 in block S1

2 and train 2 in S2
1) with a consistent initial configuration

as

βij =

{

1 i = 2, j = 1,
0 otherwise,

(35)

then the same simulation behavior is obtained as with the fully symmetric point set maps
(31), (32), because in this case the blockings (and unblockings) initated from train 2 (as
defined in (31), (32)) will never act as a restriction for the movement of train 1.

Therefore for any realistic behavior one needs the modelling of the local action of the
signal system like (31), (32) or (34). But in some situations it is very useful to guarantee
some priority rules using an initial configuration of β as in the first model which is not
completely induced from the blocking map. This will be shown in the next example.

8.2 Join of two lines

switch

S

S

S

SS

S

l−1

l−2

r−2

r−1

r

Left train

Right train

l
1

1

1

2

2

2

V V

V V

V V

H H

H

H H

V ... pre−signal H ... main−signal

Figure 14: Two lines joining at a switch.

In the situation that two lines join at a switch first we have to prevent from collisions as
above. Secondly we can guarantee by an appropriate initial configuration that the trains pass
the switch in a given order. As shown in Figure 14 we have a left and a right train going to
pass the switch.

We label the relevant blocks of the left train by . . . , S1
l−1, S

1
l , S

1
l+1, . . . and the ones of the

right train by . . . , S2
r−1, S

2
r , S

2
r+1, . . . The two safety blocks including the switch are S1

l and
S2
r as depicted.

22

First we have to model action of the security system at and above the switch. This is
done by point-set maps constructed like in the second model of the last example, compare
with (31, 32):

block/unblock(i, j) =















∅ i = 1, j ≤ l − 1,
{(2, r + (j − l)− 1)} i = 1, j ≥ l,

∅ i = 2, j ≤ r − 1,
{(1, l + (j − r)− 1)} i = 2, j ≥ r.

(36)

Because the two trains drive independently up to the switch, a consistent initial configuration
is β ≡ 0. This realizes for all choices of minimal starting times a first-come-first-serve strategy
at the switch without any systematic priority rules. i.e. the sequencing of the trains on the
common track after the switch depends only on the order the trains arrive in blocks S1

l resp.
S2
r .
In most of the situations coming from schedule based train movement, there is a priori

given information on the planned or forced sequencing of the trains at the switch and there-
fore on the following common track. In the simplest case it is derived from the timetable
information itself. Now for the common track after the switch a priority rule (say left train
first) will be realized with an initial configuration similar to (28):

βij =







0 i = 1,
0 i = 2, j ≤ r − 2,
1 i = 2, j ≥ r − 1.

This models an initial blocking of the common part of the track for the right train/train 2;
with identical block/unblock mappings as defined in (36) this blocking for train 2 will be
never released and the train would never leave block S2

l−1. Therefore one has to modify the
unblock mapping as

unblock(i, j) =























∅ i = 1, j ≤ l − 2,
{(2, r − 1)} i = 1, j = l − 1,

{(2, r + (j − l)− 1), (2, r + (j − l))} i = 1, j ≥ l,
∅ i = 2, j ≤ r − 1,

{(1, l + (j − r)− 1)} i = 2, j ≥ r,

Now there are enough unblocking actions for train 2 after train 1 has passed over the switch.
The table-oriented storage of the point-set maps for this model as generated in a prepro-

cessing step of the program is shown in Tables 1 and 2 for the simple case r = l.
Because in this scenario one knows a priori the sequencing of the trains on the common

track, some significant simpifications - as in the derivation of (34) - are possible. First
the blocking and unblocking actions of train 2 for train 1 may be skipped. In the initial
configuration of β there is need only for one extra blocking at the switch together with an
appropriate unblocking, because keeping the security distance of at least one block between
the trains is guaranteed by the incorporated model of the standard security system acting
locally. Altogether one gets

βij =

{

1 i = 2, j = r − 1,
0 otherwise,

23

block(i,j)

j \i 1 2
...

...
...

l − 2 = r − 2 ∅ ∅
l − 1 = r − 1 ∅ ∅

l = r {(2, r − 1)} {(1, l − 1)}
l + 1 = r + 1 {(2, r)} {(1, l)}
l + 2 = r + 2 {(2, r + 1)} {(1, l + 1)}
l + 3 = r + 3 {(2, r + 2)} {(1, l + 2)}
l + 4 = r + 4 {(2, r + 3)} {(1, l + 3)}

...
...

...

Table 1: Storage of point-set map block for two joining lines

unblock(i,j)

j \i 1 2
...

