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ABSTRACT

The anomaly detection methods are receiving growing atten-
tion in the intrusion detection community. The two main reasons
for this are their ability to handle large volumes of unlabeled
data and to detect previously unknown attacks. In this contribu-
tion we investigate the application of a modern machine learn-
ing technique – one-class Support Vector Machines (SVM) – for
anomaly detection in unlabeled data. We propose a novel for-
mulation of this technique which is particularly suited for the
data typical for intrusion detection systems. Our evaluation on
the well-known KDDCup dataset demonstrates a significant im-
provement over previous formulations of the one-class SVM.

1 INTRODUCTION

The majority of current intrusion detection methods can be
classified as either misuse detection or anomaly detection
[NWY02]. The former identify patterns of known illegitimate ac-
tivity; the latter focus on unusual activity. Both groups of meth-
ods have their advantages and disadvantages. Misuse detec-
tion methods are generally more accurate but are fundamen-
tally limited to known attacks. Anomaly detection methods are
usually less accurate than misuse detection methods – in par-
ticular, their false alarm rates are hardly acceptable in practice
– however, they are at least in principle capable of detecting
novel attacks. This feature makes anomaly detection methods
a topic of active research.
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In some early approaches, e.g. [DR90, LV92], it was attempted
to describe normal behavior by means of some high-level rules.
This turned out to be quite a difficult task. More successful was
the idea of collecting data from normal operation of a system
and computing, based on this data, features describing normal-
ity. Deviation of such features was considered an anomaly. This
approach is known as “supervised anomaly detection”. Differ-
ent techniques have been proposed for characterizing the con-
cept of normality, most notably statistical techniques, e.g.
[De87, JLA+93, PN97, WFP99] and data mining techniques,
e.g. [BCJ+01, VS00]. In practice, however, it is difficult to obtain
clean data to implement these approaches. Verifying that no at-
tacks are present in the training data may be an extremely tedi-
ous task, and this is infeasible for the large amount of data. On
the other hand, if the “contaminated” data is treated as clean,
intrusions similar to the ones present in the training data will be
accepted as normal patterns.

To overcome the difficulty in obtaining clean data, the idea of
unsupervised anomaly detection has been recently proposed
and investigated on several intrusion detection problems
[PES01, EAP+02, LEK+03]. These methods compute some rel-
evant features and use techniques of unsupervised learning to
identify sparsely populated areas in feature space. The points –
whether in the training or in the test data – that fall into such ar-
eas are treated as anomalies.

Two kinds of unsupervised learning methods have been inves-
tigated: clustering methods and one-class Support Vector Ma-
chines (SVM). In this contribution we focus on the one-class
SVM methods and investigate application of their underlying
geometric ideas in the context of intrusion detection.

Before we explain in detail the workings of SVM in the next sec-
tion, we would like to mention two simple geometric ideas used
in previous one-class SVM approaches:

– a hyperplane separating the normal data from the origin
[SPST+01], and

– a sphere encircling the normal data [TD99].

Our analysis of the typical data arising in intrusion detection
systems brings us to the conclusion that neither of these two
formulations is well-suited for such specific data. Based on this
analysis we propose the novel formulation whose main idea is
to fit a sphere centered at the origin to the data. This formula-
tion, to be referred to as a quarter-sphere, is particularly suita-
ble for the data that has one-sided distribution and is concen-
trated around the origin.

The rest of this article is organized as follows. In section 2 we
present the basic notions of the learning theory which are nec-
essary to understand the main ideas of Support Vector Ma-
chines. In section 3 we introduce one-class SVM and the two
previous formulations. Section 4 presents the quarter-sphere
SVM and some algorithmic issues needed to be resolved for its
implementation. The experiments on the KDDCup dataset and
their interpretation are presented in section 5. Conclusions and
a brief description of future work are given in section 6. The
technical details and some reference material on the KDDCup
dataset are left for the appendices A-C.

2 LEARNING TO CLASSIFY – SOME THEORETICAL 
BACKGROUND

Assume for the moment we had some data – for example,
records of network connections – for which we new exactly
whether a given data point belongs to an attack or not. Based
on this information we would like to develop a rule for the detec-
tion of connections containing attacks. Our special focus would
lie on the generalization ability of the rule, i.e. that it works not
only for the data we had used to build it but also on any unseen
connections. The process of obtaining a rule for some concept
from the exemplary data is called “learning from examples”,
and if labels are available for the examples, the learning proc-
ess is called “supervised”.

How can a concept be learned from the data? Should we strive
for a simple or a complex representation of a concept? Does it
matter if we have collected only a few data points or an exten-
sive database? These issues are addressed by the statistical
learning theory which develops the tools that help design effi-
cient learning algorithms with good generalization. In the follow-
ing we will highlight some elements of this theory illustrating its
most important points.

