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Abstract

We introduce Mobius invariant objects — discrete holomorphic quadratic differentials to con-
nect discrete complex analysis, discrete integrable systems and geometric rigidity. Discrete holo-
morphic quadratic differentials parametrize the change of the logarithmic cross ratios of planar
discrete surfaces under infinitesimal conformal deformations. We show that on planar triangu-
lated disks, there is a one-to-one correspondence between discrete holomorphic quadratic differen-
tials and discrete harmonic functions modulo linear functions. Furthermore, every discrete holo-
morphic quadratic differential yields an S!-family of discrete minimal surfaces via a Weierstrass
representation. It leads to a unified theory of discrete minimal surfaces, establishing connections
between the integrable systems approach, the curvature approach and the variational approach to
discrete minimal surfaces. Considering discrete holomorphic quadratic differentials on surfaces in
Fuclidean space results in a notion of triangulated isothermic surfaces. Triangulated isothermic
surfaces can be characterized in terms of circle pattern theory and the theory of length cross
ratios. This notion opens the door to develop discrete integrable systems on surfaces of arbitrary
combinatorics.

Zusammenfassung

Wir fithren mobiusinvariante Objekte — namlich diskrete holomorphe quadratische Differen-
ziale — ein, um diskrete Funktionentheorie, diskrete integrable Systeme und geometrische Starrheit
zu verbinden. Diskrete holomorphe quadratische Differenziale parametrisieren die Anderung der
logarithmischen Doppelverhéltnisse von ebenen diskreten Flachen unter infinitesimalen konfor-
men Verformungen. Auf ebenen triangulierten Scheiben gibt es einen eindeutigen Zusammenhang
zwischen diskreten holomorphen quadratischen Differenzialen und diskret harmonischen Funk-
tionen modulo lineare Funktionen. Jedes diskrete holomorphe quadratische Differential liefert
iiber eine Weierstraf-Darstellung eine S'-Familie von diskreten Minimalflichen. Dies fiihrt zu
einer einheitlichen Theorie diskreter Minimalflichen, wobei eine Verbindung zwischen dem Ansatz
iiber integrable Systeme, dem Kriimmungsansatz und dem Variationsansatz fiir diskrete Mini-
malflichen hergestellt wird. Diskrete holomorphe quadratische Differenziale auf Flachen im euk-
lidischen Raum fithren zum Begriff triangulierter isothermer Oberflichen. Triangulierte isotherme
Flachen kénnen mittels Kreismustertheorie und der Theorie der Langendoppelverhltnisse charak-
terisiert werden. Dieser Begriff er6ffnet eine Moglichkeit, diskrete integrable Systeme auf Flachen
beliebiger Kombinatorik zu entwickeln.
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CHAPTER 1

Introduction

Discrete differential geometry concerns structure-preserving discretizations in differential ge-
ometry. It studies discrete objects, represented by a finite number of variables, that are not only
approximations of smooth objects but possess similar properties. The goal of discrete differential
geometry is to establish a discrete theory with rich mathematical structures in such a way that
the classical smooth theory arises in the limit of refinement of the discrete one.

Structure-preserving discretizations in differential geometry has a long history. In 1813
Cauchy obtained a classical result in geometric rigidity that two convex polytopes in Euclidean
space with congruent faces are equal up to a rigid motion. In 1950 Sauer studied discrete pseu-
dospheres and their rigidity [61] in order to illustrate the analogy between the discrete surface
theory and the smooth theory. In the meantime linear discrete complex analysis were developed
by Ferrand [23], McNeal [49] and Duffin [22] by discretizing the Cauchy-Riemann equations. In
1985 Thurston proposed to approximate conformal mappings by circle packings, which motivated
the development of nonlinear discrete complex analysis.

Discrete differential geometry is not merely of theoretical interest, but is of practical impor-
tance for numerical implementations. For example, the notion of discrete pseudospheres provides
a discretization of the sine-Gordon equation [5], which is crucial to quantum field theory. On
the other hand, discrete complex analysis is applied to the Ising model and the dimer model in
statistical physics [67]. Furthermore discrete differential geometry motivates efficient algorithms
to tackle problems in Computer Graphics [41, 69] and provides tools for architectural design
[57].

However, a lot of these structure-preserving discretizations seem isolated from each other,
though their continuum limits are closely related. A natural question is whether there is a unified
theory behind all these structure-preserving discretizations, which is the guiding question of this
thesis.

By considering infinitesimal deformations of discrete surfaces, we establish connections be-
tween various structure-preserving discretizations: discrete surface theory, geometric rigidity,
discrete complex analysis and discrete integrable systems. A link between all these topics is via
a Mobius invariant notion — discrete holomorphic quadratic differentials.

DEFINITION 1.1. Given a non-degenerate realization z : V' — C of a planar mesh M =
(V,E,F), a function ¢ : E;;; — R defined on unoriented interior edges is a discrete holomorphic
quadratic differential with respect to z if for every interior vertex i € Vs

0 ZZQm
j

0= aij/(z — z)
j

where the summation is taken over all the vertices adjacent to vertex 1.

Theorem 1.2. Given a non-degenerate realization z : V. — C of a planar mesh M = (V, E, F),
suppose w : V. — C is obtained via a Mdobius transformation of z, i.e.

b
w:az—l— for some a,b,c,d € C and ad — bc # 0.
cz+d

Then a function q : Fipy — R is a holomorphic quadratic differential with respect to z if and only
if it is a holomorphic quadratic differential with respect to w. Here we assume that no vertices of
w are at infinity.
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PROOF. Since Mobius transformations are generated by Euclidean transformations and in-
versions, it suffices to consider the inversion in the unit circle or

w=1/z.

Suppose > ;%5 =0 for an interior vertex i. Then we have
Do/ (wy—w) = =2y =2y /(=) = =2 Y a4/ (25— ).
J J J J
Thus the claim follows. ([l

Discrete holomorphic quadratic differentials are closely related to discrete conformality of
planar meshes, namely circle pattern theory and the theory of length cross ratios. They pa-
rametrize the change of the logarithmic cross ratios under infinitesimal conformal deformations.
We briefly outline how discrete holomorphic quadratic differentials are related to several discrete
theories.

Discrete minimal surfaces: Minimal surfaces are ubiquitous in nature. For example they
arise as soap films. A surface in Euclidean space is minimal if it is a critical point of the total
area. There are various discretizations in Computer Graphics. Particularly in the spirit of discrete
differential geometry, Bobenko and Pinkall introduced circular minimal surfaces via the integrable
systems approach [4] while Bobenko, Pottmann and Wallner suggested conical minimal surfaces
via the curvature approach [10].

We prove that each discrete holomorphic quadratic differential on a simply connected mesh
yields an S!'-family of discrete minimal surfaces via a Weierstrass representation (Theorem 3.15).
These discrete minimal surfaces include circular minimal surfaces and conical minimal surfaces
as special cases.

Linear discrete complex analysis: Here discrete holomorphic functions are based on Cauchy—
Riemann equations [34]. They are related to Kirchhoff’s circuit laws and were applied to tilings
of rectangles into squares [16].

Taking the real part of a discrete holomorphic function yields a discrete harmonic function
in the sense of the cotangent Laplacian. In contrast to the smooth theory, harmonicity of func-
tions are not preserved under Mobius transformations because of the Euclidean formulation of
the cotangent Laplacian. However, it is surprising that the space of discrete holomorphic qua-
dratic differentials is in fact isomorphic to the space of discrete harmonic functions modulo linear
functions (Theorem 2.14).

Nonlinear discrete complex analysis: William Thurston proposed to use circle packings in
order to approximate conformal maps. Rodin and Sullivan proved the convergence of the analogue
of Riemann maps for circle packings [60]. There are further extensions, such as Schramm’s
orthogonal circle patterns [65].

We show that for an orthogonal circle pattern there is a canonical discrete holomorphic
quadratic differential. Furthermore, the discrete minimal surfaces in the corresponding associated
family are critical points of the total area (Theorem 3.36). It is for the first time we have examples
that are within the variation approach and the curvature approach to discrete minimal surfaces
and possess integrable structures.

Discrete integrable surfaces: Several classes of surfaces in differential geometry were shown
to possess integrable structures. They are related to solitons in some partial differential equa-
tions. Bobenko and Pinkall [4] considered discrete Lax representations of isothermic surfaces and
introduced quadrilateral isothermic surfaces, whose quadrilaterals have factorized cross ratios.
This leads to a theory of discrete surfaces via an integrable systems approach.

Generalizing discrete holomorphic quadratic differentials to discrete surfaces in Euclidean
space yields a notion of triangulated isothermic surfaces (Lemma 4.6). We show that by adding a
diagonal to each quad, quadrilateral isothermic surfaces, introduced by Pinkall and Bobenko, sat-
isfy our notion of triangulated isothermic surfaces. Moreover we show that triangulated isother-
mic surfaces can be characterized in terms of the theory of length cross ratios (Theorem 4.4) and
circle pattern theory (Theorem 4.5).
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Geometric rigidity: Mapping the vertices of a graph into space with prescribed edge lengths
is a central problem in rigidity theory. It concerns the stability of mechanical structures, with
applications in molecular structures [73].

One way to study the infinitesimal rigidity of a discrete surface f : V' — R3 is to consider its
self-stresses. A self-stress of f is a function k : E;,; — R such that for every interior vertices

D kii(fi = fi) =0,
J

which can be regarded as tension acting along edges and balanced at interior vertices. We show
that if the vertices of f lie on a sphere, there is a one-to-one correspondence between self-stresses of
f and discrete holomorphic quadratic differentials on the stereographic projection of f (Corollary
4.27).

In the following sections, we discuss the historical background of discrete harmonic functions.
We derive discrete harmonic functions from Dirichlet’s principle [55] and illustrate their relations
to the Cauchy-Riemann equations. We then study their properties under Mobius transformations
in order to motivate the notion of discrete holomorphic quadratic differentials.

1.1. Notations
We start with some notations of discrete surfaces and discrete differential forms.

DEFINITION 1.3. A discrete surface is a cell decomposition of a surface M = (V, E, F), with
or without boundary. The set of vertices (0-cells), edges (1-cells) and faces (2-cells) are denoted
as V, E and F. Furthermore, we write V;,; as the set of interior vertices and FE;,; as the set of
interior edges.

Given a discrete surface M = (V, E, F') with boundary, the dual cell decomposition is de-
noted by M* = (V* E* F*). The boundary vertices and boundary edges of M correspond to
unbounded faces and unbounded edges of M*. Without further notice we assume that all surfaces
under consideration are oriented.

DEFINITION 1.4. A non-degenerate realization of a discrete surface M in R™ is a map f :
V — R"™ and f; # f; for every edge {ij} € E. We say f is strongly non-degenerate if the image
of the vertices of every face is not contained in any affine line.

Given two complex numbers z1, z9 € C we write
<Zl, 22> = Re(leg).

We make use of discrete differential forms from Discrete Exterior Calculus [21]. Given a
discrete surface M = (V, E, F), we denote E the set of oriented edges and Ej,; the set of interior
oriented edges. An oriented edge from vertex ¢ to vertex j is indicated by e;;. Note that e;; # ej;.

DEFINITION 1.5. A function w : E — R is a (primal) I-form if
w(eij) = —w(eji) Veij € E
It is closed if for every face ¢ = (vo,v1,...,v, = vg)

1
W(€i7i+1) = 0

n

Il
o

i
It is ewact if there exists a function u : V' — R such that for e;; € E
w(el-j) = Uj — U; == du(elj)

One can verify that exactness implies closedness while the converse holds if the discrete
surface is simply connected.

Similarly we consider a 1-form 7 : Ejnt — R on the dual cell decomposition M* = (V*, E* F*)
of M and call 7 a dual 1-form on M. We denote e;; the dual edge oriented from the right face
of e;; to the left face. The following notions are natural if we think of a dual 1-form on M as a

1-form on M*.
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DEFINITION 1.6. A function 7: E* — R is a dual 1-form if
T(ef;) = —7(ej;) Vei; € E*.

It is closed if for every interior vertex i € Vi,

It is exact if there exists Z : F — R such that
dZ(efj) =Ly, — Ly, = T(Q;j)
where ¢; denotes the left face of e;; and ¢, denotes the right face.

We distinguish dual 1-forms from primal 1-forms. Firstly, the closedness conditions are
different. The closedness conditions are imposed on faces for primal 1-forms while they are
imposed at vertices for dual 1-forms. Secondly, a discrete notion of the Hodge star operator is
needed to identify 1-forms with dual 1-forms. In Discrete Exterior Calculus [21] one often uses
the Hodge star operator, which maps a primal 1-form w to a dual 1-form *w via

*w(ej;) = —(cot Ljki + cot Zilj)w(e;;) V{ij} € B
with respect to some discrete metric, which is an assignment of edge lengths for triangulated
surfaces (see Figure 1.1). Given a dual 1-form 7 and a primal 1-form df, we occasionally write

7(e3;) = kizdf (eij)
for some k : E;; — R. Here we think of it as 7 = k' x df for some k' : E;,; — R.

1.2. Discrete harmonic functions and the cotangent Laplacian

Discrete harmonic functions were introduced on the square lattice by Ferrand [23], McNeal
[49] and Duffin [22] in terms of discrete Cauchy-Riemann equations. This notion was later
generalized to triangular meshes and led to the cotangent Laplacian, which is central to linear
discrete complex analysis. A convergence result of discrete harmonic functions was recently given
by Skopenkov [66]. Tt is intriguing that discrete harmonic functions appear in various contexts
[71] and have applications in statistical mechanics [67].

Following [55], we derive discrete harmonic functions by considering the finite-element ap-
proximation of the Dirichlet energy. Then we discuss a couple of observations on discrete har-
monic functions in order to motivate their associated Mobius invariants — discrete holomorphic
quadratic differentials (Definition 1.1).

A smooth function u on a bounded domain €2 C C is harmonic if it satisfies a second order
differential equation
u  0%u
— + =5 =0.
ox?2  Oy?

Instead of solving the partial differential equation, we can obtain harmonic functions by means
of a variational approach. From Dirichlet’s principle, we know that if u satisfies

Au=0 onf

Au =

with boundary condition
u=g¢g on Of)

then u can be obtained as the minimizer of the Dirichlet’s energy
Ep(v) ::/ | grad v|*d A
Q

among smooth functions v € C*°(§2) such that v = g on S

Dirichlet’s principle for smooth harmonic functions motivates a definition of discrete harmonic
functions. Since we are interested in objects with finitely many variables, we need to discretize
the domain and the functions. We assume we have a realization z : V' — C of a triangulated
surface M = (V, E, F') with finite vertices in the complex plane, as a parametrization of a bounded
domain. Suppose we consider a function v : V' — R defined at vertices and extend it piecewise
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linearly to triangular faces v : VU F — R. For each face, its gradient grad, v is constant, which
yields grad, v : ' — C given by
vi(zk — 25) + vj(zi — 2k) + k(25 — i)

2Aijk

(gradz U)ijk =1

satisfying
((grad, v)ijk, 2 — 2i) = Re((grad, v)ijr(z; — 2i)) = v; — v;.
With the above formula, we define the Dirichlet energy of v as in the smooth theory

Ep(v) = Z |(grad, v) x| > Aiji

ijkeEF
_ Z vizk — 25, (grad, v)ie) + vz — 2k, (grad, v)ijx) + vi(z; — 2, (grad, v);jk)
ijkeF AAijn
1 1
=3 Z (cot Zjki + cot Zilj)|v; — vil* + B Z (cot Zjki)|v; — vi|?
1JEEint ijEE

where A;j; denotes the signed area of the triangle {ijk} under the realization z. Note that
the triangulated surface is oriented. If a non-degenerate triangle is mapped in an orientation—
reversing fashion then the area A;;, and the angles are considered to be negative. In particular,
if neighboring triangular faces do not overlap, then all the triangle areas have the same sign.

Theorem 1.7. Given a realization of a triangulated surface M = (V| E, F) with boundary in the
plane such that neighboring triangular faces do not overlap, the Dirichlet energy is either strictly
convex or strictly concave on the affine space of functions v : V. — R with prescribed boundary
values.

PROOF. Since neighboring triangular faces do not overlap, all the triangle areas have the
same sign. Assuming they have positive sign, we show that the Dirichlet energy is strictly convex
on the affine space of functions v : V' — R with some prescribed boundary values.

Let vg be any function with the prescribed boundary values. For any other functionv : V- — R
with the prescribed boundary values we consider v’ := v — vy, which vanishes on the boundary.
Since the Dirichlet energy Ep(v) is quadratic in v, we have

ED(U) = ED(U/) + Lvo (’Ul)

where L,, is an affine function. Hence, Ep is strictly convex on the affine space of functions
with the prescribed boundary values if and only if Ep is strictly convex on the space of functions
vanishing on the boundary.

Because all the face areas are positive, we know Ep > 0. Suppose v’ is a function vanishing
on the boundary and Ep(v') = 0. Then it implies grad v' = 0 and hence v’ = 0. Since Ep(v') is
a quadratic form in v/, Ep is strictly convex on the space of functions vanishing on the boundary
and the claim follows. O

Corollary 1.8. For a realization of a triangulated surface with boundary in the plane such that
neighboring triangular faces do not overlap, there always exists a unique minimizer of the Dirichlet
energy Ep among all discrete functions v : V. — R with prescribed boundary values.

Lemma 1.9. A function u : V — R is a minimizer of Ep(v) among v :V — R with v =g on
boundary vertices Vi, if and only if for each interior vertex i

|v=u =0

Z(cot Zjki+ cot Zilj)(uj — u;) = Do
j 1
and u =g on Vj.

DEFINITION 1.10. Given a planar triangular mesh z : V. — C, a function v : V. — R is
harmonic if for every interior vertex 4

Z(cot Zjki+ cot Zilj)(u; —u;) =0

j
where {ijk} and {jil} are two neighboring faces sharing edge {ij} (Figure 1.1).
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FIGURE 1.1. Two oriented triangles sharing edge {ij}.

We are going to relate discrete harmonic functions to Cauchy-Riemann equation. Suppose
z 'V — C is a strongly non-degenerate planar triangular mesh. It induces a realization of its
dual mesh z* : V* — C where 27} is the circumcircle of the triangle z;z; 2.

Theorem 1.11. Given a strongly non-degenerate realization z : V. — C of a simply connected
triangulated surface. A function v : V. — R is discrete harmonic if and only if there exists a
function v : V* — C such that the discrete Cauchy-Riemann equation is satisfied
Wi — Us Viir — Vs
LY AL I

R . * _ *
Zj T & Rijk — %jil

Here we call v a conjugate harmonic function of u.

PROOF. Suppose u satisfies the discrete Cauchy-Riemann equation. Then for every interior
edge {ij}

1
zi(cot Zjki+ cot Zilj)(u; — u;).

Hence )
0= Zk:(“ijk — vjit) = B zj:(cot Zjki 4 cot Zilj)(u; — u;).
J
Conversely, suppose u is a discrete harmonic function. Then there exists a function v : V* —
R such that .
Vijk — Vjil = i(COt Zjki+ cot Zilj)(u; — u;).

Consequently, the pair of functions u,v satisfy the discrete Cauchy-Riemann equation. [l

1.3. Mobius transformations of planar triangular meshes

We consider Mobius transformations, which are conformal bijective maps of the extended
complex plane C := C U {oo}. Every Mobius transformation ¢ : C — C can be written as a
fractional linear transformation

az+b

for some a,b,c,d € C with det CCL Z # 0.

Applying a Mobius transformation ¢ to the vertices of a planar triangulated surface z : V —
C, we obtain another realization w := ¢ o z. Notice that vertices of w are connected by straight
line segments according to the combinatorics of z. Hence in general, angles between the edges
segments are not preserved:

Lzizjzg # Lwwiwy,  V{igk} € F.

In particular, a function u is harmonic on z does not implies it is harmonic on every Mdbius
transformation of z, which differs from the smooth theory that the composition of a harmonic
function with a Mobius transformation is always harmonic.
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2V = wi=goz:V=0C

However, there is an interesting observation concerning the maximum principle of discrete
harmonic functions. A classical result on smooth harmonic functions is that they satisfies the
maximum principle: a smooth harmonic function on a bounded domain attains its maximum
and minimum on the boundary. A similar result holds for discrete harmonic functions if the
triangular mesh is Delaunay.

DEFINITION 1.12. A strongly non-degenerate planar triangular mesh z : V' — C is Delaunay
if it satisfies the empty circle property: for every face {ijk} € F, there is no vertex other than
i, j, k lying inside the circumcircle of {ijk}.

Theorem 1.13. Suppose the realization z : V. — C of a finite triangular mesh is Delaunay.
Then the mazimum principle holds: a discrete harmonic function on z attains its mazimum and
minimum on its boundary.

