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Abstract. For a number of different security and industrial applications,
there is the need for reliable person identification methods. Among these meth-
ods, face recognition has a number of advantages such as being non-invasive
and potentially covert. Since the device for data acquisition is a conventional
camera, other advantages of a 2D face recognition system are its low data cap-
ture duration and its low cost. However, the recent introduction of fast and
comparatively inexpensive time-of-flight (TOF) cameras for the recording of
2.5D range data calls for a closer look at 3D face recognition in this context.
One major disadvantage, however, is the low quality of the data aquired with
such cameras. In this paper, we introduce a robust 3D face recognition system
based on such noisy range images with low resolution.

1. Introduction

There is a number of applications that require the identification of humans. Ex-
amples include the authentification for a computer application or access control for
high-security areas like an airport control tower. Face recognition systems are well
suited for the task of human identification as they require less cooperation by the
user than an iris or fingerprint scan. It is natural, robust and unintrusive, and the
user is not required to remember any passwords or codes [2]. While the automatic
face recognition on 2D images has been a research issue for several years, the recent
development of 3D sensors has resulted in a considerable interest in methods for
face recognition on range images.

In this project, we explored the state of the art of 3D face recognition and ana-
lyzed the advantages and disadvantages of several methods in regard to our project
goals. Our work resulted in the development of a real-time system for the process-
ing of three-dimensional data that is specialized on pattern recognition tasks. The
algorithms we chose to implement were modified according to the project’s needs
and were reinvestigated and recombined.

The result of our work is a general development platform for 3D pattern recog-
nition, specially designed for 3D face recognition on noisy and low-resolution data.
In this context the platform can be extended for the recognition of any kind of
3D objects and it can be easily enhanced by the supplementary processing of two-
dimensional intensity data.
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In order to develop a face recognition system based on range images—for example
acquired with the new 3D sensor type of time-of-flight (TOF) cameras—one has
to turn particular attention on the quality of the data since such data is still very
noisy and biased [23, 55]. For this reason our main goal was the development of
algorithms that improve low-quality range data and process it efficiently and in
real-time. Furthermore, our 3D face recognition system is constructed modularly,
and can thus be easily adapted to data of higher quality obtained by other sensors.

To deal with low-quality range data, one has to (a) calibrate the imaging sys-
tem with this particular application in mind, and (b) employ a pre-processing step
that filters and smoothes the image data to achieve a quality suitable for feature
extraction. The pre-processing algorithms have to account for the particular char-
acteristics of the range data at hand since for example the noise model of a TOF
sensor differs from the usual Gaussian white noise model assumed for the majority
of standard denoising methods.

After acquiring and pre-processing the data, one wishes to extract discriminant
and robust features. Again, it is important to consider the special nature of the
data which for example forbids a robust calculation of the curvature. In particular,
we have considered three features: the surface normals (or Gaussian map), the local
binary pattern (LBP) and facial profiles (1D cross sections of the face).

The final face recognition task can then be accomplished by the usual classifica-
tion methods such as Principal Component Analysis (PCA [4]), the Linear Discrim-
inant Analysis (LDA [47]) or the Modified Linear Discriminant Analysis (MLDA
[36]).

2. Related Work

While there exists extensive work on 2D face recognition, 3D face recognition is
still a comparatively new research field. As has been shown in several experimental
surveys [1, 14, 15, 32], in particular multi-modal approaches combining 2D and 3D
features give results that surpass those of a simple 2D system. One main disadvan-
tage of a face recognition system using range images, however, is the high cost of an
industrial high resolution 3D scanner that is often needed to aquire the data. Most
of the 3D face recognition work published until today use such laser or structured-
light scanners [40, 63]. One cost-effective way to record range data is of course
stereographic imaging [18]. However, it is well-known that such systems require a
robust solution for the correspondence problem [26] and precise calibration. The
also comparatively inexpensive time-of-flight imaging systems on the other hand
have been used in a substantial number of application areas such as automated
production [39, 46] or automotive applications [49, 58, 57, 67], while there are little
studies that investigate the feasibility of TOF imaging for more complex recogni-
tion tasks like facial recognition. One major problem that arises with the use of
cost-efficient 3D imaging systems like TOF is the low quality and resolution of the
data. The main goal of our project was the implementation of a software pipeline
capable of processing such data in real-time which will be described in the follow-
ing sections. Although the system is taylored for 3D face recognition from TOF
range images, it can be easily modified for other object recognition tasks based on
low-quality data.

Denoising of 2.5D Data. The first processing step in our pipeline aims at the
removal of noise present in typical range sensor data. The denoising of 3D data
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and range data is a wide research field, and the choice of the appropriate denoising
method depends on the noise and data characteristics. Typical denoising methods
include the median filter [20], the moving least-squares method [43] and anisotropic
diffusion [64], especially anisotropic smoothing of point sets [37] and surface meshes
[30].

The wavelet transform is widely used for the purpose of image denoising and has
been found to be a high-performance tool. For example, Cai et al. provide a useful
MATLAB R© framework [12] we used in our work (a detailed description can be
found in [61] and [35]). In [62], a good introduction of complex wavelet transforms
and their applications can be found.

Point-to-Point Registration. Another crucial step is the face registration which
aims at detecting the exact face position and attempts to align the face with a
position suitable for recognition tasks, which is usually the frontal view.

