
Unsupervised Learning Methods
for

Statistical Signal Processing

vorgelegt von

Diplom Ingenieur

Roland Vollgraf

aus Berlin

Von der Fakultät IV – Elektrotechnik und Informatik

Technische Universität Berlin

zur Erlangung des Akademischen Grades

Doktor der Ingenieurwissenschaften

– Dr. Ing. –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr.-Ing. Jörg Raisch
Berichter: Prof. Dr. rer. nat. Klaus Obermayer
Berichter: Univ.-Prof. Dr. Sepp Hochreiter

Tag der wissenschaftlichen Aussprache: 19. September 2006

Berlin 2006

D 83

ii

Zusammenfassung

In vielen Problemstellungen der Künstlichen Intelligenz und des Maschinellen Lernens
bedient man sich statistischer Methoden, um aus einer gegeben Menge von oftmals nu-
merischen Daten relevante Merkmale und Informationen zu extrahieren. Die dazu in
Betracht kommenden Vorgehensweisen bestehen stets aus zwei Teilen. Zum Ersten sind
die gegebenen Daten in den Kontext eines plausiblen statistischen Modells zu stellen, wobei
die Daten eine empirische Beschreibung dieses Modells erlauben müssen. Zum Zweiten
ist eine geeignete statistische Methode zu finden, die aus dem Modell, repräsentiert durch
die Daten, die gewünschten Merkmale extrahieren kann.

Unter diesem Gesichtspunkt wird aus dem Titel bereits klar, dass in der vorliegenden
Arbeit der Schwerpunkt auf Verfahren liegt, die die gegeben Daten als statistische Sig-
nale oder, in der Terminologie der Wahrscheinlichkeitstheorie, als stochastische Prozesse
interpretieren und dass die verwendeten statistischen Methoden zu den unüberwachten
Lernverfahren zählen.

Die Interpretation eines endlichen Datensatzes als eine oder mehrere Realisierungen
eines stochastischen Prozesses ist durchaus nicht zwingend (und manchmal sogar unange-
bracht). In aller Regel ist der gegebene Datensatz mehrdimensional und numerischer Art
oder lässt sich entsprechend umformen. Ein deutlich einfacheres statistisches Modell ergibt
sich wenn man die Daten entlang einer Dimension als Realisierungen einer multivariaten
Zufallsvariable auffasst. Dieser Ansatz liegt vielen maschinellen Lernverfahren zu Grunde,
wie z.B. Clustering, Hauptkomponentenanalyse, Projection Pursuit oder Independent Component
Analysis (ICA) als einige Vertreter unüberwachter Lernverfahren. Jedoch gerade am Beispiel
von ICA lässt sich gut zeigen, wo das Modell einer multivariaten Zufallsvariable versagt.
Als Gegenstück zu ICA kann man Second Order Blind Source Separation auffassen. Beide
Methoden dienen der blinden Quellentrennung und resultieren in einer linearen Transfor-
mation des angenommenen statistischen Modells. Während sich jedoch ICA allein aus der
Verteilung einer multivariaten Zufallsvariable ableiten lässt, benötigt man für Second Order
BSS “zeitliche” Korrelationen oder Nichtstationaritäten – Größen die in dem Modell einer
multivariaten Zufallsvariable nicht enthalten sind, wohl aber in dem generelleren Modell
eines stochastischen Prozesses.

Dieses generellere Modell kann als roter Faden durch die vorliegende Arbeit angesehen
werden. Kapitel 1 widmet sich daher der formalen Definition stochastischer Prozesse und
wichtigen Eigenschaften derselben wie z.B. Stationarität und Ergodizität.

Kann man eine plausible Interpretation eines gegebenen Datensatzes als stochastischen
Prozess finden, dann ist auch sofort klar, was unter statistischer Signalverarbeitung zu
verstehen ist, nämlich eine jede Abbildung, die einen stochastischen Prozess in einen an-
deren überführt. Unter diesem Gesichtspunkt kann man überwachte und unüberwachte
Lernverfahren unterscheiden. Überwachte sind solche, bei denen für eine Realisierung des
einen Prozesses (der gegebene Datensatz) auch eine Realisierung des anderen verfügbar
ist (Target-Datensatz), wobei eine Abbildung gesucht wird, die konsistent mit beiden Real-
isierungen ist, und die generell genug ist, um auch mit zukünftigen Realisierungen beider
stochastischer Prozesse konsistent zu sein. Im Gegensatz dazu ist beim unüberwachten
Lernen eine Abbildung gesucht, sodass der resultierende stochastische Prozess bestimmte
statistische Eigenschaften aufweist, welche sich aus der Problemstellung ergeben.

Die vorliegende Arbeit beinhaltet die Ergebnisse verschiedener Arbeiten zu Problemen
der statistischen Datenanalyse. Aufgrund der zahlreichen Kooperationen, die zwischen der
Arbeitsgruppe “Neuronale Informationsverarbeitung” und vielen anderen Arbeitsgruppen
bestehen, stammen die Aufgaben aus zum Teil recht verschiedenen Domänen. Viele ka-
men dabei aus dem Gebiet der biomedizinischen Datananalyse. Allen gemein ist, dass
die gegebenen Daten sehr gut zu den Modellen stochastischer Prozesse passten. Bis auf
Abschnitt 4.3 handelt es sich bei den dargestellten Methoden um unüberwachtes Lernen
von signalverarbeitenden Abbildungen. Deren Charakteristiken entsprechend ist die vor-
liegende Arbeit gegliedert in Instantane Lineare Funktionen, Optimale Lineare Filter, Nichtline-
are Filter und Slow Feature Analyse als allgemeine nichtlineare Methode. Dabei erheben die
einzelnen Kapitel keinen Anspruch auf Vollständigkeit bezüglich der dargestellten Klassen
von Methoden. Vielmehr sollen einzelne, dafür aber besonders interessante Verfahren und
Ergebnisse vorgestellt werden.

Contents

List of Figures viii

List of Tables xi

List of Algorithms xii

List of Symbols xiii

Acknowledgments xvii

Preface xix

1 Spatio/temporal data 1
1.1 Stochastic signals . 1
1.2 Stationarity and ergodicity . 3

1.2.1 Moments . 3
1.2.2 Stationarity . 4
1.2.3 Ergodicity . 4

1.3 Signal processing . 5
1.3.1 Instantaneous, stationary functions . 5
1.3.2 Simple filter functions . 5
1.3.3 Multi-channel filters . 6

1.4 Finite training data . 6
1.4.1 Interpretation of data sets . 7
1.4.2 Considerations to stationarity and ergodicity 8

2 Instantaneous linear functions 9
2.1 Instantaneous linear mixtures . 9
2.2 Blind source separation . 10

2.2.1 Permutation ambiguity . 10
2.2.2 Natural gradient . 11
2.2.3 BSS algorithms . 12

2.3 Approximate matrix diagonalization . 12
2.3.1 Second order moments . 13
2.3.2 Approximate matrix diagonalization . 15

2.4 The QDIAG algorithm . 17
2.4.1 Introduction . 18
2.4.2 Derivation of the QDIAG algorithm . 19
2.4.3 Computational complexity of QDIAG 21
2.4.4 Numerical experiments . 21
2.4.5 Concluding remarks . 30

2.5 Extraction of single sources . 31
2.5.1 Cost function for extracting single components 31
2.5.2 Prior knowledge for a and w . 32
2.5.3 Extraction of additional sources . 33

iii

iv CONTENTS

2.5.4 Experiments . 33
2.6 Multi-dimensional ICA . 34

2.6.1 The Two-Step algorithm . 36
2.6.2 Experiments . 37

3 Optimal Linear Filters 42
3.1 Optimal filtering for template detection . 42

3.1.1 Optimal filter for a given template . 43
3.1.2 Problems with white Gaussian noise . 44

3.2 Optimal filtering for an unknown template . 45
3.2.1 Estimating the Hessian from the data 45
3.2.2 ICA and optimal filters . 47
3.2.3 Maximum skewness . 48
3.2.4 Relation to optimal filters . 50

3.3 Optimal multi-channel filters for template discrimination 51
3.3.1 Template discrimination . 51
3.3.2 Filter for given templates – derivation in the frequency domain 52
3.3.3 Filter for given templates – derivation in the time domain 53
3.3.4 Performance: Frequency domain vs. time domain 55

3.4 Multi-channel blind deconvolution . 58
3.4.1 Fixed point iteration approach: template detection 58
3.4.2 Decorrelation approach: template discrimination 60
3.4.3 MCBDC . 61
3.4.4 MCBDC optimization . 63
3.4.5 MCBDC for video data . 68
3.4.6 Discussion . 70

3.5 Application: Spike-sorting . 73
3.5.1 Tetrode data . 74
3.5.2 Spike-sorting based on optimal filtering 75
3.5.3 Experiments . 77
3.5.4 Experiments with realistic artificial data 79
3.5.5 Outlook . 85

4 Non-linear filtering 87
4.1 Linear filters and the convolution theorem . 87
4.2 Non-linear filters . 88

4.2.1 Taylor expansion . 89
4.2.2 Linear and radial basis function networks 90

4.3 Application: electron microscopy data . 91
4.3.1 Introduction . 91
4.3.2 Learning the RBF Filter . 92
4.3.3 RBF Filtering . 93
4.3.4 Experiments . 94
4.3.5 Description of the procedure . 98
4.3.6 Performance Evaluation . 98
4.3.7 Results . 99

4.4 Sparseness regularization for second order
kernel methods . 100
4.4.1 Second order kernel methods . 100
4.4.2 Sparseness regularization for kernel PCA 101
4.4.3 Hyper-ellipsoidal conjugate gradient 103
4.4.4 Experiments . 106

CONTENTS v

5 Slow Feature Analysis 111
5.1 Projection pursuit with SFA . 111

5.1.1 Linear SFA . 112
5.1.2 Non-linear SFA by expansion . 112
5.1.3 Kernel-SFA . 113

5.2 Empirical slowness . 113
5.3 SFA on video data . 115
5.4 Hierarchical SFA . 119

5.4.1 Hierarchical architecture . 119
5.4.2 Experiment: video slice . 120
5.4.3 Discussion of the hierarchical SFA experiment 124

A Independence of mixture densities 127

B Reconstruction error 130

C Theorems 131

D Solution of the Lagrange equation (3.6) 133

E Files on the CD 135

List of Figures

1.1 Events on the stocahstic process of example 1. 2

2.1 Illustration of the space W � �
W : WA � QN � 11

2.2 Illustration of the quadratic optimization problem (2.44) with quadratic con-
straints. 21

2.3 Diagonalization error E as a function of the number of iterations. 24
2.4 Diagonalization error E as a function of the number of iterations. 24
2.5 Diagonalization error E as a function of the number of iterations. 25
2.6 Average computation times per iteration of QDIAG, ACDC, and FFDIAG. . . 26
2.7 Example of an ‘unbalanced’ solution to the diagonalization problem. 27
2.8 Diagonalization error as a function of the number of iterations. 28
2.9 Diagonalization of anti-symmetric matrices. 28
2.10 Overcomplete diagonalization. 30
2.11 Diagonalization errors for 100 different ‘approximately diagonalizable’ data

sets. 30
2.12 The toy datasets used for simulation. 33
2.13 Results on a 20 � 3 mixture of the sources of figure 2.12. 34
2.14 The ‘noisy sinosoids’ data set. 37
2.15 Results for the ‘noisy sinosoids’ dataset. 38
2.16 The ‘passport photos’ dataset. 39
2.17 Results for the ‘passport photos’ dataset. 40
2.18 Single components v � j of the passport photo dataset used to generate input

for the second ICA. 40
2.19 The M � rows with the smallest norm discarded. 41

3.1 A signal containing spikes and the response of the optimal noiseless filter. . . 43
3.2 Optimal filters to the template shown in figure 3.4.A. 43
3.3 Influence of noise to the response of the optimal filter. 45
3.4 Template wave form, and influence of regularization parameter α. 46
3.5 Attempt to discriminate two different templates with linear filters. 51
3.6 Wave form templates averaged from manually identified events from a real

tetrode recording. 55
3.7 Time domain responses of the optimal filters derived in the frequency domain. 56
3.8 Time domain responses of the optimal filters to the templates shown in figure

3.6. 57
3.9 The errors E1, and E2 plotted as functions of the filter length. 58
3.10 Multi-channel filters that emerge in a fixed point iteration in conjunction with

the scaling rule (3.57). 60
3.11 Multi-channel filters that emerge when approximate simultaneous matrix

diagonalization is performed. 61
3.12 Illustration of the MCBDC optimization procedure. 64
3.13 Optimal multi-channel filters learned with MCBDC and cross-correlation

functions of the filtered signals. 66
3.14 The corresponding templates. 67

vi

LIST OF FIGURES vii

3.15 Results of MCBDC on video data. 71
3.16 Equivalent to figure 3.15 for filters derived through the iterations (3.61). . . . 72
3.17 Three filtered 4-channel frames of the video. 73
3.18 Extra-cellular tetrode recordings from the prefrontal cortex of an awake mon-

key during a visual task experiment. 75
3.19 Extra-cellular tetrode recordings from the visual cortex of an anesthetized

and paralyzed cat during spontaneous activity. 76
3.20 Closeup of channel 3 of the raw and filtered tetrode recordings. 78
3.21 Performance of the filter for wave forms, which have no single prominent

peak. 79
3.22 The peak detection value. 80
3.23 Scatter plot of a 2d projection of the originally 4d spike amplitudes. 81
3.24 Composite plot of the 4-channel wave form templates. 82
3.25 Composite plot of the 4-channel wave form templates with the clips taken

from the filtered recordings. 82
3.26 A 100ms example of the artificial data with unique wave forms for all neurons. 83
3.27 A 100ms example of the artificial data with realistic wave forms. 83
3.28 Influence of the spike rate for toy data with unique wave forms and real wave

forms. 84
3.29 Spike sorting performance for the real wave form dataset. 85

4.1 Average computation time for the computation of cross correlation functions
in the time domain and in the frequency domain. 88

4.2 ε-sensitive loss in support vector regression. 93
4.3 EM image of photoreceptor terminals of the wild type fruit fly, Drosophila

melanogaster. 95
4.4 EM images of photoreceptor terminals of wild type and genetic mutant fruit

fly, Drosophila melanogaster. 96
4.5 Output of the SVM filter applied to the images ter04 and ter08. 97
4.6 ROC of the validation with ter04, and with ter08. 99
4.7 Mean vesicles obtained by averaging the hand labeled 50 � 50 patches. 100
4.8 Gradient descent on a hyper-ellipsoidal surface. 103
4.9 Results for Kernel PCA without sparseness regularization. 106
4.10 Absolute values of the elements of αi. 107
4.11 Results for Kernel PCA with sparseness regularization (4.36). 107
4.12 Comparison of the performance measure (4.49) in dependence of the reduced

number of support vectors. 110

5.1 Empirical slowness values of 4 different slow signals as functions of the
number of samples. 114

5.2 The first 38 largest principal components of the video frames. 115
5.3 Scatter plot of the slow signals 2-5 resulting from the setup (5.15). 116
5.4 Slow signals of the setup (5.15) after the application of FastICA. 117
5.5 Few frames of the stereo video for the illustration of the non-linear SFA results.118
5.6 Comparison of the 5th slow signal of architecture (5.15) (top) and the most

similar one of the architecture (5.17) (bottom). 118
5.7 Video slice composed from the 120th scan line of the first 1,000 frames of the

training video and the test video. 120
5.8 Training and test slowness values of the first layer outputs. 121
5.9 Training and test slowness values for the second layer. 121
5.10 A piece of 1,000 scan lines of the training video slice, filtered with the two-

layer SFA architecture (5.21). 123
5.11 Results of the hierarchical SFA on the training data. 125
5.12 Results of the hierarchical SFA on an unseen test video. 126

viii LIST OF FIGURES

A.1 Two examples for mixture densities, which are composed of five individually
independent random vectors. 127

List of Tables

2.1 Diagonalization error of incomplete diagonalizations. 29
2.2 Separation result of the Two-Step algorithm. 39

4.1 Computation time examples for different filtering methods. 94

5.1 Performance comparison of the optimal one- and two-layer architectures for
different overall receptive field sizes. 122

ix

List of Algorithms

1 The QDIAG-algorithm with complexity O � KN3 � 22
2 The QDIAG-algorithm with complexity O � N5 � 23
3 MCBDC optimization. 65

x

List of Symbols

General symbols

��� � T, ��� � � 1, ��� � � T matrix transpose, inverse and transpose inverse
〈

�
〉

expectation� Hadamard (element wise) product of two matrices� cross-correlation� � �
absolute value; number of elements in a set� � � Euklidean length (of vectors)� � � F Frobenius norm

1 square matrix with all elements equal to 1
conj ��� � conjugate complex
det ��� � determinant
dg ��� � the diagonal matrix defined by the argument�
dg ��� � the off-diagonal matrix defined by the argument
F 	
� � discrete Fourier transform
F

� 1 	
� � inverse discrete Fourier transform
Ī inverse unity matrix, Ī � 1 � I
I unity matrix
i index variable
j imaginary unit
j index variable
K kernel matrix
K natural number
k index variable
k ��� , � � kernel function
l index variable
λ Lagrange multiplier
Φ ��� � feature space projection
sign ��� � signum function
t, τ, δt temporal index rsp. offset
tr ��� � matrix trace

Symbols specific to chapter 1

A σ-algebra defined on Ω
A,B measurable subsets of Ω
B σ-algebra of all Borel subsets of E
E state space of stochastic process

xi

xii LIST OF ALGORITHMS

f signal processing function
H � I � set of all non-empty, finite subsets of I
Î index set in finite datasets
I temporal index set of stochastic process
J receptive field, subset of I
Ω arbitrary, measurable space
ω element of Ω
PI, PJ probability measure
r channel index
t temporal index variable
θτ shift operator
w parameter vector of f

� xt
�
t � I stochastic process

xJ, xt realization of stochastic process x
X dataset
XJ, Xt marginal event of stochastic process x

Symbols specific to chapter 2
〈

�
〉

C
average over all matrices C � C

� matrix equality up to permutations and scalings
∇W gradient w.r.t. W

�

∇W natural gradient w.r.t. W
A mixing matrix
a column vector of A
A secondary mixing matrix in Two-Step ICA
a � j feature vector in two-step ICA
α, αk regularization and weighting coefficients
bi vector
B arbitrary N � N matrix
C covariance matrix
C0, Ck, Cτ second order correlation matrix
C set of correlation matrices
D N � N matrix used by QDIAG
DN set of all non-singular, diagonal N � N matrices
I � s � source assumptions
L BSS objective function; Lagrangian.
Λ diagonal matrix
M arbitrary matrix
M natural number, number of channels
N natural number, number of channels
n, n noise signal
P whitening (sphering) matrix
π ��� � product of the diagonal elements of the argument matrix
Q permutation matrix
QN set of all non-singular N � N permutation matrices
sJ, st realization of stochastic process s
St patch of stochastic process s
s � j j-th column vector of S
si � i-th row vector of S

LIST OF ALGORITHMS xiii

SJ, St marginal event of stochastic process s
s, s, � st

�
t � I vector valued stochastic process, sources.

Σa, Σw quadratic forms for regularization terms
TW tangent space at W
U matrix of feature coefficients
U unitary matrix
U � matrix of dependent feature coefficients
U
�

matrix of independent feature coefficients
W secondary mixing matrix in two-step ICA
W de-mixing matrix
wi i-th row vector of W
W set of equivalent solutions W
Wadm set of admissible solutions in QDIAG
x, x, � xt

�
t � I stochastic process, observations

y, y, � yt
�
t � I stochastic process, outputs

Symbols specific to chapter 3

α
�

optimal value of regularization parameter
E error value
ε bound on the maximal values of the output cross-correlation functions
F̄ matrix summarizing all filters f̄
f̄
�

optimal filter in vector notation
f , f , f̄ filter function
H Hessian matrix of the Lagrange equation
κd cumulant of order d

� lt � template response
� nt

�
t � I, � nt

�
t � I noise signal

n̄t patch vector of noise process n rsp. n
ω angular frequency
q � x � , q � y � , q � PCA � spike sorting performance measures
ρd standardized cumulant of order d
σ2

n noise variance
θ ��� � , Θ ��� � non-linear discrimination and momentum functions

� vt
�
t � I real valued, sparse stochastic signal

x̄t patch vector of stochastic process x rsp. x
Ξ matrix which contains the template ξ in every row
ξ, ξ, ξ̄ template, wave-form

Symbols specific to chapter 4

α
� ���
i Lagrange multiplier in SVR

� bτ �
τ � J basis of Taylor expansion

β regularization parameter
c model parameter in ν-SVR
ε margin of the ε-sensitive loss in SVR
F feature space
f , fi arbitrary (filter) function
gτ1,...,τd tensor of partial derivatives of order d
γ RBF-kernel parameter

xiv LIST OF ALGORITHMS

ν model parameter in ν-SVR
� ντ,n �

τ � J,n � 1...N tensor decomposition matrix
Φ ��� � , Φi ��� � basis function
π ��� , . . . , � � permutation of indices
Qd set of detected peaks
QExp set of manually labeled vesicles
Qmatch set of correctly detected vesicles
QExp set of detected vesicles
Tx, T f receptive field sizes

� Wk
�
k � 1...Tx Fourier coefficients of � wt

�
t � 1...T f

� Xk
�
k � 1...Tx Fourier coefficients of � xt

�
t � 1...Tx

ξ
� ���
i slack variable in SVR

� Yk
�
k � 1...Tx Fourier coefficients of � yt

�
t � 1...Tx

� zt
�
t � I

� filtered outputs

Symbols specific to chapter 5
� set convolution
1̄ vector with all elements equal to 1
a linear output projection
f i multi-channel filter in layer i
Ir spatial index set in hierarchical SFA
It temporal index set in hierarchical SFA
Ji
r spatial receptive field of f i

Jr overall spatial receptive field of last last layer
K kernel matrix
k � xt

� row vector of the kernel matrix K
�

K temporal derivative kernel matrix
P sphering matrix
qt ‘landmark function’ in hierarchical SFA experiment
Ŝ � y � empirical slowness value of slow feature vector y
S � y � slowness value of slow feature vector y
t � � t, r � T temporal/spatial index in hierarchical SFA
T length of the dataset
V projection matrix in feature space
W M � N projection matrix in linear SFA
wi parameter vector of f i

wi i-th row vector of W
xt input data vector

�

xt temporal derivative of input data vector
yi, tr slow feature vector of layer i at spatio/temporal offset t, r �
yt slow feature vector

�

yt temporal derivative of slow feature vector
zt (initial) support vector; parameter vector of explicit expansion

Acknowledgments

At first, I wish to express my gratitude to Prof. Klaus Obermayer, who was the supervisor
of my research work. His lecture, ‘Neural Information Processing’, was when I first got
in contact with the matter of neural networks and machine learning. While firstly I was
somewhat overwhelmed by all that math behind the methods, during my time at Prof.
Obermayer’s lab I learned to understand the theories and to discover the beauty, which is
behind some weird formulas. I want to thank him for constantly encouraging me to publish
my results, and for the opportunities he offered to present them at several international
conferences.

I wish to express my special thanks to Prof. Sepp Hochreiter, who was member of our
research group during a long period of my work. It has always been a pleasure to talk and
discuss with him during our daily coffee breaks. The most fruitful and original ideas often
came up at these occasions. The more I’m glad that he agreed to be the second assessor of
my PhD.

I wish to thank Dr. Matthias Munk and Gordon Pipa from the MPI Brain Research,
Frankfurt for the fruitful collaboration in the development of the spike-sorting procedures.
All data I used had been recorded there. Visiting their lab it was highly interesting to learn
about their research and the procedures that come prior to the data analysis step.

My thanks are to Dr. Laurenz Wiskott for the exchange of ideas about Slow Feature
Analysis. His work and the concept of place cells were the inspiration to focus on SFA for
the visual data processing in the robotics project.

I am indebted to Dr. Marek Musial for the endeavors he made to bring the robotics
project to live.

Last not least I would like to thank my colleagues at NI for not less than the good time
I had during my work at the NI group.

Institutional support of the work leading to this thesis was provided by:
Wellcome Trust, grant no. 10008261 (section 2.4 and chapter 3), Deutsche Forschungsgemein-
schaft, grant no. DFG OB 102/3-1 and Wellcome Trust, grant no. 050080/Z/97 (section 2.5),
Deutsche Forschungsgemeinschaft, grant no. DFG SE 931/1-1and DFG OB 102/3-1 and Wellcome
Trust, grant no. 061113/Z/00 (section 2.6), Bundesministerium für Bildung und Forschung, grant
no. 0311559 (section 4.3), and Deutsche Forschungsgemeinschaft, grant no. DFG OB 102/7-1
(section 4.4 and chapter 5).

xv

xvi ACKNOWLEDGMENTS

Preface

In many problems of Artificial Intelligence and Machine Learning, one makes use of statis-
tical methods in order to extract relevant features and information from a given set of often
numerical data. The approaches that come into consideration therefor always comprise
two parts. At first, the given data have to be put into the context of a plausible statistical
model, where the data must allow to empirically describe the model. Secondly, one has to
find a suitable statistical method that allows to extract the desired features from the model,
which is represented by the data.

From this point of view, the title already make apparent that focus of this thesis is on
methods that interpret given data as statistical signals or, in the terminology of probability
theory, as stochastic processes, and that make use of statistical methods which belong to
the family of unsupervised learning methods.

The interpretation of a finite dataset as one or more realizations of a stochastic pro-
cess in not stringent (and even sometimes inappropriate). In general the given dataset is
multi-dimensional and of numerical nature or can be transformed that way. A quite simpler
model could be achieved if all data along one dimension were interpreted as the realizations
of a multi-variate random variable. This approach underlies many machine learning pro-
cedures like, e.g., Clustering, Principal Component Analysis, Projection Pursuit, or Independent
Component Analysis (ICA) to name some representative unsupervised learning methods.
However, even with ICA it becomes apparent where the model of a multi-variate random
variable fails. Second Order Blind Source Separation can be considered as a counterpart to
ICA. Both methods approach blind source separation and lead to a linear transformation
of the underlying statistical model. However, while ICA can be derived solely from a
multi-variate statistical distribution, Second Order BSS requires ‘temporal’ correlations or
non-stationarities – quantities that are not contained in the model of a multi-variate random
variable, but are in the more general model of a stochastic process.

This more general model can be seen as a thread through this thesis. Therefore, chapter
1 is devoted to the formal definition of stochastic processes and their important properties
like stationarity and ergodicity.

If one can find a plausible interpretation of a given dataset as a stochastic process,
then immediately it becomes clear what is meant by the term ‘statistical signal processing’,
namely any mapping that transforms one stochastic process into another one. In this
respect one can distinguish supervised and unsupervised learning methods. Supervised
learning methods are those for which with a realization of the one stochastic process (the
given dataset), also a realization of the other stochastic process is available (a target dataset)
such that a mapping from one process to the other is searched, that is consistent with
both realizations and sufficiently general to be consistent with future realization of both
stochastic processes. In contrast, in unsupervised learning methods a mapping is searched
such that the resulting stochastic process exhibits certain statistical properties, which arise
from the problem at hand.

This thesis contains the results of my work on different problems in statistical data
analysis. Due to the numerous collaborations that exist between the Neural Information
Processing Group and many other labs, the data and the associated problems originate from
quite different domains. Most of them were from the field of biomedical data analysis.
Common to all is the fact that they fit well into the framework of stochastic processes.
Except for section 4.3 all presented methods are unsupervised learning of signal processing

xvii

xviii PREFACE

mappings. According to their characteristics this thesis is organized into the chapters
Instantaneous Linear Functions, Optimal Linear Filters, Non-Linear Filtering, and Slow Feature
Analysis as a general non-linear method. The individual chapters do not claim to be complete
in terms of classes of signal processing methods they represent. Rather some individual
procedures and results that are of particular interest shall be presented.

A large part of this thesis has been published in scientific journals or conference pro-
ceedings.

The work on extraction of single sources form linear mixtures was presented as a talk at
the International Conference on Artificial Neural Networks 2001 in Vienna and is published in
Vollgraf et al. (2001). In the same year the multi-dimensional ICA approach was presented
at NIPS and published in the conference proceedings (Vollgraf and Obermayer, 2002).

At that time I started my work on the data analysis of extracellularly recorded signals of
neural activity, the so called ‘spike-sorting’, in a collaboration with the MPIH, Frankfurt, and
Dr. Matthias Munck. After a long and straining review process, the approach with optimal
single-channel filters eventually was published in Vollgraf et al. (2005b). Meanwhile a
presentation of the results could be given at the 30th Göttingen Neurobiology Conference
(Vollgraf et al., 2005a). In the thesis this material is distributed over the sections 3.1, 3.2,
and 3.5, because the work on optimal multi-channel filters (section 3.3 and 3.4) is the logical
continuation of the optimal single-channel filters (although, chronologically it was done
after the spike sorting application presented in section 3.5). The work of section 3.3 was
published separately in Vollgraf and Obermayer (2006a).

In 2003, in the course of a collaboration with the Laboratory of Invertebrate Neurobiology
and Dr. I.A. Meinertzhagen, the research on optimal non-linear filtering (section 4.3) was
done and soon after presented rsp. published in Scholz et al. (2003) and Vollgraf et al. (2004).
The insights about the decomposition of non-linear filters achieved during this study is an
important fundamental for the ongoing work on Slow Feature Analysis and non-linear
filtering of video data (cf. chapter 5). The problem that non-linear filtering operations
still can be so much time consuming was decisive to spend some work on how sparse
optimization for Kernel-SFA (and other second order kernel methods) can be achieved. The
result was the Hyperellipsoidal Conjugate Gradient Descent algorithm (section 4.4), which will
be presented at the IJCNN 2006 workshop (Vollgraf and Obermayer, 2006c).

