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Abstract

Recent developments in depth sensing technologies enabled mobile robots to perceive

surroundings with high accuracy. Robotic applications, equipped with depth perception

technology, enable the capability of autonomous navigation to self-driving cars, assist in critical

surgical procedures, or reconstruct the 3D model of a potentially hazardous environment.

There exists a variety of 3D sensors ranging from highly accurate laser-based range sensors

to low-range active depth cameras; the selection of a 3D sensor, however, directly affects the

capabilities of robotic applications to perceive surroundings. Unlike self-driving autonomous

vehicles, which are equipped with high-cost LiDAR 3D sensors to ensure safety, mobile robots

are usually equipped with low-cost active or passive depth sensors. This means that acquired

depth information from low-cost 3D sensors is prone to accumulating estimation noise. In

principal, existing 3D reconstruction frameworks employ multiple instances of erroneous depth

samples in an incremental fashion to produce high-quality 3D models.

In this thesis, the research objective is focused on reducing the effects of error-prone

depth information by employing a proposed 3D reconstruction framework capable of reducing

accumulated noise, using a regularizing 3D integration system. The underlying principal

of existing state-of-the-art volumetric reconstruction techniques is unchanged since the

introduction in 1996. The novelty of the proposed framework lies in the use of a prior

smoothing constraint that represents, on a small-scale, that the surface of the perceived object

is smooth. The application of this smoothing constraint on depth information, acquired from

low-cost 3D sensors, can enhance the quality of 3D information without sacrificing fine details

in surface geometry.

Critical experimentation and empirical evaluation of the new reconstruction framework

have shown a significant increase in accuracy and quality of reconstructed shapes compared

to state-of-the-art methods. Furthermore, by quantitative assessments it has been observed that
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employing smoothing constraints to an incremental 3D fusion process accelerates the surface

estimation process. Therefore, comparatively fewer depth samples are required to generate

high-quality 3D surfaces. These properties of the proposed research link well with robotic

applications which rely on somehow inaccurate (say, because low-cost) image sensors.
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Zusammenfassung

Der heutige Stand der Technik in der mobilen Robotik ermöglicht es, die Umgebung

mit hoher 3D Genauigkeit abzutasten. Dies ist von Vorteil für viele Anwendungen in

den Bereichen Autonomes fahren, Medizinische Operationen oder Inspektion von schwer

zugänglichen Gebieten. Die Tiefensensoren lassen sich zwischen hoch-akkurate 3D Scanner

und kostengünstige Tiefenkameras klassifizieren. Grundlegend ist das Ziel kostengünstige

Tiefensensoren zu nutzen und inkrementell die Genauigkeit der über die Zeit aufgebauten 3D

Modelle zu verbessern.

Diese Arbeit untersucht die Reduzierung der Fehlereinflüsse durch fehlerhafte und

ungenaue Tiefenmessungen. Der vorgestellte technische Ansatz ist in der Lage das Rauschen

mithilfe von Regularisierung im 3D Raum stark zu verringern. Die Neuerung des Ansatzes

liegt in der Integration des Vorwissens (engl. Prior) über die differentielle Glattheit von

beobachteten Oberflächen. Die Arbeit demonstriert, dass mithilfe des Ansatzes die 3D

Modellierungsgenauigkeit stark verbessert werden kann, ohne den Detailgrad der beobachteten

Geometrien zu verlieren.

Experimente und empirische Auswertungen haben gezeigt, dass mithilfe der vorgestellten

Methode die erreichten Genauigkeiten sich stark von den bekannten Ansatzen hervorheben.

Zusätzlich, führt die Anwendung des Ansatzes zur effizienteren Rekonstruktion der

Geometrien. Im Vergleich zu existierenden Arbeiten, erfordert die Methode weniger

Datenpunkte (geringere Bildauflösungen), um dennoch vergleichbare Genauigkeit zu erreichen.

Der Mehrwert der Arbeit erstreckt sich auf alle robotischen Anwendungen, wo die

Wahrnehmung und Rekonstruktion der Umweltgeometrien mit kostengünstigen Tiefensensoren

erreicht werden soll.
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Chapter 1

Introduction

The importance of robotic applications in everyday lives (besides industrial automation) has

increased significantly over the years. Various time-consuming, sequential and tedious tasks

are automated by the help of autonomous robotics. The usability of autonomous robots in

everyday life is spread on a broad spectrum ranging from miniature floor cleaning robots to

fully autonomous vehicles driving in unknown territories. Regardless of the size, environment

and application domain of autonomous robots in general, the efficiency of a robot for a given

task depends greatly on the real-time understanding of the surrounding environment.

Modern robots are equipped with depth sensor systems, such as laser-based range scanners,

which allow them to perceive an environment as a 3-dimensional (3D) surrounding. In fact,

the reconstruction and analysis of 3D depth data, and their representation in form of 3D maps,

allows robotic applications to perform precise tasks such as navigation of autonomous vehicle

without collision. Thus, research domains, dealing with applications of depth perception, are

intensively studied. Developments in this domain have typically potentials with respect to

social or economical impacts. Automated decisions (e.g. how to interact with objects using

actuators, or how to avoid collision while navigating) depend on the modeled environment

based on 3D depth data.

Unlike in a theoretically ideal system in which a depth sensor provides accurate 3D

information, sensed depth values are prone to accumulating unwanted measurement noise.

Although depth sensors acquire depth noise, the degree of noise in depth samples depends on

various factors such as the distance between sensor and object, extreme lightning conditions,

reflective surfaces, or multiple sensor-corrupting projective patterns. For handling additive
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a) b)

c) d)

e)

Figure 1.1: a) Laser depth sensor (LiDAR) mounted on top of autonomous vehicle, b) 3D points
acquired from LiDAR, c) Stereo camera based IPS system, d) Color-coded depth map from IPS
and e) Reconstructed 3D model of mine using stream of depth images with highlighted surface
deformities.

noise in depth samples, various strategies have been proposed and implemented such as kernel-

based filtering or variational de-noising methods. However, not all de-noising techniques can

be implemented to handle noise in real-time.

1.1 Depth Imaging for 3D Reconstruction

3D laser scanners are used as depth perception systems in robotic applications in which

accuracy and real-time availability of 3D data is crucial. Typical laser scanning systems sample

the geometry of environment with a rotating head which result in a 3D point cloud which

captures 360o surrounding area around vehicle as shown in Figure 1.1.b. Despite the accurate

depth measurements by laser 3D scanners, usability of such sensors is restricted in mobile

robotics due to their weight, cost and high power consumption.

For this reason, a low-cost stereo-scopic camera based 3D reconstruction has gained the

interest of research communities. Mobile robots are required to process 3D information

from depth cameras into understandable 3D reconstructed models in real-time. Although

computationally expensive 3D reconstruction techniques such as Structure from Motion (SfM)
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Figure 1.2: Incremental 3D fusion and reconstruction process.

algorithms allows high-quality approximation of the 3D geometry, applying these techniques in

real-time scenarios is challenging. In general, low-cost depth sensors acquire relatively higher

amount of measurement noise and outliers due to their depth acquisition principal compared

to laser based scanners, this phenomena further degrades the reconstruction of the 3D model

as shown in Figure 1.1.e where a stereo-scopic passive depth sensor is used to acquire 3D

information. As a result, aforementioned issues subverts the quality of reconstructed 3D

models, therefore the problem of handling noise and outliers in real-time becomes further

challenging. For these reasons, enhancing the quality of acquired depth data by the means

of denoinsing is the key aim of this thesis.

Stereo-scopic based depth sensors produce a stream of depth and color images in real-time,

these depth images can be integrated (also referred to as fusion) using a volumetric integration

technique (described in Chapter 2) to produce globally consistent 3D models. This process

of 3D modeling from stream of depth and color images is shown in Figure 1.2. First, a 3D

sensor (RGB-D camera in this case) observer the scene (in this case Michelangelo’s David)

and generates a stream of color and depth image as shown in Figure 1.2. These image streams

are fed to the 3D fusion framework in which a VisualSLAM algorithm estimates sensor ego-

motion for each instance of depth and color image, estimated camera tracking information

along-with color and depth image streams are processed to produce high-quality 3D model of

the observed environment. A crucial feature of the 3D fusion framework in Figure 1.2 is to

cater acquired depth noise and outliers at the time of incremental processing and integration.
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1.2 Challenges and the Research Question

The ability to improve the quality of the reconstructed 3D model from error-prone 3D depth

data would allow various mobile robotic applications to estimate an accurate geometry of the

environment. This challenging objective attracted several research communities to investigate

and implement novel depth noise and outliers reduction techniques (discussed in Chapter 2).

In principal, a depth outlier is a 3D sample point which lies either in front or behind the actual

surface while a depth noise is an error-prone 3D sample having close proximity to the surface,

therefore result in distorting the geometry of reconstructed model.

In early research endeavours, triangulation techniques have been employed for surface

reconstruction directly from 3D samples. These techniques interconnect acquired 3D samples

to represent surface geometry using triangle meshes Cazals and Giesen (2004). The

aforementioned meshing technique presumes a well defined spatial distribution of 3D samples,

however in practice this assumption is violated specially when dealing with multiple depth

samples of target surface. In such cases, triangulation meshing tries to accommodate all points

by producing undesirable triangles at random position and orientation.

For such reasons, the research community has revived the use of volumetric representation

and integration Curless and Levoy (1996) in which multiple depth samples are represented as

signed distance values from the estimated surface and standard marching cubes Lorensen and

Cline (1987) algorithm is applied to acquire a globally consistent 3D model.

Volumetric integration of depth images reduces the effects of depth noise at the time of

integration by fusing multiple noisy depth samples to estimate better understanding of the

object geometry. Implicit representation of the estimated surface is updated using a weighted

addition, it is therefore expected that the estimated implicit surface will eventually converge

to the true surface. Furthermore, formulating an optimal weighting function which respects

sensor characteristics as well as geometry of environment is a significantly difficult problem

and varies greatly among different types of sensors.

In principal, volumetric integration techniques presume a globally consistent model,

therefore untreated depth outliers produce surface patches which are inconsistent to the

boundary of the surface. Statistical strategies which test every depth sample for proximity

test among neighboring 3D data Rusu et al. (2008) have proven to be effective but lacks
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Figure 1.3: Proposed 3D reconstruction framework

computationally inexpensive profile which restrict these techniques to be implemented on real-

time applications for mobile robots.

New strategies are therefore required to combine outlier removal techniques with noise

reduction methods such that the process of integration is capable of handling erroneous depth

information efficiently. In contrast to standard implementations of volumetric integration in

which the weighting function is to be calculated prior to the reconstruction, new techniques

are needed to handle spatial awareness of the environment to cater noise in 3D data.

These challenges provided motivation to use relevant a priori information about sensor or

environment, this leads to the ultimate question of this thesis:

How to efficiently reconstruct a 3D model of environment by reducing effects of

noise and outliers inherently in real time scenarios?

This research question is addressed by a novel 3D reconstruction framework shown in

Figure 1.3. Considering a set of error-prone 3D point clouds acquired from a depth camera, the

framework applies geometry aware outlier removal filters which identifies and removes isolated

depth samples. The proposed framework then applies novel total variation (TV) denoising on a

novel implicit representation to enhance the quality of the reconstructed model while reducing

the arbitrary surface deformities caused by depth noise. This resulting implicit representation

of the depth data is then stored for integration of upcoming depth samples. This three stage

process of acquisition, filtering and integration is repeated for each acquired depth image and

implicit representation is updated respectively.

The research question can be subdivided into following objectives:

1. To develop a mathematical model which supports a priori information about environment
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to support improved shape approximation and noise suppression in erroneous 3D

samples.

2. To develop a computationally inexpensive numerical outlier removal filter which targets

isolated depth samples on the basis of proximity to support real-time reconstruction.

3. To develop a reconstruction framework which accepts sequence of error-prone depth and

color images and produce high quality 3D models of environment in real-time.

1.3 Contributions

In general, optimized depth images have the potential to increase the accuracy of robotic

application in their respective tasks. However for our implementation we focus to apply

depth optimization in robotic applications to aid autonomous navigation and understanding of

environment in real-time. For this reason, the contributions of this thesis lies in both theoretical

and practical domains to optimize the processing of depth images.

In summary, the main contributions of this thesis are:

• Theoretical aspects & Implementation

– Design and implementation of Regularized Fusion (RFusion):A total variation

filtering based 3D incremental fusion scheme is proposed, formulated and

implemented which is capable of using prior smoothing knowledge to reduce depth

noise at the time of integration in a real-time scenario.

– Design and implementation of Spatial Outliers Removal Filter (SORF):A light-

weight outlier detection scheme having linear complexity of O(n) is proposed

which uses spatial proximity cues to identify and remove explicit outliers.

– Design and implementation of SmoothFusion:A modular 3D reconstruction

framework which encapsulates regularization aspect of RFusion to filter depth

noise and utilize proposed SORF to remove explicit and isolated outliers in

computationally efficient manner.
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1.4 Thesis outline

The rest of this thesis is organized as follows:

• Chapter 2 provides a comprehensive literature review of contemporary 3D shape

approximation and representation techniques. As it will be shown, modern techniques

use a priori knowledge into shape approximation process to produce accurate 3D models

with smooth surfaces. State-of-the-art 3D reconstruction frameworks are briefly reviewed

and evaluated to highlight potential issues related with depth noise and outliers, this

serves as problem statement for the proposed research. All reviewed techniques and

frameworks are evaluated with respect to their robustness to noise, ability to deal with

outliers, processing speed and overall accuracy.

• Chapter 3 describes aspects of methodology adopted in this thesis for prototyping and

testing proposed framework. In addition, both quantitative and qualitative evaluation

measures are presented highlighting details of test simulation, datasets and performance

metrics used for benchmarks.

• Chapter 4 provides theoretical background focusing specifically on volumetric

integration and presents analytical reasoning behind dense and semi-dense volumetric

representation used in state-of-the-art frameworks.

• Chapter 5 provides theoretical aspects and design of proposed contributions. Firstly,

a novel Recursive Least Square (RLS) based 3D fusion (RLSFusion) technique is

introduced which enables possibility of functional extendability such as exponential

forgetting and regularization in the 3D integration process. Secondly, the core concept

of total variation based filtering for implicit shape regularization in incremental 3D

reconstruction is presented and implemented in the form of RFusion. Finally, internal

workings of SORF are introduced and importance of using robust spatial outliers removal

filter in real-time 3D fusion framework is briefly discussed.

• Chapter 6 presents quantitative evaluation measures used to evaluate reconstructed 3D

models from proposed frameworks with state-of-the-art techniques. In cases where

quantitative evaluation is not possible, screenshots from both proposed and existing

frameworks are provided to aid qualitative comparison. Finally, a comprehensive per-

frame running time analysis is presented which compares the execution of proposed
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framework in comprehensive detail.

• Chapter 7 summarizes the contributions of our systems and propose several directions

for future work.

1.5 Summary

This chapter highlighted significance of incremental 3D fusion in modern robotic applications

from 3D depth sensing systems. Key challenges such as depth outliers and noise ware identified

and research question is formulated which subdivides problem statement into three basic inter-

related objectives, i.e. formulation of implicit shape approximation, efficient outliers detection

and removal scheme and smoothing using prior knowledge.

As the first step to achieving these objectives, next chapter provides critical literature

review of existing 3D shape approximation techniques and state-of-the-art 3D reconstruction

frameworks.



Chapter 2

Related Work

This chapter will review traditional shape modelling techniques and fusion frameworks used

to reconstruct models from 3D points. Initially, general shape representation methods are

reviewed to establish baseline on their suitability for numerical shape approximation and

modelling. Thereafter, modern approaches which process regularization and smoothing using a

priori knowledge are reviewed and evaluated. At last, state of the art fusion frameworks which

use 3D depth data to reconstruct a virtual environment are briefly discussed and evaluated.

3D shape approximation and modelling is a traditional yet active research problem which

is addressed by computer graphics and vision community for past two decades. In early

days, direct triangulation based techniques for modelling were proposed and implemented

(see Edelsbrunner and Mücke (1994)), these techniques were straightforward and effective

when the sampled 3D points were ordered and pre-sampled however lacked the capability

to handle scattered and unordered depth data. A novel volumetric representation technique

was presented by Curless and Levoy (1996) which illustrated the capability of integrating

multiple range images in a volumetric fashion to construct complex models, due to lack of

computation resources at that time this technique was unexplored for up-to 15 years and was

revived by Newcombe et al. (2011). The difficulties of triangulation based modelling were

later addressed by Alexa et al. (2003), Calakli and Taubin (2011) and Kazhdan and Hoppe

(2013) by using a priori knowledge (also referred to as prior) in modelling phase, this allows

the reconstruction framework to handle redundant and uneven samples and produce smooth

3D models. Many research groups integrated the use of smoothness priors in their application-

specific methods, some considered repetitive structures Pauly et al. (2008), Berner et al. (2011)

9
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while other experimented with geometry of the sampled scene Yingze Bao et al. (2013). The

concept of smoothness priors is also extended to global and piecewise smooth geometries by

Avron et al. (2010) and Calakli and Taubin (2011).

Section 2.1 provides a brief review of general shape representation techniques while

focusing on their usability of handling unordered 3D points. Since the concept of using

smoothing priors is basis of presented research objective, relevant notable contributions are

briefly addressed in Section 2.2. Depth image smoothing techniques which are relevant to

proposed research are briefly reviewed in Section 2.3 to establish baseline. Section 2.4 reviews

current state-of-art reconstruction frameworks which utilize a volumetric representation for

depth integration. The discussion is then summarized in Section 2.6 where generality,

computational effectiveness, robustness and accuracy are elaborated.

