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Abstract

Understanding the function of the brain appears to be mainly an introspective

task. Nevertheless, large parts of our brain are used as a direct interface to our

environment. They constantly acquire information and control our actions.

The dynamic interweaving of brain and environment opens a dual route to the

understanding of cortical processing. Based on that insight the present work

focuses on the following two issues:

a) analyzing the functional role of cortical networks, and

b) analyzing the special requirements imposed onto the brain by the statis-

tics of its input, namely the statistics of natural images.

After an introduction into both, natural images and the mammalian visual

system, we first analyze the connection scheme found in the primary visual

cortex at different levels of abstraction. We start by deriving a system of cou-

pled differential equations describing a column of excitatory and inhibitory

neurons. Phenomena like contrast invariant orientation tuning and contrast

saturation are investigated which have been found important features of corti-

cal neurons. The initial model is extended to explain also response properties

related to contextual effects. There stimuli presented outside the classical re-

ceptive field of the neuron can modulate its response. Principle difficulties

in having cross-orientation modulations by iso-orientation specific patchy con-

nections are shown. In explaining cross-orientation modulations we analyze

the effect of the distinctive spatial layout of the cortex. We found that two

opposite effects contribute to the observed contextual modulation; (i) local in-

hibition that is induced by a local change in input (leads to suppression), and

(ii) dis-inhibition.

The second part deals with the input of the visual system, namely pictures

of scenes encountered in the surrounding world. We formulate the hypoth-

esis that higher order features in spatial pattern can be described in terms

of intrinsic invariance and symmetry and introduce a mathematical formula-

tion of smooth local symmetries. Applications for object classification, image

alignment, and landmark detection illustrate the principle advantage of our

structure analysis over methods of shape analysis.

Two new algorithms are introduced to efficiently learn higher order fea-

tures. The first one introduces a centralized Gaussian mixture model to extract
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second-order features estimating the density of the data. The obtained code

is shown to outperform other known linear codes by being well distributed

and by showing a high population sparseness, both are preferable properties

in coding of natural images.

Originating from geometrical considerations of manifolds in high dimen-

sional spaces we introduce a non-linear transformation and by this a family of

feature spaces that are shown to be useful to detect correlation of a specific or-

der in the data. Moreover it is shown that these correlations can be learned in

the feature space by linear methods. This general property of the transforma-

tion is interesting for a large class of algorithms in the field of explorative data

analysis. In the context of independent component analysis this transforma-

tion defines a feature space in which the assumption of independent sources

can be fulfilled for a set of over-complete basis functions.
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Ziel dieser Arbeit ist es, zum Verständnis der Strukturen des menschlichen Gehirns

beizutragen. Grosse Teile unseres Gehirns funktionieren als eine direkte Schnittstelle

zu unserer Umwelt. Zwischen Umwelt und Gehirn werden kontinuierlich Informa-

tionen verarbeitet und Handlungen initiiert. Das dynamische Wechselspiel zwischen

Umwelt und Gehirn macht es notwendig, auch bei der Analyse der Verschaltungsstruk-

turen im Gehirn ihre jeweiligen Eingaben, hier meist sensorische Signale, zu unter-

suchen. Auf der Grundlage einer Dualität von Gehirnstrukturen und sensorischen

Signalen beschäftigt sich diese Arbeit mit den folgenden beiden Themen:

a) der Analyse der Funktion kortikaler Schaltkreise und

b) den speziellen Anforderungen, die bei der Verarbeitung von Bildern an das

Gehirn, insbesondere deren statistischen Eigenschaften gestellt werden.

Nach einer kurzen Einführung in die Statistik natürlicher Bilder und die Anatomie

und Funktion des visuellen Systems der Säugetiere untersuchen wir die Verschal-

tungsstrukturen, die im ersten visuellen Areal gefunden werden. Insbesondere die

Phänomene der kontrastinvarianten Antwort auf orientierte Gitter als optische Stimuli

und das Sättigungsverhalten der Zellen bei hohen Kontrasten in der Eingabe werden

analytisch und durch Computersimulationen unterstützt untersucht. Das verwendete

Differentialgleichungsmodell für gekoppelte Zellpopulationen wird schrittweise er-

weitert, um auch kontextabhängige Effekte untersuchen zu können. Hierbei hängt die

Antwort einer Zelle von den Reizen in ihrer weiteren Umgebung ab. Wir zeigen unter

anderem, dass zwei unterschiedliche Effekte zu den Kontextmodulationen beitragen:

zum einen lokale Hemmung (Inhibition), die durch eine Änderung in der Struktur der

Eingabe bestimmt werden, und des weiteren durch den Effekt der Dis-inhibition.

Die Analyse von Bildern unserer Umgebung ist das Hauptziel im zweiten Teil der

Arbeit. Sie sind der Input in das visuelle System. Wir formulieren die Hypothese, dass

wichtige Eigenschaften von Bildern durch ihre inhärenten Invarianzen und Symme-

trien definiert werden. Um diese Hypothese zu testen, führen wir ein mathematisches

Mass für lokale Symmetrien in räumlichen Mustern ein. Anwendungen auf den Ge-

bieten der Objektidentifikation, der Objektausrichtung und der Landmarkenfindung

unterstreichen die Vorzüge der Strukturanalyse gegenüber einer reinen Formanalyse.

Zwei neue Algorithmen werden vorgestellt um Eigenschaften höherer Ordnung in

Bildern zu lernen. Der erste basiert auf dem Modell eines zentralisierten Gauss’schen-

Mixture Modells und extrahiert Merkmale dadurch, dass er ein Modell der Verteilungs-

funktion der Daten lernt. Die gelernten Merkmale sind denen anderer Modelle erster

Ordnung hinsichtlich der Populationsantworteigenschaften überlegen.

Ausgehend von geometrischen Überlegungen zu Mannigfaltigkeiten in hochdimen-

sionalen Räumen führen wir eine Transformation in einen nicht-linearen Merkmal-

sraum ein, in dem Korrelationen beliebiger Ordnung mit linearen Methoden gelernt

werden können. Im Kontext der Independent Component Analysis als einem Beispiel

für einen Algorithmus der explorativen Datenanalyse kann die Transformation dazu

benutzt werden, um über-komplette Basisfunktionen zu lernen.
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1. Introduction

“Vision is our primary sensory channel for inter-

action with the outside world. It allows us to

recognize familiar faces and creatures, and ob-

jects; it allows us to orient ourselves in space and

to navigate from place to place. It is a pathway

for esthetic enjoyment and for information trans-

mission. The visual system is one of the many

miracles of nature.”

(Shapley and Enroth-Cugell, 1984)

The brain is responsible for our ability to do complicated things like singing,

playing chess or writing a thesis. If it is able to perform complex things we

would expect that the brain itself is complex. But how can we measure its

complexity? An equally valid question is: How can we measure the complexity

of our environment? Both questions are related because large parts of the

brain are involved in the analysis of sensory information. In analyzing either

the device (our brain) or the sensory information we hope to learn something

about the successful interplay between both.

At the end of the 19-th century Ramón y Cajal was the first who established

that the building blocks of the brain, the nerve cells, act as independent units.

We understand that a large part of the complexity of the brain is due to the

connections of these units. But complexity is rather more than number of con-

nections. A fully connected neural network has a large number of connections,

but it takes only a single line in Matlab1 to define a simple network with a

large number of connections

y = tanh
(
ones(1014)x + Θ

)
.

It would be huge, in fact its number of connections is about the same (1015) as

the expected number of connections in our brain, but intuitively we would not

suspect it of being complex. A similar reasoning can be applied to our sensory

information. Writing a program that enumerates all possible combinations of

1Matlab ( c©The MathWorks, Inc.) is a tool for doing numerical computations with vectors
and matrices.
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1. Introduction

(discreet) stimuli is easy but it will tell us little about the complexity of our

surrounding world. What is the basis of our intuition about what is complex

and what not?

There are measures for the complexity of objects. One is the measure of

Kolmogorov complexity (Solomonoff, 1997; Kolmogorov, 1965; Chaitin, 1966). Kolmogorov

complexityConsidering that Shannon’s information theory (Shannon and Weaver, 1948)

is concerned with the average information of a random source Kolmogorov

complexity of an object is a form of absolute information of the individual ob-

ject. It can be defined as the size (number of binary digits, or bits) of the

shortest program that without additional data, computes the object and termi-

nates. In this sense the network specified above is not complex because of its

short description length. Unfortunately this measure is of rather theoretical use

because there is no way to produce the shortest program (or even to recognize

that a program is the shortest possible). However it is useful in the context of

comparing different programs and appears widely in disguise of Ocam’s Razor

or the minimum description length principle.

Other concepts that are related to complexity are structure and redun-

dance. Redundancies are repeating parts of an object. If we have detected

redundancies we have also found the essential parts, the structure in the data.

An example is the sequence 01010101 and its representation as 01 ∗ 4. The

redundancy defines the structure of the sequence and using this structure we

can represent the sequence in a compact way2.

Back to our starting point. To learn something about how we perform com-

plex tasks we need to find the essential structures in either the brain or the

environment. We know that the brain is highly ordered; into areas, layers,

functional columns, and distinct neuron classes. Defining computer models of

the part of the human brain that is concerned with vision is the topic of the

first part of this thesis. The second part deals with the dual problem of finding

structure in the respective sensory channel the visual stimuli.

By analyzing both the brain and its input we hope to deepen our under-

standing for the function of the brain, how it is organized and how it can

handle wast amounts of information so astonishing efficient.

2Yes, we have to add the length of the algorithm that performs the ∗ operation, and the

length of the blueprint that was used to build the computer that performs the algorithm,
and the description length of the basic physical laws and constants that define the universe

in which the machine is build that performs the algorithm which produces the sequence.
That is meant by Kolmogorov complexity being not practical.
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1. Introduction

1.1. Scope and Goals

Building a model about what (we think) is relevant to information processing

is mostly based on a lot of assumptions about what (we think) is irrelevant. So

any results obtained by models have to be viewed in the light of the underlying

assumptions. In this sense doing biological modeling is helpful about proving

or disproving of concepts (about the question how biology can work) but not

about how it works. All statements directed towards the function of the brain

can be enclosed with the phrase: ’If I would be brain thats how I would make

it.’

To name only some of the facts which are not in the scope of this the-

sis: we will neglect any temporal receptive field structure of neurons as found

by Ringach, Sapiro and Shapley (1997) and DeAngelis, Ohzawa and Freeman

(1995), the fact that vision is an active process and any detailed modeling of

neurons at the level of channels, synapses, or spikes. Instead, after an intro-

duction into basic findings of the statistics of natural images and the general

layout of the primate visual system we will head directly for (i) the interaction

of populations of neurons (Chapter 3 on page 40) and (ii) the functional role

of lateral connections in analyzing natural stimuli (Chapter 4 on page 78).

Especially in the later chapters we will assume that the reader is familiar

with some standard algorithms of machine learning and data analysis. Intro-

duction into these algorithms will be very brief and the reader is directed to

standard books about brain theory and neural networks as for example the

always very helpful Arbib (1998).

1.2. Plan of the Manuscript

This manuscript is concerned with the functional architecture of the primary

visual cortex (visual area V1, striate cortex) which serves as an excellent model

for the human sensory system.

In Figure 1.1 the general arrangement of chapters is laid out. The first

part of the thesis reviews the relevant anatomical and physiological findings

together with various functional forms proposed in literature.

In the second part of the manuscript computational models are developed

which address the interplay of orientation selective neuron populations (i) lo-

cally to one column of visual cortex, (ii) between different columns (hypercol-

umn model) and (iii) between different hypercolumns (lattice model).

The third part analyses in a more formal framework how the statistics of

the visual input influences the shape of the response characteristics of model

neurons. In analyzing natural images we make predictions about the receptive

4 Hauke Bartsch, 2002



1.2. Plan of the Manuscript

Environment

in a lattice model

overcomplete ICA

Higher order features:Interactions:

invariance and symmetry

binary valued quadratic form

between hypercolumns

between two columns

inside one population

Brain
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1. Introduction

fields of cortical neurons. One more technical grounds an algorithm is given

which can solve the problem of overcomplete source separation.

1.3. The Input of the Visual System

There are reasons to believe that the brain is tuned to the special requirements

of its input signals. A benefit of this could be to overcome the limitations

of the receptors, e.g., of the finite sampling of the signal by the retinal light

receptors (Ruderman and Bialek, 1992). Another reason could be that in a

constantly changing environment a system that can adapt is more effective in

terms of information transmission and representation (Barlow, 1961). Natural

selection would work in favor of systems with superior performance thus the

evolution to highly efficient and error tolerant systems.

But adaptation of the brain also happens on shorter than evolutionary time

scales. During ontogeny in sensory areas of many species a refinement of the

neuronal connections is observed. The principles behind these processes are

still under debate. Candidate theories to explain the changes of the cortex dur-

ing ontogenesis are based on either intra-cortical mechanisms or on constrains

imposed on the system by the specific form of the input. A main result of the

refinement during ontogeny is the topographic layout of many sensory areas

in the adult cortex. Nearby neurons tend to code for nearby stimuli3. The for-topography

mation of topological maps was intensely studied and serves as a archetypical

system for the study of developmental processes.

Map Formation by Intra-cortical Constrains

A intra-cortical property that has been used to explain topographic mappings

is the overall wiring length (Allman and Kaas, 1974; Koulakov and Chklovskii,

2001). Short overall wiring lengths are favorable for the speed of processing

and the metabolism of the animal. Arguments against this purely intra-cortical

explanation of the cortical layout are: (i) The traveling speed of action po-

tentials can be varied independently on the wiring length, e.g. by changing

the diameter of the wire. (ii) there are examples for animals with a ’salt-

and-petter’ organization of the respective sensory area (visual system of the

rat) thus wiring length minimization may not be a crucial requirement4. Our

understanding about the metabolic constrains of the system is limited. One as-

sumes that in the order of 20% of our energy is used up by the central nervous

3The visual cortex displays a spatially topographic layout, the auditory cortex a frequency
topographic layout.

4Rats rely mostly on their auditory and olfactory senses and the rat auditory cortex is, for
example, organized (frequency) topographic.

6 Hauke Bartsch, 2002



1.3. The Input of the Visual System

system. Keeping the energy consumption of the brain low may have been a

worthwhile strategy favored by natural selection in the human evolution.

Map Formation Influenced by the Stimulus

The topographic layout of neurons processing sensory information can also

be explained by peculiarities of the stimulus. Models that explore local

correlations in the data also explain the emergence of topographic maps.

Takeuchi and Amari (1979) carried out a one-dimensional analysis of a con-

tinuous version of a neural activity model. They showed that when the width

of the input stimuli is smaller than the extent of the lateral interactions in cor-

tex an ordered map results. This ansatz to explain the intra-cortical structures

was motivated first by the finding of prominent local correlations in images

thus by the observation that most images contain redundant information.

Experiments indicated that the initial orientation and ocular-

dominance maps are largely independent on visual experience

(Crair, Gillespie and Stryker, 1998). This indicates that the general lay-

out of the cortical maps is genetically predefined. After an initial period

the stimulus can strongly influence the maps (Singer, 1981) and the cortex

remains versatile in adult animals.

Because map formation is a very general tool used at large by the cortex

it is very likely that its basics are layed down as early as observed perhaps

even enforced by genetical factors (Kaschube, Wolf, Geisel and Löwel, 2002).

Other features of the neurons may depend stronger on the specific type of in-

put. Roe, Pallas, Hahm and Sur (1990) performed a drastic experiment along

these lines. It is plain that neurons in the auditory cortex have to detect dif-

ferent features than the neurons in the visual cortex which results in different

observed lateral connection schemes in both areas. Long-range connections

in the auditory cortex, for example, show not the patch like terminals of the

long-range connection in primary visual cortex. In their work Roe et al. (1990)

demonstrate that re-routing the information of the retina to the auditory sys-

tem results in an orderly map of visual space in the auditory cortex. Lateral

connections change accordingly and that visual information can be processed

by the auditory cortex in much the same way as in the visual cortex. From

these experiments one can derive that the sensory inputs can direct the forma-

tion of cortical circuitry to a large extent.

Structure and Redundancy of the Stimulus

An important relation can be drawn between the redundancies and the struc-

ture of the input. Whereas redundancy describes the part of the code that does

not transport (additional) information structure describes the essential parts

of the input. If a part of the input has a structure it will be easily compressible

7



1. Introduction

and therefore it contains redundant information. Thus, in exploring redundan-

cies in the code one searches for structure. The idea of structure detection is

connected with the measure of Kolmogorov complexity (see the IntroductionKolmogorov

complexity of this thesis) and the principle of minimum description length.

minimum

description

length
1.3.1. A Statistical Description of Images

In order to explain the structure of the brain that is used for the processing of

visual information we like to review the literature on the statistics of natural

images, that is to say of pictures of scenes encountered in the surroundingnatural images

world.

One way to analyse the structure of natural images is to describe them in

terms of statistics. A statistical description of images assumes that the images

presented by the environment are instantiations of random vectors. In the

mammalian eye regular spaced light sensitive detectors receive the reflected

light of objects and report the light intensity. Using rough numbers for the

resolution and sensitivity of the optical systems (see Section 2.1 on page 17)

we can derive a number of distinguishable visual inputs which will be in the

order of

100(106) = 102,000,000, (1.1)

106 neurons each with a sensitivity range of one to one hundred. Although

this is a large number5 we can be certain that the visual input that arrives

from our environment is only a fraction of that huge state space of possible

images. First of all, there is simply not enough time for an individual to sample

the state space. The fact that we nevertheless can handle vision quite well

implicates structure in the input. So, there are reasons to believe that the

images we perceive are highly coherent, that there are properties by which we

can distinguish natural images from just possible images.

In our above calculation we counted, for example, all possible random pat-

terns as equally possible images. But images are seldom random (Field, 1987),

because nearby pixels tend to be highly correlated. Also the probability to

encounter any known image by a random process is obviously very low. In

Appendix A on page 174 we compare the entropy of a set of natural images

with the entropy of possible images. Indeed we found, that the distribution of

natural images is far away from that of a uniform distribution (the assumption

for possible images).

We will see that the information content of natural images is considerably

reduced by some basic properties. The remaining state space appears to be

5The number of atoms in the universe is in the order of 1072.
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1.3. The Input of the Visual System

Figure 1.2.: Drastic changes on the level of single pixel does not impair our

perception

complicated and to handle that complexity we will introduce in this thesis

higher order statistics.

1.3.2. First Order Statistics

To describe the first order statistics, e.g., the gray level histogram on images, first order

statisticsis found of not being of much use. One can strongly change the histogram

of an image, for example, by changes in illumination without much affecting

its perception (see Section 1.2). Ruderman (1994) found linear tails when

plotting log(number of occurrences of gray level) versus log(gray level).
The log statistic is often used if one suspects the presents of power laws log statistics

(Gisiger, 2001). Lets consider the following function y = axα, where a and

α are real and constant and x is a variable. By taking the log of both sides,

one obtains log y = log a + α log x, which is when plotted on a log-log scale a

straight line of slope α. The line intersects the ordinate axis at log a. Important

in this context is the scale-invariant property of power laws. Replacing the

variable x by z = βx we obtain for the log measure (aβα)zα which is again a

power law with exponent α. Only the constant of proportionality has changed

from a to aβα.

Another reason to use log statistics in image analysis is that one is usually

interested in studying the light intensity arriving on the lens. By using the

log of the gray-values one obtains linear relationship between gray level and

intensity.

Also the histogram of an image should be invariant under multiplication

of the gray level by a constant. One way to achieve this invariance is to study

log(I/I0) instead of I, where I0 is the mean gray level of the image. The low in-

formation content of single pixels indicates that information which is contained

9



1. Introduction

Figure 1.3.: Surrogate data demonstrates that information is contained in the

higher order statistics. Randomizing the phase (middle) destroys

higher order information but keeps mean and variance. Random-

izing the amplitude (right) destroys mean and variance

in the statistics of single pixel is highly redundant. Even if the amplitude com-

ponent of an image is completely destroyed recognition of objects is possible

(see the example in Figure 1.3). This highlights that important information is

conveyed in the higher order statistics of natural images. What is detected by

lower order statistics is mostly redundant information and systems engaged in

analyzing images should incorporate some kind of adaptation to light levels.

The importance of higher order statistics is reflected in the success of local

edge based image coding (compression) algorithms by the means of wavelets

over compact coding schemes derived from non-local features like Fourier-

spectra or PCA.

1.3.3. Second Order Statistics

Second order statistics deal in contrast to the first order statistics with the

statistics of combined events. One assumes the image I to be a continuous

function from IR2 into IR.

Co-occurrences describe the complete second order statistics. From the as-co-occurrence

sumption of translational invariance it follows that we can look onto the statis-

tics with respect to an arbitrary pixel. A function of this kind can be defined

as

coo(i, j, x) = P (I0 = i & Ix = j) (1.2)

for x being a position in the image and i, j gray levels. By this measure the

relative frequency of the occurrence of specific pairs of gray values can be

measured.

Covariances or correlations can also be computed with respect to a cen-covariance

correlation ter pixel. But in contrast to the measure of co-occurrence they express the
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1.3. The Input of the Visual System

tendency of two features (pixel) to vary together (in their gray values)

cov(X, Y ) = E ((X − E(X))(Y − E(Y ))) (1.3)

ρ(X, Y ) = cov(X, Y )/
[
E
(
(X − E(X))2

)
E
(
(Y − E(Y ))2

)]1/2
(1.4)

here E(.) is the expectation over many images. The measure of correlation is

widely used to analyse effects of distance and orientation on the co-variability

of the image intensities. Results indicate that images are mostly smooth, in

other words they have finite spatial correlations with occasional rapid changes

in contrast (edges). Field (1987) analysed the spatial frequency of a number of

natural images. He found that when averaging over all orientations, the power

at a given frequency in the images was proportional to 1/frequency (accord- 1/f
ing to Billock (2000) 1/fβ with a β of 0.9 . . . 1.2). This indicates that nearby

positions in the images are highly correlated (because the Fourier transform of

an image can be converted by the Wiener-Khintchin theorem (Connor, 1982)

to the auto-correlation function). It also shows that natural images are highly

non-Gaussian.

Also Ruderman and Bialek (1994) found that distributions of local quanti-

ties such as contrast are scale invariant and have nearly exponential tails which

reflects that there is no typical scale at which objects are seen.

Arguments for Higher Order Features

Turiel and Parga (2000) decomposed pixels in the image, into sets, the fractal

components of the image, so that each set contains only points characterized by fractal

componentsa fixed strength of the singularity of the contrast gradient in its neighborhood.

They found that under changes in scale each fractal component exhibits its own

transformation law and scaling exponent, e.g., how sharp or soft a change in

contrast is at a given point can be quantified in terms of the value of the scaling

exponent at that site. This indicates that there is not a well-defined scale for the

components of an image but at the same time the scene is not scale invariant

globally.

Baddeley (1997) analysed in detail the correlation structure of different

sets of natural images. Open and urban landscapes were used to estimate the

degree of correlation between image intensity measurement pairs as a function

of both distance and orientation. He found that psychophysical findings on

distance estimation (Cormack and Cormack, 1974) can be explained by the

slower decaying rates of horizontal correlations compared to more vertical6

correlations.

There are different ways to explain the approximately power law fashion of

the observed correlation structure. One possibility suggested by Field (1987) is
6More specific, the direction of smallest decay was image-set specific and in the range of

20◦ − 45◦.
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that images are self-similar or fractal (see also (Billock, 2000)). This implicates

that there is no special scale for objects. Baddeley (1997) considers another

model. There, idealized randomly sized and shaped “objects” are viewed at a

number of random distances. Within each object the image pixels are perfectly

correlated, but across the boundary of an object the characteristics are com-

pletely uncorrelated. If all object sizes are equally probable the model explains

the observed correlation of natural images. Alvarez, Gousseau and Morel

(1999) also showed that the size of objects in natural images exhibit a scale

invariant property. Objects were defined as connected components where the

contrast does not exceed a certain threshold.

The simple explanations for the observed power laws raise the question

about how informative the average correlation is, and what other methods

can be used to extract informations hidden in the images. One goal of this

thesis is to introduce a less averaged version of the correlation model. Its

essence is that more than one correlation matrix is learned simultaneously

and the whole model seeks to explain the underlying causes of the input, its

constituting structure.

Second order moments (correlations) mostly reveal the locally smooth na-

ture of natural images, thus its redundant information. Contrarily edges repre-

sent higher order features (see Figure 1.3) and contain important information

about the visual scene. This can be made plain by computing the relative

frequencies of sets of image patches that appear in a scene. According to

Shannon and Weaver’s (1948) definition of information most information is

contained in image patch configurations that appear with the lowest frequen-

cies7. In Figure 1.4 on the facing page, center the likelihood of image patches

is computed as the negative log frequency of the summed absolute response of

a set of ICA-filters for the image shown left. The filter-bank is used in order to

reduce the dimensionality of the problem, in other words, the possible number

of images over which we have to integrate for computing the likelihood. It

turns out, that predominantly edges are among the least probable image fea-

tures, thus they convey the largest amount of information in the images. This

also corresponds to the findings of Geman and Koloydenko (1998), that edges

are “the most probable non-background” micro-image configurations.

1.3.4. Decomposition into Basis Sets

Other studies deal with a decomposition of images into linear combinations of

basis images. An image X is considered as a random vector of size 1 ×MN

7Information is connected to surprise.
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Figure 1.4.: Center: Likelihood of patches x from the image left coded in gray

value. Right: the corresponding histogram of occurrences of im-

age features obtained from 10 images. The probability of a single

patch was computed by counting the number of summed absolute

responses to a filter bank of edge detector units (obtained by Fas-

tICA on the same image stack). Edges are the least probable image

features thus contain the highest amount of information

and is written as:

X =
n∑

i=1

aiAi = aA (1.5)

where ai is a random variable, Ai is a fixed image also called a basis image basis image

and A is a matrix containing Ai’s as columns. Note, that the number of basis

images can be larger or smaller than the dimension of X (that is A needs not

to be a square matrix).

One uses a condition on the ai’s and learns the Ai’s which describe the im-

ages. In principal component analysis one assumes the ai’s as being pairwise

uncorrelated. The Ai’s are obtained by looking for eigenvalues of the covari-

ance matrix of the images or image patches. For natural images the Ai are

non-local and resemble a Fourier basis (Olshausen and Field, 1996).

The assumption that the responses of the set of filters should be pairwise

statistically independent lead to spatially restricted Gabor-like receptive fields

which encode lines at certain positions in visual space (Bell and Sejnowski,

1996). Also from the assumption of sparseness in the neuronal response lo-

calized edge detectors can be obtained (Olshausen and Field, 1996). Sparse-

ness is related to the idea that in neuronal assemblies most neurons should be

silent most of the time to save metabolic energy. Because of the similarity of

the obtained filter to receptive fields of simple cells in primary visual cortex

one concludes that the primary visual cortex performs in order to reduce the

redundancy in its input (Barlow, 1961).

A non-linear extension of the model above is the introduction of polynomial

basis functions. Here Ai is modeled as a basis function φi(X): basis function

13



1. Introduction

F(X) =

n∑

i=1

aiφi(X) (1.6)

If the basis functions are, for example, cross products of k or fewer coordinates

of the input vector X then F(X) is a polynomial of degree k. In the context of

neuronal nets these polynomial classifiers8 have been ’re-named’ sigma-pi unitssigma-pi units

(Σ - sum,
∏

- product) or high-order nets. Starting with chapter 4 on page 78

we will analyse models of this kind in order to learn non-linear basis functions

for natural images.

Summarizing: Natural images can be well characterized by their local con-

trast, and efficient algorithms should capture the invariances and redundan-

cies found in the images. In the next chapter we will see that most of the

listed properties of images comply with anatomical structures or physiologi-

cal findings in the mammalian visual system. Further aspects of the statistics

of natural scenes are reviewed in Atick and Redlich (1992), Field (1994) and

Ruderman (1994).

8An elementary two-class discrimination is performed by comparing the output to a thresh-
old.
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2. The Mammalian Visual System

The visual system of humans is organized as a serially connected system called

the visual pathway (see Figure 2 on the following page). The retina of each eye visual pathway

consists of a plate having three layers of cells, one of which contains the over

125 million light-sensitive receptor cells, or rods and cones. The two retinas

send their output to two peanut-size nests of cells deep within the brain, the

lateral geniculate bodies. These structures in turn send their fibers to the striate

or primary visual cortex (V1). From there, after being passed from layer to

layer through several sets of synaptically connected cells, the information is

sent to several neighboring higher visual areas (V2-V*) (see Figure 2.1).

In terms of information processing we will see that the retina computes a

compact code which is transmitted through the bottleneck of the optic fibers

into the relay station LGN. In the LGN also massive back-projections from the

next stage of cortical processing are present and may influence the signal from

the retina. Little is known about the functional role of this back-projection.

Temporal Cortex

MST

V4

V2

V3

MT

V1

Parietal Cortex

LGN

Figure 2.1.: General flow of information between the first areas of visual in-

formation processing

The next section is based on Hubel’s (1995) excellent book.
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2.1. The Retina

Photoreceptor
grid

cells summing area
Horizontal

cells summing area
Bipolar

Figure 2.2.: Left: Spatial arrangement of receptor cells and summing area of

retinal ganglion cells (RGC) and horizontal cells in the retina. Cen-

ter: Response of on-center off-surround RGC to different stimuli.

Right: Responses of an off-center RGC (center and right figures are

adapted from Hubel (1995))

2.1. The Retina

The neural signal which leaves the retina consists of trains of impulses carried

by the axons of retinal ganglion cells. One can define the response of the

retina to visual stimulation as the change of rate in the firing impulses. Since

the work of Hartline (1940), Barlow (1953), and Kuffler (1953) one knows

that each retinal ganglion cell generate responses to stimulation over a limited

area of the retina, and this area is defined as the receptive field of that ganglion

cell. Kuffler (1953) found that the receptive fields of cat retinal ganglion cells

consists of two concentric zones which he called the center and surround. The

center and surround were mutually antagonistic1. In on-center cells in which

the center caused excitatory responses to increments of light, the surround

would cause inhibitory responses to increments. In off-center cells in which

the central region was inhibitory during an increment, the surround would

be excitatory during and increment. The on- and off- center cells and their

center-surround organization are illustrated in Figure 2.2.

Because of their design retinal ganglion cells are very good at spatial

comparisons– judging which of two neighboring regions is brighter or darker.

Our efficiency in doing this allows us to distinguish differences in the order of

2%. Most remarkable, this is mainly invariant to the level of illumination. The

luminance is an objective measure of the amount of light emanating from a lu- luminance

minous source or reflecting object, weighted by the observer’s spectral sensitiv-

ity function. Illumination can be expressed in terms of effective quanta of light

per unit time per unit area of the surface on which the light is falling. Whereas

the apparent brightness, which is our subjective sensation of how light or dark

an object is, does not change, its illumination can change dramatically. For

1In terms of information processing a center surround receptive field performs a de-
correlation procedure onto the input (Atick and Redlich, 1992).
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2. The Mammalian Visual System

Figure 2.3.: Ganglion cell model output (right) for the image which is shown

left. The simple model consists of a filtering of the input image by a

difference of Gaussian function which models the center-surround

structure of on-center off-surround retinal ganglion cells

example, when we read a sheet of paper in a room or in daylight we always

perceive white paper and black letters, but black letters outdoor send twice as

much light to our eyes as the white paper indoors. For us, the important thing

is the amount of light relative to the amount reflected by surrounding objects.

Most neurons have a limited response range of a factor of one hundred

from noise to ceiling. But they encode three to five log units of stimulus level.

It follows that in order to achieve the illumination insensitivity the retina has

to adapt to its input. The mechanism is to increase the contrast sensitivity and

the contrast gain as the illumination increases, finally leveling off to asymptotic

values in bright light. A summary of the visual adaptation and retinal gain

control mechanisms can be found in Shapley and Enroth-Cugell (1984). Due

to the above described mechanisms the contrast is the important quantity. This

is nicely illustrated by the Cornsweet illusion (Figure 2.4 on the facing page).

The contrast ramp in the middle of the picture defines our perceived brightness

in the left and right halfs of the figure. The fact that we receive signals only

where contrast is changing is again depicted in Figure 2.3 where the output of

a ganglion cell model for a stimulus is shown.

Contrast is a physical property of the visual stimulus (for example, a grat-Contrast

ing); it is the magnitude of luminance variation in the stimulus relative the

average luminance. Contrast can be defined by two related formulas. The

Rayleight contrast CR is the mean-to-peak amplitude of the grating divided

by the mean; the Weber contrast CW or Weber fraction is the peak-to-peak

amplitude divided by the luminance at the trough of the luminance profile.

CW = (Lobject − Lbackground)/Lbackground, CR = (Lmax − Lmin)/(2Lmean) (2.1)

For low contrasts as used in most experiments both measurements are approx-

imately the same.
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2.2. The Visual Pathway and the LGN

Figure 2.4.: Brightness depends on border contrast. This is an illustration of

the Craik-O’Brien-Cornsweet illusion. The entire right half of the

field is apparently brighter than the left half, yet the luminance of

the two half fields are equal away from the border between them.

Its luminance profile is drawn underneath the image

Adult humans are sensitive to a broad range of spatial scales ranging from

very course scales (< 0.1 cycles per degree) to frequencies as high as 60 cycles

per degree (Billock, 2000; Owsley, Sekuler and Siemens, 1983).

One should keep in mind that the retina is highly developed and performs

numerous computations which we do not cover here. One example is lateral

inhibition which performs in order to ’sharpen the edges’ in the retinal image

or separation of the visual information into the different channels, e.g., motion,

form, and color. Knowledge about the statistics of the data can also be used

to increase the spatial resolution of the retina (Ruderman and Bialek, 1992).

In terms of efficient coding this can be understood as forming a compact code

at the early stage of visual information processing. Only this pre-processing

allows the retina to send its information coming from 125 million receptor

cells through roughly one million fibers into the lateral geniculate nucleus.

2.2. The Visual Pathway and the LGN

Our eyes are directed in such a way that their areas of sight overlap. The visual

pathway ensures that all points to the right of a vertical line through any point

we are looking at is projected onto the left hemisphere.

The optic fibers coming from the retina cross and distribute at the optic chi-

asm before reaching the left and right lateral geniculate nucleus (LGN) (see the lateral geniculate

nucleusFigure on page 16). Fibers from the left half of the left retina go to the genicu-

late on the same side, whereas fibers from the left half of the right retina cross

at the optic chiasm and go to the opposite geniculate. Similar, the output of the

two right half-retinas ends up in the right hemisphere. This peculiarity of the

brain that each hemisphere is dealing with the opposite site of the environment

is found not only in vision but also in motor control or auditory cortex.

The LGN is a layered structure which receives topographically organized

input from both retinae and projects to the cerebral cortex (see the Figure on

19



2. The Mammalian Visual System

page 16). It consists of several layers of neurons separated by intervening lay-

ers of axons and dendrites. The 1.5 million cells comprising the layers are of

different types. The so-called magno-(=large) cellular and parvo-(=small) cel-

lular cells are believed to be the anatomical segregation of the pathways con-

veying form and movement signals. The layers are further distinguished into

having different input (from ipsi-lateral and contra-lateral eyes), and different

receptive field organization (ON- and OFF-types of cells) which is inherited

from the retinal organization.

Contrast-response curves from the LGN and cortical potentials are quite

different from those for the retina in that way that amplitudes increase ap-

proximately linearly with log contrast over a 2-log-unit range (1 to 100%)

(Ohzawa, Sclar and Freeman (1985), cat data). But apart from the contrast

normalization we will assume the LGN as behaving as a simple relay station

of information coming from the retina to the primary visual cortex. This pic-

ture may be wrong because the LGN receives much more back-projecting fibers

from the cortex than input fibers from the retina. It is not know yet what kind

of information processing happens in this region.

2.3. The Primary Visual Cortex

The primary visual cortex corresponds to Brodmann’s area 17 at the posterior

tip of the brain. It is also known as striate cortex because of the highly distinc-

tive layering structure that shows up in a Nissl stain (which marks cell bodies

only). Because of its location on the the upper and lower lips of the calcarine

(”spur-shaped”) sulcus, the striate cortex is also known as the calcarine cortex.

Yet another name is visual area one or V1.V1

Neurons arranged vertically to the surface of the cortex (neuronal columns)

often have common properties (Hubel and Wiesel, 1962). Neuron in one col-

umn have, for example, overlapping receptive fields which correspond to the

same region of the retina of one eye.

A carful estimation of the size of a cortical column of the monkey brain was

given by Peters and Sethares (1996) (based on clusters of apical dendrites).

The modules are spaced at an average center-to-center distance of 56µm and

contain in the order of 200 neurons.

The neuronal columns for one eye are grouped together and form (de-

pendent on the species) stripes or patches which are known as ocular domi-

nance columns. Within the ocular dominance columns sub-columns of neu-

rons which are sensitive to particular orientations in space – known as

orientation columns, can be found. To complicate matters further, color-

sensitive columns known as blobs pierce the centers of the ocular dominance
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columns resulting in inter-blob neurons which are orientation-sensitive, and

blob neurons, which are not. Moreover, blobs are specialized on the basis

of wavelength (”color”) sensitivity. Neurons are also selective to the spa-

tial frequency of the stimuli (Das and Gilbert, 1999). Across the surface of

the cortex the orientation preference, response latency and temporal fre-

quency vary systematically. With respect to other parameters, as for exam-

ple the spatial phase of the stimulus no systematical changes are observed

(DeAngelis, Ghose, Ohzawa and Freeman, 1999).

In the later chapters we will focus on additional features primary neurons

may respond to in order to capture the structure of natural images. What is

common between all found features maps is the restricted focus of the neurons

in retinal space (termed receptive field). The maps are formed in a topographic

manner retaining spatial relationships. In summary the cortex appears to be a

substrate of interweaved, more or less topographically organized feature maps.

2.3.1. Classical Receptive Field Measurements

By stimulating the visual field with random dot pattern one finds a position

in retinal space for which a neuron responds. A small stimulus is centered at

this position and during an increase of the stimulus diameter the response of

the neuron is measured. The point where the response of the measured cell

saturates or starts to decline (see end–stopping on page 31) defines an area

which is termed the classical receptive field of that neuron. classical

receptive fieldOne should keep in mind, firstly, that the concept of the classical recep-

tive field is not as well defined as it seems. There are other measurement

approaches by which the receptive field may be defined differently. For exam-

ple: use initially large stimulus sizes and shrink the diameter up to the point,

where the response of the cell starts to decline. Secondly, the classical receptive

field is stimulus dependent, neurons were reported which strongly respond to

center–surround stimulus configurations where neither stimulus component

alone was effective (Sillito, Grieve, Jones, Cudelro and Davis, 1995). In Sec-

tion 2.3.4 on page 29 we list some more observed context effects. One has

to be careful in comparing the different experiments in terms of the type

of animal used and also about the specific measurement protocol because

it was demonstrated that receptive field properties can change through time

(Gilbert and Wiesel, 1990; DeAngelis et al., 1995).

Oriented Stimuli

The majority of neurons in the primary visual cortex is known to respond best

to oriented bars or gratings at certain positions in visual space, they are orien-
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Figure 2.5.: Cortical simple cells respond to and can therefore be defined by

their preference to stimulus orientation, spatial phase and spatial

frequency

tation selective2 (Hubel and Wiesel, 1962). Depending upon how they respond

to grating stimuli they are classified as either simple or complex cells. For sim-

ple cells the cells’ response depend on the stimulus in an approximately linearsimple cells

fashion. Troyer, Krukowski and Miller (2002) observed that the input to a sim-

ple cell obtained for a drifting grating stimulus can more exactly be described

as the sum of two terms, a linear term and a non-linear term. The linear term

represents the temporal modulation of the input, and the non-linear term rep-

resents the mean input which grows with stimulus contrast. The sensitivity

of simple cells depends also upon the spatial phase (position) of the grating.