The development of the QDIAG algorithm (cf. section 2.4) was the consequence of a
particular problem that involved the approximate diagonalization of several quite large
matrices, where non of the existing algorithms could solve the problem satisfactory. As
it is so often the case, the actual problem turned out to be of minor relevance, but the
QDIAG algorithm proved to be a very powerful tool for general matrix diagonalizations.
It is published in Vollgraf and Obermayer (2006b).

Chapter 1

Spatio/temporal data

In this chapter we will first define what is understood under a signal in the statistical sense.
Then this definition will offer a quite intuitive way to distinguish different ways of statistical
signal processing.

1.1 Stochastic signals
When talking about signals one usually has in mind a set of data samples x that are
elements of some common state space E. At the same time these data samples exhibit a
certain temporal or sometimes spatial structure, which is given by another set I, the index
set.

The subject of study in this thesis will be real valued data of finite dimension,

x � E : �
R

R1
�
...
� RNr , Nr

� 1,Ri
� 1 , (1.1)

i.e. the state space E can be the set of all real valued scalars, vectors, matrices, or finite
dimensional arrays. Indices

r � R : � 	 1,R1 � � . . . � 	 1,RNr ��� NNr (1.2)

into E are called channel indices. We will consider data that have a finite dimensional,
discrete ’temporal’ structure, giving rise to the index set to be a finite power of the set of
whole numbers,

t � I : �
Z

Nt , Nt
� 1 . (1.3)

Even for more than one dimensional signals (Nt � 1) we may refer to t as temporal index and
to I as temporal index set or temporal set. In general we refer to signals according to equations
(1.1) and (1.3) as time discrete real signals.

In order to access their statistical properties it is reasonable to consider signals as stochas-
tic processes. A stochastic process, is given by the quadruple

� Ω,A ,P, � xt
�
t � I

� , (1.4)

where � Ω,A ,P � is some probability space and xI : � � xt
�
t � I is a family of random variables

associated with that probability space. These random variables may assume values in the
measurable space � E,B � , where B is the σ-algebra of all Borel subsets of E. For any given
ω � Ω the mapping from I to E, given by t �� xt � ω � is called a realization or trajectory of the
process.

The trajectories of the stochastic process (1.4) give rise to the stochastic process

� EI,B � EI � ,PI, � xt
�
t � I

� with xt � ω � � ωt , (1.5)

which is called the canonical process belonging to (1.4). Hence, any statistical properties
of the trajectories of the process are subject to the probability measure PI. In general it

1

2 CHAPTER 1. SPATIO/TEMPORAL DATA

0 1 2 3 4 5 6 7 8 9 10
 0

0.25

 0.5

0.75

 1

1.25

 1.5

1.75

 2
ω

2/π

ω
1

X2

X2

X2

X1

X1

X−1

X−1

Figure 1.1: The event X � � 1,1,2 � with X � 1
� 	
� 1, � 0.8 � , X1

� 	 0.9, 1 � and X2
� 	 0, 1 � on

the stochstic process of example 1. On measurable subsets of the displayed space Ω the
probability measure P is defined. Gray stripes show the subsets of the individual events Xt.
The measure P of their intersection (black areas) is the probability of occurence of event XJ.

is impossible to define PI directly, because of the infinite dimensionality of the events
generated by the stochastic process. However, it is possible to define probability measures
PJ for finite marginal events

XJ : ���
t � J

� XJ
�
t with � XJ

�
t � B � E � , J � H � I � , (1.6)

where H � I � is the set of all non-empty, finite subsets of I. According to the theorem of
Daniell-Kolmogorov (Brauer (2002), §35.3, p. 307) PI is uniquely defined by the projective
family � PJ

�
J � H

�
I � of all finite marginal distributions of the process. The family � PJ

�
J � H

�
I � is

projective if for any H � J � H � I � and XH � B � EH � , XJ � B � EJ � holds

PH � XH
� � PJ � XJ

� (1.7)

whenever
XJ

� �
xJ � EJ : xt � � XH

�
t , t � H � � �

t � J

� � XH
�
t, t � H

E, t � J � H . (1.8)

Now, the theorem states that to any projective family there uniquely exist a probability
measure PI, the projective limes, so that

PJ � XJ
� � PI � �

xI � EI : xt � � XJ
�
t , t � J � � for all J � H � I � .

This is very convenient as it allows us to fully specify the canonical process only by its finite
marginal distributions. The following two examples shall illustrate this.

Example 1

BeΩ �
R � � 	 0, 2π � , A � B � Ω � , E � 	 � 1, 1 � and I �

Z . Then the stochastic process

xt � ω � � cos � ω1t � ω2
� , � ω1, ω2

� T � Ω (1.9)

1.2. STATIONARITY AND ERGODICITY 3

describes all discrete time cosine signals, the frequency (ω1) and phase (ω2), which are
subject to the distribution � Ω,B � Ω � ,P � . For finite marginal events

XJ
� �

t � J

� XJ
�
t , J � H � I � , � XJ

�
t � B � E � (1.10)

the probability measure PJ is given by

PJ � XJ
� � P ���

t � J

�
ω � Ω : cos � ω1t � ω2

� � � XJ
�
t ��� . (1.11)

Because xt � ω � is measurable, � t � J
�
ω � Ω : cos � ω1t � ω2

� � � XJ
�
t � � B � Ω � and, hence, PJ

exists. See figure 1.1 for an illustration of the event X � � 1,1,2 � .

Example 2: white noise signal

In this example the state space is the set of real numbers, E �
R, and the index set is

I �
Z

Nt . A white noise signal can be seen as the quadruple � EI,B � EI � ,P, � xt
�
t � I

� where P is
a probability measure so that � E,B � E � ,P) is the distribution of every single xt. To complete
this example we need to define the corresponding probability measure PI on � EI,B � EI � � .

Consider a collection of subsets of EI of the form

X �J : ���
t � I

�
Xt, t � J
E, t � J

� � � xt
�
t � I : xt � Xt, t � J � , (1.12)

where J � H � I � and Xt � B � E � . These subsets form a semi-algebra S � EI � on EI, meaning
that: (i) � � S � EI � , (ii) if A,B � S � EI � than also A 	 B � S � EI � , and (iii) for every A � S � EI �
there exists a finite number of sets Bi � S � EI � so that EI � A ��
 n

i � 1 Bi. By construction we
can easily define to all elements of S � EI � (but not necessarily to all elements of B � EI �) the
measure

PS � X �J � � �
t � J

P � Xt
� , (1.13)

where X �J � S � EI � is the extension of the event XJ to S � EI � according to equation (1.12).
Clearly, for any disjoint sets J,H � H � I � holds

PS � X �J � X �H � � PS � X �J � PS � X �H � , (1.14)

hence, disjoint events XJ and XH are independent. PS is countably additive, i.e. for any
countable set of pairwise disjoint Bi � S � EI � holds

PS ��
�
i � 1

Bi � � N�
i � 1

PS � Bi
� . (1.15)

With PS � EI � � 1 this is sufficient for a unique probability measure PI on � EI,B � EI � � to exist,
which extends PS to B � EI � , such that all elements of B � EI � � S � EI � have the measure zero
w.r.t. PI. For the proof of the last statement see Walters (1982, pp. 3–6) and Kingman and
Taylor (1966, p. 140).

1.2 Stationarity and ergodicity

1.2.1 Moments
Generally for a given signal and the associated stochastic process � Ω,A ,P, � xt

�
t � I

� , it is
impossible fully determine the underlying probability measure P. However, in many cases
it is sufficient to determine certain interesting moments of its trajectories xI

� � xt
�
t � I,

〈

g � � xt
�
t � I

� 〉 : ���
Ω

g � � xt
�
t � I

� dPI
���

Ω

g � � xt
�
t � I

� dP , (1.16)

where g is a measurable function EI � R.

4 CHAPTER 1. SPATIO/TEMPORAL DATA

1.2.2 Stationarity

A stochastic process � Ω,A ,P, � xt
�
t � I

� is called a stochastic process with the discrete shift θτ,
τ � I, if there exist a transformation θτ : Ω � Ω with xt � θτ � xt � τ.

A stochastic process with shiftθτ is called stationary w.r.t.θτ, ifθτ is a measure preserving
transformation, i.e.

θτ
� 1 � A � � A and P � θτ � 1 � A � � � P � A � (1.17)

holds for all A � A . The importance of stationarity assumptions results from the fact that
for stationarity processes any moments are shift invariant,

〈

g � xI
� 〉 � 〈g � xI � θτ � 〉 (1.18)

which directly follows from equation (1.16).
For the stochastic process in example 1 a shift is given by

θτ � � ω1, ω2
� T � � � ω1, � τω1 � ω2

� mod 2π � T , (1.19)

hence
xt � θτ � cos � ω1 � t � τ � � ω2

� . (1.20)

θτ leads to a cyclic shift of ω2, and, thus, example 1 represents a stationary process if, and
only if, P is invariant on ω2, meaning that the phase of the cosine signals is uniformly
distributed over the interval 	 0, 2π � .

By construction, equation (1.13), the white noise process in example 2 is a stationary
process.

1.2.3 Ergodicity

The shift invariance of moments of stationary processes, equation (1.18), gives rise to the
idea to compute empirical moments over increasing numbers of shifts,

〈

g � xJ
� 〉 � lim

n �

1

#Hn

�
τ � Hn

g � xJ � θτ � , (1.21)

with Hn � Hn � 1 � H � I � . The advantage of doing so is that one needs only one realization
xI � ω � of the process for the estimation of moments. However, in order for this sequence to
converge to

〈

g � xJ
� 〉 a further condition must be fulfilled: the process must be ergodic.

A stochastic process � Ω,A ,P, � xt
�
t � I

� is called ergodic w.r.t. shifts θτ if it is stationary w.r.t
θτ, and if for all A � A holds

θτ
� 1 � A � � A � P � A � � �

0, 1 � . (1.22)

In other words, there exist no non-trivial events A that are shift invariant. Consider a
process that is stationary w.r.t. θτ, but not ergodic. Then, there exists an A � A with
0 � P � A � � 1 and θτ

� 1 � A � � A. Now, consider ω � A in equation (1.21). Then, however,
there is a set B � Ω � A � A with P � B � � 0 so that

� lim
n �

�
τ � Hn

θτ � ω � � � B � � . (1.23)

Hence, one can say that with non-zero probability P � A � a subset B � Ω � A with finite
measure P � B � will not be used for the computation of the empirical moment in equation
(1.21), leading to incorrect results. On the other hand, it was proven with the Birkhoff-
Khinchin Ergodic Theorem and related theorems (cf. Fröhlich et al. (1999, §2, pp. 12–)) that
ergodicity is sufficient to correctly compute empirical moment according to equation (1.21).

1.3. SIGNAL PROCESSING 5

Clearly, the stochastic process in example 1 is not ergodic unless ω1
� ω �1 is constant

and ω2 is uniformly distributed, so that

P � A � � 1
2π
λ � �
ω2 � � 	 0, 2π � : � ω �1 , ω

�
2

� T � A � � . (1.24)

In all other cases one can construct sets A � A1 � 	 0, 2π � , A1 � B � R � for which (1.22) does
not hold.

1.3 Signal processing

Now, having signals defined as stochastic processes, it is quite intuitive to refer to any
measurable function f : EI � E � �

R
R

�

1
�
...
� R

�

N
�

r ,

y � f � � xt
�
t � I; w � , (1.25)

as signal processing. The vector w denotes the parameters of f . Because f is measurable, the
resulting signal,

yI : � � yt
�
t � I

� � f � � xt
� � t

�
t

�
� I; w � �

t � I , (1.26)

is again a stochastic process on the same probability space � Ω,A ,P � that xI is associated
to. For real data signal processing applications, clearly one can consider only finite input
functions f : EJ �� E � , J � H � I � . In this case we will call the set J the receptive field of f .

In the following sections a possible classification of signal processing functions according
to their structure and their input set J will be presented. The organization of the subsequent
chapters in this thesis is inspired by this classification.

1.3.1 Instantaneous, stationary functions

Instantaneous, stationary functions have the general structure

f : E � 0 � �� E � . (1.27)

Thus the receptive field contains only one element, t � 0. This function is “instantaneous”
because any yt does only depend on xt and not on any other xt � t. The special case of a
linear, instantaneous, stationary function has the form

� yr
�
,t

� �
t

�
� I

� � f � xt
� ; w � �

t
�

� I
� � �

r � R

wr
�
,r xr,t

� �
t

�
� I

, (1.28)

in which case w � RR
� � R.

1.3.2 Simple filter functions

A simple filter function f has the form

f : RJ �� R . (1.29)

It is applied to every channel r � R individually,

� yr,t
� �

t
�

� I
� � f � � xr,t � t

� �
t � J; w � �

t
�

� I . (1.30)

It may also be useful to define simple filter functions for every channel individually, in
which case the channel index r is a parameter to f .

� yr,t
� �

t
�

� I
� � f � � xr,t � t

� �
t � J; w, r � �

t
�

� I . (1.31)

6 CHAPTER 1. SPATIO/TEMPORAL DATA

In many cases the receptive field J is defined as closed intervals around zero,

J � 	
� t1, t1 � � . . . � 	
� tNt , tNt � . (1.32)

The special case of a linear simple filter function has the form

� yr,t
� �

t
�

� I
� � �

t � J

wtxr,t � t
� �

t
�

� I

(1.33)

with w � � wt
�
t � J � RJ.

1.3.3 Multi-channel filters

Multi-channel filters represent the most general form of signal processing functions. They
have the form

f : EJ �� E � (1.34)

with
� yt

� �
t

�
� I

� � f � � xt � t
� �

t � J; w � �
t

�
� I . (1.35)

Also for multi-channel filters often a local receptive field according to equation (1.32) is
used. In a linear multi-channel filter holds w � RR

� � R � J and

� yr
�
,t

� �
t

�
� I

� � �
r � R

�
t � J

wr
�
,r,t � t

� xr,t � t
� �

t
�

� I

. (1.36)

It is often interesting to study cases in which a multi-channel filter can be split into an
instantaneous function f1 and simple filter functions f2, either in this way:

� zt
�
t � I

� � f1 � xt; w1
� �

t � I (1.37)
� yr

�
,t

� �
t

�
� I

� � f2 � � zr
�
,t � t

� �
t � J; w2, r � � �

t
�

� I , (1.38)

or in that way:

� zr,t
� �

t
�

� I
� � f2 � xr,t � t

� �
t � J; w2, r �

t
�

� I (1.39)
� yt

� �
t

�
� I

� � f1 � zt
� ; w1

� �
t

�
� I . (1.40)

Apparently, a linear multi-channel filter function, in case it can be split, can be split in both
ways.

1.4 Finite training data
In real applications one is provided with a finite amount of data which may be organized
in a large N-dimensional array of real numbers. We call this a dataset and write

X � RR1
�
...
� RN . (1.41)

Thus, the data set X reflects a finite region of one realization of the stochastic process for
one particular ω � Ω,

X � xÎ � ω � � EÎ , (1.42)

where N � Nt � Nr and

Î � 	 0,Ri1 � 1 � � . . . � 	 0,RiNt
� 1 � � ZNt , E �

R
RiNt � 1

�
...
� RiNr .

The temporal indices in Î may start with zero without loss of generality.

1.4. FINITE TRAINING DATA 7

1.4.1 Interpretation of data sets

The main question now is: How is the data in X organized or what organization would
be meaningful? The answer depends on the problem at hand and in many situations one
has some idea about the stochastic process that generated the dataset. However, in many
other situations nothing is known a priori, and it is not quite obvious how to separate the
dimensions into channels and temporal indices. However, there are a few ’rules of thumb’:

• Because in statistical signal processing one generally attempts to compute empirical
moments of the unknown stochastic process by the truncation of equation (1.21)
at sufficiently large n, one would like to treat dimensions with large Ri as temporal
dimensions, which assures a large sample basis for

〈

g � xJ
� �
〉

. In particular, the extension
of Î in all its dimensions has to be large compared to the receptive field J since the
number of admissible shifts is limited by the fact that the shifted receptive field J � τ
has to be contained in Î.

• One will usually consider dimensions for which the stationarity assumption cannot
be well justified as channel dimensions.

• Dimensions for which a continuation is not meaningful or that have no intrinsic order
of the elements (eg. the channels of an EEG measurement) are channel dimensions.

• Of course, there must be at least one temporal dimension. Otherwise the whole
datasetXwould represent one single data point of dimension

� N
i � 1 Ri and considering

statistics of a single data point is clearly not meaningful.

Consider the following examples

• N � 1, Time series. Obviously, in this case one has no other choice than to consider the
indices into X, which is a vector, as temporal indices. Whether this time series is the
trajectory of an stationary rsp. ergodic process must be decided by other means.

• N � 2, Multi-channel time series vs. image. A matrix of data can be interpreted in two
ways: a time series of vectors, or a two dimensional series of scalar values. However,
in most cases this is easy to decide. For an image it is often suitable to think of it as a
finite section of an infinitely spread out 2d process. On the other hand, for something
like a stereo signal it is rather clear that the dimension that subscribes the channels
is short (Ri

� 2), is not necessarily stationary, and has no meaningful extension (to
values Ri � 2), and, hence, is no temporal dimension.

• N � 3, Time series of a sensor matrix vs. multi-channel image vs. video vs. 3d-scan.
Things get more ambiguous with N � 3, as one can see from the number of possible
interpretations of an 3d data set; although, according to the above rules, for many
applications it should be quite clear what the data set represents. However, there
are cases that can be interpreted in various ways all of which have their meaning.
Consider a video with the number of frames being in the same order of magnitude as
the frame dimensions. It may be interpreted as a matrix of time series (Nr

� 2, Nt
� 1)

or a 2d vector field (Nr
� 1, Nt

� 2).

• N � 4, multi-channel video, 3d-sequence ... With increasing N the interpretation of the
data set may get even more ambiguous. However, there are two cases for N � 4
which may be of some particular importance. These are multi-channel 2d-sequences
(e.g. RGB color videos, stereo videos) for which at least one dimension is obviously
a channel dimension, and 3d-sequences (e.g. fMRI sequences) with 3 physical space
dimensions and one physical time dimension which can be interpreted in either way.

8 CHAPTER 1. SPATIO/TEMPORAL DATA

1.4.2 Considerations to stationarity and ergodicity
For one given dataset X alone there is no way to detect whether or not the underlying
process is ergodic. Ergodicity, however, must be assumed in order to compute empirical
moments according to equation (1.21). Thus, in many applications one has to content
oneself with the statement that it is ’reasonable to assume ergodicity’.

If, however, a number Rk � 1 of datasets � Xk
�
k � 0...Rk � 1 is given, then, of course, one

can consider them as multiple realizations of the same stochastic process, and check for
ergodicity by just comparing the resulting empirical moments, (1.21). But anyway, even if
one finds ergodicity, any averaging should not be done solely on shifts over the temporal
dimension but also over the Rk datasets. Hence, non-ergodicity can be overcome by multiple
realizations of the stochastic process. In particular, in such a situation it would seem to be
appropriate to perform cross-validation on the set of trajectories.

On a single dataset it is sometimes meaningful and advantageous to take one of the
channel dimensions as different trajectories of the process. This should be done if one has
reason to believe that the individual channels along this dimension are iid., i.e.

PÎ
� Rk � 1�

k � 0

PÎk
, PÎk1

� PÎk2
for all k1, k2 � 	 0,Rk � 1 � , (1.43)

where Îk is the k-th slice of Î along this dimension. An example could be given by medical
time series (e.g. EEG) of common length recorded from Rk subjects in individual indepen-
dent experiments.

There are cases in which the stationarity assumption is not well founded but one has
reason to believe that the measures PJ change slowly when shifted over I. In such situations
one can split Î into Rk smaller pieces in which the stationarity assumption is better justified.
Correspondingly, X is divided into Rk realizations of one stochastic process for which now
stationarity (but not ergodicity!) can be assumed.

Chapter 2

Instantaneous linear functions

2.1 Instantaneous linear mixtures

For stochastic signals as we have them defined in chapter 1, the most basic form of signal
processing is by means of stationary, instantaneous, linear functions. Consider a family of
vector valued random variables � st

�
t � I , where

s � E : �
R

N (2.1)

and
t � I : �

Z
Nt . (2.2)

We refer to � st
�
t � I as real valued, stochastic multi-channel signal together with the associated

canonical stochastic process
� EI,B � EI � ,PI, � st

�
t � I

� . (2.3)

In the following � st
�
t � I , or shortly s , denotes the whole stochastic process, while st denotes

one particular random vector at index t rsp. the value of its realization. The i-th channel
of st is itself a stochastic process � si,t

�
t � I . Signal processing with stationary, instantaneous,

linear functions leads to linear combinations of si,t rsp. � si,t
�
t � I . Be � xt

�
t � I the result of these

linear combinations: another stochastic multi-channel signal with

� E � I,B � E � I � ,P �I, � xt
�
t � I

� (2.4)

and E � � RN
�

. We call � xt
�
t � I an instantaneous, linear mixture of � st

�
t � I with the mixing matrix

A � RN
� � N if for all finite marginal events

XJ
� �

t � J

Xt , Xt � B � E � � (2.5)

holds
P �J � XJ

� � PJ � �
sJ � EJ : Ast � Xt , t � J ��� , (2.6)

where sJ : � � st
�
t � J and PI and P �I are the projective limes of � PJ

�
J � H

�
I � and � P �J �

J � H
�
I � ,

respectively. We call � si,t
�
t � I the sources of the mixture.

Signal processing with instantaneous, linear functions always can be interpreted as a
linear mixture of the channels of a stochastic multi-channel signal. In this framework
unsupervised learning methods aim on finding optimal instantaneous, linear functions
such that either the resulting mixtures exhibit certain ‘interesting’ statistical properties or
such that a previous instantaneous linear function is reverted. These two concepts are
often called projection pursuit and source separation. Both are equivalent if that what is an
‘interesting property’ is something that is inherent only to the stochastic source signals s.
In the following, the focus will on source separation.

9

10 CHAPTER 2. INSTANTANEOUS LINEAR FUNCTIONS

2.2 Blind source separation
From now on we assume that marginal densities pJ � sJ

� � 0 exist such that�
SJ

p � sJ
� dsJ

� PJ � SJ
� (2.7)

for all SJ � B � EJ � and J � H � I � . The stochastic process (2.4) is connected to the stochastic
process (2.3) by the relation

xt
� Ast (2.8)

for all t � I. In the following we will consider square N � N matrices A with full rank. Then
for the marginal densities of x holds

p � xt
� � �

det A
� � 1p � st

� and p � xJ
� � �

det A
� ��� J � p � sJ

� . (2.9)

In the most general form we can characterize blind source separation as the task of re-
covering the original source signal s only from the observed mixtures x without knowledge
about A. Clearly, if A was known, the sources could be easily separated by inverting it,
yielding source estimates

st
� yt

� A � 1xt . (2.10)

However, even if the mixing matrix is completely unknown (except the assumptions about
its size and rank), statistical properties of the sources can be used to estimate them together
with the mixing matrix “blindly” from the observations alone. Practically an estimate W
for the inverse mixing matrix is searched that allows to compute source estimates

ŝt
� Wxt .

This procedure is called blind source separation (BSS).

2.2.1 Permutation ambiguity
Depending on the available knowledge about the sources and the type of BSS algorithm,
the demands on the solution can or must be somewhat relaxed from the true one, W � A � 1:

WA � I � WA � DN � WA � QN , (2.11)

where QN is the set of all non-singular N � N permutation matrices, and DN � QN is the
set of all non-singular diagonal matrices. Often the order and the scaling of the sources are
immaterial, and one is content with the permutation ambiguity of a solution WA � QN . In
the following all considerations are made in this respect.

We define the relation “ � ” of two non-singular N � N matrices A and B to be equal up
to permutations as

A � B � A � 1B � QN . (2.12)

Obviously this relation is (i) reflexive, (ii) symmetric, and (iii) transitive and, hence, is an
equivalence relation. (i) follows from the fact that the unit matrix is a permutation matrix,
(ii) follows from the fact that the inverse of a permutation matrix is a permutation matrix,
and (iii) follows from the fact that the product of two permutation matrices is a permutation
matrix. Thus, any solution W � A � 1 of the blind source separation problem spans a whole
class of equivalent solutions, which we may call W . The neighborhood of W in W is given
by all possible scalings of rows of W. Thus W is locally linear. Be TW the the tangent space
of W at W. Because W is locally linear, it locally coincides with its tangent space, which is
a N dimensional subspace of RN2 . See figure 2.1 for an illustration of W and TW . A basis
to TW is given by N matrices � Bn

�
n � 1...N with Bn,i j

� δi,nWi j ,

TW
�
�

N�
n � 1

dnBn , dn � R � . (2.13)

2.2. BLIND SOURCE SEPARATION 11

The core of any BSS algorithm is a suitable objective function L � W; � xt
�
t � I

� . Under the
assumption of stationarity and ergodicity, the dependence of L from � xt

�
t � I is usually in

terms of empirical moments and higher order statistics of Wxt , which are computed from
the finite set of observations (Cardoso, 1998; Hyvarinen et al., 2001).

The objective function be such that under certain assumptions about the sources,
I � � st

�
t � I

� , the gradient of the objective function w.r.t. W falls into the tangent space if,
and only if, W is a solution of the BSS problem,

I � � st
�
t � I

� � � ∇WL � TW � W � A � 1 � . (2.14)

W

TW

W

ΛW

QW

Figure 2.1: Illustration of the space W � �
W : WA � QN � . Equivalent solutions are

any multiplications from the left of W with a non-singular permutation matrix Q. If a
permutation matrix Λ happens to be diagonal, then ΛW does not leave the local tangent
space TW . The intersections of the individual tangent spaces (dashed lines) are not in W

because W is singular there.

2.2.2 Natural gradient
If W is a solution for observations xt

� Ast , then, of corse, WA would be a solution for
observations st , and vice versa. The value of the objective function depends on W through
the recovered sources ŝt

� Wxt
� WAst . Thus, one would expect that with ∇WL � TW also

∇WAL � TWA holds true. However, this is in general not the case, because the gradient ∇WL,
taken for a vector, is a contravariant quantity while the tangent space is covariant. Under a
transformation of the coordinate system from W to WA it holds

∇WAL � ∇WLA � T , (2.15)

whereas

TWA
� TWA �

�
N�

n � 1

dnBnA , dn � R � .
Thus, the relation

∇WA � TWA � � ∇WL � A � TA � 1 � � ∇WL � WTW � TW

12 CHAPTER 2. INSTANTANEOUS LINEAR FUNCTIONS

gives rise to define �

∇WL : � � ∇WL � WTW (2.16)

as a contravariant vector so that (2.14) becomes consistent with transformations of the
coordinate system.

�

∇WL is called the natural gradient. It was introduced by Amari (1998) as
gradient in Riemannian parameter spaces. From a geometrical perspective WTW defines a
contravariant metric tensor that transforms the covariant vector ∇WL into the contravariant
form

�

∇WL. For problems regarding statistical models, e.g. for L being a likelihood function,
the natural gradient was shown to yield Fisher efficient estimators. A very similar concept
was independently introduced by Cardoso (1998) with the notion of the relative gradient.
The relative gradient reflects the variations of an objective function with respect to changes
of the outputs. It is given by equation (2.15) for objective functions that depend on W only
through WA. For algorithms that optimize the relative gradient it was shown that they
exhibit uniform performance, i.e. the ’hardness’ of a problem, and hence the performance
of the algorithms, does not depend on the mixing matrix A anymore. Moreover, as we
will see below, it is often difficult or impossible to construct BSS algorithms, i.e. to define
I � � st

�
t � I

� and L such that (2.14) holds independently from A when the direct gradient is
used rather than the natural gradient.

2.2.3 BSS algorithms
The relation (2.14) represents the most general form to define a BSS algorithm by means of
an objective function L together with necessary assumptions I so that the right equivalence
holds. One can categorize existing BSS algorithms by the type of their objective function.
There are those that make use of higher order, instantaneous statistics

L � W; x � � f � 〈l � W; xt
〉 �
,

for example likelihood functions or higher order cumulants of Wxt . These algorithms
usually work under the general assumption of instantaneous independence1,

I � s � � ” p � st
� � N�

i � 1

pi � si,t
� ” , (2.17)

giving rise to the notion Independent Component Analysis (ICA). However, for a given ob-
jective function it is usually difficult, if not impossible, to define the least restrictive I for
(2.14) to hold true. For example, in many ICA algorithms at most one source is allowed to
be normally distributed, hence (2.17) would not be restrictive enough. On the other hand,
(2.17) is too restrictive because any ICA algorithm can lead to recovered sources that are
not independent.

In the following sections the focus will be on second order BSS algorithms, i.e. those that
exclusively make use of second order statistics in the definition of the objective function.
Interestingly, it will turn out that, at the same time, I � s � may involve higher order statistics.

