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Abstract

The continuous motorization of traffic has led to a sustained increase in the

global number of road related fatalities and injuries. To counter this, govern-

ments are focusing on enforcing safe and law-abiding behavior in traffic. How-

ever, especially in developing countries where the motorcycle is the main form

of transportation, there is a lack of comprehensive data on the safety-critical

behavioral metric of motorcycle helmet use. This lack of data prohibits targeted

enforcement and education campaigns which are crucial for injury prevention.

Hence, we have developed an algorithm for the automated registration of mo-

torcycle helmet usage from video data, using a deep learning approach. Based

on 91,000 annotated frames of video data, collected at multiple observation sites

in 7 cities across the country of Myanmar, we trained our algorithm to detect

active motorcycles, the number and position of riders on the motorcycle, as well

as their helmet use. An analysis of the algorithm’s accuracy on an annotated

test data set, and a comparison to available human-registered helmet use data

reveals a high accuracy of our approach. Our algorithm registers motorcycle

helmet use rates with an accuracy of -4.4% and +2.1% in comparison to a hu-

man observer, with minimal training for individual observation sites. Without

observation site specific training, the accuracy of helmet use detection decreases

slightly, depending on a number of factors. Our approach can be implemented
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in existing roadside traffic surveillance infrastructure and can facilitate targeted

data-driven injury prevention campaigns with real-time speed. Implications of

the proposed method, as well as measures that can further improve detection

accuracy are discussed.

Keywords: Deep learning, Helmet use detection, Motorcycle, Road safety,

Injury prevention

1. Introduction

Using a motorcycle helmet can decrease the probability of fatal injuries of

motorcycle riders in road traffic crashes by 42% [1] which is why governments

worldwide have enacted laws that make helmet use mandatory. Despite this,

compliance with motorcycle helmet laws is often low, especially in developing

countries [2, 3, 4]. To efficiently conduct targeted helmet use campaigns, it is

essential for governments to collect detailed data on the level of compliance with

helmet laws. However, 40% of countries in the world do not have an estimate

of this crucial road safety metric [5]. And even if data is available, helmet

use observations are frequently limited in sample size and regional scope [6, 7],

draw from data of relatively short time frames [8, 9], or are only singularly

collected in the scope of academic research [4, 10]. The main reason for this

lack of comprehensive continuous data lies in the prevailing way of helmet use

data collection, which utilizes direct observation of motorcycle helmet use in

traffic by human observers. This direct observation during road-side surveys is

resource intensive, as it is highly time-consuming and costly [11]. And while the

use of video cameras allows indirect observation, alleviating the time pressure

of direct observation, the classification of helmet use through human observers

limits the amount of data that can be processed.

In light of this, there is an increasing demand to develop a reliable and timely

efficient intelligent system for detecting helmet use of motorcycle riders that does

not rely on a human observer. A promising method for achieving this automated

detection of motorcycle helmet use is machine learning. Machine learning has
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been applied to a number of road safety related detection tasks, and has achieved

high accuracy for the general detection of pedestrians, bicyclists, motorcyclists

and cars [12]. While first implementations of automated motorcycle helmet

use detection have been promising, they have not been developed to their full

potential. Current approaches rely on data sets that are limited in the overall

number of riders observed, are trained on a small number of observation sites,

or do not detect the rider position on the motorcycle [13, 14]. In this paper a

deep learning based automated helmet use detection is proposed that relies on

a comprehensive dataset with large variance in the number of riders observed,

drawing from multiple observation sites at varying times of day.

Recent successful deep learning based applications of computer vision, e.g.

in image classification [15, 16, 17], object detection [18, 19], and activity recog-

nition [20, 21] have heavily relied on large-scale datasets, similar to the one used

in this study. Hence, the next section of this paper will focus on the generation

of the underlying dataset and its annotation, to facilitate potential data collec-

tion in other countries with a similar methodology. This is followed by a section

on algorithm training. In the subsequent sections of this paper, the algorithm

performance is analyzed through comparison with an annotated test data set

and with results from an earlier observational study on helmet use in Myanmar,

conducted by human observers [4].