PROOF. Since the realization is Delaunay, two neighboring triangles do not overlap and
share the same orientation. Thus without loss of generality we assume all triangles are positively
oriented under the realization. Furthermore, the empty circle property implies that

0< Zjki+ Zilj <7
for every interior edge {ij} and hence
L . sin(Zjki + Zily)
1.1 cot Zjki + cot Lilj = ————= > 0.
(1.1) gre+ I = Sin Zjki sin Zilj

Suppose u is harmonic and reaches a local maximum at an interior vertex i we have

0= (cot Zjki + cot Zilj)(u; — u;) <0
J
and hence we obtain a contradiction unless u is constant. Thus, the maximum principle holds. [J

In the above argument, a crucial step to the maximum principle is that the cotangent co-
efficients are either all positive (1.1) or all negative. Generally such property is not preserved
under Mobius transformations of the realization. However, if we consider inversion in the circles
far from the mesh, then the empty circle property is preserved and the maximum principle still
holds. It is intriguing that although the definition of discrete harmonic functions involves Eu-
clidean structure, i.e. angles between straight segments, there seems to be a property related to
Mobius geometry.

In Chapter 2 we show that in fact each discrete harmonic function corresponds to a Mobius
invariant object — discrete holomorphic quadratic differential [45]. In particular, we study infin-
itesimal conformal deformations of planar triangular meshes in the sense of both circle pattern
theory and the theory of length cross ratios. Under these infinitesimal deformations, the log-
arithmic changes of cross ratios give discrete holomorphic quadratic differentials. Interpreting
infinitesimal conformal deformations in terms of si(2,C) yields a Weierstrass representation of
discrete minimal surfaces.

In Chapter 3, we define two types of discrete minimal surfaces whose cell decompositions
are arbitrary [43]. These two types of discrete minimal surfaces are conjugate to each other and
generalize earlier notions of discrete minimal surfaces: circular minimal surfaces, s-isothermic
minimal surfaces and conical minimal surfaces. We show that each discrete minimal surface
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corresponds to a discrete holomorphic quadratic differential on a planar mesh. Furthermore we
show that all discrete minimal surfaces in certain associated families, obtained from isothermic
quadrilateral meshes and Schramm’s orthogonal circle patterns, are critical points of the area
functional.

In Chapter 4, we study a class of triangulated surfaces in Euclidean space which have similar
properties as isothermic surfaces in differential geometry [46]. It is based on a generalization
of discrete holomorphic differentials on planar meshes to surfaces in Euclidean space. Isother-
mic triangulated surfaces can be characterized either in terms of circle patterns or conformal
equivalence of triangle meshes. This definition generalizes isothermic quadrilateral meshes.

In Chapter 5, we focus on the integrable structures of P-nets, a particular class of isothermic
triangulated surfaces. We derive their Christoffel transformations, Darboux transformations and
Calapso transformations. The aim of this chapter is to lay a foundation for integrable structures
on isothermic triangulated surfaces and a unified theory of discrete constant mean curvature
surfaces.
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CHAPTER 2

Holomorphic vector fields and quadratic differentials on
planar triangular meshes

Consider an open subset U in the complex plane C =2 R? with coordinates z = 414y together
with a holomorphic vector field

0
Y=f—.
f@x
Here Y is a real vector field. It assigns to each p € R? the vector f(p) € C = R?. We do not

consider objects like % which are sections of the complexified tangent bundle (T R?)C.
Note f : U — C is a holomorphic function, i.e.

. 1[of  .of

Let t — g; denote the local flow of Y (defined for small ¢ on open subsets of U with compact
closure in U). Then the euclidean metric pulled back under g; is conformally equivalent to the
original metric:

gifk<7> = e2u<’>

for some real-valued function u. The infinitesimal change in scale u is given by
1
U= idivY =Re(f.).

Note that % is a harmonic function:

’llzg - O
On the other hand, differentiating @ twice with respect to z yields one half the third derivative
of f:

. 1
Uzy = ifzzz-

It is well-known that the vector field Y corresponds to an infinitesimal Md&bius transformation
of the extended complex plane C if and only if f is a quadratic polynomial. In this sense f,,,
measures the infinitesimal “change in Mobius structure” under Y (Mdbius structures are also
called “complex projective structures” [27]). Moreover, the holomorphic quadratic differential

q:= fzzz dz*

is invariant under Mobius transformations ®. This is equivalent to saying that ¢ is unchanged
under a change of variable ®(z) = w = £ + in whenever ® is a Mébius transformation. This is
easy to see if ®(z) = az + b is an affine transformation. In this case

dw=adz
d 1d
dw  adz
and therefore 5
Y=Ff a—f
with
f=af

Thus we indeed have 3
fwww d’LU2 = fzzz d22~

A similar argument applies to ®(z) = % and therefore to all Mobius transformations.

9
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For realizations from an open subset U of the Riemann sphere CP' the vanishing of the
Schwarzian derivative characterizes Mobius transformations. The quadratic differential ¢ plays a
similar role for vector fields. We call ¢ the Mébius derivative of Y.

An important geometric context where holomorphic quadratic differentials arise comes from
the theory of minimal surfaces: Given a simply connected Riemann surface M together with a
holomorphic immersion g : M — $? C R? and a holomorphic quadratic differential ¢ on M, there
is a minimal surface F': M — R? (unique up to translations) whose Gaul map is g and whose
second fundamental form is Regq.

In this chapter we provide a discrete version for all details of the above story. Instead of
smooth surfaces we work with triangulated surfaces of arbitrary combinatorics. The notion of
conformality will be that of conformal equivalence in terms of length cross ratios as explained in
[9]. Holomorphic vector fields will be defined as infinitesimal conformal deformations.

There is also a completely parallel discrete story where conformal equivalence of planar
triangulations is replaced by preserving intersection angles of circumcircles. To some extent we
also tell this parallel story that belongs to the world of circle patterns.

This chapter is based on [45]. The discussion of planar triangular meshes here serves an
introduction to isothermic triangulated surfaces in Chapter 4.

2.1. Discrete conformality

In this section, we review two notions of discrete conformality for planar triangular meshes.

We are interested in discrete conformality that is preserved under Mobius transformations.
This requirement will certainly be met if we base our definitions on complex cross ratios: Given
a triangular mesh z : V' — C, we associate a complex number to each interior edge {ij} € Fjns,
namely the cross ratio of the corresponding four vertices (See Figure 1.1)

(zj — 21)(zi — 21)

crzﬂ-j =

Notice that cr, ;; = cr, j; and hence cr, : E;,; — C is well defined. It is easy to see that two
realizations differ only by a M&bius transformation if and only if their corresponding cross ratios
are the same. In order to arrive at a more flexible notion of conformality we need to relax the
condition that demands the equality of all cross ratios. Two natural ways to do this is to only
require equality of either the norm or alternatively the argument of the cross ratios. This leads
to two different notions of discrete conformality: conformal equivalence theory [48, 69] and circle
pattern theory [65].

Note that for the sake of simplicity of exposition we are ignoring here realizations in C where
one of the vertices is mapped to infinity.

2.1.1. Conformal equivalence. The edge lengths of a triangular mesh realized in the
complex plane provide a discrete counterpart for the induced Euclidean metric in the smooth
theory. A mnotion of conformal equivalence based on edge lengths was proposed by Luo [48].
Later Bobenko et al. [9] stated this notion in the following form:

DEFINITION 2.1. Two realizations of a triangular mesh z,w : V' — C are conformally equiv-
alent if the norm of the corresponding cross ratios are equal:

|er, | = |ery |,
i.e. for each interior edge {ij}
(2 — 20)l[(zi — 2| _ [(w; — wi)|[(wi — wi)|
(2 = 2)ll(z = 25)| [(wr = wi)|(wr — wy)]|

This definition can be restated in an equivalent form that closely mirrors the notion of
conformal equivalence of Riemannian metrics:

Theorem 2.2. Two realizations of a triangular mesh z,w : V. — C are conformally equivalent
if and only if there exists u: V — R such that

wituj

lw; —wi| = e 2 |z — 2.
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PROOF. It is easy to see that the existence of u implies conformal equivalence. Conversely,
for two conformally equivalent realizations z,w, we define a function ¢ : E — R by

Tij

lw; —w;| = e |z; — 2.

Since z,w are conformally equivalent o satisfies for each interior edge {ij}
Ojk — Oki + 0y — 015 = 0.
For any vertex i and any triangle {ijk} containing it we then define

Wi = Okit0ij —0jk

Note the vertex star of 7 is a triangulated disk if 7 is interior, or is a fan if 7 is a boundary vertex.
Hence the value u; defined in this way is independent of the chosen triangle. O

2.1.2. Circle patterns. Given a triangular mesh realized in the complex plane we consider
the circumscribed circles of its triangles. These circles inherit an orientation from their triangles.
The intersection angles of these circles from neighboring triangles define a function ¢ : E;,; —
[0, 27) which is the argument of the corresponding cross ratio:

(2.1) ¢ij = Arg(crs ij).

FI1GURE 2.1. The intersection angle of two neighboring circumscribed circles

Based on these angles we obtain another notion of discrete conformality which reflects the
angle-preserving property that we have in the smooth theory.

DEFINITION 2.3. Two realizations of a triangular mesh z,w : V' — C have the same pattern
structure if the corresponding intersection angles of neighboring circumscribed circles are equal:

Arg(cer, ;j) = Arg(cry,ij),
i.e. for each interior edge {ij}

(25 —z)(zi —2) (w; — wg)(w; —wy)
A (26— 20) (21 — 25) (w — wi)(wr — wy)

Just as conformal equivalence was related to scale factors u at vertices, having the same
pattern structure is related to the existence of certain rotation angles « located at vertices:

Theorem 2.4. Two realizations of a triangular mesh z,w : V. — C have the same pattern
structure if and only if there exists a: V — [0,27) such that
Wi — W; _ eiai;“j Zj — Zi '
|w; — wi |2 — 2l
PrROOF. The argument is very similar to the one for Theorem 2.2. In particular, the existence
of the function « easily implies equality of the pattern structures. Conversely, assuming identical
pattern structures we take any w : E — R that satisfies
wj — W; _ e’iwz‘j Zj — Z; .
|wj — wil |2) — zil
For any vertex ¢ and any triangle {ijk} containing it we define «; € [0, 27) such that

eiai _ ei(wki+wij —wjk)
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Note the vertex star of 7 is a triangulated disk if 7 is interior, or is a fan if 7 is a boundary vertex.
Hence having the same pattern structure implies that the value «; is independent of the chosen
triangle. 0

2.2. Infinitesimal deformations and linear conformal theory

We linearize both of the above notions of discrete conformality by considering infinitesimal
deformations. This allows us to relate them to linear discrete complex analysis, based on the
discrete Cauchy-Riemann equation (Section 1.2).

DEFINITION 2.5. An infinitesimal conformal deformation of a realization z : V. — C of a
triangular mesh is a map 2 : V' — C such that there exists u : V' — R satisfying
Rezj _Zz _ <ZJ —2.:7;,2’]‘ —Zi> _ ’LLZ+’LL]

25 — % ‘Zj —Zi|2 2

We call u the scale change at vertices.

DEFINITION 2.6. An infinitesimal pattern deformation of a realization z : V. — C of a
triangular mesh is a map 2 : V' — C such that there exists a : V' — R satisfying
Im 25— % _ <2:’j — Zi, i(Zj — ZZ)> _ Q; + Q;
Zj — %4 |Zj—Zi|2 2

We call a the angular velocities at vertices.

EXAMPLE 2.7. The infinitesimal deformations 2 := az? + bz + ¢, where a,b,c € C are
constants, are both conformal and pattern deformations since
Zi— %
2 = (az; + b/2) + (azj + b/2).
Zj — Z;
Infinitesimal conformal deformations and infinitesimal pattern deformations are closely re-
lated:

Theorem 2.8. Suppose z : V. — C is a realization of a triangular mesh. Then an infinitesimal
deformation z : V. — C is conformal if and only if i% is a pattern deformation.

PrOOF. Notice
<2.:j — Zi, Z5 — Zi> o <7,ZJ — ZZ“Z(ZJ — Zl)>
PR |25 — zil?
and the claim follows from Definition 2.5 and 2.6. [l

2.2.1. Infinitesimal deformations of a triangle. Let z : V — C be a realization of a tri-
angle mesh and 2 an infinitesimal deformation. Up to an infinitesimal translation 2 is completely
determined by the infinitesimal scalings and rotations that it induces on edges. These infini-
tesimal scalings and rotations satisfy certain compatibility conditions on each triangle. These
conditions involve the cotangent coefficients well known from the theory of discrete Laplacians.
As we will see in section 2.2.2, for conformal deformations (as well as for pattern deformations)
the infinitesimal scalings and rotations of edges are indeed discrete harmonic functions.

We consider a non-degenerate triangle with vertices z1, 22,23 € C. In the following i, j, k
denotes any cyclic permutation of the indexes 1,2, 3. The triangle angle at the vertex i is denoted
by B;. We adopt the convention that all 3, 82, 83 have positive sign if the triangle z1, 22, 23 is
positively oriented and a negative sign otherwise. Suppose we have an infinitesimal deformation
of this triangle. Then there exists o;;,w;; € R such that

(22) Z.Ij — Zl = (Uij + iwij)(zj — Zz)
The scalars 0;; and w;; describe the infinitesimal scalings and rotations of the edges. They satisfy
the following compatibility conditions.

Lemma 2.9. Given 05, w;; € R the following statements are equivalent:
(a) There exist ; such that (2.2) holds.
(b) We have

(23) 0 = (012 -+ iw12)(22 — Zl) -+ (0'23 -+ iWQg)(Zg — 2,’2) -+ (0'31 + iwgl)(zl — 2’3).
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(c¢) There exists w € R such that
iw = iwaz + i cot B (031 — 012)
= iws1 + i cot Ba(012 — 093)
= w2 +icot f3(023 — 031).

(d) There exist o € R such that

o = 093 + i cot By (iws1 — iwia)
= 031 + i cot B (w2 — iwa3)
= 012 + i cot f3(iwas — iwsy).

PROOF. The relation between (a) and (b) is obvious. We show the equivalence between (b)
and (c). With A denoting the signed triangle area we have the following identities:

= (i(z; — 2i), 2 — ),
24 = (i(z; — i), 26 — 7)),
(i(z = 20),i(z) — 20)) = (25 — 20, 25 — 2)-
Using these identities and z3 — 22 € spang{i(z1 — 23),i(22 — 21)} we obtain
(2.4) z3 — 22 = cot(B3)i(22 — 21) — cot(B2)i(z1 — z3).
Cyclic permutation yields
21 — 23 = cot(B1)i(23 — 22) — cot(Ba)i(z2 — 21),
zg — 21 = cot(B2)i(21 — 23) — cot(B1)i(zz — 22).
Substituting these identities into Equation (2.3) we obtain
0= 01<COt(,63) (22 — z1) — cot(Ba)i(z1 — 23)) + wa3i(z3 — 22)
+ o2 ( cot(B1)i(zs — z2) — cot(B3)i(z2 — 21)) + wari(z1 — 23)
+ o3( cot(B2)i(z1 — 23) — cot(B1)i(z3 — 22)) + wizi(z2 — 21)
= (w1 +cot Bi(og — 03))i(23 — 22)
+ (w2+cotﬁg o3 — 01 ) i(z1 — 23)
+ (w3+cotﬂ3 o1 — 09 )
Using the fact that A1, g, A3 € C satisfy
Ai(z3 — z2) + Aoi(z1 — 23) + Azi(2z2 — 21) =0,

if and only if A\; = A2 = A3, we establish the equivalence of (b) and (c¢). The equivalence of (b)
and (d) is seen similarly by eliminating i(z; — z;) in (2.3) instead of (z; — z;). O

2’2*21

The quantity w above describes the average rotation speed of the triangle. Similarly, it can
be verified that o above satisfies

O = —

R
where R denotes the circumradius of the triangle. Thus o signifies an average scaling of the

triangle.

2.2.2. Harmonic functions with respect to the cotangent Laplacian. In complex
analysis conformal maps are closely related to harmonic functions. If a conformal map preserves
orientation it is holomorphic and satisfies the Cauchy-Riemann equations. In particular, its real
part and the imaginary part are conjugate harmonic functions. Conversely, given a harmonic
function on a simply connected surface then it is the real part of some conformal map.

A similar relationship manifests between discrete harmonic functions (in the sense of the
cotangent Laplacian) and infinitesimal deformations of triangular meshes. Discrete harmonic
functions can be regarded as the real part of holomorphic functions which satisfies a discrete
analogue of the Cauchy-Riemann equations (Theorem 1.11). In particular, a relation between
discrete harmonic functions and infinitesimal pattern deformations was found by Bobenko, Mercat
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and Suris [11]. Integrable systems were involved in this context. We extend their result to include
the case of infinitesimal conformal deformations.

Theorem 2.10. Let z : V — C be a simply connected triangular mesh realized in the complex
plane and h : V — R be a function. Then the following are equivalent:

(a) h is a harmonic function with respect to the cotangent Laplacian, i.e. using the notation
of Figure 1.1, for all interior vertices i € Vi,y we have

(2.5) Z(cot Zjki 4+ cot Zilj)(h; — h;) = 0.
J
(b) There exists an infinitesimal conformal deformation %z : V. — C with scale factors given
by h. It is unique up to infinitesimal rotations and translations.
(¢) There exists an infinitesimal pattern deformation iz : V. — C with h as angular velocities.
It is unique up to infinitesimal scalings and translations.

PrROOF. We show the equivalence of the first two statements. The equivalence of the first
and the third follows similarly.

Suppose h is a harmonic function. Since the triangular mesh is simply connected, equation
(2.5) implies the existence of a function @ : F — R such that for all interior edges {ij} we have
ZL:JUk — i(;}jil = i((COt 4]]4371 + cot Z’Ll]))(hj — hz)

Here @ is unique up to an additive constant and is the conjugate harmonic function of h. Using
w we define a function w : £ — R via
Z.O.)ij = i&;ijk — 1cot Z]k‘l (hj — hz)

Lemma 2.9 now implies that there exists z : V' — C such that
. . hi+h; .
(Zj — ZZ) = < 5 J +zwij) (Zj — Zz)

This gives us the desired infinitesimal conformal deformation of z with h as scale factors.

To show uniqueness, suppose 2,2’ are infinitesimal conformal deformations with the same
scale factors. Then Zz — 2’ preserves all the edge lengths of the triangular mesh and hence is
induced from an Euclidean transformation.

Conversely, given an infinitesimal conformal deformation Z with scale factors h. We write

Z'Ij — Zl = (hz—;h] + iwi]) (Zj — Zl)

for some w : F — R. Lemma 2.9 implies that there is a function w : F' — R such that

id}ijk = iwij + ¢ cot Z]k’é (hj - hz)

We have
id)ijk — i(bjil = i(COt Z]]’CZ + cot lej)(h] — hz)
and
> (ot Zjki + cot Zilj)(h; — hs) = 0.
J
Therefore h is harmonic. (]

2.3. Holomorphic quadratic differentials

In this section, we show that on a simply connected triangular mesh, there is a one-to-
one correspondence between discrete holomorphic quadratic differentials and discrete harmonic
functions modulo linear functions. In this context, discrete holomorphic quadratic differentials
are the changes of logarithmic cross ratios under infinitesimal conformal deformations. It reflects
the property in the smooth theory that holomorphic quadratic differentials parametrize Mobius
structures on Riemann surfaces [27, Ch. 9].
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As introduced in Definition 1.1, a discrete holomorphic quadratic differential on a planar
triangular mesh z : V' — C is a function ¢ : E;,+ — R defined on interior edges satisfying for
every interior vertex ¢ € V¢

Z qi; =0,
J

D> ais/dz(ei;) =0

where dz(e;j) == zj — 2;.

We first show how to construct a discrete holomorphic quadratic differential from a harmonic
function. Given a function v : V' — R on a realization of z : V' — C of a triangular mesh M. If
we interpolate it piecewise-linearly over each triangular face, its gradient is constant on each face
and we have grad, v : F — C given by

(grad, u);ji = iuidz(ejk) +ujdz(e:) + updz(eqy)

Note that we ignore here the non-generic case (which leads to the vanishing of the area) where
the triangle degenerates in the sense that its circumcircle passes through the point at infinity.
Also note that for a non-degenerate triangle that is mapped by z in C in an orientation reversing
fashion the area A;ji is considered to have a negative sign. Granted this, one can verify that the
gradient of u satisfies

((grad, w)ijk, dz(e;;)) = uj —u; V{ij} C {ijk} € F.
We define u, : FF — C by
1
Uy 1= §gradz U.
and the dual 1-form du, : E:m — Con M by
du(ej;) = (uz)ijr — (uz)ji

where {ijk} is the left face and {jil} is the right face of the oriented edge e;;.

Lemma 2.11. Given a function v : V — R on a realization of a triangular mesh z : V. — C, we
have

duz(e;‘j)dz(eij)
:%Z(Cot Zkij (u — uj) + cot Zigk (u — ;) + cot ZUji (g — ug) + cot Zjil (uy — uy)).
which is purely imaginary (Figure 1.1).
PROOF. Since
((grad, u)ijk, dz(eij)) = u; — ui = ((grad, u)ju, dz(ei;)),
we have
Re(du(e};)dz(eij)) = 0.
On the other hand, using equation (2.4) we get
Re(du, (efj)idz(eij))
= Re(((uz)ijr — (uz)ja)idz(ei;))
=(((grad, u);;k, cot ZLkij dz(e;r) — cot Lijk dz(ex:))
+ ((grad, w) i, cot Lljidz(e;) — cot Ljil dz(ey;)))/2
1
:§(cot Zkij (ug — uj) 4 cot Zijk (uy — w;) + cot Z1ji (w; — ;) + cot Zjil(w — u;)).