2.3 Approximate matrix diagonalization for second-order BSS
methods

Approximate matrix diagonalization – also called jojnt diagonalization – is the problem of
simultaneously diagonalizing a given set of square matrices of common size with a single
bilinear transformation. Joint diagonalization problems often occur naturally if second or-
der quantities like correlation matrices or second derivatives are a measure for optimality
because they transform bilinearly under a linear transformation of the coordinate system.
For a given set of matricesC � RN � N a linear transformation W is found such that the matri-
ces in the set C̃ ��� WCWT : C � C � are as diagonal as possible. Exact joint diagonalizations

1where the necessary densities may exist and s be stationary.

2.3. APPROXIMATE MATRIX DIAGONALIZATION 13

are in general possible only if C contains not more than two matrices. In this case the
solution is achieved by an eigenvalue problem (Jolliffe, 1986) rsp. a generalized eigenvalue
problem (Molgedey and Schuster, 1994; Pham and Garat, 1997). If C contains more than
two matrices, however, then in general a method for approximate joint diagonalization is
necessary.

One of the most prominent applications of joint diagonalization is in BSS problems.
There are many approaches to construct a suitable set C from the observed signals that
allows to achieve source separation by means of joint diagonalization. C can contain
delayed correlation matrices (Belouchrani et al., 1997), certain optimal linear combinations
of them (Vollgraf et al., 2000; Ziehe et al., 2000), correlation matrices of different epochs of
non-stationary signals (Matsuoka et al., 1995; Choi and Cichocki, 2000), or combinations of
them. Source separation can also be achieved through the diagonalization of higher order
cumulant tensors (Cardoso and Souloumiac, 1993; Cardoso, 1998). It was shown that the
diagonalization of the full 4th order cumulant tensor can be achieved efficiently with the
diagonalization of the set of cumulant matrices, which are 2d parallel slices through the
4th order tensor (cf. also Wax and Sheinvald (1997)), thus leading to a joint diagonalization
problem.

2.3.1 Second order moments

The basic ingredient to all joint diagonalization BSS algorithms are matrices of second order
moments. A second order moment of two channels i and j of a multi-channel signal s is
given in the most general form as

Ci j � s � � 〈 f1 � si,J1
� f2 � s j,J2

� 〉 �
〈

f3 � si,J3
� 〉 〈 f4 � s j,J4

� 〉 , (2.18)

where f1 . . . f4 are linear functions fi : R � Ji � �� R.
〈

�
〉

denotes the expectation over
p � sJ1 � J2 � J3 � J4

� . If s is stationary, then so is Ci j � s � , i.e. it does not change when all Ji are
shifted to Ji � t for any t � I. If s is moreover ergodic, then Ci j � s � can be estimated by means
of those shifts. It is often convenient to consider for a given configuration

�
f1, J1, . . . , f4, J4 �

the moments between all pairs of channels summarized in the matrix C � s � .
A nice property of matrices of second order moments is that they transform bilinearly

when the signal is linearly transformed according to (2.8),

C � x � � AC � s � AT , (2.19)

and
C � ŝ � � WC � x � WT . (2.20)

Given that
f1 � f3, J1

� J3, f2 � f4, J2
� J4 ,

equation (2.18) is the second order cross cumulant of f1 � si,J1
� and f2 � s j,J2

� and is always zero
for i � j if the source channels are statistically independent.

The basic principle of all second order blind source separation algorithms is to assume
in I � s � that all second order matrices Ck � s � , for k � 1 . . .K different configurations, are
diagonal. We will see below that this assumption can be somewhat relaxed, depending on
the objective function. Together with an appropriate objective function L, namely one for
which ∇WL � TW is equivalent to all WCk � x � WT being diagonal, the blind source separation
algorithm is almost complete. Almost, because it still must be shown that the K chosen
configurations are ‘sufficiently non-trivial’ to hold the relation (2.14).

Following this principle, a number of second order blind source separation algorithms
have been proposed, which can be classified by the used configurations of the second order
moments.

14 CHAPTER 2. INSTANTANEOUS LINEAR FUNCTIONS

Principal Component Analysis (PCA)

In principal component analysis there is only one configuration,

f1 � f2 � f3 � f4 � 1 , J1
� J2

� J3
� J4

� �
t � , (2.21)

and, hence, one matrix C � x � to be diagonalized. In conjunction with

I � s � � ”
〈

stsT
t

〉

�
〈

st
〉 〈

st
〉T � cI, c � R � ”

an objective function

L � W; x � � tr
� � W � 〈xtxT

t

〉

�
〈

xt
〉 〈

xt
〉T �

WT
� 2 �

constitutes a quasi-BSS algorithm in the respect that

I � s � � � �

∇LW � TW � WA � ΛU
�
,

where Λ is a positive diagonal matrix, and U is an orthonormal matrix. Thus, the sources
can be recovered only up to arbitrary rotations. Therefore, PCA is actually no proper source
separation algorithm. In order to avoid the rotation ambiguity at least two configurations
of second order matrices are necessary.

The above formulation of PCA was intended to show how PCA fits into the second
order BSS framework. In practice one usually doesn’t solve PCA via an objective function.
The solution can be more easily achieved form an eigen-decomposition of C � x � , where the
row vectors of W are the resulting eigenvectors.

Temporal decorrelation

To avoid the permutation ambiguity, two or more configurations of the second order matri-
ces (2.18) are required. For sources that have pairwise uncorrelated channels, but that have
temporal correlations in the individual channels, several matrices Ck � s � , k � 1 . . .K, can be
defined as

f1 � f2 � f3 � f4 � 1, J1
� J3

� �
t � , J2

� J4
� �

t � δtk � ,
where δtk are appropriately chosen temporal shifts. Molgedey and Schuster (1994) proposed
to simultaneously diagonalize two matrices by the solution of the generalized eigenvalue
problem imposed by C1 � x � and C2 � x � . The choice of the shift δtk is crucial in many cases, in
particular in situations where the assumption of zero cross-correlations holds only approx-
imately. However, there is no general strategy how to chose it unless specific knowledge
about the source auto-correlations is known. It has been reported several times that the ro-
bustness and accuracy of temporal decorrelation based BSS algorithms can be considerably
improved when more than two matrices are to be diagonalized approximately (Ziehe and
Müller, 1998; Schöner et al., 2000).

If knowledge about the source auto-correlations is known, the temporal decorrelation
approach allows to influence the behavior of the BSS algorithm w.r.t. the source signals. If
the shifts δt are set exclusively at positions where the auto-correlation function of one source
vanishes, this source is virtually ignored in the algorithm. This is of particular interest for
white noise corrupted observations. The noise can be considered as additional sources
which, however, have no auto-correlations for δt � 0. The proper choice of shifts can also
help to focus a second order BSS algorithm that separates a single source (cf. section 2.5) to
the desired one.

Convolutive blind source separation

If one interprets a shifted signal as the special case of the convolution with a delta function,
then the idea arises to consider the correlations of arbitrarily convolved signals for second

2.3. APPROXIMATE MATRIX DIAGONALIZATION 15

order BSS (Vollgraf et al., 2000). In the framework of equation (2.18) the second order
moments of convolved source channels are avchieved with configurations

f1 � f3 � f̄ k, f2 � f4 � ḡk, J1
� J2

� J3
� J2

� Jk .

Without loss of generality the convolution kernels f̄ k, ḡk � R � Jk � may have the same receptive
field Jk . With f̄ k

� ḡk symmetric matrices Ck � x � can be guaranteed, which is important for
some diagonalization algorithms. Similar to the choice of shifts in the temporal decorre-
lation approach, in the convolutive decorrelation approach the choice of the convolution
kernels is crucial for the accuracy of the BSS algorithm. However, if knowledge about the
source auto-correlations is known, the algorithm can be influenced to a higher degree by
the modification of general convolution kernels than by the modification of simple shifts.

Non-stationarities

Besides temporal correlations second order BSS algorithms can also make use of non-
stationarities (Matsuoka et al., 1995; Choi and Cichocki, 2000). Under this assumption
correlation matrices

Ck � s � : � 〈stk s
T
tk

〉

�
〈

stk

〉 〈

stk

〉T

can be defined, for example. These would reflect the non-stationarities of the variance of s
at different time tk . Clearly, because of the non-stationarity also ergodicity is not provided.
Hence, any empirical expectations must be computed over multiple realizations of the
same stochastic process. Alternatively, if not sufficiently many independent realizations
are available, it can be sometimes justified to assume the non-stationary variations to be
slow and to compute empirical expectations over k disjunctive and sufficiently small subsets
of I.

2.3.2 Approximate matrix diagonalization
The assumption that sources are uncorrelated and, hence, are independent may be inap-
propriate in some problems. Often it is rather the case that they are weakly correlated,
but over a wide range of temporal lags τ, for example. Thus, it may be impossible to find
any two matrices of second order moments that are truly diagonal in the sources and that
allow to estimate W from the generalized eigenvalue problem. This gave rise to the idea to
take a large number of matrices � Ck

�
k � 1...K , which transform according to equations (2.19)

and (2.20), and which are approximately diagonal in the sources and ‘less diagonal’ in the
mixtures in terms of a suitable diagonalization measure. The hope is that this measure
constitutes a valid objective function.

In the following two possible measures for approximate diagonality will be presented,
and the necessary source assumptions I � s � will be derived under which these measures
constitute a objective function according to (2.14). The later of both measures was imple-
mented in the powerful QDIAG algorithm (Vollgraf and Obermayer, 2006b), which will be
described in length in section 2.4 .

Diagonality measure involving the determinant

This is a measure for approximate diagonality that is applicable for positive definite matrices
� Ck

�
k � 1...K . According to Hadamard’s inequality, for any positive semi-definite N � N matrix

A holds

det A �
N�

i � 1

Aii . (2.22)

If at the same time A is positive definite, then equality is attained if, and only if, A is
diagonal. This gives rise to establish a measure

L � x; W � � 〈det � WC � x � WT � � π � WC � x � WT � 〉
C
, (2.23)

16 CHAPTER 2. INSTANTANEOUS LINEAR FUNCTIONS

where π ��� � is the product of the diagonal elements of it’s argument, and
〈

�
〉

C
denotes the

average of the terms inside the bracket over all � Ck
�
k � 1...K .

It remains to show under what conditions I � s � equation (2.23) is a valid source objective
function according to the relation (2.14). It will turn out that with the gradient∇WL equation
(2.23) is no source objective function unless I � s � states that all matrices C � s �

k are diagonal.
To use equation (2.23) as a source objective function even for approximate diagonal matrices
Ck � s � , the natural gradient (Amari, 1996; S.Amari and H.Nagaoka, 2001),

∇̃WL � � ∇WL � WTW , (2.24)

has to be taken instead. We need to show that

∇̃WL � TW � W � A � 1 , (2.25)

and all assumptions about Ck � s � that are therefore necessary constitute I � s � . We decompose
(2.23) into

L1 : � det � WC � x � WT � � det � Q � 2 det � C � s � � , (2.26)
L2 : � π � WC � x � WT � � π � QC � s � QT � (2.27)

so that L � 〈L1 � L2

〉

C
, where and Q � WA. Consider now the natural gradient

〈 �

∇WL1

〉

C
� 2 det � Q � 2

〈

det � C � s � � 〉
C

W. (2.28)

This is W multiplied with a scalar and, hence, always element of TW regardless of C � s � .
Under the assumption that Q � WA � QN we derive the natural gradient

〈 �

∇WL2

〉

C
� 〈

2 L2 dg � WC � x � WT � � 1WC � x � WT
〉

C
W (2.29)

� 2π � QQT � � QQT � � 1Q
〈

π � C � s � � dg � C � s � � � 1 C � s � 〉
C

QT W .

This is W multiplied from the left with a diagonal matrix and, hence, element of TW

whenever
〈

π � C � s � � dg � C � s � � � 1 C � s � 〉
C

is a diagonal matrix. In the above equation we further
made use of the fact that the matrices C � s �

k are positive definite and symmetric. Thus, the
assumptions that have to be made for I � s � are

I � s � � “
〈

π � C � s � � dg � C � s � � � 1 C � s � 〉
C

� diag. and Ck � s � � pos. def. � . (2.30)

If the sources fulfill I � s � , then it holds

W � A � 1 �
�

∇WL � 〈 � L1
� W

�
� L2

� W

〉

C
WTW � ΛW , (2.31)

where Λ is a diagonal matrix. For any solution of the blind source separation problem the
natural gradient necessarily falls into the tangent space TW . Unfortunately, sufficiency, i.e.
the reversal of the implication (2.31), could not be shown by the above derivation. So, there
still may exist spurious attractors or other stationary points of L for which the left hand
side of (2.25) holds, but not the right. Showing sufficiency appears to be a difficult task. It
would require to prove

〈

π � QC � s � Q � dg � QC � s � QT � � 1 QC � s � Q
〉

C
is diagonal � Q � QN ,

which possibly needs further restrictions to I � s � to be made. On the other hand one should
mention that for most machine learning methods the existence of spurious local minimum
rsp. maximum solutions cannot be excluded.

2.4. THE QDIAG ALGORITHM 17

Least squares measure

The measure is given by the average squared sum of all off-diagonal elements of the
diagonalized matrices,

L � W; x � �
〈 �

i

�
j � i
� �

k

�
l

WikW jlCkl � x � � 2 〉

C

. (2.32)

A more compact expression is achieved in matrix notation:

L � W; x � � 〈tr � �dg � WCTWT � WCTWT �
〉

C
. (2.33)

As well as the diagonality measure (2.23) also the least squares measure is an objective
function in conjunction with the natural gradient (2.24). It remains to show what conditions
I � s � must be fulfilled so that at a solution of the blind source separation problem the natural
gradient falls into TW . Under the assumption that Q � WA � QN is a permutation matrix
and the fact that

Q � QN �
�
dg � QCQT � � Q

�
dg � C � QT ,

the natural gradient is given by
�

∇WL � 4
〈

� �dg � WC � x � WT � � WCT � x � � � �dg � WCT � x � WT � � WC � x � 〉
C

WTW

� 4
〈 � �dg � QC � s � QT � � QCT � s � QT � � �dg � QCT � s � QT � � QC � s � QT

〉

C
W

� 4Q
〈 �
dg � C � s � � QTQ CT � s � � �

dg � CT � s � � QTQ C � s � 〉
C

QT W . (2.34)

The terms left of W must yield a diagonal matrix for any Q � QN. However, the innermost
term QTQ cannot be eliminated and remains in

〈 �
dg � C � s � � QTQ CT � s � � �

dg � CT � s � � QTQ C � s � 〉
C

� diag. (2.35)

This depends on Q and, hence, is no general assumption about the sources regardless of
A. If, however, a matrix diagonalization algorithm restricts the set of admissible solutions
to those that yield constant QTQ, then the source assumptions can be established indepen-
dently from the actual mixture and separation. For example, QTQ � I can be guaranteed
when there is a matrix C0 � s � with diagonal elements equal to one, and W is constrained to
yield WC0 � x � WT � QC0 � s � QT with unit diagonal elements as well. This is exactly what
the QDIAG algorithms described in the next section does. There, the matrix C0 � s � , which
usually represents the variance of the sources, is used to define the column norm of Q.

Thus, we could show that

I � s � � “
〈 �
dg � C � s � � CT � s � � �

dg � CT � s � � C � s � 〉
C

� diag. � (2.36)

is a sufficient condition for an appropriate matrix diagonalization algorithm to have a
stationary point at the true solution (the right-to-left implication of (2.25)). This is obviously
a weaker condition than the special case that all C � s � are diagonal, which is included because
the empty matrix is a diagonal matrix. However, like for the determinant measure (2.23)
also for the least squares measure the left-to-right part of (2.25) could not be shown, so
spurious solutions cannot be excluded to this end.

2.4 The QDIAG algorithm
In the following a new algorithm for approximate matrix diagonaliztion, which is called
QDIAG, is presented. It splits the overall optimization problem into a sequence of simpler
second order sub-problems. There are no restrictions imposed on the transformation matrix,
which may be non-orthogonal, indefinite, or even rectangular, and there are no restrictions,

18 CHAPTER 2. INSTANTANEOUS LINEAR FUNCTIONS

except for one, imposed on the matrices to be diagonalized, regarding their symmetry or
definiteness. In section 2.4.4 the new method will be applied to second order BSS. It will be
shown that the algorithm convergences fast and reliably. It allows for an implementation
with a complexity independent of the number of matrices and, therefore, is particularly
suitable for problems dealing with large sets of matrices.

2.4.1 Introduction
There have been proposed many joint diagonalization algorithms in the past (Cardoso
et al., 1996; Vollgraf et al., 2000; Ziehe et al., 2000; Pham, 2001; van der Veen, 2001; Joho
and Rahbar, 2002; Yeredor, 2002; Ziehe et al., 2004: 2003). They differ in how the actual
optimization problem is solved and what restrictions to W and the matrices in C this
implies. For some algorithms, in particular those that use Jacobi angles for optimization, W
is restricted to be orthogonal or unitary (Cardoso et al., 1996; Belouchrani et al., 1997). In BSS
applications, however, the assumption of orthogonal mixing and de-mixing matrices can
often be inappropriate. Clearly, a general joint diagonalization problem can be reduced to an
orthogonal problem by sphering w.r.t. some matrix C0 . As a result, however, this matrix is
always perfectly diagonalized, which may be a too strong assumption and inappropriate for
approximate diagonalizations. In such situations methods that work with non-orthogonal
matrices should be preferred.

Joint diagonalization algorithms can be also categorized by whether they require defi-
niteness of the matrices in C. Positive definite matrices, for example, allow for interesting
information theoretic measures of diagonality (Pham, 2001). In some applications (e.g.
Matsuoka et al. (1995); Pham (2001)) definiteness is given by construction of C. However,
in other cases (e.g. in de-correlation based BSS) positive definiteness cannot be assumed
in general (Belouchrani et al., 1997; Vollgraf et al., 2000). Thus, algorithms that are able to
diagonalize indefinite matrices are desirable.

For joint diagonalization algorithms that are based on a least squares measure of diag-
onality, equation (2.33), it is necessary to restrict the set of admissible solutions in order to
avoid the trivial or singular solutions. The way these constraints are implemented is crucial
for the outcome of the joint diagonalization, in particular when only an approximate diag-
onalization is achievable. As mentioned above, constraining W to unitary matrices may be
too tight, and bias is introduced by sphering. A less specific constraint is achieved when
W is kept invertible (Ziehe et al., 2003: 2004). However, the resulting matrices can become
almost singular, which can lead to ‘unbalanced’ results, where certain rows and columns
of the diagonalized matrices are implicitly weighted much less than others. In section 2.4.4
an example of the problems that can arise with unbalanced solutions will be shown and
discussed. A more ‘goal oriented’ constraint is achieved when the the rows W are fixed
to unit quadratic norm wrt. some positive definite matrix C0 � x � . In a BSS application,
for example, one would chose C0 � x � to be the covariance matrix of the observations, thus
leading to source estimates with unit variance and a well balanced diagonalization. Note
that, in contrast to sphering, C0 � x � is not necessarily diagonalized perfectly and may even
be excluded from C.

An interesting property of a joint diagonalization algorithm is whether or not it is
invariant under invertible, affine transformations of the coordinate system. For many
applications it is desirable that, with some contra-variant, bilinear transformation of all
Ck � x � , the rows of a BSS solution Wopt undergo the same but covariant transformation
(McCullagh, 1987). This holds for algorithms according to (2.33) as long as W stays in Wadm,

Wadm
� � W : � WC0 � x � WT � ii

� 1 � , (2.37)

after the transformation, which is clearly the case for the constraint (2.37). One can easily
verify that affine invariance is not provided for algorithms like those of van der Veen (2001)
and Yeredor (2002), which solve the inverse problem

Aopt
� arg min

A, � Λ � k � �

�
k

�
�
� Ck � x � � ATΛ

�
k � A

�
�
�
2

F
(2.38)

2.4. THE QDIAG ALGORITHM 19

w.r.t. to the matrix A and a set of diagonal matrices Λ
�
k � , and then set Wopt

� A � 1
opt .

In the following we will develop the Quadratic Diagonalization (QDIAG) algorithm, which
efficiently solves the joint diagonalization problem given by equations (2.33) and (2.37).
Except for C0 , which is used to establish the constraint (2.37), QDIAG does not make
any assumptions on the definiteness or symmetry of the matrices in C. Besides (2.37), no
further restrictions are imposed on W. In fact, W � RM � N does not even have to be square,
in which case undercomplete diagonalizations, � M � N � , are certainly of more practical
interest. They can offer a performance gain if the algorithm is able to optimize few rows of
W instead of searching the whole matrix and then discarding N � M rows.

A performance comparison between QDIAG and two other methods, ACDC (Yeredor,
2002) and FFDIAG (Ziehe et al., 2003: 2004), will be given because, in terms of the above
mentioned criteria, these are the two methods most closely related to QDIAG. Both algo-
rithms do not restrict the definiteness of the matrices in C and allow for non-orthogonal
diagonalization matrices. They differ from QDIAG, however, in that ACDC is not invariant
under affine transformations and FFDIAG requires square matrices W.

2.4.2 Derivation of the QDIAG algorithm

In order to find a matrix W � RN � N that diagonalizes the set of the matrices C � �
Ck � in a

least squares sense we consider a cost function given by the squared sum of all off-diagonal
elements of WCkWT,

L � W � � �
k

αk
�

i

�
j � i

� WCkWT � 2
i j

� �
k

αk
�

i

�
j � i

� wT
i Ckw j � 2

. (2.39)

wi is a vector containing the elements of the i-th row of W, and � k αk
� 1 are factors that

weight the importance of the individual matrices Ck . Here and whenever there are no
ambiguities, in the following Ck stands for Ck � x � , for convenience. Also explicit indication
of the range of the summation indices will be omitted. They are always determined by the
indexed variables (i.e. i, j � 1 . . .N, k � 0 . . .K).

In order to prevent W from converging to the trivial solution W � 0, we use constraint
(2.37) for some positive definite matrix C0 . In a BSS framework, for example, C0 could be
the covariance matrix of the observations, thus leading to source estimates of unit variance.
We then obtain the optimization problem with objective function (2.39):

minimize L � W � subject to wT
i C0wi

� 1 (2.40)

for all i � 1, . . .N. The matrix W occurs to the 4th power in the cost function, which
makes minimization a rather complex task. However, equation (2.39) is not a full 4th order
problem because every row vector of W appears only quadraticly in L � W � , and the 4th
order terms are always mixed terms between two different row vectors. Therefore, L � W �
can be minimized for one wi at a time, which reduces the 4th order problem to a series of
quadratic subproblems. Equation (2.39) can be written in the form

L � W � � �
i

�
j � i

Di j , (2.41)

where

Di j : � �
k

αk � wT
i Ckw j � 2

. (2.42)

The elements of D that are influenced by wi are those in the i-th row and in the i-th column.

20 CHAPTER 2. INSTANTANEOUS LINEAR FUNCTIONS

They can be summarized by the quadratic function

l � wi
� � �

j � i
� Di j � D ji � (2.43)

� �
k

αk
�
j � i
� wT

i Ckw jwT
j CT

k wi � wT
i CT

k w jwT
j Ckwi

�

� wT
i

�� �
k

αk

��
Ck

�� �
j � i

w jwT
j

��
CT

k � CT
k

�� �
j � i

w jwT
j

��
Ck

�����
wi

�
de f . wT

i Mwi .

Note that till now we made no assumption about the symmetry of Ck , so that generally Di j
�

D ji , and both terms have to be considered. We can now minimize L � W � by sequentially
solving the quadratic constrained minimization problems

minimize l � wi
� subject to wT

i C0wi
� 1 (2.44)

for one wi after another. For every iteration step the cost function

L � W � � l � wi
� � �

j � i

�
l � i

D jl (2.45)

is decreased by the amount for which l � wi
� is reduced. Thus, the sequence of minimization

steps eventually converges to a value Lmin which is a local minimum of (2.40) w.r.t. all wi
individually. Note that w.r.t. W � � w1, . . . ,wN

� T Lmin is not necessarily a local minimum,
but could be a saddle point instead. The experiments, however, did not give empirical
evidence for a convergence to saddle points2, hence this case is probably rare.

For every iteration, we now have to solve a quadratic optimization problem of the
form wTMw under the quadratic constraint wTC0w � 1. M is positive semi-definite by
construction (see equation (2.43)), and C0 is positive definite by definition. The situation is
illustrated in figure 2.2.A for a two dimensional example. For positive definite M the cost
function is strictly convex (cf. the elliptic iso-lines). For positive definite C constraints are
fulfilled for all points on a single ellipse (bold line). The optimization problem (2.44) can be
transformed into an equivalent problem through a coordinate transformation w � � P � 1w
such that

PTC0P � I , (2.46)
where P can, for example, be calculated by a Principle Component Analysis of C0 . The cost
function then becomes

l � wTMw � w � T � PTMP � w � , (2.47)
and the constraint holds for all points on the hypersphere w � Tw � � 1, as shown in figure
2.2.B . The vector w � with unit norm that minimizes l is given by the eigenvector of PTMP
corresponding to the smallest eigenvalue (bold arrow). It is unique as long as the smallest
eigenvalue is unique. The back transformation w � Pw � yields the solution of the primary
optimization problem.

It is rather inefficient to perform a coordinate transformation for every iteration. Instead,
the whole problem can be transformed once at the beginning,

C0 ��� PTC0P � I , (2.48)
Ck ��� PTCkP , (2.49)

and minimization is performed under the constraint

wT
i wi

� 1 � i � 1 . . .N . (2.50)

After convergence the desired solution is obtained via

W ��� WPT . (2.51)

2W is a saddle point solution if there is a unitary matrix U so that for the transformed joint diagonalization
problem (W 	�
 WUT , C 	k
 UTCkU) l � w 	i
 can be further decreased for some w 	i .

2.4. THE QDIAG ALGORITHM 21

A B

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2.2: Illustration of the quadratic optimization problem (2.44) with quadratic con-
straints. Iso-cost contours are indicated by the thin lines. The ‘thick’ ellipse indicates the
line on which the constraint is fulfilled. The figure shows the situation before (A) and after
(B) sphering on the matrix C0 . After sphering the constraint is fulfilled for all points lying
on a unit hypersphere. Arrows show the eigenvectors of the quadratic cost function after
sphering (B) and their back projection (A). The solution to the constrained optimization
problem is given by the point on the constraint line in direction of the eigenvector with the
smallest eigenvalue (bold arrow).

2.4.3 Computational complexity of QDIAG

In an efficient implementation, the smallest eigenvector of a N � N matrix can be calculated
with a complexity of O � N2 � . In every iteration of QDIAG, this has to be repeated for N row
vectors of W, thus leading to O � N3 � . However, the computation of the matrix M involves K
iterations (cf. (2.43) and (2.47)), each of which has a complexity of at least O � N2 � . Although
the complexity of the eigenvector computation has a higher impact than the computation
of M, in the limit of large numbers of matrices in C, the complexity of QDIAG is O � KN3 � .
Algorithm 1 shows pseudocode of an O � KN3 � implementation of QDIAG. If the matrices
in C are explicitly symmetrized or symmetric by construction, the steps which involve
computations with m2 and M2 are obsolete and the computational load approximately
reduces by a factor of 2.

QDIAG also allows an implementation with a complexity of O � N5 � per iteration. Al-
though the power of N has raised by 2, the complexity does no longer depend on the
number of matrices K. This implementation is useful for joint diagonalization problems
with a large number of small matrices. The influence of K on the complexity per iteration
can be eliminated by rearranging the summation in (2.43) such that the sum over k stands in
the innermost loop and does not depend on wi . Thus, all Ck can be collected in a 4-d array,
which can be computed prior to the start of the main loop. This is shown in pseudo code
in Algorithm 2, which has complexity O � N5 � . The operators vec � � and matN � N � � rearrange
the elements of their argument into a vector and into an N � N matrix, respectivly. Both, of
course, must follow the same storage order.

2.4.4 Numerical experiments

Description of the datasets

In order to evaluate the performance of QDIAG and to provide benchmark results, experi-
ments with the following three datasets were performed:

1. Fully diagonalizable data. A setC � s � of K � 1 diagonal matrices Ck � s � was constructed.
The diagonal elements where drawn iid from the standard normal distribution for

22 CHAPTER 2. INSTANTANEOUS LINEAR FUNCTIONS

Algorithm 1 The QDIAG-algorithm with complexity O � KN3 �
function QDIAG(C0,

�
Ck �)

compute P so that PTC0P � I
for k � 1 . . .K do

Ck � � PTCkP
end for
initialize Wi j randomly according to N � 0; 1 �
M ��� 0N � N

for k � 1 . . .K do
M1 ��� CkWT

M2 ��� CT
k WT

M ��� M � αk � M1MT
1 � M2MT

2 �
end for
repeat

for i � 1 . . .N do
for k � 1 . . .K do

m1 ��� Ckwi
m2 ��� CT

k wi

M ��� M � αk � m1mT
1 � m2mT

2 �
end for
wi ��� smallest eigenvector of M
for k � 1 . . .K do

m1 ��� Ckwi
m2 ��� CT

k wi

M ��� M � αk � m1mT
1 � m2mT

2 �
end for

end for
until convergence
W ��� WPT

return W
end function

0 � k � K. C0 � s � was the unit matrix. Then, a matrix A with elements also drawn from
the standard normal distribution was used to generate a set of correlation matrices
Ck � x � � ACk � s � AT. Clearly, these matrices can be jointly diagonalized with any
matrix, that differs from A only by a permutation of the rows of A � 1, or by scale
factors multiplied to them. For every dataset K � 1 � 15 matrices of size 10 � 10 were
used.