...
...

l − 2 = r − 2 ∅ ∅
l − 1 = r − 1 {(2, r − 1)} ∅

l = r {(2, r − 1), (2, r)} {(1, l − 1)}
l + 1 = r + 1 {(2, r), (2, r + 1)} {(1, l)}
l + 2 = r + 2 {(2, r + 1), (2, r + 2)} {(1, l + 1)}
l + 3 = r + 3 {(2, r + 2), (2, r + 3)} {(1, l + 2)}
l + 4 = r + 4 {(2, r + 3), (2, r + 4)} {(1, l + 3)}

...
...

...

Table 2: Storage of point-set map unblock for two joining lines

block(i, j) =







∅ i = 1, j ≤ l − 1,
{(2, r + (j − l)− 1)} i = 1, j ≥ l,

∅ i = 2,

unblock(i, j) =















∅ i = 1, j ≤ l − 2,
{(2, r − 1)} i = 1, j = l − 1,

{(2, r + (j − l)− 1)} i = 1, j ≥ l,
∅ i = 2,

which provides for all minimal starting times exactly the same simulation behavior as the
previously derived complex model having about three times more non-trivial entries in the
point-set maps.

24

8.2.1 Some calculations for this example

The switch is located at kilometer 13.5, i.e., after this point both trains use the same path.
We did 4 calculations with the following properties:

1. There is no train scheduling. Train 1 starts at time 0 and train 2 after 90 seconds.

2. There is no train scheduling. Train 1 starts after 90 seconds and train 2 at time 0.

3. There is a train scheduling, enforcing that train 1 can pass the switch first. Train 1
starts at time 0 and train 2 after 90 seconds.

4. There is a train scheduling, enforcing that train 1 can pass the switch first. Train 1
starts after 90 seconds and train 2 at time 0.

This gives us the following results:

Test 1 : Train 1 arrives at first
Test 2 : Train 2 arrives at first
Test 3 : Train 1 arrives at first
Test 4 : Train 1 arrives at first

The path-time-diagrams are shown in the Figures 15,16,17 and 18.

0

5

10

15

20

25

0 5 10 15 20 25 30

t[
m

in
]

s[km]

Time-Path-Diagram of the two trains

train 1 : t(s)
train 2 : t(s)

Figure 15: Test 1

0

5

10

15

20

25

0 5 10 15 20 25 30

t[
m

in
]

s[km]

Time-Path-Diagram of the two trains

train 1 : t(s)
train 2 : t(s)

Figure 16: Test 2

9 The equations of motions for several trains

In this section we discuss the equations of motion for several trains interacting via the safety
concept. Each train moves in the same fashion via the equations of motion given by (10) and
the time optimal control problem for every train individually is to minimize tif − ti0 subject to

ẋi(t) = Axi(t) +Bi[uif (x
i) + uiv(t)],

xi(t0) =

[

si0
vi0

]

,

25

0

5

10

15

20

25

0 5 10 15 20 25 30

t[
m

in
]

s[km]

Time-Path-Diagram of the two trains

train 1 : t(s)
train 2 : t(s)

Figure 17: Test 3

0

5

10

15

20

25

30

0 5 10 15 20 25 30

t[
m

in
]

s[km]

Time-Path-Diagram of the two trains

train 1 : t(s)
train 2 : t(s)

Figure 18: Test 4

xi(tf) =

[

sif
·

]

,

uiv(t) ∈ [uimin, u
i
max(v

i(t))].

Here the matrix A is the same for all trains, but the matrix B is different, since it contains
the mass of the train, i.e.,

A =

[

0 1
0 0

]

,

Bi =

[

0
1
mi

]

, i = 1, . . . , nz.

For a single train we just had velocity constraints given by

v(s(t)) ∈ [0, vmax(s(t))] ∀t,

and analogously we have for several trains

vi(si(t)) ∈ [0, vimax(s
i(t))], ∀t, i = 1, . . . , nz.

On the basis of the safety concept we had derived the braking curves bj(s) (23) in the
different safety blocks and the indicator functions χj(s

1, . . . , snz) (24), that activate or deac-
tivate the breaking curves and thus we generate the relevant velocity constraints virel(t, s

i) in
(27).

Since the indicator functions χj depend on the current position of all interacting trains
(which are again time dependent), we now have position- and time-dependent constraints and
we obtain a coupled system

ẋi(t) = Axi(t) +Bi[uif (x
i) + uiv(t)],

xi(t0) =

[

si0
vi0

]

,

26

xi(tend) =

[

siend
.

