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A Bernstein Property of Affine Maximal Hypersurfaces 

An-Min Li and Fang Jia ! 

Abstract. Let z : M -+ A”™! be the graph of some strictly convex function 2,41 = 

f(%1,°++ ,2n) defined in a convex domain Q Cc A”. We introduce a Riemannian metric 

Gt=y sod dade; on M. In this paper, we investigate the affine maximal hypersurface 

which is complete with respect to the metric G#, and prove a Bernstein property for the 

affine maximal hypersurfaces. 
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Introduction 

Affine maximal hypersurfaces are extremals of the interior variation of the affinely invari- 

ant volume. The corresponding Euler-Lagrange equation is a fourth order PDE. Originally, 

these hypersurfaces are called ” affine minimal hypersurfaces”. Calabi calculated the second 

variation and proposed to call them ” affine maximal”. For affine maximal surfaces, there 

are different versions of so called affine Bernstein conjectures, stated by Calabi and Chern 

(see [CA-1] and [CH]). The conjectures differ in the assumptions on the completeness of 
the affine maximal surface considered. While Chern assumed that the surface is a convex 

graph over R?, which means that the surface is Euclidean complete, Calabi assumed that 

the surface is complete with respect to the Blaschke metric. In [T-W] the authors present a 
proof of Chern’s conjecture. In [L-J] we solved Calabi’s conjecture. 

Let «: M — A®*' be an affine maximal hypersurface given by a strictly convex function 

En41 = f(£1,-** , Ln) 

defined in a convex domain 2 ¢ A”. z(M) is an affine maximal hypersurface if and only if 

f satisfies the following PDE of 4-th order: 

6? f —1/(n+2) 

“ act (ana, a 
where A denotes the Laplacian with respect to the Blaschke metric G, which is defined by 

1 O “3 O 
A=———; ) = | G4 (det(G,,))'’?— ). 

(det(Gy))*/* a Ox; ( ( ( mi) On, 
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Following E. Calabi and A.V. Pogorelov (see [CA-3] and [P]), we consider the Riemannian 
metric G# on M, defined by 

— _0°f where fi; = 5~¢.-. This is a very natural metric for a convex graph. We want to raise the 
2 J 

following conjecture: 

Conjecture. Let 2: M -—> A"*' be the graph of some strictly convex function 

Unt. = f(fi,0°° En) 

defined in a convex domain 2 C A”. If c(M) is an affine maximal hypersurface and if r(M) 
is complete with respect to the metric G*, then M must be an elliptic paraboloid. 

In this paper we give an affirmative answer to this conjecture for 2 and 3 dimensions. Pre- 
cisely, we prove the following theorem: 

Theorem. Let tn41 = f(21,--+,%n) be a strictly conver function defined in a convex 
domain CA”. IfM = {(21,-++ tn, f(21,+++ ,2n))|(21, +++ , tn) € OQ} is an affine maximal 
hypersurface, and if M is complete with respect to the metric G*, then, in the case n = 2 or 
n= 3,M must be an elliptic paraboloid. 

For the proof of the Theorem, we first show that if the maximal hypersurface M is complete 
with respect to the metric G* and if the norm of its Ricci curvature ||Ric#||¢# is bounded, 
then M must be an elliptic paraboloid. Next, we use Hofer’s Lemma to prove that ||Ric*||¢# 
must be bounded. 

The first author would like to thank Prof. U. Simon, Prof. L. Vrancken, Prof. H. Li, and 
Prof. G. Zhao for many valuable discussions 

1. Preliminaries 

Let A"*' be the unimodular affine space of dimension n + 1, M be a connected and 
oriented C°° manifold of dimension n, and « : M + A”*! a locally strongly convex hy- 
persurface. We choose a local unimodular affine frame field 2, €, €2, ...,€n;€n41 on M such 
that 

€1,---,€n € 1M, 

det(e1,...,€n,@n41) = 1, 

En+i = Y,



where we denote by G,; and Y the Blaschke metric and the affine normal vector field, 

respectively. Denote by U, Ajj, and B,; the affine conormal vector field, the Fubini-Pick 

tensor and the affine Weingarten tensor with respect to the frame field z, e;,...,e€n, and by 

R;; denote the Ricci curvature. We have the following local formulas (see [L-S-Z }): 