2. Dataset creation and annotation

2.1. Data collection and preprocessing

Myanmar was chosen as the basis for the collection of the source material

for the development of the algorithm, since its road user aggregate and rapid

motorization are highly representative of developing countries in the world [22]

and video recordings of traffic were available from an earlier study [4]. Motor-

cyclists comprise more than 80% of road users in Myanmar [5], and the number

of motorcycles has been increasing rapidly in recent years [23].
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Throughout Myanmar, traffic was filmed with two video-cameras with a res-

olution of 1920 × 1080 pixels and a frame rate of 10 frames per second. Within

seven cities, cameras were placed at multiple observation sites at approximately

2.5 m height and traffic was recorded for two consecutive days from approxi-

mately 6 am to 6:30 pm (Table 1). As the city of Mandalay has the highest

number of motorcyclists in Myanmar the two cameras were installed for 7 days

here. Yangon, the largest city of Myanmar, has an active ban on motorcycle in

the city center, hence, one camera was placed in the suburbs here. Due to techni-

cal problems with the cameras and problems in reaching the selected observation

sites, the number of hours recorded was not the same for each observation site.

After the removal of blurred videos due to cloudy weather or rain, 254 hours of

video data were available as the source material for this study. Video data was

Table 1: 254 hours of source video were available from 13 observation sites in 7 cities across

Myanmar, from which 1,000 video clips (10 seconds / 100 frames each) were sampled for

further annotation.

Duration Sampled

City Population Site ID (hours) clips

Bago 254,424

Bago highway 9 35

Bago rural 17 67

Bago urban 16 63

Mandalay 1,225,546
Mandalay 1 58 228

Mandalay 2 48 190

NayPyiTaw 333,506
Naypyitaw 1 13 51

Naypyitaw 2 11 43

Nyaung-U 48,528
NyaungU rural 21 83

NyaungU urban 17 67

Pakokku 90,842 Pakokku urban 19 75

Pathein 169,773
Pathein rural 3 12

Pathein urban 12 47

Yangon 4,728,524 Yangon II 10 39

254 1,000
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divided into 10 second video clips (100 frames each), which formed the basis for

training, validating, and testing the algorithm in this study. The duration of

video data available at each observation site is shown in Table 1. The obser-

vation sites represent a highly diverse data set, including multilane high traffic

density road environments (e.g. Mandalay) as well as more rural environments

(e.g. Pathein). Still frames of observation sites are presented in Figure 1.

(a) Bago highway (b) Bago rural (c) Bago urban

(d) Mandalay 1 (e) Mandalay 2 (f) Naypyitaw 1

(g) Naypyitaw 2 (h) NyaungU rural (i) NyaungU urban

(j) Pakokku urban (k) Pathein rural (l) Yangon II

Figure 1: Still frames in 12 observation sites of 7 cities throughout Myanmar, where green

rectangles correspond to annotations.

2.2. Sampling video clips

Since there were insufficient resources to annotate all 254 hours of recorded

traffic, 1,000 videos clips were sampled which were most representative of the
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source material. After segmenting the source material into non-overlapping

video clips of 10 seconds length (100 frames), we applied the object detection

algorithm YOLO9000 [24] with the pre-trained weights to detect the number

of motorcycles in each frame, extracting those clips with the highest number of

motorcycles in them. Multiple clips were sampled from each observation site, in

proportion to the available videodata from each site. The resulting distribution

of the 1,000 sampled video clips is presented in Table 1. The observation site

Pathein urban (47 video clips) was retroactively excluded from analysis due to

heavy fogging on the camera which was not detected during the initial screening

of the video data (Section 2.1). In addition, 43 video clips were excluded since

they did not contain active motorcycles, as the YOLO9000 algorithm [24] had

identified parked motorcycles.

2.3. Annotation

Videodata was annotated by first drawing a rectangular box around an in-

dividual motorcycle and its riders (so called bounding box ), before entering in-

formation on the number of riders, their helmet use and position. All bound-

ing boxes containing an individual motorcycle throughout a number of frames

form the motorcycle track, i.e. an individual motorcycle will appear in multiple

frames, but will only have one motorcycle track. To facilitate the annotation

of the videos, we tested and compared the three image and video annotation

tools BeaverDam [25], LabelMe [26], and VATIC [27]. We chose BeaverDam

for data annotation, since it allows frame-by-frame labeling in videos, is easy to

install, and has superior usability. Annotation was conducted by two freelance

workers. An example of the annotation of an individual motorcycle through

multiple frames (motorcycle track) is presented in Fig. 2.