]

,

uiv(t) ∈ [uimin, u
i
max(x

i
1(t))],

vi(t) ∈ [0, virel(t, x
1
1(t), ..., x

nz

1 (t))],

where the state constraints determine the variable part of the control ui(t).
There are now several options for time optimality, since every train has an individual tif .

Consider the vector of travel times

Tt =











t0f − t00
t1f − t10

...
tnz

f − tnz

0











.

By choosing a norm in different ways we can optimize different criteria, but we may also use
a componentwise optimization to minimize all individual travel times under constraints of
priority of one train over the other, i.e., after we have fixed the order of trains at common
pieces of the network, then for every train we have an individual optimization.

Here we follow the latter strategy, i.e., in any case of conflict between trains we fix the
order of the trains a priori, and then use the strategy to determine the time optimal case for
every train individually. In this way we can use the strategy developed for one train with
extra constraints. This models the individual behavior of all drivers simultanously trying to
drive their trains time optimal. On the mathematical side the advantage of this approach is
that we do not have to solve a boundary value problem but, as in the case of one train, we
can determine the minimal travel time as follows.

In the case that there are no state constraints, it is well-known [5] that the optimal control
is a bang-bang control, i.e., the control switches between its minimal and maximal value. In
our case we also have state constraints. This leads to the following time-optimal control
strategy. If the train is restricted by a braking curve then, since we have assumed that the
braking curve can be realized, the control is fixed, since we have to guarantee the safety
constraints.

If, due to unblocking during the braking period, the braking curve is deactivated then
the strategy is changed to the same situation as in the case of one train, where we only have
train-independent velocity constraints.

In such a situation we must set the variable part of the control in such a way that the
maximal allowed velocity is kept and that the exterior forces are compensated, i.e., we have

ṡi(t) = vi(t),

vi(t) = virel(t, s
i(t))

for all t, in which we stay on the constraint, where virel is as in (27). This allows to determine
the travel time in the same way as for one train.

Remark 1 It should be noted that due to the interaction of trains and the priority rules that
are fixed a priori, the time optimal strategy that we have described in this section in general
does not lead to a unique control strategy. The optimal vector of minimal travel times Tt is
unique but there is quite a lot of freedom in the choice of control. This can be easily seen in

27

the case of a fast train following a slow train on one single track, if this situation is allowed
to happen due to the given priorities. Here it is clear that the second train has many options
for the indivdual time-optimal control. It can always keep the minimal possible distance to
the first train or it can just wait at some point until it can use the whole line without braking
curves. In order to make the optimal control unique, in such a situation further optimality
criterias have to be prescribed.

10 Realization of the simulation program

In this section we describe some details on the implementation (in C++) of the simulation
method that realizes a time optimal control. The simulation runs until all trains have arrived
in their final destination point.

10.1 Preprocessing

In a preprocessing step (as in the case of one train) we determine the controls that have to be
applied in order to guarantee that always the maximal velocity in every block is kept and also
we determine all possible braking curves that are necessary to guarantee the safety concepts
if an interval is blocked.

As data structure we use a vector in which the different trains are stored as (C++) objects
train ride. Each of this objects contains all the data for one train and the path that it is
using as well as the necessary methods for the simulation. The data for the path are given
by a doubly connected list of subintervals. Furthermore, there are objects that administrate
the safety blocks and that realize the blocking and unblocking of blocks.

Before the simulation the tables for the point-set maps block and unblock are checked
for consistency. To determine the braking curves that are needed to guarantee that in the
next interval we meet the velocity constraint, we proceed backwards as in the case of one
train, see Section 4.

For the braking curves that guarantee the safety concept we first introduce possible dummy
blocks that guarantee that every part of the path has exactly two safety blocks and then we
assign labels siblo1 and siblo2 corresponding to the functions σi (26). Then we order
the local labels so that a change of the value of these functions corresponds in a change of
the blocking and unblocking assignment of the safety blocks. This is necessary because it
is possible that in the data file the labels of the safety blocks could be changed in the i-th
subinterval of a path compared to the (i+1)-st subinterval. But this swapping of the numbers
is not a real change of a safety-block. It is also possible that only one safety block changes
but the other one is stored in the next path interval on siblo2 rather than on siblo1.

The following algorithm guarantees that safety blocks are stored correctly and that a
change in the label corresponds to a change in the safety block.

For this let i be an index to label the subinterval, i.e., an element of the list.