2. Approximately diagonalizable data. This data set was generated the same way as
the fully diagonalizable data, except that every Ck � x � was computed with an indi-
vidual matrix Ak which slightly deviated from A. The elements Ak,i j were drawn
independently from the normal distribution with µ � Ai j; σ � 10 � 2. For every data
set K � 1 � 15 matrices of size 10 � 10 were used.

3. Linear mixture of audio data. Here six different channels of audio data (music
and speech, zero DC) sampled at 44.1 kHz (10.000 samples) were used. The cross
correlation matrices Ck � s � ,

Ck,i j � s � � 1
T

�
t

si � t � s j � t � k � , (2.52)

were computed for time lags k � 0, 5, 10, . . . , 95, 100. Negative lags can be ignored, be-
cause C � k � s � � Ck � s � T. Then, a matrix A with elements drawn from the standard nor-
mal distribution was used to generate a set of correlation matrices Ck � x � � ACk � s � AT.

2.4. THE QDIAG ALGORITHM 23

Algorithm 2 The QDIAG-algorithm with complexity O � N5 �
function QDIAG(C0,

�
Ck �)

compute P so that PTC0P � I
for k � 1 . . .K do

Ck ��� PTCkP
end for
initialize Wi j randomly according toN � 0; 1 �
Γ ��� 0N � N � N � N

for i, j, g, h � 1 . . .N do
for k � 1 . . .K do
Γi jgh

� Γi jgh � αk � Ck
�
ig � Ck

�
jh

Γi jgh
� Γi jgh � αk � Ck

�
gi � Ck

�
hj

end for
end for
Γ ��� matN2 � N2 � Γ �
Ω ��� vec � WWT �
repeat

for i � 1 . . .N do
Ω ��� Ω � vec � wiwT

i �
M ��� matN � N � ΓΩ �
wi � � smallest eigenvector of M
Ω ��� Ω � vec � wiwT

i �
end for

until convergence
W � � WPT

return W
end function

These matrices are in general not exactly diagonalizable, because the Ck � s � are only
approximately diagonal.

In all experiments, the weighting factors were set equally to αk
� 1�

K � 1 � .

Benchmark results

The performance of QDIAG was compared with Fast Frobenius Diagonalization (FFDIAG)
(Ziehe et al., 2003) and the Alternating Columns /Diagonal Centers (ACDC) algorithm proposed
by Yeredor (2002). Algorithms that are limited to orthogonal matrices W or require positive
definite correlation matrices were not considered. First, the convergence behavior in terms
of the diagonalization error as a function of the number of iterations was investigated.

Every diagonalization matrix W found by QDIAG fulfills the constraint (2.37), and the
diagonalization error

E : � 1
� N2 � N � L � W � (2.53)

can be used as a performance measure. N2 � N is the number of off-diagonal elements of each
correlation matrix. The rows wi of the diagonalization matrices obtained by the FFDIAG and

ACDC methods were normalized according to � wT
i C0wi � � 1

2 wi before evaluating equation
(2.53).

The first experiment was performed with fully diagonalizable data. All three methods
were applied to 5 randomly generated data sets. Figure 2.3 shows the diagonalization
error vs. the number of iterations. As expected, all methods achieve an error of almost
zero3, which for ACDC (dash-dotted lines), however, required more than the 150 shown
iterations. The convergence rates of ACDC and QDIAG (solid lines) are both linear, but

3The final errors of approx. 10 � 30 are due to the limited precision of the double data type, that had been used.

24 CHAPTER 2. INSTANTANEOUS LINEAR FUNCTIONS

0 50 100 150

10
−30

10
−20

10
−10

10
0

Figure 2.3: Diagonalization error E as a function of the number of iterations for QDIAG
(solid lines), FFDIAG (dashed lines), and ACDC (dash-dotted lines) for 5 different ‘fully
diagonalizable’ data sets.

0 10 20 30 40 50 60 70 80 90 100
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Figure 2.4: Diagonalization error E as a function of the number of iterations for QDIAG (solid
lines), FFDIAG (dashed lines), and ACDC (dash-dotted lines) for 5 different ‘approximately
diagonalizable’ data sets.

the speed of convergence of ACDC is noticeably slower than that of QDIAG. This behavior
may be due to the fact that ACDC solves the inverse problem and has to estimate both, W � 1

and the diagonal matrices Ck � s � . Thus, there exists an M-dimensional space of equivalent
solutions spaned by arbitrary scalings of the columns of W � 1, which are compensated by
the appropriate (inverse) scaling of the diagonal elements of Ck � s � (see Yeredor (2002) for
further details). In QDIAG, however, the solution is unique (up to permutations). FFDIAG
(dashed lines) exhibits the quadratic convergence rate mentioned in Ziehe et al. (2003)
and Ziehe et al. (2004). Thus, it is slow initially, but becomes fast as soon as the linear
approximation becomes valid (cf. figure 2.3). Compared to QDIAG, FFDIAG needs more
iterations up to diagonalization errors of 10 � 8, but only needs roughly half the number of
iterations until full convergence. The effect becomes important when the set of matrices is
not fully diagonalizable, and errors less than 10 � 8 are never reached. This is illustrated in a
second experiment with approximately diagonalizabledata. QDIAG, FFDIAG, and ACDC
were applied to 5 datasets, randomly generated as described above. Figure 2.4 shows the
resulting diagonalization errors vs. the number of iterations. For all 5 datasets, QDIAG
converged faster than FFDIAG and considerably faster than ACDC. The initial increase in
the error traces of ACDC is because the error which is shown here is not the one which is
minimized by ACDC. Otherwise it would be monotonically decreasing (cf. also figure 2.11).

In a third experiment, conducted with the linear mixture of audio data, FFDIAG con-
verged slightly faster than QDIAG for 3 out of 5 different mixtures (cf. figure 2.5), but also
here the convergence of QDIAG was faster at the beginning. The convergence of ACDC is
about one order of magnitude slower than the other two methods. Similar to the previous
experiment, long periods of very slow convergence at the beginning can be observed. Be-
cause the data in this experiment are actually 5 different affine transformations of one and
the same problem, QDIAG and FFDIAG converge to the same error value in every 5 trials.
The final errors of ACDC are in general different in every trial.

In order to evaluate the computational efficiency of QDIAG, both, an O � KN3 � and an

2.4. THE QDIAG ALGORITHM 25

0 10 20 30 40 50 60 70 80 90 100
10

−4

10
−3

10
−2

10
−1

10
0

Figure 2.5: Diagonalization error E as a function of the number of iterations for QDIAG
(solid lines), FFDIAG (dashed lines), and ACDC (dash-dotted lines) for 5 different ‘linear
mixtures of audio data’.

O � N5 � implementation of QDIAG, and implementations of FFDIAG and ACDC were used.
All programming has been done in MATLAB. Figure 2.6 shows the computation time per
iteration for different values of N and K. The values have been averaged over 1000 iterations
for evey setup. Although ACDC has the same complexity as the O � KN3 � implementation,
it is 40-60% slower than QDIAG, in terms of the computation load per iteration. FFDIAG
is in general faster, but the O � N5 � implementation can outperform FFDIAG in problems
with many but small matrices. At first glance, this is surprising since FFDIAG is O � KN2 �
for moderate matrix sizes4. However, the impact of the N5 term in QDIAG is small and
can be neglected for small N, which leads to a much smaller actual efficiency: the slopes
of the curves in 2.6.C are approximately like O � N1.4 � at N � 2 and like O � N2 � at the other
end, at N � 20. As expected, the computation time per iteration does not change in this
implementation of QDIAG when the number of matrices increases, but considerably does
so for the other methods. Thus, the break even point could be used to switch between the
two implementations of QDIAG.

Unbalanced solutions and singular diagonalization matrices

On several occasions it could be observed that the final diagonalization error (2.53) that
was achieved by FFDIAG was higher than the error obtained by QDIAG (cf. also figure
2.11). This effect occurs in particular for sets of matrices that can be poorly diagonalized
only and is a result of the different ways trivial solutions are avoided. In FFDIAG W is
initialized as the unit matrix and is multiplicatively updated with a non-singular matrix so
that W � 0 is guaranteed5. But this procedure cannot prevent single rows of W converging
to a norm close to zero and W converging to a matrix close to a singular matrix. A small
row norm has the consequence that the corresponding rows and columns of the correlation
matrices have small elements, which leads to a small diagonalization error at the cost of
almost vanishing diagonal elements. In this sense the solution is unbalanced because these
rows and columns are weighted lower than others.

In figure 2.7 such an unbalanced solution is illustrated. The top row displays the
correlation matrices after diagonalization with FFDIAG. The diagonalization matrix was
taken from an experiment with the ‘approximately diagonalizable data’, which had large
final error in FFDIAG, but low error in QDIAG. The off-diagonal elements have small values,
but also some diagonal elements are almost zero. When the rows of W are scaled so that
the constraint (2.37) holds, the off-diagonal elements become larger (center row). Hence,
compared to the matrices diagonalized by QDIAG (bottom row), the unbalanced solution
leads to the observed poor diagonalization error. For poor diagonalizations also ACDC
can yield a higher error value (2.53) than QDIAG. In these cases prominent unbalanced
diagonalizations were not observed, but otherwise poor solutions. Note that these can be

4For large N FFDIAG approaches O � KN3
 due to the multiplicative updates in every iteration.
5Note that W here always denotes the diagonalizing matrix rather than the update matrix, as in Ziehe et al.

(2004).

26 CHAPTER 2. INSTANTANEOUS LINEAR FUNCTIONS

A B

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920

10
−3

10
−2

10
−1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920

10
−3

10
−2

10
−1

C D

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920

10
−3

10
−2

10
−1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920

10
−3

10
−2

10
−1

Figure 2.6: Average computation times per iteration of A: QDIAG (Algorithm 1), B: ACDC,
C: QDIAG (Algorithm 2), and D: FFDIAG, as functions of the matrix size N � 2, . . . , 20 (x-
axis) and different numbers of matrices, K � 5, 10, 15, . . . , 50 (individual lines). For moderate
matrix sizes the O � N5 � implementation of QDIAG can outperform all other methods in terms
of costs per iteration.

2.4. THE QDIAG ALGORITHM 27

k � 0

Figure 2.7: Example of an ‘unbalanced’ solution to the diagonalization problem. The figure
shows the 15 correlation matrices (left � � right), where the value of every matrix element
is coded by the gray value of its respective pixel. Top row: Diagonalization result obtained
by FFDIAG. The off-diagonal elements are small, but also some diagonal elements vanish.
Center row: Result shown in the top row, scaled to hold the constraint (2.37). Note that the
absolute values of the off-diagonal elements become larger. Bottom row: Results for QDIAG.
Gray scale top row: white � black corresponds to 6 � -6; gray scale center and bottom
row: white � black corresponds to 1 � -1.

quite good solutions of the inverse problem, which is natively optimized by ACDC.
Singular diagonalization matrices can also occur when QDIAG is applied because the

constraint (2.37) is not violated when two or more rows of W are identical. This behavior
can be observed mostly for problems for which the correlation matrices cannot be well
diagonalized simultaneously and large diagonalization errors remain. Let two identical
rows wi

� w j fulfill (2.37). Then, the off-diagonal elements � WC0WT �
i j

� � WC0WT �
ji

� 1
increase the diagonalization error (provided C0 � C). But this can still be the smallest error if
at the same time the solution has no significant diagonal elements � WCkWT �

ii
� � WCkWT �

j j
for the majority of the correlation matrices. Then, the off-diagonal elements � WCkWT �

i j
�

� WCkWT �
ji , which are equal to the diagonal elements, also have small absolute values and

keep the diagonalization error low. In such a situation merging rows of W can be avoided
when more weight is put onto C0 or other Ck that have large ‘diagonal content’, i.e. the
corresponding α0 rsp. αk are raised compared to the others. In the limit of infinite weight
on C0 , QDIAG would perfectly diagonalize it, i.e. perform a sphering w.r.t. C0 and allow
for an additional unitary transformation to approximately diagonalize the remaining Ck .

Indefinite and asymmetric correlation matrices

QDIAG does not impose restrictions on the symmetry or the definiteness of the correlation
matrices, except for the matrix C0 . Interestingly, it could be observed that the speed of
convergence is noticeably higher for matrices that have some negative eigenvalues. Figure
2.8 shows the diagonalization error as a function of the number of iterations for the fully
diagonalizable data in comparison with sets of positive definite matrices constructed the
same way, but with positive diagonal matrices Ck � s � . The 5 leftmost and rightmost curves
represent the results for the indefinite and the positive definite matrices, respectively. The
reduced convergence speed was also observed for strictly negative definite Ck � x � , and also
for not fully diagonalizable matrices.

Non-symmetric correlation matrices frequently occur in applications of second order
blind source separation techniques because of their asymmetric way of construction (2.52).
The empirical correlation matrices can be split into a symmetric and an anti-symmetric part,

Ck
� 1

2 � Ck � Ck
T � � 1

2 � Ck � Ck
T � .

The anti-symmetric part is a result of finite source cross correlations and does not contain
any information that helps for the source separation. Therefore, and because many joint di-
agonalization methods cannot handle asymmetric matrices, it is usually neglected. Thus, it
may be more of academic interest to discuss how QDIAG is able handle the anti-symmetric
part. Because an anti-symmetric matrix remains anti-symmetric after any bilinear transfor-
mation, diagonalization of an anti-symmetric matrix is equivalent to making that matrix as

28 CHAPTER 2. INSTANTANEOUS LINEAR FUNCTIONS

E

0 20 40 60 80 100 120 140 160 180 200

10
−30

10
−20

10
−10

10
0

iterations

Figure 2.8: Diagonalization error as a function of the number of iterations of QDIAG for
fully diagonalizable, indefinite (left group of curves) and positive definite (right group of
curves) correlation matrices.

close as possible to zero. Clearly, this is only achievable with a singular matrix W. But then
the minimal diagonalization error must always be larger than zero if C0 is element ofC. With
singular W also WC0WT is singular. Under the constraint (2.37) this implies the existence of
finite off-diagonal elements of WC0WT and, hence, finite diagonalization error. Figure 2.9
shows an example of an anti-symmetric diagonalization. A set of 4 anti-symmetric matrices
was constructed, with the elements Ck,i j drawn from the standard normal distribution for
j � i and Ck,i j

� � Ck, ji else. C0 was the unit matrix. These matrices are shown on the left
panel of the figure. The right panel shows the result of a diagonalization with QDIAG.

A
k � 0

B
k � 0

Figure 2.9: Diagonalization of anti-symmetric matrices. A: The unit matrix C0 together with
4 anti-symmetric matrices Ck . B: The result of the ’diagonalization’. Color scale: white: 1,
black: -1

Thus, the off-diagonal elements of the anti-symmetric matrices can be reduced only at
the cost of increasing off-diagonal elements of WC0WT. This trade-off is controlled by the
weighting parameters αk . Provided α0 is not too small, QDIAG is able to converge to a
non-singular (but generally poor) solution W, even if all Ck � 0 are pure anti-symmetric. If
C0 � C, however, then the algorithm will usually converge to a trivial solution, which has
zero error and wi

� w j for all i, j.

Non-square diagonalization matrices

An interesting property of QDIAG is that it is able to optimize equations (2.44) even for
non-square matrices W � RM � N. There are two cases to be distinguished: incomplete
diagonalization (M � N) and overcomplete diagonalization (M � N). In the case of in-
complete diagonalization, equations (2.44) are minimized w.r.t. a subset of the off-diagonal
elements, and the final diagonalization error is always lower or equal than the error for the
corresponding complete diagonalization. Table 2.4.4 shows the diagonalization errors of
undercomplete diagonalizations for 20 trials with the approximately diagonalizable data.

Incomplete diagonalizations can be applied when a full diagonalization does not lead
to satisfactory results. In applications of blind source separation, for example, incomplete
diagonalization allows to separate groups of sources that exhibit cross correlations among

2.4. THE QDIAG ALGORITHM 29

M log10 � E �
2 � 12.15

�
12.89

3 � 5.16
�

0.57
4 � 4.48

�
0.51

5 � 4.14
�

0.53
6 � 3.77

�
0.71

7 � 3.48
�

0.76
8 � 3.14

�
1.07

9 � 2.84
�

1.27
10 � 2.47

�
1.66

Table 2.1: Diagonalization error as a function of M for
incomplete diagonalizations (M � N) for 20 trials with
the approximately diagonalizable data. The average
decadic log of the error and the 95% probability range
(3 times standard deviation) are shown. For M � 2 the
tendency of QDIAG could be observed, to get stuck
in local minima, thus leading to the large standard
deviation.

each other, but not between the groups. This is illustrated with the help of a little example.
A linear mixture of audio data. However, instead of 6 individual audio signals, three
2-channel stereo audio signals were used as sources of the linear mixture. Thus, there were
three groups of two sources, with neglectable cross correlations between different groups
and considerable cross correlations between the two sources in each group. The order of
the sources was s � � s1,left, s1,right, s2,left, s2,right, s3,left, s3,right

� T. For the blind source separation
achieved through complete diagonalization, the result in terms of the multiplication of W
with the mixing matrix A was

WA �
�
�
�

� 2.45 � 2.49 0.00 � 0.02 � 0.01 � 0.01
0.50 0.52 � 0.03 0.02 0.02 � 0.02� 0.02 0.03 � 0.80 � 0.48 0.01 � 0.01
0.04 � 0.04 � 0.65 0.89 0.00 � 0.01
0.00 � 0.01 0.01 � 0.02 � 0.49 � 0.57� 0.01 0.01 0.01 0.00 1.49 � 1.43

�
�
�

�
,

which would be a diagonal (rsp. permutation) matrix for perfect separation. However, one
can see that, as expected, the algorithm was not able to resolve the stereo channel pairs
(cf. the bold faced sub-matrices) because the assumption of vanishing cross correlations
was not valid for them. If for the application at hand it is only necessary to separate the
sources, regardless of what linear combinations of the individual stereo channels come
out, then the computation cost could be reduced by an incomplete diagonalization from
O � KN3 � to O � KMN2 � rsp. from O � N5 � to O � MN4 � . With M � 3 in this experiment the joint
diagonalization led to

W3 � 6A �
� � 2.23 1.59 0.02 0.05 0.01 0.00� 0.01 0.01 � 1.00 0.34 � 0.00 � 0.01� 0.01 0.02 0.00 0.01 1.54 � 1.06

�
.

The incomplete diagonalization separated the signals well up to linear combinations of the
individual stereo channels. The shown results were manually corrected for the permutation
in the rows of W.

In the case of overcomplete diagonalization a perfect diagonal solution in general does
not exist. The matrices WCkWT are of size M � M, but have a rank of at most N. They
can only be diagonal if at least M � N diagonal elements are zero. With W holding the
constraint (2.37), this is impossible for positive definite Ck . But also for indefinite Ck such a
solution will not exist in general. Therefore, the M � N case may not be of practical interest.
QDIAG can handle this case correctly. However, diagonalization errors of overcomplete
diagonalizations are usually rather poor. Figure 2.10 shows an example for an overcomplete
diagonalization. A set of 15 fully diagonalizable matrices (cf. figure 2.3) of size 10 � 10 was
constructed, and a 12 � 10 matrix W was optimized to diagonalize them. For the first trial
(top row) all weighting parameters were set to αk

� 1
15 . The algorithm has to ’distribute’ the

unavoidable error over the off-diagonal elements, which leads to identical rows w8 and w9.
In the next experiment more weight was put on C0 by setting α0

� 10αk � 0 . As expected,
the algorithm takes more care of diagonalizing C0 , at the cost of slightly larger off-diagonal
elements in the other matrices.

30 CHAPTER 2. INSTANTANEOUS LINEAR FUNCTIONS

k � 0

Figure 2.10: Overcomplete diagonalization. A fully diagonalizable set of 15 10 � 10 matrices
was diagonalized by a 12 � 10 matrix. Top row: The same weight on all matrices. Bottom
row: The weight on C0 is 10 times larger than on the other matrices.

A B

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

QDIAG

A
C

D
C

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

QDIAG

F
F

D
IA

G

Figure 2.11: Diagonalization errors for 100 different ‘approximately diagonalizable’ data
sets. A: The final error of QDIAG plotted against the final error of ACDC. Black dots
indicate the final error in terms of error measure (2.53), white dots in terms of the error
which is minimized by ACDC (cf. Yeredor (2002)). Lines connect corresponding results.
B, black dots: The final error of QDIAG against FFDIAG in terms of error measure (2.53).
Because the error which is minimized by FFDIAG is not accessible outside the FFDIAG
iterations, it cannot be plotted for comparison.

2.4.5 Concluding remarks

The QDIAG algorithm could be shown to be fast and able to handle arbitrary diagonaliza-
tion matrices (including non-orthogonal, non-square matrices) and indefinite correlation
matrices. The performance evaluation showed that the new method is competitive with
FFDIAG and considerably faster than ACDC in terms of the convergence rate.

In the benchmarks for the convergence rates the performance was compared using the
error measure (2.53), which is the objective function to be optimized in QDIAG, but not
in the other two methods. This can lead to final errors of FFDIAG and ACDC in their
native measures that are smaller than the QDIAG error measure (2.53) and is the reason
for the error of ACDC to be not monotonically decreasing in the experiments presented
in figures 2.3–2.5. Figure 2.11 shows the QDIAG diagonalization errors (2.53) (black dots)
that were achieved by all three methods for 100 trials with ‘approximately diagonalizable’
datasets. Since it is possible to compute the error which is minimized by ACDC also for
results achieved with other methods6, one can additionally compare the results of QDIAG
and ACDC in terms of this error measure (figure 2.11.A, white dots). In particular for
poor diagonalizations, ACDC may reach significantly lower final error values compared to
QDIAG in terms of its own error measure. From figure 2.11 one can also see, however, that
the QDIAG error measure is quite consistent in so far that all three methods converge to

6In contrast to the FFDIAG error, which can be only accessed together with the FFDIAG iterations.

2.5. EXTRACTION OF SINGLE SOURCES 31

very similar error values for fair diagonalizations. Note that different error measures do
not affect the number of iterations, that are required for full convergence.

In general the error measure has to be chosen according to the application at hand.
In QDIAG, C0 defines the ‘balance’ of the solution, and certainly there are applications
for which it is not meaningful to treat one of the matrices in C different than the others.
However, for the blind separation of sources, C0 can naturally be assigned to the covariance
matrix of the signals in order to avoid trivial or unbalanced solutions. Fortunately, unbal-
anced solutions, for which some rows of W have almost vanishing norm, tend to occur only
in problems that are not properly diagonalizable and have comparable large minimal diag-
onalization errors. If such solutions are undesired for the given problem, a major advantage
of QDIAG is the possibility to explicitly avoid them by using the constraint on C0 .

2.5 Extraction of single sources

As shown in section 2.4.4 the QDIAG algorithm is capable of separating less sources than
observations (or a less ’source groups’ that observations, to be precise). This concept is
meaningful as long as there are at least two outputs. For the blind separation of single
sources from linear mixtures another approach is necessary, which will be presented in the
following. As well as QDIAG also this algorithm is driven by the concept of approximate
matrix diagonalization.

2.5.1 Cost function for extracting single components

In order to separate a single source from a linear mixture of M sources plus additive noise,

xt
� Ast � nt ,

one has to find an N-dimensional vector w that yields zero for all components except one
when it is multiplied with the unknown and rectangular N � M mixing matrix A,

wTA � � c, 0, . . . , 0 � . (2.54)

Without loss of generality w may be constrained to unit length and the first component of
wTA may be the one that is different from zero. Thus w separates the first source

wTxt
� c s1,t � wTnt

from the mixture, while A is not known. Attempts are not only to fulfill (2.54), but also to
achieve a large value c to get the variance of the recovered source large compared to the
noise.

Let us consider a matrix M,

M : � Cτ � s � AT � a,b1, . . . ,bN � 1
� . (2.55)

Cτ � s � is the shifted source cross correlation matrix, a is the normalized first column vector of
A, and the bi are N � 1 orthogonal vectors of unit length that span the subspace orthogonal
to a,

bT
i b j

� δi j, bT
i a � 0 .

Then a multiplication from the right of (2.54) with M keeps its form unchanged, i.e.

vT : � wTAM � � c̄, 0, . . . , 0 � .

Using Cτ � x � � ACτ � s � AT, a cost function is obtained, which is the squared sum of all

32 CHAPTER 2. INSTANTANEOUS LINEAR FUNCTIONS

elements of v except the first.

E � �
τ

N�
i � 2

� wTCτ � x � � a,b1, . . . ,bN � 1
� � 2

i

� �
τ

� � wTCτ � x � � a,b1, . . . ,bN � 1
� � � wTCτ � x � � a,b1, . . . ,bN � 1

� � T �

� wTCτ � x � aaTCτ � x � Tw
�

� �
τ

wTCτ � x � � I � aaT � Cτ � x � Tw (2.56)

E has to be minimized with respect to w and a under the constraint
�
w

� � �
a
� � 1. In

estimating a single source this way, the number of parameters to be estimated could be
reduced from N2 for a full demixing matrix W to 2N for the vectors w and a.

2.5.2 Prior knowledge for a and w
Successful minimization of (2.56) will lead to the separation of one source from the mixture,
but there is no control yet about which source is being extracted. Therefore, some prior
knowledge is needed that allows to add appropriate regularization terms to the cost function
(2.56),

E � E �
2.56 � � Ew � w � � Ea � a � . (2.57)

Although it is in general possible to use any functional form for the regularization terms
that reflects the knowledge about w and a respectively, one is interested in using such that
are computationally convenient. The cost function (2.56) is quadratic in w and quadratic in
a (but biquadratic in w and a together). This particularly simple form of the cost function
is preserved when quadratic regularization terms are used,

Ea � a � � aTΣ
� 1
a a and Ew � w � � wTΣww . (2.58)

Σa is chosen to have its largest eigenvalue in direction of µa , the most probable value of a.
The other eigenvalues have to be small compared to the largest one. The smallest value of
Ea , when a is constrained to unit length, is obtained for a in direction of µa . Ew must be
constructed in a different way, because one usually has prior information only about the
mixing process and not its inverse. We know from (2.54) that w has to be orthogonal to all
those column vectors of A that represent the mixing process of the unwanted components.
If prior knowledge is available for any of them, quadratic functions

Eāi � a � � aTΣ
� 1
āi

a

can be defined just like Ea . Then, Ew must yield large values if Eāi is small and vice versa.
Hence the quadratic form must be

Σw
� � �

i
Σāi � , (2.59)

where the sum is over all columns of A that prior knowledge is available for. Both, Σa
and Σw, should be positive semi-definite in order to guarantee non-negative error values
of the regularized error function . The strength of regularization directly depends on the
determinants of Σa and Σāi and has to be set to reasonable values.

Due to the choice of regularization terms, the error function is still quadratic in w and in
a and biquadratic in w and a together. It has to be minimized with respect to w and a under
the constraint

�
w

� � �
a
� � 1. This can be efficiently done by alternating optimizations with

respect to w and a:

(i) update w to the smallest eigenvector of

Cτ � x � � I � aaT � Cτ � x � T � Σw , (2.60)

2.5. EXTRACTION OF SINGLE SOURCES 33

Figure 2.12: The toy datasets used for simulation. These are reconstructed sources from an
optical recording experiment.

(ii) update a to the smallest eigenvector of

Σ
� 1
a � Cτ � x � T � wwT � Cτ � x � . (2.61)

until convergence.

2.5.3 Extraction of additional sources
The algorithm can be applied iteratively to separate additional sources. After one source
is successfully extracted using ŝi,t

� wTxt , it is also possible to remove that source from
the remaining mixtures using the vector a. To do that, one has to construct a � N � 1 � N � -
dimensional Matrix

W � � � w �1, . . . ,w �N � 1 � T
.

The w �i are chosen to be pairwise orthogonal and to span the subspace orthogonal to a. For
the separated source a is the corresponding column vector of the mixing matrix A. Thus,
in W � A this column is equal to zero. Hence, x � � W � As is a mixture of s, that does not
contain the separated source. x � can now be used as input to separate the next source. It is
important to note that with every step also the priors have to be projected into the subspace
of x � using W � .
2.5.4 Experiments
In the following the capabilities of this algorithm are demonstrated on the basis of toy data
with prototype signals and time courses that are similar to those obtained in experiments
with optical imaging of neural activity.

In optical imaging a cortical area of interest is illuminated with monochromatic light
of wavelengths usually between 500 - 800 nm. This area is then recorded with a sensitive
CCD- or video camera. Changes in reflectance of this light from the cortex are mainly due
to variations in the light scattering properties of the tissue and to variations in the local
concentrations of deoxigenated and oxygenated hemoglobin. Typically these changes are
very small and do not exceed 0.1% of the reflected light (Blasdel and Salama, 1986). Because
of these small signal intensities, the signal to noise ratios are of the order of 0 dB.