(1.1) Ug = —Y— Aig — Bi, 

(1.2) AU = —nLyU, 

(1.3) S| Aix = 0, 

n=2 n 
(1.4) Rig = S) Agi Amy + a Bi + 3 L195) 

where L, denotes the affine mean curvature, and” , ” denotes the covariant differentiation 

with respect to the Blaschke metric. A locally strongly convex hypersurface is called an 

affine maximal hypersurface if L; = 0 everywhere. Let x: M — A"*! be given by a strictly 

convex function 

In4+1 = f (x1, sea In): 

We choose the following unimodular affine frame field: 

Of 
= {1,0,...,0, —— 1 ( » Q, , 0, —_ & 

_ of 
En = (0,0, 218 1, =| 

E€nt1 = (0, 0, — 0, 1). 

The Blaschke metric is given by ( see [L-S-Z ]) 

a f —1/(n+2) a? f 

G = |det an 
“ (sa) » Ox, 02; Tey 

The affine conormal vector field U can be identified with 

2 —1/(n+2) 

u = |aet | OF OF 4), 
OT 4OIs Ox OLn 
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The formula AU = —nL,U implies that x is an affine maximal hypersurface if and only if f 
satisfies the following p.d.e. 

Of —1/(n+2) 7s s fu (,22)]" <9 

  

where A denotes the Laplacian with respect to the Blaschke metric, which is defined by 

1 0 a7 1/2 0 As (det(G,) 1 S- On, (c (det(Gx1)) / =) , 
Jj 

  

  

  

  

Denote xf 

p = (deta), 
Om, 

and 

p 

Then (1.5) gives 

(1.7) Ap = 0. 

Now we calculate A®. Let p € M. We choose an orthonormal frame field around pEM. 
Then 

2 
9 = 2a 

p 

j= 2 OLR iP gi — PALI 
92 0 p" d 

2 2 +2 iP jit (PiPji : AG a 2 Pi T 2D PsP git pL Pspspst , 9|iVelt 
p p p 

In the case @(p) = 0, it is easy to get at p 

9 2. (1.8) Aw > 222Pai, 
p 

Now we assume that ®(p) # 0 and choose an orthonormal frame field such that, at p € M , 
pix= |Vopll,e¢=0 Vi>1. Then 

2 Pj +20 PGP ~~ PAP. PY 
~ — 4 tee, p p p 
    (1.9) A®



The Schwarz inequality gives 

2 

(1.10) pane Gaer Enea ke ) +250 pr, 
t>1 a>1 a>l a>1 

—— P nit 2 wr Pir 
i>l 

Similarly, 

(1.11) S> Amu 2 —— Alay. 

Taking the (n + 1)-th component of Uj; = — 5) AijnhU, — BijU we have 

(1.12) Pai = ~Ainpes — Bip. 

Using the formula (1.4) we get 

(1.13) 2 S | Pg Pit = 2Riip*, =2 > Aint Pa + (n — 2)Birpy 

3 2 
p 

PAP _ (n _ 2)Ais— ; = 20 Aju Pa — (n — 2) ; 

P1101 _(a- 2)?(n — 1) Pa 

| p 8n pe 

Substituting (1.10)—(1.13) into (1.9) we get 

  > —(n — 2) 

2 2 
2n Pi4 ist Pa   1.14 A® > 4 (1.14) 25 t ; 

tng bat 4 (p= Da=D) oh 
p? 8n p> 

Note that 

2. 2 (1.15) ee 4PB 4 govizt Pai 4 Pa Pa ,PaPar 
® p p p° p? 

Then (1.14) and (1.15) together give us 

  

  

n Sd (® P-n-2 0 
1.16 A® >  — D ,— 

(1.16) —~ 2(n-—1) ©® 2(n — 1) » a)



  

8n = zi 
For n =! 

ob (1.17) A® > ey * 6? 
a Pp 

For n = 3 

328, ie Di 1.18 A® > - -— — ® =. (1-18) 4 —o "6 p d " p 

Denote by A* and Rit the Laplacian and the Ricci curvature with respect to the metric GF, 
resp.. By definition of the Laplacian and a direct calculation we get 

IV al lea 
—_= = ||Vp Ile, p 

(1.19) 

n-2<Vp,Vr >ce# (1.20) Atr = pAr — ; 
2 p 
  

where r is the geodesic distance function with respect to the metric G# on M. Denote 
inh = San Tar: We have the following formula ( see [P], p.38 ): 

1 ; 

(1.21) Re = 1 S- ff!" fnfmak ~ Frivfmgt)s 

where (f%) denote the inverse matrix of (f;,;). 

