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Zusammenfassung
Moderne Gasturbinen sind eine Schlüsseltechnologie für eine zuverlässige und nachhaltige En-
ergieversorgung. Damit die strengen Emissionsgesetzgebungen eingehalten werden können, wer-
den magere Vormischflammen eingesetzt. Das macht die Maschinen anfällig für selbstangeregte
Pulsationen des Druckes sog. thermoakustische Instabilitäten. Diese Schwingungen werden von
der Wechselwirkung instationärer Wärmefreisetzung mit den akustischen Resonanzmoden der
Brennkammer verursacht. Gasturbinen, die thermoakustische Instabilitäten aufweisen, verur-
sachen mehr Lärm, einen höheren Schadstoffausstoß und haben eine geringere Effizienz.
Schlimmstenfalls führen die verursachten Schwingungen zu einem Totalausfall der Maschine. Die
Verfügbarkeit effizienter numerischer Methoden zur Modellierung thermoakustischer Instabilitä-
ten ist daher essentiell für die Gasturbinen-Entwicklung. In einer frühen Entwurfsphase kommen
typischerweise lineare Methoden wie akustische Netzwerkmodelle oder Helmholtz-Löser zum Ein-
satz. Diese resultieren in Eigenwertproblemen, welche nicht-linear in ihrem Eigenwert sind.

Diese Arbeit trägt dazu bei, Lösungsalgorithmen für diese Probleme zu verbessern. Bloch-
wellen-Theorie wird verwendet, um die diskrete Rotationssymmetrie annularer Brennkammern
zur Reduktion des Rechengebietes zu nutzen. Anstatt des gesamten Annulus wird nur ein Brenn-
kammer-Segment zur Berechnung benötigt. Dies verringert die Größe der Diskretisierungsma-
trizen und dementsprechend den Berechnungsaufwand.

Bestehende adjungierten-basierte Störungsmethoden werden erweitert, um Approximationen
beliebiger Ordnung für die Lösung nicht-linearer Eigenwertprobleme zu finden. Dies reduziert
den Rechenaufwand umfangreicher Parameterstudien. Die Theorie hat zahlreiche Anwendungen.
U.a. wird die Anwendung der Theorie zur schnellen Grenzzyklus-Berechnung und zur Unsicher-
heitsanalyse ohne den Einsatz von Monte-Carlo-Simulationen diskutiert. Die Störungstheorie
ermöglicht die Formulierung verbesserter iterativer Lösungsverfahren für das thermoakustische
Eigenwertproblem. Es wird gezeigt, dass eine Kombination dieser Verfahren mit integrations-
basierten Eigenwertlösern in der Lage ist, alle Eigenfrequenzen in einem vorgegebenen Bereich
der komplexen Zahlenebene mit hoher Genauigkeit zu finden.

Die Arbeit betont die Implementierung der vorgestellten Methoden in einem FEM-basierten
Helmholtz-Löser. Ein Rijke-Rohr und ein annularer Modellbrenner werden zur Veranschaulichung
der Theorie genutzt. Sie lässt sich jedoch auch auf industrielle Brennkammern anwenden.

Zusätzlich zu diesen Verbesserungen der Lösungstheorie des thermoakustischen Eigenwert-
problems werden Parameterkombinationen, die zu einer unendlich großen Sensitivität der Eigen-
frequenz in Bezug auf Veränderungen in diesen Parametern führen, diskutiert. Die Rolle dieser
sog. exceptional points für das Verständnis intrinsischer thermoakustischer Moden sowie die Fol-
gen der unendlichen Sensitivität für die vorgestellten Lösungsverfahren werden ausgeführt.
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Abstract
Modern gas turbines are a key technology for reliable and sustainable power generation. In or-
der to meet strict emission regularizations they utilize lean premixed combustion. This renders
the engines susceptible to self-excited pressure oscillations known as thermoacoustic instabili-
ties. These oscillations arise from an interaction of the unsteady heat release of the flame and the
acoustic resonant modes of the combustor. Gas turbines exhibiting thermoacoustic instabilities
have higher noise and pollutant emissions and suffer from decreased efficiency. In the worst case,
structural vibrations caused by the thermoacoustic oscillations can even lead to a complete failure
of the machine. The availability of efficient numerical methods for the modeling of thermoacous-
tic instabilities is, thus, crucial for gas turbine design. At an early design stage modal approaches
such as acoustic network models or Helmholtz solvers are commonly deployed to assess ther-
moacoustic instabilities. They result in eigenvalue problems that are nonlinear with respect to the
eigenvalue.

This thesis aims at improving solution algorithms for these problems. Bloch-wave theory is
used to exploit the discrete rotational symmetry of annular combustion chambers. Most impor-
tantly, this allows for a reduction of the necessary computational domain from the full annulus to
a single burner-flame segment only. Thus, the size of the discretization matrices and, ultimately,
the computational effort to solve the problem will shrink accordingly.

Existing adjoint-based perturbation methods are extended to find arbitrary-order power series
expansions to the solutions of nonlinear eigenvalue problems. This reduces the computational
costs of extensive parameter studies. Various applications may benefit from the perturbation
theory. For example, how to use this theory for fast limit-cycle computations and Monte-Carlo-
free uncertainty quantification of the model results is discussed. Moreover, the perturbation the-
ory allows for the formulation of enhanced iterative solution schemes to solve thermoacoustic
eigenvalue problems. Combination of these schemes with integration-based eigenvalue solvers is
shown to find all eigenfrequencies in a predefined subset of the complex plane at high accuracy.

The thesis emphasizes how to implement the presented methods into a FEM-based Helmholtz
solver. A non-dimensionalized Rijke tube and a laboratory annular model combustor serve as the
main test cases for the demonstration of the theory. However, the findings are also applicable to
models of industrial combustion chambers.

In addition to these improvements to the solution of thermoacoustic eigenvalue problems, pa-
rameter combinations that yield eigenfrequencies featuring an infinite sensitivity with respect to
changes in the parameters are discussed. It is shown that these so-called exceptional points play
a role in the understanding of intrinsic thermoacoustic modes and the implications of infinite
sensitivity to the presented solution algorithms are discussed.
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Introduction

Motivation

This thesis concerns efficient computation methods for thermoacoustic instabilities. Their rele-
vance in engineering arises from their occurrence in technical devices such as gas turbines and
rocket engines. Especially, modern gas turbines are prone to this phenomenon. Ultimately, this is
due to environmental reasons. Figure 1 shows the contribution of various economical sectors to
the total emission of nitrogen oxides (NOX) in the European Union in 2016. 17% of the emission
are related to the energy production and distribution sector. NOX is a pollutant gas that causes
acid rain, contributes to the formation of ozone in the atmosphere, and is harmful to health. Ever
stricter environmental regulations aim at reducing the emissions of NOX. This triggered a shift in
gas-turbine design from diffusion flames to lean premixed combustion. Due to a lower flame tem-
perature, gas turbines operating in lean-premixed mode emit much less NOX. However, these tur-
bines have a higher susceptibility to thermoacoustic instabilities [2, 3], Thermoacousticly driven
oscillations in gas turbines may cause flash-back, blow-off, high thermal loads of the components,
and strong vibrations inducing structural damage. In the worst case, they can lead to the complete
failure of the engine [4].

In the Paris agreement, the international community has declared to limit the increase of the
average global temperature to 2K as compared to preindustrial levels. Although renewable en-
ergy technologies such as wind turbines or solar plants will, thus, become more and more impor-
tant, gas turbines will still play an essential role in the energy sector. Because of the operational
flexibility of the engines, they are ideally suited to compensate for the fluctuations of the energy
production from renewable sources. This makes them a key component of reliable power grids.
Moreover, if the fuel produced from renewable materials, gas turbines become a carbon-neutral
energy technology.

For environmental as well as economical reasons there is, thus, a need to develop reliable gas
turbines. This thesis improves existing tools for the numerical assessment of thermoacoustic sta-
bility.

History and basic concepts

Although the research interest of the gas-turbine community is a development of the last decades,
the fundamentals of this phenomenon are known for more than 100 years.

Presumably, Higgins gave the first scientific report of the phenomenon in 1777 [5]. He observed
that a flame inside a tube is capable of producing sound and named this a singing flame. In 1858,
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Figure 1: Share of various economical sectors on the total NOX-emissions in the EU in 2016.
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Figure 2: Thermoacoustic feedback loop. Illustration adapted from [8].

LeConte described the pulsation of a flame when excited with audible music [6]. This pulsation
was synchronous with the beat of the music. In 1859, Rijke observed a similar phenomenon in a
vertical tube in which he placed a heated metal gauze [7]. If the gauze was placed in the lower half
of the tube, the configuration generated noise.

These experiments demonstrate possible interactions of acoustic waves and unsteady sources
of heat. Indeed, the experiments of Higgins and Rijke are examples for thermoacoustic insta-
bilities. They contain the same essential physics that also drive thermoacoustic instabilities in
modern gas turbines and other devices. Figure 2 illustrates the feedback loop causing the phe-
nomenon. Oscillations in the heat release rate can trigger acoustic fluctuations, which in turn in-
fluence the flow and mixture conditions. These can lead to a fluctuation in the heat release again.
Under certain conditions the feedback loop becomes unstable and generates a thermoacoustic
instability.

It was Lord Rayleigh who first stated a necessary criterion for this to happen: thermoacoustic
instabilities may occur if the fluctuation in the heat release q ′ and the pressure p ′ are sufficiently
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Figure 3: Broken liquid rocket engines. The damage is caused by thermoacoustic instabilities en-
countered during engine tests conducted by NASA 1958 (left) and 1960 (right). (Imagery is taken
from the Library of Congress, Reproduction Numbers HAER OH-124-A-35 and HAER OH-124-A-
46) .

in-phase [9]. More precisely, it is necessary that the acoustic energy produced by the interaction of
the unsteady heat release and the pressure oscillations is greater than the losses in the considered
system. The Rayleigh criterion is, hence, written as∫

V

∫T

0
q ′p ′ dt d~x > acoustic energy dissipation. (1)

Here, T is the period of oscillation and V the control volume.

While these first discussions of thermoacoustic phenomena were purely academic in nature,
the interest has dramatically increased in the course of the cold-war’s space programs. This was
because rocket engines are highly susceptible to combustion instabilities [10]. Figure 3 shows
the damage to liquid rocket engines caused by combustion instabilities. However, the capacity of
computer hardware was rather poor at the time. Using complex mathematical models for ther-
moacoustic stability assessment was, thus, not feasible. Hence, the design of rocket engines was
strongly based on full-scale tests. For instance, the F-1 engines of the Saturn V underwent more
than 3200 full-scale tests between October 1962 and September 1966, approximately 2000 of which
were concerned with combustion instabilities [11].

As mentioned before, emission regulations have also made thermoacoustic instabilities a rele-
vant topic in gas turbine design.

Numerical modeling of thermoacoustic instabilities

A key challenge in modeling thermoacoustic instabilities is the broad number of physical mecha-
nisms that can close the thermoacoustic feedback loop. Possible mechanisms include fluctuations
in the equivalence ratio [12], vortex-induced fluctuations of the flame surface [13], entropy waves
[14], and strain rate effects leading to hydrodynamically unstable flames [15]. A general discussion
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of the energy transfer of small disturbances in fluid flow and , therefore, of possible mechanisms
closing the thermoacoustic feedback loop can be found in [16]. However, to date the process is not
yet fully understood and research effort continues to fully explain the phenomenon with experi-
mental and numerical studies [17].

Numerical modeling methods must resolve the relevant physics to an adequate degree. Due
to the high computational costs, direct numerical simulation that resolves the complete physics is
only used to study fundamental academic flame configurations (e.g., [18] or [19]).

Large eddy simulations (LES) are better suited to obtain detailed information on thermoacous-
tic instabilities [20]. LES shows reasonable agreement to results obtained from experiments and
can be used to derive input quantities for other stability analysis tools [21, 22]. Only recently,
the available computer technology allowed for LES of complete annular combustion chambers
[23, 24]. However, these simulations require massively parallel computer architectures. Conse-
quently, extensive parameter studies are extremely expensive. Moreover, because only the com-
bustion chamber and not the entire gas turbine can be currently simulated, complicated incorpo-
ration of boundary conditions at the combustor inlet and outlet is needed. Therefore, LES is no
option for early stage gas turbine design [17].

An alternative with very low computational costs is low order network modeling [25, 26, 27].
Network models simplify the problem by grouping entities like ducts, injectors, and chambers and
defining mostly linear physically or empirically justified relations between the inputs and outputs
of these parts. The acoustics in these models are incorporated in terms of a flame transfer func-
tion which relates the heat release rate fluctuations to perturbations in the upstream velocity [28]
or transfer matrices [29]. A dispersion relation is then derived, whose solution yields mode fre-
quencies and growth rates as well as the associated mode shapes. The computational effort of
these methods is low and the resulting frequencies and growth rates may provide a good estimate
for those of the actual system. It is, however, difficult to take into account detailed effects such as a
spatially distributed flame response, especially when these features are not acoustically compact.

Models based on linearized balance equations that were transformed to frequency domain
provide a good compromise between the computational effort and the accuracy of the results.
They fully resolve the combustor geometry and, thus, yield a three-dimensional description of
the mode shape. As for the network models, the flame response may be incorporated in terms
of flame transfer functions and transfer matrices. In the simplest case, inviscid linearized Euler
equations for a quiescent medium are considered. In frequency domain, this yields a Helmholtz
equation with non-self-adjoint term accounting for the flame response [30]. As shown in [31], it is
possible to model entropy-wave induced instabilities with a Helmholtz solver. Moreover, damping
effects due to hydrodynamic-acoustic interactions can be included by means of internal bound-
ary conditions [32]. However, the usage of the complete linearized Euler equations and even lin-
earized Navier–Stokes equations becomes increasingly popular in the thermoacoustic community
[33, 34, 35].

Flame response modeling

Because of the complex physics, it is common to use black box models to describe the response of
the flame to acoustic fluctuations. In the linear limit transfer functions are used for this purpose.
They link the axial acoustic velocity fluctuations u′ upstream of the flame to the fluctuations of the
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heat release q ′ in the flame

q ′(t ) = q0

u0
FTF(t )∗u′(t ). (2)

While the flame transfer functions depend on many parameters like the engine geometry, the
operating conditions, and the deployed fuel, they typically show a low-pass and phase-shifting
behavior. The phase shift can be attributed to convective time scales of the underlying feedback
mechanisms. A simple model that picks up this idea is the n–τ-model [28]:

q ′(t ) = q0

u0
nu′(t −τ). (3)

Numerical modeling techniques currently used to deduce the flame transfer function of a given
configuration include G-equation models [36], direct numerical simulations [19], and large eddy
simulations [22].

In contrast to rocket applications, the acoustic amplitudes in gas turbines are comparatively
low. Therefore, a acoustic description of the problem in terms of linear gas dynamics is still a
good modeling assumption. However, even at low acoustic amplitudes the flame response might
show a significant nonlinear behavior [17]. Because flame transfer functions are linear, they can-
not capture such effects. Flame describing functions have been suggested to fill this gap [37, 38].
They additionally depend on the amplitude level of the velocity fluctuation. This allows to model
phenomena like limit cycles.

Challenges in solving linearized equations

Although the combination of flame transfer functions and linearized balance equations yields ad-
equate tools that meet the requirements of gas-turbine design, there is still potential to improve
these methods. A key challenge is that the models constitute eigenvalue problems that depend
nonlinearly on their eigenvalues. This is due to the time-lag of the flame transfer function and may
also be caused by frequency-depended impedance boundary conditions [30]. The dependence of
the solution on model parameters is only implicitly known and the models need to be solved for
each new parameter set. The same problem arises in other fields. For instance, in quantum me-
chanics Schrödinger’s equation also constitutes an eigenvalue problem. However, perturbation
theory and other methods are well established tools to ease the solution of Schrödinger’s equa-
tion [39]. These tools can be applied to other fields involving eigenvalue problems. For example,
spectral perturbation methods are deployed for the analysis of hydrodynamic stability [40]. Nev-
ertheless, Schrödinger’s equation is a linear eigenvalue problem and the problems encountered in
hydrodynamic stability analysis are, typically, linear or quadratic with respect to their eigenvalue.
Application of these methods for thermoacoustic problems, thus, requires a proper adaptation of
the theory. Only recently, the thermoacoustic community started to apply these methods, begin-
ning with [41]. This thesis discusses how to further reduce the computational costs when using
numerical models for thermoacoustic stability assessment.
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Scope of the thesis

The reductions in computational costs result from

(i) exploitation of the symmetry of annular combustion chambers in a Bloch-wave framework,

(ii) extensive usage of perturbation theory, and

(iii) utilization of advanced solution algorithms for nonlinear eigenvalue problems.

Examples considering the thermoacoustic Helmholtz equation will demonstrate the findings.
Yet, the presented theory is not limited to this equation an can be readily used with models based
on the linearized Euler and linearized Navier–Stokes equations which resolve more aspects of the
relevant physics.

The thesis is divided into four parts:

Part I summarizes the fundamental theory to an extent that is necessary to understand the
questions and ideas discussed in this work. Chapter 1 presents a detailed derivation of the ther-
moacoustic Helmholtz equation. The three model configurations that are used throughout the
thesis are introduced in Chap. 2. They constitute a Rijke tube, a Kronig–Penney model, and the
MICCA annular combustor. An overview of the finite element method with a particular emphasis
of its benefits when solving the thermoacoustic adjoint Helmholtz equation is given in Chap. 3.
Chapter 4 is the first of four chapters discussing the theory of nonlinear eigenvalue problems as
they arise from the discretization of the thermoacoustic Helmholtz equation. It introduces key no-
tions and theorems and summarizes the solution algorithms presented in [30], which is currently
the standard algorithm in the thermoacoustic community.

Part II focuses on the discrete rotational symmetry of annular combustion chambers. It ex-
plains Bloch’s theorem in Chap. 5 which allows for reducing the computational domain of perfectly
symmetric combustion chambers to a single cell. Large order perturbation theory for nonlinear
eigenvalue problems is derived in Chap. 6 to handle cases where the symmetry of the combustion
chamber is broken. How, to compute limit cycles of thermoacoustic modes in annular combustors
using both Bloch-wave theory and perturbation methods is shown in Chap. 7.

Indeed, perturbation theory is a versatile tool. Consequently, Part III discusses applications
of the perturbation theory that go beyond annular combustion chambers. In Chap. 8 rapidly
converging solution algorithms for nonlinear eigenvalue problems are tailored from this theory.
Chapter 9 discusses how to use it for fast Monte-Carlo-free uncertainty quantification.

Part IV is literally exceptional. It contains only a single chapter discussing so called exceptional
points in spectra of thermoacoustic systems. These points are deeply linked to the asymptotic
perturbation theory presented before as they define the radius of convergence of the stipulated
power series. Moreover, they are the centers of regions in the parameter space featuring extremely
high sensitivities and play a role in the modeling of intrinsic thermoacoustic modes.

Note that all presented methods are implemented in the Helmholtz solver PyHoltz that was
developed at TU Berlin in the course of this thesis. The Python code is publicly available for down-
load 1.

1https://bitbucket.org/pyholtzdevelopers/public
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Fundamentals
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Chapter 1

The thermoacoustic Helmholtz equation

This chapter shortly discusses the derivation of the thermoacoustic Helmholtz equation which
serves as a main model equation for thermoacoustic instabilities in this thesis. A comprehensive
introduction to acoustics can be found in [42] and a short derivation of the necessary equations
in the context of thermoacoustics instabilities is given in [30]. A detailed discussion of the heat
release term and combustion instabilities in general is presented in [43, chapters 4 and 9].

The thermoacoustic Helmholtz equation is derived from the mass balance, the momentum
balance, and the entropy balance of an ideal gas for which nonviscid flow is assumed:

∂ρ

∂t
+∇· (ρ~u)= 0, (1.1)

∂ρ~u

∂t
+∇· (ρ~u~u

)=−∇p, (1.2)

∂s

∂t
+~u ·∇s = q

ρT
. (1.3)

Here, t denotes the time, ρ the density, ~u the velocity, p the pressure, s the volumetric entropy, T
the temperature and q the volumetric heat release rate. Assuming a fluid at rest and only small
perturbations, splitting all quantities into a temporarily constant mean field (·)0 and a fluctuating
part (·)′

p = p0 +p ′ (1.4)

~u =~u′ (1.5)

s = s0 + s′ (1.6)

T = T0 +T ′ (1.7)

q = q0 +q ′ (1.8)

leads to the following linearized balances:

∂ρ′

∂t
+∇· (ρ0u′)= 0, (1.9)

ρ0
∂~u′

∂t
=−∇p ′, (1.10)
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∂s′

∂t
= q ′

ρ0T0
. (1.11)

In order to combine these three balances, a connection between the pressure, the density, and the
entropy is needed:

D p

D t
= ∂p

∂ρ

∣∣∣∣
s=const.

Dρ

D t
+ ∂p

∂s

∣∣∣∣
ρ=const.

D s

D t
. (1.12)

The partial derivatives in this relation can be obtained from the law of a calorically perfect ideal
gas undergoing an adiabatic compression p

ργ = const. and Gibbs’ law for an isochoric process
∂e
∂s |ρ=const. = T . Here, γ := cp

cv
denotes the ratio of specific heats, with cp and cv being the heat

capacity at constant pressure and constant volume, respectively. e denotes the internal energy.

Starting with the adiabatic compression, the following reasoning for ∂p
∂ρ

∣∣∣
s=const.

is found:

p = p0ρ
−γ
0 ργ | ∂

∂ρ
(1.13)

∂p

∂ρ
= p0ρ

−γ
0 γργ−1 |evaluate at ρ = ρ0 (1.14)

∂p

∂ρ

∣∣∣∣
0
= p0ρ

−1
0 γ= γRsp.T0. (1.15)

Here, Rsp. denotes the specific gas constant.

In order to find ∂p
∂s

∣∣∣
ρ=const.

, Gibbs equation is utilized. Because in this partial derivative ρ is

kept constant, the process can be seen as isochoric. Hence, the following reasoning holds:

de = T ds −pdv |dv = d

(
1

ρ

)
= 0 (1.16)

cv dT = T ds |ideal gas: T = pv/Rsp. (1.17)

cv
v

Rsp.
dp = pv

Rsp.
ds (1.18)

∂p

∂s

∣∣∣∣
0
= p0

cv
. (1.19)

Thus, for a fluid at rest the following linearized pressure-density-entropy relation is obtained:

∂p ′

∂t
= γRsp.T0︸ ︷︷ ︸

:=c2
0

∂ρ′

∂t
+ p0

cv

∂s′

∂t
. (1.20)

Here, the substitution c0 = √
γRsp.T0 denotes the mean field of the speed of sound. That this

value is truly the velocity at which acoustic waves travel, can be directly concluded from the final
result of this section.

Introducing the linearized mass balance (1.9) and entropy balance (1.11) into the above rela-

28



CHAPTER 1. THE THERMOACOUSTIC HELMHOLTZ EQUATION

tion yields

∂p ′

∂t
+ c2

0ρ0∇·u′ = p0

cv

q ′

ρ0T0
, (1.21)

which can be rearranged to

∇·~u′ =− 1

ρ0c2
0

∂p ′

∂t
+ p0

cvρ
2
0c2

0T0
q ′. (1.22)

Taking the divergence of the linearized momentum balance (1.10) results in

∂

∂t
∇·~u′+∇·

(
1

ρ0
∇p ′

)
= 0. (1.23)

Inserting (1.22) into this equation gives

− ∂

∂t

1

ρ0c2
0

∂p ′

∂t
+ p0

cvρ
2
0c2

0T0

∂

∂t
q ′+∇·

(
1

ρ0
∇p ′

)
= 0 (1.24)

⇔∂2p ′

∂t 2 − p0

cvρ0T0

∂

∂t
q ′−ρ0c2

o∇·
(

1

ρ0
∇p ′

)
= 0. (1.25)

Because ρ0c2
0 = ρ0γRT0 = γp0 - or equivalently 1

ρ0
= c2

0
p0γ

- the above equation amounts to

∂2p ′

∂t 2 − p0

cvρ0T0

∂

∂t
q ′−γp0∇·

(
c2

0

p0γ
∇p ′

)
= 0. (1.26)

For a fluid at rest there cannot be any pressure gradient. Therefore, the static pressure field is also
constant in space: p0(~x) = const.. This allows to rearrange equation (1.26) to

∂2p ′

∂t 2 − p0

cvρ0T0

∂

∂t
q ′−∇· (c2

0∇p ′)= 0. (1.27)

Leveraging the ideal gas law again, it can be shown that

p0

cvρ0T0
= R

cv
= cp − cv

cv
= cp − cv

cv

1
cv

1
cv

= γ−1. (1.28)

Hence, the following inhomogeneous wave equation is finally obtained:

∇· (c2
0∇p ′)− ∂2p ′

∂t 2 =−(γ−1)
∂q ′

∂t
. (1.29)

This equation characterizes acoustic pressure fluctuations as waves traveling at speed c0, hence,
the name speed of sound. Unsteady heat release is identified as a source for acoustic perturba-
tions.

Converting the thermoacoustic wave equation into the frequency domain by means of the
Fourier transform (·)′(t ) 7→ (̂·)exp(iωt ), an inhomogeneous Helmholtz equation is obtained:

∇· (c2
0∇p̂)+ω2p̂ =−iω(γ−1)q̂ . (1.30)
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Here, p̂ denotes the pressure fluctuation amplitude, and q̂ the Fourier transform of the volu-
metric unsteady heat release rate, ω the complex frequency of oscillation. Note that by the given
conventions the ngetaive imgainary part of ω indicates the growth rate of the mode.

Boundary conditions

Of course, this equation has to be solved with appropriate boundary conditions. These are com-
monly modeled in terms of impedances Z or reflection coefficients R. The wall impedance is
defined as the ratio of the pressure fluctuation amplitude p̂ and the normal component of the
velocity fluctuation amplitude ~̂u at a wall or more precisely a domain boundary

Zwall := p̂

~̂u ·~n
. (1.31)

For convenience the impedance might be non-dimensionalized using the local speed of sound
and the local density at the wall:

Z = Zwall

ρ0c0
. (1.32)

The non-dimensionalized impedance is referred to as normalized impedance.

Together with the Fourier transform of the linearized momentum balance

~̂u = i

ρ0ω
∇p̂, (1.33)

this definition allows to specify all boundary conditions in terms of a Robin condition:

p̂ −Zwall~̂u ·~n = 0 (1.34)

p̂ − iZwall

ωρ0
∇p̂ ·~n = 0 (1.35)

p̂ − ic0Z

ω
∇p̂ ·~n = 0. (1.36)

In these equations ~n denotes a outwards-pointing unit vector. All three conditions are equiva-
lent. In this thesis the formulation with the normalized impedance will be utilized, because as
compared to the thermoacoustic Helmholtz equation the only new modelling quantity is Z .

Alternatively, boundary conditions can be specified in terms of the reflection coefficient. It is
defined as the ratio of the amplitudes of an incoming and the corresponding reflected wave at a
boundary. The conversion of the impedance to the reflection coefficient is given by the formula

R = Z −1

Z +1
. (1.37)

The different scientific communities use various names for the boundary associated with van-
ishing pressure fluctuation or a vanishing normal component of the velocity fluctuation or a freely
propagating acoustic wave. Table 1.1 summarizes the various notions for these boundary condi-
tions. In general, the impedance is a frequency dependent function
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Table 1.1: Special impedances with corresponding reflection coefficients, physical interpretations
and their common names.

impedance reflexion coeff. physics name

Z = 0 R =−1 p̂ = 0 sound soft, pressure node
Z = 1 R = 0 p̂ = ρ0c0�̂u ·�n non-reflecting, free field, anechoic
Z =∞ R = 1 �̂u ·�n = 0 sound hard, pressure antinode, rigid wall

u0

cold hot

Figure 1.1: Illustration of the heat release relation. Fuel and oxidizer flow with constant mean value
into a tube. The mean global heat release is then proportioal to the cross-sectional area (orange)
and the mean velocity u0.

Z = Z (ω) (1.38)

which is best obtained from experiments. However, mathematical modeling requires special care
as the impedance should be analytic in ω [44].

Flame transfer function

Relating the fluctuations in heat release to the velocity fluctuation at a reference point by means
of a flame transfer function closes the problem. This is because via the linearized momentum
balance (1.10) the velocity fluctuation is in turn related to the pressure fluctuation amplitude at
the same position.

q̂ = q0

u0
FTF(ω)�̂uref ·�nref =

iq0

u0ρ0,uω
FTF(ω) ∇p̂

∣∣
�xref

·�nref (1.39)

where ∇p̂
∣∣
�xref

denotes the gradient of the Fourier transform of pressure fluctuation at the reference
position. This reference position is located somewhere in the unburnt gas region which is why the
mean density there is denoted by ρ0,u. The thermoacoustic Helmholtz equation takes the form:

∇· (c2
0∇p̂)+ω2p̂ = q0

u0

γ−1

ρ0,u
FTF(ω) ∇p̂

∣∣
�xref

·�nref. (1.40)

For simple tubular configurations the ratio q0

u0
can be deduced from the change in the speed

of sound, assuming that there are no heat losses, a constant flow profile, and a homogeneous
distribution of q0 in the flame domain – i.e., q0 = Q0/V where Q0 is the global heat release rate
and V is the volume of the flame domain. The setup is illustrated in Fig. 1.1. Let A denote the
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cross-section of the tube, then heat release in the tube is

Q0 = ρ0,ucp u0 A
(
T0,b −T0,u

)
. (1.41)

Division by u0 and multiplication with γ−1
ρu

yields

q0

u0

γ−1

ρ0,u
= 1

V
cp A(T0,b −T0,u)(γ−1) = 1

V

cp

γR
Aγ

(
c2

0,b − c2
0,u

)
(γ−1) (1.42)

= 1

V

cp

γ(cp − cv )
Aγ

(
c2

0,b − c2
0,u

)
(γ−1) = 1

V

1

γ−1
Aγ

(
c2

0,b − c2
0,u

)
(γ−1) (1.43)

= A

V
γ

(
c2

0,b − c2
0,u

)
. (1.44)

However, the thermoacoustic Helmholtz equation is an eigenvalue problem with the eigen-
value ω and the corresponding mode shape p̂. Due to the flame transfer function, it is nonlinear
in its eigenvalue. For convenience, the problem can be concisely written as

L(ω)p̂ = 0 (1.45)

where

L(ω)p̂ :=∇· (c2∇p̂)+ω2p̂ − q0

u0

γ−1

ρ0,u
FTF(ω) ∇p̂

∣∣
~xref

·~nref . (1.46)

Obtaining a solution to the nonlinear eigenvalue problem is a computationally costly task. This is
especially a problem if a large number of parameter sets is to be evaluated. The following chapters
will discuss how to compute solutions and how to reduce the numerical costs to obtain them.

Limits of the thermoacoustic Helmholtz equation

Various assumptions have been made in order to derive this thermoacoustic wave equation. Most
notably:

• diffusive effects like viscosity were neglected,

• volumetric forces like gravity and magnetism were neglected,

• the gas was assumed to behave like an ideal gas,

• the specific gas constant was assumed to be constant in time, i.e., no change in the molecu-
lar weight of the gas was assumed,

• the ratio of specific heats was assumed to be constant,

• the mean velocity was neglected,

• and the acoustic perturbations were assumed to be small.
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At the time of writing of this thesis most industrial gas turbines operate with gas compositions
which are essentially methane-air mixtures, for which the global-reaction equation

CH4 +2

(
O2 + 79

21
N2

)
−→ CO2 +2H2O+ 158

21
N2 (1.47)

indicates an isomolaric reaction. This is especially true, when considering that lean premixed
combustion reduces the formation of nitrogen oxides. In general, lean premixed combustion
utilizing air as an oxidizer can be seen as isomolaric, because large amounts of nitrogen do not
participate in the combustion process. Thus, an isomolaric reaction process is a well justified as-
sumption. However, for environmental reasons hydrogen combustion

2H2 +O2 −→ H2O (1.48)

becomes more and more important. Thermoacoustic models for hydrogen-enriched combustion
processes should, therefore, account for a change in the number of moles.

Neglecting the mean flow is definitely a strong assumption for gas turbines. Incorporation of
the mean flow is possible using linearized Euler equations and linearized Navier–Stokes equa-
tions. Both give rise to eigenvalue problems that are nonlinear with respect to their eigenvalue
[34]. The concepts derived in this thesis will, therefore, eqally ease the computation of thermoa-
coustic modes when using these models.
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Chapter 2

Models

2.1 The Rijke tube

The simplest thermoacoustic devices are Rijke tubes. These are tubes which are equipped with a
heat release source. They are named after Rijke who first discovered and described their ability to
show thermoacoustic instabilities in [7]. This discovery is probably the earliest scientific investi-
gation of thermoacoustic instabilities. To date Rijke tubes (and tubular configurations in general)
are used as academic thermoacoustic models. This regards to both experimental (e.g., [45, 46, 47])
and numerical (e.g., [48, 30, 41, 49, 50]) studies. More references can be found in the review article
of Raun et al. [51].

From a numerical viewpoint the Rjke tube can be considered as basically one-dimensional
with a compact heat source. The thermoacoustic Helmholtz equation, hence, reads

d

dx

(
c2 d

dx
p̂

)
+ω2p̂ =Qδ(x −xflm)

d

dx
p̂

∣∣∣∣
x=xref

. (2.1)

Here, xflm is the position of the heat source, i.e., the flame. Due to its assumed compactness, it
is modeled as δ-function. xref is a reference position upstream of the flame where the velocity
fluctuation governing the flame response is taken.

At the inlet and the outlet, impedance boundary conditions are to be prescribed:

p̂ − ic Z

ω

d

dx
p̂ = 0. (2.2)

The topology of the Rijke-tube model is depicted in Fig.2.1. Throughout this thesis when using
the Rijke-tube model, the equations are considered to be non-dimensional as the thermoacoustic
Helmholtz equation can be non-dimensionalized using a characteristic length scale L̃ and speed
of sound c̃. This does not change the mathematical appearance of the equation. However, the
heat release will be expressed by Q = n exp(−iωτ).

Non-dimensionalized or not, the simple model equations of the Rijke tube have the advantage
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c1 c2

x

xflm Lxref0

ZoutZin

Q

Figure 2.1: Illustration of the Rijke-tube set-up. A source term Q is set at the flame (orange) which is
related to velocity fluctuations in the reference point (black dot). Different soundspeeds c1 and c2

are set upstream and downstream to the flame. Impedance Zin and Zout determine the boundary
conditions at the inlet (blue) and the outlet (green) of the tube.

that they can be solved almost analytically [52] using the ansatz

p̂(x) =
A cos

(
ω
c1

x
)
+B sin

(
ω
c1

x
)

for x ∈ [0, xflm]

C cos
(
ω
c2

x
)
+D sin

(
ω
c2

x
)

for x ∈]xflm,L]
(2.3)

Here, A,B ,C , and D are constants which are to be computed, in order to determine the mode shape
corresponding to the eigenfrequency ω.

Evaluating the boundary conditions at the inlet yields

A cos

(
ω

c1
0

)
︸ ︷︷ ︸

=1

+B sin

(
ω

c1
0

)
︸ ︷︷ ︸

=0

+AiZin sin

(
ω

c1
0

)
︸ ︷︷ ︸

=0

−B iZin cos

(
ω

c1
x

)
︸ ︷︷ ︸

=1

= 0. (2.4)

Analogously,

C cos

(
ω

c2
L

)
+D sin

(
ω

c2
L

)
+C iZin sin

(
ω

c2
L

)
−DiZin cos

(
ω

c2
L

)
= 0 (2.5)

is found at the outlet.

Further equations result from the jump condition obtained when integrating across the flame:[
c2 d

dx
p̂

]x+
flm

x−
flm

+ω2
∫x+

flm

x−
flm

p̂ dx =Q
d

dx
p̂

∣∣∣∣
x=xref

. (2.6)

The second term is trivially zero because the antiderivative of p̂ will be continuous∫x+
flm

x−
flm

p̂ dx = 0. (2.7)

Hence, follows [
c2 d

dx
p̂

]x+
flm

x−
flm

=Q
d

dx
p̂

∣∣∣∣
x=xref

. (2.8)

Note that this relation is yielding a jump in the gradient of the pressure fluctuation amplitude
even if there is no active flame fluctuation, i.e., Q = 0, but only a jump in the mean speed of sound.
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The Fourier transform of the one-dimensional linearized momentum balance is iωρ0û = − d
dx p̂0.

Furthermore, the jump in c is due to a jump in the mean temperature. Therefore, the jump in
c2 1

ρ0
– and consequently the above jump condition – can be interpreted as a jump condition for

the velocity fluctuation. In particular, the velocity fluctuation will be continuous if there is no
active flame.

Because the jump condition only affects the gradient of the pressure fluctuation, the pressure
fluctuation itself must be continuous across the flame:[

p̂
]x+

flm
x−

flm
= 0. (2.9)

That the solution is continuous in p̂ is often derived by physical reasoning: Integration of the mo-
mentum balance (1.10) across the flame and assuming no accumulation of momentum proves the
continuity. However, a mathematical rationale is necessary, to exclude the existence of discontin-
uous solutions. This aspect is important for the derivation of finite element schemes solving the
thermoacoustic problem, as will be further discussed in Sec. 3.5.

Introducing the ansatz into Eq.(2.9) yields

C cos

(
ω

c2
xflm

)
+D sin

(
ω

c2
xflm

)
− A cos

(
ω

c1
xflm

)
−B sin

(
ω

c1
xflm

)
= 0 (2.10)

and from Eq. (2.8)

−Cωc2 sin

(
ω

c2
xflm

)
+Dωc2 cos

(
ω

c2
xflm

)
+ Aωc1 sin

(
ω

c1
xflm

)
−Bωc1 cos

(
ω

c1
xflm

)
=Q

[
−A

ω

c1
sin

(
ω

c1
xref

)
+B

ω

c1
cos

(
ω

c1
xref

)]
. (2.11)

The equations (2.4),(2.5),(2.10), and (2.11) form an eigenvalue problem nonlinear in ω:

L(ω)


A
B
C
D


︸ ︷︷ ︸

:=p

=


0
0
0
0

 (2.12)

where

[L]1,1 = 1, [L]1,2 =−iZin [L]1,3 = 0, [L]1,4 = 0, [L]2,1 = 0, [L]2,2 = 0

[L]2,3 = cos

(
ω

c2
L

)
+ iZout sin

(
ω

c2
L

)
, [L]2,4 = sin

(
ω

c2
L

)
− iZout cos

(
ω

c2
L

)
,

[L]3,1 =−cos

(
ω

c1
xflm

)
, [L]3,2 =−sin

(
ω

c1
xflm

)
, [L]3,3 = cos

(
ω

c2
xflm

)
, [L]3,4 = sin

(
ω

c2
xflm

)
[L]4,1 = c1 sin

(
ω

c1
xflm

)
+ Q

c1
sin

(
ω

c1
xref

)
, [L]4,2 = c1 cos

(
ω

c1
xflm

)
+ Q

c1
cos

(
ω

c1
xref

)
[L]4,3 =−c2 sin

(
ω

c2
xflm

)
, [L]4,4 = c2 cos

(
ω

c2
xflm

)
.
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ϕ
q̂K−3

q̂K−2

q̂K−1
q̂0

q̂1

q̂2

q̂3

Figure 2.2: Schematic illustration of the topology of the Kronig-Penney model. K source terms are
equidistantly arranged on a one-dimensional ring.

The eigenvalues of which can be found by computing the characteristic function from the de-
terminant explicitly and using a numerical root-finding algorithm to find its roots. The corre-
sponding mode shapes are then easily found by computing A, B , C , and D from the kernel.

The approach used to solve the Rijke-tube model can actually be generalized. This gives rise to
the so-called lumped network models. These models describe thermoacoustic systems in terms of
one-dimensional elements on which plane wave propagation is assumed. Ansatz functions which
describe left and right traveling waves are stipulated for each individual element. Linking them
together through appropriate continuity and jump conditions describing the connection between
two adjacent elements is then resulting in a nonlinear eigenvalue problem. See, e.g., [25, 26, 53] for
more details on this method. Apart from its application to the Rijke-tube model, in this thesis such
a network approach is also used to solve the Kronig-Penney model presented in the next section.

2.2 The Kronig-Penney model

Modern gas turbines feature annular or can-annular combustion chambers, rendering them pe-
riodic in the azimuthal direction. A one-dimensional model featuring such a periodicity is the
Kronig-Penney model. It has been originally devised to study the quantum-mechanical behavior
of electrons in crystal lattices [54]. The conception of the model was triggered by the theorem of
Bloch on how to easily compute solutions of the Schrödinger equation. Bloch’s theorem and its ap-
plication to combustion chambers is the topic of Chap. 5. A modified version of the Kronig-Penney
model will, therefore, serve as an exemplifying mathematical model where the high complexity of
a realistic combustor model prohibits its extensive study. The Kronig-Penney model has first been
adapted in [55] as a surrogate for a realistic thermoacoustic model to illustrate the potential of
Bloch’s theorem. The model describes a one-dimensional ring featuring K equidistant flames q̂k

with point support. The topology of the model is illustrated in Fig. 2.2.

The model equations read:

d2

dϕ2 p̂ +ω2p̂ =−iω
K∑

k=0
q̂kδ

(
ϕ−k

2π

K

)
(2.13)

p̂(2π) = p̂(0). (2.14)

Note that the Kronig-Penney model does not feature a distributed speed of sound. The eigenvalue
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ω takes the interpretation of a wave number. The symbol ω is kept for consistency with the pertur-
bation theory presented in the later chapters. Also note that because the model only accounts for
the azimuthal dimension ϕ, it is impossible to link the flame responses q̂k to the axial gradient of
p̂ at some reference point. For simplicity the flame response q̂k is, thus, related to p̂(k 2π

K ) directly,
i.e.,

q̂k =Qk p̂

(
k

2π

K

)
. (2.15)

Analogous to the Rijke-tube model of the previous section, analytic solutions to the model can
be computed by a network approach. In contrast to the Rijke-tube model, the ansatz function is
defined using a local coordinate ϕk :=ϕ−k 2π

K at each sector between two flames q̂k and q̂k+1, i.e.:

p̂(ϕ) = p̂k (ϕk ) := A2k cos
(
ωϕk

)+ A2k+1 sin
(
ωϕk

)
if ϕ ∈]k

2π

K
, (k +1)

2π

K
]. (2.16)

The conditions across the flames are (i) continuity in the pressure fluctuation:

p̂k+1(0)− p̂k

(
2π

K

)
= 0 (2.17)

⇒A2(k+1) − A2k cos

(
ω

2π

K

)
− A2k+1 sin

(
ω

2π

K

)
= 0 (2.18)

and (ii) a jump in the derivative:

d

dϕ
p̂k+1(0)− d

dϕ
p̂k

(
2π

K

)
=−iωQk p̂k+1(0) (2.19)

⇒ωA2(k+1)+1 +ωA2k sin

(
ω

2π

K

)
−ωA2k+1 cos

(
ω

2π

K

)
+ iωA2(k+1)Qk = 0. (2.20)

Taking condition (2.18) and division of (2.20) by ω gives rise to the following eigenvalue problem:

−S 1 −C
−C iQ0 1 S

−C −S 1
S −C iQ1 1

. . .

−C −S 1
S −C iQK−2 1

−C −S 1
1 S −C iQK−1


︸ ︷︷ ︸

:=L(ω)



A1

A2

A3

A4

...

A2K−3

A2K−2

A2K−1

A2K


︸ ︷︷ ︸

:=p

=



0
0
0
0

...

0
0
0
0



(2.21)

Here, the abbreviations S = sin(ω2π
K ) and C = cos(ω2π

K ) are used.

Note that when choosing identical flame dynamics Qk , the operator is a block-circulant matrix,
i.e., cyclicly permuting the kth column by two entries is identical to the k +2nd column. Periodic-
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matrix structures are a general feature of discretization matrices arising from periodic problems.
Their eigenmodes are Fourier-like modes [56]. This can also be seen as a consequence of Bloch’s
theorem and will greatly simplify the computation of eigenvalues and eigenvectors. These aspects
are further discussed in Chap. 5.

In this thesis n–τ-models will be deployed when considering the Kronig-Penney model: Qk :=
nk exp(−iωτk ).

2.3 MICCA

The annular combustor geometry discussed in this section has been developed in the course of
the “méthodes pour les instabilités de combustion couplées par l’acoustique” program at labora-
toire EM2C in France and is, therefore, commonly referred to as MICCA. A main motivation for
its development was the lack of experimental data to study the physics of combustion instabil-
ities in annular combustors. Since its introduction in [57] the MICCA combustor has served as
a laboratory scale platform and was investigated in various experimental and numerical studies
[58, 59, 60, 61, 62, 63, 64, 65]. Due to the broad availability of data, it provides an optimal bench-
mark case for demonstrating novel computation methods. The model set-up in this work is similar
to the one used by Laera et al. [62] to create a Helmholtz model of the MICCA combustor.

Like industrial annular and can-annular combustors, the MICCA combustor features a discrete
rotational symmetry. In the case of the MICCA combustor the chamber can be circumferentially
subdivided into 16 equal sections. Analogously to the jargon used in solid-state physics one such
section is referred to as unit cell. In this work, the unit cells are defined from the centers of the
flames. The corresponding unit cell is the set of points which are no closer to any other flame cen-
ter, i.e., the unit cells are the intersection of the MICCA chamber with the Voronoi cells generated
from the flame centers. In accordance to the grid classification scheme introduced by Brillouin in
[66] for the modeling of free electrons in metals, such domain is also called the first Brillouin zone.
Figure 2.3 shows the dimensions of one unit cell as it is used in the current work. While using any
other set of 16 equally-spaced points on the circumference to define a unit cell, the specific choice
of putting them on the center axis of the injectors has the advantage that the unit cells are addi-
tionally mirror-symmetric. A unit cell can, therefore, be split into two halves which will be referred
to as half cells. For the MICCA chamber the half cells cannot be further reduced by exploiting a
symmetry. In the jargon of crystals they correspond to irreducible Brillouin zone, see, e.g., [67].