2.1 General Shape Representation

2.1.1 Simplex Representation

Shape representation using polygon meshes or more generally simplexes is considered as a

standard practice in computer graphics community. Many interactive visualization applications

such as virtual reality, augmented reality and video games use simplexes to process and

visualize 3D models. This concept originated form research by Bowyer (1981), in which

a triangle meshes connecting tetrahedra via Delaunay-triangulation are used to approximate

shapes from 3D points in an automated fashion. Edelsbrunner and Mücke (1994) proposed

α-shapes algorithm (Figure 2.1) for creating topological correct surfaces from 3D points using

polygon meshes. The method connects neighboring 3D points using triangles while the α value

controls the acceptable euclidean distance between connected sample. Since the value of α is

strongly dependent on factors such as detail and scale of the model, the selection of appropriate

value for α requires user interaction by an expert. Later, a more adaptive region growing

technique called Ball-Pivoting Algorithm (BPA) was proposed by Bernardini et. al (1999) in

which a user defined a virtual ball having radius ρ is used to determine valid 3D points. In

principal, α-shapes, BPA and all Delaunay-triangulation methods are incapable to handle noisy

or redundant 3D samples Bodenmueller (2009). Since acquired 3D points are prone to collect

various types of noise in the scanning process, the noise sensitive behaviour produces abrupt
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Figure 2.1: The α-shapes algorithm. a) Input samples, b-d) reconstruction with increasing α
Edelsbrunner and Mücke (1994).

geometric defects in the reconstructed model. Henceforth, the computer vision communities

avoid the use of simplexes based representation while approximating the shape with 3D points.

2.1.2 Parametric Representation

Parametric algorithms handle the problem of non-uniform sampled 3D points by fitting a spline

to approximate contours of the surface, these methods are well-known for signal interpolation

as well as approximation. For instance, a function f(u, v) : R2 ↦→ R which returns the

height of the surface it is approximating at any given values of u and v (Figure 2.2.a). Various

approximating functions can be stitched together to approximate complex globally consistent

3D models (Figure 2.2 b), however a traditional parametric surface reconstruction algorithm

consists of two steps:

1. Partitioning: A clustering technique (for e.g. Sheffer et al. (2007)) is applied

2. Parameterization: A local surface with corresponding height parametrization model f

is extracted via optimization

A standard practice is to employ a least square function for each segment which minimizes

min
N∑
i

∥h(Pi)− f(ui, vi)∥22 (2.1)

where Pi ∈ R3 is the ith sample 3D point, h(Pi) : R
3 ↦→ R is the segment height and (ui, vi) =

proj(Pi) is the projection of Pi on the corresponding segment plane partition from step 1.
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Figure 2.2: a) Smooth surface model via NURBS. b) A set of parametric shapes combined to a
global consistent surface. Schreiner et al. (2004).

Bezier curves (see Agoston and Agoston (2005)) or Non-Uniform Rational B-Splines (NURBS)

model are then employed to approximate model f for each segment.

Although parametric shape approximation and reconstruction has the capability to produce

smooth 3D surfaces for non-uniform 3D point sets, however an extra computational task of

combining local segments to produce a global continuous shape is required. This combinatorial

task is computationally expensive as shown by Floater and Hormann (2005). For this reason,

the local approximation and representation is adopted and will be examined in Section 2.2.

2.1.3 Implicit Representation

The Signed Distance Field (SDF) is a special case of shape representation having high potential

of usability in applications such as motion planning (Hoff III et al. (1999)), multi-body

dynamics (Guendelman et al. (2003)), collision detection and cloth animation (Bridson et al.

(2003)) and camera movement tracking (Canelhas et al. (2013)). The shape of the desired object

is represented by an implicit indicator function f(x) which classifies space around the object

surface as either inside f(x) < 0 or outside f(x) > 0 where x ∈ R3 is the spatial coordinate

of sampled 3D space. In principal, a surface of the object is set of all x where f produces zero

as illustrated in Figure 2.3. The 3D space is divided into smaller elements called voxels which

contains implicit indicator value of SDF. Given enough computational and memory resources,

the implicit modelling can be extended to work with streams of depth and color images from a

RGB-D sensor (such as Microsoft Kinect) to produce high quality 3D models of environment

(Newcombe et al. (2011)).

Main drawback of using implicit representation for 3D modelling comes from the division
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Figure 2.3: A Signed Distance Function (SDF) on a fine grid.

of 3D space into dense cells regardless of whether a cell contain meaningful SDF information

or not. This inefficient memory utilization makes implicit shape modelling infeasible for

large-scale environments. Representing an area of 100 x 100 x 100 m3 using 1 cm voxel

resolution using standard floating point values would require 4000 GB of memory to encode

implicit SDF. State-of-the-art volumetric reconstruction frameworks (such as Steinbruecker

et al. (2014), Kähler et al. (2015)) employ narrow-band surface localized voxels to facilitate

large-scale environment reconstruction. Further explanation and incremental integration based

applications of implicit representation are discussed in Section 2.4.

2.1.4 Surface Splatting

Surface splatting is a specialized case of the point based representation which is targeted

to render millions of 3D points independently (more generally vertices) in real-time using

modern rendering framework such as OpenGL. State-of-art reconstruction frameworks (such as

Whelan et al. (2015), Keller et al. (2013)) employ surface splatting to accommodate dynamics

of environment by adding or removing vertices in real-time. In principal, elliptical surfaces

having associated confidence, color and normal information (called splats) are used to represent

vertices. In order to integrate the curvature information using discrete splats, each splat is

processed with Elliptical Weighted Average (EWA) to produce high quality texture blending

while maintaining a low memory profile. Zwicker et al. (2003) demonstrated the potential

of surface splatting to produce high-quality 3D models from both scan and synthetic objects

(Figure 2.4)
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Figure 2.4: Surface splatting of a scan of a human face, textured terrain, and a complex point-
sampled object with semi-transparent surfaces. (Zwicker et al. (2003))

Although surface splatting has a high potential for applications in real-time dynamic 3D

modelling using high-quality depth sensor such as Kinect and Kinect v2, however inability to

handle low-density and error prone depth data is main disadvantage for using this representation

technique.

The shape representation techniques discussed so far enable the approximation of shape

geometry from 3D points. In various applications, it is preferred to restrict the generality of

representation approach in the favour of approximation quality. Examples in the upcoming

section will discuss and illustrate the process of utilizing a priori information to cater error-

prone measurements while producing smooth surfaces.

2.2 Prior Based Shape Approximation

In computer graphics and vision algorithms, prior information is used to aid reconstruction

and rendering processes. This integration of prior knowledge is essential in automated 3D

shape approximation since all depth sensing systems are prone to introduce measurement errors

depending upon the type and working of the sensor system. To maintain relevancy with the

research objective while avoiding exploration of inessential techniques, two general prior types

are identified and briefly explained in the upcoming sections.

2.2.1 Regular Priors

Various everyday objects exhibit repetitive structures and 3D reconstruction frameworks

can use this vital information to produce life-like 3D models, these repetitive structure are
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Figure 2.5: Detecting repetitive structures (a) enables hole filling (b) in structured
environments. (Pauly et al. (2008)).

Figure 2.6: Similar objects are scaled to match repetitive patterns. Red: strong deformations.
Green: small deformations. (Berner et al. (2011)).

commonly referred to as regular priors. Pauly et al. (2008) proposed a method to cluster point

clouds into repetitive segments and employ this vital information for hole filling of structured

environment. The potential of this scheme is illustrated in Figure 2.5 where a complete wall

segment is inferred from repetitive structure. Berner et al. (2011) extended the concept of

using regular priors to general partial symmetries, in which low dimensional shape space

is represented and used for matching. In principal a basic structure is identified and non-

rigid deformations of this portion are matched with similar areas, this is illustrated in Figure

2.6 where strong deformation matches are shown in red while small variations are shown in

green. Berner et al. (2011) suggested the use of supervised segmentation where the matches

are ambiguous Figure 2.6.

Supervised integration of prior information is further investigated by Arikan et al. (2013)

and Sharf et al. (2007) in which relational based similarities are marked by expert user.

Yingze Bao et al. (2013) proposed to perform semantic classification by relating observed

images and sparse point cloud from known database (Figure 2.7) using pre-learned approaches

to reduce interactive intervention from expert user. Aforementioned methods are designed to

perform well in presence of known objects or fractals in shape subspace, however in common

scenario when the scene consists of unknown objects, these method does not provide any
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Figure 2.7: Learning priors from images for reconstruction (Yingze Bao et al. (2013)).

advantage. Thus instead of using a specialized structure, generalized and straightforward

prior models are required which can be used in an unknown environment. Smooth and planar

surfaces have been identified as common characteristics for a large variety of scenes, therefore

using this basic information into the shape reconstruction approach does not confine underlying

algorithms to specific environment. The smoothness assumption is divided into local and global

smoothness priors, both are highly important and relevant to proposed research and discussed

briefly in the upcoming section.

2.2.2 Local Smoothing Priors

A novel and robust local smoothing approach which is specifically designed to handle

redundant data as well as to remove noise was proposed by Alexa et al. (2001). An implicit

surface is approximated for every point in sampled data by using neighboring points. This

type of neighborhood approximation methods are also known as moving least square (MLS)

techniques. Strength of smoothness can be controlled by varying the weighting function θ

to reduce surface deformities caused by error-prone depth measurements. The approximation

process is a two step process, a local reference domain (plane) h(x) for the point x is extracted

which minimizes a local weighting sum of the square distance of points pi to the plane in the

first step using:

h(x) = argmin
n,d

∑
i

(⟨n, pi⟩ − d)2θ(∥pi − x∥2) (2.2)

Where n is approximated normal of pi and d is distance of pi from the local plane. In the second

step, a local bivariate smooth polynomial approximation function f(x) is estimated via LSQ
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Figure 2.8: Local surface approximation by Alexa et al. (2001).

(Figure 2.8) to the height value h(pi) for each sample:

argmin
f

∑
i

(f(ui, vi)− h(pi))
2θ(∥pi − x∥2) (2.3)

All available points pi are re-sampled with the estimated shape and rendered using a

variant of point based rendering proposed by Rusinkiewicz and Levoy (2000). This

surface approximation approach received much attention due to its handling of noisy and

redundant point samples while producing smooth continuous surface representation. Further

experimentation by Kolluri (2008) enabled the control of smoothness via point-based blending

which employs point normals ni into a shape function as:

f(x) =

∑
i ni.(pi − x)ϕ(∥pi − x|2)∑

i ϕ(|pi − x|2)
(2.4)

where ϕ is sharpness and the weighting function is defined as:

ϕ(r) =
1

r2 + ϵ
(2.5)

In principal, both f(x) and ϕ can be controlled by a user-defined parameter ϵ, Figure 2.9

demonstrates effects of varying ϵ to acquire an appropriate smoothness level. Although MLS

based techniques are efficient to handle sampling noise and redundancy, however they fail

to produce accurate 3D models when the samples are sparse. This problem is addressed by

Öztireli et al. (2009) where they extended the polynomial model from Alexa et al. (2001) by
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Figure 2.9: Smoothness of point-to-plane blending controlled by ϵ by Kolluri (2008).

Figure 2.10: a) Sphere fitting from sparse samples Öztireli et al. (2009) b) MLS without and
with outliers Ohtake et al. (2005).

fitting spheres of variable radius to local samples.

All aforementioned local approximation approaches tend to accommodate each sample

to a consistent surface, this property of least square estimation fails to accommodate strong

sampling noise and/or outliers and produce artifacts as shown in Figure 2.10.b. Specialized

statistical outliers removal techniques such as Rusu et al. (2008) can be applied on 3D samples

to reduce outliers, since removing outliers is an essential part of the research objective these

techniques are briefly described in Section 2.5.

2.2.3 Global Smoothing Priors

Global shape approximation techniques exploit the implicit representation of an underlying

surface to create a globally consistent shape. Carr et al. (2001) proposed one of the first such

global shape approximation methods in which the implicit function f(x) which approximates
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Figure 2.11: The implicit function f(x) approximating surface points.

off-surface points is defined as

f(x) =
∑
i

αiϕ(∥x− ci∥2) (2.6)

where αi are weights and ci are centres for ith Radial Basis Functions (RBF). The technique

exploits included normals information ni to further enhances the approximation of an implicit

function as shown in Figure 2.11. An optimal shape function gives zero at the sample i.e.

f(pi) = 0 and di at the off-surface points f(pi + ϵini) = di. A convex LSQ minimization task

which is used to calculate αi is defined as:

α = argmin
α

∑
i

f(pi)
2 + (f(pi + ϵini)− di)

2 + (f(pi + ϵini) + di)
2 (2.7)

The smoothing effect for the final representation can be controlled by the polynomial degree

of RBF and offset distances di. Good extrapolation capabilities combined with achieved

smoothness allows global approximation techniques to deal with irregular sampling issues

while maintaining details in high density areas. The selection of an appropriate offset distance

di to deal with noise while maintaining details is however a critical problem.

Hornung and Kobbelt (2006) introduced a simplified discrete variant of the global

approximation to address the off-surface distance. The 3D space around samples is divided

into a narrow-band voxel grid, distance values are calculated from the nearest sample to the

center of each voxel and stored in the corresponding voxel (Figure 2.12). Graph-cut techniques

from Boykov et al. (2001) are then applied to extract the shape from voxels. This technique

is not suitable for large datasets containing millions of 3D points due to high computational
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Figure 2.12: Narrow-band voxel grid around samples for graph-cut, Hornung and Kobbelt
(2006).

complexity.

Various implementations and improvements have been proposed over the years to further

extend RBF based global approximation. However the most relevant and notable contribution

is proposed by Walder et al. (2006) involving a two-step processing. In the first step, small

regions are approximated independently via a global RBF (Figure 2.13). In the second step, a

compound RBF which compactly supports local approximations is estimated. Walder further

proposed a regression model which forces sample normals ni to align with shape function f

such that:

∇f(pi) = ni (2.8)

In terms of a convex optimization task, this constraint emulates the cost term. Since this

method enforces a locally defined function to work with a globally smooth RBF, this imposition

however leads to over-smoothing. Calakli and Taubin (2011) extended Walder’s regression

model to work with a discrete form on an octree and proposed a second order minimizer, which

led to Smooth Signed Distance Fields (SSDF) surfaces. Figure 2.14 shows the extrapolation

behaviour of SSDF reconstruction on non-sampled 3D points.

All of the aforementioned global methods are targeted to approximate a consistent surface

from given 3D points at the time of execution. In case of incremental updates specially in

the real-time 3D reconstruction, these methods fail to accommodate latest updates in input

3D points. This challenging rigid behaviour of global smoothing methods provided main
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Figure 2.13: A smooth and global implicit shape extracted via radial basis functions, Walder
et al. (2006).

Figure 2.14: Surface reconstruction using SSDF by Calakli and Taubin (2011).
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Figure 2.15: Surface normals from raw depth image (left) vs smooth depth image (right).
Canelhas et al. (2013)

motivation for the proposed research to explore incremental 3D fusion techniques which are

capable of approximating real-time 3D models of the environment. These models are briefly

discussed and evaluated in Section 2.4. Family of depth smoothing techniques which are

designed to reduce noise in depth images instead of 3D samples are evaluated in the upcoming

section.

2.3 Depth Map Smoothing

The process of representing a 3-dimensional object using series of range values starting from

camera origin to the surface of the object in the form of a 2D image (also referred to as depth

map) is a well established norm in computer graphics and vision community. A measurement

error in the form of added noise is accumulated in the depth acquisition process, untreated

depth noise produces abrupt and geometric deformities in the 3D reconstruction. To cater

this problem, various depth map smoothing algorithms have been investigated, proposed and

implemented in the past decade. Since properties of the depth noise are different to that of

normal color or gray-scale image noise, applying legacy smoothing filters such as low-pass

filter introduce further surface deformities in the reconstructed 3D model.

Newcombe et al. (2011) introduced a modified edge aware bilateral filter to produce

discontinuity preserved depth map from raw depth map acquired by the Kinect system in real

time. Surface normals are commonly used to visualize depth smoothing effects by applying

bilateral filter, Figure 2.15 highlights depth smoothing effects with bilateral filtering. Zhao
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Figure 2.16: 1st row: 3D surface from Raw Kinect depth image, 2nd row: Using bilateral
smoothing and 3rd row: Smoothing with Zhao et al. (2013)

et al. (2013) proposed a specialized depth filtering method which employs surface orientation

analysis per pixel surface orientation analysis to further enhance the smoothing process.

Promising results have been demonstrated by Zhao et al. (2013) as shown in Figure 2.16.

All of the previously mentioned depth smoothing algorithms are designed to handle

Kinect-like depth noise, however depth images estimated from stereo images are prone

to a higher intensity of depth noise due to estimation mis-match (i.e. sudden change in

estimated surfaces) or texture-less or self-similar environment. Ranftl et al. (2012) proposed

a stereo model featuring a second-order regularizer which reduces estimation errors and

produces smooth depth images. Balzer and Soatto (2013) proposed a similar optimization

technique in an iterative fashion to smooth surface deformities in multi-view stereo image

based 3D reconstruction. Graber et al. (2015) argued that unconstrained total variation based

regularization techniques are somehow prone to produce staircase artifices (Figure 2.17.b) since

they overlook 3-dimensional geometry of the perceived environment.

Edge-aware bilateral smoothing techniques and their variants are robust in nature

however lack the capability to handle high-intensity noise. Contrarily, total variation based

regularization methods respect geometry of surface at the expense of computational complexity.
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Figure 2.17: a) Ground truth surface, b) Total variation regularization and c) Minimal-surface
regularization by Graber et al. (2015).