Consider the example in Fig. 1 (left). Assume the filled points
represent the attack records, and the hollow ones represent the
normal data. We would like to build a decision function separat-
ing the two classes. Two possible choices are shown on the left
picture: a very simple one (a line) and a more complicated one
(a sinusoid). Which of these two functions (if our choice were
limited to only these two) should one prefer? One might think
that the sinusoid is a better choice because it correctly sepa-
rates the training points whereas the linear function makes two
errors. Notice, however, that a training dataset is usually limited
and furthermore not error-free. Thus, the same training dataset
could have been obtained from the concept with a sinusoid as
a true function (middle figure, error free data) or from the con-
cept with a line as a true function (right figure, error-prone
data). In both cases we can see that if a decision is made for
the “wrong” function at the training stage this results in signifi-
cant error when we apply the learned function for classification.

What can be learned from the example above? The training er-
ror alone is not an adequate criterion for learning from exam-
ples (as it was done, for example in some classical learning with
neural networks a decade ago). The complexity of the learned
function needs to be under control. One can easily imagine a
highly complicated function that perfectly separates the training
data but would have nothing to do with the true concept. Thus,
in order to achieve good generalization, a balance needs to be
found between the training error and the complexity of a
learned function. The process for attaining such balance is
called “regularization”.

Fig. 1 Illustration of the overfitting dilemma: Given only a small sample 
(left) either, the solid or the dashed hypothesis might be true, the 
dashed one being more complex, but also having a smaller 
training error. Only with a large sample we are able to see which 
decision respects the true distribution more closely. If the dashed 
hypothesis is correct the solid would underfit (middle); if the solid 
were correct the dashed hypothesis would overfit (right). From 
[MMR+01].
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SVM is one of the modern learning algorithms that has a built-
in regularization mechanism. The main idea of this algorithm is
to separate the data points with a hyperplane with the largest
possible margin. A hyperplane is a generalization of the “line” in
the previous example for high-dimensional spaces. The margin
(see Fig. 2) is the distance between the two hyperplanes paral-
lel to the separating hyperplane and adjacent to some training
data points, the so-called “support vectors”. The hyperplane is
parameterized by the vector w which moves it around in the
space resulting in different margins, the smaller w, the larger
the margin. It is possible that for some values of w no margin is
available at all, in which case some training points are errone-
ously classified and the margin is measured between the re-
maining, correctly classified points.

How does one train an SVM in practice? Let X = {x1,…,xk} be
the training data vectors and Y = {y1,…,yk} be the labels, +1 for
attacks and –1 for the normal points. Then training of an SVM
amounts to solving the following optimization problem:

subject to: , (1)

.

The problem (1) can be solved by any standard optimization
software (e.g. CPLEX, [CP]) or by the special-purpose SVM
software packages (e.g. SVMLight [SL], LibSVM [LS]). The regu-
larization parameter C that controls the tradeoff between the er-
ror and the margin is chosen by the following procedure called
“cross-validation”. Some subset is removed from the training
data, and the SVM is trained on the remaining data and is vali-
dated on the held out subset of data. The procedure is repeated
for several permutations of the data and for different values of
the parameter C. The value for which the best validation error
has been observed is taken for the optimal regularization pa-
rameter.

Although presented so far for the linear separating surfaces, the
SVM can be applied also for nonlinear surfaces. This is
achieved by means of the so-called “kernel trick”. It is known
from functional analysis that if we map our original data points
x into another space by some mapping Φ(x), then the inner
product (Φ(x)·Φ(x)) can for many useful mappings be explicitly
represented by a function k((xi·xj)) of the inner product (xi·xj).
This seemingly abstract mathematical property turns out to be
extremely useful in practice. If a linear algorithm uses the data
occur only through inner products (xi·xj), it can be extended to
a non-linear one by merely replacing the inner products with the
non-linear functions k((xi·xj)) thereof. The function k is called

the “kernel function”. Some well-known examples of the kernel
functions are k(xi,xj) = ((xi·xj)) + 1)d for the polynomials of de-
gree d, and k(xi,xj) = exp(–||xi–xj||

2/(2σ)) for the radial basis
functions (RBF). Both kernels have additional parameters: the
degree d of the polynomial and the smoothness parameter σ of
the RBF. These parameters introduce additional regularization
in the algorithms: by choosing them we can select the simpler
or the more complicated decision functions. In the experiments
presented below we shall make use of the linear kernels (that
is, direct inner products) as well as of the RBF kernels.

Further information about SVM, kernels and statistical learning
theory can be found e.g. in [Vap95], [MMR+01], [SS02],
[MSL+04].

3 ONE-CLASS SVM: PREVIOUS FORMULATIONS

Unlike the supervised learning considered in the previous sec-
tion, in the unsupervised learning one cannot a-priori distin-
guish between the two classes of points. Therefore the geomet-
ric formulations have to be adjusted; however, the underlying
statistical ideas and their implementation in the practical con-
text remain largely intact.