1. Start at the beginning of the list of blocks with i := 0.

2. number1:=siblo1(i)
number2:=siblo2(i)

3. Increment i

4. If number1=siblo2(i) then exchange siblo1(i) and siblo2(i)

28

5. number1:=siblo1(i)
number2:=siblo2(i)

6. GOTO 3 until the whole list has been checked.

Then we go backwards through the list and determine the maximal starting velocity at
the beginning of each block that guarantees the stopping at the end of the safety block. If
at the end of a safety block the maximal velocity is 0, then we determine the velocity at the
beginning of the block and use this as initial velocity for the next part of the path until the
safety block changes. Then the maximal velocity is zero again. In this way we obtain for the
whole path the maximal velocity associated with the braking curves bj(s).

10.2 The forward simulation

In this section we describe the simulation procedure.
To initialize the simulation we set the variable that counts the number of trains that have

not reached their end-point to nz. Then in a round-robin fashion, we do an integration step
of the simulation for every train until all trains have reached their end-points. In this process
we face several difficulties. One of the major problems from the numerical analysis point of
view is that the time stepping procedure has to adapt to the wide variety of different length of
the safety blocks. It is currently under investigation what is the most efficient way to do this,
since due to the safety blocks all the trains have to be synchronized. Furthermore, typically
the current step sizes do not get us exactly to the ends of blocks. For this reson we currently
work with a constant stepsize in time and if we pass with such a time-step over boundary
points of blocks, then we interpolate the values to the boundary points, if necessary at once
or possibly also in a post processing procedure.

It is currently under investigation how to efficiently make use of variable stepsize integra-
tion methods.

In an integration step we always test first, whether the train for which we are about to
do an integration step has reached its final destination. If not then we proceed with the next
train. Then we test whether the train is already allowed to proceed, or whether it still has to
wait. This happens if the simulation time is before the starting time or when due to a stop
in a station the train has to keep waiting.

In all other cases we proceed and perform the next time step as follows.

• If a safety block changes then we test whether we can leave the block. If so, then we call
the method for blocking and unblocking of the safety blocks. Then either this train is
allowed to leave the block or we set its position to the end of the block and the velocity
to zero and wait.

• If the time step reaches the final destination or beyond, then we interpolate the values for
time and velocity, note that the train has arrived in the final destination and decrement
the number of trains which have not arrived yet.

• If we have entered a stopping interval, then we interpolate the arrival time and set the
waiting time as the sum of arrival and stopping time.

29

10.3 Data Interface

The infrastructure, the specific data of each train as well as the safety concept enter the
program via ASCII data-files.

In the safety block file the number ms of safety blocks, the initialization of the vector β
as well as the tables of point-set-maps block(j) und unblock(j) are stored.

In the path file of a train, the starting time and velocity of the train, the number of blocks,
their name and their length, the slope, the maximal velocity, the maximal braking power, the
stopping times as well as the global labels of the two local safety blocks are stored. As an
example consider the following file

#

Example of a path file

#

path file for train A

#

#

Starting time in seconds after 0

0.0

Starting velocity in km/h

0.0

#

number of path intervals

9

data of path intervals

#

length slope vmax amin stopping-time safety blocks name

[m] [km/h] [m/s^2] [s]

5000.0 0.0 100.0 -0.4 0.0 1 2 int_1

3000.0 0.08 100.0 -0.4 0.0 0 2 int_2

3500.0 -0.03 100.0 -0.4 0.0 2 3 int_3

0.0 0.0 0.0 -0.4 600.0 2 3 station_xy

1000.0 0.03 80.0 -0.4 0.0 0 3 int_4

200.0 0.0 30.0 -0.4 0.0 0 3 int_5

2000.0 0.03 80.0 -0.4 0.0 3 4 int_6

2000.0 -0.01 60.0 -0.4 0.0 0 4 int_7

1000.0 0.0 100.0 -0.4 0.0 4 5 int_8

END

The train data file contains the data relevant for the specific train, the mass in kg including
an extra mass to compensate for the rotation, the coefficients for the approximation of the
friction forces according to

ufric(v) = k0 + k1v + k2v
2

and a sampling of the velocity dependend maximal acceleration force umax(v) at v = 0, 0.1, 0.2 · · ·
m/s measured in Newton.