For the coarse registration, one common practice is to identify the position of
three significant local features, for example the pupils and the nose tip. Afterwards,
the features are mapped onto the corresponding features of a reference face by an
affine map consisting of a rotation and a translation (cf. [66]). The parameters
of this map express the feature points’ relation to the corresponding points in the
reference face. Via the affine map determined in this way, all data points are
subsequently transformed to realize the coarse alignment along a position that is
common for all faces in the database.

Common algorithms for fine alignment on the other hand is the family of Iterative
Closest Point algorithms (ICP) which try to minimize the Hausdorff-distance (or
one of its various relatives) between surfaces, and the Thin Plate Spline algorithm
(TPS) [42]. Chen et al. [17] and Besl et al. [6] use ICP for scan registration during
3D model creation. In this context, ICP can be used for fine face alignment by
fitting the face data onto the reference face. An exhaustive overview about ICP
algorithms is provided by Rusinkiewicz et al. [59].

An interesting variant of the aforementioned (rigid) ICP-based registration was
proposed by Bronstein et al. [9, 10], who used the Gromov–Hausdorff distance to
compute inter-facial embeddings with minimal metric distortion, thereby enhancing
the registration toolbox with the ability to match faces with different expressions
against each other.

As a generalization to the Hausdorff distance, which is usually expressed as a
min–max problem of the maximal distance of two sets (using the metric of their
common embedding metric space), the Gromov–Hausdorff distance minimizes the
maximal inner-metric distortion among all common ambient metric spaces and
all possible embedding mappings, thus rendering the Gromov–Hausdorff distance
independent of isometries. Since the computation of the functional as described
here is intractable, the authors propose a discretization of the Gromov–Hausdorff
distance in terms of mutual inter-surface embeddings, thus minimizing the metric
distortion while embedding one surface onto the other and vice versa.

Once this distance functional and its corresponding embeddings are computed,
the resulting distance value can be used directly for registration tasks by interpret-
ing it as a similarity measure between faces. Moreover, the resulting embeddings
carry an optimal inter-facial point-to-point correspondence regardless of the actual
facial expressions involved. Still, as in the case of ICP, the process relies heavily on
a previous rough initialization of a few feature points.
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Face Recognition. For the final task of face recognition for 2.5D images or 3D
models, three main methodologies can be identified: shape matching, feature-based
and image-based techniques. A detailed overview on face recognition methods is
provided in [2].

The first group consists of algorithms that iteratively try to map a 3D point
cloud or a 3D mesh onto a reference point cloud or reference mesh, respectively
[3, 5, 9, 10, 11, 19, 65]. The shape matching methods can be seen as pattern
recognition methods without feature extraction. A test pattern is directly compared
with the reference pattern, a feature extraction does not take place. The similarity
measure—which is often implemented via a correlation measure—can be optimized
by using a sufficiently large number of training samples. These approaches demand
an extensive computational effort and an accurate point-to-point data registration
and assume the existence of many correspondences between the reference model
and the test data.

The modus operandi of feature-based methods correponds mostly to that of shape
matching. However, with pattern matching, not the whole data is processed but
appropriate subsets. For example, particular regions (eye, forehead, cheek, nose)
or the nose profile of the face could be detected, extracted and processed [5, 16,
25, 42, 45]. Like shape matching methods, the feature-based methods demand a
robust image registration, since the features are selected during a pre-processing
step without the possibility to change their value later on.

Image-based methods attempt to extract the face data subset significant for face
recognition with the aid of statistical learning techniques and without any human
interaction. With feature-based methods, there are no or at least less pre-processing
steps involved as is the case with image-based methods: All of the image information
is used for statistical analysis. This methods have been very successful in the
context of 2D face recognition [4, 47]. Since the TOF sensor data is a 2D range
distribution and can thus technically be viewed as a conventional 2D image, it does
not surprise that these techniques are also applied in this context. Introductions in
state-of-the-art techniques of statistical learning and statistical pattern recognition
can be found in [7, 21, 33].

In our approach, we use the statistical learning techniques with Local Binary
Patterns (LBP [31, 50]) and surface normals, thereby proposing a combination of a
feature-based and an image-based method: There is less information lost with this
technique, since the whole image and not some preselected region is used for the
feature extraction and subsequent classification. As a statistical learning method,
we used the Principal Component Analysis (PCA [4]), the Linear Discriminant
Analysis (LDA [47]) and the Modified Linear Discriminant Analysis (MLDA [36])
for classification.

As an alternative feature-based approach, we used different profiles of the face
(see e.g. [51]) for classification via the Pearson coefficient.

3. The General Setup

Our project, funded by the European Regional Development Fund (ERDF), was
concerned with the processing of facial biometric data in the context of the descrip-
tion of pedestrian movement. To obtain data for crowd movement models that
account for the position of individuals [27] (in contrast to a crowd fluid [28]) it is
necessary to identify those individuals with unintrusive biometric techniques. A
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more specific application would be the analysis of commuter behaviour in public
transportation: the usual systems available at the time of writing of this article only
count passengers without recognizing individuals changing means of transportation.

To achieve this task of processing and classifying individual biometrical infor-
mation we developed a 3D face recognition system that is able to cope with low-
quality range data. This software platform was implemented as a toolbox for the
MATLAB R© scripting language.

Multiple modules for pre-processing and the actual face recognition were im-
plemented and tested separately (cf. figure 1). For almost every module, we have
developed and implemented alternative approaches to adjust the system to different
application requirements. Depending on operating conditions and available capaci-
ties, the user can choose from a variety of individual modules and algorithms. The
software contains conventional methods for 3D face recognition as well as unique
and novel ideas.

