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ABSTRACT

Humans may consider various sources of information when making a decision.
Traditional reinforcement-learning algorithms mainly focus on learning the
expected reward and ignore other psychophysiological factors that may affect
human decisions, such as perceptual interference or emotional regulation. This
thesis aims to integrate these other factors into the reinforcement-learning models
and addresses two questions: (1) How do conflicting salient stimuli influence
reward estimation? (2) How are the counterfactual consequences integrated into
economic decision-making? I hypothesize that the neurobiological mechanism of
error-correction via reinforcement is commonly utilized by multiple valuation
systems.

In the study of contextual modulation of prediction-error representations, I
designed a value-based choice paradigm that dissociated stimulus-based and
reward-based expectations. Participants traded off reward against the
predictability of the stimulus location. Behavioral results were analyzed on a trial-
by-trial basis using two independent Rescorla-Wagner models, which were then
combined by a non-linear weighting function. Using model-based fMRI analysis, |
found a co-existence of stimulus and reward prediction errors in the ventral
striatum, suggesting that this brain region responded to surprising perceptual
events as well as unexpected reward delivery or omission. Furthermore, the
amygdala activity correlated with the weighting function, suggesting that it might
be negotiating between the initial stimulus saliency based choices and the later
reward-driven choices.

In the study of valuation with counterfactual learning signals, I extended the Q-
learning model by incorporating both counterfactual gains and losses into fictive
temporal-difference prediction errors. The model was used to investigate the
potential influence of counterfactual valuation using both behavioral and fMRI data
from a strategic sequential investment paradigm. The results demonstrated that
counterfactual learning signals improved the @ -learning model fit, and this
improved model predicted BOLD signal changes that correlated with expected
value and reward prediction. Expected values derived from the model robustly
modulated activity in the ventral medial prefrontal cortex and orbital frontal
cortex. Furthermore, the model showed that individuals had different sensitivity to
counterfactual gains and losses, which led to distinct neural correlations with
fictive prediction error in the ventral striatum.

Together these two studies highlighted the neural correlates of multiple prediction
errors in the ventral striatum and re-interpreted them in the form of an
information prediction error, thus integrating the multiple valuation systems into a
single coherent decision-making framework.






ZUSAMMENFASSUNG

Menschliche Entscheidungen basieren wahrscheinlich auf einer Vielzahl von
Einfliissen. Traditionelle Algorithmen zum , Reinforcement Learning”“, von welchen
haufig angenommen wird dass sie diesen Entscheidungen zugrunde liegen,
beschranken sich dagegen auf das Erlernen der mittleren zu erwartenden
Belohnung und ignorieren dabei andere psychophysiologische Faktoren wie
Wahrnehmung oder emotionale Kontrolle, welche menschliche Entscheidungen
nachweislich ebenso beeinflussen. Diese Doktorarbeit hat das Ziel, mit Markov-
Entscheidungsprozessen und ,Reinforcement Learning“-Modellen experimentelle
Hypothese in den Neurowissenschaften zu formulieren und zu testen. Sie integriert
hierbei zwei dieser Faktoren in Modelle der Entscheidungsfindung und deren
angenommenen neuronaler Korrelate: (1) Wie beeinflussen im Konflikt zur
Gewinnmaximierung stehende saliente Reize die Schatzung von Belohnung, und
(2) wie werden entgangene Gewinne und Verluste - die sogenannten
,kontrafaktische Folgen“ - in o6konomische Entscheidungen integriert? Meine
Hypothese ist, dass die neurobiologischen Mechanismen der Fehlerkorrektur,
welche dem Reinforcement Learning zugrunde liegen, gleichzeitig in mehreren
Bewertungssystemen involviert sind.

Ich entwarf eine Studie, welche stimulusbasierte und belohnungbasierte
Erwartungen und deren Vorhersagefehler dissoziiert, indem diese in einer
traditionellen belohnungbasierten Aufgabe unabhédngig voneinander manipuliert
wurden. Versuchsteilnehmer wogen hierbei die Vorhersagbarkeit von Stimuli
gegen die zu erwartende Belohnung ab. Jede Entscheidung der Teilnehmer wurde
mittels zweier unabhdngiger Rescorla-Wagner-Modelle analysiert, deren
Vorhersagen durch eine nichtlinearen Gewichtungsfunktion kombiniert wurden.
Eine modellbasierte fMRT-Analyse fand die Vorhersagefehler sowohl fiir Stimuli
als auch fir die erwartete Belohnung im ventralen Striatum. Dies deutet darauf
hin, dass diese Hirnregion sowohl auf tiberraschende Wahrnehmungsereignisse,
als auch auf unerwartete Belohnung reagiert. Aufierdem korrelierten die
individuellen Gewichtungsfunktionen mit der Aktivitat der Amygdala, was darauf
hindeutet, dass diese Gehirnregion moglicherweise zwischen den urspriinglichen
stimulusbasierten Entscheidungen, und den spateren von Belohnung getriebenen
Entscheidungen abwagt.

In einer Studie zu kontrafaktischen Lernsignalen habe ich ein klassisches Q -
Learning-Modell durch die Einbeziehung von entgangenen, ,kontrafaktischen”
Gewinnen und Verlusten erweitert. Das Modell wurde verwendet, um anhand von
Verhaltens- und fMRT-Daten den Einflufd von kontrafaktische Bewertungen auf
den Entscheidungsfindungsprozess in einem sequentiellen Investitions-Paradigma
zu untersuchen. Die im Modell integrierten kontrafaktischen Lernsignale konnten
hierbei das Verhalten der Versuchsteilnehmer und die BOLD-Signale im fMRT,
welche mit dem Erwartungswert und der Gewinnvorhersage korrelieren, deutlich
besser vorhersagen als das klassische, rein ,faktische”" Model. Der aus dem
erweiterten Modell abgeleitete Erwartungswert moduliert die Aktivitit im
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ventralen medialen prafrontalen Kortex und orbital-frontalen Kortex. Dartliber
hinaus zeigte das Modell, dass Personen unterschiedliche Empfindlichkeit
gegeniiber entgangenen Gewinnen und Verlusten haben, welche mit
unterscheidbaren neuralen Korrelationen von fiktiven Vorhersagefehlern im
ventralen Striatum einhergehen.

Zusammengenommen unterstreichen diese beiden Studien die Koexistenz von
mehreren Vorhersagefehlern im ventralen Striatum und interpretiert diese als
Spezialfille eines allgemeinen Informations-Vorhersagefehlers. Diese Sichtweise
integriert mehrere Bewertungssysteme in eine kohdrente Interpretation von
menschlichen Entscheidungsfindungsprozessen.
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Chapter 1: INTRODUCTION

“Follow your heart” or “use your head”—whichever strategy we use, we usually
have more than one alternative to choose from, and yet we often make irrational
decisions. Evidence to support this has been found in a variety of psychology and
economics studies. This thesis aims at using computational neuroscience to
address how the human brain generates paradoxical decisions. Assuming the
human brain is a computing device, we can then use computational models to
study the neural mechanism of the decision-making processes in a more precise
way. Indeed, reinforcement-learning models that account for neural activity
underlying different valuation systems in the human brain have been successfully
adopted.

In this chapter, I will mainly review three valuation systems in human decision-
making, detailing their putative neuroanatomical and computational
underpinnings. I will also describe situations under which different valuation
systems might interact with each other in a manner that influences behavior in
either adaptive or maladaptive ways. Understanding their interaction may provide
key insight into such pathological disorders of decision-making as schizophrenia,
addiction, depression, and anxiety. I propose that error correction via
reinforcement is a common neural mechanism underlying different valuation
systems.
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1.1 Background and general framework

1.1.1 Reinforcement learning in the human brain

First, we define decision-making as choosing among actions based on their relative
values of potential consequences. Accordingly, optimal decision-making means to
maximize reward and minimize punishment. Reward can be food, juice, money or
anything that is attractive to the decision-maker and so may serve such roles as an
incentive. In machine learning, rewards are simply numerical scalars (either
positive or negative) that indicate the consequences of actions. It is not easy to
take the optimal action, especially when reward or punishment may depend on a
series of actions. Therefore, it is important to learn from experience and errors.
This type of learning through trial and error is exactly the core of reinforcement
learning: the learner makes a prediction, observes actual events and, if the
prediction was wrong, updates the knowledge base so that future predictions are
more accurate. In this thesis, reinforcement-learning models are used to study the
human decision-making process. Unless otherwise stated, I will use the term
reward-based learning interchangeably with value-based decision-making and
reinforcement-learning valuation.

Reinforcement learning has a rich history in psychology, traceable to the early
twentieth century, when Thorndike proposed the theory of stimulus-response
associative learning (Thorndike, 1933). Slightly later on, Hebb proposed a
neurobiological theory of learning (Hebb, 1949), claiming that the synaptic
connections between neurons are strengthened after repeated simultaneous
activation. In the late twentieth century, reinforcement learning (Sutton and Barto,
1998) became the subject of active research in the field of machine learning,
meanwhile, neural validity of reinforcement-learning models has been
demonstrated in dopamine neurons that are located in the midbrain nuclei of the
substantia nigra and the adjacent ventral tegmental area (Montague et al., 1996;
Schultz, 1998). Schultz and colleagues showed that the phasic response of
dopamine neurons recorded from primates resembles the temporal-difference
prediction error used in reinforcement-learning models (Schultz et al, 1997).
Notably, the effort devoted to testing the involvement of the dopamine system in
reward learning was initially motivated by research in Parkinson’s disease
(Fearnley and Lees, 1991; Graybiel et al, 1994). The brain regions damaged in
Parkinson patients overlap largely with the dopamine-related regions identified by
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self-stimulation (Olds, 1958) and pharmacological studies (Wise and Rompre,
1989).

The dopamine neurons primarily project to such regions in the brain as the
striatum, amygdala and frontal cortex. These widespread projections make
dopamine neurons an ideal broadcast center for learning signals. The striatum,
pallidum, subthalamic nucleus and substantia nigra together form the basal
ganglia. The striatum also receives projections from cortical areas, as well as from
the amygdala and hippocampus. This cortical-basal ganglia circuit is at the heart of
decision-making valuation systems. The functional anatomy and connectivity of
dopamine-related regions are shown in Figure 1.1. Nevertheless, a complete
picture of the dopamine-dependent learning system may be more complex and
diverse.

Human neuroimaging studies have revealed activities in both ventral and dorsal
striatum consistent with prediction-error signals during a variety of decision-
making tasks (Cooper et al.,, 2012; Kim et al., 2006; McClure et al., 2003; O’'Doherty
et al., 2004; Pessiglione et al,, 2008). The anterior cingulate cortex is commonly
involved in conflict monitoring (Botvinick et al, 1999, 2004). More recently,
learning signals have also been found to be computationally characterized in the
amygdala (Li et al.,, 2011; Prévost et al, 2011). Value representations have been
suggested in the ventromedial prefrontal cortex (vimPFC), orbital frontal cortex
(OFC) and intraparietal sulcus (Daw et al., 2006; Glascher et al., 2009; Hare et al,,
2008; Valentin et al., 2007). Levy and Glimcher conducted a meta analysis using
data from thirteen different human fMRI studies published in recent years (Levy
and Glimcher, 2012). The results suggest that a subregion of the vmPFC/OFC
represents subjective values of different types of rewards on a neural common
scale for guiding choice behavior. They proposed one possible schema for
understanding the decision-making networks of the human brain, as shown in
Figure 1.2. The schema suggests that sensory information from cortical and
subcortical structures converges toward a single common value representation
before passing on to the choice-related motor control circuitry. However, it is not
clear whether striatum encode different types of prediction errors in a common
scale as well.
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Figure 1.1 Schematic illustration of the anatomy and connectivity of reward circuit in the
human brain. Dopamine neurons in substantia nigra (SN) and the adjacent ventral tegmental
area (VTA) project to ventral and dorsal striatum, orbital frontal cortex (OFC), ventral
medial prefrontal cortex (vimPFC), dorsal anterior cingulate cortex (dACC), dorsal prefrontal
cortex (DPFC). Other abbreviations: Amy = amygdala; Hipp = hippocampus; THAL =
thalamus; MD = medial dorsal; LHb = lateral habenula; VP = ventral pallidum; Hypo =
hypothalamus; STN = subthalamic nucleurs; Raphe = raphe nuclei; PPT = pedunculopontine
nucleus. Taken from (Haber and Knutson, 2010).
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Figure 1.2 Schematic illustration of putative decision-making networks of the human brain.
Information from cortical (3 dorsal lateral prefrontal cortex, 8 visual cortex) and subcortical
(9 amygdala, 10 striatum, 4 insula) structures converges toward a single common value
representation (1 ventral medial prefrontal cortex, 2 orbital frontal cortex) before passing
on to the choice-related motor control circuitry (5 primary motor cortex, 6 posterior
parietal cortex, 7 frontal eye fields). Sensory signals from visual areas, shown in yellow,
stand for information from all sensory modalities. Taken from (Levy and Glimcher, 2012).

In summary, the functional neural anatomy of decision-making typically involves
both cortical and striatal regions, including orbitofrontal, anterior cingulate and
posterior parietal cortices, as well as the striatum, amygdala, and hippocampus.
Reinforcement learning can capture a variety of human decision-making and
reward-based learning behavior. The dopamine response and related neural
activity in the cortical-basal ganglia circuit seem well accounted for by temporal-
difference learning. Brain areas and functional mechanisms other than those
described in this section may influence learning and decision-making processes as
well. The human brain is a much more complex system than any state-of-art
machinery. Characterization of the neurobiological computations that underlie
sophisticated behaviors requires better integration of computer science,
psychology, neuroscience, and economics than has been available heretofore; in
other words, a multilevel and multidisciplinary research approach is needed.
Recent emerging disciplines such as neuroeconomics (Glimcher, 2010; Glimcher
and Fehr, 2014) and computational psychiatry (Montague et al.,, 2012; Wang and
Krystal, 2014) have fostered a growing sense of interdisciplinary collaboration.
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1.1.2 Multiple valuation systems in learning and decision-making

The hypothesis that human decisions are controlled by multiple valuation systems
has been prevalent in psychology, neuroscience and behavioral economics
(Balleine et al., 2009; Daw et al., 2005; Dayan and Balleine, 2002; Dickinson and
Balleine, 2002; Dolan and Dayan, 2013; Tversky and Kahneman, 1981). The same
decision can arise from distinct psychological and neurobiological pathways. The
brain may employ the strategy that involves the least effort in a specific situation.
In this section, I describe three types of valuation systems, which all ultimately
concern reward-based learning and can be framed with reinforcement-learning
models. These three systems are (1) an instrumental system that forms associative
learning and goal-directed actions, (2) a Pavlovian system that triggers reflexive
classical conditioning responses, and (3) a counterfactual learning system that
evaluates actions while incorporating fictive outcomes.

1.1.2.1 Instrumental valuation system

Since the early days of psychology, theorists and experimentalists have struggled
with the question of which associative structure controls human learning behavior.
On the one hand, Thorndike proposed that actions are strengthened by positive
reinforcement and weakened by negative reinforcement (Thorndike, 1933). This
sort of instrumental valuation involves the formation of stimulus-response
associations, which are initially strengthened by outcomes but eventually lead to
outcome-independent habitual formation. On the other hand, Tolman used latent
learning tasks to demonstrate the insufficiency of stimulus-response valuation and
further proposed that animals can instead learn to plan goal-directed actions using
an internal representation of environmental contingencies (Tolman, 1948). He
called this internal representation a “cognitive map.” Abundant evidence collected
over decades of behavioral and neuroscientific research indicates that habitual and
goal-directed instrumental valuations not only cooperate but also compete with
each other for control over decision-making (Dayan, 2008; Dolan and Dayan,
2013).

Instrumental valuation refers to behavior that aims at achieving a specific goal
such as maximizing benefit or minimizing cost. In the machine learning literature,
instrumental valuation means determining optimal policy in each state of the
environment so as to maximize the value function. Reinforcement-learning
methods can be broadly divided into two classes of algorithms: model based and
model free. These two methods differ in their computational costs and adaptability
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to changes in the environment. The model-free algorithm is computationally
inexpensive, but it fails to show rapid adaptation when the environmental
contingencies change. In contrast, the model-based algorithm keeps track of an
abstract model of the task structure and has the power to account for such choice
behavior as post-training manipulation of reinforcer devaluation (Holland and
Gallagher, 2004) or immediate changes in the reward contingency and outcome
utilities (Hampton et al., 2006). The theoretical difference between model-based
and model-free reinforcement-learning methods echoes the distinction between
habitual learning and instrumental learning. In fact, recent work has begun to use
model-based and model-free reinforcement learning as theoretical counterparts
for studying the computational mechanisms underlying habitual and goal-directed
learning, respectively.

If we suppose that the human brain employs both habitual and goal-directed
instrumental valuations in parallel, an interesting question would be how the brain
arbitrates different valuation systems when they disagree. It has been proposed
that the two decision systems are arbitrated according to their respective
reliability of estimation (Daw et al, 2005). Consistent with animal physiology
studies, accumulating evidence from model-based reinforcement-learning
computation has indicated that the human striatum and ventromedial prefrontal
cortex are involved in goal-directed learning (Balleine and O’Doherty, 2010).
Furthermore, the connectivity between the ventral medial prefrontal cortex and
the dorsomedial striatum has been shown to correlate with individual control of
the trade-off between goal-directed and habitual actions (Wit et al., 2012). Other
studies have implicated the hippocampus (Bornstein and Daw, 2012) and parietal
cortices in the encoding of learning signatures that are related to model-based
reinforcement learning (Glascher et al,, 2010; Simon and Daw, 2011).

1.1.2.2 Pavlovian valuation system

Pavlovian valuation, which involves learning a cue-outcome association, is also
called classical conditioning (Rescorla, 1987). By contrast with instrumental
conditioning, Pavlovian responses cannot actually influence the outcome in the
environment. Pavlovian valuation traditionally concerns learning predictive
relationships between a neutral stimulus and a biologically relevant outcome. One
example is the observation of Pavlov’s dog salivating reliably to the ring of a bell
that precedes the delivery of food (Pavlov, 1927). Nonetheless, Pavlovian valuation
is not only a passive process that forms associations between co-occurring stimuli.
Such associations often require sophisticated perceptual representations and the
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learning of contingent relations among events (Clark et al, 2012; Dayan and
Berridge, 2014). Moreover, a learned Pavlovian association can in fact influence
instrumental valuation.

The influence of Pavlovian valuation on instrumental learning has recently been
studied in humans with the Pavlovian-to-instrumental transfer (PIT) paradigm
(Bray et al.,, 2008; Crockett et al., 2012; Geurts et al.,, 2013; Hebart and Glascher,
2014; Huys et al., 2011; Leanne et al., 2011; Prévost et al., 2012; Talmi et al., 2008).
In the PIT paradigm, subjects are firstly trained passively by Pavlovian
conditioning to associate a stimulus with reward and then by separately
instrumental conditioning to learn actions for either the same or different reward.
Afterwards, subjects are tested when different actions are available with the
presentation of the Pavlovian stimulus but without the delivery of any outcome.
The stimulus either augments performance of previously learned response in
general (Dickinson and Balleine, 2002; Estes, 1948) or biases a specific action
which leads to the same outcome that the stimulus was originally paired with
(Balleine, 1992).

Early studies mainly suggested the cortical-basal ganglia circuit in different types
of Pavlovian valuations (Clark et al, 2012). In addition, the role of amygdala is
convincingly identified in stimulus-reward learning (Baxter and Murray, 2002;
Roesch et al,, 2010; Seymour and Dolan, 2008; Whalen and Phelps, 2009) and
recent human fMRI studies with the PIT paradigm (Prévost et al., 2012; Talmi et
al., 2008) further emphasize the functional role of the amygdala in learning and
decision-making.

1.1.2.3 Counterfactual learning

In many situations individuals learn not only about the outcome of the chosen but
also of the unchosen options. Via counterfactual thinking, the factual and the fictive
outcome are compared and this may lead to a psychological emotion of regret
when a better option was missed. Regret theory proposes that individuals are
regret averse and therefore try to minimize potential regret, which can result in
suboptimal, or in other words, irrational choices (Bell, 1981; Loomes and Sugden,
1982a; Zeelenberg et al, 1996). Along with the theory of regret, the impact of
counterfactual thinking has attracted increasing attention in decision-making and
game theory (Epstude and Roese, 2008; Hart and Mas-Colell, 2003; Marchiori and
Warglien, 2008). The difference between factual and counterfactual outcome may
serve as a learning signal analogue to the factual reward prediction error in
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reinforcement-learning models. Empirical studies lead to a more descriptive term
of a fictive prediction error (Lohrenz et al., 2007) in computational modeling. The
behavioral relevance of this fictive error signal is highlighted by its consistent
impact on subsequent decisions and its impaired action guidance in chronic
smokers and schizophrenics(Chiu et al., 2008; Roese et al., 2008).

Lohrenz and colleagues (Lohrenz et al, 2007) demonstrated that a fictive error
signal contributes to changes in choice behavior and further suggested that
situating a ‘fictive error signal’ within the theoretical framework of reinforcement-
learning models may provide additional insight on decision-making process.
Moreover, Li and colleagues modeled the counterfactual prediction error with a
reinforcement-learning model in a two-alternative forced choice task, where the
outcomes of chosen and unchosen options were both explicitly shown to subjects
(Li and Daw, 2011). Although their results provide evidence in the human brain for
a policy-specific update signal, they did not rule out the possibility that fictive
error signals may directly influence instrumental valuation via modifying the
expected long-term reward. Together, these studies show that choice behavior is
responsive to counterfactual consequences, and variations of reinforcement-
learning models can be applied to study the corresponding neural correlates. In
particular, the orbitofrontal cortex(Camille et al., 2004; Coricelli et al., 2005; Liu et
al, 2007) and the striatum (Chiu et al., 2008; Lohrenz et al,, 2007) have been
identified as potential sources of the fictive error signals.

1.2 A hypothesis of multiple prediction errors

As mentioned above, human neuroimaging studies have emphasized a central role
of the striatal system in learning and value representations. In particular,
reinforcement-learning models have been successfully integrated into the design
and analysis of a variety of experiments. However, the main purpose of a
reinforcement-learning agent is to maximize the expected reward. Thus,
reinforcement-learning models cannot readily explain many decision-making and
learning processes: one example of this concerns the behavioral preference
towards non-rewarding perceptual stimuli. Another concern is the psychological
influence on economic choices, such as the emotional regulation of regret.

The idea that decisions are driven by multiple valuation systems is supported by
converging behavioral, neural and computational evidence, as discussed in the
previous section. When multiple valuation systems influence decisions at the same
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time, behavior may become paradoxical because of the conflicts among these
systems. By means of formulating reinforcement-learning models according to
specific experimental context, we can examine the circumstances under which the
decisions become non-optimal. For instance, we can modify reinforcement-
learning models by including additional computational terms to account for
experimental factors that may influence the estimation of the expected reward.

Most of the work in this thesis focuses on inferring the computational processes
performed by distinct brain regions during reward-based learning. I hypothesize
that the neurobiological mechanism of error-correction via reinforcement is
commonly engaged in multiple valuation systems, although respective valuation
may require a different prediction error signal. In particular, [ will use human
behavioral choice and neuroimaging data to test the following two hypotheses.

First, the same neural populations that encode the reward prediction error are
recruited for encoding learning signals of value-nonspecific stimuli. Therefore,
reward context can be extended to the unrewarding stimuli and induce sub-
optimal choice behavior.

Second, counterfactual consequences can be incorporated into the temporal-
difference prediction error term of reinforcement-learning models. The encoding
of factual prediction errors and fictive prediction errors share a common
computational mechanism to optimize the learning process.

1.3 The structure of this thesis

This thesis comprises five main chapters of theoretical framework and
experimental results, which altogether test hypotheses regarding multiple
valuation systems via reinforcement-learning models.

The current chapter is meant to provide relevant context of human decision-
making, under which this thesis should be understood. I distinguished three
putative valuation systems with respect to their functional neural anatomy. Most
notably, the cortical and striatal brain regions are commonly involved in different
valuation system. This leads to the question of whether each valuation system
shares a common neural encoding of the prediction error signal.

10
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Chapter 2 introduces the theoretical framework of Markov decision process and
reinforcement learning with a focus on their putative neurophysiological
implications. In particular, models implemented in this thesis are adapted to
account for the expected reward, non-rewarding stimuli, and counterfactual
outcomes. Each model is used to infer computational processes performed by the
brain. This inference is made possible by incorporating model variables into the
fMRI analysis.

Chapter 3 describes the experimental methodology of fMRI, especially in terms of
model-based fMRI analysis. Since data acquisition and basic statistical analysis are
relatively mature in fMRI, I mainly address some practical controversy in
interpreting fMRI results. In addition, I also discuss some modeling techniques that
are used in this thesis, including maximum likelihood estimation and hierarchical
Bayesian modeling.

Chapter 4 presents behavioral findings from three experimental paradigms. Each
paradigm involves choosing among options for monetary reward. In the first
paradigm, the models that estimate the higher-order probabilities explain the
choice behavior best, suggesting that multiple prediction errors are computed
during sequential learning. The second paradigm dissociates the learning
processes of simultaneous stimulus-response and action-outcome associations,
which is used in the fMRI study presented in Chapter 5. The third paradigm studies
the influence of the fictive prediction error in the complex strategic decision-
making, which is used in the fMRI study presented in Chapter 6.

Chapter 5 presents results suggesting that the neural activity in the ventral
striatum and the amygdala correlate with the computational characterization of a
dual-learning process. I scanned participants with fMRI while they performed the
learning task that is designed to dissociate the neural correlates of stimulus-based
and reward-based expectations. The validity of a hybrid reinforcement-learning
model is tested with both behavioral and neural data.

Chapter 6 examines the neural system involved in the valuation with
counterfactual learning. I incorporated a ‘fictive prediction error’ into the Q-
learning model for explaining human economic behavior in financial markets with
information from both factual and counterfactual outcomes. The model-derived
expected value and fictive reward prediction error respectively correlated with

11
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BOLD signal changes in the ventral medial prefrontal cortex/orbital frontal cortex
and the ventral striatum.