It could be shown that for this data second order BSS algorithms are superior to those
that rely on factorizing source distributions (Schöner et al., 2000). To evaluate the properties
of the single source separation procedure, 20 mixtures of the sources shown in figure 2.12
were generated, using a 20 � 3-mixing matrix A. Each column represents the time course
of a single source (cf. figure. 2.13.D, left) and was motivated by results of optical imaging
experiments (Malonek and Grinvald, 1996). Finally, white noise with approximately 3dB
SNR was added to the mixture. In three experiments w and a where estimated using a
set of 8 cross correlation matrices with shifts τ arranged in a star like pattern. In figure
2.13.A, the first column of A was used as the prior for a and the third column was used
as the orthogonal prior for w. The eigenvalues of the matrices Σa and Σāi where chosen
as 1 for the largest one and 0.1 for the remaining. The separated source is displayed next
to the estimated values of w and a. The algorithm performs well, even if the shape of the

34 CHAPTER 2. INSTANTANEOUS LINEAR FUNCTIONS

A B

0 10 20
−0.5

0

0.5

0 10 20
−0.5

0

0.5

0 10 20
−0.5

0

0.5

0 10 20
−0.5

0

0.5

C D

0 10 20
−0.5

0

0.5

0 10 20
−0.5

0

0.5

0 10 20
−0.5

0

0.5

1

1.5

0 10 20
−5

0

5

10

Figure 2.13: Results on a 20 � 3 mixture of the sources of figure 2.12. A-C: one separated
source using different priors. left: prior for a (solid), to w orthogonal prior (dashed),
middle: estimated course of a (solid) and w (dash-dotted), right: the separated source. D:
left: course of the column vectors of the mixing matrix A, middle: course of the row vectors
of the pseudo inverse of A, right: the separated source using the first row of the pseudo
inverse

priors only roughly corresponds to columns of A (figure 2.13.B). If the orthogonal prior
was omitted, the result was only slightly worse (figure 2.13.C). This shows that the priors
just select on which source the algorithm focuses. The particular shape of w is not much
influenced by the priors.

It is important to note, that even exact knowledge of a is not sufficient to recover the
source, since no w can be derived from a alone. Only the knowledge about mixing process of
all sources, i.e. the whole matrix A would allow to compute it’s pseudo inverse. However,
source reconstruction using the first row of the pseudo inverse of A fails completely (figure
2.13.D). Although the pseudo inverse would perform a perfect separation, it dramatically
amplifies the noise and yields a poor reconstruction. The single source separating algorithm,
however, is able to exploit information from the higher number of mixtures to achieve a
much better SNR in the separated source.

2.6 Multi-dimensional ICA
Let us consider a stochastic N-channel source signal � st

�
t � I , and assume that for every

J � H � I � a probability density p � sJ � t
� exists. The source signals shall be stationary, thus p

is invariant on t. For ease of notation we introduce the N � M random matrix St , the j-th
column of which equals st � τ j , where τ j is the j-th element of the ordered set J and M � �

J
�
.

We call St a patch of the signal � st
�
t � I . The sources are linearly combined by an unknown

mixing matrix A of full rank to produce a set of N observations � xt
�
t � I ,

xt
� Ast rsp. Xt

� ASt. (2.62)

The mixing process is assumed to be stationary, i.e. that the mixing matrix A is independent
of t. Hence, in the following we may drop the subscript t from random vectors and
matrices, as long as we consider their statistical properties. Further, we need to introduce
the following two notations:

s � j
� � S1 j, . . . , SN j

� T

be a vector containing the elements of the j-th column of S, and

si � � � Si1, . . . , SiM
�

be a row vector containing the elements of the i-th row of S.

2.6. MULTI-DIMENSIONAL ICA 35

The goal of linear blind source separation is to find an appropriate demixing matrix W
which, when applied to the observations xt, recovers good estimates,

ŝt
� Wxt � st, (2.63)

of the original source signals (up to a permutation and scaling of the sources). Since the
mixing matrix A is not known, it’s inverse W has to be detected blindly, i.e. only properties
of the sources which are detectable in the mixtures can be exploited. In contrast to many
other ICA algorithms, let us consider here a set of sources which are not independent, in
the sense that not even instantaneous independence, equation (2.17), holds, i.e.

p � s � � p � s � j
� �

N�
i � 1

p � Si j
� . (2.64)

These dependencies among the sources make most ICA algorithms fail. However, things
are not completely lost if the dependencies are of a certain structure, which will be described
in the following:

Every row of S be a superposition of fixed, but unknown, feature vectors aT� j,

si � � M�
j � 1

Ui ja
T� j , (2.65)

or, in matrix notation,
S � UAT , (2.66)

where a � j is the j-th column of the M � M matrix A, and U is a random matrix containing
the coefficients Ui j . The features may be linear independent so that A has full rank. With
that the distribution of the source patches S is given by the distribution of the coefficients
U,

p � S � � �
det � A � � � Np � U � . (2.67)

The features a � j may fall into two categories: those that contribute to the source depen-
dencies and those that don’t. Because the features A are fixed, this is fully determined by
the distribution of their coefficients. We partition the random matrix U into M

�
columns,

the corresponding features of which do not contribute to the source dependencies, and M �
columns of dependent feature coefficients,

U � � U �
,U � � . (2.68)

So it may hold

p � u �� j
� � N�

i � 1

p � U �
i j

� , p � u �� j
� �

N�
i � 1

p � U �i j
� . (2.69)

The basic idea behind the multi-dimensional ICA algorithm is to estimate first the
feature matrix A rsp. it’s inverse W �

A
� 1, together with the coefficients U. Once this is

done the features belonging to U
�

have to be detected and discarded in order to eliminate
the source dependencies. The mean for detecting the features is the assumption that they
occur independently from each other. For this to function the coefficients in every row of U
have to be independently distributed and non-Gaussian,

p � U � � M�
j � 1

p � u � j
� . (2.70)

Without loss of generality the coefficients may be normalized to zero mean and unit variance,
〈

Ui j
〉 � 0 ,

〈

U2
i j

〉 � 1 . (2.71)

36 CHAPTER 2. INSTANTANEOUS LINEAR FUNCTIONS

Equations (2.66) and (2.62) constitute linear operations, which can be arbitrarily inter-
changed,

X � AS � AUAT � VAT . (2.72)
Consider random vectors x̃ and ṽ which are uniform mixtures of all rows of X rsp. V,

p � x̃ � � 1
N

N�
i � 1

p � xT
i � � , p � ṽ � � 1

N

N�
i � 1

p � vT
i � � . (2.73)

From equation (2.72) follows that x̃ � Aṽ and, hence,

p � x̃ � � �
detA

� � 1p � ṽ � . (2.74)

If we can show that the elements of the ṽ are independent, then we can estimate A or
W

�
A

� 1 by means of ICA on realizations of x̃. From the independence assumption (2.70)
follows

p � V � � M�
j � 1

p � v � j � , (2.75)

and therefrom

p � vi � � � M�
j � 1

p � Vi j
� . (2.76)

We assume all xi � and, hence, all vi � have zero mean and equal covariance. According to
the considerations given in appendix A, this assures independence up to fourth order for
the elements of ṽ. Thus,W can be estimated from x̃ using an appropriate fourth order ICA
algorithm, e.g. FastICA (Hyvärinen and Oja, 1997).

OnceW is known one can compute the matrix

Vt
� � V �

t ,V �t � � XtW
T , (2.77)

where, without loss of generality,Wmay be partitioned as

W �
�
W

�

W �
� � � A � ,A � � � 1 . (2.78)

The decision what rows ofW belong to W
�

and what to W � can made with the following
heuristic: Features that carry dependencies between the sources must be present with large
entropy, otherwise the dependencies would have been low. In the first approximation these
are the features with large variance, which in turn correspond to rows of W with small
Euclidean norm, Thus, the heuristic is to put rows of small norm into W � and discard
them. Then, the columns of V

�
and U

�
constitute mixture vectors ṽ � and ũ � , respectively,

which are related as ṽ � � Aũ � . Under the assumptions of appendix A the elements of ũ � are
independent and W can be estimated from ṽ � using ICA.

2.6.1 The Two-Step algorithm
The two step multi-dimensional ICA algorithm can be summarized as follows:

• Collect samples � Xt
�
t � I

���
I of the observations, the row vectors of which, � xT

t,i � �
t � I

�
,i �

�
1,N � ,

are taken as realizations of a random vector x̃.

• 1. Step: Use an appropriate ICA algorithm to estimate the matrixW from the realiza-
tions of x̃ so that the elements ofWx̃ are as independent as possible.

• Discard rows of W with small norm and summarize the remaining M
�

rows in the
matrixW

�
.

• For all t � I � compute Vt
� XtW

� T. The column vectors � vt, � i
�
t � I

�
,i �

�
1,M ��� are taken as

the realizations of the random vector ṽ � .
• 2. Step: Use an appropriate ICA algorithm to estimate the demixing matrix W from

the realizations of ṽ � .

2.6. MULTI-DIMENSIONAL ICA 37

2.6.2 Experiments

The derivation of the multi-dimensional ICA algorithm requiered a number of assumptions
about the source signals, for which it may be difficult to decide whether, or to what degree,
they are fulfilled. Thus, in this section some experiments on two datasets will be shown.

A

Sinusoids
σ2 � 10

�

�

B

Laplacian Noise
σ2 � 1

�

�

C

s1

s2

Figure 2.14: The ‘noisy sinosoids’ dataset. Two dependent source images s1 and s2 (C)
where generarated by adding a sinosoidal signal with two spatial frequencies (A) to Lapla-
cian white noise (B). Signal (A) was identical and signals (B) where independent in both
sources. The dependent signal component had 10 times larger variance than the indepen-
dent component.

The first one, the ‘noisy sinosoids’ dataset, consists of two dependent source images of
256 � 256 pixels size, zero mean and unit variance. They are a superposition of a dependent
and an independent component (figure 2.14). The dependent component was an image
containing two sinosoids with spatial frequencies ω1

� � 2π, 2π � and ω2
� � 20π, 20π � and

was equal in both sources (figure 2.14.A). The independent component were two Laplacian
white noise images with one tenth of the variance of the dependent component (figure
2.14.B).

These data where used to test the first ICA step estimating W and to see in how far
equations (2.68) and (2.69) hold. 5 � 104 patches of size 6 � 6 where taken from both source
images at random positions to produce samples for the random vector s̃ on which FastICA
was performed to estimate W. Actually s̃ is an overcomplete mixture of independent
components because at least 36 components are contributed already by the white noise
component, and an unknown number are additionally contributed by the sinosoidal signal
part. ICA, however, can reconstruct at most 36 components. ICA succeds to separate all 5
components coming form the dependent source part7 from the majority of the low variance
components coming from the independent source part, which have to ‘share’ the remaining
31 components. Figure 2.15.C shows the Euklidean length of the rows of w j � together
with the mutual information I � U1 j,U2 j

� , which was estimated by means of an histogram
estimator. One can see that 5 components with small norm carry high mutual information,
where the remaining 31 components have nearly no dependencies.

In the second dataset the sources were 8 passport photographs of 150 � 150 pixels size,
normalized to zero mean and unit variance. They are shown in figure 2.16.A . These are
interesting data, because here the source dependencies are not generated artificially as

7When taking patches only form the dependent source component, figure 2.14.A, then these span a 5 dimesional
space.

38 CHAPTER 2. INSTANTANEOUS LINEAR FUNCTIONS

A B

C

0 5 10 15 20 25 30 35 40
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

length of independent components
mutual information

Figure 2.15: A: Rows of the matrixW estimated using FastICA from 5 � 104 patches of size
6 � 6 of the ‘noisy sinosoids’ dataset (figure 2.14.C). The rows are sorted by increasing
Euklidean norm from left/top to right/bottom. B: The corresponding columns of the matrix
W

� 1. C: Euklidean length of w j � (stars) and the mutual information I � U1 j,U2 j
� (squares)

for all j � 1 . . .36. The components with small norm w j � are those with large inter-source
dependencies.

in the ‘noisy sinosoids’ dataset, but due to similar brightness distributions. Correlation
coefficients between the source images were in the range from 0.4 to 0.9. The images were
linearly mixed using a matrix A, the elements of which were drawn randomly from a
normal distribution with mean zero and variance one. The mixing matrix had a condition
number of 80. The mixed sources are shown in figure 2.16.B . The source dependencies
make standard ICA methods failed to recover the sources: figure 2.16.C shows the results
of FastICA. Figure 2.16.D shows the result of the Two-Step multidimensional ICA described
in section 2.6.1, which achieved fairly good source separation. For better comparison the
images were inverted manually to appear positive.

In the first stepWwas estimated using FastICA on 105 patches, 6 � 6 pixels in size, which
were taken with equal probability from random positions from all mixtures. The results of
the first ICA are displayed in figure 2.17 analogously to figure 2.15 (see above). The mutual
information in panel C was estimated exemplarily for sources 1 and 7 because these were
the two with the strongest correlations. Note that in this experimentWwas estimated from
the mixtures. In order to estimate the mutual information for panel C, the second ICA
step was anticipated using U � A � 1V. In the ‘passport photo’ dataset there is only one
component with large mutual information, which resembles the overall brightness of the
image patches. The other components are very similar to contrasts in various directions,

2.6. MULTI-DIMENSIONAL ICA 39

A

B

C

D

Figure 2.16: A: The ‘passport photos’ dataset: 8 images of 150 � 150 pixels size, normalized
to zero mean and unit variance, are used as sources. B: The sources linearly mixed. C:
Separation results using the FastICA Matlab package (FastICA,v2.5, 2005). D: Separation
results using multidimensional ICA (For explanation see text).

which recently have been found by the application of ICA or Sparse Coding to patches of
natural images, and are believed to be the coding strategy in V1 (Bell and Sejnowski, 1997;
Olshausen and Field, 1996: 1997).

For the second ICA step the first column vt, � 1 of Vt was discarded. Then, from the
remaining components vt, � j , 104 were chosen randomly and with equal probability, and
used as input for FastICA to estimate W. A comparison between figures 2.16.A and D
shows that all sources were successfully recovered.

In the next experiment the influence of selecting columns v � j prior to the second ICA
was examined. Figure 2.18 shows the reconstruction error (cf. appendix B) that could be
achieved with the second ICA when only a single component v � j served as input. From
the previous experiment we have seen that only the first component has considerable
dependencies. As expected, only the first one yields poor reconstruction error.

Figure 2.19 shows the reconstruction error vs. M � for the case that the M � smallest
norm rows ofW (rsp. the corresponding columns v � j) are discarded. One can see that for all
values a good reconstruction is achieved (re � 0.6). Even if no row is discarded the result
is only slightly worse than for one or two discarded rows. The dependencies of the first
component are ‘averaged’ by the vast majority of components that carry no dependencies
in this case. The conspicuous large variance of the error for larger numbers M � might be
due to convergence instabilities or close to Gaussian distributed columns u � j . In either case
it gives rise to discard as few components as possible.

patch size M µre σre

2 � 2 0.4361 0.0383
3 � 3 0.2322 0.0433
4 � 4 0.1667 0.0263
5 � 5 0.1408 0.0270
6 � 6 0.1270 0.0460

Table 2.2: Separation result of the Two-Step
algorithm performed on a set of 8 correlated
passport images (cf. figure 2.16, top row). The
table shows the average reconstruction error
µre and it’s standard deviation σre calculated
from 9 different mixtures.

To evaluate the influence of the patch size M, the Two-Step algorithm was applied

40 CHAPTER 2. INSTANTANEOUS LINEAR FUNCTIONS

A B

C

1 6 11 16 21 26 31 36
−0.2

0

0.2

0.4

0.6

0.8

1 length of independent components
mutual information

Figure 2.17: A: Rows of the matrixW estimated using FastICA from 105 patches of size 6 � 6
of a linear mixture of the ‘passport photos’ dataset (figure 2.16.B). The rows are sorted by
increasing Euklidean norm from left/top to right/bottom. B: The corresponding columns of
the matrixW � 1. C: Euklidean length of w j � (stars) and the mutual information I � U1 j,U7 j

�
(squares) for all j � 1 . . .36. There is only one component with small norm that carries most
of the dependencies between the sources 1 and 7.

1 6 11 16 21 26 31 36
0

2

4

6

8

10

large row norm small row norm

Figure 2.18: Single components v � j of the passport photo dataset used to generate input for
the second ICA. Only the first (smallest norm) component causes bad reconstruction error
for the second ICA step. The reconstruction error (line) was averaged over 6 individual
trials (circles) with randomly initialized mixing matrices A.

2.6. MULTI-DIMENSIONAL ICA 41

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

M �
Figure 2.19: The M � rows with the smallest norm were discarded. All values of M � provide
good reconstruction errors in the second step. Note the slightly worse result for M � � 0.
The reconstruction error (line) was averaged over 6 individual trials (circles) with randomly
initialized mixing matrices A.

to 9 different mixtures of the passport photo sources using patch sizes between M �
2 � 2 and M � 6 � 6. Table 2.2 shows the mean and standard deviation of the achieved
reconstruction error. The elements of the mixing matrix A were randomly drawn from a
normal distribution with mean zero and variance one. FastICA was used for both steps,
where 105 sample patches were used to extract the optimal features and 2.5 � 104 samples
were used to estimate W. The smallest row of W was always discarded. The algorithm
shows a quite robust performance, and even for patch sizes of 2 � 2 pixels a fairly good
separation result is achieved.

Chapter 3

Optimal Linear Filters

In chapter 2 we defined instantaneous linear functions on real valued stochastic signals
and had a closer look at various algorithms for instantaneous linear signal processing. It
turned out that it can be quite useful to consider temporal structure and dependencies in
the stochastic signal, even if the function to be estimated is an instantaneous one.

Thus, the idea which suggests itself is to incorporate temporal structure also into the
signal processing function leading to non-instantaneous functions, so called filter functions.
This chapter is devoted to the unsupervised learning of optimal linear filters and multi-
channel filters.

3.1 Optimal filtering for template detection
Template detection aims on finding time steps t, together with amplitudes vt, at which the
stochastic signal � xt

�
t � I approximately exhibits a given template � ξτ �

τ � J scaled by vt such
that for τ � Jξ

xt � τ � vtξτ .

If � xt
�
t � I is generated by the model

xt
� �
τ � J

vt � τξτ � nt , (3.1)

where � vt
�
t � I is a real valued, sparse stochastic signal, and � nt

�
t � I is a noise signal, then

template detection amounts to detecting � vt
�
t � I from the observed stochastic signal xt. This

procedure is called deconvolution.
In the following we assume scalar valued signals, E � R, and discrete, one-dimensional

index sets, I � Z. The results, however, can be easily generalized for vector valued, multi-
channel signals. The later case is explicitly addressed in section 3.3 with the derivation of
optimal multi-channel filters for template discrimination.

With regard to the spike sorting applications which are presented below, we assume the
occurrence of the templates to be sparse, which means that vt

� 0 (rsp. vt is close to zero,
compared to it’s variance) with probability close to 1.

The problem of deconvolution can be addressed by the application of an appropriate
linear filter. We try to find a filter that responds to the template with a narrow impulse.
This way after filtering even partially overlapping templates can be detected because they
are transformed into partially overlapping narrow impulses, the amplitudes of which are
less distorted.

Figure 3.1.A shows a signal which was generated according to the data model (3.1). The
template ξ was linearly superimposed at several times t with vt � �

0, 0.5, 0.75, 1.0 � . There
is no noise in this example. We can see noticeable overlapping templates near time steps
500 and 900, which make it hard to detect them individually and estimate their amplitudes.
The output of the optimal filter in this study is shown on panel B. The responses to the

42

3.1. OPTIMAL FILTERING FOR TEMPLATE DETECTION 43

A

100 200 300 400 500 600 700 800 900 1000
−1

0

1

100 200 300 400 500 600 700 800 900 1000
−1

0

1

100 200 300 400 500 600 700 800 900 1000
−1

0

1

100 200 300 400 500 600 700 800 900 1000
−1

0

1

100 200 300 400 500 600 700 800 900 1000
−1

0

1

B 100 200 300 400 500 600 700 800 900 1000
−1

0

1

100 200 300 400 500 600 700 800 900 1000
−1

0

1

100 200 300 400 500 600 700 800 900 1000
−1

0

1

100 200 300 400 500 600 700 800 900 1000
−1

0

1

100 200 300 400 500 600 700 800 900 1000
−1

0

1

Figure 3.1: A: A signal containing spikes with the shape of the template shown in figure
3.4.A. B: response of the optimal noiseless filter (cf. figure 3.2, top row, α � 0)

f
�
α � 0 ξ � f

�
α � 0 f

�
α � 0.05 ξ � f

�
α � 0.05

10 20 30 40 50
−15

−10

−5

0

5

10

15

10 20 30 40 50
−15

−10

−5

0

5

10

15

20 40 60 80 100

−0.2

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100

−0.2

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

−1

−0.5

0

0.5

1

10 20 30 40 50

−1

−0.5

0

0.5

1

20 40 60 80 100

−0.2

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.2: Optimal filters to the template shown in figure 3.4.A achieved from constraint
optimization (3.6) (top row) and from (3.23) (bottom row) for values of the regularization
parameter α � 0 (left half) and α � 0.05 (right half).

templates are sharp peaks, the amplitude of which can easily be detected also at the regions
of overlap.

The way in which this filter can be derived in situations where the template is known
beforehand, will be the subject of this section. It will provide insight into the relations
between the optimal filter and the template. Using this insight we will then develop an
algorithm which estimates the optimal filter together with the template using the recorded
signal alone.

3.1.1 Optimal filter for a given template
In this section we derive the optimal linear filter f

�
that would transform the template ξ

into an impulse with minimal width.
The response of a filter � ft

�
t � J f to the template � ξt

�
t � Jξ is given by

lτ � � ξ � f �
τ

� �
t � J f

t � τ � Jξ

ξt � τ ft , (3.2)

where � denotes the cross-correlation. ξ may be defined over the closed interval Jξ �
	
� Tξ,Tξ � and f over J f

� 	 � T f ,T f � . Outside these intervals we assume ξ and f to be zero.
Without loss of generality be Jξ � J f . We will also use vector notation for the template and

44 CHAPTER 3. OPTIMAL LINEAR FILTERS

for the filter, and we indicate vectors with the symbols

ξ̄ � � ξTξ , . . . , ξ � Tξ
� T and f̄ � � fT f , . . . , f � T f

� T .

We now require the response lτ to be as close to zero as possible for all τ and to be equal to 1
at τ � 0. This is a constrained optimization problem and can be solved using the technique
of Lagrange multipliers. Minimizing the squared norm of l under the constraint l0

� 1, the
corresponding Lagrange equation becomes

L � Tl�
τ � � Tl

l2τ � λ � � l0 � 1 � , Tl
� T f � Tξ . (3.3)

The unconstrained optimization problem is quadratic and positive definite while the con-
straint is linear in f . Thus, a unique solution exists at the stationary point of the Lagrangian
and can be found in one step of a Newton iteration (cf. appendix D for α � 0). In vector
notation the optimal filter is given by

f̄
� � H � 1ξ̄

ξ̄
TH � 1ξ̄

, (3.4)

where
Hkl

� 2 � ξ � ξ �
k � l

is the Hessian of the Lagrange equation w.r.t. f . It is a matrix containing the autocorrelation
function of ξ shifted along the main diagonal.

3.1.2 Problems with white Gaussian noise
The amplitude of the filter can be several orders of magnitude higher than the amplitude
of the wave form. This effect becomes apparent when the signal is corrupted with noise.
Figure 3.3.A shows the signal of figure 3.1.A, but corrupted with white Gaussian noise with
standard deviation of just 2% of the maximum peak amplitude. Figure 3.3.B shows the
corresponding response after application of the optimal filter according to equation (3.4).
Whereas in the noiseless case (figure 3.1.B) one obtains nicely pronounced, narrow peaks for
every spike, a little bit of noise already gives rise to strong artifacts such that the response
gets useless. In the course of filtering additive, white Gaussian noise nt becomes

� n � f �
t

�
T f�

τ � � T f

nt � τ fτ .

Because the noise is white, the variance σ2
n � f of the noise after filtering is

σ2
n � f

� σ2
n

T f�
τ � � T f

f 2
τ . (3.5)

The variance σ2
n � f grows linearly with the squared Euclidean norm of f̄ . In order to keep

noise artifacts small, we add a regularization term to the Lagrangian, equation (3.3), that
introduces a bias in favor of vectors f̄ with a small norm. The Lagrangian becomes

L � Tl�
τ � � Tl

l2τ � α
T f�

t � � T f

f 2
t � λ � l0 � 1 � , (3.6)

where α is the non-negative regularization parameter, which allows to trade low variance
σ2

n � f in the output noise for the sharpness of the peak in the filter response. The optimal
filter is given by equation (3.4), but with 2α added to the diagonal of H,

Hkl � α � � 2 � ξ � ξ �
k � l � 2α δk � l . (3.7)

3.2. OPTIMAL FILTERING FOR AN UNKNOWN TEMPLATE 45

A

100 200 300 400 500 600 700 800 900 1000
−1

0

1

100 200 300 400 500 600 700 800 900 1000
−1

0

1

100 200 300 400 500 600 700 800 900 1000
−1

0

1

100 200 300 400 500 600 700 800 900 1000
−1

0

1

100 200 300 400 500 600 700 800 900 1000
−1

0

1

B

100 200 300 400 500 600 700 800 900 1000
−1

0

1

100 200 300 400 500 600 700 800 900 1000
−1

0

1

100 200 300 400 500 600 700 800 900 1000
−1

0

1

100 200 300 400 500 600 700 800 900 1000
−1

0

1

100 200 300 400 500 600 700 800 900 1000
−1

0

1C

100 200 300 400 500 600 700 800 900 1000
−1

0

1

100 200 300 400 500 600 700 800 900 1000
−1

0

1

100 200 300 400 500 600 700 800 900 1000
−1

0

1

100 200 300 400 500 600 700 800 900 1000
−1

0

1

100 200 300 400 500 600 700 800 900 1000
−1

0

1

Figure 3.3: Influence of noise to the response of the optimal filter. A: Signal corrupted with
white, Gaussian noise with σn

� 0.02. B: Response of the optimal filter (figure 3.2, top row,
α � 0). C: Response of the optimal filter that takes noise into account (figure 3.2, top row,
α � 0.05).

For the derivation see appendix D.
The trade off between the level of noise and the concentration of the filter response is

illustrated in figure 3.4.B . The norm
�
f̄
�
of the optimal filter for the template shown in figure

3.4.A and the deviation of l from a delta pulse, � τ l2τ � 1, are plotted as functions of the
regularization parameter α. If α is close to zero, the filter reaches its maximally peaked
response, but the level of noise is high. For large values of α, H is almost diagonal, and
the filter approaches the pseudo inverse f̄ � � ξ̄T

ξ̄ � � 1ξ̄ of ξ̄. The pseudo inverse provides
the maximum signal to noise distance in its output, but the response of the filter is not
specifically concentrated at τ � 0 in this case.

For the noisy signal in figure 3.3, we computed the optimal filter with α � 0.05. This
amplifies the noise only by a factor of � 2.5 and still yields narrow peaks (cf. figure 3.3.C).
Figure 3.2, top row, shows this filter, together with the filter for α � 0. The regularized filter
is smoother and has lower amplitude, than the noiseless optimal filter.

3.2 Optimal filtering for an unknown template

In the previous section we showed how an optimal filter can be detected if the actual
template ξ is known. In practice, however, this is usually not the case. In the following
section we will show how the Hessian H can be estimated from the data alone making use
of the particular statistical properties of the recorded signal. Then, in sections 3.2.2 and 3.2.3
an unsupervised learning method will be presented that is able to find an almost optimal
filter without knowing the template by means of ICA techniques. From this filter, together
with H, an approximate template can be inferred.

3.2.1 Estimating the Hessian from the data

From the data generated according to equation (3.1) one can estimate H by means of the
autocorrelation function of the recorded signal. This fact is summarized in the following
theorem:

46 CHAPTER 3. OPTIMAL LINEAR FILTERS

A

10 20 30 40 50

−0.5

0

0.5

1

B

10
−4

10
−2

10
0

10
2

10
−1

10
0

10
1

10
2

α

Figure 3.4: A: The template wave form that was used to produce the toy examples in figures
3.1 and 3.3. B: Influence of the regularization parameter α to the optimal filter. Optimal
filters to the template shown left have been computed for various values of α. Dashed line:
Euclidean length of the optimal filter. Solid line: � τ l � τ � 2 � 1.

Theorem 3.1 For data generated according to the model

xt
� �
τ

vt � τξτ � nt ,

where � vt
�
t � I is a stationary, white signal with variance σ2

v
� 〈v2

t

〉

�
〈

vt
〉2

, the following holds

1. For the regularization parameter α assuming the value

α � α � � σ2
n

σ2
v
, (3.8)

the Hessian given by equation (3.7) is

Hkl � α � � � 2

〈

xtk xtl

〉

�
〈

xtk

〉 〈

xtl

〉

σ2
v

, tk � tl
� k � l . (3.9)

2. The filter

f̄ � α � � � H � 1 � α � � ξ̄
ξ̄

TH � 1 � α � � ξ̄
(3.10)

yields the filtered signal x � f with the smallest variance.

Note: This theorem states that it is possible to derive the Hessian for one particular value
α
�
, equation (3.8), from the data alone and that α

�
yields the optimal tradeoff between noise

robustness and peak sharpness (cf. figure 3.4.B) in terms of the output variance of the filtered
signal1. Minimal output variance is the criterion for the optimal trade off value α for the
following reason: When for a filter f̄ � α � only α is changed, according to the constraint
in equation (3.6), the peak amplitudes of the filtered templates remain constant. Thus, in
the signal with the smallest variance, the peaks are easiest to detect. Taking α too small
would increase the output variance due to large noise artifacts. Taking α to large, however,
would lead to coarse peaks and, hence, to large values beside the peaks also increasing the
variance.

Proof: Let us consider the mixed second central moments of the signal x. If the noise n
has zero mean and is uncorrelated to the intrinsic signal v, we obtain

1Note that equation (3.10) is not yet sufficient to estimate f from the data since it still depends on ξ. An
estimator for f will be derived in the following sections.