The plane formulation. The original idea of the one-class SVM
[SPST+ 01] was formulated as an “estimation of the support of
a high-dimensional distribution”. The essence of this approach
is to map the data points xi into the feature space by some non-
linear mapping Φ(xi) – similarly to the classical SVM, and to
separate the resulting image points from the origin with the
largest possible margin by means of a hyperplane. The geome-
try of this idea is illustrated in Fig.3 (left).

Due to nonlinearity of the feature space, maximization of the
separation margin limits the volume occupied by the normal
points to a relatively compact area in feature space (see appen-
dix A for the mathematical details of the plane formulation).

The sphere formulation. Another, somewhat more intuitive
geometric idea for the one-class SVM is realized in the sphere
formulation [TD99], where the normal data is described by a
sphere (in a feature space) encompassing the data, as shown
in Fig. 3 (right) (see appendix B for mathematical details of the
sphere formulation).

Analysis. When applying one-class SVM techniques to intru-
sion detection problems, the following observation turns out to
be of crucial importance: A typical distribution of the features
used in IDS is non-negative and one-sided. Several reasons
contribute to this property. First, many IDS features are of tem-
poral nature, and their distribution can be modeled using distri-

Fig. 2 Controlling the separation margin. On the left picture all training 
points are fully separated. On the right picture one training point is 
erroneously separated, but a larger margin (corresponding to the 
smaller value of the weight w) is attained. The points inside the 
margin are marked with double circles.
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Fig. 3 (left) The geometry of the plane formulation and (right) of the 
sphere formulation of one-class SVM.
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butions common in survival data analysis, for example by an ex-
ponential or a Weibull distribution. Second, a popular approach
to attain coherent normalization of numerical attributes is the
so-called “data-dependent normalization” [EAP+02]. Under this
approach, described in more detail in section 5, the features are
defined as the deviations from the mean, measured in the frac-
tion of the standard deviation. This quantity can be seen as F-
distributed. As a result, the overwhelming mass of data lies in
the vicinity of the origin.

The consequences of the one-sidedness of the data distribution
for the one-class SVM can be seen in Fig. 4. The one-sided dis-
tribution in the example is generated by taking the absolute val-
ues of the normally distributed points. The anomaly detection is
shown for varying smoothness σ of the RBF (larger values of σ
result in stronger regularization). The contours show the sepa-
ration between the normal points and anomalies. One can see
that even for the heavily regularized separation boundaries, as
in the right picture, some points close to the origin are detected
as anomalies. As the regularization is diminished, the one-class
SVM produces a very ragged boundary and does not properly
detect anomalies.

The message that can be carried from this example is that, in
order to account for the one-sidedness of the data distribution,
one needs to use a geometric construction that is in some
sense asymmetric. The new construction we propose here is
the quarter-sphere one-class SVM described in the next sec-
tion.

4 THE QUARTER-SPHERE FORMULATION 
OF ONE-CLASS SVM

A natural way to extend the ideas of one-class SVM to one-
sided non-negative data is to require the center of the fitted
sphere be fixed at the origin. The geometry of this approach is
shown in Fig. 4. Repeating the derivation of the sphere formu-
lation given in the Appendix B for c = 0, the following dual math-
ematical problem is obtained:

subject to: (2)

Note that, unlike the other two formulations, the dual problem of
the quarter-sphere SVM amounts to a linear rather than a
quadratic program. Herein lies the key to the significantly lower
computational cost of our formulation.

It may seem somewhat strange that the non-linear mapping af-
fects the solution only through the norms k(xi,xj) of the exam-
ples, i.e. that the geometric relations between the objects are
ignored. This feature indeed poses a problem for the applica-
tion of the quarter-sphere SVM with the distance-based ker-
nels. In such case, the norms of the points are equal, and no
meaningful solution to the dual problem can be found. This pre-
dicament, however, can be easily fixed by centering the images
of the training points Φ(xi) in feature space. In other words, the
values of image points are re-computed in the local coordinate

system anchored at the center of
mass of the image points. This
can be done by subtracting the
mean from all image values:

Although this operation may not
be directly computable in feature
space, the impact of centering on
the kernel values can be easily
computed (e.g. [SSM98,
SMB+99]):

where K is the l × l kernel matrix with the values Kij = k(xi,xj),
and 1l is an l × l matrix with all values equal to 1/l. After center-
ing in feature space, the norms of points in the local coordinate
system are no longer all equal, and the dual problem of the
quarter-sphere formulation can be easily solved.

Suitability of the quarter-sphere one-class SVM to non-nega-
tive, non-gaussian data can be clearly seen in Fig. 6. This fig-
ure shows the application of the quarter-sphere SVM to the
same data used in the examples of Fig. 4, with the same values
of the regularization parameter σ. One can see that in all three
cases the surface separating the normal data from the anoma-
lies correctly identifies the normal region as lying in the vicinity
of the origin. The particular form of the separating surface –
ranging from a more ragged to a circular surface as the regular-
ization increases – depends on the value of the parameter σ.

