L Technische Univerzitat Berlin
Mathematische Fachbibliothek

nv.-Nr.: HA 2. :_]Lf

TECHNISCHE UNIVERSITAT BERLIN

A BERNSTEIN PROPERTY OF AFFINE
MAXIMAL HYPERSURFACES

An-Min Li and Fang Jia

727

Preprint No. 727/2002

PREPRINT REIHE MATHEMATIK

INSTITUT FUR MATHEMATIK






A Bernstein Property of Affine Maximal Hypersurfaces

An-Min Li and Fang Jia !

Abstract. Let x : M — A" be the graph of some strictly convex function z,; =

f(z1,--+,z,) defined in a convex domain 2 C A™. We introduce a Riemannian metric
G* =% %%,—dxﬂw on M. In this paper, we investigate the affine maximal hypersurface
i0%;

which is complete with respect to the metric G¥, and prove a Bernstein property for the
affine maximal hypersurfaces.
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Introduction

Affine maximal hypersurfaces are extremals of the interior variation of the affinely invari-
ant volume. The corresponding Euler-Lagrange equation is a fourth order PDE. Originally,
these hypersurfaces are called ” affine minimal hypersurfaces”. Calabi calculated the second
variation and proposed to call them ” affine maximal”. For affine maximal surfaces, there
are different versions of so called affine Bernstein conjectures, stated by Calabi and Chern
(see [CA-1] and [CH]). The conjectures differ in the assumptions on the completeness of
the affine maximal surface considered. While Chern assumed that the surface is a convex
graph over R?, which means that the surface is Euclidean complete, Calabi assumed that
the surface is complete with respect to the Blaschke metric. In [T-W] the authors present a
proof of Chern’s conjecture. In [L-J] we solved Calabi’s conjecture.

Let z : M — A™! be an affine maximal hypersurface given by a strictly convex function

Tn41 = f(xla"' axﬂ)

defined in a convex domain  C A", z(M) is an affine maximal hypersurface if and only if
f satisfies the following PDE of 4-th order:

32f -1/(n+2)
(2

where A denotes the Laplacian with respect to the Blaschke metric G, which is defined by

1 a 1 1/2 a
A= WZEE (G (det(Ga))M a‘[-) :

¥
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Following E. Calabi and A.V. Pogorelov (see [CA-3] and [P]), we consider the Riemannian
metric G* on M, defined by

G# - Z f“dl‘ld’rj,
8% f

where f;; = Buida; This is a very natural metric for a convex graph. We want to raise the
following conjecture:

Conjecture. Let z: M — A™! be the graph of some strictly convex function

Tnyr = f(Z1,- , 2n)

defined in a convex domain Q C A". If #(M) is an affine maximal hypersurface and if (M)
is complete with respect to the metric G¥, then M must be an elliptic paraboloid.

In this paper we give an affirmative answer to this conjecture for 2 and 3 dimensions. Pre-
cisely, we prove the following theorem:

Theorem. Let 2,41 = f(z1,---,2,) be a strictly conver function defined in a convex
domain Q C A" If M = {(z1, - , 20, f(21, - 2 )) (21, ,2) € Q} is an affine mazimal
hypersurface, and if M is complete with respect to the metric G¥#, then, in the case n = 2 or
n = 3, M must be an elliptic paraboloid.

For the proof of the Theorem, we first show that if the maximal hypersurface M is complete
with respect to the metric G# and if the norm of its Ricci curvature ||Ric#||s4 is bounded,
then M must be an elliptic paraboloid. Next, we use Hofer’s Lemma to prove that || Ric?|| g#
must be bounded.