Chapter 7 details the conclusions and contributions of the thesis as a whole, as
well as directions for future research. Different streams of research encompassed
in this thesis provide evidence suggesting that multiple valuation systems share a
common neurobiological mechanism of error-correction via reinforcement. Lastly,
the work of this thesis paves the way for future theoretical and experimental
investigations of both perceptual and economic aspects of decision-making via the
reinforcement-learning framework.

12



Chapter 2: USING COMPUTATIONAL
MODELS TO UNDERSTAND HUMAN DECISION-
MAKING

Our ultimate goal is to pinpoint the neural activity underlying the highly adaptive
cognitive processes of decision-making. The big challenge is that these processes
are not stationary, as decisions largely depend on subjective preferences and might
change during learning. To deal with this difficulty, computational models are used
to draw a link between individual cognitive process and the responsible neural
activity.

In this chapter, [ describe the Markov decision process and reinforcement-learning
models as theoretical frameworks for understanding behavioral and neural
mechanisms underlying sophisticated human learning. Furthermore, I discuss
some classic and recent studies that have applied reinforcement-learning models
to analyze neural activity in reward-based learning. Recent attention has turned to
uncover neural correlates of goal-directed instrumental learning with mode-based
reinforcement-learning algorithms. I will highlight some on-going studies in this
direction. After all, the study of human decision-making is developing at an
overwhelming speed. I can only at my best review a sample of the most relevant
studies. More efforts are required to integrate evidence from electrophysiological
studies of animal learning and human neural imaging studies.

13
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2.1 Reinforcement learning

We start with taking a backgammon player as an example for a reinforcement-
learning agent. In a backgammon game, each move is informed both by
anticipating a reply (i.e., reward) and by immediate judgments of the desirability of
a particular board position (i.e., state). The essential feature of this example is
learning via interacting with the environment. The decision-making agent, in this
case the game player, seeks to win the play (i.e., achieve a goal) despite that the
effect of every move cannot be fully predicted. The uncertainty about the
environment is everything that the agent cannot control, such as a dice roll. Actions
are selected based on both the exploitation of the agent’s past experience and the
exploration of certain unobserved part of the state-action space. This essentially
defines the trial and error learning.

There are three basic elements in a formal reinforcement-learning framework: (1)
Transition model: the environment where the subjects learn. The agent can learn
the transition model to plan actions by considering possible future states before
those are actually experienced. (2) Reward function: an immediate, possibly
stochastic, payoff that results from performing an action in a state. The learning
task for the agent is to optimize a sum or average of future rewards. (3) Policy and
value function. Policy is how the learning agent maps perceived states of the
environment to actions to be taken in those states. Value function is an estimate of
the total, possibly discounted, reward expected in the future and it is computed to
improve the policy.

Each of these elements will be discussed in more detail in the next section. Note
that the reward in the formal reinforcement algorithm is different from the
psychological notion of reward that often instead implies pleasure or hedonic
impact. The reward in the reinforcement models can take both positive and
negative numbers, while the negative can also be interpreted as a punishment. The
goal of a reinforcement-learning agent is to take actions that maximize the
expected future reward when traveling through different states by taking actions
following a policy.

Reinforcement-learning theories mainly involve two disciplines. One is machine
learning and optimal control, which have been largely addressed with dynamic
programming. The other is animal learning, especially classical and instrumental
conditioning rooted in psychology. This thesis aims at combining both machine

14
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learning and psychology aspects to further address neuroscience questions about
where and how learning takes place in the human brain.

[ will briefly summarize some of the basic reinforcement-learning models and try
to distinguish them from both theoretical and experimental perspectives. The
machine learning perspective deals with policy, value, reward, and state in order to
find an optimal solution, whereas the neuroscience perspective tries to find the
neural encoding of such learning signals as the reward prediction error or the
expected value. Rather than attempt to provide an extensive review of state-of-art
reinforcement-learning models, 1 will mainly focus on some remarkable
similarities between the computations used by reinforcement-learning agents and
the brain mechanism thought to be responsible for animal and human learning.

2.2 A formal framework for learning from reinforcement

Reinforcement-learning tasks can be formalized with the framework of Markov
decision process (MDP) (Howard, 1960; Puterman, 1994), which is a class of
discrete-time stochastic control processes in decision-making problems. An MDP
consists of states, actions, transitions between states and a reward function. A set
of environment states S is defined as a finite set {s?, ...SN}, where the size of the
state space is N. The set of actions that can be applied in a particular state s € S is
denoted as A(s) and A(s) C A. A is defined as a finite set {a?, ...a™}, where the size
of action space is M. By taking an actiona € Ain a states € S, the system is
transitioned from state s to a new state s’ (s’ € §) according to a probabilistic
transition function T (s, a, s"). T is the probability of ending up in state s’ by taking
action a in state s, defined as T: SXAXS — [0,1]. It is required that 0 < T'(s,a,s") <
1and Y,esT(s,a,s") = 1, for all states s and actions a.

Importantly, the state transition depends only on the current action and state, in
other words, the new coming state does not depend on any previous actions or the
history of visited states:

P(Se41lSt, ey Se—1, Qg o) = D(Sey1lSe, ap), (2.1)

where t is defined as a discrete time point in which decisions occur, s; denotes the
state at time t, and a; denotes the action at time t. Equation (2.1) is the Markov
property, which simplifies the solution of an MDP by allowing a formulation of the
so-called Bellman equation (Bellman, 1957).
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The learning agent takes actions to achieve rewards, which is defined by a reward
function R: SXAXS — R. This reward function sets the goal of learning in an MDP.
Given an MDP (S, A, T, R), the goal of gathering rewards can be achieved by means
of computing optimal policies. The policy is a controlling element of the learning
agent, which is defined as a function m(s) that maps each state s € S to an action
a € A(s). In this thesis, we only consider deterministic polices, i.e., m: S = A. We set
the goal of an MDP as maximizing the expected discounted sum of future rewards,
i.e, maximizing E[Y2,y¢r:]. The rewards r; to be received in the future are
discounted exponentially in their delay by the discount factor y, with 0 <y < 1.

The value of taking an action a in a state s, following some policy r thereafter, can
be written as a state-action value function Q: SXA — R, which is:

Q"(s,a) = Eg {Z Y*Tesklse = s, a0 = ag. (2.2)
k=0

The expression in Equation (2.2) can be rewritten in a recursive form in terms of
Bellman Equation:

9"(s,a) = Z T(s,a,s")(R(s,a,s") +yQ™ (s, m(s"))), (2.3)

and Q" is the value given that the agent has taken an action a in the state s, and
from there on follows the policy . This value function can be used to improve the
policy as following:

'(s") = argmacleQ”(S', a), (2.4)

and ' is the next improved policy. Such policy evaluation and improvement can
find the best policy 7" in the end, that is, the policy that maximizes its value
function. Similarly, we denote the value function under an optimal policy as Q*.
According to the Bellman optimality, the value of a state under the optimal policy
equals the expected value for taking the best action in that state. Therefore, if we
substitute Equation (2.4) into Equation (2.3), we have the following possible
calculation for the Q*:

16



Chapter 2: Using computational models to understand human decision-making

Q*(s,a) = Z T(s,a,s")(R(s,a,s") + ymacILxQ*(s', a)). (2.5)

Now that we have defined the MDP with an optimality criterion, the next step is to
approach the question of computing the optimal policy. There are generally two
families of reinforcement-learning models: one is called model-based algorithms
and the other is called model-free algorithms. The model here means a model of the
MDP, which is essentially determined by both the transition function T and the
reward function R. Although these two names can be confusing, their distinction is
simple: the model-based algorithms estimate the transition function and reward
function as a complete description of the MDP; whereas the model-free algorithms
estimate the value function directly from sampling. Both methods use Bellman
equation and dynamic programming.

A B
Agent Agent
L

~ Value ; State > i

» Model — function_> Policy ¥ ostiamtor | belief » Policy
State i )
Reward Action Observation Action
— Environment -« — Environment -

Figure 2.1 Illustrations of learning through MDP and POMDP frameworks. (A) Model-based
reinforcement-learning agents firstly learn a model of the environment, and then use this
model to compute a policy for selecting actions. Model-free reinforcement-learning agents
skip the model procedure and directly estimate the value function from experience about
the rewards of visited states. (B) POMDP agents cannot determine the state where they
currently are. The agents make observations and estimate the belief state, which is updated
by a state estimator based on previous beliefs, current observation, and the last action.
Therefore, a policy is mapped from a sequence of observations to a probability distribution
of actions.

A model-based reinforcement-learning system is outlined in Figure 2.1 A. The
agent firstly learns a model of the environment and then uses this model to
compute its value function. The computation can take forms of running a model-
free algorithm to estimate the model, such as Monte Carlo Tree Search. Worth
noting, the MDP framework assumes that the agent knows about the states of the
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environment with full certainty at all times. However, this might not be true in the
real world, especially when the agent’s perceptual abilities are imperfect and the
agent is no longer able to observe the current state with complete reliability. This
kind of problems, i.e., choosing optimal actions in partially observable stochastic
environments, can be modeled by partially observable Markov decision process
(POMDP) (Kaelbling et al., 1998). For comparison, the task of learning a POMDP is
illustrated in Figure 2.1 B. Although the POMDP framework is more realistic in
explaining real-world decision processes, most of our experiments have been
designed according to the MDP framework for simplicity. Therefore, I focus on
talking about MDP in the following and briefly discuss POMDP in the end of this
chapter.

In this section, I have introduced the main components of reinforcement learning
and the necessary background of Markov decision processes. The MDP is a
straightforward way to describe how a learning process changes dynamically
depending on the agent’s reward experience. In fact, reinforcement learning as a
research topic in the field of machine learning provides abundant algorithms to
solve an MDP. Nonetheless, the major aim of this thesis is to infer human decision-
making process with reinforcement-learning models rather than to implement
efficient algorithms from a pure machine learning point of view. In the next
section, I will illustrate some connections between basic reinforcement-learning
concepts and the electrophysiological experiments.

2.3 Dopamine and the temporal-difference hypothesis

To show the links between reinforcement learning and the function of neural
activity, we will start with evidence from classical conditioning experiments
showing that learning is driven by the discrepancy between what was predicted
and what actually happened. Such discrepancy is called prediction error. The idea
of prediction errors is exactly the central tenet of reinforcement learning.

2.3.1 Rescorla-Wagner learning

In classical conditioning, animals (e.g., Pavlov’s dog) learn to predict how outcomes
(e.g., meat) are contingent on certain events (e.g., the sound of a bell) (Pavlov,
1927). For instance, Pavlov observed that his dog salivates to the sound of a bell
after having been repeatedly exposed to a pairing of the ring and meat. The ring
here is called a conditional stimulus and the meat is called an unconditional

18



Chapter 2: Using computational models to understand human decision-making

stimulus or a primary reward. In another experiment, Pavlov flashed a light to his
dog whenever he ringed the bell. This time, the dog is trained with two
simultaneous conditional stimuli (i.e., the ring and the flash) before the delivery of
meat.

After having been firstly trained with the conditioning of a ring on the meat and
then trained on the simultaneous conditioning of both a ring and a flash on the
meat, the dog is then tested with a pairing of only the flash and the meat.
Surprisingly, the dog does not salivate to the flash in this case. This suggests that
the ring of the bell already explains the learning experience during training and
therefore blocks out the learning of any relationship between the flash and the
meat. This interesting behavior is referred to as the blocking effect.

To explain this puzzling learning behavior, Rescorla and Wagner proposed a
formal theory of Pavlovian conditioning as following (Rescorla and Wagner, 1972):

Vier1(si) = Vie(s)) + a|r — Z Vk(sj)]- (2.6)
J

On each trial k + 1, the value of every conditional stimulus s; is denoted as V (s;).
V (s;) is updated with the difference between the actual outcome 7, and the sum of
all the predictions from different stimuli };V (sj) . J indicates each of the
conditional stimuli. a is a learning rate that determines the size of the update steps
and 0 < a < 1. Taken from Equation (2.6), the prediction error that drives
learning is defined as:

Sk(sp)i=1 — Zj Vk(sj)- (2.7)

The blocking effect in the light and bell example can be explained simply by
Equation (2.6). We denote s; as the ring, s, as the light and ry is the reward on
each trial, i.e, the meat. The blocking effect can be explained by d,(s,) =0,
because the ring already fully predicts the meat. Therefore, the basic idea behind
Rescorla-Wagner model (Equation (2.6)) is that leaning should occur only when
observed events violate expectations. Note that here the notation of s indicates a
stimulus, which is different from a state in the MDP described in the previous
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section. The model here primarily focuses on learning an association between a
reward and the stimulus rather than learning an explicit state value.

The Rescorla-Wagner model has successfully explained a variety of behavioral
phenomena. The basic learning unit of a Rescorla-Wagner model is the discrete
experimental trial, in other words, sequential trails are treated as independent and
identical. However, many practical decision tasks have sequential structures and a
long-term goal of maximizing expected values. In these tasks, a Rescorla-Wagner
model that only considers the immediate reward is no longer valid. Therefore, the
Rescorla-Wagner model needs to be extended to account for temporal relations
within a learning trial in sequential decision-making tasks.

2.3.2 Temporal-difference learning

Motivated by the approach applied in classical conditioning, Sutton and Barto
(Sutton and Barto, 1998) proposed a temporal-difference learning rule based on
the MDP framework described in the previous section. The temporal-difference
learning rule divides each experimental trial into smaller time points. At each time
point ¢, the reinforcement-learning agent experiences a state s;, which produces a
reward r;. The goal of the agent is to estimate the value of a state V/(s;) in terms of
its cumulative future rewards. The prediction error in Rescorla-Wagner model
(Equation (2.7)) is replaced with:

8 =1t + YV (ser1) = V(se), (2.8)
which is called a temporal-difference prediction error and the learning rule is:
Vier1(se) = Vie(se) + ady. (2.9)

Unlike the Rescorla-Wagner learning rule, this learning rule considers not only the
immediate reward r;, but also accounts for the sum over all the rewards in the
subsequent states, which is approximated by yV(s;;;). The term temporal
difference comes exactly from the term 7, +yV(s;41) —V(s;), which is a
discrepancy between the state values at consecutive time points within a trial.
Again, this learning rule is a model-free stochastic approximation of @* in Equation
(2.5) when there is only one action, that is, no choice involved.
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The temporal-difference model extends the discrete trial-level Rescorla-Wagner
model onto a continuous-time learning. This crucial difference enables the
temporal-difference model to explain some behavioral phenomena that the
Rescorla-Wagner model is not able to capture, such as within-trial temporal
relationships and second-order conditioning. For instance, the temporal-difference
model predicts that a reward prediction error will be induced at the omission of a
reward when the reward has already been indicated beforehand. This leads to the
influential hypothesis that phasic dopaminergic firing patterns encode a temporal-
difference reward prediction error (Montague et al.,, 1996; Schultz, 1998; Schultz et
al, 1997). While several other studies and interpretations about if and how
dopamine neurons affect behavior have also been proposed (Berridge, 2012; Smith
et al., 2011; Tindell et al., 2009), of most interest to this thesis is the compelling
evidence that dopamine neuron activity reflects a reward prediction error.

Dopamine neurons of the ventral tegmental area and substantia nigra report a
reward prediction error, shown in Figure 2.2 A. A monkey is trained to touch a
lever after the appearance of a small light in order to get a primary reward of fruit
juice. In the initial phase of training, dopamine neurons respond with a burst of
firing to the unexpected delivery of juice, shown in the top panel. After several
days of training, the phasic burst of dopamine neurons is shifted to the
presentation of the light as the monkey has learned to reach the lever as soon as
the light is on, shown in the middle panel. After learning, if the monkey accidently
fails to touch the lever and no reward is delivered, the activity of dopamine neuron
is depressed below the background baseline of firing rate exactly at the time when
the reward should have occurred, shown in the bottom panel. This phasic activity
of dopamine neurons that changes with the prediction of reward exactly resembles
a scalar prediction error signal in the temporal-difference learning (Schultz et al,,
1997).

Fiorillo and colleagues further verified the idea that dopamine neurons encode
reward prediction error by systematically manipulating the probability of reward
in a classical conditioning experiment (Fiorillo et al, 2003). Monkeys are
conditioned in a Pavlovian procedure with five distinct visual stimuli that predicte
the delivery of a liquid reward with different probabilities of 0%, 25%, 50%, 75%
and 100% as shown in each panel from top down of Figure 2.2 B. The phasic
dopaminergic responses at the presentation of the reward decrease monotonically
as the probability of reward increase, in other words, they decrease in response to
the decline of the reward prediction error. For instance, dopamine neurons show
no response to a fully predicted reward while the prediction error is zero,
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displayed in the bottom panel. On the one hand, this pattern of activity can be well
explained by the Rescorla-Wagner model of Equation (2.6). On the other hand,
dopaminergic responses also change at the presentation of the conditional
stimulus, which reflects the property of the temporal-difference learning of
Equation (2.8).

The hypothesis of reward prediction error tested in primate physiological
experiments has provided a quantitative basis for the design and analysis of
human fMRI experiments. Early studies mainly suggested that fMRI BOLD
responses of human ventral striatum (i.e., nucleus accumbens, ventral and medial
portions of putamen and caudate) represent what has been observed in the
dopamine neurons of non-human primates. For instance, Abler and colleagues
replicated the non-human primates study conducted in (Fiorillo et al., 2003) with a
human fMRI experiment (Abler et al,, 2006). Their results suggested that BOLD
activity in human nucleus accumbens scales with the size of the reward prediction
error (Figure 2.3) in the same manner as what have been observed in monkey’s
dopaminergic neurons, presented in Figure 2.2 B.

In another study, O’'Doherty and colleagues have shown that the BOLD signals in
human ventral striatum changes in accordance with a temporal-difference learning
model during a reward learning task (O’Doherty et al, 2003). Furthermore,
McClure and colleagues devised a paradigm in which a reward prediction error is
induced by varying the timing of the reward delivery across trials. They found that
the BOLD signal changes in putamen correlate with this temporal-specific
prediction error (McClure et al., 2003). Again, sensitivity to timing is a key feature
of temporal-difference learning. The temporal-difference learning is driven by the
difference between temporally successive predictions.
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Figure 2.2 Firing patterns of dopamine neurons report temporal-difference prediction
errors. Each panel shows raster and histogram of activity in a single cell, with each row of
dots as one trial. (A) Neural activity is aligned at the delivery of a reward (top panel) or the
onset of the stimulus (middle and bottom panels). In the initial phase of training, dopamine
neurons respond with a burst of firing to the unexpected delivery of reward (top panel).
After learning, the phasic burst is shifted to the presentation of the predictive stimulus. The
reward occurs as expected, and hence no prediction error at the delivery of reward (middle
panel). When the reward fails to occur, the activity of dopamine neuron is depressed at the
time when the reward is expected. Adapted from (Schultz et al.,, 1997). (B) Dopamine
neurons respond to the conditional stimuli and reward in accordance to a variety of reward
probabilities p, increasing with 0.25 from the top to bottom panels. The top panel is spliced
together from two situations, where reward is given in the absence of stimulus. The phasic
dopamine responses decrease monotonically at the presentation of reward as the
probability of reward increases from the top penal down; in other words, they decrease as
the prediction error decline. Adapted from (Fiorillo et al., 2003).
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Figure 2.3 fMRI activity in the nucleus accumbens modulated by reward prediction errors in
the same manner as what have been observed from dopamine neurons in non-human
primate shown in Figure 2.2 B. Upper part: Five experimental conditions A-E with
probability of reward from 0 to 1, increasing with a step of 0.25. fMRI activity in the nucleus
accumbens linearly increases at the presentation of reward-predictive stimulus as the
probability of reward increase. Lower part: fMRI activity in the nucleus accumbens linearly
declines as the reward prediction error decreases (1, 3, 5, 7, red: reward expected at
probability 0-75%, reward omission inducing negative prediction error; 2, 4, 6, 8, blue:
reward expected at probability 25-100%, reward delivery inducing positive prediction
error). Taken from (Abler et al., 2006)

The studies reviewed above all used classical conditioning tasks that do not
involve action selection. However, in many situations, the ultimate goal of learning
is not only to make predictions from observations, but also to achieve more
rewards as well. This leads to another type of interaction with the environment
called instrumental learning. The temporal-difference prediction error in Equation
(2.9) is used in early work of Actor-Critic learning (Barto et al,, 1983; Konda and
Tsitsiklis, 2003) to strengthen or weaken the selection of particular actions.
Pioneering studies linked Actor-Critic learning model to the function of basal
ganglia (Joel et al,, 2002) in instrumental action selection. Later on, converging
evidence has indicated the correlates between BOLD fMRI response of human
striatum and variant versions of temporal-difference prediction error during
instrumental learning tasks (Abler et al., 2006; Delgado et al.,, 2005; Diuk et al,,
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2013; Gershman et al., 2009; Li and Daw, 2011; Niv et al,, 2012; Schonberg et al,,
2007; Seymour et al., 2004).

A commonly used model-free reinforcement-learning model is the Q-learning
(Watkins and Dayan, 1992) model, which explicitly learns the state-action value.
We can denote the state-action value as Q(s, a). The learning rule is a variation on
the theme of temporal-difference learning as following:

OQk+1(se,ar) = Qx(se, ap) + ady, (2.10)

where §; is the temporal-difference reward prediction error computed by:
S = 1+ ymaxQy (sev1, ar) — Qi (s, ar). (2.11)

The learning takes place when the agent selects an action a, and receives a reward
1. by moving from state s; to s;, ;. In general, Q-learning algorithm will converge to
an optimal policy if the learning rate a decreases properly and all the stat-action
pairs are visited infinitely often.

2.4 Beyond the temporal-difference hypothesis

The function of dopaminergic neurons during reward-based learning seems to be
well explained by the temporal-difference model. Nonetheless, formal theoretical
suggestions from other reinforcement-learning models might also help to examine
how the brain deals with complex decision problems. In this section, I review some
of the current research that tries to map advanced reinforcement-learning
concepts onto neurobiological underpinnings of human decisions. I will mainly
discuss model-based reinforcement learning and partially observable Markov
decision process (POMDP).

2.4.1 Model-based reinforcement learning as cognitive search

Psychology studies have distinguished two types of instrumental learning: habitual
and goal-directed. Habitual learning dates back to the associative learning
pioneered by Edward Thorndike and Ivan Pavlov (Pavlov, 1927; Thorndike, 1933).
In Thorndike’s study about law of effect, he trained his hungry cat to escape a
puzzle box faster, and hence he argued that the reward has reinforced the
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association between the puzzle box and the cat’s action of pressing a lever to
escape. Goal-directed learning dates back to the latent learning proposed by
Tolman (Tolman, 1948). Tolman firstly exposed his lab rats to a maze without
reward. Next, these trained rats showed faster learning than naive rats in finding
the route to a reward in the maze. Tolman argued that the pre-trained rats have
planed actions by using an internal representation of a “field map of the maze”.
These two learning strategies seem to echo the theories of model-free and model-
based reinforcement learning algorithms described in Section 2.2 (Dayan and Niyv,
2008; Doll et al., 2012; Ito and Doya, 2011; Schultz, 2013).

The habit learning has been successfully studied from the perspective of model-
free reinforcement learning, especially the temporal-difference learning
hypothesis that is supported by the observations about the activity of
dopaminergic neurons. Empirical evidence for unifying the goal directed learning
and model-based reinforcement learning has emerged in recent years. In
particular, there have been studies showing distinct neural correlates related to
model-based reinforcement-learning algorithms (Daw et al., 2011; Glascher et al,,
2010; Simon and Daw, 2011). In these studies, the transition function in Equation
(2.5) is directly adapted to explain human choice behavior and to examine the
supporting brain mechanism. Glascher and colleagues used a latent learning
paradigm (Glascher et al., 2010) in an fMRI study, where subjects are firstly
exposed to the state space of a probabilistic sequential Markov decision task and
then are tested to make choices for monetary rewards. In their computational
model-based analysis, they derived a state prediction error to estimate the
transition function as:

Ti41(s,a,s") =Ty (s,a,s") + adspg, (2.12)
where §spf is the state prediction error calculated as:
Ospr = 055 — T(s,a,s"). (2.13)
05,5 = 1 for the observed transition and o, 5, = 0 for the unobserved transition.

This state prediction error §spr well explains the fMRI BOLD response in human
intraparietal sulcus and lateral prefrontal cortex during both the pre-training and
test sessions of the experiment. At the same time, they also found correlates of the
temporal-difference reward prediction error in the ventral striatum. This study
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demonstrates the possibility that both model-based and model-free
reinforcement-learning strategies co-exist in the human brain.

Similarly, Daw and colleagues designed a two-staged Markov decision task, where
human choice behavior can be distinguished according to whether or not their
strategies have taken into account the transition structure of the task (Daw et al,,
2011). The task design allowed them to distinguish behavior and neural substrates
of different learning strategies. Interestingly, the results suggest that striatal BOLD
activity reflect not only model-free reward prediction errors but also model-based
reward prediction errors in terms of their respective contributions to choice
behavior. A follow-up study by Wunderlich and colleagues (Wunderlich et al,
2012) further implicated dopamine involvement in the arbitration between model-
free and model-based behavioral control via reinforcement learning. These results
are consistent with electrophysiological studies in animals, showing that the
function of dopaminergic neurons can be far more sophisticated than a basic
temporal-difference learning rule (Bromberg-martin and Hikosaka, 2009;
Kobayashi and Schultz, 2014; Schultz, 2013).

Given the hypothesis that both model-based and model-free valuations control
choice behavior, the next question is how these systems compete or/and
cooperate. Theoretical work (Daw et al, 2005) has proposed an arbitration
process, suggesting that different valuation systems are arbitrated according to
their respective reliability of estimation. Recent work by Lee and colleagues (Lee et
al., 2014) has started to address the putative neural instantiation of this arbitration
process. Their study suggests that the inferior lateral prefrontal and frontopolar
cortex encode a Bayesian reliability estimation of the model-based state prediction
error and the model-free reward prediction error, as well as a comparison
between their corresponding reliability. This Bayesian reliability estimation can be
interpreted as an arbitrator between model-based and model-free valuations.
Their effective connectivity analysis further shows that the arbitrator appears to
work by selectively gating the model-free system. This result is consistent with the
idea that model-based valuation may require more computational power.