Valois, Albrecht and Thorell (1982) and de Valois and de Valois (1988) found

that at each eccentricity the human visual system is sensitive to a spatial fre-

quency range of three to five octaves. In a paper based on these findings Lee

(1996) derived a family of self-similar 2D Gabor wavelets that are suitable to

model and analyse the linear characteristics of simple cell receptive fields.

Complex cells’ responses are insensitive to the spatial phase of the stimulus.complex cells

The distinct orientation which elicits maximum response is called the preferred

orientation of that neuron. Orientation preference is often measured as the

half–width at half height of the orientation–tuning curve (see Figure 2.6 on

the facing page).

2The feature of orientation selectivity depends on the species and on the neuronal

layer. In cat the neurons in layer 4 are orientation selective, in monkey they are

not.
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Figure 2.6.: Left: Preferred orientation remains constant but selectivity sharp-

ens (figure adapted from Volgushev et al. (1995), cat data). Cen-

ter: Orientation tuning width of simple and complex cells in cat

primary visual cortex (figure adapted from Carandini and Ferster

(2000)). Right: (adapted from Pei et al. (1994))

Response of Cortical Neurons to Contrast

The response of cortical neurons to different levels of contrast is analog to

that which has been proposed for retinal light adaptation (see Section 2.1 on

page 17). Contrast adaptation allows cortical neurons to maintain a high dif-

ferential sensitivity to changes in contrast of a stimulus despite the limitations

of a restricted response range (Sanchez-Vives, Nowak and McCormick, 2000).

However, it is worth noting that some cells show no adaptation behavior. Thus,

information about the overall absolute contrast may be transmitted to the cor-

tex. It is not clear if this information is really used for recognition (see Fig-

ure 1.3 on page 10). The contrast–response curves can be described largely

by a thresholded linear function that saturates well below the maximum firing

rate of the neurons or even declines for high contrasts (called super-saturation)

(Albrecht and Hamilton, 1982). In Section 3.2.1 and 3.2.2 we will show, how

contrast-saturation can be understood as a network effect.

Signaling of Multiple Orientations

Numerous models have been proposed for the genera-

tion or the sharpening of orientation selectivity inside V1

(Somers, Nelson and Sur, 1995; Carandini and Rigach, 1997;

Ben-Yishai, Hansel and Sompolinsky, 1997; Bartsch, Stetter and Obermayer,

1997; Stetter, Adorján, Bartsch and Obermayer, 1998). They are based on (i)
excitation and inhibition arranged in a Mexican-hat like fashion enforcing

long–range or global inhibition and more localized excitation. This results in

lateral inhibition and is used for a mechanism to sharpen orientation–tuning

curves. The model assume (ii) a high intracortical coupling strength to achieve
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the observed sharp orientation tuning from an initially broad tuned thalamic

input. This enforces high competition, a winner–take–all strategy of lateral

inhibition and therefore signaling the presence of multiple orientation is diffi-

cult (Carandini and Rigach, 1997; Bartsch et al., 1997). Carandini and Rigach

(1997) has pointed out that one could test the assumptions made by mea-

suring the response of neurons in V1 to stimuli inside the classical receptive

field composed of different orientations. There is little data known about this.

DeAngelis, Robson, Ohzawa and Freeman (1992) measured the response of

V1 neurons for stimuli that consists of two superimposed gratings at the size

of the classical receptive field. They found a reduced activation compared to

a single grating at optimal orientation. This is an argument against a simple

linear summation.

Attraction and repulsion between orientations are observed psy-

chophysically as tilt–illusions and are also reported physiologically in V1tilt-illusion

(Gilbert and Wiesel, 1990). It is known that the ability of animals and humans

to carry out perceptual tasks, such as discrimination of two similar stimuli, im-

proves with practice for that specific direction only, not for substantial different

orientations or special frequencies (Walk, 1978). This suggests that learning

is due to changes at early stages of the sensory pathway, where stimuli char-

acterized by very different parameters are represented by different neurons

(Mato and Sompolinsky, 1996).

The problem of generating both sharp contrast–invariant orientation

tuning and a reliable signaling of multiple orientations can probably be

solved by the idea of Adorján, Schwabe, Piepenbrock and Obermayer (2000)

to incorporate a rapid change in cortical connection strength during a

fixation period (200ms) implemented by fast synaptic depression (see

Schwabe, Adorján and Obermayer (2000) for a similar ansatz that uses spike–

frequency adaptation). Initially, high competition is used to extract first the

salient features (by high recurrent coupling) and in a second less competi-

tive phase the precise signaling of multiple orientations becomes possible. It

is argued that this could be optimal in terms of information transfer. At the

beginning of a fixation period only a limited number of spikes are obtained

so the signal–to–noise ratio is to high to reliably detect multiple orientations.

Most information can be extracted therefore at the beginning by attempting to

extract only one orientation with the robust high competition regime. In later

phases more spikes are collected, the signal–to–noise ratio gets better so it is

possible to detect multiple orientations.

It has to be shown to what degree dynamic coding is really implemented be-

cause there are other ways to cope with high signal–to–noise ratios like coding

by a population response. Tsodyks and Sejnowski (1995) demonstrated that

instead of integrating over time it is efficient to integrate over the response
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of many similar neurons which can reflect changes in the stimulus conditions

nearly instantaneously.

Another approach to understand the conditions by which models can en-

code multiple orientations was proposed by Zemel and Pillow (2000). They

optimized the recurrent weights so that the intra-cortical computation results

in a stable activity profile that resembles a convolution of cell responses to dif-

ferent orientations present in the stimulus. The obtained connectivity profile

closely resembles a Mexican-hat like function as most models assume. It was

hypothesized that the fine structure of the profile causes the enhanced ability

of the model to encode multiple orientations. Unfortunately their model also

works nearer to the linear phase (reduced intra-cortical connectivity strength)

as the model by Carandini and Rigach (1997) which has the drawback of less

pronounced sharpening and more contrast dependent orientation tuning (cf.

Section 3.2.1 on page 45).

2.3.2. Complex Stimuli in the CRF

Searching for optimal or nearly-optimal stimuli is traditionally performed man-

ually using a limited set of stimuli. One has to assume that the relevant pa-

rameters of the stimulus are known in advance. The selection of the relevant

parameters by the experimenter and the search procedure itself introduces an

element of subjectivity into such experiments. Because in higher sensory ar-

eas even the relevant parameters are unknown a more effective approach is

needed.

The assumed relevant stimulus parameters of simple cells in primary visual

cortex are orientation and spatial frequency. This motivates many functional

models of the visual cortex to use 2D Gabor wavelets to model the receptive

field of linear visual cortical neurons (simple cells). Gabor wavelets provide

the best trade-off between time resolution and frequency resolution (Gabor,

1946). The validity of this ansatz was verified by careful mappings of the

receptive field of the simple cells by Jones and Palmer (1987).

Measuring Receptive Fields by Reverse-Correlation

In their experiment simple cell responses were measured with a micro elec-

trode. The receptive field of a certain cell was measured location for location

by projecting a dot-like stimulus on a homogeneous screen the correspond-

ing eye looks to. The method is called reverse correlation and measures the reverse

correlationspike triggered average response in the presence of a white noise stimulus

(deBoer and Kuyper, 1968). The estimate is the best linear model explaining

the firing rate given the stimulus (see the excellent book of Dayan and Abbott

(2001) on this topic). The reverse-correlation can be used to obtain the most
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Figure 2.7.: Response of a V2 cell to grating and contour stimuli. Color-coded

mean response of an individual cells to 128 stimuli. Stimulus ori-

entation is normalized. The bar plots at the bottom of the panel

show the mean responses + SEM of the given cell to the most

effective stimuli. Image from (Hegdé and Essen, 2000)

effective stimulus in that it relates the optimal kernel for firing rate estimation

to the stimulus. Given a stimulus with constant energy the most effective stim-

ulus is one that is proportional to the optimal linear kernel. Because of the

ansatz reverse-correlation can be computed off-line but is limited to linear or

nearly-linear neurons.

Measuring Receptive Fields by Gradient Ascent

There is an interesting alternative that should also work for non-linear neu-

rons. The gradient ascent method can be applied, in principle, for neuronsgradient ascent

method in higher cortical areas (Földiàk, 2001). Here, starting with a blank stimu-

lus, white noise is added to the (rapidly changing) stimulus and the change

in responds is measured on-line. The stimulus is moved in the direction of

larger responses (duration of the experiment is 5- to 10 minutes). Simple cells

show the expected bright and dark elongated regions. For complex cells re-

peated optimization runs result in similar power spectra but the stimuli cannot

be aligned pixel-by-pixel indicating the non-linearity of complex cells. The

method produces, after initial symmetry breaking, locally optimal solutions.

Interestingly these local solutions could not be fitted well by simple 2D Gabor

functions. This indicates problems with the idea that complex cells are built by

convergent input from simple cells.

Measuring Receptive Fields by Specific Stimuli

Other studies also indicate that relevant features of neurons early in the visual

pathway cannot be described by their preference to oriented bars or gratings
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Table 2.1.: Table summarizing the most prominent cell types found in primary

visual cortex. Neurons are assumed as being inhibitory if they are

fast spiking, smooth stellate, and with beaded dendrites. Data are

taken from McGuire et al., 1991, Lund and Wu, 1997, Anderson et

al., 1993, and Azouz et al., 1997

cell type/layer +/– connection type extend literature

in mm m-macaque, c-cat

pyramidal + long-range steppy 400/3000 McGuire 1991 (m)

spiny stellate + steppy 150/440 Lund 1997 (m)

chandelier/2 – local 150/200 Anderson 1993 (m)

small basket/2 – local 200/800 Azouz 1997 (c)

large basket/3 – local with extens. 370/1200 Azouz 1997 (c)

clutch/4 – local 270/460 Azouz 1997 (c)

smooth stellate/3 – local with extens. (c)

alone. We explicitly talk here about the neurons in V1 and V2 and we are

aware that neurons in later stages of the visual processing are known to be

highly specific in their responses to faces or objects.

As found by Hegdè and Van Essen (Hegdé and Essen, 2000;

Hegdé and Essen, 1999) most neurons in areas V2 and V1 show stronger

responses to complex stimuli than to the optimal grating stimuli presented in

their receptive field (see Figure 2.7). As complex stimuli Lie-figures where

used. For a more detailed description of the generation of Lie-figures see Sec-

tion 4.1.3 on page 85. Results in cat V1 found by Shevelev (1999) indicate that

around 40% of all neurons studied (114/289) gave larger response to a flashed

cross, corner or y-like figure centered in the receptive field to an optimal single

bar. Various forms of selectivity or invariant sensitivity of neurons to the shape

and orientation could also be observed by Versavel, Orban and Lagae (1990)

and Dobbins, Zucker and Cynader (1987).

2.3.3. Anatomy of Lateral Connections in V1

A large part of the problems listed in the last section appear because of our

little knowledge about the precise couplings between neurons in the visual

path. This is in part because of the methodological difficulties involved in

tracing neurons over long distances (as for example from the LGN to the vi-

sual cortex). It is easier to analyse the anatomical connection in one cortex
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Figure 2.8.: Left: Cell body density of the layers of V1 (Nissl staining). Right:

Lateral spread of axonal projections within 4C. Spiny stellate cells

in mid 4C have a mean step size of 250 − 650µm. The step sizes

are comparable to the wider projections in upper 4B

areal. Especially the primary visual cortex was studied intensely. One find

various types of neurons defined by their response characteristics and on their

morphology (spiny = excitatory, smooth = inhibitory). The main groups are

excitatory pyramidal cells that together with the more locally connecting spiny

stellate cells (also excitatory) constitute 80% of the overall number of cells in

the cortex. Inhibitory neurons are more diverse and range from large basket

cells to more local chandelier cells.

Whereas the spiny stellates and the basket cells are found to be isotropic,

connecting to all neurons in their vicinity the picture gets more interesting in

the case of the pyramidal neurons. Lateral connections in layers 1 − 3 primary

visual cortex (macaque monkey) form patch-like terminal zones, and link to-

gether neurons sharing common physiological properties. The patches are 200-

300µm in diameter separated by gaps of similar with and run the full depth of

layers 1-3 (Rockland and Lund, 1983). The overall region in which connections

are formed is found to be elongated with an average aspect ratio of 1.8 : 1 and

a long axis measuring up to 3.7mm (Yoshioka, Blasdel, Levitt and Lund, 1996).

Correlation of these zones with optically imaged maps it has been shown that

these connections predominantly, but not exclusively, link together points of

similar orientation preference, ocular dominance and CO rich or poor com-

partments (Yoshioka, Blasdel, Levitt and Lund, 1992; Yoshioka et al., 1996;

Malach, Amirr, Harel and Grinvald, 1993).

Interestingly, the functional properties in deeper lay-

ers of the cortex differ from the ones in the upper layers.

Yousef, Bonhoeffer, Kim, Eysel, Tót and Kisvárday (1999) quantitatively

analyzed the degree of orientation selectivity of long-range intrinsic connec-

tions with respect to the different cortical layers. Using a combination of
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Figure 2.9.: Spatial layout of cells (a-d) in macaque primary visual cortex V1.

Spatial relationship between bar-shaped terminal fields in layers

4B-upper 4Cα (dark gray stripes) and patch–like terminal zones

in overlying layers 2 − 3 (light gray patches). Data courtesy by

Alessandra Angelucci

optical imaging and injections of both latex micro-spheres and biocytin they

analyzed connections in supra-granular, granular, and infra-granular layers of

cat area 18. Layer 4 lateral networks are found to be in general much shorter

(about 50%) than layer 3 networks and display a less clear patchy pattern.

Moreover, long range (> 500µm) connections in layer 4 were distributed

almost equally across orientations (iso, 35%; oblique, 34%; cross, 31%),

suggesting that the long-range layer 4 circuitry has a different functional role

from that of the iso-orientation biased layer 2/3 circuitry.

Asi, Lund, Blasdel, Angelucci and Levitt (in press) found in macaque mon-

key that the lateral connections in the deeper layers 4B-upper and 4Cα
predominantly form bar-shaped terminal fields. These terminal zones have

a mean width and length of about 230 and 1050µm, respectively, and are

separated by 250µm-wide gaps. The overall labeled field was found to be

anisotropic (on average 2.7× 1.8mm). By optical imaging of intrinsic signals it

was demonstrated that the labeled regions cover equal areas for either eye, and

show a bias in orientation preference. Additional columnar tracer injections

involving layers 1 − 4Cα reveal an alignment of upper layer terminal patches

with lower layer terminal stripes, suggesting a coherent columnar framework,

despite laminar differences.

2.3.4. Non-classical Receptive Field Measurements

In the last couple of years some efforts have been made to understand the

development and the distinct role of orientation selective receptive fields in
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Figure 2.10.: Left: Illustration of the context dependency of recognition. There

is a triangle inscribed in the circle, one edge is seen and there,

one edge is not there but seen and one edge is there but cannot

be seen. Right: Different configurations of center- surround stim-

uli. The orientation of the surround stimulus can alter the center

response

processing visual information. It was found that the response characteris-

tics of these neurons are dependent on the specific form and size of the

stimulus (see Figure 2.5). Surprisingly even stimuli outside the receptive

field (see Figure 2.10) of the neurons can alter their response characteris-

tics of neurons. In cat, for example, the receptive field of a neuron near

the area centralis is of ≈ 2◦ of visual angle. The firing responses how-

ever can be modulated by the concomitant stimulation of a surround re-

gion up to 10◦ of relative eccentricity (DeAngelis, Freeman and Ohzawa, 1994;

Bringuir, Chavane, Glaeser and Frégnac, 1999).

A number of studies in monkeys (Kapadia, Ito, Gilbert and Westheimer,

1995; Sillito et al., 1995; Levitt and Lund, 1997) and cats

(Blakemore and Tobin, 1972; Gilbert and Wiesel, 1990;

Polat, Mizobe, Pettet, Kasamatsu and Norcia, 1998) have analysed this

phenomenon.

Whereas a surround stimulus alone is unable to evoke a response, it can

considerably modulate the response of a cell to a stimulus within its classical

receptive field. In other words, the response of the cell to a local feature de-contextual effects

pends on the visual context into which this feature is embedded3. Therefore,

this class of phenomena is often referred to as contextual effects. Examples for

the stimuli used can be seen in Figure 2.10, right. The corresponding figure

left shows an illusory figure connected with the phenomenon of the different

perception of lines depending on local context. Hidden in the figure is a equi-

lateral triangle. Depending on the context the lines of the triangle are clearly

visible (heavy line), visible but not present (illusory edge), or not visible but

3Sillito et al. (1995) reported neurons which respond for stimulus configuration. According

to this a non–optimal oriented center stimulus can elicit a response when it is presented
together with a stimulus in the surround.
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Table 2.2.: Table summarizing the findings concerning facilitation and suppres-

sion depending on the orientation in the non-classical receptive

field region

low center

contrast

• iso-facilitation (Toth et al., 1996, cat)

• collinear facilitation (Polat et al., 1993/94/98, cat)

• in some cases at all directions suppression (Levitt et al.
1997, macaque)

• cross-suppression at all contrasts (Polat et al. 1996, cat)

high center

contrast

• iso-suppression (Toth et al. 1996, cat, Levitt et al. 1997,
macaque)

• in other directions/motion suppression often disappears
(Levitt et al. 1997, macaque)

• in some cases orthogonal surround where most suppres-
sive (Levitt et al. 1997, macaque)

• orthogonal flanks reduce the response (Polat et al. 1998,

cat)

• 80% contrast 2/5-th showed facilitation (Polat et al.

1998, cat)

present (line hidden in many parallel lines).

The response to stimuli presented within the receptive field can be facil-

itated or suppressed by surround modulation. For high contrast surround

stimuli that matches the preferred orientation the response of the center neu-

ron is reduced. This effect is called iso–orientation suppression. For orthog-

onal orientation, the response is slightly (Levitt and Lund, 1997) or strongly

(Sillito et al., 1995) facilitated. This effect is called cross-orientation facilita-

tion. end-stopping

A related effect is called end–stopping. For growing stimulus size, the re-

sponse of a neuron reaches its maximum when the stimulus size fits the di-

mensions of the classical receptive field. If the stimulus size further increases

in length or width, it begins to cover part of the non-classical surround of the

cell and causes a suppressive effect.

If the center contrast is low, contextual effects can change their character-

istics. Some studies in cats (Polat et al., 1998) and monkeys (Kapadia et al.,
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1995) report that iso-orientation suppression turns into facilitation for low

center contrast, which is consistent with a fill-in-paradigm. Other studies

(Levitt and Lund, 1997) report cross-orientation facilitation to turn into sup-

pression.

Contextual effects depend also on the geometrical properties of the

stimulus in the non-classical surround. If the center stimulus is accom-

panied by two small flanking bars co-aligned with the central oriented

stimulus, iso-orientation facilitation has been observed (Polat et al., 1998;

Kapadia, Sigman and Gilbert, 1999a).

2.3.5. Texture Segmentation and Line Completion

Reducing the response in presence of an iso–oriented annular surround stim-

ulus might be a possible mechanism for texture-based segmentation, where

contour is defined by an abrupt change in the orientation of an elongated tex-

ture. Figure 3.12a on page 60 shows an example for a visual scene, in which

the boundary between two extended gratings with different orientations pops

out. One possible mechanism for the amplification would be an increased

response of orientation-selective neurons with receptive fields near the bor-

der. Those neurons would see different orientations within and outside their

classical receptive fields, and would have an increased response. In contrast,

neurons far away from the border would see the same orientation within and

outside their classical receptive field and their responses would be decreased

by iso-orientation suppression.

But in a different stimulus paradigm, namely if the non-classical recep-

tive field is stimulated by small flanking grating patches or bars instead of

full annuli, iso-oriented surround stimuli can also facilitate the response of a

neuron (Sengpiel, Sen and Blakemore, 1997; Polat et al., 1998; Kapadia et al.,

1999a). This observation, which apparently contradicts the previous findings,

could serve as the physiological basis of line-completion, which is schemati-

cally illustrated in Figure 3.12b on page 60. Line segments which are aligned

are perceptually linked together to parts of a continuous contour, and we per-

ceive an interrupted circle.

A possible anatomical substrate mediating this interactions is ori-

entation specific long-range connections formed by excitatory pyra-

midal neurons (Rockland and Lund, 1983). Models incorporating

these patchy connections show that non-classical receptive field ef-

fects can be mediated by these fibers (Pawelzik, Ernst, Wolf and Geisel,

1996; Mundel, Dimitrov and Cowan, 1996; Todorov, Siapas and Somers,

1996; Bartsch et al., 1997; Stetter, Bartsch and Obermayer, 2000b;

Bartsch, Stetter and Obermayer, 2001).
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A more technical ansatz that models contextual effects was presented by Li

(1998) and Li (1999) to explain visual segmentation and contour integration.

Visual segmentation can be defined as locating the boundary between different

image textures. Contour integration means grouping of local contours into

boundaries that may represent underlying objects. Experiments in V1 show

that activity levels near simple texture boundaries are robustly higher 10−15ms
after the initial cell responses (Gallant, Essen and Nothdurft, 1995).

The model uses hypercolumns that are arranged on a discrete grid. Each

orientation column is modeled as a coupled pair of an excitatory and an in-

hibitory neuron. Stimuli were presented to the excitatory neurons only as

orientations which are translated into a Gaussian like tuning curve for the hy-

percolumn. Lateral connections in the model depend on the position of the

neurons, on their orientation, and on the type of the pre-synaptic neuron (exc.

or inh. neuron). Iso–orientation excitation was implemented explicitly by

excitatory connections only to neurons with receptive field positions aligned

to the preferred orientation (within a certain angular distance). Also cross–

orientation suppression was built in by the coupling of excitatory neurons to

inhibitory neurons with receptive field positions that are orthogonal to their

preferred orientation (within a certain angular distance).

The connection scheme coincides with observed orientation specific excita-

tory long–range connections. Long–range cross–orientation connections are

not found anatomically, but the large, in comparison to excitatory pyrami-

dal neurons, connection radii of inhibitory basket cells could mediate effective

cross-orientation inhibition. In this respect and by using an idealized grid of

hypercolumns the model (Li, 1998; Li, 1999) is a phenomenological model.

It can not fully explain the emergence of contextual effects by the observed

biological circuitry, but it lightens the role of cross–orientation suppression

and iso–orientation facilitation in contour integration and texture segmenta-

tion tasks performed at early stages of visual information processing.

To understand the role of long–range connections for the formation of con-

textual effects in V1 we summarize now some approaches. Section 3.3 on

page 69 will show that signaling cascades formed by short–range connections

only are able to mediate contextual effects.

2.3.6. Origin of Orientation Selectivity

Orientation selective neurons in primary visual cortex show a half-width at

half-height tuning of 23◦±8◦ ((Carandini and Ferster, 2000), cat data, see Fig-

ure 2.6, center). The origin of orientation selectivity is still under debate. The

relay cells in the LGN are known to have only moderate elongated receptive

fields (mean aspect ratio of 1.26 (cat) (Soodak, Shapley and Kaplan, 1987),
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Figure 2.11.: Left: Wiring from thalamus to cortex in cat is very precise.

The thick lines correspond to the on- and off region of a sim-

ple cell in primary visual cortex. The circles represent receptive

field centers of geniculate relay cells (type depicted by dashed or

solid lines) that fired highly correlated to the simple cell indicat-

ing a mono-synaptic connection between them (Reid and Alonso

(1995)). Right: Mono-synaptically coupled LGN and simple cell

with overlapping receptive fields (dotted line). Figure adapted

from Alonso et al. (2001)

1.62 (ferret) (Tavazoie and Reid, 2000). So orientation selectivity in V1 can be

built by either convergent thalamic input (feed-forward) or by intra–cortical

connections (see Figure 2.11).

Simple cells in V1 resemble many features of those of their relay cells, like

the sizes of simple cell subfields (Reid and Alonso, 1995), or that responses fall

naturally into the same categories as relay cells, including X and Y, or lagged

and non–lagged, which supports a dominant input from LGN. Alonso et al.

(2001) reported furthermore a surprising precision of connectivity that goes

beyond simple retinotopy to include many other response properties, such as

receptive-field sign, timing, subregion strength, and size (see Figure 2.11, left).

Geniculate cells provide synaptic input to simple cells only when their receptive

fields spatially overlap a simple receptive field and match the sign (on or off) of

the overlapping subregion (Reid and Alonso, 1995; Alonso et al., 2001). Also

there is evidence that cortical inactivation does not change orientation speci-

ficity significantly (Chung and Ferster, 1998). For a more complete review on

experimental support for the feed–forward model see also Ferster and Miller

(2000) and Reid and Alonso (1996).

Objections against a purely feed-forward origin of orientation selectivity

comes from Carandini and Ferster (2000). By measuring the orientation tun-

ing of the membrane potential of cat primary visual cortical neurons they found

that a substantial sharpening takes place by the spike threshold. Membrane
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potential itself is only broadly tuned to orientation (38 ± 15◦).

Feed-forward models also fail to explain important feature of orientation

selectivity, for example, its invariance against changes in stimulus contrast

(Sclar and Freeman, 1982; Skottun, Freeman, Sclar, Ohzawa and Freeman,

1987). Furthermore, they do not assign any function to intracortical circuitry,

which is known to be much stronger (85%, in number of synaptic connection)

than the feed-forward circuitry (15%). In Section 2.3.7 on page 38 we will

discuss two models which address a purely intracortical origin of orientation

selectivity.

So there are good reasons to believe in both, a feed–forward and an in-

tracortical part of orientation selectivity. It was suggested that the recurrent

excitatory circuits of the cortex may amplify an initial feed-forward thalamic

signal, sub serving dynamic modifications of the functional properties of cor-

tical neurons (Stratford, Tarczy-Hornoch, Martin, Bannister and Jack, 1996;

Carandini and Ferster, 2000). Based on this assumption in Section 3.2 on

page 41 we present the evolution of a model that incorporates weakly ori-

entation tuned thalamic input and strong cortical interactions.

2.3.7. Iceberg-Model

One important early model for orientation tuning, first formulated by

Hubel and Wiesel (1977), explains orientation selectivity as directly derived

from thalamic input in a feed–forward fashion. It has some serious flaws in

that is for instance cannot explain the contrast invariant orientation tuning but

we include it here because it is one of the most intuitive models. The receptive

fields of simple cells consist of elongated subfields with alternating ON- and

OFF-response. The Iceberg-model proposes that orientation selectivity is gen-

erated by filtering oriented input with the receptive field profile (calculating

its overlap with the profile) and feeding the result through a rectifying non-

linearity. The model assumes that orientation selectivity is purely generated

by feed-forward processing of input (mediated by the feed-forward fibers from

the retina over the LGN to a cortical neuron) and local processing within the

neuron. In particular, no function is assigned to the intracortical circuitry as

well as feedback-circuitry to the LGN. These connections are neglected in the

Iceberg model.

Orientation selectivity is generated in the model framework as follows: Lets

assume that the stimulus is an oriented structure such as a sine wave grating.

If the orientation and the phase of the sine wave it aligned with orientation

and phase of the receptive field profile the total synaptic input will be max-

imal. If the structures are orthogonal the total synaptic input is zero. This

reflects a linear model for the generation of orientation selectivity (see Sec-
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Figure 2.12.: The Iceberg-model of orientation selectivity. The output of the

cortical neuron is a thresholded version of its input. The output is

orientation selective (receptive field below), but its tuning width

increases with stimulus contrast
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tion 2.3.2 on page 25). The row at the bottom of Figure 2.12 on the preceding

page shows different oriented Gabor-filters. In the shown example, the over-

lap between the stimulus and the filter is maximal for the middle stimulus and

decreases with the difference between orientations. The resulting synaptic in-

put for two different contrast levels of the stimulus grating is plotted in the

diagram against the stimulus orientation.

The response in the top diagram of Figure 2.12 on the facing page is ori-

entation selective, but nevertheless the Iceberg model has some serious draw-

backs which motivate the consideration of more sophisticated models for cor-

tical function:

• In biology, the sharpness of orientation tuning is independent of stim-

ulus contrast (Sclar and Freeman, 1982). This independence might be

important as it ensures that stimulus orientation and stimulus contrast

are coded independently of each other in the cortex, which facilitates the

independent readout of both quantities. The iceberg-model predicts a

strongly contrast-dependent orientation tuning width.

• In biology the orientation tuning curves are sharper than predicted by

the iceberg model, and the output of neurons is often more sharply tuned

than their input (Volgushev, Pernberg and Eysel, 2000). If rectifying non-

linearities of LGN cells are taken into account in the model instead of

the linear filter model assumed here, its simulated tuning curves become

even broader.

• The iceberg model does not assign any function to intracortical circuitry,

which in fact is even much stronger than the feed-forward circuitry. This

leaves the question of which operations are performed by lateral intra-

cortical connections.

In light of these observation, we face the necessity to build a more sophis-

ticated model of cortical function which involves dense recurrent intracorti-

cal circuitry (Somers et al., 1995; Ben-Yishai, Bar-Or and Sompolinsky, 1995;

Ben-Yishai et al., 1997; Bartsch et al., 1997; Hansel and Sompolinsky, 1998).

A sufficiently large cortical circuit may contain millions of densely intercon-

nected neurons, which cannot be modeled at a single neuron level because of

a prohibitive computational expense. We face the task to formulate a model

framework which allows a simplified yet valuable theoretical description of a

large neuron population at a meso-scopic level. One important type of meso-

scopic cortical description has been provided by mean-field models of cortical

function which will be introduced in Section 3.2 on page 41.
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Models for Intra-cortical Origin of Orientation Selectivity

In the hypercolumn model by Adorján, Levitt, Lund and Obermayer (1999), all

cortical cells receive thalamic input from a circular symmetric region, hence

the thalamic input to individual cortical cells does not provide an orientation

bias (but see Tavazoie and Reid (2000)). Cells with receptive fields that are

aligned in visual space are assumed to belong to one orientation column. They

are activated together whenever there is a line at this position and orientation.

In the model all these neurons are strongly connected thus forming dense con-

nectivity inside a model column. By this mechanism the total geniculate input

for a neuron depends on the orientation of the stimulus. This results in an

orientation preference that corresponds to the orientation of the alignment

axis of the receptive fields in visual space. As a testable prediction a complete

loss of orientation selectivity is predicted by this model for blocked recurrent

excitation.

Another recent approach to explain the emergence of ori-

entation selectivity by a purely intracortical mechanism is

(Ernst, Pawelzik, Tsodyks and Sahar-Pikielny, 2000). In their geometrical

model intracortical connection strength is high enough to greatly amplify

small random fluctuations which produces activity blobs following the maxima

in the input. Furthermore, Ernst et al. introduces spatial inhomogeneities

modeled as fluctuations of neuron positions. So some neurons at random

directions are coupled more strongly than others and will therefore be more

easily activated by a specific oriented stimulus. So the position of the activity

blobs in the model is determined by both the maximum afferent input and the

lateral coupling.

A further model using non-isotropic lateral connections for the

intro–cortical generation of orientation preference was presented by

Shouval, Goldberg, Jones, Beckerman and Cooper (2000). Already at birth

some orientation selectivity is present and further development is then

guided by visual experience, findings for this are: (i) Normal develop-

ment of orientation selectivity can be prevented by rearing animals in

the dark (Frégnac and Imbert, 1984; Chapman and Stryker, 1993). Most

experiments have found that (ii) in a visual environment with a re-

stricted set of orientations more cells become selective to the orienta-

tions prevalent (Sengpiel, Stawinski and Bonhoeffer, 1999). Nevertheless,

Gödecke and Bonhoeffer (1996) have shown that two eyes without common

visual experience develop similar orientation maps. To explain these contra-

dictory results on the plasticity of orientation selectivity Shouval et al. (2000)

assume that an–isotropic lateral connectivity already present at birth forms a

scaffold that sets the orientation map, produces broadly tuned cells, and bi-

38 Hauke Bartsch, 2002



2.4. Discussion

ases the development of orientation selectivity. By this an orientation map

can be laid down independently of visual experience, and orientation selec-

tivity then develops through experience–dependent modifications of the feed-

forward synaptic connections.

The current opinion is that an initially broadly tuned input arrives in cor-

tex via convergent thalamo-cortical connections and is sharpened by intra-

cortical connections. This results in a still broadly to orientation tuned mem-

brane potential which is further sharpened by the spike generation mechanism

(Azouz, Gray, Nowak and McCormick, 1997).

2.4. Discussion

Numerous models have been proposed trying to give answers to the possible

origin of orientation selectivity. The success of different models using differ-

ent assumptions about the origin of orientation selectivity is surprising. At

least this indicates that the basic assumptions of all of these models must be

somehow the same.

We suppose that a basic assumption made by many models is the use of

a Mexican–hat like intracortical coupling function and thus induced lateral

competition. Lateral competition moves a model from a regime where the

neuronal activation is a linear resemblance of the input into a regime where a

sparse representation of the input in the neuronal activation is enforced. The

models also use a similar level of abstraction, for example, they describe the

interaction of populations of neurons. The effect of the non-linear mechanisms

of spike generation are left out.

In the proposed models the observed sharp orientation tuning obtained

from an initially broadly or even untuned input can only be observed when

one assumes relatively high intracortical couplings, e.g., for high competition.

Also the contrast–invariance of orientation tuning only works for a high level

of competition. The drawback of the regime of high level of competition is

that it cannot represent multiple orientations, this works only in the linear,

less competitive phase.

Incorporating more knowledge about the cortical circuitry, for example, by

using a more realistic neuron model should help to distinguish between the

models.
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Modeling in the framework of mean–field descriptions have proved to be a

powerful tool to analyse large networks. Here we show how to initially set up

a mean–field model and link its parameters to an underlying model of popula-

tions of spiking neurons. The model is changed according to the subject under

investigation.

By modeling more explicit different populations of neurons in a single col-

umn we arrive at a model that combines sharpening of orientation tuning

curves, contrast invariant orientation tuning and saturating contrast response

functions.

To explain contextual effects we extend this model first to a full orientation

hypercolumn and afterwards to a system of two coupled orientation hyper-

columns. One receives input from the center stimulus and the second hyper-

column from the surround. By this arrangement we show principle difficulties

in having cross–orientation modulations by iso–orientation specific patchy con-

nections.

We derive a model for analyzing the influence of local cortical connections

on the activities of neurons in V1. This time a set of orientation columns is ar-

ranged according to a measured orientation map, and orientation columns are

connected by local excitatory and slightly more distributed inhibitory fibers.

We demonstrate that (i) sharp and contrast–invariant orientation tuning

curves are combined with contrast saturation, (ii) the strength of cortical am-

plification can be localized in orientation space and (iii) anisotropic contextual

suppression by iso–oriented flanking stimuli arises as an emergent property

and can be mediated by local connections.

3.1. Introduction

This chapter is grouped into three parts. First, we discuss some effects found

in conjunction with the idea of the classical receptive field of neurons in V1.

Models for a purely feed–forward or a purely intra–cortical origin of orienta-

tion selectivity are discussed. Step by step we introduce a model that com-

bines weekly tuned feed–forward input and recurrent intra–cortical connectiv-

ity. This leads to a hypercolumn model with three different neuron populations

that models the responses of neuron populations in orientation space. By this
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3.2. A Mean-Field Model of Neuronal Population Activity

we explain orientation sharpening, contrast saturation, and contrast–invariant

orientation tuning.

Part two deals with effects observed for complex stimuli in the classical re-

ceptive field like end–stopping or the cross–stimulus suppression. We point out

the disability of models with high lateral competition (hight recurrent excita-

tion) to represent different orientations simultaneously and refer to possible

solutions.

In the third part of this chapter we will discuss contextual effects elicit

by stimuli outside the classical receptive field. In a model consisting of

two coupled hypercolumns we predict wiring patterns that can explain iso–

orientation facilitation and cross–orientation suppression by long–range con-

nections. Based on the predictions of the hypercolumn model a geometrical

model is proposed that demonstrates that contextual effects can be mediated

by short range connections only.

3.2. A Mean-Field Model of Neuronal Population Activity

Modeling of cortical signal processing can be considerably simplified by tak-

ing into account the columnar structure of the cortex. Each cortical column

contains hundreds to thousands of neurons, which receive approximately the

same afferent and intracortical input and show similar response properties. But

even if some response properties (such as direction selectivity in macaque V1)

change over depth, there is still a topographic mapping of functional aspects:

In most of the cases many nearby neurons show similar selectivities.

Principle and Basic Assumptions

Based on these observations, Ben-Yishai et al. (1995) and Bartsch et al. (1997)

have formulated a mean-field description of cortical processing. Firstly, if two

neurons k and l within a cortical column receive similar total synaptic inputs,

hk ≈ hl, it seems a good approximation to assume that each neuron within

a given population α for example, all excitatory (α =“e”) or all inhibitory

neurons (α =“i”) within a column, receive the same input, hk,α ≡ hα for

all neurons k of the population. In other words, instead of feeding its ac-

tual input to every neuron, all neurons within one population are assumed

to receive the same mean input. Due to that reason, this kind of models

is referred to as mean-field models1. Secondly, within each population many

1This nomenclature has been borrowed from solid state physics, where mean-field models

describe the behavior of atomic magnetic moments under the mean magnetic fields of
their neighbors instead of the actual fluctuating magnetic field.
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Figure 3.1.: (a) Principle of binary stochastic neurons: The neuron randomly

toggles forth and back between an active (right) and inactive (left)

state. If the neuron is driven by excitatory input, the probability for

activation increases and inactivation probability decreases result-

ing in a higher mean activity. (b) Semi-linear activation function

g(h).

neurons encode similar input properties. It seems reasonable, that only the

overall activity of a whole neuron population is important. The fluctuations

within the activities of individual neurons, which can be viewed as non-linear

stochastic units, can be neglected at this level. This corresponds to the assump-

tion that important stimulus properties are encoded in population activities

(for aspects of population coding see (Paradiso, 1988; Zohary, 1992)). Note

that omitting random fluctuation does not imply that we exclude non-random

collective phenomena, i.e., the mean population activity can still be strongly

time-dependent. For a model that explicitly includes fluctuations we refer to

(Tsodyks and Sejnowski, 1995)). Though neurons of one cell type within a

cortical column are natural candidates for a neuron population, the frame-

work can be applied in a more general way: Arbitrary sets of neurons with

similar inputs and responses can be combined to a population.