Note that resolving the perforation of the matrix injectors would require elaborate meshing.
The injector is, thus, modeled as two tubes with different diameters such that the blocking ratio
is identical to the one of the matrix injectors. However, unlike the geometry in [62], the model
does not include holes in the plenum as they are needed to fit pressure transducers connected
to the combustion chamber. Nevertheless, these can be considered as acoustically compact and,
therefore, neglected.

The symmetries of annular combustion chambers has useful consequences for the computa-
tion of their thermoacoustic modes. Most importantly it allows to compute the thermoacoustic
modes from a single unit cell by Bloch-wave theory as will be discussed in Chap. 5. Special care
is, therefore, necessary when creating a mesh for a numerical model of an annular combustor.
For instance, the numerical mesh used in this thesis for the MICCA combustor is created in a
three-step process. First the mesh of a half cell is generated. This mesh is then reflected to obtain
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Figure 2.3: Dimensions of one burner flame segment of the MICCA combustor. The full combustor
features 16 of these segments. Note that the azimuthal sides of the segments are no physical walls.
The stated length are given in mm. lb = 14mm, lpp = 6mm, lF = 6mm, hF = 18mm, hb = 16.5mm,
hpp = 9.45mm, d1 = 25mm, d2 = 35mm .

a unit cell. Finally, by creating rotated copies of the unit cell mesh, the full-combustor mesh is
obtained. Figure 2.4 illustrates this process. The procedure guarantees that the numerical mesh
features the same symmetry properties as the model to be discretized. The shown mesh is indeed
the numerical mesh that will be used throughout the thesis for computations of the MICCA com-
bustor. It is a tetrahedral mesh created with the open source mesh generation tool Gmsh version
2.15.0 . Table 2.1 lists the number of points, edges, and tetrahedra forming the half cell, the unit
cell, and the full chamber. As will be explained in Chap. 3, the number of points and edges will
determine the size of the discretized operator in a finite element analysis which utilizes quadratic
ansatz functions. The mesh resolution is relatively high in the flame regions and the injectors. This
is to accurately resolve the flame domains and the regions containing the reference points, which
are located at the injector inlets. For the first axial and the first two azimuthal modes – which are
the modes discussed in this thesis – it was confirmed that the mesh is sufficiently fine to yield

Table 2.1: Properties of the mesh used to discretize the MICCA model

half unit full

points 115 179 2608
edges 543 958 14848
tetrahedra 329 658 10528
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reflect rotate

1. half cell 2. unit cell 3. full chamber

Figure 2.4: Illustration of a symmetry-preserving mesh generation procedure. First a mesh is cre-
ated for a half cell. Then the mesh is reflected to create unit cell. Finally, by creating rotated copies
of the unit cell the full combustor geometry is obtained. The depicted mesh is the mesh used
throughout the thesis for the MICCA model.

mesh-independent results.

In order to model the open end, the length of the combustion chamber was extended by 41 mm
and sound-soft boundary condition is set at the top end. This is in accordance to measurements
that have shown a pressure node 41 mm above the combustor. All other boundaries are assumed
to be sound hard. The thermodynamic properties of the gas are assumed to be identical with air.
The local speed of sound is computed from the local temperature distribution. In the combustion
chamber this distribution is obtained from interpolating measured data. The raw data for this in-
terpolation was provided courtesy of Davide Laera. In the computational domain that was added
to model the open end, the temperature is set constant. In the plenum and the injectors the tem-
perature is assumed to be T = 300K. The temperature distribution is illustrated in Fig. 2.5. For each
burner the mean heat release rate to velocity ratio is set to Q0/u0 = 2080W/0.66 m

s = 3151.51 kgm
s2 .

These settings are the same as operating point B in [62]. The flame transfer function will also cor-
respond to data given for this operating point. Yet, it will be a function not only of the frequency
but also of the growth rate of a mode. This is done to obtain a function that is analytic in ω. How
to process the measurement data in order to obtain this function will be discussed in Sec. 3.5.
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Figure 2.5: Temperature distribution set in the MICCA combustor model. The distribution is a
function of the axial coordinate only. The coordinate system is centered at the bottom of the com-
bustion chamber. Thus, negative values of z refer to positions below the combustion chamber,
i.e., in the plenum and the injectors. The data is courtesy of Davide Laera and the same as used in
[62] .
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Chapter 3

Adjoints and finite element discretization

The perturbation theory introduced later will require an adjoint solution of the thermoacoustic
Helmholtz equation. How to derive and interpret the adjoint thermoacoustic Helmholtz equa-
tion is discussed in this chapter. Adjoint equations are closely connected to finite element dis-
cretizations, as both arise from a weak form of the equation of interest [40]. Hence, details of
the finite element method will also be discussed in this chapter as far as they concern the ideas
of this thesis. For example, an important aspect frequently discussed in the literature is how the
numerical solution obtained for the adjoint equation is affected by discretization [68, 40]. Often,
different discretization matrices are obtained when either first adjoining a differential equation
and then discretizing it or starting with a discretized system which is then adjoined. While the
former is known as continuous adjoint, the latter is commonly referred to as discrete adjoint. For
the Bubnov-Galerkin method discussed here, this distinction is irrelevant as both the continuous
and the discrete adjoint approach will result in the same discretization matrices for this particular
discretization method.

3.1 Weak form of the thermoacoustic Helmholtz equation

Both the adjoint and the finite element discretization of the thermoacoustic Helmholtz equation
are obtained from its weak form. Given an inner product 〈·|·〉 and a linear equation

Lp̂ = 0, (3.1)

the weak form is obtained by taking the inner product of the equation with some test function ψ̂:〈
ψ̂

∣∣Lp̂
〉= 0. (3.2)

Here, L is a linear differential operator. In the applications discussed in this thesis it will be a family
of operators L(z;ε) and the eigenvalues of this family will be of major interest. However, details
of the parametrization of L in z and ε are not relevant for this chapter and, thus, not explicitly
included in the notation.

The weak form (3.2) might be interpreted as a necessary condition for p̂ being a solution to
(3.1). It must hold in an integral sense. Hence, all solutions of (3.1) will obviously satisfy (3.2).
However, given a pair p̂ and ψ̂ that solves equation (3.2), the converse is not automatically true.
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For this reason, the equation is named a weak formulation, as it imposes weaker conditions on
p̂ than the original equation (3.1), which is often referred to as strong formulation. It is also the
reason for calling ψ̂ a test function because the weak form is a test for p̂ being a solution of (3.1).

Depending on the scientific field and the given context, different names are used for the test
function ψ̂. It might be referred to as adjoint solution1. This is because there exists a correspond-
ing linear equation

L†ψ= 0 (3.3)

which if tested with the direct variable p̂, results in a weak form equivalent to (3.2):〈
L†ψ̂

∣∣∣p̂〉
= 〈

ψ̂
∣∣Lp̂

〉
(3.4)

and this is the definition of the adjoint operator (compare (3.11)). It might also be called a weight-
ing function, because the weak form (3.2) might be seen as weighted measure for the residual of
(3.1) [69].

In this thesis the equation of interest is the thermoacoustic Helmholtz equation:

∇· (c2
0∇p̂

)+ω2p̂ − q0

u0

γ−1

ρ0,u
FTF(ω) ∇p̂

∣∣
~xref

·~nref = 0 in Ω (3.5a)

p̂ − ic0Z

ω
∇p̂ ·~n = 0 on ∂Ω (3.5b)

and the inner product is given by multiplication and integration over the considered domain Ω:

〈a|b〉 =
∫
Ω

ab dV. (3.6)

Here, a denotes the complex conjugate of a.

The equation linearly combines different terms which can be individually cast into weak form
due to the linearity of the inner product. For the Laplacian term,

∫
Ω ψ̂∇ · (c2

0∇p̂
)

dV is found as a
weak form. It is convenient to further simplify it by integration by parts∫

Ω
ψ̂∇· (c2

0∇p̂
)

dV =−
∫
Ω
∇ψ̂ · (c2

0∇p̂
)

dV +
∮
∂Ω

ψ̂c2
0∇p̂ ·~n dS (3.7)

=−
∫
Ω
∇ψ̂ · (c2

0∇p̂
)

dV +
∮
∂Ω

ωc2
0

ic0Z
p̂ψ̂dS (3.8)

=−
∫
Ω

c2
0∇ψ̂ ·∇p̂ dV −

∮
∂Ω

ω
ic0

Z
ψ̂p̂ dS. (3.9)

The benefit from these manipulations is that the result explicitly reveals the contribution of the
boundary values to the weak form. Moreover, it balances the differentiability assumptions im-
posed on p̂ and ψ̂: neglecting the conjugation, both contribute identically to the expression with
no higher than first order derivatives appearing. Note how in comparison to the strong form –
which features second derivatives of p̂ – this is indeed a weaker condition. Also note that using
an impedance is the most general way of modeling the boundary conditions. The formulations
for sound-soft and sound-hard boundaries are obtained by taking the limits Z → 0 and Z → ∞,

1Indeed, later chapters will refer to the weighting function as p̂†.
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respectively.

Together with the other two terms this gives rise to the following version of the weak formula-
tion of the thermoacoustic Helmholtz equation:∫

Ω
ω2ψ̂p̂ − c2

0∇ψ̂ ·∇p̂ − ψ̂
q0

u0

γ−1

ρ0,u
FTF(ω) ∇p̂

∣∣
~xref

·~nref dV −
∮
∂Ω

ω
ic0

Z
ψ̂p̂ dS = 0. (3.10)

3.2 Adjoint thermoacoustic Helmholtz equation

Definition

Given a differential operator L and an inner product 〈·|·〉 the adjoint operator L† is defined as

〈a|Lb〉 =
〈
L†a

∣∣∣b〉
+const. (3.11)

The constant appearing in this equation is arising from an integration by parts. It will be linear in
both the direct and the adjoint variable and is called bilinear concomitant [70] or boundary con-
junct [71]. It is convenient to choose the boundary conditions for the adjoint equation such that
the constant vanishes and 〈a|Lb〉 = 〈L†a

∣∣b〉
, e.g., [68]. Only rarely the meaning of the constant is

discussed in the literature. For instance, [70] compares the choice of driving the bilinear concomi-
tant towards zero with the concept of virtual work. This gives a stronger motivation than mere
convenience. [71] discusses the role of the boundary concomitant 2 when perturbing the bound-
ary conditions of eigenvalue problems. The findings of that particular publication are especially
useful when perturbing the considered domain shape and consequently displacing the boundary.

The adjoint thermoacoustic Helmholtz equation is obtained by further manipulating the weak
form such that p̂ appears isolated from all linear operators and a strong formulation in ψ̂ is ob-
tained. The definitions of the adjoint operator immediately implies that the concept of adjoint
operators is linear. Therefore, as for the weak form, the adjoint of the Helmholtz equation can be
found by a term-by-term or more precisely by an operator-by-operator discussion, as will be done
in the following.

Wave operator

The first term in Eq. (3.10)
∫
Ωω2ψ̂p̂ dV already features the desired form. However, it will turn out

that it is more practical to denote it as
∫
Ωω2ψ̂p̂ dV .

Another integration by parts may remove the differentiation operator from p̂ in the second
term −∫

Ω c2
0∇ψ̂∇p̂ dV :

−
∫
Ω

c2
0∇ψ̂ ·∇p̂ dV =

∫
Ω
∇· c2

0∇ψ̂p̂ dV −
∮
∂Ω

c2
0∇ψp̂ ·~n dS. (3.12)

Without loss of generality, the boundary values of ψ̂ can be expressed in terms of impedance

2It is called conjunct there.
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boundary conditions: ψ̂− i c0 Z †

ω
∇ψ̂ ·~n = 0. This allows for rephrasing the boundary integral as

−
∮
∂Ω

c2
0∇ψ̂p̂ ·~n dS =+

∮
∂Ω

ω
ic0

Z †
ψ̂p̂ dS. (3.13)

Flame operator

The third term models the unsteady heat release fluctuation in a flame. Standard models linearly
link this fluctuation to a fluctuation of the velocity in a reference region using a flame transfer
function. As shown in Chap. 1, the heat release operator then amounts to

−q0

u0

γ−1

ρ0,u
FTF(ω) ∇p̂

∣∣
~xref

·~nref =: Q(~x,ω) ∇p̂
∣∣
~xref

·~nref. (3.14)

Note that the dependency of Q on omega will be dropped in the following for brevity. ∇p̂
∣∣
~xref

is the
pressure fluctuation gradient at a reference point. Yet, for the derivation of the adjoint equation
it is more convenient to consider it being an average pressure fluctuation gradient in a reference
region Ref. The average is calculated as

∫
Ref∇p̂d(~x −~xref)d~x. Here, d(~x) is a weighting function

with support Ref. It vanishes on the boundary of the reference domain, i.e., d(~x) = 0 if ~x ∈ ∂Ref.
This approach has been used, e.g., in [72] to implement the adjoint equation in CERFACS’ AVSP
code following a continuous adjoint approach that used a Gaussian distribution for the weight-
ing function. However, if the reference domain will be a single point ~xref, the weighting function
reduces to a delta distribution δ(~x).

These considerations allow for the following manipulations ultimately removing all operators
from p̂:∫

Ω
ψ̂Q(~x) ∇p̂

∣∣
~xref

·~nref dV (~x) (3.15)

=
∫

supp(Q(~x)):=Flame
ψ̂Q(~x) ∇p̂

∣∣
~xref

·~nref dV (~x) (3.16)

=
∫

Flame
ψ̂(~x)Q(~x)

∫
Ω
∇~y p̂(~y)d(~y −~xref)dV (~y) ·~nref dV (~x) (3.17)

=
∫

Flame
ψ̂(~x)Q(~x)

∫
supp(d(~y):=Ref)

∇~y p̂(~y)d(~y −~xref)dV (~y) ·~nref dV (~x) (3.18)

=
∫

Flame
ψ̂(~x)Q(~x)~nref dV (~x) ·

∫
Ref

∇~y p̂(~y)d(~y −~xref)dV (~y) (3.19)

=
∫

Flame
ψ̂(~x)Q(~x)~nref dV (~x) ·

−∫
Ref

p̂(~y)∇~y d(~y −~xref)dV (~y)+
∫
∂Ref

p̂(~y)d(~y −~xref)︸ ︷︷ ︸
=0 on ∂Ref

dA(~y)

 (3.20)

=−
∫

Flame
ψ̂(~x)Q(~x)~nref dV (~x) ·

∫
Ref

p̂(~y)∇~y d(~y −~xref)dV (~y) (3.21)

=
∫

Ref
−

∫
Flame

ψ̂(~x)Q(~x)dV (~x)~nref ·∇~y d(~y −~xref)p̂(~y)dV (~y) |swap~x and ~y (3.22)

=
∫

Ref
−

∫
Flame

ψ̂(~y)Q(~y)dV (~y)~nref ·∇~x d(~x −~xref)p̂(~x)dV (~x) (3.23)

=
∫
Ω
−

∫
Flame

ψ̂(~y)Q(~y)dV (~y)~nref ·∇~x d(~x −~xref)p̂(~x)dV (~x). (3.24)
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Thus, the adjoint flame operator reads (for a point supported reference region) :(
−q0

u0

γ−1

ρ0,u
FTF(ω) ∇(·)|~xref

·~nref

)†

=−
∫

Flame
(·)Q(~y ,ω)dV (~y)∇δ(~x −~xref) (3.25)

=
∫

Flame
(·) q0

u0

γ−1

ρ0,u
FTF(~y ,ω)dV (~y)∇δ(~x −~xref). (3.26)

This result may seem strange at first. Nevertheless, it nicely exhibits the nature of the adjoint
equation to turn matters “upside down”. The direct flame operator utilizes the d-weighted aver-
age gradient of a given reference region as excitation in the flame region scaled by the FTF. The
adjoint does the complete opposite. It takes the average of the flame region weighted by the FTF
to create an excitation in the reference region scaled by the gradient of the weighting function d .
This reversal of cause and effect is much akin to the time reversal induced by adjoints in the time
domain (see, e.g., [68]) and the very reason why the adjoint equation can be used as a sensitiv-
ity analysis tool. Note that as each occurrence of the eigenfrequency in the adjoint equation is
accompanied by complex conjugation, time reversal also appears in the adjoint equation. This
swaps the meaning of growth and decay while keeping the frequency of oscillation unchanged.

The strong form of the adjoint equation

Putting the results together the weak form amounts to

∫
Ω

[
ω2ψ̂+∇· c2

0∇ψ̂+
∫

Flame
ψ̂

q0

u0

γ−1

ρ0,u
FTF(~y ,ω)dV (~y)∇δ(~x −~xref)

]
p̂ dV

+
∮
∂Ω

ω
ic0

Z †
ψ̂p̂ −ω

ic0

Z
ψ̂p̂ dS = 0. (3.27)

Choosing Z † =−Z the boundary integral vanishes. Therefore, if ψ̂ satisfies

ω2ψ̂+∇· (c2
0∇ψ̂

)+∫
Flame

ψ̂
q0

u0

γ−1

ρ0,u
FTF(~y ,ω)dV (~y)∇δ(~x −~xref) = 0 in Ω (3.28a)

ψ̂+ ic0Z

ω
∇ψ̂ ·~n = 0 on ∂Ω (3.28b)

the weak form holds for arbitrary p̂. Consequently, (3.28) is a strong form formulated in ψ̂ and
is, thus, the adjoint equation of the thermoacoustic Helmholtz equation (3.5). Moreover, from
(3.27) the concomitant of the thermoacoustic Helmholtz equation can be identified as the bound-

ary integral
∮
∂Ωω ic0

Z † ψ̂p̂ −ω ic0
Z ψ̂p̂ dS. As expected, it is sesquilinear in the complex-valued setting

discussed here.

Comparing the direct and the adjoint equation (3.5) and (3.28) shows that apart from the flame
operator both equations obey the same structure. Hence, if neglecting the heat release, the prob-
lem becomes self-adjoint. This is a well known property of the Helmholtz equations. Self-adjoint-
ness implies useful properties, such as pairwise orthogonal eigenvectors and real eigenvalues.
However, as discussed in [30] the thermoacoustic modes are generally not pairwise orthogonal
and, hence, the problem cannot be self-adjoint. This is in line with the explicit derivation of
the adjoint equation presented here, which shows that the heat-release term is breaking the self-
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adjointness. Note that the self-adjoint structure is also lost if the real-part of the boundary impe-
dance is non-zero because then Z 6= −Z and the two problems do not coincide.

Yet, these considerations are rather mathematical because the appearance of the adjoint equa-
tion can be changed by changing

(i) the inner product used to define the weak form and, hence, the adjoint equation or

(ii) the boundary conditions chosen for the adjoint variable ψ̂.

For instance, any linear second order differential equation can be made self-adjoint by choos-
ing an appropriate inner product. This becomes evident when casting the problem into Sturm-
Liouville form, see the supplemental appendix of [40] and references therein. Moreover, the defi-
nition of the adjoint differential equation only requires

〈
ψ̂

∣∣Lp̂
〉− 〈L†ψ̂

∣∣p̂〉 = const. The constant
term is given by the concomitant that arose from integration by parts. It is not necessary to choose
the boundary conditions of the adjoint problem such that the boundary concomitant vanishes.
However, a standard inner product and a vanishing boundary conjunct are the most convenient
choices. This is because then the adjoint solution ψ̂ can be directly interpreted as a local mea-
sure for sensitivity. An interpretation that would not be straightforward if contributions from the
boundary conjunct or a weighting factor included in the inner product would also need to be ac-
counted for. This viewpoint will be further explained in Chap. 6.

3.3 Finite element discretization

The finite element method is a discretization technique widely used in science and engineering to
obtain solutions for partial differential equations. Its popularity can be attributed to its flexibility
when dealing with complicated domain shapes, its potential for easy implementation – especially
in a parallel computation framework – and the availability of high-quality software packages. The
mathematical fundamentals of this method can be found in many textbooks, e.g., [73, 74, 75].
The special application to flow problems is the topic of the book of Donea and Huerta [69]. The
first utilization of a finite element approach to solve the thermoacoustic Helmholtz equation was
given in [30]. Since then many studies have used this approach in thermoacoustics, e.g., [76, 77,
78, 62]. A detailed derivation of the method using linear shape functions in order to discretize the
thermoacoustic Helmholtz equation can be found in [79]. This section discusses the fundamentals
of the method as far as they concern the objectives of the thesis.

The key idea behind finite element discretization is the interpretation of the weak form as a
test for p̂ being a solution of the considered problem. Because it is necessary that the weak form is
satisfied, using a Galerkin discretization of the weak form will result in a system of equations that
approximates the solution of the infinite-dimensional problem. In general any ansatz functions
that satisfy the regularity requirements of the problem (defined on the considered domain, weak
differentiability, compliance with the boundary conditions etc.) can be chosen for p̂ and ψ̂ in order
to discretize the problem. However, finite element methods constitute the special case where the
supports of the ansatz functions are just a few open cells Ωi from a tessellation of the considered
domain Ω. Such a tessellation is defined through the following properties:

Ω=
NTet⋃
i=1

Ωi (3.29)
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Ωi ∩Ω j =
{
6= ; if i = j

=; if i 6= j
(3.30)

Here NTet denotes the total number of cells and Ωi the closure of Ωi . It is common to refer to the
tesselation as computational grid or mesh. In this work its cells Ωi will be simplices. The discus-
sion here focuses on the most general case of considering the three-dimensional space, i.e., the
simplices will be tetrahedra. The two- and one-dimensional discretizations are readily obtained
as special cases.

A tetrahedron can be uniquely defined from four points X A , XB , XC , and XD not all lying in a
common plane. The notation tet(X A , XB , XC , XD ) will be used to define a tetrahedron with vertices
X A , XB , XC , and XD . The tessellation implies the following integration rules:∫

Ω
f dV =∑

i

∫
Ωi

f dV (3.31)∮
∂Ω

f dS =∑
i

∮
∂Ωi

f dS | if f is continuous in Ω (3.32)

The same ansatz functions φi will be used for p̂ and ψ̂ when discretizing the weak form:

p̂ =∑
i

piφi , ψ̂=∑
j
ψ j φ j . (3.33)

This is known as Bubnov-Galerkin finite element method.

Again it is convenient to discuss the different terms of the weak form individually. Plugging the
ansätze into the first term of the weak form (3.10) yields

∫
Ωω2ψ̂p̂ dV . A quick calculation shows:∫

Ω
ψ̂p̂ dV =∑

i

∑
j
ψ j pi

∫
Ω
φ j φi dV︸ ︷︷ ︸
:=[M]i j

=ψHMp (3.34)

where in the last step the problem has been reformulated using matrix-vector notation. The en-
tries of the vectors are defined as [ψ] j :=ψ j and [p]i := pi . Following the standard vernacular in
the field, the matrix M will be called mass matrix. Note that because the mass matrix represents
the inner product of ψ̂ and p̂, it is positive definite. The discretization of an inner product, there-
fore, will be the sesquilinear-form induced by M. Nonetheless, the results yield ψHω2Mp for the
discretization of the first term in the weak form.

For the second term the following expression is found∫
Ω

c2
0∇ψ̂ ·∇p̂ dV =∑

i

∑
j
ψ j pi

∫
Ω

c2
0∇φ j ·∇φi dV︸ ︷︷ ︸

:=[K]i j

=ψHKp . (3.35)

The matrix K originating from the discretization of the Laplacian is commonly referred to as stiff-
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ness matrix. Substitution of the ansätze into the boundary integral results in∮
∂Ω

c0ψ̂p̂ dS =∑
i

∑
j
ψ j pi

∮
∂Ω

ic0

Z
φ j φi dS︸ ︷︷ ︸

:=[B]i j

=ψHBp . (3.36)

The matrix B will be referred to as boundary mass matrix. Note that the impedance Z may de-
pend on the spatial coordinate~x and the eigenfrequency ω. The boundary mass matrix may, thus,
be also frequency dependent and it might be convenient to perform the surface integration on lo-
cations with different impedances separately. Also note that for sound-soft boundary conditions
– i.e., Z = 0 – the boundary conditions to the direct and the adjoint equation read p̂ = 0 and ψ̂= 0,
respectively. Therefore, the ansatz functions φi associated to nodes on sound-soft boundaries
are commonly removed from the set of considered ansatz functions to implement this boundary
condition. This approach is known as implementing sound-soft boundary conditions as an essen-
tial boundary condition as it reduces the dimension of the considered function space. However,
in this thesis all boundary conditions will be modeled as impedance boundary conditions via the
boundary mass matrix B and very small values of Z . This ensures that the size of the discretization
matrices will not change while perturbing a sound-soft boundary – a property that is necessary for
the perturbation theory presented in Chap. 6.

The discretization of the heat release operator is special, as it acts non-locally on p̂. Hence,
it involves the use of test and trial functions with different support. While only those trial func-
tions supported at the reference position will enter the discretization, only test functions from the
domain of heat release are accounted for:∫

Ω
ψ̂ ∇p̂

∣∣
~xref

·~nref dV =∑
i

∑
j
ψ j pi

∫
ΩFlame

φ j dV ∇φi
∣∣
~xref

·~nref︸ ︷︷ ︸
:=[F ]i j

=ψHF p . (3.37)

The discretization matrix F, which will be called the flame matrix in the following, is, therefore,
extremely sparse with very low rank. In contrast to all other discretization matrices, it would not
feature a diagonal structure on a structured grid, but would have a few entries along some of its
columns. If there is only one flame, it can be phrased as an outer product:

∑
i

∑
j
ψ j pi

∫
ΩFlame

φ j dV ∇φi
∣∣
~xref

·~nref︸ ︷︷ ︸
:=[F ]i j

=

∑
j
ψ j

∫
ΩFlame

φ j dV︸ ︷︷ ︸
[q] j


∑

i
pi ∇φi

∣∣
~xref

·~nref︸ ︷︷ ︸
:=[g ]i

=ψHq g Tp

(3.38)

or short

F = q g T. (3.39)

Note that the vector q is the load vector commonly appearing in finite element discretizations of
non-homogeneous problems. If there are multiple flames, like in annular combustors, the flame
matrix is a sum of such outer products and the rank of the flame matrix would in general coincide
with the number of flames if the flame dynamics depend on single reference points. Also note
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that discretization of the flame operator as an outer product is not an exclusive feature of the finite
element method. The finite volume method utilized in CERFACS’ AVSP code also facilitates such
a factorization [79]. Indeed, the flame operator itself is based on an outer product in an infinite-
dimensional space. Therefore, it can be expected that the feature is inherited by the discretization
matrix.

The special structure of the flame matrix has two advantages when dealing with the FEM dis-
cretization of the thermoacoustic Helmholtz equation:

(i) The assembly of the flame matrix can be easily implemented by generating q and g and
taking the outer product.

(ii) When solving a system (A+FTF(ω)F)x = y , first the influence of the flame matrix can be
neglected and well-established solvers for the operator A can be utilized. In a second step
the result can be correctly updated exploiting the low-rank nature of F using the Sherman-
Morrison-Woodbury formula 3. Such computations will occur in solvers for nonlinear eigen-
value problems and in algorithms computing perturbative approximations.

Summarizing all results, the discretization of the weak form reads

ψH(K+ωC+ω2M+FTF(ω)F)p = 0. (3.40)

Here, C is a matrix obtained from factorizing ω from all discretized operators featuring a factor
ω. It is commonly referred to as damping matrix. The factorized matrices are boundary mass
matrices or terms iαM originating from extra terms iωαp̂ added to the Helmholtz equation in
order to model viscous damping effects, e.g., [62]. The factor α denotes the induced damping rate.

A trivial solution of the discretized weak form would be to compute (K+ωC+ω2M+FTF(ω)F)p
for some ω and then choose a ψ orthogonal to it. However, the weak form should hold for all
possible ψ. Hence, pairs of ω and p are sought such that

(K+ωC+ω2M+FTF(ω)F)︸ ︷︷ ︸
:=L(ω)

p = 0, (3.41)

which is a finite-dimensional eigenvalue problem nonlinear in its eigenvalue ω. Alternatively,
when p is considered the test vector, the eigenvalue problem

(KH +ωCH +ω2MH +FTF(ω)FH)︸ ︷︷ ︸
=LH(ω)

ψ= 0 (3.42)

is obtained, which is the adjoint eigenvalue problem to (3.41).

The equations (3.41) and (3.42) are the FEM discretizations of the direct and the adjoint ther-
moacoustic Helmholtz equation, respectively. Again it shall be emphasized, that because using
a Bubnov-Galerkin approach this discretization of the adjoint equation is obtained regardless of
whether a continuous or a discrete approach is followed. This is due to the connection of the
weak form. Figure 3.1 schematically summarizes how the various versions of the thermoacoustic
Helmholtz equation are related. The weak form is at the center of these relations and consequently

3
(
A+UΣVH

)−1 =A−1 −A−1U
(
Σ−1 +VH +A−1U

)−1
VA−1
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adjoint direct

weak

〈ψ̂|L (ω)|p̂〉 = 0

strong

L †(ω)ψ̂= 0

strong

L (ω)p̂ = 0

LH(ω)ψ= 0 ψHL(ω)p = 0 L(ω)p = 0

continuous:

discrete:

Figure 3.1: Hierarchy of equations. The strong and the weak form of the thermoacoustic Helmholtz
equation feature identical weak forms. When using Bubnov-Galerkin FEM the same is true for
their discretized versions. A distinction of continuous and discrete adjoint approaches is, thus,
not necessary.

using Bubnov-Galerkin FEM discretization renders the typical distinction of continuous and dis-
crete adjoint obsolete.

3.4 Notes on implementation

Implementation of the finite element method depends on the choice of ansatz functions. First and
second order Lagrangian elements are used in this thesis. This means that linear and quadratic
ansatz functions are utilized. In finite element analyses the ansatz functions are interpolants.
More precisely, for a given set of points X = {X1, . . . , XN } in the domain Ω there is a correspond-
ing set of ansatz functions F= {φ1, . . . ,φN } such that

φi (~X j ) =
{

1 if i = j

0 if i 6= j
(3.43)

The points in X are called the degrees of freedom or nodes of the discretization. Because their
number N is equal to the number of ansatz functions, this number will also be the size of the dis-
cretized problem. For first order elements the nodes will be placed at the vertices of the tetrahedra.
For second order Lagrange elements there will be additional nodes at the centers of the edges of
the tetrahedra.

An ansatz function will be designed such that its support encompasses only the tetrahedra that
are connected to its defining node:

φi (~x) = 0 on Ωl if Xi ∉Ωl . (3.44)

This locality of the ansatz functions greately simplifies the computation of the entries of the mass
matrix, the stiffness matrix, and the boundary mass matrix. This is because the integrands evalu-
ated in (3.34)-(3.36) vanish when considering two shape functions that cannot be associated with
a common tetrahedron. Consequently, these matrices are sparse.

It is convenient to formulate the ansatz functions on each element individually, using local
coordinate systems. In the case of tetrahedra the coordinates are barycentric coordinates. Given a
tetrahedron Ωl = tet(X A , XB , XC , XD ) the barycentric coordinates ξA,l ,ξB ,l ,ξC ,l ,ξD,l define a point
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~x ∈R3 through

~x = ~X AξA,l +~XBξB ,l +~XCξC ,l +~XDξD,l . (3.45)

Though there are four barycentric coordinates, each of which associated to one of the four ver-
tices, only three of them are independent. This is because the coordinates must additionally satisfy
ξA,l +ξB ,l +ξC ,l +ξD,l = 1. Hence, if one barycentric coordinate is 1, then the other three coordi-
nates must be 0 and the coordinates describe one of the four vertices. This means that if only
three independent barycentric coordinates are considered, the three unit vectors (1,0,0),(0,1,0),
and (0,0,1) are mapped to three vertices, and the origin (0,0,0) is mapped to the remaining vertex.
These four points define the unit tetrahedron Ωunit. Barycentric coordinates can, therefore, be in-
terpreted as a coordinate transform from the unit tetrahedron Ωunit to the considered tetrahedron
Ωl . The coordinate transform explicitly reads:

~x =

x
y
z

=

xA −xD xB −xD xC −xD

y A − yD yB − yD yC − yD

zA − zD zB − zD zC − zD


︸ ︷︷ ︸

:= d~x
d~ξl

ξA,l

ξB ,l

ξC ,l


︸ ︷︷ ︸

~ξl

+

xD

yD

zD

 (3.46)

or short:

~x(~ξl ) = d~x

d~ξ
~ξl +XD . (3.47)

The main advantage of the local barycentric coordinates for finite element discretization is
that they allow to easily define the ansatz functions φi . For linear Lagrange elements, the degrees
of freedom lie at the vertices of the tetrahedra. The shape functions of one element can then be
defined as

φi (~x) = ξi ,l (~x) on Ωl if~x ∈Ωl . (3.48)

For quadratic elements, the centers of the 6 edges of a tetrahedron constitute additional degrees
of freedom. Using barycentric coordinates the ansatz functions associated with the vertices are

φi (~x) = (2ξi ,l (~x)−1)ξi ,l (~x) on Ωl if~x ∈Ωl , (3.49)

while for the functions associated with the edges

φi (~x) = 4ξ j ,l (~x)ξk,l (~x) on Ωl if~x ∈Ωl (3.50)

is found.

Note that these definitions are consistent on the surface Γ := Ω+∩Ω− between two adjacent
tetrahedra Ω+ = tet(X A , XB , XC , X+) and Ω− tet(X A , XB , XC , X−). This is because on the surface Γ

the local barycentric coordinates ξ− and ξ+ vanish if evaluated from Ω− and Ω+, respectively.
Evaluation from both sides – i.e., both tetrahedra – will, therefore, result in the same value on a
point~x ∈ Γ. Figure 3.2 illustrates the relations between Cartesian coordinates and the barycentric
coordinates.
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1

1

1

ξA ξB

ξC

Ωunit

x y

z

X A

XB

XC

XD

Ω= tet(X A , XB , XC , XD )

~ξ(~x)

~x(~ξ)

Shape functions φ

DOF linear quadratic

ξi (2ξi −1)ξi

− 4ξiξ j

Figure 3.2: Illustration of barycentric coordinates as a coordinate transform from the unit tetra-
hedron. The circles illustrate the degrees of freedom. Note the different orientation of the actual
tetrahedron and the unit tetrahedron in this example.

Integrating the shape functions in order to obtain the entries of the discretization matrices is an
easy task: the coordinates are transformed using the coordinate transform to barycentric coordi-
nates and integration is performed on the unit tetrahedron. Details can be found in standard text
books on FEM like [73]. It is only the formation of the flame matrix that requires special care. As
already outlined in the previous section the flame operator acts non-locally and the flame matrix
can be better represented in terms of an outer product q g T . While the computation of the load
vector q is a standard topic in finite element analysis, the assembly of the gradient vector is exclu-
sive to thermoacoustics. Its computation requires the identification of the tetrahedron containing
the reference point~xref. This can be tested for using barycentric coordinates. The tetrahedron Ωl

contains the reference point if its representation in the local barycentric coordinate system fea-
tures only coordinate values between 0 and 1. Because the derivative of the ansatz functions is
not continuous from one tetrahedron to another, it is important to design the discretization mesh
such that the reference point is contained in one tetrahedron and does not lie on the boundaries
between two tetrahedra. Reference points that lie on the boundary between two adjacent tetrahe-
dra are only admissible if the reference direction ~nref is orthogonal to the surface normal n of the
surface Γ between the two tetrahedra. In this case evaluation from either of the two sides will re-
sult in identical values. However, once the reference element Ωref is identified, the gradient vector
g can be computed as

[g ]k =


dφk

d~ξref

∣∣∣
~xref

(
d~x

d~ξref

)−1
~nref if Xk ∈Ωref

0 else .
(3.51)
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3.5 Incorporation of experimental data

The best discretization method is meaningless unless it is equipped with realistic modeling data.
For the thermoacoustic Helmholtz equation the local distribution of the speed of sound and the
flame transfer function are needed. Both can be retrieved from experiments. However, they will
only be given as discrete data points. Further processing of the data is, therefore, needed to incor-
porate them into the model.

Speed of sound

For the speed of sound the incorporation is relatively easy. The data must be interpolated on the
entire domain. The simplest interpolation method would be to choose constant speed of sound on
each element, i.e., each considered tetrahedron Ωl . This approach is utilized for FEM discretiza-
tions of the Rijke-tube model, which assumes only two different temperature levels. Although
the coefficient functions would not be continuous anymore, no special jump conditions must be
implemented in the finite element model as the correct jumps will naturally arise from the weak
form.

This becomes evident when generalizing the jump condition (2.8) to three dimensions: let Γ
denote the surface between two neighboring tetrahedra Ω− and Ω+. Furthermore the speed of
sound on these tetrahedra are c− and c+, respectively. Then a discontinuity in the speed of sound,
i.e., c−(Γ) 6= c+(Γ) introduces the following jump condition to the Helmholtz equation∫

Γ+
c2
+∇p̂~n+ dS +

∫
Γ−

c2
−∇p̂~n− dS = 0 (3.52)

where subscripts − and + indicate evaluation of the quantities from Ω− and Ω+, respectively. Now,
considering a local weak form on each tetrahedron Ωk of the tessellation of the domain Ω, the
integration rules for a tessellation and the jump condition yields

∑
k

(∫
Ωk

c2
k∇ψ̂∇p̂ dV +

∮
∂Ωk

ω
ic

Z
ψ̂p̂ dS

)
(3.31)= ∑

k

∫
Ωk

c2
k∇ψ̂∇p̂ dV +∑

k

∮
∂Ωk

ω
ic

Z
ψ̂p̂ dS (3.53)

=
∫
Ω

c2∇ψ̂∇p̂ dV +∑
k

∮
∂Ωk

ω
ic

Z
ψ̂p̂ dS

(3.52)=
∫
Ω

c2∇ψ̂∇p̂ dV +
∮
∂Ω

ω
ic

Z
ψ̂p̂ dS.

The last expression is exactly the global weak form (3.10). Therefore, evaluating the weak form
on the entire domain while ignoring the surface integrals on boundaries between two tetrahedra
naturally enforces the correct jump conditions.

This approach is not suitable for more complicated speeds of sound, as they appear in the
MICCA model. This is because correctly resolving the distribution would require a fine mesh res-
olution, which would be otherwise unnecessary. The speed of sound is, therefore, not considered
constant on a tetrahedron but linearly interpolated using exactly the linear ansatz functions pre-
sented before.
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Flame transfer function

The flame transfer function is different from the speed of sound in that it is a function of the com-
plex frequency ω. Moreover, in this thesis the flame transfer function is not a function of space.
If it would be a function of space, e.g., like in [78], the space dependence could be treated similar
to the speed of sound by interpolation. The perturbation theory developed in Chap. 6 will require
the flame transfer function to be analytic in the complex frequency ω. However, if the function is
modeled from measured data, it will be given as a discrete set of data points. These data points are
typically measured for real ω. Hence, a method is needed that evaluates the data in the complex
plane. The difficulties of obtaining flame transfer functions from experimental data have been
addressed in [80]. The work compared three strategies of expanding the measured data into the
complex plane: (i) extrusion, i.e., only accounting for the real part of the complex frequency, (ii)
approximation by a second-order Taylor polynomial, and (iii) fitting to an analytic function using
Laplace transforms. Although the first method is straightforward, the authors emphasized that
the obtained flame transfer function is not analytic in ω, and, therefore, lack physical meaning.
They conclude that, wherever possible, method (iii) should be applied because the Taylor polyno-
mial obtained from method (ii) will be the Taylor polynomial to the analytic function generated
with method (iii). These ideas were further improved in [81] where it was shown that the analytic
functions model the flame dynamics better than a tuned n–τ-model.

Nonetheless, originally the data is given for discrete points only. Therefore, the continuation
of the measured flame transfer function is not unique. Moreover, the measurement of the data is
subject to errors. While these errors might be rather small on the real axis they may lead to signif-
icantly different values of the fit transfer function when evaluating complex-valued frequencies.
Better approximation might be computed when the fit model is based on data taken at complex-
frequencies. This, however, would require experiments in which the flame is excited with signals
that increase or decay exponentially. It is not only that this would be a challenge in terms of find-
ing appropriate measurement equipment but also the interpretation of such experiments would
be difficult as the usage of flame transfer functions implies linearity of the flame response. An
assumption that will be definitely violated when reaching large excitation amplitudes. Neverthe-
less, these questions do not concern the ideas of this thesis. Note, however, that extrapolation of
analytic functions is an active field of mathematical research. See, e.g., the recent article on stable
extrapolation of analytic functions [82] and references therein.

In this thesis the analytic function is generated by finding a linear state space model, that fea-
tures a transfer function TF similar to the measured flame transfer function data.

The state space model reads,

d

dt
s =S1s +S2uref (3.54)

q =S3s+S4uref (3.55)

where the reference velocity uref and the fluctuation of the heat release rate constitute the input
and output of the system, respectively. s is the state vector of the system. Typically S1 is called the
system matrix, S2 the input matrix, S3 the output matrix, and S4 the feedthrough matrix.

Using a Fourier transform to the complex frequency space, the output q becomes an explicit
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Figure 3.3: Comparison between the state space model approximation of the flame transfer func-
tion evaluated at purely real values of ω (orange line) and the data measured from experiments [62]
(blue dots).

function of the input uref in terms of a transfer function TF

q̂ = TF(ω)uref := (
S3 (iωI −S1)−1 S2 +S4

)
︸ ︷︷ ︸

FTF

ûref. (3.56)

This state space representation of the transfer function allows for a variety algebraic manipu-
lations. Most importantly, exact derivatives of the transfer function can be computed as

∂k

∂ωk
TF(ω) = (−i)k k !S3 (iωI −S1)−(k+1)S2 for k ≥ 1. (3.57)

This circumstance will be crucial for an accurate implementation of the perturbation theory de-
rived later.

Finding a state space model such that TF(ωk ) = FTF(ωk ) at the measured frequencies ωk ba-
sically means finding matrices Si such that the difference between the measured and predicted
transfer function is as small as possible. This is achieved by deploying the vector fitting algorithm
presented in [83, 84]. Besides the measured flame transfer function data, the assumed dimen-
sion of the state space model is an important input quantity to the algorithm. For this thesis this
dimension has been chosen to be six, which is the lowest dimension to yield reasonable results.
Figure 3.3 shows a comparison of the measured data and the six-dimensional state-space-model
predictions. The FTF data is taken from [62].

Although exemplified here with flame transfer function data, transfer functions from state
space models might be used to model any other frequency-dependent quantity. For example, a
state space model could be designed to incorporate frequency-dependent impedances.
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Chapter 4

Nonlinear eigenvalue problems I: basics

The last chapters have shown how discretizing the thermoacoustic Helmholtz equation results in
an eigenvalue problem being nonlinear with respect to its eigenvalue. There is a comprehensive
theory on such eigenvalue problems and an in-depth discussion is clearly beyond the scope of this
thesis. However, four chapters deal with the theory as far as it is relevant for this work. This is the
first of these chapters. It introduces the basic theory of nonlinear eigenvalue problems for the case
of finite-dimensional operators. In particular, it presents the iterative algorithm introduced in [30]
to solve the discretized thermoacoustic Helmholtz equation, which can currently be considered
as the standard solver for this problem used in the thermoacoustic research community.

4.1 Basic definitions

Nomenclature

A finite-dimensional nonlinear eigenvalue problem can be defined by an N -dimensional operator
family L(z). This is a mapping from a scalar to a matrix:

C→CN×N (4.1)

z 7→L (4.2)

All numbers ω for which L(z) is not invertible are called eigenvalues. By definition, each eigen-
value corresponds with a non-empty nullspace ofL(ω). The vectors p ∈ null(L(ω)) and the nullspace
itself are referred to as the to ω corresponding eigenvectors and eigenspace of L.

The spectrum of L is the set of all its eigenvalues denoted by:

spec(L) := {ω ∈C|null(L(ω) 6= ;} . (4.3)

Finally, computing the spectrum ofLor subsets of it and finding the corresponding eigenspaces,
i.e., solving

L(ω)p = 0 with p 6= 0 (4.4)
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is referred to as a nonlinear eigenvalue problem.

Note that the nomenclature on such problems is not consistent in the literature. This thesis
follows a traditional approach where the standard eigenvalue problems induced byL= (X−ωI)p =
0 and the generalized eigenvalue problems L= (X−ωY)p = 0 are referred to as linear. Moreover,
those of the form L = ∑K

k=0Akω
k are called polynomial. In particular, for K = 2 the problems

are named quadratic, while K = 1 reduces to the linear cases. As already stated, any L = L(z)
is referred to as nonlinear. However, some authors name these eigenvalue problems linear and
reserve the term nonlinear eigenvalue problems exclusively for the case of nonlinear operators,
i.e., operators acting nonlinearly on the eigenvector, see, e.g., [85]. Presumably, this is because the
modern theory on the topic allows for treating the case of linear operators in a single mathematical
framework, where the classic eigenvalue problems are just special cases. Except for the limit-cycle
computations in Chap. 7, this thesis is not dealing with nonlinear operators and, therefore, uses
the traditional naming conventions.

The adjoint eigenvalue problem

Given an inner product 〈·|·〉, to each operator familyL an adjoint operator familyL† can be defined
by the relation: 〈

y
∣∣Lx

〉= 〈
L† y

∣∣∣x
〉
∀x , y . (4.5)

An operator family is called self-adjoint if L† = L. The probably simplest self-adjoint operator is
the unit matrix I.