3.2. OPTIMAL FILTERING FOR AN UNKNOWN TEMPLATE 47

〈

xtk xtl

〉

�
〈

xtk

〉 〈

xtl

〉 �
〈 � �

τ1

vtk � τ1ξτ1 � ntk � � �
τ2

vtl � τ2ξτ2 � ntl � 〉
�
〈 �
τ1

vtk � τ1ξτ1 � ntk

〉 〈 �
τ2

vtl � τ2ξτ2 � ntl

〉

� �
τ1

�
τ2

ξτ1ξτ2 � 〈vtk � τ1 vtl � τ2

〉

�
〈

vtk � τ1

〉 〈

vtl � τ2

〉 �
� 〈ntk ntl

〉

�
〈

ntk

〉 〈

ntl

〉

because the mixed covariances of v and n vanish. The term
〈

vtk � τ1 vtl � τ2

〉

�
〈

vtk � τ1

〉 〈

vtl � τ2

〉

is the auto covariance of v at delays tk � τ1 � � tl � τ2
� . Because the intrinsic signal is

temporally white, this term vanishes for all tk � τ1
� tl � τ2. The noise covariance term

vanishes for tk
� tl. We obtain

〈

xtk xtl

〉

�
〈

xtk

〉 〈

xtl

〉 � �
τ

ξτξtl � tk � τ � 〈v2
tk � τ
〉

�
〈

vtk � τ
〉2 � � σ2

nδtk � tl

� σ2
v � � ξ � ξ � � tl � tk

� � σ2
nδtk � tl , (3.11)

Putting equation (3.11) into equation (3.9), the proof of the first part of the theorem is
complete.

Be x̄t
� � xt � T f , . . . , xt � T f

� T a clip of the length of the filter f̄ taken from the signal x at
time t. Using equation (3.4) we can write the variance of the filtered signal as

� 〈 � x̄T
t f̄ � 2
〉

�
〈

x̄T
t f̄
〉2 � �

〈 � x̄T
t

H � 1ξ̄

ξ̄
TH � 1ξ̄

� 2 〉

� � 〈x̄T
t

〉 H � 1ξ̄

ξ̄
TH � 1ξ̄

� 2

� ξ̄
TH � 1 � 〈x̄tx̄T

t

〉

�
〈

x̄t
〉 〈

x̄T
t

〉 �
H � 1ξ̄

� ξ̄TH � 1ξ̄
� 2 , (3.12)

where we made use of the fact that
〈

x̄t
〉

is a vector of constants. According to theorem C.1
the minimum of equation (3.12) is achieved for equation (3.9), i.e. for α � α � .

�

With theorem 3.1 we have an easy way to estimate the Hessian up to a constant factor
containing the unknown quantity σ2

v. This factor, however, cancels in equation (3.4) and,
hence, has not to be estimated. In a practical application we may have the recordings already
corrected by their means due to the recording channel. Thus, we can simply compute

Ĥ � 1
Tx

Tx � T f � 1�
t � T f

x̄tx̄T
t

as an estimate for the Hessian.
We now are able to estimate H, which represents the connection between f and ξ. In the

next section we will show how f can be derived from the data alone using ICA techniques.
Then, together with H, from f ξ can be derived.

3.2.2 ICA and optimal filters
With the optimal filter we try to cancel (as well as possible) the effect of the convolution of
the intrinsic signal v with the template ξ, equation (3.1). Consider vectors containing small

48 CHAPTER 3. OPTIMAL LINEAR FILTERS

signal clips

x̄t
� � xt � T f , . . . , xt � T f

� T
,

v̄t
� � vt � Tξ � T f , . . . , vt � Tξ � T f

� T
,

n̄t
� � nt � T f , . . . , nt � T f

� T
.

With that we can write the convolution as the matrix multiplication

x̄t
� Ξv̄t � n̄t , (3.13)

where Ξ is a � 2T f � 1 � � � 2Tξ � 2T f � 1 � matrix which contains the template ξ in every
row, shifted by one from one row to the next, Ξkl

� ξl � k � Tξ . Equation equation (3.13) is the
paradigm of over-complete, noisy ICA. According to our data model the mixed intrinsic spike
trains are temporally white. Hence, the elements of v̄t can be interpreted as statistically
independent sources. The elements of n̄t can be interpreted as additional sources,

x̄t
� � Ξ I2T f � 1

� �
v̄t

n̄t

�
,

where I2T f � 1 is the unity matrix of size 2T f � 1 and � Ξ I2T f � 1

�
is the concatenation of the

two matrices. Thus we have a mixture of 4T f � 2Tξ � 2 sources (2Tξ � 2T f � 1 from v̄t and
2T f � 1 from n̄t) giving rise to 2T f � 1 observations.

It is well known that for over-complete, noise corrupted mixtures a perfect source
separation in general does not exist Lewicki and Sejnowski (2000); Lee et al. (1999). For a
perfect separation f̄ Tx̄t

� vt would hold. This would mean that the vector f̄ is orthogonal
to all columns of Ξ, but the middle, and orthogonal to all(!) columns of the unity matrix.
Clearly such f̄ is not realizable. An intuitive measure for how close f̄ is to the hypothetic
optimal one is the squared sum of its scalar product with all columns of Ξ and the unity
matrix under the constraint that the scalar product with the middle column of Ξ (which is
ξ̄) equals 1. We weight the columns of the unity matrix by some α which shall reflect the
strength of the noise compared to the variance of vt. The Lagrangian of this problem is

L � f̄ T
ΞΞT f̄ � α f̄ T f̄ � λ � � f̄ T

ξ � 2 � 1
�

� �
k

�
l

� f̄kΞkl
� 2 � α �

k

f̄ 2
k � λ � �

k

� f̄kξ̄k
� 2 � 1 �

�
T f�

τ � � T f

T f � Tξ�
t � � T f � Tξ

� f � τξt � τ � 2 � α
T f�

τ � � T f

f 2
τ � λ

��
T f�

τ � � T f

� fτξτ � 2 � 1

��
,

where f̄k � fT f � k � 1 is the k-th element of f̄ and ξ̄k
� ξT f � k � 1 is the k-th element of ξ̄. But this

is exactly equation (3.6), and we note that the best possible solution to the over-complete,
noisy ICA is also the optimal filter. Thus, we can hope to find the optimal filter using ICA
on clips of the recorded signal.

3.2.3 Maximum skewness
We will now take a closer look at an ICA-algorithm which is related to FastICA Hyvärinen
and Oja (1997). We consider at first the noise-free case and in the next section the case where
the recordings are corrupted by Gaussian, white noise.

According to our assumptions about the occurrence of the template, vt is temporally
white, i.e. iid. with respect to t. Further, vt be subject to a non-Gaussian distribution p � vt

�
that does not depend on t. Then, there exists a cumulant κd 	 vt � of order d � 2 which is
different from zero. We assume κd 	 vt � to be finite and positive, without loss of generality.

3.2. OPTIMAL FILTERING FOR AN UNKNOWN TEMPLATE 49

After the convolution with the template ξ, we obtain

κd 	 xt � �
Tξ�

τ � � Tξ

ξd
τκd 	 vt � . (3.14)

To be invariant to affine transformations, we consider the standardized cumulant ρd : �
κd � κ d

2
2 . Standardized cumulants of third or higher order can be interpreted as measures of

deviation from normality of the underlaying distribution because they are zero for Gaussian
distributions. From theorem C.2 follows

� �
τ

�
ξτ

� 2 � 1
2
� � �

τ

�
ξτ

� d � 1
d �

�

�����
�
τ

ξ2
τ

�����
1
2
�

�����
�
τ

ξd
τ

�����
1
d

(3.15)

� �

����� κd 	 vt �
� κ2 	 vt � � d

2

����� �
������
κd 	 vt � � τ ξd

τ

� κ2 	 vt � � τ ξ2
τ � d

2

������ �
����� κd 	 xt �

� κ2 	 xt � � d
2

����� . (3.16)

The absolute value of the standardized cumulant must decrease as a result of the convolu-
tion. Therefore, the objective for the blind deconvolution is to maximize the absolute value
of the standardized cumulant of the filtered signal

yt : �
T f�

τ � � T f

xt � τ fτ � x̄T
t f̄ (3.17)

with respect to the filter f̄ . Assuming zero mean for the recordings, the corresponding
objective function is given by

L � �
ρd 	 yt �

� �
�
κd 	 yt �

�

κ2 	 yt � d
2

�
�
κd 	 yt �

�

� f̄ T 〈x̄tx̄t
〉

f̄
� d

2

�
�
κd 	 yt �

�

� f̄ TH f̄
� d

2

. (3.18)

However, it is more convenient to see this as a constrained optimization problem. Since we
are not interested in the norm of f̄ and since the above cost function is invariant to it, we
are free to chose the norm of f̄ such that f̄ TH f̄ � 1 and the denominator in equation (3.18)
vanishes. The Lagrangian for this constrained optimization problem is

L � �
κd 	 yt �

� � λ � f̄ TH f̄ � 1 � . (3.19)

In practical applications the cases d � 3 and d � 4 are the most interesting ones. There
the standardized cumulants ρ3 and ρ4 represent the skewness (a measure for the deviation
from the symmetry) and the kurtosis (a measure for the sparseness) of the underlaying
distribution, respectively. For normalized mean and variance, κ1

� 0, κ2
� 1, the third-

and fourth-order cumulants are given by third-, respectively fourth-order central moments
alone (up to a constants). This is important for the algorithm as the computation of sample
cumulants reduces to the computation of sample moments. Taking derivatives of sample
moments is simple and in principle allows for online algorithms. In contrast, for d � 4,
products of sample moments occur in the computation of sample cumulants, making online
implementations difficult.

The solution of the Lagrangian is found at the stationary point, i.e. the gradients w.r.t. f̄
and λ vanish. For d � �

3, 4 � this is given with

0 � � L
� f̄

� d
〈

� x̄T
t f̄ � d � 1x̄t

〉 �
λH f̄ , 0 � � L

�
λ

� f̄ TH f̄ � 1 .

The solution is a fixed point, which can be rapidly found by the repeated iteration of

f̄ � H � 1
〈

� f̄ Tx̄t
� dx̄t
〉

, (3.20)

f̄ � f̄�
f̄ TH f̄

. (3.21)

50 CHAPTER 3. OPTIMAL LINEAR FILTERS

For d � 4 this is in principle the same fixed point iteration as in Hyvärinen and Oja (1997),
and a convergence proof is given there. The only difference is that no sphering is done here
as a preprocessing step, so H appears in the iteration formula.

3.2.4 Relation to optimal filters
After the iteration of equations (3.20) and (3.21) has converged, we obtain a filter f which,
for example, maximizes the skewness in it’s output. We now have to investigate how f
relates to the desired optimal filter and what happens if sensor noise is present. In other
words, we have to check whether f really minimizes equation (3.6).

The second- and d-th-order cumulants of the signal y after filtering are given by

κ2 	 yt � � κ2 	 vt �
�
τ

l2τ � σ2
n

�
τ

f 2
τ , κd 	 yt � � κd 	 vt �

�
τ

ldτ .

Because white Gaussian noise has no higher order (� 2) cumulants, there is no such term
for the noise. The objective function equation (3.18) can now be written as

L � κd 	 vt � � τ ldτ

� κ2 	 vt � � τ l2τ � σ2
n
�
f̄
�
2 � d

2

.

Since we expect a positive standardized cumulant ρd, L is positive at least in the neighbor-
hood of its maximum, and we can omit the

� � �
function. Maximizing L is equivalent to

minimizing

L � � κd 	 vt � 2
d

κ2 	 vt � L � 2
d � � τ l2τ � σ2

n
κ2

�
f̄
� 2

� � τ ldτ � 2
d

. (3.22)

Because this function is invariant under multiplication of f̄ with any scalar, we can restrict
the set of solutions to those that yield a denominator equal to 1. Thus, we have to

minimize
�
τ

l2τ � α � f̄
� 2 s.t.

�
τ

ldτ � 1 , (3.23)

where α � σ2
n � κ2 	 vt � . The cost function has the same form as equation (3.6). Also the value

for the regularization parameter α is the optimal one (cf. theorem 3.1). Only the constraint
� τ ldτ � 1 is different from the constraint l0

� 1, but due to the power of d it is quite similar
for a narrow impulse response (small lτ for τ � 0).

Figure 3.2 shows the optimal filters for the template of figure 3.4.A computed for two
different values of α from equation (3.23) with d � 3 and from equation (3.6). Equation
(3.23) was solved indirectly through minimizing equation (3.22) using gradient descent. For
comparison, the resulting filters have been scaled to yield a peak value of l0

� 1 rather than
� τ l3τ � 1. One can see that for α � 0 the filters and also the impulse responses are almost
identical. For α � 0.05 the filters are still very similar. But we note that the maximum
skewness filter has a somewhat smaller amplitude for the same value of α. This is an effect
of the constraint in equation (3.23), which allows for slightly broader peaks.

Although it is actually the solution of equation (3.6) and not of equation (3.23), f̄ �
� H � 1ξ̄ � � � ξ̄TH � 1ξ̄ � can be used as a connection between f and ξ. Simple matrix calculus
yields

ξ̄ � H f̄

f̄ TH f̄
. (3.24)

When this is inserted into equations (3.20) and (3.21), a fixed point iteration for ξ is obtained

ξ̄ � 〈 � ξ̄TH � 1x̄t
� 2

x̄T
t

〉

(3.25)

ξ̄ � ξ̄�
ξ̄

THξ̄
. (3.26)

3.3. OPTIMAL MULTI-CHANNEL FILTERS FOR TEMPLATE DISCRIMINATION 51

Note that the constraint in equation (3.23) does not guarantee the peak of the filter
response to be in the center. According to the permutation ambiguity of ICA, the algorithm
yields the solution for an arbitrary column of Ξ, which contain the template shifted by an
arbitrary amount. In the conducted numerical experiments however it was observed that
the templates were always more or less covered by the resulting filters, i.e. the filters were
not clipped due to boundary effects.

3.3 Optimal multi-channel filters for template discrimination

3.3.1 Template discrimination
In section 3.1 we derived a noise robust, optimal linear filter that responds to a given
template with a narrow impulse and, hence, is suitable to detect the occurrence of the
template. The question arises whether such filters could also allow to distinguish between
different templates in the sense that every filter responds to its ‘tuned-in’ template with a
narrow impulse and suppresses all other templates (and possibly any noise).

A little experiment shows that the single-template filters according to equation (3.4)
obviously do not fulfill this task. Consider the two different templates shown in figure
3.5.A . The panels below B show the shape of the two filters that optimally detect the
corresponding template under noise conditions (α � 0.05). From looking at the panels
below C, which show the responses of all filters to all templates, one can see that both filters
respond to their own template with a sharp impulse of unit amplitude, but hardly suppress
the other templates.

A B C

−1

0

1

20 40
−1

0

1

20 40

−1

0

1

−40 −20 0 20 40
−1

0

1

−40 −20 0 20 40

Figure 3.5: Attempt to discriminate two different templates with linear filters. A: Two
slightly different templates. B: Individual optimal filters according to equations (3.4) and
(3.7) with α � 0.05. C: The response of the filters to the corresponding templates (diago-
nal) and non-corresponding templates (off-diagonal). Both filters cannot discriminate the
two templates. Underlaying gray line: Optimal discrimination filters derived according to
equation (3.46) and their responses. For the explanation of the bad performance see text.

Thus, the derivation of the filters must be adopted so that they do not only suppress
shifted versions of it’s own template, but also shifted and unshifted versions of all other
templates. Two different approaches therefore are given in the following sections.

The derivation of the optimal filter for a single template in section 3.1 was done for
convenience, but without true loss of generality, for scalar valued signals, xt � E �

R. At
this point one should note that template discrimination by means of linear filters usually
does not yield satisfactory results for scalar valued signals and templates. The gray lines
in panels B and C of figure 3.5 are the results for optimal discriminating filters as they
will be derived in the following (according to equation (3.46)). They are hardly better
than the single-template filters. This can be explained as follows: Imagine there are M
different templates, one of which the filter shall respond to when it is exactly aligned, the

52 CHAPTER 3. OPTIMAL LINEAR FILTERS

others shall be fully suppressed. M templates give rise to M intrinsic signals � vi
t

�
t � I, i �

�
1,M �

which determine the occurrence of the templates. In relation to equation (3.13) and the
argumentation below, the number of columns of Ξ increases to M � 2T f � 2Tξ � 2 � � 1 while
the dimensionality of the source separation problems remains 2T f � 1. Thus, the problem
gets harder.

If, however, we have vector-valued signals, xt, ξt, f t � E �
R

N , then the ‘overcom-
pleteness’ of the source separation problem relatively reduces with increasing N. The ratio
between the number of observations and the number of sources,

M � 2T f � 2Tξ � 1 � � � 2NT f � 1 � � 1
2NT f � 1

gets closer to one.
In the following we will refer to vector-valued signals as multi-channel signals, where

every vector component is one channel. We indicate the presence of multiple channels
with bold faced symbols, for example x or � xt

�
t � I, where � xk,t

�
t � I, or shortly xk, denotes the

k-th channel of x. Different multi-channel signals are distinguished with superscripts, for
example � ξi

τ
�
τ � Jξ , or shortly ξi, denotes the i-th template, where ξi

k or � ξi
k,t

�
t � Jξ is the k-th

channel of the i-th template.

3.3.2 Filter for given templates – derivation in the frequency domain
The first approach to optimal linear multi-channel filters for template discrimination goes
back to Roberts and Hartline (1975). They made use of the convolution theorem in order to
compute the response of the j-th filter to the i-th template in the frequency domain,

l̂i j � ω � � �
k

ξ̂i
k � ω � � f̂ j

k � ω � � C
. (3.27)

The hat symbol denotes the corresponding quantity in the frequency domain, achieved
through discrete Fourier transformation, e.g.

ξ̂i
k � ω � � 1

Tξ

Tξ � 1�
τ � 0

ξi
k,τ exp ��� 2πjω � .

��� � C denotes a complex conjugate. l̂i j � ω � is the Fourier transform of a sum of cyclic cross
correlations and implies that ξi, f j and li j have common length T. The objective for opti-
mization is to minimize the power of the response li j for i � j, together with the average
power of the response to a stationary, ergodic noise process n � � nk,t

�
t � I,k �

�
1,N � . At the same

time the filters shall provide unit amplitude of the response for i � j.
According to Parseval’s theorem, the power of li j can be calculated in the time domain

as well as in the frequency domain.

1
T

T � 1�
t � 0

li j � t � 2 � 1
T2

T � 1�
ω � 0

��� l̂i j � ω � ��� 2

� 1
T2

T � 1�
ω � 0

�
kl

� f̂ j
k � ω � � C

ξ̂i
k � ω � � ξ̂i

l � ω � � C f̂ j
l � ω � (3.28)

Similarly, the noise power can be calculated in the frequency domain.

σ2
j

�
〈

1
T2

T � 1�
ω � 0

�����
�

k

n̂k � ω � � f̂ i
k � ω � � C

�����
2 〉

� 1
T2

T � 1�
ω � 0

�
kl

� f̂ j
k � ω � � C

Ĉkl � ω � f̂ j
l � ω � , (3.29)

3.3. OPTIMAL MULTI-CHANNEL FILTERS FOR TEMPLATE DISCRIMINATION 53

where Ĉkl � ω � � 〈n̂k � ω � � n̂l � ω � � C
〉

is the average cross power spectrum of the noise signals
nk and nl. Minimizing (3.28) and (3.29) leads to the following constrained optimization
problem:

min
T � 1�
ω � 0

�
kl

� f̂ j
k � ω � � C

�� �
i � j
ξ̂i

k � ω � � ξ̂i
l � ω � � C � αĈkl � ω �

��
f̂ j
l � ω � (3.30)

s. t. lii � 0 � � 1
T

T � 1�
ω � 0

�
k

ξ̂i
k � ω � � f̂ i

k � ω � � C � 1 . (3.31)

The value of α controls the balance between template discrimination and noise suppression.
The solution of ((3.30)) and ((3.31)) is found using the technique of Lagrange multipliers
and is given by

f̂ j
k � ω � � λ j

�
l

�� �
i � j
ξ̂i

k � ω � � ξ̂i
l � ω � � C � αĈkl � ω �

�� � 1

kl

ξ̂
j
l � ω � , (3.32)

λ j
� T

� kl ξ̂
j
k � ω �

�
� i � j ξ̂

i
k � ω � � ξ̂i

l � ω � � C � αĈkl � ω � � � 1

kl
ξ̂

j
l � ω �

, (3.33)

where ��� � � 1
kl denotes the kl-th element of the inverse of the matrix within the brackets.

3.3.3 Filter for given templates – derivation in the time domain

The drawback of the approach in the frequency domain is that (3.27) is not valid when
a long signal is filtered which contains the the template at an arbitrary position. In this
situation, the correct response of the filters to the templates is achieved from the non-cyclic
cross correlation functions,

li j
τ

� N�
k � 1

�
t � J f

t � τ � Jξ

ξi
k,t � τ f j

k,t . (3.34)

For the temporal index t, the summation can be assumed over the interval t � ��� . . . � ,
and ξ � t � � 0 for t � 0 or t � Tξ, and f � t � � 0 for t � 0 or t � T f . Unlike the approach in
the frequency domain, the filter length is not restricted to T f

� Tξ. In contrast to (3.34) the
cyclic cross correlation (3.27) leads to the response

li j
τ

� N�
k � 1

� T � τ � 1�
t � 0

ξi
k,t � τ f j

k,t �
T � 1�

t � T � τ
ξi

k,t � τ � T f j
k,t � , (3.35)

where 0 � τ � T, and � ξi
k,t

�
t � Jξ and � f j

k,t
�
t � J f are defined over Jξ � J f

� 	 0,T � 1 � .
In order to achieve template discrimination, the response of the optimal filter to non-

matching templates shall be as small as possible, while the response to the matching tem-
plate shall be a peak of unit amplitude. At the same time, the filter must not be too noise
sensitive. The variance of the response of the j-th filter to a stationary, ergodic, and zero
DC noise process nk � t � is

σ2
j � τ � � σ j

2 �
〈 � �

k

�
t

nk � t � τ � f j
k � t � � 2 〉

� �
t1t2

�
kl

〈

nk � t1
� nl � t2

� 〉 f j
k � t1

� f j
l � t2

� (3.36)

54 CHAPTER 3. OPTIMAL LINEAR FILTERS

regardless of the shift τ. Thus, the optimal filter in the time domain can be obtained from
the solution of the following constrained optimization problem:

Minimize
1
Tl

�
i

�
j � i

�
τ

� li j � τ � � 2 � α �
i
σi

2 (3.37)

subject to lii � 0 � � 1 .

Because li j � τ � � 0 for
�
τ
�
� 1

2 � Tξ � T f
� , we set Tl

� Tξ � T f � 1 and weight the influence of the
noise term by a factor α. The optimization problem (3.37) leads to the Lagrange equation

L � 1
Tl

�
i

�
j � i

�
τ

� li j � τ � � 2 � α �
i
σi

2 � �
i
λi � �

t,k

ξi
k � t � f i

k � t � � 1 � . (3.38)

The solution is found at a stationary point of the Lagrangian, i.e. where the partial deriva-
tives of L with respect to f i

k � t � and λi vanish. We now chose a more convenient vector
notation. From the i-th filter, the i-th template and the noise process we construct the
vectors

f̄ i � � f i
1, � T f

, . . . , f i
1,T f
, . . . , f i

N, � T f
, . . . , f i

N,T f
� T (3.39)

ξ̄
i
τ

� � ξi
1, � T f � τ , . . . , ξi

1,T f � τ , . . . , ξi
N, � T f � τ , . . . , ξi

N,T f � τ � T (3.40)

n̄ � � n1, � T f , . . . , n1,T f , . . . , nN, � T f , . . . , nN,T f
� T , (3.41)

with ξi
k,t

� 0 for t � 0 or t � Tξ. All three vectors, f̄ i, ξ̄i � τ � , and n̄, are of the same length,
NT f . We further define the matrix Hi,

Hi : � 1
Tl

�
τ

ξ̄
i
τ � ξ̄i

τ

� T �
�
�

� Hi
11 � � � Hi

1N
...

. . .
...

Hi
N1 � � � Hi

NN

�
�

�
, (3.42)

where the matrices Hi
kl summarize the cross-correlation functions of ξi

k and ξi
l,

� Hi
kl � t1t2

� 1
Tl

�
τ

ξi
k,t1 � τξi

l,t2 � τ

� 1
Tl

� ξi
k
� ξi

l
�
t1 � t2

which are shifted along the main diagonals. The symbol � denotes the non-cyclic cross
correlation function. In a similar way we define the noise covariance matrix

C : � 〈n̄n̄T
〉 �

�
�

� C11 � � � C1N
...

. . .
...

CN1 � � � CNN ,

�
�

�
(3.43)

where the � t1, t2
� -th element of the matrix Ckl is given by

� Ckl
�
t1t2

� 〈

nk,t1 nl,t2

〉

� lim
T �

1
T

T � 1�
t � 0

nk,t � t1 � t2 nl,t .

We can compute the empirical expectation over time, because we assumed nk to be ergodic
and stationary.

3.3. OPTIMAL MULTI-CHANNEL FILTERS FOR TEMPLATE DISCRIMINATION 55

ξ1 ξ2 ξ3 ξ4 ξ5

−5

0

5

−5

0

5

−5

0

5

 0 0.5ms 1ms

−5

0

5

 0 0.5ms 1ms 0 0.5ms 1ms 0 0.5ms 1ms 0 0.5ms 1ms

Figure 3.6: Wave form templates averaged from manually identified events from a real
tetrode recording. Every column shows the four channels of one of the five templates
ξ1 . . . ξ5.

The Lagrangian can now be formulated in matrix/vector notation,

L � �
i
� f̄ i � T

�� �
j � i

H j � αC

��
f̄ i � �

i
λi

� � ξ̄i
0

� T
f̄ i � 1

�
.

The partial derivatives with respect to f̄ i and λi yield the set of equations

� L
� f̄ i

� 2

�� �
j � i

H j � αC

��
f̄ i � λiξ̄

i
0

� 0 , (3.44)

� L
�
λi

� � ξ̄i
0

� T
f̄ i � 1 � 0 , (3.45)

from which the solution is obtained as

f̄ i � 1
2
λi

�� �
j � i

H j � αC

�� � 1

ξ̄
i
0 , (3.46)

λi � 1
2

1

� ξ̄i
0

� T � � j � i H j � αC
� � 1
ξ̄

i
0

. (3.47)

3.3.4 Performance: Frequency domain vs. time domain
In the following both, the frequency domain approach (3.32) and the time domain approach
(3.46) to optimal multi-channel filters shall be compared in a spike-sorting application.
Therefore, from a small piece extracellular tetrode recordings spike events were manually
detected and classified. The data are described more detailed in section 3.5.1. All experi-
ments regarding multi-channel filters were done on the monkey dataset2 (figure 3.18). The

2This is not because of special properties of these data, but just a matter of the availability of data.

56 CHAPTER 3. OPTIMAL LINEAR FILTERS

ξ1 ξ2 ξ3 ξ4 ξ5

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1ms 0 1ms
−1

0

1

−1ms 0 1ms −1ms 0 1ms −1ms 0 1ms −1ms 0 1ms

f 1

f 2

f 3

f 4

f 5

Figure 3.7: Time domain responses (3.34) of the optimal filters derived in the frequency
domain to the templates shown in figure 3.6. The panel in the i-th row and j-th column
shows the course of li j � τ � , the response of the j-th filter to the i-th template. Dotted lines
indicate the three times standard deviation interval,

�
3σ j, of the noise after filtering. Gray

lines show the responses cyclically shifted by T samples in order to illustrate the symmetry
of the artifacts that can occur in the frequency domain approach.

detected events were used to estimate five different averaged wave form templates, which
are shown in figure 3.6. There were from 13 (ξ4) up to 110 (ξ2) sample wave forms available,
each of which had a length of Tξ � 40 samples (1.28 ms at 31.250 Hz sampling rate). The
noise covariance matrices C rsp. Ĉ were estimated from a piece of the recordings with no
foreground neural activity.

For better comparison both, the time and frequency domain filters, were computed with
T � T f

� Tξ � 40 samples. The parameter α would determine the output noise variance.
However, the functional relation between α and σi is not known analytically. Thus, in both
experiments α was adjusted numerically so that for the output noise held maxi σi � α � � 1

6 .
Hence, the peak amplitude in the response of matching templates was twice as large as the
3σ interval of the output noise, and peaks could be reliably detected. The adjustment of α
was achieved through a simple line search optimization procedure.

Figures 3.7 and 3.8 show the responses calculated according to (3.34) for the filters
derived in the frequency and in the time domain, respectively. Due to the constraint the
responses to the matching templates equal one at τ � 0. The responses to all other templates
shall be minimized. While the filter responses near τ � 0 are essentially the same in both
approaches, the frequency domain filter yields much larger responses left and right to the
centers. These incorrect values, ∆li j � τ � , have the symmetry

∆li j � τ � � � ∆li j � τ �
T � (3.48)

as indicated by the gray lines in figure 3.7. One can see that the incorrect values are shifted
by T samples and have opposit signs. This can be understood from equation (3.35). The
optimal filter derived in the frequency domain minimizes the sum of the response and the
shifted response and, hence, is insensitive for this type of artifacts.