Dynamics of a Neuron Population

We are now ready to write down a simplified description of neuronal popu-

lation dynamics. Lets assume that individual neurons act as binary stochastic

units which can flip forth and back between an active (spiking) and inactive

(non-spiking) state. The probability per unit time for an inactive neuron to

be activated is denoted by the activation rate γ and its inactivation rate by δ
(3.1a on this page). Below, we will relate γ and δ to the mean synaptic input

of the population: A high excitatory input will lead to a high activation rate
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3.2. A Mean-Field Model of Neuronal Population Activity

and a low inactivation rate which causes a higher fraction of neurons to be

active. Low input or inhibitory input in contrast, will reduce the activation

rate and the neurons settle down to the inactive state. If we consider a popula-

tion of N binary stochastic neurons with identical activation and inactivation

rates, the number of active neurons A changes within the small time interval

∆t according to

∆A = γ∆t(N − A) − δ∆tA = (γN − (γ + δ)A) ∆t. (3.1)

In the limit ∆t → 0, this relation transforms to a rate equation for the fraction

of neurons m = A/N that are active at time t:

d

dt
m = γ − (γ + δ)m. (3.2)

Now we assume for simplicity that the inactivation rate behaves inversely to

the activation rate. This is reasonable because neurons which are strongly

driven by input are less likely to stop firing spontaneously. If γmax denotes the

maximum possible activation rate, we arrive at δ = γmax − γ and

d

dt
m = γ − γmaxm. (3.3)

One possible interpretation of the maximum activation is related to the re-

fractory period of biological neurons. If a neuron wants to undergo two sub-

sequent activations, it must at least fire a spike and wait for the refractory

period τ until it can be activated to fire the next spike. This means that we can

identify the maximum activation rate with γmax = 1/τ . The rate equation for

the population activity becomes

τ
d

dt
m = −m + τγ =: −m + g, (3.4)

where 0 ≤ g = τγ ≤ 1 denotes the activation probability (relative to τ) for the

neuron population.

For realistic regimes of operation, Equation 3.4 can be interpreted as the

dynamics of a pool of spiking neurons. This view can be motivated as follows:

The (absolute) refractory period τ is in the range of 1-2 ms, which means

that electrically driven neurons can reach spike rates of approximately 500 −
1000 Hz. In contrast, the spike rates observed for visually stimulated cortical

neurons range around 50 Hz: realistic activation rates are much smaller than

the maximal rate, γ � γmax, (g � 1), and consequently the inactivation rate

is very fast: δ ≈ γmax = 1/τ . Each time a neuron becomes activated and

fires a spike, it immediately becomes inactivated again with a rate close to its
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3. From Columns to Hypercolumns and Lattices

refractory period. In other words, a binary stochastic neuron which is activated

fires an individual spike and automatically inactivates again: In the limit of

low mean activation, our mean-field model describes a population of spiking

(instead of binary) neurons.

Now we have to specify, how the activation probability changes with the

synaptic input. If the input of a neuron population falls below a threshold T ,

all neurons of the population are inactive, otherwise, neurons should be acti-

vated the more frequently, the more excitatory input they receive. The simplest

function, which preserves this important rectifying nonlinearity present in bi-

ological neuronal systems is a semi-linear function, and we can formulate the

dependence of the activation probability g on the mean synaptic input h of the

population as

g(h) = max(β(h− T ), 0). (3.5)

g(h) is referred to as the activation function of the population (Figure 3.1b).

Note that at this point we have made use of the mean-field assumption. In

Equation 3.5, h has to be the mean synaptic input of the population. If we

had used the actual synaptic input, the activation function would have had

different values for each neuron in the population and the ensemble average

could not be as easily written down as in Equation 3.4 on the page before.

3.2.1. Modeling Orientation Selectivity with Two Cell Types

In contrast to the considerations of the iceberg

model, in (Bartsch, Stetter, Weber and Obermayer, 2000b;

Stetter, Bartsch and Obermayer, 2000a) we explored, how the afferent

input (transformed visual signals) is processed by a recurrent cortical

network.

The primary visual cortex processes visual input locally: Each local visual

feature is processed and represented by a patch of cortex about 1−2mm in

diameter, which is called a hypercolumn. The neurons within a hypercol-

umn are densely connected by lateral intracortical fibers and form a strongly

coupled recurrent network. By formulating a mean-field model of a cortical

hypercolumn (Ben-Yishai et al., 1995; Ben-Yishai et al., 1997; Bartsch et al.,

1997; Bartsch, Stetter and Obermayer, 2000a; Stetter et al., 2000a), one can

efficiently describe the dynamics of hundreds of thousands of neurons within

a hypercolumn at a population level.
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Figure 3.2.: (a) Simulation of orientation representation in a hypercolumn

with two types of neurons. (a) Weakly tuned input hLGN(θ) to the

hypercolumn for θ0 = 0 degree stimulation with three log contrast

levels. (b) Mean activities of the excitatory neurons of the orien-

tation columns in the stationary state for stimulation as shown in

(a). The activity pattern is sharply tuned and its width is indepen-

dent of contrast

Orientation Tuning and Contrast Saturation in a Hypercolumn with Two Cell Types

Figure 3.2 shows how a hypercolumn of recurrently connected cortical orien-

tation columns represents an oriented stimulus. The presence of an oriented

contour or grating within the aggregate field of the hypercolumn evokes a

broadly tuned input, which is shown in Figure 3.2a, on the current page for

three log contrast levels. The resulting activity pattern for three contrast levels

are shown in Figure 3.2b, on this page. The activity pattern is more sharply

tuned in orientation space than the input, and its tuning width is independent

of contrast as observed in biological systems.

Summarizing the results from Stetter et al. (2000a), there is a phase

boundary for the strength of the lateral excitation. Above this phase boundary,

in the marginal phase, stimulus orientation is represented by a sharp orien-

tation tuning curve, independently of the strength of afferent orientation bias

and independently of stimulus contrast. In the marginal phase it can be shown

that the contrast response curve cannot saturate. The excitatory activation

increases at least proportional with log-contrast, and saturation cannot occur.

In the linear phase the contrast response curve saturates as the result of the

activation of inhibitory neurons with a high activation threshold. The model

predicts that their contrast threshold coincides with the stimulus contrast at

which excitatory neurons begin to saturate.

To explain the phase boundaries of the linear and marginal regimes, we de-
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3. From Columns to Hypercolumns and Lattices

termined them using a numerical simulation. Connection pattern are assumed

with local excitation and balanced by flat inhibition, which may be closest to

wiring patterns in area 17. Because the linear phase is characterized by a finite

slope of the contrast-response curve close to the activation threshold, c ' Te,

we calculated the contrast gain (the slope of the contrast response curve) at

c = Te. Its divergence marks the boundary of the linear regime. The marginal

phase is characterized by the generation of a narrow activation blob from ini-

tially untuned input. We stimulated a hypercolumn with weakly tuned input

(ε = 0.01) and calculated the resulting orientation tuning width θc,e. A de-

crease of the orientation tuning width below 90 degree marks the boundary of

the marginal phase.

Figure 3.3 on the next page shows the behavior of the contrast gain at

the threshold (solid/circles) and the orientation tuning width (crosses) as

a function of the connection strength S ≡ E0 = E2 = I0. The dotted

vertical lines mark the boundary for the linear and for the marginal phase

(Stetter et al., 2000a). Analytical and numerical values for the phase bound-

aries agree well with each other and the simulations demonstrate that the lin-

ear and marginal phases do not overlap. For the boundary of the linear phase,

the close correspondence of analytical and numerical values is due to the fact,

that in the simulation the input was weakly tuned and evoked a flat activa-

tion pattern. All orientation columns have similar average activities and can

therefore be approximated by a single orientation column. For the boundary

of the marginal phase, the small deviation between analytical and numerical

values is an artifact of the finite step size in the connection strength used for

the simulation. The contrast response curve do not change if the simulations

are repeated using a more strongly orientation-biased input (ε = 0.3), whereas

orientation tuning curves become continuously sharper with increasing con-

nection strength. In either case, the separation of orientation tuning is contrast

dependent outside the marginal phase.

We can summarize as follows: It can be shown, that a hypercolumn model

with two neuron populations is not sufficient to account for the representation

of stimulus contrast and stimulus orientation as observed in the primary visual

cortex of many mammals. In the next section we will introduce a mean-field

model, which accounts for the large variety of different inhibitory neuron types

observed in the cortex of cats and monkeys (Bartsch, Stetter and Obermayer,

1999a; Bartsch, Stetter and Obermayer, 1999b; Bartsch et al., 2000a).
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Figure 3.3.: The behavior of the contrast gain at activation threshold (solid

line) and the orientation tuning width (crosses) as a function of

the connection strength S for a hypercolumn with cosine shaped

excitatory connection scheme and flat inhibition. Vertical dotted

lines mark the analytical results. Insets illustrate criteria used for

calculation of the curves. Both analytical and numerical results

predict that there is no overlapping regime of co-occurrence of

contrast saturation and contrast-invariant orientation tuning
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Figure 3.4.: (a) Setup of a mean-field hypercolumn with many different cell

types. Recurrent couplings depend on the source and target orien-

tations only. (b) Structure of a single orientation column. It con-

sists of populations of Ne excitatory and Ni inhibitory cell types

with, in general different properties

3.2.2. Hypercolumns with Multiple Populations

Now we want to explore the possible influence of the diversity of neurons in

the cortex on its functional characteristics. For this we extend the model of an

orientation column with a more complex structure: We take into account the

fact that cortical tissue contains many different cell types and combine each

of these cell types to a separate population. In general, an orientation col-

umn, indexed by its preferred orientation θ, now contains Ne populations with

different excitatory neuron types and Ni different populations of inhibitory

neurons (Figure 3.4b, on this page). The n-th excitatory population is indexed

by (e, n) and the n-th inhibitory population by (i, n). We henceforth refer to

the sub-populations as model neurons or simply “neurons”.

The strength of recurrent intracortical couplings is assumed to depend only

on the source and target orientation columns but not on the particular target

neuro n. The mean connection strength from neuron (α, n) within column θ′

to neuron β,m in column θ (α, β = e, i) is given by

Sm,n
β,α (θ, θ′) ≡ Sα(θ − θ′). (3.6)

The generalization compared to the previous section consists of the fact that

different neuron subpopulations can have different mean cellular properties
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and wiring patterns. To start with a simple case, we keep all properties of the

neurons up to their activation functions identical for the present considerations

and assume that the neurons differ only in their mean activation thresholds.

The activity of neuron (α, n), α = e, i in response to synaptic input h is given

by a semi-linear activation function

gα,n(h) = max(βα(h− Tα,n), 0), (3.7)

where βα denotes its slope and Tα,n its activation threshold. The activities of

neurons (e, n) and (i, n) in column θ, me,n(θ, t) and mi,n(θ, t), evolve according

to

d

dt
mα,n(θ, t) = −mα,n(θ, t) + gα,n

(
hlat(θ, t) + hLGN(θ, t)

)
(3.8)

hlat(θ, t) =
∑

β=e,i

∑

n

π/2∫

−π/2

dθ′Sα(θ − θ′)mβ,n(θ′, t) (3.9)

hLGN(θ − θ0) = c(1 − ε+ ε cos(2(θ − θ0))). (3.10)

Note that hLGN and hlat are identical for all subpopulations.

Analytical Treatment of Contrast Saturation

We wish to understand how the contrast-response curve of the orientation col-

umn – or a representative subpopulation therein – depends on the distribution

of activation thresholds. Again it seems reasonable to analyze an isolated but

intrinsically coupled orientation column with Ne excitatory and Ni inhibitory

neurons (Figure 3.4b, on the preceding page). In the stationary state, the total

synaptic input, H, which is the same for all neurons in the orientation column,

is given by

H = hLGN + Se

Ne∑

n=1

Me,n − Si

Ni∑

n=1

Mi,n, (3.11)

where, according to Equation 3.7, Mα,n = gα,n(H) ≡ Mα,n(Tα,n, H) are the

steady state activations of the model neurons and Sα ≡ Sα((θ − θ′) = 0) ab-

breviate the identical intra-column connection strengths between the neurons.

Now we assume that the activation thresholds Te and Ti are distributed over

the orientation column according to pdfs pe(Te) and pi(Ti), respectively. In the

limit of infinitely many neurons, we can replace the sums in Equation 3.11 by

the ensemble averages over the threshold distributions and obtain

H = hLGN + Se

∫ ∞

−∞
Me(Te, H)pe(Te) dTe − Si

∫ ∞

−∞
Mi(Ti, H)pi(Ti) dTi. (3.12)
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Because of the definition of the semi-linear transfer function Equation 3.7

on the preceding page, we know that neurons with Tα ≥ H are silent and

therefore do not contribute to the sums or integrals in Equations 3.11 on the

page before and 3.12 on the preceding page. Conversely, for Tα < H, the

activation function can be replaced by its linear part, Mα(Tα, H) = βα(H−Tα).
Therefore we can replace the upper limits of the integrals in Equation 3.12 on

the page before by H:

H = hLGN + βeSe

H∫

−∞

(H − Te)pe(Te) dTe − βiSi

H∫

−∞

(H − Ti)pi(Ti) dTi. (3.13)

Equation 3.13 represents a self-consistent relation between the total synaptic

input H and the afferent input hLGN. By solving this equation we can write

down an analytical solution for the stationary activation

Me(Te, H) ≡Me(Te, H(hLGN)) = Me(Te, h
LGN) (3.14)

as a function of the external instead of the total synaptic input, which is the

contrast-response function of the neurons. Carrying out the integrals in Equa-

tion 3.13 yields

H = hLGN + SeβeGe(H) − SiβiGi(H) (3.15)

Gα(H) =

∫ H

−∞
dH ′

∫ H′

−∞
dTpα(T ),

d2

dT 2
Gα(T ) = pα(T ), α = e, i.(3.16)

By defining the function

F (H) = H − βeSeGe(H) + βiSiGi(H) (3.17)

Equation 3.15 reduces to F (H) = hLGN and we can express the steady state

activations Mα by

Mα(Tα, h
LGN) = βα (H − Tα) = βα

(
F−1

(
hLGN

)
− Tα

)
(3.18)

Equation 3.18 provides an analytical relationship between geniculate input

and the response of the recurrent cortical circuit. Note that it only holds for

one isolated orientation column and if F is invertible. The latter condition

corresponds to the boundary condition for the linear phase.

Figure 3.5 on the facing page illustrates the meaning of Equation 3.18 for

the special case of only one excitatory and one inhibitory neuron type and only
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Figure 3.5.: Analytical solution Equation 3.18 on the facing page for one iso-

lated orientation column and δ-peaked threshold distributions.

Top: The distributions and the resulting second integrals Gα(H).
Bottom: The function F (H) Equation 3.17 on the preceding page

(thin line) and its inverse (thick line) as resulting from the sce-

nario in the top part. The thick line relative to the small coordi-

nate system schematically illustrates the behavior of the contrast

response function. Figure from (Bartsch et al., 2000a)
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two threshold values Te and Ti. In this case the two threshold distributions re-

duce to Kronecker delta functions around the two thresholds, pe(T ) = δ(T−Te)
and pi(T ) = δ(T −Ti) and their second integrals become semi-linear functions.

Gα(H) = max(H−Tα, 0) (Figure 3.5 top, on the preceding page). The function

F (H) (Equation 3.17 on page 50) becomes

F (H) =







H : H ≤ Te

H − βeSe(H − Te) : Te < H ≤ Ti

H − βeSe(H − Te) + βiSi(H − Ti) : H > Ti

(3.19)

In this scenario, the resulting contrast response function Equation 3.18 on

page 50 shows a typical saturating behavior. The gradients of F−1(hLGN) are

a = (1−βeSe)
−1, where aβe is the initial contrast gain of the contrast- response

function, and b = (1 − βeSe + βiSi)
−1 for higher contrast levels.

Numerical Simulations of Contrast Responses

For the following simulations we assumed threshold distributions, which for

excitatory neurons are Gaussian, pe(Te) = N (µe, δe), and for inhibitory neu-

rons are either Gaussian, pi(Ti) = N (µi, δi) or bimodal according to two su-

perimposed Gaussian functions pi = 0.5(N (µi,1, δi,1) + N (µi,2, δi,2)). Inhibitory

mean activation thresholds are set to be higher (µi = 2) than excitatory mean

activation thresholds (µe = 1). Also, simulations will use βe = 0.5 and βi = 1,

but the special choice of parameters does not strongly influence the results.

Figure 3.6 on the next page compares the numerical solution of the differ-

ential equation 3.8 on page 49 (solid line) with the analytical expression in

Equation 3.18 on page 50 (circles) for two unimodal and fairly narrow thresh-

old distributions (histograms) in the linear phase. It demonstrates that the

analytical solution approximates the solution of the differential equation very

well. The dashed and dash-dotted lines plot Ge and Gi for the distributions

used. The behavior of this system can be understood as follows: First, only ex-

citatory neurons are active and, because we operate in the linear phase, act as

linear amplifiers. For higher contrast levels, more and more inhibitors become

active and reduce the contrast gain. Different from the case of only two thresh-

olds, the contrast-response curve gradually changes its gain over contrast. A

gradual contrast saturation can be qualitatively understood as follows: With

increasing afferent input hLGN, more and more inhibitory neuron subpopula-

tions are recruited (become active): The increase in number is proportional

to pi(F
−1(hLGN)). The more neurons are recruited, the stronger the decrease

in contrast gain. In other words, we expect a relationship between the second

derivative of the contrast-response function at hLGN and the density of neurons

with activation thresholds Ti = F−1(hLGN).
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Figure 3.6.: Simulation of a contrast-response curve for a set of 400 cou-

pled model neurons (200 exc., 200 inh.) in the linear phase

(Se = 1, Si = 1) and for unimodal Gaussian threshold distributions

pe(Te) = N (1, 0.1), pi(Ti) = N (2, 0.1) (cf. threshold histograms in

the diagram). Solid line: Numerical solution of the differential

equation 3.8 on page 49. Circles: Evaluation of the analytical ex-

pression 3.18 on page 50. Both curves agree very well. Dashed

and dash-dotted lines show Ge and Gi, respectively. Figure from

(Bartsch et al., 2000a)
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Figure 3.7.: Simulation for a set of 400 coupled model neurons (200 exc., 200

inh.) in the marginal phase (Se = Si = 6). Solid lines: Contrast-

response curves; dark gray: Histograms of excitatory thresholds

pe(Te) = N (1, 0.1); light gray: Histograms of inhibitory thresholds

pi(Ti). Top: pi(Ti) unimodal, small variance (N (2, 0.1)); Middle:

pi(Ti) = N (2, 1) unimodal, large variance. Bottom: A bimodal

distribution of pi(Ti) is used (µi,1 = 1, µi,2 = 2, δi,1 = δi,2 = 0.1).

A bimodal distribution pi is necessary and sufficient for graded

contrast-response and contrast saturation also in the marginal

phase. Figure from (Bartsch et al., 2000a)
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3.2. A Mean-Field Model of Neuronal Population Activity

This relationship can be quantified by forming the 2nd derivative of the

steady state activation Equation 3.18 on page 50 with respect to the LGN
input. We arrive at the following relationship between the curvature of

the contrast-response function and the distributions of activation thresholds

pα(Tα):

d2

d(hLGN)2
Me = βe

Seβepe(H) − Siβipi(H)

(−1 + SeβeG′
e(H) − SiβiG′

i(H))3
, (3.20)

H = F−1(hLGN) (3.21)

The denominator of Equation 3.20 is positive in the linear phase, because the

gain of F has to be finite (invertibility of F ). The contrast-response curve

shows a negative curvature or saturation if more inhibitory than excitatory

neurons are recruited by a small increase in the input, i.e. if Seβepe(H) <
Siβipi(H) holds. Otherwise, the contrast-response function increases its gain.

Besides a quantitative understanding of the structural origin of contrast

gain in the linear phase, it might be even more important to see, whether a

gradually increasing and finally saturating contrast-response can also be sta-

bilized in the marginal phase by some threshold distribution. If this could be

achieved, we would succeed in formulating necessary conditions for cortical

circuitry to show a constant orientation tuning and contrast saturation for a

single parameter setting.

Figure 3.7 on the facing page shows the contrast-response curve of an exci-

tatory neuron with threshold Te = 1 for different cases of the inhibitory thresh-

old distribution in the marginal phase. If the threshold-distribution is small

and unimodal (top), the contrast-response shows a pseudo-binary switch-on

behavior as observed in the marginal phase with two neuron types (cf. Sec-

tion 3.2.1 on page 45). This behavior remains stable as long as the distribution

is unimodal, even if it is very wide (Figure 3.7 middle, on the facing page). As

soon as the threshold distribution becomes bimodal (Figure 3.7 on the pre-

ceding page, bottom), the contrast-response first increases from zero and later

saturates, as observed in biology. This demonstrates that two inhibitory neuron

populations, one with low and the other with higher activation threshold, are

necessary and sufficient to stabilize contrast saturation in the marginal phase.

Orientation and Contrast Response with Three Neuron Types

One can easily combine many structured orientation columns to a full hyper-

column. The orientation columns are mutually coupled by lateral connections

with π-periodic Gaussian functions 3.25 on page 63, and are driven by weakly

orientation biased input.
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Figure 3.8.: Top: Orientation tuning curve and Bottom contrast-response curve

of an excitatory neuron with preferred orientation 0o for a hyper-

column with 21 orientation columns (50 excitatory neurons and

100 inhibitory neurons each) in the marginal phase. The system

shows a graded and saturating contrast response, which is com-

bined with a contrast-invariant orientation tuning width. Param-

eters: Se = 6, Si = −6, σe = 34 deg, σi = ∞, δe = δi,1 = δi,2 =
0.1,µe = µi,1 = 1, µi,2 = 2. Figure from (Bartsch et al., 2000a)
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Figure 3.9.: The behavior of the contrast gain at activation threshold (solid

line) and the orientation tuning width (crosses) as a function of the

connection strength S ≡ E0 = E2 = I0 (I2 = 0) for a hypercolumn

with one excitatory and two inhibitory neuron populations. Other

parameters were: βe = 0.5, βi = 1, Te = 1, Ti1 = 1, Ti2 = 2, ε =
0.01, contrast for the orientation tuning width: c = 2.0. Insets

illustrate criteria used for calculation of the curves. There is a

wide range (4 ≤ S ≤ 180), over which the linear and marginal

phase coincide. Steps in the solid line are finite-size effect
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Figure 3.10.: (a) Orientation tuning curves (top) and the contrast-response

function of the zero-deg. orientation column (bottom). (b)

Schematic illustration of the corresponding wiring scheme: low-

threshold lateral inhibitors (e.g., basket neurons) and high-

threshold local inhibitors (e.g., chandelier cells). Parameters:

Se = Si1 = Si2 = 50; (marginal phase) (b) σe = 34 deg;

(σi1, σi2) = (∞, 34) deg. Te = Ti1 = 1; Ti2 = 1.5. The hyper-

column properly operates as in Figure 3.8 on page 56

Figure 3.8 on page 56 shows orientation tuning curves of the me,1(θ) exci-

tatory populations of 21 orientation columns (top) and the contrast-response

curves of a subset of 5 excitatory subpopulations of the θ = 0o column (bot-

tom) for unimodal pe(Te) and bimodal pi(Ti). Even though the system operates

in the marginal phase, where orientation tuning is independent of contrast,

the contrast-response curve shows expressed saturation at the same time. This

behavior is independent of the detailed shape of the threshold distributions, as

long as it is bimodal.

A phase-diagram determined by the initial contrast gain and the orientation

sharpening (cf. Figure 3.3 on page 47) for a hypercolumn with one excitatory

and two inhibitory (low- and high-threshold) neuron types is plotted in Fig-

ure 3.9 on the page before. Due to low-threshold inhibition, the linear phase

with finite initial contrast gain is stabilized up to very strong recurrent excita-

tion strengths (S ≈ 180 compared to S = 2 for two-neuron hypercolumns), and

there is a wide range of coupling strengths, in which orientation tuning is in-

variant and the contrast-response saturates. In summary, this finding predicts

that the experimentally observed cortical response properties require essen-

tially two functionally distinct inhibitory neuron types to be present: Inhibitors
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Figure 3.11.: (a) Orientation tuning curves (top) and the contrast-response

function of the zero-deg. orientation column (bottom) for re-

verse properties of the inhibitory neurons: (b) low-threshold

local inhibitors and high-threshold lateral inhibitors. Parame-

ters: Se = Si1 = Si2 = 50; (marginal phase) (b) σe = 34 deg.;

(σi1, σi2) = (34,∞) deg. Te = Ti1 = 1;Ti2 = 1.5

with a low activation threshold (or tonically active inhibitors) stabilize the con-

trast gain at near the contrast threshold to finite values, whereas inhibitors

with high activation thresholds cause the saturation of the contrast-response

curves at higher contrast levels.

In Figure 3.8 on page 56, both types of inhibitors were assumed to dis-

tribute lateral inhibition between different orientations. Possible candidates

for such inhibitors are basket cells with axonal arborization up to 1200µm
(Lund, 1987a), but it seems more reasonable to identify the two functionally

different inhibitors with two anatomically distinguishable biological neuron

types. Many inhibitors apart from basket cells are local companions, which

contact only postsynaptic neurons within the same or closely adjacent orienta-

tion columns. One important local inhibitor is the chandelier cell. Therefore

we may ask under which conditions a hypercolumn with pyramidal neurons as

the excitatory population, basket cells as lateral inhibitors and chandelier cells

as local inhibitors, still show the behavior seen in Figure 3.8 on page 56.

Orientation tuning and contrast response for a hypercolumn with three

neuron types are provided in Figure 3.10 on the facing page, and in Figure 3.11

for two different combinations of wiring profiles and activation thresholds of

inhibitory neurons. If the low-threshold cells mediate lateral inhibition and the

high-threshold neurons local inhibition (Figure 3.10b on the facing page), ori-
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3. From Columns to Hypercolumns and Lattices

(a) (b)

Figure 3.12.: (a) Example image for the demonstration of texture-based seg-

mentation (a contour is defined by texture boundaries). (b) Ex-

ample image for the demonstration of line-completion (aligned

line segments are perceptually grouped as an interrupted dia-

mond). Figure from (Bartsch et al., 2001)

entation tuning is sharp and constant with saturating contrast response func-

tion (Figure 3.10a on page 58). If the properties are reversed (low-threshold

chandelier cells and high-threshold basket cells, Figure 3.11b on the preced-

ing page), orientation sharpening is weak, unstable and contrast-dependent

(Figure 3.11a on the page before). These simulations emphasize the impor-

tant role of inhibition for the observed cortical representation of orientation

and contrast of a stimulus (cf. Eysel, Shevelev, Lazareva and Sharaev (1998)),

but additionally provide the following prediction: A hypercolumn needs two

different inhibitors for the generation of experimentally observed contrast and

orientation representation. At least one of the cell types must mediate lateral

inhibition (e.g., basket cells), and this cell type must have a low activation

threshold. If local inhibitors (e.g., chandelier cells) contribute to the recurrent

circuit as modeled, they should have a high activation threshold.
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Figure 3.13.: Mean-field model of two coupled hypercolumns a = 1, 2, the

orientation columns θ contains one excitatory (’e’) and two in-

hibitory (’i1’,’i2’) neuron populations. Both hypercolumns receive

weakly orientation biased geniculocortical inputs ha,LGN, a =
1, 2, from adjacent but nonoverlapping patches of the visual

scene, which correspond to the center and the nonclassical sur-

round of hypercolumn 1. Orientation columns within each hyper-

column are densely interconnected by short range connections

Sα,β(θ−θ′), where α denotes the type of the target population and

β the type of the source population (α, β = ’e’, ’i’). In addition,

both hypercolumns are mutually interconnected by symmetrical

and excitatory long-range connections Lα,β(θ − θ′)
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3.2.3. Hypercolumn Model Setup for Contextual Effects

Contextual effects are assumed to be mediated by lateral spreading signals or

signaling cascades. These signals have to travel distances incorporating more

than one hyper-column to connect neurons with non-overlapping receptive

fields. One approach towards a model of contextual effects consists therefore

naturely of two neighboring and coupled mean-field hypercolumns a = 1, 2
within the primary visual cortex. A different approach incorporating a lattice

of model neurons is presented in Section 3.3 on page 69. Hypercolumn 1 is

considered to process the visual input within the considered receptive field and

is referred to as “center” hypercolumn. The aggregate field of hypercolumn

2 is assumed to be adjacent but still disjunct from the considered receptive

field. It processes the nonclassical receptive field of the “center” hypercolumn

and modulates it via their mutual couplings. Figure 3.13 on the page before

schematically illustrates the model setup.

Again, each hypercolumn consists of a set of orientation columns, indexed

by their preferred orientations θ, and each column consists of an excitatory

(e) and two inhibitory neuron populations (i1, i2). The activity of neuron (α),

α = e, i1, i2 in response to synaptic input h is given by a semi-linear activation

function gα(h) = max(βα(h − Tα), 0) where βα denotes its slope and Tα its

activation threshold. Similarly to Equation 3.8 on page 49, the dynamics of a

neuron population α in hypercolumn a and column θ, ma
e(θ, t), m

a
i1(θ, t) and

ma
i2(θ, t), are described by the following set of differential equations:

d

dt
ma

α(θ, t) = −ma
α(θ, t) + gα

(
ha,lat(θ, t) + ha,LGN(θ, t)

)
(3.22)

ha,lat(θ, t) =
∑

β=e,i1,i2

π/2∫

−π/2

dθ′
[
Sα,β(θ − θ′)ma

β(θ′, t) +

Lα,β(θ − θ′)mb6=a
β (θ′, t)

]

(3.23)

ha,LGN(θ) = c(1 − ε+ ε cos(2(θ − θa))), (3.24)

where θa is the stimulus orientation presented to the center hypercolumn

(a = 1) or to the surround hypercolumn (a = 2). Intracortical couplings are

symmetric between both hypercolumns and all long-range connections are ex-

citatory, i.e. Lα,β = Lα,e =: Lα. They depend only on the difference in preferred
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Figure 3.14.: (a) Modulation of the center response by an oriented stimulus

in the nonclassical surround. Compared to stimulation of the

center hypercolumn alone (dashed line), the surround stimulus

causes iso-orientation suppression (circles), but has only a weak

impact in the cross-orientation stimulus condition. The surround

stimulus alone cannot drive (solid line) but only modulate the

center hypercolumn. (b) Connectivity needed for the behavior

in (a). Long-range connections must predominantly drive in-

hibitory interneurons for iso-orientation suppression. Parameters

were Le;i1;i2 = 0.5, 0.5, 3, λαβ ≡ λβ = 34 deg., β = e, i1, i2

orientations and are assumed as Gaussian functions in orientation space:

Sα,β(∆θ) = signβ SαβNσ exp

(

−Φ2(∆θ)

2σ2
αβ

)

(3.25)

Lα(∆θ) = LαNλ exp

(

−Φ2(∆θ)

2λ2
α

)

, (3.26)

where Lα ≥ 0 is the integral strength of the long-range connections to pop-

ulation α and Nλ is a normalization constant. It may be considered here to

use the von Mises distribution which is the circular equivalent of the Gaussian

function.
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3.2.4. Numerical Simulations

Based on the coupled hypercolumn model we can now explore if and how

long-range connections can modulate local cortical processing. For the follow-

ing simulations we used a strong local recurrent connectivity with identical

strengths Sα = 50 and widths σαβ ≡ σβ, σe = σi2 = 34 deg, σi1 = ∞ (cf. Fig-

ure 3.10 on page 58). Afferent input had intermediate orientation bias ε = 0.3
and c = 2.5, and the parameters for the activation functions were chosen as

βe = 0.5, βi1 = βi2 = 1, Te = Ti1 = 1 and Ti2 = 1.5. The results reported do

not qualitatively depend on these choices as long as the system operates in the

overlap region of the linear and marginal regimes (central part in Figure 3.9

on page 57).

Figure 3.14a, on the page before demonstrates how a stimulus presented

in the non-classical surround of hypercolumn 1 (the center hypercolumn) can

modulate its response to a stimulus within the receptive field. Compared to the

dashed line, which marks its response to center stimulation alone, the activity

of the center column is reduced (circles), if an oriented stimulus is presented to

the non-classical surround (see icons above plot). If center and surround ori-

entations are identical or similar, the suppression is strongest, i.e., this system

shows iso-orientation suppression. In contrast, if both stimuli are orthogonal

to each other, only a weak suppressive effect is observed. In particular, over

all orientation differences the sign of the modulatory effect is the same. The

solid line in Figure 3.14a, on the preceding page shows the response of the

center hypercolumn to surround stimulation alone and demonstrates that the

surround stimulus cannot activate but only modulate the neurons in the center

hypercolumn.

Modulatory suppression as shown in Figure 3.14a, on the page before

requires a particular connection scheme for the long-range connections,

which is summarized in Figure 3.14b on the preceding page: (i) Long-

range connections should predominantly connect columns with similar pre-

ferred orientations, which is supported by experiments (Malach et al., 1993;

Bosking, Zhang, Schofield and Fitzpatrick, 1997). (ii) The fibers must drive

at least one inhibitory neuron type stronger than the excitatory populations

which has been suggested by recent experiments (Das and Gilbert, 1999). For

high contrast levels where all neuron populations are active, the effect does

not depend on which inhibitory neuron type (i1 or i2) is driven strongest.

Figure 3.15 on the next page shows a parameter regime in which the sur-

round stimulus facilitates the center response (circles vs. dashed line), but

cannot drive the neurons of the center hypercolumn alone (solid line). Again,

cross-orientation modulation is weak and has the same sign as the center mod-

ulation. Facilitation is observed if the long-range connections drive excitatory
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Figure 3.15.: (a) Iso-orientation facilitation for the same circuit as in fig-

ure 3.14 on page 63, but this time the long-range connections

drive excitatory target neurons stronger than the inhibitors (b).

Parameters: Le;i1;i2 = 1, 0.5, 0.5, λβ = 34 deg, β = e, i1, i2

target neurons stronger than inhibitory ones (Figure 3.15b, on this page).

The angular profile of the nonclassical modulation is mostly determined

by the orientation specificity of the long-range couplings Lα,β(θ − θ′). This is

demonstrated in figure 3.16a on the next page, which compares the suppres-

sive modulation caused by strongly orientation specific long-range connections

(circles) with suppression for more broadly tuned long-range connectivity (tri-

angles). The orientation specificity of long-range connections is strongly corre-

lated with the orientation tuning of the suppression. In contrast, the profile of

non-classical modulation depends only weakly on the local connectivity within

the hypercolumns, as long as they operate in the marginal phase (data not

shown).

In order to understand why the modulatory effects are determined predom-

inantly by the properties of the long-range connections, we have to realize that

the activity pattern within each hypercolumn is determined by the local recur-

rent circuitry. Because the hypercolumns operate in the marginal regime, the

local circuit forms a sharply tuned activity patch around the orientation col-

umn which matches the stimulus orientation (Figure 3.17 on page 67). The

curve shape of the patch is relatively rigid and can only be weakly influenced

by external (afferent or lateral) input. In particular, any synaptic input that

is mediated by long-range connections can only modulate the activity level of

65



3. From Columns to Hypercolumns and Lattices

−50 0 50

0

0.1

0.2

0.3

0.4

0.5

difference in orientations [degree]

ac
tiv

ity
 o

f c
en

te
r 

ne
ur

on
 [a

.u
.]

λβ = 6o 
λβ = 34o hypercolumn 1

hypercolumn 2

i2,e
i1,e

i2

i1

e
e

L
e,e

(a) (b)

Figure 3.16.: (a) Dependence of the suppression profile on the orientation-

specificity of long-range connections. Circles: Strong orienta-

tion specific long-range couplings (λβ = 6 deg) cause a narrowly

tuned iso-orientation suppression. Triangles show the same curve

as in Figure 3.14 on page 63 (λβ = 6 deg.) for comparison.

Again, the dashed and solid lines mark the response to center

alone and surround alone stimulation. (b) Schematic illustra-

tion of the long-range connectivity used. Parameters: Le;i1;i2 =
0.5, 0.5, 3, λβ = 6 deg, β = e, i1, i2
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Figure 3.17.: Cross-orientation modulation in the marginal phase. Iso-

orientation specific long-range connections cannot evoke any

cross-orientation modulation, because all basket cells that signal

across orientations are silenced by the local recurrent circuitry

(shaded orientation column)

active neurons, but cannot activate silent neurons. This behavior is schemat-

ically illustrated in Figure 3.17 for cross-orientation stimulation. The shaded

orientation column is driven by long-range connections, but cannot become

active because its state is determined by the local recurrent dynamics. Con-

sequently, we can only expect a non-classical modulation to occur if there are

long-range fibers which connect active source neurons with active target neu-

rons. In other words, the range of a surround modulation in orientation space

is approximately given by the width λ of the long-range connection profile plus

the width of the cortical activity pattern. Because the activity patterns have ap-

proximately constant shape, the angular profile of the surround modulation is

determined by the angular profile of the long-range connections in orientation

space.

Figure 3.17 also helps to understand why cross-orientation modulation is

hard to achieve with iso-orientation specific patchy connections. It sketches

the situation of cross-oriented stimuli and purely iso-orientation specific long-

range fibers. The activity patterns of source and target neurons are disjunct in

orientation space, and therefore no cross-orientation effect can be observed.

In particular, orientation contrast sensitivity (iso-orientation suppression com-

bined with cross-orientation facilitation) in the marginal phase cannot be

caused by dis-inhibition as suggested earlier (Pawelzik et al., 1996).

Figure 3.18a, on the next page shows a simulation in which iso-orientation

suppression is combined with a weak cross-orientation facilitation (sensitivity
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Figure 3.18.: (a) Iso-orientation suppression combined with a weak cross-

orientation facilitation appears, as soon as long-range con-

nections to excitatory target neurons are more broadly tuned

than connections to inhibitory target neurons (b). Parameters:

Le;i1;i2 = 0.5, 0.5, 3, λi1 = λi2 = 17 deg, λe = 34 deg.

to orientation-contrast). This behavior is caused by long-range connections,

which are more broadly tuned for excitatory target neurons than for inhibitory

target neurons (Figure 3.18b on this page). As a consequence, long-range

modulation via inhibitory interneurons dominates at small orientation differ-

ences between source and target orientation column, whereas for larger differ-

ences in orientation direct excitation dominates. In other words, the profile of

the long-range connections implements an inverse mexican-hat in orientation

space, which directly translates into orientation-contrast sensitivity.

68 Hauke Bartsch, 2002



3.3. A Lattice Model for Contextual Effects

3.3. A Lattice Model for Contextual Effects

Showing an iso–oriented annular surround stimulus outside the classical re-

ceptive field of a neuron, additionally to a centered stimulus, suppresses

its response (Levitt and Lund, 1997). This can be seen as a possible mech-

anism for texture–based segmentation where contour is defined by a con-

trast orientation. But in a different stimulus paradigm, iso–oriented sur-

round stimuli can also facilitate the response of a neuron (Polat et al., 1998;

Kapadia, Sigman and Gilbert, 1999b). Long–range connections formed by ex-

citatory pyramidal neurons were proposed to mediate these effects. Never-

theless, Das and Gilbert (1999) showed that contextual effects might also be

mediated by short–range connections.

In Section 3.2.2 on page 48 we have shown that additionally to excita-

tory neurons, two groups of inhibitory neurons per orientation column (with

low and high activation thresholds, respectively) are necessary and sufficient

to generate both, contrast saturation and contrast invariant orientation tun-

ing. We have also demonstrated, how long–range connectivity determines the

characteristics of contextual effects. However, the model which acted solely

in the orientation space neglected the geometrical arrangement of orientation

columns, and consequently could not model poly-synaptic lateral signaling cas-

cades.

Figure 3.19.: Left: Intra-cortical relation between two neurons with non-

overlapping receptive fields. Because of the large extend of the

intra-cortical connections a neuron with a cortical position in the

shaded area (right) can mediate information between the two

neurons

In this section we set up a mean–field model of V1, which takes into ac-

count this geometric arrangement and systematically characterizes its conse-

quences for local cortical processing. We take into account only local con-
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3. From Columns to Hypercolumns and Lattices

nections which are all unspecific: (i) excitatory neurons connecting to neu-

rons up to 400µm, (ii) inhibitory neurons connecting up to 750µm and (iii)
inhibitory neurons connecting only to neurons 250µm away (Lund, 1987b;

Fitzpatrick, Lund and Blasdel, 1985). However, we omit long–range excita-

tory connections (up to 3000µm) because at this point we are interested in

poly-synaptic signaling cascades by short-range connections only.