Figure 1. Software pipeline

As a main result of this project we implemented a robust real-time face recogni-
tion system from an innovative multi-modal approach that accounts for the typical
characteristics of low-quality data obtained with a TOF sensor by combining 3D
and 2D techniques that can deal with low-resolution images and little preliminary
pre-processing capacities.

Since we would like to compare the performance of the system for data obtained
from various sources, we implemented a simulation pipeline to emulate different
noise chracteristics and resolution (see figure 2). The simulation pipeline features
additional modules and algorithms for gradually degrading the pre-processed and
comparatively noise-free laser scanner data from the Gavab database towards the
data quality of a realistic cost-effective real-time ranging system. This simulation
served as an important tool for assessing the sensor’s requirements like resolution
and signal-to-noise ratio.

Figure 2. Simulation of low-quality sensor data

In figure 1, the flow chart of the final system is illustrated.
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The pipelines can be divided into four main steps which will be described in the
following: noise simulation, pre-processing, feature extraction and classification.

Step 1: Simulation of Low-Quality Range Data

In order to assess the effectiveness of the implemented denoising algorithms for
data acquired from different types of range sensors, we decided to simulate the
noise characteristic of a standard continous-wave TOF sensor. Such a ranging
system provides a number of advantages:

• It is less expensive than most other 3D imaging systems,
• suitable for real-time applications,
• not intrusive and suitable for covert operation (since it works with infrared

light),
• space saving,
• also delivers 2D intensity data,
• delivers spatiotemporal data.

Since the TOF sensor independently delivers the geometry of an object as well
as the intensity of the reflected infrared light, one could in principle also obtain
information about the surface reflectivity of that object (at that particular wave
length). A quite exhaustive survey about optical time-of-flight measurement is
given in [38].

Unfortunately, as can be seen from figure 3, data acquired with standard TOF
sensors available at the time of writing of this article is subject to significant sys-
tematic and random errors (noise). The random errors are mainly caused by

• shot noise,
• quantization noise,
• phase jitter and modulation errors;

whereas to name some reasons for systematic errors, among these are:
• Nonlinear characteristics (saturation effect),
• dark current,
• edge and movement artifacts due to mixed phases,
• reflecting surfaces,
• scattered light.

It is also for this reason that the simulation of noisy range data is necessary to
account for future improvements in the image quality of such systems.

Noise Characteristic of a TOF Range Sensor. The precise technical method
by which the optical signal received by a TOF sensor is measured and processed
depends on the particular camera model, see e.g. [54, 60]. However, we suspect the
noise characteristic to be very similar for the various systems since most of them
use the phase-shifting technique, for which can be shown—assuming fixed envi-
ronmental conditions and similar base characteristics for each pixel of the optical
chip—that the standard deviation σ of the range measurement is reciprocal to the
amplitude A of the optical signal [23]: σ = 1

A .
In particular, the most popular 4-phase-shifting technique essentially leads to

estimating the angular component of a random variable with values in R2; the
mean length of this variable is given by the signal amplitude. This fact can be used
to simulate the noise pattern of a TOF sensor by generating a pseudo-random point
in the plane with normal distribution (by the Box–Muller method [8] for example)
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and extracting the angular component. Further assuming a uniform reflectivity of
the facial surface (i.e. skin), the signal amplitude can be estimated by taking the
component of the surface normal projected onto the optical axis. Finally, this value
has to be multiplied by the luminosity of the infrared LEDs at this point which can
be estimated by considering the inverse-squared-distance law as well as a realistic
directional characteristic for the emitter [52]. This approach leads to a simple but
effective model for simulating the random noise characteristic of a generic TOF
sensor.

It should be noted, however, that systematic errors are not accounted for. These
errors are either difficult to control or can be eliminated by a careful sensor calibra-
tion [34, 41]; denoising algorithms are not of much use to eliminate this problem.

Figure 3. Facial surface obtained from a SwissRanger 3000 range image

Step 2: Pre-processing

To improve the face recognition on range images, a pre-processing step is needed
which includes denoising, face detection, segmentation and registration.

Denoising of Range Data. The performance of the methods used to remove noise
from range images depends on the sensor features and environmental conditions like
the distance to the observed object, the reflectivity of the object’s surface as well
as the angle of incidence of the illumination. For the denoising step of our system,
we implemented wavelet denoising and normalized convolution.

The Discrete Wavelet Transform. For a 2D signal I(x, y), the discrete wavelet trans-
form (DWT) provides a multi-scale signal representation. The DWT is computed
by a high-/low-pass filter bank, iteratively applied on the low-pass signal output of
the previous stage. The multi-scale signal representation is then a collection of the
resulting sub-band output coefficients. The inverse discrete WT is calculated by an
iteratively applied synthesis filter bank.

The standard DWT is a powerful and non-redundant tool of signal processing,
with four major drawbacks (as discussed in [61]):

• Oscillations in the neighborhood of singularities,
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• lack of translational invariance,
• lack of directional invariance,
• missing phase information.

In order to remedy those drawbacks, a number of variants of the standard DWT has
been developed. One example of such a generalization of the DWT is the complex
wavelet transform (CWT).