30

#

Example of train data file

#

Mass in kg

876000

friction coefficients k_0,k_1,k_2

1000.0 0.0 10.3

Approximation umax(v)

v[m/s] umax[N]

0.000000 400137.000000

0.100000 400029.000000

0.200000 399921.000000

0.300000 399813.000000

0.400000 399704.000000

0.500000 399596.000000

0.600000 399488.000000

0.700000 399380.000000

0.800000 399272.000000

...

The safety block files are used for defining the safety-conditions between trains and to set
the sequence of different trains.

This files consist of lines in the form

#

comments

#

1 BLOCK 3

4 UNBLOCK 5

6 INITIAL

...

This means that the safety-block number 1 blocks the safety-block number 3, block 4
unblocks number 5 and number 6 has one initial-blocking. Repeating of INITIAL -Lines with
the same block-number will increase the number of blockings on the safety-block. It is useful
to distinguish safety-conditions (pairs of lines with BLOCK and UNBLOCK) from precedence-
conditions (pairs of lines with UNBLOCK and INITIAL) and put the information in different
files. To concatenate all this files for the FZR2D-program there exists the PERL-Script
generate-siblo.pl .

The parameter file is used for the control of the simulation program. This is an ASCII-File
with lines of the form.

parameter name = value

For parameters that are not assigned, default values are used. The order of parameters is
arbitrary, if multiple assigments are made always the last is used.

plot para Dumping the parameters (default=1)

plot wegliste vor glaetten Printing the path-list before correction of vmax(s) (default=1).

31

plot wegliste nach glaetten Printing the path-list after correction of vmax(s), i.e., with
the extra inserted jump-off intervals and braking-curves (default=1).

plot vmax vor glaetten Generating a Gnuplot-datafile for plotting the maximal velocity
(default=1).

plot vmax nach glaetten Generating a Gnuplot-datafile for plotting the corrected maxi-
mal velocity (default=1).

plot bremskurve aller Control-parameter for the generation of datapoints for plotting
braking-curves. We generate a data-point all plot bremskurve aller meter. (de-
fault=1.0 m).

plot bremskurven Generating a Gnuplot-datafile for plotting all braking-curves (default=1).

plot vmax rel Generating a Gnuplot-datafile for plotting the minimum of all restrictions
(default=1).

v inf Value of the maximal velocity for Dummy-blocks. It should be a value , which is never
reached. (default=500 km/h)

simu stepsize Time-stepsize of the simulation (default=1.0 s)

simu maximal Maximum of simulation time. The program will brake with an exception if
it is reached. (default=86400 s, this are 24 hours)

11 Some test cases

11.1 The analytical test case

In this section we give some tables with the analytical test case from Chapter 6.3 for one
train.

They show the dependence of the correctness and the degree of the interpolation, see
Tables (3) to (8). An interpolation is needed to compute correct values for time and velocity
at the endpoints of the intervals, because the ode-solver only produce data at gridpoints.

The columns of the tables describe the following values:

degree Degree of the interpolation polynom

eps v Parameter of the step-size-control

time Computed time

error in time Error in the computed time (compared with the analytical solu-
tion)

velocity Computed terminal velocity

error in velocity Error in the computed terminal velocity (compared with the
analytical solution)

11.1.1 Variant to reach the end of the interval

We depict tables for different polynomial degrees in the interpolation at the endpoint.