Therefore, a novel depth smoothing mechanism is needed to handle both kinect-like noise and

stereo estimation depth noise while maintaining a low computational complexity profile.

2.4 Incremental 3D Fusion

Curless and Levoy (1996) proposed a novel implicit volumetric method targeted to support

the reconstruction of complex models from range images. The potential and simplicity of

volumetric method to handle incremental updates in the form of range images motivated

various researchers to extend the core concept to utilize modern computational resources such

as Newcombe et al. (2011), Whelan et al. (2012) and Kähler et al. (2015) etc. In principal, pre-

aligned range images are represented and updated incrementally as weighted signed distance

functions stored in a predefined voxel grid. Multiple error-prone observations of the particular

region of interest from either single or multiple-views reduces acquisition noise and result in

a high quality approximation of 3D object. An underlying volumetric representation method

transforms the range image Ri to a signed distance function value di(x) from a surface and

weights wi(x). A simple truncation mechanism ensures that values of di(x) are bounded

within in Dmin and Dmax, this truncation plays a vital role in determining the proximity of

a particular voxel near suspected surface. The implicit surface (also known as zero-crossing)

can be extracted by casting a ray from the sensor position to each voxel and registering a zero-

crossing as shown in Figure 2.18.a.

Incremental updates on the volumetric grid are carried by following equations:

Di+1(x) =
Wi(x) +Di(x) + wi+1(x)di+1(x)

Wi(x) + wi+1(x)
(2.9)
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a) b)

Figure 2.18: a) A range surface along x-axis from sensor position b) two range-surface are
integrated to form a new zero crossing.

Wi+1(x) = Wi(x) + wi+1 (2.10)

where Di+1(x) and Wi+1(x) are cumulative signed distances and weight functions for all valid

voxels x ∈ R3 after integrating the ith range image as shown in Figure 2.18.b.

The volumetric nature allows this representation scheme to integrate multi-view range

images to form a consistent 3D model. This behavior is demonstrated in Figure 2.19 in which

two separate cross-sections of volumetric SDF data 2.19.a and 2.19.b are integrated using

Equation 2.9 and 2.10. Usually, a space-carving procedure is applied to identify potential

voxels followed by the iso-surface extraction to render 3D models. Since contents of the voxel

grid are updated in an incremental fashion, Curless and Levoy (1996) suggested to employ a

fast marching cube algorithm (Lorensen and Cline (1987)) which can be initiated on demand.

Main drawback of using a dense volumetric grid for the incremental 3D reconstruction

comes from the excessive use of memory and computational requirements as described in

Section 2.1.3. State-of-the-art volumetric reconstruction frameworks utilize multi-threaded

architecture of modern CPU and GPU to facilitate large scale environment. Relevant

and notable contributions which extends the capability of volumetric method to large-scale

environment and real-time modeling are briefly reviewed and their performance is evaluated in

Section 2.6.
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Figure 2.19: a and b) SDF values from multiple views in cross-section of volumetric grid c)
integrated SDF values to form compound iso-surface Curless and Levoy (1996).

a) b)

Figure 2.20: a) Slice of SDF volume demonstrating potential truncation mechanism and b)
overall 3D volume (Newcombe et al. (2011)).

Newcombe et al. (2011) extended the concept of incremental volumetric 3D fusion with

real-time camera pose estimation using Iterative Closest Point (ICP) tracking. This extension

enabled low-cost depth scanning devices such as Kinect to reconstruct small scale environment

as shown in Figure 2.20 where a slice through the signed distance function F highlights the use

of truncation mechanism (i.e. validity criteria for each voxel v : µ ≤ v ≤ −µ). The surface of

volumetric data is extracted with the help of ray-casting from viewing camera as suggested by

Curless and Levoy (1996).

The use of GPU processing and memory enabled KinectFusion to reconstruct a 3D model

of the environment in an online fashion. In principal, GPU processing threads are designed

to perform simplified and repetitive tasks using massively parallel processing architecture.

This mechanism restricted KinectFusion to work in small-scale environments. Newcombe

et al. (2011) further suggested to use frame-to-model tracking for the pose estimation and
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reconstruction, this localization mechanism utilizes available memory in an optimal way while

producing globally consistent surfaces as shown in Figure 2.21 where the sensor is rotated

around the area of interest.

Figure 2.21: Camera tracking information visualized around region of interest (left) and
reconstructed 3D model (right) (Newcombe et al. (2011)))

Roth and Vona (2012) presented a novel memory efficient approach of a moving TSDF

volume from one location to another with respect to the camera moment, this allows an

active TSDF volume to be remained in fast acting memory while inactive parts can be

moved out of the memory on-demand. This technique is targeted to accommodate sensor

movement and reconstruction, however a rigid transformation combined with movement of

TSDF volume accumulates localization drift and may result in multiple copies of misaligned

surfaces. Figure 2.22 demonstrates the working of moving volume approach where the initial

TSDF volume (left) is remapped to align with updated TSDF volume (middle) using a fixed

relative transformation.

Figure 2.22: Initial TSDF volume (left), updated TSDF volume after integration (middle) and
movement tracking information (right) (Roth and Vona (2012)))

Whelan et al. (2012) proposed Kintinous as an extension of the KinectFusion which

uses incremental triangular meshes in addition to volumetric mapping to handle large-scale
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reconstruction, Figure 2.23 demonstrates the effectiveness of Kintinous to reconstruct relatively

large-scale environment consisting of a two story apartment having multiple rooms.

Figure 2.23: Large-scale 3D reconstructed model of apartment from Kintinious (Whelan et al.
(2012))

Nießner et al. (2013) introduced a novel voxel hashing data structure targeted to achieve

real-time management of implicit volumetric surfaces in the forms of voxel blocks from

GPU’s memory and processing resources. The proposed streaming in/out mechanism for voxel

blocks eliminated spatial restrictions from 3D reconstruction while retaining the quality of

reconstructed 3D models from degradation. An efficient GPU accelerated hash table is used to

allocate voxel blocks in the proximity to surface geometry, each voxel block is accessed using

an integer world coordinate (x, y, z). All active world coordinates (x, y, z) are mapped to hash

value H(x, y, z) using the hashing function:

H(x, y, z) = (x.p1⊕ y.p2⊕ z.p3)modn (2.11)

where p1,p2 and p3 are large prime numbers and n is hash table size. A strict streaming

in/out mechanism which checks each voxel block against the camera frustum is responsible of

the data management, this ensures that active voxel blocks remain in the fast acting memory
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Figure 2.24: Streaming in/out process of voxel blocks from Nießner et al. (2013)

while dormant voxel blocks do not consume memory resources. Figure 2.24 demonstrates this

streaming in/out process in which the camera is moving from left to right and respective voxel

blocks are flagged accordingly.

The concept of voxel block hashing inspired Kähler et al. (2015) and Steinbruecker et al.

(2014) to implement very fast state-of-the-art real-time 3D reconstruction named InfiniTAM

and FastFusion respectively. All aforementioned incremental 3D fusion techniques including

state-of-art frameworks rely on either the quality of depth measurements or the amount of

samples for a specific surface region from RGB-D cameras such as Kinect and Kinect v2

however dealing with error-prone depth data specially from stereo cameras remains a serious

concern. Furthermore, the underlying core principle of weighted volumetric integration using

Equations 2.9 and 2.10 remained unchanged over past two decades. Since the original concept

of volumetric integration was designed to handle range images with minimal surface noise,

the resulting frameworks struggles to accommodate depth images with high depth noise such

as from stereo cameras etc. This provided the main motivation for the proposed research to

handle depth noise using total variation based filtering in a recursive manner.
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Figure 2.25: Typical point cloud with highlighted depth outliers

2.5 Depth Outliers removal

Incorrect estimations of depths, in general depth outliers, are a common phenomena and almost

all 3D scanners are prone to this challenging problem. Laser based 3D scanners such as LiDAR

produce depth outliers when the surface on the object of interest exhibits reflective properties.

Similarly, active depth sensors which use pattern projection and detection such as Kinect

produce incorrect depth measurements when the surface of foreground meets background,

similar depth deformities have been identified when the depth image is subjected to over-

smoothing by a depth filter. All aforementioned depth outliers pose serious problems for

both camera pose estimation and 3D reconstruction. Figure 2.25 shows a typical 3D point

cloud having depth outliers at edges of the table where the sensor detected two surfaces having

different height profiles.

Depending upon the spatial proximity of the depth outlier with respect to the actual surface,

an outlier can be classified as sparse, isolated or non-isolated outliers. Rusu et al. (2008)

proposed a simplified Statistical Outliers Removal (SOR) method to target sparse and isolated

outliers which calculates the distance of each point along its K neighbours in the first pass.

Mean µ and standard deviation σ of accumulated distances are then calculated to determine

appropriate distance threshold using following formula:

Threshold = µ+ α ∗ σ (2.12)
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Figure 2.26: Statistical measures to detect outliers

where α is a user defined parameter to control overall distance threshold. This process is

illustrated in Figure 2.26. In the second pass, all 3D points are classified as either inliers or

outliers depending upon the distance threshold. Although this SOR method is highly effective

in removing both sparse and isolated outliers, the first pass of the SOR method uses time

consuming memory lookups to access neighbouring 3D points. This time consuming profile of

the process poses serious concerns when using this scheme with real-time 3D reconstruction

system. For instance, processing a typical 640 x 480 pixel depth image captured from Kinect

RGB-D camera using SOR filter can take approximately 650 milliseconds to detect outliers

using a SOR filter.

Wang and Feng (2015) proposed a majority voting based algorithm to target all types of

outliers. Such voting based algorithm removes outliers with precision at the cost of high

computational complexity. Techniques having a computationally expensive profile and lacking

real-time processing such as Wang and Feng (2015) and Zhang et al. (2016) are not considered

for the quantitative comparison with the proposed research.
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2.6 Key Considerations

In order to summarize the literature review and establish a potential baseline, all

aforementioned shape representation and Incremental 3D fusion techniques are evaluated

separately with four evaluation criteria, which are:

1. Generality: Ability of the technique to reconstruct both complex and simple shapes.

2. Robustness: Ability to handle strong noise and outliers.

3. Computation Speed: Processing time and computational complexity of the technique.

4. Accuracy: Overall accuracy of the technique.

Table 2.1 summarizes reviewed shape reconstruction methods in the light of evaluation

criteria, the plus sign indicates whether a particular technique is adequately fulfilling a certain

criterion. These findings have been derived mainly from the literature, publicly available source

code and in certain cases by direct communication with authors. In some cases, computation

speed metric is evaluated with the help of the open-source tool Meshlab developed by Cignoni

et al. (2008) which contains fast implementations of various reviewed algorithms.

All reviewed techniques which do not consider prior information were found incapable of

handling either noisy or sparse samples, with the one exception of SDF by Newcombe et al.

(2011) which uses a stochastic convergence property to reduce noise at the expense of very

high storage requirements.

Techniques which use Regularity Priors are designed specifically for the targeted

application such as vehicles and building facades, however this lack of generality constraints

the application domain.

Both Local and Global smoothness priors were observed to produce accurate shape

approximation and reconstruction, thus a large number of applications can integrate smoothness

information to increase the quality of the 3D reconstruction. Local methods were found to

produce faster parallel computations, however they are less suitable for high-noise or sparse 3D

samples. Here, global methods such as Poisson and SSDF by Kazhdan and Hoppe (2013) and

Calakli and Taubin (2011) respectively significantly outperformed and produced comparatively
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Table 2.1: State-of-the-art 3D shape reconstruction approaches

Technique 1: Generality 2: Robustness 3: Speed 4: Accuracy

No Priors

α shapes - Edelsbrunner and Mücke (1994) + + + +
BPA - Bernardini et al. (1999) + + + + +
SDF - Newcombe et al. (2011) + + + + + + + +

Regularity Priors

Clustering - Pauly et al. (2008) + + + +
Subspace tension - Berner et al. (2011) + + + + + +
Learning Clusters - Yingze Bao et al. (2013) + + + +

Local Smoothness Priors

MLS - Alexa et al. (2001) + + + + + + +
Point blending - Kolluri (2008) + + + + + + +
APSS - Öztireli et al. (2009) + + + + + + +
MPU - Ohtake et al. (2005) + + + + + + + +

Global Smoothness Priors

RBF - Carr et al. (2001) + + + + +
Graph Cut - Hornung and Kobbelt (2006) + + + + +
Fourier - Kazhdan et al. (2005) + + + + + + +
Wavelet - Manson et al. (2008) + + + + + +
Poisson - Kazhdan and Hoppe (2013) + + + + + + +
SSDF - Calakli and Taubin (2011) + + + + + + +
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accurate 3D models, however the requirement and assumption of closes surfaces reduced the

generality of these approaches.

Table 2.2 provides evaluation insight for various state-of-the-art 3D fusion frameworks.

Since all presented 3D reconstruction frameworks are derived from volumetric integration by

Curless and Levoy (1996), the robustness metric value is more or less the same. However

differences in computation speed and accuracy are directly dependent upon external factors

such as the camera localization algorithm, scale of reconstruct etc. We also found that point

based 3D fusion techniques have more generic profile and support dynamics of environment

however lack behind in handling high depth noise or sparse samples by stereo sensors.

Table 2.2: Incremental 3D Fusion frameworks

Framework 1: Generality 2: Robustness 3: Speed 4: Accuracy

Volumetric 3D Fusion

InfiniTAM + + + + + + + + + +
FastFusion + + + + + + +
KinectFusion + + + + + +
Voxel hashing + + + +
MonoFusion + + + + +
Real-time vol rec + + + +

Point Based 3D Fusion

Point-based Fusion + + + + +
ElasticFusion + + + + + +

2.7 Summary

This chapter reviewed both legacy and state-of-the-art shape representation techniques in order

to determine a suitable 3D reconstruction candidate with incremental fusion capabilities from

error-prone 3D samples. We found that although simplexes representations is designed to

utilize modern rendering frameworks, however their inability to handle error-prone 3D sample

data makes these techniques unsuitable for real-time incremental reconstruction. Parametric

representation methods were found suffering greatly due to their complex computational

profile. Surface splatting techniques were found to accommodate dynamic changes in

environment, however a large number of depth samples are required to reduce noise affects.
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This constraint directly affect camera movements and makes surface splatting infeasible for

low-frame rate depth sensors such as IPS (Grießbach et al. (2014)) which captures 10 frames

per second. Implicit representations, more specifically volumetric 3D fusion methods produced

promising noise handling behaviour, however the stochastic convergence property for noise

removal depends directly on the quality of the depth measurements.

Despite gradual noise removal properties of the volumetric 3D fusion, handling of depth

noise in 3D samples remains a serious concern and hence specialized image based edge

aware depth smoothing schemes were reviewed briefly and found that total variation based

filtering based depth map smoothing filters produced promising results. Depth outliers removal

techniques ware briefly discussed and found that statistical methods which use spatial proximity

information effectively to reduce outliers, however high memory access time in underlying

mechanisms makes such methods unsuitable for real time.
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Chapter 3

Methodology

This chapter presents standard analysis practices and performance benchmark criteria adapted

to evaluate the proposed contributions. In addition, technical requirements along with various

datasets are briefly described to establish a minimal working environment and to reproduce

findings. Initially, the structure of proposed framework is introduced which presents a high

level understanding of the data transformation at each process. Secondly, various datasets along

with standard quantitative and qualitative measures used for evaluation and validations are

outlined. Finally, technical requirements such as the input data type, computational resources,

development environment and software required to visualize and evaluate output are briefly

described.

3.1 Framework Structure

The proposed framework in this thesis refers to a systematic 3D reconstruction pipeline which

employs proposed contributions for high quality models from input depth and color data. The

framework is designed to exhibit generic traits in terms of input data, which can be acquired

from active RGB-D cameras, passive stereo based depth scanners or 3D laser scanning systems.

Usually, laser based 3D scanners produce relatively accurate depth information, however main

motivation is to process error-prone depth data captured from a low-cost active or passive

sensor, which would enable mobile robots to perceive accurate 3D information in a cost-

effective manner.

The overall structure of the framework is illustrated in Figure 3.1 which highlights the data

37
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Figure 3.1: Framework applied on RGB-D image stream

transformation by each individual process for RGB-D data. Processes P0 and P1 are shown

in shaded-gray as they are not part of the presented framework. In processing unit P0 an

appropriate depth conversion is employed to convert depth images in to a standard format.

State-of-the-art localization methods such as ORB-SLAM2 (Mur-Artal and Tardós (2015)) or

ICPCUDA (Whelan (2018)) can be employed for ego-motion sensor tracking in P1. Depending

upon the type of 3D information given as input, one or more processes of the framework are

not utilized. For example, in case of using the stereo based IPS sensor1, processes P0 and

P1 are not applied since IPS inherently performs stereo matching (i.e. depth conversion) and

ego-motion localization and resulting depth, color and camera pose are fed directly to P2.