The first author would like to thank Prof. U. Simon, Prof. L. Vrancken, Prof. H. Li, and
Prof. G. Zhao for many valuable discussions

1. Preliminaries

Let A™*! be the unimodular affine space of dimension n + 1, M be a connected and
oriented C*° manifold of dimension n, and z : M — A™*! a locally strongly convex hy-
persurface. We choose a local unimodular affine frame field z, ey, ey, ..., €5, €41 0n M such
that

€1,-yen € TxM,

det(ey, ..., en,€np1) = 1,

Ent+1 = }/a



where we denote by G;; and Y the Blaschke metric and the affine normal vector field,
respectively. Denote by U, A;;; and B;; the affine conormal vector field, the Fubini-Pick
tensor and the affine Weingarten tensor with respect to the frame field z, e, ..., e,, and by
R;; denote the Ricci curvature. We have the following local formulas (see [L-5-Z }):

(1.1) U,ij = = ZAiij,k - BijUa

(1.2) AU = —nLU,
(1.3) > Ak =0,

(1'4) ZAmleml] Bz] + = Llﬁszy;

2

where L, denotes the affine mean curvature, and ” , ” denotes the covariant differentiation
with respect to the Blaschke metric. A locally strongly convex hypersurface is called an
affine maximal hypersurface if L; = 0 everywhere. Let z : M — A™"! be given by a strictly
convex function

Tnt+1 = f(xl, sniny .’En)

We choose the following unimodular affine frame field:

of
ey = {1,0,...,0, —
€1 ( § Yy 7Oa 8$1>

ens1 = (0,0,...,0,1).
The Blaschke metric is given by ( see [L-S-Z ])

agf —-1/(n+2) agf
= |det ——dz;dz;.
& { ‘ (c%iaasj)] Z Bm-c‘)mjdxzd%

The afine conormal vector field U can be identified with

2 —1/(n+2)
U= |det o7 > Bf ..,—af,l .
6:@0:1;] (9331 Oy,
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The formula AU = —nL,U implies that z is an affine maximal hypersurface if and only if f
satisfies the following p.d.e.

62f —1/(n+2)
ws o (2L <o

where A denotes the Laplacian with respect to the Blaschke metric, which is defined by

3 8 1 1/2 0
A = —————(det(le))l/Z Z gx—z (G (det(G)) / %) .

J

Denote 52
p = Idet(5——)] M),
xiazj
and
p
Then (1.5) gives
(1.7) Ap = 0.
Now we calculate A®. Let p € M. We choose an orthonormal frame field around peEM.
Then .
POpILy
P
& — 23 PiPi Pid P
2 2. 4+ 2 0 i oy 4
A0 = 22ln T2 o (Bpspibsi |Vl
p p
In the case ®(p) = 0, it is easy to get at p
2 A,
19 ez 25

Now we assume that ®(p) # 0 and choose an orthonormal frame field such that, at p € M
p1=1|Vpll, pi=0 Vi>1. Then

2 S0+ 2> pipii B 4P,21P,11 N 2P_f11
p p? p*’

(1.9) AD



The Schwarz inequality gives

2
(1.10) SOzt Y P2y >t ;L——i—l (Z P,n‘) +23 i

i>1 i>1 i>1 i>1
n
== 5—_—]/),211 + 2}:,0,211'-
) i>1
Similarly,
n
(1.11) d Ann > ;l—_—lA%u-

Taking the (n + 1)-th component of U;; = — Y AU — Bi;U we have

(1.12) pi1 = —Ampy — Bup.

Using the formula (1.4) we get

(1.13) 2 Z p,ipjii = 2R11p% = 2 Z Abnp + (n— 2)Bup;

3

2
Joj
PP . (n B 2)A111':

= 2ZAgnl1p,21 —(n—-2) P

2 9 4
, -9 —1) 0

> —(n—2)22AL _ (n g(n )p,Ql..
P T P

Substituting (1.10)—(1.13) into (1.9) we get

on P .y
(114) AP > i @ + 4Zz>1 p,lz
n—1 P P
2 2 4
[ATAY (n—2(n-1)\ P
=(f + 2} + (2_ oL
p 8n 03
Note that
d2 2 2. 4 2
(1.15) ;(b_z — 4&2 + 4Zz>1 P1i . B% . 4P,1/32,11.
p P p p

Then (1.14) and (1.15) together give us

n 2P p2_n-2 ¥y
1.16 Ad > s - D, =
(1.16) ~2(n-1) @ 2(n—-1) Z *p




8n 2(n—1)
Forn =2
P2
(1.17) Ad > 22 +1e2
P p
Forn =3
3207 192 Py

Denote by A# and Rfﬁ the Laplacian and the Ricci curvature with respect to the metric G#,
resp.. By definition of the Laplacian and a direct calculation we get

[Vpll?
(1.19) —T‘Gf = [|VollZ,

n—2<Vp,Vr >qs

(1.20) A#r = pAr — :
2 p

where 7 is the geodesic distance function with respect to the metric G# on M. Denote

Ti = ng-;a_ock' We have the following formula ( see [P], p.38 ):

1

(1.21) i =5 2 PP (i fmi = Friefmst),

where (f¥) denote the inverse matrix of (f;;).