Hence the claim follows. O
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Lemma 2.12. Given a realization z : V. — C of a triangular mesh. A function u : V — R is
harmonic if and only if the function q : E;,y — R defined via

igi; = du (€] )dz(e”)

is a holomorphic quadratic differential.

PrROOF. Note ¢ is well defined since

iqij = duz(ej;)dz(e;j) = du.(e};)dz(eji) = igji.

It holds for general functions v : V' — R that
Re(ig) =0
Z“ﬁ]/d'z (eij) Zduz ” =0 Vie& Vip.
J
We know from Lemma 2.11 that for every interior vertex ¢ € Vj,¢
Ziqij = Z du(ej;)dz(eij) = % Z((cot Zjki+ cot Zilj))(u; — u;).
J J J

Hence, u is harmonic if and only if ¢ is a holomorphic quadratic differential. (I

Lemma 2.13. Let z : V — C be a realization of a simply connected triangular mesh. Given a
function q : E;py — R satisfying for every interior vertex i € Vi,

Z zqw/dz(ew) == 0,
J
there exists a function u : V — R such that for every interior edge {ij}
igij = duz(e; )dz(eu)
PROOF. We consider a dual 1-form 7 on M defined by
7(e5;) = iqi;/dz(es ).
Since M is simply connected and
ZT(e;‘j) = Ziqij/dz(eij) =0
J J
there exists a function h : F' — C such that
dh(e:}) = hijk — hjil = T(e;(j).
It implies we have Re(dh(e*)dz(e)) = Re(ig) = 0 and
w(eij) = (2hij, dz(eij)) = (2hja, dz(ei;))
is a well-defined R-valued 1-form. Since the triangular mesh is simply connected and for every
face {ijk}
w(e;j) +wlejr) +wler) =0,
there exists a function u : V' — R such that for every oriented edge e;;
du(eij) =Uj — Uy = w(eij).
It can be verified that
1
h = §gradzu = Uy.
Hence we obtain
iqij = 7(ej;)dz(es5) = dh(ej;)dz(ei;) = dus(ej;)dz(ei;)
for every interior edge {ij}. O
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Theorem 2.14. Suppose z : V — C is a realization of a simply connected triangular mesh. Then
any holomorphic quadratic differential q : E;ny — R is of the form

igij = duz(efj)dz(eij) Veij € Eing
for some harmonic function u:V — R.

Furthermore, the space of holomorphic quadratic differentials is a vector space isomorphic to
the space of discrete harmonic functions modulo linear functions.

PROOF. The first part of the statement follows from Lemma 2.12 and Lemma 2.13. In order
to show the second part, it suffices to observe that

du, =0 < gradu=a < du=(a,dz) < u={(a,z)+b
for some a,b € C. O

In previous sections, we showed that every harmonic function corresponds to an infinitesimal
conformal deformation. The following shows that discrete holomorphic quadratic differentials
parametrize the change in the intersection angles of circumscribed circles.

Theorem 2.15. Let z: V — C be a realization of a simply connected triangular mesh. Suppose
u:V — R is a discrete harmonic function and 2 is an infinitesimal conformal deformation with
u as scale factors. Then we have
1cr i .
du,dz = —=—= = ——

N 2cr, 2 0
where ¢ : Eine — R denotes the change in the intersection angles of neighboring circumscribed
circles.

hi+h;

PrROOF. We write (2; — 2;) = (=5~ +1iw;j)(2; — 2;). Applying Lemma 2.11 we have

C.I‘Z’ij/ Cry ij :iwjk — Wk + Wi — iwlj
=i(cot Zkij(up — u;) + cot Lijk(up — u;) + cot Llij(w — w;) + cot Zjil(u — uj))
= — 2du.(e;j;)dz(eq;).
The equality
Tz _ id
cry
follows from Equation (2.1). O

2.4. Conformal deformations in terms of End(C?)

In this section we show how an infinitesimal conformal deformation gives rise to a discrete
analogue of a holomorphic null curve in C3. Later we will see that the real parts of such a
“holomorphic null curve” yields a Weierstrass representation of discrete minimal surfaces.

Up to now we have mostly treated the Riemann sphere CP' as the extended complex plane
C = CU{oo}. In this section we will take a more explicitly Mobius geometric approach: We will
represent fractional linear transformations of C by linear transformations of C? with determinant
one. Actually, the group of Mébius transformations is

M&h(T) = PSL(2, C) 2 SL(2,C) /().

However, since we are mainly interested in infinitesimal deformations and any map into PSL(2, C)
whose values stay close to the identity admits a canonical lift to SL(2,C), we can safely ignore
the difference between PSL(2,C) and SL(2,C).

Given a realization z : V' — C of a triangular mesh we consider its lift ¢ : V — C2

- (3)

and regard the realization as a map ¥ : V — CP! where

m::c(i):w].
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The action of a Mobius transformation on the Riemann sphere is given by a matrix A €
SL(2, C), which is unique up to sign:

o] = [Ag].

Before we investigate infinitesimal deformations we first consider finite deformations of a
triangular mesh ¥ : V — CP!. Given such a finite deformation, the change in the positions
of the three vertices of a triangle {ijk} can be described by a Mdbius transformation, which is
represented by G, € SL(2,C). They satisfy a compatibility condition on each interior edge {i;}
(see Figure 1.1):

(Gijrthi] = [Gjail,
[Gijrtdj] = [Ga;).
Suppose now that the mesh is simply connected. Then up to a global Mobius transformation the

map G : F — SL(2,C) can be uniquely reconstructed from the multiplicative dual 1-form defined

as
G(efj) = Gg_zllGUk
G(er;) is defined whenever {ij} is an interior edge and we have

Gler) = G(e,) L

ij ji
Moreover, for every interior vertex ¢ we have

H Gle};) =1.

The compatibility conditions imply that for interior each edge {ij} there exist X;;;, Aij,; € C\{0}
such that

G(ej;)i = Nijithi,

G(ef;)¥j = Nij ;-
Since Aj,i Aij; = det(G(ej;)) = 1, we have

Xij = Niji = 1/ Nij 5.
Because of G(ef;) = G(ef;) ™" we know

Xij = Niji = 1/ Xjii = Ajie
Hence A defines a complex-valued function on the set E;,; of interior edges.
We now show that for each interior edge \;; determines the change in the cross ratio of the

four points of the two adjacent triangles. Note that the cross ratio of four points in CP! can be
expressed as

_ det(yr, ¥;) det(thr, i)
det (¢, ¥x) det (v, 1)
Lemma 2.16. Suppose we are given four points (], [, [¥x], ] € CP' and G € SL(2,C) with
G = A
G = M
for some A € C\{0}. Then the cross ratio of the four new points
Wil =[Gl . Wyl=1Gw] . Wl =[G] . [ =[]

Cf([%]v [wk]v [wl]v ['(/}l])

is given by

cr([ihy], [Wx], [l []) = ex (805, [u), [, () / A2,
ProOOF.
ce e e det(Gy, Giby) det (v, Gi)
det(G;, Gy) det (G, )
= cr([e], [¥a], [vil, [a]) /A%, O
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We now can summarize the information about finite deformations of a realization as follows:

Theorem 2.17. Let U : V — CP! be a non-degenerate realization of a simply connected tri-
angular mesh. Then there is a bijection between finite deformations of ¥ in CP! modulo global
Moébius transformations and multiplicative dual 1 forms G : Ef , — SL(2,C) satisfying for every

wnt
interior vertex ©
* —
H Glej;) =1
J

and for every interior edge
G(efj) = G(e;i)_l»

G(GZ)% = )\;1%7
G(ei;)v; = Nijj.
Here A : Eyy — C\{0}. We denote by cr: E;py — C the cross ratios of ¥ and ¢t : Eyyy — C the
cross ratios of a new realization described by G. Then

cr = cr /A%

In particular,

[A\|=1 = the deformation is conformal.

Arg(\) =0 = the deformation is a pattern deformation.

Suppose we have a family of deformations described by dual 1-forms G, : E;‘nt — SL(2,C)

with Gg = I. By considering 7 := %|t=0 G we obtain the following description of infinitesimal
deformations:

Corollary 2.18. Let ¥ : V — CP? be a realization of a simply connected triangular mesh. Then
there is a bijection between infinitesimal deformations of ¥ in CP' modulo infinitesimal Mébius
transformations and dual 1 forms n: Ee — s1(2,C) satisfying for every interior vertex i

(2.6) S nfer;) =0

and for every interior edge
n(ei;) = —n(ef),
n(ei;) i = —piji,
n(ei;) s = wijj-
Here p: Eipy — C. We denote by cr : E;y — C the cross ratios of W and cr : E;ny — C the rate
of change in cross ratios induced by the infinitesimal deformation described by n. Then
e
H= 2cr’

In particular,

Re(u) =0 = the infinitesimal deformation is conformal,

Im(p) =0 = the infinitesimal deformation is a pattern deformation.

Note that given a mesh, the 1-form 7 is uniquely determined by the eigenfunction p. We
now investigate the constraints on p implied by the closedness condition (2.6) of 7.
Consider the symmetric bilinear form (,) : C? x C? — sl(2,C)

(¢, p)v := det(¢,v)p + det(p, v)d.
For v; # 1; € C* we define

1
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The matrix m;; is independent of the representatives of [14;], [1;] € CP' and we have

mi; = —Myji,
mij s = —;,
My = ;.

Using the representatives ; = ( le ) we obtain

77(%‘) —m(¢zv¢J)

_ Mg 2 + Zj —22’1'2:]‘
Z5 — X 2 —Zi T Zj

Hence

(2.7) Zn(efj) =0 Zﬂij =0 and Zﬂij/(zj —z)=0.

In particular, if p is real-valued, then it is a discrete holomorphic quadratic differential.
We now consider the Pauli matrices

0 1 0 10
n=(10) cem(h0) (0 )

which form a basis of sl(2,C). Then

n(el) =~ (1= zizg)on + i1+ z2))00 + (21 + 2;)0).

7

If we now identify sl(2,C) with C3 via

1 0 0
g; — 0 ,09 1 ,03 — 0 s
0 0 1
we obtain
1-— ZiZj
* Mg .
(2.8) n(ei;) = (14 2z;25)
Zj T i . .
2 + 25

Thus to every infinitesimal deformation of a realized triangular mesh we can associate a closed
sl(2, C)-valued dual 1-form. In the special case of an infinitesimal conformal deformation (i.e. p
is real-valued) we will see in the next chapter that Equation 2.8 yields a discrete analogue of the
Weierstrass representation for minimal surfaces (Theorem 3.15).



CHAPTER 3

Discrete minimal surfaces

Minimal surfaces in Euclidean space are classical in differential geometry. They arise in the
calculus of variations, in complex analysis and are related to integrable systems. A surface is
minimal if it is a critical point of the area functional, or equivalently, its mean curvature vanishes
identically. The Weierstrass representation for minimal surfaces asserts that locally each minimal
surface is given by a pair of holomorphic functions. New minimal surfaces can be obtained from
a given minimal surface via Bonnet, Goursat and Darboux transforms.

Structure-preserving discretization is ubiquitous, particularly in discrete differential geome-
try. A common approach is to build upon a discrete analogue of some characterization from the
smooth theory. However, several equivalent characterizations in the smooth theory might lead
to different discrete theories even if their continuum limits are the same.

In a variational approach, functions are usually defined at vertices while critical points of
functionals are sought via vertex-based variations. Pinkall and Polthier [55] considered the total
area of a triangulated surface in Euclidean space and suggested to define minimal surfaces as
the critical points of the total area. Conjugate minimal surfaces were introduced but they were
defined on the dual meshes. Within this approach it is difficult to discuss the associated family
of minimal surfaces [56]. Moreover it is not clear how new minimal surfaces can be obtained via
Goursat and Darboux transforms.

On the other hand, many surfaces of interest arise with integrable structures, such as con-
stant mean curvature surfaces. Bobenko and Pinkall [4] considered discrete Lax representations
of isothermic surfaces and introduced circular minimal surfaces together with a Weierstrass rep-
resentation. New minimal surfaces can be obtained via Bonnet, Goursat and Darboux transforms
[31]. However, this notion is believed to lack the variational property of minimal surfaces.

Other characterizations of surfaces depend on notions of curvature. Smooth minimal sur-
faces in Euclidean space are characterized by vanishing mean curvature. Curvatures of circular
quadrilateral meshes based on Steiner’s formula were proposed by Schief [62, 63], compatible
with circular minimal surfaces from the integrable systems approach. Bobenko, Pottmann and
Wallner [10] in a similar way defined mean curvature for conical surfaces, which are polyhedral
surfaces with face offsets. Conical surfaces with vanishing mean curvature are named conical
minimal surfaces. However, it is unclear if conical minimal surfaces admit an analogue of the
Weierstrass representation and conjugate minimal surfaces. Furthermore, their relation to the
variational approach is unknown.

In this chapter we show that the theories of discrete minimal surfaces based on the variational
approach, the integrable systems approach and the curvature approach are not disjoint. Indeed
they possess interesting relation with each other.

First, we establish a new relation between the integrable systems approach and the curvature
approach to discrete minimal surfaces, different from [62, 63]. We define two types of discrete
minimal surfaces whose cell decompositions are arbitrary. One of the two types is based on
the Christoffel duality of isothermic surfaces. Another is defined via vanishing mean curvature.
These two types respectively generalize circular minimal surfaces (from the integrable systems
approach) and conical minimal surfaces (from the curvature approach). We show that in our
setting each discrete minimal surface of one type corresponds to a discrete surface of the other
type, and they form a conjugate pair of minimal surfaces. These surfaces admit a Weierstrass
representation. Each of them corresponds to a discrete holomorphic quadratic differential on a
planar mesh.

Second, we show that those quadrilateral minimal surfaces with Weierstrass data from nonlin-
ear discrete complex analysis are critical points of the area functional. Every such quadrilateral

21
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minimal surface is constructed from a P-net [8], which comes from half the vertices of a dis-
crete isothermic net with cross ratios -1. Particular examples of P-nets are given by Schramm’s
orthogonal circle patterns [65]. Bobenko, Hoffmann and Springborn [7] obtained a variational
construction of orthogonal circle patterns and showed that each circle pattern corresponds to a
s-isothermic minimal surface, which is determined by the combinatorics of the curvature lines
of a smooth surface. These discrete minimal surfaces were shown to converge to smooth ones
[7, 50, 47]. In particular, we find that by throwing away half the vertices of a s-isothermic
minimal surface, the resulting surface not only satisfies our notion of discrete minimal surfaces
but is also a critical point of the area functional.

We makes use of a generalization of Christoffel duality [45] and the observation that mean
curvature for conical surfaces can be defined without referring to face offsets [40]. We further
define the total area of a discrete surface with non-planar faces via the vector area on faces. As
a result of these notions, we obtain connections between the integrable systems approach, the
curvature approach and the variational approach to discrete minimal surfaces.

In section 3.1, two types of discrete minimal surfaces are defined and shown to be conjugate
to each other. Each discrete minimal surface induces an associated family of discrete surfaces
with vanishing mean curvature.

In section 3.2, Goursat transforms of discrete minimal surfaces are constructed in terms of
the Weierstrass representation.

In section 3.3, by vertex splitting we regard every discrete minimal surface as a trivalent
surface with a triangulated Gauss map. Each discrete minimal surface is represented by a discrete
harmonic function in the sense of the cotangent Laplacian, or alternatively by a self-stress in the
context of the rigidity theory of frameworks.

In section 3.4, we introduce the area of a non-planar polygon and show that discrete minimal
surfaces in any associated family obtained from a P-net are critical points of the total area.

This chapter is based on [43].

3.1. Discrete minimal surfaces and their conjugates

In this section, we frequently use discrete differential forms as introduced in Section 1.1. To
simplify our discussion, we further define the following.

DEFINITION 3.1. A realization n : V — S? of a discrete surface is admissible if n; # —n; for
every edge {ij}.

Given a discrete surface M = (V, E, F), the dual cell decomposition is denoted by M* =
(V*, E*, F*). Each vertex i € V corresponds to a dual face i* € F*. In particular, interior vertices
of M correspond to the interior faces of M*, denoted by F;,, while the boundary vertices of M
correspond to the boundary (unbounded) faces of M*.

3.1.1. A-minimal surfaces. We introduce two types of discrete minimal surfaces. The
first one mirrors the fact that every minimal surface is a Christoffel dual of its Gauss map, as
shown in Section 4.8.

DEFINITION 3.2. Given a discrete surface M and its dual M*, a realization f : V* — R3
of M* with an admissible realization n : V' — S? is A-minimal with Gauss map n if for every
interior edge {ij}

(3.1) dn(e;) x df (ej;) =0,
(3.2) (ni +nj,df (ef;)) = 0.

REMARK 3.3. If n is non-degenerate, i.e. n; # n;, then (3.1) implies (3.2).

In other words, a discrete minimal surface is a reciprocal-parallel mesh of an inscribed discrete
surface. The combinatorics of a discrete minimal surface is that of the dual cell complex and
each dual edge is parallel to the corresponding primal edge. Figure 3.1 shows a discrete minimal
surface together with its Gauss map.

REMARK 3.4. If f is A-minimal and v € V* is a vertex of degree three, then the image of v
and its three neighboring vertices lie on an affine plane.
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FIGURE 3.1. A triangulated surface n : V — S? (Left) as the Gauss map of an
A-minimal surface f: V* — R? (Right).

For A-minimal surfaces in the following example, their edges are in asymptotic line directions.

ExAMPLE 3.5 (Circular minimal surfaces). Bobenko and Pinkall [4] introduced circular min-
imal surfaces based on quadrilateral isothermic surfaces, which provide a discrete analogue of
conformal curvature line parametrizations. A map f : V(Z?) — R3 is isothermic if every elemen-
tary quadrilateral is cyclic and has factorized real cross-ratio

Qu
CT(fm,nv fm+1,m fm+1,n+17 fm,nJrl) == Ym,n € Z,

fn

where «,;, € R does not depend on n and £, € R not depend on m. Then there exists another
discrete isothermic net f* : V(Z?) — R3 satisfying

f* . f* _ fm+1,n - fm,n * o _ 5 fm,n+1 - fm,n
m—+1,n m,n m ||fm+1,n _ fm,n||2 ) m,n+1 m,n n ||f’m,n+1 . fm,n| |2

Furthermore, the diagonals of f* satisfy

fm+1 n+1 — fm n
3.3 f:ﬂ n_f’:zn = am_ﬁn - ’ 5
( > +h mt ( > ||fm+1,n+l - fm,n||2
. R fmt1n = fmntr
(34) fm+1,n+1 - fm,n = (Oém - Bn) e e

||fm+1,n - fm,n+1||2

as shown in [14, Corollary 4.33]. In fact, every elementary quadrilateral of f* is cyclic. If
F(V(Z?)) C S?%, then f* is a circular minimal surface.

Now, we consider half the vertices of a quadrilateral isothermic surface. We denote Z2, Z2,
the square lattices with vertices

V(Z3}) := {(m,n) € Z*|m + n even},
V(Z2) := {(m,n) € Z*|m +n odd}.
If f:V(Z?) — S? is an isothermic net, then equations (3.3) and (3.4) imply
[*lz2 is A-minimal with Gauss map f|z2.

In fact, one can obtain an A-minimal surface from a circular minimal surface by adding diagonals
arbitrarily [46].

3.1.2. C-minimal surfaces. The second type of discrete minimal surfaces mimics the prop-
erty that smooth minimal surfaces have vanishing mean curvature. ~

Given a discrete surface M and its dual M*. Suppose we have a realization f : V* — R? of
M* with planar faces. We pick a normal for each face n : F* — S? such that n is admissible, i.e.
n; # —n; for every edge {ij}. We then measure its dihedral angles. If df(ejj) # 0, the sign of
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the dihedral angle «;; € (—m,m) is determined by
sina;; = (n; X nj, d~7>7

cos a;j = (ni, ny)
where %, j* € F* denote the left and the right face of ej;. In the following, we are interested

in the quantity |d f | tan(a/2) for every edge. This quantity is set to zero whenever the edge is
degenerate, i.e. |[df| =0.

_ DEFINITION 3.6. Suppose we have a discrete surface M and its dual M*. A realization
f:Vr— }1%3 of M* together with an admissible realization n: V' — S? is C-minimal with Gauss
map n if f has planar faces with face normal n and the function H : F}}, — R defined by

wnt

Qjj . ~
J V1 c V;'mf = F:’;Lt

H; = Z|df(e;j)|tan 5
J

vanishes identically. We call H the scalar mean curvature of f.

To prepare for the next section, we rewrite the scalar mean curvature in terms of face normals.

Lemma 3.7. Given a realization f : V* — R3 of a discrete surface M* with face normal
n:V = R3 Ifn; # +n; on edge {ij}, then

df(e;k]) = k”m X Nnj

for some ki; = kj; € R and
5 Qi
|df (e tan =% = ki (1 = (ni, ny)).
PROOF. Suppose {ij} is an edge of M with n; # £n,. Since n;,n; L df(e;-*j) there exists

ki; € R such that

df(e;j) = kijn; X nj.
The property df(e3;) = —df(e};) implies k;; = kj;. If df(e;) = 0, then k;; = 0 and

Oéij

@ ety tan %

=0= ]{hj(l — <ni>nj>)'

If df(e;‘j) # 0, the dihedral angle o;; satisfies

. df(efj) . .
sinaj = (n; X nj, —=——) = sign(k)|sin a;;
‘df(eij”
and hence i |
i X 15 . 9 Oy % Qg
kij(1 —(ni,nj)) = W - 2sin? 7J = |df(e;;)| tan 2J. O

In the following example, we observe that conical minimal surfaces, as a discrete analogue of
curvature line parametrizations [13, 58|, are C-minimal surfaces.