Assuming that an active RGB-D sensor such as Kinect RGB-D camera is used as an

input, the first process P0 converts each depth pixel di(row, col) from ith time-stamped raw

depth image to an appropriate distance using a standard non-linear function (as suggested by

OpenKinect.org (2018)):

Di(row, col) =
1

di(row, col)− 0.00307 + 3.3309
(3.1)

1Integrated Positioning System (IPS) is a stereo based depth estimation system designed to assist in 3D
navigation and reconstruction.
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where Di(row, col) is a distance of a particular depth sample from the camera origin in

millimetres (OpenKinect.org (2018)). The resulting depth image Di and the pre-registered

color image Ci are processed in P1 which localizes the sensor position in world coordinates

with the help of an ego-motion estimation. Process P2 uses the camera pose information

posei and the intrinsic matrix K to register each valid depth pixel Di(row, col) in a world

coordinate system. Process P3 encapsulates the core method for producing an accurate 3D

shape reconstruction, which contains three key contributions: 1) implicit shape approximation,

2) robust statistical outlier detection and 3) integration of a priori information to reduce noise

inherently. Since the framework is designed to work with streams of images, each new

input instance invoke P0 → P3 in an iterative fashion and the implicit model d4 is updated

incrementally. Finally, P4 uses a standard marching cube algorithm (see Lorensen and Cline

(1987)) to process the implicit model and to produce globally consistent 3D models in the form

of meshes d5 as output.

3.2 Validation and Evaluation

The actual implementation of the proposed fusion framework is carried out in C++

programming language which is preferred among others due to highly extendable functionality

with the help of publicly available libraries and its real-time processing profile. In order

to validate various aspects of the implementation, unit-tests have been employed to ensure

that low-level optimization tasks such as matrix manipulations and image conversion are

correct. The data-based evaluation tests have been employed to ensure that the overall shape

reconstruction algorithm is accurate and competitive.

3.2.1 Evaluation Framework

The accuracy of the reconstructed model and the processing time taken by the fusion framework

are considered as standard performance metrics for shape reconstruction as suggested by

Strecha et al. (2008). The comparison of the processing time among two functionally identical

fusion frameworks is a straightforward process, however various development traits such as use

of GPU computing or limiting the memory allocation for the abounded reconstruction provides

a biased favour to a particular technique. Henceforth, state-of-the-art frameworks along-with



40 3. Methodology

Figure 3.2: The process of acquiring quantitative measures among reconstructed and ground
truth 3D models

the proposed framework are subjected to a variety of evaluation aspects such as accuracy,

functionality and processing time to establish a comprehensive profile of each technique.

The accuracy of the reconstructed model naturally involves comparing a resulting model

against an a priori known result, called ground truth model. Unfortunately, acquiring ground

truth models for large-scale 3D reconstructions is a tedious and careful process involving

laser guided depth data collection in the form of a point cloud followed by high-quality

mesh generation. Although careful measurements combined with a time-consuming shape

approximation process generates a high-quality 3D model, the resulting estimated ground

truth model is still expected to contain approximation errors. Ground truth models for large-

scale environments are usually not available. Synthetic environments and relative models are

therefore preferred since they provide very accurate measures.

The evaluation framework is a process pipe-line which produces quantitative measurements

given approximated 3D models and ground truth. The assessment framework is summarized in

figure 3.2 and three underlying processes perform the following tasks:

• P0: Given a reconstructed 3D model in the form of a 3D mesh, appropriate Scaling,

Rotation and Translation operations are applied to make the given model consistent with

the ground truth model.



Validation and Evaluation 41

• P1: The Ground truth model is sampled with at least 106 points to ensure that surface

contours are captured regardless of the shape and size of the model in the sampled 3D

point cloud d3.

• P2: Each point in d3 is registered to a closest polygon in the reconstructed 3D model

and a perpendicular distance is recorded. This distance when averaged, provides five

quantitative measures (mean, median, standard deviation, min and max distance) and are

considered as standard evaluation criteria as suggested by Handa et al. (2014). This

assessment is carried in Cloud-Compare (Girardeau-Montaut (2015)) which is freely

available open-source software.

3.2.2 Performance Metrics

In order to inspect the performance of the proposed fusion framework, a numerical evaluation is

employed to collect appropriate performance metrics which allow meaningful information and

conclusions to be extracted from the shape approximation process. In principal, the Euclidean

distance is used between the reconstructed surface and ground truth sampled data as suggested

by Berger et al. (2013). For each sample, an absolute distance from d3 to the closest polygon

from d1 is computed in process P2. This error measurement is used as a primary source to

extract more significant statistical measures such as error histograms and cumulative error

distributions. A similar approach has been applied to evaluate multi-view stereo reconstruction

techniques by Strecha et al. (2008). Following performance metrics are applied:

• Visual inspection: Real-time 3D reconstruction results are visualized using the OpenGL

renderer. However once the reconstruction is completed and the model is stored in

memory, intensive inspection is carried out and appropriate features of the model are

captured using Meshlab.

• Absolute surface error: Absolute error measurements collected from the process P2

are projected onto the reconstructed model in color coded error maps (also referred as

heat-maps) to visualize spatial deviations by the reconstruction process. This process is

shown in Figure 3.3 where the reconstructed model is compared against sampled ground

truth 3D points to calculate basic quantitative measures and absolute surface errors.
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Common statistical visualization standard tools (see Tufte (1990)) such as median and

variance, error histograms (Figure 3.4.a) and cumulative error distribution plots (Figure

3.4.b) are generated.

• Mean, median and variance: After computing the absolute surface errors between

d1 and d3, P2 summarizes the error distribution information in mean and median

values. Median Distance Error (MDE) is calculated by sorting all non-zero distances

in ascending order and taking the central sample from the sorted list. In some special

cases, MDE is selected over mean value as a primary error descriptor, since it is robust to

large outliers in a particular spatial location. In cases where relatively large absolute

surface occur at one particular position, MDE metric is less likely to reflect drastic

changes. Furthermore, mean and variance error metrics are computed to further analyse

distribution.

• Statistical measures: Probability density functions are considered as a de-facto metrics

to evaluate the nature of a random process. Since the computed error-distribution is

discrete in nature, histograms are used to represent how well the reconstructed shape is

aligned to the ground truth model. The peak of the histogram represents most frequent

errors made by the reconstruction process, however the comparison of two histograms

is a non-intuitive and relatively difficult process. This is addressed by calculating a

cumulative distribution from each histogram which can then be used to analyse in an

intuitive manner. Figure 3.4 illustrates the relation between a histogram and a cumulative

error distribution. An optimally superior method would rise sharply to the 100% while a

low-quality technique will produce a gradually increasing curve.

• Runtime: The time taken by an algorithm to accomplish a computational task is usually

measured in milliseconds using the CPU clock. This empirical metric is used to evaluate

the processing time taken by the implemented algorithm. All experiments have been

performed on a desktop computer having following specifications:

– Intel Core i7-4790

– Nvidia Quadro K6202

2Used only to evaluate InfiniTAM by Kähler et al. (2015).
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– 8 GB RAM

– Windows 7 (64-bit) and Linux 14.04 operating system.

Using a high performance computer will accordingly enhance the runtime performance

metric.

Figure 3.3: Process of calculating error distance between sampled ground truth 3D points and
the reconstructed model and resulting an absolute surface errors in a color coded error map.

Figure 3.4: Typical error histogram (left) and cumulative error distribution (right).

3.3 Datasets

3.3.1 Synthetic Piecewise Function

Main motivation behind this research is to perform a reliable 3D implicit fusion while handling

effects of depth noise. It is therefore beneficial to critically evaluate the performance initially on

a synthetic piecewise 2D function. This initial testing phase allows an effortless visualization
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a) b) c)

d) e) f)

Figure 3.5: Synthetic 3D and 2D function represented as point cloud followed by respective
implicit representation with and without added depth noise.

which enables rapid prototyping of the solution development. A replicated version of a 2D

piecewise function in the third dimension is used to validate a response of the proposed

framework with additive noise in a 3D environment. Figure 3.5 illustrates both 2D and

3D functions (represented with points) with respective volumetric implicit surfaces with and

without additive depth noise.

Main benefit of using synthetic functions is that parameters such as additive noise and scale

of reconstruction can easily be controlled. The model contains gradual curves, planar areas and

sharp edges so that the performance of the proposed framework can be evaluated in detail.

3.3.2 Synthetic 3D Complex Environment

There exist a variety of publicly available synthetic 3D models which can be used to generate

synthesized camera movements and characteristics, however the standard RGB-D dataset by

ICL-NUIM (Handa et al. (2014)) was selected to obtain un-biased results. This dataset is

specifically selected to reflect a broad range of requirements often needed by the 3D fusion

framework. Thus, an algorithm performing well on the simulated environment is expected to

perform well in a realistic datasets obtained from either active or passive depth sensors, even if
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Figure 3.6: The interior of a synthetic living room scene (color removed to highlight geometry)

the ground truth model is not present for quantitative evaluation.

The dataset contains four distinct trajectories of the living-room environment simulating

repetitive loop closure, fast and slow moving camera movement along with two different sets

of depth image streams which simulate noisy depth measurements from a Kinect-like RGB-D

camera and clean depth images. The simulated living-room environment consists of challenging

micro and macro objects having planar, sharp and gradual curvatures. Figure 3.6 shows two

rendered views highlighting the challenging complex geometry of the scene. Both clean and

depth images which are corrupted with noise were used to evaluate the proposed framework.

Results are presented in Section 6.

3.3.3 Realistic 3D Complex Environment

One of the main motivation behind this research is to develop a generic fusion framework

with controlled regularization parameters to accommodate variety of depth sensing systems.

Therefore, three distinct realistic benchmarking datasets Comprehensive RGB-D Benchmark

for SLAM (CoRBS) (Wasenmüller et al. (2016)), KITTI vision benchmark suite (Geiger et al.

(2013)) and IPS dataset (Grießbach et al. (2014)) were selected to demonstrate the flexibility

of the proposed framework. Unfortunately, ground truth models for KITTI and IPS datasets
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are not available, therefore screenshots of the reconstructed model are provided for qualitative

comparison in Section 6. Characteristics of each datasets are:

• IPS-Dataset: The dataset has been captured from a passive depth acquisition system

which uses stereo cameras to capture time-stamped images. Registered images are

processed with the Semi Global Matching (SGM) algorithm (Hirschmuller (2005)). Ego-

motion information acquired from built-in Inertial Measurement Unit (IMU) are fused

with a visualSLAM algorithm to produce a globally consistent camera pose information.

IPS is capable of producing approx. 10 instances containing depth, color and camera

tracking information. Figure 3.7 shows sample depth and color images acquired from

the IPS depth sensor system. IPS is capable of transmitting real-time depth sensing

via TCP/IP communication for real-time processing, however to facilitate a repetitive

evaluation process, trajectories ware recorded and processed with the fusion framework

Grießbach et al. (2014).

Although IPS provides high-accuracy localization information with the help of multi-

sensor fusion and bundle-adjustment, estimated depth measurements suffer from strong

estimation noise and outliers caused by reflections, varying illuminations and fast

camera movements. Three scenes mine, corridor1 and corridor2 have been recorded

for benchmarking that represent large-scale scenes with challenging environmental

conditions. Corridor1 and corridor2 scenes demonstrate non-textured surfaces,

occlusions and difficult lighting conditions which further contributes in depth noise and

outliers, while mine scene highlights low illumination conditions with a fast moving

camera.

• CoRBS: The dataset contains four distinct scenes captured by latest Kinect v2 RGB-D

sensor. Unlike state-of-the-art RGB-D datasets which only provide a camera trajectory

as the ground truth, CoRBS provides high-quality 3D ground truth models captured by

projecting light patterns onto a surface (see Figure 3.8). Camera trajectory information

is captured by an external motion capturing system with sub-millimeter precision. The

resulting trajectories and ground truth models are aligned to a global coordinate system

to further simplify the evaluation process. Thus CoRBS is selected to demonstrate work

of proposed framework using novel RGB-D depth sensor system.
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Figure 3.7: Arbitrary sampled instances of registered color and depth images from IPS sensor

Figure 3.8: Light pattern projection based range image acquisition using two cameras
(Wasenmüller et al. (2016)).

• KITTI vision benchmark suit: The dataset is captured from a standard vehicles

mounted with a 360o rotating laser scanner, two pairs of stereo cameras, and IMU

module capable of capturing 10 samples per second to facilitate benchmarking series

of computer vision research problems such as stereo matching, optical flow, ego-motion

estimation and object tracking. Figure 3.9 illustrates the sensing equipment mounted on

AnnieWAY. Localization information in the form of sensor movement for trajectories are

also provided as the ground truth for testing visualSLAM algorithms. Since main focus

of the research is to facilitate a 3D shape reconstruction, we employ only stereo images

and laser scanner data with estimated camera pose from state-of-the-art visualSLAM

algorithm to demonstrate a real-time 3D reconstruction scenario with the proposed fusion

framework.
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Figure 3.9: AnnieWAY with mounted multi-sensor system set-up.

3.4 3D Sensors

Mobile robotic applications such as automated drones, unmanned vehicles etc are usually

constrained to provide limited amount of power to various sensors. Therefore, such mobile

robots are generally equipped with low-power consuming sensors such as RGB-D cameras

connected to a mobile computing device which transmits the captured depth and color image

streams to the high-performance computer. Provided that enough network bandwidth is

available to send the image stream, the processing computer can either apply an on-line 3D

fusion approach or store the image stream for off-line processing.

Fortunately, autonomous vehicles are capable of providing sufficient power and

maneuverability, this allows them to utilize multiple 3D sensors and high performance

computing on the go. Although autonomous vehicles are expected to navigate in a variety

of lighting and environmental conditions, a multi-sensor set-up ensures that not all sensors are

affected by a particular lighting condition.

Active depth sensor systems especially Kinect, ASUS Xtion Pro and Kinect v2 are designed

specifically for in-door environments where lighting conditions are either regulated or are kept

deterministic, however their efficiency to perceive the environment decrease drastically with

certain lighting conditions. Furthermore, pattern based active depth sensors are prone to highly

illuminated surfaces, while time-of-flight sensors are prone to introduce surface estimation

errors on darker surfaces. Although active depth sensors provide high frame-rates (i.e. approx
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30fps), their incapability to perceive distant objects restricts their usability in fast moving out-

door environments.

Passive depth sensors which utilize stereo images and disparity estimations provide long

range sensing capability to mobile robots. In principal, the quality of estimated depth’s in stereo

matching algorithms rely heavily on the base line textures of surfaces. Since depth estimation

is a computationally expensive process, special System-on-Chip (SoC) or GPU based portable

computing nodes are required to facilitate real-time depth estimation.

Laser based 3D scanners are a more suitable choice for autonomous vehicles since they

provide high-quality depth measurements without interpretation. However these scanners

usually provide sparse depth measurements which are not suitable for 3D reconstruction since

each measurement has a different orientation (i.e. an external projection is required to interpret

these measurements into a depth map). Furthermore, these laser scanners are high cost and

prone to measurement errors in-case two similar sensors are scanning the environment.

Table 3.1 summarizes aforementioned characteristics of depth scanners and suggests a

suitable application environment.

3.5 Summary

This chapter presented a research methodology and standard practices used to evaluate and

analyze performance aspects of the proposed research. The generalized structure of fusion

framework is introduced which subdivides overall processing tasks into a process pipe-line,

this modular design allows effortless validation and testing of the data at different stages of

the pipeline. Standard quantitative and qualitative evaluation metrics have been introduced.

Finally, both synthetic and realistic datasets have been briefly described which highlights

applications of the proposed research in a real-time 3D reconstruction environment. The

following chapter will introduce theoretical aspects of the proposed research contributions.
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Table 3.1: 3D depth sensors and their respective characteristics

Sensing Technology Sensor Image Pros Cons

Pattern projection
Kinect - Low cost

- High frame rate

- Short range
- Sensitive to high
illumination

ASUS Xtion Pro

Time of flight Kinect v2 - Low noise
- High frame rate

- Short range
- Inability to detect
dark color objects

Stereo IPS
- long range
- Suitable for
outdoors
- Produces camera
trajectory

- Low frame-rate
- Inability to detect
dark color objects

Laser LiDAR
- long range
- Suitable for
outdoors

- Sparse sensing
- Very high cost
- Heavy
- Low frame-rate



Chapter 4

Fundamentals of Volumetric 3D

Integration

Chapter 2 identified the effectiveness of an implicit representation for error-prone depth images

for an incremental 3D integration and reconstruction. Furthermore, it was also found that

employing smoothness prior information can be used to reduce noise artefacts. This chapter

will provide in-depth analysis and theoretical background of the underlying volumetric fusion

process to identify potential challenges of employing smoothness prior in integration process.

Moreover, the core concept of the implicit fusion is analysed with the help of various error-

prone synthetic SDF signals. Presented concepts of legacy volumetric integration are expected

to serve as theoretical foundation for proposed contributions in Chapter 5.

Initially, implicit representations of volumetric integration are formally introduced and

related properties are discussed. Secondly, incremental aspects of the dense 3D fusion are

analysed by fusing simulated noisy depth signals. Finally, the rationale for using sparse or semi-

dense voxel grids are presented which highlights trade-offs between computational complexity

and quality of the reconstructed model.

4.1 Signed Distance Function

The Signed Distance Function (SDF), also referred to as Distance Transform is a basic building

block for visualizing and processing volumetric 3D data. In computer graphics community,

51
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SDF is commonly used to accelerate the rendering process for high-quality 3D models

(Hart (1996)), however state-of-the-art reconstruction frameworks employ SDF to integrate

incremental updates from depth cameras. In principal, to render a SDF voxel-grid, a non-zero

crossing of SDF along a viewing ray is considered as implicit surface (also referred to as iso-

surface).

4.1.1 Definition

To elaborate the aforesaid definition in a formal construct, consider a mapping function

D(x) : Rn → R, (4.1)

which transforms n-dimensional space to a scalar value. Since our target application domain

is 3D space we assume n = 3, however a 2D analogy is employed for illustrative purposes.