The definition of the adjoint operator family implies that for the product of two operator fami-
lies A, B 〈

y
∣∣ABx

〉= 〈
A† y

∣∣∣Bx
〉
=

〈
B†A† y

∣∣∣x
〉

(4.6)

holds. Hence:

(AB)† =B†A†. (4.7)

By definition, for any z ∉ spec(L) there is an inverse operator L−1(z) such that L(z)L−1(z) = I.

From (4.7) it can be concluded that
(
L(z)L−1(z)

)† = I† is the same equation as
(
L−1(z)

)†
L†(z) = I.

This proves that (
L†

)−1 = (
L−1)†

(4.8)

if L is invertible. In particular, this implies that L† cannot possess an inverse if L does not possess
one. Hence,

spec(L†) = spec(L). (4.9)

Note that the direct and the adjoint eigenspace corresponding to the same eigenvalue ω do not
necessarily need to be equal.
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Also note that in the theory of linear eigenvalue problems, eigenvalues are considered as be-
longing to the operator X instead of the operator family X−ωI. Following this viewpoint, the
eigenvalue problem is given by Xp = ωp , and when adjoining the operator the eigenvalue is not
pulled to the left side of the inner product. Therefore, some authors state that the spectrum of the
adjoined is the complex conjugate of the direct spectrum (e.g., [40]). However, this is not consis-
tent with the use of operator families as done in this thesis.

4.2 Solution structure

Unsurprisingly, the solution structure of nonlinear eigenvalue problems is more involved as com-
pared to the case of linear eigenvalue problems. Yet, some concepts from linear eigenvalue prob-
lems directly generalize to the nonlinear case. For instance, an eigenvalue must satisfy

char(ω) := det(L(ω)) = 0, (4.10)

i.e., it is a root of the characteristic function of the considered operator family. Yet, in the nonlin-
ear case the characteristic function is not necessarily polynomial in ω with degree N . For instance,
in case of polynomial eigenvalue problems with degree K the characteristic function would be a
polynomial of degree K N . For the case of the discretized Helmholtz equation, the function is not
polynomial as it features exponential delay terms. These considerations show that, unlike for clas-
sic eigenvalue problems, in the case of nonlinear eigenvalue problems the total number of eigen-
values can be greater than the considered matrix dimensions. In particular, this allows for different
eigenvalues to share linearly dependent eigenvectors. The characteristic function enables count-
ing the algebraic multiplicity of an eigenvalue as the multiplicity of ω as a root of char(ω). As for
linear eigenvalue problems the geometric multiplicity is defined as the dimension of the corre-
sponding eigenspace, i.e., the number of linearly independent eigenvectors corresponding to ω.

The standard classification for eigenvalues applies. They are called degenerate if the algebraic
multiplicity is greater than 1. In general, three important cases are commonly distinguished:

• simple eigenvalues
Eigenvalues whose algebraic multiplicity is 1. In these cases the geometric multiplicity must
also be 1.

• semi-simple, degenerate eigenvalues
Eigenvalues whose algebraic and geometric multiplicity is equal but greater 1. The term
semi-simple also covers simple eigenvalues, however, these are non-degenerate.

• defective eigenvalues
Eigenvalues whose algebraic multiplicity is greater than their geometric multiplicity.

Depending on the considered operator family the spectrum might feature special symmetries.
For instance, the operator families discussed in this thesis are obtained by Fourier transformation
of boundary value problems and subsequent discretization. Therefore, their spectrum is sym-
metric with respect to the imaginary axis, i.e., it features a (̌·)-symmetry1: if ω ∈ spec(L), then
ω̌ ∈ spec(L).

1Note that (̌·) denotes reflection at the imaginary axis not conjugation!
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For simple eigenvalues the direct and the adjoint eigenvector can always be normalized such
that: 〈

p†
∣∣∣L′(ω)p

〉
= 1. (4.11)

Here, L′ is a shorthand for ∂
∂zL.

It can be shown that this normalization generalizes to all semi-simple eigenvalues, in the sense
that it is always possible to biorthonormalize the bases for the direct and the adjoint eigenspace
with respect to L′:

〈
p†

i

∣∣∣L′(ω)p j

〉
=

{
1 if i = j

0 otherwise
. (4.12)

The biorthonormality relations can be even further generalized for the case of defective eigen-
values. This will involve generalized eigenvectors, see, e.g., Theorem 2.5 and further references in
[86]. However, this is beyond the scope of this thesis.

Theoretically, eigenvalues could be computed by first finding the roots of the characteristic
functions and subsequently computing the corresponding eigenspaces. Nonetheless, numeri-
cal issues prohibit this approach. For large dimensions N the determinant of an operator and,
hence, the characteristic function of an operator family cannot be reliably computed. This is due
to round-off errors. Round-off errors might also impede the correct computation of nullspaces.
Therefore, numerical solvers not resting on the characteristic function must be considered.

Although the mathematical notions were introduced for finite-dimensional operator families
L(z), most of the definitions readily apply to the case of infinite-dimensional operator families
L(z). This is the case for the definition of spectra, adjoint operators, and geometric multiplicities.
A notable difference is the definition of algebraic multiplicity as a characteristic function could not
generally be defined for this class of operators. Algebraic multiplicity is then counted using more
abstracts concepts than counting the multiplicity of roots, see [85].

However, the mathematical concepts introduced in this section directly relate to physical con-
cepts and phenomena: in science and engineering the relation obtained from finding the roots of
the characteristic function (4.10) is commonly called dispersion relation. Semi-simple degenerate
modes are often induced by symmetry and might manifest as a pairs of clockwise and counter-
clockwise spinning modes in annular combustion chambers. This will be discussed in Part II.
Finally, defective modes are strongly linked to intrinsic thermoacoustic modes as will be shown in
Chap. 10.

The next section introduces the solution algorithm originally devised by Nicoud et al. in [30]
for solving the thermoacoustic Helmholtz equation.

4.3 Nicoud’s fixed-point algorithm

Introduction to nonlinear eigenvalue problem solvers

Although, there are efficient algorithms to solve the standard eigenvalue problem (X−ωI)p = 0
and the generalized eigenvalue problem (X−ωY)p = 0, solving an eigenvalue problem which is
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nonlinear in the eigenvalue ω is intrinsically harder. A plethora of algorithms has been suggested
to solve such problems, see the reviews [87, 86] and references therein. All methods have in com-
mon that at some point the problem is reduced to an eigenvalue problem linear in the eigenvalue.

• Eigenvalue problems that are polynomial in ω with order K can be rephrased to a linear
eigenvalue problem of dimension K N .

• The problem can also be linearized in ω by Taylor expansion. Iteration of this procedure may
converge to an eigenvalue. This method can be generalized by truncating the expansion at
higher order to obtain a polynomial eigenvalue problem.

• Contour integration methods reduce the eigenvalue problem to a linear eigenvalue problem
possessing only the eigenvalues of L inside a given contour in the complex plane.

Hence, the corner stone of any eigenvalue problem solver is the availability of an algorithm
solving the linear eigenvalue problem forX−ωY. Throughout this thesis it is assumed that there is
a routine Ω,P← EIG(X,Y) capable of computing a diagonal matrix Ω of the eigenvalues and a cor-
responding matrix of eigenvectors P, such that XP−YPΩ= 0. In the case of dense matrices this
will be some global solver, e.g., a QR iteration that finds all eigenpairs. For sparse matrices Krylov
subspace solvers are commonly deployed. For instance, both Matlab and SciPy provide wrappers
to the implicitly restarted Arnoldi algorithm as it is implemented in the ARPACK library through
their eigs commands. These iterative solvers are capable of computing a few eigenvalues in the
vicinity of a complex number z{0} together with the corresponding eigenvectors. They are initial-
ized with a starting vector v {0} which is used to generate a Krylov subspace of the considered matrix
family. In this work it is assumed that such a method is available as ω, p ← EIGS(X,Y, z{0}, v {0}) such
that ω, p is the eigenpair closest to z{0} found in the Krylov space generated from v {0}. Note that if
Arnoldi’s algorithm is utilized, it is beneficial if Y is a positive-definite matrix [88, 89].

Despite this well established knowledge of nonlinear eigenvalue problem solvers, the ther-
moacoustic community widely uses the algorithm proposed in [30]. This fixed-point method has
proven to sucesssfully solve the thermoacoustic Helmholtz equation and is probably the most fre-
quently deployed solution algorithm in the community (e.g., used in [90, 24, 49, 78, 62]). Yet, except
for the short discussion in [91] there is no reference in the literature discussing the details and lim-
itations of this method. Later chapters will fill this gap and propose other methods that are better
suited to solve nonlinear eigenvalue problems as they arise from the thermoacoustic Helmholtz
equation. The current chapter summarizes the state of the art in the thermoacoustic community.

The algorithm

In their seminal 2007 paper Nicoud et al. proposed a fixed-point iteration to solve the nonlinear
eigenvalue problem arising from a discretization of the thermoacoustic Helmholtz equation. The
algorithm is specifically designed to solve

L(ω)p = (
K+ωC+ω2M+Q(ω)

)
p = 0. (4.13)

The algorithm exploits that the problem is quadratic in ω except for the heat release term and pos-
sibly frequency-dependent impedance boundary conditions both included in Q(ω). The key idea
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Algorithm 4.1: Nicoud’s algorithm

1: function ITERATE(ω{1}, p {1}, tolω,maxiter,K,C,M,Q)
2: ω{0} ←∞
3: n ← 1

4: p̃ {1} ←
[

p {1}

ω{1}p {1}

]
5: Y←

[
I 0
0 M

]
6: while |ωn −ω{n−1}| > tolω and n < maxiter do

7: X←
[

0 −I
K+Q(ω{n}) C

]
8: ω{n+1}, p̃ {n+1} ← EIGS(−X,Y,ω{n}, p̃ {n})
9: n ← n +1

10: end while

11: p {n} ← p̃ {n}[1 : N +1] . Because the EVP is expanded: p̃ =
[

p
ωp

]
12: return ω{n}, p {n},n
13: end function

is, therefore, to iteratively improve an initial guess ω{1} by rephrasing the problem as a linear eigen-
value problem of doubled size and then perform a Picard iteration in the nonlinear terms. The
iteration terminates if the difference between the results of two successive iterations is less than
a prescribed tolerance or is aborted if a predefined maximum number of iterations is reached. As
an initial guess usually the acoustic eigenfrequencies of the system are considered, i.e., the eigen-
frequencies if Q = 0. The pseudocode for the subsequent iteration is given in Alg. 4.1. Note that
an additional guess p {1} for the eigenvector is also passed to the algorithm, in order to support the
convergence of the Krylov-subspace method. Also note that if using Bubnov-Galerkin FEM dis-
cretizations, the matrix M is positive-definite2 and, hence, so is Y. Thus, the eigenvalue problem(
X(ω{n})−ω{n+1}Y

)
p̃ {n+1} = 0 appearing at each iteration can be easily solved with the routines

available in ARPACK.

Nicoud’s procedure defines a mapping ω{n+1} = f (ω{n}) for which fixed-points ω are sought.
This fixed-point map is implicitly defined by the eigenvalue problem given by the operator family

LNic( f ;ω) =X(ω)+ f Y. (4.14)

It explicitly reads:

LNic( f ;ω)p̃ =
([

0 −I
K+Q(ω) C

]
+ f

[
I 0

0 M

])[
p̃I

p̃II

]
= 0. (4.15)

At a fixed-point ω= f (ω) the first of the two matrix-equations in (4.15) states pII =ωp̃I. Thus, the
second equation then reduces to L(ω)pI = 0, which proves that the fixed-points of f are eigenval-

ues of L and vice versa. Moreover, p̃ =
[

p
ωp

]
relates the eigenvectors of the two problems.

2This is also true for the finite volume discretization used in CERFACS’ AVSP code where M amounts to I [79, 92].
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Several issues arise when using this algorithm in an attempt to find all relevant eigenfrequen-
cies:

• (i) It is unclear whether all solutions can be found by fixed-point iterations at all, i.e., whether
all fixed-points are attracting and

• (ii) even if they are attracting, how many iterations are necessary to find a fixed-point at
reasonable accuracy.

• (iii) Moreover, there might be eigenfrequencies which do not originate from acoustic solu-
tions [93]. If these so-called intrinsic thermoacoustic modes (ITA) appear, initializing the al-
gorithm with just the acoustic frequencies cannot result in finding all modes in the relevant
frequency range.

The items (i) and (ii) concern the convergence properties of the fixed-point iteration. A topic
that is usually tackled by Banach’s fixed-point theorem. It states that a fixed-point on a domain
where the mapping f is a contraction can be found by fixed-point iteration. Nicoud et al. wrote:

”In any case, obtaining general results about the contracting properties of the operator
f from physical arguments is out of reach of the current understanding of the thermoa-
coustic instabilities.”

The perturbation theory presented in the second chapter on nonlinear eigenvalue problems will
facilitate exactly this study of the contraction properties of f (Chap. 6). Therefore, the discussion
of the contraction properties of Nicoud’s algorithm is postponed to the third chapter on the topic
(Chap. 8). Item (iii) concerns adequate initialization methods. The usage of integration-based
algorithms for this purpose will also be discussed in Chap. 8.

A simplified variant of Nicoud’s algorithm

Because solving a quadratic eigenvalue problem is computationally more expensive than solving
a linear one, a slightly modified version of Nicoud’s fixed-point iteration might be considered.
This iteration simply performs a Picard iteration in the ω2-term. The iteration scheme is given in
Alg 4.2.

Note that the eigenvalue here is actually the square of ω. Standard techniques for the solution
of generalized eigenvalue problems can, therefore, be readily applied. The square root of the re-
sulting eigenvalue is then an approximation to the sought eigenfrequency. As in the original algo-
rithm the generalized eigenvalue problem solved at every iteration uses a positive-definite matrix,
which is simply M in the current case. Again fixed-points of the iteration are valid solution to the
considered nonlinear eigenvalue problem.

Relaxation

A common technique to improve the convergence properties of fixed-point iteration is relaxation.
This means that the update of the iterated value is additionally governed by a relaxation parameter
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Algorithm 4.2: Direct Picard iteration

1: function ITERATE(ω{1}, p {1}, tolω,maxiter,K,C,M,Q)
2: ω0 ←∞
3: n ← 1
4: while |ω{n} −ω{n−1}| > tolω and n < maxiter do
5: X←K+ω{n}C+Q(ω{n})
6: ω{n+1}, p {n+1} ← EIGS(−X,M,ω{n}, p {n})
7: ω{n+1} ←

p
ω{n+1}

8: n ← n +1
9: end while

10: return ω{n}, p {n},n
11: end function

ξ 6= 0 in the following way:

ω{n+1} = ξ f (ω{n})+ω{n}(1−ξ)︸ ︷︷ ︸
f̃ (ω{n};ξ)

. (4.16)

This relaxation defines a new family of fixed-point mappings f̃ (ω{n};ξ) parametrized in ξ (note that
f̃ (ω{n},1) = f (ω{n})). Improving the convergence properties, thus, amounts to choosing ξ such that
f̃ features better convergence properties than f .

Banach’s fixed-point theorem requires that | f̃ ′| < 1 for the iteration to converge. Moreover,
it can be shown that super-linear convergence is achieved if f̃ ′ = 0. A quick calculation shows
f̃ ′ = 1+ ( f ′−1)ξ and, hence, choosing

ξ= 1

1− f ′(ω)
(4.17)

would be an optimal choice. Nevertheless, as the fixed-point ω is not known a priori, the equation
is useless for actual computations. A remedy is to approximate the derivative from the results of
two consecutive iterations

f ′(ω) ≈ f ′{n} := f (ω{n})− f (ω{n−1})

ω{n} −ω{n−1}
(4.18)

and then use the relaxation parameter

ξ{n} = 1

1− f ′{n}
(4.19)

at the nth iteration. Note that division by zero is not an issue in (4.18), because if ω{n} −ω{n−1} =
0, a fixed-point has been found. This adaptive relaxation method is currently implemented in
CERFACS’ Helmholtz solver AVSP [94, Appendix C].

Instead of estimating the derivative from finite differences, it can also be evaluated at ω{n} us-
ing perturbation theory, as it will be presented in Chap. 6. This approach should allow for faster
and more precise computations of f ′. However, if perturbation theory is leveraged to compute a
derivative, it should be fed into a Newton method directly, guaranteeing super-linear convergence.
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Adaptive relaxation strategies are, therefore, not further considered in this work but Newton-type
iteration will be discussed in Chap. 8.

4.4 Application to a Rijke-tube model

This section applies the presented theory to the Rijke-tube model. Here, it serves basically as a
validation case. The chosen parameters are L = 1, xflm = xref = 0.5, c1 = 1, c2 = 2, n = 1, and τ= 2.

The network discretization of the Rijke tube can be considered as an exact solution of the prob-
lem and, therefore, constitutes an ideal benchmark for validation purposes. To find eigenvalues,
the dispersion relation of the network model has been solved using the numerical root-finding
routine FSOLVE from the SciPy Library version 1.0.0 with default settings. Initializing the solver
with starting values taken from an axis-parallel grid of 1001×201 points distributed equidistantly
between 0−1i and 10−1i allowed for finding four thermoacoustic modes in the same region. Fig-
ure 4.1 shows the results of this brute-force search for eigenvalues. The depicted region of the
complex plane is identical to the regions from which the initial guesses are sampled. The colors
indicate to which eigenvalue the initial guess will converge. White indicates solutions which con-
verged to eigenvalues outside of the shown domain. Black highlights the position of starting values
for which the method does not converge while using no more than 500 calls to the dispersion re-
lation.

Yet, when considering the passive flame case (n = 0) only two modes can be found. All com-
puted eigenvalues are listed in Tab. 4.1 together with eigenvalues computed using a finite element
discretization of the problem on a uniform mesh featuring 32 degrees of freedom and applying 15
iterations of the Nicoud and the Picard algorithm, respectively. The two fixed-point iterations are
not capable of finding the active modes #R3 and #R4. One problem is that there are only two pas-
sive eigenvalues to start with. These are obviously not enough to find four modes. However, even
when initializing the algorithm with the eigenvalues found from the network model, the modes
#R3 and #R4 cannot be found. This raises the question whether these two modes do really exist
and the fixed-point iterations are just not appropriate means to find them, or whether they arise
from numerical issues of the network model. Indeed, the theory presented later in this thesis will
show that the two modes do also exist for the FEM model. Note that the eigenvalue of the active
mode #R1 is close to the eigenvalue of the passive mode #R1. The same is true for the active and
the passive mode #R2. Apparently, the passive modes evolve to these two active modes which jus-
tifies labeling the modes with the same descriptor for both the active and the passive flame case.
For the network model, which is considered an exact solution of the problem, the eigenfrequency
of #R2 remains even unchanged. Observing closed-by pairs of active and passive modes is in-line
with the motivation for using the passive eigenfrequencies to initialize Nicoud’s algorithm. How-
ever, there seems to be no passive counterpart for the modes #R3 and #R4, which is a first hint that
these two modes are intrinsic.

Figure 4.2 shows the mode shapes found with the network and the finite element model for
both the active and the passive flame case. Solving the FEM model with either Nicoud’s algo-
rithm or the Picard iteration yield identical mode shapes (dotted and dashed lines, respectively).
However, they show minor deviations from the mode shapes computed using the network model.
These deviations can be attributed to a discretization error. Moreover, the results support the hy-
pothesis that the passive modes #R1 and #R2 evolved into the active modes #R1 and #R2, because
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Figure 4.1: Convergence map for a) the passive and b) the active flame when solving the dispersion
relation numerically using FSOLVE from SciPy. The complex plane has been sampled from a grid of
1001×201 starting values that are uniformly distributed in the shown region. The colors indicate
to which eigenfrequency the initial guess converges: orange – #R1, cyan – #R2, green – #R3, purple
– #R4, white – eigenvalues outside of the shown rectangle, black – no convergence. The black
crosses highlight the position of the eigenvalues

the mode shapes are very similar.

Note that the phase of mode #R2 occasionally jumps by an amount of 2π when comparing
the various cases (active and passive) and solution methods (fsolve, Nicoud, Picard). This is due
to the periodicity of the phase angle. The phases and, thus, the mode shapes can, therefore, be
considered to be almost identical. The similarity can be attributed to the pressure anti-node of
mode #R2 at x = 0.5. This is exactly the reference point for the flame model. Hence, this mode
cannot excite the flame and consequently the passive and active mode shapes are identical and
feature identical eigenfrequencies with zero growth rate. This behavior is correctly resolved by the
network model. On the contrary, the FEM model predicts imag(ω) = −0.0261 for the active case,
which means this mode is slowly growing. Definitely this small deviation is due to to the spatial
discretization of the problem: in the FEM model a single point cannot be exactly resolved, hence,
the mode shape does not feature an exact pressure anti-node at the reference point. This in turn
implies a small interaction with the flame.

However, it can be summarized that the modes #R1 and #R2 are computed sufficiently accurate
by the finite element approach. How to find the modes #R3 and #R4 remains an open question. It
will be answered in Chap. 8.
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Table 4.1: Eigenvalues ω of the Rijke-tube model computed by a) solving the dispersion relation
obtained from the network discretization using FSOLVE from SciPy, b) applying Nicoud’s algorithm
to a FEM discretization of the model, and c) applying the Picard iteration to the model.

# n Net–fsolve FEM–Nicoud FEM–Picard

passive

#R1 0 2.4619+0.0000i 2.4230+0.0000i 2.4230+0.0000i
#R2 0 6.2832+0.0000i 6.2899+0.0000i 6.2899+0.0000i

active

#R1 1 2.3960−0.2623i 2.3687−0.2657i 2.3687−0.2657i
#R2 1 6.2832+0.0000i 6.4226−0.0261i 6.4226−0.0261i
#R3 1 4.6921+0.3036i – –
#R4 1 7.8742+0.3036i – –

4.5 Application to the Kronig-Penney model

In this section the theory is applied to the Kronig-Penney model. The model is considered for
K = 12 sources. All interaction indices are set to nk = n = 0.1 and the delay times to τk = τ= 0.34.
The model is, thus, identical to the model presented in [55]. Exact eigenvalues for the model are
computed by solving the dispersion relation of the network discretization (2.21) with fsolve and
compared to solutions obtained from an FEM discretization of the problem. The FEM discretiza-
tion featured 84 equidistantly distributed nodes, i.e., 7 nodes per unit cell. This relatively low
resolution is chosen on purpose in order to demonstrate effects of the mesh on the solution.

Here, the eigenvalues in an axis-parallel region between −i and 24+ i are discussed. In the
passive case (n = 0) the eigenvalues are algebraically known to be ω = 0,1, . . . ,24. For ω = 0 the
associated eigenspace p̂(ϕ) ∈ span({1}) while for the other eigenvalues the geometric multiplicity
is two and the eigenspaces read p̂(ϕ) ∈ span({cos(ωϕ),sin(ωϕ)}).

Figure 4.3 shows the eigenvalue found for the active case computed from the network model
and from the FEM discretization utilizing the two fixed point strategies with a tolerance of tolω =
0.01. The fixed-point iterations converged within 3 iterations to this accuracy. For low real(ω)
the eigenvalues found from the network model using the fixed-point iterations correspond well
with the solutions from the network model. Yet, there is an increasing deviation the higher real(ω)
is. This is because the higher real(ω) is, the shorter are the wavelengths of the considered mode
shapes and accurately resolving them then requires finer mesh resolutions. However, these mesh
effects do not concern the current matter.

What matters is that again more eigenvalues are found from the network model in the active
case as compared to the passive case. The main reason for this is a loss of symmetry. The passive
flame features a rotational symmetry which is not discrete. This is the reason why all eigenspaces
corresponding to a non-zero eigenvalue ω are degenerate: given an eigenfunction cos(ωϕ) it can
be converted into sin(ωϕ) by an appropriate rotation. The two functions are linearly indepen-
dent. However, they must be associated with the same eigenvalue as any rotation is not changing
the model equations. On the contrary, in the active case the problem features a discrete rotational
symmetry of degree 12. Therefore, if a solution is rotated by increments of 2π

12 , the result will still
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Figure 4.2: Comparison of mode shapes from the network model (solid) and the finite element
discretization solved with the original (dots) and modified (dashed) version of Nicoud’s algorithm.
Both versions of the algorithm are unable to find the modes #R3 and #R4.

be a solution. Yet, only if m mod 6 �= 0 the resulting mode shape will be linearly independent from
the original mode shape and the mode will be still degenerate. For solutions whose azimuthal
mode order m satisfies m mod 6 = 0, the result will be linearly dependent with respect to the orig-
inal mode and it can, therefore, be expected to be non-degenerate. Consequently, the originally
twofold degenerate modes split if m mod 6 �= 0 in the active flame case. ω = 0 is special as the
mode is already simple in the passive case. However, because the sources are modeled propor-
tional to ωn exp(−iωτ) they vanish if ω = 0. Consequently, the eigenpair ω = 0 and p̂ ∈ span({1})
will remain unchanged.

As 5 modes split, there will be at least 24+5 = 29 modes in the active case (additional intrinsic
modes may occur). The fixed-point iteration initialized with 24 passive solutions, therefore, can-
not find all these modes. As illustrated with this example, symmetry breaking which results in split
modes is a particular challenge for fixed-point algorithms.

4.6 Application to MICCA

This section applies the theory to the MICCA model. The first axial (labeled #M0) and the first
two azimuthal modes (#M1 and #M2) are considered. The passive eigenvalue problem is polyno-
mial and can, therefore, be directly solved. For the active flame the two fixed-point algorithms
are utilized with the tolerance set to tolω = 0.01× 2πs−1. Table 4.2 lists the results of this study.
Note that for the active mode #M1 relaxation was necessary as it otherwise converged to the active
mode #M2. Both algorithms needed the same number of iterations to converge within the speci-
fied tolerance. To further assess the quality of the algorithms the norm of the residual vector was
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Figure 4.3: Comparison of eigenvalues of the Kronig-Penney model obtained from the network
formulation and FEM computations. The FEM model featured 84 equidistantly distributed nodes.
The network solutions can be considered as exact. Note how the FEM solutions increasingly de-
viate from the network predictions. This is attributed to the relatively low mesh resolution. The
fixed-point algorithm also fails to find the ω = 0 mode. Also note that for imag(ω) = 6n, where
n ∈N ,there are two distinct eigenvalues. This is a consequence of loss of symmetry.

computed as

Res. = ‖L(ω)p‖2

‖p‖2
. (4.20)

According to these calculations, the Picard iteration yields better estimates than Nicoud’s itera-
tion. Nevertheless, when compared to the residual of the passive solution both iteration strategies
have significantly higher residual norms. This is clearly because for the passive case the eigenvalue
problem is quadratic and can, thus, be solved to machine precision by reformulation as a (larger)
linear eigenvalue problem. On the other hand, the iterations used to solve the active case were ter-
minated if the change in ω between to consecutive iterations steps was less than 0.01×2πs−1. This,

Table 4.2: Passive mode frequencies of the MICCA model and active mode frequencies found using
the fixed-point iterations. The columns labeled Itr. state the number of iteration necessary to
reach the stopping criterion tol=0.01×2πs−1 with the respective algorithms. The columns entitled
Res. report the norm of the residual of the found solutions computed as ‖L(ω)p‖2/‖p‖2.

passive active
Nicoud Picard

mode ω s
2π Res. ω s

2π ξ Itr. Res. Itr. Res.

#M0 332.0 6.88E−12 154.5+67.9i 1.00 24 137 24 3.10E−3
#M1 471.8 6.35E−12 511.4−79.4i 0.75 16 95.7 16 2.04E−3
#M2 731.4 5.65E−12 713.1−2.3i 1.00 6 24.5 6 1.39E−3
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Figure 4.4: Passive modes computed for the MICCA model. From left to right the figure shows the
modes #M0, #M1, and #M2. The top row depicts the magnitude, the bottom row the phase of the
modes. Note that the phase jump at the outlet is attributed to the undefined phase at a sound-soft
boundary (p̂ = 0).

of course, does not guarantee finding machine-precise solutions to the problem. That the norm of
the residual is higher for Nicoud’s iteration than for the Picard iteration, might be attributed to the
fact that after reformulating the problem as a linear eigenvalue problem the eigenvector explicitly
depends on ω (See (4.15) and comments below). Hence, the error in ω contributes twice to the

residual: it not only appears in L(ω) but also in p taken from p̃ =
[

pI

ωpII

]
=

[
p
ωp

]
. Note that the

error in ω will effect p regardless of whether pI or pII is used to deduce p . This is because pI and
pII are coupled.

Figure 4.4 shows the passive mode shapes. The mode shapes for the active case are shown in
Fig. 4.5. The passive mode frequency of 471.8Hz agrees with the value of 472Hz stated in [62].
Because the active flame models differ in the flame dynamics model, direct comparison of the
solutions is not possible. The unusually high magnitude of the imaginary part of the frequency of
modes #M0 may be attributed to the continuation of the measured flame transfer function data
into the complex plane using the fit to a state space model. More raw data or a better continuation
method might improve the predictions. For the objectives of this thesis, however, this aspect is not
relevant.

74



CHAPTER 4. NONLINEAR EIGENVALUE PROBLEMS I: BASICS

0.00 0.25 0.50 0.75 1.00

−π −π/2 0 +π/2 +π

ab
s(
p̂)

p
h
as
e(
p̂)

Figure 4.5: Active modes computed for the MICCA model. From left to right the figure shows
the modes #M0, #M1, and #M2. The top row depicts the magnitude, the bottom row the phase
of the modes. The imagery shown here is obtained from the Picard iteration. Results from the
Nicoud iteration would look identical. As for the passive case the phase discontinuity at the outlet
is attributed to the undefined phase at a sound-soft boundary. The azimuthal jump occurring in
the phase of #M1 is an artifact from the plotting software which fails to accurately color a jump
from −π to +π.
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Chapter 5

Bloch-wave theory

Annular combustion chambers feature periodic structure giving them a discrete rotational sym-
metry, i.e., they consist of B identical sectors. Stationary gas turbines typically feature about 24
of these sectors. This symmetry gives rise to the idea of considering only one such sector for the
stability analysis of the full combustors. Bloch wave theory facilitates such a single-sector compu-
tation.

Bloch-wave theory has been first developed in the field of quantum mechanics by Felix Bloch
[95] to model the behavior of electrons in periodic crystal lattices. The problem is modeled by solv-
ing the Schrödinger equation with periodic potentials. Mathematically this equation is equivalent
to the thermoacoustic Helmholtz equation. The main mathematical difference between the two
is that the potentials in Schrödinger equations are usually considered to be real-valued and inde-
pendent of the eigenvalue (the energy) which renders the equation a self-adjoint linear eigenvalue
problem. On the contrary, the flame operator – which is the thermoacoustic counterpart of the po-
tential – is complex valued and depends nonlinearly on the eigenvalue. However, Bloch’s concept
of decomposing the solution into Bloch waves to enable unit-cell computations still applies.

Because the only condition needed to apply Bloch’s theorem is discrete rotational symmetry, it
can be readily used in scientific fields other than quantum mechanics as long as the considered
problems feature an appropriate periodicity. It has been used to model a variety of wave phenom-
ena in periodic domains, for instance, electromagnetic or acoustic-wave propagation in periodic
waveguides [96, 97] and vibration analysis in structural mechanics [98, 99]. In analogy to its ori-
gin in modeling electron propagation in crystalline structures, the notions photonic and phononic
crystal have been coined, see, e.g., [100] and references therein. From this viewpoint annular com-
bustion chambers are thermoacoustic crystals and it is natural to deploy Bloch’s theorem to them
as well. The idea of utilizing Bloch-wave theory to ease stability assessment of thermoacoustic
modes in annular combustors was first proposed by Moeck in his thesis [55]. He briefly demon-
strated its applicability with a network discretization of the Kronig-Penney model. Indeed, reduc-
ing the effort for such computations by means of symmetry was already considered by Walz et al.
and allowed to reduce the computational domain to one quarter of a full annulus [101]. The ap-
proach has been successfully applied to compute thermoacoustic modes in the Ansaldo AE94.3A
combustion chamber [78]. However, Bloch-wave theory enables unit-cell computations which in
the case of the AE94.3A and many other industrial chambers comprise a single burner-flame-pair.
Nevertheless, the approach is capable of modeling effects induced by the mutual flame interaction
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Figure 5.1: Example illustration of the imaginary part of a Bloch wave with Bloch wavenumber
b = 1 and B = 12 cells. Note how the sine function is periodically modulated. Illustration taken
from [104].

as reported by Dawson and Worth [102].

Parts of this chapter have been previously published with Jonas Moeck in [103] and [104]. The
latter was written together with Giovanni Campa and contains application of the theory for ther-
moacoustic stability assessment of an industrial gas turbine.

5.1 Bloch’s Theorem

Bloch’s theorem can be stated as follows:

Bloch’s Theorem

The eigenmodes p̂ of the eigenvalue problem L(ω)p̂ describing a problem that is in-
variant under rotations by an angle of 2π/B can be formulated using basis functions p̂b̃ of
the form

p̂b̃(ϕ,r, z) = e ibϕψb(ϕ,r, z) (5.1)

where ψb is a 2π/B-periodic function:

ψb(ϕ+2π/B ,r, z) =ψb(ϕ,r, z). (5.2)

The functions p̂b̃ are called Bloch waves. Here B is a positive integer called the resolution.
In this context it will correspond to the degree of cyclic symmetry of the combustion cham-
ber. Moreover, the integer b is called the Bloch wavenumber.

Figure 5.1 shows the imaginary part of a one-dimensional example of a Bloch wave. The shown
domain features B=12 cells and a Bloch wavenumber of b=1.

Although, any integer b can serve as a Bloch wavenumber, not all of them are independent.
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This is because

p̂ �b+B (ϕ) = e i(b+B)ϕψb+B (ϕ) = e ibϕ e iBϕψb+B︸ ︷︷ ︸
ψb (ϕ)

(ϕ) = e ibϕψb(ϕ) = p̂b̃(ϕ) (5.3)

holds for a given resolution B . Hence, a Bloch wave of wavenumber b can be rephrased as one
of Bloch wavenumber b +B and vice versa. Two Bloch wavenumbers b and β are independent if
(b−β) mod B 6= 0. Thus, it suffices to consider only Bloch wavenumbers b ranging from 0 to B −1.

The special structure of Bloch waves admits

p̂b̃(ϕ+2π/B) = e ib2π/B e ibϕψb(ϕ) = e ib2π/B p̂b̃(ϕ). (5.4)

This property is called Bloch periodicity. It is the key ingredient enabling unit cell computations,
because applying it multiple times allows to determine the values of the Bloch wave everywhere
knowing only values on an interval [a; a +2π/B [. Moreover, it clarifies what boundary conditions
to impose on the newly created boundaries when cutting a unit cell from the entire domain. As
these boundaries are separated by an angle of ∆ϕ = 2π/B , the solution on these two boundaries
is linked through the Bloch periodicity. Without loss of generality the coordinate system can be
chosen such that ϕ= 0 is located in the middle of the unit cell. The boundaries are then located at
ϕ=−π/B and ϕ=+π/B , respectively. The boundary condition to be imposed then reads:

p̂b̃

(
−π

B
,r, z

)
= e ib 2π

B p̂b̃

(π
B

,r, z
)

. (5.5)

Note that Bloch periodic boundary conditions enforce a phase shift and are, therefore, conceptu-
ally related to phase-lagged boundary conditions developed in [105] to efficiently compute tran-
sonic flows in periodic turbomachinery components in time-domain. See, e.g., [106] for a recent
application of this approach in a large eddy simulation.

However, the Bloch periodicity depends on the Bloch wavenumber and imposing boundary
conditions with different Bloch wavenumbers will yield different modes. Instead of solving the
full problem L(ω)p̂ = 0, B surrogate problems LBloch(ω;b)p̂b̃ = 0 where b = 0, . . . ,B −1, formulated
on a unit cell, are to be solved. Unifying the spectra of the surrogate systems yields the spectrum
of the original operator:

spec(L(z)) =
B−1⋃
b=0

spec(LBloch(z;b)). (5.6)

The corresponding eigenvectors are obtained by extrapolating the eigenvectors from the surrogate
systems using the Bloch periodicity.

The Bloch wavenumber is also related to the azimuthal mode order: the azimuthal mode order
of a mode p̂ is defined as the smallest integer m for which the periodicity p̂(ϕ+ 2π/m) in the
azimuthal coordinate ϕ holds. Because

p̂b̃(ϕ)(ϕ+2π/|b|) = e ib(ϕ+2π/|b|)ψb(ϕ+2π/|b|) = e ibϕ+isgn(b)2πψb(ϕ) = p̂b̃(ϕ) (5.7)

a mode of azimuthal order m can be represented by a Bloch wave featuring a Bloch wavenum-
ber of modulus m. Due to (5.3) two Bloch wavenumbers b and β for which b mod B = β mod B
correspond to identical surrogate systems: LBloch(z;b) =LBloch(z,β). Consequently, the surrogate
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systemLBloch(z;b) contains only modes whose azimuthal mode orders satisfy min(b mod B ,B−(b
mod B)) = min(m mod B ,B − (m mod B)).

5.2 Proof of Bloch’s theorem

Bloch’s original proof rests on arguments from group theory. In modern books on quantum me-
chanics the standard proof for the applicability of Bloch’s theorem focuses on linear eigenvalue
problems (see, e.g., [107]) as the Schrödinger equation is usually linear in its eigenvalue. Fortu-
nately, as already demonstrated by Bloch’s proof, linearity in the eigenvalue is not a necessary
condition for the applicability of Bloch’s theorem. Here, another proof is presented avoiding the
more involved group theory. The proof is based on basic ideas from linear algebra and Fourier
transforms as they are also used for the case of linear eigenvalue problems. However, the pre-
sented proof is generalized to the nonlinear case. As a byproduct it proves many useful properties
of Bloch waves.

The proof starts with showing that Bloch waves fb̃ featuring independent Bloch wavenumbers
are linearly independent. Repeatedly applying the Bloch periodicity (5.4), i.e., rotations by an an-
gle of 2π/B yields

fb̃(ϕ+k2π/B) = (
e i2π/B )bk

fb̃(ϕ). (5.8)

Because of the 2π-periodicity of the Bloch wave, applying the Bloch periodicity B times yields
fb̃(ϕ+B2π/B) = fb(ϕ+2π) = fb̃(ϕ). Hence, for the following considerations only increments of k ∈
{0,1, . . . ,B −1} are of interest. Furthermore, without loss of generality it is assumed that fb(ϕ0) = 1.
Now writing 0 as linear combination of Bloch waves of different Bloch wavenumbers results in

0 =∑
b

λb fb̃(ϕ) |evaluate at some ϕ=ϕ0

and ϕ=ϕ0 +k2π/B
(5.9)

⇒ 0 =∑
b

λb fb̃(ϕ0) =∑
b

λb fb̃(ϕ0 +k2π/B) ∀k ∈ {0,1, . . . ,B −1} |Bloch periodicity

(5.10)

⇒ 0 =∑
b

λn
(
e i2π/B )bk

fb̃(ϕ0) ∀k ∈ {0,1, . . . ,B −1} |by assumption fb̃(ϕ0) = 1

(5.11)

⇒ 0 =∑
b

λn
(
e i2π/B )bk ∀k ∈ {0,1, . . . ,B −1} (5.12)

It is convenient to rephrase the last B equations using matrix-vector notation:

0 =Wλ (5.13)

where λ is the vector of coefficients λn =: [λ]n and the matrixW has the entries1 [W]b,k = (
e i2π/B

)bk
.

This matrix is the same matrix that appears in B-point discrete Fourier transform and is, thus,

1For convenience, the indexing of the Fourier matrix entries is started with zero.
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known as Fourier matrix. It is invertible ([W−1]b,k = 1/B
(
e−i2π/B

)bk
). Hence, λ= 0, which means

that there is no linear combination except for the trivial one which combines Bloch waves of inde-
pendent Bloch wavenumbers to zero at ϕ0. Consequently, Bloch waves with independent Bloch
wavenumbers are linearly independent.

Moreover it can be concluded that any 2π-periodic function f (ϕ) can be uniquely decomposed
into B linearly independent Bloch waves, such that

f (ϕ) =
B−1∑
b=0

fb̃(ϕ) (5.14)

holds. Bloch periodicity enables rewriting the expansion (5.14) as

f (ϕ+k2π/B) =
B−1∑
b=0

(
e i2π/B )bk

fb̃(ϕ) (5.15)

for each k ∈ {0,1, . . . ,B −1}. Again the system matrix is found to be the Fourier matrix W. Applying
the inverse W−1 allows for computing the Bloch waves fb̃(ϕ) from the function f (ϕ) according to
the formula

fb̃(ϕ) = 1

B

B−1∑
k=0

(
e−i2π/B )bk

f (ϕ+k2π/B). (5.16)

Loosely speaking, this result allows to interpret decomposition of the solution into Bloch waves as
performing a discrete Fourier transform over a sequence of unit cells.

Note that this concept is related to the expansion of an arbitrary function as a sum of an even
and an odd function. There is a symmetry operator R which connects a set of points from the
function domain. In the case of Bloch waves this is an incremental rotation operator R = RB :
ϕ 7→ϕ+2π/B and in the case of even and odd functions its a reflection operator R=R± : ϕ 7→ −ϕ.
The values of these points are connected through a restriction law, which is f (RBϕ) = e ib2π/B f (ϕ)
for the Bloch wave case and f (R±ϕ) = ± f (ϕ) in the case of even and odd functions. In both
cases a unique expansion exists. For convenience the notation R f (ϕ) = f (Rϕ) is introduced,
i.e., applying the symmetry operator to a function denotes performing the symmetry action on its
argument.

The restriction laws may be interpreted as eigenequations of their respective operators: while
even and odd functions are the eigenfunctions of the reflection operator R± corresponding to
the eigenvalues 1 and −1, respectively, Bloch waves fb̃ are the eigenfunctions of the incremental
rotation operator RB corresponding to the eigenvalues e ib2π/B :

Rn fb̃(ϕ) = fb(ϕ+2π/B) (5.17)

=e ib(ϕ+2π/B)ψb(ϕ+2π/B) (5.18)

=e ib2π/B e i bϕψb(ϕ) (5.19)

=e ib2π/B fb̃(ϕ). (5.20)

This again proves the linear independence of Bloch waves with independent Bloch wavenumbers,
as the eigenfunctions of an operator corresponding to different eigenvalues are linearly indepen-
dent. It was the connection to symmetry operators and their eigenfunctions that Bloch used in his
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group-theoretical proof of the theorem.

A differential operator family L(z) features a discrete rotational symmetry of degree B if it com-
mutes with the 2π/B rotation operation RB , i.e.,

RBL(z) =L(z)RB . (5.21)

Note that z denotes the parameter of L for which eigenvalues are sought and not a spatial coordi-
nate.

Applying an operator from the family L(z) to a Bloch wave fb̃ results in a Bloch wave of the
same Bloch wavenumber. This directly follows from the definition of Bloch waves and the discrete
rotational symmetry of L(z):

RBL(z) fb̃(ϕ) =L(z)RB fb̃(ϕ) =L(z) fb̃(ϕ+2π/B) =L(z)e ib2π/B fb̃(ϕ) = e ib2π/BL(z) fb̃(ϕ). (5.22)

The eigenvalues ω and corresponding eigenfunctions f of an operator are determined by the
equation

L(ω) f = 0. (5.23)

The hitherto presented theory showed that any function can be uniquely decomposed in a
Bloch-wave series. Therefore, the above equation can be rephrased as:

L(ω)
B−1∑
b=0

fb̃ =0 (5.24)

B−1∑
b=0

L(ω) fb̃ =0. (5.25)

Because L(ω) fb̃ is again a Bloch wave of wavenumber b and because the different Bloch waves are
linearly independent it follows

L(ω) fb̃ = 0. (5.26)

Thus, the Bloch-wave components of an eigenfunction are eigenfunctions to the same eigenvalue
themselves. This means that the eigenspaces of an operator featuring a discrete rotational sym-
metry are spanned by Bloch waves and concludes the proof.

5.3 Orthogonality of Bloch waves

Another useful feature of Bloch waves is the pairwise orthogonality of Bloch waves with indepen-
dent Bloch wavenumbers: let b,β ∈ {0,1, . . . ,B −1} be Bloch wavenumbers and fb̃ = e ibϕψb(ϕ) and
fβ̃ = e iβϕψβ(ϕ) the corresponding Bloch waves. Then

〈
fβ̃| fb̃

〉
=

∫2π

0
fβ̃(ϕ) fb̃(ϕ)dϕ |Bloch periodicity (5.27)
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=
B−1∑
k=0

e−iβ 2π
B k e ib 2π

B k
∫ 2π

B

0
fβ̃(ϕ) fb̃(ϕ)dϕ︸ ︷︷ ︸

const:=C

(5.28)

=C
B−1∑
k=0

e i(b−β) 2π
B k (5.29)

=
{

C B if b =β

0 else
(5.30)

The last equality originates from the fact that if b = β, then the exponential amounts to 1 and,
thus, summation of the B terms yields B . If on the contrary b 6= β, e i(b−β) 2π

B k are vertices of a reg-
ular polygon in the complex plane centered around the origin. Hence, the summation amounts
to zero. This result proves that discrete rotational symmetry induces orthogonality between cer-
tain modes. Note that not all modes are mutually orthogonal, because one Bloch wavenumber is
shared by several modes. Thus, symmetry is of course not fixing non-normal behavior. However,
the interplay of different modes emerging in transient growth is limited to modes featuring the
same Bloch wavenumber. In other words, non-normal effects can be completely studied from the
surrogate systems obtained when utilizing Bloch periodicity. An important non-normal feature in
the context of thermoacoustic modes are defective eigenvalues. As shown in Chap. 10 they can be
linked to intrinsic thermoacoustic modes.