The Complex Wavelet Transform. The CWT is computed in a way similar to the
DWT, but with a complex-valued scaling function φc(t) and a complex-valued base
wavelet ψc(t):

φc(t) = φre(t) + iφim(t)(3.1a)

ψc(t) = ψre(t) + iψim(t),(3.1b)

where the indices re and im label the real and the imaginary part respectively.
After projecting the signal onto the basis functions 2

i
2ψ(2it−n), one can calculate

the wavelet coefficients

(3.2) dc(j, n) = dre(j, n) + idim(j, n)

with magnitude

(3.3) |dc(j, n)| =
√
d2

re(j, n) + d2
im(j, n)

and phase

(3.4) arg(dc(j, n)) = arctan
(
dim(j, n)
dre(j, n)

)
.

A redundant form of the CWT is the complex dual-tree wavelet transform (CDTWT),
which is discussed by Kingsbury and Selesnick in [35] and [61]. We will briefly de-
scribe the CDTWT in the next section.

The Complex Dual Tree Wavelet Transform. The complex dual-tree WT of a 2D
signal is obtained by the parallel computing of four conventional critically-sampled
separable 2D DWTs. The transform is therefore four times as expensive compared
with a DWT. On the other hand, the complex dual-tree WT can provide—based on
a certain design of the upper and lower high-pass and low-pass filters—a nearly ideal
shift invariance and directional selectivity in two or more dimensions, as opposed
to the critically-sampled discrete WT (see [35] and [61] for details.) The sub-band
output of the upper discrete WT can be interpreted with this filter design as the
real part, the sub-band output of the lower discrete WT as the imaginary part of
a complex dual-tree wavelet transform.

As the actual wavelet denoising algorithm, we used the implementation of soft
thresholding for 2D signal denoising as described in [12]. In this method, new values
wnew for wavelet coefficients w for all scales and sub-bands are computed via the
equations (3.5). In the first step, we delete the frequencies the coefficients of which
lie below a certain threshold T . In the next step, the remaining coefficients are
scaled. In this way, the effect of small values in the high-frequency sub-bands of
the reconstructed 2D signal is decreased.
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wnew = max(abs(w) − T, 0),(3.5a)

wnew =
wnew

wnew + T
∗ w.(3.5b)

The new coefficients wnew are used for an inverse wavelet transformation to recon-
struct the 2D signal.

Normalized Convolution. Another approach for the adaptive denoising of an image
I with given confidence values C is the normalized convolution [22, 56]. One advan-
tage of this method is the fact that it can be easily generalized to data of arbitrary
dimension since the denoised image I ′ can be written invariantly in the form

(3.6) I ′ =
g ∗ (C · I)
g ∗ C

.

Here, g is a suitable filter mask – a Gaussian kernel, for example. The multiplication
is to be understood componentwise and ∗ denotes convolution. Using the inverse
amplitude of the optical signal as a confidence measure, the normalized convolution
can be used to filter TOF image sequences that are represented by 3D data.

Segmentation and Registration. To eliminate the non-facial parts of an im-
age like the neck or shoulders, we invoked a multi-stage segmentation process, as
shown in figure 4. First, the images were sliced into several regions by using a
range threshold. Afterwards, the particular parts were analyzed morphologically
and the face-like regions were chosen for further processing. In the next step, the
nose tip was found for each of the detected faces. Around the nose tip, we set a
sphere of fixed radius r = 14 cm which proved to deliver the best recognition rates
after some testing. We will call the partial surface cropped by the interior of this
sphere the sphere-cropped image. Afterwards, a rectangle-shaped region from the
corresponding 2.5D image was cut. This rectangle-cropped region was resized to
80 × 50 pixels in order to meet the classifier feature vector length. The individual
steps of this multi-stage segmentation are illustrated in figure 4.

(a) (b) (c)

Figure 4. Multi-stage segmentation.
(a) Threshold-based segmentation, (b) segmentation by a ball of radius r = 14 cm around the

nose tip (sphere-cropped), (c) rectangle-cropped face region.

Before the segmentation process, an ICP algorithm was invoked to match the
facial surface with a reference template.
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Step 3: Feature Extraction

In this step, the denoised, segmented and registered faces are passed to the feature
extraction part of the pipeline. In particular, we extracted three features: surface
normals, the local binary pattern and profiles.

Surface Normals. One of the earliest ideas in 3D face recognition is the use of
curvature as a discriminant feature [25]. Unfortunately, at least the Gaussian curva-
ture (which encodes valuable intrinsic geometric information) is highly susceptible
to noise, as shown in figure 5 (visualized with JavaView c© [53]). The Gaussian
map (the distribution of surface normals) depends on the first derivatives of the
parametrization and is thus more robust than the curvature which is encoded in the
derivative of the Gaussian map [13]. Figure 6 shows the three cartesian components
of the surface normals. (However, since the normal vectors are normalized, they
actually represent 2-dimensional data on the unit sphere.) As one can easily see,
the components correspond to a standard gray-valued 2D image that one would
obtain from a human face if the reflectivity of the skin and the lighting were uni-
form. Thus, by using the Gaussian map as a feature one overcomes one of the most
serious problems in 2D face recognition, namely varying illumination.

A major concern, however, is a suitable representation of the sphere-valued
data. As a scalar function, the Gaussian curvature is independent of a specific
parametrization of the surface, and being an intrinsic feature it is even invariant
against isometric transformations of the facial surface. For the representation of
the distribution of surface normals on the other hand, one has to agree on a spe-
cific coordinate system like spherical or stereographic coordinates. It is not a trivial
problem to decide which coordinate system is optimal for a specific recognition task
at hand. In this study, we have tested polar stereographic coordinates. This means
that the surface normals N = (N1, N2, N3) were projected onto the complex plane
via the map

(3.7) π(N) =
1

1 −N3
(N1 + iN2)

and represented by polar coordinates (N3, arg π(N)).