EXAMPLE 3.8 (Conical minimal surfaces). A realization f : V* — R? of a discrete surface
M with planar faces and non-degenerate face normal n : V' — S? is a conical surface if n has
planar faces. In this case, the poles of the faces of n with respect to the unit sphere yields a
realization N : V* — R3 of M* with planar faces tangent to the unit sphere: for each dual face
it = (67, 05,...,0%) € F*
(ni, N¢T> =1.

For ¢ € R the area of each planar face under a face offset f + tN is

Axea(F + 1N} = 3 S {(For + tNo,) X (oo + N, i)

=: Area(f); + Area(f, N);t + Area(N);t2.
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Bobenko, Pottmann and Wallner considered conical surfaces with face offsets and vanishing mixed
area Area(f, N) = 0 as conical minimal surfaces [10, 53]. Karpenkov and Wallner [40] showed
that the mixed area coincides with the scalar mean curvature in Definition 3.6. We provide a
proof here. We write f~¢T o fm = kiyn; X n,. Here ¢,, ¢,41 denote the right and the left face
of e;. and

<N¢>r7ni> = <N¢r+1ani> = <N¢Mnr> = <N¢r+1anr> =1L

Then for every interior vertex 4

_ 1 _ _
Area(va)i = 5 Z<f¢r X N¢7‘+1 +N¢7‘ X f¢r+1vni>

5 S UNa, + Noyo) X G = Fodomi)

% D (Noy o+ Ny, oy, i (= {1i; )i
Zkir(l = (ni,ny))

(07

= Z [df (5] tan =~

Hence, conical minimal surfaces are C-minimal.

ExXAMPLE 3.9 (Cubic polyhedra). A cubic polyhedron is a polyhedral surface with edges
exactly the same as those of the cubic lattice. Goodman-Strauss and Sullivan [25] showed
that they are discrete minimal surfaces in the sense of the variational approach [55]. A cubic
polyhedron has convex faces. There exists a canonical choice of normal vectors determined by
the orientation. Its edge lengths are all equal and its dihedral angles are either 5, 0 or —%. One
can check that they are C-minimal.

FIGURE 3.2. Parts of two C-minimal symmetric cubic polyhedra. Left: Merg-
ing two successive squares parallel to xy-plane and xz-plane respectively into
rectangles yields vanishing scalar mean curvature. Right: Each square face has
vanishing scalar mean curvature.

3.1.3. Conjugate minimal surfaces. We show that there is a one-to-one correspondence
between the two types of discrete minimal surfaces.

Theorem 3.10. Given a simply connected discrete surface M and its dual M*. For every
admissible realization n : V' — S? of M, each A-minimal surface f: V* — R3 with Gauss map n
yields a C-minimal surface f : V* — R3 with Gauss map n via

df(e;*j) =n; X df(e;'kj) =mn; X df(e:j)

and vice versa. We say (f, f) form a conjugate pair of minimal surfaces.
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PROOF. Suppose f: V* — R3 is A-minimal with Gauss map n: V — S2. Then there exists
a well defined dual 1-form 7 : £ , — R3 on M* such that

(3.5) n(ei;) = n; x df (ej;) = ni x df (ef;)

and for every interior vertex i

(3.6) Z n(es;) = n; x Z df(e};) =0,
(3.7) (n;, Zdﬂe;‘j» =0.

Since M is simply connected, the closedness condition in (3.6) implies 7 is exact. Hence there
exists f : V* — R3 such that for every interior oriented edge €;; € Eip

df (e5;) = n(e;y)-

We now show that f is C-minimal with Gauss map n.
Firstly, equation (3.5) implies f has planar faces with face normal n.
Secondly, if n; = n; for some interior edge {ij} then

(i, df (e35)) = 3 (i + g, (e5) = 0.

If n; # nj, we write df (ej;) = ki;j(n; — n;) for some k;; = kj; € R and thus df(efj) = kijn; X nj.
Lemma 3.7 implies

(na, Y _df(ei;)) = D kij((nisng) —1)
J Jlni#n;
== > ldf(e})tan 52
Jlnizn;

= —>_ldf(e;)ltan
j

Ckij
5 .

Hence equation (3.7) implies that f has vanishing scalar mean curvature and thus is C-minimal
with Gauss map n.
Conversely, we suppose f is C-minimal with Gauss map n and define a dual 1-form w :
E';nt - Rg by
Oéij
2
To check w is a 1-form on M*, note that if n; = n; then o;; = 0 and

If n; # n;, writing df(e;‘j) = k;jn; x n; yields

wlef;) = —ni x df(e};) — df(¢;;)| tan

n;.

w(ei;) = —ni x (kijni x ng) — kiz (1 — (ng,n))ni = kij(nj —n;)
and hence w(e};) = —w(e};).
In addition f being C-minimal implies that w is a closed dual 1-form on M*

Zw(efj) =0.
J
Since M* is simply connected, there exists f : V* — R3 such that
df (e5;) = w(ei;) V{ij} € Eint

and f is A-minimal with Gauss map n. U

Since we have a notion of conjugate minimal surfaces sharing the same combinatorics, we
can define the associated family of minimal surfaces as in the smooth theory.
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FIGURE 3.3. A conjugate pair of discrete minimal surfaces. Left: An A-minimal

surface, trivalent with planar vertex stars. It is a reciprocal parallel mesh of a

triangulated surface inscribed in the unit sphere. Right: A C-minimal sur-

face, trivalent with planar faces. On each face ¢, the integrated mean curvature
Qe

Zee ¢ o tan % vanishes. Here £ denotes the edge lengths and a denotes the

dihedral angles.

DEFINITION 3.11. For every conjugate pair of minimal surfaces (f, f ) we define its associated
family of surfaces as a S'-family of realizations f? : V* — R3

1= cosOf +sinff
for 0 € [0, 27].

3.1.4. Integrated mean curvature on faces. Mean curvature was introduced in [62,
63, 10] on polyhedral surfaces with vertex normals by means of Steiner’s formula and further
extended to the associated family of discrete minimal surfaces in [32].

Recall that C-minimal surfaces are defined by vanishing scalar mean curvature. In fact, the

notion of scalar mean curvature can be extended naturally to the associated family of discrete
minimal surfaces.

Theorem 3.12. Every A-minimal surface f : V* — R3 with admissible Gauss map n satisfies
n; +n;

dn(e;;) x df (el.), I

< '17,(6]) f(ez]) |nz +nj|2

Z(dn(elj)vdf(erg» =0 Vi€ Vip.

J

) =0 Wij} € Ein,

On the other hand, every C-minimal surface f : V* — R3 with admissible Gauss map n : V — S2
satisfies

n; +n;
’ |TL1 + nj|2
(dn(ei;), df(ef;)) =0 V{ij} € Eins.

If (f, f) form a conjugate pair of minimal surfaces, then the discrete minimal surfaces f0 :=
cosOf +sin0f in the associated family satisfy for any interior vertex i € Viny (i.e. any face of

f%)
(3.8) Hf = Z(dn(eij) X dfe(efj)

(3.9) > (dn(ei;), df’(e;)) = 0.

J

> dn(ey) x df(e;)

J

>:O vz’e‘/intv

n; +n;
e

) =0,
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Here H? : FY,, — R is the scalar mean curvature of f?. Purthermore H™/'? coincides with the

scalar mean curvature H of the C-minimal surface f

PROOF. Since f is A-minimal with Gauss map n, on every interior edge {ij} we have
dn(e;;) x df(e;‘j) =0

and hence

n; +n;
Ini +
We consider an interior vertex i and for each of its neighboring vertex j we write df (e;‘j) =
kij(nj —n;) whenever n; # n;. Then the dual face * being a closed polygon

>_df(e;) =

{dn(ei;) x df (€];),

implies
Z(dn(em) df (ef;)) = 2 Z kij(n; —nj,n;) = —22<df(e;‘j),ni> =0.
J Jlni#n; J
where we used (df (e};),n:) = 0 if n; = n;.
On the other hand we know
nin; L df(e;)
and hence

(dn(e;), df(e};)) =
For every edge {ij} such that n; # n;, we have df(e;‘j) = n; x df(ej;) = kizn; X n;. Hence

n; +n; n; +n;
(dn(eij)  df(e};), T3 kij{ni — nj,ma)(ni + nj, ———"5)
ZJ: ’ In; +TLJ|2 m%;nj i ’ 7 i 4 n 2
~ % a

= Z ‘df(eij” tan %
J

=0

As f? is a linear combination of f and f we immediately obtain equation (3.8) and (3.9). O

The following remark explains the smooth counterpart of (3.8) and (3.9).

REMARK 3.13. Suppose f : M — R3 is a smoothly immersed surface with Gauss map N
and X1, Xy € T,M form an orthonormal basis in principal directions. Then the corresponding
principal curvatures k1, ko € R satisfy

We denote J the almost complex structure induced via
N % df () = df (J-).

For every 8 € R we have

(dNp(cos X7 + sin0Xs) x df,(Jp(cos X7 + sin6X5)), N,) = H + 5 cos 20,

K1 — Ra .
sin 20

(dNp(cos 80X + sin0X5), df,(Jp(cos X1 +sin0Xs))) =

where H = % is the mean curvature. Averaging over all directions yields
1 2
o (dNp(cos 80X +sin0Xs) x dfp(Jp(cos 80X + sinX5)), N,)df = H,
7r
1 2

by (dNp(cos 80X + sin0X5), df,(Jp(cos X1 +sin0X5)))do = 0.
™
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3.2. Weierstrass representation

In this section, we relate A-minimal surfaces and C-minimal surfaces to discrete holomorphic
quadratic differentials via a Weierstrass representation. In the following we consider simply
connected discrete surfaces and non-degenerate Gauss maps.

The Weierstrass representation for smooth minimal surfaces in R? is a classical application
of complex analysis:

Theorem 3.14. Given two meromorphic functions g,h : U C C — C such that g*h is holomor-
phic. Then f : U — R? defined by
1—g° 1—g°
df =Re | | i1+¢?) |h()dz | =Re| | it+¢>) | L
2 2 dg
g g

is a minimal surface. Its Gaufs map n is the stereographic projection of g

2Reg
2Img
lgl* =1

1
n= ———
9[> +1

The holomorphic quadratic differential ¢ := hg,dz> is the Hopf differential of f and encodes its
second fundamental form: The direction defined by a nonzero tangent vector W is

an asymptotic direction <= q(W) € iR,
a principal curvature direction <= q(W) € R.

Locally, every minimal surface can be written in this form.

We are going to show that every discrete holomorphic quadratic differential yields an A-
minimal surface and a C-minimal surface via the Weierstrass representation that appeared in
the end of Section 2.4. As discussed in the Introduction (Definition 1.1), a discrete holomorphic
quadratic differential on a planar mesh z : V' — C is a function ¢ : E;,; — R defined on interior
edges satisfying for every interior vertex ¢ € Vj,;

Z%’j =0,

J
Zq”/dz(e”) = 0
J

Discrete holomorphic quadratic differentials and their relation to discrete conformality are
revealed in Section 2.4 by considering infinitesimally deformations of planar triangular meshes
preserving length cross ratios. In this case a holomorphic quadratic differential is simply the
change of the logarithmic cross ratios, which parametrizes the change of the Mobius structure
(complex projective structure) of the triangular mesh under infinitesimal conformal deformations.
Theorem 3.15. Suppose z : V. — C is a non-degenerate realization of a simply connected

discrete surface and q : E;ny — R is a discrete holomorphic quadratic differential. Then there
exists F : V* — C? such that for every edge {ij} € Einy

Qi 1-— ZiZj
(3.10) dF(ef;) = —~ i(14 zz5)
J dZ(eij) 2 + ij

We assume the stereographic projection n: V — S? of z given by

1 2Rez
2Im z

n=-——-
14 |z|? |22 = 1
is admissible, i.e. n; # —n; for {ij} € E. We then have
(1) f:==Re(F):V*— R? is A-minimal and
(2) f:=Re(iF): V* = R3 is C-minimal.
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The realizations (f, f) form a conjugate pair with Gauss map n.

The converse also holds: For every conjugate pair of minimal surfaces f,f there exists a
holomorphic quadratic differential ¢ on the stereographic projection of their Gauss map such that
F = f —if satisfies (3.10).

PROOF. We consider a dual 1-form 7 : E';‘m — C? defined by

Qi 1-— Z,ij
n(ei;) = —2— | i1+ zz))
dZ(ezj) 2 +Z]

Since ¢ is a holomorphic quadratic differential, n is closed:

Y nle) =0 i€ Vi
J

As M is simply connected, we can integrate n and obtain a map F : V* — C3 defined on the
dual vertices such that for every interior edge {ij}

dF (ej;) = nei;)-
We define k : E;,+ — R by
(3.11) ki = aij/ldz(eqz)|*.
Inserting equation (3.11) into (3.10) we get

kij (14 |2*) (1 + |2[*)

(3.12) Re(dF(ej;)) = 3 (nj —ny),
3 z? 2|2
o1 Reuaresy = BHEDO R

The converse is straightforward. Given a conjugate pair of discrete minimal surfaces (f, f),
we define k : E;;; — R via (3.12). It can be shown that the function

Gij = kijldz(ei)|?
is a holomorphic quadratic differential. O

REMARK 3.16. For a real-valued holomorphic quadratic differential ¢, we obtain an A-
minimal surface via (3.10), whose edges are regarded as in asymptotic line directions. However,
in the smooth theory, the Hopf differential takes purely imaginary values along asymptotic di-
rections. Such a difference results from the fact that in (3.10) dF is a dual 1-form while dz is a
(primal) 1-form.

Corollary 3.17. The associated family of discrete minimal surfaces f° in Definition 3.11 satis-

fies
f? = Re(e" F).

3.2.1. Goursat transformations. In contrast to Bonnet transformations in the smooth
theory, Goursat transformations generate non-isometric minimal surfaces in general [26]. A
conjugate pair of minimal surfaces can be regarded as a holomorphic null curve in C3. A Goursat
transform of a conjugate pair of minimal surfaces is a complex rotation acting on the null curve.
These transformations preserve respectively curvature line and asymptotic line parametrizations
of minimal surfaces [52].

The Mobius invariant property of discrete holomorphic quadratic differentials implies that
if ¢ : E;e — R is a discrete holomorphic quadratic differential on a non-degenerate realization
z: M — C, then the dual 1-form defined by

1—®(2)0(z)

1) [P, ' B I 2;)D(z;
(344 N CTEnEr TEn ) WS vl
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is closed for any Mobius transformation ® : CU {co} — C U {oc}. Note every Mobius transfor-
mation ® can be represented as
az+b

(3.15) ®l2)=

for some a, b, c,d € C with ad — bc = 1. We are going to see how a minimal surface deforms if its
Gauss map is transformed under a Mdbius transformation by substituting (3.15) into (3.14).
The following can be verified directly.

Lemma 3.18. Let ®(z) := Zzzis with ad —bc = 1. Then

Z5 — %4
(czj +d)(cz +d)’
(? —a?)zizj + (dc — ab)(z; + z;) + d* — b?
(czj +d)(czi + d)

(? +a?)zizj + (de + ab)(z; + 2z;) + d? + b2
14+ ®(2)P(2;) = )

+8(z)0(z) (czj +d)(cz; + d)

2acz;z; + (be + ad)(z; + z;) + 2bd

(2. P(z:) = J J

(23) + (=) (cz; + d)(cz; + d)

P(z5) — (z;) =

1—®(z)®(z) =

)

and hence
_— il—‘y—‘I)Zi(I)Zj = Agp il—i—zizj
) = ®G) \ gz + D(z)) R %tz
where .
$(a? =0 — +d?) %(a2+b2—02—d2) —ab+ cd
Agp = %(—a2—|—b2 -2 +d?) §(a2—|—b2 +c2+d?) i(ab+ cd)

—ac+ bd —i(ac + bd) ad + be

The following indicates that conjugate pairs of discrete minimal surfaces deform exactly the
same way as the smooth ones under Goursat transforms.

Theorem 3.19. Given a discrete surface M and its dual M*, we suppose f, f : V* — R3 form
a conjugate pair of minimal surfaces with a non-degenerate admissible Gauss map n : 'V — S?
where f is A-minimal and f is C-minimal. For any Mdébius transformation

b
D(z) := az+ , where a,b,c,d € C and ad —bc =1
cz+d

such that ng : V — S? defined by

. 2Re 3(2) o o
Neg = ——5—— 2Im ®(2) where z := +i ,

is admissible, we consider
é(az—bQ—c2+d2) a2+ b —c2—d?) —ab+cd
Ap = 2(-=a®>+0* -2+ d?) 5(a®+b*+c2+d?) i(ab+ cd)
—ac+ bd —i(ac+ bd) ad + be
and define fo, fo : V* — R3 by

SN

Jo —ifo = As(f —if).
Then, fo is A-minimal and fo is C-minimal. They form a conjugate pair of minimal surfaces
with Gauss map neg.

PrOOF. Note fg, fq) are well defined on M™ even if M* is not simply connected. We denote
z : V. — C the stereographic projection of n. From the proof the Weierstrass representation
(Theorem 3.15), there exists a holomorphic quadratic differential ¢ : E;,; — iR such that

B Qi 1 — ZiZj
df (ej;) —idf(ej;) = dz(z-j) i(1 ++Zizj)
K Z Zj
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Then, by lemma 3.18

B Qi 1-— ZiZj
dfq;.(efj) —’L.df.:p(e?j) :dZ(ZeJ)A.:p ’i(l +Zi2j)
K Zi + zj
1= ®(2)®(2))
qij

Tt -t | G )

The proof of the Weierstrass representation (Theorem 3.15) yields that fe is A-minimal and fq>
is C-minimal. O

FIGURE 3.4. A conjugate pair of discrete minimal surfaces obtained via a Gour-
sat transform (a complex rotation) of the conjugate pair in Figure 3.3.

3.3. Trivalent minimal surfaces

In this section, we argue that by vertex splitting every discrete minimal surface can be
regarded as trivalent with its Gauss map triangulated. Note that our discrete minimal surfaces are
allowed to have degenerate edges. With this viewpoint, each discrete minimal surface corresponds
to a discrete harmonic function on a planar triangular mesh, or alternatively a self-stress on its
Gauss map.

Lemma 3.20. Suppose a triangulated surface M = (v, E, 13‘) is a subdivision of M = (V, E,| F)
by adding diagonals and a trivalent surface M* = (V*, E*, F*) is obtained by splitting the vertices
of M* = (V*, E*, F*) correspondingly, which induce a map ¢ : V* — V*. Given any conjugate
pair of minimal surfaces f, f : V* — R3 with Gauss map n : V — S?, we assume n := n yields a
non-degenerate admissible realization of M. Then

(1) f:= fo¢ is A-minimal with Gauss map f and

(2) f:= fo¢ is C-minimal with Gauss map f.
In particular, the holomorphic quadratic differential q : E;py — R of f is extended to G : Eint — R
by zeros.

3.3.1. Discrete harmonic functions. In the study of planar triangular meshes (Chapter
2), infinitesimal conformal deformations, holomorphic quadratic differentials and discrete har-
monic functions in the sense of the cotangent Laplacian were related.

Combining the Weierstrass representation (Theorem 3.15), Lemma 3.20 and Theorem 2.14,
we obtain the following for discrete surfaces whose cell decompositions are arbitrary.

Corollary 3.21. Every simply connected A-minimal and C-minimal surface is given by a discrete
harmonic function on a planar triangular mesh.
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As an example we take a triangulated square in the (z,y)-plane. Figure 3.1 (left) shows its
stereographic image on the unit sphere. Notice that for a realization of a triangulated disk D in
the plane such that neighboring triangular faces do not overlap, a discrete harmonic function u
is uniquely determined by its boundary values (Corollary 1.8). The choice u|sp = xy results in
an A-minimal surface (Figure 3.1 right) which looks like the Enneper surface.

As a second example, we consider a triangulated annulus centered at the origin with a cut
along the positive x-axis. We solve for the discrete harmonic function v with boundary values
given by ulsys = argz. We obtain a conjugate pair of discrete minimal surfaces, which are
seemingly the catenoid and the helicoid (Figure 3.3).

Finally, we consider a discrete harmonic function with boundary values u|gy = 2% — 3xy?
on a triangulated disk. The corresponding A-minimal is shown in Figure 3.5, where an umbilic
appears in the middle of the figure.

FIGURE 3.5. An A-minimal surface with an umbilic point.

3.3.2. Self-stresses. The Weierstrass representation asserts that a smooth minimal surface
is locally determined by its Gauss map together with a holomorphic quadratic differential. A
holomorphic quadratic differential in this case can be interpreted as a static stress [68].