3.3. OPTIMAL MULTI-CHANNEL FILTERS FOR TEMPLATE DISCRIMINATION 57

ξ1 ξ2 ξ3 ξ4 ξ5

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1ms 0 1ms
−1

0

1

−1ms 0 1ms −1ms 0 1ms −1ms 0 1ms −1ms 0 1ms

f 1

f 2

f 3

f 4

f 5

Figure 3.8: Time domain responses (3.34) of the optimal filters to the templates shown in
figure 3.6. Dotted lines indicate the three times standard deviation interval,

�
3σ j, of this

filters noise output.

In contrast to the frequency domain filters, the time domain filters can have a length
different from the templates, T f

� Tξ. For the frequency domain approach only longer
filters can be derived by zero padding the templates to the desired length. In the following
experiment the performance of both approaches for different filter length was compared.
Filters with T f in the range from 10 to 120 samples (0.32 . . .3.84ms) rsp. 40 to 120 samples
were computed with the time and frequency domain methods. For the frequency domain
filters, zero padding was done uniformly at both sides of the template. Again, the parameter
α was adjusted such that every filter set produced output noise with max j 3σ j

� 0.5 . As
a measure of performance, the maximum ‘non-matching’ amplitude and the average ‘non-
matching’ energy were computed from the filter responses,

E1
� max

i � j,τ
� �� li j � τ � �� � , E2

� 1
M � M � 1 �

�
i � j,τ

li j � τ � 2 , (3.49)

which are shown in figure 3.9 as functions of T f . As expected, with increasing filter length
the performance of the frequency domain filters approaches the time domain filters. The
same performance, however, can always be achieved with much shorter time domain filters.

While the artifacts that are introduced by the cyclic operations in the frequency domain
approach can be reduced with appropriate zero padding of the templates, this is at the
expense of longer filters. It could be shown that at the same performance the time domain
filters can be much shorter – even shorter than the templates. This may be of particular
interest for a real time application as the computation cost of the filtering operation is pro-
portional to the filter length. The length of the frequency domain filter can only be reduced
when the length of the template is reduced, which discards information contained in the
template. For increasing filter length, with the according zero padding, the performance
of time and frequency domain filters come close. But it is important to note that the case
T f

� 2Tξ is not at all the case where both approaches are equivalent, which directly follows
from (3.34) and (3.35) (cf. also T f

� 80 in figure 3.9). An equivalent solution could be only

58 CHAPTER 3. OPTIMAL LINEAR FILTERS

A B

20 40 60 80 100 120
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

filter length, T
f

20 40 60 80 100 120
0

0.5

1

1.5

filter length, T
f

time
freq.

Figure 3.9: The errors A: E1 and B: E2 (cf. equations (3.49)) plotted as functions of the filter
length T f of the time domain filter (black) and the frequency domain filter (blue). For filters
longer than Tξ � 40, in the frequency approach the wave form templates were zero padded
evenly at both sides (bold line) or from the left side only (thin line) to match the length of
the filter T f . At better performance the time domain approach allows for significant shorter
filters than the frequency domain approach.

achieved when also f could be zero padded. This, however is impossible in the derivation
(cf. equation (3.32)) of the frequency domain filters. Interestingly, it is crucial how the zero
padding of the templates is done. There was almost no performance gain for the frequency
domain filter, when the templates were enlarged at one side only, instead of padding them
uniformly at both sides (cf. thin blue lines in figure 3.9).

Because of the fact that filters derived in the time domain always show a better perfor-
mance and can be considerably shorter, one should prefer this approach whenever optimal
filters for template discrimination are needed.

3.4 Multi-channel blind deconvolution

We have seen that the optimal multi-channel filter for template discrimination is achieved
from the templates in a way very similar to the single-channel filter for template detection
(compare equations (3.46) and (3.4)). In section 3.2 we have seen that optimal filters can be
derived even for unknown templates. The same would be desirable also for the extension to
multiple channels and to multiple templates. We call such an unsupervised learning process
Multi-Channel Blind Deconvolution (MCBDC). The term deconvolution is with respect to an
assumed data model like in theorem 3.2.1 or, in the multi-channel, multiple templates case,

xk,t
� �

i

�
τ

vi
t � τξi

k,τ � nk,t . (3.50)

The observed data are the result of convolutions of temporarily white intrinsic signals vi

with multi-channel templates ξi and deconvolution is the reverse operation.

3.4.1 Fixed point iteration approach: template detection

In section 3.2 we have seen that the optimal filter for an unknown template can be found
by means of an unsupervised fixed point iteration. The question arises whether this is also
possible for optimal template discriminating filters. Assuming the generative data model,

3.4. MULTI-CHANNEL BLIND DECONVOLUTION 59

equation (3.50), we will first derive a fixed point iteration equivalent to the single template
case. Be

x̄t
� � x1,t � T f , . . . , x1,t � T f , . . . , xN,t � T f , . . . , xN,t � T f

� T .

a vector of data patches taken at position t from the input signal. With that a given filter
f i can be used to estimate the corresponding template ξi (up to scalings) as the expectation
over t

ξ̄
i
0

�

〈

θ � x̄T
t f̄ i � x̄t

〉

. (3.51)

The template is the weighted sum of the data at those positions t at which a template has
been detected. The function θ is a non-linear discrimination function that emphasizes large
responses of f i. We assumed, without loss of generality, that T f

� Tξ so that the vector
ξ̄

i
0 gives an estimate for all elements of the template ξi. The new templates are used to

recompute the matrices Hi according to equation (3.42), which in turn allow to compute
new filters f i with (3.46). However, the normalization of the length of f̄ i according to
equation (3.47) can spoil the stability of the solution and prevent convergence. The filter

and the template are scale invariant except for the condition ξ̄i
0

T
f̄ i � 1. A larger template

is compensated with a smaller filter. With smaller filters, however, the impact of the noise
term in (3.37) decreases. Thus, the iteration may yield solutions that are biased to larger
templates or even may diverge.

Therefore, it is necessary to do the normalization of f i and ξi not with respect to each
other, but with respect to some global quantity. Be f i normalized to yield unit output
variance,

f̄ iTC0 f̄ i � 1 ,

where
Cτ : � 〈x̄tx̄T

t � τ
〉

�
〈

x̄t
〉 〈

x̄T
t � τ
〉

. (3.52)

Then, the fixed point iteration would include repeated execution of the following steps
simultaneously for all i:

ξ̄
i
0 � 〈

θ � x̄T
t f̄ i � x̄t

〉

(3.53)

Hi � 1
Tl

�
τ

ξ̄
i
τ � ξ̄i

τ

� T
(3.54)

f̄ i �
�� �

j � i
H j � αC

�� � 1

ξ̄
i
0 (3.55)

f̄ i � �
f̄ iTC0 f̄ i � � 1

2

f̄ i (3.56)

However, this approach can – and usually does – converge to spurious solutions. These are
solutions where all filters, or many of them, are equal, in which case also the corresponding
templates are equal. In the present form there is no means that distract the iterations from
such fixed points.

Equal filters and templates lead to identical and, hence, 100% correlated outputs. Thus,
a step in the right direction would be to modify the scaling such that uncorrelated outputs
are guaranteed. Instead of (3.56) the appropriate scaling would be

F̄ � F̄ � F̄TC0F̄ � � 1
2 , (3.57)

where
F̄ : � � f̄ 1

. . . f̄ M � .
Consider figure 3.10 for an example of the fixed point approach with scaling rule (3.57).

The iterations were performed simultaneously for M � 5 templates/filters on a 16s piece of

60 CHAPTER 3. OPTIMAL LINEAR FILTERS

A B

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−40 0 40 −40 0 40 −40 0 40 −40 0 40 −40 0 40
−1

−0.5

0

0.5

1

Figure 3.10: Multi-channel filters that emerge in a fixed point iteration in conjunction with
the scaling rule (3.57). A: The resulting filters. The time course of the k-th channel of the
i-th filter is displayed in row k, column i. The filters had a length of 50 samples. B: Cross-
correlation functions of the filtered signals for shifts τ � 	
� 50, 50 � . The cross-correlation
function between outputs i and j is displayed in row i, column j. Although the filtered
signals are uncorrelated at τ � 0, filters for one and the same template can emerge several
times, shifted by a few samples.

extracellular tetrode recordings (cf. section 3.5.1, figure 3.19). The function θ was the third
power of the absolute value of its argument. The expectation in (3.53) was approached by
the empirical expectation over 3 � 105 signal clips x̄t taken from random positions t of the
tetrode signal. The matrix C0 was the empirical covariance matrix of 106 such clips. The
filters f̄ i and the signal clips had a length of 50 � 4 samples. Starting with iid., normally
distributed elements of f̄ i, the whole procedure converged in less than 20 iterations.

One can see in the figure that, although this approach guarantees uncorrelated outputs
at τ � 0, the same filters rsp. templates can emerge several times, just shifted by a few
samples. Correspondingly, the filtered signals have large cross-correlations at these shifts.
In the current example filters for not more than two different templates emerge (cf. columns
1,2,4,5 and column 3 in figure 3.10.A) between them the outputs have small cross-correlation
functions (cf. the 3rd row and column in figure 3.10.B). So we may conclude that the fixed
point iteration has its focus on the detection of templates rather than their discrimination.

3.4.2 Decorrelation approach: template discrimination

To solve the before mentioned problems, measures must be taken that the filtered signals are
not only instantaneously uncorrelated, but also in a sufficiently large range of shifts τ � 0.
We must relax this a little to ‘approximately uncorrelated’ because it is in general infeasible
to achieve exactly uncorrelated outputs for more than two different shifts. As we have seen
in section 2.3.2, approximate decorrelation leads to simultaneous matrix diagonalization
problems, which can be efficiently solved by means of the QDIAG algorithm introduced in
section 2.4. For the current problem this would involve the diagonalization of the matrices
Cτ for τ � 	 � Tl,Tl � .

This approach is illustrated in figure 3.11 with the result of an experiment with the
tetrode data. The matrices Cτ were the empirical covariance matrices estimated from 106

data clips x̄t rsp. x̄t � τ of length 50 � 4 samples. The shifts were in the range τ � 	
� 50, 50 � .
QDIAG was used to simultaneously diagonalize the matrices, where C0 served as the
constraint matrix. This way output signals with unit variance were guaranteed.

In figure 3.11.B one can see that with matrix diagonalization almost perfectly uncor-
related output signals can be achieved. However, this solution must be considered as a

3.4. MULTI-CHANNEL BLIND DECONVOLUTION 61

A B

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−40 0 40 −40 0 40 −40 0 40 −40 0 40 −40 0 40
−1

−0.5

0

0.5

1

Figure 3.11: Multi-channel filters that emerge when approximate simultaneous matrix
diagonalization is performed on the matrices Cτ for shifts τ � 	 � 50, 50 � . Diagonalization
was done using QDIAG. A: Time course of the resulting multi-channel filters. B: Cross-
correlation functions of the filtered signals. (cf. figure 3.10). Outputs are almost perfectly
uncorrelated, but template detection capabilities are low.

trivial one in the context of the current problem. This can be explained as follows: Signals
with vanishing cross-correlation functions have disjunctive spectra. With increasing length,
linear filters can yield increasingly complex frequency responses. Thus, one can expect that
from a certain length on, the filters tune to disjunctive frequency responses, in which case
arbitrary input signals would lead to decorrelated output signals.

In fact, from looking at the filters in figure 3.11.A, and the auto-correlation functions in
the diagonal of figure 3.11.B, one can notice that different frequencies are predominant in
different filters. One can perform a very simple experiment to verify this: Apply the filter to
an arbitrary signal, e.g. white Gaussian noise. In this case the filters of figure 3.11.A would
still yield signals with small cross-correlation functions not exceeding 14% of the output
signals variance.

3.4.3 MCBDC
We have seen that the fixed point iteration approach emphasizes the detection of templates,
while the decorrelation approach virtually cares about nothing else than decorrelation –
hence discrimination. Thus, to unsupervisedly learn optimal filters for template discrimi-
nation, both aspects must be taken into account.

Consider the following constraint optimization problem:

max
F̄

M�
i � 1

〈

Θ � x̄T f̄ i � 〉 s.t.
�
f̄ iTCτ f̄ j � � ε and

�
f̄ iTC0 f̄ i � � 1 . (3.58)

The first constraint bounds the cross-correlation functions of the outputs to the interval
	
� ε, ε � . It applies to all i � j and τ over a sufficiently large range 	
� Tl,Tl � , which covers the
central part of the cross-correlation functions. This constraint covers the ‘discrimination
part’ of the problem.

The objective function and the second constraint are responsible for the ‘detection part’
of the problem. These two alone lead to a solution very similar to the one obtained by the
fixed point iteration of section 3.4.1, as we will see shortly.

Consider the sightly modified solution of equations (3.46) and (3.47)

f̄ i � 1

ξ̄
i
0

T
H � 1ξ̄

i
0

H � 1ξ̄
i
0 , (3.59)

62 CHAPTER 3. OPTIMAL LINEAR FILTERS

where

H : � M�
i � 1

Hi � αC .

In terms of the objective function (3.37) this means that also the responses of every filter to
their corresponding templates are minimized. Because the centers of these responses are
fixed due to the quadratic constraints lii � 0 � � 1, minimization leads to peaked responses.
Although this was not the primary goal in template discrimination, it can be considered as
a well acceptable feature of the algorithm.

The advantage of the summation over all Hi is that for data that are subject to the
generative model (3.50), the matrix H can be estimated by the empirical covariance matrix
of data clips x̄, i.e.

H � C0 (3.60)

This follows from the extension of theorem 3.1 to multiple channels and multiple templates.
The extension to multiple channels is straightforward. The extension to multiple templates
needs the assumption that all intrinsic signals vi are independent. Then the matrix H of
a multi-template signal is the linear superposition of the individual matrices Hi, because
these are second order cumulants of independent single-template signals3. However, since
we take H as the equally weighted sum of all Hi, it is implied that all intrinsic signals vi

have equal (w.o.l.o.g. unit) variance σ2
vi (cf. equation (3.9)). In other words: the scale of the

template ξi is a feature of it, and not one of the intrinsic signals vi. In fact, for differently
scaled templates, equations (3.46) and (3.47) usually yield differently shaped filters.

Equation (3.59) has another advantage over the original form (3.46). It is that there is
(up to scalings) a linear relation between f̄ i and ξ̄i

0 which is determined by C0, the data
covariance matrix. If this is inserted into the iterations they reduce to

F̄ � C � 1
0

〈

x̄t θ � x̄T
t F̄ � 〉 (3.61)

F̄ � F̄ � F̄TC0F̄ � � 1
2

Such iterations are well known from projection pursuit methods that maximize the deviation
of its outputs from a Gaussian distribution. In fact, if we do a coordinate transformation

with C
� 1

2
0 and substitute x̄t with C

1
2
0 x̄t and F̄ with C

� 1
2

0 F̄ we obtain exactly the FastICA fixed
point equations for spherical data (cf. Hyvärinen and Oja (1997)). However, also FastICA
cannot provide decorrelated outputs for shifts τ � 0.

Therefore, the cross-correlation function constraint was introduced in (3.58). The
objective function is nonlinear, and in general non-quadratic in F̄. It has to be maxi-
mized/minimized with respect to numerous inequality constraints which are quadratic in
F̄. This constitutes a rather difficult optimization problem. However, it turns out that there
is exactly one fully quadratic constraint for every f̄ i, all others are bilinear in � f̄ i

, f̄ j � for
i � j. Thus, if all other f̄ j

, j � i, are kept fixed while optimization is done with respect to
f̄ i, then this results in non-linear optimization under one quadratic and a number of linear
inequality constraints, which is a much simpler problem. It’s Lagrangian is given by

Li � 〈Θ � x̄T
t f̄ i � 〉 � �

j � i,τ
λi

j,τ

�
�

f̄ iTCτ f̄ j � ε
� � λi

i,0

�
f̄ iTC0 f̄ i � 1

�
(3.62)

with Lagrange multipliers λi
j,τ, λ

i
i,0 � 0. The solution is found at a stationary point, where

the gradient with respect to f̄ i vanishes,

0 � � Li

� f̄ i
� 〈θ � x̄T

t f̄ i � x̄t
〉 � �

j � i,τ

�
λi

j,τCτ f̄ j � λi
i,0C0 f̄ i

.

3The noise is considered as an independent separate signal.

3.4. MULTI-CHANNEL BLIND DECONVOLUTION 63

Assume that there is a solution which provides unit output variance. Then λi
i,0 is true

negative, and we can rearrange the above equation to

f̄ i
0

� C � 1
0

〈

θ � x̄T
t f̄ i � x̄t

〉 � �
j � i,τ

�
λi

j,τC
� 1
0 Cτ f̄ j

. (3.63)

Comparing this equation with equation (3.61), one can see that additional terms arise for
λi

j,τ
� 0, i.e. for those shifts τ and signal pairs � i, j � at which the cross-correlation function

attaches the bound
�
ε. One can interpret this as follows: Whenever f̄ i gets similar to

f̄ j for a certain shift τ, the output cross-correlation function attaches ε for that shift4, the
Lagrange multiplier λi

j,τ assumes a negative value, and a fraction of f̄ j is substracted from

the unconstraint estimate of f̄ i. C � 1
0 Cτ is nothing else than a shift operator that provides

the corresponding shift of f̄ j by τ samples.
However, one must note that equation (3.63) cannot serve as an replacement for (3.61)

because the correct values of the Lagrange multipliers neither are known beforehand,
nor they would remain constant during the iterations. To actually solve the constraint
optimization problem other means must be found.

3.4.4 MCBDC optimization
As mentioned above the task of finding a solution of (3.58) can be considerably simplified
when it is split-up into subsequent optimization episodes of a single f̄ i while all other
f̄ j remain fixed. During the optimization w.r.t. f̄ i, from the point of view of f̄ j, the linear
constraints that are functions of f̄ i change. However, if f̄ j fulfills all it’s constraints before the
optimization of f̄ i started, then afterwards it will do so as well, provided f̄ i does not violate
any constraints that are functions of f̄ j. Thus, we require that after every optimization
episode all constraints are fulfilled.

For fixed f̄ j, j � �
1 . . .M � � �

i � , the set of admissible points for f̄ i is a convex, closed subset
of RN

�
2T f � 1 � . It has the shape of a hyper-ellipsoid defined by C0 which is centered around

zero and which is cut off at the planes defined by the linear constraints. Obviously zero is
an admissible point.

In the following the optimization algorithm used for MCBDC is described. It performs
general function minimizations under one positive definite quadratic constraint and sev-
eral linear inequality constraints (objective functions that have to be maximized must be
inverted accordingly). Let’s ignore the quadratic constraint for the moment, and assume
that the linear constraints alone constitute a closed set of admissible points. Without loss
of generality we want to minimize a cost function E � f̄ � under the given constraints. E
may be smooth and differentiable. Starting from an admissible point f̄A we can do a linear
approximation, Elin, of the cost function by it’s gradient at that point, ∇ f̄A, which may be
different from zero. By means of standard Linear Programming methods (Press et al., 1992),
the global minimum of the linearized objective function under the linear constraints can
be easily found. It may be attained at the admissible point f̄B. It now may happen that
E � f̄B

� � E � f̄A
� although Elin � f̄B

� � Elin � f̄A
� . In such a case we know that every point on the

line between f̄A and f̄B is admissible, because the set of admissible points is convex. Thus
we can search for the point

f̄C
� � 1 � α � f̄A � α f̄B , α � 	 0, 1 � , (3.64)

on the line between f̄A and f̄B that has the smallest cost function value. It can be found with
standard line-search methods, e.g. Golden Section Search. Eventually, at the new point f̄B rsp.
f̄C the whole procedure is repeated.

It remains to extend the described procedure so that it is also subject to the quadratic
constraint. This can be achieved by using the tangent of the quadratic constraint as a

4w.o.l.o.g. the correlations may be positive

64 CHAPTER 3. OPTIMAL LINEAR FILTERS

Figure 3.12: Illustration of the MCBDC optimization procedure. Bold black lines indicate
the quadratic and linear constraints, respectively. In every iteration the quadratic constraint
is approximated by it’s tangent at the current point displayed with dashed black lines. The
region of admissible solutions is displayed white. Solid gray lines are the iso-lines of the
(linearized) objective function. Dashed gray lines show the connection of the points A, B,
B’, C and C’ to zero. For detailed explanation see text.

‘temporary’ linear constraint. Consider as an example the left panel of figure 3.12. The
region of admissible points is the white area. The linear and quadratic constraints are the
solid black lines. Without loss of generality the current point may attach the boundary
of the quadratic constraint at A. There the tangent constraint is established (dashed black
line going through A). The linear programming procedure is started and yields B as the
constrained minimum of Elin (iso-lines of Elin at A are indicated by thin, solid gray lines
in the figure). It now may happen that B violates the quadratic constraint5. In this case B
is projected in dircetion of zero onto the boundary of the quadratic constraint. If the cost
function at this point, B’, is smaller than at A this iteration step is complete. The next turn
starts at B’ with a new tangent constraint, a new gradient, and a new Elin, leading to C and to
C’ and so on. It may, however, happen that the cost function evaluated at B’ yields a larger
value than at A. This is illustrated on the right panel of figure 3.12. In this case we search
that point C on the line between A and B, the projection C’ of which yields the smallest
cost function value. The listing Algorithm 3 summarizes the the optimization procedure in
pseudocode.

It is necessary to make some statements that constitute the correctness of the method.
We need to show that every iteration cycle (i) leads to an admissible point and (ii) does not
increase the value of the cost function.

(i) f̄A is an admissible point. With respect to only the linear and the tangent constraint, the
result of the linear program, f̄B, is an admissible point. Because the set of admissible
points is convex, any point f̄C according to (3.64), and any point on the line between
zero and f̄C is admissible. In particular

f̄C � � min � 1; � f̄C
TC0 f̄C

� � 1
2 � f̄C

is an admissible point also with respect to the quadratic constraint.
5If it does not, then one proceeds as described above, where there was no quadratic constraint.

3.4. MULTI-CHANNEL BLIND DECONVOLUTION 65

Algorithm 3 MCBDC optimization.

function O MCBDC(f̄ ,E,C0,C, ε)
B Returns f̄ with minimal value E � f̄ � under the constraints f̄ TC0 f̄ � 1 and

�
f̄Tc

�
� ε for

all c � C. C is usually computed as C �

j � i, τ �

� � Tl,Tl �
�
Cτ f̄ j � .

f̄ A � f̄
C � � 1

ε
c : c � C � 	 � � 1

ε
c : c � C �

repeat
∇ f̄A � �

E
�
f̄ �

�
f̄

���
f̄ � f̄A

if
�
∇ f̄A

�
� η1 then

return f̄A
� Stopping criterion 1

end if

cA � C0 f̄A
� The tangent constraint

f̄B � LP � ∇ f̄A,C 	 �
cA � �

f̄B � � BP � f̄B,C0
�

if E � f̄B � � � E � f̄A
� then

α � argminα �
�
0,1 � E � BP � � 1 � α � f̄A � α f̄B

� ,C0 � �
� Performed by some standard line search method

f̄B � � BP � � 1 � α � f̄A � α f̄B
�

end if

if E � f̄A
� � E � f̄B � � � η2 or

�
f̄A � f̄B �

�
� η3 then

return f̄B �
� Stopping criteria 2 and 3

end if

until max. number of iterations exceeded � Stopping criterion 4
return f̄B �

end function

function BP(f̄ ,C0)
B Projects f̄ in direction of zero if necessary, to fulfill the quadratic constraint

f̄ � min � 1; f̄ TC0 f̄ � � 1
2

�
f̄

return f̄
end function

function LP(g,C)
B Standard linear programming method. Returns f̄ that yields the minimal value of f̄ Tg
under the constraint f̄ Tc � 1 or all c � C.
end function

66 CHAPTER 3. OPTIMAL LINEAR FILTERS

(ii) If E � f̄B � � � E � f̄A
� we do a line search minimization from f̄A, α

� 0, to f̄B � , α � 1. We
need to show that the directional derivative of E on the trajectory described by f̄ C

�

has a negative slope at f̄ C
� � f̄A (at α � 0). If f̄A

TC0 f̄A � 1 or f̄BC0 f̄A � 1, then there is
an α � with 0 � α � � 1 so that for 0 � α � α � holds f̄C

TC0 f̄C � � 1. That means that in
the neighborhood around α � 0 no projection toward zero is necessary and

f̄C � � f̄C .

In this case the derivative

dE � f̄C � �
dα

�����
α � 0

� � f̄B � f̄A
� T∇ f̄A

� Elin � f̄B
� � Elin � f̄A

� � 0 .

is always below zero.

If f̄A
TC0 f̄A

� f̄B
TC0 f̄A

� 1, i.e. we start on the tangent and end on the tangent, it holds
that f̄C

TC0 f̄ C � 1 for α � 0. Thus, back projection in direction of zero is necessary:

f̄C � � � f̄C
TC0 f̄C

� � 1
2 f̄C .

The derivative has the form

dE � f̄C � �
dα

�����
α � 0

� � f̄B � f̄A
� T∇ f̄A � � f̄B

TC0 f̄A � 1 � � f̄A
T
∇ f̄A

� .

The second term, however, is always zero so that also here the slope of E � f̄C � � at α � 0
is always negative.

Problems can arise if the linear constraints together with the tangent constraint do not
constitute a closed set of admissible points, in which case the linear program can diverge.
This can be helped with additional box constraints in suitable distance around f̄A. Such
box constraints also have the advantage that they limit the distance between f̄B and f̄A so
that the approximated cost function Elin � f̄B

� becomes not too different from E � f̄B
� . In the

experiments an increase of the performance speed could be observed if suitably chosen box
constraints where used.

A B

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−40 0 40 −40 0 40 −40 0 40 −40 0 40 −40 0 40
−1

−0.5

0

0.5

1

Figure 3.13: A: Optimal multi-channel filters, learned with MCBDC maximizing
〈

sign � x̄T
t f̄ i � �

x̄T
t f̄ i � 4〉 as the objective function. B: Cross-correlation functions of the filtered

signals (cf. figures 3.10 and 3.11). Constraints provided that the cross-correlation functions
between two different signals do not exceed

�
0.05.

3.4. MULTI-CHANNEL BLIND DECONVOLUTION 67

ξ1 ξ2 ξ3 ξ4 ξ5

 0 0.5ms 1ms 1.5ms 0 0.5ms 1ms 1.5ms 0 0.5ms 1ms 1.5ms 0 0.5ms 1ms 1.5ms 0 0.5ms 1ms 1.5ms

Figure 3.14: The corresponding templates estimated with
〈

4
�
x̄T

t f̄ i � 3x̄t
〉

. Compare the tem-
plates with the manually detected ones in figure 3.6.

Figures 3.13 and 3.14 show the results of the proposed MCBDC algorithm applied to
the same tetrode dataset used in the previous experiments. There were five multi-channel
filters to be estimated from the data. The objective was to maximize the fourth order ‘skew’
moments,

〈

Θ � x̄T f̄ i � 〉 � 〈sign � x̄t f̄ i � � x̄t f̄ i � 4
〉

, (3.65)

under the constraints that limit the output variance to a value of at most one and the
cross-correlation functions to absolute values below or equal to ε � 0.05. The skew variant
of the fourth order moment was chosen because in the tetrode data the templates occur
with fixed polarity (ideally even with fixed amplitude). Thus, the distribution of vi (cf.
equation (3.50)) is a sparse and asymmetric one, and the choice of Θ accounts for that. The
setup was otherwise the same as described in the sections 3.4.1 and 3.4.2. The optimization
was performed sequentially for one f̄ i after another in altogether 100 cycles of M � 5
episodes. An episode contained the execution of the O MCBDC function (cf. Algorithm
3) for the corresponding f̄ i. In order to achieve more or less uniform updates of all f̄ i, inside
O MCBDC only one iteration per function evaluation was performed. The convergence
speed could be increased to some degree, when the linear program was performed with box
constraints in all dimensions at the distance of

�
0.05 from f̄ i . The whole implementation

was done in MATLAB and the linear programming and line search routines where taken
from MATLAB’s Optimization Toolbox.

Figure 3.13.A shows the resulting filters. One can see that they neither they are shifted
copies of themselves as in figure 3.10, nor they are just frequency splitting as in figure
3.11. The corresponding cross-correlation functions of the filtered signals are shown in
figure 3.13.B for shifts τ � 	 � 50, 50 � . All of them are in the prescribed range 	
� 0.05, 0.05 � .
The auto-correlation functions (panels on the diagonal) have a peak value of one meaning
unit variance of the filtered signals as required. From the filtered signals templates can be
estimated according to equation (3.51) with the empirical expectation

ξ̄
i � 〈4 �

x̄T
t f̄ i � 3x̄t

〉

.

These are shown in figure 3.14. The fact that they are very similar to those that were
manually detected and averaged, figure 3.6, shows that the MCBDC algorithm performs
correctly.