Local Binary Pattern (LBP). Originally, the LBP approach was developed for
the description and recognition of 2D textures [50]. The next step towards effi-
cient face recognition using LBP was done by the authors of [31] with 3D Local
Binary Patterns (3D LBP). They refined the feature value by adding three levels.
However, they still used the histogram comparison, which is not the optimal com-
parison method. We applied classifiers and compared the results of the different
conventional LBP and the different 3D LBP levels with the performance of other
features.

To compute the LBP value, we first calculated the differences between the gray-
scale values of a point and its P neigbours. For P , the values 8, 16 or 24 can
be chosen. The radius of the neighborhood defines an additional parameter R.
In a second step, the signs of the intensity differences are binarily coded as 0 for
a difference value of less than 0, and 1 for other difference values. Finally, the
resulting binary digits are collected in a clockwise fashion to represent a binary
number, which is then written as a decimal number. In this way, each point is
mapped to an LBP value.
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(a) High resolution image ob-
tained with a structured-light
3D scanner and color-coded
Gaussian curvature...

(b) ...after adding low power
Gaussian noise

Figure 5. The computation of Gaussian curvature is susceptible
to noise

Figure 6. Cartesian components of surface normals

The authors of [50] also describe an alternative technique that is rotation-invariant.
With this technique, each binary LBP number is shifted until the minimal value
is reached. To increase the efficiency of the histogram comparison, one can encode
all rare features with a single value. (Frequent features are edges, curvature lines
or homogenous regions.) This variant of an LBP is called the uniform LBP. The
texture operator for the general case based on a circularly symmetric neighborhood
of P members on a circle of radius R will be denoted as LBPriu2

P,R as in [50].
For the computation of 3D LBP values not only the signs of the gray-scale differ-

ences to the neighboring pixels are coded, but also the values themselves. Four bits
are used to keep track of a difference value: One bit for the sign and three bits for
the value. A difference less than 7 is coded directly, greater differences are coded
as 7. If P neighbors are considered, a 4 × P -sized table is used to list the four 3D
LBP levels. The four P -bit binary numbers in the columns are decimally coded
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and represent the four 3D LBP layers. A detailed description of this method can
be found in [31]. The 3D texture operator will be denoted as 3DLBPlayer i with
i ∈ {1, . . . , 4}. Some examples of different LBP feature images are shown in figure
7.

Reference Texture Features. The authors of [29] evaluated the recognition per-
formance of different gradient images and recommended the use of the Horizontal
Sobel Operator (HSO) and the Large Horizontal Gradient operator (LHG) as effec-
tive texture descriptors. We ranked the performance of LBP and surface normals
by using these descriptors and the original range images. The LHG describes the
relative range differences along the horizontal direction in a range of five pixels and
is computed via the filter mask (LHGij) =

(
−1 0 0 0 1

)
. The HSO detects

vertical edges and is calculated via the filter mask

(3.8) (HSOij) =

−1 0 1
−2 0 2
−1 0 1

 .

Figure 7 shows example images of the examined texture descriptors.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 7. Feature images. a: range image, b: 3DLBPlayer 1, c:
3DLBPlayer 2, d: 3DLBPlayer 3, e: 3DLBPlayer 4, f: Horizontal So-
bel Operator, g: Horizontal Gradient Large, h: LBPu2

8,1, j: LBPu2
16,1,

i: LBPriu2
16,2 , k: LBPri

8,1, l: LBPriu2
8,1

Facial Profiles. The extraction of vertical profiles from range data can be seen as
a quite natural approach if you think of the fact that humans are quite capable of
identifying a person by their facial silhouette only. In addition, templates of profile
data need very little memory and the computation of their degree of correlation is
very quick.
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Here, four profiles (the vertical central profile, horizontal nose-crossing profile,
horizontal root-of-the-nose-crossing profile and the horizontal forehead-crossing pro-
file) have been investigated. The main difficulty consists of extracting the vertical
central profile. However, two methods can be used to achieve this: (a) by finding
the vertical symmetry plane of the face or (b) by aligning the face with a reference
face to assure a vertical position and subsequent detecting the nose tip.

Figure 8 illustrates the vertical symmetry plane, and figure 9 shows the extracted
profiles.

Figure 8. Symmetry plane of a face

Figure 9. Vertical profiles: by the symmetry plane detection
method (yellow), by detecting the nose tip (red) — horizontal pro-
files: nose-crossing profile (green), root-of-the-nose-crossing profile
(red), forehead-crossing profile (pink)

Step 4: Classification

In a pre-processing step each 2D image of the N training samples is converted
into a 1D vector xi with m components (m = image height× image width in pixels)
by successively appending the rows of the image. In this way, we obtain a data set
(x1,x2, . . . ,xN ) ∈ (Rm)N .
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Principal Component Analysis. One of the classifiers most commonly used as
a reference is the PCA technique. PCA is a method for dimensional reduction that
computes a linear projection operator WPCA which maximizes the determinant of
the total scatter matrix ST of the N image samples x1,x2, . . . ,xN :

(3.9) WPCA = argmax
W

|WT ST W|

with

(3.10) ST =
N∑

k=1

(xk − µ)(xk − µ)T ,

where µ is the mean of all samples. The optimal projection matrix WPCA is
comprised of the eigenvectors to the largest eigenvalues of the total scatter matrix
ST . The images corresponding to these eigenvectors are called eigenfaces [4].