2. Proof of the Theorem
We first prove the following lemma:
Lemma 1:Let x : M — A" be a locally strong convez affine mazimal hypersurface, which
15 giwen by a strictly convez function
Tp41 = f(II, e 7‘7:71)'

If M is complete with respect to the metric G¥#, and if there is a constant N > 0 such
that ||Ric*||%, < N everywhere, then, in the case n = 2 or n = 3, M must be an elliptic
paraboloid.



Proof Let py € M. By adding a linear function and taking a parameter transformation we
may assume that py has coordinates (0,---,0) and

f(0)=0, fi(0)=0, fi;(0) =3y

Denote by r(po, p) the geodesic distance function from p, with respect to the metric G*. For
any positive number a, let B,(po) = {p € M|r(po,p) < a}. Consider the function

F = (a® - 1%)?%®

defined on B,(po). Obviously, F' attains its supremum at at some interior point p*. We may
assume that r? is a C?-function in a neighborhood of p*, and ® > 0 at p*. Then at p*

Ei = 0’
> Fi<0,
where ”,)” denotes the covariant differentiation with respect to the Blaschke metric. We
calculate both expression explicitly
(I)i 2 7‘2 i
(2.1) — — (), =,

d a? —r?

20 X 2VeE 2%

2.2
(2:2) d P2 (a2 —7r2)2 @2—1r2~

Inserting (2.1) into (2.2) and noting that
IVr¥lle = 4r*[|Vrlg,

Ar? = 2||Vr||% + 2rAr,

we get
2112 2
(2.3) AD < 6|]V7f I 20T
) (a2 —r2)2 ' g2 — 2
247 Vr|% N 4{|Vr||% N dr A\r
= (a2 — r2)? R —g? | gh— gl
Since
drAr dr AFr N 2(n—2)r < Vp,Vr >qx
a2 —7r2 g2 —1r2 o a2 — r2 p2



ar  AFr 1 ||[VpllE, | 24(n - 2)%% || VP2,

<
— g2 — 2 p 24 ,03 (a2 — 7“2)2 p !
e 7]
0
——C% = ||Vp|)%,
P
V7|2
e o,
IVrllZs =1,
we have
AD 2472 Vrl|? 4|V r||? 4r N#r 1® 24(n — 2)2%r2
(24) S - “ 2HQG# ”2 Hg’# - 4+ —— + ( )QT Her?é#
& = @-rpp T @Wor @y 2 T @y

2414 (n—2)Y)r? n 4 4r N#r . 1®

(@@= (@>=r2)p "~ (a2 =12)p " 24p’
Recall that (M, G¥#) is a complete Riemanninn manifold with Ricci curvature bounded from
below by a constant —K, K > 0. We have

r&Fr < (n— 1)1+ VEr).
Consequently, from (2.4), it follows that

AD _ 24(1+ (n - 2)%)r? 4n dn-D)VK-r 1@

2.6 - - .
(2.6) ST @ @ @, T

For n = 3, we have by (1.18)

Ad 3 2 1o ®; p;
(2.7) - Y AR el
o 4 P2 6p d p

3 2 19

2(7-3)) =t

4 ) 12 p

3672 1

@ =P Ty
where we used (2.1). Inserting (2.7) into (2.6) we get

201612 1 192VE -
(2.8) o< 20107 ggg o LE

- (CL2 _ 7-2)2 a2 — r2 a2 — r?