In this section, we provide a discrete version of the above statement: each discrete minimal
surface corresponds to a self-stress on its Gauss map. It is closely related to Maxwell theorem
asserting that a self-stress, i.e. an assignment of forces along the edges of a realization balanced
at vertices, corresponds to a reciprocal parallel mesh of the realization [51]. Here we focus on
triangulated surfaces for simplicity.

The following is immediate from the definition of A-minimal surfaces.

Theorem 3.22. Suppose we have a non-degenerate admissible realization n : V — S? of a simply
connected triangulated surface M. Given a function k : Ey,y — R, the following are equivalent:

(1) There exists an A-minimal surface f : V* — R with Gauss map n satisfying for every
interior edge {ij}
df (e;) = kij(n; —n;).
(2) The assignment of kij(n; — n;) to each oriented edge e;; defines equal and opposite

forces to the two endpoints along every edge that is in equilibrium at every vertex, i.e.
for every interior vertex i

J

There is a similar correspondence between a C-minimal surface and the polar of its Gauss
map. Given a point & € R? its polar plane with respect to the unit sphere is defined as

z:={y eR(y, &) =1}
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and £ is the pole of Z. If n: V — S? is a non-degenerate admissible realization of a triangulated
surface in such a way that neighboring faces are not coplanar, then the pole of each face determines
a non-degenerate realization # : V* — R3 of M* with planar faces tangent to the unit sphere
and with face normal n. In particular the image of each dual edge {ij}* under n is parallel to
n; X n;.
Lemma 3.23. Letn,ni...n, € S? and k1,ks... k. € R. Then
T T
1 kinxn; =0

ij(nj -n)=0 <<= Z{.Zl g X1y

=1 Zj:l k‘]”l“j X (n X ’I’Lj) =0
where rj := (n+n;)/(1+(n,n;)) is a point on the line {x € R3|(z,n) = 1}N{x € R3|(z,n;) = 1}.

ProOOF. It follows from the identities that
ijn Xmnj;=mnX ij(nj —n)
j=1 j=1

and
T

- _ —(nj — (n,n3)n) + (n— (n,ny)n;)
j;ijj X (?’LXTLj)—ZlkJ (1+<n7nj>>

j:
j=1
Combining Theorem 3.10, Theorem 3.22 and Lemma 3.23, we have

Theorem 3.24. Suppose we have a non-degenerate realizationn : V — S? of a simply connected
triangulated surface M and the polar © : V* — R of n with respect to the unit sphere is non-
degenerate. Given k : E;,y — R, the following are equivalent:
(1) There exists a C-minimal surface f: V* — R3 with Gauss map n such that for every
interior edge {ij}
df(@:}) = ]C”’rll X ;.
(2) The assignment of k;jn; X n; to each oriented edge e;; defines equal and opposite forces
to the neighboring faces along each edge of n that is in equilibrium on every face, i.e.
for every dual face i* € F:

wnt

Z kijni xn; =0 (forces balanced),
J
Z kijri; x (n; x nj) =0 (torques balanced)
J

where T := (n+n;)/(1 + (n,n;)) is a point on the image of {ij}* under .

3.4. Critical points of the total area

In this section, we show that among the discrete minimal surfaces that we have discussed,
there is a subclass of them which possess the variational property analogous to smooth minimal
surfaces.

3.4.1. Area of non-planar faces. Discrete minimal surfaces in the associated families do
not have planar faces in general. In order to define area on a non-planar face, we consider its
vector area. This idea has been applied in computer graphics [2].

Given a polygon v = (70,71, - - -,¥n = Y0) in R3, its vector area is defined by

1 n—1
A,y = 5 Z,YZ X Yit1-
1=0
The vector area is invariant under translations of the polygon. The magnitude |/Y.y| is the

largest signed area over all orthogonal projections of v to planes in space. The direction of /_1'7
indicate the normal of the plane with largest signed area. If 7 is embedded in a plane, the
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FIGURE 3.6. A C-minimal quad mesh which is a critical point of the area func-
tional. Subdivision by adding diagonals yields a triangulated minimal surface in
the sense of Pinkall and Polthier [56].

magnitude |E7| coincides with the usual notion of area and the direction of A is normal to the
plane.

However, there is still an ambiguity to define the (signed) area A, of a non-planar polygon
using the vector area, either A, := |A:Y| or f|/_1',y|. Such ambiguity will be fixed using the Gauss
map of a discrete minimal surface later. Assuming we have picked a sign for the area of each
face, we derive the gradient of the total area of a discrete surface.

DEFINITION 3.25. Suppose f : V — R3 is a realization of a compact discrete surface M =
(V,E,F) with boundary. Let o : F — =1 be a choice of signs. We have the vector area
A: F — R3 given by

1 n—1
Ay = §Zfz‘ X fiv1
=0
where (vg,v1,...,Un—1) = ¢ € F and the ordering is determined by the orientation of the face.

The total area is

Area, (f) =Y o4l Ayl.

¢peEF
and if A = 0 we define the mean curvature vector field ﬁg :Vine — R3 via

1

ﬁo,i = 5

> dno(e;) x df(ei;) Vi € Vi
J

where ny : F — S? is given by n, := 0 A/|Al.

If f; is a family of realizations with fy = f and A, is nonzero on any face, then the total area
Area,(f:) depends smoothly on ¢.
Theorem 3.26. Suppose f : V — R3 is a realization of a compact discrete surface M = (V, E, F')
with boundary and with non-vanishing vector area A : F — R3\{0}. Let o0 : F — %1 be a choice

of signs. Then the mean curvature vector field H, vanishes identically if and only if f is a critical
point of the total area Area,(f) under infinitesimal deformation with the boundary fized.

PROOF. Suppose f : V — R3 is an infinitesimal deformation of f fixing the boundary. We
define n, : F — S? by n, := cdA/|A|. We consider a face (vg,v1,...,0,_1) = ¢ € F and write

fi = f(vi).

Since (ng, ¢, Ne,p) = 0 we have

(Ag,715.6) = 0.
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On the other hand,

3
|
—

<1‘T¢a”a,¢>> = (fic1 X fi + fi X fis1:n0.0)

N | =
-
Il
=}

3
|
_

|
(]

(fis1 = fi + fi = fic1) X Moo, fi)

i=0
n—1
- % ((fir1 = fi) X g + (fim1 = i) X (—10,9), fi)-
i=0
Thus,
Areao(f) =D (A nog) + (A4, 110.0)
$eF
1 .
=5 Z (Zdng(efj) x df (eij), fi)
1€Vine J
= Z <ﬁa,i7fi>'
1€ Vint

It implies f is a critical point of the area functional Area,(f) under infinitesimal deformations
fixing the boundary if and only if its mean curvature vector field H, vanishes identically. O

FIGURE 3.7. Jessen’s orthogonal icosahedron (left) is known to be infinitesimally
flexible. Its infinitesimal isometric deformation yields a closed C-minimal surface
(right) with non-embedded planar faces. For each face of the discrete minimal
surface, the vector area vanishes.

Before ending this section, we make a remark to the relation between mean curvature vector
field and the cotangent formula by Pinkall and Polthier [55].

Corollary 3.27. Suppose f : V — R3 is a realization of a triangulated surface such that each
face spans an affine plane. Then

> dn(ey;) x df (eij) = Y _(cot Ljki + cot Zilj)df (ei;)
J

J

where {ijk} and {jli} are two neighboring faces containing the edge {ij} and n := A/|A| is the
face normal field given by the orientation of the triangulated surface.

Hence, a realization f : V — R> of a compact triangulated surface is a critical point of the
area functional Area,(f), where o = 1, under infinitesimal deformations fixing the boundary if
and only if for every interior vertex i

> “(cot Zjki + cot Lilj)(f; — f;) = 0.

J
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PRrROOF. It follows from Theorem 3.26 and the identity that for every interior vertex 4

Z dn(e;;) x df (eij) = Z nijk % (df (ei;) — df (eir))

ijk

= Z Nijk X df(ekj)

ijk
= Z cot Zjkidf (e;;) — cot Zijk df (ex:)
ijk
= (cot Zjki + cot Zilj)df (e;;). 0

J

3.4.2. Quadrivalent meshes with the parallelogram property. In this section we
focus on a special type of realizations, P-nets, introduced by Bobenko and Pinkall [8].

DEFINITION 3.28. A cell decomposition D = (V, E, F) of a simply connected surface is a
P-graph if D satisfies the followings:
(1) every interior vertex has degree 4 and
(2) every face has even number of edges.

If D is a P-graph, there exists a labeling pu : E — +1 such that at each vertex, two opposite
edges are labeled ”+1” and the other two opposite edges are labeled ”-1".

DEFINITION 3.29. A non-degenerate realization f : V' — R3 of a P-graph is a P-net if it
possesses the parallelogram property: Mapping any interior vertex fo := f(vg) to infinity by
inversion, then the image of its four neighboring vertices f1, fo, f3, f4 form a parallelogram, i.e.

hiofo _ fozhfo  fs=f _ _fazfo
fi=Ffl? fa=fol*  |fs=Ffol>  [fa—fol?
(See Figure 3.8 for the indices.)

(3.16) = 0.

€4

F1GURE 3.8. The edges of D around a vertex vy are indicated by solid lines.
The edges of the dual face vj are indicated by dotted lines.

ExaMpPLE 3.30 (Half the vertices of a discrete isothermic net with cross ratios -1). We
consider a discrete isothermic net f : V(Z?) — R? such that the cross ratio of each elementary
quadrilateral is -1 (i.e. a,, = —b, in Example 3.5). It is shown in [8] the restriction of f to Z,
or Z, is a P-net. Conversely, a P-net with an additional vertex can be uniquely extended to a
discrete isothermic net with cross ratios -1. The proof is postponed to Corollary 5.3.

EXAMPLE 3.31 (Schramm’s orthogonal circle patterns). Let D be a P-graph. Then for any
orthogonal circle pattern in the complex plane with the combinatorics of D, i.e. each face of D
corresponds to a circle and neighboring faces correspond to two circles that intersect orthogonally,
the intersection points form a P-net [8] (See Figure 3.9). Indeed, if one maps any vertex to infinity
by inversion, the neighboring four vertices form a rectangle.

Theorem 3.32 ([8]). The parallelogram property is Mobius invariant. Hence any Mobius trans-
form of a P-net is again a P-net.
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F1GURE 3.9. Top left: An orthogonal circle pattern on a sphere. Top right: A
P-net formed by the intersection points of the circle pattern. The P-net yields an
A-minimal surface (bottom left) and a C-minimal surface (bottom right), which
are critical points of the total area.

If F:V — R?is a P-net with a labeling i as in Definition 3.28, we define a dual 1-form
n:Ef, — R3 by

dF (ei;)

2= e i} € B
n(ei;) i T (e ) 2 V{ij} € Eint

Equation (3.16) implies 7 is a closed dual 1-form since around any dual face v§ € F}:,
n(er) +n(es) +n(ez) +nley) = 0.
Because D is simply connected, there exists a realization F* : V* — R3 of D* such that
AP (el = nleiy) = iy Wi} € B
We call F* the Christoffel dual of F.
3.4.3. Minimal surfaces from P-nets. Given a P-graph D = (V| E, F) with a labeling u

as in Definition 3.28, we consider a P-net n : V — S? with vertices on the unit sphere. Then its
Christoffel f :=n*: V* — R? is A-minimal with Gauss map n:

£\ Ny —ny
(3.17) df(eij) = Mz‘jmj_—mP
and the C-minimal surface f : V* — R? satisfies
5 n; —n; n; —n;
3.18 dfl(e*) =n: X s —2— " —n X p—
( ) f(eu) % Hij |nj o ni|2 nj Hij |nj _ ni|2

REMARK 3.33. Following from Definition 3.29, a labeling p of a P-net n : V — S? induces a
discrete holomorphic quadratic differential ¢ on ¢ o n, where ¢ is a stereographic projection.
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We first consider vector area on faces. The following illustrates a discrete counterpart of the
property that the area 2-form and the Gauss map of a smooth minimal surface is unchanged
within the associated family.

Lemma 3.34. Suppose D is a P-graph andn : V — S? is a P-net. We denote f, f : V* — R? the
corresponding conjugate minimal surfaces as given by (3.17) and (3.18). We consider the vector
area A? : F¥,, — R?® of the discrete minimal surfaces f® := (cos)f + (sin)f in the associated
family. Then AP s independent of 6 and parallel to n.

PrOOF. We focus on a dual face v§ € F;, which corresponds to vy € Viye (see Figure 3.8),

and decompose the neighboring edges into components
df(e) = df(e})> +df(e])!l Vi=1,2,3,4
such that
df(e;)" Lo, df(ef) | mo.
In particular, from (3.17)
are) = iy
since

* _ <ni7n’0>_1 _ Hi
(df (7). o) = pi Ini —nol2 ~ 2°

The C-minimal surface f satisfies
df(ef) =no x df(e}) = no x df ()"
It yields

df’(e;) = df*(ef)" + df’(e}) = Ro(df(e)") - uTg

where Ry(v) := cosfvt + sinfng x v+ for any v+ L ng is a rotation in the plane ng-. We
calculate the vector area on the dual face vg

240 =df®(e7) x df’(e3) + dff (e}) x df’(e})
—df'(e1) x dff(e3)t + dfP(e)* x dff(e5)t
S o x (s (e8)* = padf(e5) -+ padf”(€3)* — padf®(5)")

—df°(e}) x dff(e3)* + dfP(e)* x dff (e3)t

B (O e) + dfP (el + df(ed) + dF (o)t
—df®(e5) x dff(e3)t + df°(ef) x dff ()t
—Ro(df (e})* x df(eh)* + df(e5)* x df(e5)*)
=df(ef)" x df (e3)" + df (e5)" x df (e}) ™"

which is independent of 6 and parallel to ng. Here we made use of the property of u:

no

P = —pg = p3 = —Ha4. U

We show that discrete minimal surfaces in the associated families obtained from P-nets
possess vanishing mean curvature vector fields.

Lemma 3.35.
dfe(efj) x dn(e;;) = —pijsinf (n; +n;)/2
(df*(e5;). dn(e;;)) = pij cosf
PrROOF. We have by definition
df(e;‘j) x dn(e;;) =0
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and

df(es;) x dn(es;)

n; —ny n; —ny
S e T
_ M(’I’LZ — (ni,nj>nj n; — (ni,n])ni)
Y g —naf? nj —nif?
(ni,nj) —1
Y |n'—nz|2 (nl—i_nj)

= — /JZ](’I'Ll + TL])/2
Since f? = cos@ f +sinf f we get
dfe(efj) x dn(e;;) = —pi;j sinf (n; +n;)/2.

On the other hand we have

(df (e3;), dn(eij)) = pijs

(df(e;;). dn(eiz)) = 0.
Hence

(df°(e};), dn(ei;)) = pqj cosf. O

Suppose D is a P-graph with boundary. We call the faces of D containing boundary edges as
boundary faces. Those non-boundary faces are called interior, which form a set Fj,;. We denote
the set of dual vertices which correspond to Fj,; as V;},. Applying Lemma 3.34 and 3.35, we
have the following.

Theorem 3.36. Given a P-graph D = (V,E,F) and a P-netn : V — S?, we assume the discrete
minimal surfaces O : V* — R3 in the corresponding associated family have non-vanishing vector

area A : Fr, — R3\{0}. Let o : F¥,, — +1 be defined by

o:=(n,A/|A]).
Then the mean curvature vector field ﬁg : VX, — R3 wvanishes identically, i.e. for each dual
vertexr ¢* = (v1,v2,...,v,)" € Vi,

~ 1 ”

(3.19) Hi* =3 Z dn(ei1) X df°(e}41) =0
and furthermore
(3.20) Z<d”(€i,i+1)a df’ (e} i11)) = 0.

i
In particular, if D is compact and A is nowhere vanishing, then f? is a critical point of the area
functional Y o|A| under infinitesimal deformations with boundary fized.

PRrROOF. Note the function n, : F', — S? defined by

int
Ng i = a[f/\/ﬂ =n.

Then for each dual vertex ¢* = (vy,va,...,v,)* € Vi,

~ 1 N sin 0

Hf. = B > dn(ei i) x df’(e}40) =~ D (i1 + piir1)ni =0
and

> dn(eiitr), df’(e]11)) =cos0>  piig1 =0

since the number of edges in a polygon ¢ is even. (I

REMARK 3.37. The summations in equations (3.19) and (3.20) are taken around a vertex of
f? while those in equations (3.8) and (3.9) are taken around a face. See Remark 3.13 for their
analogue in the smooth theory.
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REMARK 3.38. Suppose f is a discrete surface with planar faces. Subdivision of it by adding
diagonals does not change the mean curvature vectors at vertices since dn = 0 on diagonals. If f
is a C-minimal surface obtained from a P-net, then a subdivision of it into a triangulated surface
by adding diagonals satisfies the cotangent formula (Corollary 3.27). However, the signs of the
angles in the cotangent formula depend on the choice of sign ¢ for the area.






CHAPTER 4

Isothermic triangulated surfaces

Isothermic surfaces include all surfaces of revolution, quadrics, constant mean curvature
surfaces and many other interesting surfaces [30]. In particular, all classes of surfaces that are
describable in terms of integrable systems in some way or other seem to be related to isothermic
surfaces [18, 19].

A smooth surface in Euclidean space is isothermic if it admits conformal curvature line
parametrization around every point. Note however that there are various characterizations of
isothermic surfaces that do not refer to special parametrizations.

From the viewpoint of discrete differential geometry, there are two different definitions of
conformality for planar triangular meshes. One of them is the theory of circle patterns [65],
where the conformal structure is defined by the intersection angles of neighboring circumecircles.
It is motivated by Thurston’s circle packings as a discrete analogue of holomorphic functions
[60]. Another version of discrete conformality is based on conformal equivalence of triangle
meshes [48, 69], where conformal structure is defined by the length cross ratios of neighboring
triangles. Luo introduced this notion when studying a discrete Yamabe flow. Its relation to ideal
hyperbolic polyhedra was investigated in [9].

Previous definitions of discrete isothermic surfaces were all based on quadrilateral meshes
that provide a discrete version of conformal curvature line parametrizations of isothermic surface
[4, 8, 12]. Inspired by discrete integrable systems [14], Bobenko and Pinkall [4] considered
quadrilateral meshes with factorized real cross ratios, which led to further investigation of discrete
minimal surfaces and constant mean curvature surfaces [31]. Recently, the notion of curvature
was introduced to discrete surfaces with vertex normals [10, 32].

Here we aim for a definition of isothermic triangulated surfaces which does not involve con-
formal curvature line parametrizations. It is motivated by a known (although not well-known)
characterization that a smooth surface in Euclidean space is isothermic if and only if locally it
admits a nontrivial infinitesimal isometric deformation preserving the mean curvature. The only
reference that we could find is from Ciesliniski et al. [19], stating that this theorem was known
in the 19th century.

Infinitesimal isometric deformations of triangulated surfaces have been extensively studied
since Cauchy’s rigidity theorem of convex polyhedral surfaces [73, 20]. An infinitesimal defor-
mation of a triangulated surface in space is an assignment of velocity vectors to all the vertices.
We can then calculate the change of edge lengths. An infinitesimal deformation is isometric if
all the edge lengths are preserved.

Suppose we have a realization f : V — R? of a triangulated surface M = (V, E, F') such that
each face of f spans an affine plane. Given an infinitesimal isometric deformation f 1V = R3,
each triangular face {ijk} rotates with an angular velocity given by a certain vector Z;;;, € R3.
These vectors satisfy a compatibility condition on every interior edge {ij}:

(4.1) df(eij) = df (eij) x Zijk = df (ei5) X Zju,

where {ijk} € F is the left face of e;; and {jil} € F is the right face.
On the other hand, it is well-known that the integral [ H dA of the mean curvature has a
very canonical discrete analogue ) H;;. Here we define the mean curvature associated to edge

{ij} as

H;j := aj|df (ei5)]

43
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where «;; is the dihedral angle at the edge {ij} [70]. Under the infinitesimal isometric deformation
given by Z on faces (Equation (4.1)), we have

Hi; = cujldf (eij)| = (df (eij); Zijr — Zjir)-

If we further demanded H;; = 0 on every edge {ij} then the infinitesimal isometric deformation
would be trivial, i.e. an infinitesimal FEuclidean deformation. Hence we consider instead the
change of the integrated mean curvature around vertices

H; =" dujldf (i) = > _(df(eij), Ziji — Ziin)-
J J
We are now ready to define isothermic triangulated surfaces. The smooth counterpart of the
following formulation for isothermic surfaces is given by Smyth [68].

DEFINITION 4.1. A non-degenerate realization f : V — R3? of an oriented triangulated
surface, with or without boundary, is isothermic if there exists a R3-valued dual 1-form 7 :

E?,, — R3, not identically zero, such that
(4.2) > rles) =0 Vi€ Vin,
J
(4.3) df (eij) x 7(ej;) =0 Y{ij} € Eins,
(4.4) > (df(eij), (ef;)) =0 Vi € Vi,

J

Here E;‘nt and V;,; denote the set of interior oriented dual edges and the set of interior vertices
of M.

The following is an immediate consequence of our definition.

Corollary 4.2. A strongly non-degenerate realization of a simply connected triangulated surface
is isothermic if and only if there exists an infinitesimal isometric deformation that preserves the
integrated mean curvature around vertices but is not induced from FEuclidean transformations.