5 EXPERIMENTS

To evaluate the proposed quarter-sphere formulation, experi-
ments are carried out on the well-known KDDCup 1999 data-
set. This dataset contains certain pre-defined features com-
puted over the network traffic data collected in 1998 DARPA
IDS evaluation. Each feature vector contains the total of 37 fea-
tures and corresponds to one TCP/IP connection. The list of
features and their brief descriptions can be found in Table 2 in
the Appendix C.
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Fig. 4 Separation surfaces of the one-class SVM (sphere) for different values of the parameter σ.
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Since the data comprises a variety of numerical and categorical
attributes – each computed on its own scale – the first problem
that needs to be taken care of is normalization, i.e. transforming
the data into one consistent scale. This is accomplished, as
proposed in [EAP+02], by the following procedure:

1. For each numerical attribute, the mean and the standard de-
viation are computed, and the values of the attributes are re-
placed by their distances from the mean divided by the
standard deviation.

2. For each categorical attribute, the number c of the attribute
values is computed, and the attribute is replaced by c nu-
merical attributes. If the original categorical attribute has the
value xk, k · c, the k-th numerical attribute is set to the value
1/c, and the remaining ones are set to zero.

Note that a large proportion (about 75%) of the records in the
KDDCup dataset represent the attacks; in particular, a large
number of connections arise from the denial of service attacks
and probes. Since it is implicitly assumed in (unsupervised)
anomaly detection methods that anomalies constitute only a
small fraction of the data, we perform sub-sampling of the full
dataset in order to reduce the number of anomalies.1 The main
comparison results reported in section 5.1 are obtained on the
data containing 2% of attacks. In section 5.3. the dependence
of detection rate on the attack percentage is investigated. To
obtain statistically significant results, 10 sub-sampled datasets
are used in each experiment, the average rates reported.
Standard deviations are reported in the more detailed presen-
tation of results in section 5.2.

The following criteria are used for the evaluation:

– Detection rate: the ratio of correctly detected attacks to the
total number of attacks.

– False alarm rate: the ratio of normal records detected as at-
tacks (“false alarms”) to the total number of normal records.

– Detection cost: the number of false alarms per correct detec-
tion.

A joint presentation of the detection rate and the false alarm
rate can be made by means of the so called Receiver Operating
Characteristic (ROC) curve, in which the detection rate is plot-
ted as a function of the false alarm rate. In the results presented
below the ROC curves are plotted for the false alarm rates less
than or equal to 0.1, since larger false alarm rates are unac-
ceptable for the amount of data that needs to be processed by
intrusion detection systems.

5.1 Comparison of one-class 
SVM formulations

We first compare the quarter-
sphere one-class SVM with the
other two algorithms using the
RBF kernel. Since the sphere and
the plane formulations are equiv-
alent for the RBF kernels, identi-
cal results are produced for these
two formulations (only sphere is
shown).

The experiments are carried out for two different values of the
parameter σ of the RBF kernel: 1 and 12 (the latter value used
in [EAP+02]). These values correspond to low and medium reg-
ularization. The performance of a method is measured by a
ROC curve. To produce such a curve, we use the output of the
algorithm which returns a score for each incoming point meas-
uring its anomality. Both one-class SVM considered here use
the distance from the center as a score. A decision which points
constitute anomalies is made by fixing a threshold and consid-
ering all points whose scores exceed the threshold as anoma-
lies. We test every possible decision threshold and evaluate –
for every fixed threshold – the values of the detection rate and
the false alarm rate. Finally, we average both rates over the 10
different datasets. In the presented ROC curves the average
detection rate is plotted against the average false alarm rate.

1 Sub-sampling is also used in the previous work on unsupervised intrusion
detection such as [PES01, EAP+02].

Fig. 7 Comparison of the ROC curves of the two formulations of one-
class SVM.

Fig. 6 Separation surfaces of the one-class SVM (quarter-sphere) for different values of the parameter σ
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The comparison of ROC curves of the sphere and the quarter-
sphere formulations of one-class SVM is shown in Fig. 7. It can
be easily seen that the quarter-sphere formulation consistently
outperforms the sphere formulation; especially for the low value
of regularization parameter. The best overall results are
achieved with the medium regularization with σ = 12, which has
been most likely selected in [EAP+02] after careful experimen-
tation. The advantage of the quarter-sphere in this case is not
as dramatic as with low regularization but is nevertheless very
significant in the low false alarm region.

5.2 Interpretation

The experiments presented above demonstrate the general ad-
vantage of the proposed quarter-sphere SVM formulation over
the previous ones. To provide a more practical interpretation of
our results, we investigate the distribution of detection and false
alarm rates over the attack categories and the cost of detection
in terms of the number of false alarms.

According to the well-known classification of Kendall [Ke99],
the following four types of attacks are known:

– Denial of service (DOS) – attacks which prevent normal op-
eration, such as causing the target host or server to crash,
or blocking network traffic.

– Probing – surveillance and other probing, i.e. testing a po-
tential target to gather information (e.g., port scanning).