8



Multiply both sides of (2.80) by (a? — r%)%. We obtainl; at p*,
(2.9) (a2 — 7%)%® < 2304a® + 192V Kad®

- b1a2 + b2a3

where b; = 2304 and by, = 192v/K. It is obvious from (1.17) that (2.9) holds also for n = 2.
Hence at any interior point of B,(py) we have

P an-ay T2y
Let a — oo, we conclude
(2.10) ® =0.
It follows that o
det(axiaa:j) = 1,
G* =G.

This means that M is an affine complete parabolic affine hypersphere. By a result of E.
Calabi (see [L-S-Z]) we conclude that M must be an elliptic paraboloid.

We now want to show that there is a constant N > 0 such that ||Ric*||%, < N everywhere.
We need the following lemma (see [H], p. 635, Lemma 26), which was applied several times
in symplectic geometry.

Lemma 2 (Hofer). Let (X,d) be a complete metric space with metric d, and Bo(p) =
{z|d(p,z) < a} be a ball with center p and radius a. Let H be a positive continuous function
defined on Ba,(p). Then there is a point g € B,(p) and a positive number € < 5 such that

H(z) <2H(q) for all z € B(q) ~and eH(q) > =H(p).

a4
2

Now we assume that ||Ric*||%, is not bounded above. Then there is a sequence of points
pe € M such that ||Ric#||%,(pe) — co. Let Bi(p;) be the geodesic ball with center p; and
radius 1. Consider a family ¥(¢) : By(p;) — R of functions, ¢ € N, defined by

(2.11) U(0) = ||Ric*||gs + @ + L,



where ® is defined by (1.6) and
L= fFLfm £ fimn.

Using Hofer’s Lemma with H = ¥/2 we find 3 sequence of points ¢, and positive numbers
€, such that

(2.12) U3 (z) <20 (g,), Y z€ Be,(q),

(2.13) ee¥2(qr) > 2 W3 (pg) - oo.

1
2
The restriction of the hypersurface z to the balls Be,(q¢) defines a family M (£) of maximal
hypersurfaces. For every ¢, we normalize M () as follows:

Step 1. By adding a linear function we may assume that, at g, (z1,-+,z5) = (0,---,0)
and

We take a parameter transformation:
(2.14) Ti(6) = al(0)z;(0),

where a! (¢) are constants. Choosing a (£) appropriately and using an obvious notation f, ¥,
we may assume that, for every £, we have f;;(0) = d;;. Note that, under the parameter
transformation (2.14), ¥ is invariant.

Step 2. We take an affine transformation by
z;(£) = a(O)z;(£), 1<i<n,

Zn+1(£) = A(O)Zn41(9).
where A(£) and a(¢) are constants. It is easy to verify that each M(£) again is a locally

strongly convex maximal hypersurface. We now choose A(€) = a(£)?, A(¢) = U(q,). Using
again an obvious notation f, ¥, one can see that

£5(0) = F;5(0), U(0) = —=T(0).

10



The first equation is trivial. We calculate the second one. From (1.6), (1.21) we can easily
get

~ 1x
¢ = -9,
A
1
1RicH |6 = $IFic o,
s fem
L==L.
A

Then the second equality follows.

We denote By(gq) = {z € M(£) | 7(£)(z,q) < a}, where 7(£) is the geodesic distance
function with respect to the metric G# on M(£). Then ¥(£) is defined on the geodesic ball
B (qe) with d(£) = e,¥7 () > 2\1' (pe) — oo. From (2.12) we have

(2.15) U(g) =1,
(2.16) U(z) <4, Yz € Byplq).
We may identify the parametrization as (£1,- - - ,&,) for any index £. Then f (E ) is a sequence

of functions defined in a domain Q(¢),0 € Q(¢). Thus we have a sequence M (#) of maximal
hypersurfaces given by f(¢). We have

(2.17) F(0)(0) =0, %?(0) =0, a;g: (gf) (0) = 8.
(2.18) T(0)(0) =1,

(2.19) U(0)(z) <4, Yz € Byy(0).

(2.20) d(f) - 0 as £ — oo,

We need the following lemma:

Lemma 3 Let M be an affine maximal hypersurface defined in a neighborhood of 0 € R".
Suppose that, with the notations from above,

(4) Ji(0) = &y,

() |Ric*|lg# + @+ D FLF™ 5™ fiji frmn < 4.