We state several results about isothermic triangulated surfaces that closely reflect known
theorems from the smooth theory. In Section 4.1, 4.2 and 4.3, we prove

Theorem 4.3. The class of isothermic triangulated surfaces is Mdbius invariant.

Theorem 4.4. For a non-degenerate realization f : V — R3 of a closed genus-g triangulated
surface the space of infinitesimal conformal deformations is of dimension greater or equal to
|[V| — 69 + 6. The inequality is strict if and only if [ is isothermic.

Theorem 4.5. Suppose f : V. — R3 is a non-degenerate realization of a simply connected
triangulated surface. Then f is isothermic if and only if there exists an infinitesimal deformation
that preserves the intersection angles of neighboring circumcircles and neighboring circumspheres
but is not induced from Mobius transformations.

Note that Theorem 4.4 concerns the theory of conformal equivalence of triangle meshes
[48, 69] while Theorem 4.5 deals with the notion of circle patterns [65].

In Section 4.4 we show that our definition generalizes isothermic quadrilateral surfaces [4]:
Subdividing any isothermic quadrilateral surface in an arbitrary way we obtain an isothermic
triangulated surface.

In Sections 4.5, 4.6 and 4.7 we provide examples of isothermic triangulated surfaces that are
not obtained via quadrilateral isothermic surfaces. Triangulated cylinders generated by discrete
groups as well as certain planar triangular meshes and triangulated surfaces inscribed in a sphere
are isothermic.

In Section 4.8 we introduce Christoffel duality for isothermic triangulated surfaces. We then
see that A-minimal surfaces, as introduced in Chapter 3, are Christoffel duals of triangulated
surfaces (with boundary) inscribed in the unit sphere. This approach is analogous to the smooth
theory that a minimal surface is a Christoffel dual of its Gaufl map.

In Section 4.9, we review the smooth theory and prove new theorems that are similar to
discrete results established in earlier sections.
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This chapter is based on [46]. Throughout we use the language of discrete differential forms
and quaternionic analysis as introduced by Desbrun et al. [21] and Pedit and Pinkall [54].

4.1. Mobius invariance

In this section we prove that the class of isothermic triangulated surfaces is invariant under
Moébius transformations.

Given a triangulated surface f : V — R3 and a Mobius transformation o : R? U {0} —
R3 U {co}, we define o o f : V — R3 as the triangulated surface with vertices (oo f); := o o f;.
We consider only the Mobius transformations that do not map any vertex to infinity.

Taking o to be minus the inversion in the unit sphere, we obtain a triangulated surface

f _. f—l
Lf1?
Later we identify R? with imaginary quaternions, which explains the notation f~!. We are

going to show that f is isothermic if and only if f~! is isothermic. We first relate isothermic
triangulated surfaces to discrete holomorphic quadratic differentials.

cof=—

Lemma 4.6. A discrete surface f : V — R? is isothermic if and only if there exists q : Einy — R
such that for every interior vertex i
Z qi; =0,

Ehﬂﬁ ﬂPZO

We call q a discrete holomorphic quadratic differential associated to f.

PROOF. It follows from a simple substitution into Definition 4.1

fi—ti
( ) ql] |f] fz|2

Lemma 4.7. Suppose a non-degenerate realization f : V. — R3 of a triangulated surface is
isothermic with an associated holomorphic quadratic differential q. Then, the triangulated surface
f~1:V — R3 is isothermic and q is again an holomorphic quadratic differential associated to

=

PROOF. Notice that

O

[ = £ =1 = AP AG PP

We have

R Rl (SN ;1 el 1

M R &

:q__|fj_fi‘in+2<fj_fi7fi>fz |f1‘ ( fZ)
Y fj — fil?
Hence
-5
zhﬂfl e fé:%+2zhﬂf ﬂ? ‘MZS%U ﬁP
=0 [l

PROOF OF THEOREM 4.3. It follows from the previous lemma and the fact that Mobius
transformations are generated by inversions and Euclidean transformations. O

We give another formulation for isothermic triangulated surfaces, with which one can simi-
larly discuss isothermic triangulated surfaces in various geometries, such as Laguerre geometry.
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Lemma 4.8. Given a non-degenerate realization f : V. — R? of a triangulated surface, an
R3-valued dual 1-form 7 : EX , — R3 satisfies

wnt
> 7(e;) =0 Vi€ Vip,
J
df (eiz) % T(e;‘kj) =0 Y{ij} € Eint,
Z(df(eij), 7(ef;)) =0 Vi€ Vi
J
if and only if there exists k : E;y — R such that
kijdf (ei;) = 7(e;) V{ij} € Eint,
D kidf(ei) =0 Vi€ Vi,

J

ST ki (5 = 1£:) =0 Vi€ Vi

J

PROOF. Suppose k : E;,; — R satisfies for every interior vertex ¢
> kijdf (ei) = 0.
J
Then, we have the identity
D (df(eig), kigdf (ei)) = > kij(1f51> = 1£il> = 205 = fus ) = D ki (I = 1.
J J

J

With it our claims can be verified. O

We consider the light cone
L:={z € R® |23 + 235 + 235 + 25 — 22 = 0}.

Corollary 4.9. Suppose f : V — R3 is a non-degenerate realization of a triangulated surface
and k : E;e — R is a function. Then f is isothermic with corresponding dual 1-form 7 defined

by
7(eij) = kijdf (ei;)  Wij} € Ein
if and only if for every interior vertex i

(4.5) Zk‘ijdf(@ij) =0 Vie Vi

J
where f :V — L C R® is the lift of f to R® defined by

;o (r 1—|fil? 14 |fi]?
fi = (fla 2 ) 2

)€ L CR5.

A function k : E;,; — R satisfying Equation (4.5) is a self-stress of f.

It is known that the Mobius geometry of R3U{oo} is a subgeometry of the projective geometry
of RP%. Mébius transformations of R® U {oo} are represented as projective transformations of
RP* preserving the quadric defined by the light cone L. If two non-degenerate realizations are
related by a projective transformation, then the spaces of self-stresses of the two realizations are
isomorphic [35]. Hence, we obtain another proof of Theorem 4.3.

4.2. Infinitesimal conformal deformations

We consider infinitesimal conformal deformations for a given closed triangulated surface in
space. We show that a surface is isothermic if and only if it is a singular point in the space of all
surfaces conformally equivalent to the original one.
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4.2.1. Conformal equivalence of triangle meshes. We recall that a discrete metric of
a triangulated surface is a function ¢ : £ — R, satisfying the triangle inequality on every face.
A non-degenerate realization f : V — R3 induces a discrete metric £: E — R, via

= |f;— fil Y{ij} €E.

As discussed in Theorem 2.2, we call two discrete metrics (,0:E— R, on a triangulated

surface M conformally equivalent if there exists u : V' — R such that for every edge {ij}

Zij = 6%&7‘.
Furthermore, we say two non-degenerate realizations f, f : V' — R? are conformally equivalent if
their induced discrete metrics are conformally equivalent.

It leads naturally to an infinitesimal version of conformal deformations. An infinitesimal
deformation of a non-degenerate triangulated surface f : V — R3 isamap f: V — R3. It is
conformal if there exists u : V — R such that the change of the induced discrete metric £ : E — R
satisfies for every edge {ij}

U; + Uj
2
In particular, f is an infinitesimal isometric deformation if u = 0.

The conformal equivalence class of a triangulated surface in Euclidean space is M&bius in-

variant [9]. It can be distinguished via logarithmic length cross ratios.

éij =

0.

DEFINITION 4.10. Given a discrete metric ¢ : E — Ry on a triangulated surface, its loga-
rithmic length cross ratio logler : RIEl — RIFPintl is defined by

log lcr(f)ij = logfjk — log l; + log £;; — log&j V{Z]} € Fin
where {ijk} is the left face of e;; and {jil} is the right face.

Theorem 4.11 ([9]). Two discrete metrics £ and { on a triangulated surface are conformally
equivalent if and only if

logler(¢) = logler().
Corollary 4.12 ([9]). The dimension of the space of the conformal equivalence classes of a

triangulated surface is |E| — |V|.

4.2.2. Infinitesimal deformations. In this section, we consider closed triangulated sur-
faces. Suppose £ : E — R, is a discrete metric on a closed triangulated surface. We consider an
infinitesimal change of the discrete metric ¢ and write it as ¢ = o/ for some infinitesimal scaling
o : E — R. Then the change of the logarithmic length cross ratio on edge {ij} is given by

(logler(0));; = ojk — oki + o — 01 =t L(0)35.
The image of the linear map L : Rl — RIF| is the tangent space of the space of conformal
equivalence classes (which is the same space at all discrete metrics).
Lemma 4.13. Given a closed triangulated surface. The operator L is skew adjoint with respect
to the standard product ( , ) on RIE! given by (a,b) := > (ijyer %ijbiy for any a,b € RIZI,
PROOF. Let 6 : E — R be the function defined by (6%/);; = 1 on edge {ij} and zero on
other edges. Then for any b € RI”! we have
L ()i = (8, L*(8) = (L(3),B) = —bjx + by — bt + byy = —L(b).;.
Thus we have L* = —L. (]
The above lemma implies that we have an orthogonal decomposition
RIPl = Ker(L) ® Tm(L*) = Ker(L) @ Im(L).
Lemma 4.14. Given a closed triangulated surface. We have the following.
Ker(L) ={a: E - R|JueRY s.t. V{ij} € E, a;j =u; +u;}
Im(L)={a: E—>R|> a;; =0 VieV}
J
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PRroOOF. It is obvious that
{a: E—RBueRY st. aj; =u; +u; V{ij} € E} C Ker(L).
Assume a € Ker(L). For each vertex i of a face {ijk} we define
Aij + Api — Ajk
2

Suppose {ilj} is the neighboring triangle sharing the edge {ij} with {ijk}. Because of L(a);; =0
we have

Qi + Api — Qi Q5 + Qg — ayj
wy = 2 21 ik _ Gij 2% I — g,
Since the link of each vertex is a disk (although we only need the vertex link to be a fan), Equation

(4.6) in fact defines a function u : V' — R such that for any edge {ij}

Qi = U; + Uj-
Hence
Ker(L) = {a: E —» R|3u e RY sit. a;; =u; +u; V{ij} € E}.
On the other hand, it is obvious that
Im(L) C{a: E—R|Y a;=0 VieV}
J
Since
rank(L) = |E| — dimKer(L) = |E| — |V]|

the two vector spaces are indeed the same. O

Recall that conformal equivalence classes of a triangular mesh are parametrized by logarith-
mic length cross ratios. By the inverse function theorem the result below implies that by deform-
ing a non-isothermic surface in space we can reach all nearby conformal equivalence classes. It is
precisely in the case of an isothermic surface that the hypothesis of the inverse function theorem
fails to be satisfied. Thus the space of all non-isothermic non-degenerate realizations in a fixed
conformal equivalence class is a smooth manifold.

Theorem 4.15. Suppose f : V — R3 is a non-degenerate realization of a closed triangulated
surface. Then f is isothermic if and only if there exists a non-trivial element a € Im(L) such
that

(a,L(0)) =0
for all infinitesimal scalings o : E — R coming from infinitesimal extrinsic deformations in
Euclidean space, i.e. for o so that there exists f 'V = R and W : E — R3? such that
df = odf +df x W.

PROOF. Suppose [ is isothermic with 7 satisfying Definition 4.1. Let f:V = R3be an
arbitrary infinitesimal deformation and we write df = odf + df x W. Since 7 is closed, i.e.
>_;7(ej;) =0 Vi€V we have

0==> O 7ler). fi) = D (r(ef;),df(ei)) = > (r(e;), 0i5df (eij) + df (eij) x Wiy).
i€V g {ij}eE {ij}
From df (e;;) x 7(ej;) = 0 we obtain
0= (r(ef)), oidf (ei) + df (eis) x Wij) = > (7(ef;), df (es;)) 05

{ijleE {ijleE

Using
(r(eij) df (eiz)) = (r(ef), df (e5i))

we see that (r,df) : E — R is well defined. Since we know that for every interior vertex i

> df(eij) T(el;)) =0

J
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we thus have (7,df) € Im(L). Hence there exists an non-trivial element a € Im(L) such that for
every edge {ij}
L(a)ij = —(7(e5), df (eij))-
Because f is arbitrary we conclude that
0= ({r,df),0) = (=L(a),0) = (a, L(7))
for all infinitesimal scaling o : E — R coming from infinitesimal extrinsic deformations.
On the other hand, suppose there exists a non-trivial a € Im(L) such that

(a,L(0)) =0
for all infinitesimal scaling o € RI®! coming from infinitesimal extrinsic deformations. We define
a dual 1-form 7: E},, — R? via
df (ei5)

)= —L(a)i s
ldf (ess)I?
which satisfies

df(eij) X 7'(62}) = O,

(df (eiz), T(ef;)) = —L(a)i;
for every edge {ij}. Since (df,7) € Im(L), we have

S (df (i), m(ef)) =0 Vie V.

J

In addition, for any infinitesimal deformation f : V — R3 we write df = odf + df x W for some
0:E—=Rand W:E — R3. We obtain

=D O e fiy =D (r(er) dfe)) = D _{r(ef), df (eig)i; = (a, L(o)) = 0.
eV g ij ij
Since f is arbitrary we conclude that 7 is closed, i.e.
> Tle;) =0 VieV.
J
Hence, f is isothermic with dual 1-form 7. O

PrROOF OF THEOREM 4.4. Consider the composition of maps

{infinitesimal deformations in R*} % {infinitesimal scalings} L, {change of lcrs}.
The space of infinitesimal conformal deformations is exactly Ker(L o o). Moreover, we know
dim(Ker(L o o)) = 3|V| —rank(L o o) > 3|V| = (|E| — |V]) = |V| — 69 + 6.
Finally we conclude: The inequality is strict <= Loo is not surjective <= f is isothermic. [
Since the conformal equivalence classes of a triangle mesh are parametrized by length cross
ratios, we can rephrase the previous theorems as follows.

Corollary 4.16. Given a closed triangulated surface, isothermic realizations are precisely the
points in the space of all non-degenerate realizations where the map that takes a non-degenerate
realization to the conformal equivalence class of its induced metric fails to be a submersion.

It is interesting to see how combinatorics affect geometry. It is known that the number of
vertices of a closed genus-g triangulated surface satisfies the Heawood bound [28]
74+ +/1+48¢g
This condition is known to be sufficient for the existence of a genus-g triangulated surfaces with
|V| vertices except for g = 2. Comparing the Heawood bound with the inequality in Theorem 4.4
we obtain more examples of isothermic surfaces.

Corollary 4.17. Every non-degenerate realization of a closed triangulated surface with |V| <
6g + 4 is isothermic.
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PROOF. The space of infinitesimal conformal deformations contains all deformations that
come from infinitesimal M&bius transformations. Therefore this space has dimension at least 10
and hence a surface must be isothermic if 10 > |V| — 6g + 6. O

Some of these surfaces with small number of vertices can be realized in Euclidean space
without self-intersection. For example, there are embedded surfaces with g = 2 and |V| = 10 as
shown in [33].

4.3. Preserving intersection angles

Given a triangulated surface in Euclidean space, every triangle determines a circumscribed
circle and every two triangles sharing an edge determine a unique circumscribed sphere if the
vertices are not con-circular. Two circumscribed circles are neighboring if their corresponding
triangles share an edge. We call two circumscribed spheres neighboring if they have a common
vertex.

Intersection angles of circles and spheres are Mobius invariant. The intersection angles of
neighboring circumcircles of a triangulated surface were used to define a discrete Willmore func-
tional [11].

PROOF OF THEOREM 4.5. Suppose we have an infinitesimal deformation f that preserves
the angles between circumcircles and circumspheres but is not induced from Md6bius transforma-
tions. Then it cannot be that f also preserves the length cross ratios (because it is not hard to
see that in this case f is an infinitesimal Mébius transformation). We write d f=odf +df xW
for some 0 : E — R and W : E — R3. Then the change of logarithmic length cross ratios is L(o)
where

L(O’)ij =04k — Oki + 04 — 0y5 V{Zj} € Fin.
(See Figure 1.1.) By our assumptions L(o) does not vanish identically.
We define a dual 1-form
df (ei;)

T(el;) = L(a)ijm.

ij
Then we have
T(efj) x df(e;;) =0 VY{ij} € FE
> (r(esy) df(ei)) =D L(0)ij =0 Vi € Vi

In order to show that f is isothermic, we need to verify the closedness of 7, i.e. for every interior

vertex i
Z 7(ej;) = 0.
J
We identify Euclidean space R? with the space Im H of imaginary quaternions (Section 4.9).
We pick any vertex vy and denote its neighboring vertices by vi,vs,...,v,. Then we take an
inversion in the unit sphere centered at fo := f(vg) and denote the images of the neighboring
vertices by fz We have the following relations:

fi—fo=(fi = fo) ",
fivr = Fi = =(fi = o) " N((Fir = fo) = (f5 = fo)) (i1 — fo)
= —(fi = fo) " (fj41 = fi)(Fir — fo) 7
We define the infinitesimal scaling
Al
Oj,j+1 " oo — )]

By taking the logarithmic derivative of the following equation

|J§j+1 - fil _ fier = fillfim = fol

Ifi — fi-1l i+ = follfs — fi-a
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we obtain for j =1,...,n

Gjj+1 = 15 = (L(0))o;
where o;; = |f; — fil'/|f; — fi|. On the other hand, the vertices fi, fase oy frs f1 form a closed
polygon in R?. We define

Ui = |fiv1 — fil,

~ fiv1—Fi
Ty = 22—
‘fj+1 fj‘
Since the polygon is closed, we have
n
=Y Ty .
=1

The fact that the deformation f preserves the intersection angles of neighboring circles and
neighboring spheres implies that the angles between the neighboring segments and osculating
planes of the closed polygon remain constant. Thus there exists a constant vector ¢ € R? such
that

0=> linTije+ > LTy xc
=> Gj1(fix1— )
==Y L(a)oj(f; — fo) "

ZT 601

To show that the converse is true one only has to reverse the previous argument. O

4.4. Example: Isothermic quadrilateral surfaces

We show that isothermic quadrilateral surfaces as defined by Bobenko and Pinkall [4] are
isothermic under our definition (after an arbitrary subdivision into triangles). Isothermic quadri-
lateral surfaces are analogous to conformal curvature line parametrizations of smooth isothermic
surfaces. They can be treated using the theory of integrable systems. New isothermic surfaces
can be obtained from a given isothermic surface via the Christoffel duality and Darboux trans-
formations [31]. Special discrete surfaces related to isothermic quadrilateral meshes were studied

in [3, 7].
Questions about infinitesimal rigidity of quadrilateral meshes have been considered by [64,
72, 36].

We first review some results on isothermic quadrilateral surfaces from [14]. Then we construct
an infinitesimal isometric deformation for every isothermic quadrilateral surface and show that
the change of mean curvature around each vertex is zero. In this way we obtain isothermic
triangulated surfaces from the earlier notion of isothermic quadrilateral surfaces.

4.4.1. Review.

DEFINITION 4.18 ([4]). A discrete isothermic net is a map f : V(Z?) — R3?, for which all
elementary quadrilaterals are cyclic and have factorized real cross-ratios in the form

a
cr(fmny frt1ms fmttnd1 fmnt1) = —  Vm,n € Z,

B

where a,,, € R does not depend on n and f3,, € R not depend on m.

Theorem 4.19 ([4]). Let f : V(Z?) — R3 be a discrete isothermic net. Then the discrete net
f*: 7% — R? defined (up to translation) by the equations

* im— * = Qm fm+1’n —~ fm’n
m+1,n m,n Hfm-‘rlﬂ — fm,n”z7

fmnt1 — fm,
f;z,nJrl_f;z,n:Bn UL mn 5

| |fm,n+1 -
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is isothermic. f* is the Christoffel dual of f.
We need a formula for the diagonals of its Christoffel dual [14, Corollary 4.33].

Lemma 4.20. Given a discrete isothermic net f, the diagonals of any elementary quadrilateral
of its Christoffel dual are given by

f +1,n+1 — f )
f:;LJrl,n - frtL,n+1 = (am - ﬂn) = = T PR
Hfm+1,n+1 - fm,n”

f* f* _ (am . ﬁn) fm+1,n - fm,n+1

mol bl S Hfm+1,n - fm,n+1||2.

4.4.2. Infinitesimal flexibility of isothermic quadrilateral surfaces. Given a discrete
isothermic net we first arbitrarily introduce a diagonal for each quadrilateral in order to get a
triangulation. Then, we define infinitesimal rotations on faces as follows.

Rule: Suppose ABCD is an elementary quadrilateral of a discrete isothermic net f : V/(Z2?) —
R3 and the diagonal AC is inserted. Then we get two triangles ABC and ACD. We define
infinitesimal rotations Zapc := B* and Zscp := D* where B* and D* are the corresponding
vertices of the Christoffel dual f*: V(Z?) — R3.

Theorem 4.21. Suppose we are given a discrete isothermic net f : V(Z?) — R3 and its Christof-
fel dual f* : V(Z?) — R3. We assume that the faces of f have been subdivided into triangles
i an arbitrary way. Then the infinitesimal rotations given by the above rule for each triangle
define an infinitesimal isometric deformation of the triangulated surface. Moreover, the infini-
tesimal deformation preserves the integrated mean curvature and is not induced from FEuclidean
transformations.