The new feature vectors yk are given by

(3.11) yk = WT
PCAxk.

Linear Discriminant Analysis. With the PCA approach, the considered total
scatter matrix ST includes not only the between-class scatter, which is useful for
classification, but also the within-class scatter. In contrast to PCA, the LDA com-
putes the projection matrix WLDA in such a way that the ratio of the between-class
scatter and the within-class scatter is maximized:

(3.12) WLDA = argmax
W

|WT SBW|
|WT SW W|

,

where SW and SB describe the within-class scatter and the between-class scatter
matrices, defined by

(3.13) SW =
C∑

j=1

Nj∑
k=1

(xjk − µj)(xjk − µj)
T

and

(3.14) SB =
C∑

j=1

Nj(µj − µ)(µj − µ)T .

Here C is the class number, µj is the the mean of the class Xj and Nj is the number
of training samples in class Xj .

Modified Linear Discriminant Analysis. With conventional LDA, the Fisher
optimization criterion is in a quotient form. As was shown in [4] and in [36],
the quotient form can cause a numerical problem due to an insufficient number
of training images for each person in the database. To avoid this problem, the
fisherface approach was proposed in [4]. The dimensionality is reduced twofold:
first without regarding the between-class differences using PCA for projecting the
data set onto a subspace of dimension m−C, and second using an LDA projection.
Another method was proposed by the authors of [36]; a modified Fisher optimization
criterion in the deduction form:

(3.15) WMLDA = argmax
W

|WT (SB − αSW )W| .
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Here α is the adjusting parameter for the weighting of the within-class scatter
matrix SW relative to the between-class scatter matrix SB .

Pearson Coefficient. This method is ideally suited for the comparison of the
facial profiles mentioned above.

Correlation indicates the strength and direction of a linear relationship between
two random variables (see e.g. [44] for details). The most commonly known cor-
relation coefficient is the Pearson product-moment correlation coefficient p(X,Y ),
which is obtained by dividing the covariance of the two variables by the product of
their standard deviations. The correlation coefficient is thus defined as:

(3.16) p(X,Y ) =
cov(X,Y )√

cov(X,X) · cov(Y, Y )
=

cov(X,Y )√
var(X) ·

√
var(Y )

,

where cov(X,Y ) is the covariance of X and Y :

(3.17) cov(X,Y ) = E((X − E(X)) · (Y − E(Y ))).

The coefficient takes values between −1 and +1. A maximal positive linear
relationship is given if the coefficient is +1, a maximal negative linear relationship
is given by a coefficient of −1. A vanishing coefficient implies no linear relationship
of the features.

4. Experiments and First Results

We tested our face recognition algorithms with (a) the original laser scanner
data and (b) scanner data with added Gaussian noise for different values of the
peak signal-to-noise ratio (PSNR, figure 10), (c) scanner data with added Gaussian
noise that were subsequently denoised with the discrete WT method, (d) TOF data.

Database Description. The range images we used for our experiments were gen-
erated from 2.5D scans of human faces, contained in GavabDB, a database provided
by the Gavab group. A short description of this database can be found in [48]. The
GavabDB range images are in average of the size of 180 × 120 pixels. We used
frontal view images with neutral and non-neutral facial expressions. We also cre-
ated a database containing 2.5D TOF data sequences of 24 human faces acquired
with a SwissRanger SR-3000 camera. The size of the TOF images was 176 × 144
pixels, the distance between the test subject and the TOF camera was approx.
40 cm. For the experiments we used 50 × 80 face segments, as shown in figure 11.

Image Denoising. According to our test data, both the discrete WT and CDTWT
provided a robust performance for image denoising, but the CDTWT showed better
numerical results. An example for CDTWT-based image denoising is presented in
figure 12, with Gaussian noise added. Even a visual image comparison shows the
high performance of CDTWT; this was observed repeatedly during the experiments.
However, the choice of an appropriate noise dependent threshold value is crucial
for this approach since an inaccurate threshold value can produce data corruption.

Since it is possible to estimate the noise of a TOF sensor via the amplitude of
the optical signal [23], the denoising performance of the WT and the CDTWT can
be warranted by choosing the optimal threshold value for each noise level as was
done in our experiments.

The TOF data sequences were simply filtered by averaging ten subsequent frames.
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(a) PSNR=48,05 dB (b) PSNR=42,08 dB

(c) PSNR=38,52 dB (d) PSNR=34,09 dB

Figure 10. Face data after adding Gaussian noise for different PSNRs

(a) TOF range image (b) TOF range image

Figure 11. TOF range image

Point-to-Point Registration. For face registration, we examined two different
variants of the ICP algorithm: The first method aligns the face data with a reference
face. In this way, 85% of the faces in the database could be rotated to a frontal
and upright view.

The second method mirrors the 2.5D face data about the vertical axis and moves
both the original face and the mirrored face against each other via ICP to achieve
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(a) Original image, Gaussian noise added (b) ...after wavelet denoising

Figure 12. Complex dual tree wavelet transform denoising

an upright position. This technique assumes a mirror symmetry of the face data
and works well on 82% of the faces whose angle of inclination does not exceed 30◦.

To achieve an improved rotation invariance, we used additional images of different
face views for the classifier training.

Classifier Training. The chosen feature vector length of 80×50 pixels corresponds
to the resolution of a standard face image acquired by a TOF range camera (after
segmentation). It is also necessary to restrict the resolution considering the limited
computational resources of realistic applications.