32

degree eps v time error in time velocity error in velocity

1 1.0e+02 389.4204018496 -9.5795981504 20.0272809405 0.0272809405

1 1.0e+01 385.2575319486 -13.7424680514 19.7216735075 -0.2783264925

1 1.0e+00 364.2248711520 -34.7751288480 18.3093223790 -1.6906776210

1 1.0e-01 373.3683623896 -25.6316376104 18.7334737646 -1.2665262354

1 1.0e-02 392.5025079864 -6.4974920136 19.6651295612 -0.3348704388

1 1.0e-03 390.5942645605 -8.4057354395 19.5701726853 -0.4298273147

1 1.0e-04 394.3694721633 -4.6305278367 19.7778371176 -0.2221628824

1 1.0e-05 397.4594803091 -1.5405196909 19.9264233375 -0.0735766625

1 1.0e-06 398.9175839234 -0.0824160766 19.9961642409 -0.0038357591

1 1.0e-07 398.8852861401 -0.1147138599 19.9944285597 -0.0055714403

1 1.0e-08 398.8619247665 -0.1380752335 19.9931886149 -0.0068113851

1 1.0e-09 398.8974261572 -0.1025738428 19.9948955208 -0.0051044792

1 1.0e-10 398.9595323450 -0.0404676550 19.9979823599 -0.0020176401

1 1.0e-11 398.9794677365 -0.0205322635 19.9989708751 -0.0010291249

1 1.0e-12 398.9941744626 -0.0058255374 19.9997076508 -0.0002923492

1 1.0e-13 398.9995402040 -0.0004597960 19.9999754604 -0.0000245396

1 1.0e-14 398.9998468971 -0.0001531029 19.9999907608 -0.0000092392

Table 3: Error in case interval end with polynomial degree 1

degree eps v time error in time velocity error in velocity

2 1.0e+02 389.8847138871 -9.1152861129 20.0486285806 0.0486285806

2 1.0e+01 394.4976721657 -4.5023278343 20.3397104782 0.3397104782

2 1.0e+00 397.8314929690 -1.1685070310 20.0970258889 0.0970258889

2 1.0e-01 398.0446560974 -0.9553439026 20.0022458382 0.0022458382

2 1.0e-02 399.7818861249 0.7818861249 20.0859323943 0.0859323943

2 1.0e-03 399.3173422427 0.3173422427 20.0292043398 0.0292043398

2 1.0e-04 398.6098876964 -0.3901123036 19.9789323760 -0.0210676240

2 1.0e-05 398.8662480540 -0.1337519460 19.9926641212 -0.0073358788

2 1.0e-06 398.9913225156 -0.0086774844 19.9996425133 -0.0003574867

2 1.0e-07 398.9938948309 -0.0061051691 19.9996619936 -0.0003380064

2 1.0e-08 398.9962957651 -0.0037042349 19.9997769274 -0.0002230726

2 1.0e-09 398.9989685025 -0.0010314975 19.9999353649 -0.0000646351

2 1.0e-10 398.9997203208 -0.0002796792 19.9999810247 -0.0000189753

2 1.0e-11 399.0000517909 0.0000517909 20.0000014847 0.0000014847

2 1.0e-12 398.9999949890 -0.0000050110 19.9999979031 -0.0000020969

2 1.0e-13 399.0000141248 0.0000141248 19.9999990914 -0.0000009086

2 1.0e-14 399.0000154862 0.0000154862 19.9999991754 -0.0000008246

Table 4: Error in case interval end with polynomial degree 2

33

degree eps v time error in time velocity error in velocity

3 1.0e+02 389.9326171960 -9.0673828040 20.0513973093 0.0513973093

3 1.0e+01 389.9380773710 -9.0619226290 19.9338972980 -0.0661027020

3 1.0e+00 397.3555313691 -1.6444686309 20.0714377209 0.0714377209

3 1.0e-01 398.4978125745 -0.5021874255 20.0359168651 0.0359168651

3 1.0e-02 398.3687660517 -0.6312339483 19.9825202434 -0.0174797566

3 1.0e-03 398.9040387411 -0.0959612589 20.0021965456 0.0021965456

3 1.0e-04 398.9411895658 -0.0588104342 19.9988067223 -0.0011932777

3 1.0e-05 398.9789221403 -0.0210778597 19.9993365103 -0.0006634897

3 1.0e-06 398.9968316448 -0.0031683552 19.9999683520 -0.0000316480

3 1.0e-07 398.9991429325 -0.0008570675 19.9999786907 -0.0000213093

3 1.0e-08 398.9998068113 -0.0001931887 19.9999923921 -0.0000076079

3 1.0e-09 398.9999902533 -0.0000097467 19.9999988347 -0.0000011653

3 1.0e-10 399.0000108919 0.0000108919 19.9999991012 -0.0000008988

3 1.0e-11 399.0000154771 0.0000154771 19.9999992145 -0.0000007855

3 1.0e-12 399.0000157186 0.0000157186 19.9999991955 -0.0000008045

3 1.0e-13 399.0000158602 0.0000158602 19.9999991996 -0.0000008004

3 1.0e-14 399.0000158803 0.0000158803 19.9999992000 -0.0000008000

Table 5: Error in case interval end with polynomial degree 3

degree eps v time error in time velocity error in velocity

4 1.0e+02 389.9382682366 -9.0617317634 20.0517685437 0.0517685437