2. Proof of the Theorem 

We first prove the following lemma: 

Lemma 1:Let ¢: M — A"*! be a locally strong convez affine maximal hypersurface, which 
1s given by a strictly convex function 

Tn41 = f(L1,°++ , Ln). 

If M is complete with respect to the metric G*, and if there is a constant N > 0 such 
that ||Ric*||?,4 < N everywhere, then, in the case n = 2 orn = 3,M must be an elliptic 
paraboloid.



Proof Let py € M. By adding a linear function and taking a parameter transformation we 

may assume that po has coordinates (0,--- ,0) and 

f(0) =0, f(0) =0, fij(O) = 4:3. 

Denote by r(po, p) the geodesic distance function from pp with respect to the metric G#. For 

any positive number a, let Ba(po) = {p € M|r(po, p) < a}. Consider the function 

F = (a* —r’)*® 

defined on B,(po). Obviously, F attains its supremum at at some interior point p*. We may 
assume that r? is a C?-function in a neighborhood of p*, and ® > 0 at p*. Then at p* 

  

By = Q, 

where ”,” denotes the covariant differentiation with respect to the Blaschke metric. We 

calculate both expression explicitly 

® 4 2(r?) i 
2.1 — — = 0, (2.1) @ g—-r. 

AS DIO, 2IlVr2|% — 2Ar? Zi 
2.2 ( ) @ 2 (a? _ rey a2 _ 2 —_ 
  

Inserting (2.1) into (2.2) and noting that 

IVrelle = 47" ||Vrlle, 

Ar? = 2||Vr||2 + 2rAr, 

    

  

    

we get 

A® — 6||Vr7|  2Ar? 
2.3 < . ( ) © =Tfope | gor 

— 24r?||Vr|lZ 1 A\|Vr||2 1 4r Ar 
— (a2 — r2)2 a2 — 7? a2 — r2° 

Since 
4rAr — 4r Afr 1 2(n — 2)r < Vo, Vr >c# 
aq2—r2 q2 — r? p a2 — r2 2



< 7 Atr 1 Mellow | 24(n = 2)?r? lV rlleu   

  

  

— q2 ~ r2 p 24 p? (a? ~ r?)? p 

and 
IV 2 p 
— = Vell, 

Vr |lz — = ||Vrll2, 

Vrlloe = 1, 
we have 

& ~ (a?—1?)?29 (a —r2)p ' (@—1?2)p Mp | (a—Pr2)2p Yet 
24(1 + (n — 2)?)r? 4 Ar A*r 1 & 

= + +} +—-—. 
(a? — r?)2p (a*—r?)p  (a?—r?)p 24 p 

Recall that (M,G*) is a complete Riemanninn manifold with Ricci curvature bounded from 
below by a constant —K,K > 0. We have 

  

rA*®r < (n—-1)(1+ VKr). 

Consequently, from (2.4), it follows that 

__ 9)\2)\n2 _ _, (2.6) A® < 24(1 + (n — 2)*)r 1 An 1 A(n : Dvi rol o 

® (a? — r?)?p (a? — r?)p (a* —r?)p 24 p 
  

For n = 3, we have by (1.18) 

A®d _ 3 od? 16 ®; 0; 
(2.7) => 27 —— to = 7 aon 

® 4 Oo? 6p ® o 

3 o? 1 @ 
>(--3 —- + —— 
24 ) 12> 

36r2 1 ® 

(a —r?Pp * 129" 
where we used (2.1). Inserting (2.7) into (2.6) we get 

  

2016r? 1 192VK -r 
< - ; (2.8) ? <a + 8a + a



Multiply both sides of (2.80) by (a? — r?)?. We obtain, at p*, 

(2.9) (a? — r?)?® < 2304a? + 192V Ka? 

= ba? + ba? 

where b, = 2304 and by = 192\/K. It is obvious from (1.17) that (2.9) holds also for n = 2. 