5.4 Symmetry and degeneracy

Bloch-wave theory helps understanding symmetry-induced mode degeneracy. This knowledge
can be used to further reduce the computational effort. Two types of symmetry generically in-
duce degeneracy in systems with discrete rotational symmetry: reflection symmetry and time-
reversal symmetry. More precisely, having at least one of these two additional symmetries is a
sufficient condition for mode degeneracy in systems already featuring a discrete rotational sym-
metry. In quantum mechanics it is common to call the two types of symmetry P-symmetry and
T -symmetry, respectively (see, e.g., [108]). This is because in quantum mechanics reflection-
symmetry is commonly called parity-symmetry and the reflection operator R± is denoted by P .
The time-reversal operator is defined as T : t 7→ −t . Because, (̂·)exp(−iωt ) = (̂·)exp(iωt ), this oper-
ation correspond to complex conjugation in frequency domain.

P-symmetry

If the considered system L features a reflection symmetry, it commutes with the reflection opera-
tor R±:

R±L=LR±. (5.31)

Thus, given an eigenpair ω and p̂ the reflection of the mode shape R±p̂ will also be an eigenfunc-
tion corresponding to the same eigenvalue. This is because then

L(ω)R±p̂ =R±L(ω)p̂ =R±0 = 0 (5.32)
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holds. Now assuming that the system features a discrete rotational symmetry, in virtue of Bloch’s
theorem the eigenmode can be phrased as a Bloch wave p̂b̃(ϕ). Without loss of generality the
coordinate system can be chosen such that R± f (ϕ) = f (−ϕ). The reflection of a Bloch wave of
Bloch wavenumber b will, thus, be a Bloch wave of Bloch wavenumber −b

R± fb̃(ϕ) = fb̃(−ϕ) = e ib[−ϕ]ψb(−ϕ) = e i[−b]ϕψb(−ϕ) = e i[−b]ϕψ−b(ϕ) = f−̃b(ϕ). (5.33)

Note that by definition ψb(ϕ) is 2π/B periodic, therefore, ψb(−ϕ) must also feature this period.
This justifies relabeling it ψ−b(ϕ) after identifying the multiplier e i[−b]ϕ in order to show that the
term is a Bloch wave of wavenumber −b.

Due to Eq. (5.32), p̂b̃ and p̂−̃b correspond to the same eigenvalue. The eigenvalue will, thus, be
semi-simple degenerate if the two Bloch waves are linearly independent. This will be the case if
the Bloch wavenumbers b and −b are independent, i.e., if

(b − (−b)) mod B = 2b mod B 6= 0. (5.34)

In applications featuring not only a discrete rotational symmetry but also a reflection-symmetry,
it is, thus, convenient to specify the range of independent Bloch wavenumbers from −(B − 1)/2
to (B −1)/2 or −B/2+1 to B/2 depending on whether B is odd or even. Only solutions for non-
negative Bloch wavenumbers are then explicitly computed while the Bloch waves of negative Bloch
wavenumbers are found by reflection.

T -symmetry

The eigenvalues can also be degenerate if the system features a time-reversal symmetry, i.e., the
equations are invariant under a substitution t 7→ −t in the time domain. Given the time reversal
property of the Fourier transform and assuming that all coefficients of the operator are real, this
corresponds to complex conjugation in the frequency domain. Thus, in the frequency domain
such an operator features time-reversal symmetry if

L(z) =L(z). (5.35)

Note that it is not necessary that the operator features this symmetry for all z but for its eigenvalues
ω to induce degeneracy. A relevant class of such operators in this thesis are Helmholtz operators
with no flame feedback and sound-soft or sound-hard boundary conditions. For physical reasons,
their modes neither grow nor decay with time: acoustic energy cannot enter or leave the system at
the domain boundary nor is generated or dissipated by some feedback mechanism. Their eigen-
values are, therefore, real2. Thus, ω=ω and time-reversal symmetry is given because the operator
∇· c∇(·)−ω2(·) = 0 is invariant with respect to complex conjugation.

The proof that the complex conjugate p̂ of a solution p̂ will correspond to the same eigenvalue
given the time-reversal symmetry is equivalent to Eq. (5.32):

L(ω)p̂ =L(ω)p̂ = 0. (5.36)

As for the reflection symmetry, time-reversal symmetry – i.e., complex conjugation – trans-

2Could also be proven mathematically as these operators are self-adjoint.
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forms a Bloch wave of Bloch wavenumber b into a Bloch wave of Bloch wavenumber −b:

fb̃ = e ibϕψb(ϕ) = e ibϕ ψb(ϕ)︸ ︷︷ ︸
:=ψ−b (ϕ)

= e−ibϕψ−b(ϕ) = f−̃b(ϕ). (5.37)

Thus, degeneracy is completely equivalent to the reflection-symmetric case: it suffices to compute
solutions for Bloch wavenumbers ranging from 0 to B/2 or (B − 1)/2 and obtain the degenerate
modes by complex conjugation for Bloch wavenumbers satisfying 2b mod B 6= 0.

5.5 Numerical implementation

Bloch periodicity can be implemented in a finite element framework as an essential boundary
condition [109]. Note that implementation of Bloch-wave theory is possible for any discretization
method on the matrix level if a periodic discretization mesh is used. This is because then the dis-
cretization matrices can be arranged such that they possess a block-circulant structure. As a gen-
eralization of circulant matrices – which always possess Fourier modes as eigenvectors [56] – the
eigenvectors and eigenvalues of block-circulant matrices can be computed from a set of matrices
featuring the size of a single block. The proof is the finite-dimensional equivalent to Bloch’s theo-
rem and can be found in [110]. A recent discussion of this approach with applications to periodic
fluid systems is given by Schmid et al. in [111]. This approach would work for matrix-free imple-
mentations of the Helmholtz solver like CERFACS’ AVSP code. However, using the implementation
as an essential boundary condition is consistent with the derivation of the finite element method
from the weak formulation.

As any essential boundary condition, Bloch periodicity reduces the number of degrees of free-
dom. Instead of using independent ansatz functions φk on the entire domain, only ansatz func-
tions on a single unit cell are specified, which are extended to the other cells by means of Bloch
periodicity. It is common to refer to the single unit cell which is actually considered for the com-
putations as the reference cell, while the other cells are called image cells. It is the reduction of
degrees of freedom that yields the savings in the computational effort. The approach is a gen-
eralization of the special case of periodicity (b = 0) and relates to the discretization of the refer-
ence cell using Neumann boundary conditions in contrast to Bloch-periodic boundary conditions
[109]. Figure 5.2 shows the ansatz function to implement Neumann, periodic, and Bloch-periodic
boundary conditions on a reference cell. In comparison to the Neumann case, corresponding
ansatz functions at the beginning (black) and the end (yellow) of the unit cell are merged into one
ansatz function (black), compliant with the specified type of periodicity:

φ̃k =
{
φk +e ib∆ϕφmap−1(k) if φk ∈ map(Fimg)

φk else
∀k ∈ Fcll (5.38)

Here, φk is an ansatz function that is associated with a degree of freedom at the image boundary
of the cell. The set of these functions is denoted by Fimg. The function ’map’ maps the index k
to the index of the function it is joined with. The set of ansatz functions on the unit cell associ-
ated to a degree of freedom which is not associated with the image boundary is indicated by Fcll.
Because φk is joined with φmap(k), the total number of degrees of freedom for the Bloch-periodic
discretization is less than the number of degrees of freedom of the Neumann discretization of the
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Figure 5.2: Illustration of ansatz functions for Neumann, periodic, and Bloch-periodic boundary
conditions. Linear ansatz functions right, quadratic left. Illustration partly adapted from [109].

unit cell. However, assuming that the local integrals for the assembly of the discretization matrix
L for the case of Neumann boundary conditions are already computed, the local integrals for the
discretization matrix in case of the Bloch-periodic boundary condition can be directly deduced.
On each element the integral value changes as follows

〈
φk

∣∣Lφl
〉 7→


e ib∆ϕ

〈
φk

∣∣Lφmap(l )
〉

if φk ∉ Fimg and φl ∈ Fimg

e−ib∆ϕ
〈
φmap(k)

∣∣Lφl
〉

if φk ∈ Fimg and φl ∉ Fimg〈
φmap(k)

∣∣Lφmap(l )
〉

if φk ,φl ∈ Fimg〈
φk

∣∣Lφl
〉

else

(5.39)

This allows for implementing Bloch periodicity straightforwardly into an existing FEM code, by
manipulating a matrix assembled for Neumann BCs. Algorithm 5.1 illustrates how to process a
matrix L representing any operator discretized on a unit cell with Neumann boundary conditions
to obtain its Bloch periodic counterpart, i.e., the algorithm facilitates the following mapping

C(Ncll+Nimg)×(Ncll+Nimg) →CNcll×cll

L 7→ e ib∆ϕLBloch(ω;b) =A++A+e−ib∆ϕA−. (5.40)

For the presented approach to work, it is necessary to create a mesh which features a matching
set of points on the reference and the image boundary of the unit cell. In addition to the discrete
rotational symmetry, the MICCA model is reflection symmetric. As explained in Sec. 2.3 to sat-

88



CHAPTER 5. BLOCH-WAVE THEORY

Algorithm 5.1: Function to obtain FEM discretization matrices featuring Bloch-periodic boundary
conditions from discretization matrices with Neumann boundary conditions

1: function BLOCHIFY(L)
2: set A+,A−, and A to 0 ∈CNcllNimg×NcllNimg

3: for k ← 1, . . . , Ncll +Nimg do
4: for l ← 1, . . . , Ncll +Nimg do
5: if φk ∈ Fimg and φl ∉ Fimg then
6: [A+]k,l ← [L]k,l

7: else if φk ∈ Fimg and φl ∉ Fimg then
8: [A−]k,l ← [L]k,l

9: else if k ∈ Fimg and k ∈ Fimg then
10: [A]map(k),map(l ) ← [A]map(k),map(l ) + [L]k,l

11: else
12: [A]k,l ← [A]k,l + [L]k,l

13: end if
14: end for
15: end for
16: remove all rows and columns corresponding to the image boundary from A+,A−, and A
17: return A+,A−, A
18: end function

isfy the matching condition and obtain a perfectly symmetric model discretization of the MICCA
combustor, only half of a unit cell was discretized and by reflections and rotations a unit cell and
finally the full combustor mesh was obtained.

5.6 Application to the Kronig-Penney model

In this section the Bloch-wave theory is applied to the Kronig-Penney model. Both the network
and the finite element discretization of the model are considered. Section 2.2 introduced local
ansatz functions p̂k (ϕ) = A2k cos(ωϕk )+ A2k+1 sin(ωϕk ) to obtain a network discretization of the
problem. Because the ansatz functions form a set of fundamental solutions they can still be used
in unit cell computations. Yet, imposing the Bloch-periodicity changes the conditions found for
the continuity in the pressure Eq. (2.18) and the jump in the derivative Eq. (2.20). The former yields

p̂k+1(0)− p̂k

(
2π

K

)
= 0 | Bloch periodicity (5.41)

⇒e ib2π/K p̂k (0)− p̂k

(
2π

K

)
= 0 |Ansatz (5.42)

⇒e ib2π/K A2k − A2k cos

(
ω

2π

K

)
− A2k+1 sin

(
ω

2π

K

)
= 0 (5.43)

while for the latter

d

dϕ
p̂k+1(0)− d

dϕ
p̂k

(
2π

K

)
=−iωQk p̂k+1(0) | Bloch periodicity (5.44)

⇒e ib2π/K d

dϕ
p̂k (0)− d

dϕ
p̂k

(
2π

K

)
=−iωQk e ib2π/K p̂k (0) |Ansatz (5.45)
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Figure 5.3: Eigenfrequencies found for the Kronig-Penney model using Bloch-wave theory. Results
for both the network and the FEM discretization are shown. Also both iteration schemes are de-
ployed. For comparison, solutions obtained from the full model are shown. They are identical to
the results obtained from Bloch-wave theory.

⇒e ib2π/K ωA2k+1 +ωA2k sin

(
ω

2π

K

)
−ωA2k+1 cos

(
ω

2π

K

)
+ iωQk e ib2π/K A2k = 0 (5.46)

is found. Note that as for the network formulation there are as many continuity (Eq. (5.43)) and
jump conditions (Eq. (5.46)) as there are local ansatz functions p̂k (ϕ). Nonetheless, each pair of
continuity and jump condition contains the coefficients A2k and A2k+1, i.e., it is associated with
one local ansatz function only and, hence, one unit cell. Bloch periodicity has diagonalized the
block-circulant network discretization matrix with 2×2-blocks on the main diagonal satisfying:

[
e ib2π/K −cos

(
ω2π

K

) −sin
(
ω2π

K

)

sin
(
ω2π

K

)+ iQk e ib2π/K e ib2π/K −cos
(
ω2π

K

)
]

︸ ︷︷ ︸
LBloch(ω;b)

[
A2k

A2k+1

]

︸ ︷︷ ︸
pb̃

= 0. (5.47)

Without loss of generality, k can be set to 0. Solving the eigenvalue problem (5.47) yields the de-
sired eigenfrequencies ω and coefficients for A0 and A1. If needed, the coefficients for the ansatz
functions associated to the other unit cells can be computed by means of Bloch periodicity as

[
A2k

A2k+1

]
= e ibk2π/K

[
A0

A1

]
. (5.48)

Figure 5.3 compares the eigenfrequencies computed using a full and a unit-cell model. Re-
sults are shown for both the network and the FEM discretization of the problem. The model pa-
rameters are the same as in Sec. 4.5. While there is perfect agreement for the eigenfrequencies
obtained from the unit-cell and the full computation when using the network approach, the com-
puted spectra of the finite element model deviate in a few eigenfrequencies. This is a mesh effect.
The eigenfrequencies for the fixed-point algorithms were initialized with integer values 0,1, . . . ,24
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Table 5.1: Passive mode frequencies of the MICCA model and active mode frequencies found from
a unit-cell computation using the fixed-point iterations. The columns Nicoud and Picard state the
number of iteration necessary to reach the stopping criterion tol=0.01×2πs−1 with the Nicoud and
the Picard iteration, respectively.

passive active Nicoud Picard
mode b ω s

2π Res ω s
2π ξ Itr. Res. ξ Itr. Res.

#M0 0 332.0 5.21E−12 154.5+67.9i 0.75 15 138 1.00 24 3.22E−3
#M1 1 471.8 4.70E−12 511.4−79.4i 0.75 18 94.8 0.75 18 2.25E−3
#M2 2 731.4 4.74E−12 713.1−2.3i 1.00 6 24.6 1.00 6 1.39E−3

and it was assumed that the azimuthal mode order coincides with that number. Consequently,
the Bloch wavenumber b was set to these initial values during the computations. However, due
to the purposefully poor mesh resolution, the azimuthal mode order does not coincide with the
integer closest to real(ω) at high frequencies. Nonetheless, proper initialization would show that
the eigenvalues of the full model are eigenvalues of the unit-cell model and vice versa. This can be
achieved with contour integration methods as will be demonstrated in Chap. 8. Note that as for
the full-domain computation the fixed-point iterations converged within three iteration steps.

5.7 Application to MICCA

This section discusses the application of the Bloch-wave theory to the MICCA model. Table 5.1 lists
the solutions found with the Bloch-wave approach. The eigenvalues are exactly the same as found
with the full chamber computation in Sec. 4.6. However, the fixed-point iterations show a slightly
different behavior. Mode #M0 does converge to ω = 0 when applying Nicoud’s iteration without
relaxation. Therefore, the relaxation parameter was set to ξ = 0.75. The mode then converges
after 16 iterations. For mode #M1 it takes 18 not 16 iterations to converge using either of the two
methods. In all other cases, the number of iterations are identical to those of the full-annulus
model. Also the computed residuals feature magnitudes comparable to those from Sec. 4.6.

The passive mode shapes are depicted in Fig. 5.4. Interestingly, the absolute value of the mode
shapes look nearly identical. This is because of the Bloch-wave structure of the modes: the injec-
tors only allow for a weak acoustic coupling between the plenum and the combustion chamber.
The modes shown here are plenum dominant and the speed of sound in the plenum is constant.
Therefore, the azimuthal structure of the modes in the plenum is p̂(ϕ) =C1 cos(mϕ)+C2 sin(mϕ),
where m denotes the azimuthal mode order and C1 and C2 are free parameters to be chosen. The
modes take Bloch-wave structure if C2 = iC1 then p̂(ϕ) =C1 cos(mϕ)+iC1 sin(mϕ) = e imϕ = p̂m̃(ϕ).
Alternatively, choosing C2 =−iC1 yields p̂−̃m(ϕ). Either way, the absolute value of the mode would
be constant while the phase would vary like mϕ. This is exactly the structure of the modes shown
in Fig. 5.4. The mode shapes belong to the same eigenspaces as those shown in Fig. 4.4 as can be
concluded from the residual norm. It is just that the eigenspace for the modes #M1 and #M2 is
two-dimensional due to symmetry, and, therefore, two mode shapes from these eigenspaces are
not necessarily identical.

Figure 5.5 shows the mode shapes for the active case. In the active case the absolute value of
the mode shapes in the plenum is still very similar. Yet, in the combustion chamber the shapes
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Figure 5.4: Mode shapes for the MICCA model with passive flame computed using Bloch’s theo-
rem. The figure shows from left to right the modes #M0, #M1, and #M2. The top row shows the
absolute values of the modes while the phase of the mode shapes is shown in the bottom row. The
similarity of the absolute value of the mode shapes is a consequence of the Bloch-wave structure.
However, the mode shapes #M1 and #M2 belong to the same two-dimensional eigenspace as those
shown in Fig. 4.4.

are notably different. This is due to the active flame dynamics which interacts with the pressure
fluctuation amplitude in the combustion chamber.

Although the particular reason for the different convergence behavior of mode #M0 is unclear,
computing the three modes with the Bloch-wave approach is faster. Figure 5.6 illustrates the re-
duction in matrix size obtained when utilizing Bloch-wave theory to compute thermoacoustic
modes of the MICCA model. The size of the involved discretization matrices is decreased by a
factor of B 2 = 162 = 256. This will yield substantial savings in the computational effort needed
to obtain solutions. However, these savings do not necessarily scale with a factor of B 2. For in-
stance, if the discretization matrices are sparse, the effort to perform a matrix vector computation
involving an N ×N -matrix is of order O(N ) and not O(N 2). The memory space required to store
a matrix scales identically. For discretization methods leading to sparse matrices the performance
will, therefore, increase by a factor of B and not B 2. Moreover, the performance gain might de-
pend on other factors like the communication overhead in parallel implementations or details of
the utilized hardware.

Indeed, substantially different performance increases were measured for the implementation
of Nicoud’s algorithm and the Picard iteration as can be seen from the results reported in Tab. 5.2.
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Figure 5.5: Mode shapes for the MICCA model with active flame computed using Bloch’s theorem.
The figure shows from left to right the modes #M0, #M1, and #M2. The top row shows the absolute
values of the modes while the phase of the mode shapes is shown in the bottom row.

The larger performance gain in the case of Nicoud’s algorithm is attributed to a non-sparse imple-

Table 5.2: Performance comparison

full Bloch factor

Nicoud 4627.55s 10.81s 428.08
Picard 82.68s 6.43s 12.86

mentation of the reshaping steps necessary to convert a quadratic into a linear eigenvalue prob-
lem. However, these results are in line with the considerations on how the sparsity may affect the
computational time. Nicoud’s algorithm accelerated by a factor of about 428 which is of a compa-
rable magnitude as B 2 = 256, while the fully sparse implementation of the Picard algorithm sped
up by a factor of about 13 as compared to an expected acceleration of B = 16. Note that these
results are only a rough estimate as the theory was implemented using Python. Therefore, not all
components of the software are compiled. An accurate comparison would require an implemen-
tation in a fully compiled language like C or Fortran.
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L(ω) LBloch(ω; b)

Figure 5.6: Illustration of the set-up and savings in matrix size for unit-cell computations with the
MICCA model. The degree of rotational symmetry is B = 16. Imposing Bloch-periodic boundary
conditions on the azimuthal sides (cyan) of a unit cell allows for reducing the size of the matrix
by a factor of B 2 when converting the full-annulus discretization L to the unit-cell discretization
LBloch. The specific performance gain depends on the sparsity of the discretization matrix and the
implementation of the theory on a computer. In any case, however, the unit cell computation will
be clearly more efficient.

5.8 Conclusions

The examples in this chapter have shown, that the unit cell computations yield the same results as
full-chamber computations of Sec. 4.6. However, the computational effort to perform the calcula-
tions is substantially lower when following the unit-cell approach. Therefore, Bloch-wave theory
is to be preferred over a full-annulus computation. Note that the unit cell computation also re-
duces the memory space required to store the computations as only the mode shape on a unit cell
together with the associated Bloch wavenumber needs to be stored.

The underlying Bloch-wave theory also facilitates the explanation of symmetry-induced de-
generacies. Of course, Bloch-wave theory cannot be utilized if the combustion chamber is not
featuring a perfect discrete rotational symmetry. This issue may be tackled with the perturbation
theory presented in the next chapter.
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Chapter 6

Nonlinear eigenvalue problems II:
perturbation theory

Bloch-wave theory has proven as a powerful tool to reduce the computational effort of thermoa-
coustic stability assessment. However, it is only applicable for configurations featuring a discrete
rotational symmetry and already the slightest asymmetry impedes its application. Such asymme-
tries may be introduced to the combustor on purpose, e.g., acoustic dampers that are distributed
along the circumference of the annulus in a non-uniform fashion [112, 113] or a circumferential
variation of the fuel in order to trigger different flame dynamics in the burners and an asymmet-
ric temperature field [114, 115]. Indeed, asymmetries are inevitable as they arise – although on a
much smaller scale – from random manufacturing imprecisions.

All these examples constitute a perturbation from an ideally symmetric combustor. Hence,
asymptotic perturbation theory may be considered to solve the issue. Like Bloch-wave theory
the idea to use perturbation theory has been first popularized in the field of quantum mechan-
ics to ease finding solutions to the Schrödinger equation. This was actually proposed by no other
than Erwin Schrödinger himself in the third part of his seminal transactions on quantization as
an eigenvalue problem [116]. He resorted to a method that has been originally utilized by Lord
Rayleigh to find eigenstates of vibrating strings [9]. Thus, the theory is nowadays known as Rayleigh-
Schrödinger perturbation theory. From a modern mathematical perspective, these pioneering
works lacked mathematical rigor. For instance, convergence of the stipulated power series an-
sätze was just assumed rather than proven and – due to the nature of the considered equations –
only a theory for semi-simple eigenvalues was developed. Yet, the success of the method in find-
ing approximate solutions to otherwise unsolvable problems consolidated its popularity. Since
these first applications, the theory for self-adjoint linear operator families has grown to a well es-
tablished mathematical discipline. Kato’s book [117] is the standard reference on the topic. A
comprehensive literature review and modern introduction to the perturbation theory of non-self-
adjoint boundary eigenvalue problems can be found in the book of Kirillov [118].

This chapter presents a generalized theory for non-normal and nonlinear eigenvalue problems
as needed for the computation of thermoacoustic modes while following Schrödinger’s work in
putting a minor emphasize on the mathematical fundamentals. References to the relevant math-
ematical literature will be given to fill this gap.

The chapter is the result of fruitful collaborations with Jonas Moeck, Luca Magri, and Alessan-
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dro Orchini. Parts of the content were previously published in [119, 120, 121].

6.1 Introduction to perturbation theory in thermoacoustic stability as-
sessment

From an engineering perspective perturbation theory is used to predict the effect of an additional
parameter ε on the eigenvalue and eigenvector. This parameter can be any relevant design vari-
able, e.g., the mean temperature, the equivalence ratio, boundary impedances, flame transfer
function properties like a characteristic time delay, or even the combustor geometry. Mathemati-
cally, the problem at hand is phrased as finding the eigenvalues and eigenfunctions of a differential
operator subject to a certain set of boundary conditions

L(ω;ε)p̂ :=
{
LΩ(ω;ε)p̂ = 0 in Ω(ε)

L∂Ω(ω;ε)p̂ = 0 on ∂Ω(ε)
(6.1)

while only knowing a solution to the considered eigenvalue problem for a baseline value ε= ε0:

L(ω0;ε0) = 0. (6.2)

The semicolon is used here to stress that ε enters the problem as an additional parameter and not
as an eigenvalue. For thermoacoustic stability assessment the considered eigenvalue problem is
the thermoacoustic Helmholtz equation (1.45). Rayleigh-Schrödinger perturbation theory tackles
the issue by stipulating power series ansätze for both the eigenvalue and the eigenfunctions:

ω(ε) =
∞∑

n=0
ωn(ε−ε0)n and p̂(ε) =

∞∑
n=0

p̂n(ε−ε0)n . (6.3)

Once the coefficients for these power series are found, the problem becomes explicit in the design
parameter ε and eigenpairs for perturbations of ∆ε := ε−ε0 can be predicted. This avoids repeat-
edly solving the eigenvalue problem over a certain range of parameters and, thus, enables quick
evaluation of the effect of the parameters. However, perturbation theory is an asymptotic method.
Therefore, accurate results can only be expected as ∆ε→ 0.

Perturbation theory has been first considered for thermoacoustic stability assessment by Benoit
and Nicoud to approximate solutions of the thermoacoustic Helmholtz equation [122]. Magri and
Juniper were the first to use the approach as a sensitivity analysis tool [41], i.e., a first order per-
turbation theory. In that work the approach was applied to a generic Rijke-tube model. This con-
figuration featured simple modes. Juniper et al. then presented second-order perturbation the-
ory, incorporation into a Helmholtz solver framework, and application to semi-simple degenerate
modes in [123]. Magri et al. applied first and second-order theory to study parameter sensitivity
in network models of annular combustors [124]. Silva et al. [125] and Magri et al. [126] used the
approach for uncertainty quantification of thermoacoustic systems.

All these studies followed an interpolative approach, i.e., perturbation to the governing equa-
tion was scaled by introducing the perturbation parameter ε to scale a set of physical parameters
simultaneously. Therefore, the baseline state ε0 = 0 and the perturbed state ε = 1 are physically
meaningful. However, intermediate values of ε do not necessarily describe a physical system. The
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parameter ε served mainly as a mathematical device to facilitate sensitivity analysis.

The theory presented in this chapter considers the dependence of the eigenvalue problems on
physical quantities. Hence, the dependence on the perturbation parameter is in general nonlinear.
It is assumed that the operator family L(z;ε) depends analytically on both z and ε. In order to
account for the nonlinear dependence of the operator family on ω and ε, it can, therefore, also be
expanded into a power series in the vicinity of ε0:

L(z0 +∆z;ε0 +∆ε) =
∞∑

n=0
(∆ε)n

∞∑
m=0

(∆z)mLm,n . (6.4)

Here, the operators Lm,n are defined as

Lm,n := 1

m!

1

n!

∂m+nL
∂zm∂εn

∣∣∣∣z=z0
ε=ε0

, (6.5)

i.e., the expansion (6.4) is the Taylor series of L(z;ε) expanded at (z0;ε0). Substituting the power
series for the eigenvalue and eigenfunction (6.3), and for the operator family (6.4) back into the
considered eigenvalue problem (6.1) yields[ ∞∑

n=0
(∆ε)n

∞∑
m=0

(∆ω)mLm,n

][ ∞∑
q=0

(∆ε)q p̂q

]
= 0 (6.6)

where ∆ω :=ω−ω0 =∑∞
n=1 ωn(∆ε)n is the correction of the eigenvalue. The multinomial theorem

facilitates the following rearrangement:

(∆ω)m =
(

N∑
r=1

ωr (∆ε)r

)m

= ∑
|µ|=m

(
m

µ

)
N∏

r=1

[
ωr (∆ε)r ]µr (6.7)

= ∑
|µ|=m

(
m

µ

)
(∆ε)|µ|1ωµ. (6.8)

In this formula µ= (µ1,µ2, · · · ,µN ) denotes a multi-index of length N , |µ| =µ1+µ2+·· ·+µN the sum
of the entries of a multi-index,

(m
µ

) = m!
µ1!µ2!···µN ! a multinomial coefficient, and |µ|1 := 1µ1 +2µ2 +

. . .+ NµN . Moreover, the notation ωµ is a shorthand for the product
∏N

n=1 ω
µn
n = ω

µ1

1 ω
µ2

2 · · ·ωµN

N .
Thus, when collecting all powers of ∆ε into one single term and truncating the series at order N ,
(6.6) amounts to

N∑
n=0

N∑
m=0

∑
|µ|=m

N∑
q=0

(∆ε)n+|µ|1+q

(
m

µ

)
ωµLm,n p̂q +O (

(∆ε)N+1)= 0 as ∆ε→ 0. (6.9)

To sort terms by equal powers of ∆ε, the substitution k = n + |µ|1 + q is made. This allows to
rephrase (6.9) as

N∑
k=0

(∆ε)k
k∑

m=0

∑
|µ|1=m

k−|µ|1∑
n=0

(
|µ|
µ

)
ωµLm,n p̂k−n−|µ|1 +o

(
(∆ε)N+1)= 0 as ∆ε→ 0. (6.10)

Note that there are higher powers than (∆ε)N explicitly appearing in (6.9). On the contrary, such
powers are not explicitly stated in (6.10). The Landau symbols O (

(∆ε)N+1
)

and o
(
(∆ε)N+1

)
stress
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this subtle difference. Because of the linear independence of different powers of ∆ε, equation
(6.10) is satisfied up to order N if ∀k ∈ {0,1,2, . . . , N }

k∑
m=0

∑
|µ|1=m

k−|µ|1∑
n=0

(
|µ|
µ

)
ωµLm,n p̂k−n−|µ|1 = 0 (6.11)

holds. The equation can be rearranged to

L0,0p̂k =−rk −ωkL1,0p̂0, (6.12)

where

rk =
k∑

n=1
L0,n p̂k−n +

k∑
m=1

∑
|µ|1=m
µ6=1k

k−|µ|1∑
n=0

(
|µ|
µ

)
ωµLm,n p̂k−n−|µ|1 . (6.13)

Here, 1k denotes a multi-index where all entries are 0, with an exception at position k where it is 1.

Equation (6.12) presents an iterative scheme to determine the corrections of the eigenvalues
and eigenmodes. Assuming that the corrections to the eigenmode and eigenvalue at orders lower
than k are already known, the remaining unknowns in this formula are the kth-order corrections
p̂k and ωk which themselves only occur on the left-hand and right-hand side, respectively. The
equations can be solved for these unknowns using inner products with the adjoint solution of the
unperturbed eigenvalue problem.

Intermezzo: pseudosolutions, adjoints, and solvability

Given the linear system of equations

L0,0x = y (6.14)

the right-hand side can be uniquely decomposed as y = y⊥+ y∥, where y⊥ ∈ range(L0,0) and y∥ ∉
range(L0,0). The definition of the adjoint solutions allows for a simple orthogonality test in order
to prove whether a vector has a component outside of the range of the operator L0,0. Applying the
operator to an arbitrary vector x, it trivially follows that L0,0x ∈ range(L0,0). Now taking the inner
product with an adjoint solution p̂†

0 results in〈
p̂†

0

∣∣∣L0,0x
〉
=

〈
L†

0,0p̂†
0

∣∣∣x〉
= 〈0|x〉 = 0. (6.15)

Hence, it can be concluded that an adjoint solution is orthogonal to the range of L0,0. This nec-
essary condition is also sufficient for finite-dimensional operators. See, e.g., [127, Chapter 9] for
details. With this solvability test it can be stated that the equation L0,0x = y has a solution if y is
orthogonal to the adjoint eigenspace. This motivates the notation y⊥ for the part of the right-hand
side being in the range of the operator 1. If this condition does not hold true, the equation is not
solvable. In this case one may define the pseudosolution xΨ as the solution of the equation which

1Equivalently, it can be stated y⊥ ∉ span(p0,a )† and y∥ ∈ span(p†
0,a ) – a theorem known as Fredholm alternative in

the literature.
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is mapped to the part of y which is in the range of L0,0, i.e., the solution of

L0,0xΨ = y⊥. (6.16)

This definition of a pseudosolution is consistent with the notion of a pseudoinverse because the
pseudoinverse must fulfill xΨ =LΨ

0,0 y⊥. Hence, if equation (6.14) is solvable, multiplication of the
pseudoinverse with the right-hand side y results in the correct solution. However, the effect of
the pseudoinverse on vectors lying not in the range of the operator L0,0 remains undetermined.
Therefore, the pseudoinverse is not uniquely defined. In the present, context it is convenient to
define the pseudoinverse such that LΨ

0,0 y∥ = 0. With this definition of the pseudoinverse the cal-
culation of a pseudosolution to (6.14) without the computation of the pseudoinverse is straight-
forward: first, remove y∥ from the right-hand side by use of appropriate projections to the adjoint
solutions. Then, solve the remaining system. As a result the pseudosolution with minimal stan-
dard norm is obtained.

Applying the solvability condition to compute sensitivity

Equivalently to (6.15), taking the inner product of the adjoint eigenmode p̂†
0 with the left-hand side

of (6.12) yields 〈
p̂†

0

∣∣∣L0,0p̂k

〉
=

〈
L†

0,0p̂†
0

∣∣∣p̂k

〉
= 0. (6.17)

Hence, the inner product with the right-hand side must also vanish and a determination for-
mula for ωk can be obtained from (6.12) by taking the inner product with p̂†

0:〈
p̂†

0

∣∣∣rk

〉
+ωk

〈
p̂†

0

∣∣∣L1,0p̂0

〉
= 0. (6.18)

This equation is called the kth-order eigenvalue correction determining equation. Once ωk is cal-
culated from this equation, it can be substituted back into (6.12). Then, this equation can be solved
even thoughL0,0 =L(ω0,ε0) has a non-vanishing null space (the eigenspace corresponding to ω0).
This is because the kth-order eigenvalue determining equation (6.18) ensures that the right-hand
side of (6.12) is orthogonal to the adjoint eigenspace of L0,0(ω0) and, therefore, guarantees solv-
ability. Consequently, Eq. (6.12) yields the kth-order eigenmode correction. It is, thus, called the
kth-order eigenmode correction determining equation.

It can be shown by induction that rk = Rk p̂0, where Rk is a linear mapping specific to the
kth-order correction step and the given problem. Thus, starting with k = 0 – i.e., the known eigen-
value ω0 and its corresponding eigenmode p̂0 – the aforementioned computation scheme for the
correction yields the respective corrections up to kth order when applied k times.

The mapping Rk cannot be calculated without the computation of all correction terms of
smaller order. From an algorithmic point of view, it is not necessary to know Rk because the
definition of rk (Eq.(6.13)) allows for its calculation from the correction terms rather than from the
unperturbed eigenvalues. For instance, the first four rk are:

r1 =L0,1p̂0, (6.19)

r2 =L0,1p̂1 +L0,2p̂0 +ω1
(L1,0p̂1 +L1,1p̂0

)+ω2
1L2,0p̂0, (6.20)
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r3 =L0,1p̂2 +L0,2p̂1 +L0,3p̂0 +ω1
(L1,0p̂2 +L1,1p̂1 +L1,2p̂0

)+ω2
(L1,0p̂1 +L1,1p̂0

)
+ω2

1

(L2,0p̂1 +L2,1p̂0
)+2ω1ω2L2,0p̂0 +ω3

1L3,0p̂0, (6.21)

and

r4 =L0,1p̂3 +L0,2p̂2 +L0,3p̂1 +L0,4p̂0 +ω1
(L1,0p̂3 +L1,1p̂2 +L1,2p̂1 +L1,3p̂0

)
+ω2

(L1,0p̂2 +L1,1p̂1 +L1,2p̂0
)+ω3

(L1,0p̂1 +L1,1p̂0
)+ω2

1

(L2,0p̂2 +L2,1p̂1 +L2,2p̂0
)

+2ω1ω2
(L2,0p̂1 +L2,1p̂0

)+ω2
2L2,0p̂0 +2ω1ω3L2,0p̂0 +ω3

1

(L3,0p̂1 +L3,1p̂0
)+3ω2

1ω2L3,0p̂0

+ω4
1L4,0p̂0. (6.22)

Thus, the solution scheme is truly incremental. This means that the kth-order corrections can-
not be calculated without the computation of all (k − 1)th-order corrections but are obtained in
increasing order.

6.2 Normalization

The eigenmode correction of kth order is not uniquely defined through the eigenmode correction
determining equation (6.12). If p̃k is one particular solution to that equation, then adding arbitrary
multiples of homogeneous solutions to it, would also yield a valid solution2. This homogeneous
form of (6.12) is by definition identical to the the unperturbed eigenvalue problem (6.1). Therefore,
the homogeneous solutions are known and can be labeled as p̂0. Following this notation, in the
non-degenerate case all solutions to the eigenmode correction determining equation (6.12) can
be written as

p̂k = p̃k +γk p̂0, (6.23)

where γk denotes an arbitrary constant. This free parameter is a direct consequence of the fact
that multiples of eigenfunctions are still eigenfunctions. Usually, an eigenfunction is defined as a
member of a vector space featuring a norm equal to 1. This normalization condition could also
be used to determine the unknown parameter γk [71]. The normalization procedure can be incor-
porated in the perturbation theory before or after evaluating the power series for the eigenmode
evolution. Both methods are discussed in this section.

A priori normalization

Requiring that the asymptotic series expansion (6.3) yields an eigenmode of norm 1, a condition
to compute γk can be obtained.

Starting with the normalization conditions, yields:

1
!= 〈

p̂(ε)
∣∣p̂(ε)

〉=〈 ∞∑
l=0

p̂l (∆ε)l

∣∣∣∣∣ ∞∑
k=0

p̂k (∆ε)k

〉
(6.24)

2Without loss of generality the particular solution p̃k can be chosen to be a pseudosolution p̂Ψ
k , compare Eq (6.16).
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=
∞∑

k=0

∞∑
l=0

(∆ε)k+l 〈
p̂l

∣∣p̂k
〉 | sort by powers of ∆ε and truncate at order N

(6.25)

=〈
p̂0

∣∣p̂0
〉︸ ︷︷ ︸

=1

+
N∑

k=1
(∆ε)k

k∑
l=1

〈
p̂l

∣∣p̂k−l
〉+o

(
(∆ε)N+1) as ∆ε→ 0 (6.26)

Thus, for the normalization condition to hold
∑

k=1(∆ε)k ∑k
l=1

〈
p̂l

∣∣p̂k−l
〉= 0, must be satisfied.

At each order k this yields

〈
p̂k

∣∣p̂0
〉+〈

p̂0
∣∣p̂k

〉=−
k−1∑
l=1

〈
p̂l

∣∣p̂k−l
〉

︸ ︷︷ ︸
:=sk

. (6.27)

The right-hand side term sk only depends on correction terms p̂n of order n < k. Hence, the nor-
malization procedure can also be performed in an incremental fashion. Note that 〈a|b〉+ 〈b|a〉 =
2real〈a|b〉. Consequently, sk must be real and

〈
p̂k

∣∣p̂0
〉+〈

p̂0
∣∣p̂k

〉= 2real(
〈

p̂0
∣∣p̂k

〉
). Therefore, nor-

malization of the eigenvectors imposes the following normalization to the correction coefficients:

real(
〈

p̂0
∣∣p̂k

〉
) = −sk

2
. (6.28)

It is convenient to choose imag(
〈

p̂(0)
∣∣p̂(ε)

〉
) = 0 as a phase condition. Inserting the power

series ansatz results in imag(
〈

p̂0
∣∣∑N

k=0 p̂kε
k
〉

) = imag(
∑N

k=0 εk
〈

p̂0
∣∣p̂k

〉
) = 0. Hence, the phase con-

dition at each order k simply reads:

imag(
〈

p̂0
∣∣p̂k

〉
) = 0. (6.29)

Note that the phase condition is actually determining the eigenvector except for a change in
sign. However, because the eigenvector trajectory should depend smoothly on the perturbation
parameter, the evolution from a certain eigenvector is uniquely determined.

It is convenient to state the equations (6.28) and (6.29) as a single expression:

〈
p̂0

∣∣p̂k
〉= −sk

2
. (6.30)

The first order normalization condition simplifies to
〈

p̂0
∣∣p̂1

〉= 0, which is a common choice (e.g.,
[127]). However, only a few authors stress the link of this choice to normalization, e.g., [71].

A posteriori normalization

Finding the coefficients γk such that the power series (6.3) yields a normalized mode is not neces-
sary to compute the eigenvalue coefficients ωn . Consequently, normalization can also be applied
after computing the coefficients ωk and p̂k and evaluating the power series. This method requires
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to collect the coefficients γk for the already computed N th-order power series in a single factor:

p̂(ε) = p̂0 +
∞∑

k=1
(p̃k +γk p̂0)(∆ε)k =

(
N∑

k=1
γk (∆ε)k

)
︸ ︷︷ ︸

:=γ(ε)

p̂0 +
(

p̂0 +
N∑

k=1
p̃k (∆ε)k

)
︸ ︷︷ ︸

:=p̃(ε)

+o
(
(∆ε)N+1) as ∆ε→ 0.

(6.31)

Substituting the known information, i.e., computed power series for ω and p̂ back into the consid-
ered eigenvalue problem then yields

L(
N∑

k=0
ωk (∆ε)k ;ε)

(
p̃(ε)+γ(ε)p̂0

)+O (
(∆ε)N+1)= 0 as ∆ε→ 0. (6.32)

Note that while the power series are truncated at N th order, inserting them into the eigenvalue
problem might produce higher powers of ∆ε. Again the change from o

(
(∆ε)k

)
to O (

(∆ε)k
)

stresses
this aspect.

Equation (6.32) motivates choosing γ(ε) such that the norm ofL(
∑N

k=0 ωk (∆ε)k ;ε)
(
p̃(ε)+γ(ε)p̂0

)
is as small as possible. This expression has two independent components, the images of p̃(ε) and
γ(ε)p̂0 under the operator L(

∑N
k=0 ωk (∆ε)k ;ε). For the sake of brevity, the images are abbreviated

as a := L(
∑N

k=0 ωk (∆ε)k ;ε)p̃(ε) and b := L(
∑N

k=0 ωk (∆ε)k ;ε)p̂0. It is convenient to decompose the
vector a into components parallel and orthogonal to b:

a = a∥+a⊥ = 〈a|b〉
〈b|b〉b +a⊥. (6.33)

With these conventions Eq. (6.32) reads:( 〈a|b〉
〈b|b〉 +γ(ε)

)
b +a⊥+O (

(∆ε)N+1)= 0 as ∆ε→ 0. (6.34)

The first term here is exactly eliminated if

γ(ε) =−〈a|b〉
〈b|b〉 =

〈L(
∑N

k=0 ωk (∆ε)k ;ε)p̃(ε)
∣∣L(

∑N
k=0 ωk (∆ε)k ;ε)p̂0

〉〈L(
∑N

k=0 ωk (∆ε)k ;ε)p̂0
∣∣L(

∑N
k=0 ωk (∆ε)k ;ε)p̂0

〉 . (6.35)

Thus, given the information available at order N , this is the best possible choice for γ. In compari-
son to the a priori approach, the a posteriori method is computationally more demanding because
it is to be computed for each new instance of ε. Nonetheless, as it is not computed incrementally,
it is more robust against round-off errors.

6.3 Notes on implementation

Rayleigh-Schrödinger perturbation theory has started as a pen-and-paper discipline. To date it
is common to apply it using computer algebra software like Maple, Mathematica, or Maxima per-
forming the necessary manipulations symbolically [128]. Yet, symbolic modeling is not a common
practice in engineering. Implementation of the large-order perturbation theory must seamlessly
integrate in software frameworks that solve the eigenvalue problems by discretization of the con-
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sidered operators (L(z;ε) 7→L(z;ε)). This section discusses the details of such an implementation.
The only aspect that will not be addressed in this section is how to efficiently obtain a highly accu-
rate baseline solution. This is the topic of Chap. 8.

Data structuring

A considerable obstacle when implementing the theory is the accurate computation of the Taylor-
series coefficients Lm,n because these require the computation of large-order partial derivatives.
Although the problem has been tackled using finite differences in [129, 125], it is not an efficient
means to compute large order derivatives featuring an accuracy which is commensurate with the
truncation order of the stipulated power series. The issue can be resolved by implementing a flex-
ible data structure representing the considered operator family. The data structure decomposes
the operator family as

L(z;ε) =
G∑

g=1
Ag fg (z,ε). (6.36)

Here, the coefficient functions fg are analytic and can be stored together with their derivatives in
a library. Derivatives can then be algebraically computed:

∂m+nL

∂zm∂εn =
G∑

g=1
Ag

∂m+n fg

∂zm∂εn . (6.37)

A similar data structure to represent monovariate operator families L(z) was suggested in [130]
and is implemented in the SLEPc software library [131, 132] and a collection of nonlinear eigen-
value problems written in MATLAB [133]. Indeed, any analytic operator family L(z;ε) can be rep-
resented using such a data structure. For instance, if the operator family is D-dimensional, the
number of coefficient functions can be set to G = D2 and for each entry in L a function fg is stored
individually. If these functions are stored as pointers pointing into a library, the memory space
needed to store the structure is comparable to storing an equally sized matrix of floating point
numbers. However, the thermoacoustic Helmholtz equation naturally implies using a data struc-
ture based on the stiffness, the damping, the mass, and the flame matrix. For instance, when
considering the time delay τ in the Rijke-tube model as a perturbation parameter, the structuring
reads

L(z;τ) =K+ zC+ z2M+ne−izτF (6.38)

and, e.g., L0,1 is exactly given as ∂
∂τL(ω0;τ0) =−iω0ne−iω0τF.

Note that the data structure suggested in Eq. (6.36) has also a great potential for parallelization.
The different terms are completely independent and also matrix-multiplication is embarrassingly
parallelizable.