– Remote to local (R2L) – unauthorized access from a remote
machine, i.e. attacks in which an unauthorized user is able to
bypass normal authentication and execute commands on
the target (e.g. guessing password).

– User to root (U2R) – unauthorized access to local superuser
(root) privileges.

Two attacks present in the KDDCup dataset cannot be classi-
fied into one of the four categories above and are defined as a
fifth category “scenario”, as they constitute specific exploits of
known vulnerabilities. The summary of attacks present in the
KDDCup dataset and their categorization is given in Table 3 in
the Appendix C.

To perform the analysis of detection rates by attack category,
we fix the set of false alarm rate values at 1%, 5% and 10%,
and record the detection rate values for each attack category.2

The mean values and the standard deviations of detection rates
(over 10 sub-sampled experiments) are reported in Table 1 for
the two formulation and the two values of the parameter σ of the
RBF kernel. Additionally, the total detection rate (for all attacks)
and the total detection cost, defined at the beginning of section
5, are reported for each case.

It can be seen from the Table 1 that both methods exhibit rather
uniform detection rates over the 4 main categories of attacks,
with probes and U2R attacks slightly better detected. The sce-
nario attacks are detected noticeably worse, which can be ex-
plained by the fact that the features used in the KDDCup data-
set are rather general and are not related to some particular ex-
ploits.

Table 1 Detection rates of the sphere and the quarter-sphere one-class 
SVM by attack category.

It can also be clearly seen that performance of the sphere one-
class SVM on low false alarm rates is erratic and, in general,
unsatisfactory. This is manifested in very high standard devia-
tions of the detection rate, and very high detection costs (N/A is
assigned to the case when at least in one experiment no at-
tacks were detected for the given false alarm rate, which makes
the denominator of the detection cost vanish). On the contrary,
the quarter-sphere one-class SVM is quite reliable, even at low
false alarm rates, and attains an astonishing detection cost of
less than one false alarm per detection at fa = 0.01 and σ = 12.
It can be also observed that, in general, attempting to increase
detection rates by allowing higher false alarm rates leads to in-
creasing detection cost; therefore, a solution should be sought
in improving detection accuracy at low false alarm rates.

2 A single ROC curve consists of the piece-wise constant segments corre-
sponding to the intervals on the false alarm axis. Therefore, one can al-
ways examine the detection rate for any given value of the false alarm rate
by taking a respective interval. The results can be subsequently averaged
over the number of experiments.

Attack category mean std mean std mean std

SPHERE, σ = 1

fa = 0.01 fa = 0.05 fa = 0.10

dos 0.0269 0.0851 0.2291 0.3321 0.6826 0.3319

probe 0.0278 0.0878 0.2644 0.3716 0.7692 0.3091

R2L 0.0556 0.1757 0.2487 0.3347 0.6321 0.2509

U2R 0.0350 0.1107 0.2826 0.4174 0.7905 0.4177

scenario 0.0333 0.1054 0.2125 0.2789 0.5542 0.1735

Total detection rate 0.0370 0.1170 0.2500 0.3470 0.6940 0.3059

Total detection cost N/A N/A N/A N/A 14.0667 18.5988

SPHERE, σ = 12

fa = 0.01 fa = 0.05 fa = 0.10

dos 0.2615 0.2811 0.8482 0.0503 0.8846 0.0334

probe 0.2194 0.2240 0.9531 0.0466 0.9944 0.0176

R2L 0.1030 0.1097 0.6581 0.0727 0.7876 0.0601

U2R 0.3665 0.3495 0.9457 0.0440 0.9660 0.0333

scenario 0.1306 0.1736 0.4778 0.1148 0.6361 0.0746

Total detection rate 0.2200 0.2196 0.8000 0.0350 0.8710 0.0179

Total detection cost 7.8102 8.1423 3.0680 0.1399 5.6279 0.1162

QUARTER-
SPHERE, σ = 1

fa = 0.01 fa = 0.05 fa = 0.10

dos 0.3811 0.1178 0.7688 0.0504 0.7770 0.0506

probe 0.3462 0.0649 0.9761 0.0310 0.9941 0.0186

R2L 0.4750 0.0928 0.6821 0.0421 0.8125 0.0387

U2R 0.6274 0.0842 0.9705 0.0255 1.0000 0.0000

scenario 0.2278 0.1316 0.5250 0.0909 0.6375 0.0829

Total detection rate 0.4390 0.0502 0.8000 0.0176 0.8580 0.0155

Total detection cost 1.1285 0.1205 3.0638 0.0680 5.7126 0.1033

QUARTER-
SPHERE, σ = 12

fa = 0.01 fa = 0.05 fa = 0.10

dos 0.6010 0.0295 0.8454 0.0578 0.8727 0.0431

probe 0.7296 0.1849 0.9819 0.0291 1.0000 0.0000

R2L 0.4418 0.0826 0.7111 0.0739 0.8269 0.0306

U2R 0.7258 0.0627 0.9512 0.0326 0.9902 0.0206

scenario 0.3417 0.1096 0.5347 0.1066 0.6028 0.0738

Total detection rate 0.5810 0.0561 0.8250 0.0438 0.8820 0.0199

Total detection cost 0.8514 0.0938 2.9776 0.1653 5.5582 0.1282
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5.3 Dependency on the ratio of anomalies

The assumption that intrusions constitute a small fraction of the
data may not be satisfied in a realistic situation. Some attacks,
most notably the denial-of-service attacks, manifest themselves
precisely in a large number of connections. Therefore, the prob-
lem of a large ratio of anomalies needs to be addressed.