3.3.1. Model description

We model a cortical layer by a two–dimensional sheet of coupled orienta-

tion selective neuron populations (Bartsch et al., 2001). We describe their

dynamics within a mean–field framework. A measured orientation map

j
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Figure 3.20.: Schematic sketch of the model setup left. (A) In a sheet of model

neurons there are three types of neuron populations for each cor-

tical position (one excitatory (e) and two inhibitory (i1, i2)). Neu-

ron populations are interconnected following the lateral connec-

tivity given in Equation 3.32 on page 72 (arrows). (B) Receptive

fields of neuron populations are modeled as Gabor filters, resem-

bling the basic properties of simple receptive field of neurons in

V1. (C) The input consists of a sinus grating with orientation θ′.
Right: color coded the preferred orientation of all neuron popu-

lations. Figures from (Bartsch et al., 2001)

(macaque monkey, Blasdel, Obermayer and Kiorpes (1995)), which represents
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3.3. A Lattice Model for Contextual Effects

4mm × 3mm of the cortex, was divided into a grid of 50 × 37 orientation

columns. Their positions are denoted by vectors xj, which also represent their

retinal positions in the visual field. Each position hosts an excitatory (e) and

two inhibitory (i1, i2) neuron populations. The preferred orientation θ of each

population depends on its cortical position and is read out from the orientation

map θ(x). Activations of model neurons are described by the mean firing rate

mα(xj, t) of population α at position xj:

d

dt
mα(xj, t) = −mα(xj, t) + gα

(
hLGN(xj, t) + hlat

α (xj, t)
)
, (3.27)

α = e, i1, i2; j = 1, . . . , N.

hLGN and hlat
α are the mean geniculate and intracortical synaptic inputs, re-

spectively, and gα(h) = max(0, βα(h− Tα)) represents a thresholded nonlinear

activation function. Parameters of the activation transfer function were chosen

according to (Bartsch, Stetter and Obermayer, 1999c) to allow a wide parame-

ter range with realistic contrast–independent orientation tuning and saturating

contrast–response functions as Te = Ti1 = 1, Ti2 = 3, βe = βi1 = 0.5, βi2 = 1,

and were fixed for all simulations.

To model the geniculate input hLGN, first the correlation of a two–

dimensional stimulus t′θ(x) and a Gabor filter pθ(x), which models the receptive Gabor filter

field of a cortical simple cell at x, is computed. Using absolute values of the

synaptic input results in oriented π–periodic input that behaves like quadrature

pairs in the neuron populations. This value is then fed through a logarithmic

non–linear function mimicking the influence of the LGN,

hLGN(xj) = ln

(

c

∣
∣
∣
∣

∫

tθ′(x)pθ(x − xj)dx

∣
∣
∣
∣
+ 1

)

(3.28)

and c being the contrast of the stimulus in arbitrary units.

pθ(x) is formulated as a DC-free filter (cf. (Daugman, 1988)),

pθ(x) =
k2

σ2
exp

(

− k2

2σ2
x2

)(

exp(ikθx) − exp

(

−σ
2

2

))

, (3.29)

||pθ(x)||2 ≈ k2

where kθ = R(θ)2π/60 is the center frequency vector, R(θ) is a vector orthog-

onal to the preferred orientation θ. Center frequency k = 2π/60 was adjusted

to yield a width of 60 pixel for one wave. σ = 2 ensures essentially two oscilla-

tions within the Gabor field. Artificial stimuli are modeled as combinations of

circular regions of complex wave functions tθ′(x)

tθ′(x) = exp(iκθ′x) (3.30)
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3. From Columns to Hypercolumns and Lattices

where κθ′ = R(θ′)2π/30 is the wave vector of the sinusoidal grating and R(θ′)
is a vector orthogonal to the direction of the grating.

The lateral input, hlat
α , is given by

hlat
α (xj, t) =

∑

β=e,i1,i2

Sβ(xj − xl)mβ,l(xl, t), (3.31)

where Sβ(xj − xl) denotes the mean connection strength formed by a neuron

population of type β at xl to all neuron populations at point xj. Note that all

three target neuron populations at a given location xj receive identical input.

The intracortical connection strength was chosen independent of the dis-

tance from population β at xl to the population at xj.

Sβ(x − xl) =

{
Sβ/Nβ : |x − xl| < σβ

0 : else
β = e, i1, i2 (3.32)

Nβ is the overall number of connections formed by this particular population,

and Sβ is a scalar value describing the overall strength of the connections.

σe refers to the size of the excitatory connections , σi1 and σi2 to the size of

connections from inhibitors with low and high thresholds, respectively.

3.3.2. Results

For high recurrent connectivity the model shows a hexagonal arrangement of

activation blobs depending on the wavelength of coupling.

We fixed the principle wavelength of the intracortical couplings to fit the

wavelength of the underlying orientation map (550µm, σe = 160, σi1 =
290µm). The principal wavelength of intracortical couplings was computed

by calculating the maximum of the Fourier–transform of

H(x+ σe) −H(x+ σe − 2σe)/(2σe)Se −
[H(x+ σi1) −H(x+ σi1 − 2σi1)/(2σi)Si] , (3.33)

where H(x) denotes the Heaviside–function. Using larger wavelengths

(800µm) leads to an inconsistent behavior of the model: Some regions show

no activation though they receive excitatory input, because the cortical cou-

plings enforce a roughly hexagonal arrangement of activity centers, which are

not consistent with the underlying iso–orientation domains.

First we are interested in the effect of changing the strength of the recurrent

excitation on the response properties of the neuron populations. We computed

orientation–tuning curves for different levels of input contrast. The result (see

Figure 3.21 on the facing page) shows that the model neurons produce sat-

urating contrast–response curves. At the preferred orientation of the neuron
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Figure 3.21.: (a) Response of an excitatory neuron population (preferred ori-

entation 7◦) to a stimulus patch of different orientations (sinu-

soidal grating) for different stimulus contrasts. The solid line

without marker shows the thalamo–cortical input for this neuron

population for c = 1. The stimulus has an optimal phase for the

shown cell. Coupling strength was chosen to be Sβ = 100. The

tuning is un-symmetric and its shapeness differs between the left

and the right flank. (b) Numbers of activated neuron populations

together with the global synaptic input for the neuron population

xj (c = 4) over stimulus orientation
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3. From Columns to Hypercolumns and Lattices

population (≈ 7◦) the response change for equidistant contrast changes is

reduced at hight contrast levels. The reason is that for strong recurrent excita-

tion, high threshold inhibitory neuron populations are activated and suppress

the response of the other neuron populations. Figure 3.21b, on the page before

shows that the number of neuron populations, which take part in the cortical

circuitry, depends on the stimulus orientation. At θ = 50 degree, more neuron

populations contribute to the recurrent feedback loop than at θ = −50 degree,

hence competition is stronger at θ = 50 degree and leads to contrast invariant

onset of the tuning curve as opposed to θ = −50 degree. In other words, local

inhomogeneities in the orientation map cause a varying number of neurons

to participate in the local recurrent circuit. If the number of active neuron

populations is higher, the circuit is shifted into a regime (the marginal phase),

where orientation tuning is contrast–invariant (right half of the Figure 3.21 on

the preceding pagea).

Now we address the issue of context effects in this model. Stimuli in the

non-classical surround of a neuron population xj have only modulatory effects

according to experimental results. Figure 3.23a on page 76 shows the re-

sponses of all excitatory neuron populations to a stimulus of diameter 600µm
centered above the neuron shown in Figure 3.21 on the preceding page. Figure

3.23b on page 76 shows the response to two flanking stimuli outside the CRF.

In accordance with experiments these stimuli cannot elicit any response at the

center location.

Figure 3.22 on the facing page shows that facilitation and suppression arise

depending on the mutual configuration of the center and flanking surround

stimuli. Figure 3.22 on the next page (solid polygon) plots the activity of the

cell (radius encodes response level) versus the axis between the flanking stim-

uli (angle encodes the orientation of the axis). This particular cell is slightly fa-

cilitated if the flanking stimuli are spatially aligned with the center orientation

(thick bar), whereas it is strongly suppressed for orthogonal flanking stimuli.

The anisotropy of the contextual modulation is induced because the input to

the center neuron differs depending on the orientation and the arrangements

of the flanking stimuli.

Figure 3.22b, on the facing page, and Figure 3.22c, on the next page dis-

play gray–level plots of the cortical synaptic input evoked by a center stim-

ulus, flanked by aligned (b) and orthogonal (c) stimuli. The inputs at the

points marked #1 and #2 differ for changes in the alignment of the surround

stimulation. Activity blobs #1 and #2 are more active for orthogonal aligned

stimuli (Figure 3.22c, on the facing page) than for co–aligned stimuli (Figure

3.22b on the next page). Figure 3.23 on page 76 demonstrates how these

changed inputs can evoke contextual modulation by local connections. The

cell populations which are excited by the center and the flanking stimuli are
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Figure 3.22.: Facilitation and suppression for different configurations of input

patterns because of changes in the local input. (a) Response of

the considered neuron population to different configurations of

surround patches shows facilitation for aligned stimuli along the

axis of preferred orientation (thick bar in the middle) and sub-

stantial suppression for orthogonal aligned stimuli. The activa-

tion of the center neuron population for center stimulus alone

was 0.788. (b) Input pattern for co–aligned stimuli along the

preferred orientation. (c) Input pattern for co–aligned stimuli

orthogonal to the center stimulus. Parameters match that of

Figure 3.23 on the next page. Insets show the used stimulus

paradigm. Figures from (Bartsch et al., 2001)
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Figure 3.23.: Stimulation of center and surround changes the response of cor-

tical neuron populations via short–range interactions. The re-

sponses of excitatory neuron populations for an oriented grating

and two co–linear stimuli ((a) center stimulus alone, (b) sur-

round stimulus alone and (c) center plus surround) are shown.

Additionally two activation blobs are marked for further refer-

ence in the text (#1, #2). Surround stimulation alone cannot

elicit response. Parameters are: radius of grating patches 300µm,

center to center distance of co–aligned patches (same radius)

±600µm. Insets show the used stimulus paradigm. Figures from

(Bartsch et al., 2001)

not completely disjunct. The patches marked #1 and #2 are driven by both,

center and surround, and communicate contextual effects via a bi–synaptic or

poly-synaptic signaling cascade. Suppression is observed if a change in activity

induces inhibition in their respective surround, that is at the center position of

the stimulus. It reduces the response at the center for co–aligned stimuli in the

surround, we get a suppressive effect.

Facilitation can be explained by the following: activity at intermediate po-

sitions #1 and #2 can be reduced by the surround stimuli in comparison to

the activity induced by the center stimulus alone. This leads to an explanation

of facilitatory effects by dis-inhibition.

We propose that two opposite effects contribute to the observed contex-

tual modulation; (i) local inhibition that is induced by a local change in input

(leads to suppression), and (ii) dis-inhibition. By changing the configuration

of the stimulus different regions of the orientation map are activated. Changes

in the local structure then define which is more prominent, suppression or
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facilitation.

3.4. Concluding Remarks

In the lattice model we observe a slight shift of the activity blobs depending

on the stimulus (see Figure 3.23 on the preceding page). This leads to a di-

vergent behavior of the neuron activation. Some populations may actually

be facilitated but at the same time other neuron populations in the surround

may show suppressed activity. This shift is induced by the enforced hexagonal

arrangement of activity centers.

Our model shows strong interactions mediated by poly-synaptic connec-

tions. For the findings of Das and Gilbert (1999) that contextual effects might

also be mediated by short-range connections we found two possible mecha-

nisms: lateral inhibition and dis–inhibition. In addition, anisotropic contextual

modulation can be an emergent property of a network with ideally isotropic

and local connectivity. We suggest that it results from a different weighting of

inhibition and dis–inhibition depending on the configuration of flanking stim-

uli.

In the last chapter we analysed the role of the intro-cortical networks in

the generation, sharpening, and modulation of orientation preference as one

of the main features of primary cortical neurons. The mathematical theory

of interacting hypercolumns in primary visual cortex incorporated details con-

cerning the arborization of three different neuron populations. As analytical

methods we used the stationary state analysis. Whereas we took special care

about not introducing time-periodic pattern the dynamic properties of the cor-

tex are worthwhile to analyse. They can be compared, for example, to the

findings of Volgushev et al. (1995) (see Figure 2.6 left, on page 23).

Bressloff and Cowan (2002) introduced bifurcation theory for the ring-

model of the orientation hypercolumn. They derived non-linear equations for

the amplitude and phase of the population tuning curves. It would be worth-

while to repeat this analysis for our model incorporating the third neuron pop-

ulation. Unfortunately both of the above projects could not been performed as

part of this thesis.

We leave now the field of biological modeling in favor of a more theoretical

ground which is concerned with the special nature of the input into the visual

system.
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“They where masters of geometry. 60 stones build a circle

of exactly 360 degree.”

TV documentation

Biological Motivation

A popular rationale for the response characteristics of visual cortical neurons

is that of convergent, weighted input from more specialized cells. For example

the outputs of ON-OFF retinal ganglion cells converge to orientation selective

simple cells in primary visual cortex. High up in the hierarchy, for example,

in the inferior temporal visual cortex (IT) we find neurons that respond to ob-

jects or faces independent of their positions on the retina over many degrees

(Gross, Desimone, Albright and Schwartz, 1985). But also neuron in lower vi-

sual areas respond well to complex stimuli (see Section 2.3.2 on page 26),

sometimes even stronger than to the classical moving grating stimuli. Also

the experiment of Földiàk (2001) on the non-linear reconstruction of complex

cell receptive fields indicate that additional information is extracted by these

neurons.

To explain the apparent contradiction of having neurons early in the visual

pathway, showing strong responses to complex stimuli we hypothesize that

neurons possess receptive fields characteristics that can be described in terms

of second order correlations of image intensities. Here, we implicitly assume

that the observed specificities of neural responses cannot fully be described by

linear models which weigh single pixels only. This does not exclude that some

neurons (e.g., simple cells) can be reasonably described by linear models, but,

as we are going to higher levels of visual processing some non-linear processing

strategies are likely to be used by the visual system, in the case of complex cells

this may even happen at the very first stages of visual cortical processing. This

seems reasonable also in the light of the complex nature of the visual input

(see Section 1.3).

Statistical Motivation

Basically we have already seen in the Section 1.3 about natural images that

there is a strong motivation in terms of statistics for symmetry detection. Nat-

ural images were characterized as containing a huge amount of redundancies.
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To repeat some of that reasoning: A representation of the images by their non-

redundant parts is preferable, because of its short description length. By using

a short representation we select the correct representation in terms of (Kol-

mogorov) complexity (see Section 1). The non-redundant parts are also found Kolmogorov

complexityin being highly structured, containing for example edges.

Interestingly we demand here a search for structure in the data. Only the

structured components hidden in the data will allow an efficient data represen-

tation. In this work we propose that symmetry is a measure of structure, thus

highly symmetric components have a large amount of structure and can be

used to efficiently represent the data. To avoid any confusion at the beginning

the symmetry we are talking about differs from the geometrical abstract form

of symmetry. We instead will introduce a symmetry measure that is smooth

(more a scalar than a binary value) and can be evaluated locally in digitalized

images.

4.1. Related Models

Response properties of visual cortical neurons are mostly described in terms

of selectivity and invariance meaning that a neuron responds selectively to

some stimulus feature, while at the same time does not respond to some other

feature in the stimulus. A complete description based on a neurons selectivities

is difficult because of the unknown number of possible features the neuron may

respond to. Therefore, one generally intermixes the two statements; stating

that complex cells are selective to the orientation of a grating stimulus but

invariant to the spatial phase of the pattern.

4.1.1. Learning Invariance

Models for learning invariances in natural images try to cope with the trans-

formations that images undergo if the position of the observer changes.

If images shift, scale, and rotate, the networks in the brain have to

learn these invariances in order to represent the information efficiently

and to ensure stable representations. Models for learning invariances

either rely on temporal sequences of input patterns undergoing trans-

formations (Rao and Ballard, 1998; Földiàk, 1991; Wiskott and Sejnowski,

2002; Einhäuser, Kayser, König and Körding, 2002) or on modifications to

the distance metric for comparing input images to stored templates

(Simard, LeCun and Denker, 1993).

Rao and Ballard (1998), for example used a transformation invariant cod-

ing strategy to code images based on a first-order Taylor expansion, and ob- transformation

invariant coding
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tained localized, oriented receptive fields from natural image inputs. Due to

the first-order approximation only small transformations (e.g., small invari-

ances) could be learned, the performance of the model was reduced for large

transformations.

Rao and Ruderman (1999) introduced a Li-group approach (see Section

4.1.3) which could handle 1-D transformations and 2-D rotations. The model

is based on the notion of continuous transformations and Lie group theory. In

this approach a matrix G is learned that is called the generator of the trans-

formation group. Applying this matrix to the input one assumes an infitesi-

mal small change of the input according to the transformation. A macroscopic

transformation can be produced by chaining together a number of these infites-

imal transformations. This leads to an exponential based generative model of

an image

I(x) = expxG I0 (4.1)

where I0 is the initial or ’reference’ input. The model now learns the generator

matrix G by a series of before and after images (before the transformation

and after the transformation). It turns out to be problematic to learn different

transformation generators G at once. Also the single transformations have to

be small to ensure successful learning.

Another example for a model that uses the temporal sequence of the in-

put is the slow feature analysis (Wiskott and Sejnowski, 2002). It is based onslow feature

analysis the assumption that a slowly varying representation can be considered to be

of higher abstraction level than a quickly varying one. So we can observe a

large change in illumination of pixels for a moving grating stimulus but the

orientation of the grating is a more slowly varying feature thus of better use to

describe the stimulus than the changes on the level of single pixels. The model

use first and second degree monomials to describe the neurons’ responds by a

polynomial.

Another model that utilizes slowly varying features in order to learn in-

variances is the one by Eglen, Bray and Stone (1997). By jointly maximizing

the long-term variance of the output and minimizing its short-term variance a

network model could learn to discover stereo disparity and feature orientation.

The model of Einhäuser et al. (2002) also relies on temporal sequences. As

a hierarchical network model it learns simple and complex cell receptive field

properties based on a sparseness constrain (see (Olshausen and Field, 1996;

Hyvärinen and Hoyer, 2000) for other models that use sparseness).

Crucial for models of temporal sequence learning is that either the type

of invariance has to be predefined or the transformations between successive

inputs have to be comparatively small in order to learn the right invariances.
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It is questionable if the visual input coming from the eyes produces such a

slowly varying stimulus transformation. For example, rapid eye movements

should be rather common (cf. saccades) shifting our focus of interest over large

proportions of the input image. Micro-saccades on the other hand occuring

between saccades could introduce relatively small shifts.

A model that learns invariances (or a related feature class) for indepen-

dently drawn input signals would be favorable. We need also to simultaneously

learn more than one transformation.

4.1.2. Learning Symmetry

It is difficult to learn invariances without at least two closely connected pat-

terns, one pattern before and one after the transformation in question was

applied. In that sense a pattern is invariant if a mathematical or physical pro-

cess has not changed the pattern. If we look for invariances we refer normally

to processes like shift of gaze, micro-saccades or object movements, or rota-

tions that causes the ’after transformation’ pattern. For independently drawn

pattern these processes are not directly observable.

There is a way around this. A related measure that is a feature of

a single pattern, e.g., accessible from independent drawn samples is sym-

metry or self-similarity. Like invariance it reflects a property of a pattern symmetry

not to be changed after some transformation. Normally the transforma-

tions we speak of in symmetry are rigid motions of geometrical figures,

but we like to weaken this ’geometrical’ symmetry in favor of a more gen-

eral continuous property that is closer to invariance (Bartsch and Obermayer,

2002; Bartsch and Obermayer, 2001; Masuda, Yamamoto and Yamada, 1993;

Zabrodsky, Peleg and Avnir, 1995).

As we will see symmetry can be detected by local visual processes relying

on correlations, so symmetry detection does not demand great computational

resources. One example for invertebrates using symmetry as a visual feature

are bees which according to Moller (1995) can detect the symmetry of flowers.

In general, symmetry can signal the presence of objects in the visual scene and

therefore is likely to be used to direct visual attention.

Evidence for Symmetry as a Visual Feature

Symmetry has been dealt with in both, art (architecture, sculpture, painting)

and science (mathematics, physics, chemistry). Thus symmetry can be dis-

cussed in different aspects. In this section we will be mainly concerned with

psychophysical findings of spatial visual symmetry detection.
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Symmetry has been found to be a pre-attentive feature similar to size,

brightness, color or movement. That means it is detected very fast, without

eye movement, requiring less than one second (Corbalis and Roldan, 1974;

Royer, 1981). In particular it is faster processed than form, shape, and struc-

ture, which all require registration in short term memory (Attneave, 1955),

and is also independent of color processing (Morales and Pashler, 1999).

Different types of symmetry are known to be detected with different re-

action times. The detection time for rotationally symmetries where found

to be longer than for the detection of mirror symmetries (Royer, 1981;

Corbalis and Roldan, 1974). For the mirror symmetries the vertical symme-

try (axes) was found to be the most salient and easiest perceived symmetry.

In this context the question arises if the finding could be explained better by

a mental rotation or by a template matching model. In particular, Royer (1981)mental rotation

template

matching

found that the reaction times for detection of vertical symmetry are shorter

than of horizontal and diagonal mirror symmetry, which in turn are shorter

than the reaction time for the detection of rotational symmetry. In favor of the

template model Corbalis and Roldan (1974) found that the reaction time to

detect symmetry in a random dot cluster increased substantially as the angle

to the vertical increases.

One of the earliest explanations of how the visual cortex detects symme-

try was given by Julesz (1971). He pointed out that the saliency of vertical

symmetry was due to interactions between the symmetry of the pattern and

the bilateral symmetry of the visual system. Detection of symmetry could be

performed by a point by point comparison based on neuroanatomy which is

symmetric about the fovea. One concludes that the required symmetric projec-

tion to the visual system would be destroyed if the fixation point for symme-

try detection was not on the symmetry axis. Nevertheless, Barlow and Reeves

(1979) and Masame (1983) showed that although there is a decrease in per-

formance, symmetry is also detected if the symmetry axis is displaced to the

right or left of the fixation point.

Dakin and Herbert (1998) showed that symmetry detection exhibits scale-

invariance. The size of the integration region to detect symmetry was measured

with spatially band-pass filtered noise images in which symmetrical patches

where embedded (see Figure 4.1 for an example stimulus). They showed that

the size of the integration region varies in inverse proportion to spatial fre-

quency and was elongated in the direction of the axis of symmetry, with an

aspect ratio ≈ 2 : 1. These results are compatible with a central role for spatial

filtering in symmetry detection.
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4.1. Related Models

Figure 4.1.: Stimulus similar to the ones used by Dakin and Herbert (1998)

for measuring the integration region of symmetry detection in hu-

mans. The inset top left shows the Gaussian filter used for band-

pass filtering of the random dot image

Models for Symmetry Detection

There is rich literature on models for detecting symmetries in images primarily

used in object recognition or shape representation (Gofman and Kiryati, 1996;

Blum and Nagel, 1978; Brady and Asada, 1984; Pizer, Oliver and Bloomberg,

1987; Bruckstein and Shaked, 1995; Zabrodsky et al., 1995; Ponce, 1990).

Here symmetry is thought of as a global feature of the image or the object

displayed therein. Contrarily, later on we will assume that symmetry can also

be defined as a local feature of parts of the image.

The input of some early algorithms of symmetry detection was assumed

to be coming from a successful segmentation procedure. These shape based

algorithms heavily rely on the preprocessing. Because general segmentation

of images is a problem that is still not solved the applicability of shape-based

symmetry analysis algorithms is limited. An example for problems with shape

analysis is presented in Section 5.4.2 on page 110. There an algorithm based

on gray values outperforms a shape based approach for image alignment.

Other algorithms compute symmetry by analyzing an edge or line

rather than a binary images (Cham and Cipolla, 1995; Ogawa, 1991;

Ylä-Jääski and Ade, 1996; Brady and Asada, 1984). Basically the same prob-

lem appears in this context. Extracting clean edges is as difficult as segmen-

tation. Most pre-processing algorithm destroy some type of information in the

data in order to highlight another. Pre-processing is bound to be task spe-

cific because what is neglectable information in one task is crucial in another.

For this reason symmetry analysis is preferably done on grey level data. Our
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Figure 4.2.: Walsh basis functions used for symmetry detection

previous observation that symmetry detection is performed pre-attentive also

indicates an early position for symmetry detection in the visual pathway.

Some basis function approaches have been explicitly suggested for sym-

metry detection. One example are Walsh basis functions (see Figure 4.2). TheWalsh basis

functions Walsh functions form an orthogonal and complete set of functions representing

a discretized function (Rao, 1983). There is also a direct relationship between

Walsh functions and wavelet decomposition. Any wavelet component can be

obtained as a superposition of all the Walsh components of the same order.

The basis functions denoted by Wn,m (where n,m are integer values) can

be separated into four different classes: (i) vertical mirror-symmetry (m-even,

n-odd), (ii) horizontal mirror-symmetry (m-odd, n-even), (iii) double mirror

symmetric (m-even, n-even) and (iv) rotational symmetric (m-odd, n-odd). A

vector of four values can be calculated for each symmetry from a given image.

For example, the entropy of these values represents the symmetry information

of that image.

Another basis function approach was used by Bigün (1988) to detect rota-

tionally symmetric images. Basis functions were defined as spirals with varying

number of ’arms’ and variable curvature (see Figure 4.3, left). Given an image

of radius R the basis functions are given by

φm,n(r, θ) = exp (i(mωr + nθ)) (4.2)

where ω = 2π/R and (r, θ) are polar coordinates. Note that m,n are natural

numbers (sign of n defines the ’handiness’ of the spiral). The above equation
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4.1. Related Models

Figure 4.3.: Left: Basis functions to detect rotational and circular symmetry in

images. Right: Basis function to detect orientations with different

spatial frequencies

describes the local (in m, n) solutions of a differential equation obtained from

a set of operators by the Lie Transformation Group model which is explained

in more detail in the next section.

Note that there are more models connected to symmetry detection, for ex-

ample fractal coding (Jacquin, 1990), a technique to find a transformation on fractal coding

an image, for which the result of its application upon the image will be to

leave it unchanged. This transformation was used then in the context of image

coding, e.g., image compression.

4.1.3. The Lie Transformation Group Model

Hoffman (1965) first formulated the concept of the Lie Transformation Group Lie

transformation

group

(LTG) in the context of visual perception. The model claims that it can explain

how the locally smooth phenomenons that occur in the visual cortex lead to a

model of human vision.

Our eyes receive constantly changing inputs due to our movement of body

and head. The majority of this movement in our sensory input will be provided

by transformations from the two-dimensional affine transform group. In order

to have continuity in the perception of objects over time, human vision should

account for such transformations.

The LTG model proposes a set of three basic pairs of operators, or transfor-

mations, which can be used to construct a model of the human vision. These

three pairs come in the form of mutually orthogonal orbits. The first operator
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4. Invariance and Symmetry

pair accounts for simple translation in the x respectively y direction

Lx = ∂/∂x Ly = ∂/∂y. (4.3)

Examples for the corresponding orbits can be seen in Figure 4.3, right. Direc-

tions of equal gray value indicate the changes for which the pattern recognition

process should be transparent. The patterns are generated as local1 solutions

of a differential equation calculated as

φm,n(X, Y ) = exp (i(ω/2mX − ω/2nY )) (4.4)

where ω was defined as in Equation 4.2 and X and Y are grid positions in x-

respectively y-direction.

As well as lateral movement we can also include rotations and scalings

LS = x(∂/∂x) + y(∂/∂y) LR = −y(∂/∂x) + x(∂/∂y). (4.5)

An example of this operator pair and the corresponding orbits can be seen in

Figure 4.3 on the page before, left. The corresponding solution of the differen-

tial equation can be found in Equation 4.2. It is apparent that these operator

pairs are not unique. A third pair is usually defined as:

Lβ = x(∂/∂x) − y(∂/∂y) Lb = y(∂/∂x) + x(∂/∂y) (4.6)

4.1.4. Symmetries of the Visual Cortex

Bressloff, Cowan, Golubitsky, Thomas and Wiener (2001) used the assumption

that the anatomical connection structure of the visual cortex itself exhibits sym-

metries rendering it invariantly under the actions of the Euclidean group E(2)

(see (Alexander, Sheridan and Bourke, 1997) for a similar ansatz to explain

orientation selectivity).

If a system is constraint by some symmetries this defines the pattern that

the system will generate spontaneously. For an unconstraint system generally

a spatially constant solution emerges, which has by definition the largest num-

ber of symmetries. Each restriction introduced into the system now reduces

(breaks) the maximum symmetry solution and leaves only specific symmetries

as solutions. Bressloff et al. (2001) could show that the pattern created by a

specific set of actions which were motivated by the anatomical structure of the

visual cortex were used to predict common visual hallucinations. Using this

model one can explain the pattern that appear due to abnormal states of the

brain as they occur in the case of migraine or epilepsy.

1In this case also global solutions.
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X
340X TXS(X) = ( 20cov(X,X), cov(X,     ),...,   cov(X,      ))

X20 X340

34020

Figure 4.4.: Example image and sketch of the procedure of calculating S

Whereas the latter model analyses the structure of the cortex in order to

explain phenomena of human vision, we will reverse this ansatz in the follow-

ing chapters. We will derive and analyse a model of the visual world in order

to make predictions about the mechanisms of the visual cortex.

4.2. A Structure Preserving Transformation

In the light of symmetry as a pre-attentive feature to detect the presence of

objects in a scene, we now introduce a measure of local rotational symmetry on

gray valued digital images. Later on we will see that this model is compatible

with a more general model of a quadratic form by which in the end we will be

able to learn local features from natural images.

One basic idea to detect rotational objects is to calculate a ’product of the

pattern with the rotated pattern’ (Bartsch and Obermayer, 2001). Correspond-

ingly, a stimulus is interesting if the dot-products of the stimulus with a rotated

version of the stimulus is large.

Operations on pixel coordinates (like rotations) work in general only for

images in a continuous function space. It is difficult to find this space for

digital images. One way is to define an ambiguous prior on the image structure

(for example smoothness) for the re-calculation of coordinates. The idea of

Ruderman and Bialek (1992) for example could also be used to construct a

more educated guess about the sub-pixel structure of images based on the

largely scale invariance of natural images.

Instead, we will here rely on the smoothness assumption. A simple interpo-

lation techniques is used to approximate sub-pixel positions within the equally

spaced (Cartesian) grid of pixel. This of course introduces discretization errors

that will show up as prior structure if the smoothness assumption is not valid.

In the following we will refer to X as a stimulus or input in the receptive
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field of diameter rmax of a neuron implementing S.

Let S be a transformation IR2 → IR2(2π/θmin) that is sensitive to structure:

S(X) = (C(θmin), . . . , C(2π − θmin))
T , C(θ) = cov(X,Xθ) (4.7)

Xθ describes the rotation of the center of the receptive field of a neuron in IR2

space by θ and cov(·, ·) is the covariance function which is used to measure

the similarity C of the original and the rotated image patch (see Figure 4.4).

It is problematic to compute Xθ because the rotation in pixel coordinates is

not well defined, however, we will assume for the moment that with certain

tricks2 by the computer vision community we can be pretty close to the correct

solution (continuous pixels). We also do not need to apply our transforma-

tions (rotation) successively as in the generator model of Rao and Ruderman

(1999). There are several ways of defining a scalar value for the symmetry.

For example, we can use the L1-norm of S(X). This will result in a single

value per pixel and thus it can be visualized as a response image. At this point

this procedure is only used to illustrate the general process of calculating some

’symmetry’ value. To analyse images this way we would rely on a more elabo-

rated approach calculating, for example, the entropy of the symmetry vectors

obtained for different images.

A set of 256 image patches, each with dimension 60 × 60, were drawn ran-

domly from an image (Figure 4.5, left). Mirror symmetries were tested for a

set of {θ0, . . . , θ9} orientations of the mirror axis which were equally spaced in

the range of [0, π]. To avoid edge effects a circular region was used. Figure 4.5,

right show the results of a re-sorting of the images according to the calculated

symmetry values ||S||1 for each random position (sorted from left to right, top

to bottom). The values for ||S||1 are shown in 4.6 and decrease exponentially

which indicates a hight specificity of S.

One sees that most symmetric images of this size contain mostly edges

whereas the least symmetric ones contain mostly un-structured noise. This

is not really surprising because at this scale one can basically classify image

patches in the two categories ’noise’ and ’contrast edge’ (every more symmet-

ric patch, for example a patch containing a circle, is extremely unlikely). The

question remains why patches containing edges should be at any rate more

rotationally symmetric than noisy patches. First of all, we could suspect that

edges are better in having an overlap with (mildly) rotated versions of them-

selves plus ’negative’ overlap with 180◦ rotated versions which is elevated by

the L1-norm. Secondly, our transformation S uses covariances. Therefore

2Mainly we computed all rotated versions from one unchanged ’master’ image, the original

X , and in a backward way, e.g. finding for each pixel in Xθ the most likely original pixel
in X .
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4.2. A Structure Preserving Transformation

Figure 4.5.: Edges are the most rotationally symmetric image patches of natu-

ral images. Left: Microscopic image (1400×1400). Right: Resorted

random samples from a single images according to the symmetry

values S plotted in Figure 4.6
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Figure 4.6.: The values of S for the 256 randomly drawn image patches shown

in Figure 4.5
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C depends heavily on the variance of the pixels in X. As was found by

Reinagel and Zador (1999) high variance patches are most likely edges thus

explaining our bias for edges in calculating rotational symmetries.

Although here we focus on detecting rotational symmetries, other types

of symmetries can also be implemented in this framework. Detecting mirror

symmetries, for example, requires only an additional mirroring of X θ around

its medial axis.

If we look in more detail into the model presented in Equation 4.7 on

page 88, we notice that we have computed products of pixel intensities which

were summed up to get an according C value. In order to present a single

symmetry value for a region in Figure 4.6 we used the L1-norm of all C values

which is also a sum of absolute values. So our whole procedure can be viewed,

in first approximation, as a large sum of pixel products.

S(X) =
2π−θmin∑

θmin

∣
∣
∣
∣
∣

∑

i,j

(xi − µ)(yj − µ)

∣
∣
∣
∣
∣
, xi ∈ X, yi ∈ Xθ (4.8)

If we assume that the absolute values are not essential to the function of the

transformation the above equation can be represented by a single sum of prod-

ucts of specific pairs {s} of pixel.

S ′(X) =
∑

(i,j)∈{s}
xixj (4.9)

We emphasize here that the crucial ingredient is the choice of the pixel pairs

and not the grouping of the products. In the attempt to calculate rotational

symmetries we have selected a specific set s of all possible pixel pairs. If we

like to detect mirror symmetries, we simply select another set {s′} of pixel

pairs but the overall structure of the algorithm remains. Thus the detection

of rotational symmetry as done by Equation 4.9 is a special case of a model

F : IRn → IR that can be parameterized as a quadratic form

F(X) =
∑

i

aiφi(X) = xTAx, x = vec(X). (4.10)

where φi is a cross product of the coordinates of the input vector X and ai is

an entry akl of the matrix A which is 1 if xkxl is in the corresponding set {s}
and 0 elsewhere. In general we are interested in matrices A which weight pairs

of pixels. This is in contrast to basis function approaches that are interested

in weights of single pixel (φ(X) = Ai). The above formulation relates the

quadratic form to models of polynomial classifiers and notably to sigma-pi unitssigma-pi units

or higher order nets.

From now on we will call A a parameterization and xTAx our model.
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Figure 4.7.: Orthogonal basis functions for rotation (left), scaling (center) and

shift (right) computed as eigenvectors of a quadratic form. (Figure

from (Bartsch and Obermayer, 2003))

4.2.1. Co-variation and the Quadratic Form

Assuming an ensemble X of gray level images (E(x ∈ X) = 0), what is the

information about the image that is explored by A?

Using an eigenvalue decomposition of the matrix A

xTAx = xT
N∑

i

λini(n
T
i x) =

N∑

i

λi(n
T
i x)(xTni) (4.11)

it is simple to show that the expectation of the quadratic form equals

〈xTAx〉x = 〈
N∑

i

λin
T
i xxT

i n〉x =

N∑

i

λin
T
i 〈xxT 〉xni =

N∑

i

λin
T
i Cni.(4.12)

Only the correlation matrix C = 〈xxT 〉x of the data will be of importance

for defining A (statistics of pairs of pixel). A single entry ai,j in this model

represents the covariance between the pixel i and the pixel j. By assuming

shift invariance we arrive at the usual covariance function C(x) = E(I0Ix)
(assuming mean zero) where 0 is an arbitrary origin and x a position in the

image (E(.) is the expectation).

This interpretation of the quadratic form, the selection of a covariance

structure points to a way to visualize the information, e.g., the symmetry coded

in a specific matrix A. The covariance of a data distribution defines uniquely a

multivariate normal distribution in that space. The principal axes of this hyper-

ellipsoid can be calculated as the eigenvectors of the covariance matrix. In the

next section we will define different matrices Arot, Ascal and Ashift which code

for the model equivalents of rotations, scalings, and shifts respectively. The

resulting eigenvectors are shown in Figure 4.7 sorted according to their eigen-

values and reflect nicely the underlying transformations by pattern showing
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the respective invariances. Because the matrices are symmetric their eigenval-

ues are real. Nevertheless, negative eigenvalues occur (all basis functions after

the gap) because they were not obtained from real images. Because of the

orthogonality of the eigenvectors they build an orthogonal basis set.

Learning matrices A by selecting image sets and computing their covariance

matrix one could in principle explore the respective symmetries and would

arrive at positive definite or semi-definite matrices. The problem remains, how

to build sets of images in a meaningful way. Preferably the algorithm itself

learns different A matrices from one set of images. That will be the task in

Section 6.

The next sections will look in more detail into possible settings for A, how

to constrain A and how to build an energy functional that can be used to invert

the symmetry transformation.

92 Hauke Bartsch, 2002



5. The Binary Valued Quadratic Form

In this chapter we analyse the model presented in the previous chapter in the

case of a binary1 valued matrix A. Each entry ai,j selects a pair of pixel (if

it is set to 1). Different (supervised) choices for A are used to illustrate the

information content of the quadratic form and its use in advanced methods of

image analysis. This chapter is a pre-requisite to the next chapter in which real

valued quadratic forms are learned from the data in an unsupervised manner.

Throughout this work we will assume that the matrixA is symmetric (which

implies that its eigenvalues are real). We will refer to the transformation as

S(x) = xTAx, ai,j ∈ {0, 1}. (5.1)

where A is chosen in order to select the pixel pairs that occur for successive

rotations of the original X. Alternatively, we will use the more intuitive for-

mulation based on successive rotations from Equation 4.7 on page 88 (a scalar

value is obtained from that form by the L1-norm).

Lets introduce a toy example in order to illustrate the information con-

tained in the statistics of pairs of pixels. This is of importance because the

models introduced to detect invariances or symmetries (see Section 4.1) rely

either on a basis function approach, which is related to linear models, or on

non-linear models. One of the simplest non-linear models can be expressed in

the form of a quadratic model (introduced in Section 4.2 on page 87).