To ensure rotation invariance (at least for small angles) and to address the prob-
lem of an insufficient number of training images for the LDA and the MLDA classi-
fier, twelve additional images were generated for two unregistered training samples
(one with a neutral and one with a smiling expression). To this end, the rectangle-
cropped and sphere-cropped faces were rotated by −5, −2.5, +2.5, +5 degrees
about all three axes.

The classifier training of the TOF data was processed on 20 randomly picked
frames of the data sequence.

Recognition on Original Laser Scanner Data.

Comparison of Different Image Features and Classifiers. Table 1 shows the best
recognition rates (recognition rates for two training samples) for PCA, LDA and
MLDA classifiers. Depth values (range images) and 3DLBPlayer 1 images were used
as classifier features. For the MLDA classifier, the adjusting parameter α and for
the PCA, the number of eigenvalues were investigated.

test image test sequence
feature PCA LDA MLDA PCA LDA MLDA
depth (range image) 47 47 47 47 47 50
3DLBPlayer 1 87 85 88 92 85 88
Table 1. Recognition rate for neutral face expression in % (PCA,
LDA and MLDA with 180 eigenvectors, MLDA with α = 6)
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Table 2 and table 3 show the recognition rates for different texture features and
linear classifiers applied on images with a neutral face expression. The different
LBP variants perform significantly better than the range and gradient images. The
best MLDA results for a single-view test image were obtained with LBPriu2

8,1 (88%),
for a test sequence with 3DLBPlayer 1 (92%). PCA and LDA classifiers showed a
recognition rate of 92% for a single test image using the LBPriu2

8,1 texture feature.

test image test sequence
feature sphere- rectangle- sphere- rectangle-

cropped cropped cropped cropped
depth (range image) 45 47 60 47
3DLBPlayer 1 78 87 92 88
3DLBPlayer 2 33 32 45 38
3DLBPlayer 3 58 77 72 90
3DLBPlayer 4 15 43 13 53
Horizontal Sobel Operator 32 40 43 50
Large Horizontal Gradient 42 50 52 55
LBPu2

8,1 77 83 87 87
LBPu2

16,1 70 82 83 87
LBPriu2

16,2 63 77 80 80
LBPri

8,1 48 77 65 85
LBPriu2

8,1 75 88 88 88
Table 2. Recognition rate for neutral face expression for different
features in % for a test image and for a test sequence (MLDA with
60 eigenvectors and α = 8)

Recognition from Surface Normals. Table 4 displays the recognition rates for the
MLDA classifier using the polar stereographic representation of the Gaussian image.
Obviously, the angular component is not robust against varying facial expressions.
However, it should be noted that this data was not phase-unwrapped, which is not
a trivial procedure for 2D data [24].

Comparison of Different Profile Features. With regard to the reference data for
facial profile recognition we proceed on the assumption that during a real enrol-
ment phase of the face recognition system only data of high quality is chosen as
a reference pattern. For this reason, we singled out each person’s best profiles.
Afterwards, we conducted 427 comparisons per person and per profile type. The
results are displayed in table 5. Particularly good results with profiles are achieved
when the person is looking down. In this case, horizontal root-of-the-nose-crossing
profiles and horizontal nose-crossing profiles obtained recognition rates of over 60%,
whereas vertical central profiles allowed for a recognition rate of 58%. Generally,
vertical central profiles and horizontal root-of-the-nose-crossing profiles show the
best results. The horizontal forehead-crossing profile is the weakest feature and
thus does not qualify for a discriminant recognition of faces. Furthermore, the pro-
file recognition rates seem to be stable against facial expressions, compared with
upward-oriented neutral faces.
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test image test sequence
feature PCA LDA PCA LDA
depth (range image) 45 47 45 47
3DLBPlayer 1 87 85 90 85
3DLBPlayer 2 25 28 40 48
3DLBPlayer 3 72 77 80 87
3DLBPlayer 4 27 35 18 47
Horizontal Sobel Operator 38 45 48 55
Large Horizontal Gradient 43 50 50 55
LBPu2

8,1 88 83 88 88
LBPu2

16,1 85 85 87 88
LBPriu2

16,2 77 80 80 87
LBPri

8,1 72 80 80 87
LBPriu2

8,1 92 92 90 92
Table 3. Recognition rate for neutral face expression for different
features in % for a test image and for a test sequence for PCA and
LDA with 180 eigenvectors and the rectangle-cropped face segmen-
tation

N3 arg π(N)
Neutral 87 90
Smiling 90 67

Table 4. Recognition rate for neutral and smiling face expression
for surface normals in polar stereographic representation for MLDA
(rectangle-cropped face segmentation)

Profile
Face direction Hor. nose-

root
Hor. fore-
head

Hor. nose Vert. central

Down 60% 48% 63% 58%
Up 37% 26% 37% 32%
Frontal 1 41% 13% 21% 51%
Frontal 2 37% 13% 21% 49%
Frontal 1 and 2 39% 13% 21% 50%
Facial expression 38% 0% 26% 53%
Laughter 36% 13% 22% 48%
Smile 38% 12% 25% 47%
on average 41% 20% 31% 48%

Table 5. Profile recognition rates

Comparison of Different Features. Table 6 displays the best recognition results for
faces with neutral and smiling expression for different features.