In the experiments in this section we investigate the perform-
ance of the sphere and the quarter-sphere one-class SVM as a
function of the attack ratio. It is known from the literature [TD99,
SPST+01] that the parameter ν of the one-class SVM can be in-
terpreted as an upper bound on the ratio of the anomalies in the
data. The effect of this parameter on the quarter-sphere formu-
lation is different: it specifies that exactly ν fraction of points is
expected to be the anomalies. This is agreeably a more strin-
gent assumption, and methods for the automatic determination
of the anomaly ratio must be further investigated. Herein we
perform a simple comparison of the algorithms under the as-
sumption that ν matches the anomaly ratio; i.e. it is assumed
that perfect information about the anomaly ratio is available.

One would expect that the parameter ν can tune both kinds of
one-class SVM to the specific anomaly ratio. This, however,
does not happen, as can be seen from Fig. 8. One can observe
that the performance of both formulations noticeably degrades
with the increasing anomaly ratio. We believe that the reason
for this lies in the data-dependent normalization of the features:
since the features are normalized with respect to the mean,
having a larger anomaly ratio shifts the mean towards the
anomalies, which leads to worse separability of the normal data
and the anomalies.

6 CONCLUSIONS AND FUTURE WORK

We have presented a novel one-class SVM formulation, the
quarter-sphere SVM, that is optimized for non-negative at-
tributes with one-sided distribution. Such data is frequently
used in intrusion detection systems. The classical one-class
SVM formulations previously applied in the context of unsuper-
vised anomaly detection do not account for non-negativity and
one-sidedness; as a result, they can potentially detect very
common patterns, their attributes close to the origin, as anom-
alies. Our new quarter-sphere SVM avoids this problem by sim-
ply aligning the center of the sphere fitted to the data with the
“center of mass” of the data in feature space.

Our experiments conducted on the KDDCup 1999 dataset
demonstrate significantly better accuracy of the quarter-sphere
SVM in comparison with the previous, sphere or plane, formu-
lations. Especially noteworthy are the strong advantages of the
new algorithm at low false alarm rates, and the low cost of de-
tection in terms of false alarm (in the best case, less than one
false alarm per detection).

We have also investigated the behavior of one-class SVM as a
function of attack rate. It is shown that the accuracy of all three
formulations of one-class SVM considered here degrades with
the growing percentage of attacks, contrary to the expectation
that the parameter of one-class SVM, if properly set, should
tune it to the required anomaly rate.

We have found that the performance degradation with the per-
fectly set tuning parameters is essentially the same as when
the parameter is set to some arbitrary value. We believe that
performance of anomaly detection algorithms on higher anom-
aly rates should be given special attention in the future work,
especially with respect to the data normalization techniques.

A further line of research will consider anomaly detection using
one-class boosting algorithms (cf. [RMSM02]) and ranking ap-
proaches.
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Appendix A:
PLANE ONE-CLASS SVM FORMULATION

Mathematically, the problem of separating the data from the or-
igin with the largest possible margin is formulated as follows
[SPST+01]:

subject to: (w Φ (xi)) ≥ ρ – ξi, (3)

ξi = 0.

The weight vector w, characterizing the hyperplane, “lives” in
the feature space F, and therefore is not directly accessible (as
the feature space may be extremely high-dimensional). The

Fig. 8 Impact of the anomaly ratio on the accuracy of the sphere and 
quarter-sphere SVM.
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non-negative slack variables ξι allow for some points, the anom-
alies, to lie on the “wrong” side of the hyperplane. Instead of the
primal problem (3), the following dual problem, in which all the
variables have low dimensions, is solved in practice:

subject to: (4)

Once the solution α is found, one can compute the threshold
parameter ρ = Σjαjk(xi, xj), for some example i such that ai lies
strictly between the bounds (such points are called support
vectors). The decision, whether or not point x is normal, is com-
puted as:

The points with f(x)= –1 are considered to be anomalies.

Appendix B:
SPHERE ONE-CLASS SVM FORMULATION

Mathematically the problem of “soft-fitting” the sphere over the
data is described as follows [TD99]:

subject to: , (5)

ξi = 0.

Similarly to the primal formulation (3) of the plane one-class
SVM, one cannot directly solve the primal problem (5) of the
sphere formulation, since the center c belongs to the possibly
high-dimensional feature space. The same trick can be em-
ployed the solution is sought to the dual problem:

subject to: (6)

The decision function can be computed as:

The radius r 2 plays the role of a threshold, and, similarly to the
plane formulation, it can be computed by equating the expres-
sion under the “sgn” to zero for any support vector.