Numerical implementation of the perturbation theory

Algorithm 6.1 sketches a straightforward implementation of the outlined perturbation theory. The
function SOLVE is assumed to return a pseudosolution xΨ

k to the linear system L0,0xΨ = y⊥ as dis-
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Algorithm 6.1: Brute-force implementation of the perturbation theory

1: function PERTURB(Lm,n , p0, p†
0, N )

2: for k ← 1, . . . , N do . loop to compute
∑k

n=1L0,n pk−n

3: rk ← 0
4: for n ← 1, . . . ,k do
5: rk ← rk +L0,n pk−n

6: end for
7:

8: for m ← 1, . . . ,k do . loops to compute
∑

0<|µ|1≤k
µ6=1k

9: for µ ∈ {µ : |µ|1 = m} \ {1k } do . the ACCELASC algorithm [134] is used to find the
multi-indices µ

10: for n ← 0, . . . ,k −m do
11: rk ← rk +L|µ|,n pk−n−mωµ

(|µ|
µ

)
12: end for
13: end for
14: end for

15: ωk ←− p†
0

H
rk

p†
0

H
L1,0p0

16: pk ←SOLVE(L0,0,−rk −ωkL1,0p0) . is solvable due to solvability condition
17: end for

18: return ω1, . . . ,ωN , p1, . . . , pN

19: end function

cussed in Sec. 6.1. The algorithm uses results from number theory to generate the increasingly
complex set of multi-indices µ occurring at each incremental step of the procedure. In particular,
it exploits a connection to the partition function. This connection has been discussed in [135] for
perturbations of linear eigenvalue problems arising in quantum mechanics. Here, it is general-
ized to the case of nonlinear eigenvalue problems. The partition function part(m) is defined as
the number of partitions of an integer m – i.e., the number of decompositions of m into sums of
integers. Because

|µ|1 :=
N∑

k=1
µk k =

N∑
k=1

µk∑
n=0

k = m, (6.39)

the multi-index µ can be interpreted as a representation of a partition of m. Thus, there are
part(m) multi-indices µ in the set {µ||µ|1 = m}. These are exactly the multi-indices summed over
in Eq. (6.10) and equations thereafter. Moreover, any algorithm generating a full sequence of par-
titions of the integer m can be used to generate a sequence of all µ ∈ {µ||µ|1 = m}. A fast algorithm
to generate partitions of a given integer is the accelerated ascending composition generation al-
gorithm ACCELASC proposed in [134]. See Appendix B for a pseudocode of this algorithm. Inter-
preting the multi-indices as partitions also allows for assessing the computational effort of Alg. 6.1.
The number of terms appearing in the expansion (6.10) of the eigenvalue problem into a power
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series is

number of terms =
N∑

k=0

k∑
m=1

∑
|µ|1=m

k−m∑
n=0

1 =
N∑

k=1

k∑
m=1

part(m)(k −m +1). (6.40)

Because of the rapid growth of the partition function (see Fig. 6.1), the computational effort to
compute the power series coefficients also rises rapidly with the perturbation order. The compu-
tationally most expensive operation in Alg. 6.1 is the matrix-vector multiplication L|µ|,n pk−n−m .
Fortunately, the same matrices L|µ|,n appear multiple times in the expansion. Factorizing them as

N∑
k=0

(∆ε)k
k∑

m=0

k−m∑
n=0

Lm,n
∑

|µ|=m
|µ|1≤k

(
m

µ

)
ωµpk−n−|µ|1

︸ ︷︷ ︸
:=vm,n

, (6.41)

would, consequently, save a lot of matrix-vector multiplications and accelerate the computations.
Note that the last summation is conducted over the set of multi-indices µ satisfying |µ| = m and
|µ|1 ≤ k. The total number of matrix-vector multiplications is now polynomial:

number of matrix-vector multiplications =
N∑

k=0

k∑
m=0

k−m∑
n=0

1 = 1

6
N 3 +N 2 + 11

6
N +1. (6.42)

Of course, the number of vector-vector additions remains unchanged and is, therefore, still
identical to the total number of terms. Nonetheless, vector-vector addition has lower computa-
tional costs than matrix-vector multiplications. Algorithms that factorize the matrices will, thus,
be faster than those that factorize vectors.

The considerations concerning the computational effort strictly apply to operatorsL(z,ε) which
are non-polynomial in z and ε. If they depend polynomially on these values, the Taylor-series co-
efficientsLm,n vanish if m or n are greater than the degree of the polynomials in z or ε, respectively.

Figure 6.1 shows the computational effort necessary to assemble the vectors rk at each incre-
mental step for nonlinear operator families and those which are linear in both z and ε. It also
shows the evolution of the partition function.

Algorithm 6.2 outlines an implementation of the theory based on factorizing the coefficients
Lm,n for efficiency. It also demonstrates a possible implementation of the a priori normalization.
In contrast to Alg. 6.1, there is no known algorithm to efficiently generate the multi-indices in the
order they are needed. However, all multi-indices can be generated using the same method as in
Alg. 6.1, sorted and then stored to a library to avoid generation at run-time. Also note that the
for-loops started in the lines 4 and 5 are embarrassingly parallel. Given the high number of terms
appearing in the algorithm, even if factorizing Lm,n , this parallelization of the algorithm is crucial
for conducting large order perturbation theory.

6.4 Application to the Rijke-tube model

In this section the perturbation theory is applied to the Rijke-tube model. Perturbation expansions
up to 30th order are computed and compared with exact solutions of the model equations. To
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Figure 6.1: Number of terms and the number of unique factors Lm,n necessary to assemble rk

for (i) a generic dependence of L(z,ε) on its parameters z and ε and (ii) the special case of a linear
dependence. The behavior of the partition function is shown for reference. The number of matrix-
vector multiplications required by Alg. 6.1 is equivalent to the number of terms while it reduces to
the number of unique factors Lm,n when using Alg. 6.2. The number of vector-vector additions
required by the two algorithms is identical, and is equal to the number of terms.

solve the eigenvalue problem, a modification of the generalized Rayleigh-quotient iteration pro-
posed in [136] is deployed as it converges much faster to machine-precise solutions than Nicoud’s
algorithm and the Picard iteration. The details of the algorithm will be discussed in Chap. 8. The
model data is structured as

L(z;n,τ,c2) = c2
1K1 + c2

2K2 + zc2B+ z2M+n exp(−iωτ)F (6.43)

to enable perturbations of the interaction index n, the time delay τ, and the hot gas speed of sound
c2. Here, K1 and K2 are special stiffness matrices assembled with unit speed of sound for the hot
and cold gas domain, respectively. Similarly, B denotes a boundary mass matrix for the outlet
assembled with unit speed of sound to enable explicit factorization of c2. The other matrices follow
the definitions of Chap. 3. c1 denotes the cold gas temperature.

Evolution of mode #R1 when perturbing τ

The first example concerns the effect of a perturbation of the time delay τ on mode #R1. Because
the perturbation theory yields truncated power series as approximations to the relation ω=ω(ε),
the range [ε−δ,ε+δ] in which the approximation yields reliable results can be estimated from the
radius of convergence δ of the power series. A simple formula to estimate the convergence radius
from the coefficients of the power series is

δ≈
∣∣∣∣
ωn

ωn+1

∣∣∣∣ . (6.44)

This formula is obtained as consequence of the ratio test for series convergence, see, e.g., [137,
Chapter 2]. Figure 6.2 shows the estimate for the convergence radius obtained from the 30 com-
puted power series coefficients. The estimate quickly settles to a value of δ ≈ 1.236. Compari-
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Algorithm 6.2: Factorized implementation of the perturbation theory with a priori normalization

1: function PERTURB(Lm,n , p0, p†
0, N )

2: for k ← 1, . . . , N do
3: rk ← 0
4: for m ← 0, . . . ,k do . parallelizable loops
5: for n ← 0, . . . ,k −m do
6: if (m,n)=(0,0) then
7: continue . the term carrying L0,0 is not part of rk

8: end if
9: v ← 0

10: for µ ∈ {µ : |µ| = m, |µ|1 ≤ k} \ {1k } do . read this set from prepared file
11: v ← v +pk−n−|µ|1ω

µ
(m
µ

)
12: end for
13: rk ← rk +Lm,n v
14: end for
15: end for

16: ωk ←− p†
0

H
rk

p†
0

H
L1,0p0

17: pk ←SOLVE(L0,0,−rk −ωkL1,0p0) . is solvable due to solvability condition

18: ck ← 0
19: for l ← 1, . . . ,k −1 do . a priori normalization
20: ck ← ck − 1

2

〈
pl

∣∣pk−l
〉

21: end for
22: pk ← pk + ck p0

23: end for

24: return [ω1, . . . ,ωN ], [p1, . . . , pN ]
25: end function

son of the power series expansion and the exact results is, therefore, conducted in a range [τ0 +
1.05δ,τ0+1.05δ]. This is a relatively large range because its span is greater than the baseline value
(2δ> τ0 = 2).

Figure 6.3 a) shows the trajectory of the exact evolution of the eigenvalue and estimates for this
trajectory obtained using first, second, fifth, tenth, fifteenth, and thirtieth order perturbation the-
ory. It can be clearly seen how increasing the perturbation order yields better estimates for values
of τ within the convergence interval of the power series. However, for values outside of the conver-
gence interval, increasing the perturbation order is not necessarily improving the approximation
and may lead to even worse predictions. For instance, the tail of the fifteenth-order approximation
is closer to the tail of the exact trajectory than the thirtieth-order approximation.

Figure 6.3 b) shows the normalized mode shape of mode #R1 at τ= 0.08057. This value is close
to the convergence limit. Nonetheless, it is inside the convergence interval. It is obvious how
increasing the perturbation order improves the quality of the approximation.
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Figure 6.2: Estimate of the convergence radius of the power series modeling the evolution of mode
#R1 when perturbing the time delay τ.

Figure 6.4 a) shows the evolution of the difference between the exact eigenvalue and the predic-
tions from perturbation theory when the order is increased for various values of τ (◦-markers). For
comparison, the magnitude of the first truncated term |ωN+1(∆τ)N+1| is also shown (×-markers).
Because the series is asymptotic, this value should dominate the truncation error close to the ex-
pansion point. As expected, the closer the value of τ is to the expansion point, the better is the ap-
proximation obtained from perturbation theory given a fixed order N . This indicates that inside
the convergence interval, the rate at which the error decreases is getting faster as τ approaches
τ0 = 2. That the error saturates after decreasing by about 15 orders of magnitude can be attributed
to machine precision. Yet, machine precision is not an issue for the magnitude of the first trun-
cated term using IEEE-754 numbers. Thus – although not shown here – these continue to decrease.
The truncation error is also correctly estimated from the first truncated term for moderate pertur-
bations (τ = 1.974, τ = 1.6885). However, the truncation error is increasingly underestimated for
increasing perturbation strengths. Note how the error for τ= 0.07019 reaches a minimum at an or-
der N ≈ 15. This value of τ is exactly the value of the lower end of the examined range of values and
lies slightly beyond the convergence limit. The power series will, thus, diverge for N →∞. Hence,
truncating the series at N = 15 yields the best possible estimate obtainable from a power series
expansion. Although the error is underestimated by the first truncated term, the optimal trunca-
tion order could be obtained from it, because the sequence of the first truncated terms shows a
minimum at the same position. Truncation of divergent power series in order to obtain optimal
prediction is a common strategy known as super asymptotics, see, e.g., [138].

Figure 6.4 b) shows the evolution of the error for the mode shape predictions for both the a
priori normalization (circles) and the a posteriori method (squares). The same values of τ as in
Fig. 6.4 a) are examined. The error evolution is qualitatively identical to the evolution of the error
in ω: the closer the value of τ is to the expansion point, the better is the estimate. Saturation
of the error appears after it has decreased by 14 orders of magnitude due to machine precision,
and the error for τ = 0.07019 reaches a minimum at N ≈ 15. Note that the a posteriori method
yields slightly better results. Because the a posteriori method rests on the idea of minimizing the
residual, this is not surprising. Nonetheless, the difference between the two methods is negligible
and, given the lower computational costs of the a priori normalization, this strategy should be
preferred.
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Figure 6.3: a): Eigenvalue trajectory of mode #R1 if the time delay τ is varied. The black line rep-
resents the exact solution while the colored lines show approximations obtained from perturba-
tion theory of various orders. The arrowhead indicates the direction of increasing τ. The black dot
highlights the position of the unperturbed eigenvalue. The red squares mark eigenvalues obtained
at the estimated convergence limit.
b): Evolution of the normalized mode shape close to the convergence limit (τ = 0.8057). The
dashed black line represents unperturbed mode shape and the solid black line indicates the ex-
act perturbed mode shape. Colored lines highlight predictions for the mode shape obtained from
perturbation theory of various orders.

Evolution of mode #R1 when perturbing n

Qualitatively similar results are obtained when considering another parameter than τ. For in-
stance, Fig. 6.5 shows the results for a perturbation of the interaction index n. The convergence
radius δ≈ 1.4273 is larger than the baseline value n = 1 and for the shown example of n =−0.3788
the mode shape is not much different from the baseline solution. Yet, the results are equivalent to
those discussed for perturbations of the time delay τ.

Evolution of mode #R1 when perturbing c2

Similar results are also obtained when perturbing the hot gas speed of sound as shown in Fig. 6.6.
However, for this case the estimate for the convergence radius seems not to have fully converged
at N = 29, see Fig. 6.6 a). Indeed, given the results presented in Fig. 6.6, the estimated convergence
limit (red squares) appears to be slightly overestimated. Apart from these issues, the results show
the same characteristics as for the other cases.

Evolution of mode #R2 when perturbing τ

Also when considering mode #R2 the perturbation results show similar behavior. This can be seen
in Fig. 6.7 where the evolution of #R2 subject to perturbations of the time delay τ is studied. Again,
the estimate for the convergence limit appears not to have fully converged. In order not to over-
estimate the convergence radius δ, the estimate obtained from |ω28/ω29| instead of |ω29/ω30| is
marked by the red squares in Fig. 6.7 b). In contrast to the other cases, the plotted range of val-
ues is not the interval ±1.05δ but ±1.75δ. Obviously, the mode shape does not depend strongly
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Figure 6.4: a) Evolution of the error of the eigenvalue estimate over perturbation order N when
predicting the eigenvalue shift of mode #R1 due to a perturbation in τ (◦-markers) and magnitude
of the first truncated term |ωN+1(∆τ)N+1| (×-markers). The magnitude of the first truncated term
is an estimate for the error. The saturation of the error curve at about 1E−15 is due to machine
precision. The magnitude of the first truncated term is not saturating and keeps falling, but this is
not shown here.
b) Norm of the error of the predicted normalized mode shape using the a priori method (◦-
markers) and the a posteriori method (�-markers). The two methods yield nearly equivalent re-
sults. Again saturation is attributed to machine precision.

on τ. As explained in Sec. 4.4, the mode is actually independent of the flame response and the
variations appearing here are attributed to the discretization of the problem. Discretization ef-
fects also cause the variations in the eigenvalue for this specific case. Perturbation theory based
on the discretized model will, therefore, also suffer from these limitations. Nonetheless, the error
characteristics behave similar to the previous examples.
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Figure 6.5: Results for mode #R1 when perturbing the interaction index n. The same quantities
as in the Figs. 6.2-6.4 are shown, using the same markers. The results are qualitatively similar to
those obtained from perturbations of τ.
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Figure 6.6: Results for mode #R1 when perturbing the speed of sound c2 of the hot gas. The same
quantities as in the Figs. 6.2-6.4 are shown, using the same markers. In contrast to the examples
studied before, the estimate for the convergence limit seems not to be accurate. However, the
other characteristics are similar.
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Figure 6.7: Results for mode #R2 when perturbing the time delay τ. The same quantities as in the
Figs. 6.2-6.4 are shown, using the same markers.
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6.5 Convergence enhancement by Padé approximation

The examples have shown that perturbation theory is capable of predicting the eigenvalue drift
within the convergence interval of the power series. Yet, it takes an increasing number of terms
to obtain an accurate approximation the closer the evaluation point is to the convergence limit.
Moreover, for evaluation points outside the convergence limit the series diverges. An optimal trun-
cation strategy might be considered in this case. This would, however, not yield very accurate
predictions. This section shortly discusses Padé approximation to tackle both slow convergence
within the convergence interval and divergence outside of it.

Theory

In general, the domains in which a series expansion ω(ε) =∑N
n=0 ωn(∆ε)n converges are limited by

the non-removable singularities closest to the expansion points ε0 of the series3. More precisely, if
ω(ε) has poles or even essential singularities, the one closest to the expansion point ε0, at εsng say,
determines the radius of convergence to be δ= |εsng −ε0|.

Singularities in ω(ε) might originate from singularities with respect to ε already present in the
considered operator family L(z;ε). For example, consider the operator family

L(z;ε) =
[
ε− z 0

0 1
ε − z

]
. (6.45)

It is diagonal and the eigenvalues can be directly obtained as ω = ε and ω = 1/ε. The second one
clearly has a first-order pole at ε= 0. The reparametrization 1/ε= η might solve the issue. It would,
however, introduce a pole to the first branch with respect to the new parameter η. Nonetheless,
poles which originate from the operator family are not a big issue as they are known. As in the
example, reparametrization can then be utilized. For instance, the impedance can be expressed
as an admittance Y = 1/Z to avoid poles for sound-soft conditions. It might be also considered
to shift the expansion points from the singularities in order to obtain power series approxima-
tions featuring a large radius of convergence. However, singularities in the relation ω = ω(ε) also
arise at points εsng where the eigenvalue ω becomes defective. As will be discussed in Chap. 10, it
cannot be directly red off from the definition of the operator family L(z;ε) at which points this is
happening.

Singularities are a feature that cannot be captured by polynomials and, thus, by truncated
power series. This is because polynomials never possess singularities (they are entire functions).
From this viewpoint, approaching the problem with a polynomial/power-series ansatz is an ill-
conceived idea. It is natural to consider a rational-function ansatz instead, as this allows to incor-
porate singularities. For instance, rational polynomials are a standard method in hydrodynamic
stability when approximating a global stability analysis from a sequence of local stability analyses
[139, 140, 141]. Using a rational polynomial as an asymptotic expansion ansatz is known as Padé
approximation and is well known to feature better approximation properties than Taylor-series
expansions in domains that are relatively far from the expansion point [142, Chapter 3]. In partic-
ular, they have proven to show good approximations for values ε beyond the convergence radius
of Taylor series expanded from the same point [138].

3Note that ∆ε := ε−ε0, which manifests in the notation ω=ω(ε).
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The Padé ansatz [L/M ]ω is defined as the ratio of polynomials of degree L and M , respectively:

[L/M ]ω(ε) :=
∑L

l=0 al (∆ε)l

1+∑M
m=1 bm(∆ε)m

. (6.46)

Note that the coefficient b0 of the denominator polynomial is set to 1 in order to define a unique
representation of the ansatz.

The ansatz features L +M +1 = N +1 unknown coefficients a0, . . . , aL and b1, . . . ,bm . They are
determined by requiring

ω(ε) = [L/M ]ω(ε)+o
(
(∆ε)N+1) as ∆ε→ 0. (6.47)

In particular, this means that – if it exists – the Padé approximant features the same asymptotic be-
havior as a N th order power series approximation expanded at the same point as ∆ε→ 0. There-
fore, the N unknown coefficients of the Padé approximant can be computed from the N coef-
ficients of the power series approximation. This allows to treat Padé approximation within the
same framework as the power-series approximation presented before. Indeed, Padé ansätze are a
generalization of power series ansätze as [N /0]ω reduces to a N th order polynomial. Only a single
extra step is needed to convert the power-series coefficients to the Padé coefficients. This extra
step is solving a linear system of equations obtained by equating the two ansätze and sorting for
equal powers of ∆ε. If the system possesses a solution, it can be found by Alg. 6.3. If the system
has no solution, the Padé approximant does not exist.

Example

As an example again the effect of perturbing the time delay τ on mode #R1 is studied. Only Padé
approximations of the form [M/M ]ω are considered, i.e., both the numerator and the denomina-
tor are polynomials of degree M . Such approximants are commonly referred to as diagonal Padé
approximants. There has been the conjecture that diagonal Padé approximants are convergent in
almost the entire complex plane if used to approximate meromorphic functions, see, e.g., [143].
Although counter examples were found at the beginning of this century (see, e.g., [144]), as a rule
of thumb these approximants are believed to yield good results. Indeed, tests with non-diagonal
Padé approximants yielded worse approximation compared to those shown here. Diagonal ap-
proximants are a reasonable choice because the eigenvalue trajectory ω#R1(τ) is expected to be
bounded and diagonal Padé approximants are bounded for real-valued parameters as long as their
poles – i.e., the roots of the denominator – do not lie on the real axis. Note that the trajectory of an
intrinsic mode is unbounded (see Chap.10) and might require a non-diagonal Padé approximant.

Figure 6.8 shows the results of the example. In Fig. 6.8 a) the exact evolution of the eigenvalue
when perturbing τ is shown together with the Padé approximants [5,5]ω, [10,10]ω, and [15,15]ω.
For comparison the results obtained from thirtieth-order power series approximation ([30,0]ω) is
also shown. Red squares again indicate the convergence limits. Note that the shown parameter
range is larger than in Fig. 6.3 a). The parameter range in Fig. 6.8 a) is τ ∈ [0.5,5]. Because the
thirtieth-order power series approximation (red) is unbounded, it significantly deviates from the
correct results after passing the convergence limit. This is why only part of the trajectory is shown.
However, note how the trajectory turns the direction by about 180◦ at the upper convergence limit.
On the contrary, the Padé approximants stay relatively close to the exact trajectory. For [10,10]ω
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Algorithm 6.3: Convert power series coefficients to Padé coefficients. The pseudocode is based on
the solution scheme presented in [142, Chapter 3]

1: function PADE(ω0, . . . ,ωL+M ,L, M)
2: A← 0 ∈CM×M . initialize system matrix A
3: for i ← 1, . . . , M do
4: for j ← 1, . . . , M do
5: if L+ i − j ≥ 0 then
6: [A]i , j ←ωL+i− j

7: end if
8: end for
9: end for

10: b0 ← 1 . b0 is not an unknown but needed later

11:

 b1
...

bM

← SOLVE(A,−

 ωL+1
...

ωL+M

) . If the system is not solvable, ω[L/M ] does not exist.

12: for l ← 0, . . . ,L do
13: al ← 0
14: for m ← 0, . . . , l do
15: if m ≤ M then
16: al ← al +ωl−mbm

17: end if
18: end for
19: end for
20: return a0, . . . , aL ,b1, . . . ,bM

21: end function

(orange) and [15,15]ω (green), no differences from the exact trajectory can be seen in Fig. 6.8 a)
for values τ > τ0 = 2. This is the case even when exceeding the convergence limit of the power
series expansion. However, for lower values of τ there is a clear deviation. Although obtained from
twentieth-order power series approximation, [10,10]ω yields better estimates than the thirtieth-
order power-series approximation [30,0]ω. This indicates that Padé approximation improved the
convergence properties.

Figure 6.8 b) further illustrates these improvements. It compares the error evolution of even-
ordered power-series approximations (o-markers) with the error evolution of the corresponding
diagonal Padé approximants (♦-markers). Converting the power series into diagonal Padé approx-
imants clearly reduces the error.
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Figure 6.8: a) Exact evolution of the eigenvalue of mode #R1 and diagonal Padé approximations.
For comparison the thirtieth-order power-series approximation is also shown. The diagonal Padé
approximants yield better estimates than the power series approximation. This is especially true
for values of τ which are outside the convergence interval of the power series.
b) Comparison of the error evolution of power series (solid lines with ◦-markers) and diagonal
Padé approximants (dashed line with ♦ markers) of the same asymptotic order. Conversion to
diagonal Padé approximants clearly improves the convergence properties.
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Conclusion

Padé approximations improve the convergence of the power series at negligible extra costs. More-
over, the theory of Padé approximations and its generalizations is a rich mathematical field already
utilized in other disciplines to enhance the convergence of asymptotic expansions, see, e.g., [138].
Albeit addressed only shortly here, it should, thus, be considered in more detail to improve the
quality of large order perturbation theory in the future. For instance, it can be readily applied
to the approximations of the mode shapes. In the remainder of this thesis more examples will
demonstrate the benefits of the method.

6.6 The semi-simple degenerate case

Perturbation theory for degenerate eigenvalues is more involved. Indeed, defective eigenvalues
cannot be treated with a power-series approach. This will be discussed in Chap. 10. This section
focuses on the particular case of twofold degenerate semi-simple eigenvalues as they commonly
arise from the symmetry of annular combustion chambers. In the considered case both the direct
and the adjoint eigenspace are two-dimensional. If a perturbation of the system breaks its symme-
try, the direct and the adjoint eigenspace will each unfold into two one-dimensional eigenspaces
with distinct eigenvalues. These two eigensolutions will be referred to as branches 1 and 2 in the
following. Of course, perturbations that retain the symmetry will not resolve the degeneracy.

If the unperturbed solution features a two-dimensional eigenspace, there are two linearly inde-
pendent direct eigenfunctions p̃0,1 and p̃0,2 and two linearly independent adjoint eigenfunctions
p̃†

0,1 and p̃†
0,2 corresponding to the same eigenvalue ω0. Denoting them with tildes emphasizes

that these basis vectors are rather arbitrary, while a possible mode unfolding would require basis
vectors that span the two unfolded eigenspaces at zeroth order.

When considering the kth-order equations various scenarios are possible: an unfolding of the
twofold degenerate eigenspace became apparent at a previous order or the degenerate pertur-
bation theory has not yet predicted any unfolding. For simplicity, the discussion focuses on the
special case where mode unfolding can be already seen at first order. The generalization to cases
where the unfolding is revealed at higher orders or even never happens at all is straightforward. It
will be shortly discussed at the end of this section.

The unfolding at first order

In order to find the correct basis vectors for the unfolding, these are expressed as linear combina-
tions of the known but not further specified basis vectors:

p̂0,i = z1,i p̃0,1 + z2,i p̃0,2 (6.48)

p̂†
0,i = z†

1,i p̃†
0,1 + z†

2,i p̃†
0,2. (6.49)

Introducing them into the first order eigenvalue correction determining equation (6.18) and de-
manding solvability will then yield a linear 2×2 eigenvalue problem that not only determines the
eigenvalue corrections ω1 but also the correct bases. This section discusses the derivation of this
auxiliary eigenvalue problem.
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Introducing the linear combinations into (6.18) yields〈
z†

2,i p̃†
0,1 + z†

2,i p̃0,2

∣∣∣L0,1
(
z1,i p̃0,1 + z2,i p̃0,2

)〉+ω1

〈
z†

2,i p̃†
0,1 + z†

2 p̃0,2

∣∣∣L1,0
(
z1,i p̃0,1 + z2,i p̃0,2

)〉= 0

(6.50)

[
z†

1,i z†
2,i

]
︸ ︷︷ ︸

:=z †
i


[〈

p̃0,1
∣∣L0,1p̃0,1

〉 〈
p̃0,1

∣∣L0,1p̃0,2
〉〈

p̃0,2
∣∣L0,1p̃0,1

〉 〈
p̃0,2

∣∣L0,1p̃0,2
〉]︸ ︷︷ ︸

:=X

+ω1

[〈
p̃0,1

∣∣L1,0p̃0,1
〉 〈

p̃0,1
∣∣L1,0p̃0,2

〉〈
p̃0,2

∣∣L1,0p̃0,1
〉 〈

p̃0,2
∣∣L1,0p̃0,2

〉]︸ ︷︷ ︸
:=Y


[

z1,i

z2,i

]
︸ ︷︷ ︸

zi

= 0.

(6.51)

Due to the biorthonormality relation Eq. (4.12), the direct and adjoint eigenvectors can be cho-
sen such that Y amounts to I. The above equation then reduces to the following linear eigenvalue
problem:

Xz +ω1zi = 0 and XHz† +ω1z†
i = 0. (6.52)

This auxiliary 2×2 eigenvalue problem determines the mode unfolding. Here, it is assumed that
splitting is revealed at first order. By assumption, there will be, thus, two distinct eigentriplets
ω1,1, z1, z†

1 and ω1,2, z2, z†
2 solving the auxiliary eigenvalue problem (6.52). Note that ω1,1 and ω1,2

denote the two eigenvalues of X. The zeroth order approximation to the unfolded direct eigenspa-
ces will be p̂0,1 = z1,1p̃0,1 + z2,1p̃0,2 and p̂0,2 = z1,2p̃0,2 + z2,2p̃0,2. Equivalently, the unfolding of the
adjoint eigenspace is given at zeroth order as p̂†

0,1 = z†
1,1p̃†

0,1 + z†
2,1p̃†

0,2 and p̂†
0,2 = z1,2p̃†

0,2 + z†
2,2p̃†

0,2.

The new bases p̂0,1, p̂0,2 and p̂†
0,1, p̂†

0,2 will remain biorthonormalized with respect to L1,0 if the

coefficient vectors are biorthonormalized, i.e., z†
j

H
zi = δi , j . This is because then

〈
p̂†

0, j

∣∣∣L1,0p̂0,i

〉
=

〈
z†

1, j p̃†
0,1 + z†

2, j p̃†
0,2

∣∣∣L1,0
(
z1,i p̃0,i + z2,i p̃0,2

)〉
(6.53)

=z†
1, j

〈
p̃†

0,1

∣∣∣L1,0p̃0,1

〉
︸ ︷︷ ︸

=1

z1,i + z†
1, j

〈
p̃†

0,1

∣∣∣L1,0p̃0,2

〉
︸ ︷︷ ︸

=0

z2,i

+ z†
2, j

〈
p̃†

0,2

∣∣∣L1,0p̃0,1

〉
︸ ︷︷ ︸

=0

z1,i + z†
2, j

〈
p̃†

0,2

∣∣∣L1,0p̃0,2

〉
︸ ︷︷ ︸

=1

z2,i (6.54)

=z†
1, j z1,i + z†

2, j z2,i = z†
j

H
zi = δi , j (6.55)

holds.

The computed linear combinations together with the corresponding eigenvalue corrections
yield a solvable right-hand side when reintroduced into the eigenvector correction determining
equation (6.12):

L0,0p̃1,i =−L0,1p̂0,i −ω1,iL1,0p̂0,i . (6.56)

This equation is solvable because the auxiliary eigenvalue problem guarantees that the right-hand
side is orthogonal to the two-dimensional adjoint eigenspace for both branches i = 1 and i = 2.
Again a tilde indicates ambiguity. This time, the computed eigenvector corrections p̃1,i are not
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unique. This is because by definition p̂0,1 and p̂0,2 span the kernel of L0,0. Hence, if p̃1,i is a solu-
tion to (6.56), so is p̂1,i = p̃1,i+γ1,i ,1p̂0,1+γ1,i ,2p̂0,2 ∀γ1,i , j ∈C. In the case of simple eigenvalues, this
ambiguity was tackled by normalization. However, in the twofold degenerate, semi-simple case,
there are two not one free constants to be determined. In addition to a normalization condition,
a second condition is required to fully determine p̂1,i . This second condition is the solvability of
the second-order equation. In contrast to the normalization condition, it is absolutely necessary
to account for this equation.

The unfolded equations

At second order the equation reads:

L0,0p̂2,i =−
[
L0,1p̂1,i +L0,2p̂0,i +ω1,iL1,0p̂1,i +ω1,iL1,1p̂0,i +ω2

1,iL2,0p̂0,i

]
−ω2,iL1,0p̂0,i (6.57)

which can be rearranged to

L0,0p̂2,i =−
[
L0,1p̃1,i +L0,2p̂0,i +ω1,iL1,0p̃1,i +ω1,iL1,1p̂0,i +ω2

1,iL2,0p̂0,i

]
︸ ︷︷ ︸

:=r̃2,i

−ω2,iL1,0p̂0,i

− [L0,1 +ω1,iL1,0
][

γ1,i ,1p̂0,1 +γ1,i ,2p̂0,2
]

. (6.58)

Note that r̃2,i is formed from p̂0,i and p̃0,i analogously to r2 in the simple case (see Eq. (6.13)).
Solvability is given if the inner product of the right-hand side with p̂†

0, j vanishes simultaneously
for j = 1 and j = 2:

0 =
〈

p̂†
0, j

∣∣∣r̃2,i

〉
+ω2,i

〈
p̂†

0, j

∣∣∣L1,0p̂0,i

〉
+γi ,1

〈
p̂†

0, j

∣∣∣L0,1p̂0,1

〉
+γ1,i ,1ω1,i

〈
p̂†

0, j

∣∣∣L1,0p̂0,1

〉
+γi ,2

〈
p̂†

0, j

∣∣∣L0,1p̂0,2

〉
+γ1,i ,2ω1,i

〈
p̂†

0, j

∣∣∣L1,0p̂0,2

〉
. (6.59)

Because of the biorthonormalization
〈

p̂†
0, j

∣∣∣L1,0p̂0,i

〉
= δi , j . Moreover, p̂0,i and p̂†

0, j are the spe-
cialized basis vectors that diagonalize the auxiliary eigenvalue problem (6.52). Hence,〈

p̂†
0, j

∣∣∣L0,1p̂0,i

〉
=−ω1,iδi , j . Without loss of generality, it can be assumed that i = 1. Setting j to 2

then reduces (6.59) to

0 =
〈

p̂†
0,2

∣∣∣r̃2,1

〉
−γ1,1,2ω1,2 +γ1,1,2ω1,1. (6.60)

Provided that the first order equation has been solved already, there is no unknown except for γ1,1,2

in (6.60). Solving for the unknown coefficient yields

γ1,1,2 =
〈

p̂†
0, j

∣∣∣r̃2,i

〉
ω1,2 −ω1,1

. (6.61)

Note that this is a cross-branch relation because the first-order eigenvalue sensitivity ω1,2 from
branch 2 is needed to determine the coefficient γ1,1,2 from branch 1.
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On the other hand, setting i = 1 and j = 1 results in

0 =
〈

p̂†
0,1

∣∣∣r̃2,1

〉
+ω2,1−γ1,1,1ω1,1 +γ1,1,1ω1,1︸ ︷︷ ︸

=0

. (6.62)

It allows for computing the second-order eigenvalue sensitivity for branch 1:

ω2,1 =−
〈

p̂†
0,1

∣∣∣r̃2,1

〉
. (6.63)

No condition for γ1,1,1 has been obtained. However, the normalization strategies discussed in
Sec. 6.2 can be used to determine it. Equivalent results are obtained for branch 2. Moreover, the
scheme repeats at each order k > 1. This is because the eigenvector determining equation at kth
order can be written as

L0,0p̂k,i =−r̃k,i −ωkL1,0p̂0,i −
[L0,1 +ω1,iL1,0

][
γk−1,i ,1p̂0,1 +γk−1,i ,2p̂0,2

]
. (6.64)

This result can be readily obtained from the definition of rk in Eq. (6.13).

For i 6= j a cross-branch relation determines the content of p̂0, j in p̂k−1,i

γk−1,i , j =
〈

p̂†
0, j

∣∣∣r̃k,i

〉
ω1, j −ω1,i

, (6.65)

while the remaining solvability condition determines the kth-order eigenvalue sensitivity

ωk,i =−
〈

p̂†
0,i

∣∣∣r̃k,i

〉
. (6.66)

Pseudocode for a degenerate algorithm

Algorithm 6.4 sketches an implementation of a twofold degenerate algorithm assuming first-order
splits. The algorithm assumes that the computed but not specialized bases p̃0,1, p̃0,2 and p̃†

0,1, p̃†
0,2

are already biorthonormalized. While the correct determination of p̂k,i requires the computation
of γk,i , j , γk,i , j is obtained at order k +1. Therefore, the algorithm returns eigenvalue sensitivities
ωk,i up to order N but the mode shape sensitivities only up to order N −1.

Splittings at orders s 6= 1

The theory can be generalized to cases where the split is not revealed at first order. In these cases
auxiliary eigenvalue problems will arise at higher orders until their solutions yield two distinct
eigenvalues and splitting is, thus, detected. The procedure is then almost identical to that pre-
sented for a first-order split. The main difference will be that the contribution from the adjoint
eigenfunction p̂†

0, j from the cross branch j to the eigenvector sensitivity p̂k,i of the branch i will
be determined at much higher orders. More precisely, if s is the order at which the splitting was
revealed, then the cross coefficients are determined by

γk−s,i , j =
〈

p̂†
0, j

∣∣∣r̃k,i

〉
ωs, j −ωs,i

. (6.67)
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Algorithm 6.4: Twofold degenerate perturbation theory assuming a first order-split. The algorithm
also assumes that direct and adjoint eigenvectors are already biorthogonalized, i.e., p†

0, jL1,0p0,i =
δi , j .

1: function PERTURB2(Lm,n , p0,1, p0,2, p†
0,1, p†

0,2, N )

2: X←−
〈

p†
0,1

∣∣∣L0,1p0,1

〉 〈
p†

0,1

∣∣∣L0,1p0,2

〉〈
p†

0,2

∣∣∣L0,1p0,1

〉 〈
p†

0,2

∣∣∣L0,1p0,2

〉
3: Ω,Z,Z† ← EIG(X)
4: biorthonormalize coefficients zi , j such that Z†H

Z= I
5:

[
p0,1 p0,2

]← [
p0,1 p0,2

]
Z

6:
[

p†
0,1 p†

0,2

]
←

[
p†

0,1 p†
0,2

]
Z†

7: ω1,1 ← [Ω]1,1

8: ω1,2 ← [Ω]2,2

9: for i ← 1,2 do
10: p1,i ←SOLVE(L0,0,−L0,1p0,i −ω1,iL1,0p0,i )
11: end for
12: for k ← 2, . . . , N do
13: for i ← 1,2 do
14: j ← 2 if i = 1 else j ← 1
15: assemble rk,i . see Alg. 6.2 for how to do it
16: γk−1,i , j ←

〈
p0, j

∣∣rk,i
〉

/(ω1, j −ω1,i )
17: pk−1,i ← pk−1,i +γk−1,i , j p0, j

18: rk,i ← rk,i +γk−1,i , j
(
L0,1 +ω1,iL1,0

)
p0, j

19: ωk,i ←−
〈

p†
0,i

∣∣∣rk,i

〉
20: pk,i ←SOLVE(L0,0,−rk,i −ωk,iL1,0p0,i )
21: end for
22: end for
23: return ω1,1, . . . ,ωN ,1,ω1,2, . . . ,ωN ,2, p0,1, . . . , pN−1,1, p0,2, . . . , pN−1,2

24: end function

For the special case of non-degeneracy-breaking perturbations, only the first-order auxiliary
eigenvalue problem needs to be solved. The two basis vectors p̂0,i and p̂†

0, j will diagonalize the
auxiliary eigenvalue problems at each order. Thus, after solving the first-order auxiliary eigenvalue
problem the branches can be treated as if there would be simple. For instance, if the considered
system features a reflection symmetry and a discrete rotational symmetry, the unperturbed basis
vectors could be chosen to be Bloch waves with Bloch wavenumbers of opposite sign (Eq. (5.33)).
If the perturbation does not break the symmetries, then these vectors are also the basis vectors
that diagonalize the auxiliary eigenvalue problem (6.52). This is because by assumption all Tay-
lor coefficients Lm,n of the operator family L(z;ε) will feature the same symmetry properties as
the unperturbed problem (otherwise the perturbation would be symmetry breaking). Because ap-
plying a discrete rotation operator to a Bloch wave will result in a Bloch wave of the same Bloch
wavenumber (Eq. (5.22)) and Bloch waves of independent Bloch wavenumbers are pairwise or-

122



CHAPTER 6. NONLINEAR EIGENVALUE PROBLEMS II: PERTURBATION THEORY

pattern A

{0}

pattern B

{0,4,8,12}

pattern C

{0,2,5,9}

Figure 6.9: Considered perturbation patterns

thogonal (Eq. (5.30)),

X=


〈
p̂†

0,b̃

∣∣∣L0,1p̂0,b̃

〉 〈
p̂†

0,b̃

∣∣∣L0,1p̂0,−̃b

〉
〈

p̂†

0,−̃b

∣∣∣L0,1p̂0,b̃

〉 〈
p̂†

0,−b̃

∣∣∣L0,1p̂0,−̃b

〉 (6.68)

will be diagonal. Forming r̃k,b̃ at higher orders for the two (Bloch-wave) branches will then result
in Bloch waves of the same Bloch wavenumber. Due to orthogonality of the Bloch waves, the
cross-branch relation will satisfy

γk−1,b̃,−̃b =

〈
p̂†

0,−̃b

∣∣∣r̃k,b̃

〉
ω1,−̃b −ω1,b̃

= 0, (6.69)

although, ω1,−̃b −ω1,b̃ = 0. Thus, there will not be any cross-branch influence after the degenerate
space has been decomposed into Bloch waves. This viewpoint could also be proven by consider-
ing the two surrogate systems LBloch(z;ε,b) and LBloch(z;ε,−b) because they feature independent
simple eigenvalue trajectories that evolve identically.

6.7 Symmetry breaking in the MICCA combustor

A main motivation for the introduction of perturbation theory in this work was to utilize the ben-
efits of the Bloch-wave theory discussed in Chap. 5 even if the system is slightly asymmetric. This
section studies perturbations of the MICCA model which may break its discrete rotational symme-
try. The section, therefore, demonstrates how to combine Bloch-wave and perturbation theory.

Symmetry breaking in annular combustors has been investigated recently in various experi-
mental and theoretical studies, see, e.g., [145, 114, 146, 147]. The perturbation theory presented
in this section will prove as a powerful tool to extend the understanding of symmetry breaking in
such combustors.

An increase of the gains of a subset of the 16 flame transfer functions is considered as a per-
turbation. Three different patterns are studied. They are illustrated in Fig. 6.9. Pattern A affects
the gain of one flame transfer function only. It will, thus, break the discrete rotational symmetry
B of the system, i.e., B reduces to B = 1. Pattern B identically modifies the flame transfer func-
tions of four burners which are equidistantly distributed along the circumference. This pattern
will, therefore, reduce the degree of discrete rotational symmetry from B = 16 to B = 4. Pattern C
also modifies four flame transfer functions; however, not only the discrete rotational symmetry of
the system will be completely lost (B = 1) but there also will not be any reflection symmetry.
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To implement the perturbation, a factor ε is multiplied to each of the affected flame transfer
functions:

L(z;ε) =K+ zB+ z2M+ ∑
i∉pattern

FTF(z)Fi +ε
∑

i∈pattern
FTF(z)Fi . (6.70)

Here Fi denotes the discretization matrix from the flame response of the 16 burners i = 0, . . . ,15.
Setting ε0 = 1 is equivalent to the unperturbed MICCA model and varying ε will then simultane-
ously modify the flame transfer functions of the considered burners.

Figure 6.10 shows the exact evolution of the two eigenvalue branches together with results ob-
tained from power series truncated at first, second, fifth, and tenth order when applying the three
patterns to the the modes #M0, #M1, and #M2. Mode #M0 is not degenerate. Hence, there is only
one eigenvalue branch. Non-degenerate perturbation theory is used to approximate its evolution.
The characteristics are the same as those found for the Rijke-tube model in Sec. 6.4: for all three
patterns the plots indicate the convergence limit at ε≈ 1. Up to this value the truncated power se-
ries yield better results, the higher the truncation order is. For higher values of ε the power series
significantly diverge from the exact trajectory of the eigenvalue. Note that the inclination of the
trajectories at ε= ε0 is identical for all three considered patterns. This is not a coincidence, as will
be proven at the end of this section. However, the patterns B and C have nearly identical effects
on the eigenvalue of mode #M0. The reason for this is unclear but seems to be a peculiarity of this
specific configuration.

Mode #M1 is a first order azimuthal mode and, thus, twofold degenerate. The semi-simple
degenerate perturbation theory is correctly predicting the quality of a possible mode unfolding:
application of pattern A to #M1 results in two independent branches. One is deviating the far-
ther from the baseline eigenvalue, the stronger the perturbation is. The other branch is constant
and remains at the baseline eigenvalue independently of variations of ε. The latter branch arises
because a nodal line of the velocity fluctuation – the derivative of the mode shape – is aligning
with the perturbed burner. Hence, the flame transfer function is not excited and this flame is
not contributing to the mode. For symmetry reasons the remaining branch must feature a nodal
line which is aligned with the burner. The derivative of the mode shape will, therefore, be ex-
tremal and an effect of the burner on the eigenfrequency will result. When applying pattern B to
mode #M1 the degree of discrete rotational symmetry is reduced to B = 4. A first order azimuthal
mode, consequently, remains degenerate. This is because the azimuthal mode order m satisfies
(2m) mod B = 2 mod 4 = 2 6= 0 (see the comments on Bloch waves and azimuthal mode orders in
Sec. 5.1 and Eq. (5.34)). Pattern C completely breaks the symmetries of the system and it is impos-
sible for the nodal line to align with all four perturbed burners simultaneously. Thus, the mode
unfolds into two branches that evolve independently as ε is varied. As for #M0, the inclination of
the trajectories at ε= ε0 is independent of the applied patterns. Note that the convergence limits
of the two branches are different.

Equivalently to mode #M1, pattern A triggers mode #M2 to split into a varying and a constant
branch. Again the reason is that a nodal line aligns with the single perturbed burner. However,
#M2 is a second-order azimuthal mode and, therefore, features two nodal lines that are mutually
perpendicular. Thus, when pattern B is applied, the two nodal lines can align with all four per-
turbed burners. As a consequence, one branch will remain constant again while the other will be
affected by the perturbation. This loss of degeneracy is due to the reduction of the degree of dis-
crete rotational symmetry ((2m) mod B = 4 mod 4 = 0). Pattern C does not allow the nodal lines
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A B C

#M0

#M1

#M2

Figure 6.10: Exact and approximated eigenvalue trajectories of the modes #M0, #M1, and #M2
when applying the patterns A, B, and C. The modes #M1 and #M2 are semi-simple degenerate
and, thus, feature two branches. The x-axes and y-axes denote the real and the imaginary part of
ω/2π, respectively. The exact evolution is highlighted by black lines with -markers (branch I) and
■-markers (branch II). The approximations are indicated by orange lines with +-markers (branch
I) and blue lines with ×-markers (branch II) of different shading. The markers denote values ε of
1, 2, 3, 4, and 5. No + and × markers are plotted for ε = ε0 = 1. Degenerate perturbation theory
correctly predicts a possible mode unfolding. Up to a case-dependent limit value the results from
perturbation theory agree the better with the exact trajectory the higher the perturbation order is.
Note that the inclination of the first order prediction is independent of the perturbation patterns.
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to align with all burners simultaneously. Note that exactly as with the modes #M0 and #M1, the
inclinations of the trajectories at ε= ε0 do not depend on the applied patterns.