Recognition on Noisy and Denoised Laser Scanner Data. Table 7 illustrates
our test results on simulated noisy data before and after applying the denoising
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Neutral Smiling
PCA from LBPs 92 82
MLDA for surface normals 87 90
Profiles 51 48

Table 6. Best recognition rates of the introduced methods for
faces with neutral and smiling expression

image features
surface normals LBPs depth

classifiers PCA MLDA PCA MLDA PCA MLDA
PSNR test seq. a b a b a b a b a b a b
34,09 noisy 2 3 3 3 15 23 7 10 48 47 45 57

denoised 48 35 58 33 52 47 45 43 38 40 47 53
38,52 noisy 3 7 5 5 25 48 12 27 48 47 45 57

denoised 50 38 58 38 48 50 48 42 40 38 47 58
42,08 noisy 27 28 37 48 57 73 37 60 48 45 47 57

denoised 53 38 58 38 48 52 50 45 38 38 47 53
48,05 noisy 75 83 78 85 72 87 72 87 48 45 45 55

denoised 52 38 57 38 47 52 50 47 40 38 47 53
Table 7. Recognition rate for smiling (test seq. a) and neutral
(test seq. b) face expressions for different PSNRs in % for PCA
and MLDA with 180 eigenvectors and α = 6

algorithms. During the classifier training we used high-quality images and trained
only on scan sequences with little noise. During the recognition process we assumed
the use of a low-quality sensor for mobile application. Our results show that some of
the features like the surface normals and the LBPs are highly dependent upon noise
and fail, whereas range images work properly and seem to be noise independent.

After the denoising process, the derived features achieve recognition rates similar
to those obtained with the range images, independent of the noise level due to the
image corruption by denoising. To sum up, for data with little noise the derived
features are more discriminant than range images. For noisy images, we need
to investigate other denoising algorithms and/or redesign the computation of the
derived features.

Recognition on TOF images. Table 8 shows the best recognition rates (for
one frame and for a sequence of 20 frames) obtained with the MLDA classifier on
TOF images. Depth values (range images), LBPriu2

8,1 and surface normals were used
as classifier features. The best recognition rates for single test images and test
sequences are the same (83%).

5. Discussion and Future Work

Within the scope of this research project, we investigated, implemented and
tested current methods for 3D face recognition. The developed system consists of
multiple optional and mandatory modules for denoising and interpolation, classifi-
cation training and the final face recognition. Since most parts of the system are
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feature test image test sequence
depth (range image) 79 79
LBPriu2

8,1 71 79
surface normals 83 83

Table 8. Recognition rate for TOF data and neutral face expres-
sion in % (MLDA with 180 eigenvectors and α = 6, test sequence
of 20 randomly picked frames)

interchangeable, it serves as an excellent test environment for the investigation of
new methods.

For the classification and recognition tasks, a number of features was tested. The
Gaussian map showed high recognition rates even though the representation (one
stereographic coordinate) should be considered far from optimal and will probably
be improved in the future.

The local binary pattern—which originally has been introduced as a means of
describing textures by encoding the gray-value distribution in the neighborhood of
a pixel—also gave very good results and proved the usefulness of this type of feature
for images consisting of range data.

The facial profiles appear to be a robust feature against facial expressions like
e.g. smiling. Although the recognition rates achieved with the current system are
comparatively low, a further investigation to improve the results are in order since
the processing of profiles would allow for a significant reduction in computing time
and memory capacity that is often needed for realistic applications. For example, it
would be interesting to check if a more suitable segmentation or different measures
of profile correlation improve the recognition rates.

Although curvature data obtained from noisy range data by standard techniques
is unreliable, a further investigation of more robust methods for extraction of this
feature is of interest.

We achieved robust and real-time recognition performance (up to 92% for single
features) from unregistered and low-quality data, which is very good compared
with the currently existing methods. We expect these results to be improved by
our future work which will include the combination of several features and the use
of non-linear classifiers.
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and First Experiences Based on Miniaturized 3D-TOF Cameras, Tech. rep., CSEM, IEE,
Fachhochschule Rapperswil Switzerland (2005).

[50] T. Ojala, M. Pietikaeinen, Multiresolution Gray-Scale and Rotation Invariant Texture Classi-
fication with Local Binary Patterns, IEEE Trans. Pattern Analysis and Machine Intelligence,
24 (2005), 971–987, URL http://www.mediateam.oulu.fi/publications/pdf/6.pdf.

[51] G. Pan, Y. Wu, Z. Wu, Investigating Profile Extracted from Range Data for 3D Face Recog-
nition, in: Proc. IEEE Int. Conf. on Systems, Man and Cybernetics (2003).

[52] M. Plaue, Analysis of the PMD Imaging System, Tech. rep., IWR, Univ. of Heidelberg (2006).
[53] K. Polthier, JavaView - Interactive 3D Geometry and Visualization (1999-2006), URL http:

//www.javaview.de/.
[54] H. Rapp, Experimental and Theoretical Investigation of Correlating TOF Camera Systems,

Master’s thesis, IWR, University of Heidelberg (2007).
[55] H. Rapp, M. Frank, F. A. Hamprecht, B. Jähne, A Theoretical and Experimental Investigation

of the Systematic Errors and Statistical Uncertainties of Time-of-Flight Cameras, Int. J.
Accounting, Auditing and Performance Evaluation (accepted).

[56] J. Restle, M. Hissmann, F. Hamprecht, Nonparametric Smoothing of Interferometric Height
Maps Using Confidence Values, Opt. Eng., 43 (2004), 866–871.

[57] T. Ringbeck, B. Hagebeuker, A 3D Time Of Flight Camera For Object Detection.
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