2.4.2 Partially observable MDP incorporating perceptual uncertainty

Studies about how the brain converts physical stimuli into perception and
sensation have their roots in the field of psychophysics and Bayesian decision
theory (Dayan and Daw, 2008). The ability of human observers to perceive
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physical properties is often quantitatively described by a so-called psychometric
function (Klein, 2001). This function quantifies certain task performance to
stimulus strength in a perceptual task, for example, correct response rate as a
function of levels of image contrast. Subjects usually have to respond to or
discriminate between some perceptual stimuli, such as whether a blurry image is a
house or a face. These behavioral data are repeatedly measured across different
level of the stimulus strength. The psychometric function typically has a form of a
sigmoid curve, which is fitted onto the behavioral data, showing that the task
performance improves monotonically across increasing level of stimulus strength.
A particular level of stimulus strength can be defined as a threshold at which
subjects’ task performance switches between pure guessing and near optimal.
Decisions made around the threshold are generally under strong uncertainty.

As mentioned in Section 2.2, most of the experimental studies inspired by
reinforcement-learning framework largely rely on the assumption that the
learning agent has a complete knowledge of states. These studies usually provide
subjects with explicit instructions about the state information and use unique
background images or cues to indicate each state. Subjects are instructed to
estimate the state value either with or without learning the state transition
probability. Accordingly, most of the neuroimaging studies mainly provide
evidence addressing the neural signatures of value estimation rather than the state
uncertainty. This leads to an interesting yet unanswered question: what is the
neural representation of the state per se? It is unclear whether the state itself is
somehow encoded before any value estimation. To answer this question, a most
likely candidate of the abstract mathematical notation state is probably the
physical stimuli that we observe and experience with perception and sensation
everyday.

When cues are ambiguous or identical among different states, Bayesian inference
is a straightforward way to relate states to observations. The posterior distribution
over a state can be termed as a belief state. We denote a belief state by b(s), which
is a probability distribution over all the true states S. Thus, 0 < b(s) < 1 for all the
s € Sand Y,;csb(s) = 1. After executing an action a and observing the outcome o,
the belief state b at current state s can be updated according to Bayesian rule:

p(ols,a, b)p(s|a, b)

b(s) < p(slo,a,b) = (012, b)

(2.14)
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If we substitute the true states with such belief states, the optimal policy has to be
calculated as a function of the belief states accordingly. A POMDP framework
provides exactly a systematic method for such belief estimation.

The learning agent cannot directly observe the underlying state in a decision
problem of POMDP, so it has to make an observation, estimate the belief state
based on the current action and the previous belief states, and generate a new
action afterwards, as presented in Figure 2.1 B. The agent’s current belief state
includes all the information about its past actions and observations. Thus, the
transition and reward functions over belief states can be simplified so as to satisfy
the Markov property. The remaining problem is to solve an MDP on the belief
states. In practice, the belief states can become computationally intractable. The
optimal solution of a POMDP with a large state space is still a vital ongoing
research topic in machine learning, whereas far fewer empirical experiments have
been conducted to test the neural validity of POMDP models.

It is not immediately clear how POMDP models can be translated into neural
computations. As in the perceptual domain, the neural encoding of belief states
concerns not only reward learning but also perceptual inference. The perceptual
inference (Ding and Gold, 2013; Gold and Shadlen, 2002, 2007) has been largely
studied in disjoint from reward-based decision-making, because the focus is
primarily on perceptual uncertainty rather than on optimizing reward. One recent
study (Rao, 2010) implemented a POMDP model to identify neural probabilistic
representations for choosing actions that maximize expected reward. The model’s
predictions are consistent with the dopaminergic responses recorded when
monkeys were performing a task with manipulations of both sensory properties
and reward associations (Nomoto et al., 2010). The results postulate a mapping
between POMDP inference and brain anatomy of decision-making networks. This
mapping illustrates the neural plausibility of the POMDP model for unifying both
perceptual and reward-based decisions. However, this mapping has so far not been
tested in a direct manner with human fMRI experiment. Furthermore, it remains
unclear whether perceptual and reward-based decisions are encoded in the same
neural circuit and how they are compared and converted into motor control.
Further experimental work is needed to characterize biological underpinnings of
the computations that combine Bayesian inference and reward learning.
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2.5 Thesis work relating to computational modeling

This thesis uses algorithmic ideas from machine learning to study decision-making
processes in the human brain. The theoretical framework and classic models
described in this chapter are foundations for the work in this thesis. These models
offer a variety of possibilities to explain seemingly irrational choice behavior. In
the next chapter, | introduce some experimental methodology for investigating the
neural correlates of these models in the human brain.

In Chapter 4 of this thesis, | present three experimental paradigms and results of
behavioral modeling. In the first paradigm, | adapted Rescorla-Wagner models to
predict learning of higher-order temporal dependencies. In the second paradigm, [
constructed a hybrid model by combining two Rescorla-Wagner models in parallel.
This model allowed for testing dynamic interactions between two learning
processes. In the third paradigm, | extended the standard Q-learning model to
include a fictive prediction error during counterfactual learning. This model made
predictions for choice behavior in a complex strategic sequential decision-making
task.
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Chapter 3: MODEL-BASED FMRI
ANALYSIS

This thesis uses functional magnetic resonance imaging (fMRI) data to test the
neural validity of computational models in explaining multiple decision-making
processes. In the previous chapter, [ have shown how the integration between
neuroimaging data and computational models can identify neural mechanism of
complex learning process in the human brain. In this chapter, I will describe in
detail the fMRI data acquisition and analysis methods. Although it is not the
purpose of this thesis to extensively understand fMRI physics or to explore how
noise level may influence fMRI statistics, it is important to be aware of the actual
capacities and limitations of this neuroimaging technology in interpreting the
results from fMRI studies.

The basic idea of model-based fMRI analysis is to estimate the brain’s cognitive
process with a dynamic learning model and to seek correlations with the model’s
internal variables in the fMRI data. A critical part in this model-based analysis is to
accurately estimate the model’s internal variables from the experimental stimuli,
subjects’ choices and obtained rewards. Therefore, I will also discuss different
parameter estimation and model fitting techniques in the end of this chapter.
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3.1 What are we measuring with fMRI?

3.1.1 fMRI physics

fMRI relies on a set of elegant physical principles, including the proton’s nuclei
magnetic resonance (NMR) property and the processing of the MR signals by
Fourier transform. The human brain contains abundant water molecules, which
are composed of hydrogen and oxygen. A single proton of hydrogen nuclei
possesses the NMR property (i.e, both a magnetic moment and an angular
momentum) and is often referred as a spin. Imaging the human brain in an fMRI
scanner, the net magnetization of the collection of spins in such a strong magnetic
field is the basis for generating an MR signal. These spins precess around an axis in
either parallel or antiparallel to the main static magnetic field. Here, the parallel
and antiparallel axes are termed as longitudinal plan and transverse plane, which
can be considered as low- and high-energy states, respectively. Usually, the net
magnetization is a vector in the longitudinal plane, in other words, in the low-
energy state. However, when the head coils send an electromagnetic pulse that
oscillates at the resonant frequency of the spins (i.e., the Larmor frequency), the
net magnetization vector is tipped from the longitudinal to the transverse plane.
This process is called excitation. When such excitation pulse ceases, the spins
release the additional energy and restore their longitudinal magnetization. In the
meanwhile, the time-course of the energy release known as the free induction
decay provides an MR signal that goes into the MR images.

On one side, the time constant that describes the recovery of the longitudinal
component of net magnetization is called T1 recovery time. On the other side, the
time constant that describes the decay of the transverse component of net
magnetization due to the accumulated phase differences caused by the interactions
among spins is called T2 decay time. These two time parameters are very
important, because specifying a pulse sequence that targets one of these
parameters can collect MR images that are sensitive to specific properties of the
brain tissue. In addition, local magnetic field inhomogeneity also affect the decay
of the transverse component. Hence, a combination of T2 effect and the additive
effect caused by field inhomogeneity is defined as another time constant T2*,
which is critical for BOLD fMRI.

Three spatial gradient fields superimposed on the main magnetic field are used in
a sequence to change the strength of the magnetic field along a specific direction.
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There are three directions: one longitudinal and the other two perpendicular in the
transverse plane. Simultaneous application of a longitudinal gradient and a
excitation pulse allows the selection of a specific slice within the imaging volume
and the use of two perpendicular transverse gradients within the slice allows for
an unique encoding of information about spatial locations. Then, the three-
dimensional fMRI image is constructed from a set of these two-dimensional slices.

There are two important factors that govern the time at which MR images are
collected: (1) the repetition time (TR), which is the time interval between
successive excitation pulses, usually expressed in seconds; (2) the echo time (TE),
which is the time interval between excitation and data acquisition, usually
expressed in milliseconds. By controlling TR and TE, the MR signal from different
brain tissue types can be manipulated. fMRI data can be considered as consisting of
a three dimensional matrix of volume elements (i.e., voxels) that is repeatedly
sampled over time. In summary, there are three types of MR images involved in
this thesis:

1. T1-weighted images, representing the relative signal intensity of
voxels depending on the T1 value of the tissue. For any two tissues
that differ in T1, there is an optimal TR value that maximizes the
difference. At the same time, the TE value has to be optimized to
minimize the T2 contrast so that the T1 contrast image can be
exclusively achieved. This image is used for providing high-
resolution anatomical details of the brain.

2. T2*-weighted echo-planer image (EPI) images, which is the BOLD
fMRI signal. EPI is a technique that allows the collection of an entire
two-dimensional image by changing spatial gradients rapidly
following a single excitation. Importantly, the EPI pulse sequence
allows us to collect functional images approximately at the same rate
as the physiological changes of interest. While the spatial encoding is
achieved through gradient fields, the magnetic field inhomogeneities
at boundaries between air and tissues can shift voxels in space. This
may lead to some degree of geometric distortions in the image. One
practical method for correcting such spatial shifts involves the use of
a gradient echo field map.
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3. Gradient echo field map, which is derived from two images acquired
at slightly different TEs, and are used subsequently to remove spatial
distortions from the EPI images.

3.1.2 Neural activity and BOLD fMRI

When thinking about neural activity, the first thing that comes to mind is probably
the action potentials, which typically form spike trains. Critically, a group of
neurons can generate spike trains in oscillatory symphony through local
interactions between excitatory and inhibitory neurons. In addition to direct
synaptic interactions between neurons forming a network, oscillatory activity can
also be modulated by neurotransmitters on a much slower time scale. However, as
[ search from the firing rate of a single neuron to the oscillations of neural
ensembles, the meaning of a plain term neural activity becomes a big dictionary of
neural signatures. One thing in common among these neural signatures at different
levels is that they all contribute to the energy consumption after all. Specifically,
their metabolic demand evokes changes of cerebral blood flow in neighboring
vessels for the delivery of nutrients, such as oxygen or glucose. Furthermore,
oxygen is supplied though hemoglobin within red blood cells. When the
hemoglobin molecule is bound to oxygen, it is diamagnetic. In contrast,
deoxygenated hemoglobin is paramagnetic. While the changes in the total amount
of deoxygenated hemoglobin distort the surrounding magnetic field, the nearby
protons will experience different field strengths and thus precess at different
frequencies, resulting in a more rapid decay of the transverse component of net
magnetization, that is, a shorter T2*. Therefore, images that provide information
about the relative T2* values of brain tissue are sensitive to the amount of
deoxygenated hemoglobin present. This is in fact the blood oxygenation level-
dependent (BOLD) fMRI that we use to localize different functions in human brain.

BOLD-fMRI is measured as the change in the total amount of deoxygenated
hemoglobin in a voxel over time and this change presumably triggered by neural
activity is defined as the BOLD hemodynamic response. When we relate BOLD
hemodynamic response to certain aspects of perception and cognition, there is
again an implicit assumption: neural activity and blood flow are tightly coupled
both in time and in space via energy demand and oxidative metabolism. However,
this coupling between quantitative neurophysiology and changes in BOLD signal is
a much more complex one. It is getting even more complicated when the coupling
varies across individual brains and different experimental tasks. The complex
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relationships between neural activity, BOLD signal and behavior are vividly
summarized in Figure 3.1, which suggests multiple neural activities (pink boxes)
sitting between behavior (blue boxes) and BOLD-fMRI signals (orange boxes).
Nevertheless, a complete description of all the relevant issues is beyond the scope
of this chapter. We have to keep in mind the limitations of fMRI methodology while
interpreting the experimental results. Although fMRI only conveys limited
information, we can compare BOLD-fMRI with animal neurophysiological work
(Heeger et al, 2000; Logothetis, 2008) or simultaneously measure invasive
electrode recordings and BOLD-fMRI in animals (Boorman et al,, 2010; Logothetis
et al., 2001; Magri et al,, 2012; Maier et al.,, 2008; Sirotin and Das, 2009) and in
patients with brain lesions (Mukamel et al., 2005), so as to interpret the BOLD
response with more confidence in terms of neural activity.

Most of the fMRI experiments in neuroscience result in a sparse pattern of
activation reflecting regions strongly correlated with task-specific cognitive
processes. At the same time, other evidence suggesting that the sparseness of
activations in fMRI statistical maps can result from elevated noise levels or overly
strict predictive BOLD response models. Gonzalez-Castillo and colleague used
simple flickering checkerboard, letter, and number discrimination tasks with very
low-noise fMRI time-series generated by combining unconventionally large
amounts of data (i.e.,, 100 runs per subject) to challenge the localization view of
brain function. They showed that fMRI activations extend well beyond areas of
primary relationship to the task. BOLD signal changes correlated with task-timing
appear practically everywhere (i.e.,, 96%) in the brain with each region having a
uniquely identifiable time course (Gonzalez-Castillo et al, 2012). These results
suggest that although a lot of evidence shows brain regions functionally labeled
with behavioral task demand, the results from task-based fMRI research should be
interpreted with caution. Finally, the increased use of computational modeling in
describing cognitive processes might help us seek ways for better inferring the
causal relationships between BOLD signals and the information being processed in
the brain. The studies in this thesis highlighted the integration between
computational modeling and the analysis of neuroimaging data.
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3.2 fMRI preprocessing and basic analysis principles

3.2.1 Preprocessing of fMRI data

Preprocessing is known as a series of computational procedures that operate on
fMRI data following the data collection but prior to the statistical analysis. The
purpose of preprocessing is to remove uninteresting variability from the data and
to improve the signal to noise ratio, for example, variance from subjects’
movement and scanner artifacts. All the fMRI data analysis in this thesis is
performed with SPM (Wellcome Department of Imaging, Neuroscience, Institute of
Neurology, London, UK). First, EPI images are spatially and temporally corrected
within each subject. Such corrections are important to ensure that each voxel
contains data from a single brain region as sampled at regular time intervals
throughout the whole experimental run. Second, human brains have wide
variation in shape, orientation, and gyral anatomy. To compensate for these
differences and make the activation comparable between individuals, images of
each brain have to be mapped onto a common space.

The preprocessing pipeline used in this thesis is outlined in Figure 3.4 and
explained in details as following:

1. Slice timing correction. The fMRI data in this thesis are acquired
using pulse sequences as mentioned in the previous section. The
exact EPI protocol is: 40 slices are acquired within a TR of 2.26s
in a descending order. The correction is necessary to make sure
that data on each slice correspond to the same point across time.
Imagine a hemodynamic response that happens continuously on
two adjacent slices. Because the adjacent slices are actually
collected at different times within the TR, without slice timing
correction, the hemodynamic response time courses of each slice
would differ, even though the underlying activity is identical.

2. Motion correction and unwarp with field map. Subjects’ head
movement is corrected by realigning all the functional images to
one specific image through a least squares approach and a 6
parameter spatial transformation, so that all the functional
images are in the same orientation and position. A successful
realignment ensures that the source of the signal in one voxel
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originates from the same location within each scan. However,
some movement artifacts still remain after realignment
(Poldrack et al., 2011).

Particularly, EPI images often exhibit severe geometric
distortions in regions where there is an air-tissue interface, for
instance, the orbitofrontal cortex and the anterior medial
temporal lobes. In this case, the field map can be used to unwarp
the image distortion. The field map is created by acquiring two
images of the signal phase with slightly different echo times, i.e.,
short TE 5ms and long TE 7.47 ms in this thesis. If the magnetic
field is completely uniform, the phase difference induced by
different echo times will be the same in all voxels otherwise some
voxels will be displaced. In line with this idea, a voxel
displacement map (VDM) is created and used with unwarp for a
combined static and dynamic distortion correction (Andersson et
al, 2001; Hutton et al,, 2002; Jezzard and Balaban, 1995).

Functional-structural coregistration. EPI images are typically of
rather low resolution and thus have little anatomical contrast. To
overcome this limitation, EPI images have to be mapped onto
high-resolution structural image via coregistration algorithms
within each subject.

Normalization and smoothing. Spatial normalization is achieved
through ‘Diffeomorphic Anatomical Registration Through
Exponentiated Lie Algebra’ (Dartel) and New Segmentation
algorithms. The segmentaion is a process of partitioning the
image into such constituents of brain tissues as grey matter,
white matter, cerebrospinal fluid, skull, and soft tissue. The basic
idea of Dartel is to create an averaged brain. Mathematically, it is
a high dimensional warping process that increases the
registration between individuals, which results in improved
localization and increased sensitivity in statistical analyses. This
involves taking the parameters of white matter and grey matter
produced by the segmentation to create an individual flow field,
such that a template can be created in as close alignment as
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possible with the tissue probability maps. A Dartel group
template is created and this template is normalized to the
standard MNI space. Finally, a Gaussian kernel of 8mm full-width
at half-maximum is used to smooth the EPI images (Ashburner,
2007).

3.2.2 Basic statistical analysis

3.2.2.1 The general linear model and the analysis of variance

After preprocessing, a general linear model (GLM) for multiple regression is used
to identify brain regions that show significant signal change in response to the
experimental manipulation. Based on the timing and duration of events in the
experiment, we can predict the hemodynamic response evoked as a linear
combination of several regressors plus noise. The GLM can be represented by a set
of matrices:

y=Xp +¢ (3.1)

where y is the observed BOLD signal as a two-dimensional matrix consisting of
time points by voxels. The time points are spaced with TR. X is the design matrix,
which consists of multiple regressors, each the same time points in length as the
BOLD data. The design matrix is the core of fMRI analysis, because it represents
experimental hypotheses. The general linear model attempts to find the
parameters 3, that is, a regressors-by-voxels matrix for a specific design matrix X.
P best accounts for the BOLD data by minimizing the unexplained error ¢. Least-
squares error is commonly used as a cost function in solving the GLM.

Regressors in the design matrix are typically built by convolving a stick function
with an ideal noiseless hemodynamic response function (HRF). For instance, a
canonical double-gamma HRF implemented in SPM has a delay of response for 6
seconds and a delay of undershoot for 16 seconds. By adopting an event-related
design, the stimulus-onset time series consist of stick functions of equal height. The
convolution is guided by linear time invariant properties between the neural
response and BOLD signal. Notably, the only free parameter of the HRF actually
estimated in the general linear model is the height of the response function. In
addition, parametric regressors can also be created to model the strength of BOLD
response with respect to the parametrically varied stimuli. In this case, each

39



Chapter 3: Model-based fMRI analysis

stimulus stick function has a height reflecting the modulation value in a specific
trial.

As mentioned in the previous section, head motion during the scan can cause
artifacts in the data and such residual motion artifacts can remain even after
motion correction. Thus, the six time courses of the translation and rotation
parameters can be included as nuisance regressors in the GLM model to account
for residual motion-related variance. Altogether, we have three types of regressors
in the GLM design matrix: unmodulated onset regressors, modulated parametric
regressors and nuisance regressors. Importantly, SPM subtracts the mean value
from each regressor so that the variance associated with the mean signal intensity
is not assigned to any experimental condition. Ideally all the regressors in the
model should be independent of, in other words, orthogonal to, the other
regressors so as to improve the chances of identifying meaningful statistical
effects. However, in terms of different experimental hypotheses, orthogonalization
should be considered as a method for clarifying the unique effects attributable to a
specific regressor.

After this single-subject level analysis, the GLM parameters are raised to a
succeeding group level of analysis. Combining data from multiple subjects as
random-effects increases the experimental power. Furthermore, it is important to
go beyond the identification of significant activations to understand differences
between groups of subjects. For example, group comparison is especially useful for
better understanding brain dysfunctions in clinical studies.

3.2.2.2 Corrections for multiple comparisons

Statistic results are generally evaluated by applying a threshold and observing the
spatial distribution of statistics that survive the threshold. However, there is a
massive issue with multiple comparisons in practice. Consider testing 100,000
voxels at a threshold of p<0.05. This means that on average 5000 will be significant
by chance, which is termed as false positives, or type I errors. Thus, the statistic
results always need to be somehow corrected for multiple comparisons. A
straightforward correction method would be Bonferroni correction:

Puncorrected
Pcorrected = N ’ (3.2)
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where N is the number of voxels in the whole brain. This method is appropriate if
the N voxels are independent, whereas adjacent voxels in fMRI data are correlated
due to inherent limitations in data collection and preprocessing. As a result,
Bonferroni correction might become overly conservative. The family-wise error
correction accounts for this problem using Gaussian random field theory and
calculates the effective correction factor, which is less conservative. However, such
a correction method requires smoothing the data.

One alternative to the analysis of individual voxels is to use a cluster-wise
threshold, where clusters of a large number of voxels are counted as surviving
statistical scrutiny. The likelihood of a false-positive result decreases with
increasing cluster size. This cluster-size threshold can also be estimated through
Gaussian random field theory based on the spatial correction and smoothness of
the data. The thesis work related to corrections for multiple comparison is
implemented through 3dClustSim in AFNI (Cox, 1996).

3.3 Combining reinforcement-learning theory with fMRI data

Stimuli——»é f{i E 2 ] l ;;} —3 > Actions

HHHHH-HHH—HH

[internal variables]

Model

Figure 3.3 Illustration of model-based analysis of decision variables. The brain experiences
sensory stimuli and generates decisions and motor outputs. To search for the neural
correlates of the brain’s internal decision dynamics, we assume a computational learning
model (e.g., a reinforcement learning model), estimate the model’s internal variables and
parameters, and seek for any correlation with them in the neural signal (e.g., fMRI data).
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A number of general computational frameworks have been developed for
describing cognitive processes. These frameworks are used as bridges between
hypotheses of mental operations and the corresponding neural activities. The
learning model-based analysis of neural signal is illustrated in Figure 3.3. We
assume the brain’s dynamic cognitive process can be captured as internal decision
variables and parameters when the subjects experience some sensory stimuli and
perform motor actions. Similarly, we define a computational model that takes the
same input and generate outputs that are similar to the real actions. To seek for
neural correlates of the brain’s internal decision variables, we can estimate the
variables and parameters of the model and look for correlations with them in the
measured neural signal.

This thesis applies reinforcement-learning models to account for human choice
behavior during decision-making tasks. Internal variables derived from these
learning models are integrated into the analysis of fMRI data. This method is
termed as model-based fMRI analysis (Doya et al., 2011; Glascher and O’Doherty,
2010; O’Doherty et al,, 2003), which provides us a tool for identifying how a
particular brain circuitry might carry out certain neural computations. In general,
this computational approach is not limited to reinforcement-learning models.
Instead, various other computational models can be used as long as the models can
explain cognitive operations on a trial-by-trial basis or rather in a continuous time
domain.

The model-based fMRI analysis consists of three steps:

1. Defining candidate computational models according to specific
experimental hypotheses. The computational framework as
mentioned in Chapter 2 represents experimental-driven
quantitative hypothesis about how the brain might approach a
specific decision-making problem. In particular, the trial-by-trial
value update scheme of reinforcement-learning models provides
a dynamic learning process, which enables us to search for
neural correlates of the value estimates during learning.
Therefore, competing hypotheses are generally formed in terms
of model selection.

2. Fitting each model to the empirical behavioral data and select the
best fitting model. The free parameters of each model are
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determined by fitting models to the behavioral data. This model-
fitting procedure confers that the model used in the fMRI analysis
is behaviorally relevant and psychologically valid. Details about
the model fitting in terms of parameter estimation and model
comparison are summarized in the next section. In fact, reliable
parameters not only reflect the underlying psychological traits
but also affect the subsequent fMRI analysis. However, due to the
limited information from behavioral data, this method might not
be sufficient after all. Another potential but computationally
much more complicated method is to combine both behavioral
data and BOLD signal in a full Bayesian framework for the model
fitting and comparison.

Deriving the time series of a model’s internal variables and using
them as parametric modulators in the GLM of fMRI data analysis.
After having fitted a model to the behavioral data, regressors can
be derived on a trial-by-trial basis. The model is taken as a
puppet experimental participant, which generates exactly the
same choice behavior as a real human subject. At the same time,
the model gives out a record of computational values as if the
real subject has used these values for generating decisions on
each trial, e.g., expected value, reward prediction error etc. There
are two ways to put these values into the GLM design matrix. One
is to use the time series at each trial as a parametric modulator
for the main event onset regressor. The other way is to convolve
the time series with a standard hemodynamic function and build
a main regressor by hand.

3.4 Parameter estimation and model comparison

Computational models typically have a number of free parameters, measuring the

experimental manipulations to be estimated from the experimental data. Different

computational models constitute different experimental hypotheses about the

cognitive process that give rise to the data. These hypotheses may be tested

against one another on the basis of their fit to the data. In this section, we

investigate methods for fitting models into the trial-by-trial behavioral data and

consider issues regarding the comparison of different models.
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Models are mathematical formulas that have parameters and we sometimes have
prior beliefs about these parameters. After observing empirical data, estimation
about those parameters can be updated with posterior beliefs. Given the empirical
data D, to seek a set of parameters 6 in the context of a particular model M can be
formalized by a Bayesian rule (Gelman et al., 2003):

P(D|6, M)P(8|M)
P(D|M)

P(|D, M) = (3.3)

Parameter estimation means determining the posterior probability over the
parameters, i.e., P(6|D,M). We can rewrite Equation (3.3) without explicitly
annotating the model parameters:

P(D|M)P(M)

) (3.4)

P(M|D) =

Based on the posterior probability of a model given data, i.e., P(M|D), we want to
determine the relative fit of one model over another. For instance, we can suppose
two models M; and M,. By taking a ratio of their respective evidence according to
Equation (3.4), we have

P(My|D) _ P(D|M;)P(M;)
P(M,|D) ~ P(DIM; )P(M)

(3.5)

Here, the marginal likelihood P(D|M) is the key model evidence, which does not
make reference to any particular model parameters. In fact, the model parameters
must be averaged out by:

P(DIM) = jd@P(Dw, M)P(6|M). (3.6)

The ratio of the evidence P(D|M; )/P(D|M, ) is called the Bayesian factor, which is
a standardized measure for comparing the relative fit of each model. Notably,
Bayesian model comparison automatically takes the model complexity into
account. A more complex model is punished for being vulnerable to over fitting.
Nevertheless, it is important to bear in mind that a model comparison process can
merely tell us which model is less bad than the other. Sometimes, it might be
helpful to use the knowledge of a posterior distribution to simulate further data.
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An additional comparison between simulated and the original data might facilitate
intuitive diagnostics of the model.