PrOOF. By Theorem 4.19 and Lemma 4.20, the infinitesimal rotations of two adjacent tri-
angles are compatible on the common edge. Therefore they define an infinitesimal isometric
deformation.

It remains to show that around an arbitrary vertex the change of the integrated mean cur-
vature around vertices is zero. For every vertex there are 2* = 16 ways of inserting diagonals on
the four neighboring quadrilaterals. Taking the symmetry into account we can reduce them to 6
cases. We enumerate these 6 cases and calculate the change of mean curvature on each edge in
Figure 4.1. It can be checked directly that in all cases the sum around the vertex is zero. [l

REMARK 4.22. Although the infinitesimal rotations on faces depend on the triangulation,
the deformations of the edges already present in the quad mesh do not. For example, the change
of the edge fr4+1,n — fm.n is given by

(ferl,n - fm,n) = (ferl,n - fm,n) X ;qszrl,n

= (fmt1n = fmn) X frm

* + *
= (fmsim — frm) X %f’”"

Here we have used (fyr, 11, — fon) | (fm+1,n — finn). Moreover, the quadrilaterals do not stay
con-circular under the infinitesimal deformation.

The infinitesimal isometric deformation defined above has an exact counterpart in the smooth
theory. Given a simply connected isothermic surface f and its Christoffel dual f*, there exists
an infinitesimal isometric deformation f satisfying df = df x f* (Section 4.9). It preserves the
mean curvature but does not preserve curvature lines. If in addition the curvature lines were
preserved, the shape operator would remain unchanged and the deformation would be trivial, i.e.
an infinitesimal Euclidean transformation.

4.5. Example: Homogeneous discrete cylinders

In this section we show that every homogeneous triangulation of a circular cylinder in R? is
isothermic. Here “homogeneous” means that there is a subgroup of Euclidean transformations
that acts transitively at vertices and respects the combinatorics. Note that in general none of
the edges of such an isothermic discrete cylinder is aligned with the curvature line directions of
the underlying smooth cylinder.
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FIGURE 4.1. The six types of triangulations around a vertex f, , and the cor-
responding change of mean curvature on the edges.

We consider the group G of all Euclidean motions that fix the z-axis. Every element g € G
is of the form that acts on a point p € R3 as

cosf sinf 0 0
glp)=| —sind cos® 0 |p+| O
0 0 1 h

where 0, h € R.

We pick two elements g1, go of G in general position and consider the group H generated by
g1,g2. For a generic choice of g, ge the group H is isomorphic to Z2. An element (s,t) € Z2
corresponds to the element g5g5 € H.

We also consider Z? as the vertex set of a triangulated surface with faces of the form
{(s,8),(s+ 1,¢),(s,t+ 1)} or {(s+1,t),(s+1,t+1),(s,t + 1)} (Figure 4.2).

We now define a map f : Z2 — R3 by picking 7 > 0 and setting

f(s,t) = gig5(r, 0,0).
For suitable g1, g2 € G this map f will be a non-degenerate realization. Figure 4.3 shows a piece
of such a discrete surface.
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(s,t4+1) (s+1,t+1)

(s,t) (s+1,t)

FIGURE 4.2. A triangulated surface with vertex set Z?2

FIGURE 4.3. A strip of an isothermic triangulated cylinder

We now prove that realizations f : V(Z?) — R3 constructed above are isothermic by show-
ing that they admit a non-trivial infinitesimal isometric deformation preserving the integrated
mean curvature. Note that up to symmetry there are only three types of edges, represented by
{f(0,0), f(1,0)}, {f(1,0), f(0,1)} and {f(0,1), f(0,0)}. We denote their lengths by

La(r,01,h1,00,h2)  Ly(r,01,h1,02,h2)  Le(r, 01, by, 02, ho).
The integrated mean curvature is the same at all vertices. We denote it by
H(r,01,hy,0s, ha).

Now the derivative of the map u := ({4, 0y, ., H) : R — R?* has a non-trivial kernel at every
point (7,01, hi, 02, ha) € R®. Moreover, it is easy to see that any non-zero element

(7,01, 1, 02, ho) € ker du

corresponds to an infinitesimal deformation of f which is not induced from Euclidean transfor-
mations. This infinitesimal deformation preserves all the edge lengths and the integrated mean
curvature around vertices. Therefore the triangulated cylinder f is isothermic.

4.6. Example: Planar triangular meshes

In this section we show that certain planar triangular meshes are isothermic. For a simply
connected surface, we know that a realization is isothermic if and only if there exists a non-trivial
infinitesimal isometric deformation preserving the integrated mean curvature (Corollary 4.2). We
will see that every such deformation of a planar triangular mesh is given by a discrete harmonic
function in the sense of the cotangent Laplacian [49, 67].

Theorem 4.23. Suppose f : V — R? C R? is a non-degenerate realization of a triangulated
surface with Euler Characteristic x and |V,| boundary vertices. Then f is isothermic if |Vy|—3x >
0.
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PROOF. Since each boundary component is a simple closed polygon, the number of boundary
edges is | Ep| = |Vp|. The Euler characteristic is given by

VI = E[+ |F| = x.
Since the surface is triangulated, we have
3|F| =2|E[ — | Ep|.
Hence
|Eint| = 3|Vint| = [Vb| — 3x.

By Lemma 4.8, a dual 1-form satisfying Definition 4.1 is equivalent to existence of a discrete
holomorphic quadratic differential q : F;,; — R such that for every interior vertex 4

ZQij =0,
J

(4.7)
Z%’j/(zj —2)=0

which is a system of linear equations. By simple counting and using the fact that f is planar we
obtain a lower bound on the dimension of the solution space

dim{k : E;y — R satisfying (4.7)} > |Eint| — 2|Vint) — |Vint| = |Vb| — 3x.
Hence f is isothermic if |V3| — 3x > 0. O

In particular the above theorem implies that every planar triangulated disk (xy = 1) with

more than 3 boundary vertices is isothermic. Since a disk is simply connected, by Corollary
4.2 there exists a non-trivial infinitesimal isometric deformation preserving the integrated mean
curvature. The following indicates how to obtain such infinitesimal deformations.
Theorem 4.24. Let f : V — R? C R? be a strongly non-degenerate realization of a triangulated
surface with normal N € S?> and u : V. — R be a function. Then the infinitesimal isometric
deformation f := ulN preserves the integrated mean curvature if and only if u is a discrete
harmonic function in the sense of the cotangent Laplacian, i.e. for every interior vertex i

> (cot Zjki + cot Zilj)(uj — u;) =0
J
where triangles {ijk} and {jli} share an edge {ij} (Figure 1.1).

~ Proor. It is easy to see that for any function u : V' — R the infinitesimal deformation
f = uN preserves edge lengths. The infinitesimal rotation of a face {ijk} is given by

udf (eji) + ujdf (exi) + urdf (ei)

2Aijk
where A;;, := ((df(ei;) % df(eir))/2, N) is the (signed) area of the triangle {ijk}. This follows
from

Zijk =

df(eij) = UjN — ’U,zN = df(e”) X Zijlc-
To preserve the integrated mean curvature around vertices, the map Z : F — R3 has to satisfy
for every interior vertex

(4.8) 0= Y (df(eij), Ziji — Zia) = > (df(ex;), Zije)-
{ij}eE: {ijk}eF:i
Note that
~uidf (eji) + ujdf (eri) + def(eij)>
2Aijk

—(df(egp), W )Y (ek;) j;jiuk —u)df(ey),

= — cot Zjki (uj — u;) — cot Zilj (ur — u;).

(df (erj); Ziji) =(df (ex;),
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Thus (4.8) is equivalent to saying that for every interior vertex i

0= Z (cot Zjki + cot Zilj)(u; — u;).
{ij}eE:i

Hence the infinitesimal deformation u/N preserves the integrated mean curvature if and only if u
is a discrete harmonic function. (]

In fact, every infinitesimal isometric deformation of a strongly non-degenerate planar trian-
gular mesh is of the form u IV for some function v modulo infinitesimal Euclidean motions.

It can be checked that an infinitesimal normal deformation u N of a planar mesh f is an
Euclidean motion if and only if w is a linear function, i.e. if there exists a vector a L N and a
constant ¢ € R such that

u={(a, f)+ec

4.7. Example: Inscribed triangular meshes

Since the notion of isothermic triangulated surfaces is Mobius invariant (Theorem 4.3), our
results for planar triangular meshes can be rephrased for triangular meshes inscribed in a sphere.
Theorem 4.23 immediately implies the following.

Corollary 4.25. Suppose f : V — S? is a non-degenerate realization of a triangulated surfaces
with Euler Characteristic x and |Vy| boundary vertices. Then f is isothermic if |[Vy| — 3x > 0.

In particular, it follows that every inscribed triangulated disk with more than 3 boundary
vertices is isothermic. This is analogous to the fact that disks immersed smoothly in a sphere
are isothermic.

On the other hand, to show that a triangulated surface is isothermic, we look for a non-trivial
infinitesimal isometric deformation preserving the integrated mean curvature. For an inscribed
triangulated surface, we will see that it suffices to find an infinitesimal isometric deformation.

The following lemma shows that for any triangular mesh inscribed in a sphere a dual 1-form
T satisfying Equation (4.2) and (4.3) in Definition 4.1 will satisfy Equation (4.4) automatically.

Lemma 4.26. Given a non-degenerate realization f : V. — S? of a triangulated surface and a
function k : E;y — R, then for every interior vertex i

Y kiydf(ei) =0 =Y kyldf(ei)]> = 0.
J J

PROOF. Since |f| =1, we have

Zkij|df(eij)|2 = Zkij(Qlfi|2 = 2(fi, f3)) = 2{fi, Zkij(fi - f;)) =0. O

Corollary 4.27. Given a non-degenerate realization f : V. — S? of a triangulated surface, a
function k : E;ny — R is a self-stress of f, i.e. for every interior vertex i

Z k”df(e”) =0
J

if and only if

@i = ki|f; — fil?
defines a holomorphic quadratic differential associated to f. Furthermore, there is a one-to-one
correspondence between self-stresses on f and discrete holomorphic quadratic differentials on the
stereographic projection of f.
Theorem 4.28. Suppose f : V — S? is a strongly non-degenerate realization of a triangulated
surface M. Then every infinitesimal isometric deformation preserves the integrated mean curva-
ture.

Hence if f is infinitesimally flexible, then it is isothermic. If f is isothermic and M is simply
connected, then f is infinitesimally flexible.
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PROOF. Suppose an infinitesimal isometric deformation is given by a rotation vector field
Z : F — R3. The compatibility condition implies that there exists k : E;,; — R such that on
every interior edge {ij}
(Ziji — Zjir) = kizdf (eij)
where {ijk} denotes the left face of e;; and {jil} denotes the right face. The previous lemma
yields for any vertex i € Vi,

Hy = kildf (ei)]* = 0.
J
Hence the integrated mean curvature is preserved. ([l

ExXAMPLE 4.29. Jessen’s orthogonal icosahedron is obtained from a regular icosahedron by
flipping 6 edges symmetrically without self intersection [37, 24]. Its vertices are exactly those
of a regular icosahedron and hence lie on a sphere (Figure 4.4). It is known to be infinitesimally
flexible and thus isothermic.

FIGURE 4.4. Jessen’s orthogonal icosahedron

Note that the property of being isothermic is M&bius invariant.

Corollary 4.30. The infinitesimal rigidity of a non-degenerate simply connected triangulated
surface inscribed in a sphere is Mdbius invariant.

We can regard a Mdbius transformation of a triangulated surface inscribed in a sphere as

being induced from a projective transformation of the ambient space. Then the above corollary
is simply a special case of the projective invariance of infinitesimal rigidity [35].

4.8. Christoffel duality and discrete minimal surfaces

In the smooth theory a minimal surface is the Christoffel dual of its Gaufl map. Here we
discuss its discrete analogue.

DEFINITION 4.31. Given a non-degenerate realization f :V — R3 of a triangulated surface,
a non-constant map f* : F — R3 is a Christoffel dual of f if

df(eij) X df*(efj) =0 V{Z]} S Eint,
> (df(eig), df*(e;)) =0 Vi € Vi

J

Since we know from the previous section that triangulated disks inscribed in a sphere with
more than 3 boundary vertices are isothermic, it is natural to define their Christoffel duals as
discrete minimal surfaces. In fact it leads to A-minimal surfaces as discussed in Chapter 3.
Theorem 4.32. Given a non-degenerate realization n : V — S? of a triangulated surface such

that n; # —n; for every edge {ij}, then its Christoffel dual is a trivalent A-minimal surface with
Gauss map n.
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4.9. Smooth analogues

The main goal of this section is to prove the smooth analogue of Theorem 4.28:

Theorem 4.33. For every infinitesimal isometric deformation of an immersion f : M — S2,
the mean curvature is preserved.

Beyond this we also use the opportunity to review some known results on smooth isothermic
surfaces that directly correspond to our discrete results. We rely on the treatment of smooth
isothermic surfaces by means of quaternionic analysis as developed in [38, 39, 59].

DEFINITION 4.34. Given two immersions f and f of a surface M in R? = Im H, f is a spin
transformation of f if there exists a quaternion-valued function A : M — H\{0} such that
df = Mf .
In this case, the normals N, N of f, f are related by N = A" NA.
Theorem 4.35. Given an immersion f : M — R* = ImH and a function X : M — H\{0}.
Then Adf X\ is a closed 1-form if and only if there exists p: M — R such that
df Ad\ = —pA|df]?.

Suppose f : M — R3 is a smoothly immersed surface and X, JX € T,M form an orthonormal
basis in principal directions at p € M. The corresponding principal curvatures k1, ko € R is given
by

dN(X;) = ridf (Xi).
The mean curvature H, at p then satisfies
df (X) x dN(JX) —df (JX) x dN(X) = (k1 + ke)N = 2HN.
Writing the above formula into quaternions yields
df ANdN = 2HN|df|*.
If f is a spin transformation of f, then the change of the metric and the mean curvature can be
expressed as follows.
Theorem 4.36. Iff s a spin transformation of f given by X\ then the followings hold:
(1) fand f are conformally equivalent since |df|2 = |\|4]df %
(2) We have d(Adf A) =0 and hence 3p : M — R such that df N dA = —pAldf|?.
(3) HIdf|> = (H + p)|AP|df |*.

Now we use the fact that every infinitesimal conformal deformation can be expressed as an
infinitesimal spin transformation.

Theorem 4.37. Suppose f : M — R3 = ImH is a simply connected smooth surface and AN: M —
H is a function. Then there exists an infinitesimal conformal deformation f: M — R3 = ImH
given by
df = 2Im(df \)
if and only if there exists p: M — R such that
—df A dA = pldf|*.

In particular

(1df[*)" = 4Re(N)[df?,

(H|df[*)" = (p+ 2Re(\) H)|df .

DEFINITION 4.38. A smooth surface f : M — R3 = ImH is isothermic if locally there exists
a non-trivial Im H-valued closed 1-form 7 such that

df NT=0.
Theorem 4.39. A smooth surface f : M — R? = ImH is isothermic if and only if locally

there exists a mon-trivial infinitesimal isometric deformation such that the mean curvature is
unchanged.



4.9. SMOOTH ANALOGUES 59

PROOF. Let f be isothermic and 7 be a 1-form satisfying Definition 4.38. The closedness of
7 implies that on any simply connected open set U C M there exists A : U — ImH such that
T =d\.
Since df AdA = 0, Theorem 4.37 implies that the 1-form Im(df )\) is closed and hence there exists
an infinitesimal deformation f: U — ImH satisfying
df = 2Im(df \).
Because A is purely imaginary and df A dh = 0, from Theorem 4.37 we have
(ldf1*)" =0,
(H|df|*)" =0

and hence f is an infinitesimal isometric deformation preserving the mean curvature. The con-
verse is proved similarly. O

The smooth analog of Theorem 4.3 is a classical result of isothermic surfaces [30].
Theorem 4.40. The class of isothermic surfaces is Mébius invariant.

We need the global existence of 7 in order to relate it to the space of immersions.

DEFINITION 4.41. A smooth surface f : M — R3 =2 ImH is strongly isothermic if there exists
a non-trivial Im H-valued closed 1-form 7 on M such that

df NT=0.

In addition, if 7 is exact and 7 = df* for some f* : M — R? = ImH, then f* is a Christoffel dual
of f.

The smooth analog of Corollary 4.16 in Section 4.2 is known:

Theorem 4.42 ([15]). Strongly isothermic immersions of a closed surface are the points in the
space of immersions where the map from the space of immersions to Teichmdiiller space (which
assigns to each immersion the conformal class of its induced metric) fails to be a submersion.

Furthermore, Theorem 4.5 is analogous to the infinitesimal version of the following:

Theorem 4.43 ([17]). Suppose f,f : M — S3 are two conformal immersions that share the
same Hopf differential but do not differ by a Mébius transformation. Then f and f are isothermic
surfaces.

Finally, we establish a smooth counterpart of Theorem 4.28 in Section 4.7. We first need a
lemma.

Lemma 4.44. Let M be a surface with a Riemannian metric and f : M — R? be an isometric
immersion. Let A= g+ df(Y) + hN be an H-valued function on M where g, df (Y) and hN are
its scalar, tangential and normal components. Then we can express df AdA in terms of standard
operators from the vector calculus on M as

—df Nd\ = [ —curlY +df (Jgradg — AY + gradh) — ((divY) + 2hH)N]| |df 2.

Proor. In the following we assume that X € T,M is an unit tangent vector. We first
consider the scalar component.

—df Ndg(X,JX) = —df (X)dg(JX) + df (JX)dg(X)
— Ndf(dg(X)X + dg(JX)JX)
= Ndf (grad g).
Then we consider the normal component.
—df Nd(hN)(X,JX) = ((—df Adh)N — hdf A dN)(X, JX)
= Ndf (grad h)N — h(df (X)dN(JX) — df (JX)dN(X))
=df(grad h) — 2hHN.
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Finally we look at the tangential component. Notice that for an immersed surface in Euclidean
space the induced Levi-Civita connection is given as follows: for any tangent vector field Y and
tangent vector Z,

df(VzY) = d(df (Y))(Z) = (d(df (Y))(Z), N)N
=d(df(Y))(Z2) + (df (Y),df (AZ))N
=d(df(Y))(2) + (Y, AZ)N
where A is the shape operator of the immersion f. We recall the definition of curl and divergence
operator of a tangent vector field Y:
div(Y) : = (X, VxY) + (X,VxY),
curl(Y) : = (JX,VxY) — (X, V;xY)
=—(X,VxJY) —(JX,V;xJY)
= —div(JY).
Collecting the above information we now obtain
— df A d(df(Y)(X, TX)
— A (X)(dF(VyxY) — (Y, ATX)N) + df(JX) (df (VxY) — (Y, AX)N)
=(X,V;xY)—({JX,VxY)— (JX,V;xY)N
+ (—X, VxY)N — (AY, JX)df (JX) — (AY, X)df (X)
=—curlY — (divY)N — df(AY). O
PROOF OF THEOREM 4.33. Suppose f : M — S? is an immersion and A\ : M — Tm(H)
induces an infinitesimal isometric deformation of f. Then writing A = df (Y') + hN, we have
(H|df[?)" = —df Ad\ = (—curlY +df (=Y + grad h) — ((divY + 2h))N)|df|*.
Comparing the imaginary part yields
Y =gradh
and thus
(H|df|*)" = — curl(Y') = — curl(grad h) = 0.

Since (|df|?)" = 0, we have H = 0. O



CHAPTER 5

Integrability of P-nets

Discrete holomorphic quadratic differentials are closely related to discrete equations of Toda
type in discrete integrable systems [1, 6]. In this chapter, we focus on a particular class of
discrete surfaces which possess a canonical discrete holomorphic differential and rich integrable
structures.

We study P-nets (Definition 3.29) with the combinatorics of the square grid, i.e. f: V(Z?) —
R3 such that for every vertex vy € Z?2

hi=fo _ fozho  fs=f  _fazfo _,

[fr=Jol2 [fa=fol?  [fa—Sol? |fa—fol*
where v1,v2,v3,v4 denote the neighboring vertices of vy in cyclic order. The above condition
implies f satisfies the parallelogram property: mapping any interior vertex to infinity by inversion
the neighboring vertices form a parallelogram.

P-nets appeared in several contexts of this thesis. In Chapter 3 discrete minimal surfaces
from planar P-nets lie in the intersection of the integrable systems approach, the curvature
approach and the variational approach to discrete minimal surfaces. Furthermore, P-nets form
an important subclass of isothermic triangulated surfaces as discussed in Chapter 4. Indeed,
there is a canonical discrete holomorphic quadratic differential u : E(Z?) — 41 associated to
every P-net f : V(Z?) — R3, where p is +1 on “horizontal” edges {(m,n),(m + 1,n)} and —1
on “vertical” edges {(m,n), (m,n+1)}.

The aim of this chapter is to study various transformations of P-nets, in order to lay a
foundation for integrable structures on isothermic triangulated surfaces and a unified theory of
discrete constant mean curvature surfaces.