Padé approximants

Because the power series coefficients ωk,1 and ωk,2 of the two branches are independent, obtaining
Padé approximants from them is not different from the simple case. Indeed, using the tenth-order
coefficient to compute diagonal Padé approximants yields significantly better results. They are
shown in Fig. 6.11. For all tested cases the approximants agree well with the exact evolution of the
complex eigenfrequency. Considering that the gain of the perturbed burners is increased up to
a factor of 5, the results definitely satisfy the requirements encountered in practical applications.
From an academic perspective it remains an interesting question up to which limit accurate results
might be obtained from Padé approximation. This is, however, beyond the scope of the thesis.

The inclination rule

For all considered cases the inclination of the trajectories at ε= ε0 is only dependent on the mode
but not the chosen perturbation pattern. The reason for this is the high symmetry of the combus-
tor. The discrete rotational symmetry and the reflection symmetry allow to span the direct and
the adjoint unperturbed degenerate eigenspace by two Bloch wavenumbers of opposite sign. In
general, the entries of the auxiliary eigenvalue problem (6.52) are given by

〈
p̂†

0,β̃

∣∣∣∣∣∣∣
∑

l∈pat.
FTF(z)Fl︸ ︷︷ ︸

Ql

p̂0,b̃

〉
= ∑

l∈pat.

〈
p̂†

0,β̃

∣∣∣∣Ql p̂0,b̃

〉
= ∑

l∈pat.

〈
p̂†

0,β̃
exp(iβ∆ϕl )

∣∣∣∣Q0p̂0,b̃ exp(ib∆ϕl )

〉
(6.71)

=
〈

p̂†
0,β̃

∣∣∣∣Q0p̂0,b̃

〉 ∑
l∈pat.

exp(i[b −β]∆ϕl ). (6.72)

These equations utilize Bloch periodicity and the fact that the perturbed burners are manipulated
in the same manner. There is only one branch in case of a simple eigenvalue and, hence, b = β.
This implies 〈

p̂†
0,β̃

∣∣∣∣Q0p̂0,b̃

〉 ∑
l∈pat.

exp(i[b −β]∆ϕl ) =
〈

p̂†
0,β̃

∣∣∣∣Q0p̂0,b̃

〉 ∑
l∈pat.

1. (6.73)

The first order sensitivity will, thus, feature the phase angle of

〈
p̂†

0,β̃

∣∣∣∣Q0p̂0,b̃

〉
independently of

the applied perturbation pattern. It is the phase angle of the first-order sensitivity that determines
the inclination of the eigenvalue trajectory at ε= ε0. Consequently, the inclination is independent
of the applied pattern. In the semi-simple degenerate case the auxiliary matrix X becomes

X=


〈
p̂†

0,b̃

∣∣∣L0,1p̂0,b̃

〉 〈
p̂†

0,b̃

∣∣∣L0,1p̂0,−̃b

〉
〈

p̂†

0,−̃b

∣∣∣L0,1p̂0,b̃

〉 〈
p̂†

0,−̃b

∣∣∣L0,1p̂0,−̃b

〉
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#M0

#M1

#M2

Figure 6.11: The symmetry breaking study of the MICCA model using Padé approximation. The
axes, markers, and colors correspond to those in Fig. 6.10. The Padé approach clearly satisfies the
requirements of a fast practical design tool.
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=
〈

p̂†
0,β̃

∣∣∣∣Q0p̂0,b̃

〉 ∑
l∈pat.

[
1 exp(−i2b∆ϕl )

exp(i2b∆ϕl ) 1

]
︸ ︷︷ ︸

:=Ξ

. (6.74)

Ξ is a Hermitian matrix. Its eigenvalues are, thus, real. They feature equal phases modulo a phase
shift of π due to possibly different signs of the eigenvalues. X is a multiple of Ξ by the factor of〈

p̂†
0,b̃

∣∣∣Q0p̂0,b̃

〉
. For this reason, the eigenvalues of X also share the phase of

〈
p̂†

0,b̃

∣∣∣Q0p̂0,b̃

〉
. An-

logous to the simple case, this phase is independent of the applied perturbation pattern and de-
termines the inclination of the eigenvalue trajectories at ε= ε0. This concludes the proof that the
inclination is only dependent on the mode but not the deployed pattern. The Bloch wavenumber
can be chosen to the azimuthal mode order of the considered mode. Hence,

∑
n∈per. exp(i2bn 2π

N )
is the second coefficient of the Fourier transform of the burner arrangement pattern. Thus, the
above first-order splitting theory has analogies with the so called C2n-criterion presented in [114].

The inclination rule can be specialized to design a perturbation such that the two unfolding
eigenvalues will evolve in opposite directions. This is the case when not only the gains of some
burners are increased but also the gains of the other burners are decreased such that on average
there is no change in the gain of all burners. The problem then reads

L(z,ε) =W (z)+ε
∑

l∈pat.
Ql +

(
B +Npert.

B
−ε

Npert.

B

) ∑
l∉pat.

Ql . (6.75)

Where W is the part of L unaffected by the perturbation – i.e., the wave operator – Npert is the
number of burners in the set pert. and B the degree of rotational symmetry. The auxiliary matrix
then amounts to

X=
〈

p̂†
0,β̃

∣∣∣∣Q0p̂0,b̃

〉[
0 1
1 0

]
︸ ︷︷ ︸

Ξ

. (6.76)

The eigenvalues of Ξ are 1 and −1. First order sensitivity analysis will, therefore, predict a split of
a twofold semi-simple degenerate eigenvalue in opposite directions in the complex plane. This
means that such a perturbation would not further stabilize a combustor because if the imaginary
part of one branch decreases, the imaginary part of the other part increases by the same amount.
This complements the findings of [148]. This study considered a combustor with two types of
flames but constant global power. It was shown that, in a weakly coupled, linear limit, when con-
sidering arbitrary patterns to arrange the two flame types, the most stable configuration is the one
that consists of a single type of flames. Figure 6.12 shows the eigenvalue trajectories if perturba-
tion pattern C is applied but the gain of the 12 originally unchanged burners is decreased such
that the average gain of all burners remains constant. Indeed, the first order sensitivity predicts
a split of the eigenvalue in opposite directions. However, for very large perturbations ε = 5 both
branches feature imaginary parts which are less than the imaginary part of the unperturbed eigen-
value. This cannot be predicted by a first order theory. As compared to the previous cases also the
tenth-order diagonal Padé approximants do not accurately predict the exact trajectories. This is
because the considered perturbation is stronger as it also decreases the gain of some burners to
keep the average gain constant. Higher order Padé approximants may yield better results but this
is beyond the scope of the thesis and left for future work.
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Figure 6.12: Eigenvalue trajectories of mode #M1 when pattern C is applied but the gain of the
remaining burners is decreased such that on average there is no change in the gain of all burners.
As predicted the eigenvalues split at first order in opposite directions but with equal strength. For
small perturbations it is, thus, impossible to stabilize a combustor by such a perturbation. This
generalizes the statement given in [148]. However, for strong perturbations the eigenvalue drifts
do not adhere to this linear rule. Indeed, for the shown test case at ε = 5, the imaginary part of
both trajectories is less than the imaginary part of the unperturbed eigenvalue. This behavior can
be captured by high-order perturbation theory. In contrast to the cases studied before, the tenth-
order Padé approximant is not fully capturing the exact trajectory. This can be attributed to the
stronger perturbation as now all burners are perturbed. Surely, larger order would improve the
approximant. However, this is not relevant for practical purposes.
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6.8 Conclusions

Adjoint-based perturbation theory to approximate the solutions of the thermoacoustic eigenvalue
problem has been presented. It was discussed how to implement the theory into a modern nu-
merical framework. As exemplified with the Rijke-tube model, the theory can be used to study
perturbations of arbitrary modeling paramaters. If singularities in the dependence of the eigen-
frequency on these parameters limit the convergence of the power series, Padé approximations
may serve as a remedy.

The perturbation theory also accurately predicts the evolution of eigenvalues that split due to
a loss of symmetry. This was demonstrated for the MICCA model. When combined with a Bloch-
wave approach to compute solutions for the symmetric baseline configuration, the theory consti-
tutes a powerful tool for efficient computation of thermoacoustic modes in annular combustors.
Combination with Bloch-wave theory also allows to establish fundamental insight in how eigen-
values split in the course of symmetry loss. For instance, the presented inclination rule clarifies,
how the spatial pattern of a perturbation affects the combustor stability at first order.

Although the discussion covered both simple and semi-simple eigenvalues, the theory is not
suited for expansions starting from defective eigenvalues. This aspect will be further discussed in
Chap. 10. Nevertheless, there is a multitude of applications for perturbation theory. These will be
discussed in the next chapters.
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Chapter 7

Computation of limit cycles in annular
combustors

The previous chapters focused on solving the thermoacoustic Helmholtz equation. This equation
comprises only linear operators and the eigenvalue problem arising from it is linear with respect
to the mode shape, i.e., the complex pressure fluctuation amplitude. While such linear models
estimate the frequency of the mode to an adequate degree [37], they cannot model any nonlinear
saturation effects. This issue is addressed by flame describing functions. In comparison to flame
transfer functions, flame describing functions also account for the amplitude of the mode when
modeling the flame response [37, 38]:

q̂

q̂0
= FDF(ω, a)

ûref

u0
. (7.1)

The ratio a := u′
ref

u0
is called the amplitude level. Because u′

ref ∝ ∇p̂
∣∣
ref ·~nref, the eigenvalue problem

at hand will then also be nonlinear with respect to the eigenvector. This will be denoted as:

N (ω, p̂) = 0. (7.2)

This chapter discusses how to efficiently solve the eigenvalue problem (7.2) using both Bloch-wave
and perturbation theory. The content has been partly published in [149].

7.1 Introduction to the computations of limit-cycle amplitudes

In the case of a single burner, the eigenvalue problem (7.2) is “almost” linear in p̂. This is be-
cause for a given amplitude level the flame describing functions reduce to flame transfer functions.
Therefore, a thermoacoustic Helmholtz equation

L(ω, a)p̂ = 0 (7.3)
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Figure 7.1: Illustration of amplitude and phase of spinning and standing modes. While spinning
modes feature an equal amplitude and a different phase in the various unit cells, the amplitudes
in the unit cells of standing modes vary and are perfectly in phase or antiphase to each other. The
examples shown here are first order azimuthal modes.

can be solved where the amplitude level enters the problem as a single parameter. Subsequent
normalization of p̂ such that

uref

u0
=

∣∣∣∣∣ i ∇p̂
∣∣
~xref

·~nref

u0ρ0ω

∣∣∣∣∣= a (7.4)

then yields a solution to Eq. (7.2). If an amplitude level aLC is found such that the growth rate of
the corresponding mode equals the dissipative losses α of the system, i.e.,

− imag(ω(aLC)) =α, (7.5)

then the limit-cycle amplitude is determined. This approach has been successfully deployed for
network models [150] and Helmholtz solvers [49] to compute limit cycles in axial burners. Re-
cently, Laera et al. generalized this idea to compute limit-cycle amplitudes in annular combustors
[62]. In annular combustors two types of limit cycles are distinguished: spinning and standing
modes. They are illustrated in Fig. 7.1.

Spinning modes feature equal amplitudes in each unit cell. However, along the circumference
their phase increases from 0 to a multiple of 2π. Because the amplitude level at each burner is
identical, parametrization of the problem using a single amplitude level is possible. The problem
can be approached as in the single-burner case. Standing modes are more involved. All unit cells
either have the same phase as the reference cell or differ from this phase by π. Moreover, the
amplitude is varying along the circumference. In order to find a limit cycle, multiple amplitude
level parameters for the various burners must, thus, be considered simultaneously.

The choice of the dissipation rate α depends on the deployed model. If a detailed model is
used that accounts for all dissipative losses, e.g., those at the boundaries or due to viscous losses
inside the considered domain, α is 0. On the other hand, if these effects are not fully captured by
the model, α must be adapted accordingly. In any case, an explicit relation ω = ω(a) is needed
to determine the limit-cycle amplitude. In the aforementioned studies this relation has been ob-
tained by repeatedly solving Eq. (7.3) for various amplitude levels a. The numerical costs for this
approach are high. It is natural to consider perturbation theory as a means to accelerate the com-
putation by obtaining an explicit relation for ω = ω(a). Additionally, for spinning-mode limit cy-
cles in annular combustors, Bloch-wave theory can ease the computations. Both will be discussed
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in the next section. The computation of standing-mode limit cycles remains special. This is be-
cause of the different amplitude levels at the various burners, the discrete rotational symmetry will
be broken. Moreover, a multi-parameter perturbation theory would be needed to account for the
amplitude levels of the individual burners. Remarks at the end of the chapter will further discuss
these aspects.

Note that a limit cycle satisfying the condition (7.5) does not necessarily manifest itself in real-
ity. This is because, the limit cycle might be unstable, i.e., small perturbations of this system might
cause saturation at a different state. However, given a system that features a discrete rotational
symmetry, spinning-mode limit cycles are always stable if they exist, as was recently proven by
Ghirado et al. [151].

7.2 Efficient computation of spinning-mode limit cycles

This section considers spinning-mode limit cycles. Such cycles feature a discrete rotational sym-
metry and are, therefore, amenable to a Bloch-wave approach. The unit-cell surrogate systems
are essentially single burner systems. For this reason, the perturbation theory that will be used to
compute limit cycles of these systems also applies to axial burners featuring only a single flame.
Given an analytic flame describing function FDF(ω, a), a procedure to compute the limit-cycle
amplitude is straightforward:

1. Simplify the eigenvalue problem by means of Bloch’s theorem.

2. Solve it for some starting amplitude level a0 to obtain the unperturbed solution ω0 and p̂0.

3. Compute the coefficients of the perturbation series ω=∑N
n=0 ωn(∆a)n .

4. Approximate the amplitude level, aLC ≈ a0 +Re(∆aLC) of the limit cycle by finding the solu-
tion with the smallest real part of Im

(∑N
n=0 ωn (∆a)n

)=α.

5. If desired, approximate the limit-cycle eigenfrequency by ωLC ≈∑N
n=0 ωn (∆aLC)n .

6. Solve the eigenvalue problem for the new amplitude level aLC. If the growth rate is not van-
ishing, repeat steps 2–5.

These steps will be referred to as the direct method, because they assume the explicit availability
of an analytic function FDF(ω, a). The first step accelerates the computations by Bloch-wave the-
ory. Note that in a symmetric combustor, only degenerate modes can feature spinning limit cycles,
because, by reflection, a clockwise spinning mode can be converted into a counter-clockwise spin-
ning one (see Sec. 5.4). The Bloch waves which describe the corresponding degenerate eigenspace
are such clockwise and counter-clockwise spinning modes. This is because they are Bloch waves
of opposite Bloch wavenumbers p̂b̃ and p̂−̃b (see Eq. (5.33)) and are due to the Bloch-periodicity
(Eq. (5.4)) extending from the unit cell with increasing and decreasing phase, respectively. To avoid
repeatedly solving the eigenvalue problem (7.3), a polynomial approximation for ω=ω(a) is com-
puted in step 3. While increasing the order of the polynomial might improve its accuracy, the
number of solutions of the limit-cycle condition considered in step 4 corresponds to this order. All
found solutions are candidates for a limit-cycle amplitude. Because the amplitude level is a real
number, it is natural to choose the solution closest to the real axis. On the other hand, there is the
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risk that solutions do not lie inside the convergence radius of the power series expansion. Thus, a
solution that is close to the expansion point a0 is preferable. Also, to get a consistent estimate, the
update ∆a should be small. Because a change in the amplitude level is a small perturbation for
physical reasons, it can be expected that there exists one solution satisfying all these requirements
(smallest imaginary part, within the convergence radius, smallest real part). The method explicitly
uses the smallest real part to aid convergence1 in case it needs to be iterated (step 6). If needed,
the limit-cycle frequency can be computed in the optional step 5.

Flame describing functions are typically obtained from experimental data. Conversion of this
data into a representation that is parametrized by ω and a and analytic in both of these parame-
ters could be a complicated task (see Sec. 3.5). As an alternative, the flame response itself can be
considered as the perturbation parameter ε. This can be phrased as follows

L(ω; a) =W (ω)+FDF(ω, a)︸ ︷︷ ︸
=ε

. (7.6)

Perturbation theory is then used to relate the eigenfrequency to the flame response ω=ω(ε), find
the flame response which satisfies the limit-cycle condition (7.5), and then compute a limit-cycle
amplitude that corresponds to this flame response. An alternative procedure to compute the limit-
cycle amplitudes, therefore, is:

1. Simplify the eigenvalue problem by means of Bloch’s theorem.

2. Solve it for some starting amplitude level a0 to obtain the unperturbed solution ω0 and p̂0.

3. Compute the coefficients of the perturbation series ω=∑N
n=0 ωn(∆ε)n .

4. Approximate the flame response εLC ≈ ε0 +∆εLC of the limit cycle by solving
Im

(∑N
n=0 ωn (∆ε)n

)=α under the restriction that the corresponding amplitude level is a real
parameter.

5. Approximate the limit-cycle eigenfrequency by ωLC ≈∑N
n=0 ωn(∆εLC)n .

6. Approximate the limit-cycle amplitude by solving εLC = FDF(ωLC, aLC).

7. Solve the eigenvalue problem for the new amplitude level aLC. If the growth rate does not
vanish, repeat steps 2–6.

Because the amplitude level only implicitly occurs in these steps, this procedure is referred to as
the indirect method. It is largely identical to the direct method. The key difference is the implicit
usage of the amplitude level. Provided it exists, the restriction of finding a real-valued limit cycle
is necessary to find a unique solution in step 4. Even if a limit-cycle amplitude for which the
eigenvalue problem (7.3) features a solution exists, the equation in step 4 might not be solvable.
This is due to the truncation error of the truncated power series expansion. Solving the equations
in step 4 of the direct method and step 4 in the indirect method should, therefore, be conducted
with a least squares solver.

Also note that both methods might benefit from a Padé approach. This is not only for con-
vergence reasons but for the reduction of possible solutions to the limit-cycle condition. A Padé
approximant will have no more solutions then the order of the numerator polynomial.

1This regards convergence of the iteration, not the power series expansion.
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Figure 7.2: Scaling function s(a) to model amplitude-level dependence of a FDF s(a) = 1+1.5a −
7.5a2 +5a3.

7.3 Application to MICCA

This section applies the two methods to the MICCA model. To create an analytic flame describing
function, the FTF is multiplied by a scaling function s(a). This scaling function is given by the
cubic polynomial s(a) = 1+1.5a−7.5a2+5a3. It is shown in Fig. 7.2. The complete flame describing
function reads

FDF(ω, a) = FTF(ω)s(a). (7.7)

Note that FDF(ω, a) → FTF(ω) as a → 0 because s(0) = 1. This is consistent with the idea that
flame transfer functions are valid for small amplitude levels. Because the describing function is
separable in ω and a, it inherits analyticity from the two constituting functions FTF and s. More
realistic flame describing functions might be generated from experiments (e.g., [62]) or numerical
simulations (e.g., [152]). However, this is beyond the scope of the thesis.

The chosen flame describing function has the advantage that the constraint of having real-
valued amplitude levels a in step 4 of the indirect method reduces to:

imag(s) = imag

(
ε0 +∆εLC

FTF(
∑N

m=1ωm(δεLC)m)

)
= 0. (7.8)

The discussion focuses on mode #M1. Figure 7.3 shows the eigenfrequency ω as a function
of the amplitude level a for this test case using the direct and the indirect method. As a base-
line solution, the eigenmode obtained for a0 = 0.5 is considered. In addition to twentieth-order
power-series approximation, results based on diagonal Padé approximants of the same order are
also shown. In comparison to the truncated power series, the Padé approximant yields a better
estimate of the exact frequency and growth rate over a wider range of amplitude levels. However,
considering the range of encountered growth rates, both approximations yield good predictions
of the amplitude level closest to a0 that corresponds to a growth rate in this range. For the indirect
method, both Taylor and Padé approximations perform equally well on this task. In any case, the
results indicate that both the direct and the indirect method do not need to be iterated to obtain a
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Figure 7.3: Exact (black solid) dependence of frequency and growth rate of mode #M1 on the am-
plitude level compared to approximations expanded at a0 = 0.5 using the two methods with per-
turbation theory of twentieth order. For the direct method, conversion of the truncated power
series to diagonal Padé approximants (orange dashed) yields an approximation quality that is sat-
isfying over the considered range of amplitude levels (a ∈ [0,1]). On the contrary, the original
power series approximation (cyan solid) yields reasonable results only in an interval ranging from
about a = 0.2 to a = 0.8, indicating that the convergence radius of the power series is δ ≈ 0.3.
Note, however, that it covers nearly the entire range of encountered growth rates which is roughly
[−80s−1,0s−1] . Applying the indirect method for assumed losses in this range, the corresponding
amplitudes and oscillation frequencies are correctly computed using both truncated Taylor series
(green solid) and diagonal Padé approximants (yellow dashed). For the current test case, an itera-
tion of either of the methods is not necessary to compute the amplitude level of a limit cycle with
reasonable accuracy, i.e., it can be obtained by solving only one eigenvalue problem.

reasonable prediction of a limit-cycle amplitude. Of course, iteration might be necessary for other
configurations.

7.4 Conclusions

Computation of spinning-mode limit cycles in annular combustors can be significantly acceler-
ated by means of perturbation and Bloch-wave theory. This is possible because the amplitude
level at the various burners is identical and, thus, the problem can be solved by studying a sin-
gle perturbation parameter a. The presented approach, therefore, also applies to single-burner
configurations. The key savings are achieved because the number of repeated solutions to the
nonlinear eigenvalue problem can be reduced. Because standing modes feature various indepen-
dent amplitude levels, both perturbation theory and unit-cell computations as discussed in this
part are not possible for the standing-mode case. A possible remedy is a multi-parameter pertur-
bation theory. Together with other aspects of perturbation theory, this will be discussed in the next
part.
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More Applications of Perturbation
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Chapter 8

Nonlinear eigenvalue problems III:
solution algorithms

The perturbation theory presented in Part II requires a highly accurate baseline solution. Al-
though, fixed-point iterations like Nicoud’s method and the Picard iteration are able to compute
solutions of arbitrary accuracy, their convergence rate is slow. Thus, using them to find solutions
for the thermoacoustic Helmholtz equation at machine precision might outweigh possible com-
putational savings of a subsequently deployed perturbation method. Moreover, there is no guar-
antee that these methods find all eigenvalues inside a specified subdomain of the complex plane.
Indeed, for the Rijke-tube example some modes could not be found by these methods. This chap-
ter discusses how to use perturbation theory for both assessment and improvement of the conver-
gence properties of the fixed-point methods. This is possible because perturbation theory allows
for the computation of high-order derivatives of an eigenvalue ω with respect to some parameter
ε: the perturbation theory stipulated the power-series ansatz ω(ε) = ∑N

n=0 ωn(ε−ε0)n . Taking the
derivatives at ε0 yields

∂n

∂εn ω(ε0) = n!ωn (8.1)

which is only a variant of Taylor’s theorem. Perturbation theory, therefore, provides gradient in-
formation. Because of the generality of perturbation theory, gradients can be computed for eigen-
value problems that do not model a physical phenomenon. In particular, this applies to the eigen-
value problems that need to be solved at each iteration step of Nicoud’s fixed-point method and
the Picard iteration. The computed derivatives can then be used to study the convergence prop-
erties of the methods by means of Banach’s fixed point theorem. This will be the topic of the first
sections in this chapter. The computed derivatives are then also used to perform generalizations of
Newton’s method – so-called Householder methods – which are known to feature very fast conver-
gence rates. Finally, a combination of these methods with the contour-integration-based solution
algorithm presented in [130] is discussed that efficiently finds all eigenvalues of the thermoacous-
tic Helmholtz equation inside of a predefined region in the complex plane.
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8.1 Convergence of Nicoud’s iteration and its variant

As with all fixed-point iterations, the convergence of Nicoud’s fixed-point iteration can be ana-
lyzed in virtue of Banach’s fixed-point theorem. Nicoud et al. discussed this idea when presenting
the method for the first time [30]. However, Banach’s theorem requires the derivative of the fixed
point mapping f (ω). A quantity that was not explicitly computed in [30]. For this reason, the con-
vergence properties of the method were not further discussed in that publication. This section fills
this gap by showing how to compute the derivatives using perturbation theory.

Banach’s fixed-point theorem

A fixed-point ω of f is an attracting point if the absolute value of the first derivative of f at ω is less
than 1

| f ′(ω)| < 1, (8.2)

because then there is a neighborhood around the fixed-point where the absolute value of the
derivative is also less than 1 and hence the mapping f is a contraction in the vicinity of ω. In
virtue of Banach’s fixed-point theorem, the fixed-point can be found if the initial guess is suffi-
ciently close to the fixed-point. After solving for the adjoint solutions, perturbation theory offers a
formula for the calculation of the derivative of f .

Nicoud’s iteration

The fixed-point mapping underlying Nicoud’s iteration is implicitly defined by the eigenvalue
problem (4.15). To compute the derivative of f , also the adjoint eigenvalue problem needs to
be considered:

L†
Nic( f ;ω)p̃† =

([
0 KH +QH(ω)
−I CH

]
+ f

[
I 0

0 MH

])[
p̃†

I
p̃†

II

]
= 0 . (8.3)

The second line of this matrix-equation system is p̃†
I =

(
CH +ωMH)

p̃†
II. Multiplying this equation

by ω and substituting it into the first line then yields L†(ω)p̃†
II = 0. Hence, the adjoint eigenvectors

of the two problems are related by

p̃† =
[(
CH +ωMH)

p†

p†

]
. (8.4)

Now, using perturbation theory yields the derivative of f :

f ′ = d f

dω
=

〈
p̃†

∣∣∂ωLNicp̃
〉〈

p̃†
∣∣∂ f LNicp̃

〉 . (8.5)

Here, the numerator is

〈
p̃†

∣∣∣∂ωLNicp̃
〉
=

〈
p̃†

∣∣∣X′(ω)p̃
〉
=

[
p†H

(C+ωM) p†H
][

0 0

Q′(ω) 0

][
p
ωp

]
= p†H

Q′(ω)p (8.6)
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and the denominator can be computed as

〈
p̃†

∣∣∣∂ f LNicp̃
〉
=

〈
p̃†

∣∣∣Yp̃
〉
=

[
p†H

(C+ωM) p†H
][

I 0

0 M

][
p
ωp

]
= p†H

(C+2ωM) p . (8.7)

This finally yields

f ′(ω) = p†H
Q′(ω)p

p†H (C+2ωM) p
. (8.8)

Note that this formula computes the exact derivative of f at ω and not an approximation. It is
the key for the utilization of Banach’s fixed-point theorem.

The Picard iteration

The fixed-point map of the Picard iteration is defined by

LPic( f ;ω)p = (
K+ωC+Q(ω)+ f 2M

)
p . (8.9)

The derivative of the fixed-point mapping, thus, is

f ′(ω) = p†H
(Q′(ω)+C)p

p†H2ωMp
. (8.10)

The formulae (8.8) and (8.10) assess the convergence properties of a fixed-point of the respec-
tive fixed-point mappings. While these fixed-points are solutions to the discretized thermoacous-
tic Helmholtz equation (3.41), they are not necessarily attracting (see the examples below). Note
that for FEM discretizations of models featuring only sound-soft and sound-hard boundary con-
ditions, Nicoud’s algorithm and the Picard iteration feature identical derivatives f ′(ω). This is
because Eq. (8.8) and Eq. (8.10) only differ in the influence of the damping matrix C. Sound-hard
boundary conditions naturally arise from the finite element discretization and, therefore, do not
contribute to this matrix. On the other hand, sound-soft boundary conditions will result in some
entries in C. However, the corresponding entries in the solution vector p will be zero. Also note
that evaluating the formulae with the discretization matrices arising from the unit-cell computa-
tion will yield identical results, because all unit cells contribute identically to the two inner prod-
ucts in these equations. Their ratio is, therefore, the same if evaluated on one unit cell only.

Convergence rates

The computed derivatives also clarify the convergence rate of the methods. A sequence generated
in the vicinity of some fixed-point ω = f (ω) is said to feature a rate of convergence m if there is a
bound G > 0 such that for two consecutive iterates ω{n} and ω{n+1}

|ω{n+1} −ω| ≤G|ω{n} −ω|m (8.11)

holds. It can be shown that the rate of convergence m at which an iteration sequence approaches
a fixed-point ω is identical to the smallest positive integer m satisfying ∂m

∂zm f (z =ω) 6= 0, [73, Chap-
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ter 7]. Without relaxation it is unlikely that the first derivative of the fixed-point mappings of
Nicoud’s method and the Picard iteration will vanish, see Sec. 4.3. Indeed, there is no guaran-
tee that | f ′(ω)| < 1 and the methods converge at all. However, if they converge it can be assumed
that they converge at a linear convergence rate.

8.2 An adjoint-based variant of Newton’s method

Newton’s method is known to be superior to simple fixed-point iteration. It always converges if
initialized sufficiently close to a solution and does so at a quadratic convergence rate. The next
section discusses a Newton-type iteration for the solution of nonlinear eigenvalue problems. This
technique has been successfully applied to solve nonlinear eigenvalue problems. It could be ap-
plied to the characteristic equation of the nonlinear eigenvalue problem for systems arising from
thermoacoustic network models (as in [48, 124]) or can be applied to the vectorial equation di-
rectly. See, for instance, the reviews [87, 86] or the thesis [153]. Yet, there is another way to utilize
Newton’s method which, except for a note in [86], seems not to be discussed in the recent litera-
ture.

When choosing an appropriate matrix Y, the nonlinear eigenvalue problem itself can be con-
sidered to be a linear eigenvalue problem in some auxiliary eigenvalue λ:

L(ω)p =λYp . (8.12)

From this point of view, the eigenfrequency ω is merely a parameter to a classic eigenvalue prob-
lem with eigenvalue λ and eigenvector p . If the parameter ω is chosen such that one eigenvalue λ

vanishes, ω and the corresponding vector p solve the nonlinear eigenvalue problem L(ω)p = 0. It
is, therefore, natural to seek the roots of the implicitly given relation

λ=λ(ω). (8.13)

Perturbation theory enables the utilization of Newton’s method to solve this problem by providing
the derivative:

λ′(ω{n}) =−p†H
L(ω{n})p

p†HYp
. (8.14)

This approach has been first derived by Lancaster for eigenvalue problems that are polynomial in
ω and is known as the generalized Rayleigh quotient iteration [136]. In this first work Y was set to
L′(ω{n}). If the derivatives of the implicit relation (8.13) are not known, instead of Newton’s method
a secant method may be utilized based on the difference λ{k}−λ{k−1} in two consecutive iterations.
For instance, such a secant method has been used in [154] with Y = I to solve eigenvalue problems
arising in electrodynamics.

The derivative of the thermoacoustic Helmholtz equation L′ is in general not positive-definite.
Therefore, it is not a suitable choice for Y, because the large sparse eigenvalue problem is to
be solved with an implicitly restarted Arnoldi algorithm. Y = I would be appropriate. How-
ever, a more natural choice is to set Y to the mass matrix M. Because then the inner product
used to spur Arnoldi’s algorithm is a discretization of the continuous inner product used to per-
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Algorithm 8.1: Newton iteration for solving the nonlinear eigenvalue problem

1: function ITERATE(ω{1}, p {1}, p†{1},L, tolω,maxiter)
2: ω{0} ←∞
3: n ← 1
4: while |ω{n} −ω{n−1}| > tolω and n < maxiter do
5: λ{n}, p {n+1} ← EIGS(L(ω{n}),M,0, p {n})

6: λ{n}, p†{n+1} ← EIGS(LH(ω{n}),M,0, p†{n})

7: λ′{n} ←−p†{n+1}H
L′(ω{n})p {n+1}

p†{n+1}HMp {n+1}

8: ω{n+1} ←ω{n} − λ{n}

λ′{n}

9: n ← n +1
10: end while
11: λ{n} ← EIGS(L(ω{n}),M,0, p {n}) . This line basically computes the residual for possible later

use
12: return ω{n}, p {n}, p†{n},λ{n},n
13: end function

form the FEM discretization. Often this product has a physical meaning. Note that although
not further considered in this thesis, setting Y as a Cholesky factor of the mass matrix (i.e., M =
YYH) might also be an interesting choice. A Cholesky factor Y is not positive-definite but eas-
ily invertible and, therefore, also suited for quick ARPACK computations. Moreover, given an
approximate eigenpair ω{n}, p {n}, where ‖p{n}‖M = 1, the standard norm of the corresponding
residual vector r {n} := L(ω{n})p {n} is determined by ‖r {n}‖2

2 = r {n}H
r {n} = λ{n}p {n}H

YHYp {n}λ{n} =
|λ{n}|2p {n}Mp {n} = |λ{n}|2.

An implementation of the complete algorithm, is outlined in Alg. 8.1. The algorithm requires
the solution of both the direct and the adjoint problem. This might be problematic when used in
software frameworks which are designed to perform only left-multiplication of the considered op-
erators. Such matrix-free approaches provide only functions returning the product Av for a given
vector v , instead of storing the matrix A explicitly. Arnoldi’s algorithm is an example of an eigen-
value procedure using only this type of operation and, for instance, CERFACS’ Helmholtz solver
AVSP is implemented in a matrix-free fashion [91]. However, when solving for the adjoint eigen-
vectors as required in the Newton method presented above, right-multiplication of the matrices
is needed. More precisely, products AHv are to be computed. Hence, the Newton method cannot
be implemented in such codes without further considerations. One possibility would be to sim-
ply provide a function performing the adjoint operation. However, as such a function would be
implemented from the continuous adjoint equation1, it would not be consistent to the discrete
adjoint utilized in the algorithm. The Python code written for this thesis explicitly stores the ma-
trices. The Newton method can, therefore, be readily implemented. As discussed in Chap. 3, the
discretization method utilized is Bubnov-Galerkin FEM and, therefore, continuous and discrete
adjoint approaches are identical, nevertheless.

1See [72] for the use of adjoints in AVSP.
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Householder’s methods

Newton’s method for root finding can be generalized to higher orders by considering derivatives
of orders higher than 1. The generalization to second order was given by Halley [155] and is, there-
fore, known as Halley’s method2:

ω{n+1} =ω{n} − 2λ(ω{n})λ′(ω{n})

2
(
λ′(ω{n})

)2 −λ(ω{n})λ′′(ω{n})
. (8.15)

This method features a convergence rate of 3.

Newton’s and Halley’s methods are just the first two members of a complete generalization
scheme presented by Householder [158]

ω{n+1} =ω{n} +m
(1/λ)[m−1] (ω{n})

(1/λ)[m] (ω{n})
. (8.16)

Considering simple roots, the mth order scheme generally possesses a convergence rate of m +1.
Yet, these methods are not practically applied because the increase in function evaluations per
iteration outweighs the improved convergence rate when the order is increased. A limitation not
valid for the present application. Because for a simple eigenvalue adjoint-perturbation theory ba-
sically requires one scalar product, a few matrix-vector products, and the solution of one linear
system per derivative order, the computationally most costly operation in one iteration is the so-
lution of the linear eigenvalue problem.

In addition to Newton’s method, the computation of higher order derivatives is required. Algo-
rithm 8.2 outlines a possible implementation of a Householder iteration based solver. The func-
tion HOUSE computes the Householder update to ω{n} from λ{n} and its derivatives according to
(8.16).

Degeneracy

Special care needs to be taken if the eigenvalue to be found is a multiple root of the characteristic
function of L (i.e., the eigenvalue is degenerate). Two cases are to be distinguished. In the case
of defective eigenvalues, the scheme presented here is inappropriate because defective eigenval-
ues are not analytic in their parameters. However, they can only appear as isolated points in the
parametrized spectrum of L [117] and are, thus, not considered generic. For degenerate semi-
simple eigenvalues, perturbation theory is still capable of computing the necessary derivatives
[159]. This type of degeneracy might occasionally occur with respect to λ as a so-called accidental
degeneracy. The degenerate perturbation theory outlined in Sec. 6.6 can be used to appropriately
extend the theory for this case. However, like defective degeneracies, accidental semi-simple de-
generacies are not considered generic. On the other hand, if the degeneracy is symmetry-induced,
the eigenvalue λ will be degenerate at each iteration step. It will, thus, be a multiple-root of the
implicit relation (8.13) throughout the entire iteration procedure. To retain the high convergence
rate of Householder’s methods, the scheme must be applied to the ath root of λ, assuming that a

2Fun fact: Halley’s method is credited for being the most frequently rediscovered iterative method in mathematics
[156]. The frequent rediscovery of iteration methods for solving nonlinear equations is even the topic of a 10-pages
paper [157].
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Algorithm 8.2: Iteration for solving the nonlinear eigenvalue problem based on Householder
methods

1: function ITERATE(ω{1},L, p {1}, p†{1}, tolω,maxiter,order)
2: ω0 ←∞
3: n ← 1
4: while |ω{n} −ω{n−1}| > tolω and n < maxiter do
5: λ{n}, p {n+1} ← EIGS(L(ω{n}),M,0, p {n})

6: λ{n}, p†{n+1} ← EIGS(LH(ω{n}),M,0, p†{n})
7: λ{n}

derivs ← PERTURB(L(ω{n})−λ{n}M, p {n+1}, p†{n+1},order) . see Alg. 6.2 for PERTURB()

8: ω{n+1} ←ω{n} +HOUSE(λ{n}
derivs,order)

9: n ← n +1
10: end while
11: λ{n} ← EIG(L(ω{n}),M,0, p {n}) . This line basically computes the residual for possible later

use
12: return ω{n}, p {n}, p†{n},λ{n},n
13: end function

is the algebraic multiplicity of the eigenvalue:

ω{n+1} =ω{n} +m

(
1/λ

1
a

)[m−1]
(ω{n})(

1/λ
1
a

)[m]
(ω{n})

. (8.17)

The necessary outer derivatives used in (8.17) read up to fifth order:

d

dω
λ(ω)−a =−aλω−a−1λ′(ω) (8.18)

d2

dω2 λ(ω)−a =aλ(ω)−a−2 (
(a +1)λ′(ω)2 −λ(ω)λ′′(ω)

)
(8.19)

d3

dω3 λ(ω)−a =−aλ(ω)−a−3 (
(a2 +3a +2)λ′(ω)3 −3(a +1)λ(ω)λ′(ω)λ′′(ω)+λ(ω)2λ[3](ω)

)
(8.20)

d4

dω4 λ(ω)−a =aλ(ω)−a−4 (−6(a2 +3a +2)λ(ω)λ′(ω)2λ′′(ω)+ (a3 +6a2 +11a +6)λ′(ω)4

+λ(ω)2(3(a +1)λ′′(ω)2 −λ(ω)λ[4](ω))+4(a +1)λ(ω)2λ[3](ω)λ′(ω)
)

(8.21)

d5

dω5 λ(ω)−a =−aλ(ω)−a−5 (
(a +1)(a +2)(a +3)(a +4)λ′(ω)5 +10(a +1)(a +2)λ(ω)2λ[3](ω)λ′(ω)2

−10(a +1)(a +2)(a +3)λ(ω)λ′(ω)3λ′′(ω)+λ(ω)3(λ(ω)λ[5](ω)

−10(a +1)λ[3](ω)λ′′(ω))+5(a +1)λ(ω)2λ′(ω)(3(a +2)λ′′(ω)2 −λ(ω)λ[4](ω))
)

. (8.22)

Of course, this approach requires the multiplicity of an eigenvalue to be known in advance. If
carefully designed, this information can be retrieved from an estimator of the initial guess. As
will be discussed in Sec. 8.4, Beyn’s contour-integration-based method can be used as such an
estimator. However, in annular combustion chambers the degeneracy is typically of order two and
can be explained from the discrete rotational symmetry and an additional symmetry of the system,
see Sec. 5.4. These degeneracies might, therefore, be removed from the problems by Bloch-wave
theory, as the surrogate LBloch(ω;b) systems will usually not be degenerate.

145



CHAPTER 8. NONLINEAR EIGENVALUE PROBLEMS III: SOLUTION ALGORITHMS

8.3 Further remarks on iterative solvers

This section shortly addresses aspects of the presented iterative solvers which are of minor im-
portance for the goals of the thesis. However, they might help to improve the algorithms in the
future.

Threading and multiple eigenvalues

Each of the proposed fixed-point iterations solves a linear eigenvalue problem Lfix( f ;ω{n})p = 0 or
Lfix(λ;ω{n})p = 0 at each iteration step. However, using fixed-point iterations as a means to find
eigenvalues of operator families differs from their utilization as root-finding algorithms of scalar
functions in one major aspect, namely, that eig(Lfix) is a multi-valued function. Because only one
out of the many eigenvalues of Lfix(z;ω{n}) can be fed into the next iteration step, one eigenvalue
must be chosen at each iteration3. The easiest choice would be to take the eigenvalue of smallest
magnitude. The choice might be improved by computing one further iteration step for each of the
available eigenvalues, and then proceeding with the one corresponding to the smallest change in
ω{n}. Actually, all of the eigenvalues are associated with a holomorphic scalar function which if
0 yields an eigenvalue. This can be concluded from the holomorphy of the operator family and
basic definitions of eigenvalues. The scalar functions are to be disentangled like various threads
in a tangled web. Therefore, the problem will be referred to as threading. Storing the disregarded
eigenvalues for later use in order to find different eigenvalues might be beneficial. Yet, this appears
to be inefficient as the same thread might be found at several iteration steps. As threading is not
the topic of this report, the problem should not be further discussed. For the current study only the
eigenvalue with the smallest magnitude is considered. In any case if the initial guess is sufficiently
close to an eigenvalue, this should be the best choice, because then by continuity the smallest
eigenvalue can be related to the desired thread. This consideration just translates the problem to
finding high-quality initial guesses.

Stopping criteria and residuals

All iterative algorithms for solving the nonlinear eigenvalue problem presented so far used |ω{n} −
ω{n−1}| > tolω as a stopping criterion. This choice guarantees the eigenvalue to be of a similar
accuracy as can be concluded from the convergence of these methods. If an iteration converges,
the convergence rate allows the assessment of how the error η{n} := ω{n} −ω decreases with each
iterative step. The aim of each iteration is to reduce the modulus of the error |η{n}| as much as
possible with reasonable computational effort. Given at least linear convergence, the modulus of
ω{n+1} −ω{n} is an estimate of the modulus of the error because:

|ω{n+1} −ω{n}| = |ω{n+1} −ω+ω−ω{n}| = |η{n+1} −η{n}| = |η{n+1}|+O(|η{n}|m). (8.23)

Therefore, stopping a fixed-point iteration at a given tolerance tolω justifies the assumption that
the computed ω{n} is an approximation to a fixed-point of that iteration map with similar accu-
racy. Such a difference test is sufficient for simple iterations like Nicoud’s algotihm and the Pi-
card iteration, because each fixed-point of the iteration map is a solution to the eigenvalue prob-

3A similar problem arises in the numerical computation of pseudospectra [160].
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lem. However, fixed-points of the Householder iterations are not necessarily solutions, unless
λ(ω) = 0. Thus, a positive difference test is a necessary but not sufficient criterion for finding
solutions. The easiest answer to this issue is testing whether |λ{n}| ≤ tolλ. How to choose this tol-
erance relative to tolω is an open question. Note that λ{n} is a measure for the residual, because
r {n} :=L(ω{n})p {n} =λ{n}p {n}. Thus, a test on λ{n} is equivalent to a residual test. [86] uses

‖L(ω{n})p {n}‖2

‖L(ω{n})‖Fro‖p {n}‖2
< tolres (8.24)

as a stopping criterion based on the residual. Here, ‖ · ‖Fro denotes the Frobenius norm. This
residual test might also be used as an additional test for convergence in thermoacoustic applica-
tions. Yet, developing a residual notion based on a norm which is more physics-related would be
preferable. A possible norm would be the norm induced by the mass matrix.

Note, however, that if initializing the iterations with an initial guess which is close to an eigen-
frequency of the problem, the difference test |ω{n}−ω{n−1}| > tolω will be sufficient. As with thread-
ing the problem is, thus, avoided by finding a good initial guess. How to compute such an initial
guess using Beyn’s integration-based algorithm will be the topic of the next section.

8.4 Getting the initial guess from Beyn’s algorithm

Eigenvalue solvers based on contour integration are capable of finding all eigenvalues inside a
given contour Γ ⊂ C (see [86] and references therein). For practical eigenvalue problems arising
in gas turbine engineering, these regions are trapezoids in the complex plane. This is because as
a rule of thumb, eigenvalues with imaginary parts whose modulus is not more than 15% of the
real part are considered realistic and relevant. The reasonability of this rule shall not be discussed
here. Note, however, that the recent discovery of intrinsic thermoacoustic modes [93] suggest a
reconsideration of it.

In this thesis, Beyn’s integral algorithm 1 which was presented in [130] is used as a nonlinear
eigenvalue solver for finding initial guesses to iterative solvers. This is a rather arbitrary choice and
other integration-based solvers like [161] or [162] might also be considered. Global integration-
based solvers are not a completely new concept in thermoacoustics. Based on [163, 164, 165] an
integration-based algorithm named RootLocker has been developed at CERFACS. This algorithm
finds the roots of the dispersion relations of network models. See the thesis [166, Chapter 2] for
details.