The Bayesian inference described above looks simple and neat, but in reality, it can
be very difficult. The computation of the integral in Equation (3.6) can be
intractable even thought the parameter space is only moderately large. In the
following section, we summarize some practical methods for approximating the
calculation of this Bayesian inference. In particular, the maximum likelihood
estimation and hierarchical Bayesian modeling.

3.4.1 Maximum likelihood estimation

Equation (3.3) says that the posterior probability of parameters is proportional to
the product of the likelihood of data given the model parameters and the prior
probability of the parameters. A widely used estimating method is maximum
likelihood estimation (ML). ML estimation seeks a single point estimate rather than
a full posterior distribution of the parameters over all possible values. It uses a
uniform prior of P(8|M) and estimate the parameter # by maximizing a likelihood
function of P(D|6, M).

First, the likelihood function £(8) of a reinforcement-learning model, given the

empirical data denoted by e; = {s, a4, 1y, ..- S, a¢, 1+ } with states s;, action a; and
rewards 13, can be written as:

L) = np(at|5t» et-1,0). (3.7)
t

Next, the estimation for ML parameter 8, can be reduced into the following
nonlinear optimization problem:

Oy = argmaxL(6). (3.8)
)

In practice, Equation (3.8) is computed after a transformation by a logarithm
function to reduce the computational burden. The data log-likelihood log (L(0y.))
or BIC-corrected likelihood is often reported as indicators of the goodness of fit.
The BIC score (Schwarz, 1978) is an approximation of Equation (3.6) defined as:
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log(P(DIM)) = log(P(DIM, 83y1)) — glog m), (3.9)

where n is the number of parameters in the model and m is the number of data
points, for instance the number of trials in a MDP task. BIC score punishes the

model complexity with the term g log (m) for preventing over fitting.

Another typical way of model comparison in statistics is likelihood ratio test
(Neyman and Pearson, 1933), which is especially useful for comparing nested
models. Suppose that a complex model M; nests a simpler model M,, the test
statistic can be calculated as:

d = 2[log(P(D|My, 6y) — log (P(D|My, 6,2))]. (3.10)

The probability distribution of d follows approximately a chi-square distribution
(Huelsenbeck and Crandall, 1997; Wilks, 1938) with a degree of freedom equals
the difference of the number of parameters in each model. Therefore, a p-value can
be computed to test if model M, fits the data better than model M, simply by
chance. Moreover, if we assume a random agent as an empty model that has zero
parameter, a likelihood ratio test can be used to check whether any model
performs better than the purely random null model.

Population parameters

1 2 n
Subject parameters
o, ~F,.p~F;y,~F,
Experimental data
al 612 a3 a,~P(a; 1. By,

Figure 3.4 Illustration of hierarchical Bayesian analysis for the parameter estimation. There
is a group of n subjects and each subject has a set of parameters {a;, B;,v;}. The subject
parameters are drawn from prior distributions with certain mean g and variance ), which
are the population parameters that characterize the underlying psychological traits of this
group of subjects.

46



Chapter 3: Model-based fMRI analysis

3.4.2 Hierarchical Bayesian modeling

So far we have focused on estimating model parameters with experimental data
from a single subject. Many experimental studies involve groups of subjects and
the research of interest often lies in the comparison between groups. The question
is how to estimate the population parameters from a set of experimental data. A
straightforward method is to firstly estimate the ML parameters for each subject
and then to simply summarize the mean and variance of all the parameters from
the same group of subjects. However, this method ignores the inherent noise in the
single-subject parameter estimation, which may badly inflates the variance of the
population estimation (Daw, 2011).

We are interested in situations where parameters vary across populations as
shown in Figure 3.4. Suppose we have N groups of subjects and n subjects in each
group. We denote a set of parameters for subject i as ¢;, for instance ¢; =
{a;, Bi,vi}, i €{1,...,n}. We assume each of the parameters in ¢; is drawn from a
certain prior probability distribution F, ie. ¢; = {a;~F,, Bi~Fp,vi~F,}. F is
conventionally a Gaussian, Gamma or Beta distribution. The shape parameters
charactering such prior distributions are the parameters that we would like to
compare between different populations. We can term these shape parameters as
population parameters, such as the mean u and variance 0. We denote a set of
population parameters from the jth population by 9;, where j € {1, ..., N}. We can
again use the Bayesian rule to recover the population parameters in terms of the
model and data:

P(D|8;, M)P(9;|M)

P(%|D,M) = PO

(3.11)

Then the likelihood P(D|19j, M) is averaged over all possible sets of individual

subject’s parameters according to their prior probability distribution:

n
P(D|9;, M) = I_Ud a;dB;dy FoFpF, P(Dla, B, vi, M). (3.12)
i=1

If we assume F as a Gaussian distribution for each prior probability, that is
9, = (4,2), i€ R, ¥ € R, where k is the number of parameters in the

model for each individual subject. If we take ¢; = {«;, B;, v;} as an example, then we
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have i = {ug, g, 1y}, 2 = diag(oq, 05,0,), and k = 3. The prior distribution for

@; is thus:
_ 1 rmE o)
P(pil8)) = ——e 2 : (3.13)
2mz|X|2

Then ¥; can be computed as A Maximum Posterior estimation by Expectation

Maximization algorithm as following:

@; = argmaxP(D|p)P(¢;]%;), (3.14)
Pi
1 (3.15)
”_nz(pi'
l
5= Z(-—)(-—)T Ge)
_n—l,(pl P — 1) -
l

The steps of Equation (3.15)(3.16) are repeated until the prior parameters
9; = (1, X) converge. However, the Expectation Maximization algorithm in this
case only supports Gaussian priors and the nonlinear optimization requires
calculation of analytical derivatives accordingly. The computation gets more
difficult, since reinforcement-learning models in general involve a lot of nonlinear
transformations.

Another technique is to assess the properties of a posterior distribution in terms of
directly sampling it. Samples of representative random values can be generated by
means of Monte Carlo simulation. For example, the Metropolis algorithm and Gibbs
sampling are specific types of a Markov chain Monte Carlo (MCMC) process. A
hierarchical modeling approach treats the single-subject parameters as being
generated from a group-wise distribution. In particular, a prior belief about the
group-wise distribution can constrain the estimation for parameters of a particular
individual subject. As a result, single-subject parameters are pulled toward the
group mean, which leads to more robust estimates. Thus, hierarchical models
simultaneously account for both differences and similarities among subjects within
a same population (Ahn et al,, 2011; Lee, 2011; Nilsson et al., 2011; Perfors et al.,
2011; Shiffrin et al., 2008).
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Generally, Bayesian MCMC fitting software, such as winBUGs/openBUGS software
(Lunn et al,, 2012), Stan (Team, 2014), and Jags (Plummer, 2003), are employed in
practice for Bayesian analysis of statistical models. In this thesis, I used the JAGS
software and its runjags R interface for the computations of model estimation. Full
details about the underlying MCMC algorithms are beyond the scope of this
chapter (Kruschke, 2010). Briefly, taking a random walk through the parameter
space generates sample values of a target probability distribution. Summary
statistics are inferred from these random samples. In the meanwhile, the MCMC
simulation needs to be diagnosed for whether the samples have reliably and
effectively covered the target probability distribution (Cowles and Carlin, 1996).
Firstly, multiple chains of MCMC simulations have to be executed in parallel with a
certain burn in period (i.e. get rid of initial samples) and specific thinning interval
(i.e. take only the every 3rd or 5t samples). Secondly, there are different methods
to check whether an MCMC chain has converged. One method is to see how well
the chains are mixing and moving around the parameter space. Trace and the
density of samples can be plotted for visual inspection. Another way to assess
convergence is to examine the autocorrelations between the neighboring samples
of a Markov chain. The autocorrelation are expected to decrease as the number of
lags increase. Lastly, the variance of samples within a single chain or between
multiple chains can be compared with Gelman-Rubin test to statistically diagnose
the convergence (Brooks and Gelman, 1997).

The deviance information criteria (DIC) can be calculated for quantitatively
comparing the model fit from the Bayesian MCMC analysis (Gelman et al., 2003).
DIC is the hierarchical modeling generalization of the BIC criterion, which is an
approximation of the model evidence of Equation (3.6). The DIC is calculated as:

DIC = D(0) + 2pp, (3.17)

where 0 is the average of model parameters, D(@) is proportional to a log
likelihood function of the data, and pp, is the effective number of parameters. D (6)
measures how well the model fits the data, while p, is a penalty on the model
complexity. The lower a DIC score, the better a model fit. As a rule of thumb, value

difference of DICs between 5 to 10 is considered substantial (Spiegelhalter et al,,
2002).
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3.5 Thesis work relating to fMRI experiment

The experimental paradigms and behavioral findings presented in Chapter 4 are
the basis for fMRI studies presented in Chapter 5 and 6. The modeling analysis in
Section 4.1 and 4.3 were conducted through maximum likelihood estimation. The
analysis in Section 4.2 was conducted through Bayesian hierarchical modeling.

Chapter 5 presents contextual modulation of both stimulus and reward prediction
errors in the BOLD signals from the ventral striatum during the behavioral
paradigm introduced in Section 4.2. Chapter 6 investigates the neural structures
that support counterfactual learning during the behavioral paradigm introduced in
Section 4.3.

50



Chapter 4: ESTIMATING PREDICTION
ERRORS IN PARADIGMS OF MULTIPLE
VALUATION SYSTEMS

The processes of successful decision-making depend on the precise monitoring of
action-outcome associations and the flexible integration of different aspects of
reward information. A wide range of factors can modulate these complex
processes, such as temporal properties of the rewards, the novelty or emotional
significance of choices, and the amount of risk and variability associated with the
outcomes. Furthermore, the ability to predict reward at different time scales
allows us to pursue larger future rewards and longer-term goals instead of
focusing on immediately available but less rewarding outcomes.

In this chapter, I introduce three new paradigms of reward-based learning
appropriate for investigating multiple valuation systems in human decision-
making. Each paradigm is designed and analyzed based on the hypothesis
formulated by reinforcement-learning models. These hypotheses are tested with
subject's choice behavior. The model-based behavioral findings in this chapter
suggest that error-correction via reinforcement is commonly engaged in multiple
valuation systems.
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4.1 The encoding of higher-order reward prediction errors

4.1.1 Introduction

Humans can identify patterns in temporal sequences in order to predict future
event. For instance, we observe whether on a particular day it rains or not, then we
wish to predict whether it will rain or not on the next day. If we treat such
observations as an independent and identical distribution, the only information we
can glean from the data is the relative frequency of rainy days. However, we know
in practice that the weather often exhibits trends that may last for several days.
Observing whether or not it rains today is therefore of significant help in
predicting if it will rain tomorrow (Bishop, 2006). For many of such sequential
observations, we anticipate that the statistical relationships among several
successive observations provide important information in predicting the next
value.

This kind of sequential learning requires not only tracking the frequency of
encountered stimuli, but also the higher-order statistical relationships among
them. Standard reinforcement learning models learn the mean reward frequency
and bias action selections towards the most rewarding action. However, if average
rewards are equal for all the available options, but the stimuli occur in a specific
temporal pattern, how does an observer learn such temporal dependencies?
Specifically, can we use the prediction errors to learn the conditional correlations
among sequential stimuli? To address this question, we designed a two-armed
bandit task where a visual stimulus alternates between the left and right sides of
the screen according to a specific Markov chain.

4.1.2 Methods

4.1.2.1 Experimental paradigm

We designed a two-armed bandit task where subjects had to predict whether a
stimulus (i.e, money) would appear on the left or the right side of the screen.
Subjects had to correctly predict the forthcoming stimulus location indicated by
two treasure chests to gain a monetary reward (Figure 4.3). The stimulus
alternated between the left and right locations according to specific probabilities.
We aimed to study how subjects learned the sequential aspects of the stimuli,
especially the correlations between two or three stimuli that were close in a
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sequence. We anticipated that subjects used the information about the temporal
correlations of the stimuli to predict the forthcoming stimulus. One way to allow
earlier observations to have an influence is to move to higher-order Markov
chains.

We define three types of probabilities: (1) zero-order probabilities, the frequency of
a stimulus appearing on either the left (L) or the right (R) location, e.g., p(L). (2)
first-order probabilities, the conditional probability of a stimulus appearing on one
location given its previous one, e.g., p(L|L). If we allow the current stimulus to
depend only on its previous one, we obtain a first-order Markov chain. (3) second-
order probabilities, the conditional probability of a stimulus appearing on one
location given its previous two stimuli, e.g., p(L|L,L). If we allow the current
stimulus to depend only on its previous two stimuli, we obtain a second-order
Markov chain.

We set up two experiments by keeping the lower-order probabilities fixed at 0.5
but systematically changing the higher-order conditional probabilities using
Markov properties. There are four first-order conditional probabilities of the
neighboring stimuli: p(L|L), p(L|R), p(R|L) and p(R|R). If we fix the zero-order
probability at 0.5, we can reduce the four first-order probabilities to one degree of
freedom. Similarly, there are eight second-order conditional probabilities
p(LIL, L), p(LIL,R) , p(LIR,R), p(LIR,L), p(RIL,L), p(RIL,R), p(RIR,L) and
p(R|R, R). If we keep both the zero-order and first-order probabilities fixed at 0.5,
we can reduce the eight second-order probabilities to one degree of freedom as
well. As described in detail in the following subsections, we set p(L|L) as the only
free parameter in the experiment of first-order Markov task and p(L|L, L) as the
only free parameter in the experiment of second-order Markov task.

4.1.2.1.1 Experiment 1: first-order Markov task

Figure 4.1 A first-order Markov chain of stimuli. The distribution p(s,|s;_1) of a particular
observation s, is conditioned on its previous observation s;_;.

We denote the stimulus location ass; € {L, R} on each trial t. In the first-order
Markov task, we generated the sequence of stimuli by controlling the first-order
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probability p(s¢|s¢—1) as shown in Figure 4.1. Thus, a whole sequence of N stimuli
has the property:

N
p(sy, ...sy) = p(s1) np(5t|5t—1)- (4.1)
t=2

We set the probabilities of the stimulus appearing on either the left or the right
location to be the same:

p(L) = p(R) = 0.5. (4.2)
Then, we define a first-order parameter a and p(L|L) = a. We have:

p(LIL) p(LIR) a 1-a
p®ID pRID) =l Ze o b (%3)
We set up seven experimental conditions. Each condition had a different
conditional probability of a € {0.125,0.375,0.5,0.625,0.75,0.875} and was run
with a block of 150 trials. There zero-order probabilities were always 0.5.
Therefore, nothing could be learned by the subjects on the basis of the frequency
information alone. However, the subjects might improve their performance if they
learned the transition probabilities, e.g., the fact that the stimulus was more likely
to alternate or to repeat.

4.1.2.1.2 Experiment 2: second-order Markov task

Figure 4.2 A second-order Markov chain of stimuli. The distribution p(s;|s;_1,5;-2) of a
particular observation s, depends on the values of its previous two observations s,_; and
S¢_a:

In the second-order Markov experiment, we generated the sequence of stimuli by
controlling the second-order probability p(s;|s;_1,St—»). Thus, a whole sequence of
N stimuli has the property:
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N
p(sy, ...sy) = p(s1)p(s1ls2) np(5t|5t—1; St—2)- (4.4)
t=2

We set the zero-order and first-order conditional probabilities fixed at 0.5:
p(L) =p(R) = 0.5, (4.5)
p(LIL) = p(LIR) = p(R|L) = p(R|R) = 0.5. (4.6)

We define a second-order parameter b and p(L|L, L) = b. We have:

p(LIL,L) p(RIL,L) b 1-b
p(LILR) pRILR)[_[1-b b (4.7)
p(LIR,L) p(R|R,L) b 1-b] '

p(LIR,R) pRIR,R)I Y1-b b

We set up seven experimental conditions. Each condition had a different
conditional probability of b € {0.125,0.375,0.5,0.625,0.75,0.875} and was run
with a block of 150 trials. Both the zero-order and the first-order probabilities
were not informative in this experiment. Only if the subjects had learned the
second-order probabilities, would they make more correct predictions.

Note that we can mathematically prove Equation (4.3) holds true given Equation
(4.2), so does Equation (4.7) given Equation (4.5) and (4.6) (Bishop, 2006).

4.1.2.2 Experimental task and procedure

The ordering of the blocks was fully counterbalanced across subjects. Every
participant completed 7 blocks of 150 trials each, with self-paced breaks in
between blocks. On each trial, there were two treasure chests, on the left and the
right of the screen. The subjects were instructed to predict which treasure chest
contains money by making a button press on the response trigger pad with the
right index or middle finger. Then both treasure chests were open. If there were
money in the chosen treasure chest, the subject won 1 point. If there was no money
in the chosen treasure chest, the subject received no reward (Figure 4.3). Subjects
were instructed to maximize the cumulative number of points scored during the
experiment. They were paid according to the total number of treasures they
collected during the experiment. Each trial started with a 2s inter trial interval

55



Chapter 4: Estimating prediction errors in paradigms of multiple valuation systems

when a fixation cross was presented at the center of the screen. The two treasure
chests were then displayed and the subject had to make a choice. If no choice was
made within 2s, a message “Too slow!” was displayed for a time-out of 4s and that
particular trial was abandoned. The chosen treasure chest was indicated with a
key inserted in the treasure chest, after which a stack of coins or an empty treasure
chest was shown for 1.5s.

ITI

choice

Figure 4.3 Sample trial: subject had to make a choice when the two treasure chests were
displayed. Here the left was chosen and indicated by a key inserting in the left treasure
chest, after which subjects would either win a stack of coins (indicating a reward of 1 point)
or get an empty treasure chest (indicating no reward).

Twenty participants (mean age, 26 years; age range, 20-38 years; 12 male and 8
female) with normal or corrected-to-normal vision were recruited from the
student population at Technische Universitdt Berlin. Each participant was paid a
base rate of 7€ for participating in the experiment and a bonus depending on the
amount of money they won during the experiment (mean 6.1€ * SD 0.4€). Ten
subjects participated in Experiment 1 and the other ten subjects participated in
Experiment 2. This study was conducted in accordance with the principles of the
Declaration of Helsinki for subject participation in scientific studies and was
approved by the local ethics committee.

4.1.2.3 Computational modeling

We hypothesized that subjects learned the first-order probabilities in Experiment
1 and learned the second-order probabilities in Experiment 2 for making correct
predictions. To test whether different prediction errors could be adapted to
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estimate such higher-order probabilities, we formulated three reinforcement-
learning models.

4.1.2.3.1 Zero-order learner

The standard Rescorla-Wagner model estimates the expected value of each option.
The expected value is proportional to the frequency of a stimulus appearing on
either location, i.e.,, p(L) and p(R). We define the zero-order learner as a Rescorla-
Wagner model that estimates the expected value of taking action a; € {L, R} on
each trial:

Vt+1(at) = Vt(at) +a(r — Vt(at)): (4.8)
Then, the action is selected stochastically through a softmax function:

_ e (pV(a)
exp(BV (L)) + exp(BV(R))

P(a;) (4.9)

1 € {0,1} is the reward that depends on whether subjects made a correct
prediction (r, = 1,if a; = s¢) or not (r; = 0,if a; = s;). a is the learning rate and
[ is the inverse temperature parameter that controls the exploration against
exploitation during learning. We use a and S for same notations in the following
two models.

4.1.2.3.2 First-order learner

We adapt the Rescorla-Wagner model to directly estimate the first-order
conditional probability p(s¢|s¢—1):

pt+1(st|5t—1) = Pt(5t|5t—1) + a(o; — Pt(5t|5t—1))' (4.10)

where p(silsi_1) = {p(LIL),p(LIR), p(RIL), p(RIR)} . o, €{0,1} is a binary
indicator that o, = 1 for the observed pair of successive stimuli (s;,s;_;) and
o = 0 for all the other three unobserved pairs at trial t. Since the second trial, the
model tracks the four conditional probabilities in parallel. Each of these
probabilities is initialized to be 0.5. Then, these conditional probabilities are used
in the softmax function for action selection.
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exp (Bp(L|s¢-1))
exp(Bp(Llsi-1)) + exp (Bp(R|s¢-1))

P(a; = L|s¢-1) = (4.11)

P(a; = Rlst—1) =1 —P(a; = L|s¢-1). (4.12)

Similarly as in the zero-order model, we assume a softmax action selection
procedure for this first-order model, and for the second-order model described in
the next subsection. The softmax function is to make the learning models more
flexible in characterizing subjects’ learning process with regards to exploration
and exploitation trade-off.

4.1.2.3.3 Second-order learner

We adapt the Rescorla-Wagner model to directly estimate the second-order
conditional probability p(s¢|S¢—1, S¢—2):

pt+1(st|5t—1'5t—2) = Pt(5t|5t—1»5t—2) + a(o, — Pt(5t|5t—1»5t—2))' (4.13)

where p(s¢|si—1,s¢-2) = {p(LIL, L)}, p(LIL,R), p(LIR,L), p(LIR,R), p(R|L,L) ,
p(R|L,R), p(R|R,L), p(R|R, R)}. o, = 1 for the observed triple of successive stimuli
(S¢,St—1,S¢—2), and o, = 0 for all the other unobserved seven triples at trial t. Since
the third trial, this model tracks the eight conditional probabilities in parallel. Each
of these probabilities is initialized to be 0.5. Then, these conditional probabilities
are used in the softmax function for action selection:

exp (Bp(L|S¢-1,St-2))
ZAz{L,R} Br(Alsi_1,5t-2)

P(ar = LIst-1,St-2) = (4.14)

P(a; = R[s¢—1,S¢—2) =1 —P(a; = L|s¢—1, S¢—2). (4.15)

4.1.3 Results

In both experiments, subjects’ performance reached at least 70 percent correct
when the stimulus appeared in a highly predictive manner, that is, when p(L|L) or
p(L|L, L) approached 0.125 or 0.875, shown in blue in Figure 4.4 A for Experiment
1 and in Figure 4.4 B for Experiment 2. The ideal prediction for the first-order
experiment was to always choose the location opposite to the previous stimulus if
p(L|L) < 0.5, whereas to always choose the same location as the previous stimulus
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if p(L|L) > 0.5, presented as green and cyan solid lines respectively in Figure 4.4 A.
This strategy made best use of the first-order conditional probabilities. Therefore,
it was optimal for decisions during Experiment 1. However, such a strategy was no
longer optimal for Experiment 2, where the first-order conditional probability was
not informative at all. Indeed, the first-order learner only performed at chance of
50% correct prediction rate during Experiment 2 (green and cyan solid line in
Figure 4.4 B).

The ideal predication for the second-order experiment had to make best use of the
second-order conditional probabilities. Therefore, the optimal strategy was to
choose the location opposite to the previous-but-one stimulus if p(L|L,L) < 0.5,
whereas to choose the same location as the previous-but-one stimulus if
p(L|L,L) > 0.5, presented as green and cyan dashed line respectively in Figure
4.4B.

On average, subjects chose both left and right with 50% chance in Experiment 1
and Experiment 2, shown in red in Figure 4.5 A and B. This could be attributed to
the fact thatp(L) = p(R) = 0.5 in both experiments. In Experiment 1, the first-
order probability p(s¢|s;_1) was systematically changed across seven experimental
conditions by setting p(L|L) as the sole variable with the other three first-order
conditional probabilities dependent on p(L|L). The probabilities of the subjects’
choice given the previous stimulus p(a;|s;_,) strongly correlate with p(s;|s;_1)
(correlation coefficient = 0.9871, p=3.22e-22, t-test). As illustrated in Figure 4.5 A,
the probability of p(a; = L|s;—; = L) (blue) matched the probability of p(s; =
L|s¢;—,; = L) (dashed black).

In the Experiment 2, the first-order probabilities are equal p(L|L) = p(L|R) =
p(R|L) = p(R|R) = 0.5. Accordingly, the conditional probabilities of the subjects’
choice given the previous stimulus were around 0.5. For example, p(a, = L|s;_; =
L) was always around 0.5, shown in blue in Figure 4.5 B. The probabilities of the
subjects’ choice given the previous two stimuli p(a;|s;_1, S¢—;) strongly correlate
with the second-order probability p(s;|s;_1,S¢—) (correlation coefficient = 0.8955,
p=1.24e-10, t-test). As illustrated in Figure 4.5 B, the probability on the left
p(a; = L|s;_; = L,s;_, = L)(purple) matched the probability of p(s; = L|s;_; =
L,s;_, = L) (dashed black). Altogether, these results suggested that the conditional
probabilities influenced subjects’ decisions in respective experiment.
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Figure 4.4 Correct prediction rates across each condition, mean over all trials shown in blue.
(A) Experiment 1, green line represents ideal predictions that always chose the location
opposite to the previous stimulus. Cyan line represents ideal predictions that always chose
the same location as the previous stimulus. (B) Experiment 2, green and cyan solid lines
represent the ideal predictions as in (A), which failed in the second-order task. The dashed
green line represents ideal predictions that always chose the location opposite to the
previous-but-one stimulus. The dashed cyan line represents ideal predictions that always
chose the same location as the previous-but-one stimulus. Error bars indicate SEM over 10
subjects or 10 simulated agents of ideal predictions.
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Figure 4.5 Correlations between subjects’ choices and the stimuli, suggesting that subjects
made decisions according to the conditional probabilities when such information is critical
for the task performance. (A) Experiment 1. The probability that the subjects chose left
during each experimental condition is around 50%, shown in red. The probability that the
subjects chose left given a left stimulus (blue) correlates with the first-order conditional
probability p(L|L) (dashed black). (B) Experiment 2. Both the probability that the subjects
chose left (red) and the probability that the subjects chose left given a left stimulus (blue)
are around 50%. The probability that the subjects chose left given two left stimuli (purple)
correlates with the second-order conditional probability p(L|L, L) (dashed black). Error bars
indicate SEM.
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Figure 4.6 Models compared by relative BIC scores ABIC. The bigger ABIC indicates a better
model fit. (A) ABIC of zero-order (blue) and first-order (yellow) models fitted into the
experimental data in each condition of Experiment 1. The first-order model fitted the data
significantly better than the zero-order model. (B) ABIC of zero-order (blue), first-order
(vellow), and second-order (purple) models fitted into the experimental data in each
condition of Experiment 2. The second-order model fitted the data significantly better than
the zero-order and first-order models.
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Figure 4.7 Model simulations. (A) In Experiment 1, the best-fitting zero-order model could
simulate subjects’ choice behavior when p(L|L) > 0.5, but failed when p(L|L) < 0.5. The
best-fitting first-order model could precisely simulate subjects’ choice behavior across each
condition. (B) In Experiment 2, the best-fitting zero-order model could not simulate subjects’
choice behavior at all. The best-fitting first-order model could only simulate subjects’ choice
behavior when p(L|L,L) = 0.5, but failed when p(L|L,L) < 0.5. The best-fitting second-order
model could precisely simulate subjects’ choice behavior across each condition.
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Behavioral results were further analyzed on a trial-by-trial basis using the adapted
Rescorla-Wagner models that estimate the conditional probabilities. The model
updates the current prediction by sampling the interdependencies among the past
two or three stimuli. We fitted the zero-order and first-order models to subjects’
choice behavior in Experiment 1. We fitted zero-order, first-order, and second-
order models to subjects’ choice behavior in Experiment 2. Models were fitted
using maximum likelihood estimation and the BIC scores were used to evaluate the
goodness of fit.