Assuming an implicit surface of a circle having the radius r = 5 in τ units defined by

x2 + y2 = r2, (4.2)

Assuming that g(x, y) denotes the euclidean distance from the origin, the implicit surface for

such set-up can be defined by

g(x, y)− r = 0, (4.3)

which ensures that each voxel at location v = [x, y]t contains a signed distance value from

nearest implicit surface. In most cases, a linear truncation function

D̂(x) = max(min(g(v)− r,Dmax), Dmin), (4.4)

is applied to constrain SDF values in a particular range (i.e. dmax ≤ D̂(x) ≤ dmin), the range

is referred to as support in the upcoming text. Controlling the support of SDF is important

parameter which plays a significant role in fusing SDF volumes. Therefore, a robust truncation

function having properties of generalized logistic function is defined by

D̂(x) = 1−
(

2

1 + ekd

)
, (4.5)



Signed Distance Function 53

Figure 4.1: Truncated SDF function adapted from logistic function.

where support is controlled by varying parameter k and d denotes the depth information from

camera origin, effects of varying parameter k are shown in Figure 4.1. To avoid unnecessary

complexity, the upcoming text presumes that either a linear or truncated logistic function is

employed, however the actual implementation of 3D reconstruction framework uses Equation

4.5 to compute TSDF values. Truncated SDF values which satisfy the range criteria can be

used to achieve efficient memory utilization.

Figure 4.2 illustrates aforementioned properties of SDF from a circle having r = 5. Since

the distance of each location v = [x, y]t is relative to the edge of circumference, therefore

the positive and negative values represent outside and inside respectively while SDF value

being equal to zero are on the edge of circle. When dealing with actual sensor data, finding

local or global implicit function which satisfies the geometry of an acquired depth image is a

computationally expensive task (discussed in Section 2.1.2). Hence an approximation of the

SDF is assumed and briefly discussed in upcoming section.
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a)

b)

c)

Figure 4.2: a) Plot of g(x, y) from origin and green contour line shows all the points with
distance equal to r = 5 in τ units from origin , b) Truncated implicit surface D̂(x, y) and
c) Respective weighting function W (x, y) with projected green contour lines highlighting the
suspected surface.
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Figure 4.3: Projection of world information onto depth and color cameras.

4.2 SDF from depth images

In order to maintain generalization aspects of the research objective, we assume that streams

of depth and color images are captured from 3D scanners. This assumption ensures that the

proposed research framework is capable of processing input depth images irrespective of the

input source. A standard format for depth and color image stream is suggested by Sturm et al.

(2012) in which each image is registered and time-stamped for easy access. This arrangement

of storing depth and color image stream is further supported by state-of-the-art visualSLAM

algorithms (such as ORB-SLAM2 and RGBD-SLAM), therefore appropriate depth conversion

must be employed to convert depth data from IPS or laser sensor.

Considering a set-up in which a pre-localized 3D scanner captures a depth and a color image

(denoted by Z and I respectively) it is presumed that both intrinsic and extrinsic parameters of

the 3D sensor are known where f = (fx, fy) and c = (cx, cy) are focal lengths and central point

respectively. In principal, every physical point in the world coordinate system Pw = [x1, x2, x3]

is projected onto Z and I using a perspective-projection function π(x) : R3 → R2 formally

defined by

π(Pw) =

⎡⎣x1

x3
fx + cx

x2

x3
fy + cy

⎤⎦ (4.6)

where π(Pw) = [u, v]t and the process is illustrated in Figure 4.3.

In order to represent a depth image as a SDF, a discrete voxel grid of finite size having
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spatial resolution τ is initialized. In most cases, τ determines the scale of reconstruction

however there exist multi-scale variants (see Steinbruecker et al. (2014)) in which the scale

of a particular spatial bounding box depends upon the proximity and the quality of the acquired

depth image. For simplicity, we presume τ is a constant parameter selected before the fusion

process and all spatial measurements such as the dimensionality of every voxel, focal lengths

and coordinate system are converted accordingly.

For computational simplicity it is a common practice to presume that Z represents a three-

dimensional surface. Therefore, every voxel v = [x1, x2, x3] and the corresponding projection

information Z(π(v)) can be used to determine a signed distance value of each voxel using

D(v) = Z(π(v))− x3, (4.7)

where D(v) denotes the SDF value of voxel v from the presumed surface.

Similar to implicit representation of a circle (see Section 4.1), Equation 4.7 produces

positive, zero and negative values depending upon whether the centre of voxel is outside,

at or inside the presumed iso-surface. The truncation function is then applied to constrain

SDF values in the proximity of the iso-surface. Figure 4.4 shows a cross-section of a

three-dimensional voxel-grid to highlight the SDF representation. Since typical 3D scanners

can perceive environment information from one view, multiple depth images captured from

different spatial locations (usually referred to as multi-view) are used to reconstruct a complete

3D model of the object and/or environment.

4.3 Effects of incremental 3D fusion

Although the core concepts of weighted incremental 3D fusion by Curless and Levoy (1996)

are introduced in Section 2.4, this section is intended to analyze the effects of incremental

3D fusion when the framework is provided with noisy depth data. For illustrative purposes,

considering a single ray is considered originating from camera centre towards the surface of

object at 11 τ units away. As stated earlier that 3D scanners are prone to introduce depth

noise, it is assumed that the system collects two measurements of the suspected surface with

added depth noise of form N (µ, σ) = N (0.0, 1.0) without moving the camera and/or object.

The resulting error-prone depth measurements represented with TSDF and weighting function
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Figure 4.4: Cross-section of a voxel-grid with color coded SDF values.

w(x) are shown in Figure 4.5.a and 4.5.b respectively.

The integration technique proposed by Curless and Levoy (1996) utilizes a weighted

addition of SDF values using Equations 2.9 and 2.10. Figure 4.6.a and 4.6.b shows integrated

TSDF and weighting function values respectively. In principal, the zero-crossing of the fused

implicit SDF signal represents a better approximation of the actual surface than individual

noisy depth samples. It is therefore expected that each incremental update of depth information

reduces the estimation error between the iso-surface and the actual surface. Unfortunately,

this statistical convergence property depends heavily on the number of depth samples and

properties of added noise. Determining noise characteristics of every available depth sensor

is unfortunately a tedious process, Nguyen et al. (2012) showed that depth noise from Kinect

sensor can be estimated with Gaussian distribution. It is therefore presumed that depth

measurements are corrupted with standard Gaussian noise. In practice however, properties

of noise can be exploited by varying the weighting function of the 3D integration.

4.3.1 Relation of convergence with weights

In order to highlight the concept of convergence in 3D fusion with a varying degree of the

depth noise, 200 instances of synthetic piecewise signal from Section 3.3.1 were generated

and corrupted with additive Gaussian noise of the form N (µ, σ) = N (0.0, 5.0). As stated

earlier, the integration process involves fusing multiple instances of SDF and weight values

together using Equations 2.9 and 2.10. Once applied in an incremental fashion, the accumulated
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a)a)

b)

Figure 4.5: a) Error-prone depth measurements represented as one-dimensional TSDF function
and b) Respective weight values generated using standard Gaussian function.
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a)a)

b)

Figure 4.6: a) Fused TSDF function and b) Updated weighting function.
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Figure 4.7: Mean absolute surface error convergence with incremental fusion.

weight values are expected to exhibit properties of a normal distribution in which the peak

of distribution represents estimated implicit surface. Less erroneous samples are expected to

produce a sharp peak in weight values and vice-versa.

In principal, the weight values are analogous to the confidence of the estimated implicit

surface, where each incremental update increases the overall confidence. Quantitative analysis

of this integration technique confirms the presence of convergent behaviour in terms of

minimizing the absolute mean surface error, this phenomenon is shown in Figure 4.7.

Although the relation between weight values and error convergence is loosely proportional,

selecting an appropriate weighting function for a specific depth sensor is a tedious and time

consuming task which requires expert human interaction. In special cases where the surface of

a perceived object is either non-rigid or non-stationary, the confidence value generates multiple

zero-crossings in SDF values and result in inconsistent surfaces. Furthermore, the weight

value for each voxel location is stored as a floating point element occupying 32-bit of memory

space. This memory in-efficient utilization further restricts the application domain of the 3D

reconstruction to high-end processing devices.



Semi-dense voxel grid 61

Figure 4.8: Undesirable holes in reconstructed model from ICL-LR2 trajectory.

4.4 Semi-dense voxel grid

Running-time analysis of the reconstruction framework is a significant performance metric,

many implementations of volumetric fusion such as Izadi et al. (2011) and Steinbruecker et al.

(2014) presume a spatial limitation of the observable environment and achieve efficient memory

utilization by implementing a dense voxel-grid. Modern techniques utilize a truncation function

to identify a proximity of each voxel near the expected iso-surface which allows large-scale

reconstructions and efficient utilization of memory resources. Such truncation produces semi-

dense spatial voxel locations which are eventually stored in a linear memory with the help of a

hash function.

Processing a semi-dense voxel grid with SDF is a robust extension of traditional fusion,

however limiting the number of voxels which satisfy the proximity criteria restricts the

application domain and affect the quality of reconstructed models. In the case of voxel-block

implementation, the resulting 3D model is prone to contain undesirable holes due to close

proximity of the estimated iso-surface and the alignment of the particular voxel-block. These

holes in the reconstructed model are indications of difficulties the rendering system has with

finding the zero-crossing within each voxel-block from the viewing angle, Figure 4.8 illustrates

this phenomenon in which casted rays cannot detect the iso-surface by checking zero-crossing

in SDF values.

Another category of semi-dense voxel grid implementation uses the position of camera

and 3D samples to generate a list of voxel coordinates which satisfy along-the-ray criteria.
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Figure 4.9: Large-scale 3D reconstruction using hashed voxel grid.

The selected voxels are then updated with computed signed distance values, Funk and Börner

(2016) demonstrated the effectiveness of using hashed voxels to store large-scale 3D models

in a real-time scenario. Figure 4.9 highlights the amount of details captured using such hashed

voxel-grid.

In principal, computer programs and algorithms are expected to exhibit memory-processing

trade-off relations. Pre-allocated and bounded dense reconstruction algorithms are usually

faster in terms of processing due to pre-defined memory accesses while modern semi-dense

representation allows boundless reconstruction at the expense of extra calculations for each

memory access. Similarly, the execution time of implementation depends greatly on the type

of representation. Based on aforementioned characteristics, voxel-block based volumetric

representation is preferred over dense and along-the-ray for the actual implementation of the

proposed framework since it allows boundless reconstruction while allowing fewer hashed

address calculation.

4.5 Summary

This chapter provided in-depth theoretical background of underlying implicit representation

and related causes and effects. The concept of fusing SDF values to reduce noise effects is

formally introduced and the rationale behind the convergence of the estimated implicit surface

is presented. Furthermore, properties of semi-dense implementations of voxel-grids such as

voxel-block and along-the-ray are discussed to highlight performance and quality trade-offs.

Provided analytical discussion and core concepts are utilized in developing the core-principle

of the proposed research and are discussed in detail in upcoming chapter.



Chapter 5

Concept and Design

This chapter presents theoretical insights and rationales behind proposed research contributions

which serve as solutions to the overall research question. In Chapter 2, it was discussed

that an efficient 3D reconstruction framework should be able to integrate incremental depth

updates to an existing representation while exhibiting a robust profile to handle depth noise and

outliers. Since these characteristics are fully aligned with the overall research objectives, this

chapter is divided into three sections to focus each characteristic individually while keeping the

underlying rationale distilled.

Initially, a novel least square estimation based alternative to the traditional weighted

integration method is introduced and a recursive form is derived which highlights the flexibility

of the proposed scheme to utilize the quality of depth measurements in an optimal manner.

Secondly, the regularization information is integrated into a least square estimator to handle

erroneous depth measurements by applying the total variation denoising in a recursive manner.

This regularization aspect is shown to produce smoother surfaces using comparatively less input

sample data. Furthermore, a robust outliers removal technique is introduced which targets

isolated and sparse outliers in real-time. Finally, the overall design of the 3D reconstruction

framework is presented which utilizes the proposed contributions to achieve high-quality 3D

models from series of depth and color images.

5.1 Recursive least squares as 3D fusion approach

Curless and Levoy (1996) argued that the optimality of weighted integration and the resulting

63
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iso-surface is equivalent to a least square minimizer system. Although the actual intent of the

provided proof is purely conceptual, their equivalence relation is an important analogy. Based

on this proof, an approximate solution to least square minimizer based integration systems can

be implemented and employed to perform the 3D fusion. In principal, such system is expected

to show similar noise reduction and depth integration characteristics as a weighted SDF fusion.

Furthermore, capabilities of a least square estimator are highly expendable in terms of working

principal such as weighted least squares, linear, non-linear and regularized least squares. These

characteristics provided the needed motivation to develop and implement a novel least square

based integration system.

In order to describe the problem of depth fusion as a least square estimator, the observable

environment is represented as a semi-dense voxel grid as proposed by Rajput et al. (2016)

in which a fixed number of voxel locations (referred to as support) around a 3D sample are

accessed and their SDF values are represented as a standard vector notation. These vectorized

implicit values (written compactly as SDF-signal in upcoming text) are used as input and output

of the linear least square estimator represented by equation

Y = Φx̂+ ν (5.1)

where linear system coefficients Φ are used to estimate x̂ from Y and resulting ν is the

approximation error. Considering a typical scenario where the number of signals n used for

an estimation is greater than support (denoted as m), such system is expected to produce an

approximate solution which satisfies all versions of yi ∈ Y . The aforementioned set of n

input signals, estimated output and system coefficients can be arranged in a matrix notation to

simplify the mathematical representation, and can be written as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

...

yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1

φ2

...

φn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x̂n +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ν1

ν2

...

νn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.2)
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where x̂n is the SDF signal approximated by integrating n instances of noisy SDF signals, and

νn denotes the estimation error which is expected to monotonically decrease with incremental

updates. Such representation of a least squares estimation is computationally expensive since

every new (n + 1)th instance of y and φ are concatenated with existing data and consequently

computation time for underlying mathematical operation grows exponentially. Therefore, a

recursive least square solution is usually employed in practical applications. The mathematical

derivation is described in Section 5.1.1.

In practical applications, the true state of system x is expected to remain unknown, since

every attempt to measure x will further increase the overall estimation error. It is therefore

assumed that importance of ν is insignificant and removal of this term does not affect the overall

system design. Based on the aforementioned characteristics, Equation 5.1 can be reduced to a

minimization problem defined by

min∥Y − Φx̂∥2

Such least squares estimator is expected to produce similar convergent behaviour as a traditional

weighted fusion, however the true potential of such representation is demonstrated in Sections

5.2 where the regularization parameter is introduced to extend the capability of a least square

system to handle depth noise inherently.

5.1.1 Weighted least squares and stardard derivation of ML-Estimate

In order to derive1 a recursive form of a least square estimator from Equation 5.1, the difference

between estimated values x̂ and noisy measurements can be written as

ϵ = Y − Φx̂ (5.3)

A cost function J(x̂) which tries to find the value of x̂ through a minimization process can be

written as:

J(x̂) = ϵT ϵ

= (Y − Φx̂)T (Y − Φx̂)

= Y TY − x̂TΦY − Y TΦx̂+ x̂TΦTΦx̂

(5.4)

1Mathematical derivation of recursive estimator is adapted from Simon (2006) and modified to accommodate
depth estimation.
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Partial derivative of J with respect to x̂ is employed to achieve the necessary vanishing

condition of minimization, that is,

∂J

∂x̂
= −2Y TΦ + 2x̂TΦTΦ = 0

Solving for x̂,

x̂ = (ΦTΦ)−1ΦTY (5.5)

where Φ and Y are augmented matrices and their values can be used from Equation 5.2.

A typical least square estimator applies equal weights to every accumulated measurement,

this weighting mechanism is somehow flawed since it presumes a linear relation between the

measuring depth to the accumulated error. In order to integrate a weighting mechanism in

the least square estimation, a weight value calculated from a respective noise model (e.g. see

Equation 3.1 for Kinect depth sensing) is employed with each measurement yi : 1 ≤ i ≤ n.

Typically, a covariance matrix R containing σ2
i : 1 ≤ i ≤ n for each measurement is used to

reflect the weighting aspect, that is,

R =

⎡⎢⎢⎣
σ2
1 · · · 0
... . . . ...

0 · · · σ2
n

⎤⎥⎥⎦
Equation 5.4 which minimizes the sum of squared differences weighted with weight matrix R

can be written as

J(x̂) = ϵTR−1ϵ =
ϵ21
σ2
1

+
ϵ22
σ2
2

+ · · ·+ ϵ2n
σ2
n

J can be expanded as follows:

J(x̂) = ϵT ϵ

= (Y − Φx̂)TR−1(Y − Φx̂)

= Y TR−1Y − x̂TΦR−1Y − Y TR−1Φx̂+ x̂TΦTR−1Φx̂

(5.6)
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Similarly, minimizing J with respect to x̂ and solving for x̂ yields,

∂J

∂x̂
= −2Y TR−1Φ + 2x̂TΦTR−1Φ = 0

x̂ = (ΦTR−1Φ)−1ΦTR−1Y

(5.7)

The solution of Equation 5.7 exist only when the matrix R is non-singular, i.e. every

measurement yi is corrupted with some degree of noise for the estimation technique to work.