Hence at any interior point of B,(po) we have 

  

1 1 
® % by 2 + be pe a5? al— By 

Let a — oo, we conclude 

(2.10) ® = 0. 

It follows that 3 / 

det os | 
“ (Fra, 

Gt =G. 

This means that M is an affine complete parabolic affine hypersphere. By a result of E. 

Calabi (see [L-S-Z]) we conclude that M must be an elliptic paraboloid. 

We now want to show that there is a constant N > 0 such that ||Ric*||2,4 < N everywhere. 

We need the following lemma (see [H], p. 635, Lemma 26), which was applied several times 

in symplectic geometry. 

Lemma 2 (Hofer). Let (X,d) be a complete metric space with metric d, and Ba(p) = 

{x|d(p, x) < a} be a ball with center p and radius a. Let H be a positive continuous function 

defined on Bog(p). Then there is a point q € Ba(p) and a positive number € < 5 such that 

5 

H(x) <2H(q) for all « € B.(q) and ¢H(q) > ~H(p). ¢ 
2 

Now we assume that ||Ric*||?,, is not bounded above. Then there is a sequence of points 
pe € M such that ||Ric*||?,4(pe) > oo. Let Bi (pe) be the geodesic ball with center pe and 
radius 1. Consider a family (2) : Bo(pe) + R of functions, @ € N, defined by 

(2.11) W (2) = ||Ric*|\|ce + O4L,



where ® is defined by (1.6) and 

L= s- fff fist fine 

Using Hofer’s Lemma with H = W'/? we find a sequence of points gp and positive numbers 
€g such that 

(2.12) U2 (x) <2W2(q), V 2 € Be,(qe) 5 
7 

(2.13) eV? (qe) > =U2(pp) 0. 
D
R
O
]
 Re
 

The restriction of the hypersurface x to the balls B.,(qe) defines a family M(¢) of maximal 
hypersurfaces. For every £, we normalize M (2) as follows: 

Step 1. By adding a linear function we may assume that, at My (£1,°** , Ln) = (0,+++ ,0) 
and 

f(0)=0, f,(0) = 0. 
We take a parameter transformation: 

(2.14) #i(0) = Sal (22, (2), 

where a?(@) are constants. Choosing a? (2) appropriately and using an obvious notation f, UV, 
we may assume that, for every ¢, we have fj;(0) = 6,;. Note that, under the parameter 
transformation (2.14), W is invariant. 

Step 2. We take an affine transformation by 

@i(2) = a(£)z,(2), 1<i<n, 

n4i(€) = A(L)Tn4i (2). 

where A(é) and a(f) are constants. It is easy to verify that each M(£) again is a locally 
strongly convex maximal hypersurface. We now choose \(¢) = a(£)?, (2) = U(q). Using 
again an obvious notation f, U, one can see that 

fis(Q) = fy (Q), U(e) = —_ (0). 

10



The first equation is trivial. We calculate the second one. From (1.6), (1.21) we can easily 
get 

~ dA 
o = 7? 

>. # 1 Ric lee = =IIRic"llee, 
ae 

Then the second equality follows. 

We denote B,(qe) = {x € M(2) | F(2(z, ,Ge) < a}, where F(£) is the geodesic distance 

function with respect to the metric Gi on M(£). Then (£) is defined on the geodesic ball 

Baw (ae) with d(é) = epW2 (qe) > Lipa (pe) + co. From (2.12) we have 

(2.15) W(qe) = 1, 

(2.16) V(x) <4, Vare Buy (a). 

We may identify the parametrization as (,--- ,&,) for any index @. Then F® is a sequence 

of functions defined in a domain Q(£),0 € (2). Thus we have a sequence M(¢) of maximal 

hypersurfaces given by f(£). We have 

Of (0) P f(0)   (2.17) f(0)(0) =0, a6, = Gag (0) = Fy. 

(2.18) W(2)(0) = 1, 

(2.19) W(e)(z) <4, Vr € Bue(0). 

(2.20) d(l)-+00 as +00. 

We need the following lemma: 

Lemma 3 Let M be an affine maximal hypersurface defined in a neighborhood of 0 € R”. 

Suppose that, with the notations from above, 

(7) fij(0) = by, 

(11) ||Ric* ||oa + B+ fo ff fase fimn < 4. 