The BIC scores of the models for each experiment are shown in Figure 4.6 with
mean and standard deviation over ten subjects. We reported relative BIC scores,
ABIC := BICyqngom — BICry, where BIC, n40m 1S the BIC score of a random
agent calculated as —2log (0.5), and BICyy, is the BIC score of each candidate
model. The larger the relative BIC score is, the better the model fits the data. The
BIC scores showed that the behavioral data strongly favored the first-order model
for Experiment 1 and the second-order model for Experiment 2, shown in Figure
4.6. In addition, the ABIC of the first-order model in Experiment 1 and the ABIC of
the second-order model in Experiment 2 increased when the respective underlying
conditional probability p(L|L) or p(L|L,L) moved away from 0.5. The best-fitting
model parameters are summarized in Table 4.1. The exploration parameter 8
decreased as the respective conditional probability approached 0.5, suggesting
more exploration or random choices when the probabilities became less
informative.

Furthermore, the ability of each model in explaining subjects’ choice behavior on
average were displayed in Figure 4.7, demonstrating that the best-fitting first-
order model could simulate subjects’ choice behavior in Experiment 1 and the
best-fitting second-order model could simulate subjects’ choice behavior in
Experiment 2. In addition, the best-fitting zero-order model could only simulate
subjects’ choice behavior when p(L|L) = 0.5, but failed when p(L|L) < 0.5 in
Experiment 1, because the model estimates the mean reward of either option
which was equal across trials. Similarly, the best-fitting first-order model could
only simulate subjects’ choice behavior when p(L|L,L) = 0.5, but failed when
p(L|L,L) < 0.5 in Experiment 2, because not only the frequencies of p(L) and p(R),
but also the first-order probabilities (e.g., p(L|L)) were fixed at 0.5. The zero-order
model could not simulate subjects’ choice behavior in Experiment 2 at all.
Altogether, the model-based analysis indicated that subjects might be able to learn
the conditional probabilities through reinforcement-learning computations.
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Table 4.1 The best-fitting parameters of the first-order model in Experiment 1 (first-order
Markov task) and the best-fitting parameters of the second-order model in Experiment 2
(second-order Markov task).

Experimental First-order model in Second-order model in
conditions Experiment 1 Experiment 2
p(L|L) or  Learningrate Temperature Learningrate Temperature
p(L|L, L) a (mean, SE) p (mean, SE) «a (mean,SE) [ (mean, SE)
0.125 0.09, 0.07 12.16,1.31 0.15, 0.09 12.21,2.12
0.25 0.21,0.33 6.76,1.38 0.24,0.11 6.10,1.53
0.375 0.12,0.12 3.55,0.85 0.29,0.12 3.38,0.83
0.5 0.31,0.33 4.02,1.02 0.15, 0.09 8.76, 2.59
0.625 0.17,0.29 6.54, 1.62 0.16, 0.09 11.22,2.22
0.75 0.13,0.17 7.50, 1.68 0.07,0.03 13.53,1.85
0.875 0.27,0.31 8.34,1.42 0.19, 0.04 11.67,2.08

4.1.4 Discussion

In this section, I introduced two sequential learning tasks designed to investigate
how subjects learn the temporal dependencies in a sequence of stimuli. We
systematically manipulated the first-order and second-order conditional
probabilities. Behavioral findings suggested that subjects might learn the
conditional probabilities when such information is critical for optimizing their task
performance.

We adapted Rescolar-Wagner models to track either the first-order or second-
order conditional probabilities instead of estimating the standard zero-order
reward frequencies. These models of higher-order probabilities accounted for the
choice behavior better than the zero-order model, which failed to integrate any
temporal dependencies among neighboring stimuli for guiding the decisions.
Model-based behavioral analysis suggested that subjects might be able to learn the
conditional dependencies using a common mechanism of error-correction via
reinforcement. This leads to the hypothesis that the brain might implement the
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same computational mechanism in estimating higher-order conditional
probabilities as in estimating the zero-order average rewards.

Through integrating this experimental paradigm into fMRI studies, we may
address the following research questions: (1) is the zero-order prediction error
always computed even though it is task irrelevant? (2) is there a higher-order
prediction error signal encoded with respects to the task demand? (3) Are
different orders of probabilities learned simultaneously? i.e., Is the lower-order
probabilities learned earlier than the higher-order probabilities?

Sequential learning is the ability to learn about the temporal patterns of the
environmental stimuli. Such ability is crucial for much of human decision making
and learning. Decades of behavioral and neuroscience studies have shown that
humans attempt to identify patterns in order to predict future events, even when
these patterns are determined randomly (Huettel et al., 2002; Ivry and Knight,
2002; Squires et al., 1976). For example, a gambler may bet on black for the next
spin of a roulette wheel if a run of black spots just came up. The effect of temporal
patterns has been studied as changes in the behavioral and neural responses to a
stimulus that violated a repeating or alternating pattern from the previous stimuli
(Daltrozzo and Conway, 2014; Ranganath and Rainer, 2003).

However, in many sequential learning paradigms, it is not clear at which level the
temporal patterns are detected and how this information is subsequently used in
learning. For instance, the neural encoding of temporal sequences has been
conventionally studied with so-called “Oddball” paradigms, where a random serial
of repetitively presented audio or visual stimuli are infrequently interrupted by a
target stimulus. Subjects are typically asked to react in response to the target
stimuli. One plausible proposals as to what is learned during the Oddball tasks is
that the conditional probability of the target occurrence is continuously evaluated
(Lungu et al.,, 2004; Stadler et al., 2006). Such conditional probabilities can also be
formally quantified with Bayesian learning algorithms of stimulus probabilities
(Baldi and Itti, 2010; Ostwald et al., 2012). Nevertheless, sequential learning would
require learning the associations among preceding stimuli and the responses
associated with different stimuli. Although various studies have shown that
humans can combine statistical evidence over time (Cleeremans and Dienes, 2008;
Huettel et al., 2005; Jongsma et al., 2006; Miller et al.,, 2005; Turk-browne et al,,
2009; Zhang and Rowe, 2015), it remains a question how such probability
detection mechanism is related to associative learning, e.g., reinforcement
learning.
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Although previous human neuroimaging studies have demonstrated that the
average reward probabilities can be estimated through reward prediction errors in
the brain (Cooper et al,, 2012; Kim et al.,, 2006; McClure et al.,, 2003; O’Doherty,
2004; O’Doherty et al.,, 2004; Pessiglione et al,, 2008), there is remarkably little
knowledge of whether sequential learning involves the computation of prediction
errors as well. More recently, a growing body of evidence indicates the existence of
more than one prediction error signals in the brain (Chiu et al.,, 2008; Daw et al,,
2011; Diuk et al,, 2013; Glascher et al,, 2010; Lee et al., 2014; Lohrenz et al., 2007;
Tobia et al, 2014). In particular, model-based neuroimaging analysis have
suggested the existence of prediction error signals for estimating transition
probabilities rather than the averages rewards (Daw et al,, 2011; Doll et al,, 2012;
Glascher et al., 2010; Lee et al.,, 2014; Prévost et al., 2013; Simon and Daw, 2011).
However, these transition probabilities are only limited to characterize the
conditional contingencies between two states, e.g.,, two locations in a maze. It is
unclear whether such prediction error signals can be generalized to the learning of
conditional contingences between stimuli unfolding in time.

The model-based behavioral analysis presented in this section showed that the
reinforcement-learning models could account for a wide range of existing findings.
Therefore, neuroimaging experiments are required to directly test and refine the
potential dynamic computation of higher-order prediction errors during
sequential learning. In particular, a distributed set of regions in the frontal and
parietal cortices have been demonstrated to be exquisitely sensitive to the
presence of patterns as well as deviations from these patterns (Huettel and
McCarthy, 2004; Huettel et al., 2002, 2005; Kirino et al., 2000; Madden et al., 2004;
Miller et al., 2005; Paulus et al., 2004; Zhang and Rowe, 2015). However, the exact
computational mechanism that accounts for these neural activity is still absent. In
addition, the anatomical connections among prefrontal and subcortical regions
have yet to be functionally characterized during sequential learning.

Research on sequential stimulus effects has proceeded largely independent of the
research on computational reinforcement learning, because the focus is primarily
on perceiving patterns rather than optimizing performance through learning.
There are very few human sequential learning studies that investigate the dynamic
computational processes. Filling this gap, through assembling a unified picture of
computational reinforcement-learning modeling and sequential learning, might
lead to important breakthroughs in our understanding of the neural mechanisms
supporting learning and decision-making.
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4.2 The interaction between stimulus likelihoods and rewards

4.2.1 Introduction

Known from Pascal’s wager in the 17th century, the rational decision-making
procedure consists of identifying all possible outcomes by their expected values
and choosing the action that yields highest total expected value. However, modern
economists have summarized numerous paradoxical examples showing that our
decisions often deviate from Pascal’s normative theory (Glimcher and Fehr, 2014).
These choice paradigms raise an interesting question: Do we always learn to make
decisions that maximize expected value? Over a century of animal learning
research has revealed two broad classes of learning processes: Pavlovian
conditioning (Pavlov, 1927) and instrumental conditioning (Thorndike, 1933),
which showed that animals can both learn to respond to the predictive value of a
stimulus and take a particular action to obtain reward.

In situations such as choosing between two alternatives in order to get the most
reward, predicting the potential outcomes is critical. Humans are apparently
capable of learning the values associated with stimuli but on the other hand tend
to violate the rational choice theory. Here we designed a visually cued two-armed
bandit task, which aims to dissociate the influence of stimulus likelihood and
expected reward on human decisions. The expected values of the both alternatives
were defined as the product of the stimulus likelihood and the reward occurrence.
We hypothesized that participants would acquire knowledge about the stimulus as
well as the reward, while the stimulus driving their decisions away from optimal
reward-seeking behavior. We expect to computationally quantify the interaction
between stimulus and reward influences.

4.2.2 Methods

4.2.2.1 Experimental paradigm

We designed a task where subjects could acquire information about the stimulus
predictability and the relative reward distribution. Participants were presented
with a cover story describing the lottery prediction task diagramed in Figure 4.8
and were informed that they would receive what they earn. On each trial, there
were two lottery boxes on the left and right sides of the screen. Subjects were
instructed to predict the location of the lottery ticket by making a button press on
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the response trigger pad with the right index or middle finger. If the lottery ticket
appeared in their chosen location, they had a chance to win a reward. If the lottery
ticket was not in their chosen location, they would not receive a reward. They were
further informed that the lottery ticket would occur on each side with a specific
probability. Similarly, whether a reward would be delivered after the lottery ticket
appeared in the chosen location was also determined by a specific probability. As a
consequence, subjects might or might not get a reward even though the lottery
location had been correctly predicted.

no reward

Figure 4.8 Illustration of a sample trial: subject had to make a choice when the two boxes
were displayed. For instance, the left box was chosen and opened, after which a lottery ticket
would either appear in the chosen box or in the unchosen box according to the stimulus
likelihood. If the lottery ticket appeared in the chosen box, subjects would probably earn a
reward of 1 Euro depending on the conditional reward probability. If the lottery ticket
appeared in the unchosen box, subjects would not earn a reward. Importantly, the expected
value of either box was the product of its respective stimulus likelihood and conditional
reward probability.

4.2.2.2 Experimental task and procedure

We designed 5 experimental conditions. Each condition had a specific stimulus
likelihood (i.e., the probability that a stimulus appeared on the left and on the
right) and a conditional reward probability (i.e., the probability that the chosen
location was rewarded if the stimulus appeared on the chosen location). The 5
experimental conditions are listed in Table 4.2. The relative outcome is a
normalized product of the stimulus likelihood and the conditional reward, which is
the expected value of each location. The 5 experimental conditions were organized
into 10 blocks of 150 trials each. Each condition was run with two blocks with one
block having the contingencies as described in one row of Table 4.2 and another
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reversal block having the stimulus and reward contingencies switched between
the left and the right. The reversal block was designed to counterbalance potential
confounds due to a specific choice location. The ordering of the blocks was fully
counterbalanced across subjects. Each subject completed 10 blocks, with self-
paced breaks in between blocks.

Ten participants (mean age, 22 years; age range, 19-25 years; 8 male and 2 female)
with normal or corrected-to-normal vision were recruited from the student
population at Technische Universitat Berlin. Each participant was paid a base rate
of 20€ for participating in the experiment plus a bonus depending on the amount
of money won at the end of the experiment (mean 4€ + SD 3.6€). The bonus
payment was calculated as the total amount of rewards accumulated during the
entire experiment with each reward was worth 1 cent.

Table 4.2. Stimulus likelihood and the conditional reward for each of the experimental
conditions. Relative outcome are the product of stimulus likelihood and conditional reward.

Experimental Stimulus Conditional Relative
conditions likelihood reward outcome
LR L, R L, R
1 0.7,0.3 0.3,0.7 0.5,0.5
2 0.7,0.3 0.2,0.8 0.37,0.63
3 0.6,0.4 0.2,0.8 0.27,0.73
4 0.6,0.4 0.3,0.7 0.39,0.61
5 0.6,0.4 0.4,0.6 0.5,0.5

4.2.2.3 Computational modeling

We attempt to computationally explain subjects’ dynamic trial-by-trial learning
and decision-making process using the framework of reinforcement-learning
models (Sutton and Barto, 1998). We adapted 4 variants of reinforcement-learning
models to fit subjects’ choice behavior in the experiment. We denote a choice
between left (L) and right (R) boxes on trial t as a; € {L, R}, the stimulus location
as stim; € {L,R}, whether the stimulus location is correctly predicted (a; =
stim;) or not (a; # stim;) as A; € {1,0}, and thereward asr; € {0, 1}.
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Reward model. The first model is the standard Rescorla-Wagner model (Rescorla
and Wagner, 1972) which assumes that subjects track the expected value EV, for
each target location via running average over the reward. This model only updates
the expected value of the chosen location with a reward prediction error ézpg,
giving the difference between the received and expected rewards. Notebaly, this
model does not account for any perceptual confounds.

EVE = EVE + adtps, (4.16)
6I€PE == T't - EVatt. (4.17)

Stimulus model. The second model applies Rescorla-Wagner learning to estimate
the stimulus likelihood SV, utilizing a stimulus prediction error §sp; analogous to
the reward prediction error. However, this model ignores the task in which
subjects were incentivized to perform for the reward.

SVEHL = SUE + adles, (4.18)
65t'PE == A't - S‘/att. (4.19)

Hybrid model. Following the probabilistic nature of the task, in which the reward is
conditional on correct predictions of stimulus location, we extended the trial-based
reinforcement-learning scheme to update both EV and SV in parallel and linearly
combine them together as an action value AV to capture a trade-off between the
stimulus-driven and the reward-driven decisions. This model applies the
respective Rescorla-Wagner update to stimulus estimation and reward learning
separately. Inspired by the behavioral results, we hypothesized a dynamic
transition between the two estimates by further including a trial-by-trial
exponential decay function 7 as a hybrid trade-off.

AVZ = nSVi + (1 —nEV,, (4.20)

n = le Xt (4.21)

Both the offset I and the slope K are free parameters. This model nests the first
two models, i.e., it is reduced to the reward model when I = 0 and the stimulus
model when ! = 1,K = 0. This model includes a common single learning rate for

both the stimulus and the reward update, assuming that subjects learn equally
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from both observations. To test this assumption, we also fitted a model with two
distinct learning rates, one for the stimulus estimation and one for the reward
estimation. The model with two learning rates yielded inferior model fit, as
measured by DIC, and will therefore not be discussed further.

Forward model. Another strategy for planning actions is to build a cognitive map of
the whole task structure with model-based reinforcement learning (Glascher and
O’Doherty, 2010; Doll et al., 2012). To test if subjects perceived the stimulus as a
latent state and acquired all the sequential contingencies during the experiment,
we implemented a model-based reinforcement-learning algorithm, which uses the
experience to estimate a transition function T (s, a, s".

Figure 4.9 Task structure illustrated with experimental condition 2 (related to Figure 4.8).
The state-action values are computed by multiplying the reward and the transition
probabilities along each path through the decision tree. Subjects selected actions only at
state s;. In this example, the optimal path was from s, to s; ending at s;. Thus, the optimal
state-action value was Q(s4, R).

In each trial (Figure 4.9), subject made a choice a; € {L, R} at the initial state s;,
leading to one of the four second-stage states: s, := (a; = L &stim; = L), s;3 =
(a; = L &stim; = R), s, = (a; = R &stim; = L), ss = (a; = R & stim; = R)
Each of these four second-staged states was probabilistically associated with either
a final reward state s¢:= (r; = 1) or a non-reward state s; := (1; = 0). The
expected value of each state is the sum over the values of all future states. We
denote s € {s;,S3,5,4,55} and s’ € {sg, s;}, then the state value of each s can be
calculated as following:
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V(s) = Z T (s,s)V(s"), (4.22)

Tti(s,s) =Ti(s,s") + a( g — TE(s,5). (4.23)

Where oy, =1 for the observed transition from s to s’ and gy, = 0 for the
unobserved transition. Equation (4.22) and (4.23) applies to all sand s’. So the
action value at state s; is:

Qa, = Z T(s1,at, )V (s). (4.24)

In all of the 4 models described above, a is a free learning rate parameter which
weights the previous experience. For each of the models, we additionally assume a
softmax action selection function:

exp (KVa,)

P = otV + exp (BV,)

(4.25)

where V € {SV,EV, AV, Q} for each model respectively. f is an inverse temperature
parameter, which capturers the tradeoff between exploration and exploitation.

Model fitting and parameter estimation were conducted using hierarchical
Bayesian analysis. The model parameters that were estimated included the
learning rate, the softmax temperature, the hybrid offset and the hybrid slope. In
the Bayesian hierarchical model, individual parameters for each participant were
drawn from group-wise beta distributions initialized with uniform priors.
Hierarchical Bayesian analysis proceeded to estimate the actual posterior
distribution over the free parameters through Bayes rule by incorporating the
experimental choice data. Computation of the posterior was done through the
Markov chain Monte Carlo method using the JAGS software and its runjags R
interface. Three MCMC chains were run for 150,000 effective samples after
150,000 burn-in samples, which resulted in 30000 posterior samples after a
thinning of 5. Each estimated parameter was checked for convergence both
visually (from the trace plot) and through the Gelman-Rubin test. To quantitatively
compare the model fit, we computed the deviance information criteria and a
smaller DIC indicates the better fitting.
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Figure 4.10 Proportion of subjects choosing the location of higher stimulus likelihood, mean
indicated in gray with error bars (SEM) averaged over 10 subjects and all the trials.
Triangles are theoretical predictions as listed in Table 4.2. The ideal prediction from a
stimulus learner is shown in pink and follows the probabilities listed as ‘Stimulus likelihood’
in Table 4.2. The ideal prediction from a reward learner is shown in blue and follows the
probabilities listed as ‘Relative outcome’ in Table 4.2. Subjects’ choices were in between of
the stimulus and reward learners, suggesting a dual contribution of both influences.
Abscissa labels indicate the experimental conditions.
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Figure 4.11 Models compared by DIC scores, showing that the hybrid model explains the
behavioral data best, on average over the 5 experimental conditions. Abscissa labels indicate
the experimental condition.
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Table 4.3 The best fitting parameters of the hybrid model.

Experimental Learningrate Temperature Offset Slope
conditions a S I K

1 0.1286 4.6612 0.8427 0.0241

2 0.1811 2.5194 0.9031 0.0175

3 0.6874 0.9893 0.9324 0.0230

4 0.3506 1.4903 0.9591 0.0184

5 0.3132 2.4690 0.9769 0.0089

4.2.3 Results

In each of the experimental conditions, the expected value was either identical for
both locations or higher on the location of lower stimulus likelihood. We visualized
the data by plotting the probability of subjects choosing the location that had
higher stimulus likelihood across experimental conditions. Assuming choice
behavior of probability-matching, the ideal reward model predicted that the choice
proportion would match the relative outcome probability, resulting in blue shown
in Figure 4.10, whereas a stimulus model predicted the choice according to the
stimulus probability as shown in purple in Figure 4.10. When expected values
were identical for both locations i.e., Condition 1 and Condition 5, subjects
consistently preferred the location of higher stimulus likelihood. Subjects
preferred the location of higher stimulus likelihood but lower reward probability
in Condition 2 and 4, but not as significant as the preference shown in Condition 1
and 5. In contrast, subjects preferred the location of higher reward in Condition 3,
when the expected value was lowest on the higher stimulus location in comparison
to other experimental conditions. These data suggest that subjects showed
sensitivity to both stimulus and reward and tended to trade off reward for the
predictability of stimulus location. Choice behavior was systematically modulated
by both stimulus likelihood and relative outcome according to the experimental
conditions.

Behavioral results were analyzed on trial-by-trial basis using each of the 4
computational models. DIC measures for all the models are summarized in Figure
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4.11. The DIC scores showed that the behavioral data strongly favored the hybrid
model. The Maximum a posterior of the best-fitting parameters for the hybrid
model are summarized in Table 4.3. Together, these results suggest that subjects
were simultaneously learning the stimulus and reward contingencies based on
separate reinforcement-learning computations.

4.2.4 Discussion

In this section, I introduced a learning paradigm in which subjects had to combine
both stimulus likelihood and reward probability to guide their choices. We
quantified the modulatory effect of each of the constituents on the overall
expectation. The choice behavior was influenced by stimulus- and reward-based
expectations depending on the particular experimental context. We designed the
paradigm in a way that successful learning required stimulus-response and action-
outcome associations being learned in parallel. Subjects were slightly more
influenced by the stimulus likelihood than by the reward probability in the task.
This can perhaps be attributed to the fact that the reward probability was
conditioned on the stimulus likelihood. Only if subjects correctly predicted the
stimulus location, they would get a chance to win a reward. Therefore, the
stimulus-seeking behavior could be interpreted as seeking for information,
because subjects could only access the reward distribution after they had
successfully predicted the stimulus.

When we kept the stimulus likelihood the same but changed the conditional
reward across different experimental conditions, subjects’ choice preferences
changed in accordance to the expected values. These results suggest an interaction
between reward and stimulus learning, which was also reflected in the model-
based behavioral analysis showing the maximum a posterior of the hybrid
parameter 7 larger than 0. The hybrid-learning model suggests that subjects might
be estimating both values in parallel. These results raised the possibility to seek for
neural correlates of both learning signals. With the current paradigm, we tested
hypothesis about the neural encoding of dynamic interactions between stimulus-
response and action-outcome learning in Chapter 5.
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4.3 Fictive and factual prediction errors in strategic learning!

4.3.1 Introduction

Instrumental conditioning involves learning to select actions that will maximize
reward and minimize punishment in a complex world. Computational models of
reward-based learning assert that learning occurs when expectations are violated.
Expectations are derived from experience and variety of information can influence
the decisions. Prediction errors occur when expectations are inconsistent with the
factual consequences. Counterfactual consequences, the gains and losses
associated with alternative actions that were not selected, can affect subsequent
choices as well, presumably by influencing the computation and representation of
expectations.

Although behavioral evidence indicate that humans take counterfactual outcomes
into account when making decisions, reinforcement learning models typically
generate prediction errors only for the factual consequences. To investigate the
process of counterfactual learning, we designed a strategic sequential investment
task that overtly emphasized the counterfactual outcome. We extended the
standard Q-learning model by incorporating both counterfactual gains and losses
as potential learning signals. Inspired by the behavioral findings, we applied a wide
range of modified versions of Q -learning models according to different hypotheses
about how the counterfactual information may affect subsequent decisions.

' The experimental paradigm and data presented in this section was first published, in a
different format, in: M. ]. Tobia*, R. Guo*, etc, “Neural systems for choice and valuation
with counterfactual learning signals.,” Neuroimage, vol. 89, pp. 57-69, Apr. 2014.
Copyright © 2013 Elsevier Inc. (*equally contributed)
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4.3.2 Methods

4.3.2.1 Experimental paradigm

The strategic sequential investment task was designed to investigate the potential
use of counterfactual consequences in terms of fictive prediction error (FPE)
signals during reward-based learning. On each trial, participants decided how
much money to invest in a financial market, and then learned about the factual and
counterfactual outcomes in succession. The task design included a complex state-
space as shown in Figure 4.12, comprised of four possible paths, i.e., a sequence of
three states. Each path had a different chance of gaining or losing money in the
long run. Every particular state was uniquely identifiable by a different neutral
visual background. As illustrated in Figure 4.12, the paths leading to the state 4 and
the state 6 were associated with long-term gains, with state 4 being the most
lucrative.