Integrable structures on quadrilateral isothermic surfaces (with factorized cross ratios) were
well established [14]. Bobenko and Pinkall [4] introduced quadrilateral isothermic surfaces in
terms of Lax representation together with their Christoffel transformations. Hertrich-Jeromin,
Hoffmann and Pinkall [31] studied Darboux transformations. Hertrich-Jeromin [29] discussed
Calapso transformations of quadrilateral isothermic surfaces.

It is known that every P-net can be regarded as half a quadrilateral isothermic surface (with
cross ratios -1). Labeling the vertices of a quadrilateral isothermic surface black and white
alternatingly, the net consists of the black vertices is a P-net. Conversely, we can extend a P-net
to a quadrilateral isothermic surfaces with cross ratios -1 by prescribing the position of a white
vertex.

Since quadrilateral isothermic surfaces enjoy rich integrable structure it is expected that P-
nets also exhibit some sorts of integrable structures. However, it is unclear if the transformations
(Christoffel, Darboux and Calapso) depend on the choice of the completion, i.e. the “white”
vertex.

We show that there is a redundancy in the theory of quadrilateral isothermic surfaces. We
establish Christoffel transformations, Darboux transformations and Calapso transformations of
P-nets without completing them to quadrilateral isothermic surfaces with cross ratios -1.

We first illustrate the construction of P-nets from quadrilateral isothermic surfaces with cross
ratios -1 and from closed polygons in space.

Lemma 5.1. Given a non-degenerate quadrilateral ABCD in R3 and points a,b, c,d such that

Ao = —XaB, Bb= —%@7

1

61

(5.1)
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for some A € R\{0,1}. Then abed is a parallelogram.
Conversely, given a parallelogram abed, A € R\{0,1} and an arbitrary point A # a,d. Then
there exists a unique quadrilateral ABCD satisfying (5.1).

PROOF. Notice that

%:EEMEZ:%(ﬂ%ﬁ):ﬁ(ﬁuﬁ):@uﬁ:%

Hence abced is a parallelogram.
On the other hand, given a parallelogram abed, a number A € R\{0,1} and an arbitrary
point A # a,d, the points B,C, D, A’ are uniquely defined by

A¢ = —AaB, Eé:—%l@,
Ce = —\eD, ﬁl:—icﬁ.

It remains to show that A = A’. In fact,

A =(1-Nd+AD

—(1-Nd—(1-Nec+C
=(1=Nd—(1-Nec+(1—M\b+AB
=(1=Nd—(1=Ne+(1—Nb—(1-XNa+A

— A O

REMARK 5.2. If ABCD lies in the complex plane, the parameter A can be complex-valued
and the result still holds [6].

In order to describe the cross ratio of four points in Euclidean space, we employ quaternions
for convenience. Recall that the space of quaternions H is a 4-dimensional vector space over R
spanned by 1,14, j, k with multiplicative relations

2= =k2= 1,
ijk = —1.
We denote the space of purely real quaternions and the space of purely imaginary quaternions
by
Re(H) := Spang(1)
Im(H) := Spang (4, j, k).
Hence we can identify the Euclidean space as the space of purely imaginary quaternions Im(H).

Similar to complex numbers, the conjugation of a quaternion ¢ = a+bi+cj+dk where a,b,c,d € R
is denoted by ¢ = a — bi — ¢j — dk. The inverse of a nonzero quaternion ¢ is given by

-1._ 4

¢ =
lq/?
which satisfies gqg~! = ¢~ !¢ = 1. In particular if ¢ € Im(HH), then
-1 q
q9 =—7T3
lq?

is the image of ¢ under the inversion in the unit sphere centered at the origin.
Corollary 5.3. If f : Z?> — R?® = ImH is an isothermic quadrilateral mesh with cross ratios —1,
i.e. for every (m,n) € Z?
(fmn = Fnt1,) (Fms1n = Frnt 1) ™ (Fnt 1041 = Frintt) (Fnnt1 = fmn) 75 = =1
then flz, and f|z, are P-nets where
Zi == {(m,n) € Z*|m +n even}
7% .= {(m,n) € Z*|m +n odd}.
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PROOF. Let (m,n) € Z?. Applying an inversion in the unit sphere centered at f,,,, the
neighboring vertices are transformed as
3 fi — fm n
firs fii= foun — S
’ ’ e |f1 - fm,n|2
We are going to apply Lemma 5.1. Taking A, B,C,D as fm+1,n,fm,n+1,fm_1,n,fmm_l and

a,b,c,d as fry1nt1, fm—1,n41s fm—1n—1, fmi1,n—1 yields

= fm,n + (fz - fm,n)_l-

A0 =fstnir = Frosin
=— (fmt1m41 — fn) " (1,041 — fon + Frnn — Fnttn) (Font1 — Fn) ™'
== (fmstins1 = Sron) (Pt tins1 = Fottn) Fmgin = fn)

0B =fonir = Fsinis

= - (fm+1,n+1 - fm,n)il(fm,n—&-l - fm+1,n+1)(fm,n+1 - fm,n)71-
We have

(fﬂ)l)_lf§ = _(fm,n - fm+1,n)(fm+1,n - fm+1,n+1)_1(fm+1,n+1 - fm,nJrl)(fm,nJrl - fm,n)_l =1

and hence
A = aB.

Bb=1bC, Ce=cD, Dd=dA.
Thus by taking A = —1 in Lemma 5.1, we obtain

Similarly,

fm+1,n+1 - fm,n N fmfl,n+1 - fm,n + fmfl,nfl - fm,n . fm+1,n71 - fm,n -0
|fm+1,n+1 - fm,n|2 |fm—1,n+1 - fm,n|2 |fm—1,n—1 - fm,n|2 ‘fm—i—l,n—l - fm,n|2

Since the above holds for every (m,n) € Z?2, it implies f|z, and f|z, are P-nets. O

On the other hand, we can obtain a P-net by flowing a closed polygon.
Theorem 5.4. Consider a closed discrete curve S = (V, E). Given a realization vy : V — R3
and a vector field v : V — R3, we consider a flowy:V x Z, — R3 such that
7(-,0) ==
v, 1) ==y +v
v(i,t +1) == ~(i, t) + R(i, t)/|R(i, 1)[?

where

R(Z ) — ’Y(.i + 17t) — ’Y(.ivt) 7(1 — lat) — 7(?725) _ 7(.Z.7t — 1) — 7(?7” )
7 |’7(Z+17t) _7(Z7t)|2 |’7(Z_ 17t) _7(Z7t)‘2 |’7(7’>t_ 1) _7(l7t)|2
Then v is a P-net.

The parallelogram property of P-nets is imposed at every interior vertex, in contrast to
quadrilateral isothermic surfaces where the cross-ratio condition is imposed on faces. Such a
difference is revealed by the property that P-nets are critical points of a functional by vertex-
based variations.

Theorem 5.5. Let D C Z? be a bounded domain. We consider the functional F on the space of
non-degenerate realizations f : V(D) — R3

H(m,n),(m-{-l,n)ED |fm+1,’n - fm7n’|

F(f) =log

H(m,n),(m,n+1)€D |fm7n+l - fmnl
Then, f is a critical point of F under vertex-based variations with boundary fixed if and only if
f is a P-net.

PROOF. For any interior vertex vy € V(D),

OF _ fi—fo famfo o fa—Jo fa—Jo

fo =1l 1= folP " fs— ol [fa—fol?
Hence f is a P-net if and only if f is a critical point of F. (]
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5.1. Christoffel transformations

In Section 4.8, we showed that the parallelogram property of a P-net yields a realization of
its dual mesh. In fact the surface obtained is again a P-net.

Theorem 5.6. Given a P-net f : Z? — R3, there exists a map f* : (Z*)* — R3 such that

* [k ferl,n_fm,n
df*(€(m.n),(m41,n) = st — Fonn®

fm,n+1 - fm,n

df*(ezkm,n),(m,nJrl)) - |fm n+l — fmon z

Furthermore, f* is a P-net. We call f* a Christoffel transform of f.

PROOF. The existence of f* follows from the parallelogram property of f.
For convenience, we use half integer coordinates to represent the dual mesh (Z?)*. Notice
that

J - = Jmttin = fnn
m4+1/2,n+1/2 m+1/2,n—1/2 \fmﬂ’n — fm,n'z’
f* _ f* _ f77L,n+1 B f"h"
m—1/2,n+1/2 m+1/2,n+1/2 \fmmH — fm,n|2
Then, around a vertex (m/,n’) := (m +1/2,n+ 1/2) € Z** we have
Frvsrm = Forwr Sivwss = Fvwr | Fverw = Bt Fvwres = S

|f:;7,’+1,n’ _f':;L’,n’P ‘f;l’,n’le _f:;L’,n’|2 |f:;7/71,n’ _f;L’,n’|2 |f:;7/,n’71 _f;L’,n’|2
:(fm+1,n+1 - fm+1,n) - (fm+1,n+1 - fm,n+1) + (fm,n - fm,n—i—l) - (fm,n - f7rz+1,n)
=0

Hence, f* satisfies the parallelogram property and thus is a P-net. O

5.2. Darboux transformations

Theorem 5.7. Given a P-net f : 7Z?> — R3, for every A € R\{0,1} there exists a map fT :
(Z?)* — R3 such that for every (m,n) € Z?

A :(fm,n - f;Jr%}n,%)(f;Jr%’n,% - fm+1,n)71(fm+1,n - f:n+%’n+%)(fll+%7n+% - fm,n)71
:(f:n—%,n-i-% - fm,n)(fm,n - f;+%7n+%)_l(f:n+%7n+% - fm,n+1)(fm,n+1 - f;_%m_i_%)_l

The map f1 is a P-net and exists uniquely whenever one of its vertex position is prescribed. We
call f1 a Darboux transform of f.

PROOF. We are going to apply Lemma 5.1 to show that by fixing A € R\{0,1} and the
position of a dual vertex (m + 1/2,n — 1/2), then the positions of the neighboring vertices
(m+1/2,n+1/2),(m —1/2,n+1/2),(m — 1/2,n — 1/2) are uniquely determined.

We take an inversion in the unit sphere centered at f, »

xr — fm,n
|z — fm7n|2

We let a,b,c,d in Lemma 5.1 be fm+17n,fm7n+1,fm_17n,fm7n_1 and A = f;+1/2 ne1/2°
5.1 implies there exists B, C, D € R3 such that Equation (5.1) holds. Defining

T T = fm,n_ :fm,n+($_fm,n)_l'

Le]“ma
Im+1/2,n+1/2 _J g (B f7 lﬂl) 1)
/ T / TJm

f;+1/2,n+1/2 ::fm,n + (C - fmm)_l;
f7tl+1/2,n+1/2 ::fm,n + (D - fm,n)_l
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fm,n - f;+%7n_%)(f:n+; n—1 " fm—i—l n)_l(fm-i-l,n - f;_,_%)n_,_%)(fjn_i_ 7L+1 fmn !

)"
= fll,%’nJr; fmn)(fmn f::z«kl n+ ) 1(f;+%’n+%7fmn+l)(fmn+l m— nJr;) !

)"

)"

(

(

=(fm—tm = Fh s DU s = o) T P = S DU = fnin
VAR —fm,n_n(fm,n_l ffn+ ) I s fn) (finn = ]

1

1
1 1 .
m M—3

Iterating the above process for every (m,n) € V(Z?), we obtain fT as required.

It remains to show that fTis a P-net. Let (m’,n’) := (m + 1/2,n + 1/2) € V*(Z2?) = F(Z?)
be a dual vertex. Then the parallelogram property of f! follows from Lemma 5.1 if we take
A,B,C, D to be fri1/2m—1/2, fmrs1/2mi 4172, fmr—1/2m/ 4172, fm'—1/2,n7—1/2 and a, b, ¢, d to be
fT fT fT T 0

m/4+1n’? Jm/ n'+1 Jm/—1n’> Im/ n'—1"

5.3. Calapso transformations

In order to simplify calculations, we employ the quaternionic projective model of the 3-sphere
S$3 =2 R3U {oo} [30].

We regard H? as a 2-dimensional right vector space over H and consider its projectivization
HP!. The 3-sphere is viewed as a subset of the quaternionic projective line HP':

S% = {vH € HP'|s(v,v) = 0}
where s(u,v) 1= tive + ligvy for for u,v € H2. Indeed
0=s(v,v) =01v2 + VoV < vy =0 or Re(vw;l) =0
and we have

{vHeHPls(v,v)O}{( . )H|xelm(H)}u{( ; )H}~R3u{oo}~s3

In such a model Mébius transformations of S? are represented as elements in PGL(2, H) =
GL(2,H)/RI that preserve the null cone of the hermitian form s.

Given a P-net f : V(Z?) — R3 with the canonical discrete holomorphic quadratic differential
w: E(Z*) — +1, we consider a gl(2, H)-valued (additive) dual 1-form

oy [ EERdre () —fidf(
T(ej;) = ( de*(ezj) —df] f7+fg

where df*(e};) = “”IJ[JJ—;J{I? It satisfies

T(eyj)< Ji ) _ (o= fi)df(e;) ( J; > _ u2]< ]i )

)
T<eu>(fﬂ)zwzm(?>:—‘?<?>'

Lemma 5.8. The dual 1-form 7 is closed, i.e. for every interior verter i

PRrooF. Firstly, it is obvious that

> df*(e;) = 0.
J
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Secondly,
JitJi e s
Z 7de ( 1])
134 e) Zﬂ Tigp ()
—fl Z df Zj + Z /’LZJ
=0.
The other terms follow similarly. O

For A € R, we define a map 7 : E*(Z2) — GL(2, H)
na(ej;) = cosh A + 2sinh A 7(ef;)

In fact, since the canonical holomorphic quadratic differential u takes values £1, we have

77/\(%)< i ) = (cosh A\ + ;5 Sinh/\)< fi ) - 6Hz‘j/\< fi )7

77/\(6;-1-)( Ji] )Z(COSh/\—,uijsinh/\ ( — e HigA < J )

)=(")
)=(7)

(5.2)

which implies

)
Uk(ejj)m(e;i)< Ji ) = (cosh? X — sinh? \) <
o (4

1
1 ) (cosh? X\ — sinh? \)

N
—

Hence
m(ei)m(es;) =1,
77/\(62'})_1 = m(e}%)
and ny is a GL(2, H)-valued multiplicative dual 1-form.

Lemma 5.9. The multiplicative dual 1-form ny on a P-net is closed, i.e. for every interior
vertex i

I =1

J

and hence there exists Ty : F(Z*) — GL(2,H) such that
Tr.g = Th.g.m1(€i5)
where ¢ denotes the left face of e;; and ¢, denotes the right face of e;;.

PROOF. Let vy be an interior vertex of a P-net and vy, vs, v3,v4 be its neighboring vertices.

In order to prove the claim, we are going to apply Hj na(eg;) to a basis {( J;O > ’ ( (1) )} of H2.

Firstly, it is obvious from (5.2) that

mesom i ()= (),

since o1 = —Mo2 = Moz = —fo4. 1t remains to show that

mdmesmeine) (o )= (o )

) = nx(es0)m(€lo) ( (1) ) '

which is equivalent to

S =

m@mm@m(
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Notice we have

e (o )

2
df*(efo) L5Lrdf (efy) — df*(egy) LobL2df* (efy)

( fz;fodf*(e(’SQ)fl;fodf*(egl)Jr fodf*(632)(f12*f2)df*(€31) >

( fu-gfz df*(SSQ)fO;fl df*(e?;l) _ fodf™(ego) f2df *(e51) fzdf*(€§2)2f0df*(€§1) )

df*(egy) LLodf *(efy) — df* (efy) 2512 df (e

( uoatior _ So (10, df* (e5,) — poadf* (efy)) )
_%(Mmdf*(eéz) — po2df* (1))

and similarly
7'(630)7(640)( 0 ) =T7(eg3)T(€04) < 0 >

( osftos — o (uggdf*(efs) — posdf*(¢5a)) )
— 3 (poadf* (€55) — Hosdf™ (e54))

which implies
7(eg2)7(€01) ( 0 ) = 7(e30)7(e1p) ( 0 ) .
Thus

1 . * . * *
m(esz)na(es) ( 0 ) —=(cosh A 4 2 cosh A sinh A(7(efy) + 7(efy)) + 4sinh® A 7(efp) (€5 ) (

O = O =
N~

=(cosh X\ + 2 cosh A sinh A\(7(e3,) + 7(€lp)) + 4sinh® A7(e3)7(elo)) <

* * ]-
“n(eom(ein) o )
Hence
nx(ega)ma(ens)maleda)na(eqr) = 1. U

For every edge {ij} we have

T, ¢, < {Z > - TA»¢T77)\(62<]') ( J;i ) =Tz 4, ( J;l )emj/\

where ¢; denotes the left face of e;; and ¢, denotes the right face of e;;. Hence

i = D ( {z )] = [Tho. ( ]ii )]

defines a map fy : Z2 — HP'. By suitable Mobius transformations, we assume no vertices of f
are at infinity. We define fy : Z2 — H such that

(5.3) )= { fl* ] .

We are going to show that f, can be assumed to take values in Im H.

Lemma 5.10. For any v € H?
s(ma(eij)v,ma(e;)v) = s(v,v).
Hence if we have for some ¢o € F(Z?)
$(Tx, 000, T, po0) = s(v,0)
then
$(Th,¢v, Tx,¢v) = s(v,v)
for all ¢ € F(Z?).
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PRrROOF. Notice that r])\(e;‘j) has eigenvectors f; := ( ‘ql ) i 0= ( jij ) which form a basis

of H?. Let v € H2. Then there exists o, 8 € H such that v = ;o + £;8. We then have
s(na(ef;)v,ma(ef;)v) =as(fi,£5) B+ Bs(f),1:) a=s(v,v)

where we have used s(£;,f;) = s(f;,£;) =0. O

The above lemma implies that we can assume f) to take values in Im(H) by choosing a
suitable T} 4, .

It remains to show that fy is a P-net. We first obtain a characterization of P-nets in terms
of HP!. To every quaternionic line vH € H? there is a unique line Hv in the dual space H* that

annihilates vH € H2. We have (HP!)* := {Hv|v € (H?)*} = HP'. The group PGL(2,H) acts
on (HPY)L via Hy +— H(M -v) = H(yM~1).

If f is a point in R3, then we write £ = < { ) and its annihilator £+ = (—1, f). We have

f+f = 0. The quaternionic cross ratio can be expressed as

(fm,n - fm+1,n)(fm+1,n - fm+1,n+1)_1(fm+1,n+1 - fm,n+1)(fm,n+1 - fm,n)_l

_ el iR —1el iR —1
_fm,nfm+1,n(fm+1,n+1fm+1,n) fm+1,n+1fm,7l+1(fm,nfmfﬂJrl) .

Lemma 5.11. Let a; € H*\{0} be a collection of points such that [a;] # [ai11] € HP'. We
consider

Q(a1,az,a3,a4) := a1 az(az as) taztas(a;tas) "t € H.
Then the cross ratio
q([a1], [az], [as], [a4]) := Re Q(a1, az, az, as) + il Im Q(ay, az, az, as)| € C

is well defined, independent of the choice of homogeneous coordinates. Similarly, we define the
multi cross ratio

mq([ai1], [az], [as], [a4], [as], [a]) ;= RemQ(ay, az, a3, a4, as, ag) + i ImmQ(ay, az, as, as, as, a)|
where
mQ(ay, as, ag, as, as, ag) = —ay as(az as) " az as(az as) " az ag(aias) .
Lemma 5.12. A map f : Z* — R® is a P-net if for every (m,n) € Z? the multi-cross ratio
00([ £ £t ) (] () (] (1 ]) = =1

where [£] : Z? — HP' denotes the embedding of Euclidean space

fH[f]:[{]e]H[Pl

PROOF. A map f is a P-net if for every (m,n) € Z?, the parallelogram property is satisfied:

0=frmt1,n — fnn) ™" = (Fmns1 = frnn) "+ (fne1n — frn) ™' = (Frne1 — frnn)
= (fmtrm = Smn) " st = Fongtn) Fmntt = fn) ™"
+ (fm=1n = frmn) " (frnm1n = Frnn—1) (frmin—1 = frn) ™"
It is equivalent to
—1 =(frmm = frmt1) Fmmtr = Fma10) " Fmgin = Fn) (Fmn = Fme10) " (Fne1m = fron—1)
(Fmn—1— fmn) ™"

:mQ(fm,na fm,n+1; ferl,n; fm,na fmfl,n; f771,7171)

wheref:({). O

Theorem 5.13. Given a P-net f : Z? — R3, there exists f : Z?> — ImH = R? satisfying Eq.
5.3 for any A € R. Moreover, fy is a P-net. We call f\ a Calapso transformation of f.
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PRrOOF. To simplify the proof, we pick suitable homogeneous coordinates of [f)]. Let

(m,n) € Z?. For convenience, we suppress the parameter A of T. Then
T, 1 lfmfl,ru

m—g,n—3

mQ(Tm+%’n+%fm,na Tm+%$n+%fm,n+17 Tm+%7n+%fm+1,na Tm,%er%fm,n,
Ter%,nf%fm’ﬂ*l)
:mQ(fm,na fm,n+17 ferl,nu fm,'ru fmfl,ny fm,,nfl)

=-—1.
Hence the claim follows. O
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