4 1.0e+01 392.6465501896 -6.3534498104 20.2157881764 0.2157881764

4 1.0e+00 396.5514576861 -2.4485423139 20.0072998531 0.0072998531

4 1.0e-01 398.0902073672 -0.9097926328 20.0052962151 0.0052962151

4 1.0e-02 398.6574229400 -0.3425770600 20.0064460791 0.0064460791

4 1.0e-03 398.8738680950 -0.1261319050 19.9998891543 -0.0001108457

4 1.0e-04 398.9606650818 -0.0393349182 20.0001392318 0.0001392318

4 1.0e-05 398.9882958043 -0.0117041957 19.9999678323 -0.0000321677

4 1.0e-06 398.9973089892 -0.0026910108 20.0000004839 0.0000004839

4 1.0e-07 398.9994317269 -0.0005682731 19.9999985488 -0.0000014512

4 1.0e-08 398.9999025193 -0.0000974807 19.9999990920 -0.0000009080

4 1.0e-09 398.9999956340 -0.0000043660 19.9999992169 -0.0000007831

4 1.0e-10 399.0000123042 0.0000123042 19.9999992016 -0.0000007984

4 1.0e-11 399.0000152766 0.0000152766 19.9999992001 -0.0000007999

4 1.0e-12 399.0000157829 0.0000157829 19.9999992001 -0.0000007999

4 1.0e-13 399.0000158675 0.0000158675 19.9999992001 -0.0000007999

4 1.0e-14 399.0000158814 0.0000158814 19.9999992001 -0.0000007999

Table 6: Error in case interval end with polynomial degree 4

34

degree eps v time error in time velocity error in velocity

5 1.0e+02 389.9389734960 -9.0610265040 20.0518195715 0.0518195715

5 1.0e+01 390.8881083502 -8.1118916498 20.0140359606 0.0140359606

5 1.0e+00 396.6155281591 -2.3844718409 20.0126273580 0.0126273580

5 1.0e-01 398.0723788694 -0.9276211306 20.0037437781 0.0037437781

5 1.0e-02 398.6018644503 -0.3981355497 20.0014206937 0.0014206937

5 1.0e-03 398.8815470173 -0.1184529827 20.0005207373 0.0005207373

5 1.0e-04 398.9608230747 -0.0391769253 20.0001522053 0.0001522053

5 1.0e-05 398.9890422125 -0.0109577875 20.0000232466 0.0000232466

5 1.0e-06 398.9973532283 -0.0026467717 20.0000037710 0.0000037710

5 1.0e-07 398.9994485031 -0.0005514969 19.9999998244 -0.0000001756

5 1.0e-08 398.9999050357 -0.0000949643 19.9999992870 -0.0000007130

5 1.0e-09 398.9999955629 -0.0000044371 19.9999992113 -0.0000007887

5 1.0e-10 399.0000123013 0.0000123013 19.9999992014 -0.0000007986

5 1.0e-11 399.0000152781 0.0000152781 19.9999992002 -0.0000007998

5 1.0e-12 399.0000157830 0.0000157830 19.9999992001 -0.0000007999

5 1.0e-13 399.0000158675 0.0000158675 19.9999992001 -0.0000007999

5 1.0e-14 399.0000158814 0.0000158814 19.9999992001 -0.0000007999

Table 7: Error in case interval end with polynomial degree 5

degree eps v time error in time velocity error in velocity

6 1.0e+02 389.9390641969 -9.0609358031 20.0518266898 0.0518266898

6 1.0e+01 392.0812704929 -6.9187295071 20.1608198692 0.1608198692

6 1.0e+00 396.6565967445 -2.3434032555 20.0164654888 0.0164654888

6 1.0e-01 398.0875471671 -0.9124528329 20.0050762087 0.0050762087

6 1.0e-02 398.6109095590 -0.3890904410 20.0022979534 0.0022979534

6 1.0e-03 398.8812564220 -0.1187435780 20.0004955920 0.0004955920

6 1.0e-04 398.9606664534 -0.0393335466 20.0001396568 0.0001396568

6 1.0e-05 398.9890958840 -0.0109041160 20.0000275739 0.0000275739

6 1.0e-06 398.9973574923 -0.0026425077 20.0000041155 0.0000041155

6 1.0e-07 398.9994495056 -0.0005504944 19.9999999074 -0.0000000926

6 1.0e-08 398.9999050963 -0.0000949037 19.9999992921 -0.0000007079

6 1.0e-09 398.9999955605 -0.0000044395 19.9999992111 -0.0000007889

6 1.0e-10 399.0000123011 0.0000123011 19.9999992014 -0.0000007986

6 1.0e-11 399.0000152781 0.0000152781 19.9999992002 -0.0000007998

6 1.0e-12 399.0000157830 0.0000157830 19.9999992001 -0.0000007999

6 1.0e-13 399.0000158675 0.0000158675 19.9999992001 -0.0000007999

6 1.0e-14 399.0000158814 0.0000158814 19.9999992001 -0.0000007999

Table 8: Error in case interval end with polynomial degree 6

35

11.2 The test case 22127-1013

The following example was computed on an Intel Pentium 2, 450 MHz with 384 MB RAM.
It consists of 80 Kilometers with a subdivision of 1275 intervals to compute. The following
computing-times were needed in the different parts:

Creating the list Computinf switching-off-points Driving the route Postprocessing

0.04 s 0.01 s 0.24 s <0.01 s

We had a total computing time of 0.29 seconds (without reading ASCII-data)
In the following figures the maximal velocity, corrected velocity, v(s), t(s), outer forces,

actuation force and braking acceleration are depicted.

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80

km
/h

Kilometer

Top Speed

vmax(s)

Figure 19: Case 22127-1013: Top Speed

36

0

20

40

60

80

100

120

26 28 30 32 34 36 38 40

km
/h

Kilometer

Cut of the top speed

vmax(s)

Figure 20: Case 22127-1013: Cut of Top Speed

0

20

40

60

80

100

120

26 28 30 32 34 36 38 40

km
/h

Kilometer

Cut of the corrected top speed

vmax(s)

Figure 21: Case 22127-1013: Corrected velocity

37

0

20

40

60

80

100

120

26 28 30 32 34 36 38 40

km
/h

Kilometer

vmax(s)
v(s)

Figure 22: Case 22127-1013: velocity - path - diagram

-40000

-30000

-20000

-10000

0

10000

20000

30000

40000

26 28 30 32 34 36 38 40

N
ew

to
n

Kilometer

Outer forces at v=0 and v= 90 km/h

uf(s) at v=0 km/h
uf(s) at v=90 km/h

Figure 23: Case 22127-1013: Outer forces

38

80000

100000

120000

140000

160000

180000

200000

220000

240000

260000

0 20 40 60 80 100 120

N
ew

to
n

km/h

Velocity-dependicity of the actuation force

umax(v)

Figure 24: Case 22127-1013: Actuation force

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

M
in

ut
es

Kilometer

The driving time

t(s)

Figure 25: Case 22127-1013: time - path - diagram

39

12 Conclusion

We have discussed the mathematical modelling and simulation of schedule based rail traffic
including a realistic safety concept. On the basis of time optimal control efficient numerical
methods have been developed that allow the joint simulation of many interacting trains.

References

[1] U. Ascher, R.M.M. Mattheij, R.D. Russel. Numerical Solution of Boundary Value Prob-
lems for Ordinary Differential Equations. SIAM, Philadelphia 1995.

[2] E. Bude. Grundzüge Numerik - Theorie und Aufgaben. Verlag Shaker, Aachen, 1990.

[3] Ch. Grossmann, J. Terno. Numerik der Optimierung. Teubner, Stuttgart, 1997.

[4] H. Herold. C-Kompaktreferenz. Addison-Wesley, Bonn, 1999.

[5] L. M. Hocking. Optimal Control An Introduction to the Theory with Applications. Claren-
don Press, Oxford, 1991.

[6] J. Pachl. Systemtechnik des Schienenverkehrs. Teubner, Stuttgart; Leipzig, 1999.

[7] R. Schaback, H. Werner. Numerische Mathematik. Springer-Verlag, Berlin, Heidelberg,
New York, Stuttgart, 1992.

[8] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer, 1993.

[9] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Bonn, 2000.

A On the programs

Both programs FZR1D and FZR2D are written in ISO-C++ and tested with Gnu-Compiler
gcc 2.95.2 . To build the programs one must unpack the archives, go to the root-directory
and type make. If the compiler is not a gcc one will have to change the CCOM Variables in the
Makefiles.

Details for handling of the programs and compiling different versions also described in the
readme and make files of the packages. The most important switches of both programs are
described in the following two sections.

A.1 FZR1D

Different versions of FZR1D can be compiled by setting some compiler-macros in the Makefile.
Setting FZR TRACE LOGIK will produce many output in the program. Setting ZEITMESSUNG is
useful to stop the computation time.

A.2 FZR2D

In the same way as in the 1D case one can set different macros to get different versions
of the program. To get a program with many debugging-output set FZR2D DEBUG. Set-
ting FZR2D SIMUSTEPS makes the program output the steps of the ODE-solver, and setting
FZR2D ZEITMESSUNG will give a measurement of computing-time.

40