Beyn’s integral algorithm 1

Beyn’s algorithm4 is presented in Alg. 8.3. Like all contour-based algorithms the procedure reduces
the nonlinear eigenvalue problem to a linear eigenvalue problem by integration. This reduction
is possible due to Keldysh’s theorem, see Beyn’s original publication or the review from Güttel
and Tisseur [86]. The algorithm is designed to find all m eigenvalues inside the contour Γ. Of
course, this number is not known in advance. Thus, the algorithm is set up for finding M eigen-
values. If M > m, M −m singular-values in line 8.3.5 will be zero in exact arithmetics. In computer

4The original algorithm presented in [130] has factors 1
2πi multiplied with the results of the integrations in the lines

8.3.3 and 8.3.4 . However, these cancel in line 8.3.7.
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Algorithm 8.3: Beyn’s contour-integration-based method

1: function BEYN(L,Γ, M ,npoints, tolσ)
2: choose Ṽ at random from CN×M

3: A0 ← INTEGRATE(L−1(z)Ṽ,Γ,npoints)
4: A1 ← INTEGRATE(zL−1(z)Ṽ,Γ,npoints)
5: U,Σ,V← SVD(A0)
6: Check which singular values feature σ< tolσ and remove them
7: Ω,P← EIG(UHA1VΣ−1)
8: P←UP
9: Check which ω lie outside of Γ and remove them

10: return Ω,P
11: end function

arithmetics, these singular values will be close to zero. Beyn suggested disregarding singular val-
ues smaller than a predefined specific tolerance tolσ, as they will merely lead to spurious modes
found by the algorithm. Note that if all M singular values are greater than the tolerance, there
might be more than M eigenvalues enclosed by Γ and the algorithm should be restarted with a
larger M . Also note that the algorithm cannot deal with situations where there are more eigenval-
ues inside the contour than the matrix dimension N . In these cases, the contour must be changed
to enclose a smaller region with possibly less eigenvalues, or Beyn’s integral algorithm 2 is to be
utilized. Because the dimension of the finite element discretization of the thermoacoustic Helm-
holtz equation is typically much higher than the number of eigenvalues in relevant subdomains of
the complex plane, Beyn’s integral algorithm 1 is well suited for such problems. Additionally, the
computed eigenvalues are tested for lying truly inside the contour Γ.

The computationally most expensive steps in the algorithm are the integrations in the lines
8.3.3 and 8.3.4. A suitable quadrature rule is to be deployed here. In his original publication, Beyn
discussed the application of the trapezoidal rule to circular domains. [86] emphasizes the optimal
convergence properties of the trapezoidal rule for circular domains and outlines two strategies for
non-circular contours: (i) a conformal mapping is used to transform an arbitrary contour to a cir-
cle – e.g., by appropriate Schwarz-Christoffel maps – and solve the problem using the trapezoidal
rule or (ii) use Gauss-Legendre quadrature. Because of the broad availability of software libraries
for Gauss-Legendre quadrature this approach is used in the current work. Regardless of which
quadrature strategy is deployed, at each evaluation point, M linear systems have to be solved.
Note that the same systems appear in both lines and, therefore, just need to be solved once. The
high costs of this operation prohibit Beyn’s method as a solver for large systems. However, the
method is feasible for small (N < 100) and middle-sized (N < 10000) problems as they appear in
thermoacoustic network models and discretizations of the Helmholtz equation. Therefore, using
such models together with Beyn’s algorithm as an estimator for initial guesses is a reasonable idea.

Beyn’s algorithm as an initializer

In this thesis, Beyn’s algorithm will serve as an initializer to the locally convergent Householder
methods. For this reason, the algorithm is slightly simplified.

(i) Because only an estimate is to be computed, the algorithm can be applied to discretizations

148



CHAPTER 8. NONLINEAR EIGENVALUE PROBLEMS III: SOLUTION ALGORITHMS

from a coarser grid. The subsequent refinement of the solution is then performed on the
actual grid. As the discretization matrices will be smaller, the high costs for contour inte-
gration remain manageable. Yet, the final result will be accurate. Although not necessarily
needed, the coarse eigenvector found from Beyn’s integration might be interpolated on the
actual grid and passed to the Householder method in order to support the convergence of
Krylov subspace methods.

(ii) Feeding the eigenvalues obtained from contour integration into Householder iteration can
actually be seen as a plausibility test. If the eigenvalue found by the contour method is a
valid approximation to an eigenvalue, iteration by a Householder method will only slightly
modify the eigenvalue (i.e., the eigenvalue is refined). If, on the other hand, the Householder
method converges to a solution very different from the contour-integration result, this result
was likely spurious. These considerations allow the tests of the singular values in Beyn’s
algorithm to be avoided. Especially, finding a proper rule for choosing tolσ is, thus, obsolete.
Validity of the results is revealed after the refinement step.

(iii) Also, eigenvalues that lie outside of, but close to, the contour Γ might be considered for the
refinement step. This is because after the local iteration, the eigenvalues might be inside the
contour. Similar to the singular value test, instead of defining a tolerance to determine how
close is sufficiently close, all eigenvalues could be taken to the refinement step and their
position evaluated after the refinement. In this way, no eigenvalue is falsely excluded from
the scheme.

8.5 Rijke-tube example

This section assesses and compares the presented solution algorithms using the Rijke-tube model.

Nicoud’s algorithm and Picard iteration

Figure 8.1 illustrates the convergence properties of Nicoud’s algorithm and the Picard iteration
when setting the stopping tolerance to tolω = 10−2. The complex domain [0,10]× [−i, i] was ras-
terized using an equidistant grid of 1001×201 points. These points were fed into the algorithms
as initial points for solving the FEM discretization of the Rijke-tube model. For this study, the
eigenvectors for the Krylov-subspace methods were initialized as a vector made up of ones only

(i.e., p1 =
[

1 1 1 1 . . .
]T

). The color indicates (i) whether the algorithm converges if initial-
ized from the respective position, (ii) if it converges, to which eigefrequency it will converge and
(iii) how many iteration steps it took to get there with the prescribed tolerance. The large orange
and blue shaded areas indicate that the two algorithms are capable of finding the eigenfrequen-
cies (and mode shapes) of #R1 and #R2. Unsurprisingly, the fastest convergence to these solutions
is obtained if the algorithms are initialized in the immediate vicinity of the respective eigenfre-
quencies. However, none of the iterations converged to the modes #R3 and #R4, although these
lie in the sampled region of the complex plane. These results complement the findings of Sec. 4.4,
where it was found that #R1 and #R2 are acoustic modes, which can be computed by initializing
the algorithm with the (nearby) passive eigenfrequencies. The results presented in Fig. 8.1 sug-
gest that there is actually no initialization point from which the algorithms would converge to the
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Figure 8.1: Convergence maps for 1001×201 initialization points in the complex plane. The top
image shows results for Nicoud’s algorithm, the bottom image is obtained from the Picard itera-
tion. In both cases the stopping tolerance was set to tolω = 10−2. The white crosses highlight the
position of the four eigenfrequencies. The color shading indicates to which solution the iteration
will converge: orange – #R1, blue – #R2, gray – any mode outside of the considered domain, black
– no convergence within 15 iterations. The darker the shading, the more iteration steps it takes for
the solution to converge to the prescribed accuracy. Apparently, the modes #R3 and #R4 cannot
be found.

modes #R3 and #R4.

While a tolerance of tolω = 10−2 is clearly sufficient to reason about the stability of the com-
puted modes, it is far too large when using the computed solution as a baseline solution for per-
turbation theory. Due to their linear convergence rate, Nicoud’s algorithm and the Picard iteration
will take many more iterations to converge if stricter tolerances are set. This is illustrated in Fig. 8.2.
It shows results obtained with a tolerance of tolω = 10−12 which is much better suited for pertur-
bation theory. The results clearly show that it is almost impossible to find one of the four modes
at the prescribed tolerance with no more than 16 iterations. Clearly, the modes #R1 and #R2 could
be found when allowing for more iteration steps. This is because they were found when a lower
tolerance was set. Yet, from a practical perspective, too many iterations are inconvenient.

Householder methods

Householder methods have better convergence properties than Nicoud’s algorithm and the Picard
iteration, as can be seen in Fig. 8.3. It shows how the same initial guesses converge when using
Householder’s methods up to fifth order. The tolerance for ω is still tolω = 10−12. The convergence
properties have clearly improved compared to Nicoud’s method. Note that for very few initial
guesses (less than 100) the algorithm appeared to diverge. This can be concluded from ARPACK
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Figure 8.2: Convergence maps for Nicoud’s algorithm (top) and the Picard iteration (bottom) ob-
tained with a tolerance of tolω = 10−12. White crosses highlight the position of the four known
eigenfrequencies in the region shown. The two algorithms are not capable of finding either of the
modes #R1, #R3, or #R4 within 16 iterations at this accuracy. A few samples converged to #R2 if
initialized in the immediate vicinity of this eigenfrequency, however, this is not visible from the
picture.

error messages indicating that NaN values appeared. The reason is unclear.
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Figure 8.3: Convergence maps for Householder iterations. The color code for the modes is as
follows: orange – #R1, blue – #R2, green – #R3, purple – #R4 , gray again indicates convergence
to modes outside of the domain while black highlights no convergence within 16 iterations. The
third-order method constitutes the best compromise between large basins of attractions and small
domains of non-convergence.
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It might be attributed to evaluations of the exponential in the flame transfer function at large
intermediate ω{n}. However, this computational issue is rather irrelevant for the overall results. All
different modes can be found and even with fewer iteration steps, as can be seen from the generally
brighter images. Each mode possesses a domain of attraction in its vicinity. The convergence
maps show a fractal nature at the boundary of different domains of attraction. This is a known
feature of Newton maps when being applied as a root-finding method to scalar equations, e.g.,
[167]. However, some of the boundaries are non-fractal. This can be attributed to threading.

The basins of attraction of the modes #R3 and #R4 appear to grow when increasing the order
of the method. However, the Householder methods of fourth and fifth order show significant por-
tions of non-convergence domains. It is unclear whether this is a numerical issue or a generic
feature of these methods. Yet, the example suggests that a third-order Householder scheme is a
good compromise between computational effort and improved convergence properties.

Threading example

For the current example, threading seems not to be an issue. This is exemplified in Fig. 8.4. It
shows the two smallest, linear eigenvalues λ of the matrix A(z) = L(z)−λM for values z taken
from the straight line z(ζ) between ω#R1 and ω#R2. The line is parameterized such that z(0) =ω#1

and z(1) =ω#2. For the shown example, following the slope of the smallest eigenvalue thread will
apparently yield a nearby eigenvalue. Because the two threads cross at ζ ≈ 0.65, except for the
range ζ ∈ [0.5,0.65], this will be the eigenvalue with the closest distance to the evaluation point.

Initialization with Beyn’s algorithm

Because of its good convergence properties, the third-order Householder method is used in con-
junction with Beyn’s method as a global solution algorithm. Beyn’s method was set up to find all
eigenvalues on the rectangular domain already examined for the convergence map. As a quadra-
ture method, 10-point Gauss-Legendre-integration was utilized on each of the four edges of the
domain. The dimension of the subspace created in Beyn’s algorithm was set to M = 16.

Table 8.1 lists the eigenvalues found by Beyn’s algorithm and the fixed-points they converged
to when feeding them into the third-order Householder method, together with the number of it-
erations it took them to converge. Obviously, all four eigenvalues can be found with this two-step
approach. Moreover, spurious modes from Beyn’s algorithm are reliably eliminated after the re-
finement step, as they converge to solutions that are outside of the considered domain or signifi-
cantly away from the initial estimate. The overall costs for this two-step procedure are moderate
as no more than 10 iterations were needed to refine the solutions.

The table also lists the derivatives of the fixed-point map of Nicoud’s algorithm at the solutions.
Because of the set boundary conditions, this derivative is not different from the derivative of the
Picard-iteration mapping. The absolute value of the derivatives of the modes #R3 and #R4 are
greater than 1. This finally proves that they can neither be found with Nicoud’s algorithm nor the
Picard iteration if no relaxation strategy is employed. The Householder methods, however, are
capable of finding these modes and when using Beyn’s method as an initializer, the lack of passive
modes corresponding to #R3 and #R4 (see Sec. 4.4) is also not a problem.

The Rijke-tube example clearly shows that a combination of Beyn’s algorithm and a locally
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Figure 8.4: Absolute value of the two smallest eigenvalues value on the straight line between the
modes #1 and #2.

convergent perturbation-based iteration algorithm is a reliable means of accurately finding all
eigensolutions with eigenvalues inside a given region of the complex plane.

8.6 Application to the Kronig-Penney model

In this section, it is shortly exemplified how to handle symmetry-induced degeneracies when deal-
ing with the Householder methods. The FEM discretization of the Kronig-Penney model that was
already used in Sec 4.5 will serve as a test case. Because of its simplicity, it also allows for a brute
force convergence study. First-order Householder iterations (i.e., Newton iterations) are initialized
with 1201×201 points equidistantly taken from the domain [0,12]× [−i,+i]. The initial vector for
the generation of the Krylov subspace is again a vector featuring ones only. Bloch-periodic bound-
ary conditions resolve the symmetry-induced degeneracy. Figure 8.5 shows convergence maps for
Bloch wavenumbers b = 1, 2, 3, and 4. Because the Kronig-Penney model is reflection-symmetric
and features a degree of discrete rotational symmetry of B = 12, the modes corresponding to these
Bloch wavenumbers are degenerate in the original system (2b mod B �= 0). Nevertheless, they are
simple eigenvalues in the surrogate systems LBloch(ω;b). Moreover, these systems contain only a
subset of the full spectrum of L(ω). Hence, already rough estimates for the eigenvalues are suffi-
cient to find them with the Householder iteration. This can be clearly seen from the large orange
and blue shaded areas in Fig. 8.5. The results show that in addition to the computational sav-
ings obtained from the reduction to a unit cell, Bloch-wave theory supports the convergence of
iterative solution methods for the nonlinear eigenvalue problem: it removes symmetry-induced
degeneracies and leads to large basins of attraction around the eigenvalues.
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Table 8.1: Eigenvalues of the Rijke tube computed by first leveraging Beyn’s algorithm and then
feeding the results into a third-order Householder solver. ωBeyn are the eigenvalues found from
Beyn’s method on the coarse grid. The column step lists the number of iteration steps that are nec-
essary to converge to an accuracy of tolω = 10−12 in the Householder step. The column ωHouse3 in-
dicates the finally computed eigenvalue. The last column reports the derivative of Nicoud’s fixed-
point map at that eigenvalue. Due to the boundary conditions, it is identical to the derivative of
the mapping of Picard iteration. The colored rows highlight the four modes inside the contour.
Note that due to the symmetry of the spectrum, the solutions 7 and 8 might also be considered as
mode #R1.

# ωBeyn steps ωHouse3 | f ′(ω)|
1 10.01492+0.12512i 3 10.07616−0.2076i 0.43055
2 11.15125+0.57175i 10 11.44825+1.02266i 2.06045
3→#R4 8.09011+0.70095i 4 7.93791+0.47319i 6.5542
4→#R2 6.5507−0.10248i 3 6.42264−0.02614i 0.18992
5→#R3 4.72368+0.17207i 5 4.71422+0.23043i 29.89721
6→#R1 2.34166−0.26615i 3 2.3687−0.26568i 0.52602
7 −0.69827−1.72177i 6 −2.3687−0.26568i 0.52602
8 −1.365+0.15319i 5 −2.3687−0.26568i 0.52602
9 1.83929+1.68595i 4 0.98728+1.04804i 1.5512
10 0.99196+1.04255i 3 0.98728+1.04804i 1.5512
11 0.80395+1.51899i 4 0.98728+1.04804i 1.5512
12→#R1 2.12233−0.0351i 4 2.3687−0.26568i 0.52602
13→#R1 0.75773−1.54027i 6 2.3687−0.26568i 0.52602
14 0.47706−1.04179i 7 −0.98728+1.04804i 1.5512
15 0.06112+0.0693i 6 0.98728+1.04804i 1.5512
16 0.67451+0.46365i 4 0.98728+1.04804i 1.5512
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Figure 8.5: Convergence maps for first-order Householder iterations applied to the Kronig-Penney
model. The shown region is resolved with 1201×201 points. The four images illustrate the conver-
gence of the spectra of Bloch-surrogate systems corresponding to Bloch wavenumbers b = 1, 2, 3,
and 4. For each of these systems, two eigenvalues can be found inside the examined domain. They
are highlighted with white crosses. The orange and blue shadings illustrate the initial guesses that
converge to these two eigenfrequencies. Gray shaded points converge to solutions outside of the
shown domain. The darker the shading, the more iteration steps were needed for the solution to
converge.
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8.7 Application to the MICCA model

In this section, the two-step solution algorithm is applied to the model of the MICCA combustor.
Because of its complexity, the brute-force analysis of the convergence properties is conducted.
However, based on the previous results, Beyn’s algorithm is combined with the third-order House-
holder method in order to find all eigenvalues inside a subdomain of the complex plane.

The same grid is used in both steps. Figure 8.6 shows the initialization points obtained from
Beyn’s algorithm and the eigenvalues they finally converged to. Further details are listed in Tab. 8.2.
Several initialization points are already fairly close to the eigenvalues. This includes the initializa-
tion points 0.2, 1.1, and 1.2 which converge to the modes #M0, #M1, and #M2, respectively. For
these modes the difference of the initial points and the converged eigenvalues is so small that it
cannot be concluded from the digits given in the table. This is clearly because the same mesh is
used in both steps of the solution scheme. However, the eigenvalues obtained from the first step
have not reached the set accuracy as two additional iteration steps were required for convergence.

As for the Rijke-tube example, false eigenvalues obtained from Beyn’s algorithm are revealed
as such in the iteration step. The table also lists the derivatives of the fixed-point map of Nicoud’s
algorithm at the solutions. Because of the set boundary conditions, these derivatives are identi-
cal to the derivatives of the Picard iteration. Although obtained from a unit-cell solution, they are
also identical to the derivatives of the full-annulus models. The absolute value of the derivative for
#M1 is slightly larger than one. This explains why it was impossible to compute this mode without
relaxation, regardless of using the full annulus or a unit-cell model (see Sec. 4.6 and Sec. 5.7). Note
that there are more modes than implied by the number of passive solutions. This suggests that
some modes are intrinsic. The relatively large derivatives of the modes found from the initializa-
tion points 2.3 and 2.5 support this hypothesis, as will be outlined in Chap. 10.
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Figure 8.6: Eigenvalues of the MICCA model obtained from the two-step solution procedure. The
black rectangle highlights the integration path. Each of its four edges was numerically integrated
using ten point Gauss-Legendre quadrature. Crosses highlight the initializing points obtained
from Beyn’s algorithm. Dots indicate the finally computed eigenvalues. The dashed lines illus-
trate the convergence. Shades of blue, orange, and green correspond to the Bloch wavenumbers
b = 0, 1, and 2, respectively. More details are given in Tab. 8.2.
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Table 8.2: Eigenvalues of the MICCA model computed by first leveraging Beyn’s algorithm and
then feeding the results into a third-order Householder solver. ωBeyn are the eigenvalues found
from Beyn’s method. The column step lists the number of iteration steps that are necessary to
converge to an accuracy of tolω = 10−10 s−1 in the Householder step. The column ωHouse3 indicates
the final computed eigenvalue. The last column reports the derivative of Nicoud’s fixed-point map
at that eigenvalue. Due to the boundary conditions, it is identical to the derivative of the mapping
of Picard iteration.

# ωBeyn steps ωHouse3 | f ′(ω)|
Bloch wavenumber b = 0

0.1 468.64721−124.70772i 2 468.64721−124.70772i 2.10908
0.2→#M0 154.48403+67.9054i 2 154.48403+67.9054i 0.61227
0.3 838.90268−55.44074i 2 838.89931−55.44309i 1.00159
0.4 →#M0 117.22876+21.12695i 4 154.48403+67.9054i 0.61227
0.5→#M0 40.98417+3.8081i 5 154.48403+67.9054i 0.61227

Bloch wavenumber b = 1

1.1 →#M1 511.37591−79.41652i 2 511.37591−79.41652i 1.00872
1.2 294.27721+90.57508i 2 294.27721+90.57508i 1.05457
1.3 947.44172−9.49448i 2 947.53909−9.5742i 2.35846
1.4 57.65177−28.37992i 5 294.27721+90.57508i 1.05457
1.5 241.93713+31.15392i 4 294.27721+90.57508i 1.05457

Bloch wavenumber b = 2

2.1 →#M2 713.10633−2.34317i 2 713.10633−2.34317i 0.19599
2.2 383.49947+96.23613i 2 383.49947+96.23613i 10.43539
2.3 956.8928+69.92512i 4 967.92717+84.30999i 17.50286
2.4 98.57958+3.76724i 8 967.92717+84.30999i 17.50286
2.5 304.85998+59.32842i 5 383.49947+96.23613i 10.43539
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8.8 Conclusions

The perturbation theory developed in Chap. 6 was used to study the convergence properties of
Nicoud’s algorithm and the Picard iteration. Additionally, the theory was used to improve Lan-
caster’s generalized Rayleigh quotient iteration. The key modification is the usage of large-order
perturbation theory to enable Householder iterations. This improved method can be combined
with Beyn’s integration-based algorithm, resulting in a solution scheme that is capable of finding
all eigenvalues inside a given domain at high accuracy. Although the original incentive to design
such a scheme was the need for highly accurate baseline solutions for the perturbation theory, the
new solution method in and off itself is a valuable tool.

Both Beyn’s algorithm and the Householder iteration impose the same regularity conditions
on the nonlinear eigenvalue problem considered. Most notably, it is required that the operator
family is analytic in the considered domain. These conditions are stronger than those for Nicoud’s
algorithm and the Picard iteration. If they are met, the new scheme is definitively to be preferred
over these simple fixed-point iterations. See Sec. 3.5 on how to conceive analytic models.

Because the focus of this thesis is on perturbation methods, the discussion focused on Lan-
caster’s algorithm which is a Newton iteration on the eigenvalue level. However, Newton itera-
tions on the vector level might also be considered as a refinement step for solutions obtained from
Beyn’s algorithm. For instance, inverse iteration could be used. The convergence properties might
then further improve because the eigenvector information obtained from Beyn’s algorithm is ex-
ploited. However, this discussion is beyond the scope of this thesis.
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Chapter 9

Uncertainty Quantification

Even if a perfect mathematical model would be employed for thermoacoustic stability assessment,
it is impossible to manufacture a real-world equivalent which features exactly the parameters
specified for the model computation. Modeling of thermoacoustic instabilities inevitably suffers
from uncertainties in the parameters. This is a serious issue because stability assessment is a bi-
nary decision: a system is stable or not. Especially systems that are predicted to be marginally sta-
ble might become unstable if an assumed model parameter ε is slightly detuned by some amount
∆ε. More precisely, while for the modeled system the growth rate − imag(ω(ε0)) is predicted to be
less than the assumed system damping α but close to the stability boundary, the actual system
might satisfy − imag(ω(ε0 +∆ε)) >α.

Uncertainty quantification addresses the question of how uncertainties in the model parame-
ters propagate through the model and affect the predicted outcome. In the thermoacoustics com-
munity Monte-Carlo-based risk-factor analysis is a commonly employed method to quantify un-
certainties (see, e.g.,[147]). It computes the probability that a system is unstable provided that the
uncertainties in the model parameters are known in terms of probability density functions. The
probability density functions are used to randomly generate a set of parameter samples and the
model is fully evaluated for each of these samples. Finally, the share of sample points that map to
unstable eigenfrequencies is considered an estimate for the probability of the system to be unsta-
ble.

A general challenge with uncertainty quantification is the sheer number of uncertain parame-
ter combinations to be quantified. In thermoacoustics, possible uncertain parameters other than
the interaction index or a time-delay are, e.g., the exact fuel composition, geometry parameters,
boundary impedances. The rapid growth of potential parameter combinations with the dimen-
sion of the parameter space is commonly referred to as curse of dimensionality. Especially annular
combustors suffer from this problem because each burner section is associated with an individual
set of uncertain parameters. To reduce the computational effort, recently principal component
analysis of the uncentered covariance matrix of the gradient vector has been suggested to identify
the most influential directions in parameter space [168]. This so-called active subspace method
was used by Bauerheim et al. to reduce the dimension of the considered parameter space for UQ
analysis of the thermoacoustics of an annular combustor based on Monte-Carlo sampling [148].
Ndiaye et al. performed risk-factor analysis for a longitudinal single-flame combustor [169]. As
uncertain parameters they considered the interaction index and time delay in a fit n–τ-model.
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They showed that 4000 Monte-Carlo samples are sufficient to obtain a reasonable estimate of the
statistics of the growth rate. They additionally showed that tuning first-order bi-variate models to
the computed dataset allows to reduce the necessary sample size to a few tens. Regression models
were also considered by Bauerheim et al. in [147] for annular combustors. The computational
cost reductions achieved by the active-subspace and regression methods were complemented
by Magri et al. by an adjoint-based perturbation method to quickly evaluate the thermoacous-
tic Helmholtz equation [126]. A similar analysis was succesfully appplied by Silva et al. to com-
pute the risk factor of an axial laboratory-scale combustor by first and second-order perturbation
methods [125].

This chapter aims at further improving the existing UQ methods by (i) suggesting a multi-
parameter perturbation theory that allows to estimate the stability for all relevant parameters in
an explicit expression ω=ω(ε1,ε1, . . .) and (ii) using this relation to explicitly compute the stability
boundary. This will reduce risk-factor analysis to an integration in parameter space requiring one
solution of the thermoacoustic Helmholtz equation only. The proposed method avoids extensive
Monte-Carlo simulations or other sample-based UQ strategies.

The content of this chapter is the result of a collaboration with Luca Magri and the presented
theory was previously published in [170].

9.1 Multi-parameter perturbation theory

This section presents multi-parameter perturbation theory up to second order. Like for the single-
parameter case power series are stipulated to model the dependencies ω = ω(ε) and p̂ = p̂(ε),
where ε= [ε1,ε2, . . . ,εP ] is the vector of considered parameters. Truncation at second order yields
the ansätze

ω(ε0 +∆ε) =ω0 +
P∑

i=1
ω(i )∆εi +

P∑
i=1

i∑
j=1

ω(i , j )∆εi∆ε j (9.1)

and

p̂(ε0 +∆ε) = p̂0 +
P∑

i=1
p̂(i )∆εi +

P∑
i=1

i∑
j=1

p̂(i , j )∆εi∆ε j . (9.2)

They imply that the solution is totally differentiable with respect to the parameters. In particular,
the coefficients will be related to the partial derivatives of ω and p̂ by:

ω(i ) = ∂ω

∂εi

∣∣∣∣
ε=ε0

, ω(i , j ) = 1

(1+δi , j )

∂2ω

∂εi∂ε j

∣∣∣∣
ε=ε0

, p̂(i ) = ∂p̂

∂εi

∣∣∣∣
ε=ε0

(9.3)

and

p̂(i , j ) = 1

(1+δi , j )

∂2p̂

∂εi∂ε j

∣∣∣∣
ε=ε0

. (9.4)

Total differentiability with respect to multiple parameters cannot be assumed for degenerate eigen-
values. This is because of the possible splitting of the degenerate eigenvalue into separate eigen-
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values. An example for semi-simple points of a linear eigenvalue problem can be found in [117,
p.116]. In general, defective points are not amenable to power-series expansion even in the single-
parameter case, see, e.g., [171] for a theory on linear eigenvalue problems. Note that although
these references apply to linear eigenvalue problems, they also rule out cases of nonlinear eigen-
value problems because they locally behave like linear eigenvalue problems. Also note that this
explains the observation of Bauerheim et al. that polynomial models do not fully capture the sta-
bility behavior of a degenerate mode [147]. However, simple eigenvalues admit a multi-parameter
expansion into power series [117].

The expansions (9.1) and (9.2) reduce to single-parameter expansions in εi if the change ∆ε j =
0 for all j 6= i . The coefficients ω(i ), ω(i ,i ), p̂(i ), and p̂(i ,i ) can, therefore, be computed by means
of the single-parameter perturbation theory. Only the mixed-term coefficients ω(i , j ) and p̂(i , j ) re-
quire an extension of the theory. The reasoning is equivalent to the single-parameter case. The
considered operator family is to be expanded into power series. For the second-order multi-
parameter series this is:

L(z,ε) ≈L0,0 +
P∑

i=1

(L0,(i ) +L1,(i )∆z
)
∆εi +

P∑
i=1

i∑
j=1

L0,(i , j )∆εi∆ε j +L1,0∆z +L2,0(∆z)2. (9.5)

By assumption L is analytic in all its parameters so the coefficients can be found by partial differ-
entiation at z = z0 and ε= ε0. They read:

L0,0 = L|z=z0
ε=ε0

, L0,(i ) = ∂

∂εi
L

∣∣∣∣z=z0
ε=ε0

, L0,(i , j ) = 1

1+δi , j

∂2

∂εi∂ε j
L

∣∣∣∣z=z0
ε=ε0

,

L1,0 = ∂

∂z
L

∣∣∣∣z=z0
ε=ε0

, L1,(i ) = ∂2

∂z∂εi
L

∣∣∣∣z=z0
ε=ε0

, and L2,0 = 1

2

∂2

∂z2L
∣∣∣∣z=z0
ε=ε0

. (9.6)

The equations determining the coefficients in the ansätze (9.1) and (9.2) are obtained by plug-
ging these ansätze into the eigenvalue problem (6.1) and expanding the operator L according to
Eq. (9.6). Sorting for equal powers of ∆ε then yield the desired equations. For the quadratic mixed
term ∆εi∆ε j it reads:

L0,0p̂(i , j ) =−r(i , j ) −ω(i , j )L1,0p̂0 (9.7)

where

r(i , j ) =L0,(i )p̂( j ) +L0,( j )p̂(i ) +L0,(i , j )p̂0 +L1,0
(
ω(i )p̂( j ) +ω( j )p̂(i )

)
+L1,(i )ω( j )p̂0 +L1,( j )ω(i )p̂0 +2L2,0ω(i )ω( j )p̂0. (9.8)

Except for the coefficients ω(i , j ) and p̂(i , j ), all variables in equation (9.7) are known. The struc-
ture of the equation is completely analogous to Eq. (6.12). A solution can, therefore, be found by
(i) taking the inner product of the right-hand side with the adjoint solution of the unperturbed
problem, (ii) tuning ω(i , j ) such that this inner product vanishes and, thus, solvability is achieved,
and (iii) finally solving the above equation for p̂(i , j ) (compare Sec. 6.1).

Although, this section only derived the theory up to second order, generalization to arbitrary
orders is straightforward. See Sec. A.2 in the appendix for notes on how to derive the formulae.
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9.2 Risk-factor analysis

The risk factor RF is defined as the probability of a mode to be unstable given a specific system
with known uncertainties in its parameters. This UQ approach is called a “forward problem” as it
studies the propagation of the input parameters to the output quantity. The notion is opposed to
“backward problem”, which aims at quantifying the uncertainties in the parameters from known
fluctuations in the output of the system [172].

Risk-factor evaluation based on statistics of the growth rate

Previous studies [148, 169, 125, 126, 147] computed the risk factor from a probability density func-
tion PDFσ(σ) for the growth rate σ :=− imag(ω)

RF :=
∫∞

0
PDFσ(σ)dσ, (9.9)

i.e., it is computed as the probability that the growth rate of the mode is positive. Unfortunately,
the probability density function PDFσ is not explicitly known.

The dependence of the growth rate σ on the system parameters ε is only implicitly known from
the model equations. Computing PDFσ from a known PDFε is, therefore, difficult. It is this diffi-
culty that previous thermoacoustic studies tackled by generating an estimate of PDFσ by Monte-
Carlo sampling. A set of NMC random sample points is generated from the known parameter-
statistics and the system is repeatedly solved for each sample point. The results allow to derive
statistics on the occurrence of specific growth rates. In particular, an estimate for the risk factor is
obtained from the share of sample points that map to positive growth rates. However, given an ex-
plicit model ω=ω(ε), direct propagation of the parameters to the output variable is possible. This
allows to compute the risk factor in parameter space without computing statistics of the growth
rate in an intermediate step.

Risk-factor evaluation in parameter space

The probability density function of the growth rate depends on the probability of the parameters
ε to take a certain value. Thus, the risk factor can equivalently be formulated from the statistics of
the complex frequency ω or the considered parameters ε:

RF =
∫

Eunst.

PDFε(ε)dε. (9.10)

Here, Eunst. denotes the set of parameters for which the eigenfrequency of interest is unstable:

Eunst. := {
ε ∈RP |− imag(ω(ε)) =σ>α

}
. (9.11)

Given an explicit relation ω=ω(ε) the parameter set Eunst. is well defined. As it is assumed that the
statistics of the parameters ε and, in particular, PDFε(ε) are explicitly known, Eq. (9.10) reduces the
risk-factor evaluation to an integration in parameter space. Risk-factor analysis can, therefore, be
performed in two steps:

1. Calculation of the stability margin, i.e., the parameters for which − imag(ω(ε)) = α in order
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Figure 9.1: Illustration of risk-factor evaluation in parameter space. A linear eigenfrequency model
approximates the dependence of the eigenvalue on two parameters ε1 and ε2. A uniform param-
eter distribution is assumed for both parameters. Thus, the parameters may take values within
the blue shaded area with same probability. The stability boundary is well defined from the linear
model. It divides this area into two parts. The part lying in the unstable region is highlighted by
the hatching. Its size relative to the total parameter set (blue) is a measure for the risk factor.

to define Eunst..

2. Algebraic integration of PDFε(ε) over Eunst. in order to compute the risk factor.

Taking a two-parameter model with uniformly distributed parameters as an example, the prob-
ability density function reads:

PDFε(ε1,ε2) =
{

1
(ε1max−ε1min)(ε2max−ε2min) if ε ∈ [ε1min,ε1max]× [ε2min,ε2max]

0 else
(9.12)

Assuming a linear parameter model

ω(ε1,ε2) = c0 + c1ε1 + c2ε2 (9.13)

the stability boundary is a straight line. How it intersects the set of considered parameters will
determine the risk factor. For this two-dimensional example the risk factor will be the ratio of
the share of the unstable set of parameters to the total set of parameters, because each parameter
point is uniformly weighted. Figure 9.1 schematically illustrates the example.

In this work the model will be conceived by perturbation theory. Note that polynomial chaos
expansion might also be considered as a technique to generate such a model. See, e.g., [173] for
an applications of such a method in computational fluid mechanics. Following the traditional
classification of UQ methods, the method proposed in this work is characterized as intrusive, as
the perturbation theory requires the implementation of a special data structure for the discretized
operator family L(z;ε) (see Sec. 6.3).
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Table 9.1: Risk factor of #R1 computed with various methods. The RF was computed using 4225
uniform sample points, as many MC sample points, as well as first and second-order multi-
parameter perturbation theory. All methods were tested with the FEM and the network discretiza-
tion of the Rijke-tube model.

uniform MC 1st ord. 2nd ord.

FEM 0.7299 0.7309 0.7646 0.7319
network 0.6698 0.6755 0.6964 0.6753

9.3 Application to the Rijke-tube model

This section exemplifies the theory by considering #R1 of the Rijke-tube model. Both the network
and the FEM discretization of the model are studied. The interaction index n and time delay τ are
considered as uncertain parameters. The respective probability density functions are assumed to
be uniform and centered around the baseline values n0 = 1 and τ0 = 2. The maximum deviation
from these mean values is ±10%. In virtue of the principle of maximum entropy, uniform dis-
tributions are the least biased PDF for the input parameters taking into account that no further
assumption is made for the input parameters [174]. For a short discussion of this principle with
regard to UQ in thermoacoustics see also the remarks in [125]. Note, however, that any other PDF
can also be used with the methods exemplified here. For the current test case it is assumed that
the system damping is α = 0.25. This renders mode #R1 marginally unstable. Four methods are
tested and compared:

(i) uniform sampling of the considered parameter set using a grid of 652 = 4225 equidistant
sample points,

(ii) MC sampling with the same number of points,

(iii) leveraging first order multi-parameter perturbation theory, and

(iv) second-order multi-parameter perturbation theory.

All methods are applied to both the FEM and the network discretization of the Rijke-tube model.
Table 9.1 compares results from these four approaches. The tests show similar characteristics for
the FEM and the network discretization: uniform sampling, the MC approach, and the second-
order perturbation method yield similar results. In comparison to these three methods, the linear
perturbation method yields slightly deviating results. Nonetheless, the risk-factors estimates differ
for the two discretization methods. This can be attributed to the discretization error. As explained
in Sec. 4.4, the FEM model is not as accurate as the network discretization. Uncertainty quan-
tification inherits the biases of the model it is based on. Although the problem can be fixed for
the current example by increasing the resolution of the FEM mesh, modeling and discretization
errors are, in general, to be considered when interpreting computed risk factors. With respect to
the deployed numerical models, however, risk factors are computed correctly.

Figure 9.2 further illustrates how the considered parameters n,τ ∈ [0.9,1.1]× [1.8,2.2] are map-
ped into the complex plane. The graphics explicitly depict 17 out of 65 parameter levels for both
the interaction index and the time delay and their images in the complex plane. The data for
these levels is a subset of the 4225 equidistantly distributed sample points. The figure also shows
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the stability boundary computed by (i) a line-search algorithm, (ii) linear, and (iii) the quadratic
multi-parameter adjoint-based perturbation method. The line-search algorithm exploits the en-
tire data obtained from the 4225 equidistantly distributed sample points. Provided it exists, for
each of the 65 explored levels of n a pair of directly neighbored data points is identified which is
mapped to different sides of the stability boundary. The position of the stability boundary between
these two points is then obtained by linearly interpolating their growth rate and solving the inter-
polant for σ(τ) =α. Because of the high density of the sample points, the line-search result can be
considered as exact. The stability boundary is slightly curved. This explains why the second-order
perturbation theory gives a better estimate than the linear theory.

Figure 9.3 shows results obtained from MC sampling. The same set of 4225 random MC sample
points drawn from a uniform PDF is used for both discretization types of the model. As for the grid
sampling the MC strategy allows for a reasonable prediction of the stability boundary and, hence,
the risk factor. The convergence of both sampling strategies is illustrated in Fig. 9.4. Additionally,
the risk-factor estimates obtained from perturbation theory are also shown. For the example dis-
cussed here, about 1000 sample points are necessary to reach the accuracy of the second-order
perturbation result. This underlines the savings in the computational costs that are enabled by
perturbation theory.
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FEM

Network

Figure 9.2: Illustration of the mapping of the parameters to complex eigenfrequencies using a uni-
form grid of sample points. 17 levels are shown for both parameters n and τ. The computation
of the stability boundary (solid black) from a line-search algorithm is based on 65 levels for both
parameters. Both the FEM and the network discretization show the same characteristics. Already,
linear multi-parameter perturbation theory results in a fair estimate (dashed purple) of the stabil-
ity boundary. However, because the stability boundary is slightly curved the second-order theory
gives a much better estimate (dashed green).
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FEM

Network

Figure 9.3: Results of the Monte Carlo study. The same set of 4225 randomly generated points is
used to study both the FEM and the network discretization of the model. These sample points were
drawn from a uniform probability density function. The color of the dots indicates whether the
sample points are mapped to stable (orange) or unstable (blue) solutions. Extensive MC sampling
results in a good estimate for the portion of the considered parameter set that results in unstable
solutions, i.e., the risk factor. However, this approach is rather slow. See Fig. 9.4 for information on
the convergence.
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FEM

Network

Figure 9.4: Convergence of the sampling methods. The uniform sampling was only peformed for
sampling grids featuring 22,42, 92, 172, 332, and 652 sample points (black dots). The estimates
obtained from linear and quadratic perturbation theory are depicted for comparison. They re-
quire only a single solution of thermoacoustic Helmholtz equation. The estimate obtained from
quadratic perturbation theory is accurate as results obtained from a few thousand samples.
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9.4 Conclusions

In previous works, the risk factor was computed via computationally expensive sampling tech-
niques. Multi-parameter perturbation theory allows for estimating the risk factor based on a sin-
gle solution of the nonlinear eigenvalue problem. Second-order approximations to the stability
boundary showed very good agreement with exact results. A third-order theory might result in
even better estimates. If the domain of convergence of the power series is small, a few more
baseline solutions distributed along the stability boundary might be needed to approximate it.
Such an algorithm would also start with a single baseline solution and then successively reeval-
uate the eigenvalue problem at parameter points for which the truncation error of the already
obtained asymptotic expansions becomes unacceptably large. This truncation error would be es-
timated from perturbation theory of the next order (compare Sec. 6.4). However, for the current
test case, the estimate obtained from the second-order theory and a single baseline solution ap-
pears to be reasonable. In view of these rather small perturbations, a second-order theory may
also be sufficient in practical applications. In many cases, the new method is to be preferred over
the traditional sampling-based techniques. A notable exception are operating conditions close
to an exceptional point as will be explained in the next chapter. A further challenge are degener-
ate eigenvalues which cannot be expanded into multi-variate power series. Future work should
investigate how to expand these into asymptotic series.

171





Part IV

Exceptional Points

173





Chapter 10

Nonlinear eigenvalue problems IV:
exceptional points

It is well known that spectra of annular combustion chambers feature degenerate eigenvalues.
However, the thermoacoustic literature mainly focuses on semi-simple eigenvalues (see Part II
of this thesis and references therein). This chapter shows that even the spectra of a simple ther-
moacoustic system like the Rijke tube, parameter combinations exist for which the eigenvalue is
defective. Following a classification introduced by Kato [117], these points are called exceptional
points.

The chapter is a first step towards a better understanding of exceptional points in thermoa-
coustic spectra. The implications of EPs on eigenvalue sensitivity are discussed. In particular, this
includes a deep connection to the convergence radii of the power series obtained from perturba-
tion theory. Furthermore, it is shown how to compute parameter combinations to yield excep-
tional points. The theory is exemplified on the basis of the Rijke-tube model.

The presented theory is the result of intense discussions with Luca Magri, Camilo Silva, Philip
Buschmann, Alessandro Orchini and Jonas Moeck. Parts of the theory were previously published
in [175].

10.1 Introduction

Beginning with problems from non-Hermitian quantum mechanics more and more physical phe-
nomena in various fields have been found that are associated with exceptional points. This in-
cludes mechanics, electromagnetism, laser physics and many more, see [176] for a collection of
topics involving EPs. In particular, there are acoustic phenomena that are governed by exceptional
points (see, e.g., [177, 178]).

This raises the question whether exceptional points also play a role in the spectra of thermoa-
coustic operator families. Ignoring symmetry effects, it is, indeed, more likely for non-normal op-
erators to encounter defective eigenvalues than semi-simple degenerate ones because less param-
eters are needed to find an exceptional point [179]. However, until recently, the thermoacoustic
literature did not focus on aspects of defective eigenvalues. Consequently, the exceptional points
were neither named as such nor explicitly considered to explain the dependence of thermoacous-
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tic spectra on their parameters. It was tacitly assumed that defective eigenvalues cannot be found
in the spectra of thermoacoustic systems. Yet, not identified as such, they can be found in recent
work related to thermoacoustics. Sogaro et al. discuss an interaction of acoustic and intrinsic
modes using a network discretization of a Rijke tube. They report high sensitivities with respect to
the flame position and the reflection coefficients at the inlet and outlet of the tube [180]. Similar
results were found by Silva et al. when studying the sensitivity with respect to the time-delay and
the interaction index [181]. Note that high eigenvalue sensitivities are typically encountered in the
vicinity of exceptional points. Indeed, the eigenvalue sensitivity at an exceptional point is infinite.
Juniper and Sujith already related the high eigenvalue sensitivity in discretizations of a Rijke tube
to eigenvalue multiplicities larger than one [182] – i.e., degenerate eigenvalues. The discussion,
however, did not focus on the distinction of defective and semi-simple degenerate eigenvalues.

The next section outlines why the eigenvalue sensitivity in the vicinity of exceptional points
is high. The high eigenvalue sensitivity will be used as key criterion to compute the parameter
combinations that lead to exceptional points in thermoacoustic spectra.

10.2 Eigenvalue sensitivity at exceptional points

The perturbation methods introduced in Chap. 6 express the dependence of the eigenvalue ω on
some parameter in terms of power-series expansions. These power-series expansions, only exist if
the relation ω=ω(ε) is analytic, i.e., is infinitely often differentiable with respect to the parameter.
In particular, this implies a finite sensitivity with respect to the model parameter, viz:∣∣∣∣∂ω∂ε

∣∣∣∣<∞. (10.1)

A major result from the algebra of linear eigenvalue problems is that, if the corresponding eigen-
value is semi-simple (i.e., algebraic and geometric multiplicity coincide), the parameter sensitiv-
ity is finite [117, Theorem II-2.3]. Because the operator families discussed in this thesis can be
linearized with respect to both the eigenvalue and the parameter

L(z0 +∆z;ε0 +∆ε) ≈L0,0 +∆zL1,0 +∆εL0,1 (10.2)

the sensitivity of semi-simple eigenvalues must also be finite.

If the eigenvalue is defective, however, the sensitivity might be infinite. Thus, an exceptional
point cannot be approximated in terms of power-series expansions. Instead, Puiseux series have
to be used [117, 179, 183]. These are series expansions in fractional powers of ∆ε. This chapter
considers defective eigenvalues with algebraic multiplicity 2 and geometric multiplicity 1. In this
case the asymptotic expansion of the eigenvalue drift reads:

ω=ω0 +ω1(∆ε)
1
2 +o(∆ε) as ∆ε→ 0. (10.3)

Except for the special case ω1 = 0 the sensitivity will, thus, be infinite.
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10.3 Computation of exceptional points from the dispersion relation

Mathematically, it is well known that non-Hermitian complex-valued operator families can be
tuned by two real parameters to feature exceptional points, see, e.g., [179] and references therein.
Because exceptional points are the root cause for the infinitely large parameter sensitivity, the sen-
sitivity can be employed to identify exceptional points.