Denote D := {(&,:-+,&)| )0€? < ga}. Then there is constant C; > 0 such that, for 

(€1,--- ,&,) € D, the following estimates hold: 

11



(1) 

Ss? Sis < An. 

(2) , 

as det( fig) < C1. 

(3) Define d, by d? = STE: Then Qa, C {S7@? < =a} C D, where Qu, is the geodesic 
ball with center 0 and radius d, with respect to the metric G*. 

Proof of Lemma 3. 

(1). Consider an arbitary curve Pr = {& = ays,---, & = a28,| >a? = 1,s > O}. By 
assumption we have 

FPF figefimn <4, > fu(0) =. 

Since >) f" f!™" f*" fijkfimn is independent of the choice of coordinates 1, ...€n, for any point 
€(s) we may assume that fj; = A;6;;. Then 

al rjm ekn 5 Qa fi wtk 
Sof f? f fisefimn = Yo Ye fin = = (> fis)”   

  

It follows that =p 

Oo fa = (S> fu)? >, fae < 4,   

and hence 

  

| dd) fu(x(s))) 

(Sfale(s)))8? ds SS a yee De Sie 

cv (Sey) (Leal svn 
Solving this differential inequality with S~ f;;(0) =n, we get 

1 1 

va *vns (SD f(2(s)))? 
From the assumption we have s < 5~ then (1) follows. 
(2). Consider an arbitary curve 

12



T= {f = ajs,--- En = Ons] Ya; =1,s>0} 

again. By assumption we have - 
Won: 

> f PiPj < 4. 

pa 
It follows that 5 

wre <4 ae <4. 
(d0 fu) p 

By (1) we get 

p ds 

Solving this differential inequality with o(0) = 1 we obtain 

—4n?s < Inp(x(s)) < 4n?s. 

Recall that s < =, then (2) follows. 
(3). Denote by Amin, Amaz the minimal and maximal eigenvalues of (f;;). Then, from (1) 
and (2), we have Amar < 4n and 

- < det( fiz) < AminXman < (40) Amin- maz 
1 

It follows that 1 
2 2 2 

We immediately get (3). 

We continue with the proof of the Theorem. Since d(£) + oo, we have D C QQ(£) for £ big 
enough. In fact, by (1), the geodesic distance from 0 to the boundary of D with respect 

to the metric G* on M(£) is less than Ta By Lemma 3 and bootstrapping, we may get a 

C*- estimate,independent of @, for any k. It follows that there is a ball {37 €? < C.} and a 

subsequence (still indexed by @) such that f (2) converges to f on the ball and correspondingly 
all derivaties, where Cy < a is very close to rere Thus, as limit, we get a maximal 

hypersurface M. , defined on the ball, which contains a geodesic ball Qy,. We now extend the 

hypersurface M as follows: For every boundary point p = (£10,--- ,§n0) of the geodesic ball 

Qa, we first make a parameter transformation 

&=S\ aE; 

13



such that at p, (E, vee En) = (0,-+- ,0) and for the limit hypersurface M, we have fi; (0) es 
di; We have 

(7) fij(2)(p) > fig(0) = 6, a8 & > 00. 

It is easy to see that under the conditions (i') and (ii) in Lemma 3, the estimates (1), (2) 
and (3) in Lemma 3 remain true. By the same argument as above we conclude that there 
is a ball aroud p and a subsequence &, such that f (,) converges to f’ on the ball, and 
correspondingly all derivatives. As limit, we get a maximal hypersurface M' , which contains 
a geodesic ball of radius d, around p. Then we return to the original parameters. Note that 
the geodesic distance is independent of the choice of the parameters. It is obvious that M 
and M’ agree on the common part. We repeat this procedure to extend M to be defined on 
Qoa,, etc. In this way we may extend M to bea maximal hypersurface defined in a domain 
© CR", which is complete with respect to the metric G#. Using (2.18) and (2.19) we get 

WR lex <4, VO)=L 

By Lemma 1, M must be an elliptic paraboloid. For a paraboloid we have U = QO, identically, 
Thus, we get a contradiction. So ||R*||2,, must be bounded above on M. By Lemma 1 M 
is an elliptic paraboloid. This complete the proof of Theorem. 
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