Lets build two long sequences of the symbols 0, 1, and 2 and analyse them

in the context of a first order Markov chain: Markov chain

Seq1 = 1 1 2 1 1 1 2 1 1 1 0 1 2 0 0 2 2 0 . . . (5.2)

Seq2 = 1 0 1 1 2 1 1 0 0 0 0 2 0 2 0 0 2 1 . . . (5.3)

Both sequences were built in order to let every symbol in sequence 1 and in

sequence 2 appear with a probability of p(0) = .39 p(1) = .39 p(2) = .21. Thus

by measuring probabilities of single events the sequences appear to be iid (i.e.,

sampled from the same probability density). But the probability of one symbol

1The terminus binary quadratic form usually defines a quadratic form in two variables. Here,

we refer to the type of values in the matrix A, which is independent from the number of
dimensions.
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at position t occuring after some other symbol at position t− 1 is found to be

pSeq1(αt+1|αt) =





.13 .19 .07

.16 .19 .07

.13 .02 .07



 , pSeq2(αt+1|αt) =





.15 .15 .08

.15 .16 .08

.08 .08 .05



 ,

where α = 0, 1, 2. A position a1,2 in these (stochastic Markov2) matrices codes

for the probability of p(αt+1 = 0|αt = 1). By this measure the two sequences

can easily be distinguished from another. The probability of the occurrence of

one symbol followed by a second symbol in the sequence is reflected by the

covariance between successive symbols, which relates this toy example to the

model proposed.

The first sequence was constructed by first using a probability of 1/3 for

each symbol. After that we arbitrarily deleted three times every symbol 2 which

was followed by a symbol 1. In doing so we introduced correlations between

consecutive symbols. The second sequence was constructed by an independent

sampling according to the first order probabilities of the first sequence. The

probabilities of each symbol in the first and second sequence are the same (by

design), but the two sequences are generated from distinct processes.

We see that the choice of the statistic has to be adequate. By counting

probabilities of single events we could not distinguish the two sequences3. This

was only possible after measuring the statistic of the occurrence of pairs of

events.

Obviously only the second matrix is symmetric whereas the first matrix

indicates the asymmetric generation of the underlying sequence, there we re-

moved only symbol 2 followed by symbol 1, and not symbol 1 followed by

symbol 2.

Also we see that the probabilities of the single events show up in the col-

umn sums of the matrices (p(0) = p(0|0) + p(0|1) + p(0|2)). In other words

measuring the complete statistics of pairs of events we measure additional and

not just complementary information. This will be of importance because the

second order model presented is able to detect features that are found by linear

models also (namely edges in natural images). In doing this it reflects the gen-

erality of the ansatz compared to linear models and comparative performance

to polynomial models.

Polynomial models of second order can be defined by

P(x) = xTAx + bT x + c. (5.4)

2A Markov matrix is a stochastic matrix where the rows (or columns) sum to one.
3Choosing the appropriate statistic by measuring the probabilities of joint events we are also

able to better predict a new symbol, if that is the goal.
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Arot Asca Ashift

r>rmax

same radius

same orient.

else

Figure 5.1.: Connection structure. Right: Three binary matrices A (color

coded) for image patches of 15 × 15 pixels. The color code iden-

tifies the cases in which the pixel pairs are on the same radius to

the center position (rotation) or on the same angle relative to the

center position (scaling) or outside a circular receptive field. Left:

For every matrix element aij = 1 the corresponding pixel pair (i, j)
is connected by a line

Note that the quadratic form (xTAx) appears in this formula next to a linear

term (bTx) and a constant c. The model produces a scalar output dependent

on the values of A, b, and c. A parameterization of this type was used by

Wiskott and Sejnowski (2002) in the slow feature analysis model. Different

from there model we will reduce the polynomial model by assuming b = 0

and c = 0.

One advantage using the quadratic form only instead of the full polynomial

model is the reduced number of parameters. A second advantage is that all

the parameters ai,j (entries of the matrix A) are of one type, i.e., of compara-

tive size/variance/meaning, which is favorable for algorithms exploring state

space. Analysis of the state space will be done in more detail in Section 6.1 on

page 114.

5.1. The Choice of a Binary Valued A

Before we go into more detail with respect to general properties of the trans-

formation S we point out other ’natural’ choices for a binary A matrix. In

Section 4.2 on page 87 we have seen that the formalism of comparing an im-

age with the transformed image boils down to a specific quadratic form (under

certain assumptions). In the quadratic form each matrix element ai,j selects a

specific pair of pixel. The knowledge which pairs of pixels we like to combine

defines therefore different quadratic forms (matrices A). We have seen already
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that the choice we make here can be interpreted as designing a two-point cor-

relation between pixel.

In the following, the coordinates of a pixel i will be denoted by π-periodic4

polar coordinates (ri, θi) in order to simplify the definitions.

Rotation: The goal is to let A = Arot encode the model equivalent of ro-

tational symmetry of the image pixels around their mean position. This cor-

responds to the model in Equation 4.9. Again, we do not attempt to ’rotate’

the image by A but code the general correlation structure found in perfect

rotationally symmetric (centered) pattern.

We can incorporate our knowledge about the pixel pairs that appear if we

make successive rotations of an image patch as described in Section 4.2. arot
ij

(i 6= j) will be set to one if |ri − rj| < ε (i 6= j) and otherwise to zero. ε can

arbitrarily be chosen to be the distance of two neighboring pixels on the outer

perimeter of the circular receptive field (see Figure. 5.1, left).

Scale: In a similar way Asca is constructed to encode scaling. Entries aij

of the matrix will be set to 1 only if the angular distance between i and j is

sufficiently small, i.e., if |θi − θj| < ε (i 6= j) (see Figure 5.1, left). We are

aware that we also code for symmetries that include inversions: scaling must

not allow for pixel to cross the origin. We find that the choice of a specific pixel

pair subset does not uniquely define a single symmetry operation. This points

to a principle weakness of the ansatz of using the quadratic form. We may not

uniquely define a symmetry transformation by using a binary choice for ai,j.

Shift: Ashift is constructed to encode the pixel pairs that match for transla-

tions along the vertical direction. Correspondingly aij (i 6= j) is set to 1 only if

the x-coordinate of the pixel xi equals the x-coordinate of the pixel xj (xi = xj)

and otherwise to zero.

Mirror: Amirror is constructed to encode the pixel pairs that occur for mir-

roring pixels along a chosen mirror axis (assumed to go through the image

center). To illustrate the use of this transformation in Figure 5.2 on the next

page we computed the resulting scalar value of the quadratic form for some

(equally sampled) directions of the mirror axis and displayed them in a color

code. The image shows an auto-radiogram of a gerbil brain slice (data courtesy

by Andreas Hess).

5.2. The Properties of S

To understand the properties of S it helps to show what information is lost or

retained if X is projected into the space of S(X). For example, it is easy to see

that S is invariant to changes in sign of the local contrast gradient. We already

4We do not distinguish a point x from a point −x.
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Figure 5.2.: Mirror axes detection example. The image displayed left is an

auto-radiograph of a gerbil brain slice (data courtesy by Andreas

Hess). Right: symmetry values are obtained by repeatedly select-

ing 5000 pixel pairs corresponding to a specific mirror axes (see

Figure 5.5) and calculating the sum of their pixel gray value prod-

ucts. The inset shows the profile of the symmetry value over ori-

entation
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Figure 5.3.: Expressing data as dot-products yields a sparsely representation.

Two independent (Gaussian) sources s1 and s2 are transferred into

the space of dot-products. The histogram of the marginal distribu-

tion s1s2 is shown. Whereas the underlying sources are Gaussian

(solid line), in product space we observe a high forth order mo-

ment (kurtosis > 0)

have shown that S is sensitive to the correlations among particular input pairs

or groups, which makes it a more powerful model than linear or threshold

units (see Section 4.2.1 on page 91).

5.2.1. S is Linear in Contrast

Covariances in S (using Equation 4.7) can be expressed as correlations

weighted by the non–normalized contrast of the image.

Assuming thatX is a random variable with finite second moments it follows

that cov(X,Xθ) = σ2ρ(X,Xθ), where ρ(·, ·) is the correlation function and σ
is the variance in the pixel intensities. σ is also a non-normalized measure

of the contrast in X (compare with Section 2.1 on page 17). The covariance

will therefore be large if the variance, e.g., the local contrast is large. Contrast

sensitivity was found to be a crucial part in explaining the human active vision.

In an active vision task humans prefer to look onto image regions with high

spatial contrast (Reinagel and Zador, 1999). It would be of interest how the

preference changes for contrast normalized images.

5.2.2. The Moments of S

If we assume the input patch X to be a random variable then S(X) is also a

random variable. For known input distributions X it is now of interest how the

transformation changes the distribution p(X). To verify this we analysed the
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transformation for one of the simplest distributions p(X), that of a white noise

distribution.

We found that the distribution p(S) is non-white with high skewness and

high kurtosis (see Appendix B.3 for detailed calculation and Figure 5.5). This

’generation’ of higher order moments is not surprising if we keep in mind that

in calculating pixel pairs we introduce correlations between pairs of pixel be-

cause a single pixel appears in more than one product.

Algorithms relying on distributions which are strongly non-Gaussian could

therefore benefit from this data representation (we will use this property in

later chapters in the context of feature extraction by ICA). On the other hand,

it is clear that we have introduced redundancies (the number of pixel pairs

is always much larger than the number of single pixels) which have to be

sensible to be of use for the algorithm. Here we have to take care of two

inter-weaved effects. One is the re-coding of information by changes of the

coordinate system (like in PCA) and its use is clear on intuitive grounds. In our

transformation the data is explicitly changed into the coordinate system of the

two-point co-variances. The other effect is the introduction of new dimensions

which is bound in our case to the goal of the re-coding.

5.2.3. Dependence on RFS and Preferred Orientation

Analytical solutions for S(X) can also be derived for specified structures. Only

the results are repeated here for the derivation see the Appendix.

Given a horizontal edge (binary values) in the receptive field of size rmax,
we found (see Figure 5.4, A and Appendix B.2 on page 183 for derivation) that

the symmetry value depending on the orientation θ of the edge is:

C(θ) =

{
π/2 + θ : −π≤θ< 0
π/2 − θ : 0≤θ< π

(5.5)

C(θ) will produce zero response if θ is orthogonal to the edge orientation or

non-zero response otherwise. Note that this can be used to implement orienta-

tion selectivity in S if θ is restricted to a subset of all orientations. Changing the

stimulus to a disc-like structure with radius r we found (see B.1 on page 182)

that

S(r, rmax) = 2πr

(

1 − 2
r2

r2
max

+
r4

r4
max

)

. (5.6)

This latter function (see Figure5.4, B) is zero at r = 0 and r = rmax
and shows a maximum in between at r = rmax/

√
5 ≈ 0.48rmax. So a
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Α θ maxrr
Β

−pi −pi/2 0 pi/2 pi

0

0   
0 rmax1/sqrt(5)

Figure 5.4.: Edge stimulus (A, top) and the corresponding analytical solution

(A, bottom) of C(θ) implementing orientation selectivity. Disc stim-

ulus (B, top) and the corresponding analytical solution (B, bottom)

of C(θ). Non-zero response is restricted to the intermediate range

of 0 ≤ r ≤ rmax

disc stimulus leads to maximum response if it fills nearly half the recep-

tive field. This finding is interesting because it coincides with measure-

ments of receptive fields of cortical neurons. One usually distinguishes be-

tween the stimulus size that elicits maximum response the receptive fieldreceptive field

and the extra-classical receptive field or integration region which is found asintegration

region (i) being much larger and (ii) acting inhibitory (Solomon, White and Martin

(2002), LGN, marmoset, Cleland, Lee and Vidyasagar (1983) LGN, cat, but see

Felisberti and Derrington (2001) for contradicting results).

5.2.4. Stability Analysis

The computational costs of computing S are in the order O(n2) where n is the

number of pixels in our receptive field (because symmetry was based on pixel

pair statistics). Compared to the filtering techniques usually used (e.g., linear

filters) an algorithms using this may not be feasible in real time applications.

To test its real time performance we implemented the rotational symmetry

detection algorithm in C++ using DirectX8.1 on a laptop computer (600-MHz,

PIII). Using a commercial web-cam (320 × 200 pixel, Phillips ToUCam Pro) we

could calculate symmetry values at receptive field sizes of 5 × 5 pixel in the

order of 1 frame per second.

One of the simplest methods that can be used in order to speed up this
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0o 45o 90o 135o 180o

Figure 5.5.: Example of a sparse mirror selection filter for specific orientations.

Pixel pairs are shown by connecting each pixel pair by a line

computation is to reduce the number of pixel pairs processed. To demonstrate

the stability of S we used the quadratic form xTAmirrorx for the detection of

mirror symmetries (see on page 96). We reduced the number of pixel pairs

(entries aij = 1 in the matrix) by random deletion from the original set. The

resulting structures for sparse Amirror matrices are shown in Figure 5.5 sorted

for different (approximative) mirror axes. Repeatedly the filters parameterized

by their mirror axes where applied to the image in Figure 5.2 on page 97 (left).

We found that approximative symmetry values can reliable be computed

over sub-populations of pixel pairs (see Figure 5.6 for results). In computer

simulations the algorithm seems to be stable even if only very few pairs were

used. This remarkable stability in face of large numbers of missing values is

largely explained because of the relative smoothness of the image.

5.3. Inverting the Symmetry Detection

In the following section we will concentrate on the rotational symmetry case

(A = Arot). The stochastic algorithm proposed is not restricted in the choice

to this specific A. It is used here as a general tool to visualize the information

content of the ’naive’ symmetry detection algorithm (binary valued quadratic

form) for which A is known.

By inverting a transformation we can, in principle, obtain the original data.

This idea is widely used to enhance the result of an image acquisition task (de-

noising). Lets assume that a process T corrupts an image x during measure- de-noising

ment T (x) = y,x ∈ IRn. If the characteristics of the process, e.g., its transfor-

mation T are known by computing the inverse transformation T−1 : IRn → X
(provided that it exists) we can obtain the undisturbed data T−1(y) = x̃ = x.

The problem is always to invert T . A Gaussian low-pass filter for example

will be generally not invertible, which states that we lost information about

the image by applying the low-pass. If the process T acts in a linear way, in
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Figure 5.6.: Left: Mean symmetry for different numbers of pixel pairs of the

Gerbil brain data of Figure 5.2 on page 97. Values in the legend are

ratios of the number of pixel pairs with respect to the maximum

number of pixel pairs for a given mirror axis (half of the number

of pixels in the circle). Right: Low variance over 10 runs indicates

that even with 2 percent of pixel pairs the mirror axis could be

computed reliably

other words, T can be expressed as a (m,n)-matrix, this matrix may be either

singular, or close to singular, or not square. In all three cases we cannot invert

T . If T has full rank n we can use the pseudo-inverse T+ = (T TT )−1T T as apseudo-inverse

’workaround’. It can be used to describe the projection of the signals onto the

subspace generated by a finite family of basis signals (lines of the matrix T ).

Apart from computing the pseudo-inverse of the transformation matrix, one

can use the framework of an energy functional. In this framework additionalenergy function

knowledge about the data can easily be implemented in order to get a good

approximation of x. Let T (x) = S(x) = y. A goal function is used to describe

the quality of an estimated signal x̃ which is sucessively improved during the

optimization procedure. In our setup a x̃ will be considered of having low

energy or low error if T (x̃) is sufficiently close to T (x), that is we compare

x and x̃ in terms of their representation in feature space. Starting from an

initial x̃ (e.g., Gaussian white noise) we measure its likelihood by comparing

the corresponding ỹ with the known data of y. Successively we change x̃ in

order to lower the corresponding energy (or error) function by an algorithm

adopted from a Markov random field (MRF). T (X) = S(X).Markov random

field Now we like to present the used energy function. The values y obtained by

S(X) represent the local correlation of a sub-set of pixels in the image patch.

The sub-set is defined by the choice of A = Arot. Here all pixel pairs contain
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Figure 5.7.: The pixel-o-centric picture of the world. Left: For pixel pair (i, j)
three example circles representing possible associated cliques are

shown (living on the perimeter). Line AB is a perpendicular line

to ij onto which all these cliques are centered. The connection be-

tween i and j is therefore defined as incorporating their respective

pixel values but also information about the covariance structure

on the line AB. Right: The length of the perpendicular lines AB
scale with the size of the receptive field of X and with the distance

between the pixels (|AB| = rfs−|ij| + 1)

pixel with equal distance to the center of the respective image patch. Because

all pixel at a common distance to the center are connected to oneanother (are

in product with each other) they form a clique. A pair of pixel xixj appears only clique

ones if S(x) is computed for a single image patch x only. But by extracting

overlapping patches and reapeating the procedure of computing S(x(t)) the

pixel pair xixj will appear in more than one clique. In Figure 5.7 the line

connection the points A and B connect the gravity centers of the corresponding

cliques. The circles indicate the position of three examples cliques. Each clique

is connected with one value y which we now re-name ck
ij. Here k enumerates

the clique in which the pixel pair xixj is contained. 5.7).

In the framework of a Markov random field the probability of pixel i having

a value xi depends on the neighboring pixel j. In our case they depend on their

respective covariances ckij. Using the result E(S(X)) = cov(xm, xn), m 6= n (see

Equation B.43 on page 189) our energy function depends (i) on an initial guess

of the image x̃0 and (ii) on the covariances c. It is defined as being zero, if each
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Figure 5.8.: Right: Original image X (rice.tif from Matlab). Left: The co-

efficients ck = ||S(xk)||1 for each corresponding pixel position

(rfs = 5). Edges elicit the highest contrast in the image

product of pixel values xi and xj equals their associated covariances ck
ij:

Fi(x̃, c) =
1

N

∑

j∈Ii

(
∑

k

(
(x̃ix̃j) − ckij

)

)2

(5.7)

Ii is the index set of all pixels in a receptive field around i of size 2 rfs, N is

the overall number of single operations of type (xy) − c. k counts a discreet

number of centers of cliques (symmetry value of xk).

All values ck are assumed to be equally important. Because they are ob-

tained for cliques of changing radius and thus changing spatial distance be-

tween the pixel we herein assume implicitly that the covariance between any

two pixels does not depend on their distance.

Minimizing F

There are several ways to minimize the above energy function. We use now a

stochastic algorithm which is very simple to implement and furthermore a gra-

dient descent algorithm which has some advantages in speed. For both cases

initially x̃ was set to (uncorrelated) Gaussian white noise. The ck
ij were com-

puted beforehand by the symmetry detection algorithm. The low energy state

of the system corresponds therefore with the image that most likely causes the

observed symmetry values. In Figure 5.8 an example image and the corre-

sponding covariances c = ||S(x)||1 are shown. High values are found predom-

inantly at edges in the image.
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Figure 5.9.: Left: Reconstructed image x̃ with the algorithm of Metropolis et al.

(1953). Right: High values of the energy function used (Equation

5.7) are shown in white and indicate errors remaining because of

the deterministic annealing scheme

5.3.1. Minimizing F by Metropolis Algorithm

Minimizing our energy function is done by using the idea that a system in ther-

mal equilibrium at temperature T has its energy probabilistically distributed

among all different energy states F .

Prob(F ) ≈ exp

(

− F

kT

)

(5.8)

The quantity k (Boltzmann’s constant) is a constant of nature that relates tem-

perature to energy. Using this formula there is a corresponding chance for the

system to get out of a local minimum. Sometimes it goes uphill as well as

downhill (in energy landscape); but the lower the temperature, the less likely

is any significant uphill excursion.

This is implemented by the algorithm of

Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953). We need to

specify: (i) A description of the possible system configurations (x̃ initialized by

white noise). (ii) A generator of random changes in the configuration; these

changes are the ’options’ present to the system (done by adding Gaussian noise

to single pixel gray values). (iii) An objective function whose minimization

is the goal of the procedure (Equation 5.7) and last (iv) a control parameter

T (which works analog to temperature) and an annealing schedule which simulated

annealingtells how it is lowered from high to low values, i.e., after how many random

changes in configuration one downward step in T is taken (and how large

that step is).
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Figure 5.10.: Switching context for judging foreground versus background.

The figure A resembles either four objects that are in close vicin-

ity (B) or a single star like object (C)

The value of x̃ corresponding to the low energy state of the procedure can

be seen in Figure 5.9 on the page before.

Due to the symmetric nature of the products, the algorithm cannot distin-

guish between different signs of the local contrast gradients (see Section 5.2 on

page 96). This explains that the algorithm founds white as well as black rep-

resentations for the elongated objects (compare with Figure 5.8 on page 104

left). Because the objects in the image are larger than the field size of our

Markov Random Field initial solutions found at opposite ends of these objects

are initially uncoppled and may contain by chance a change in sign. Whereas

both solutions are optimal on their own they evolve together during the opti-

mization and enforce an edge. This type of errors light up in Figure 5.9 right

where the final energy is plotted.

Interestingly the algorithms repeatedly insert ’circles’ in x̃ which have no

correspondence in the original image (see Figure 5.8, left, and Figure 5.9, left).

We can explain this behavior by the observation that in a close-up look the cor-

responding regions in the original image contain structured back-ground con-

figurations. Because there is no clear distinction between the role of figure and

background our algorithms interprets ’interesting’ formations of backgrounds

as structured objects which are represented in the reconstructed image by a

proto-typical object, e.g., an open circle. Figure 5.10 illustrates this effect of

ambiguous assignment of foreground and background that can also be found

in many illusory figures. In this sense the representation of images in termsfigure-ground

of symmetry lacks a prior about what is background and what foreground in

the image. Additional information from outside the receptive field is needed

to prefer one solution over the other. Information about the global distribution
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of light and dark regions could provide such an bias, because objects in the

foreground tend to be more compact, i.e., enclosed in background regions.

We observe also is a relative high amount of noise in the background. This

is due to the initialization of x̃ as Gaussian white noise which is preserved

by the algorithm, because low symmetry values in the corresponding regions

result in low overall energy in that regions, regardless of the pixel variance. In

the next chapter we will deal with this problem by introducing an additional

weight decay.

5.3.2. Minimizing F by Gradient Descent

An annealing algorithm finds (in principle) the global minimum of an energy

function. But this holds only for a very time consuming and therefore non-

practical annealing schedule. To speed up the computation we now introduce

a gradient descent algorithm. It involves a measure of direction or gradient gradient descent

in parameter space along which the energy is becoming smaller. Given Equa-

tion 5.7 on page 104 we differentiate our energy F (x̃, c) with respect to a pixel

x̃i:

dFj

dx̃i

=
1

N

∑

j∈Ii

(
∑

k

(
2(x̃jx̃i − ckij)x̃j

)

)

(5.9)

Using this formula we iteratively adjust the gray value of single pixel by

x̃new
i = x̃old

i + ν
dFj

dx̃i
(5.10)

where ν is the learning rate and is kept fixed at ν = 0.5. Again we observe the

same basic result as for the Metropolis algorithms (see Figure 5.9).

As a short extension to the previous algorithm we introduce now a weight

decay term that should deal with the high variance in the background regions

(see Figure 5.11 on the following page, left). We add a constrain for the vari-

ance of x̃ to the energy function 5.7:

∑

i

x2
i = 1. (5.11)

Using the method of Lagrangian multipliers our new energy function F 2 is now

(
∑

i x̃
2
i − 1 = 0)

F 2
i (x̃, c) =

1

N

∑

j∈Ii

(
∑

k

(
(x̃ix̃j)1 − ckij

)

)2

+ λ

(

1

M

∑

m

x2
m − 1

)

(5.12)
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Figure 5.11.: Left: Reconstructed image X̃ by gradient descent. Right: High

values of the energy function used (Equation 5.7) are shown in

white. In background regions (bottom right) stable noise pat-

terns can be observed

where m goes over all pixels M in the image. Our learning rule therefore is

slightly changed compared to equation 5.9 to

dF 2
j

dxi
=

1

N

∑

j∈Ii

(∣
∣2(x̃jx̃i − ckij)x̃j

∣
∣
1

)

+ 2x̃i (5.13)

λ was chosen arbitrarily, i.e., it was set to 1. The result of this operation can

be seen in Figure 5.12 on the next page. As expected the constrain acts as a

decay term removing the high pixel variance.

5.4. Applications

This section summarizes some attempts to use the methods derived so far in

the context of object classification, image alignment and as a tool for auto-

matic landmark detection. The work presented here about the binary valued

quadratic form is merely a prelude to the next chapter. Correspondingly the

applications presented are thought of as illustrations of the potential applica-

bility of the method.

5.4.1. Object classification

Object classification can be formulated as an incomplete data problem. In theincomplete data

problem classification process we search for an unknown class label j associated with

each pixel indicating which component density function was responsible for its

generation.
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Figure 5.12.: Left: Reconstructed image x̃ by gradient descent and additional

weight decay. Right: High values of the energy function 5.7 used

are shown in white

Because we know that single pixel contain little information one generally

uses a feature space representation of the image for classification of pixel. We

are interested now in using the symmetry measure S(X) as a representation of

the data in feature space. The classification algorithms is applied on toy data

and outlines a particular direction of research which we think is worthwhile to

follow (see Figure 5.13).

One of the best known algorithms for incomplete data problems is

based on the probability density estimation with a Gaussian mixture model

which can be trained with the Expectation Maximization (EM) algorithm EM

(Dempster, Laird and Rubin, 1977).

A model of 9 multivariate Gaussian densities (diagonal covariance matrix)

was trained on feature vectors extracted from overlapping image patches of

size 32× 32 according to S(X) = s1(X), . . . , s20(X) (Equation 4.7 on page 88).

The focus of the symmetry transformation was therefore just large enough to

contain one circular respective triangular object in the toy data image. For

learning we selected feature vectors in the upper 70% region of the L1-norm

of S. This acts in restricting the algorithm to non-background regions around

the object. This heuristic can be understood as an first approach to active

vision in which we change the relative frequency of occurrences of particular active vision

image regions according to their (pre-attentive) features. In our case this was

nessesary because of the small number of training examples (only one image

was used for training and testing).

In Figure 5.13 one out of nine clusters respectively its posterior probabilities

P (x|j) are plotted in dark gray overlayed on the image (light gray). It turns out

that for this image clusters in the feature space could be found that correspond

to solemnly circular- or triangular objects (the cluster for the circular data is
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Figure 5.13.: Unsupervised image segmentation. Left: Test image containing

triangular and circular shaped objects. Right: For cluster nr. 2 the

posterior probabilities overlayed on the image are shown (select-

ing the central regions of the triangular objects). Note that the

model is learned on only this single image. Two clusters (only

one is shown) correspond to the two object classes

not shown).

5.4.2. Image Alignment

One case in which shape analysis is regularly used in practice is for the reg-

istration of digital images. Often single images from different measurements

display connected information, images of consecutive brain slices for example,

but due to the measurement procedure the single images are distorted. One of

the first pre-processing steps before one can attempt a 3D segmentation or re-

construction is to realign (register) the images, in the simplest, and most often

used case, by performing rigid transformations. In order to automatically re-

cover the original axis of rotation of a stack of images for each image its major

and minor axis are computed. Major and minor axis represent the directions inmajor-, minor

axis which the object shows its maximum respectively minimum elongation. Know-

ing this axis each image is rotated onto a common reference axis.

The procedure is the following: a binary map is computed which represents

object and background regions. The eigenvectors of the pixel coordinates of

the object pixel in the map represent now the major respectively minor axis of

the shape of the object.

Obviously this procedure works only for images showing a clearly preferred

axis of elongation. The brain slice in Figure 5.2 on page 97 shows such an

axis. In effect the procedure is sensitive to the proximal parts of the frontal

and of the occipital lobe of the cerebrum. A mismatch due to the measurement
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Figure 5.14.: Left: Shape analysis detects the largest variance direction. Right:

Symmetry detection correctly find the direction of largest (mir-

ror) symmetry

procedures is very likely in these regions. Because the method to extract the

eigenvectors is very sensitive to the variance (that is what it measures) it may

come up with directions that are largely influenced by errors in the measure-

ment and not by the shape of the object. Principal component analysis is also

not applicable if the shape of the object is nearly circular, or if the shape border

is noisy, or, if the shape is mainly defined by the changes due to the measuring

method.

In order to introduce our method we assume now that every image which

is subject to re-alignment posses structural information in its gray values that

are used in manual alignments.

Detection of the mirror axis is not solemnly based on the shape of the ob-

ject but also on its gray value structure, thus it is predestined to explore the

symmetrical structure of the two hemispheres visible in the horizontal section.

In order to automatically recover the direction of the maximum mirror sym-

metry we used the Nelder-Mead simplex algorithm (Nelder and Mead, 1965)

which adjusts parameters of a goal function. The goal function (which is mini-

mized during the optimization) was calculated dependent on a direction (mir-

ror axis), position, and size of the receptive field. Using the result from the

stability analysis (Section 5.2.4 on page 100) we selected 5000 pixel pairs from

the pool of possible pairs (positive correlated pixel pairs) for the given recep-

tive field size. We summed over the products of the selected gray value pairs

to obtain a mirror symmetry index MI(X). The gray values in the image are

assumed to be positive, therefore MI(X) is positive (no negative entries in

Amirror). Its inverse (1/MI(.) ≥ 0) was finally minimized by the Simplex algo-
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Figure 5.15.: Left: The L1-norm of S (rotational symmetry). Right: Found

landmarks overlayed onto the original image

rithm. The obtained maximum mirror symmetry solution is shown in Figure

5.14 right. The algorithm converges fast and reliable, mainly due to the qual-

ity of the features and the apparently smooth energy landscape. For different

orientations of the mirror axis the symmetry value (which is the inverse of the

energy) is shown in the inset of Figure 5.2 on page 97. Notably, the size of

the receptive field found by the mirror detection algorithm is greater than the

outer perimeter of the brain slice. This reflects the analytical result in Sec-

tion 5.2.3 on page 99 that the symmetry of an isolated object is maximal if the

receptive field size is approximately twice as large as the object.

To construct a benchmark case we sub-sampled the brain slice of Figure 5.2

on page 97 reducing its vertical resolution by 2 and rotated the resulting image

by an arbitrary angle mimicking an extreme measurement error. By sampling

5000 pixels from the inside of the figure the major axis of the object was com-

puted by principal component analysis. Due to the sub-sampling procedure

the resulting direction of highest variance was the one shown in Figure 5.14

left. The direction of largest mirror symmetry is shown right and corresponds

to the expected direction.

5.4.3. Landmark Detection

We also tested if symmetry detection can be used to reliably detect local fea-

tures in images. Again we used the brain slice data set introduced in the the

last sections. If one can reliably find local positions (landmarks) in two images,

one can use these points to perform warpings of one image into the other. This

case of a usually non-rigid transformation of the image is used for example to

align slices obtained in different experiments (from different animals). Later
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on one is interested, for example, in the improved statistics of the point-wise

mean.

Landmark detection was started by computing the local rotational symme-

try values of the image (L1-norm of S). The first landmark was selected by

finding the pixel position with maximum symmetry value. At this position an

image with a Gaussian gray value profile was subtracted from the symmetry

value image5. In the changed image the procedure of finding the maximum

symmetry value was continued until a fixed number of landmarks could be

found. Special care has to be taken for large numbers > 100 of landmarks

because the iterative subtraction of the Gaussian profiles constantly lowers the

mean gray value of the image. In effect the maxima selected late in the pro-

cess are from regions where few Gaussian functions where subtracted, e.g.,

from the background of the image. Because the size of the Gaussian function

influences the mean distance of detected landmarks it can be used before-

hand to derive the maximum number of landmarks that can be detected by the

method.

The resulting landmark set is relatively uniform distributed and prefers to

select corresponding points in the two hemispheres (see Figure 5.15).

5.5. Concluding Remarks

In the last chapter we have analysed a special case of our model. Assuming

that we select specific pairs of pixel for the statistics we have introduced a

binary valued matrix A and suggested a design principle to implement symme-

try transformations by that matrix. We found that the model could be used to

code for rotations, scalings, and shifts. Applying symmetry detection on digital

images can be done reliably and is noise-insensitive.

Symmetry detection was also shown to be selective to both foreground and

background object configurations. In the application section it was shown that

the binary quadratic form can outperform shape analysis and can be used for

landmark detection.

The selection of the pixel pairs and by this of an associated symmetry group

may sometimes appear to be obvious. But one has to be careful with intuition.

The question remains: Is there a better symmetry group to describe our data?

Apart from the settings in a specific problem class it may not be obvious which

type of transformation is best. In the next chapter the transformation A is

learned in an unsupervised manner from the data and so can be adjusted to an

unknown problem class.

5This assumes that interesting points are modeled by singular points in the image that are
subject to a Gaussian point spread function.
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As we have seen in Section 4.2.1 the quadratic form can be analyzed in terms

of a set of orthogonal basis functions. The basis functions appear as the eigen-

vectors of the matrix A in the quadratic form. They represent pattern that are

invariant under the transformation. Each one is thought of as coding for one

symmetry transformation. Using an ensemble of images and calculating the ex-

pectation of the quadratic form we found a non-trivial1 solution by assigning

to A the covariance matrix of the data. Image covariance calculated over many

samples is a smooth function of the distance of the pixel (see Section 1.3), i.e.,

reflects that nearby pixels are correlated and distant pixel are not correlated or

anti-correlated. Because of the extensive summing further aspects of the data

are lost. That is, if there are underlying factors that produced the data and

these factors are subject to different statistics only their common part survives.

It is reasonable to expect that natural images are composed from different

factors. These factors can, for example, be the objects present in a scene or

specific (non-accidental) parts of objects. We have to point out here that they

are certainly not added linearly to produce the image. Because of occlusions

of (mainly opaque) objects in a visual scene a logical operation would be more

appropriate which reflects the presence of either one or the other object. But

this is behind the scope of the current work. For now, lets assume that these

factors are added linearly. Each factor is represented by a specific symmetry

operation and a large number of symmetry transformations may constitute our

visual input. To learn more than one symmetry transformation, in essence, we

have to find a model that can cope with more than one matrix A.

6.1. A Tensor Form for Symmetry Detection

The polynomial model of Equation 5.4 on page 94 can be extended to incor-

porate more than one constant (now a vector), more than one linear weight

vector (now a matrix) and more than one quadratic form (now a tensor of

third order)

PN (x) = W ijkx + V x + u. (6.1)

1Different from a diagonal matrix with ai,i = 1 (identity matrix).
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It is essential for our learning algorithm to keep from this model only the tensor

W . We point here to the reasoning on page on page 95 and use the reduced

model

Φ(x) = W ijkx. (6.2)

We can arrive at the same model by the following, more intuitive reasoning:

We want to find a number i of symmetries, each one expressed by its own

matrix Ai. Let’s define a vector valued function Φ which maps the data into

the space of different symmetry operators:

Φ(x) =
(
xTA1x, xTA2x, . . . , xTANx

)T
(6.3)

Additional assumptions can be made for the distribution of p(Φ) incorporating

for example sparseness, independence or uncorrelateness. But before doing

this, we first cast the problem into the notion of dot-products. This allows the

analysis of a linear model in which assumptions can be justified more easily.

Any quadratic form can be written as a linear weighting in the space of

dot-products:

xTAix = (ai
11, . . . , a

i
kk)(x1x1, · · · , xnxm)T = wi vec(xxT ) = wip. (6.4)

where p consists of monomials of constant order 2 and vec(.) describes the

vector form of the entries of the matrix argument. We readily see that because

of the commutativity of the multiplication (xixj = xjxi) the full matrix A gen-

erates each basis function j 6= i twice. The respective feature space would

therefore be always degenerative (data points are concentrated in a linear sub-

space). By removing the obsolete basis functions we obtain the property of an

effective transformation. We eliminate the respective entries from w by intro-

ducing the lower triangular form (vech) of the matrix A.

Adding more dimensions to the model Φ, i.e., more quadratic forms xTAix,

we arrive at

Φ(p) = Wp. (6.5)

Here, W is a square matrix but Φ performs the same computation as in the

tensor notation in Equation 6.2. It can be viewed as a linear mixture expressed

by the mixing matrix W of the signals p in the space of dot-products. In the

case of a single quadratic form A0, W is a row vector and the model reduces

to the quadratic form. In order to learn this model we compute the correlation

matrix C = E
x
(xTx) of the data and set W to its vectorized, lower trinangular

form W = vech(C) (see Section 4.2.1 on page 91). Consequently, for a square
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matrix W (with as many A matrices as components in vech(xTx)) we need to

learn a mixture of covariance matrices on the data.

To arrive at a learning algorithm for this non-linear model (overcomplete)

independent component analysis is introduced. In solving this special case of

ICA a novel learning algorithm will provide us with an efficient algorithm to

learn the parameters of the model in Equation 6.5 on the page before.

6.2. Independent Component Analysis

Let us assume that the data x at a point in time t consists of a number m of

observed variables. All together we have T different observations xi(t) where

i = 1, . . . , m and t = 1, . . . , T (T >> m). We are interested in a function that

maps the m-dimensional space given by x(t) to an n-dimensional space, such

that the transformed variables explicitly contain information on the data that

is otherwise hidden. The transformed variables should capture the underlying

factors that describe the essential structure of the data. Ideally the factors cor-factor analysis

respond to processes that have generated the data in the first place. But this

correspondence is non-trivial and usually done afterwards, by looking onto

found factors and proposing some ideas about a connected physical process. A

simple model of the data is based on linear functions2. Every factor or com-

ponent si(t) can be expressed in this framework as a linear combination of the

observed variables:

si(t) =
∑

j

wijxj(t). (6.6)

Assuming that the observations x(t) are independent from each other, i.e., a

re-ordering of the observations does not destroy essential information we can

consider x a realization of a random process. In matrix notation the linear

system is defined by

s = Wx. (6.7)

Because we know only the observations x and have to calculate the de-mixing

or separation matrix W together with the underlying factors s this type of prob-

lem is termed blind source separation. The forward model for the generation ofblind source

separation the data is a linear basis plus additive noise:

x = W−1s + ν, (6.8)

2There is a (hidden) sign in every lab stating: ’Please Lord, let the world be linear, stationary,
and Gaussian.’
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where W−1 is an M×N mixing matrix with N = M and ν is additive Gaussian

white noise. The basis functions appear as columns of this mixing matrix. The

corresponding data likelihood is

logP (x;W−1, s) ≈ − 1

2σ2
(x −W−1x)2, (6.9)

where σ2 is the variance of the noise. Because the de-mixing matrix W is

expensive to compute, there is strong incentive to find basis functions that are

easy to invert.

Algorithms of principal component analysis are known to de-correlate the

data thus learning an orthogonal basis set. Independent component analysis

assumes the statistical independence of the sources which incorporates de-

correlateness as a pre-requisite. By statistical independence we indicate that statistical

independencethe value of one component x gives no information on the values of the other

component y. We can define this mathematically in terms of the probability

densities of the two involved random variables. They are statistically indepen-

dent if and only if the joint density (or the cumulative distribution functions)

factorizes into the product of the marginal densities px,y(x, y) = px(x)py(y).

Only for Gaussian distributions both uncorrelateness and statistical inde-

pendence are equivalent, i.e., uncorrelated Gaussian components are always

independent. This is indicated by the fact that all higher order moments

(higher than 2) of a Gaussian distribution can be expressed by its first two

moments. Thus the higher order moments contain no additional information.

This is used explicitely in the transformation of the moments of a function to

the cumulants of the function (see Appendix). For a Gaussian distribution the cumulants

cumulants of order higher than 2 are always 0. This is only approximately

true for finite samples from Gaussian distributions. The higher the empirical

moment the higher its sensitivity to outliers.