As stated earlier, augmenting Y , Φ and calculating the inverse with each incremental update

is computationally expensive task. Therefore a recursive update algorithm can be formulated

which can utilize the existing system estimate x̂k−1 to compute x̂k without tedious matrix

augmentation and inversion. Such typical linear recursive estimator can be written as,

yk = Φkx+ νk

x̂k = x̂k−1 +Kk(yk − φkx̂k+1)
(5.8)

where φk is a m x m system coefficient matrix for instance k where m is the support of SDF

signal. The correction term (yk − φkx̂k+1) (i.e. transition of x̂k from previous estimate x̂k−1) is

controlled by the estimator gain matrix denoted by Kk having m x m dimensions. Therefore,

the current estimation error is

ϵk = x− x̂k

= x− x̂k−1 −Kk(yk − φkx̂k−1)

= ϵk−1 −Kk(φkx+ νk − φkx̂k−1)

= ϵk−1 −Kkφk(x− x̂k−1)−Kkνk

= (I −Kkφk)ϵk−1 −Kkνk

(5.9)

where I is the m x m identity matrix. The mean of this error can be written as,

E(ϵk) = E(I −Kkφk)E(ϵk−1)−KkE(νk)

A typical least square estimator is expected to exhibit unbiased behavior towards each

measurement. It is therefore assumed that on average, an estimated x̂k and the true value

of x are roughly equal. In principal, an optimal value of gain matrix Kk is expected to reduce
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the aggregated variance of the estimated error, therefore a cost function for such optimality

criterion can be written as:

Jk = E(∥x− x̂k∥2)

= E(ϵTk ϵk)

= E(tr(ϵkϵ
T
k ))

= tr(Pk)

where the trace operator (tr) is applied to the aggregated variance Pk = E(ϵkϵ
T
k ). The value of

the estimation error ϵk from Equation 5.9 can be employed to obtain Pk as follows:

Pk = E(((I −Kkφk)ϵk−1 −Kkνk)((I −Kkφk)ϵk−1 −Kkνk)
T )

= (I −Kkφk)E(ϵk−1ϵ
T
k−1)(I −Kkφk)

T −KkE(νkϵ
T
k−1)(I −Kkφk)

T

− (I −Kkφk)E(ϵk−1ν
T
k )K

T
k +KkE(νkν

T
k )K

T
k

The estimation error computed at time k − 1 is independent of the measurement yk and

respective noise νk at time k, which implies that

E(νkϵ
T
k−1) = E(νk)E(ϵTk−1) = 0

E(ϵk−1ν
T
k ) = E(ϵk−1)E(νT

k ) = 0

By using the weight matrix Rk and the implied estimation-error relation, the expression for Pk

becomes

Pk = (I −Kkφk)Pk−1(I −Kkφk)
T +KkRkK

T
k (5.10)

It is worth mentioning that there exists a strong correlation between the estimation cost J and

the covariance matrix Pk. Since an optimal value of the gain matrix Kk is expected to minimize

the cost function, such minimization can be obtained by differentiating the cost function with



Recursive least squares as 3D fusion approach 69

respect to Kk which can be written and simplified2 as follows:

(
∂Jk

∂Kk

)T

=

(
∂(tr(Pk))

∂t

)T

(
∂Jk

∂Kk

)T

= 2(I −Kkφk)Pk−1(−φT
k ) + 2KkRk

The optimal value of the gain matrix can be obtained by setting the partial derivative to zero

and solving for Kk

Kk = Pk−1φ
T
k (φkPk−1φ

T
k +Rk)

−1 (5.11)

let Sk = φkPk−1φ
T
k +Rk for simplicity, so Kk becomes

Kk = Pk−1φ
T
k S

−1
k (5.12)

The substitution of simplified Kk into Equation 5.10 followed by the expansion as follows:

Pk = (I − Pk−1φ
T
k S

−1
k φk)Pk−1(I − Pk−1φ

T
k S

−1
k φk)

T + Pk−1φ
T
k S

−1
k RkS

−1
k φkPk−1

= Pk−1 − Pk−1φ
T
k S

−1
k φkPk−1 − Pk−1φ

T
k S

−1
k φkPk−1+

Pk−1φ
T
k S

−1
k φkPk−1φ

T
k S

−1
k φkPk−1 + Pk−1φ

T
k S

−1
k RkS

−1
k φkPk − 1

merging the underlined terms into Sk

= Pk−1 − Pk−1φ
T
k S

−1
k φkPk−1 − Pk−1φ

T
k S

−1
k φkPk−1 + Pk−1φ

T
k S

−1
k SkS

−1
k φkPk−1

= Pk−1 − 2Pk−1φ
T
k S

−1
k φkPk−1 + Pk−1φ

T
k S

−1
k φkPk−1

= Pk−1 − Pk−1φ
T
k S

−1
k φkPk−1

= Pk−1 −KkφkPk−1by 5.12

= (I −Kkφk)Pk−1

(5.13)

Since Kk and Pk are inter-related and their values are computed in a recursive manner from

Pk−1 and Hk−1 respectively, the overall least square system is expected to reduce estimation

costs over time. This convergent behaviour of the system is depicted in Figure 5.1 where noisy

synthetic SDF signals are integrated in recursive fashion and compared against the ground truth

model. It is worth mentioning that the derived system has inherent similarities with Kalman

2using the matrix manipulation property that
∂

∂t
(ABAT ) = 2AB when B is symmetric
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Figure 5.1: Mean absolute surface error convergence with incremental fusion.

filter, however it was observed during experimental evaluation that extending the capabilities

of standard kalman filter is not a trivial task. It was therefore decided to use the derived version

instead of standard kalman filter for further evaluation and development. For the sake of

compactness, this recursive least square 3D fusion is referred to as RLSFusion in upcoming

text.

5.1.2 Depth fusion with recursive 3D fusion

Considering the scenario presented in Section 4.3 where two depth measurements of suspected

surface at 11τ units with added depth noise of form N (µ, σ) = N (0.0, 1.0τ) are captured

and represented with TSDF signals (y0 and y1). The resulting error-prone depth measurements

represented with TSDF are shown in Figure 5.2. The recursive solution to the least square

problem from Equation 5.8 can be used in incremental fashion to integrate y0 and y1 to estimate

x̂1. Assuming that n = 7 denotes support of SDF-signal, then the covariance matrix P0 is

initialized as identity matrix of order n x n and x0. Initially, the system presumes that the

provided input instance y0 reflects the nature of the estimated signal accurately, therefore x0

is set to y0. Afterwards, for each new SDF-signal yk the system calculates the estimation

gain matrix and the covariance matrix applying Equations 5.11 and 5.13 respectively. It is

therefore expected that each incremental update yk contributes to the estimation of xk however

the impact of all contribution is decreasing monotonically as the belief of the system grows
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Figure 5.2: Error-prone depth measurements (y0 and y1) represented as one-dimensional TSDF
function.

with each update. Figure 5.3 shows the zero crossing of the resulting xk between y0 and y1.

In order to obtain an un-biased quantitative evaluation of RLSFusion against traditional

weighted fusion, both methods were provided with 200 instances of a synthetic signal with

additive Gaussian noise of form N (µ, σ) = N (0.0, 5.0τ). Figure 5.4 shows the behavior of the

mean absolute surface estimation error converging to the sub-pixel accuracy in both cases.

5.1.3 Properties of RLSFusion

True potential of employing RLSFusion as a substitute to traditional weighted SDF fusion

comes from the fact that the process of SDF signal fusion can be controlled with external

parameters without modifying the volumetric representation or weights. Unlike traditional

fusion method in which incremental weight values are responsible of defining the belief of a

suspected surface, RLSFusion utilizes underlying estimator gain values which can be modified

or reset on-demand. This control of estimator gain values allows the system to accommodate

a sensor noise model, depth noise and localization errors in a convenient way. Following

properties of RLSFusion have been identified using an extensive evaluation:

• Low memory footprint:

In order to highlight the memory footprint of RLSFusion, considering a synthetic
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Figure 5.3: Fused TSDF function with the help of Equation 5.8.

Figure 5.4: Comparison of the convergence between RLSFusion and traditional 3D fusion.
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piecewise 3D and 2D signals from Section 3.3.1 are to be represented in an empty voxel

grid. Since RLSFusion uses underlying system variables such as estimator gain matrix

Kk and covariance matrix Pk to control the estimation process instead of weight values,

the values of these matrices can be stored in simple memory array. Since these system

variables are updated with respect to the number of time an instance is updated, therefore

a single copy of these variables is sufficient. Therefore, the need of storing all the weight

values is unnecessary. This representation of system allows RLSFusion to utilize memory

in efficient manner. Table 5.1 presents a comparative overview of memory utilization by

representing a 2D and 3D synthetic signal with traditional dense, sparse and RLSFusion.

Table 5.1: Comparison of memory consumption (in bytes) among dense, sparse vs RLSFusion.

Dense Sparse RLSFusion

2D Signal 320000 12800 5608

3D Signal 64000000 2560000 1120008

• Controllable gain:

RLSFusion provides a flexible mechanism to control the behavior of fusion with the

help of externally provided weights. Implementation of the proposed RLSFusion uses a

weighting mechanism to control and manipulate the amplitude of the estimator gain to

accommodate less noisy depth measurements. To highlight this capability, a scenario

is considered in which k instances of depth measurements are fused using weighted

integration. This implies that the impact of each incremental update decreases over

time regardless of the quality of measurement. This problem is handled efficiently by

RLSFusion with the help of forcing the system to accommodate updates, Figure 5.5

shows the behavior in which the system is provided with 10 less noisy depth signals at

k = 100. It can be observed that the behavior of the traditional integration method is

inflexible (since weights of the system become more rigid overtime) while RLSFusion

adapts quickly and produces a less overall error due to this adaptation.

Traditional least square estimators use this weighting mechanism to employ exponential

forgetting in which a system can be programmed to focus the estimated state towards

recent updates while ignoring older measurements. Such utilization of weights can

be used to accommodate dynamics of the environment in a real-time volumetric
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Figure 5.5: Capability of RLSFusion to accommodate less noisy measurements.

reconstruction. Since the main focus of this research is to reduce errors in measurements,

this dynamic implementation is left intentionally as a future research direction.

Although proposed RLSFusion shows attractive improvements over traditional methods,

dealing with error-prone depth measurements remained untouched. The upcoming section will

introduce a novel mechanism to integrate smoothness priors as a regularization parameter in a

recursive least square estimator.

5.2 Regularized Recursive Fusion

Section 2.3 discussed the possibility of using external depth smoothing image filters to reduce

depth noise. Graber et al. (2015) argued that unconstrained depth smoothing such as applying

bilateral filtering can degrade depth images by producing stair-case effects since the filter does

not respect the 3D geometry. However, the regularized depth image regularization technique

by Graber et al. (2015) suffers from high computational complexity, therefore employing

such a technique in incremental integration system is infeasible. Calakli and Taubin (2011)

proposed to enforce a regularization constraint which forces implicit values of each voxel to

follow a smooth overall surface. As a result, reconstructed surfaces from regularized SDF

produce smoother surfaces. Since SSDF is a post-processing step, it presumes that existing

measurements are final and all 3D information is properly represented in an octree.
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In principal, capabilities of a least squares estimation based 3D fusion system (such as

RLSFusion) can be extended to handle error-prone depth samples or implicit SDF signals with

the introduction of a regularization constraint. Such regularized system having the properties

of a least square system can be expressed as a minimization problem defined by:

∥Φx̂− Y ∥2 + λ∥g(x)∥2 (5.14)

where g(x) is a penalization function, x̂ is an estimated SDF signal from augmented Y (similar

to RLSFusion) and λ is the regularization parameter which controls the effects of smoothing.

In principal, selecting the penalization function g(x) as a second order finite difference

function allows the system to utilize implicit values from neighbouring elements to obtain

smoother estimations. Similar to RLSFusion, the system is represented in the matrix/vector

notation to utilize modern CPU architectures. Therefore, Equation 5.14 can be re-written as

∥Φx̂− Y ∥2 + λ∥Dx+ C∥2 (5.15)

where D and C matrices are designed to facilitate finite differences. The actual derivation of

D and C matrices is discussed in Section A.1.

Theoretically, this regularized least squares estimator is expected to handle depth noise

inherently since each element of Y is penalized to maintain a low total-variation profile.

The upcoming section derives a recursive formulation of the aforementioned regularized least

square estimator (written compactly as RFusion).

5.2.1 Derivation of regularized least squared 3D fusion

In order to derive a recursive form of the regularized least square estimator from Equation 5.15,

a cost function J(x̂) which transforms the problem in a least square notion can be written as

J(x̂) = min(∥Φx̂− Y ∥2 + λ∥Dx+ C∥2) (5.16)
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The partial derivative of J(x̂) is employed to achieve necessary the minimization condition as:

J(x̂) = 2ΦT (Φx̂− Y ) + 2λDT (Dx̂+ C) = 0

0 = 2ΦTΦx̂− 2ΦTY + 2λDTDx̂+ 2λDTC

0 = (ΦTΦ + λDTD)x̂+ λDTC − ΦTY

0 = (ΦTΦ + λDTD)x̂+ ΦT (
λDTC

ΦT
− Y )

x̂ = (ΦTΦ + λDTD)−1

(
ΦT

(
Y − λDTC

ΦT

))
(5.17)

Let Ŷ =

(
Y − λDTC

ΦT

)
for simplicity, then the regularized least square estimator can be

written as:

x̂ = (ΦTΦ + λDTD)−1ΦT Ŷ (5.18)

where the SDF signal x̂ is estimated from noisy depth measurements and yi : i = 0 ≤ i ≤ k is

augmented in matrix form Y .

As mentioned earlier, augmentation of matrices Φk−1 and Yk−1 for each incremental update

results in computationally expensive calculations. Assuming a recursive successive relation

among incremental updates, then Φ and Ŷ can be written as follows:

Φk =

⎡⎣Φk−1

φ

⎤⎦ Ŷk =

⎡⎣Ŷk−1

ŷ

⎤⎦ andDk =

⎡⎣Dk−1

d

⎤⎦ (5.19)

Equation 5.18 for kth instance can be written as

x̂k = (ΦT
kΦk + λDT

k Dk)
−1φT

k Ŷk

Let Pk = (ΦT
kΦk + λDT

k Dk)
−1 for the sake of simplicity, then using the incremental updates
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property Pk can be simplified as

Pk =

⎛⎝⎡⎣Φk−1

φ

⎤⎦[
Φk−1 φ

]
+ λ

⎡⎣Dk−1

d

⎤⎦[
Dk−1 d

]⎞⎠−1

Pk =
(
ΦT

kΦ + φtφ+ λDT
k D + λdTk d

)−1

Pk =
(
(ΦT

kΦ + λDT
k D) + (φtφ+ λdTk d)

)−1

Pk =
(
P−1
k−1 + (φtφ+ λdTk d)

)−1

P−1
k = P−1

k−1 + (φtφ+ λdTk d)

Pk =

⎛⎝P−1
k−1 +

[
φTφ I

]⎡⎣ I

λdTd

⎤⎦⎞⎠−1

(5.20)

For simplicity assuming B =
[
φTφ I

]
and C =

⎡⎣ I

λdTd

⎤⎦ we get

Pk =

(
P−1
k−1 +BC

)−1

Using matrix inversion lemma

(A+BC)−1 = A−1 − A−1B(I + CA−1B)−1CA−1

Pk = Pk−1 − Pk−1B(I + CPk−1B)−1CPk−1 (5.21)

Equation 5.2.1 with substitution of Pk can be written as follows

x̂k = Pkφ
T
k Ŷk

P−1
k x̂k = φT

k Ŷk

(5.22)

By using the assumption of incremental updates from Equation 5.19, the estimator can be

written as

x̂k = Pk

(
ΦT

k−1Ŷk−1 + φT ŷk

)
(5.23)
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Similarly for (k − 1)th instance

P−1
k−1x̂k−1 = φT

k−1Ŷk−1

Using the value of P−1
k−1x̂k−1 in Equation 5.23 we get

x̂k = Pk

(
φT
k−1Ŷk−1 + φT ŷk

)
x̂k = Pk

(
Pk−1x̂k−1 + φT ŷk

) (5.24)

Substituting the value of Pk from equation 5.20 we get

x̂k =

[ (
P−1
k − (φtφ+ λdTk d)

)
x̂k + φT ŷk

]
=

(
PkP

−1
k − Pk(φ

Tφ+ λdTd)

)
x̂k−1 + Pkφ

T ŷk

= PkP
−1
k x̂k−1 − Pk(φ

Tφ+ λdTd)x̂k−1 + Pkφ
T ŷk

= x̂k−1 − Pk

(
φTφ+ λdTd

)
x̂k + Pkφ

T ŷk

x̂k = x̂k−1 + Pk

[
φŷk − (φTφ+ λdTd)x̂k−1

]
(5.25)

By using the actual value of ŷk the final update equation of RFusion becomes

x̂k = x̂k−1 + Pk

[
φ

(
yk −

λdT c

φT

)
− (φTφ+ λdTd)x̂k−1

]

In principal, RFusion uses Equations 5.2.1 and 5.21 to update the system estimate and

calculate the gain respectively. The value of λ in Equation 5.2.1 which controls the amount of

regularization can be selected as a constant at the time of execution. Since prior smoothing

information is integrated in the overall system design, the system inherently reduces noise

artifacts and provides a faster convergence of the absolute surface error compared to both

traditional weighted fusion and RLSFusion. This fast convergence effect is shown in 5.6 where

the absolute surface error produced by RFusion reached to sub pixel accuracy after fusing 10

instances while both traditional and RLSFusion reached same accuracy after 22 instances. The

rationale behind faster convergence in the case of noisy data is elaborated in the upcoming

section.
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Figure 5.6: Mean absolute surface error convergence with incremental fusion.