For each bounding box, workers encoded the number of riders (1 to 5),

their helmet use (yes/no) and position (Driver (D), Passenger (P0-3); Fig. 3).

Examples of rider encoding are displayed in Fig. 3.
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(a) (b)

(c) (d)

Figure 2: An example of motorcycle annotation. An individual motorcycle (marked in light

green rectangles) appears on the left side of the frame and disappears on the lower right side

of the frame.

D =  Driver
P1 =  Passenger 1
P2 =  Passenger 2
P3 =  Passenger 3
P0 =  Passenger 0

(I)

(a) (b) (c) (d) (e)

(II)

Figure 3: Structure (I) and examples (II) of helmet use encoding: (a) DHelmet,

(b) DNoHelmet, (c) DHelmetP1NoHelmet, (d) DHelmetP1NoHelmetP2Helmet, and (e)

DNoHelmetP0NoHelmetP1NoHelmetP2NoHelmet.

7



Table 2: 910 annotated video clips were randomly split into training, validation and test sets

according to individual observation site, with a split ratio of 70%, 10%, and 20%.

Site ID Training set Validation set Test set Overall

Bago highway 24 4 7 35

Bago rural 41 6 11 58

Bago urban 44 6 13 63

Mandalay 1 159 23 45 227

Mandalay 2 111 16 31 158

Naypyitaw 1 36 5 10 51

Naypyitaw 2 30 4 9 43

NyaungU rural 57 8 17 82

NyaungU urban 47 7 13 67

Pakokku urban 52 8 15 75

Pathein rural 8 1 3 12

Yangon II 27 4 8 39

Overall 636 92 182 910

2.4. Composition of annotated data

The 910 annotated video clips were randomly divided into three non-overlapping

subsets: a training set (70%), a validation set (10%), and a test set (20%) (Table

2). Data on the number of annotated motorcycles in all 910 video clips can be

found in Table 3. Overall, 10,180 motorcycle tracks (i.e. individual motorcy-

cles) were annotated. As each individual motorcycle appears in multiple frames,

there are 339,784 annotated motorcycles on a frame level, i.e. there are 339,784

bounding boxes containing motorcycles in the dataset. All motorcycles were

encoded in classes, depending on the position and helmet use of the riders. This

resulted in 36 classes, shown in Table 3. The number of motorcycles per class

was imbalanced and ranged from only 12 observed frames (e.g., for motorcycles

with 5 riders with no rider wearing a helmet) to 140,886 observed frames (one

driver wearing a helmet). Some classes were not observed in the annotated video

clips, e.g., there was no motorcycle with 4 riders all wearing a helmet.
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3. Helmet use detection algorithm

3.1. Method

After the creation of the dataset was finished, we applied a state-of-the-art

object detection algorithm to the annotated data, to facilitate motorcycle helmet

use detection on a frame-level. In this process, data from the training set is used

to train the object detection algorithm. In the process of training, the validation

set is used to find the best generalizing model, before the algorithm’s accuracy

in predicting helmet use is tested on data that the algorithm has not seen before,

the so-called test set. The composition of the three sets is presented in Table 2.

Generally, the state-of-the-art object detection algorithms can be divided into

two types: two-stage and single-stage approaches. The two-stage approaches

first identify a number of potential locations within an image, where objects

could be located. In a second step, an object classifier (using a convolutional

neural network) is used to identify objects a these locations. While two-stage

approaches such as Fast R-CNN [28], achieve a higher accuracy than single-stage

approaches, they are very time-consuming. In contrast, single-stage approaches

simultaneously conduct object location and object identification. Single stage

approaches like YOLO [24] and RetinaNet [18] therefore are much faster than

two-stage approaches, although there is a small trade-off in accuracy. In this

paper, we used RetinaNet [18] for our helmet use detection task. While it is

a single-stage approach, it uses a multi-scale feature pyramid and focal loss

to address the general limitation of one-stage detectors in accuracy. Figure 4

illustrates the framework of RetinaNet.