The similarity between the plane and the sphere formulations
goes beyond merely an analogy. As it was noted in [SPST+01],
for kernels k(x, y) which depend only on the difference x – y, the
linear term in the objective function of the dual problem (9) is
constant, and the solutions are equivalent.

Appendix C
FEATURES AND ATTACKS IN THE KDDCUP DATASET

Table 2 Features of the KDDCup dataset.
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Name Description

duration Duration of connection

protocol_type Protocol type

service Network service on the destination, (http, 
telnet)

flag Normal or error status of the connection

src_bytes Number of data bytes sent from source to 
destination

dst_bytes Number of data bytes sent from destination 
to source

land 1 if the connection is from/to the same 
host/port; 0 otherwise

wrong_fragment Number of “wrong” fragments

urgent Number of urgent packets

hot Number of “hot” indicators; count of access 
to system directories, creation and execu-
tion of programs, etc.

num_failed_logins Number of failed login attempts

logged_in Whether the user successfully logged in 
(using telnet, rsh, etc.)

num_compromized Number of “compromised” conditions; 
count of file/path “not found” errors and 
“jump to” instructions, etc.

root_shell 1 if root shell is obtained; 0 otherwise

su_attempted Whether a ‘su’ command is issued

num_root Number of root accesses

num_file_creations Number of file creation operations

num_shells Number of shell prompts

num_access_files Number of write, delete, and create opera-
tions on access control files

num_outbound_cmds Number of outbound commands in an ftp 
session

is_hot_login Whether the login belongs to the “hot” list

is_guest_login Whether the login belongs to the “guest” 
list

count Number of connections in the past 2 sec 
with the same destination IP as the current 
connection

srv_count Number of connections in the past 2 sec 
with the same service as the current con-
nection

serror_rate % of connections to the same destination 
in the past 2 sec with SYN errors

srv_serror_rate % of connections with the same service in 
the past 2 sec with SYN errors

rerror_rate % of connections to the same destination 
in the past 2 sec with REJ errors

srv_rerror_rate % of connections with the same service in 
the past 2 sec with REJ errors

same_srv_rate % of connections to the same destination 
in the past 2 sec with the same service as 
the current connection

diff_srv_rate % of connections to the same destination 
in the past 2 sec with the different service 
from the current connection

srv_diff_host_rate % of connections with the same service in 
the past 2 sec to the different destination 
as the current connection
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Table 3 Taxonomy of attacks in the KDDCup dataset.

REFERENCES

[BCJ+01] Barbará, D.; Couto, J.; Jajodia, S.; Popyack, L.; Wu, N.: ADAM:
Detecting intrusions by data mining. In: Proc. IEEE Workshop
on Information Assurance and Security, pages 11-16. 2001.

[CP] CPLEX. http://www.ilog.com/products/cplex/
[De87] Denning, D.: An intrusion-detection model. In: IEEE Transac-

tions on Software Engineering. 13:222-232. 1987.
[DR90] Dowell, C.; Ramstedt, P.: The ComputerWatch data reduction

tool. In: Proc. 13th National Computer Security Conference,
pages 99-108. 1990.

[EAP+02] Eskin, E.; Arnold, A.; Prerau, M.; Portnoy, L.; Stolfo, S.: Applica-
tions of Data Mining in Computer Security. Chapter A. Geomet-
ric framework for unsupervised anomaly detection: detecting
intrusions in unlabeled data. Kluwer. 2002.

[JLA+93] Jagannathan, R.; Lunt, T.F.; Anderson, D.; Dodd, C.; Gilham, F.;
Jalali, C.; Javitz, H.S.; Neumann, P.G.; Tamaru, A.; Valdes, A.:
Next-generation intrusion detection expert system (NIDES).
Technical report. Computer Science Laboratory, SRI Interna-
tional. 1993.

[Ke99] Kendall, K.: A database of computer attacks for the evalua-
tionof intrusion detection systems. M.Sc. Thesis, MIT, 1999.

[LEK+03] Lazarevic, A.; Ertoz, L.; Kumar, V.; Ozgur, A.; Srivastava, J.: A
comparative study of anomaly detection schemes in network
intrusion detection. In: Proc. SIAM Conf. Data Mining. 2003.

[LS] LibSVM. http://www.csie.ntu.edu.tw/~cjlin/libsvm/
[LV92] Liepins, G.; Vaccaro, H.: Intrusion detection: its role and valida-

tion. In: Computers and Security. 11 (4):347-355. 1992.
[MMR+01] Müller, K.-R.; Mika, S.; Rätsch, G.; Tsuda, K.; Schölkopf, B.: An

introduction to kernel-based learning algorithms. In: IEEE
Transactions on Neural Networks. 12 (2):181-201. 2001.