5.2.2 Faster Convergence with regularized fusion

Regularized aspect of RFusion takes advantage of neighboring SDF values and introduces

a scalar quantity which reduces overall difference among neighbouring voxel values. This

addition of counter weight is analogous to using a total variation denoising mechanism on

implicit values. Figure 5.6 demonstrates that the proposed RFusion achieves faster convergence

to sub-pixel accuracy, however both traditional and RLSFusion catch up with absolute surface

error eventually. In practical applications, either the sensing equipment is moved across the

environment or the object is moved in-front of the depth sensor. It is therefore unlikely to

capture sufficient depth images for a traditional fusion approach to estimate the surface by

convergence at the same accuracy. Furthermore, traditional visualSLAM algorithms such as

ORBSLAM2 expects sufficient sensor movement in terms of rotation and translation to reduce

the localization error. This inverse relationship severely affects the overall 3D reconstruction

process. Therefore in such case, RFusion can produce high-quality 3D models with the help of

regularized integration while traditional incremental approaches struggles with this situation.

In order to highlight the regularization aspect of RFusion while isolating the effects from

incremental fusion, a set-up similar to Section 4.3 is presumed and two depth measurements

y0 and y1 are recorded and represented as SDF signals. To highlight the potential of RFusion,
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Figure 5.7: Illustration of volumetric regularization and integration process using color coded
voxel values.

a challenging scenario is presumed in which both depth measurements are far-sighted3 which

implies that the estimated implicit surface from traditional integration methods does not reduce

the overall estimation error. Figure 5.8.a shows the erroneous depth measurements and the

acquired iso-surface from traditional weighted fusion.

Figure 5.7 illustrates the intuition behind the proposed regularized integration using a noisy

depth image. Consider a situation in which the volumetric representation (denoted with x) is

updated with a noisy depth update (represented as vectorized SDF signal y). The proposed

system extracts neighboring voxel values and arrange them in a vectorized form (denoted by x1

and x2) followed by applying the proposed regularization constraint to achieve overall smooth

volumetric representation.

In such challenging scenario, RFusion utilizes the underlying total variation denoising

method on SDF values to reduce implicit surface deformities. Figure 5.8.b shows that estimated

iso-surface from RFusion is influenced (more specifically, regularized) with neighboring

implicit values. In principal, the influence of the regularization parameter λ is supposed to

3RFusion is capable of handling various types of noise efficiently, far-sighted measurements are selected purely
to demonstrate the effectiveness.
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decrease with incremental updates. This can be achieved by linking the value of λ with the gain

of the least square estimator. In such case, when the value of λ is equal to 0, the system behaves

similar to RLSFusion and Equation 5.2.1 (containing the recursive version of the proposed

regularized system) is approximately equivalent to Equation 5.8.

To highlight the effectiveness in a practical scenario, 10 depth images with successive

timestamps from ICL-NUIM’s living-room dataset Handa et al. (2014) were selected and

processed with RFusion and traditional volumetric fusion. Figure 5.9 shows the qualitative

comparison between standard 3D fusion in Curless and Levoy (1996) and the proposed

regularized fusion. It is evident from visual inspection of Figure 5.9 that proposed regularized

fusion is reducing noise effects in an efficient manner.

5.3 Outliers removal using spatial information

Section 2.5 introduced the concept of depth outliers and classified them into sparse, isolated and

non-isolated categories. The proposed regularized volumetric 3D fusion method handles the

effects of non-isolated depth outliers, however dealing with sparse and isolated depth outliers

remain a challenging research problem. Traditional approaches which are designed to eliminate

these outliers are not suitable for real-time applications due to cumbersome memory access. In

this section, a novel outliers removal technique SORF is proposed which eliminates sparse and

isolated outliers on the basis of their spatial proximity with respect to expected surface.

The process of outliers detection and removal involves three linear passes on provided 3D

points (denoted by Pi where 0 < i < n). In a first pass, an empty pre-aligned sparse grid Glocal

is initialized and all points are registered into small bounding boxes (referred to as cubes). At

the time of registration, a counter value associated with each cube is incremented. Since the

grid is sparse and preferably implemented with hashed memory access, it is possible to obtain

the list of active cubes Ck where 0 < k < m (where m is the number of all cubes).

In a second pass, each cube in Ck is assessed and labeled as either active or potential

depending upon the counter value. This assessment depends greatly on the spatial dimensions

of the cube and scale of representation, therefore it is presumed that a parameter thresh is

selected to an appropriate value. In empirical analysis, it was observed that a typical cube

representing a 8cm x 8cm x 8cm spatial bounding box should contain at least 30 samples.
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a)a)

b)

Figure 5.8: a) Erroneous depth measurements represented with SDF signals and b) Estimated
SDF signal from traditional incremental methods and RFusion.
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Traditional Traditional

RFusion RFusion

Figure 5.9: Comparison of traditional fusion (upper row) and proposed regularized fusion
(bottom row) after fusing 10 depth images

In practice, the value of thresh is directly correlated with the sensing capabilities of the 3D

sensor. Provided the value of thresh is selected appropriately, this pass identifies isolated and

sparse depth outliers efficiently, however mis-labeling of cubes can occur due to corners or

mis-alignment.

Therefore in a third pass, every potential cube c ∈ Ck is tested on semantic basis (i.e.

sufficient connectivity with active cubes) and the labels are either upgraded to active cubes in

the case of validity criteria or dropped the entry from Ck altogether. Finally, all 3D points from

finalized active cubes list are arranged in a memory array for the volumetric integration.

In order to demonstrate the working principle of SORF in pictorial form, consider a

synthetic surface and corresponding 3D points with added outliers as shown in Figure 5.10.a.

An empty local grid Glocal having similar scale and transformation characteristics as the global

volumetric grid Gglobal is initialized. This equivalence relation between both grids allows

the proposed framework to initialize, access and modify each particular voxel-block without

performing unnecessary conversions. In the first pass, each 3D point is registered and counted

in respective cubes followed by labeling the cubes as either active or potential (shown by green

or yellow blocks, respectively in Figure 5.10.b). It can be noticed that although most of the

cubes are labeled correctly since they satisfy the counting threshold, cubes containing outliers
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a)

b)

Figure 5.10: a) A synthetic surface and corresponding 3D points with additive outliers and b)
Illustrated SORF passes.
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Noisy

PCL-SOR Proposed-SORF

Figure 5.11: Comparison of outliers removal using proposed-SORF vs PCL-SOR

as well as which contain fewer 3D points due to misalignments are labeled as potential. In

the final pass, each potential cube is tested for spatial connectivity with active cubes (this

relation is shown with green arrow from potential cube towards active cube), this spatial

connectivity ensures that isolated cubes are identified and removed from Glocal. Finally, the list

of active cubes coordinates is sent to the next processing stage where volumetric 3D integration

combined with temporal depth updates removes the effects of non-isolated outliers.

A noisy depth image from ICL-NUIM’s living-room dataset Handa et al. (2014) is selected

and processed using statistical outliers removal from PCL Rusu et al. (2008) and the proposed

SORF to compare processing time and effectiveness against outliers. It was found that

the proposed SORF took 15ms to process a standard 640x480 depth image on commodity

computer while the same image took around 600ms when processed with statistical outliers

removal from PCL. This processing speed-up is due to linear nature of the proposed outliers

removal and efficient use of spatial information. Furthermore, it is evident from the visual

inspection of Figure 5.11 that PCL-SOR mis-treated vital 3D points and removed them. This

phenomena can be observed in the highlighted regions where two or more surfaces are joining

together. It is therefore expected that using the proposed-SORF in real-time applications will

remove undesirable outliers on-the-go. This removal of outliers also affects the execution time
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of an overall reconstruction pipeline in a positive direction.

It is worth mentioning that effectiveness of SORF can easily be visualized in qualitative

evaluation (as shown in Figure 5.11), however quantitative evaluation is a non-trivial and

tedious problem involving manual histogram equalization of absolute surface errors.

5.4 3D reconstruction framework

In order to integrate the proposed research contributions in the form of a 3D reconstruction

pipeline, a modular design is preferred over traditional closed system in which components are

strongly interlinked. This modular design enabled rapid prototype development and testing

of incremental algorithmic updates without modifying the complete design of framework.

Processing elements (or modules) are designed to utilize multi-threading aspects of modern

CPU architectures to maximize the processing efficiency. For the sake of compactness, the

upcoming text refers to the proposed reconstruction framework as SmoothFusion. In order

to facilitate the working of SmoothFusion in both the off-line and on-line depth sensing and

reconstruction scenarios, two variants have been developed to facilitate each problem scenario.

Both implemented variants share the core concepts of depth noise removal capabilities

provided by RFusion and outliers removal by SORF. Figure 5.12 shows the block diagrams

of all implemented variants of SmoothFusion.

In the on-line reconstruction scenario where live depth information is acquired with a

simple depth sensor such as Kinect and Kinect v2, the loader module registers a time stamped

depth and color image followed by sharing these images with the Localization module which

tracks camera ego-motion with the help of state-of-the-art visualSLAM algorithm ORBSLAM2

developed by Mur-Artal and Tardós (2015). Since IPS is a sophisticated depth sensing and

navigation system, the need of applying the Localization module for ego-motion tracking is

redundant, therefore captured depth and color image streams can be used directly in upcoming

processing modules. However in an off-line reconstruction scenario, localization information

is acquired by applying ORBSLAM2 and the resulting trajectory along with depth and color

images are stored on a secondary storage device in the standard format as suggested by Sturm

et al. (2012).

Once the sensor is localized in the world coordinate system, the localization information
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combined with depth and color image is considered to be a single processing entity referred

to as input-instance. Pre-processor modules apply appropriate depth scaling and transform

depth images into series of 3D points in the world coordinate system with the help of sensor

pose information. Depth outliers are removed from acquired 3D points by applying proposed

Spatial Outliers Removal Filter. Since the working principle of SORF involves the creation of

axis-aligned voxel-grid containing cubes, the list of active cubes can be utilized in the Fusion

module to create spatial voxel-blocks.

The fusion module uses a hashing function to determine the memory occupancy of each

suspected voxel-block. In principal, inactive or temporally older voxel-blocks are swapped

out from fast acting memory to save resources. Therefore, all active voxel-blocks are loaded

and processed with a regularized least square estimator in a recursive fashion. In principle,

each block is updated at a time, which eliminates the need of storing multiple copies of system

variables such as the gain-matrix for each voxel-block. A dedicated data structure is designed

to facilitate the storage of such information in an efficient manner.

The renderer module applies projective ray-casting to determine iso-surfaces within each

voxel-block and resulting zero crossings are stored as an array of vertex containing spatial and

associated color information. It was observed in the empirical evaluation phase that such vertex

based representation allows real-time visualization. High-quality meshes can be generated

using a standard marching cube algorithm from implicit representation. Since the mesh

extraction step is computationally extensive, postponing this step until all the depth images

are integrated produces hassle-free processing. Furthermore, implicit representation enables

robotic applications to determine the surface of object by using signed distance information (as

suggested in Section 2.1.3).

Figure 5.13 illustrates flexibility of SmoothFusion to handle various sensor types without

changing the underlying pipeline. Consider a scenario in which depth images are encoded

with non-linear depth encoding to facilitate multiple degrees of precision depending upon the

distance of perceived object from the IPS sensor. Although this atypical encoding strategy

is highly effective for encoding depth values from stereo based depth sensor, however state-

of-the-art 3D reconstruction framework does not natively support such encoding. Contrarily,

the loader module of SmoothFusion can be simply programmed to accept such atypical depth

encoding as shown in Figure 5.14.a. Furthermore, the need of using external visualSLAM
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Figure 5.12: Block diagram of SmoothFusion with online and offline processing scenarios.

algorithm is not required since IPS sensor is capable of producing high-quality sensor pose by

fusing IMU measurements with visual ego-motion.

Similar problematic scenario can be observed in the case of stereo camera system in which

the depth image for each instance is not available. Unfortunately, current state-of-the-art

3D reconstruction frameworks do not facilitate direct color image pair captured from stereo

camera system. Contrarily, the modular design aspect of SmoothFusion can be exploited in this

scenario in which the loader module can easily be programmed to perform stereo matching and

depth estimation on-the-go. Such robust profile of SmoothFusion is illustrated in Figure 5.14.b

.

5.5 Summary

This chapter presented a detailed introduction and analysis of proposed research contributions

and evaluated the workings of each contribution against traditional weighted integration.

Proposed contributions and their implementation in the form of 3D fusion and reconstruction

are shown to efficiently to handle sequences of depth and color images. The faster convergence

of absolute surface errors produced by RFusion in error-prone depth samples is highlighted. In
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Figure 5.13: Modular design of SmoothFusion to handle multiple sensors and their respective
3D reconstructed models.

a)

b)

Figure 5.14: a) SmoothFusion with IPS module to use provided sensor pose b) SmoothFusion
with stereo matching module combined with ORB-SLAM2 for real-time processing.
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the upcoming chapter, the proposed reconstruction framework is evaluated against state-of-the-

art methods with actual color and depth image sequences.



Chapter 6

Evaluation

This chapter provides a comparative evaluation of the proposed 3D reconstruction framework

(SmoothFusion) against InfiniTAM and FastFusion which are considered to be state-of-the-art

volumetric 3D modeling techniques (see Section 2.4). Section 4.3.1 presented the relation

between the quality of the reconstructed 3D model and the number of acquired samples.

In practice, restricting the movement and/or velocity of a sensor to a particular degree can

seriously affect the performance of mobile robots. Therefore, this provided comparative

analysis is intended to highlight the ability of the 3D reconstruction method to handle a high

degree of depth noise and fast sensor movements. Furthermore, to achieve diversity in this

empirical evaluation process while avoiding unnecessary repetitive results, one trajectory is

selected from each dataset and acquired assessment results are presented in the form of figures.

The critical evaluation consists of three distinct elements: quantitative assessment (Section

6.1) which employs quality metrics introduced in Chapter 3, qualitative assessment (Section

6.2) which highlights the visual appearance of reconstructed 3D model and running-time

analysis (Section 6.3) which emphasizes the applicability of the 3D reconstruction in real-time

applications. The chapter is concluded in Section 6.4 where the findings are summarized to

highlight the applicability of the proposed framework.

6.1 Quantitative evaluation

Since the ground truth 3D models and sensor trajectories are available for both ICL-NUIM

and CoRBS datasets, it is possible to compute the deviation of reconstructed model against the

91
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ground truth model by applying the quality metric introduced in Chapter 3.

The histograms in Figure 6.1.e and 6.3.g show the normalized error distribution from the

reference ground truth model. The density function basically describes the relation between

registered samples and distances from reference shapes. In principal, smaller overall distances

produces a sharp peak which is located closer with respect to zero in the horizontal axes.

Figure 6.1.a-c demonstrate the registered absolute surface error for each sample represented

with pseudo color coded heat map. It can be observed that lack of any outliers detection

scheme in FastFusion produced undesirable samples which affect the visual appearance of the

reconstructed model. If un-treated, such deformities directly influence the perception of mobile

robotic applications. The error histogram presented in Figure 6.1.e shows that SmoothFusion

produced smaller overall distances, this is achieved by employing regularized 3D fusion on

erroneous depth samples. The cumulative error distribution plot in Figure 6.1.f reveals that

approximately 90 percent of the registered samples resides within the range of 0.5cm when

SmoothFusion is employed. Contrastively, the absolute surface registered in samples from

FastFusion and InfiniTAM achieve 90 percent deviation mark at 0.8 cm and 1.0 cm respectively

in Figure 6.1.f. Finally, Figure 6.1.g illustrates the respective median errors which summarize

overall error classification into a single quantifiable value which shows that processing dataset

with SmoothFusion produced comparatively lower surface errors. Similar observations can be

recorded from 6.2 in which 3D reconstructed model from ICL2 trajectory is presented.

CoRBS dataset trajectories are captured with a Kinect v2 depth sensor which utilizes time-

of-flight depth sensing. The accumulated error in depth samples is therefore comparatively low.

Precise depth information combined with short sensing distances allows high-quality depth

images which produce realistic 3D models. Error histogram and cumulative error distribution

plots in Figure 6.3.g and 6.3.h respectively show that all reconstruction methods performed

adequately in terms of quantitative assessment.

Table 6.1 summarizes the quantitative evaluation performed on 3D models generated from

all trajectories in ICL-NUIM RGBD dataset. In order to maintain an unbiased evaluation,

the effects of outliers have also been excluded from all quantitative evluation. It can be

observed that the error metrics produced by SmoothFusion are comparatively lower for all

four noisy sequences. This noise resistant property of SmoothFusion can play a significant role

in processing highly erroneous depth information such as produced by IPS.
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a) FastFusion b) InfiniTAM

c) SmoothFusion d)

e) f)f)f)

g)

Figure 6.1: 3D reconstruction of noisy depth images from ICL0 trajectory a-c) Pseudo color
coded 3D samples representing absolute surface error from ground truth for the three methods
InfiniTAM, FastFusion and SmoothFusion d) Color scale representing absolute surface error in
a-c, e) Error histogram, f) Cumulative error distribution and g) Median error comparison.
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a) FastFusion b) InfiniTAM

c) SmoothFusion d)

e) f)f)f)

g)

Figure 6.2: 3D reconstruction of noisy depth images from ICL2 trajectory a-c) Pseudo color
coded 3D samples representing absolute surface error from ground truth for the three methods
InfiniTAM, FastFusion and SmoothFusion d) Color scale representing absolute surface error in
a-c, e) Error histogram, f) Cumulative error distribution and g) Median error comparison.
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a) b)

c) FastFusion d) InfiniTAM e) SmoothFusion f)

g) h)h)h)

i)

Figure 6.3: a) Textured ground-truth 3D model, b) color removed to highlight geometry, f)
color scale representing absolute surface error in c,d,e g) error histogram, h) cumulative error
distribution and i) median error comparison.
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Table 6.1: Mean absolute surface error (in mm) for living-room dataset trajectories

Trajectory
Method

InfiniTAM FastFusion SmoothFusion

Clean depth images

LR0 2.067 2.7 2.13

LR1 1.117 1.652 1.844

LR2 11.651 10.61 1.944

LR3 1.766 1.922 1.981

Noisy depth images

LR0 5.307 6.696 2.586

LR1 6.541 5.98 2.799

LR2 13.56 10.655 3.617

LR3 4.831 5.525 2.677

6.1.1 Outliers removal and memory utilization

In the empirical evaluation phase, it was observed that integration of outliers detection and

removal mechanism (i.e. SORF) allowed the overall reconstruction framework to efficiently

use of memory and computational resources. To demonstrate this behavior, 400 instances of

left and right images from KITTI-06 trajectory along with camera position were processed with

and without using the SORF within the proposed reconstruction framework. The utilization

of memory for both variants were recorded after processing each successive image-pair, these

results are illustrated in Figure 6.4 where it is evident that the use of SORF conserves memory.