Assume the thermoacoustic system depends on two real modeling parameters ε1 and ε2. Then,
the thermoacoustic eigenvalue problem in finite-dimensional form reads

L(ω;ε1,ε2)p = 0. (10.4)

By taking the determinant of L, a dispersion relation can be obtained, the roots of which define
solutions of the eigenvalue problem:

det(L(ω;ε1,ε2)) =: D(ω;ε1,ε2) = 0. (10.5)

In order for the eigenvalue to feature an algebraic multiplicity greater than one, at least the first
derivative of the dispersion relation with respect to ω must also vanish

∂D

∂ω
(ω;ε1,ε2) = 0. (10.6)

Finding a solution (ω,ε1,ε2) to the equations (10.5) and (10.6) will, hence, yield a degenerate eigen-
value. This eigenvalue will be defective if the sensitivity of ω with respect to ε1 is infinitely large.
The derivative of ω with respect to ε1 can be computed in virtue of the implicit function theorem
from the dispersion relation:

∂ω

∂ε1
=− ∂D

∂ε1
/
∂D

∂ω
. (10.7)

Because of the degeneracy condition (10.6), the denominator in the above equation vanishes.
Consequently, the eigenvalue sensitivity will be indeed infinite as long as ∂D

∂ε1
6= 0. If the eigen-

value is semi-simple, then ∂D
∂ε1

6= 0 because these eigenvalues feature a finite sensitivity. However,
if the degeneracy is not induced by a special symmetry, this is a non-generic case. This is the main
reason why in absence of symmetry it is more likely to encounter defective than semi-simple de-
generate eigenvalues.

10.4 Application to the network discretization of the Rijke-tube model

This section exemplifies the theory with the network model of the Rijke tube. The interaction index
n and the time delay τ are considered as the two parameters of interest. All other parameters are
fixed to the same values as in the previous chapters (c1 = 1, c2 = 2, L = 1, xref = xflm = 1/2, Zin =∞
and Zout = 0). In this case the dispersion relation reduces to:

D(ω;n,τ) = (
1+n exp(−iωτ)

)
sin

(ω
2

)
sin

(ω
4

)
+2cos

(ω
2

)
cos

(ω
4

)
(10.8)
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which can be easily differentiated with respect to ω

∂

∂ω
D(ω;n,τ) =− inτexp(−iωτ)sin

(ω
2

)
sin

(ω
4

)
+ 1

2
(1+n exp(−iωτ))cos

(ω
2

)
sin

(ω
4

)
+ 1

4
(1+n exp(−iωτ))sin

(ω
2

)
cos

(ω
4

)
− sin

(ω
2

)
cos

(ω
4

)
− 1

2
cos

(ω
2

)
sin

(ω
4

)
. (10.9)

Solving the equations (10.8) and (10.9) numerically using SciPy’s FSOLVE command allows to
find several exceptional points. Table 10.1 lists the eigenvalue of the passive mode #R1 (n = 0)
together with exceptional points found in its vicinity.

Table 10.1: Eigenvalue of the passive mode #R1 (highlighted in black) and some nearby excep-
tional points. The parameters n and τ are given to ten decimal places. With this precision, two
eigenvalues are found to be identical to 6 decimal places.

# n τ real(ω) imag(ω)

#R1 0 - 2.461918 0
1.a 0.7181285732 0.8523499542 2.846933 0.812364
1.b 0.2323023022 3.2641053136 2.513530 0.290073
1.c −0.3600234302 2.0270435614 2.578045 0.437400
1.d 0.1335954015 5.7851804857 2.479662 0.169601
1.e 0.0715946446 10.8696641251 2.467093 0.091488
1.f −0.0810286207 −9.5966148444 2.468534 −0.103464

The list is not meant to be exhaustive in any regard, nor are the listed exceptional points chosen
by any systematic rule. However, it exemplifies that various exceptional points can be found. Note
that the exceptional point 1.f is unphysical as it features a negative delay time. This is not surpris-
ing as the exceptional points were merely defined as an algebraic feature rather than a physically
motivated aspect. However, taking for instance the exceptional point 1.a from Tab. 10.1 the role of
exceptional points for the interaction of acoustic and intrinsic modes can be exemplified. This is
the topic of the next section.

Interaction of intrinsic and acoustic modes at an exceptional point

In line with the findings of [180] and [181], at an exceptional point, an acoustic and an intrin-
sic mode interact. This section studies the phenomenon in the vicinity of the exceptional point
1.a. Because two eigenmodes are involved in the process, Beyn’s algorithm is used to compute
all eigenvalues that occur in a circular domain around the eigenfrequency corresponding to the
exceptional point. This allows to track the trajectories of the eigenfrequencies when varying the
system parameters. The circle has a radius of R = 1.25, and 16 equidistantly distributed points
were used for trapezoidal quadrature.

Figure 10.1 a) shows the interaction of an acoustic and an intrinsic mode at the considered ex-
ceptional point, when fixing the time delay to the exceptional value and increasing the interaction
index n from 0. Two eigenfrequency trajectories are found to coalesce at the exceptional point.
One originates from the real axis and can, therefore, be classified as acoustic eigenfrequency. The
other one features an increasingly high imaginary part, the lower the interaction index is. Indeed,
for n = 0 its imaginary part would be infinite, i.e., the mode does not exist in the absence of a
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Figure 10.1: Interaction of acoustic and intrinsic modes at the exceptional point 1.a.
a) Eigenvalue trajectories in the complex plane when setting τ= τEP and varying n. The dashed cir-
cle illustrates the contour Γ utilized for the solution of the eigenvalue problem with Beyn’s method.
As the interaction index n is increased from 0, an acoustic and an intrinsic eigenvalue trajectory
coalesce, merge at n = nEP, and finally depart in opposite directions.
b) Mode shapes for various values of n corresponding to the eigenvalues marked by dots of the
same color in the left subfigure. As the eigenvalues coalesce, also the mode shapes become iden-
tical at n = nEP (black line).
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flame. It is, thus, an intrinsic thermoacoustic mode. At n = nEP the two trajectories merge. A fur-
ther increase of the interaction index causes the trajectories to depart in opposite directions along
lines that are orthogonal to the previous paths. Note that while the trajectories can be uniquely
associated to either the acoustic or the intrinsic mode for values of n < nEP, this is not possible for
larger values of n. The trajectories for n > nEP will, therefore, be referred to as branch I and II in
the following. That the branches I and II are orthogonal to the acoustic and the thermoacoustic
branch is a generic feature of an exceptional point with algebraic multiplicity 2 and real parame-
ters. This is because due to Eq. (10.3) the eigenvalue drift is proportional to (ε− εEP )

1
2 , which in

turn is proportional to ±i if ε < ε0 and ±1 if ε > ε0. Thus, there is a 90◦ degree phase shift in the
eigenvalue drift. Note that this kink in the trajectories is a graphical manifestation of the infinite
parameter sensitivity, as the trajectories would be smooth lines for finite sensitivities.

Figure 10.1 b) depicts the modes shapes corresponding to the trajectories shown in Fig. 10.1 a).
As the interaction index is increased, the mode shapes corresponding to the acoustic (green) and
the intrinsic (yellow) branch become increasingly similar. At the exceptional point (n = nEP, black)
there is only one distinct mode shape, because the corresponding eigenvalue is defective. Further
increasing the interaction index yields distinct mode shapes associated to branch I (red) and II
(purple) that increasingly deviate from each other. Note how the mode shape corresponding to
the exceptional point appears to be rather isolated in the center of the figure. While the shown
mode shapes correspond to 20 equidistantly distributed samples of n, the largest change in the
mode shapes is found for interaction indices n close to nEP. This indicates that the mode-shape
sensitivity is also high around the exceptional point. Indeed the mode shape is also to be expanded
in a Puiseux series [179]. Similarly, a large spread of the illustrated eigenvalues can be seen around
the EP in Fig. 10.1 a).

Both figures show that in the vicinity of the exceptional point the eigenvalue sensitivity is high.
Indeed, the high parameter sensitivity observed in previous work can be explained with the pres-
ence of an exceptional point. This is further illustrated in Fig. 10.2. It shows the dependence of the
eigenvalue on the parameters n and τ in the vicinity of the exceptional point.

When varying n (Fig. 10.2 a)), the eigenvalue trajectories originating from the acoustic mode
cannot penetrate the exceptional branches. Therefore, even if initially stabilized by an increase
of n, increasing n will finally destabilize the associated eigenmodes. Similarly, intrinsic trajecto-
ries also cannot penetrate the exceptional branches. Four trajectories highlight slightly mistuned
exceptional branches where τ= τEP ±0.003τAC. These trajectories follow paths close to the excep-
tional ones. Yet, they do not cross each other. Like two ships approaching each other very closely,
the two trajectories eventually veer, avoiding their paths to cross. This behavior of eigenfrequency
trajectories is known as avoided crossings in quantum mechanics (e.g., [179]) and mode veering
in structural mechanics (e.g., [184]) and generally appears if the chosen parameters are close to a
degenerate point. This scenario is more relevant, because it is much less likely to encounter an
exceptional point in a thermoacoustic model than being just close to it. Note that the only trajec-
tory crossing the exceptional branches is not associated to the two eigenmodes interacting at the
exceptional point.

When varying τ at the exceptional point, the topology of the trajectories changes (Fig. 10.2).
Parametrization in terms of the time delay does not allow for a classification of the branches in
terms of acoustic and intrinsic modes. However, the EP induces the same characteristics: two
trajectories coalesce, and split again and the sensitivity around the exceptional point is high (note
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Figure 10.2: Eigenvalue dependence on n and τ in the vicinity of an exceptional point.
a) Trajectories parametrized in n for various levels of τ. The arrows indicate the direction of in-
creasing values of n. Thin gray lines highlight constant values of n. The values in the labels indi-
cate the deviation from τEP. Note that τac = 2π

ω#R1
.

b) Trajectories parametrized in τ for various levels of n. The arrows indicate the direction of in-
creasing values of τ. Thin gray lines highlight constant values of τ.
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the spread between the lines close to the exceptional value).

Because the trajectories cannot cross the exceptional branches, for n < nEP some trajectories
are trapped and appear to circle around the passive eigenfrequency. Please note, however, that
trajectories parametrized in τ cannot be periodic. As can be concluded from the following ratio-
nale.

Trivially, if all model parameters stay the same, the same eigenvalues are found. In the current
case, the flame response f is only a function of complex frequency, interaction index, and time
delay f = f (−ω,n,τ) = n exp(−iωτ). In order to find the same eigenfrequency ω with different
values of τ and n, the following equation must, therefore, hold:

n exp(−iωτ) = n′ exp(−iωτ′). (10.10)

Division by n′ exp(−iωτ) yields

n

n′ = exp(−iω (τ′−τ)︸ ︷︷ ︸
:=∆τ

) = exp(ωI∆τ) [cos(ωR∆τ)− isin(ωR∆τ)] (10.11)

where ωR and ωI denote the real and imaginary part of ω, respectively. Because n and n′ are real
parameters the shift in the delay time ∆τ must be such that sin(ωR∆τ) = 0. Hence, ωR∆τ is a
multiple of π. This in turn implies that cos(ωR∆τ) = (−1)k where k is some integer. Finally, by
substitution of ∆τk = kπ

ωR
into Eq. (10.11), a corresponding factor for n can be found:

n

n′
k

= (−1)k exp

(
kπ

ωI

ωR

)
. (10.12)

Thus, there are changes to τ which permit to find the same eigenfrequency again. However, this
is only possible if the interaction index is adjusted accordingly. Only solutions with purely real
eigenfrequencies do not require any adjustment of the interaction index. However, the assump-
tion that trajectories of the eigenfrequency in the complex plane when parameterized by τ are, at
least for small interaction indices, periodic loops around the passive eigenfrequencies is wrong.
This is because such a loop by definition contains almost exclusively eigenfrequencies with non-
vanishing imaginary parts. And the above rationale shows that one such eigenfrequency cannot
be recovered by changing τ without appropriately changing n, too. A complete discussion of the
true topology of such trajectories is beyond the scope of this thesis. The key point here is that the
exceptional point determines whether the trajectories circle around the passive eigenfrequency or
not. Bauerheim et al. report similar trajectories for an annular combustor when varying the time
delay [147, Fig. 8]. Depending on whether the interaction index is less or greater than a certain
threshold, the trajectories encircle one or two eigenmodes. Apparently, this weak or strong cou-
pling of eigenmodes is also governed by an exceptional point. However, it concerns the interaction
of two acoustic modes.

Because the determinant of large matrices cannot be reliably calculated, the proposed ap-
proach is only suited for low-dimensional discretizations such as network models. The next sec-
tion discusses a the connection between exceptional points and perturbation theory and presents
a method for the computation of exceptional points that is not based on determinants.
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10.5 Implications for perturbation theory

From a mathematical viewpoint, the choice of taking the interaction index n and the time delay τ

as the two model parameters to obtain an exceptional point is rather arbitrary. Another choice of
parameters for finding an exceptional point would be the real and the imaginary part of the inter-
action index n. Although unphysical, this choice has a deep connection to perturbation theory, as
it finally explains the limited convergence radii of single-parameter perturbation theory.

Because exceptional points feature an infinite parameter sensitivity, expansion into power se-
ries is not possible at these points. Moreover, these points are singularities of the relation ω=ω(ε),
and, hence, limit the convergence radii of power-series expansions of this relation. This is be-
cause the convergence radius is precisely the distance from the expansion point ε0 to the nearest
singularity in the complex parameter plane. The exceptional points discussed in this section are
complex-valued instances of usually real-valued parameters defining the thermoacoustic model.
Their relevance arises from the constraints they impose on power-series expansions of the eigen-
frequency as they are utilized in adjoint perturbation theory.

In the simplest case the dependence of the eigenvalue on some parameter close to a singularity
is

ω(ε) ∼ (ε−εsng)k (10.13)

where k ∉N. Because of (10.3) for the singularities discussed in this section, the exponent will be
k = 1

2 . The position εsng and the exponent k of a singularity can be estimated from the coefficients
ω j of a power series that is expanded in the vicinity of the singularity, using the relations

εsng = ε0 +
ω j ω j−1

( j +1)ω j+1ω j−1 − jω2
j

(10.14)

k = ( j 2 −1)ω j+1ω j−1 − ( jω j )2

( j +1)ω j+1ω j−1 − jω2
j

. (10.15)

The estimates should become increasingly accurate as j →∞. Also moving the expansion point of
the power series closer to the singularity improves the accuracy of the estimates. See [128, chapter
6] and references therein for further details on this method.

Because high-order power series coefficients can be computed using the perturbation theory
presented in Chap. 6, it allows to find exceptional points without computations of determinants.
To achieve this, high-order power series coefficients are computed for some value of ε and the
position of the singularity is estimated from Eq. (10.14). A power-series expansion at the estimated
position is then computed in order to obtain an even better estimate. Repetition of these steps
should converge to the position of the singularity. Table 10.2 lists the estimates obtained from
three iterations of this procedure applied to the FEM discretization of the network model.

The interaction index n was considered as complex parameter and the series coefficients ω13,
ω14, and ω15 were used to compute the estimates. Two cases are reported. The first computes
the singularity that limits the convergence of the power series of mode #R1. For the second case
the time delay is set from τ = 2 to τ = 0.8523 for comparison with the exceptional point 1.a that
was discussed in detail in the previous section. Both cases converge within the three steps. The
exponents converged to k = 0.5, indicating that the computed singularity is indeed a defective
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Table 10.2: Estimates for singularities in the relation ω=ω(n) obtained from 15th-order perturba-
tion theory.

# real(n) imag(n) real(ωsng) imag(ωsng) real(k) imag(k)

τ= 2
init 1 0 2.368703 −0.265683 - -
1 −0.362744 0.058128 2.467858 0.445948 0.361423 −0.020634
2 −0.356843 0.058614 2.547452 0.439656 0.501201 0.000420
3 −0.356843 0.058614 2.548034 0.439676 0.500000 0.000000

τ= 0.8523
init 1 0 2.128628 0.828271 - -
1 0.7073003 −0.044042 2.798139 0.801249 0.499277 0.047050
2 0.7068817 −0.044386 2.833042 0.800846 0.500035 0.000056
3 0.7068817 −0.044386 2.833042 0.863643 0.500000 0.000000

eigenvalue with multiplicity 2. Moreover, solving the system with Beyn’s algorithm yields indeed
two eigenvalues that are identical to 6 decimal places and feature identical mode shapes. The
mode shapes are shown in Fig. 10.3.

Note that for the second case, the eigenfrequency at the singularity agrees well with the eigen-
frequency obtained from evaluations of the dispersion relation of the network model. Because
the method uses the real and the imaginary part of the interaction index as the two parameters to
find the singularity, the converged value of n is complex and, hence, different from the parameter
reported in Tab. 10.1.

10.6 Conclusions

Exceptional points in thermoacoustic spectra were discussed. They are characterized by a high-
parameter sensitivity and explain aspects of the interaction of intrinsic and acoustic modes as
recently reported in the literature. Although not found for the presented examples, they may also
govern other types of mode interactions.

Two methods were presented to compute parameter combinations that yield exceptional points.
While the first is based on evaluations of the dispersion relation and its derivative, the second ex-
ploits the fact that exceptional points are singularities that limit the convergence of power-series
expansions. The second method does not require evaluations of the determinant and is, there-
fore, better suited for three-dimensional Helmholtz solvers and other high-dimensional methods.
However, the exceptional points found with this method are complex valued and, thus, not di-
rectly linked to physically realizable quantities. Future work should investigate how to improve
this method. Quantum mechanics may again give inspiration on how to achieve this, see [185]
and references therein.

The high sensitivity of exceptional points may also give rise to practical applications such as
efficient control schemes for the mitigation of thermoacoustic instabilities that utilize only small
changes in the design variables. Conversely, exceptional points might be a particular challenge
because due to the high sensitivity small uncertainties might be strongly amplified. A deeper un-
derstanding of the role of exceptional points should, thus, be the aim of future research.
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Figure 10.3: Mode shapes obtained for the two test cases. For each test case the two mode shapes
are identical. The singularities computed from the perturbation coefficients, therefore, corre-
spond to defective eigenvalues with multiplicity two.
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Conclusions and Outlook

One approach for the assessment of thermoacoustic instabilities is linear stability analysis. Re-
gardless whether the discretization approach is based on wave-based network models or Helm-
holtz solvers, linear stability analysis results in a nonlinear eigenvalue problem. This thesis dis-
cussed several approaches to ease the solution of this problem.

Part I introduced the fundamental mathematical concepts, models, and algorithms that are
considered in the thesis. The thermoacoustic Helmholtz equation was derived. The discussion of
the derivation of the adjoint Helmholtz equation and a Bubnov-Galerkin finite element discretiza-
tion outlined the kinship of these topics. In particular, it was emphasized that the classic distinc-
tion between continuous and discrete adjoint approaches is not necessary when using this FEM
method. It is, thus, well suited for the study of adjoint-based algorithms. However, as discussed
in [71], perturbations of the domain shape would require to take high-order derivatives at the per-
turbed boundaries. The presented finite element method would be inappropriate for this task and
spectral method as presented in [186] might be considered. Future work should address this ques-
tion. The current standard fixed-point methods for the solution of the thermoacoustic eigenvalue
problem were also discussed in Part I. Moreover, various example cases for comparison with the
other methods in this thesis were presented.

Part II exploited the discrete rotational symmetry of annular combustion chambers by Bloch-
wave theory. For practical combustors this theory may lead to an acceleration of the computation
time by a factor of 400. Moreover, the findings were also useful for the discussion of theoretical
questions such as the occurrence of degenerate eigenvalues. The theory might be further im-
proved by explicitly incorporating reflection symmetries. If the considered combustor model fea-
tures both discrete rotational and reflection symmetry, reduction of the computational domain
to an irreducible unit cell would then be possible. This would reduce the computational domain
size by an additional factor of two. Such a theory is already established in other fields to ease the
modeling of wave propagation in highly symmetric periodic structures, see [67] and references
therein.

Perturbation theory was proposed to complement the Bloch-wave theory when the discrete
rotational symmetry is broken. Therefore, existing adjoint-based perturbation methods were ex-
tended to arbitrary order. As exemplified with the model of the MICCA combustor, when studying
symmetry breaking, the baseline solution for the perturbation methods can still be obtained ef-
ficiently from Bloch-wave theory and asymmetries are accounted for using the improved pertur-
bation methods. Perturbation theory was also applied to compute spinning-mode limit cycles in
annular combustors. Computation of standing-mode limit cycles, however, is not possible with
the discussed schemes. Because standing-mode limit cycles feature different amplitude levels at
the individual flames, this would require a multi-parameter theory that can handle a mode un-
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folding due to a loss of symmetry. As the presented perturbation theory is largely independent of
the particular application to thermoacoustic stability analysis, other fields may also benefit from
this theory. For instance, second-order perturbation theory is already used for stability analysis of
fluid flows [187] and generalization to arbitrary order may further improve the analysis.

However, there are other applications for the perturbation methods than combining them with
Bloch-wave theory. Part III discussed how to use perturbation theory to study and improve iter-
ative solution algorithms for nonlinear eigenvalue problems. When compared to the standard
fixed-point iteration used in the field, the improved methods converge much faster to machine-
precise solutions. Combination with integration-based eigenvalue solvers allowed to efficiently
compute all eigenvalues inside of a predefined region of the complex plane. In particular, this en-
ables the computation of intrinsic thermoacoustic modes, because no initial guesses such as the
passive flame eigenvalues are needed. In view of the abundance of solution algorithms [87, 86]
for nonlinear eigenvalue problems, extensive comparison of the discussed methods with other
solution methods described in the literature should be done in the future.

Utilization of the perturbation theory for risk-factor analysis was also discussed in Part III. A
second-order multi-parameter theory was introduced for that purpose. Because the theory yields
an explicit expression for the dependence of the eigenfrequency on the model parameters, an
approximation to the stability boundary can be computed from a single solution of the thermoa-
coustic Helmholtz equation. This expression can then be used to calculate the risk factor by alge-
braic integration in parameter space. Similar to the case of standing-mode limit cycles, the theory
cannot be applied to degenerate eigenvalues. Future work should address this question.

Also note that because perturbation theory provides gradient information, future work should
also focus on its utilization as an optimization tool.

The last part discussed exceptional points. It was shown that these points play a role in the in-
teraction of intrinsic and acoustic modes. The high sensitivity poses a particular challenge for the
perturbation theory presented in this thesis. Future work should investigate methods for asymp-
totic series expansions at these points. The high sensitivity of exceptional points is also relevant
for the control of thermoacoustic instabilities. This regards both the opportunity to achieve large
damping effects by well calculated design changes as well as the challenge to design robust design
schemes that can cope with the high sensitivity of the parameters.
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Appendix A

Inductive proofs for large order
perturbation theory

In the thesis the equations for the large-order perturbation theory were derived by explicitly sort-
ing for equal powers of the perturbation parameter. However, they can also be derived by induc-
tion.

Some notes on power series

Given a power series expansion of a function

f (z) =
∞∑

n=0
an (z − z0)n , (A.1)

the coefficients an depend on the expansion point z0, i.e., an = an(z0). This can be used to relate
an to an+1, by taking the partial derivative of Eq. (A.1) with respect to z0:

0 =
∞∑

n=0

∂an

∂z0
(z − z0)n −nan (z − z0)n−1 (A.2)

⇔
∞∑

n=0
nan (z − z0)n−1 =

∞∑
n=0

∂an

∂z0
(z − z0)n (A.3)

0+
∞∑

n=1
nan (z − z0)n−1 =

∞∑
n=0

∂an

∂z0
(z − z0)n (A.4)

∞∑
n=0

(n +1)an+1 (z − z0)n =
∞∑

n=0

∂an

∂z0
(z − z0)n . (A.5)

Comparing the coefficients of the left and right-hand side then yields:

(n +1)an+1 = ∂an

∂z0
⇔an+1 = 1

n +1

∂an

∂z0
. (A.6)

Note that the above relation is nothing else than a recursive definition of Taylor coefficients. It can
be used to find the perturbation formulae by induction.
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For convenience the following notation is introduced:

|αβ| =
∞∑

i=1
αiβi (A.7)

M≤k = {
µ ∈ N∞

0

∣∣|µ|1 ≤ k
}

(A.8)

M=k = {
µ ∈ N∞

0

∣∣|µ|1 = k
}

. (A.9)

With these definitions it can be directly concluded that M≤k∩M≤k+1 =M=k+1. Interestingly, M=k+1

can be constructed from M=k by

M=k+1 = {(k +1)1k }∪{
µ−1g +1g+1

∣∣µ ∈M=k ,µg 6= 0
}

. (A.10)

A.1 An inductive proof for the coefficient determining equation

This section uses a proof by induction to show that Eq. (6.11), which in the current notation reads

k∑
m=0

∑
µ∈M≤k

k−|µ|1∑
n=0

(
|µ|
µ

)
ωµL|µ|,n p̂k−n−|µ|1 = 0, (A.11)

is the valid equation to determine the coefficients for the perturbation series at any order k.

Base case

The base case is trivial as for k = 0

L0,0p̂0 = 0 (A.12)

which is the unperturbed eigenvalue problem evaluated at ε0.

Inductive step

The inductive step is more complicated. It requires to take the derivative of (A.11) with respect
to ε0 according to (A.6) this will spawn a lot of new terms including the correction coefficients of
order k +1. Rearranging the terms will then yield (A.11) for order k +1.

Due to the product rule, taking the derivative of ωµLm,n p̂k−n−|µ|1 comes down to the three
derivatives:

∂ε0 p̂k−n−|µ|1 = (k −n −|µ|1 +1)p̂k−n−|µ|1+1, (A.13)

∂ε0Lm,n =ω1Lm+1,n(m +1)+Lm,n+1(n +1), (A.14)

and

∂ε0ω
µ = ∂ε0

k∏
g=1

ω
µg
g =

k∑
g=1

µg ω
µg−1
g ωg+1(g +1)

k∏
l=1
l 6=g

ω
µl

l =
k∑

g=1
(g +1)µgω

µ−1g+1g+1 . (A.15)
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Note thatLm,n was defined as ∂m+n

∂ωm∂εn L(ω(ε),ε)
∣∣∣
ε=ε0

, thus, one factor ω1 is obtained from the chain

rule, when taking the derivative:

∂ε0

∑
µ∈M≤k

k−|µ|1∑
n=0

(
|µ|
µ

)
ωµL|µ|,n p̂k−n−|µ|1 = ∂ε0 0 = 0 (A.16)

= ∑
µ∈M≤k

k−|µ|1∑
n=0

(
|µ|
µ

)
∂ε0ω

µL|µ|,n p̂k−n−|µ|1 (A.17)

= ∑
µ∈M≤k

k−|µ|1∑
n=0

(
|µ|
µ

)
ωµL|µ|,n p̂k−n−|µ|1+1(k −n −|µ|1 +1)︸ ︷︷ ︸

term I

(A.18)

+ ∑
µ∈M≤k

k−|µ|1∑
n=0

(
|µ|
µ

)[
ωµ+11L|µ|+1,n(|µ|+1)+ωµL|µ|,n+1(n +1)

]
p̂k−n−|µ|1︸ ︷︷ ︸

term II

+ ∑
µ∈M≤k

k−|µ|1∑
n=0

(
|µ|
µ

)
k∑

g=1
ωµ−1g+1g+1L|µ|,n p̂k−n−|µ|1 (g +1)µg︸ ︷︷ ︸

term III

.

The terms I, II, and III arose from the product rule utilized for the differentiation ofωµL|µ|,n p̂k−n−|µ|1 :

term II = ∑
µ∈M≤k

k−|µ|1∑
n=0

(
|µ|
µ

)
ωµ+11L|µ|+1,n p̂k−n−|µ|1 (|µ|+1)︸ ︷︷ ︸

term IIa

(A.19)

+ ∑
µ∈M≤k

k−|µ|1∑
n=0

(
|µ|
µ

)
ωµL|µ|,n+1p̂k−n−|µ|1 (n +1)

=term IIa+ ∑
µ∈M≤k

k−|µ|1+1∑
n=1

(
|µ|
µ

)
ωµL|µ|,n p̂k−(n−1)−|µ|1 n (A.20)

=term IIa+ ∑
µ∈M≤k

(
0+

[
k−|µ|1∑

n=1

(
|µ|
µ

)
ωµL|µ|,n p̂k−(n−1)−|µ|1 n

]
+

(
|µ|
µ

)
ωµL|µ|,n p̂0(k −|µ|1 +1)

)
(A.21)

=term IIa+ ∑
µ∈M≤k

k−|µ|1∑
n=0

(
|µ|
µ

)
ωµL|µ|,n p̂k−n−|µ|1+1n︸ ︷︷ ︸

term IIb

(A.22)

+ ∑
µ∈M≤k

k−|µ|1+1∑
n=k−|µ|1+1

(
|µ|
µ

)
ωµL|µ|,k−n−|µ|1+1p̂0(k −|µ|1 +1)

=term IIa+ term IIb+ ∑
µ∈M≤k

k−|µ|1+1∑
n=k−|µ|1+1

(
|µ|
µ

)
ωµL|µ|,k−n−|µ|1+1p̂0(k +1)︸ ︷︷ ︸
term IIc

(A.23)
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− ∑
µ∈M≤k

(
|µ|
µ

)
ωµL|µ|,k−|µ|1+1p̂0|µ|1︸ ︷︷ ︸

term IId

Adding 0 = 11 −11 to the multi-index µ allows for the following algebraic manipulations:

µ=µ+11 −11, (A.24)

|µ| = |µ+11 −11| = |µ+11|− |11| = |µ+11|−1, (A.25)

|µ|1 = |µ+11 −11|1 = |µ+11|1 −|11|1 = |µ+11|1 −1, (A.26)

and (
|µ|
µ

)
(|µ|+1) =

(
|µ+11|−1

µ

)
(|µ+11|) =

(
|µ+11|

µ

)
=

(
|µ+11|
µ+11

)
(µ1 +1). (A.27)

Using these relations, term IIa can be further recast:

term IIa = ∑
µ∈M≤k

k−|µ+11|1+1∑
n=0

(
|µ+11|
µ+11

)
ωµ+11L|µ+11|,n p̂k−n−|µ+11|1+1(µ1 +1). (A.28)

By substituting µ+11 =α this gives:

term IIa = ∑
α∈M≤k+11

k−|α|1+1∑
n=0

(
|α|
α

)
ωαL|α|,n p̂k−n−|α|1+1α1. (A.29)

Here, M≤k +11 denotes the set of all multi-indices which can be constructed by taking all elements
of M≤k and increasing their first value by 1. For all multi-indices µ ∈M≤k which satisfy |µ|1 < k the
corresponding α=µ+11 satisfies |α|1 = |µ+11|1 = |µ|1 +1 < k +1 ≤ k. Hence, the corresponding
α is still in M≤k . The only multi-indices for which this condition is not satisfied, are µ ∈M=k . Note
that by definition for each α ∈M≤k where α1 6= 0 a preimage µ can be found that µ+11 =α. The
M≤k +11 set can, therefore, be decomposed as follows:

M≤k +11 = {α ∈M=k+1|α1 6= 0}∪ {α ∈M≤k |α1 6= 0} . (A.30)

Hence,

term IIa = ∑
{α∈M=k+1|α1 6=0}

k−|α|1+1∑
n=0

(
|α|
α

)
ωαL|α|,n p̂k−n−|α|1+1α1 (A.31)

+ ∑
{α∈M≤k |α1 6=0}

k−|α|1+1∑
n=0

(
|α|
α

)
ωαL|α|,n p̂k−n−|α|1+1α1. (A.32)

Both terms do not account for multi-indices with vanishing first entry. Taking these into account
would, however, make no difference. This is because each addend carries a coefficient α1. Hence,
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accounting for multi-indices with α1 = 0 would add 0 to the sums. Thus, it can be stated that

term IIa = ∑
α∈M=k

k−|α|1+1∑
n=0

(
|α|
α

)
ωαL|α|,n p̂k−n−|α|1+1α1︸ ︷︷ ︸

term IIa1

(A.33)

+ ∑
α∈M≤k

k−|α|1+1∑
n=0

(
|α|
α

)
ωαL|α|,n p̂k−n−|α|1+1α1

=term IIa1+ ∑
α∈M≤k

k−|α|1∑
n=0

(
|α|
α

)
ωαL|α|,n p̂k−n−|α|1+1α1︸ ︷︷ ︸
term IIa2

(A.34)

+ ∑
α∈M≤k

k−|α|1+1∑
n=k−|α|1+1

(
|α|
α

)
ωαL|α|,n p̂0α1.︸ ︷︷ ︸

term IIa3

(A.35)

Each summand in term III carries a coefficient µg . Thus, the summation can be restricted to
those multi-indices µ which satisfy µg 6= 0:

term III =
k∑

g=1

∑
µ∈M≤k
µg 6=0

k−|µ|1∑
n=0

(
|µ|
µ

)
ωµ−1g+1g+1L|µ|,n p̂k−n−|µ|1 (g +1)µg . (A.36)

With this restriction the following rearrangement is possible:(
|µ|
µ

)
µg =

(
|µ|

µ−1g +1g+1

)
µg+1 +1

µg
µg =

(
|µ|

µ−1g +1g+1

)
(µg+1 +1). (A.37)

Note that a division by zero is not possible because of the restriction µg 6= 0. With this considera-
tion

term III =
k∑

g=1

∑
µ∈M≤k
µg 6=0

k−|µ|1∑
n=0

(
|µ|

µ−1g +1g+1

)
ωµ−1g+1g+1L|µ|,n p̂k−n−|µ|1 (g +1)(µg+1 +1) (A.38)

is obtained. Taking into account that |µ| = |µ−1g +1g+1| and |µ|1 = |µ−1g +1g+1|1 −1, term III
can be further manipulated:

term III =
k∑

g=1

∑
µ∈M≤k
µg 6=0

k−|µ−1g+1g+1|1+1∑
n=0

(
|µ−1g +1g+1|
µ−1g +1g+1

)
×

ωµ−1g+1g+1L|µ−1g+1g+1|,n p̂k−n−|µ−1g+1g+1|1+1(g +1)(µg+1 +1) (A.39)

=
k∑

g=1

∑
β∈M≤k+1
βg+1 6=0

k−|β|1+1∑
n=0

(
|β|
β

)
ωβL|β|,n p̂k−n−|β|1+1(g +1)βg+1. (A.40)

Here, the substitution β=µ−1g +1g+1 has been made to obtain the last result. Note that the set
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{
µ ∈M≤k

∣∣µg 6= 0
}

is mapped to
{
β ∈M≤k+1

∣∣βg+1 6= 0
}

by this operation. Now, shifting the index g
by 1 yields:

term III =
k+1∑
g=2

∑
β∈M≤k+1
βg 6=0

k−|β|1+1∑
n=0

(
|β|
β

)
ωβL|β|,n p̂k−n−|β|1+1gβg . (A.41)

Again each summand in term III carries a coefficient βg , so including multi-indices with βg = 0
will not make any difference. Hence, term III can be recast as

term III =
k∑

g=2

∑
β∈M≤k+1

k−|β|1+1∑
n=0

(
|β|
β

)
ωβL|β|,n p̂k−n−|β|1+1gβg (A.42)

=
k∑

g=2

∑
β∈M≤k

k−|β|1+1∑
n=0

(
|β|
β

)
ωβL|β|,n p̂k−n−|β|1+1gβg (A.43)

+
k∑

g=2

∑
β∈M=k+1

k−|β|1+1∑
n=0

(
|β|
β

)
ωβL|β|,n p̂k−n−|β|1+1gβg︸ ︷︷ ︸

term IIIa

=term IIIa+
k∑

g=2

∑
β∈M≤k

k−|β|1∑
n=0

(
|β|
β

)
ωβL|β|,n p̂k−n−|β|1+1gβg︸ ︷︷ ︸

term IIIb

(A.44)

+
k∑

g=2

∑
β∈M≤k

k−|µ|1+1∑
n=k−|µ|1+1

(
|β|
β

)
ωβL|β|,n p̂0gβg︸ ︷︷ ︸

term IIIc

. (A.45)

Now adding the various terms will complete the proof. Starting with term IIa2 and term IIIa2
we get:

term IIa2+ term IIIb =
k∑

g=1

∑
µ∈M≤k

k−|µ|1∑
n=0

(
|µ|
µ

)
ωµL|µ|,n p̂0gµg = ∑

µ∈M≤k

k−|µ|1∑
n=0

(
|µ|
µ

)
ωµL|µ|,n p̂0|µ|1

(A.46)

=term IV. (A.47)

To obtain this result the multi-indices α and β must be renamed to µ and term IIa2 must be
multiplied with g = 1. Equivalently for the sum of term IIa3 and term IIIc :

term IIa3+ term IIIc =
k∑

g=1

∑
µ∈M≤k

k−|µ|1+1∑
n=k−|µ|1+1

(
|µ|
µ

)
ωµL|µ|,n p̂0gµg (A.48)

= ∑
µ∈M≤k

k−|µ|1+1∑
n=k−|µ|1+1

(
|µ|
µ

)
ωµL|µ|,n p̂0|µ|1 (A.49)

= ∑
µ∈M≤k

(
|µ|
µ

)
ωµL|µ|,k−|µ|1+1p̂0|µ|1 = term V. (A.50)
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Term V cancels together with term IId.

Adding term I and term IV gives:

term I+ term IV = ∑
µ∈M≤k

k−|µ|1∑
n=0

(
|µ|
µ

)
ωµL|µ|,n p̂0(k −n +1) := term VI. (A.51)

Including also term IIb yields:

term VI+ term IIb = ∑
µ∈M≤k

k−|µ|1∑
n=0

(
|µ|
µ

)
ωµL|µ|,n p̂0(k +1) := term VII. (A.52)

With term IIc this expression amounts to:

term VII+ term IIc = ∑
µ∈M≤k

k−|µ|1∑
n=0

(
|µ|+1

µ

)
ωµL|µ|,n p̂0(k +1) := term VIII. (A.53)

Summing up term IIa1 and IIIa gives:

term IIa1+ IIIa =
k∑

g=1

∑
µ∈M=k+1

k−|µ|1+1∑
n=0

(
|µ|
µ

)
ωµL|µ|,n p̂k−n−|µ|1+1gµg (A.54)

= ∑
µ∈M=k+1

k−|µ|1+1∑
n=0

(
|µ|
µ

)
ωµL|µ|,n p̂k−n−|µ|1+1|µ|1 (A.55)

= ∑
µ∈M=k+1

k−|µ|1+1∑
n=0

(
|µ|
µ

)
ωµL|µ|,n p̂k−n−|µ|1+1(k +1) := term IX. (A.56)

Note that here only multi-indices µ from M=k+1 are considered, so by definition |µ|1 = k + 1.
Adding term VII to term IX finally yields:

term VIII+ term IX = ∑
µ∈M≤k+1

k−|µ|1+1∑
n=0

(
|µ|
µ

)
ωµL|µ|,n p̂k−n−|µ|1+1(k +1). (A.57)

Thus, we have

∑
µ∈M≤k+1

k−|µ|1+1∑
n=0

(
|µ|
µ

)
ωµL|µ|,n p̂k−n−|µ|1+1(k +1) = 0. (A.58)

Division by (k +1) completes the proof. Figure A.1 graphically summarizes the steps of the prove.

Note that equation (A.58) is not surprising. From the previous section it was already known by
combinatorial arguments that the eigenvalue problem can be expanded as

N (ω,ε, p̂) :=
∞∑

k=0
Nk (ε−ε0)k (A.59)

where Nk = ∑
µ∈M≤k

∑k−|µ|1
n=0

(|µ|
µ

)
ωµL|µ|,n p̂k−n−|µ|1 . Therefore, taking the derivative of Nk with re-

spect to ε0 yields Nk (k+1), which directly corresponds to (A.58). The proof by induction presented
in this chapter is insofar special as it is not leveraging any combinatorial arguments at all. It estab-
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lishes the fact that the coefficients Nk are correct by showing that N0 = 0 equals the unperturbed
problem and proving that ∂ε0Nk =Nk+1(k +1), which implies that these are the coefficients gen-
erating the power series expansion of the problem.

A.2 Multivariate perturbation theory

Differentiation can also be used to derive multi-parameter perturbation theory at arbitrary order.
Using multi-index notation, the multivariate power series ansätze read:

ω= ∑
|µ|>0

ωµε
µ (A.60)

p̂ = ∑
|µ|>0

p̂µε
µ. (A.61)

Here ε denotes the vector of design parameters under consideration. Plugging these ansätze into
the eigenvalue problem and collecting like powers of ε, again yields an incremental scheme for the
computation of the coefficients (compare Sec. 9.1). Like the single-parameter case, the collection
of like powers can be eased by utilizing the relation of the coefficients in a power-series through
differentiation. For a multivariate power series we have:

f (z) = ∑
|µ|>0

aµ(z − z0)µ |∂1k (A.62)

0 = ∂1k

∑
|µ|>0

aµ(z − z0)µ (A.63)

0 = ∑
|µ|>0

∂1k aµ(z − z0)µ−aµ(z − z0)µ−1kµk (A.64)∑
|µ|>0∩µk=0

aµ(z − z0)µ−1kµk = ∑
|µ|>0

∂1k aµ(z − z0)µ |shift multiindex on left side (A.65)∑
|µ|>0

aµ+1k (z − z0)µ(µk +1) = ∑
|µ|>0

∂1k aµ(z − z0)µ (A.66)

⇒ (µk +1)aµ+1k = ∂1k aµ. (A.67)

Thus, the coefficients can be incrementally computed by taking partial derivatives. Doing so, will
generate a sequence of equations which again can be solved by incorporating the adjoint solution
and the solvability condition.
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Appendix B

Kelleher’s algorithm

All partitions of a positive integer n need to be known in order to implement the perturbation the-
ory. Kelleher’s accelerated ascending composition generation algorithm may be used for this task
[134]. The algorithm is given in Alg. B.1. Please note the semantics of the visit keyword. At these
steps a partition a1 . . . am is returned and the program flow is stopped until the next partition is
requested. Then, the algorithm proceeds from the stopped program state. The function termi-
nates if all partitions are found. See [188] and references therein for other fast algorithms for the
computation of partitions.
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Algorithm B.1: Kelleher’s ACCELASC algorithm for fast computations of partitions of n

1: function ACCELASC(n)
2: k ← 2
3: a1 ← 0
4: y ← n −1
5: while k 6= 1 do
6: k ← k −1
7: x ← ak +1
8: while 2x ≤ y do
9: ak ← x

10: y ← y −x
11: k ← k +1
12: end while
13: l ← k +1
14: while x ≤ y do
15: ak ← x
16: al ← y
17: visit a1 . . . al

18: x ← x +1
19: y ← y +1
20: end while
21: y ← y +x −1
22: ak ← y +1
23: visit a1 . . . ak

24: end while
25: end function
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Appendix C

Application of the perturbation theory to
the Orr-Sommerfeld equation

This appendix briefly illustrates the generality of the presented perturbation theory by applying it
to the Orr-Sommerfeld equation. The example was developed in close cooparation with Alessan-
dro Orchini and Jonas Moeck.

The Orr-Sommerfeld equation describes the modal stability of parallel flows. It is non-dimen-
sional and reads [(

d2

dy2 −λ2
)2

− iRe

(
(λU −ω)

(
d2

dy2 −λ2
)
−λU ′′

)]
v = 0. (C.1)

Here, y denotes the coordinate for the axis perpendicular to the mean flow, v the amplitude of
the velocity fluctuation in that directions, U the mean flow velocity, λ the wavenumber, ω an os-
cillation frequency, and Re the Reynolds number. As boundary conditions, no-slip conditions are
prescribed

v(±1) = v ′(±1) = 0. (C.2)

Extensive discussion of the problem can be found in the literature, see, e.g., [189, 190] and refer-
ences therein.

The Chebyshev collocation method that is used in [133] to discretize the problem is also applied
here. This yields the finite dimensional eigenvalue problem

L(λ,Re) =λ4I+ iλ3ReU−2λ2D2 − iλ2ωReI− iλRe(UD2 +2I)+ iωReD2 +D4, (C.3)

where D2 and D4 are discretization matrices for the second and fourth-order derivative operators
and the matrix U results from the discretization of the mean flow field. The wavenumber λ will be
considered as an eigenvalue and the Reynolds number as a perturbation parameter. As in [133] the
baseline values are set to ω0 = 0.26943 and Re0 = 5772 and a parabolic mean flow profile U = 1−y2

is assumed. This yields an eigenvalue λ0 = 1.02056+9.7×10−7i.

Perturbation theory up to fiftieth order is used to approximate solutions of the problem. The
results are shown in Fig. C.1. The results show the same mathematical characteristics as the exam-
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EQUATION

Figure C.1: Comparison of perturbation approximations to exact solutions of the Orr-Sommerfeld
equation. a) Eigenvalue trajectory for variations of the Reynolds number in the range Re =
5772±5601. The arrowhead indicates the direction of increasing Re. The baseline eigenvalue is
highlighted by the black dot. b) Absolute value and phase of the mode shape for Re = 171. The col-
ored lines indicate the approximations obtained from various perturbation orders. The exact and
the unperturbed mode shape are illustrated by black solid and black dashed lines, respectively. c)
Error between exact and estimated eigenvalue for various perturbation orders and Reynolds num-
bers. d) Error in the eigenvector estimate. Results from the a priori normalization are indicated
with thick dashed lines, while solid lines correspond to the a posteriori method. Obviously, the
two methods yield nearly identical results for this example.
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EQUATION

ples considered in Chap. 6, i.e., a finite radius of convergence, a better approximation quality with
an increasing perturbation order for values within the convergence radius etc. This underlines the
universality of the theory.
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