[MSL+04] Mika, S.; Schäfer, C.; Laskov, P.; Tax, D.; Müller, K.-R.: Support
Vector Machines. Chapter III.15. In: Gentle, J.; Härdle, W.;
Mori, Y.: Handbook of Computational Statistics. Springer-Ver-
lag, 2004.

[NWY02] Noel, S.; Wijesekera, D.; Youman, C.: Applications of Data Min-
ing in Computer Security. Chapter Modern intrusion detection,
data mining, and degrees of attack guilt. Kluwer. 2002.

[PES01] Portnoy, L.; Eskin, E.; Stolfo, S.: Intrusion detection with unla-
beled data using clustering. In: Proc. ACM CSS Workshop on
Data Mining Applied to Security. 2001.

[PG90] Poggio, T.; Girosi, F.: Regularization algorithms for learning that
are equivalent to multilayer networks. In: Science. 247: 978-
982. 1990.

[PN97] Porras, P.A.; Neumann, P.G.: Emerald: event monitoring ena-
bling responses to anomalous live disturbances. In: Proc. Na-
tional Information Systems Security Conference, pages 353-
365. 1997.

[RMSM02] Rätsch, G.; Mika, S.; Schölkopf, B.; Müller, K.-R.: Constructing
boosting algorithms from SVMs: an application to one-class
classification. In: IEEE PAMI. 24 (9):1184-1199. September
2002.

[SL] SVMLight. http://svmlight.joachims.org/
[SMB+99] Schölkopf, B.; Mika, S.; Burges, C.; Knirsch, P.; Müller, K.-R.;

Rätsch, G.; Smola, A.: Input space vs. feature space in kernel-
based methods. In: IEEE Transactions on Neural Networks. 10
(5):1000-1017. September 1999.

[SPST+01] Schölkopf, B.; Platt, J.; Shawe-Taylor, J.; Smola, A.; William-
son, R.: Estimating the support of a high-dimensional distribu-
tion. In: Neural Computation. 13 (7):1443-1471. 2001.

[SS98] Smola, A.; Schölkopf, B.: On a kernel-based method for pattern
recognition, regression, approximation and operator inversion.
In: Algorithmica. 22: 211-231. 1998.

[SS02] Schölkopf, B.; Smola, A.: Learning with Kernels. MIT Press.
Cambridge, MA. 2002.

[SSM98] Schölkopf, B.; Smola, A.; Müller, K.-R.: Nonlinear component
analysis as a kernel eigenvalue problem. In: Neural Computa-
tion. 10: 1299-1319. 1998.

[TD99] Tax, D.; Duin, R.: Data domain description by support vectors.
In: Verleysen, M. (Hrsg.): Proc. ESANN. S. 251-256. Brussels.
1999. D. Facto Press.

[Va95] Vapnik, V.: The nature of statistical learning theory. Springer
Verlag. New York. 1995.

[VS00] Valdes, A.; Skinner, K.: Adaptive, model-based monitoring for
cyber attack detection. In: Proc. RAID 2000, pages 80-92.
2000.

[WFP99] Warrender, C.; Forrest, S.; Perlmutter, B.: Detecting intrusions
using system calls: alternative data methods. In: Proc. IEEE
Symposium on Security and Privacy., pages 133-145. 1999.

dst_host_count Number of connections among the previ-
ous 100 connections to the same host with 
the same destination IP as the current con-
nection

dst_host_srv_count Number of connections among the previ-
ous 100 connections to the same host with 
the same service as the current connection

dst_host_same_srv_rate % of connections among the previous 100 
connections to the same host with the 
same service as the current connection

dst_host_diff_srv_rate % of connections among the previous 100 
connections to the same host with the dif-
ferent service from the current connection

dst_host_same_src_port_rate % of connections among the previous 100 
connections to the same host originating 
from the same source port as the current 
connection

dst_host_src_diff_host_rate % of connections among the previous 100 
connections to the same host originating 
from a different source IP from the current 
connection

dst_host_serror_rate % of connections among the previous 100 
connections to the same host with SYN er-
rors

dst_host_serror_rate % of connections among the previous 100 
connections with the same service with 
SYN errors

dst_host_rerror_rate % of connections among the previous 100 
connections to the same host with REJ er-
rors

dst_host_rerror_rate % of connections among the previous 100 
connections with the same service with 
REJ errors

Attack type Attack name Attack type Attack name

DoS smurf R2L phf

DoS pod R2L imap

DoS apache2 R2L xsnoop

DoS udpstorm R2L worm

DoS processtable R2L sendmail

DoS neptune R2L ftp_write

DoS back R2L guess_passwd

DoS mailbomb R2L snmpguess

DoS teardrop U2R loadmodule

Probe saint U2R xterm

Probe portsweep U2R perl

Probe satan U2R ps

Probe mscan U2R buffer_overflow

Probe ipsweep U2R rootkit

Probe nmap U2R land

R2L warezmaster U2R sqlattack

R2L named scenario snmpgetattack

R2L xlock scenario httptunnel

Name Description
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