Evidently, a marginal computational speed-up which is caused due to the removal of outliers

was also recorded. Similar findings were recorded for Mine and ICL2 trajectories and are

presented in Figure 6.5 and Figure 6.6 respectively.

Although the quantifiable assessment provided insights on the ability of 3D reconstruction

frameworks to handle depth noise, in practical applications however, the reference model is

usually not presented. Therefore, visual appearance and smooth surfaces are given priority

over quantifiable measures, such assessment is provided in the upcoming section.



Quantitative evaluation 97

Figure 6.4: Per-frame memory consumption of the reconstruction framework for KITTI-06
trajectory.

Figure 6.5: Per-frame memory consumption of the reconstruction framework for mine
trajectory.
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Figure 6.6: Per-frame memory consumption of the reconstruction framework for ICL-2
trajectory.

6.2 Qualitative evaluation

In order to evaluate the quality of reconstructed 3D models using visual inspection, screenshots

from identical viewing parameters are presented in this section to compare the visual aspects

of 3D models. Following scenarios have been identified and used to compare the performance

of the reconstruction framework:

1. High variance noise: Highly erroneous depth samples are prone to corrupt the implicit

representation, this correlation between depth information and generated surface is

explained in Section 6.1 where un-filtered noisy depth images from ICL living-room

datasets influenced the mean absolute surface error in reconstructed shapes.

2. Low sampling density surfaces: The convergence property discussed in Chapter 4

presumes that sufficient depth samples are provided for a particular surface area to reduce

the effects of depth noise. In case of large-scale reconstruction applications, gathering

enough samples to utilize the convergence property becomes a bottleneck. In empirical

evaluation of trajectories captured from IPS sensor, it was found that on average, each

voxel-block is updated 2-3 times during the reconstruction phase. In such scenarios,
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un-regularized implicit surfaces are prone to produce holes and/or undesirable surface

deformities.

3. Low curvature surfaces: These surface segments are presented to establish a baseline

quality performance among reconstruction frameworks.

In the upcoming text, aforementioned scenarios are referred with a corresponding number

enclosed in circle. For example, Figure 6.8.a with the highlighted area 1 shows a surface

segment where the effects of high variance noise in 3D integration are highlighted. It can be

observed that the reconstructed surface produced by SmoothFusion contains smooth surfaces

even though the depth information is acquired from stereo based depth estimation. Similar

results of noisy depth sample to surface can be observed in Figure 6.13 where SmoothFusion

was able to produce a smoother surface while retaining the fine details in the reconstructed

model. Contrarily, both InfiniTAM and FastFusion were unable to exploit the convergence

property to reduce noise effects.

Figure 6.9 shows effects of a fast moving sensor which result in the situation where voxel-

blocks suffer from low sampling density and produce noisy surfaces (area 2 ). It can be

observed that while InfiniTAM struggles to render the surface from low confidence voxel-

blocks, SmoothFusion applies regularization to achieve planar surfaces for the floor.

Planar and low curvature surfaces in Figure 6.10 are highlighted with 3 to emphasize

that all reconstruction techniques were able to produced smooth or planar surfaces where the

environment and/or sensing scenario is trivial. This visual comparison is provided to establish

a baseline that the proposed regularized fusion is capable of producing highly detailed surfaces

when accurate depth samples are provided. In such cases the value of λ can be initialized to a

very small value or zero.

In order to highlight the generic nature of the proposed contribution, the regularization

mechanism is implemented as a standalone image-based depth noise removal filter (referred

to as Total Variation Regularization (TVR) in upcoming text) and was integrated with both

InfiniTAM and FastFusion. It was observed that addition of TVR module enhanced the

capabilities of both frameworks to handle depth noise in an efficient manner. Findings of such

modified InfiniTAM and FastFusion are presented in Figure 6.7 where it can be observed that

addition of TVR module produced smoother 3D surfaces compared to the original variants (see

Rajput et al. (2018)).
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InfiniTAM InfiniTAM+TVR

FastFusion FastFusion+TVR

Figure 6.7: Effects of employing proposed-TVR smoothing with InfiniTAM (upper row) and
FastFusion (bottom row).

An experimental implementation of the proposed regularization framework which employs

weighted integration of depth images acquired from stereo depth estimation and interpolated

depth image from laser range data. Since existing state-of-the-art frameworks does not

allow multi-sensor fusion, therefore a reconstructed model from an experimental multi-sensor

integration system is compared against depth images acquired from stereo camera system.

Figure 6.12 shows a significant improvement in terms of the quality of the reconstructed shapes.

6.3 Running time analysis

In order to assess the performance of the reconstruction framework in terms of execution

time, a specialized variant of SmoothFusion is implemented which employs denoising on

depth images directly and uses either RLSFusion or traditional weighted fusion as a 3D

integration mechanism. Such implementation utilizes multi-threaded support of modern CPUs

at maximum capability, actual implementation details of this hybrid design can be found in

Rajput et al. (2018).
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Figure 6.8: Reconstructed models from mine dataset captured with IPS
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Figure 6.9: Reconstructed models from corridor dataset captured with IPS
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Figure 6.10: Reconstructed model from LR0 trajectory with clean depth images
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Figure 6.11: Reconstructed model from LR2 trajectory with noisy depth images
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Figure 6.12: Reconstructed model from kitti dataset sequence 06 with two close-up screenshots.
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Figure 6.13: Reconstructed 3D model from electric cabinet trajectory from CoRBS dataset.
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A timing subroutine which determines the execution time of integrating a single depth

image into the volumetric integration in terms of CPU-cycles is employed to estimate execution

time with milliseconds accuracy. Since source-code for both InfiniTAM and FastFusion is

publicly available, an identical code for timing subroutine is utilized.

Figure 6.14.a and 6.14.b show the plot of time taken by each reconstruction method using

mine and ICL-LR1 trajectory to integrate a single instance of a depth and a color image1.

It was found that the processing time of FastFusion strongly correlates with the scale of

reconstruction. Similarly, the application domain of InfiniTAM is limited since it is designed

to utilize the processing capabilities of GPUs. On the contrary, it is evident from Figure

6.14 that the processing time of SmoothFusion is unaffected with the scale of reconstruction.

Furthermore, a CPU based implementation allows mobile robot devices to utilize capabilities

of SmoothFusion in real-time scenarios.

6.4 Summary

In this chapter, the performance of the proposed SmoothFusion is evaluated in terms

of quantitative and qualitative performance metrics to justify the claim of employing

regularization aspects of least square systems to reduce sample noise. Quantitative assessment

compared the performance of reconstructed models in terms of low-level statistical quality

measures such as median and mean. The assessment is then summarized in a high-level metric

where error histograms and cumulative error distributions are employed to represent underlying

statistical data. In cases where reference 3D models for comparison were not available, visual

aspects of reconstructed models are compared and detailed screenshots are presented. Finally,

a single frame execution time analysis is performed to highlight the real-time property of the

proposed framework on mobile robotic applications.

1InfiniTAM does not employ color information
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a)a)

b)

Figure 6.14: Per-frame processing time in large scale environment for mine dataset (a) and
small scale synthetic environment LR1 (b) (lower is better)



Chapter 7

Conclusion and Future work

Existing 3D fusion schemes which integrate depth information acquired from 3D sensors in

an incremental fashion utilize traditional weighted fusion which was introduced in 1996 by

Curless and Levoy (1996). Initially, the technique is proposed to integrate range images

acquired from accurate depth sensors. However the general concept of weighted integration

is still present as-is in state-of-the-art reconstruction frameworks. Since there is a variety

of depth sensors available, there exists a strong correlation between accuracy of perceived

depth’s and the cost of the sensing unit. Therefore, utilizing a integration system which was

originally proposed for range images on low accuracy depth images is prone to either produce

undesirable surface deformities in reconstructed models or restricts the sensor movement to

achieve multiple depth samples to estimate the depth information.

In Chapter 2, fundamental problems of error-prone 3D samples and their effects in

reconstructed models are introduced and the rationale behind the use of a priori information is

provided to produce smooth and life-like surfaces in reconstructed 3D models. It was concluded

that employing smoothness constraints at the time of approximation can reduce noise effects,

however existing 3D shape estimation methods capable of employing a priori smoothness

information on 3D samples does not allow incremental updates to the underlying reconstructed

model. Contrarily, existing incremental 3D volumetric fusion techniques are not designed to

support the concept of prior smoothing.

This thesis presents a novel 3D fusion framework specifically tailored to address the

fundamental question of 3D shape reconstruction from error-prone depth information by the

integration of prior smoothing constraints. In principal, it is intuitive to presume that contours
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of reconstructed surfaces follow planar properties. This assumption is analogous to the fact that

on smaller intervals the derivative of a continuously changing function can be approximated

with a straight line.

It is worth mentioning that although the proposed system is capable of producing high

quality 3D models, however the effects of localization can still effect the reconstructed models.

In order to handle the erroneous effects caused by localization error, an on-line version of

the proposed framework is created which creates two copies of global voxel grid (referred as

primary and secondary grids). The secondary voxel grid (which is not shown to user) is updated

once bundle adjustment is done using previously saved depth and color images. Once the

updation process is finished on secondary grid, the primary grid is swapped with secondary grid

followed by rendering stage. However, it is postulated that an another representation method

(such as point-based representation) can also be used to make this process more robust.

Chapter 4 presented the in-depth analysis of traditional weighted integration methods

and highlighted potential areas of improvement. Chapter 5 provided novel contributions

specifically designed to handle erroneous 3D samples and depth outliers with the help of a novel

outliers removal filter and regularized 3D fusion system respectively. The proposed research

contributions are implemented in the form of a reconstruction framework and its comprehensive

evaluation is performed in terms of a quantitative and qualitative assessment, subsets of findings

are provided in Chapter 6.

The proposed 3D reconstruction framework in this thesis makes three original scientific

contributions to the computer vision and robotics field:

1. The most significant contribution is the novel least square estimation based 3D

integration system capable of employing regularization as a smoothing constraint to

handle erroneous depth information.

2. A novel recursive formulation of a regularized 3D fusion estimator which approximates

second order differences among neighbouring implicit voxels to reduce total variation

and produce a smoother reconstructed model.

3. A robust spatial outliers removal filter (SORF) having a linear complexity (O(n)) capable

of removing 3D outliers in real-time.
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Robotic applications which involve spatial perception and understanding can utilize

aforesaid contributions to reconstruct high-quality 3D shapes. Furthermore, generic aspects of

the proposed framework combined with a robust computational profile allows further flexibility

in selection of the depth sensor. It is therefore expected that the presented research will provide

a positive addition in low-cost robotic applications.

7.1 Future Directions

The generic nature and a robust computational profile of the proposed 3D reconstruction

framework allow the usability in numerous active robotic applications. The following sections

outline some suggestions for integrating this research to cutting edge research in computer

vision and robotics.

7.1.1 Adaptive depth denoising

In an empirical evaluation, it was observed that although applying prior smoothing constraints

in the form of λ produced fruitful outcomes and controlling the λ parameter with gain can

produce significant improvements. These temporal updates of a regularization parameter do

not accommodate non-linear depth noise. Therefore, an implementation of RLSFusion which

accepts a noise function as input parameter instead of a single value at the time of execution

will allow the framework to handle depth noise efficiently and accelerate the convergence of

the absolute surface error.

7.1.2 Automated scene understating

Since the underlying representation of the proposed framework is in the form of semi-

dense voxel blocks with implicit values, computer vision and robotic applications specially

those which employ Signed Distance Function as representation can benefit from the smooth

implicit representation. Notably, 2D and 3D visualSLAM algorithms (Fossel et al. (2015) and

Canelhas et al. (2013)) which utilize SDF representation to assist localization estimation can

use regularized implicit surface to enhance the accuracy of localization. As shown in Chapter

6 that a new outliers removal filter combined with total variation denoising are capable of

producing smooth implicit surfaces. Such continuous representation can further enhance the
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localization process.

Furthermore, smooth 3D surfaces acquired from the regularized fusion framework has

the potential in assisting the perception phase of miniature mobile robots in an autonomous

scenario. Accurate surface boundaries of obstacles acquired from the proposed framework can

be used to calculate accurate distances between a particular object and the robot.

7.1.3 Efficient data structure for large environments

The proposed framework is designed to handle large scale environments with the help of hashed

voxel-blocks in which temporally non-active blocks are swapped out from fast acting memory

to accommodate latest updates. However such swapping can become a bottleneck in scenarios

in which the sensor is mounted on a robotic vehicle and velocity and/or trajectory of the robot

cause repetitive memory swapping. Therefore, an efficient data structure or representation

technique is required which can reduce memory bandwidth and storage. Steinbruecker et al.

(2014) implemented the concept of incremental meshing in which voxel blocks are represented

as polygonal meshes to reduce the memory foot-print, however such conversion is inherently

computationally expensive and degrades the real-time performance of 3D fusion approaches.
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Chapter A

Appendix

A.1 Formulation of D and C matrices

D and C matrices are used to approximate the second order difference for particular voxel

location given the SDF signal. For the sake of notation simplicity, it is presumed that voxel-

grid is represented in 2D. Therefore, each cell and respective neighboring cells can be accessed

by their respective spatial information (i.e. row and column values in case of 2D). For each

voxel value ak (where 0 ≤ k ≤ support) in the SDF-signal v, assuming that i and j are index

values of row and column respectively for accessing ak in Equation (A.1), finite difference in

vector form can be written as

∇ak =

⎡⎢⎢⎢⎢⎢⎣
∇xx

∇yy

∇xy

∇yx

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
∇xx

∇yy

∇xy

∇yx

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
a(i− 1, j)− 2a(i, j) + a(i+ 1, j)

a(i, j − 1)− 2a(i, j) + a(i, j + 1)
a(i+1,j+1)−a(i+1,j)−a(i,j+1)+2a(i,j)−a(i−1,j)−a(i,j−1)+a(i−1,j−1)

2

a(i+1,j+1)−a(i+1,j)−a(i,j+1)+2a(i,j)−a(i−1,j)−a(i,j−1)+a(i−1,j−1)
2

⎤⎥⎥⎥⎥⎥⎦ (A.1)

Elements of Equation (A.1) can be separated depending upon whether the elements are
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available in the incident ray which is currently being fused or in neighboring cell. The separated

elements can then be written using multiple matrix form as

∇ak = Dkv + Ck (A.2)

where

Dk =

⎡⎢⎢⎢⎢⎢⎣
−2 1 0 ... 0

−2 0 0 ... 0

1 0.5 0 ... 0

1 0.5 0 ... 0

⎤⎥⎥⎥⎥⎥⎦

Ck =

⎡⎢⎢⎢⎢⎢⎣
a(i− 1, j)

a(i, j − 1) + a(i, j + 1)
a(i+1,j+1)−a(i+1,j)−a(i−1,j)−a(i,j−1)+a(i+1,j+1)

2

a(i+1,j+1)−a(i+1,j)−a(i−1,j)−a(i,j−1)+a(i+1,j+1)
2

⎤⎥⎥⎥⎥⎥⎦
Dk and Ck matrix in Equation (A.2) are only valid1 for ak (where k = 1). However by using

the same method, composite D and C matrices can be formulated and written as

∇v =

⎡⎢⎢⎢⎢⎢⎣
∇a1

∇a2

...

∇an

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
D1

D2

...

Dn

⎤⎥⎥⎥⎥⎥⎦ v +

⎡⎢⎢⎢⎢⎢⎣
C1

C2

...

Cn

⎤⎥⎥⎥⎥⎥⎦

∇v = Dv + C (A.3)

Matrix C from Equation (A.3) is used in the later stages of RFusion to incorporate the integrated

smoothing.

1Values of D and C matrices are calculated at run time. Actual formulation depends upon the angle of ray
from camera, size of SDF-signal etc.



Bibliography 131

A.2 Technical Requirements

Actual implementation of proposed contributions and complete framework is carried in modern

C++ programming language using object oriented constructs to ensure that final design is

modular and extendable in cross-platform development and deployment environment to ensure

compatibility in Windows and Linux operating systems. The final implementation have been

tested to work on a desktop computer having following specifications:

• Intel Core i7-4790

• 8 GB RAM

• Windows 7 (64-bit) and Linux 14.04 operating system.

Functionality of following softwares and open-source libraries are utilized in

implementation:

• Softwares

– MeshLab

– CloudCompare

– GNUPlot

– CMake

• Open-source C++ libraries

– OpenCV

– OpenVDB

– Eigen

– OpenGL

– Pangolin

– Boost
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