Participants completed 80 rounds of the strategic sequential investment task
where each round started at state 1, consisted of three decisions and ended in state
4,5, 6, or 7 (Figure 4.12). On each trial, participants chose an amount of money to
invest (0, 1, 2 or 3 Euros). Their experienced path through the virtual maze was
determined by the magnitude of their investments rather than the outcome of the
trial. Investing 0 or 1 Euro was defined as risk-averse investments, which led the
subjects to odd-numbered states, i.e., state 3, 5 and 7. These states were non-
lucrative, losing states. Investing 2 or 3 Euro was defined as risk-seeking
investments, which led the subjects to even-numbered states, i.e., state 2, 4 and 6.
States 4 and 6 are lucrative, winning states. In order to identify and follow the
optimally lucrative path, participants needed to make strategic decisions by
accepting interim losses at state 2 so as to gain access to the most lucrative state 4.
As such, decisions based on the expected values needed to take into account
anticipated future rewards, rather than only considering reward from the current
state.

Thirty males aged 18-30 years (mean = 23.8, SD = 3.2) were recruited from the
student population at University of Hamburg. All experimental protocols were
approved by the ethics committee of the medical association of Hamburg and
carried out in accord with the Declaration of Helsinki.
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Figure 4.12 State space of the strategic sequential investment task. Numbered circles
indicate the seven states and arrows denote the possible transitions. The seven states differ
with respect to their winning and losing probabilities as well as the mean amount of
monetary gains and losses. In each state, the underlying outcome is generated by a bi-
Gaussian distribution with a standard deviation of 5. Panels next to each state provide
information about the mean (top left) and probability (top right) of the win Gaussian along
with the mean (middle left) and probability (middle right) of the loss Gaussian, while the
mean outcome of the state is presented at the bottom of that panel. For example in state 1,
mean=20*0.4 + (-10)*0.6 = 2. On a particular trial, the outcome equals to the price change
multiplied by the amount of money invested by the subject. The right-most panels provide
the total expected rewards (EV) and the standard deviations (std) for each possible state
sequence (i.e., Path 1 to Path 4) under the assumption that every path is experienced
equally. States where the state characteristics are indicated in green panels have positive
mean outcomes, i.e. state 1, 4, and 6, whereas states with red panels have negative outcomes,
i.e. 2, 3, 5, and 7. Each state is associated with a particular neutral background (see Figure
6.1 for an example).
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4.3.2.2 Computational modeling

Q-learning is a model-free reinforcement-learning algorithm that learns the state-
action values via the temporal difference (TD) between obtained and expected
rewards. However, the TD prediction error only involves factual consequences
about the selected action. In order to assess a counterfactual learning process, I
modified the standard Q -learning model by incorporating counterfactual
consequences into the valuation via a two-stage process.

The strategic sequential investment task consists of seven states each indicated by
a unique background stimulus, where subjects choose among four actions of
investing 0, 1, 2, or 3 Euro. We denote the action at trial t by a; € {0,1,2,3} in the
state s; € {1,2, ...,7}. For the Q-learning model, we initialize all the @-values with 0.
We denote the market change by o;, which is drawn from the reward function of
each state as described in the green or red panels in Figure 4.12. After having
chosen an action a; in the current state s;, observed the successive state s;,; and
received reward 1, = a; * 0;, a standard Q-learning model updates the Q-value of
the current state-action pair as following:

Q(sp,ar) € Q(sp,ar) +ar + y max Q(se41,a") — Q(spar) ],

TD—error

(4.26)

where a’ represents all the possible actions in the succeeding state. The learning
rate o determines the speed of changes in behavior and the discount factor
y reflects the preference of short-term over long-term rewards. Notably, this Q-
learning model ignores any counterfactual information provided during the task.

In the fictive phase, subjects observed the counterfactual outcome associated with
a maximal bet of 3 Euro, as shown in Figure 6.1. We define the experienced fictive
error differently for positive and negative market developments, because both
behavioral and neuroimaging data suggest that their impact on decisions and
neural activity might be different (Chandrasekhar et al, 2008; Fujiwara et al,,
2009; Lohrenz et al,, 2007; Pieters and Zeelenberg, 2007):

(1) When the market goes up and if less than 3 Euro is invested, the
counterfactual loss is defined as the amount of money one could have won
more, i.e, f; = 30, — 1%.
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(2) When the market goes down and if more than 0 Euro is invested, the
counterfactual gain is defined as the amount of money one would have lost
more, i.e, f_ =1, — 30;.

This was the information presented to the subjects at the fictive outcome phase as
shown in Figure 6.1. For this reason, we integrate such counterfactual outcome
into the Q-learning model as a second update:

(s, ar) € Q(sp,ar) + appg [ f +¥ n}l?J}XQ(Stﬂ: a') —9(spap)l,

fictive TD—error

(4.27)

where agpr € {ay,a_}and f; € {f,, f_}. Respectively, a, is the learning rate over
counterfactual loss f, when the market goes up, and a_ is the learning rate over
counterfactual gain f_ when the market goes down. The introduction of these
additional two parameters enables the model to update the expected values with
counterfactual gains and losses differently.

After this two-stage update, actions are selected stochastically through a softmax
function as following:

exp (BA(ss ar))

P(St; at) = 2:0 exp (,BQ(SD a))

(4.28)

In total, this model contains 5 free parameters: discount factor y, standard Q-
learning rate «, counterfactual loss learning rate a,, counterfactual gain learning
rate a_, and inverse temperature parameter 5. This model nests the standard Q-
learning model, i.e,, it is reduced to the standard Q-learning model when a,= 0 and
a_=0.

We denote this model, containing counterfactual outcome, as FPE-Q model. The
two-stage update with Equation (4.26) and Equation (4.27) can be reduced into a

single update of a risk-sensitive Q model where the reward is replaced by a utility
function of the true reward:

Q(spar) = Q(se a) + a[U(r) +y maxQ(sess,a’) —Q(snan) ] (4.29)

U(ry) is a subjective utility function as following:
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U(r) = (A —p)re +pfe, (4.30)

and 0 < p < 1. Details for deriving the Equation of (4.29) and (4.30) are shown in
the supplementary material of this section.

4.3.3 Results

All the visits to state 4 by all participants during the final 10 rounds were
characterized by a maximal investment (i.e., 3 Euro), suggesting that all the
participants recognized the value of the state. The difference in their strategic
decisions concerned their ability to take a sequence of actions that led to state 4. |
categorized the subjects as risk-seeking and risk-averse in terms of an exploratory
analysis. Risk-seeking subjects were defined as those who reached the most
lucrative state (i.e., state 4) in at least 7 out of the last 10 rounds and invested 3
Euro there. 17 out of 30 subjects were risk-seeking and the rest of subjects were
risk-averse. On average over 240 trials, risk-seeking subjects earned €18.91 *
€0.96 (mean = SD), in comparison risk-averse subjects earned €3.25 + €0.90
(mean = SD). Risk-seeking subjects earned significantly more than risk-averse
subjects (t=13.39, p=1.15e-12, two-sample t-test). An example from the risk-
seeking subjects is shown in Figure 4.13 A and an example from the risk-averse
subjects is shown in Figure 4.13 B. The probabilities of choosing the 4 decision
paths were calculated in each bin of 10 rounds across time. The path leading to
state 4 was the most lucrative followed by the path ending in state 6, whereas the
other paths had negative expected values. The choice behavior demonstrated that
individuals might have different regret sensitivities to counterfactual
consequences. Crucially, subjects needed to risk money in states 2 and 3 in order
to explore the whole state space and to exploit the lucrative paths 1 and 3.

The model’s free parameters were individually fitted onto each subjects’ choice
behavior by maximum likelihood estimation. The FPE-Q model nests the standard
0 model, so we can compare their goodness of fit with the likelihood ratio test. The
FPE-Q model fited the behavioral data significantly better than the standard Q
model (likelihood ratio test statistic and p value averaged across subjects:
)(2(2) = 49.87,p = 1.48e — 11). As shown in Table 4.4, the better model fit was
also demonstrated by a smaller BIC score. Some subjects showed rapid switch
towards a better action sequence even after two third of the experiment. This
suggests that those subjects might have employed a valuation system that allowed
a rapid switch in computational policy. For this reason, we also tested the model-
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based reinforcement-learning methods with a model-based Q model, referred to as
the forward model in Table 4.4. This forward model directly learned the reward
and transition functions of the task, but it did not yield better model fit in
explaining the behavioral results.

Table 4.4 Model comparison and the best fitting parameters of each model. The best fitting
model is indicated by *.

Best fitting parameters (mean, SE)
Model BIC

a p y a, a_

Q 527 0.25,0.05 6.15,0.88 0.80,0.06 - -

FPE-Q 487* 0.16,0.01 6.78,0.50 0.68,0.05 0.03,0.01 0.22,0.04

Forward 514 0.21,0.05 8.08,2.28 0.32,0.06 - -

o : learning rate; B : exploration parameter; y: discount factor; o,: sensitivity to
counterfactual loss; a_: sensitivity to counterfactual gains.

The FPE-Q model explained the behavioral data better than standard Q@ models.
The behavioral responsiveness to counterfactual gains was associated with
optimal performance. On the one hand, risk-seeking subjects showed a
significantly smaller learning rate (mean=0.11, SE=0.02) for counterfactual gains
than risk-averse subjects (mean=0.36, SE0.06)(t=4.14, p=1.45e-04, two-sample t-
test), as shown in Figure 4.14 A. On the other hand, risk-seeking subjects showed a
significantly greater discount factor (mean=0.79, SE = 0.04) for the future rewards
than risk-averse subjects (mean=0.55, SE=0.1)(t=2.4, p=0.01, two-sample t-test),
as shown in Figure 4.14 B. These parameters indicate that risk-seeking subjects
were more motivated to the long-term rewards. The transitions between states of
the task were designed in a way that investing more while taking interim loss led
to the most rewarding state. Thus, less sensitivity to counterfactual gains
promoted optimal decision sequence of path 1. The results suggest that risk-
seeking subjects did not regret that they risked more money in the current state
and were more often transferred to the most lucrative path as a result.
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Figure 4.13 Behavioral results contrasting risk-seeking against risk-averse subjects. Choice
data are binned into eight 10-round bins, where each round consists of three actions of
investment and ends up with one path (see Figure 4.12 for details about each path of
sequential decisions). The mean probability of subjects choosing each path is plotted across
the time in four different colors. Path 1 is the most rewarding path followed by Path 3; Path
2 and Path 4 have negative payoffs. (A) One of the risk-seeking subjects who has been
choosing the optimal policy most of time. (B) One of the risk-averse subjects who has been
choosing path 4 most often, which is the worst policy during the task with respect to
maximizing rewards.
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Figure 4.14 Best-fitting parameters from the FPE- Q model suggesting different decision
strategies between the risk-seeking and risk-averse subjects. (A) The sensitivity to
counterfactual gains (a_). Risk-seeking subjects have significantly smaller a_than risk-
averse subjects. (B) The discount factor for the future reward (y). Risk-seeking subjects have
significantly greater y than risk-averse subjects.
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4.3.4 Discussion

In this section, [ introduced a strategic sequential investment task, which includes
state-space structure and state-transition rules that the subjects could learn. The
task was designed to investigate the effects of both counterfactual losses and gains
on valuation and choice behavior. The task overtly presented the counterfactual
outcome on each trial. Critically, learning could be accelerated when a subject
reacted to the fictive prediction error or experienced regret.

The computational model incorporated the counterfactual outcome by computing
a fictive error signal that was subsequently used to update the state-action values.
The FPE-Q model explained the behavioral data significantly better than the
pervious Q models or a random agent. The modeling results suggest that fictive
temporal-difference prediction errors might be utilized as a computational
learning signal. In addition, the FPE-Q model showed that subjects had different
strategies, i.e., risk-seeking and risk-averse. The task design therefore allowed the
characterization of the fictive prediction error as a valid learning signal with
respect to its influence on behavior and its potential neural mechanism that would
not be revealed by the standard Q model.

We expected that subjects who successfully exploited the task to maximize their
long-term gains would demonstrate a different pattern of neural correlates
compared to those subjects who failed to exploit the task. The subjects were
scanned with fMRI while they performed this task. We investigated the neural
signals related to the expected values and fictive errors using model-based fMRI
analysis. The results are discussed in Chapter 6.

From a theoretical point of view, the FPE-Q model works the same as a risk-
sensitive reinforcement-learning model that converges to a subjective estimation
of the true expected value. This interpretation is consistent with utility theory
(Bernoulli, 1954), which measures the subjective preference for a given outcome.
The central hypothesis of expected utility is that subjects choose the highest
expected utility instead of the highest expected value. Although the FPE-Q model is
a post hoc model that describes the decisions by means of counterfactual
valuation, we can formulate the two-stage update into a single calculation in the
form of a risk-sensitive Q-learning model (Shen et al., 2014). By doing this, we can
examine the properties and convergence of this model in terms of MDP.
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4.3.5 Supplementary material: examining the property and
convergence of the FPE-Q model

Firstly, at trial t, we denote Q,,, = max,’ Q(s;;1,a"), the factual outcome r: = a; - o,
and the reference maximum outcome 7: = 3 - 0,. Accordingly, the counterfactual
outcome is f; = |r — 7*|. Then, the first-stage update, i.e.,, Equation (4.26), can be
written as:

0'=0-a)0+ alr+yQ,). (4.31)

For a positive market development (0, > 0), the second-stage update, i.e., Equation
(4.27) is therefore as following:

=1 -a)Q ' +a,(F—r+yQy), (4.32)
which equals to

=0-a)A-a)Q+alr+yQ)]+ ay(F =7 +yQp)
=1 -a})Q+aj (r + Z—T(f —2r) + VQm) (4.33)

=1 - a)Q +ai(ry +vQn),

where al =a,+ a—aa, €[0,1] and r, =71+ Z—T(? —2r) . If we denote
+

Py = Z—Z € [0,1], we have:

rn=>0-p)r+p,(F—1). (4.34)

Similarly, for a negative market development (o, < 0), we have:

P =0-a)@ ' +a_(r—7+vyQy)
—(1-a)0+a (r _ Z—Zf + me) (4.35)
=1 -al)Q+al(r—+vQn),

wherea’ =a_ + a—aa_ € [0,1] andr_ =1 — Z—,‘f”. If we denotep_: = % € [0,1],

we have:
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r-=>0-p)r+p_(r—7). (4.36)

Importantly, the final form of Equation (4.33) and Equation (4.35) are the same as
the form of Equation (4.31), which is a standard Q-learning model. Therefore, the
two-stage update with Equation (4.26) and Equation (4.27) can be reduced into a
single standard Q-learning model, but the reward is replaced by a utility function
of the true reward:

(st ar) € Q(sp,ar) +a[U(r) +y max Q(s¢s1,a’) —Q(spa) 1. (4.37)
In Equation (4.37), U(1:) is a subjective utility function as following:

Ur) =A—p)re+pft, (4.38)
withp =p,, f; = fL wheno, 2 0andp =p_, f; = f- when o, < 0.

This utility function is a linear weighing between the factual outcome 7; and the
fictive outcome f;. Both the r; and f, are explicitly defined in the task and directly
presented to the subjects during the experiment. This utility function provides
additional power in explaining the choice behavior with respects to different
strategies, such as risk-seeking or risk-averse. In contrast, the standard Q-learning
model can only predict risk-neural choice behavior, which is nested by the current
model (i.e., p = 0) as well. As shown in Figure 4.13, subjects clearly had different
risk-sensitivities during the task. This explains why the FPE- Q model fits the
choice data better than the previous Q models.

4.4 Summary

Using different experimental paradigms we studied the influence of higher-order
reward expectations, volatility of returns, and fictive prediction errors on the
decision-making processes. We constructed computational models based on
Markov decision processes and reinforcement learning. These models were used
to quantify the choice behavior and to understand how humans learn in these
tasks, especially when the task requires integrating a variety of information. The
behavioral paradigms presented in Section 4.2 and 4.3 were further combined with
fMRI experiments in Chapter 5 and 6, which allowed us to relate model variables
and parameters to the neural activity.
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Chapter 5: CONTEXTUAL MODULATION OF
PREDICTION ERROR REPRESENTATIONS

Although the co-existence of both reward and saliency related signals in human
ventral striatum has been confirmed, the precise interaction between these two
signals has not been fully resolved. In this chapter, I approach this question
computationally using the behavioral task described in Section 4.2 and model-
based fMRI analysis.

At the neural level | found a co-existence of stimulus and reward prediction errors
in the ventral striatum, suggesting that this region responds to general surprising
perceptual events as well as unexpected reward delivery or omission.
Furthermore, the activation patterns of the stimulus and the reward prediction
errors are different under the experimental context. The amygdala correlated with
the dynamic interaction between the stimulus-response and the action-outcome
learning, suggesting that it might be negotiating between an initial emphasis on
choosing the salient stimulus and pure reward-based choices later. In summary,
this study highlights the roles of key parts of the decision-making network in
learning stimulus- and reward-based choices.
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5.1 Introduction

Human decisions sometimes appear to diverge from an individual’s explicit
desires. Both behavioral and neural evidence has suggested that instrumental and
goal-directed systems control behavior concurrently and converge in human
striatum. (Balleine and O’Doherty, 2010; Dayan and Balleine, 2002; Dickinson and
Balleine, 2002; Rangel et al, 2008). In this chapter, we probe the dynamic
interaction between instrumental and goal-directed systems, while having
stimulus-response and response-outcome associations being learned in parallel.

We used the behavioral task described in Section 4.2.2, in which subjects had to
choose a location of left or right where a stimulus (lottery ticket) would appear
with a specific probability that was unknown to the subjects. If the subject made
the correct choice, then and only then they would receive a reward with another
specific probability. Thus, this task involves two learning objectives: (1) to learn
where the stimulus is most likely to appear, i.e., stimulus-response learning, and
(2) to learn where the reward is most likely to appear, i.e., response-outcome
learning. Critically, we designed two conditions in which the stimulus location was
either unbiased for the reward location or biased, in which the location with the
larger stimulus probability was not the location with the higher reward
probability. This creates a conflicting situation, which permits us to disentangle the
influence of the two learning systems when they both operate but contradict each
other.

We expected that subjects’ choices would be initially dominated by instrumental
stimulus-response learning because the task instructions emphasized that a
reward could only be obtained if the stimulus appeared at the chosen location.
However, with experience and gradually more knowledge about the probabilistic
structure of the task subjects would transit to response-outcome learning and
choose the location with the higher reward probability to maximize their payoff,
even though that meant choosing the location with the smaller stimulus likelihood
in the biased condition. We also predicted that in the latter case this transition
from stimulus-response to response-outcome learning would occur slower.

Our findings revealed that both stimulus-response and response-outcome
associations were learned with two separate reinforcement-learning models
combined by a non-linear weighting function. Transitions from instrumental to
goal-directed learning were slower in the biased condition. Both prediction errors
correlated with activity in the ventral striatum. Whereas stimulus prediction
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errors (SPEs) elicited stronger correlations during the biased condition, reward
prediction errors (RPEs) elicited stronger correlation in the unbiased condition.
Furthermore, the neural response in amygdala correlated with the non-linear
weighting function that modeled the influence of each learning system on the
expected value for each trial. The results indicated that instrumental and goal-
directed systems flexibly interacted during learning to maximize returns.

5.2 Methods

5.2.1 Participants

31 participants with normal or corrected-to-normal vision were recruited from the
student population at University of Hamburg. They were screened according to the
health and safety requirements for undergoing MRI scanning. Each participant was
paid a base rate of €10 for participating in the experiment and a bonus depending
on the amount of money won at the end of the experiment (mean 8.9€ + SD 2.8€).
The final analysis included 27 subjects (mean age, 26 years; age range, 20-36
years; 14 male and 13 female). 4 subjects were excluded from the analysis, one due
to excessive head motion and three due to failure to perform on more than half
trials during task. This study was conducted in accordance with the principles of
the Declaration of Helsinki for subject participation in scientific studies and was
approved by the local ethics committee (PV3661).

5.2.2 Experimental design

We set up two experimental conditions: (a) Unbiased condition: the two locations
had equal stimulus (i.e., presentation of lottery) probability of 0.5, and (b) Biased
condition: one location was associated with a higher stimulus probability of 0.7
and the other location was associated with a lower stimulus probability of 0.3.
Conditional reward occurred probabilistically with 0.2 or 0.8 for correct
predictions on the either location. Critically, the higher reward probability was
always assigned to the location where the stimulus probability was lower in the
biased condition. The biased condition is the experimental condition 2 presented
in Chapter 4.2.2.2 and the unbiased condition is a new control condition.

The rationale behind this design was to provide distinct experimental contexts for
the stimulus induced stimulus-response learning and the reward induced action-
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outcome learning. Note that the biased condition induces a conflict between
stimulus and reward learning, in which the salient visual stimulus is not predictive
of the higher reward probabilities, whereas in the unbiased condition the stimulus
is behaviorally irrelevant.

5.2.3 Experimental task and procedure

Participants were presented with a cover story describing the lottery prediction
task diagramed in Figure 5.1 A and were informed that they would receive what
they earn. On each trial, there were two lottery boxes on the left and the right of
the screen. Subjects were instructed to predict the location of the lottery ticket by
making a button press on the response trigger pad with the right index or middle
finger. If the lottery ticket appeared in their chosen location, they had a chance to
win 1 Euro. If the lottery ticket was not in their chosen location, they would not
receive a monetary reward. They were further informed that the lottery ticket
would occur on each side with a specific probability. Similarly, whether a reward
would be delivered after the lottery ticket appeared in the chosen location was also
determined by a specific probability. As a consequence, subjects may or may not
get a reward even though the lottery location had been correctly predicted.

Each trial started with a 2s inter trial interval, during which time a fixation cross
was presented at the center of the screen. The two lottery boxes were then
displayed and the subject had to make a choice. If no choice was made within 2s, a
message “Too slow!” was displayed for a time-out of 4s and that particular trial
was abandoned. The chosen box was highlighted in yellow with a triangle at the
bottom, after which the lottery ticket in the form of a fractal image was shown for
1.5s. After a jittered time interval that lasted between 2s to 4s (uniform
distribution) the outcome was presented for 1.5s. This consisted of either a coin
(indicating a reward of 1€) or a crying face (indicating no reward). The jitter is a
critical component for reducing the correlation between the BOLD signals induced
by the stimulus and the reward events.

The two experimental conditions were organized into 8 blocks, as listed in Table
5.1: first, the stimulus and reward contingencies were switched between the left
and the right locations in different blocks; second, each probability setup was used
in two blocks. Each block was indicated to the subject by a different fractal image.
The assignment of fractal images to blocks and the ordering of the blocks were
fully counterbalanced across subjects. Each participant completed 8 blocks of 40
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trials each, with self-paced breaks in between blocks. The payment was calculated
as the average of the reward they won in each block.

The relative outcome is a normalized product of the stimulus likelihood and the
conditional reward, which is the expected value of each location. The contingencies
in every row are run for two blocks of 40 trials each. Altogether, the experiment
consisted of 8 blocks.

5.2.4 Imaging data

5.2.4.1 Acquisition

fMRI data collection was conducted on a Siemens Trio 3T scanner with a 32-
channel head coil. Each brain volume consisted of 40 axial slices acquired in a
descending manner, with the following T2*-weighted echo planar imaging (EPI)
protocol: repetition time, 2260 ms; echo time, 26 ms; flip angle, 80°; field of view,
220 mm, slice thickness, 2 mm; inter-slice gap, 1 mm. Orientation of the horizontal
section was tilted at 30° to the anterior commissure — posterior commissure axis in

order to improve signals in the medial orbitofrontal cortex (Deichmann et al,
2003).

Data for each subject were collected in 8 runs, each with volumes ranging from 175
to 188, and the first 4 volumes were discarded to avoid T1 saturation effects, i.e.,
the experimental task started at volume 5. In between runs, subjects were
encouraged to take a self-paced break. In addition, a gradient echo field map (short
TE, 5 ms; long TE, 7.46 ms; number of echos, 48; echo spacing, 0.73) was acquired
prior to EPI scanning to measure the magnetic field inhomogeneity, and a high-
resolution (1 mm3 voxels) T1-weighted structural image was acquired after the
experiment with an MP-RAGE pulse sequence. The entire experiment lasted for
about one hour, with about 6.7 minutes active scanning during each run.

5.2.4.2 Preprocessing

fMRI data analysis was carried out using SPM8 (Wellcome Department of Imaging,
Neuroscience, Institute of Neurology, London, UK). All images were corrected for
differences in slice acquisition with the middle slice of the volume as a reference. A
voxel displacement map (VDM) was calculated from the field map to account for
the spatial distortion resulting from the magnetic field inhomogeneity.
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Incorporating this VDM, the EPI images were then corrected for motion and spatial
distortions through realignment and unwarping.

Each subject’s anatomical image was manually checked and reoriented by setting
the origin to the anterior commissure. The EPI images were then coregistered to
this origin-corrected anatomical image. The anatomical image was segmented into
grey matter, white matter, and CSF using SPM8’s New Segment tool. These grey
and white matter images were used with SPM8's DARTEL toolbox to create
individual flow fields as well as a group anatomical template. The EPI images were
then normalized to the MNI space using the respective flow fields through
DARTEL’s normalization tool. Finally, a Gaussian kernel of 8 mm full-width at half-
maximum was used to smooth the EPI images. Details about preprocessing are also
described in Section 3.2.1.

5.2.4.3 Model-based fMRI analysis

We conducted model-based statistical analysis of fMRI data by estimating the time
courses of stimulus prediction error (dspg), reward prediction error (dzpg), and
hybrid decay (1) signal of the hybrid model from each subject’s sequence of
choices, observed stimulus, and reward information. The first level analysis design
matrix for each of the 8 sessions consisted of: (1) two stick-function regressors
representing the onset timings of the stimulus and the reward respectively; (2)
three parametric regressors calculated from Equation (4.17) (4.19) and (4.21) of
the hybrid model, where the stimulus event was modulated by n and 65pf, and the
outcome event was modulated by 6zpg; (3) 6 scan-to-scan motion parameters
produced during realignment and a constant term as nuisance regressors. All the
regressors were convolved with the canonical hemodynamic response function
and entered into a general linear model in SPM8. The parametric modulator n was
orthogonalized with respect to §spp. As a consequence, any shared variance
between the two parametric regressors was assigned to the §spp regressor. We
specified the model in this order to give §sp; the maximal explanatory power. For
completeness, we also tested an additional GLM specifying the regressor for 7 first
and assigning all the shared variance to 7. Both of these models yielded almost
identical statistical parametric maps. Therefore, here we only report the results
from the GLM specifying the regressor for dspg first and the modulator modulator
1 was orthogonalized with respect to dspg.