3.2. Training

Since the task of detecting motorcycle riders’ helmet use is a classic object

detection task, we fine-tuned RetinaNet instead of training it from scratch. I.e.

we use a RetinaNet model1 which is already trained for general object detection

and fine tune it to specifically detect motorcycles, riders, and helmets.

1https://github.com/fizyr/keras-retinanet
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Figure 4: The framework of RetinaNet [18]. A given image is first fed into a backbone

convolutional neural network to generate a multi-scale feature map, from which a multi-scale

feature pyramid is generated. In each level of the pyramid, there are two subnetworks. One

is for regression from anchor boxes to ground-truth object boxes, the other is for classifying

anchor boxes. After non-maximum suppression (NMS) across the multi-scale feature pyramid,

RetinaNet arrives at the detection results.

In our experiments, we used ResNet50 [15] as the backbone net, initialized

with pre-trained weights from ImageNet [29]. The backbone net provides the

specific architecture for the convolutional neural network. In the learning pro-

cess, we used the Adam optimizer [30] with a learning rate of α = 0.00001

and a batch size of 4 and stopped training when the weighted mean Aver-

age Precision (weighted mAP, explained in the following) on the validation set

stopped improving with a patience of 2. To assess the accuracy of our al-

gorithm, we use the Average Precision (AP) value [31]. The AP integrates

multiple variables to produce a measure for the accuracy of an algorithm in an

object detection task, including intersection over union, precision, and recall.

The intersection over union describes the positional relation between algorithm

generated and human annotated bounding boxes. Algorithm generated bound-

ing boxes need to overlap with human annotated bounding boxes by at least

50%, otherwise they are registered as an incorrect detection. The precision

presents the number of correct detections of all detections made by the al-

gorithm (precision = true positives
true positives + false positives ). The recall variable measures

how many of the available correct instances were detected by the algorithm
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(recall = true positives
true positives + false negatives ). For a more in-depth explanation of AP

please see [31] and [32]. Since the number of frames per class was very imbal-

anced in our dataset (Table 3), the final performance for all classes is computed

as weighted average of AP for each class, defined as:

weighted mAP =

C∑
i=1

wiAPi, (1)

where weights wi across all C classes will sum to one, and set to be proportional

to the number of instances. Fig. 5 shows the training loss, validation loss, and

weighted mAP in the training and validation sets in the learning process. It

can be observed that training loss is constantly decreasing, i.e. the prediction

error is getting smaller, while the deep model learns useful knowledge for the

helmet use detection from the training set. Consequently, the weighted mAP

of the training set is constantly increasing. At the same time, the validation

loss, i.e. the prediction error on the validation set is getting smaller in the

first 9 epochs. Correspondingly, the mAP on the validation set is increasing in

the first few epochs before it stops to improve after 9 epochs, which means the

algorithm starts to overfit on the training set. Therefore, we stopped training

and selected the optimal model after 9 epochs, obtaining 72.8% weighted mAP

on the validation set.
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Figure 5: The learning process of RetinaNet for helmet use detection. (a) training and

validation loss, (b) weighted mAP on training and validation set. The algorithm achieved

72.8% weighted mAP (red point) on the validation set after 9 epochs.
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Our models were implemented using the Python Keras library with Tensor-

flow as a backend [33] and ran on two NVIDIA Titan Xp GPUs.

3.3. Results

In the following, we report the helmet use detection results of the algorithm

on the test set, using the optimal model developed on the validation set (where

it obtained 72.8% weighted mAP).

We achieved 72.3% weighted mAP on the test set, with a processing speed

of 14 frames/second. The AP for each class is shown in Table 3. It can be

observed that RetinaNet worked well on common classes but not on under-

represented classes due to the small number of training instances. Considering

only common classes (up to two riders), our trained RetinaNet achieved 76.4%

weighted mAP. This is a very good performance considering a lot of factors such

as occlusion, camera angle, and diverse observation sites. Detection results on

some sample frames are displayed in Fig. 6. Due to the imbalanced classes,

there are some missing detections, e.g., Fig. 6 (a), (g) and (h). Example videos,

consisting of algorithm annotated frames of the test set can be found in the

supplementary material.
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Table 3: Composition of annotated data. 339,784 motorcycles were annotated on a frame

level. The last column shows the generalized helmet use detection accuracy (mAP= mean

Average Precision).