Denote D := {(&, -+ ,&)| D€ < 1z}. Then there is constant C; > 0 such that, for
(&1,-++ , &) € D, the following estimates hold:

11



(1)
Z Ji < 4n.

(2) ,
(3) Define d, by d? = e Then (g, C {3 € < =1,} € D, where g, is the geodesic
ball with center 0 and radius d, with respect to the metric G¥#.

Proof of Lemma 3.

(1). Consider an arbitary curve I' = {& = a15,---, &, = azs,| > a? =1,s > 0}. By
assumption we have

D P kS <4, £al0) = .

Since Y f%fI™ f*n £,k fimn is independent of the choice of coordinates &1, ..., &, for any point
£(s) we may assume that f;; = Aidi;. Then

il pim rkn _ 1 Z 11k
Zf " fijkflmn—z/\i)\j)\ ik > SIAE

It follows that > 72
ik
(an) - an BZ Uk

and hence

1 a3 fi(z(s))) _ 1 .
(2 fu(z(s)))3/? ds - (X fulz(s)))3/2 wak( (s))ax

Solving this differential inequality w1th Z fn-( ) =n, we get

From the assumption we have s < 5= then (1) follows.
(2). Consider an arbitary curve

12



F:{fl =018, ,fn:anslza?: 17520}
again. By assumption we have -
2. fYip; n
P

> P
(Z fii) p* =

It follows that

By (1) we get

1 dp(z(s))
ST ds < 44/n.

Solving this differential inequality with p(0) = 1 we obtain
—4n7s < Inp(z(s)) < 4nis.

Recall that s < 5=, then (2) follows. .
(3). Denote by Amin, Amas the minimal and maximal eigenvalues of (f;;). Then, from (1)
and (2), we have A\, < 4n and

1
ron < det(fij) < AminAhas < (40)" Ain-

max
1

It follows that ]
2 2 2
n) af >0t sz

We immediately get (3).

We continue with the proof of the Theorem. Since d(¢) — oo, we have D C Q(¢) for £ big
enough. In fact, by (1), the geodesic distance from 0 to the boundary of D with respect
to the metric G* on M () is less than V% By Lemma 3 and bootstrapping, we may get a
C*- estimate,independent of ¢, for any k. It follows that there is a ball {3¢<Cy}anda

subsequence (still indexed by ¢) such that f(£) converges to f on the ball and correspondingly

all derivaties, where Cp < =7 is very close to ;. Thus, as limit, we get a maximal

hypersurface ]:\i , defined on the ball, which contains a geodesic ball Q4,. We now extend the

hypersurface M as follows: For every boundary point p = ({10, -+, &no) of the geodesic ball
24, we first make a parameter transformation

&= ag

13



such that at p, (21, e ,§~n) = (0,-+-,0) and for the limit hypersurface ]T/f, we have ﬁj(O) =
d;5. We have

(i") Fii (O ®) = F;00) =6, as £ oco.

It is easy to see that under the conditions (') and (ii) in Lemma 3, the estimates (1), (2)
and (3) in Lemma 3 remain true. By the same argument as above we conclude that there
is a ball aroud p and a subsequence ¢, such that f(ék) converges to f' on the ball, and
correspondingly all derivatives. As limit, we get a maximal hypersurface M’ , which contains
a geodesic ball of radius d, around p. Then we return to the original parameters. Note that
the geodesic distance is independent of the choice of the parameters. It is obvious that M
and M’ agree on the common part. We repeat this procedure to extend M to be defined on
Qy4,, etc. In this way we may extend M to be a maximal hypersurface defined in a domain
€2 C R, which is complete with respect to the metric G¥. Using (2.18) and (2.19) we get

1B*lgx <4, () =1.

By Lemma 1, M must be an elliptic paraboloid. For a paraboloid we have ¥ = 0, identically,
Thus, we get a contradiction. So HR#HZ,# must be bounded above on M. By Lemma 1 M
is an elliptic paraboloid. This complete the proof of Theorem.
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