We calculated first-level single subject contrasts for each regressor of interest. The
resulting contrast images were raised to the second-level group analysis as
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random effects, where one-sample t-tests were conducted for significant effects
across the subjects. Activations were tested with a whole-brain corrected
threshold of p < 0.05 (Forman et al, 1995) using the 3dClustSim program in
AFNI (Cox, 1996) corrected with the following parameters: voxelwise p value
0.001, cluster threshold 0.05, 10000 simulations, 146519 voxels (91x109x61 3D
grid, 2x2x3 mm?3) in a mask on the whole brain. Based on the results of the Monte
Carlo simulation, a minimum cluster size of 30 voxels was the threshold for
significance. For displaying purposes we chose a significance threshold of
p < 0.001 uncorrected.

To further show how well the parametric modulators fit the data, we plotted
percent signal change (PSC) using the rfxplot toolbox (Glascher, 2009). For each
subject, average PSCs were extracted from an 8 mm sphere centered on the peak
voxel of region of interest identified by the second-level group analysis. For the n
parametric modulator, trials were split into 4 bins according the quartile values of
1. The events in each bin were modeled as an onset regressor and the parameters
(PSC) for these newly created regressors were then estimated. The PSC of these
regressors from each bin were used as a measure indicating the average
magnitude of the BOLD response.

5.3 Results

5.3.1 Behavioral analysis

On average over 40 trials, subjects earned €6.9 + €1.1€ (mean * SD) in the biased
condition, which was significantly less than what would have been expected under
chance performance (€7.6) across subjects (tze6)=3.4, p=0.001, one-tailed t-test).
This suggests a rather strong influence of the misleading stimulus likelihood,
which results in subjects’ ignorance of the profitable choices. By comparison,
subjects earned €10.9 * €2.4 (mean * SD) in the unbiased condition, which
significantly exceeded chance performance by €0.9 on average (tiz6)=2, p=0.03,
one-sample t-test) suggesting that when the stimulus likelihood was uninformative
and reward probabilities were learned directly, they easily dominated a randomly
behaving agent.

We visualized data from the experiment by plotting the probability of choosing the
left location as a function of experimental conditions. Assuming a probability-
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matching response, the ideal reward prediction model thus predicts that the left
choice proportion will match the relative reward probability on the left, resulting
in the green dot shown in Figure 5.1 B, whereas a stimulus learner model will
predict the choice according to the stimulus probability as shown in the blue dot in
Figure 5.1B. These data suggest that subjects showed sensitivity to both sources of
information. Subjects preferred the higher stimulus probability but lower reward
side in the biased condition of block 1 and block 2. In contrast, they preferred the
higher reward location in the unbiased condition of block 3 and 4. Furthermore,
choice behavior was consistently symmetric across location-counterbalanced
blocks, e.g. subjects showed same proportion of right choices in block 1 as that of
left choices in block 2. These results suggest that choice decisions were modulated
by both stimulus likelihood and relative outcome. Subjects tended to trade off
reward for the stimulus predictability.

To further explore subjects’ learning process, we collapsed the data across left and
right locations from respective counterbalanced blocks of the same experimental
condition and examined the choice data across trials. As shown in Figure 5.2 A, the
misleading side with higher stimulus probability in the biased condition was
chosen more frequently than in the unbiased condition. The mean percentage of
suboptimal choice (e.g., choosing left in block 1) clearly decreased linearly as a
function of trial in the unbiased condition, 46% in the first trial quarter vs. 41% in
the final quarter (t(107)=2, p=0.02, paired t-test), whereas in the biased condition no
such decrease was observed (2 (experimental conditions) by 4 (time bins)
repeated measures ANOVA test showed that there was a significant main effect of
experimental conditions F(1,107)= 36.259, p=2.47e-08 and a significant
interaction effect F(3,321)= 3.299, p=0.022. The main effect of time was not
significant F(3,321)=0.497, p=0.661). This showed that in the unbiased condition
the percent of non-optimal choices decreased, whereas in the biased condition it
did not.

Comparable results were observed with respect to response time as shown in
Figure 5.2 B. Response times were significantly longer for the unbiased condition
(mean = SE = 594 * 7.6ms) than for the biased condition (mean * SE = 570 *
7.3ms) (2 (experimental conditions) by 4 (time bins) repeated measures ANOVA
test showed that there is a significant main effect of experimental conditions,
F(1,107)=7.442, p=0.007). This slower response in unbiased condition indicates
that a greater mental effort is involved in overcoming the stimulus bias and making
decisions for the optimal payoff. This interpretation is supported by the fact that
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optimal choices in the unbiased condition exhibited longer response time than
non-optimal (stimulus-oriented) choices (t(107) = 4.48, p = 9.56e-06 ).

5.3.2 Computational model-based analysis

We fitted each of our 4 computational models discussed in Section 4.2.2.3 to
subjects’ trial-by-trial choice using Hierarchical Bayesian Analysis and evaluated
relative goodness of fit with DIC measures. Parameter estimates and DIC measures
for all the models are summarized in Table 5.2. The DIC scores showed that the
behavioral data strongly favored the hybrid model. Furthermore, the ability of each
model to account for the pattern of subjects’ choice behavior is displayed in Figure
5.3, demonstrating that the hybrid model was performing best in predicting
subjects’ choices. The model-predicted probability of choosing left had been split
into five equal-sized bins. The proportion of subjects’ left choices increased
linearly with the hybrid model’s action probability while the other models failed to
capture the behavioral variations.

Furthermore, the best-fitting hybrid trade-off parameter n decayed more quickly
in the unbiased condition, suggesting a faster transition to purely reward-based
choices than in the biased condition (Figure 5.4 A). The slope of n for the unbiased
condition was significantly larger than the slope ofn for the biased condition
(t26)=8.4, p=3.4e-09, one-tailed paired t-test), whereas the offsets of n for both
conditions were not significantly different (p>0.06, paired t-test). As can be seen in
Figure 5.4 B, performance of the subjects in the form of the mean total reward
accrued was strongly positively correlated with their individual best-fitting slope
of n (r=0.68,p=1.2e-08).

Together, these results suggest that subjects simultaneously learned the stimulus
and the reward contingencies based on separate prediction errors and dynamically
adjusted their decision strategy towards the reward-seeking choice. Thus, we used
the hybrid model to inform all our further fMRI analysis. For each subject, we
generated regressors for the stimulus prediction error, reward error and decaying
trade-off parameter using the Maximum a posterior of the parameters’ group
posterior distribution as listed in Table 5.2. The group parameters were used to
generate trial-by-trial time series, because unregularized parameter estimates
from individuals tend to be too noisy to obtain reliable neural results (Daw, 2011).
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Figure 5.1 Experimental design and choice behavior. (A) Experimental task illustrated in the
fMRI timing: subject had to make a choice when the two white boxes were displayed. Here
the left was chosen and highlighted in yellow, after which the lottery ticket (fractal image)
appeared either on the left or on the right. In this case, if the lottery was on the left, subjects
would either win a coin (indicating a reward of 1 Euro) or receive a crying face (indicating a
no reward), but if the lottery was on the right, subjects would get a crying face for sure. (B)
Proportion of subjects choosing left, mean indicated in gray with error bars (SEM) averaged
over all subjects and all trials. Triangles are theoretical predictions as listed in Table 5.1.
The ideal prediction from a stimulus learner is shown in blue and follows the probabilities
listed as ‘Stimulus likelihood’ in Table 5.1. The ideal prediction from a reward learner is
shown in green and follows the probabilities listed as ‘Relative outcome’ in Table 5.1.
Experimental choices lie in between of the pure stimulus and reward learners, suggesting a
dual contribution of both influences. Abscissa labels indicate the experimental condition and
the higher rewarding location.

Table 5.1. Stimulus likelihood and the conditional reward for each of the two experimental
conditions, counterbalanced between the left and right locations. Relative outcome are the
product of stimulus likelihood and conditional reward

Experimental Block Stimulus Conditional Relative
conditions number likelihood reward outcome
L, R L, R L R
Biased 1 0.3,0.7 0.8,0.2 0.63, 0.37
2 0.7,0.3 0.2,0.8 0.37,0.63
Unbiased 3 0.5,0.5 0.8,0.2 0.8,0.2
4 0.5,0.5 0.2,0.8 0.2,0.8
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Figure 5.2 Behavioral results contrasting learning under biased and unbiased conditions. (A)
Choice data binned into four 10-trial bins. The misleading side with higher stimulus
probability in the biased condition shown in blue was chosen more frequently than in the
equal condition shown in green. The mean percentage of non-optimal choice decreased
linearly as a function of trial in the unbiased condition. (B) Response time binned into four
10-trial bins. The response time from the second to fourth trial quarters was significantly
longer for the unbiased condition (green) than for the biased condition (blue). Error bars
indicate SEM.

Table 5.2 Model comparison and the best fitting parameters of each model. The best fitting
model is indicated by *.

Best fitting parameters (Biased, Unbiased)

Model Comg?é'ison
Learning rate Temperature Offsetofn Slope ofn
Stimulus 11424 0.16,0.11 1.13,1.76 - -
Reward 11439 0.56,0.47 0.38,0.70 - -
Forward 11307 0.04, 0.02 6.68,13.35 - -
Hybrid 11164* 0.32,0.50 2.07,0.82 0.97,092 0.09,0.30
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Figure 5.3 Performance of each model in capturing the variations in subjects’ choice
behavior. Actual choice probability plotted against fitted model choice probability (binned
20% wide), averaged across subjects (error bars represent SEM). The hybrid model is
performing best in predicting subjects’ choices. The proportion of subjects’ left choices fit
with the hybrid model’s predicted action probabilities, but not with the other three models.
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Figure 5.4 (A) Hybrid exponential decay parameter (77) in two experimental conditions. n for
the unbiased condition (green) decayed significantly faster than n for the biased condition
shown (blue). Shading corresponds to the SEM. (B) Scatter plot of individual accumulated
reward in either experimental condition against the individual best fitting slope of 77. Each
data point represents one subject, blue circle denotes the biased condition and green square
denotes unbiased condition. Task performance increases with the slope of 77 parameter.
Participants earned significantly more for unbiased condition than for the biased condition.
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Figure 5.5 (A-D) Coronal view of the map of the t statistics for tests of neural modulation by
the 6ypr and 6p; of the chosen action, showing different effects in the ventral striatum
under respective experimental manipulations. (E) Map of t statistics for the neural
modulation by a conjunction of the dzpr and d5pr showing the overlapping voxels from each
prediction error of the entire experiment. (F) The mean percent signal change for the
parametric modulators encoding dgpr and §spr in their overlapping voxels showing a
significant interaction effect (F(1,27)=6.650, p=0.013). Error bars indicate SEM across
subjects. Results are shown at the peak of the conjunction image (-12, 12, -6), p<0.001
uncorrected.
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Figure 5.6 (A) Map of the t statistics for tests of neural modulation by the hybrid trade-off
parameter 7). Results are shown at (-20,-4-18), p<0.001 uncorrected. (B) The mean percent
signal change for the parametric modulator encoding 7. Variable values are binned into the
25th, 50th, 75th, and 100t percentiles of the parametric modulator. Error bars indicate SEM
across subjects.
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Table 5.3 Statistical results for the contrast of the parametric regressors

Contrast Region Hemi X y z PeakT

Stimulus prediction Putamen L -16 8 -9 6.05
error

Caudate R 12 10 -6 4.87

Inferior occipital gyrus L -22 96 -6 10.27

R 24 92 -6 1045
Reward prediction error Putamen L 22 14 -9 7.14
R 22 16 -9 6.54
Insula L -30 22 -6 7.45
R 38 22 -3 8.24
Middle frontal gyrus R 40 14 39 5.5
Superior frontal gyrus R 8 16 60 4.41
Conjunction between Nucleus accumbens L -12 12 -6 6.86

both
error signals R 8 12 -3 6.01
Decaying trade-off Amygdala L 20 -4 18 4.65
parameter R 24 0 -21 6.24
Fusiform gyrus L -34 -48 -15 6.84
R 34 -36 -21 7.77
IPS/Angular gyrus R 34 -56 48 6.29
IPS/Superior parietal L -30 -62 45 5.42
lobe

All peaks are corrected for whole-brain comparison threshold of p < 0.05 (voxelwise
multiple comparisons corrected with 3dClustSim) Abbreviations: Hemi = Hemisphere; L =

Left; R = right; (%, y, z), MNI coordinates; IPS, intraparietal sulcus.
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5.3.3 fMRI results

Our experimental design allowed us to separately assess the neural correlates of
stimulus-response association and action-outcome learning. Critically, the biased
condition of the experiment provided a conflict where the biased stimulus
interfered with the learning of reward association. Correlation of the two
prediction error regressors was low (mean correlation coefficient = 0.1,
SE=0.0047, p=1.2e-11), so we were confident to identify dissociable neural
correlates for each regressor, if they existed.

Coordinates and significance levels for all contrasts assessing parametric
modulation are shown in Table 5.3. We first tested for areas showing changes in
activity related to the stimulus prediction error and the reward prediction error.
We found a co-existence of both the stimulus and the reward prediction errors in
the ventral striatum, suggesting that this region responds to surprising perceptual
events as well as unexpected reward delivery or omission. Interestingly, the
activation patterns of the stimulus and the reward prediction errors were different
for the experimental manipulations: The stimulus prediction error was stronger in
the biased condition whereas the reward prediction error was stronger in the
unbiased condition (Figure 5.5 A-D). This result presumably reflects the fact that
subjects went for the stimulus in the biased condition, but tended to optimize
performance in the unbiased condition. A conjunction analysis (Figure 5.5 E)
confirmed that these two effects occurred in overlapping voxels. We performed
additional post hoc analyses to look more closely at the overlapping voxels from
each prediction error. In particular, we extracted PSC (using the rfxplot toolbox)
from a spherical region of interest (radius: 8 mm) centered on the voxel identified
in the conjunction analysis (Figure 5.5 E) and conducted a 2 (experimental
conditions) by 2 (prediction errors) repeated-measure ANOVA. As shown in Figure
5.5 F, there was a significant interaction (F(1,27)=6.650, p=0.013) confirming that
activation was indeed stronger for dsp; in the biased condition, whereas dzpg
elicited stronger activation in the unbiased condition. These results indicate that
shifting the focus from reward to stimulus learning modulates the prediction error
representations in ventral striatum.

We next tested for areas showing changes in activity related to the parametric
modulation of the decaying trade-off parameter and found significant correlates in
the amygdala. Figure 5.6 A shows this activation profile, with Figure 5.6 B showing
the PSC for the correlates from each experimental condition. The findings suggest
that the amygdala is initially activated during stimulus learning but its activation
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quickly fades away as the choice behavior transitions to pure reward-based
choices. Importantly, the slope of the decay of amygdala activation (Figure 5.6 B)
resembles the difference between experimental conditions during the model-
based analysis of choice behavior (Figure 5.4 A), namely a faster decay of the
trade-off parameter 7 in the unbiased condition.

To rule out a prominent transitional function from other regions (i.e., IPS, occipital
visual area and anterior visual area) that showed correlates with the decaying
trade-off parameter, we also conducted post hoc analysis on each identified region
in the brain and extracted their time course of the PSC. After fitting an exponential
function to the time course of the PSC from each region, only the slopes from the
amygdala showed significant difference between the two experimental conditions.
The slope of the PSC (mean = 0.18, SD = 0.06) from the unbiased condition in
amygdala is significantly bigger than the slope (mean = 0.08, SD = 0.04) from the
biased condition (tiz6)=2.8, p=0.0048, paired-ttest). Thus, while other regions,
including the fusiform gyrus and the IPS, also exhibited a decay of activation that
correlated with the trade-off parametern, it is only in the amygdala that we
observed a difference in decay slopes resembling the observed behavioral
dynamics.

5.4 Discussion

We used a probabilistic learning and decision-making task to investigate the
neural signatures of stimulus prediction error and reward prediction error
associated with the respective stimulus-response and action-outcome learning.
Our behavioral analysis demonstrated that participants successfully acquired
knowledge about the reward probability in the unbiased condition, in which the
stimulus exerted no bias to either choice action. However, in the biased condition,
participants failed to overcome the stimulus-reward conflict and consistently
preferred the non-optimal choice action. Choice behavior was most consistent with
the predictions for the hybrid model, combing stimulus-based and reward-based
influences. The hybrid model explained choice behavior significantly better than
either the stimulus model or the reward model alone. This indicates that
participants implicitly computed both stimulus and reward expectations and relied
on these estimates to make decision. We also found that the stimulus-induced
choice bias declined over the course of continuous learning in the unbiased
condition, along with more cognitive effort indicated by a slower response time.
This dynamic transition from initial stimulus bias to reward-seeking preferences
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was captured by a parameter eta decaying across time. In the imaging data, we
found trial-by-trial correlations of the stimulus and reward prediction errors
coexisting in the ventral striatum along with amygdala activity mediating the
dynamic learning. The fMRI data, together with the computational modeling,
therefore allowed us to assess a trial-by-trial parametric signal of latent
expectation estimates during learning.

Our finding of reward prediction errors in ventral striatum is consistent with many
previous accounts about reward-based learning, where BOLD response in ventral
striatum correlated with a reward prediction error in a variety of Pavlovian and
instrumental conditioning task (Delgado et al., 2005; Li and Daw, 2011; Montague
et al, 2004; Niv and Schoenbaum, 2008; O’Doherty et al.,, 2003, 2004). More
recently, a growing body of evidence indicates the existence of more than one
prediction error signal in the brain (Daw et al,, 2011; Diuk et al., 2013; Glascher et
al., 2010). Our results extend beyond these previous studies by showing that the
same neural populations that encode reward prediction errors might be recruited
for encoding value-nonspecific stimulus learning signals. The different neural
activation patterns of two prediction error signals under experimental
manipulation further raise the possibility that reward context might be extended
to the unrewarded stimuli and therefore induce biased behavioral reactions.

Indeed, recent physiological findings from experiments in primates have suggested
that dopamine neurons respond to unrewarded physically salient stimuli in highly
rewarded contexts (Kobayashi and Schultz, 2014). Our results extend these
findings to humans and provide evidence for contextual modulation of striatal
BOLD response, which reflects dopaminergic release (D’Ardenne et al, 2008;
Knutson and Gibbs, 2007; Schott et al,, 2008). Physiological studies have also
shown that dopamine neurons can process both primitive and cognitive rewards,
thus providing a common instructive signal for both reward-seeking and
information-seeking behavior (Bromberg-martin and Hikosaka, 2009). In this
context, the neural correlates of stimulus prediction errors might suggest that the
ventral striatum encodes a general instructive signal to get the motor system ready
for any potential reward. Furthermore, these correlates also complement the
previous studies seeking to dissociate value and saliency signals in the human
brain (Litt et al., 2011; Mcclure et al., 2003; Zink et al., 2003). These studies have
presented evidence of the ventral striatal activations that correlated with saliency
computation at the time of decision-making. Salience was defined as any
unexpected stimuli or intrinsic motivation related to attention and arousal. Some
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of the findings are analogous to our results, which suggest a general role of ventral
striatum in responding to unexpected perceptual events as well as to reward.

Furthermore, many early studies have identified a role for the amygdala in
stimulus-reward learning (Baxter and Murray, 2002; Roesch et al,, 2010; Seymour
and Dolan, 2008; Whalen and Phelps, 2009). Our findings, BOLD activity in the
amygdala correlating with an exponential decay function, may be interpreted in
the context of previous human Pavlovian-instrumental transfer (PIT) studies
(Prévost et al, 2012; Talmi et al, 2008). These studies demonstrated that
instrumental actions are subject to motivational influences from incidental
Pavlovian conditioned stimuli, and the amygdala activation is associated with this
influence. In those studies, subjects were first trained with separate Pavlovian and
instrumental trials and then took a PIT test when both the conditioned stimulus
and instrumental options are presented in parallel. However, in our experimental
design, we directly expose subjects to the stimulus and reward without any prior
knowledge. It is conceivable that they start by considering only the stimulus as
potentially rewarding and take actions to obtain the stimulus correctly. In this way,
the stimulus gains a Pavlovian conditioning influence on response. This incentive
influence gradually vanishes in the unbiased condition when subjects become
more aware of the goal-directed reward. In contrast, the stimulus conditioning
continues to strongly influence decisions in the biased condition. This different
degree of influence is mapped to amygdala activity and suggests a computational
role for amygdala in reporting the motivational influence of stimulus on a trial-by-
trial basis. The computational role of the decaying function in combing the two
prediction errors in the ventral striatum further suggests a functional link between
amygdala and ventral striatum in a dynamic learning process. A recent study has
computationally characterized learning signals in the amygdala by using a reversal
learning task(Li et al, 2011). It suggested that human amygdala codes for cue-
reinforcer associations, which is complementary to the striatum’s coding of
prediction error during associative learning. Our study complements this finding
and suggests that amygdala associability coding is not specific to aversive tasks.

A comparison of our results and the literature on cognitive control also provides
some insights on the role of the neural networks of attention, particularly cingulate
cortex, parietal sulcus and insula, in valuation and decision-making (Bugg and
Crump, 2012; Petersen and Posner, 2012). Our task shares common features with
paradigms that engage cognitive control (i.e., tasks that require subjects to select
relevant information despite their tendency to select goal-irrelevant information).
Studies using the flanker interference task, where stimulus location cues the
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likelihood of incongruent trials, have shown that location-based conflict contexts
can implicitly prime retrieval and implementation of top-down attentional control
(King et al., 2012). Our data extends these findings to learning processes and
provides evidence that enhanced attentional resources may be gradually allocated
away from goal-irrelevant stimulus during learning. The reduced conflict in the
unbiased condition in comparison to the biased condition suppresses the impact of
distracting information on learning.

It is worth noting that the current study does not allow us to answer whether the
stimulus triggers an intrinsic rewarding effect or the stimulus interrupts reward
learning as a perceptual effect. We did not control subjects’ eye fixation in the task
and the fractal images stimuli were rich enough to induce strong neural activity in
visual cortex. We cannot explore the critical role of visual attention in the
computation of value signals in our current task design. There have been studies
showing that primary visual cortex encodes expectations about stimulus location
(Alink et al., 2010; Sharma et al., 2003). We cannot rule out the possibility that the
observed stimulus-driven decision is due to visual attention guided reward coding.
Future research might replace the simple lottery prediction task in current study
with a psychophysical discrimination task, which can directly manipulate the
attentional cognitive effort. This would be a possible approach to further dissociate
perceptual effects from the reward-based learning process.

In conclusion, our results highlighted the roles of ventral striatum and amygdala

for the decision-making in learning stimulus-response and action-outcome
associations and trading off both associations against each other.
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Chapter 6: NEURAL SYSTEM FOR
VALUATION WITH FICTIVE PREDICTION
ERROR"

Counterfactual learning refers to the consideration of events that did not occur in
comparison to those actually happened in order to determine optimal actions. It
can be formulated as computational learning signals, which are referred to as
fictive prediction errors. In this chapter, I investigate the functional neural systems
involved in counterfactual learning using the behavioral task described in Section
4.3. The purpose of this fMRI study is to determine how the fictive prediction
errors contribute to the neural representations of state-action values.

The model-based fMRI analysis suggests that the expected value computed from
the fictive prediction error model robustly modulated BOLD signal in the ventral
medial prefrontal cortex and orbital frontal cortex. Overlapping neural substrates
in the ventral striatum processes both factual and fictive prediction errors. These
findings demonstrate that fictive prediction error signals can be an important
component of valuation for decision-making. The brain system involved in learning
from reward predictions also supports the learning of counterfactual outcomes via
fictive prediction error.

i Adapted with permission from M. ]. Tobia* R. Guo* etc, “Neural systems for
choice and valuation with counterfactual learning signals,” Neuroimage, vol. 89,
pp. 57-69, Apr. 2014. Copyright © 2013 Elsevier Inc. (*equally contributed)
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6.1 Introduction

Numerous studies have examined the effects of fictive error signals on subsequent
choices, as well as the shared neural substrates for processing reward prediction
error and fictive error signals (Sommer et al., 2009). But less attention has been
given to elucidating how fictive prediction error signals shape the expected values
that mediate choice during reinforcement learning, especially during strategic
sequential choices for which optimal performance requires accepting interim
losses in order to maximize long-term gains. For these reasons, the goal of this
experiment was to investigate the functional-neuroanatomical systems involved in
valuation that incorporates a fictive prediction error (FPE) signal. In particular,
this experiment was designed to address two issues: (1) whether or not FPE
signals improve computations of expected value during reinforcement learning,
and (2) whether or not the FPE signals correlate with neural activity in the
prefrontal and subcortical regions in the brain.

A counterfactual loss, i.e.,, an amount of reward that was not acquired, occurs on
winning trials as a missed opportunity for which an alternative action would have
returned a greater reward, and is associated with subjectively experienced regret
(Camille et al., 2004; Coricelli et al., 2005). Counterfactual loss promotes choice
repetition (Boorman et al, 2013; Nicolle et al., 2011) as well as choices that
spontaneously deviate from an established preference (Boorman et al,, 2009). On
the one hand, it can be used to optimize choice strategy (Li and Daw, 2011;
Lohrenz et al., 2007). On the other hand, it may lead to increased subsequent risk
taking (Brassen et al.,, 2012; Biichel et al,, 2011).