Position Motorcycle Frame level Helmet use detection

Class D P1 P2 P3 P0 tracks Training Validation Test Overall AP (%)

1 3 – – – – 4,406 99,029 14,556 27,301 140,886 84.5

2 3 3 – – – 2,268 50.206 7,071 13,748 71,025 78.5

3 7 – – – – 1,241 37,664 5,936 10,796 54,396 75.4

4 7 7 – – – 929 22,723 3,499 5,736 31,958 63.5

5 3 7 – – – 432 10,729 1,556 2,314 14,599 20.4

6 7 7 7 – – 211 5,290 377 1,050 6,717 28.0

7 7 3 – – – 129 2,853 335 511 3699 11.6

8 3 7 3 – – 125 2,456 639 420 3,515 8.6

9 3 7 7 – – 75 1,909 269 442 2,620 8.9

10 7 7 – – 7 55 1,215 113 514 1,842 3.5

11 3 3 – – 7 49 677 115 466 1,258 9.9

12 7 7 7 – 7 35 471 208 277 956 18.7

13 3 – – – 7 34 588 78 369 1035 1.6

14 7 – – – 7 28 701 95 183 979 0.3

15 3 7 – – 7 24 600 76 0 676 –

16 3 3 3 – – 23 492 13 75 580 5.1

17 3 3 – – 3 22 446 18 146 610 4.2

18 3 7 3 – 7 22 410 81 24 515 1.6

19 3 – – – 3 12 352 0 0 352 –

20 3 7 7 – 7 11 225 0 27 252 0.3

21 7 7 3 – – 9 123 93 0 216 –

22 7 7 7 7 – 6 334 28 0 362 –

23 3 3 7 – – 6 146 0 0 146 –

24 3 7 7 3 – 5 42 15 0 57 –

25 3 7 7 7 – 4 50 0 70 120 0.4

26 3 7 3 – 3 3 62 0 0 62 –

27 3 3 3 – 7 3 38 11 0 49 –

28 7 3 3 – – 3 88 0 0 88 –

29 7 3 – – 7 2 27 0 0 27 –

30 3 7 7 – 3 2 25 0 0 25 –

31 7 7 – – 3 1 30 0 0 30 –

32 7 7 7 7 7 1 12 0 0 12 –

33 3 3 3 – 3 1 0 0 21 21 0

34 7 7 3 – 7 1 0 0 15 15 0

35 3 7 7 3 7 1 0 0 53 53 0

36 3 7 7 7 7 1 0 0 31 31 0

10,180 240,013 35,182 64,589 339,784 weighted mAP: 72.3

3 rider in corresponding position wears a helmet

7 rider in corresponding position does not wear a helmet

– there is no rider in corresponding position
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6: Helmet use detection results on sampled frames using RetinaNet. Bounding box

colors correspond to different predicted classes.

4. Comparison to human observation in real world application

Since the video data that forms the basis for the training of the machine

learning algorithm in this paper has been analyzed in the past to assess motor-

cycle helmet use, there is a unique opportunity to compare hand-counted helmet
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use numbers in the video data with the calculated helmet use numbers gener-

ated by the algorithm developed in this paper. Siebert et al. [4] hand-counted

the motorcyclists with and without helmets in the source video data for the first

15 minutes of every hour that a video was recorded. Hence, ”hourly” helmet

use percentages for every individual observation site in the data set are avail-

able. To assess the feasibility of our machine learning approach for real-world

observation studies, we compare hourly hand-counted helmet use rates from the

Siebert et al. study with hourly computer-counted rates estimated through the

application of our algorithm.

4.1. Method

It is important to understand the fundamental difference of the hand-counting

method used by Siebert et al. [4] and the frame-based algorithmic approach pre-

sented in this paper. In the initial observation of the video data by Siebert et al.,

a human observer screened 15 minute video sections and registered the number

of helmet- and non-helmet-wearing motorcycle riders for individual motorcycles.