An intuitive principle of estimating independent components is based on

the measure of higher order moments or cumulants. One assumes that densi-

ties of mixtures of statistically independent sources are more similar to Gaus-

sian densities than the densities of any single (unmixed) component. Thus we

can jugde the quality of an estimated de-mixing matrix W̃ by the similarity

of the densities p(s̃i) (W̃x = s̃) to the Gaussian distribution. Finding sources

which are as non-Gaussian as possible we solve our problem. Non-Gaussianity

is usually measured as non-zero third or fourth order cumulants.

It helps to think of W as a set of basis vectors wi (rows of W ) and

the assumption of non-Gaussianity is expressed in the non-Gaussianity of the

marginal distributions of the dot-products wT
i x.

This fact relates ICA to a method called projection pursuit which is used
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mainly for visualization purposes and looks for maximally interesting distribu-

tions which are those of large higher order cumulants.

6.2.1. Overcomplete ICA

As we have seen in the previous section algorithms of independent component

analysis seek to find the de-mixing matrix W and the underlying sources s

given a hopefully large set of observations x(t). The model assumes that the

observations are stationary and linearly mixed sources

x = W−1s = As. (6.10)

The W−1 is only defined if there are as many sensors (entries of x) as sources.

This is a strong assumption because in many applications one does not know

the correct number of sources. Three cases are possible: (i) square ICA where

we have as many sources as sensors, (ii) if we have more sensors than sources

(in the case of no noise and linear mixtures this can be detected easily by de-

correlation) and (iii) if we have more sources than sensors3. In (iii) the mixing

matrix A is not square and we assume more sources than sensors. Because

a complete set of basis functions4 is given by as many sources as sensors the

above case is termed overcomplete ICA. In Figure 6.1 left, we have symbolized

the case of as many sensors as sources (a square mixing matrix A) and (right)

the case of more sources than sensors on which we will focus our attention. In

the literature this problem is also known as the estimation of an overcomplete

dictionary. Analyzing natural images with (square) ICA one finds indications

for an underlying overcomplete basis set. By increasing the number of basis

functions Lewicki and Olshausen (1999) finds a better sampling of position,

orientation, and scale. Starting ICA algorithms with different initializations

one can find different sets of independent components.

Overcomplete bases are interesting because they admit (i) some ad-

vantages in terms of interpolation, for example an increased stability

of the representation in response to small perturbations of the signal

(Simoncelli, Freeman, Adelson and Heeger, 1992). Wavelet transforms on thewavelets

other hand can be unstable with respect to translations and rotations. (ii) They

also form a tight frame (Lee, 1996) that is, they allow stable reconstruction of

images by linear superposition of the basis functions with their own projection

coefficients (preservation of the signal energy). Through this they (iii) provide

representations of images using coarse neuronal responses, i.e., sparsity in thesparse coding

3Another (The) problem for real world applications is that the model of a stationary linear
mixtures is wrong.

4Given for example by the corresponding eigenvectors of the correlations matrix of the ob-
servations.
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sAx sAx

Figure 6.1.: Generative model. Left: As many sources as sensors, the mixing

matrix A is square. Right: More sources than sensors, the mixing

matrix A is non-square

representation (Olshausen and Field, 1997). A criticism of overcomplete rep-

resentations is that they are redundant, i.e., a given data point can have many

possible representations. Additional assumptions can select a representation

by utilizing prior knowledge about the shape of the density functions of the

single signals.

There is also a more technical reason to be interested in overcomplete dic-

tionaries. If we look closely onto a particular model generating data (no noise,

6-dimensional observation and 12 sources, thus a two times overcomplete dic-

tionary) we see that
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(6.11)

The observations x are computed by the sources s and the mixing matrix A in
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a way that si is in product only with the i-th column of A.

6∑

i=1

xi =
12∑

i=1

si

6∑

j=1

aj,i (6.12)

Thus si acts as a weight of the vector w.,i. An observation x(t) is modeled by

adding these weighted vectors. If a si(t) is near zero its contribution to x(t) is

small, but, if the source si(t) is large (present) for one i only the corresponding

w.,i will solemny define the observation x. Therefore we can view each column

w.,i of the mixing matrix A as a spatial (spatial5) pattern defining the structure

of a source si. Sometimes the pattern are also called maps because they mapICA maps

the structure of the found source.

If we do not know the number of sources, how many possible pattern are

there? Infinitely many, because we can also ask how many pairwise distinct

columns can be defined for the matrix A (the entries of the matrix are scalar

values). If we assume that the pattern contain binary values only the possible

number of pattern is finite. The model would be still valuable in real world

applications because a single binary value in the pattern can represent cortical

activity and code for an either activated or inactivated area. The number of

possible pattern (columns) for the mixing matrix is in this case 26 = 64 (so A
should be modeled by a 6×64 matrix). Even if not all 64 pattern are generated

by the cortical circuitry it may be very likely that more than 6 pattern are

present. With square ICA we can only detect 6 of them (as many pattern as

sensors).

Introducing more sensors offers only a poor alternative. First of all the

sensor signals will be highly correlated and thus the amount of additional in-

formation is very low. Second, adding more sensors gives the model the op-

portunity to explore the pattern between sub-groups of sensors (i.e. it will

enhance the spatial resolution of the method). But it will not solve the origi-

nal problem of obtaining 12 pattern from 6 sensors. Therefore we need more

effective methods to solve overcomplete ICA.

A drawback connected with overcomplete bases is that the values of the

independent components cannot be exactly recovered even if the mixing ma-

trix is known. This is because the mixing matrix is not invertible. There-

fore, even after estimating the mixing matrix A, the problem of optimal

estimation of the realizations of the independent components needs to be

solved. The naive approach of using the pseudo-inverse of the mixing ma-

trix ŝ = A+x = AT (AAT )−1x does often not work well (Hyvärinen and Inki,

2002; Olshausen and Field, 1997). More advanced algorithms incorporate

5Spatial because it appears in a time step x(t).

120 Hauke Bartsch, 2002



6.2. Independent Component Analysis

some knowledge about the sources at this stage of the problem. For example,

a smoothness assumption about the change of the active sources in time. In

the context of image analysis we are interested in obtaining the basis functions

as underlying structure of the images which consists out of the columns of the

mixing matrix, thus we need not to cover the additional problem of obtaining

the sources (Olshausen and Field, 1997). In summary we are interested in the

recovering of the mixing matrix (ICA problem) which represents the pattern

or maps of the sources and we ignore the additional problem of blind source

separation (BSS).

Please keep in mind that we are still interested in solutions of the extended

quadratic form in Equation 6.5. The connection of the two problems, that of

learning features which describe symmetries and that of solving a non-square

ICA problem is the following: Both will use the same non-linear transformation

into a higher dimension feature space. Under the assumption that natural

images can be explained by the model of ICA we can use the algorithm of non-

square ICA to solve Equation 6.5 and find the independent factors of natural

images.

6.2.2. Algorithms for Learning Overcomplete Dictionaries

Developing efficient algorithms to solve problems with overcomplete dictionar-

ies is an active area of research. A first approach for learning an overcomplete

basis set is, for example, to select the basis functions according to a low entropy

description (Chen, Donoho and Sanders, 1996; Coifman and Wickerhauser,

1992; Mallat and Zhang, 1993) of a particular signal or a class of signals such

as texture (Zhu, Wu and Mumford, 1997). These approaches pre-define a set

of basis functions on intuitive criteria such as using 2D Gabor functions for

modeling oriented structures in images. An entropy measure was then used

to select from this set the best solution. Although overcomplete bases can be

more flexible in terms of how the signal is represented, there is no guarantee

that pre-designed basis vectors will be well matched to the structure of the

data. Ideally, we would like the basis itself to be adapted to the data, so that

for a signal class of interest, each basis function captures a maximal amount of

structure.

An approach which learns the basis functions is motivated by

the sparsity assumption of neuronal codes (Olshausen and Field,

1996; Olshausen and Field, 1997; Lewicki and Olshausen, 1998;

Lewicki and Sejnowski, 1998; Lewicki and Sejnowski, 2000). The redun-

dancy problem of the overcomplete basis set is solved by assuming a particular

prior P (s) on the activation of each component. sparse coding

The principle states that only few neurons (si) should be active at any time
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to save metabolic costs, but if a neuron is active it should respond strongly

in order to signal the presence of a feature6. The corresponding probability

density of the firing of such a neuron should have a high peak at zero and

’heavy tails’ which resembles the typical shape of a super-Gaussian distribution.

One example for such a distribution is plotted in Figure 5.3 on page 98. It is

obtained as the marginal distribution of a projected Gaussian distribution into

the space of dot-products. Sparse coding favors non-Gaussian distributions,

ergo an ICA solution.

In the previous model the prior on the source distributions (density of the

activation of a unit) has to be chosen in advance. Usually the models work

best if the prior used by the algorithm corresponds to the prior used by the

generation of the data. In real world applications the correct priors are usually

unknown. Thus it is preferable to learn the correct priors from the data at the

time the mixture is estimated. This idea of adaptive source densities is im-

plemented by an algorithm termed independent factor analysis (Attias, 1999).independent

factor analysis Here, the source distributions are modeled as factorial mixtures of Gaussians.

Each source density i (prior distribution Pi(x)) is modeled by a mixture of n
Gaussians. The term factorial mixture of Gaussians refers to the fact that the

Gaussian distributions for one source are bound together.

All proposed algorithms are computationally very demanding. Hyvärinen

(1999) introduce a fast algorithm for the estimation of an approximate

overcomplete basis. The algorithm uses the interesting property of quasi-

orthogonality (Kohonen, 1995). The observation shows that one can placequasi-

orthogonality a lot of vectors in higher dimensions that are close to orthogonal (quasi-

orthogonal). In fact, if the dimension grows the angles between pairs of vec-

tors can be made arbitrarily close to 90 degrees. The point here is that in two

dimensions only two vectors can be orthogonal but in 50 dimensional many

hundred vectors can be made ’quasi-orthogonal’. Algorithms like support vec-

tor machines rely (implicit) on this property, if they use projections into higher

dimensional spaces. The probability to arrive due to an arbitrarily projection

at an orthogonal set is high thus algorithms relying on linear separation work

well in high dimensional feature spaces.

6A metabolically efficient code must balance between silent and spiking neurons.

Laughlin and Attwell (2000) have produced estimates of the actual costs of dormancy and

spiking in rat cerebral cortex neurons and they found that the maintenance of a neuron at
rest absorbs a significant amount of energy. The generation of one action potential uses as

much energy as maintaining a single neuron and its attendant glial cells at rest for only
about 2s.
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Figure 6.2.: Two Gaussian functions can model a sparse distribution. Left:

A histogram of one-dimensional data x which is drawn from a

mixture of two independent Gaussian distributions (N1(0, σ1 =
1),N2(0, σ2 = 4)). Right: the kurtosis (k = E(x4) − 3(E(x2))2 for

zero mean data) of the distribution dependent on the variances of

the first and the second mixture component. The circle indicates

the parameter settings for the two functions left

6.3. Solving Overcomplete ICA by Mixtures of Gaussians

We present now a solution to the problem of overcomplete ICA. We solve the

source separation problem by a method of statistical data modeling. A source

will be described by a multivariate distribution parameterized by Ai. Whereas

density estimation is usually a harder problem then source separation we can

use a crude model of the densities to reliably obtain the source directions of an

additive linear mixture.

We like to describe the observed variables xi (independently drawn, corre-

lated sensor signals) by a set of L unobserved variables sj which are mutually

independent. The simplest description of the problem is given by the linear

model linear model

xi =
L∑

j=1

wijsj + ν, (6.13)

where wij describes an entry of the stationary mixing matrix W and ν is a ran-

dom vector reflecting corrupted source, sensor, or mixing signals. We assume

therein that the model is correct, thus the observed data can be produced by

the model with some parameters.

Lets assume that our source densities are sparse and symmetric. The ICA

solution we are looking for provides linear sources that explain our data as
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a factorizing distribution. In order to obtain the sources we now introduce a

model of a mixture of Gaussian functions that is learned in order to estimate

the factorizing distribution we are looking for.

We have to be sure that the sparsely distributed sources can be modeled

sufficiently by a mixture of Gaussian functions. More specific we want to model

n source directions by very few, e.g., n + 1 Gaussians. Generally this cannot

be achieved, we need at least two functions to model one sparse distribution.

In Figure 6.2 on the page before two Gaussian functions are used to model

sparse distributions. Given the density function of the data is symmetric and

unimodal we can fix the mean of both Gaussian functions to zero. Only their

respective variances σ1 and σ2 act as free parameters and produce distributions

with arbitrary high kurtosis which we use here to indicate sparseness. For this

reason the model is termed centralized Gaussian mixture model.

In two dimensions the restriction of zero mean symmetric basis function

gives us a vantage point for analyzing sparse data. One source distribution can

be efficiently modeled by two Gaussian functions, one with large and elongated

and the other small and circular. For every additional (sparse) source present

in the data the model needs only 1 additional (large and elongated) Gaussian

function because the small circular shaped distribution can be utilized by both

sources. Therefore we can model each sparse source distribution by 1 Gaussian

function with an overhead of one additional Gaussian in the model. Note that

we still have to know the number of sources.

6.3.1. Learning of the Mixture Model by EM

To find the parameters of the model we employ the the Expectation Maximiza-

tion (EM) algorithm of Dempster et al. (1977). The EM algorithm is able to

find a locally optimal solution for the estimation of the densities.

A common problem in learning mixtures of Gaussian densities with the

EM algorithm is the occurrence of singularities due to source densities that

concentrate onto a single data point. The corresponding covariance matrix

eventually gets singular whereas the likelihood of the model is maximized.

This can be seen by calculating the likelihood of a Gaussian distribution

L(x) = − logP (x) ≈ − log(p(x)∆) = − log p(x) − log ∆ (6.14)

=
(x− µ)2

2σ2
+

1

2
log 2π + log σ − log ∆ (6.15)

as ∆ (scales the area under the function) goes to zero the likelihood goes to

infinity.

Regularizing Σ can help in this case. We use an update rule for

the co-variance matrices based on the Wishart density (Buntine, 1994;
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(a) (b)

Figure 6.3.: Mixtures of two respectively three independent sparse sources

learned by EM. (a) The first figure is a scatter plot of the data (ICA

source model, g(u) = u3). The other four figures display in color

the posterior probabilities of the four Gaussian functions. The re-

spective 2-dimensional Gaussian functions are shows as ellipses.

(b) The corresponding result for three sources in two observations

Ormoneit and Tresp, 1996). We constrain the likelihood by adding the sum of

the inverse of the eigenvalues of the covariance matrix defining the variances

of the Gaussian functions. The respective change in the update rule compared

to the standard M-step is

Σi
unr =

∑m
k=1 h

k
i (x

k − µ′
i)(x

k − µ′
i)

t

∑m
l=1 h

l
i

⇒ Σi
reg =

∑m
k=1 h

k
i (x

k − µ′
i)(x

k − µ′
i)

t + 2βI
∑m

l=1 h
l
i + 1

.

(6.16)

where I is the unity matrix and β a regularization parameter. In effect this

cannot prevent that for a Gaussian a eigenvalues converges to zero, if all other

eigenvalues are sufficiently large. Nevertheless, it worked fine in all our exper-

iments.

Observations on the un-regularized version of the original EM-algorithm

suggest that in regions with one source density and two or more model den-

sities the densities do not cooperate. Only one component is used to explain

the data density whereas the other components converge to single data points.

This is of importance because in the centralized Gaussian mixture model we

fix all mixtures at zero mean, thus they strongly compete for the data. But this

setting in fact helps, because there is only a single data point (at zero) for a

singularity to occur (but see the regularization), thus by sacrificing a compo-

nent with an approximative uniform distribution the other components (one

for each sparse independent component) can explain the data. The direction of
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the first principle axis of each component is used as an indicator of the source

direction.

In Figure 6.3 on the preceding page for two toy data problems (with 2
respectively 3 sources in 2 observations) the model of centralized Gaussian

mixtures was trained with the proposed algorithm. The data are obtained as

linear mixtures of independent super-Gaussian (N1,2,3(µ = 0, σ = 1)3) sources

and are shown as scatter plots. We trained a mixture of l = 1, . . . , 4 respec-

tive l = 1, . . . , 5 Gaussian densities on a data set of size 10, 000. Classifiers of

new inputs x are obtained by the maximum posterior class probability p(x|l)
computed from the class-conditional data likelihood p(x|l), p(x|l) and p(l) are

estimated from the sample data by the EM algorithm of (Dempster et al., 1977)

with regularization by Equation 6.16. In each maximization step in the algo-

rithm the centers of the Gaussian functions are kept fixed to the center of mass

of the data distribution.

In Figure 6.3 the posterior probabilities of each component l are coded in

color (red for high probability of x to be generated by l). Overlayed is an ellipse

illustrating the respective iso-probability curve of the two dimensional Gaus-

sian function. In each case (a) and (b) two components could be learned with

small respective large circular Gaussian-distributions. All other components

correspond in their first principal axis to source directions in the data.

6.3.2. Conclusion

The proposed model estimates the source densities (parameter-

ized by the covariance matrices) similar to the model presented in

Xu, Cheung, Yang and Amari (1997) and the independent factor analysis

of Attias (1999). Also Olshausen and Millman (2000) proposed a model in

which a mixture of Gaussian priors is learned to characterize the (sparse)

posterior distribution over the coefficients. Interestingly the last model also

tried to model a single source direction by 3 Gaussian distributions and found

that two large variance distributions converged to the same mean position.

Subsequently the results in Olshausen and Millman (2000) are obtained in

the case where two Gaussian distributions per source are used to model one

(sparse) source distribution. In our approach each component independently

models the data. Therefore, we cannot fully clarify which set of components

is used to model one source direction. Nevertheless the results on the toy

data set give us a clear intuition how to interpret the found solution. Basically

one component at the center position is utilized by all other components to

produce a factorizing distribution similar to the one dimensional case illus-

trated in Figure 6.2 on page 123. Before presenting first results for the GEM

algorithm on data obtained from natural images we propose an alternative

126 Hauke Bartsch, 2002



6.4. Solving Overcomplete ICA by Introducing New Dimensions

algorithm to learn a mixture model of quadratic forms. This algorithm allows

us to extend the concept of higher order feature detectors to correlations of

any order.

6.4. Solving Overcomplete ICA by Introducing New Dimensions

An intuitive reason for the problems of non-square ICA is that we do not have

enough space to make our data statistically independent. A linear mixture of

two distributions can be made statistically independent in two dimensions, re-

gardless of the specific shape of the distributions. Wrong choices of the transfer

function result in errors only in the scaling of the found sources. This is not

true for the projection of a linear mixture of three or more distributions onto

two dimensions. Introducing independence in the data is only possible if we

can transform the data in such a way that every unique source direction cor-

responds to a unique space dimension. Therefore we like to introduce new

dimensions. The idea is to project the data into a higher dimensional space.

In the next section we give a short introduction into the notion of features

spaces.

6.4.1. Feature Spaces and Manifolds

The goal of data processing is to obtain a better representation of the informa-

tion contained in the data. Classification is an extreme case were a high di-

mensional input is projected onto a single value describing a class label. Often

the data is projected into a space of higher dimensions, for example by com-

puting the response of each location in the image to a bank of filters. Selecting

a specific bank of filters results in highlighting specific information which are

also called the features in the data. For this reason the space defined by a

projection is called feature space whereas the space of our original data we will feature space

call input space.

Projections may or may not destroy information in the data. This is ex-

pressed in the notion of (non-)invertible projections or functions. If a function

is invertible no information is lost whereas if a function is non-invertible infor-

mation about the data is lost during the transformation. Of some importance

is the dimensionality of the feature space with respect to the dimensionality

of the input space. If the feature space is of lower dimension information is

certainly lost during the transformation7 but often the dimension of the fea-

7It gets more complicated here if the information in input space fills only a sub-space. For

data from this sub-space no information may be destroyed but this requires additional
knowledge about the data and should be handled by pre-processing.
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Figure 6.4.: Example spaces. Left: Intrinsic dimension 1, extrinsic dimension

3. Center: Intrinsic dimension 2, extrinsic dimension 3. Right: The

space enclosed in the sphere is a manifold with intrinsic dimension

3 and extrinsic dimension 3

ture space equals or is larger than the dimension of the input space. A set of

spatial filters [Φi] applied onto each position i in the image X is an example

for a projection f(i) : IR → IRm of a single pixel into a higher dimensional

feature space (m filter coefficients). Because of the transformation there is no

additional information which appears magically to fill the additional (m − 1)
dimensions, during the transformation some information is only ’borrowed’

from neighboring positions j : |i− j| < rfs in the image. So at best we can re-

distribute the information contained in the data evenly. It depends on this re-

distribution process if we (lose) retain information, i.e., if the transformation

is (non-)invertible. Important is that in the case of no noise the transformation

cannot effectively fill the higher dimensional space. The data will be restricted

to a sub-space also called a manifold in the feature space.

A manifold is the generalization of the concept of surfaces or shapes tomanifold

higher dimensions. It is defined a set of points with an associated coordi-

nate system. In our above example a point of the manifold S is defined by

the m filter coefficients obtained from a single image patch. By a coordinate

system we mean a one-to-one mapping from S to IRn, which allows to spec-

ify each point in S using a vector of n real numbers (the coordinates of the

corresponding point). The natural number n is called the intrinsic dimensionintrinsic

dimension of S (writing n = dimS). Let S be a manifold and φ : S → IRn be a co-

ordinate system for S. Then φ maps each point p in S to n real numbers:

φ(p) = [χ1(p), . . . , χn(p)] = [χ1, . . . , χn]. These are the coordinates of the point

p. The n functions χi : S → IR(i = 1, . . . , n) are called the coordinate functions.

We are free in choosing a coordinate system. An interesting candidate is

given by the coordinate system of our input space. In the case of a set of

spatial filters the inverse of the transformation into the feature space f−1(p) =
φ maps a point p in S into IRn, n being the dimension of an image patch i in
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X. In linear filtering the coordinate functions χi are simply the lines of the

inverse of the transformation matrix (provided the inverse exists). Therefore

the introduction of a high dimensional feature space can be understood as the

definition of manifolds in which the data is projected.

The dimension we are talking about in colloquial terms is often the in-

trinsic dimension, not the extrinsic dimension. Thus, a curve in 3-D space is extrinsic

dimensiona one-dimensional manifold (intrinsic dimension 1) of extrinsic dimension 3.

The surface of a ball is a two-dimensional manifold (intrinsic dimension 2) of

extrinsic dimension 3. Figure 6.4 shows three example spaces and the corre-

sponding intrinsic and extrinsic dimensions.

The important point is that a deterministic transformation of a n-

dimensional space into a higher m > n dimensional space can never en-

large the intrinsic dimension of the data. The data will always be in a lower-

dimensional manifold. We can only enlarge its extrinsic dimension. A transfor-

mation which enlarges the extrinsic dimension we will call an effective trans-

formation.

Lets do an example for a not-effective transformation. If we assume the

input space as being x := (x1, x2) ∈ IR2 and we construct the feature space

according to f(x) = y := (x1, x2, x1 + x2) we do not enlarge the extrinsic

dimension of the data from 2- to 3-dimensions. This can be seen by performing

a change of variables x′1 = 2/3y1 − 1/3y2 + 1/3y3, x
′
2 = −1/3y1 + 2/3y2 + 1/3y3,

and x′3 = 0 (which inverts our feature space transformation, x′i being the i’s
coordinate function). We can express the data in a coordinate system with

only 2 non-zero dimensions. This indicates that all data in feature space are

concentrated in a 2-dimensional plane.

In general, every linear transformation of the form y = Ax is not suitable

to effectively construct a high dimensional feature space. In our example above

y is constructed from

y =





1 0
0 1
1 1





(
x1

x2

)

= Ax. (6.17)

The coordinate functions x′i are computed from the pseudo-inverse of A,

A+y =





2/3 −1/3 1/3
−1/3 2/3 1/3

0 0 0









y1

y2

y3



 . (6.18)

6.4.2. A Feature Space for Overcomplete ICA

As seen in the last section the effective mapping into a higher dimensional

feature space cannot be done by linear methods because there the extrinsic
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Figure 6.5.: Three examples for manifolds S (surfaces in 3 dimensions) defined

by non-linear transformations where specific directions (depicted

by lines) are lines, i.e., for some tangent vectors ψ each aψ is in S
(a ∈ IR)

dimension of the data remains. The linear transformations can only construct

rotated and scaled hyper-planes. The de-correlation applied as pre-processing

step in many algorithms easily ’destroys’ the additional dimensions. To obtain

an effective enlarge representation of our data we need therefore non-linear

transformations. Only they can provide an embedding of our data into a higher

dimensional space that cannot be undone by linear methods. Whereas many

non-linear transformations will enlarge the extrinsic dimension of the data not

all of them can be used in our context of linear source separation.

Sorry, now its gets a little bit complicated: Our goal is to make the data

in feature space statistically independent which solves the problem of linear

source separation. If the data has extrinsic dimension m in a space of m di-

mensions than linear ICA provides an solution to our goal by estimating a

de-mixing and a corresponding mixing matrix. Once this is done the source

pattern are given simply as the columns of the mixing matrix. Using the algo-

rithms of FastICA the columns of the mixing matrix are found as directions in

which the data is sparsely distributed. But our data is in that space restricted

to a lower dimensional manifold. We conclude that the transformation has

to implement a property that directions, i.e., scaled vectors, are on the mani-

fold (the manifold is closed under scalar multiplication). This may appear to

be contradictory, because at the one hand we want to use non-linear trans-

formations and on the other hand we want our data in feature space to be

concentrated along directions in Euclidean space.

A solution to this problem is shown by the observation that we can combine
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linearity and non-linearity in orthogonal directions in the feature space. Three

examples for manifolds with this property are shown in Figure 6.5 on the facing

page. Every on of them displays a curved non-Euclidean 2D manifold in 3D

space. Yet, in each of them some some of the tangent vectors (depicted as

lines) are in the manifold. Only the first and the third example corresponds

to feature spaces in which all tangent vectors also touch the mean of the data

which is important because only those can be found by linear ICA.

A non-linear mapping F : IRm → IRn that projects scaled vectors α~γ in input

space into scaled vectors ~g(~γ) in feature space must obey the decomposition:

F(x) = f(x) ~g

(
x

||x||2

)

= f(r, ~γ) ~g(~γ) (6.19)

where the tuple (r, ~γ) describes the data in polar coordinates. The non-linearity

is banned explicitly to appear only in ~g, i.e., in directions orthogonal to source

directions8.

f(.) and ~g(.) are functions that separately describe either a scaling of the scaling space

data in the direction ~g or the non-linear mapping (bending) of directions by bending space
~g. ~g is a vector valued function of dimension 1 ×m, m being the dimension of

the feature space. In ordinary ICA one would choose m as being the number

of sources to separate.

An assumption that can be placed onto the scaling function f(r, ~γ) is that

our problem is rotational symmetric, e.g., the scaling should not depend on

direction.

f(r, ~γ) = f(r) (6.20)

The mapping F is therefore expressed in general form as general form

F(r, γ1, . . . , γn−1) = f(r)








g1(γ1, . . . , γn−1)
g2(γ1, . . . , γn−1)

...

gm(γ1, . . . , γn−1)







. (6.21)

Because we decoupled our class of functions it is sufficient to consider the

scaling property implemented by f and the bending property implemented by

~g separately.

Desired Properties of the Transformation

Now we introduce some properties that further constrain the space of possi-

ble functions which up to now only obeys the form of Equation 6.21. In here
8Our manifold in feature space is like Flatland with its inhabitant A-Square exploring the

curved nature his 2D space in 3D (Sphereland: A Fantasy About Curved Spaces and an

Expanding Universe, Dionys Burger (1965)).
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we borrow some methods of orthogonal functions, differential geometry, and

information geometry (Amari and Nagaoka, 1993). We will mark properties

that are needed in order to perform linear methods in feature space as nec-

essary and explain also how for a given transformation the properties can be

tested.

Properties of the function class F are:

1. linear Decomposition (necessary): The function F is of the form

F(r, ~γ) = f(r, ~γ)~g(~γ).

Test: by linear algebra

2. Linear independence of basis functions (necessary): The m functions gi(~γ),
i = 1 . . .m are called linear dependent in a set G if there exist m constants

c1, . . . , cm, not all zero, for which the function c1g1 + c2g2 + · · · + cmgm is

zero. If such constants do not exist, the m functions are called linearly in-

dependent. In our framework this property of a feature space assures that

the data can effectively fill the feature space. In the context of project-

ing the data into higher dimensional feature spaces it enforces non-linear

basis functions.

Test: Linear independence of functions is equivalent to a non-zero deter-

minant (Wronskian)Wronskian

W (g1, g2, . . . , gm−1) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

g1 g2 · · · gm−1
∂g1

∂~γ
∂g2

∂~γ
· · · ∂gm−1

∂~γ
∂2g1

∂2~γ
∂2g2

∂2~γ
· · · ∂2gm−1

∂2~γ
...

...
. . .

...
∂m−2g1

∂m−2~γ
∂m−2g2

∂m−2~γ
· · · ∂m−2gm−1

∂m−2~γ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

6= 0. (6.22)

3. General linear independence (necessary): ~g should ensure that any m pair-

wise different vectors ~g(~γ0), ~g(~γ1), . . . , ~g(~γm−1) are linear independent.

This is connected with the goal of detecting arbitrarily, pairwise different

combinations of source directions. If this property does not hold it is pos-

sible that m (highly super-Gaussian) sources populate a m−k, 0 < k < m
dimensional sub-space (by being linear- or nearly linear dependent).

Test:General linear independence is equivalent to the matrix M having a

non-zero determinant for all possible assignments of γ

|M | =

∣
∣
∣
∣
∣
∣
∣
∣
∣

g1(~γ1) g2(~γ1) · · · gm(~γ1)
g1(~γ2) g2(~γ2) · · · gm(~γ2)

...
...

. . .
...

g1(~γn−1) g2(~γn−1) · · · gm(~γn−1)

∣
∣
∣
∣
∣
∣
∣
∣
∣

6= 0 (6.23)
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4. Differentiable: ~g should be rotational symmetric if problems are rotational

symmetric. This favors differentiable, periodic functions.

5. Factorizing distr. remain: If we observe a factorizing distribution the pro-

jection in feature space should not introduce correlations in the data.

This is a difficult problem, because the data is concentrated in a mani-

fold (for example a bended plane in 3D). This will introduce correlations

in the data. Because whitening is part of many ICA methods factorizing

distributions will be spoiled.

6. Invertible: F should be invertible, so that back–projection of data is pos-

sible.

It remains to show (i) if there is such a feature space and (ii) if these con-

siderations define a singular form of ~g.
Because the linear methods applied in the feature space for them self

change the space linearly they can cope with different linear transformations.

Therefore any extended general form can be chosen extended general

form
F(r, γ1, . . . , γn−1) = f(r, ~γ)P~g(~γ) (6.24)

where P is a square, positive definite, and real valued matrix of size (m− 1)×
(m − 1). By P one can produce any linear transformation on ~g which would

correspond for example with rotations, scalings or translations of the manifold.

In the following we will examine some feature spaces for their properties

regarding the restrictions we have placed so far onto F(r, ~γ) to reasonably

perform linear methods as for example ICA.

Example 1: Polynomial Spaces

For polynomial spaces, which are most frequently used for defining non-linear

feature spaces, directions in data space are mapped onto curves in feature

space as can be seen for example by a polynomial space of order 2. The map-

ping of a data point x into feature space is done by

x =

(
x1

x2

)

FS−→
(
1, x1, x2, x1x2, x

2
1, x

2
2

)
(6.25)

Consequentially, a direction v =
(

u
au

)
is mapped onto a vector

(
1, u, au, uua, u2, (au)2

)T
(6.26)

which is not compatible with the general form of Equation 6.21 on page 131.

For example, in the sub-space spanned by u and u2 a source direction is mapped
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Figure 6.6.: Feature spaces defined by three radial basis functions. Left: The

basis functions for one of the feature spaces, equally spaced in the

interval [0, 2π]. Right: Each manifold is coded in a different color

(blue, purple, red) with decreasing variances of respective basis

functions

onto a parabolic function. Therefore a polynomial space is not compatible to

linear methods.

One may suspect that the reason for this incompatibility is the different

order of the single terms, later on in Section 27 on page 137 we will define a

feature mapping with terms of constant order.

Example 2: RBF Spaces

If we use radial basis functions’ (RBF) as basis functions, our feature space isradial basis

functions of the form

~g(γ) =








G1(γ1, . . . , γm−1)
G2(γ1, . . . , γm−1)

...

Gn(γ1, . . . , γm−1)








(6.27)

whereGi is a Gaussian function with mean µi and variance σi. We can illustrate

the mapping from data space into feature space in the case of m = 2 and n = 3
(see Figure 6.6). Doing ICA in this space one would expect to extract three

independent components from two observations.

First of all, the feature space is not rotationally invariant (not a closed

curve), which is due to the non-periodic defined basis functions. Second, di-

rections can be linear dependent for small variances of the underlying Gaussian

distributions. This property will be explain in more detail in the next section

which is about circular radial basis functions which share this disadvantage.
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Figure 6.7.: Shape space for a moving first Gaussian distribution (shifted from

[0 . . . 2π], left to right, top to bottom), the means of the second and

third components are kept fixed. Variance was σ = 0.3

We summarize that equally spaced Gaussian radial basis functions may be-

have rather badly if the basis functions have small variances.

Usually one learns the parameters of the Gaussian functions from the data

in order to get better results. Tuning the RBF’s can be obtained by learning

the means and variances. Clustering algorithms, for example, ensure that at

best each single Gaussian function is placed at the direction of a component

(because the data is concentrated in that direction). One can suspect that

non-equal spacings are favorable, even though this assumes knowledge about

the unknown components. To explore the utility of an adaptation of the center

positions to the data in Figure 6.7 the shape space for a moving first component

is shown (mean is varying in the interval [0, 2π]). We plot here not the 3D

space but the curves obtained from the crossing points of the manifold with a

plane that is tangent to the unit sphere. Each point on the curve represents

a possible source directions. The variances of the basis functions is relatively

small (σ = 0.3) and in all cases we can imaging three directions, i.e., three

pairwise different points on the curve to be linear dependent.

Example 3: Circular Radial Basis Functions

Using ordinary Gaussians as radial basis functions for circular data is question-

able because they cannot deal with the periodic nature of the data. In the next

section we therefore move to a different form of basis function, the von Mises

distribution, which is the equivalent circular to the normal distribution.

The von Mises Distribution

The circular equivalent of the normal distribution is the von Mises distribution von Mises

distribution
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Figure 6.8.: Feature space defined by three von Mises distributions. with de-

creasing concentration parameter κ. Left: The three basis func-

tions equally spaced with a concentration parameter of κ = 0.3.

Right: Each manifold is coded in a different color (dark blue, light

blue, red) with decreasing κ = 1.5, 1, 0.3 thus increasing variance

Figure 6.9.: Manifold in 3D (in blue) cut by a plane through the origin rep-

resenting a 2D sub-space. It is possible to define 3 directions in

feature space that all fall in the 2D sub-space. There is no guar-

anty for unknown source directions to fill the 3D space (be linearly

independent)
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Figure 6.10.: Feature space defined by three monomials. Left: Three basis

functions cos2(γ), sin2(γ),
√

2 cos(γ) sin(γ), γ = 1 . . . π. Right: The

3-dimensional feature space which we termed due to its shape

Diabolo space. A convex shape implies non-linearity for every

combination of three different vectors and perfect circular sym-

metry

(Mardia and Jupp (2000), page 36),

M(θ, µ, κ) =
1

2πI0(κ)
exp(κ cos(θ − µ)) (6.28)

where I0 denotes the modified Bessel function of the first kind and order 0,

which is defined as

I0(κ) =
1

2π

2π∫

0

dθ exp(κ cos θ) (6.29)

The parameter κ is known as the concentration parameter and behaves inverse

to the variances of a normal distribution (κ = 0 equals a flat distribution).

Note that M(µ + π, κ) and M(µ,−κ) are the same distributions. The shape of

the function is very close to that of the normal distribution as can be seen in

Figure 6.8 on the preceding page. But again for a large concentration param-

eter κ there are combinations of three directions that are linear dependent or

nearly linear dependent. This is illustrated in more detail in Figure 6.9 on the

facing page.

Example 4: Monomial Spaces of Constant Order

In the example about the polynomial spaces we suspected that the different

order of the monomials provide the main reason for their incompatibility with
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linear methods. Based on this insight we now introduce monomial spaces of

constant order.

Let each basis function ~g be defined in terms of a monomial in n variables

of order d:

~gn(d) = {xe1

1 x
e2

2 · · ·xen

n | e1 + e2 + · · ·+ en = d, ei ≥ 0} . (6.30)

It is easier to define the basis functions in Cartesian coordinates but the formu-

lation in polar coordinates is straight forward. For example the monomials of

order 2 in m variables (x = (x1, . . . , xm)T are defined by

~g(x) = xxT . (6.31)

In order to increase the intrinsic dimension for each monomial term we only

count on commutative monomials (vech = lower triangular form):

~g2(x1, . . . , xm) = vech








x2
1

x2x1 x2
2

...
...

. . .

xmx1 xmx2 · · · x2
m








=








x2
1

x2x1
...

x2
m








(6.32)

Defining a feature space by monomials of constant order d ensures that

the space is compatible with the general form of Equation 6.21 on page 131

because every dimension is of the form rd cossin(~γ), where cossin(.) is a product

of sine and cosine terms.

We introduce now a linear scaling of the basis functions and show that all

orthogonal directions in a 2 dimensional input space are mapped onto orthog-

onal directions in the space of monomials of constant order. Let d be the order

of the monomials. If two vectors in input space are orthogonal their scalar

product should be zero:

(x1, y1)

(
x2

y2

)

= x1x2 + y1y2 = 0 (6.33)

x1x2 = −y1y2 (6.34)

This implies also that xe
1x

e
2 = (−1)eye

1y
e
2. For d = 2 we have to test now if the

scalar product of the projected vectors is zero as well:

(x2
1, αx1y1, y

2
1)(x

2
2, αx2y2, y

2
2)

T = y2
1y

2
2 − α2y2

1y
2
2 + y2

1y
2
2 = 0 (6.35)

here we used the fact that x1x2 = −y1y2 implies that x2
1x

2
2 = y2

1y
2
2. α is our

unknown scaling factor which obviously has to be α =
√

2. Lets do this again

for an term of order d = 3:

(x3
1, αx

2
1y1, αx1y

2
1, y

3
1)(x

3
2, αx

2
2y2, αx2y

2
2, y

3
2)

T =

−y3
1y

3
2 + α2y3

1y
3
2 − α2y3

1y
3
2 + y3

1y
3
2 = 0. (6.36)
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Figure 6.11.: Input space is folded into the space of monomials of constant

order (Diabolo space). Shown is the procedure of folding a plane

disc (in yellow) into the Diabolo space with one intermediate

step in green

Here we see that α can be set to 1 and the scalar product is zero (e.g., the

directions are orthogonal).

Depending on the order d the following pattern emerges:

(−1)dyd
1y

d
2 + α2

(
(−1)d−1yd

1y
d
2 + (−1)d−2yd

1y
d
2 + · · · + (−1)1yd

1y
d
2

)
+ yd

1y
d
2

= 0(6.37)

where

α =

{ √
2 : if d is even

1 : if d is odd
. (6.38)

The term is only needed for even orders of the monomials and for basis func-

tions of the form aiaj, i 6= j.
Because of its length the proof of the general linear independence of mono-

mials of constant order is presented in Section C on page 190.