A counterfactual gain, i.e., an amount of punishment that was not suffered, occurs
on losing trials as a reduced cost for which an alternative action would have cost
more, and is associated with subjectively experienced relief (Nicolle et al., 2011).
Counterfactual gains may lead to differential changes in cognitive performance
such as accelerated response times during decision-making (Fujiwara et al., 2009),
although the precise nature of these effects is not well elucidated in the literature.
For example, Lohrenz and colleagues (Lohrenz et al., 2007) included the fictive
error stemming from the counterfactual gain in their analysis of fictive learning
signals, but found that it did not significantly predict subsequent choice behavior.
This suggests that fictive error signals from counterfactual gains and losses may
have dissociable effects on learning and choice behavior.
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To investigate the effects of both counterfactual losses and gains on valuation and
choice behavior, we designed a strategic sequential investment task that overtly
presented the counterfactual outcome on each trial, including the action-
contingent state transition rules. The experimental paradigm is inspired by the
task used by Lorenz and colleague (Chiu et al., 2008; Lohrenz et al, 2007).
However, the task is substantially modified to include a temporal structure and to
promote counterfactual learning. I developed a computational model that
incorporates the counterfactual outcome by computing a FPE signal in the
framework of Q-learning. This FPE signal differs from the fictive error signal
studied by Lohrenz and colleagues (Lohrenz et al., 2007) in that it is computed
using the temporal difference between expected values and counterfactual
consequences, rather than simply the difference between an obtained and
unobtained outcome. The FPE signal is subsequently used to update the state-
action values. We expected that incorporating counterfactual learning signals into
Q-learning would facilitate model performance, and that the expected values
would modulate the BOLD signal in ventral medial prefrontal cortex and orbital
frontal cortex (vmPFC/OFC) during decision-making, while both factual and fictive
prediction errors are processed by overlapping neural substrates in the ventral
striatum.

6.2 Methods

6.2.1 Experimental paradigm

The strategic sequential investment task included a complex state-space as shown
in Figure 4.12 and described in detail in Section 4.3.2.1. The task was presented to
participants in the scanner as an event-related design, shown in Figure 6.1, with 5
stimulus events during each trial. Each trial started with the presentation of a state
indicated by a unique visual background cue and a randomly initialized response
meter indicating the amount of money to invest on that particular trial (i.e., choice
phase). Participants could move the indicator bar on the response meter using an
MR-compatible mouse according to the value of their desired investment (0-3
Euro). This stimulus remained onscreen for 3000 ms as the choice phase. This was
followed by a brief 500 ms anticipation phase, and then factual and counterfactual
outcomes were presented in succession.

109



Chapter 6: Neural system for valuation with fictive prediction error

The outcome presentation (3000-5000 ms, jittered) informed participants of the
amount of money that had been gained or lost on that trial, indicated by a stack of
coins. The counterfactual outcome presentation (3000-5000 ms, jittered) informed
participants of an additional amount of money that could have been won or lost if
the maximum investment, i.e. 3 Euros, was selected. This was symbolized by a
second stack of coins that highlighted the difference between factual and
counterfactual outcomes. Previously, Lohrenz and colleagues (Lohrenz et al., 2007)
employed a similar task design but did not explicitly present the counterfactual
outcome on each trial. Instead, they computed a fictive error signal implicitly,
based on the difference between factual obtained reward and what would have
been obtained if a maximal investment had been selected on that trial.

Each trial concluded with the presentation of a state transition stimulus for 2700
ms, which highlighted whichever of the two possible subsequent states had been
selected based on the magnitude of subject’s investment. The two possible state
transitions were shown simultaneously at the lower and upper portion of the
display in a random fashion. This transition event was substituted by an additional
feedback stimulus after the third trial of each round (the task always returned to
state 1 as the first trial of each round), which indicated the total amount of money
gained or lost over the previous three decisions. This multi-trial feedback phase is
not presented in Figure 6.1.

Two short rounds of practice trials familiarized participants with the task stimuli
and the mouse controls for indicating their choice, and for making ratings of win
expectancies, but did not reveal information about the actual win probabilities or
expected values that defined each state and path from the task. The first round of
practice trials was self-paced. The second round of practice trials was presented at
the same speed as the task was going to be presented during fMRI scanning. In the
test session in the scanner, the task was presented to participants in 30 rounds
during each of 8 scanning runs and ended up with 240 trials in total.
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Figure 6.1 Illustration of the task presentation and fMRI timing within a trial, i.e., within a
state. Each state was associated with a particular neutral background. By this background
picture, participants could learn during the 240 trials of the experiment to associate each
state with an expected reward value. In the beginning of each trial, participants decided how
much to invest, i.e. 0, 1, 2, or 3 Euros in the stock market of the current state, shown as
‘choice’ phase on top left next to the arrow. The amount of the investment was indicated in
the bar right to the market chart. During a brief ‘anticipation’ phase, participants observed
how the market had developed. Then, they learned in the ‘factual outcome’ phase how much
they won or lost, which was the product of their investment and the market change. The
outcome was presented in numbers but also visualized by a positive or negative stack of
coins. In the following ‘fictive outcome’ phase, subjects learned how much they would have
won or lost if they would have invested the maximum of 3 Euros. This phase was included to
foster counterfactual comparisons, which resulted in a fictive prediction error, i.e. the
difference between the factual and the counterfactual outcome. Participants started each
round in state 1 and were then transferred through the state space following a transition
rule that was unknown to them. In particular, Investments of 0 or 1 Euro led to an odd-
numbered state, whereas investments of 2 or 3 Euro led to an even-numbered state in the
state structure of Figure 4.12. At the end of each trial, the two possible next states were
shown to the participant in the ‘transition’ phase in random vertical order. Then subjects
were transferred to the state according to their decision. After 3 trials, a round ended and
subjects were informed about the total win or loss of this round (i.e., the total amount won
or lost after experiencing a path of three states), and were transferred back to state 1.
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Risk-seeking Risk-averse

Risk-seeking > risk-averse

Figure 6.2 Expected value and counterfactual losses in successful learning. The bar plots in
blue show the group averaged percent signal change taken from the peak voxel of each
cluster. Top: risk-seeking subjects (S) showed a significant modulation in the vimPFC (left)
whereas the risk-averse subjects (A) did not. Bottom: risk-seeking and risk-averse subjects
demonstrated differential modulation by the counterfactual losses in the ventral striatum
(Vstr) and posterior OFC. The risk-seeking subjects demonstrated a negative modulation in
both regions, and the risk-averse subjects showed a positive modulation. Note that these
results were achieved with regressors derived from the FPE-chosen-and-better-Q model.
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Figure 6.3 Models compared with BIC scores. A smaller BIC indicates a better fit. The models
compared are: 1. FPE-Q model, 2. FPE-chosen-and-better- Q model, 3. FPE-better- Q@ model, 4.
FPE-max- Q model. Bars indicate mean BIC scores averaged across 30 subjects. Error bars
indicate SEM.
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6.2.2 Computational modeling

We tested the FPE- Q model as described in the Section 4.3.2.2 and three variations
of FPE-Q models according to different hypotheses about how counterfactual
outcomes might influence reward-based learning. The FPE- Q model updates the
expected value of the chosen state-action Q(s;, a;) twice with both equation (4.26)
and (4.27). In the three variant models, different subset of possible actions in the
visited state is updated at the second stage. If we rewrite Equation (4.27) as:

(st a”) € Q(sp,a”) + appg [ f + yrrg’,lXQ(St+1' a') —9(spa’) ],

fictive TD—error

(6.1)

a” denotes different subset of the possible actions. Again, as defined in Section
4.3.2.2 all the possible actions are a € {0,1,2,3}, so we have a* € a. Each model can
be described according to a*:

1. FPE-Q model: the expected value of the chosen action in the current state is
updated, thatis a* = a;.

2. FPE-chosen-and-better-Q model: the expected values of the chosen action
and the actions that would have yielded better reward are both updated,
thatis,a” = {a > a,},ifor =2 0and a* = {a < a,},ifo; < 0.

3. FPE-better-Q model: the expected values of the actions that would have
yielded better reward than the chosen action are updated, thatis, a* = {a >
a:},ifo, = 0and a* = {a < a;},if o, < 0.

4. FPE-max-Q model: the expected values of the actions that would have
yielded the best reward is updated, that is,a” = 3, ifo, = 0and a* = 0 if
0 <0.

We fitted each of the candidate models into the behavioral data using maximum
likelihood estimation and compared the goodness of fit with BIC measures. As
shown in Figure 6.3, the mean BIC scores averaged across all the 30 subjects
suggest that each model explained the behavioral data equally well. There was no
significant difference among the BIC scores of each model.
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6.3 Results

6.3.1 fMRI data protocol and processing

All MR images were acquired with a Siemens Trio 3T scanner with a 32-channel
head coil. Structural MRI were recorded from each participant using a T1 weighted
magnetization-prepared rapid gradient-echo sequence with a voxel resolution of
1x1x1 mm?3, coronal orientation, phase-encoding in left-right direction, FoV =
192x256 mm, 240 slices, 1100 ms inversion time, TR = 2300 ms, TE = 2.98 ms, and
90 flip angle. Functional MR time series were recorded using a T2* weighted EPI
sequence with TR = 2380 ms, TE = 25 ms, voxel size = 2x2x2 mm?3, FoV = 204x204
mm, skip factor = 0.5, anterior-posterior phase encode, 40 slices acquired in
descending order. The acquisition time was approximately 8 minutes per scanning
run. The preprocessing was done with the procedure described in Section 3.2.1
and Figure 3.2. In addition, the motion correction is done with the Spike analyzer.

We used the regressors derived from the FPE-chosen-and-better-Q model in all our
fMRI analysis, because the regressors derived from this model yielded the most
robust statistical results. First level analyses included onset regressors for each
stimulus event and a set of model-derived parametric modulators generated using
each subject’s best-fitting parameter (see Figure 6.1 for event phase): the time
series of Q-values for the selected action and the choice value of investment (0-3
Euro) at choice phase, factual TD at factual outcome phase, and fictive error signals
f+ at counterfactual outcome phase. All regressors were convolved with a canonical
hemodynamic response function. Coincident parametric modulators at the same
event onset were serially orthogonalized as implemented by default in SPM. For
instance, the Q-value regressor was orthogonalized with respect to the choice
value regressor. This was done to prevent the first level GLM from allowing
variance that was common for both regressors become undetected. In addition, a
set of regressors was included for each participant to censor EPI images with large,
head movement related spikes in the global mean.

Second level analyses consisted of a one-way analysis of variance (ANOVA). To
control for false positives at the group level, 3dClustSim in AFNI (Cox, 1996) was
used to determine two different thresholds to apply to cortical and subcortical
clusters. The simulation for cortical clusters included all brain voxels (whole-brain
correction). The simulation for subcortical clusters (subcortical volume correction)
was performed inside a mask (2870 voxels) of the caudate (head, body, tail),
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nucleus accumbens, and putamen. Both simulations used a single-voxel threshold
of p < 0.005 and a smoothness of 8 mm3. Results of the simulation showed that a
minimum cluster size of 156 and 32 contiguous voxels yielded a corrected
p < 0.05 for cortical and subcortical clusters, respectively. These empirically
derived thresholds are more conservative with respect to false positive results
compared to those recommended by Lieberman and Cunningham (2009), which
were chosen to provide an appropriate balance between false alarm and missing
true effect for whole-brain corrections. Standardized MNI coordinates are reported
with the z-scored peak voxel value (z) and cluster sizes (n).

6.3.2 fMRI results

Firstly, @-values derived from the FPE-chosen-and-better-Q model modulated the
BOLD signal changes in vimPFC ([6, 52, -10], z=3.3, n=960), while the Q-values
derived from the standard Q model failed to predict significant BOLD signal
changes throughout the entire brain. These results indicate that the counterfactual
learning signals were incorporated into the representation of expected value.
Secondly, the factual TD error robustly modulated activity of the ventral striatum
([-12, 2,-12], z = 11.9, n=669). Finally, The exploratory subdivision of the subjects
into risk-seeking and risk-averse (see behavioral results discussed in Section 4.3.3)
yielded interesting effects in the fMRI data that lend themselves to further
interpretation of the neural mechanism of valuation processing with
counterfactual learning signals. Whereas risk-seeking subjects showed a
statistically significant correlation with Q-values in the vmPFC ([0, 50, - 8], z =
2.85, n = 210) at the time of choice, risk-averse subjects showed a very weak
representation of expected values indicated by a non-significant correlation with
Q-values. In addition, the neural response to the counterfactual losses (i.e., f,) was
significantly different between the risk-seeking and risk-averse subjects. A region
of the right ventral striatum ([8, - 4, - 6], z= 3.8, n = 171) and medial OFC ([2, 26, -
16], z = 3.3, n = 171) was negatively modulated by f, for counterfactual losses in
the risk-seeking subjects, but positively modulated in the risk-averse subjects,
shown in Figure 6.2.

6.4 Discussion

The results of this experiment demonstrated that counterfactual learning signals
improved Q-learning model fit, and this improved model predicted BOLD signal
changes correlated with expected value and reward prediction. Expected value

115



Chapter 6: Neural system for valuation with fictive prediction error

computed from the FPE-chosen-and-better-Q model robustly modulated activity in
the vmPFC and OFC. In addition, the FPE-chosen-and-better-Q model showed that
risk-seeking and risk-averse subjects differentially utilized counterfactual
outcome, and it produced differential correlations with expected value and fictive
error signal in the vmPFC/OFC and ventral striatum, respectively.

There is accumulating evidence suggesting that humans indeed incorporate
counterfactual consequences into subsequent decisions and that counterfactual
consequences modulate neural activity (Boorman et al., 2009; Brassen et al., 2012;
Biichel et al,, 2011; Coricelli et al,, 2005; Li and Daw, 2011; Loomes and Sugden,
1982b; Nicolle et al.,, 2011). However, none of these studies have incorporated
fictive prediction error signals into valuation for strategic decisions that maximize
long-term gains despite of interim losses. For example, Li and Daw employed
counterfactual outcomes in their study of value-based choices (Li and Daw, 2011).
They used a Rescorla-Wagner learning model to estimate expected value, which by
definition does not take into account the temporal structure of future anticipated
rewards. In addition, neither Lohrenz and colleagues (Lohrenz et al,, 2007) nor
Chiu and colleagues (Chiu et al., 2008) included the fictive prediction errors from
counterfactual gains or losses into their Q-learning model. Instead, these two
studies only used a separate regression analysis to determine whether a fictive
error signal from counterfactual losses predict changes in subsequent decisions.

Lohrenz and colleagues (Lohrenz et al, 2007) used a temporal-difference
prediction error for the factual reward only (as noted in the method section of
their manuscript) and is therefore the same as the standard Q-learning model used
for comparison in our experiment. In our computational models, we have taken the
fictive error signals (computed as the difference between the obtained and
unobtained outcomes) as a counterfactual outcome and further computed a fictive
temporal-difference error within a two-stage Q learning framework. This
additional update with counterfactual outcome helped our models to identify
whether fictive error signals contribute to long-term valuation. In this study, the
FPE models nested the standard Q -learning model. If participants had not
incorporated counterfactual information into their valuation processes, the
learning rates for both FPE related parameters, i.e., appz = {4, @_}, would have
been zero. The FPE models are then reduced to a standard Q-learning model and
the expected values should not differ among the models. To the contrary, learning
rates for both FPE parameters were significantly greater than zero, expected
values from FPE models were significantly different from those of the standard Q-
learning model, and the FPE models explained choice behavior significantly better,
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suggesting that participants utilized counterfactual information for valuation and
decision-making.

Furthermore, risk-seeking and risk-averse subjects processed the FPE signal
differently. Participants who successfully exploited the task to maximize long-term
gains demonstrated a different pattern of brain activity compared to the
participants who failed to discover or exploit the task. According to Q-learning,
participants that were able to exploit the task and select the optimal path (i.e., risk-
seeking subjects) did so by maximizing the long-term expected value of their
actions. Their representation of expected value was more strongly influenced by
counterfactual losses than that of the group of risk-averse subjects. Previously,
counterfactual losses have been associated with increased risk taking (Brassen et
al, 2012; Bichel et al, 2011), possibly due to the averseness of subjectively
experiencing regret at the missed opportunity. In the task design of current study,
increased risk taking would lead to the optimal path and hence greater sensitivity
to counterfactual losses is indeed advantageous. Previous literature concerning the
effects of counterfactual consequences on choice behavior has focused on the
interaction of cognitive and emotional effects of counterfactual losses (Sommer et
al,, 2009). For example, counterfactual losses lead to increased risk taking, and are
strongly associated with subjectively experienced regret. Experiencing regret in
the face of a missed opportunity is dependent on the structural and functional
integrity of the vmPFC (Camille et al., 2004), and adjusting behavior in order to
strategically reduce anticipated regret involves activation of the posterior OFC
(Coricelli et al., 2005). These differences in subjectively experienced emotions and
behavioral biases, suggest that counterfactual gains and losses may contribute
differently to valuation.

The differential effects of counterfactual gains and losses may be related to the
volatility and risk inherent to the environment. Counterfactual losses may lead to
increased riskiness when volatility is low, but may not exert an influence on choice
when volatility or risk is high and ambiguous. Counterfactual gains may lead to
more conservative choices when volatility and risk are high or unknown, with
relatively small effects when volatility and risk are low and unambiguous
(Fujiwara et al.,, 2009; Henderson and Norris, 2013). Risk and volatility were each
ambiguous in the current experimental task, and the nature of the environment
involved frequent losses. Importantly however, the learning rates associated with
the counterfactual learning signals dissociated risk-seeking subjects from risk-
averse subjects, with risk-seeking subjects utilizing counterfactual losses more so
than risk-averse subjects, who used counterfactual gains more so than risk-seeking
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subjects. This is consistent with previously reported effects of missed
opportunities and regret related choices on subsequent decisions where more
optimal decision-making was associated with responsiveness to counterfactual
losses specifically (Lohrenz et al., 2007).

The factual TD error term from the standard Q model accounted for BOLD signal
changes in the ventral striatum and appeared nearly identical to the modulation
effect of fictive prediction error from the FPE-chosen-and-better- Q model.
However, risk-seeking subjects demonstrated a significant stronger modulation by
fictive prediction error in the ventral striatum. This suggests that the mismatch
between responses to factual and counterfactual consequences in an overlapping
region of the ventral striatum may be a potential neural mechanism for computing
and incorporating counterfactual learning signals during valuation.

The neural representation of expected value during choice behavior is strongly
associated with vimPFC activation in humans. Previously, Glascher and colleagues
examined the neural representation of expected values during both action-
outcome and stimulus-response learning using a Q-learning model (Glascher et al,,
2009). They found that expected value for both types of choices was significantly
correlated with BOLD signal changes in the vmPFC. Consistent with their findings,
our study identified a distributed neural system involved in the representation of
expected value that was anchored in the vimPFC. The BOLD response from OFC and
vmPFC, modulated by Q-values in this study, are often cited as part of a valuation
system, however, they are each recently acknowledged as important nodes in a
long-term memory system for associative information (Euston et al, 2012;
Rushworth et al,, 2011). It may be that valuation, decision-making, and episodic
memory systems interact or share functional anatomy, which is consistent with the
type of processing necessary for learning associations among context, action,
events, and consequences. As such, seemingly incompatible models of memory and
decision-making may be mutually informative in the development of
neurobiological plausible models of large-scale neurocognitive brain function.

In summary, model comparison demonstrated that counterfactual processing
occurs during reward-based learning when such information is available. These
findings showed that the effects of counterfactual consequences on decision-
making can be mediated by a direct effect on action-state values. The results
demonstrated that counterfactual learning is an important component of valuation
and reward-based learning.
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Chapter 7: CONCLUSIONS AND GENERAL
DISCUSSION

This thesis has used Markov decision process and reinforcement-learning models
to investigate the neural correlates of multiple valuation systems in human
decision-making. A key insight is that multiple valuations share a common
computational mechanism of reward prediction error.

Chapter 4 provides three new experimental paradigms designed for testing
hypotheses formulated by computational models discussed in Chapter 2. The
experimental results broadly support the idea that error-correction via
reinforcement can be adapted to learn different aspects of reward-related
information. Combined with model-based fMRI analysis discussed in Chapter 3, I
have explored the brain systems involved in learning, prediction, and decision-
making. Chapter 5 and 6 present fMRI experimental results suggesting that the
brain regions such as the ventral striatum might encode different types of
prediction error signals according to the specific context of learning.

In this final chapter, I briefly discuss some key principles from these different
streams of research and interpret them in a general context of perceptual and
economic decision-making. The work presented in this thesis also provides a basis
for future theoretical and experimental investigations of a number of issues, some
of which I now review.
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7.1 Multiple prediction errors in human basal ganglia

The main focus of this thesis revolves around the hypothesis that different
valuation systems share a common neurobiological mechanism of error-correction
via reinforcement. To this end, I have conducted three behavioral and two fMRI
studies. Altogether, these results provide evidence showing that the BOLD signals
in the ventral striatum correlate with a variety of prediction errors. Here I briefly
summarize the main findings of these studies and highlight the advancement that
they contributed to our understanding of computations in the human brain.

7.1.1 Summary of behavioral results

I have presented the results from three new reward-based learning paradigms
appropriate for investigating factors other than the mean expected reward that
may affect decisions. Each paradigm is designed and analyzed on the basis of
reinforcement learning.

1. Chapter 4.1 shows that in a two-armed bandit task where a visual stimulus
alternates between the left and right sides of the screen according to
specific Markov chains, the subjects have to somehow deal with the
information provided by the higher-order conditional probabilities to
optimize their predictions.

2. For a hierarchical two-armed bandit task where subjects have to learn the
reward distributions conditioned on the stimulus likelihood, Chapter 4.2
presents data from 5 experimental conditions, each of which has the
stimulus and the reward potentially driving choices in the opposite
directions to various degrees. The results demonstrate that both stimulus
likelihood and reward probabilities influence decisions. The influence of the
stimulus leads the choices toward the option of lower expected values.
Chapter 5 replicates these behavioral findings with shorter experimental
block of trials and interprets the data as supporting the hypothesis that
decisions are dynamically shifted from mainly stimulus-driven to more
reward-oriented.

3. Chapter 4.3 presents a strategic sequential investment task, which includes
both state-space structure and state-transition rules that the subjects can
learn. The task is designed to examine counterfactual learning and risk
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sensitivity. The behavioral results suggest that subjects may integrate
counterfactual information into the valuation of subsequent choices.
Individual choice strategies can be interpreted as different sensitivities to
the risk inherent to the task.

7.1.2 Summary of modeling results

This thesis contains two variations on the Rescolar-Wagner model and one
variation on the @ model. These new models are developed to make more realistic
predictions by addressing perceptual or emotional complexities ignored by
standard models. Models are compared according to their ability in explaining the
choice behavior.

1. Higher-order prediction model, which adapted Rescolar-Wagner learning to
infer either first-order (Equation (4.10)) or second-order (Equation(4.13))
interdependencies in the temporal structure of stimuli. This model
quantitatively accounts for higher-order sequential learning, especially
when choice behavior are apparently inconsistent with predictions from the
existing zero-order model that only relate decisions to expected values.

2. Hybrid model (Equation (4.20)), which combined two Rescolar-Wagner
learning models with an exponential decay function. This model embodies a
novel hypothesis about the dynamic transition from stimulus-response
learning to action-outcome learning. This hypothesis is tested with the
experiment designed to dissociate the influences of stimulus and outcome
during learning.

3. FPE- Q model (Equation (4.27) and (4.37)), which incorporated an
empirically defined fictive error into the Q-learning model. This model
incorporates empirical assumptions that counterfactual consequences
influence valuation. It establishes parallels between the theories of
expected utility and counterfactual learning. Therefore, the model explains
risk-sensitive choice behavior, which the previous risk-neural Q model fails.
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7.1.3 Summary of fMRI results

1. The neural correlates of reward prediction error in the ventral striatum
during both studies presented in Chapter 5 and 6 are consistent with
established evidence on the reward-related dopamine system of human
basal ganglia.

2. In parallel to the reward prediction error, respective neural correlates of a
stimulus prediction error and a fictive prediction error are demonstrated in
the ventral striatum. The major conclusion from these two studies is that
the ventral striatum correlates with different prediction-error-like signals
in either a perceptual or an emotional context. This finding leads to the
understanding that the human basal ganglia may use a common prediction-
error mechanism to estimate expectations of a wide variety of information.

3. The weighting function derived from the hybrid model correlates with the
BOLD signals in the amygdala, suggesting that the amygdala may flexibly
weight the interaction between instrumental and goal-directed learning.

4. The expected values derived from the FPE-Q model correlate with BOLD
signals in the vimPFC/OFC, suggesting that these regions are involved in
processing counterfactual valuation.

In the end, we briefly consider what can be described in terms of multiple
prediction errors. The prediction error is a measure of how surprising the
observed outcome deviates from the expectation. Such surprising event can
essentially drive learning to diminish the prediction error. The stimulus prediction
error and the fictive prediction error can both be interpreted as an information
prediction error. Seeking information on the environmental stimulus probabilities
or the counterfactual consequences can prepare the learning agent for anticipating
the correct reward or punishment. The idea that the basal ganglia encode
information prediction error leads to other interesting questions: How is the
different information distinguished? Do the same neural populations in the basal
ganglia compute and distinguish different information prediction error? Or is the
information processed into a common signal in other cortical regions with the
neural populations encoding prediction error only performing general-purpose
computation? Another issue is timing. If a task showing hierarchical structure
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requires multiple prediction errors that may coincide in time, how are these
prediction errors encoded? Are the subgroups of the same neuron population
simultaneously assigned to encode one of the prediction errors? Or does the whole
neuron population encode all the prediction errors in serial at a finer time scale?
Future work may expand on these ideas and re-examine some of the data
presented in this thesis.

7.2 Future directions: expectation, value, and attention

Traditional reinforcement learning studies mainly use straightforward two-armed
bandit tasks, which only require estimation of the immediate reward. However,
temporal extent of the outcome may also affect decision. Consider the task
discussed in Chapter 6, subjects have to learn to take a small amount of loss so as
to reach a larger amount of gain in the future. Future experiments can be designed
to examine the distinction between short-term and long-term predictions.

Rational decision-makers should always choose the option with the higher
expected reward. However, under some circumstances humans seem to violate
this rational optimization strategy. Consider the task discussed in Chapter 5, the
expected reward for different options is determined through an interaction of
stimulus probability and reward estimation. Future work may extend on the idea
of stimulus-reward interaction and starts to examine whether there is a link
between this stimulus expectation and the visual attention. We can replace the
stimulus presentation with a perceptual discrimination task. Such an experimental
design will require both perceptual and economic decision-making during the task.

Lastly, a computational framework combining both perceptual uncertainty and
reward ultility for characterizing human risk-sensitive choice behavior is still
absent. It remains unclear whether the perceptual and economic estimations are
converted into a common encoding signal that is used as decision variables. A
further direction of research is to integrate the perceptual and economic aspects of
decision-making via a POMDP framework and investigate their cooperative or
competitive neural mechanisms during learning using the model-based fMRI
analysis.
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