I.e. helmet use on a motorcycle was only registered once, even though an indi-

vidual motorcycle was present in multiple frames, driving through the field of

view of the camera. The occlusion of an individual motorcycle in some of these

frames, e.g. when a motorcycles passed a bus that was located between the

motorcycle and the camera, does not pose a problem for the detection of helmet

use on that individual motorcycle, as the human observer has the possibility to

jump back and forth in the video and register helmet use in a frame with a clear

unoccluded view of the motorcycle. Furthermore, a human observer naturally

tracks a motorcycle and can easily identify a frame where the riders of the mo-

torcycle and their helmet use is most clearly visible, e.g. when the motorcycle

is closest to the camera. The human observer can then use this frame to arrive

at a conclusion on the number of riders and their helmet use.

In contrast, the computer vision approach developed in this paper will regis-

ter motorcycle riders’ helmet use in each frame where a motorcycle is detected.

This can introduce some error-variance in helmet use detection. The speed of a
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motorcycle will influence how many times helmet use for an individual motor-

cycle is registered, as slower motorcycle riders will appear in more frames than

faster ones. Furthermore, occlusion influences how many times a motorcycle

will be registered, which can influence the overall helmet use average calculated.

Also, helmet use will be registered for motorcycles that are in a sub-optimal an-

gle to the camera, e.g. on motorcycles that drive directly towards the camera,

drivers can occlude passengers behind them. However, not all of these differ-

ences have a direct impact on helmet use calculated through the algorithm. We

assume that occlusion does not introduce a directed bias to detected helmet use

rates, as riders with and without helmets have the same chance to be occluded

by other traffic. The same can be assumed for differences in motorcycle speed

within the observed cities, as riders with helmets won’t be faster or slower than

those without helmets. We therefore assume that a frame based helmet use

registration will lead to comparable results to helmet use registered by a human

observer.

Since the algorithm has been trained on specific observation sites, it can be

considered to be observation site trained. I.e. when the algorithm is applied

to the observation site Bago rural, there is data on this specific observation

site in the training set (Table 2). In an application of the deep learning based

approach, this might not be the case, as the algorithm will not have been trained

on new observation sites. Hence, in the following, we also compare algorithmic

accuracy for an observation site untrained algorithm. For this, we exclude all

training data from the observation site that we analyze, before training the

algorithm, simulating the application of the algorithm to a new observation

site. In the following, trained algorithm refers to the algorithm with training

on an observation site to be analyzed, while untrained algorithm refers to an

algorithm that was not trained on an observation site to be analyzed.

4.2. Results

Data on hourly helmet use rates for one randomly chosen day of video data

from each observation site is presented in Fig. 7. Helmet use was either reg-
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istered by a human observer [4], registered through the trained algorithm, or

the untrained algorithm. It can be observed that hourly helmet use percentages

are relatively similar when comparing human and computer registered rates

of the trained algorithm. The trained algorithm registers accurate helmet use

rates, even when large hourly fluctuations in helmet use are present, e.g. at

the Mandalay 1 observation site (Figure 7(b)). However, some of the observed

15 minute videos show a large discrepancy between helmet use rates registered

by a human and the trained algorithm. While it is not possible to conduct a

detailed error analysis (as we did in Section 3.3) it is possible to evaluate the

video data for broad factors that could increase the discrepancy between human

registered data and the data registered by the trained algorithm.

As an example, helmet use rates at the Bago rural observation site at 9

am have a much higher helmet use rate registered by the trained algorithm

than by the human observer (Figure 7(a)). A look at the video data from this

time frame reveals heavy rain at the observation site (Fig. 8). Apart from an

increased blurriness of frames due to a decrease in lighting and visible fogging on

the inside of the camera case, motorcycle riders can be observed to use umbrellas

to protect themselves against the rain. It can be assumed that motorcycle riders

without helmets are more likely to use an umbrella, as they are not protected

from the rain by a helmet. This could explain the higher helmet use registered

by the trained algorithm at this observation site and time, as non-helmeted

riders are less likely to be detected due to umbrellas.