To illustrate the mapping of directions onto Diabolo space in Figure 6.11

the two spaces, input- and Diabolo-Space are shown together with a linear

interpolation (.5 * input space + .5 * Diabolo space). In this example the

scaling function f was chosen to be f(x) = |x|x ensuring that points in the

139



6. The Real Valued Quadratic Form

positive quadrants are mapped onto the positive and points in the negative

quadrant are mapped onto the negative quadrant. The function is therefore

invertible.

The model is easily extended to monomials of higher degree or more vari-

ables. In the case that we have monomials of order n in d variables there are
(
n+ d− 1

n

)

(6.39)

commutative monomial (equals the number of feature dimensions). For mono-

mials in d = 2 variables ((u, v) = (r =
√
u2 + v2, γ = atan(v/u))) and order

n = 2, 3, 4 the monomial feature spaces can be defined as F(r, γ) =

r2





cos2(γ)
sin(γ) cos(γ)

sin2(γ)



 ; r3







cos3(γ)
sin(γ) cos2(γ)
sin2(γ) cos(γ)

sin3(γ)







; r4









cos4(γ)
sin(γ) cos3(γ)
sin2(γ) cos2(γ)
sin3(γ) cos(γ)

sin4(γ)









(6.40)

One may be worried about the periodicity of the used basis functions. Di-

rections of linearly mixed centered distributions are π-periodic but that is not

always true for our sine and cosine functions. It is easy to show that depending

on the order d = d1 + d2

g(γ + π) = cosd1(γ + π) sind2(γ + π) = (−1)d1+d2g(γ). (6.41)

For odd orders d this results in g(γ+π) = g(γ) and g(γ+π) = −g(γ) for even or-

ders d. Either the data in the positive and negative direction are mapped onto

the positive direction in feature space or the negative direction of the data is

mapped onto the negative direction in feature space. To keep the distribu-

tions in feature space symmetric for even orders d, one can employ the scaling

function f to map negative directions in data space onto negative directions in

feature space (by, for example, the dot product f(x) = |x|x).

Correlations Introduced by the Transformation

It should be apparent right now that the transformation F of order 2 is up

to the scaling identical to our symmetry transformation S expressed as a

quadratic form in Equation 4.10 on page 90.

It remains to show how the transformation S behaves with respect to

correlations that are introduced if the data is projected into feature space.

We generated a data cloud from a circular two-dimensional Gaussian density

and projected the data into the three-dimensional feature space defined by

S(x) = |x|x(x2
1,
√

2x1x2, x
2
2)

T . Because the data was generated in input space
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Figure 6.12.: Correlations introduced by the transformation of a circular Gaus-

sian density. Left: Ellipse representing the iso-probability lines

of a fitted Gaussian function to the data in feature space (Dia-

bolo space indicated by manifold in blue). The data distribu-

tion is elongated in the direction of the cones. Right: The one-

dimensional cumulants of the data in feature space projected

onto vectors from the unit sphere
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Table 6.1.: Table summarizing the properties of different feature spaces

polynomials RBF v. Mises monomials

invertible projection
√ √ √ √

linear decomposition –
√ √ √

linear indep. of basis func.
√ √ √

differentiable basis func. –
√ √

general linear independence – –
√

factorizing distributions remain – –
√

with variance one in all directions we can interpret directions of high variance

in the data as directions in which new correlations are introduced because of

the transformation.

In Figure 6.12 on the page before we analysed the above case of the cir-

cular Gaussian distribution in two dimensions after projection into the three-

dimensional feature space. In the left figure, in blue the diabolo indicates

the manifold in which the data is projected. Additionally we computed in the

feature space the eigenvalue decomposition of the data. The resulting two-

dimensional surface representing the iso-variance of the data is elongated in

the direction of the mid-line of the two cones. This indicates that correlations

are introduced into the data. Note, that this is a problem for all data which

are not perfectly super-Gauss (sparse). Additionally we plotted in Figure 6.12

right, on the preceding page the first four cumulants of the data after it is

projected onto linear sub-spaces to make explicit which information is used

by the ICA algorithm. We sampled all linear sub-spaces in three-dimensional

space (points on a the surface of a unit ball), projected each data point into

that space (by a dot product) and indicated the cumulants of resulting dis-

tributions by a color code. To better visualize the structure of the cumulants

dependent on the axes of projection we applied a Mollweide map transfor-

mation and obtained the ellipsoidal shaped two-dimensional mappings shown

right. As already indicated by the eigen-ellipse left, the variance of the data is

highest in the direction of the cones of the Diabolo. Notably, the kurtosis as

an important measure of the higher order moments is found to be high in the

sub-space defined by the manifold of the data in feature space.
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6.4.3. Conclusion

As we have seen from the analysed transformations only the one by monomi-

als of constant order fulfill the necessary properties proposed on page 131. In

Table 6.1 on the facing page we have summarized the findings for the different

transformations. It is obvious that the list does not cover all possible non-

linear transformations. Our particular choice was motivated by the idea to

illustrate the process of model selection, how to decide which transformation

can be selected to effectively construct a non-linear feature space. Neverthe-

less, the properties obtained point to a single class of feature spaces obtained

from a non-linear transformation based on monomials of constant order. Lin-

ear methods can be applied in this space. Note, that particular transformations

from this set can be selected by defining the order of the monomials (which

will depend on the number of sources we want to detect). Feature spaces are

equivalent if they are built from different rotations of a single feature space ex-

pressed by an orthonormal matrix which is multiplied onto the vector of basis

functions (this only affects the orientation of the diabolo in feature space).

6.5. Interpretation of the Directions in Diabolo Space

For solving an overcomplete dictionary problem by the means of the space

expansion by commutative monomials of constant order the following steps

have to be performed in sequence:

1. project the data x(t) into the space of monomial of constant order d > 1

2. apply a method of your choice (e.g., FastICA) in the feature space to

obtain the components

3. back-project found components one-by-one into the input space.

For most projection methods it is better to visualize the results in the input

space in order to judge the quality of the method. The question is now: How to

project a direction, i.e., a row of the estimated mixing matrix found in feature

space into a direction in input space.

Recovering of Source Directions from within the Manifold

Here we show that a source direction found by some method in feature space

of monomial of constant order d = 2 can be used to obtain the corresponding

source direction in input space.

Given that a direction s̃i has been found in feature space which is a tangent

vector in the manifold it corresponds to a direction x in the input space. From
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Figure 6.13.: Lines of constant ∆2 are hyper-ellipsoids. The principal axes of

hyper-ellipsoid are defined by Σ−1’s eigenvectors ui and eigen-

values λi as si = λ
−1/2
i ui. Large λi result in small variance of

∆2(x, y) thus a large gradient ∂∆2/∂ui. For changes in the direc-

tion of umax (red arrow) the neuron is most sensitive

Equation 6.32 on page 138 it follows that s̃i = vech(xxT ) for some unknown

x. Because of the symmetry of the matrix xxT we can construct from the

source direction s̃i the matrix Ci = xxT . It is easy to show that for
∑

i x
2
i > 0

this matrix has a single non-zero eigenvalue with a corresponding eigenvector

u0 = x. Let λ0 be a non-zero eigenvalue and u0 the corresponding eigenvector.

We arrive at

xxT u0 = λ0u0, (6.42)

which states that u0 is changed only in length by the multiplication with the

matrix xxT . Setting u0 = x we see that

x xTx
︸︷︷︸

= z i x2

i

= λ0x (6.43)

∑

i

(x2
i ) x = λ0x (6.44)

Thus for λ0 =
∑

i x
2
i the vector u0 = x is an eigenvector of C.

C can be interpreted as the correlation matrix of a data distribution p(y)
which is restricted to a linear sub-space (a direction) in the input space. This

implies that λ0 is the only non-zero eigenvalue of C because for a linear sub-

space C has rank 1. We can think of C as being a correlation matrix of some

random vector y = αx, α ∈ IR,x = const, E(α2) = 1

E
(
αix(αix)T

)

α
= E

(
α2

i

)

α
xxT = xxT = C (6.45)

that is of data contained in a one dimensional sub-space in the direction x ∈
IRn. This directly indicates that the rank of C has to be 1 and all other eigenval-

ues λ1,...,n are zero with corresponding eigenvectors (x1, 0, . . . , xj 6=1, 0, . . . , 0).
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Multivariate Gaussians and Model Sensitivity

Here we show how the directions found by some method in the feature space

of monomials of constant order can be interpreted as the response of the model

that reflects its sensitivity to certain features of the input. The difference to the

above back-projection technique is that we can now give an interpretation of

directions which are not directly on the manifold.

In the case of commutative monomials of constant order 2 in two variables

x1, x2 the model of a quadratic polynomial ∆2 = a1x
2
1 + a2x1x2 + a3x

2
2 + a4x1 +

a5x2 + c reduces to

∆2 = a1x
2
1 + a2x1x2 + a3x

2
2 =

(
x1

x2

)T (
a1

1
2
a2

1
2
a2 a3

)

︸ ︷︷ ︸

=:Σ−1

(
x1

x2

)

(6.46)

This reveals the structure of a 2-dimensional multivariate Gaussian distribu-

tion. In the case of more than two variables x1, x2, . . . , xn the multivariate

Gaussian is of dimension n. We have abbreviated this matrix as Σ−1 to make

the connection to the distance measure called Mahalanobis distance. It defines Mahalanobis

distancethe distance of a data point x to the center of a Gaussian function incorporating

the quadratic distortion of the space expressed in the matrix Σ.

Its contours are defined by curves of constant density ∆2. The equi-

potential lines of constant ∆2 are hyper-ellipsoids9. The principal axes of the

hyper-ellipsoids are given by the eigenvectors ui of Σ which satisfy

Σui = λiui (6.47)

and the corresponding eigenvalues λi give the variances along the respective

principal axes. Immediately it becomes clear that in calculating the eigenval-

ues of the matrix Σ−1 we got the solution is Σ−1ui = λ−1
i ui and thus the same

eigenvectors are solutions but with reciprocal eigenvalues. The directions of

largest λi point therefore in directions of smallest variance (see Figure 6.13

on the facing page). Drawing the corresponding eigenvector we look into a

direction in which the data can be changed without much changing the re-

sponse of the model, i.e., the model P is insensitive to that pattern. This idea

of back-projecting directions in feature space by computing its most sensitive

plus its most insensitive direction is similar to the one used by the model in

Wiskott and Sejnowski (2002). There a polynomial function of second order is

learned from successive drawn image patches undergoing transformations.

Sources for Errors

Because of the specific form of the transformation we can go one step further.

We are interested in directions in the data, that is in points that are on the man-
9For sign(a1) = sign(a3) it is an ellipsoid.
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c=0 0.2 0.5 1 10

Figure 6.14.: Deviation from optimal solution (largest eigenvector by red ar-

row). In two dimensions the optimal solution (direction in dia-

bolo space) is of the form (α2, 2αβ + c, β2), c = 0 because that

defines a direction that corresponds to a direction in input space.

If c ≥ 0 the solution is no longer elliptical

ifold defined by the feature space transformation. Because the ICA algorithm is

applied in the feature space without using this knowledge it sometimes comes

up with directions that are not in the manifold. In Figure 6.14 the effect of

a wrongly found direction in feature space is shown for the solution in input

space. There are several reasons for problems of this kind. One would be that

the algorithm has not enough data to learn the correct source directions in

the high dimensional input space. Another that assumptions about the source

distributions are wrong (e.g., the linearity of the mixture).

The whitening used by many ICA methods may be a source for a methodi-

cal error. Whitening is performed in order to de-correlate the data (in feature

space). Lets assume that the data is uncorrelated in input space. For the

case of highly sparse sources (super-Gaussian) the projected data is also un-

correlated. But if the data is not that sparse or has a large noise component

the transformation into the feature space will introduce additional correlations

(see Figure 6.12 on page 141). This happens because the data is restricted to

a manifold which does not cover the space between the sources equally. The

whitening procedure in the feature space will attempt to undo these faulty cor-

relations thus correlating the sources. As we can see for the working examples

presented in the next section this may not be a practical problem.

Nevertheless, we can utilize this as a source of additional10 information

about the quality of our estimated sources. If we are only interested in com-

ponents that correspond to a linear source direction in input space we would

prefer sources s̃i with rank one in the corresponding Ci. The ratio near one of

the largest eigenvalue to the sum of all other eigenvalues indicates a ’trustwor-

thy’ source direction.

10Information about the quality of a source is also contained in the amount of power in the
signal explained by the source.
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Figure 6.15.: The 12 columns of the mixing matrix w.,i=1...12 represented as pat-

terns associated with each source si

6.6. Applications

6.6.1. Toy-Example: 6 Observations 12 Sources

We now solve a two times overcomplete ICA problem with FastICA in the space

of monomial of constant order.

Given are 12 statistically independent and sparsely distributed sources s1...12

each drawn according to the density function p(s) = exp(−s2/2)3. The obser-

vations are 6 dimensional therefore the model generating the data is defined

using a non-square (6 × 12) mixing matrix W :











w1,1 w1,2 . . . . . . w1,12

w2,1 w2,2 . . . . . . w2,12

w3,1 w3,2 . . . . . . w3,12

w4,1 w4,2 . . . . . . w4,12

w5,1 w5,2 . . . . . . w5,12

w6,1 w6,2 . . . . . . w6,12


























s1

s2

s3

s4

s5

s6
...

s12
















=











x1

x2

x3

x4

x5

x6











. (6.48)

An intuitive interpretation of the columns of the mixing matrix was given al-

ready in our section about overcomplete ICA on page 119. They contain the

’spatial’ pattern (sometimes called maps) that can appear. As one can see in

the above equation each column i is in product with only the corresponding si.

If si is sparsely distributed also the pattern in the column i appear sparsely in

the mixture (which is obtained by adding all the weighted columns). A pattern

appears sparse if it is mostly inactive but sometimes it is expressed strongly.

For our toy problem we designed the mixing matrix in order to contain

binary values only. This restricts us to 26 pairwise different pattern pi, if we

count the pattern pi = −pi as one 26/2 = 32 patterns can be constructed. This
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−2 −1 0 1 2

Figure 6.16.: Some of the mixtures

can be done because the ICA algorithm we are using is ambiguous in the sign of

the solution. Notably this gives an upper bound for the number of independent

binary patterns which is nevertheless ≈ 5 times larger as the number of pattern

that can be extracted with a square ICA algorithm. We selected from this set

(by hand) 12 pairwise different vectors based on good visual identification. The

12 pattern w1...6,i are shown in Figure 6.15 on the page before each represented

by 6 color coded discs.

Some of the observations (mixtures) are displayed in Figure 6.16. Given

many observations x(t) the task is now to find the pattern representing the

hidden states of the system (the unknown columns of the mixing matrix).

Applying FastICA to Overcomplete Dictionary Problems

We now want to apply ICA to an overcomplete dictionary problem. Because for

most real world applications we do not know the correct number of sources it is

worthwhile to examine the algorithm in a case where the number of sources is

twice as large as the number of observations. The hope is that the algorithm is,

for example, able to find some of the correct sources, or in each run a different

set. Both is in general not true.

To demonstrate this we applied the FastICA method (Hyvärinen, 1999) to

the data. We chose the symmetric approach and as a non-linearity g(u) = u3

which matches the density of the sources generating function. That is, the

model fits the data in terms of being an additive linear mixture with the correct

type of densities. Only the number of sources is not correct.

In Figure 6.17 the 6 found sources are shown. The algorithm converges

to components in which mostly mixtures of the true sources are found. The

problem is especially hard for the ICA algorithm because the frequency of a

pattern to appear is the same for all 12 pattern and also the amplitude for all

pattern was the same.
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−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

Figure 6.17.: Result of FastICA on the overcomplete mixtures
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Figure 6.18.: L2-norm of the columns of the calculated mixing matrix. The bar

plot displays a measure of the linearity of the found source. It is

computed as the fraction of variance that is explained by the first

eigenvector displayed in Figure 6.20
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Applying ICA in Diabolo Space

Using the transformation in the space of monomials of constant order we rep-

resent our data in a 21-dimensional space which is built from the commutative

monomials of order 2.

x = (x1, . . . , x6)
FS−→ (x2

1, x1x2, x1x3, x1x4, x1x5, x1x6,

x2
2, x2x3, x2x4, x2x5, x2x6,

x2
3, x3x4, x3x5, x3x6,

x2
4, x4x5, x4x6,

x2
5, x5x6, x

2
6) = p (6.49)

To enforce the mean of the data to be zero half the data points were switched

in sign. We also corrected each term of the form xixj, i 6= j by a factor of
√

2
to obtain rotational invariance (see Section 27 on page 137).

Linear ICA was performed on this data by the FastICA package in Matlab.

Using the symmetric approach and the default non-linearity g(u) = u3 the

algorithms converged after 20 steps. The resulting independent components

were sorted according to a decreasing norm of their corresponding row in

the estimated de-mixing matrix (see Figure 6.18). This sorting preserves the

relative importance of the found sources by selecting sources that contribute

most to the power of the signal (Lee, Jung, Lee and Lee, 2000).

In Figure 6.19 on the facing page the first 12 components are shown. Be-

cause each ICA component is represented by a vector in feature space (see

Equation 6.49) we display its entries as colored lines connecting the respective

pixel positions for each dimension. In this way the second entry of an ICA com-

ponent, for example is drawn as a line connecting the points x1 and x2. The

color of the line indicates its respective value in the component. The result

is best read using the interpretation of a weighting of a feature space dimen-

sion as a correlation of the corresponding two points. Similar colors represent

similar fate of the points. Because the ICA detects only directions subject to a

change in the sign of the component we can negate each component. All points

connected by red lines in the first component can therefore assumed to have

high correlations between their values whereas the top left point is different.

This corresponds to the original source number 12 shown in Figure 6.19 on the

next page. By this reasoning one can confirm that all 12 sources are found as

the first 12 components.

The graphs in Figure 6.19 are hard to read but they contain the full in-

formation in the found directions. If we assume that the underlying sources

are independent and the mixing is linear we can apply the the back-projection

method presented in Section 6.5 on page 143 to visualize the found sources in

input space. Constructing for each component the equivalent quadratic form
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Figure 6.19.: Result of FastICA in Diabolo-space. The independent components

are sorted according to the row norm of the calculated mixing

matrix. It turns out that the first 7 components correspond to the

original sources
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Figure 6.20.: Result of FastICA in Diabolo space. For the first 12 components

the first eigenvector of the corresponding back-projection shows

that all sources are correctly estimated. The components were

sorted according to the L2-norm of the columns of the mixing

matrix
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Figure 6.21.: ICA components 13 . . . 21 are shown by their first principal com-

ponent. Some of the eigenvectors explain only very few of the

overall variance in the ICA component thus suggesting a direc-

tion found by ICA that is not a direction in input space

we display in Figure 6.20 on the page before its first eigenvector. A comparison

with the true sources in Figure 6.15 on page 147 confirms that the overcom-

plete ICA problem was solved successfully.

We analysed also the remaining 9 sources. Especially the components 13, 14
and 15 are of interest because they have similar explanation power as sug-

gested by Figure 6.18 on page 149. It turns out that they can be interpreted

as correcting for small mismatches in the first components to the true sources

(Figure 6.21).

6.6.2. Application to Natural Images

We applied the algorithm of the centralized mixture of Gaussian functions to

an ensemble of pre-whitened natural images obtained from the homepage of

Bruno Olshausen (Olshausen and Field, 1996). 128 components where learned

from 30, 000 image patches (64-dimensional). This results in a two times over-

complete dictionary. After 30 iterations of the EM algorithm for each cluster

the direction of largest variance (vector of dimension 1×64) is shown in Figure

6.22. We assume here that the direction of largest variance corresponds to a

source direction in the data (see Figure 6.3 on page 125). The obtained spatial

filters resemble mostly localized Gabor like receptive fields but also a whole

spectrum of curved edges.

Notably, the algorithm converges very quickly and the basic structure of

the components is fixed after around 10 iterations. This is surprising, because
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Figure 6.22.: Source directions learned by a centralized mixture of Gaussians

(results were sorted left to right, top to bottom by decreasing sum

of eigenvalues). Each image displays the eigenvector with largest

eigenvalue and indicates a found source direction. In Figure 6.26

two more eigenvectors for the 16 mixtures in the first row are

shown

of the large number of parameters in the model (we trained a full covariance

matrix). We suspect that the nice convergence behavior is obtained because

of the restriction of zero mean Gaussian distributions. The original Gaussian

mixture model trained with EM in a first phase has to adapt the means of the

components before fine-tuning the covariance matrices. By fixing the means

the covariance matrices can be optimized beginning with the first iteration. Of

course we cannot rule out the possibility of a plateau in the energy function

(to balance this problem we trained the model for 30 generations).

For displaying purposes the components are sorted according to the sum of

their respective eigenvalues. Thus we prefer ’large’ Gaussians over ones that

converge to the single data point at the origin. The singularity was prevented

by the regularization described above. In Figure 6.23 the actual eigenvalues

for all eigenvectors are plotted (note, that we plot the log of the data to elevate

the exponential nature of the eigenvalue spectrum).

Indeed, we find that the eigenvector with the smallest sum of the eigenval-

ues has a flat eigenvalue spectrum. Also the next 2− 3 eigenvalues correspond

to nearly flat spectra. Therefore an interpretation of the structure in the re-

spective direction of the eigenvector with the largest eigenvalue is difficult

(last 3 − 4 source directions of Figure 6.22). The other source directions can
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Figure 6.23.: A plot of the log eigenvalues corresponding to each of the first

eigenvectors displayed in Figure 6.22. Only the last 3−4 mixture

components show a relative flat eigenvalue spectrum thus can be

regarded as coding for the center distribution only (with vanish-

ing covariance, but note the regularization by β = 0.00001)

be described as containing mostly edges but sometimes also curved- and more

complex structures are found. Notably the edge pattern are not as localized

as the edge pattern found, for example, in the model by Olshausen and Field

(1996). We suspect that this is due to the regularization which counteracts the

sparsest solution (which would correspond to singular Σi’s with rank one).

At first glance the receptive fields appear to be localized in space. This

is confirmed by calculating the mean correlation over the distance of pixel

pairs (see Figure 6.25). Pixel pairs with small lateral displacement have pre-

dominantly high correlations. It is also interesting that the algorithms select

very few negative correlations between pixel. But this conclusion may be mis-

leading because the number of pixel pairs is not distributed equally over the

distance between pairs (see the histogram of the number of pixel pairs per

displacement in Figure 6.25 on page 157 right).

Because each component is learned as a multivariate Gaussian the descrip-

tion of one component by its direction of highest variance is insufficient. The

density estimate obtained by the model assumed a full covariance matrix. To

further analyse the found components we plotted in Figure 6.26 two more

of the eigenvectors for the first 16 (first row in Figure 6.22) components.

Most eigenvectors resemble stimuli with similar orientation and location but

changes in phase and spatial frequency. The percentage values on top of the

Figures represent the variance explained by the eigenvector and thus can be
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Table 6.2.: Lifetime response kurtosis as given by Willmore and Tolhurst

(2001) for pseudo-whitened images together with the values ob-

tained for the learned codes (GEM) in Figure 6.22. The variances

for the GEM codes are found to be ±3.48 for the lifetime and ±0.21
for the population response kurtosis

Lifetime response kurtosis Population response kurtosis

Gaussian 8.93 0.52
DoG 11.20 1.74
Olshausen 17.21 2.17
PCA 8.13 3.07
Walsh 10.91 4.01
Sinusoid 12.05 4.62
Gabor 18.47 5.37
GEM 8.35 8.83

interpreted as a relative weighting of the pattern. Neurons with fast decreasing

eigenvalues can be assumed to respond to the stimulus in a linear way because

they can be sufficiently described by the their first eigenvector only. Neurons

with similar eigenvalues resemble more the complex type of cell. This indicates

the remarkable property of the second-order neuron model to model indepen-

dently from one another the response characteristics of simple and complex

cells. Notably in the model we find complex cells which are not composed of

simple cells.

Further eigenvectors with decreasing variances show the usual high fre-

quency checker-board pattern (data not shown).

To evaluate the quality of the found sources we analysed the sparseness

of the code. This is done in order to compare the non-linear filter with previ-

ously obtained filters by linear methods (e.g., ICA, PCA, Walsh, DoG, Gaussian,

Olshausen and Fields, ...).

Sparseness in the Representation

We now analyse the code in terms of its sparseness . Let p(x) describe the

relative frequency of the occurrence of specific responses in our model. One

source i is parameterized by a multivariate distribution Ai. The response of

the source i to some data x is given by the length of that vector in a space

distorted by Ai. This measure (or metric) is given by the Mahalanobis distance

y between a vector x and a multivariate distribution described by its variance-
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Figure 6.24.: Scatter plot of the data from table 6.2. The code obtained by

centralized Gaussian mixture model trained by EM (GEM) out-

performs the linear codes with respect to population sparseness

and is comparable to the PCA code in its lifetime sparseness

covariance matrix A:

y = xTA−1x. (6.50)

The inverse is used because the quadratic form xTAx only describes the vari-

ance along the direction x. Directions with small variances correspond to di-

rections with a steep gradient ∂x
TAx

∂x
, thus the distance to a data point is large.

The inverse of A solves the problem because it inverts the eigenvalues of A
(the eigenvectors stay the same, see Section 6.5 on page 145).

If A is a covariance matrix of some data its eigenvalues will be real and

positive (or zero) and therefore also the response of the model unit to the

data calculated by the quadratic form is ≥ 0. Every distribution we obtain is

therefore asymmetric with respect to an activation of 0. In assuming that both

x and −x are equally probable we symmetrize our distribution by

ysym = ε y, P (ε = 1) = .5, P (ε = −1) = .5 (6.51)

(flipping the sign of the response of each unit randomly). This is reasonable

because by the quadratic form we measure variances of a multivariate Gaussian

in the direction x which is symmetric around its center.

There are two major ways of obtaining distributions that describe the units

responses. One is the distribution of the response of one unit over many data
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Figure 6.25.: Left: Distributions of the coefficients obtained from applying

the 128 quadratic forms to the data (lifetime responses). Dis-

tributions are non-Gaussian with mean kurtosis of the data 8.35
(±3.48). Right: Selected are predominately local correlations.

Mean correlations over the distances between the respective pixel

pairs. The histogram counts for 128 components the number of

connections over the pixel pair distance

(lifetime measure), the other the distribution of the response of all units to

a single image patch. Both can be used to describe the sparseness of the

code by computing the kurtosis from the respective distribution. Usually the

population response kurtosis is of higher importance because it describes a

property of the whole population and not a avaraged property of single units.

Willmore and Tolhurst (2001) found that both measures are largely uncorre-

lated. The first measure the lifetime kurtosis is usually defined by life time kurtosis

KL =

{

1

M

M∑

i=1

[
yi − ȳ

σy

]4
}

− 3 (6.52)

where M is the number of image patches (30, 000) and yi is the response of

neuron i calculated by the quadratic form of Equation 6.51.

The population kurtosis is computed in the same manner but as a mean over population

kurtosisthe responses of the N neurons

KP =

{

1

N

N∑

j=1

[
yj − ȳ

σy

]4
}

− 3. (6.53)

In Table 6.2 the measurements of Willmore and Tolhurst (2001) are shwon

together with the values obtained by our algorithm (last line). The lifetime

kurtosis of the GEM code is comparable with the one observed for PCA. This
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Figure 6.26.: Sub-space selected by each of the first 16 mixture components

of Figure 6.22. Each time the three eigenvectors with the largest

eigenvalues are shown. On top of each eigenvector the percent-

age indicates the variance explained by this component

simply reflects that each single neuron is parameterized by a single multivari-

ate Gaussian distribution. In terms of population sparseness the mixture of

Gaussian functions learned by the EM algorithms (GEM) outperforms all other

codes as can also be seen from the scatter plot in Figure 6.24.

As a reason for the higher population kurtosis of Gabors, sinusoids, princi-

ple components, and Walsh functions Willmore and Tolhurst (2001) observed

a large variability of the named codes in terms of representing spatial fre-

quency. Since natural images are known to have amplitude spectra which are

approximately proportional to 1/f , there is a large amount of variance in the

low-frequency Fourier coefficients. Thus the low-frequency filters can be ex-

pected to have larger response magnitudes than the high-frequency filters. As

a result, the few low-frequency filters often produce responses that are large

compared with the responses of the many high-frequency filters, and the re-

sulting representation often have high population sparseness. This argument

cannot fully be applied here because pseudo-whitened images were used for

training and testing and pseudo-whitened images have had their amplitude

spectra approximately flattened. So there is no longer a concentration of vari-

ance at low spatial frequencies. As we can observe in Figure 6.22 on page 153

our model indeed shows only a slight tendency to produce filters with varying

spatial frequency.

Spread of Variance in the Representation

Another important factor is how evenly variance is spread amongst the pop-

ulation of coding units. Field (1994) discussed the idea that variance should

be coded evenly amongst neurons (preference to evenly ’distributed’ or ’dis-

persed’ codes). In contrast to compact codes like PCA, a distributed code is

more noise-insensitive because it does not depend on precise firing of some

neurons. Based on the very low population response kurtosis variations in our

model (±0.21) the code found by GEM is indeed well distributed. This also
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Figure 6.27.: Left: A pattern (400 × 400) used to test the receptive field prop-

erties orientation preference and spatial frequency. It consists of

a circular sinusoid with increasing spatial frequency. Right: The

response of all 128 neurons to the test pattern obtained by re-

peatedly applying the quadratic form to patches extracted from

local positions

indicates that the population response distribution is non-Gaussian.

Taken together the Gaussian mixture model trained with EM produces a

sparse and well distributed code which appears to be a useful strategy for

encoding visual information.

Representation of Orientation Selectivity and Spatial Frequency

We analysed the quadratic form obtained from the Gaussian mixture model

also in terms of their similarity to simple cells (that is how non-linear are the

second order filters). This analysis ignores large parts of the structure of the

receptive field of the neurons because it concentrates solemnly onto orientation

preference and spatial frequency but in doing so it mimics the currently used

methods for the analysis of cortical neurons.

We generated a spatial pattern resembling all orientations and a range of

spatial frequencies (Figure 6.27 left). For each neuron i we successively ex-

tracted overlapping 8×8 image patches x from the circle pattern and computed

the scalar valued quadratic form xTCix. In Figure 6.27 right, the correspond-

ing coefficients for each neuron are displayed in a color code, black indicating

large responses of the neuron to this region in the pattern. The localized form

of most solutions in angular- and radial direction indicates that a large part of

the neurons resembles orientation selective neurons with a preferred spatial

frequency (some neurons appear to be selective to two or three orientations in

the stimulus).

We analysed also the linear response of each neuron so that it can be com-

pared to the response obtained from the quadratic form. In Figure 6.28 the
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Figure 6.28.: The linear response part of the neurons obtained from spatial

filtering of the first eigenvector with the test pattern in Figure

6.27 left. For visual presentation the results are smoothed to

elevate the effects of interference pattern due to sub-sampling,

the same smoothing was also applied to the images in Figure

6.27 right

linear part of the neuronal response is approximated by a linear filter defined

from the largest eigenvector of the corresponding second-order neuron. Again

this filter was applied to the test pattern in Figure 6.27 left. The degree of

change between corresponding pattern in both figures can be used as an indi-

cator for how well the neurons can be described as simple cells.

6.6.3. Application to Natural Images II

We applied the algorithm of FastICA in the space of monomials of constant

order to the ensemble of images shown in Figure A.1 on page 175 (from the

homepage of Patrick Hoyer). From these images we extracted 100, 000 cir-

cular patches with a diameter of 7 pixel. This was done in order to reduce

the number of pixel, thus the number of pixel pairs and by this the number of

dimensions in the feature space (≈ 700). Using the symmetric approach of Fas-

tICA we reduced the dimension of the data by using only the first 49 principal

components in the whitened feature space. This results in 49 found indepen-

dent components by the ICA procedure. For each component we displayed in

Figure 6.30 on page 162 the eigenvectors to the two (absolut) largest eigen-

values. The ration between the eigenvalues is shown beneath each image pair.

A negative value indicates that one eigenvalue is negative (we switched the
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Figure 6.29.: Symmetry detectors from natural images learned by PCA. The

first 49 principal components sorted by their eigenvalue are

shown (explain 94% percent of the variance in the data). Each

eigenvector is in dot-product space and represented by two im-

ages (rows B, C) representing the images maximizing or respec-

tively minimizing the filter response (quadratic form)
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Figure 6.30.: Learned symmetry detectors by FastICA. For each of 49 found in-

dependent components two images (A, B) are shown. A is the

eigenvector with the largest eigenvalue and maximizes the out-

put of the filter. B is the eigenvector with the smallest eigenvalue

and minimizes the output. The number below each independent

component code for the ratio of the largest to the second largest

eigenvalue, negative sign indicates that they have opposite sign.

The (absolute) ratio can be used as an indicator for the linearity

of the unit. (Figure from (Bartsch and Obermayer, 2003))

sign of the components so that the larger of the two has a positive sign). The

pattern that corresponds to a negative eigenvalue will minimize our quadratic

form thus we interpret the two patches for each components as antagonistic

pairs describing pattern that either facilitate or inhibit the output of the unit.

As we already know, localized edge detectors form a set of independent

sources for natural images (Olshausen and Field, 1996; Bell and Sejnowski,

1996). Differently from ours these models work with a representation of the

sources in ’image-space’ (linear models) rather than in a ’product-space’ as our

(non-linear) model.

Apparently edge like attributes are learned by the model. The edges are

also, to some degree, localized in space. Further analysis of this model and

comparisons of the properties of the units in terms of the sparseness are

needed.

Two image pairs were analysed further. The first is the unit nr. 43 (in the
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Figure 6.31.: A neuron selective to texture components in its sub-fields. All

eigenvectors of the filter nr. 43 are orientation selective in the

respective sub-fields. Neurons like this can be used to detect tex-

ture boundaries. (Figure from (Bartsch and Obermayer, 2003))

lower left corner). Both the most positive and the most negative eigenvec-

tor show the same basic structure, that of an edge. This is surprising because

the corresponding neuron would be both activated (positive) and in-activated

(negative) by an apparently similar pattern. To clarify this apparent contradic-

tion we analysed some more of the eigenvectors of this unit.

The following eigenvectors depicted in Figure 6.31 indicate that the neuron

responds differentiable to texture components in its on- and off-sub-fields. The

units response as computed by the quadratic form is amplified for texture com-

ponents in one sub-field and suppressed for texture components in the other

sub-field. Because a change in texture is likely at object boundaries in images

units of this type can be used to detect an important sub-population of edges.

Experiments in V1 show also that the activity levels near simple texture

boundaries are increased 10−15ms after an initial cell response (Gallant et al.,

1995).

Some of the components could not be sufficiently explained as edge de-

tectors. Notably the components nr. 47 and nr. 49 are better described by a

yin-yang type of pattern. Aware that we might interpret extensively we never-

theless assigned a function to these units. In Figure 6.32 on the next page we

constructed examples for the orbit defined by the linearly weighted superposi-

tion of the respective two patterns. Approximately in the middle position both

components resemble edge detectors. Therefore, an edge of the corresponding

orientation will elicit a balanced amount of excitation and inhibition for these

units. Only if the edge curvature is changed in the direction of either the left
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Figure 6.32.: The Yin-Yang type pattern of component nr. 49 and nr. 47 re-

semble bended edges thus can be regarded as coding edge curva-

ture. For one row the pattern left shows the eigenvector u0 of the

largest (positive) eigenvalue and the pattern right the smallest

(negative) eigenvalues eigenvector u49. The pattern in between

are obtained by the linear superposition according to (1−β)u0 +
βu49, β ∈ [0, 1]. (Figure from (Bartsch and Obermayer, 2003))

or the right pattern the respective unit will respond by being either facilitated

or inhibited.

6.7. Biological Implementation by Dendritic Micro-circuits

Having shown that symmetry based on local spatial correlation is a ’useful’

feature in terms of information processing, we now speculate how a neuronal

module could implement this apparently abstract framework. Assuming a ba-

sically one-to-one (topographic) projection from the retinal space to the visual

cortex, lateral connections in the cortex as well as converging projections from

the LGN to the primary visual cortex are candidates for implementing structure

detection at the level of V1. For now we only focus on the lateral connections.

Short-range lateral connections in contrast to the long–range steppy con-

nections are known to be unspecific, connecting every neuron up to a cer-

tain range. Also the bar-shaped steppy-connections in the layers 4B- upper

4Cα show only a slight tendency to connect similar orientations (Asi et al.,

in press). We speculate that these pattern can be thought of as an anatomi-

cal substrate for spatial information processing. We now point out how single

neurons can detect local (spatial) correlation structure by micro-circuits im-

plemented in their dendritic trees. This approach is tempting because of the

availability of data about the morphology of single neurons from staining ex-

periments. It is technically much more difficult to map the feed-forward con-

nections to (complex) cells in visual cortex because of the large distance of the

respective axons

Mel (1994) summarized some ideas of dendritic functions as:
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• The spatially extended nature of a dendritic tree permits useful spa-

tiotemporal interactions among active synapses.

• One dendritic tree can have multiple pseudo-independent processing

sub-units.

• Nonlinear membrane mechanism appropriately deployed can allow the

dendritic tree of a single neuron to act as a powerful multi-layer compu-

tational (e.g., logical) network.

For the ’biological’ implementation of structure detection we need two ingredi-

ents, (i) a multiplicative comparison of many spatially extended input features

and (ii) a summary of the result. This can be achieved by known properties

of dendritic arbors: The delays from dendrites to soma are in the order of

one membrane time constant (Agmon-Snir and Segev, 1993). In contrast, the

local charging times on thin dendritic branches may be an order of magnitude

faster than the membrane time constant τ . Therefore distal dendritic arbors

may function more as coincidence detectors for local synaptic inputs whereas

the function of the soma is more that of an integrator. By this functionality

a dendritic tree can calculate a sum of products, i.e., a measure of structure.

Which position in retinal coordinates is connected with which other position is

in this framework defined by selective contacts on the dendritic tree.

There are other models for biologically inspired multiplication. One exam-

ple is multiplication based on coincidence detection (Bugmann, 1997). Neu- coincidence

detectionrons are sensitive to spike timing because the biological integration is leaky. If

we suppose that for n inputs after (n − 1) spike increments the membrane

potential is such that the n−th spike causes firing the probability of firing

P (n, τ,∆t) is:

P (n, τ,∆t) = ∆tτn−1n
n∏

i=1

fi

where fi is the firing rate of the ith input. Hence the output firing rate is

fout =
P (n, τ,∆t)

∆t
= τn−1n

n∏

i=1

fi

where τ is the length of the time window.

Multiplication could also be generated by assuming that addition of volt-

ages is accompanied by non-linearities that occur between spike activity and

membrane potential. If (i) the synapse produces voltage from spike activity by

a compressive non-linearity (logarithmic function) and (ii) the spike genera-

tion at the axon hillock is an accelerating process (exponential function) the
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output of the neuron would be the product of the inputs, xy = exp(ln(x)+ln(y))
(see Payne and Peters (2002), page 376).
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Our understanding of the brain is still very fragmentary. Even in areas like

early vision, where large amounts of data have been collected during the last

decade reiteratively discoveries are being made that change our view on corti-

cal information processing. Ideas about the function of cortical neurons are as

long adequate as they comply to the known facts. If new experiments come up

with conflicting data the models need to be modified to bring them back in line

with the observations. For example, the basic description of cells in primary vi-

sual cortex as either simple or complex is known to be a lie to children that is a

simplification for the sake of clarity. The cells are better defined by populating

a continuum where we find a graded change from neurons acting solemnly as

simple cells to neurons with complex cell responses. One the same line goes

the explanation of complex cells as being build from converging simple cells

with overlapping receptive fields1.