Another instance of a large discrepancy between human and computer regis-

tered helmet rates through the trained algorithm can be observed for 6 am at the

Pathein rural observation site (Figure 7(f)). A look at the video data reveals

bad lighting conditions due to a combination of clouded weather and the early

observation time. This results in unclear motorcycles, which are blurred due to

their driving speed in combination with the bad lighting conditions (Fig. 9).

Despite singular discrepancies between hourly helmet use rates coded by a

human and the trained algorithm, the overall accuracy of average helmet use

rates calculated by the trained algorithm per observation site is high. A compar-
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(b) Mandalay 1
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(c) Naypitaw 2
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(d) NyaungU rural
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(e) Pakokku urban
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(f) Pathein rural
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(g) Yangon II

Figure 7: Hourly helmet use averages for one day of each observation site, registered by human

observers and the trained and untrained algorithm (incomplete data for Pathein rural and

Yangon II due to technical problems during the video data collection).

ison of average helmet use per observation site, registered by a human observer

and the trained algorithm is presented in (Figure 10). For three observation

sites (Naypitaw, Nyaung-U, and Pakokku), trained algorithm registered helmet
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Figure 8: Video frames from the Bago observation site at 9 am. Heavy rain, fogging on the

camera lens, and umbrella use is visible.

Figure 9: A video frames from the Pathein observation site at 6 am. Low lighting due to

heavy clouds results in blurry motorcycles.
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Figure 10: Average helmet use percentage registered by a human observer and the trained

and untrained algorithm.

use rates deviate by a maximum of 1% from human registered rates. For the

other four observation sites (Bago, Mandalay, Pathein, and Yangon), trained

algorithm registered rates are still reasonably accurate, varying between -4.4%
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and +2.07%.

For the untrained algorithm, it can be observed that the registered hourly

helmet use data is less accurate than that of the trained algorithm, while

it is still relatively close to the human registered data for most observation

sites (Figure 7). The effects of decreased visibility at the Bago rural and

Pathein rural sites are also present. However, at the Yangon II observation

site, the registered helmet use of the untrained algorithm is notably higher than

helmet use registered by the trained algorithm and the human observer, regis-

tering more than double the helmet use present at the observation site. A com-

parison of the frame-level helmet use detection at the Yangon II site between

the trained and untrained algorithm revealed a large number of missed detec-

tions of the untrained algorithm (Figure 11). Excluding Yangon II, the helmet

use rates registered through the untrained algorithm vary between -8.13% and

+9.43% from human registered helmet use (Figure 10).

Figure 11: Comparison of the trained (left) and untrained algorithm (right) at the Yangon II

observation site.

5. Discussion

In this paper, we set out to develop a deep learning based approach to

detect motorcycle helmet use. Using a large number of video frames we trained

an algorithm to detect active motorcycles, the number and position of riders,

as well as their helmet use. The use of an annotated test data set allowed us

to evaluate the accuracy of our algorithm in detail (Section 3.3, Table 3). The
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algorithm had high accuracy for the general detection of motorcycles. Further, it

was capable of accurately identifying the number of riders and their position on

the motorcycle. The algorithm was less accurate however, for motorcycles with

a large number of riders or for motorcycles with an uncommon rider composition

(Table 3). Based on these results, the present version of the algorithm can be

expected to generate highly accurate results in countries, where only two riders

are allowed on a motorcycle and where riders adherence to this law is high. Our

implementation of the algorithm can run on consumer hardware with a speed of

14 frames per second, which is higher than the frame rate of the recorded video

data. Hence, the algorithm can be implemented to produce real-time helmet

use data at any given observation site.

Our comparison of algorithm accuracy with helmet use registered by a hu-

man observer (Section 4) revealed an overall high average accuracy, if the algo-

rithm had been trained on the specific observation sites (Figure 10). If there was

no prior training on the specific observation site, the (untrained) algorithm had

an overall lower accuracy in helmet use detection. There was a large deviation of

registered helmet use at the Yangon II observation site, where a large number

of missed detections resulted in a highly inaccurate detection performance. The

lack of training data with a camera angle similar to the Yangon II observation

site is the most likely cause for this low detection accuracy. Potential ways to

counteract this performance decrement are discussed in the Section 6.

A comparison of hourly helmet use rates revealed a small number of discrep-

ancies between human and algorithm registered rates (Fig. 7). Further analysis

revealed a temporary decrease in the video source material quality as the reason

for these discrepancies (Fig. 8 & 9). This decrease in detection accuracy has to

be seen in light of the training of the algorithm, in which periods with motion

blur due to bad lighting or bad weather were excluded. Hence, decrements in

detection accuracy are not necessarily the result of differences in observation

sites themselves.
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6. Conclusion and future work

The lack of representative motorcycle helmet use data is a serious global

concern for governments and road safety actors. Automated helmet use de-

tection for motorcycle riders is a promising approach to efficiently collect large,

up-to-date data on this crucial measure. When trained, the algorithm presented

in this paper can be directly implemented in existing road traffic surveillance

infrastructure to produce real-time helmet use data. Our evaluation of the algo-

rithm confirms a high accuracy of helmet use data, that only deviates by a small

margin from comparable data collected by human observers. Observation site

specific training of the algorithm does not involve extensive data annotation,

as already the annotation of 270 s of video data is enough to produce accurate

results for e.g. the Yangon II observation site. While the sole collection of

data does not increase road safety by itself [34], it is a prerequisite for targeted

enforcement and education campaigns, which can lower the rate of injuries and

fatalities [35].

For future work we propose three ways in which the software-side perfor-

mance of machine learning based motorcycle helmet use detection can be im-

proved. First, there is a need to collect more data in under-represented classes

(Table 3) to increase rider, position, and helmet detection accuracy for motorcy-

cles with more than two riders. Second, diverse video data should be collected in

regards to the camera angle. This would prevent detection inaccuracies caused

by missed detections in camera setups with unusual camera angles. Third, it

appears promising to add a simple tracking method for motorcycles to the exist-

ing approach. Tracking would allow the identification of individual motorcycles

within a number of subsequent frames. Using a frame based quality assessment

of an individual motorcycle’s frames together with tracking, would allow the

algorithm to choose the most suitable frame for helmet use and rider position

detection, which will improve overall detection accuracy. Tracking would further

allow the algorithm to register the number of individual motorcycles passing an

observation site, providing valuable information on traffic flows and density.
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On the hardware-side, future applications of the algorithm can greatly ben-

efit from an improved camera system, that is less influenced by low light con-

ditions (Fig. 9) and less susceptible to fogging and blur due to rain on the

camera lens (Fig. 8). An increase of the resolution of the video data could allow

the detection of additional measures, such as helmet type or chin-strap usage.

Apart from a generally increased performance through software and hardware

changes, future applications of the developed method could incorporate a more

comprehensive set of variables. Within the deep learning approach, the detec-

tion of e.g. age categories, chin-strap use, helmet type, or mobile phone use

would be possible.

There are a number of limitations to this study. Algorithmic accuracy was

only analyzed for road environments within Myanmar, limiting the type of mo-

torcycles and helmets present in the training set. Future studies will need to

assess whether the algorithm can maintain the overall high accuracy in road en-

vironments in other countries. A similar limitation can be seen in the position of

the observation camera. While the algorithm is able to detect motorcycles from

a broad range of angles due to diverse training data, there was no observation

site where the observation camera was installed in an overhead position, filming

traffic from above. Since traffic surveillance infrastructure is often installed at

this position, future studies will need to assess whether the algorithm would

produce accurate results from an overhead angle. This is especially important

in light of the results of the Yangon II observation site, where an unusual cam-

era angle lead to a large number of missed detections. Furthermore, a more

structured variation of camera to lane angle would help to better understand

optimal positioning of observation equipment for maximum detection accuracy.

While it was included in the data annotation process, the algorithmic accuracy

in detecting the position of riders was not compared to human registered data

in this study. In light of large differences of motorcycle helmet use for different

rider positions [4], future studies will need to incorporate deeper analysis of po-

sition detection accuracy. For the comparison of human- and machine-registered

helmet use rates, it appears promising to enable a detailed error analysis (false
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positive/ false negative) through the use of an adapted data structure of human

helmet use registration.

In conclusion, we are confident that automated helmet use detection can

solve the challenges of costly and time-consuming data collection by human

observers. We believe that the algorithm can facilitate broad helmet use data

collection and encourage its active use by actors in the road safety field.
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