During this thesis we first questioned the role of intra-cortical networks

in the generation, sharpening, and modulation of orientation preference as

one of the main features of primary cortical neurons. Step by step a model is

derived and changed according to the subject under investigation. By modeling

more explicit different populations of neurons in a single column we found

that network effects can account for a large variety of phenomena like contrast

invariant orientation tuning and contrast saturation.

The model was extended to predict response properties related to context

effects that is to modulations of neuronal responses by stimuli applied out-

side the classical receptive field. First a full orientation hypercolumn and af-

terwards a system of two coupled orientation hypercolumns is used to show

principle difficulties in having cross-orientation modulations by iso-orientation

specific patchy connections.

Taking better into account the spatial layout of cortex we derive a model

for analyzing the influence of local cortical connections on the activities of neu-

rons in V1. A set of orientation columns is arranged according to a measured

orientation map, and orientation columns are connected by local excitatory

and slightly more distributed inhibitory fibers. We found that two opposite

effects contribute to the observed contextual modulation; (i) local inhibition

that is induced by a local change in input (leads to suppression), and (ii) dis-

1Some animals have complex cells but no simple cells.
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inhibition. By changing the configuration of the stimulus different regions of

the orientation map are activated. Changes in the local structure then define

which is more prominent, suppression or facilitation.

In the second part of the thesis we analysed the input into the visual system.

Starting from the observation that neurons in primary visual cortex already

responde to a wide range of different stimuli we formulated the hypothesis

that higher order features in spatial pattern can be described in terms of there

intrinsic invariance and symmetry. A mathematical formulation of smooth local

symmetry was given and led to the framework of polynomial functions.

In order to draw out and test its logical and empirical consequences we

analysed the descriptive power of the model. We found that based on intu-

itive reasoning orthogonal basis functions for the detection of invariances to

rotation, scaling and shifts could be defined. Also applications for object clas-

sification, image alignment, and landmark detection illustrate the principle

advantage of structure analysis over methods of shape analysis.

One of the main points of this thesis is to introduce two new learning meth-

ods for high-order models. In the context of neuronal nets high-order models

are known to have higher memory capacity (Poirazi and Mel, 2001) and to be

computationally richer than linear or threshold units – just one can implement

parity, exclusive-or, or lookup table functions. Furthermore, such models also

better represent the operations of real neurons containing highly branched

dendrites with voltage-dependent membrane conductances (Mel, 1994).

We showed that symmetry detection can be formulated as a linear model in

the space of dot-products. The first presented algorithm for the second-order

model extracted the underlying (sparsely represented) causes of the data by

estimating the probability density of the data. The proposed algorithm is based

on an algorithms for missing data, the Gaussian mixture model trained by EM.

We showed how the estimated centralized densities can be used to extract a

linear overcomplete basis set for natural images. The obtained non-linear code

outperforms other known linear codes in being well distributed and having a

high population sparseness.

Finally, based on geometrical considerations we have shown how correla-

tions in the data can be learned by the means of linear methods. By this we

extended the use of linear methods to an important group of non-linear trans-

formations. In the context of independent component analysis the results in-

dicate a distinguished transformation of the data into a feature space in which

the independence assumption can be fulfilled for a set of overcomplete basis

functions.

There are, of course, many open questions not been addressed in this thesis.

In the following some ideas for further research are discussed, sometimes only

briefly, sometimes more comprehensively.
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The proposed correlation space for statistical analysis of data in

particular natural images was recently used in the context of classifica-

tion (Schoelkopf, Simard, Smola and Vapnik, 1998) of handwritten characters.

Here local correlations in the images where used to perform a linear classifi-

cation task by the means of support vector machines. Decision boundaries

are defined in the space of all possible products of d pixel by using a kernel

k(x,y) = (x · y)d. Notably, prior knowledge about the local correlation nature

of natural images was incorporated by an image pyramidal sampling of the

pixel pairs selecting more pixel pairs with short displacement. Our results in

Figure 6.25 on page 157 also indicated that this strategy of reducing the di-

mensionality of the feature space is valid for our type of data. Intuitively this

behavior may change for large receptive field sizes. The presence of objects in

a visual scene implicitly defines long-range correlations in the range of the size

of the object. Therefore it would be worthwhile to explicitly search for long-

range correlations in images because they can be assumed to be rare events,

i.e., be informative.

It is attempting to perform the proposed algorithms for larger receptive

field sizes which would comply with structure detection in higher visual areas.

If we change the size of the receptive field we also change the scale on which

structure is detected. Therefore different cortical areas parameterized by the

mean size of the receptive fields of their neurons can independently ’work’ on

the same input. But do different areas have direct access to the visual input?

For V2 and V3 it is known at least in cat, that these areas are also innervated by

fibers coming from the LGN. For monkeys direct connections from the retina to

visual areas apart from the connections to V1 are not known. Nevertheless, la-

tency measurements have revealed higher latency for connections in one area

compared to latencies between areas (Nowak and Bullier, 1997). Fast inter-

area connections can therefore relay the visual input thus computations in the

cortical areas can perform in quasi-parallel. An architecture that models the in-

terplay between cortical areas based on these ideas could be analysed in terms

of the interplay of latencies of responses related to intra-cortical connectivity

and top-down connectivity from the higher visual cortical areas. This relates

to attentional effects and in the context of vision to tasks of active vision.

It is also interesting to follow the path of using even higher order corre-

lations in the data. A model that incorporates third order correlations can be

easily formulated using the mathematical background presented. By incorpo-

rating the fourth order tensor in the polynomial model we arrive at:

PPN (x) = X ijklx +W ijkx + V x + u. (7.1)

Again, reducing each polynomial model to its form of highest constant order

monomials (three variables, d = 3) we can apply the linear methods in fea-
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ture space. It is apparent that only the degree of the polynomial which is a

free variable defines the form of highest constant order monomials. Another

interesting extension of the method is connected with the notion of canonical

correlations. There we want to find linear combinations of the variables which

give us the maximum correlation between the combinations.

If we assume the preferable solution to be on the manifold (that is, if we

are interested in linear overcomplete ICA) we can constrain the search space

of the algorithm to solutions exactly onto the manifold. This corresponds to a

specific type of parameterized non-linear transformations in the input space.

Basically we have to hold the property of linearity of source directions in fea-

ture space. First experiments indicate that models of this type can be learned

by maximizing the entropy of the data distribution in feature space.

Probability density functions as estimated in Appendix A.1 on page 174

are powerful tools that can be utilized, for example, to compare different sets

of images or as a parameterization of generative models. The obtained form is

appealing because it uses a very weak assumption about natural images.

The computations performed by a cortical neuron may be expressed by the

spatial layout of its connection pattern. We assume here that at least as much

information is stored in the existence or non-existence of synaptic connections

as in their strengths. Apart from the feed-forward pathway (converging LGN

input produces an orientation bias) the lateral connection structure is an inter-

esting candidate to explain the response property of cortical neurons.

To test implications of this we analysed the spatial structure imposed by our

binary quadratic forms defined in Section 5.1 on page 95. The first two pattern

(Arot and Ascal) from Figure 5.1 on page 95 where selected for this purpose. We

derived an additional connection pattern using a random subset of all possible

connections (using 20% of all possible connections). Taking care of the hemi-

retinal to V1 distortion2 we computed density profiles indicating the mean

density of connecting fibers (i.e., lines) between pixel at different distances to

the center of the pattern. In Figure 7.1 on the facing page left, it can be seen

that the profiles are notably different in all three cases. Especially the density

near the center of the structure can be sufficiently used to distinguish between

the artificial classes of neurons.

We used the method also to analyse lateral connection structures measured

from macaque primary visual cortex. Lateral connections in this region ex-

hibit a rich spatial structure in their intra-laminar connections. Short-range

connections throughout the deeps of the cortex are found to be isotropic, con-

2The global retinotopic input-mapping from the hemi-retinal image to the primary visual

cortex can be approximated by the function of complex variable supplied by (Schwartz,
1980): G(z) := log[(z + 0.333)/(z + 6.66)], where z = x + iy, |z| ∈ [0, 1], x > 0.
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Figure 7.1.: Left: The type of operation performed by a neuron shows up in its

lateral connection pattern. The density of the connections (mean

over all orientations) was computed from the pixel image of Figure

5.1a on page 95 (artificial data) Center: The spatial layout of the

cell in Figure 2.9 a (macaque monkey). In color coded are the

local regions in which connections between spatial positions are

assumed. Right: Profile of connection density over distance from

the injection site

necting to all neurons in the local vicinity a the neuron. In the superficial

layers 2/3 long-range connections project mainly to patches of similar stimulus

preference (see Section 2.3.3 on page 27). Interestingly in the layer 4B also

long-range connections are found that indicate a different functional role from

the iso-orientation biased layer 2/3 circuitry (see Figure 2.9 on page 29).

As a first attempt we analysed the spatial layout of one layer 4B- upper

4Cα cell (see Figure 2.9 a). The obtained profile of the connection pattern

density is shown in Figure 7.1 center. Comparing it with the profiles for scal-

ing and rotation (same figure, right) its multi-modal appearance indicates a

more complex structure which is not surprising taking into account its bar-like

structure.

If we assume that lateral connections influence the function of the neu-

rons based on their selection of spatial correlations we can predict given the

lateral layout of the connections the response properties of the corresponding

neuron. To clarify the influence of this structure on the orientation preference

and preferred spatial frequency of the neuron in question we reconstructed a

quadratic form based on some assumptions about this particular neuron. (i)
The neuron samples selectively spatial locations in the input and these loca-

tions are defined by the regions of dense terminal labeling in Figure 2.9 on

page 29. (ii) The operation performed by the neuron in its dendritic tree is

assumed to be dependent only on the structure found in the stimulus and can

be modeled in the framework of second-order models (local multiplication fol-
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Figure 7.2.: Left: Test pattern (600×600) similar to the one used in Figure 6.27

on page 159 to test the orientation preference and preferred spa-

tial frequency of a spatial filter (42×42). Right: The corresponding

response image of the quadratic form defined by the lateral con-

nection structure of the layer 4B- upper 4Cα cell in Figure 2.9a on

page 29

lowed by global summing). In particular we assume that apart from summing

there is no dendritic micro-circuit between the bar-like pattern. Based on these

assumptions we extracted from the shape of the lateral connections in Figure

2.9a, on page 29 N = 7 distinct regions (coded in color in Figure 7.1 center).

In each region we assume that correlations between the terminal zones are

computed. A ’correlation’ matrix C was computed as the mean

C =
1

N

N∑

i=1

xix
T
i (7.2)

where xi is obtained as the vectorized binary image selecting exclusively pixel

corresponding to the i’s colored region.

Using C we calculated a hypothetical response of the neuron in question by

its quadratic form. Note that C is positive semi-definite and has rank 7 (= N).

In Figure 7.2 left, a test pattern is shown which we used already in Section

6.6.2 to estimate the orientation preference and preferred spatial frequency.

In the corresponding response image red indicates a high response amplitude.

As one can observe the neuron is selective for a particular orientation. This

is remarkable because no particular orientation preference was assumed be-

forehand. Only the selective spatial sampling is sufficient to introduce a bias

for a particular orientation. The way this is achieved is similar to the emer-

gence of orientation selectivity in the local receptive fields by second order

neurons. Inputs in the bar-like sub-fields implement a ’common-fate’ mecha-

nism producing large responses for uniform stimuli that fall into these regions.
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By this predominantly the mean orientation of single bar’s define the preferred

orientation of the neuron.

This finding may serve as the end-point of this work. It relates the analysis

of second order models starting from Section 4 to the role of lateral connections

in primary visual cortex which was our subject in the first part of this thesis.
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A. Measuring the Entropy of Natural Images

This chapter summaries some preliminary ideas about a framework to analyse

natural images in terms of their probability distribution. Whereas previous at-

tempts mostly started by defining a more or less arbitrary feature set and based

on that analysed distributions of coefficients here we like to work with a more

direct approach. We assume only the very weak assumption that images can

be described by positions on a N -dimensional hyper-sphere (vectorized image

patches are assumed to have length one). We show how one can estimate the

probability distribution of natural images on the hyper-sphere and compute its

entropy.

Measuring the entropy of a distribution is one way to measure the close-

ness of the distribution to the uniform distribution and by this its information

content.

If images obtained from natural scenes (XA) occupy only a small portion of

the overall space of possible images (XB) we expect that the entropies H of the

two densities fXA
and fXB

differ significantly from each other. More precise

we would expect that the entropy of XB is the larger entropy because we can

assume a uniform density for fXB
whereas fXA

should be more interesting.

The entropy or uncertainty of a random variable X is defined by the quan-

tity

H(X) = −
∑

i

fX(xi) log fX(xi) = EfX
[− log fX(X)] (A.1)

where fX(x) log fX(x) = 0 whenever fX(x) = 0.

We will assume that the structure in natural images is well preserved if we

assume x ∈ X as a vector (x1, . . . xp)
T of length one. The set of all possible

images lives therefore on the hyper-sphere Sp−1 = {x : xT x = 1} with radius

one and dimension p. So, by Equation A.1 we need an estimate for the density

fXA
and a sampling scheme to get the expectation and by this the entropy of

(a set of) natural images.

A.1. Kernel Density Estimation

To estimate the density of XA on Sp−1 we use a kernel density estimation ap-

proach. It is an efficient way to estimate the density in a case where we have
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Figure A.1.: Sample ’natural images’ from Patrick Hoyers homepage
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Figure A.2.: Density of the von Mises-Fisher distribution M(0, κ)

a small number of samples. For example for images patches of size 7 × 7 pixel

the data space is the hyper-sphere S48. All practical samples from this space

are small samples.

Given observations x1, . . . ,xn, we replace each data point xi by a kernel

function which assigns nearby (in Sp−1) data points non-zero probability. Note

that it is not clear which distance measure (metric) to use. Two data points

may be nearby given one metric. Given another metric the two data points

may be far from each other. In our case image patches which are similar up

to white noise of some amplitude are assumed to be similar e.g. having small

distances from each other.

Because we have a periodic space it is natural to use the von Mises-Fisher

distribution Mp(xi, κ) as a kernel function with probability density function

(κ

2

)p/2−1 1

Γ(p/2)Ip/2−1(κ)
exp{κµTxi} (A.2)

as kernel function (Mardia and Jupp, 2000), p. 197. κ ≥ 0 and ||µ|| = 1 are

called the concentration parameter and mean direction, respectively. Ip(.) is the

modified Bessel function of the first kind and order p and Γ(.) is the Gamma

function. Note that the scalar product in the exponential function is over data

in Cartesian coordinates as a measure of similarity of the mean µ and the data

x.

The corresponding kernel density estimate is given by (Mardia and Jupp

(2000), p. 277)

f̂F (x; κ) = n−1ap(κ)

n∑

i=1

exp(κxTxi), (A.3)
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where the constant κ determines the degree of smoothing (see Figure A.2 and

Section A.2), and ap(κ) is the normalizing constant

ap(κ) = log

((κ

2

)1−p/2

Γ
(p

2

)

Ip/2−1(κ)

)

. (A.4)

A.2. Optimal Bandwidth for Kernel Density Estimation

Free parameters in kernel density estimation are the specific choice of the ker-

nel and the used bandwidth of the kernel. The bandwidth changes the smooth-

ness of the density estimate. For large bandwidth the resulting density estimate

will be smooth, but generally the density will be overestimate (bias). If the

bandwidth is small the resulting density estimate has a large variance so we

need a large number of data points to estimate the density correctly. Because

of this tradeoff we can assume that there is an optimal bandwidth for a given

number of data points.

In general the kernel density estimate f̂h(x) for x1, . . . , xn is

f̂h(x) = Exi
[Kh(x− xi)] = h−1Exi

[

K

(
x− xi

h

)]

(A.5)

where h is the bandwidth of the kernel K(x).
For the optimal bandwidth h0 the mean integrated squared error (MISE) of

the kernel density estimator should be minimal. It is composed of a variance

and an bias term.

MISE(h) =

∞∫

−∞

E

[(

f̂h(x) − f(x)
)2
]

dx (A.6)

=

∞∫

−∞

E
[

f̂h(x) − E
[

f̂h(x)
]]2

+
(

E
[

f̂h(x)
]

− f(x)
)2

dx (A.7)

=

∞∫

−∞

Var(f̂h(x))dx+

∞∫

−∞

Bias2(f̂h(x))dx (A.8)

Asymptotically for the number of data points n→ ∞ the MISE(h) is according

to Silverman (1986):

AMISE(h) =
1

nh

∫

K2(x)dx+ h2k(µk(K)/k!)2

∫
(
f (k)(x)

)2
dx (A.9)
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Figure A.3.: The order of the optimal bandwidth for different dimensions of

image patches (p = q + 1 = 3 × 3, 5× 5, 7× 7) over the number of

samples. Note the log in both the x-and y-axes

where k is the order of the kernel K (normally k = 2) and µj(L) =
∫
xjL(x)dx

for any function L. Note that for this approach f has to be at least k times

bounded or square integrable. The optimum kernel width h0 is the minimizer

of AMISE(h) and can be obtained by differentiating with respect to h and

calculating the root of the derivative.

Härdle and Müller (2000) point out that for a multivariate kernel density

estimator (Gaussian kernel k = 2) the optimal bandwidth depends strongly on

the dimension q of the data and is in the order of:

h0 = O(n−1/(4+q)). (A.10)

Figure A.3 displays this relationship for different dimensions p = 32, 52, 72 of

the data (square image patches). The order of the bandwidth scales badly

with the dimension. For image patches of size 7 × 7 we need 500000 samples

to achieve a optimal bandwidth of .777, twice as many samples would lower

the optimal bandwidth only slightly to .767. This indicates that using kernel

density estimation in spaces of large dimensions is not feasible with kernels of

small bandwidth. One would expect a large variance of the estimate.

Härdle and Müller (2000) derived a rule-of-thumb for the bandwidth in

the case that we have a diagonal bandwidth matrix and a multivariate normal

distribution as a reference distribution:

ĥj =

(
4

q + 2

)1/(q+4)

n−1/(q+4)σj. (A.11)
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A.3. Entropy of the Density fXA

Using Equation A.3 we calculate the entropy as the expectation over random

samples from the density f̂XA

H(XA) = Ef̂XA

(− log(f̂XA
)) (A.12)

To calculate the expectation we have to sample from the distribution fXA
.

Because it is non-trivial1 to sample according to the density in Equation A.3 we

introduce a new distribution g and sample from this distribution because

Ef (−log(f(x))) = −
∫

f(x)log(f(x))dx

= −
∫

g(x)
f(x)

g(x)
log(f(x))dx

= Eg

(

−f(x)

g(x)
log(f(x))

)

(A.13)

will give us the desired expectation (Metropolis et al., 1953; Marshall, 1956). important

samplingThe expectation will converge faster, e.g. has smaller variance, for a distribu-

tion g that is similar to f . Fortunately there is a distribution g, the multivariate

normal distribution, that is very similar to the von Mises distribution and there

are efficient tools for sampling from that distribution. It has probability density

function:

g(x − µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

{

−1

2
(x − µ)T Σ−1(x − µ)

}

, (A.14)

where d is the dimension (in our case d = p − 1 because g is defined on the

hyper-sphere Sp−1) and Σ is the variance-covariance matrix (Σii = σ).

The normal distribution N (µ, σ2) wrapped around the circle gives the

wrapped normal distribution WN(µ, exp(−σ2/2)). The wrapped normal dis-

tribution is a close (first-order) approximation of the von Mises distribution

M(µ, κ) ' WN

(

µ,A(κ) =
I1(κ)

I0(κ)

)

(A.15)

for high and intermediate values of κ (Kent, 1978; Stephens, 1963). Ip is the

modified Bessel function of the first kind and order p. Schou (1978) has given

an approximation for A(κ) as

A(κ) = 1 − 1

2κ
− 1

8κ2
+O

(
1

κ3

)

(A.16)

1Sampling by the transformation method for example we would have to calculate the inverse
function of the integral of f̂ .
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Figure A.4.: Comparison of a Gaussian function with N (µ = 0, σ = .777) and a

von Mises-Fisher distribution with M(µ = 0, κ = 2.1428)

which is useful for large κ e.g., the small variance case in which the non-

periodic function g can be reasonable compared to the (periodic) von Mises

distribution function. Because of the above identities the normal distribution

N (µ, σ) that is closest to the von Mises distribution for large concentration

parameter κ is2

N
(

µ,

√

6 log(2) − 2 log

(
8κ2 − 4κ− 1

κ2

))

' M (µ, κ) . (A.17)

Using the above definition for the variance of g we can sample from g by draw-

ing p − 1 values from a multivariate normal distribution. Calculation of the

entropy in Equation A.1 can now be done by Equation A.13.

A.4. Results

We sampled 500000 image patches of size 7 × 7 from the 13 natural images

shown in Figure A.1 on page 175. The bandwidth of the Gaussian g was chosen

to be .777 (see Section A.2 and Figure A.4). This defines in turn a concentration

parameter of κ = 1.7722 for the von Mises kernel (by Equation A.17). In Figure

A.5 the result is plotted over increasing values of n and kernel sizes κ. The

entropy for small κ (large variance) approaches the entropy of the uniform

density fXB
. Large negative entropy for small kernel variances indicate that

the distribution of natural images on the unit sphere is highly non-uniform.

2For small κ a better approximation is A(κ) = 1/2κ− 1/16κ3 + O(κ5).
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B.1. Dependence of Symmetry on RFS

To calculate the (rotational) symmetry value for a given object in an image

X we introduced the L1-norm of a vector calculated from the covariances be-

tween the original image and N successively rotated versions of that image

(see Equation 4.8 on page 90). Lets analyse now, how this measure of the

structure in X depends on the size of the object. For this reason we assume

that the figure is perfectely symmetric,

xr,θ′ = xr,(θ′−τ), x ∈ X, τ ∈ [0, 2π], (B.1)

e.g., can be described by a disc with a certain radius α. In this case, the sym-

metry value for all τ will be the same.

S(X) = N covτ (X, Y ) = N

2π∫

0

rmax∫

0

(xr,θ′ − x̄)2drdθ′ (B.2)

and let Y describe a by τ rotated version of X (because of rotational symmetry

Y = X). We will omit the constant factor N for the next calculations.

A disc with radius α can be modeled by a single heavy-side function H (in

polar coordinates):

xr = −H(r − α) + 1 (B.3)

covτ (X, Y ) = 2π

rmax∫

0

(
−H(r − α) + 1 − E [−H(r − α) + 1]

)2
dr (B.4)

where E(.) is the expectation of (.).

E [−H(r − α) + 1] =
1

πr2
max

πα2 =
α2

r2
max

(B.5)
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By simple analysis it follows that:

covτ (X, Y ) = 2π

rα∫

0

(

−H(r − α) + 1 − α2

r2
max

)2

dr (B.6)

= 2π

α∫

0

(

1 − α2

r2
max

)2

dr = 2π

α∫

0

1 − 2
α2

r2
max

+
α4

r4
max

dr(B.7)

= 2πα

(

1 − 2
α2

r2
max

+
α4

r4
max

)

(B.8)

This later function is zero at α = 0 and α = rmax and shows a maximum in

between at α = rmax
1√
5
≈ 0.48rmax. So a disc has maximum symmetry if it fills

nearly half the receptive field.

A neuron implementing this strategy of integration over the input would

have a measured receptive field (standard method) of half its ’real’ integration

field and would show furthermore a strong inhibitory surround (for a disc like

stimulus).

Nice: The result of the maximum symmetry seems (not) to be correlated

with the golden ratio. The ratio 1 − 1√
5

=
√

5−1√
5

is near the value of the golden

ratio
√

5−1
2

(
√

5 = 2.236 ≈ 2).

B.2. Dependence of Symmetry on Preferred Orientation

To calculate the (rotational) symmetry value for a given object in an image

X we introduced the L1-norm of a vector calculated from the covariances be-

tween the original image and N successively rotated versions of that image

(see Equation 4.8 on page 90).

S(X, τ) =

rmax∫

0

2π∫

0

(xr,θ − x̄)(xr,θ−τ − x̄)dθdr (B.9)

Lets now analyse, how the measure of structure depends on the orientation of

a contrast gradient in the image. This example is important because contrast

gradients, or edges are common features in natural images.

Without restrictions we can assume that the edge is a horizontal one. This

follows from the observation that we can rotate the original image and never-

theless obtain the same vector S. Whereas this implies that S is not specific

for a certain orientation (has no preferred orientation) we show now that the
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entries of S depend linearly on the difference between the edge orientation

and the rotation angle τ .

The mean of an image containing a centered edge is x̄ = (max(X) −
min(X))/2. For now we want to restrict ourselves to the case of a binary image

for which x̄ = 1/2.

We first look onto the inner integral which describes for a given radius r
the pixel pair products between the original image (xr,θ) and the by τ rotated

image (xr,θ−τ):

2π∫

0

(xr,θ − x̄)(xr,θ−τ − x̄)dθ =

2π∫

0

(xr,θ −
1

2
)(xr,θ−τ −

1

2
)dθ (B.10)

=

2π∫

0

xr,θxr,θ−τ −
1

2
(xr,θ + xr,θ−τ) +

1

4
︸ ︷︷ ︸

fτ (θ)

dθ (B.11)

We can split the later equation into a sum of three integrals depending on xr,θ

and xr,θ−τ :

=

2π∫

0
xr,θ=xr,θ−τ =1

fτ (θ)dθ +

2π∫

0
xr,θ=xr,θ−τ =0

fτ (θ)dθ + 2

2π∫

0
xr,θ 6=xr,θ−τ

fτ (θ)dθ (B.12)

=

π∫

τ
xr,θ=xr,θ−τ =1

fτ (θ)dθ +

2π∫

π+τ
xr,θ=xr,θ−τ =0

fτ (θ)dθ + 2

τ∫

0
xr,θ 6=xr,θ−τ

fτ (θ)dθ (B.13)

=

π∫

τ

1 − 1 +
1

4
dθ +

2π∫

π+τ

1

4
dθ + 2

τ∫

0

−1

4
dθ =

π

2
− τ (B.14)

The outer integral and therefore S(X, τ) is now simply:

rmax∫

0

π

2
− τ dr =

(π

2
− τ
)

rmax. (B.15)

So

Sτ (X) =
{(π

2
− τ
)

rmax

}

0≤τ≤2π
(B.16)

and S depends linearly on τ . In particular the symmetry value will be zero for

an edge orthogonal oriented (τ = π
2
) to the rotation axis.
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Figure B.1.: Example for a set of four pixels (x1, x2, x3, x4) and the correspond-

ing 6 pixel pairs

B.3. Dependence of Symmetry on Noise

We show now that for white noise input the random variable defined by the

symmetry detection procedure is characterized by large skewness and kurtosis

as measures of higher order statistics. The distribution has mean 0 because we

use only co-variances (xixj, i 6= j) and because of the independence assump-

tion in white noise.

Let X be a random variable with p(X) = N (0, 1) and let Y be a sequence

of the form (x1, x2), (x3, x4), . . . , (xn, xn+1) where xi ∈ X. This defines Y as

a clique. A clique in graph theory is a collection of sites such that any two cliques

sites are neighbors (see Figure B.1). Here a clique defines a set of pixel such

that any pixel in the clique has a connection weighted by 1 with all other pixel

in the clique. The order of a clique refers to the number of distinct sites that

appear multiplicatively. Note that the structure detection algorithm uses an

average sum of cliques. For the detection of rotational symmetries all pixel at

an ’equal’ distance to the center of the patch are in on clique.

The random variable Y has a specific structure for symmetry pixel pairs

that violates the independence assumption of xi sampled iid. This is the con-

sequence of using a single pixel in more than one element of Y .

More general, we look for the third and forth order central moments of the

sum of a sequence X of N = M(M−1)
2

monomials of order 2. We can define a

minimal non-trivial example of such a sequence for monomials of order 2 in 3
variables (M = 3). The sum of pixel pairs produces is in this case:

Y : (x1x2) + (x2x3) + (x3x1). (B.17)

Let each xi be drawn independently from a normal distribution N (0, 1). It

follows from definition that

E(xi) = 0 E(x2
i ) = 1 E(x3

i ) = 0 E(x4
i ) = 3 (B.18)
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The corresponding cumulants are zero indicating no higher order information

in X. Using the above results we explicitely calculate now the third and forth

order central moments of Y . We assume that Y is a random variable which

depend non-lineary on x1, x2, x3 which in turn are sampled iid from a Gaussian

distribution with mean 0 and variance 1. In the following E(.) will always

stand for the expection over all enclosed xi.

Y :=
∑

i6=j,i<j

xixj (B.19)

E(Y )x1,x2,x3
= E(x1x2) + E(x2x3) + E(x3x1)

︸ ︷︷ ︸

0

= 0 (B.20)

because of xi being iid and for all (xixj), i 6= j E(xixj) = E(xi)E(xj).

E(Y 2) = E
(
(x2

1x
2
2) + (x2

2x
2
3) + (x2

3x
2
1) + 2

(
x1x

2
2x3 + x2

1x2x3 + x1x
2
3x2

))
(B.21)

= E(x2
1)E(x2

2) + E(x2
2)E(x2

3) + E(x2
3)E(x2

1) + 2



E(x1)E(x2
2)E(x3)

︸ ︷︷ ︸

=0

+

E(x2
1)E(x2)E(x3)

︸ ︷︷ ︸

=0

+E(x1)E(x2)E(x2
3)

︸ ︷︷ ︸

=0



 = 1 (B.22)

E(Y 3) = [A+B + C]3 , (A = x1x2, B = x1x3, C = x2x3) (B.23)

= A3 + 3A2(B + C) + 3A(B + C)2 + (B + C)3 (B.24)

= x3
1x

3
2 + 3x2

1x
2
2(x1x3 + x2x3) + 3x1x2(x1x3 + x2x3)

2 +

(x1x3 + x2x3)
3 (B.25)

= x3
1x

3
2 + 3x3

1x
2
2x3 + 3x2

1x
3
2x3 + 3x1x2(x

2
1x

2
3 + 2x1x2x

2
3 + x2

2x
2
3) +

(x1x3 + x2x3)
3 (B.26)

= x3
1x

3
2 + 3x3

1x
2
2x3 + 3x2

1x
3
2x3 + 3x3

1x2x
2
3 + 6x2

1x
2
2x

2
3 + 3x1x

3
2x

2
3 +

x3
1x

3
3 + 2x2

1x2x
3
3 + x1x

2
2x

3
3 + x2

1x2x
3
3 + 2x1x

2
2x

3
3 + x3

2x
3
3 (B.27)

Only one term in the above sum is 6= 0, therefore

E(Y 3) = 6E(x2
1)E(x2

2)E(x2
3) = 6 (B.28)

The central moment of fourth order can be computed as:

E(Y 4) = [A+B + C]4 , (A = x1x2, B = x1x3, C = x2x3) (B.29)

= x4
1x

4
2 + x4

2x
4
3 + 4x4

1x2x
3
3 + 12x3

1x
2
2x

3
3 + 12x2

1x
3
2x

3
3 +

4x1x
4
2x

3
3 + 4x4

1x
3
2x3 + 4x3

1x
4
2x3 + 6x4

1x
2
2x

2
3 + 12x3

1x
3
2x

2
3 +

6x2
1x

4
2x

2
3 + 4x3

1x
4
3x2 + 6x2

1x
4
3x

2
2 + 4x1 + x4

1x
4
3 (B.30)
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Figure B.2.: For the cases of M = 3, 13, 23, 33

Again we reduce this formula with the previously defined values for the mean,

variance and third order moment of Y to

E(Y 4) = x4
1x

4
2 + x4

2x
4
3 + 6x4

1x
2
2x

2
3 + 6x2

1x
4
2x

2
3 + 6x2

1x
4
3x

2
2 + x4

1x
4
3 (B.31)

= E(x4
1)E(x4

2) + E(x4
2)E(x4

3) + 6E(x4
1)E(x2

2)E(x2
3) +

6E(x2
1)E(x4

2)E(x2
3) + 6E(x2

1)E(x4
3)E(x2

2) + E(x4
1)E(x4

3)(B.32)

E(Y 4) = 81 (B.33)

To collect the above results we obtain for Y the first four central moments

as:

E(Y ) = 0 E(Y 2) = 1 E(Y 3) = 6 E(Y 4) = 81 (B.34)

To compare these numbers with the best fitting normal distribution we intro-

duce now cumulants.

Cumulants are normalized versions of the higher order central moments. cumulants

They take into account that for a Gaussian distribution the higher order mo-

ments factorize, e.g. all higher order moments of a normal distribution can be

expressed as combinations of its first two moments (mean and variance). The

normalized versions of the central moments are corrected to yield zero for any

higher than order 2 term.
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In particular the third order cumulant is called skewness and is computed skewness

from the moment of third order as:

s(Y ) =
1

(N − 1)σ3

N∑

i=1

(yi − ȳ)3 =
6

(3 − 1)13
= 3 (B.35)

which incorporates the standard deviation σ = E(Y 2) and the mean x̄ = E(Y )
of the sequence Y .

The kurtosis is the cumulant of fourth order and defined as:kurtosis

k(Y ) =
1

(N − 1)σ4
E(Y 4) − 3 =

1

(3 − 1)14
81 − 3 = 37.5 (B.36)

As we can see Y is a skewed and highly kurtotic distribution. This is confirmed

by the shape of the distributions in Figure B.2 on the page before. As it can be

seen from the simulation there is a trend to introduce higher order moments

by monomials in more variables (which correspond to more pixel for growing

radii).

Multivariate Gaussian Distribution in Two Variables

For the model of a multivariate Gaussian distribution

p(X) = N
(

µ,Σ =

(
σX cX
cX σX

))

(B.37)

the expectation of Y can be expressed as:

E(Y ) = E

(
N∑

i6=j

xixj

)

(B.38)

=
N∑

i6=j

E(xixj). (B.39)

Note that our covariance structure is restricted to be symmetric (Σ12 = Σ21)

and rotationally invariant (Σ11 = Σ22). Due to the fact that E(XY ) =
Cov(X, Y ) + E(X)E(Y ):

E(Y ) =
∑

i6=j

(cX + E(xi)E(xj))

=
∑

i6=j

(cX + µ2)
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For a zero mean (µ = 0) Gaussian distribution P (X) we end up with an expec-

tation for Y of

E(Y ) =
N(N − 1)

2
cX (B.40)

where cX is the covariance between any two pixels cov(xi, xj), i 6= j in X and

N is the order of the respective clique (number of pixels). If we build the

expectation with respect to the number of pixel pairs we arrive at

E(Y ) = cX . (B.41)

Lets combine the cliques of growing order so that we can compute the

expectation of S(X). Again we assume that X has a probability distribution

that is multivariate Gaussian (Equation B.37 on the facing page). If N is the

order of the clique YN , we can assume at each radius r arround the center

position of X a number N = 2πr of pixels forming a clique:

E(S(X)) = E

(
rfs∑

i=1

Y2πi

)

=
1

rfs

rfs∑

i=1

E(Y2πi) (B.42)

= cX . (B.43)
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Lets analyse a set of non-linear basis functions in order to prove that we can

apply linear methods in this feature space.

Monomials of constant order d are of the form

Fn(d) = {xe1

1 x
e2

2 . . . xen

n |e1 + e2 + · · · + en = d, ei ≥ 0} . (C.1)

Linear methods have to identify directions in the feature space that correspond

to directions in the input space, i.e., directions on the manifold. In order to

reliably extract n independent source directions we have to ensure that the

data projection in the feature space is effective, e.g., that the n unknown source

directions span the whole space.

General linear independence of monomial spaces of constant order: We have

to show that any n pairwise different vectors γ1...n ∈ [0 . . . π) are linear inde-

pendent if they are in the manifold defined by n monomials of constant order.

Commutative monomials of order n in two variables can be expressed in

polar coordinates as (γ ∈ [0 . . . 2π))

(y0xn, yxn−1, . . . , yn−1x, ynx0) =

rn(cosn(γ), sin(γ) cosn−1(γ), . . . , sinn−1(γ) cos(γ), sinn(γ)) (C.2)

Proving strong linear independence can be done by proofing that the matrix

M =







cosn(γ1) sin(γ1) cosn−1(γ1) . . . sinn−1(γ1) cos(γ1) sinn(γ1)
cosn(γ2) sin(γ2) cosn−1(γ2) . . . sinn−1(γ2) cos(γ2) sinn(γ2)

...
...

. . .
...

...

cosn(γn) sin(γn) cosn−1(γn) . . . sinn−1(γn) cos(γn) sinn(γn)








(C.3)

has a non-zero determinant in the range γ1...n ∈ [0 . . . π]. This matrix can be

decomposed into a product of a diagonal matrix Vi,i = cosn(γi) and a matrix

W =








1 tan(γ1) tan2(γ1) . . . tann(γ1)
1 tan(γ2) tan2(γ2) . . . tann(γ2)
...

...
...

. . .
...

1 tan(γn) tan2(γn) . . . tann(γn)








(C.4)
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because tan = sin / cos. W is a Vandermonde matrix. The determinant of thisVandermonde

matrix is known to be det(W ) = Πi,j,i>j(tan(γi) − tan(γj)). Together with V
the determinant of the matrix M in Equation C.3 on the preceding page is

therefore

det(M) =
n∏

i=1

cosn(γi)
∏

i,j,i>j

(tan(γi) − tan(γj)) (C.5)

Because tan is a strict monotonic function the only case in which the last term

can be zero is, if for some i 6= j γi = γj which violates our requirement of

having n different vectors γ1...n.

Because for n different directions the cosine function has only one zero-

crossing between [0 . . . π) and we require that all γi are different, there can only

be a single γi for which cos(γi) = 0. The only case in which the determinant can

be zero is therefore if, without loss of generality, we assume that cos(γ1) = 0.

If cos(γ1) = 0 and cos(γ2...n) 6= 0 it follows that in the first line of the

matrix M only the last term sinn(γ1) 6= 0. The determinant of the matrix M in

Equation C.3 reduces to

det(M) = (−1)n+1 sinn(γ1)
∣
∣
∣
∣
∣
∣
∣

cosn(γ2) sin(γ2) cosn−1(γ2) . . . sinn−1(γ2) cos(γ2)
...

...
. . .

...

cosn(γn) sin(γn) cosn−1(γn) . . . sinn−1(γn) cos(γn)

∣
∣
∣
∣
∣
∣
∣

. (C.6)

The later sub-determinant can again be expressed as the determinant of the

product of a matrix Vi,i = cosn(γi) and a Vandermonde matrix





1 tan(γ2) tan2(γ2) . . . tann−1(γ2)
...

...
...

. . .
...

1 tan(γn) tan2(γn) . . . tann−1(γn)




 . (C.7)

Because of γ2...n are different vectors and cos(γ2...n) 6= 0 the determinant of the

matrix M is non-zero if cos(γ1) = 0.

The presented proof uses as a crucial ingredient the strict monotonicity

of the tan function in the interval [0, π). This opens a path to define other

feature spaces by introducing other strict monotonic functions. Important in

this respect is that the property of linear separability has to be fulfilled for

these feature spaces also. For example, with two variables x, y and n = 2 by

exchanging tan by sin we arrive at basis functions (x2, x2y, x2y2) which are not

separable into a scalar part and a vectorial part depending only on γ.

Of course we can also exchange the cos entries in the diagonal matrix.

Exchanging cosn by sinn in the example above we arrive at separable basis

functions of constant order (y2, y3/x, y4/x2).
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