However, one must note that optimal linear multi-channel filters as such – whether
they are computed from previously known templates or unsupervisedly estimated using

68 CHAPTER 3. OPTIMAL LINEAR FILTERS

MCBDC – are usually not sufficient to perform high accuracy spike sorting tasks. In real
applications problems usually arise from the fact that the data model (3.50) is a too strong
idealization. In real data the wave form templates are known to be not constant over time,
but changing with respect to the inter-spike interval time. Further, a drifting of the electrode
and, hence, a change of the multi-channel template shape can never be totally excluded.
Thus, a linear spike-sorting algorithm must be able to cope with short-time template changes
due to the last ISI and must be able to adapt to slow changes due to electrode drifts. Also the
limited capacity of linear filters can give rise to problems, as discussed in section 3.2.2. In the
presented experiment (figures 3.13 and 3.14) , for example, it is quite hard to detect template
ξ1 with a linear filter under the presence of template ξ5, which is rather similar but occurs
with larger amplitude in the data. The filters must be sharply tuned to discriminate the
templates (and provide small cross-correlation functions), but cannot be arbitrary sharply
tuned because of the presence of background noise. Looking closer to the auto-correlation
functions (panels (1,1) and (5,5) in figure 3.13.B) one can see that MCBDC uses a ‘trick’ to
provide small cross-correlations between the two similar templates ξ1 and ξ5: It is that,
roughly speaking, f̄ 1 focuses on low frequencies and f̄ 5 on higher frequencies, which can
be recognized from the smoothness of the auto-correlation functions. In this experiment it
was just possible to detect ξ1 only with low frequencies, but it reflects in small values of the
objective function (3.65). With linear multi-channel filters alone, more than five templates
would be hardly detectable in these data.

On the other hand, linear filters offer the advantage that, once they have been learned,
they can be applied on current hardware in principle in real time. A real time experiment,
however, could allow to modify the electrode placement so that the diversity of the templates
is maximized and optimized for the detection and discrimination with linear filters. Thus,
further research on this area is quite meaningful.

3.4.5 MCBDC for video data
The MCBDC algorithm is not limited to signals that are time sequences. It is in principle
applicable to any stochastic signals � xt

�
t � I with temporal indices in I �

Z
Nt . In this section

an experiment with MCBDC applied to video data will be presented. The input dataset
is a video consisting of K frames, each of which is T1 � T2 pixels in size. Every pixel is
a gray value, hence, the whole dataset is a T1 � T2 � K array of real numbers (cf. section
1.4.1). However, in order to process motion features in the video, we consider it as a series
of K � N � 1 multi-channel frames by processing every N adjacent frames together as one
N-channel frame. Thus, the setup can be summarized as the stochastic process (cf. section
1.1)

� EI,B � EI � ,PI, � xt
�
t � I

� with xt � E � RN I � Z2 .

The given K frames in the video stack can be interpreted as K � N � 1 realizations of the
stochastic processes. One usually finds that for this process the assumption of ergodicity
is not well founded. Thus, expectations and empirical moments are computed over all
available realizations and all t, or over a uniformly chosen subset therefrom (cf. section
1.4.2 for a discussion on ergodicity of finite datasets).

Leaving this aside, the extension of MCBDC to higher dimensional index sets is straight-
forward. If we want to estimate filters � ft

�
t � J and templates � ξt

�
t � J with receptive fields J

(w.o.l.o.g. the filters and templates may have the same receptive field), we need to define
the RN � J � vectors

f̄ i � � f i
1,t0
, f i

1,t1
, . . . , f i

N,t0
, f i

N,t1
, . . . � T , t j � J

ξ̄
i � � ξi

1,t0
, ξi

1,t1
, . . . , ξi

N,t0
, ξi

N,t1
, . . . � T , t j � J

x̄t
� � x1,t � t0 , x1,t � t1 , . . . , fN,t � t0 , fN,t � t1 , . . .

� T . t j � J , t � t j � I

To compute the constraints, we further need the matrices Cτ computed as empirical expec-
tations of equation (3.52) over τ � J. With that the MCBDC algorithm can be applied just as
described in section 3.4.4 .

3.4. MULTI-CHANNEL BLIND DECONVOLUTION 69

The data for this experiment was a b/w video sequence of K � 15, 000 frames, recorded
at 16 fps, with a resolution of 320 � 240 pixels. The original video can be found on the
accompanying CD under the name floor +2.avi (cf. also sections 5.3 and 5.4.2, in which
this video is also used; the recording setup is described there). For this experiment the
left image was discarded, and every frame was 2-fold down sampled to 160 � 120 pixels
size. Every N � 4 adjacent frames were grouped together to form a multi-channel frame.
Altogether there were K � N � 1 � 14, 997 multi-channel frames then. Therefrom 4 � 106

samples x̄ were taken uniformly distributed over the whole video. The receptive field was
10 � 10 pixels and cross-correlations for lags up to Tl

� 9 pixels horizontally and vertically
should be considered in Cτ, thus

J : � 	 0, 9 � � 	 0, 9 � , Jl : � 	
� 9, 9 � � 	
� 9, 9 � .
The learning procedure was performed sequentially by solving the Lagrangian (3.62) for
one f̄ i after another. That means that for f̄ 1 only the quadratic constraint was applied,
while for all j � i the optimization of f̄ j was also subject to the linear ones. The output
cross-correlation functions were limited not to exceed values of

�
ε � 0.025. The objective

was to maximize the kurtosis of the outputs subject to the constraints, thusΘwas the fourth
power.

Figure 3.15.A shows the resulting first 16 4-channel filters. The panel in the k-th row
and i-th column displays the k-th channel of the i-th filter, � f i

k,t
�
t � J. The kurtosis values of

the filter outputs were

� 〈Θ � x̄T f̄ i � 〉 �
i � 1...16

� � 178.3, 95.5, 79.9, 52.3, 64.0, 153.0, 155.7, 149.3, . . .

92.6, 216.0, 158.9, 41.5, 59.0, 84.9, 203.5, 184.4 � ,
which shows that quite sparse outputs were achieved. The corresponding templates ob-
tained from the relation (cf. equations (3.59) and (3.60))

ξ̄
i � C0 f̄ i

. (3.66)

are displayed in Figure 3.15.B . Figure 3.15.C shows that at the same time the constraints were
not violated. The � i, j � -th panel is the average output cross-correlation function � li j

τ
�
τ � Jl

�
� � f̄ i � TCτ f̄ j �

τ � Jl
. The quadratic constraints lead to peak values in the main diagonal equal

to one, the linear constraints provide values in the off diagonal panels close to zero (�
�
ε).

Interestingly, the outputs do not need to have disjunctive spectra in order to have small
cross-correlation functions, as one can see from the shape of the average auto-correlation
functions. For example, the filters f̄ 8, f̄ 11 and f̄ 12 lead to output signals with nearly identical
power spectra (cf. 8th, 11th and 12th panel on the main diagonal). Their cross-correlation
functions, however, are close to zero. This is possible because the linear filters perform
multi-channel operations. To understand this somewhat surprising result consider the
spectrum � Yi

ω
�
ω � Iω of the i-th filter output. For some i � j the slightly simplified condition6

�
Yi
ω

� 2 � �
Y j
ω

� 2 � 0 , Yi
ω conj � Y j

ω
� � 0 , (3.67)

may hold, where the power spectra must be non-zero for at least one ω � Iω. The cross-
power spectra of the outputs can be written in terms of the input cross-power spectra and
the spectra of the filters,

Yi
ω conj � Y j

ω
� � N�

k � 1

N�
l � 1

〈

conj � Xk,ω
� Xl,ω
〉

F j
k,ωconj � Fi

l,ω
� ,

where � Xk,ω
�
ω � Iω is the spectrum of the k-th channel of � xt

�
t � I, and � Fi

k,ω
�
ω � Iω is the spectrum

of the k-th channel of the i-th filter. In matrix notation (3.67) is

cω δi j
� Yi

ω conj � Y j
ω

�
� � F j

1,ω, . . . , F
j
N,ω

� 〈conj � X1,ω, . . . ,XN,ω
� T � X1,ω, . . . ,XN,ω

� 〉 conj � Fi
1,ω, . . . , F

i
N,ω

� T ,

6In MCBDC only approximate disjunctive cross power spectra are required.

70 CHAPTER 3. OPTIMAL LINEAR FILTERS

with cω
� 0 for at least one ω � Iω. Obviously, this cannot be the fulfilled in a single-channel

scenario with N � 1. More generally speaking, at most N filters can fulfill (3.67) together
because the matrix

〈

conj � X1,ω, . . . ,XN,ω
� T � X1,ω, . . . ,XN,ω

� 〉 has a rank of at most N.
For the above mentioned filters on can find that all three detect edges in one and the

same orientation, but with different directions of motion. Figure 3.17 gives an illustration of
the outputs these filters for three similar multi-channel frames. One can see that all respond
to edges of the same orientation. What not can be seen in the figure is that in A the scene
was moving to the right, in B: to the left, and in C: slightly to the right. This type of motion
can be distinguished only with multi-channel filters. The whole filtered video can be found
on the CD (file filt 8 11 12.avi).

For comparison, in figure 3.16 the filters, templates, and cross-correlation functions are
shown that arise when iterations (3.61) are carried out instead of MCBDC. One can see that
also these filters detect directional and sparse features. The kurtosis values of the filter
outputs were

� 〈Θ � x̄T f̄ i � 〉 �
i � 1...16

� � 80.9, 64.3, 63.6, 97.4, 255.4, 158.4, 73.3, 62.6, . . .

97.2, 96.6, 65.1, 202.3, 79.7, 65.2, 95.5, 67.5 � .

However, trivially shifted versions of the filters and the templates occur leading to large
cross-correlations. Only for τ � 0 (center of the panels in 3.16.C) zero cross-correlations are
guaranteed.

3.4.6 Discussion

Two experiments from different domains were presented to illustrate the capabilities of the
MCBDC optimization procedure. The derivation was done on the basis of the generative
data model (3.50). In this respect MCBDC can be seen as a convolutive BSS algorithm
because the data model is nothing else than a convolutive mixture of independent and
white sources corrupted with white, Gaussian noise. This model may have been more
appropriate to the tetrode data in section 3.4.1 and 3.4.2 than to the video data in section
3.4.5. In the spike sorting experiment there is a rather intuitive interpretation of the intrinsic
signals (and the filtered signals) as sources, which are the actual causes of the observations.
For the video data this is less intuitive. Assuming that edges in various orientations are the
ingredients of natural images, one would not expect that they are spread iid. over the image.
Strong local dependencies that occur, for example, in very elongated edges are ignored by
the model (3.50). However, MCBDC is meaningful for such data anyway if it is seen as a
projection pursuit method. Locations in images at which a sparse projection assumes large
values may have an interpretation as ‘interesting points in the scene’ rather than a linear
source. Here the decorrelation constraint provides a means to extract sufficiently different
projections.

In this respect non-linear projections seem to be particularly promising. A non-linear
version of MCBDC is in principle possible. Therefore it is important that the constraints
can be efficiently evaluated. This can be achieved without too much overhead by a non-
linear expansion of all data samples x̄ into some (certainly high-dimensional) feature space.
In that feature space the linear MCBDC algorithm is executed. Here, as well as in other
methods that base non-linear expansions of linear methods, the problem arises what a good
non-linear expansion would be and how it should be parameterized. This is crucial because
the expansion is chosen ad hoc and not changed during optimization. See also sections
5.1.2 and 5.1.3 .

With increasing complexity, e.g. with increasingly complex non-linearities, the multi-
channel filters can be assumed to yield increasingly sparse outputs. This, leads to the
probably most severe problem with MCBDC in large scale applications: any empirical esti-
mates are subject to increasing variance, when the sparseness of the underlying distribution
increases. Hence, the closer one gets to the optimal, sparseness maximizing projection, the
more difficult it becomes to actually estimate it without overfitting. Already the linear

3.4. MULTI-CHANNEL BLIND DECONVOLUTION 71

A

B

C

Figure 3.15: A: Multi-channel filters achieved through MCBDC on video data. The panels
in j-th column show the four channels of the j-th filter. B: The corresponding multi-channel
templates according to equation (3.66). Gray values are mapped to

�
max

�
f̄ j � rsp.

�
max

�
ξ̄

j �
individually for every column. C: Cross-correlation functions of the filter outputs. The i, j-th
panel shows the values of � li j

τ
�
τ � Jl as gray values (black: � 1, white: 1).

72 CHAPTER 3. OPTIMAL LINEAR FILTERS

A

B

C

Figure 3.16: The equivalent to figure 3.15 when the filters are derived through the iterations
(3.61). These filters provide uncorrelated responses for τ � 0 (centers of the panels in C),
but trivially shifted filters frequently occur.

3.5. APPLICATION: SPIKE-SORTING 73

A B C

Figure 3.17: Three 4-channel frames of the video filtered with f̄ 8 (red), f̄ 11 (green), and f̄ 12

(blue). Points for which
�

yi
t � 10 are displayed in the corresponding color. The displayed

image is the the fourth channel, � x4,t
�
t � I, of the input. The filters become active when edges

of certain orientation move A: to the right, B: to the left, and C: slightly to the right.

projections in the video data experiment required as much as 4 � 106 training examples. A
non-linear variant of the algorithm would further increase the necessary training dataset
by (i) the increase of the dimensionality of the data samples in feature space and (ii) by the
amount of additional data samples that are necessary for reliable estimates under increasing
sparseness. Thus, MCBDC may be better suited to small scale problems. For large scale
problems the temporal coherence principle (Stone, 1996) can avoid such problems – chapter
5 is devoted to non-linear projection pursuit methods based on this principle.

3.5 Application: Spike-sorting
In extracellular recordings of neural activity, potential differences in the order of 1-100µV
caused by changing extracellular currents are measured in the tissue. Whereas extracellular
recordings were at first done with single electrodes, nowadays the technique of multiple
simultaneous recordings from the same local area by means of tetrodes or multitrodes Mc-
Naughton et al. (1983); Reece and O’Keefe (1989) becomes more and more common. Because
of the very high density of neurons, even in the direct neighborhood of the very fine elec-
trode tips, there are still few cells, who’s extracellular currents superimpose at the recording
site. In order to analyse the activity of the individual neurons, the recorded signal has to
be decomposed into its individual components by means of an appropriate spike sorting
method, and therefore the additional information provided by multiple recording channels
has been proven to be useful Gray et al. (1995).

Spike sorting is usually done three steps: event detection, feature selection, and clus-
tering Lewicki (1998); Sahani (1999). All three steps have been subject to intensive research
and development in the past, in order to improve the the performance and to benefit from
multi-channel recordings.

The event detection is usually done by a simple thresholding operation. Surprisingly, it
is not straight forward to extend this to multiple channels. Most simply, the thresholding
can be performed on all channels individually, which, however, leads to an unintuitive rect-
angular thresholding surface in the space of amplitudes. A more sophisticated approach
is to apply the threshold to the Mahalanobis distance of the amplitude vector, w.r.t. the
covariance of the recorded signals Rebrik et al. (1999), leading to a hyperellipsoidal thresh-
olding surface. In this approach, however, the distinction between positive and negative
peaks is impossible, i.e. some additional heuristics is needed, to detect only one peak of
the usually biphasic wave forms. The polarity of the peaks can be considered, however, by
a combination of hyperellipsoidal and linear thresholding surfaces, as described in Sahani
(1999).

From the neighborhood of the detected spikes in the recorded signals, a feature vector is
computed, which must provide sufficient information to distinguish spikes from different
cells. What features are used can be defined beforehand (e.g. peak-to-peak amplitudes,
duration of the positive and negative phases, etc.) or can be learned from the data. For the

74 CHAPTER 3. OPTIMAL LINEAR FILTERS

later case linear dimension reduction by means of principal component analysis or linear
discriminant analysis are widely used techniques. The selection of the features is crucial
for the overall performance of the spike sorting because the neighborhood of a detected
spike does not contain the original wave form of the action potential, but its superposition
with noise, background activity, and other action potentials. Thus, features must be robust
against these types of distortions. The recording with multiple channels provides a very
simple and powerful feature: the typical amplitude pattern of an action potential in the
recording channels.

By means of a suitable clustering algorithm, the detected spikes, which are described by
their feature vectors, are assigned to the individual source neurons. Beside manual cluster
cutting in principle any automatic clustering algorithm can be applied. Gaussian mixture
models or modifications thereof are widely used, even though widely tailed distributions
have been reported to more accurately capture the multivariate statistics of the clusters
Shoham et al. (2003). The question of how many sources are expected and, hence, how
many clusters to choose was addressed in a number of publications Fee et al. (1996);
Nguyen et al. (2003). It seems to be advantageous to set the number of clusters larger than
the number of expected foreground neurons, on the one hand to be able to model more
complex cluster distributions and, on the other hand, to pickup mistakenly detected spikes
in separate clusters serving as ‘garbage collectors’. This, of course, requires some strategy
to put together all the clusters of the same neuron, and split off spare clusters Fee et al.
(1996). The spare clusters may contain overlapping events, and procedures to decompose
them into single events have been proposed Takahashi et al. (2003). However, the problem
that overlapping events may not cross the threshold and remain undetected can not be
solved by this means.

Alternatively, in a Bayesian frame work a posterior probability for the number clusters
together with the posterior assignment probabilities can be given Nguyen et al. (2003),
and the inter-spike interval distributions and firing statistics can be incorporated into the
clustering model Pouzat et al. (2004). Theoretically, the entire recorded signals including
the times of occurrence of the individual spikes could be modeled probabilistically similar
to the Bayesian deconvolution approach in Andrieu et al. (2001). However, in all Bayesian
approaches, the necessary posterior sampling by means of Markov chain Monte Carlo
methods is known to be computationally rather expensive and, hence, may be suitable only
for short signal length in an off-line environment.

The event detection alone can be a difficult task, in particular in situations where the
action potentials are distorted by noise and large background activity and where overlap
between spikes occurs. In such situation optimal linear filters that respond to the biphasic
wave form of an action potential with a narrow impulse can help to improve the event de-
tection accuracy. Because of the linearity, partially overlapping wave forms are transformed
into partially or even non-overlapping narrow impulses, the peak values of which are less
distorted. Thus, in the filtered recordings, the amplitude patterns of the recorded units are
less sensitive against overlaps. Hence, the amplitudes of the impulses are more reliable
estimates for the amplitude of the action potentials than the peaks of the original biphasic
wave forms. With the help of real and simulated tetrode data, it will be demonstrated that
by means of optimal filtering the amplitudes of the action potentials can be estimated with
sufficiently high accuracy so that the four dimensional amplitude vectors can be used as
sole features for the clustering step.

3.5.1 Tetrode data

There were two datasets of four channel extra-cellular tetrode recordings. One was recorded
in 2002 from the visual cortex of an anesthetized and paralyzed cat during spontaneous
activity. This one was used for the spike-sorting experiments presented in this section.
The other one was recorded 1995 from the prefrontal cortex of an awake monkey during
a visual task experiment Pipa et al. (2003). These data were mainly used to perform the
experiments with optimal multi-channel filters in sections 3.3 and 3.4. Note, however, that
there is nothing particular that binds the successful application of any of the described

3.5. APPLICATION: SPIKE-SORTING 75

method to either one of the datasets.
All electrophysiological recordings and preparations were performed at the MPI for Brain

Res., Frankfurt/M, Germany according to the German Law for the Protection of Experimental
Animals. The procedures also conform to the regulations issued by the NIH and the Society
for Neuroscience.

The electrodes were prepared by pulling the multicore fiber and grinding it under a
binocular microscope until the tip has a nice pencil-like shape. The impedance of the
contacts is optimally between 0.3 and 0.8MΩ (measured at 1kHz) and was adjusted by
electrolytic plating Pezaris et al. (1995). After mounting into the microdrive, the electrodes
were driven through the intact meninges (dura mater) into the neuropil with micrometer
precision. The first somatic action potentials are typically isolated after a 200–300 microme-
ter penetration depth, i.e. in the upper layers of the cortex and are most likely derived from
pyramidal cells. The electrical signals were fed through a preamplifier and subsequently
through filters (0.5-3kHz, 3db/octave) and digitized at 31.25kHz (1401plus, Spike2 Version4,
CED Cambridge, UK). After mechanical pressure due to the initial penetration of the dura
has ceased, fine positioning of the electrode is continued until several different action poten-
tials can be seen in the simultaneously monitored signals on a multi-channel oscilloscope.
Figures 3.18 and 3.19 show 5s of both datasets together with a 100ms closeup. The data
have been normalized for zero mean and unit variance individually in every channel.

A B

−10

0

10

−10

0

10

−10

0

10

0.5 s 1 s 1.5 s 2 s 2.5 s 3 s 3.5 s 4 s 4.5 s 5 s

−10

0

10

−10

0

10

−10

0

10

−10

0

10

4.834 s 4.836 s 4.838 s 4.84 s 4.842 s

−10

0

10

Figure 3.18: A: 5s of extra-cellular tetrode recordings from the prefrontal cortex of an awake
monkey during a visual task experiment. B: 100ms closeup.

3.5.2 Spike-sorting based on optimal filtering
The following steps constitute a spike-sorting algorithm based on optimal filtering as pre-
processing:

Step 1: High pass filtering and correction for the mean: Raw recordings of extra-cellular
activities are often contaminated by low frequency fluctuations, that can be several orders
of magnitude higher than the recorded action potentials. If there is no high pass filtering
performed already in the recording system, it has to be done prior to all other processing
steps. Cutoff frequencies for filtering are typically in the range of 400–800 Hz. A side effect
of the high pass filtering is a zero mean in the data, provided the zero frequency component
is sufficiently suppressed. If not, the mean has to be corrected explicitly. Without high pass
filtering the optimal filter obtained from maximizing skewness has a high pass characteristic
on its own. The data model, however, is no longer true. In particular (3.9) would no longer
hold, and the connection between f and ξ would not be valid.

76 CHAPTER 3. OPTIMAL LINEAR FILTERS

A B

−10

0

10

−10

0

10

−10

0

10

0.5 s 1 s 1.5 s 2 s 2.5 s 3 s 3.5 s 4 s 4.5 s 5 s

−10

0

10

−10

0

10

−10

0

10

−10

0

10

4.132 s 4.134 s 4.136 s 4.138 s 4.14 s

−10

0

10

Figure 3.19: A: 5s of extra-cellular tetrode recordings from the visual cortex of an anes-
thetized and paralyzed cat during spontaneous activity. B: 100ms closeup.

Step 2: Hessian matrix H: The Hessian is estimated by computing the empirical mixed
second moments of small signal clips x̄i � t � either using all possible time steps t and channels
or a sufficiently large number of randomly taken clips. The estimated Hessian is given by

Ĥ � 1
NTx

N�
i � 1

Tx � T f � 1�
t � T f

f̄ i � t � f̄ i � t � T . (3.68)

Step 3: Estimation of the optimal filter: The optimal filter is obtained from the fixed
point iterations equations (3.20) and (3.21). The expectation is replaced by the empirical
mean over all time steps and all channels. The average over a sufficiently large number of
uniformly randomly drawn clips f̄ i can be taken instead. One obtains

f � H � 1
N�

i � 1

Tx � T f � 1�
t � T f

� f T f̄ i � t � � 2 f̄ i � t � (3.69)

f � f�
f TH f

. (3.70)

Step 4: Filtering: The cross correlation of the raw recordings xi with the optimal filter
f is calculated using the Fast Fourier Transform (FFT). The spectrum of xi is multiplied with
the conjugate complex spectrum of f . f has to be expanded with zeros to the length of
xi before. The back transform of the product yields yi. To avoid shifts introduced by the
filtering, the expansion of f to the size of xi should be done as follows:

fTx
� � f � 0 � , . . . , f � T f

� , 0, . . . , 0,��� � ����� � ���

�
Tx � 2T f � 1 � �

f ��� T f
� , . . . , f ��� 1 � � . (3.71)

This assures that the peak in yi occurs at the middle of the wave form in xi and not on its
sides.

Step 5: Covariance matrix of the filtered recordings: The covariance matrix C of the
filtered recordings, which is needed for peak detection, is computed from their empirical
second moments,

Ci j
� 1

Ty

Ty � 1�
t � 0

yi � t � y j � t � T . (3.72)

3.5. APPLICATION: SPIKE-SORTING 77

Step 6: Peak detection value: Following Rebrik et al. (1999) a hyper-ellipsoidal thresh-
olding surface in the N-dimensional space of the filtered recordings is used. However,
peaks with negative polarity shall be excluded (although after filtering most of the peaks
are already positive). The non-negativity can be defined in the Mahalanobis metric Sahani
(1999), which leads to

y � � t � � max � C � 1
2 y � t � ; 0 � , (3.73)

and the peak detection value r � t � ,

r � t � � y � � t � Ty � � t � . (3.74)

Step 7: Local maxima in peak detection value: The peaks in r � t � still have an extension
of a few samples. To get time discrete events, local maxima in r � t � are determined, i.e. those
values that exceed all others in the neighborhood 	
� Tr,Tr � ,

r � � t � �
�

r � t � : r � t � � r � t � τ � for all τ � 	
� Tr,Tr �
0 : else . (3.75)

Step 8: Clustering: The vectors y � t � for which the r � � t � exceeds a preset threshold are used
as input for clustering to finally make the assignment of the events to individual units. In
principle any clustering algorithm can be applied. In the experiments below a Gaussian
Mixture Model was used because it turned out to be robust, fast, and achieved good results.

3.5.3 Experiments
The spike-sorting method is based on fairly strong assumptions about the processes gener-
ating the data, in particular the existence of a unique wave form and the assumption that
there were no delays between the recording channels. In order to demonstrate that it works
correctly under real recording conditions, the performance of the method was tested on
tetrode recordings, for which above assumptions would hold only approximately.

Figure 3.19 shows a period of 5s of the raw tetrode signals used for the following
experiments. The entire recording was of approximately 100 seconds duration. Prior to
further processing each signal was normalized for it’s mean and variance. From these data
a total amount of 5 � 104 samples of length 40 (1.28ms) for f̄ i � t � were selected randomly from
all channels at random time positions to estimate the covariance matrix H. Subsequently,
the optimal filter f was computed using the fixed point iterations equation (3.20) and
(3.20). The 40 elements of f were initialized randomly iid. according to theN � 0; 1 � normal
distribution. The procedure converged in less than 45 iterations.

In the bottom-left panel of figure 3.20 the resulting optimal filter is shown. The cor-
responding wave form (figure 3.20, bottom-center) was obtained from (3.24). Figure 3.20,
bottom-right, shows the response of the filter to the wave form. The width of the impulse
did not decrease very much compared to the width of the (negative) peak of the wave
form because of the noise in the data. Hence, spikes closer than 0.2ms cannot be well
separated. For larger distances separation quality has increased because the undershoots
of the impulse response are much lower than in the original wave form. This leads to
a higher accuracy of the peak amplitude values and to more pronounced clusters. The
filtered data are illustrated in figure 3.20, center, for a close-up of the 3rd recording channel
(For the reason of limited space only one out of four channels is shown). One can see now
positive impulses that correspond to the former negative peaks in the raw data. Note that
the average amplitude of the undershoots is minimized – as expected there is maximum
skewness in this signal.

The filtering is indispensable in situations where the original wave form has no single
prominent peak. This can happen, for example, if the recording channel has a poor fre-
quency characteristic, and the wave form is distorted to a wavelet like shape with several
maxima or minima. This can be simulated with the application of a narrow band pass filter
to the original recordings. A closeup of channel 3 of the resulting raw recordings is shown
in figure 3.21, top panel. Individual peaks and their amplitudes can hardly be detected. The

78 CHAPTER 3. OPTIMAL LINEAR FILTERS

raw tetrode recording, channel 3

21.22s 21.225s 21.23s 21.235s 21.24s 21.245s 21.25s 21.255s 21.26s
−10

0

10

21.22s 21.225s 21.23s 21.235s 21.24s 21.245s 21.25s 21.255s 21.26s
−10

0

10

21.22s 21.225s 21.23s 21.235s 21.24s 21.245s 21.25s 21.255s 21.26s
−10

0

10

21.22s 21.225s 21.23s 21.235s 21.24s 21.245s 21.25s 21.255s 21.26s
−10

0

10filtered recording, channel 3

21.22s 21.225s 21.23s 21.235s 21.24s 21.245s 21.25s 21.255s 21.26s
−10

0

10

21.22s 21.225s 21.23s 21.235s 21.24s 21.245s 21.25s 21.255s 21.26s
−10

0

10

21.22s 21.225s 21.23s 21.235s 21.24s 21.245s 21.25s 21.255s 21.26s
−10

0

10

21.22s 21.225s 21.23s 21.235s 21.24s 21.245s 21.25s 21.255s 21.26s
−10

0

10
filter: wave form: filter response:

0.5ms 1ms

−0.2

−0.1

0

0.1

0.2

0.3

0.5ms 1ms
−1

−0.5

0

0.5

1

−1ms −0.5ms 0ms 0.5ms 1ms

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.20: Top panel: A closeup of channel 3 of the raw tetrode recordings. Center panel:
A closeup of channel 3 of the filtered tetrode recordings. Bottom, left: The optimal filter,
learned from 5 � 104 small signal clips (1.28ms, 40 samples) taken randomly from all channels
of the raw tetrode recordings. Bottom, center: The typical wave form derived from the filter
using (3.24). Bottom, right: The response of the filter to the typical wave form.

optimal filter learned from this data together with the wave form and the filter response is
shown on the bottom panels of the figure. After optimal filtering one obtains narrow peaks
again (figure 3.21, center), which are easy to detect and the amplitudes of which correspond
to those of figure 3.20, center.

From the filtered recordings the peak detection value was computed as the Mahalanobis
distance to the origin, (3.74), (see figure 3.22, top panel). The time stamps of the peaks
were extracted (figure 3.22, bottom panel) by taking the local maxima in a 15 samples
neighborhood that exceed a threshold of 20. The amplitudes of the filtered recordings at the
discrete points in time that mark an event peak form clusters in the 4d space. For clustering
a Gaussian Mixture Model (GMM) with 8 Gaussian components was used, each with full
covariance matrix. One has to mention that there may exist more sophisticated clustering
algorithms that could be applied here, in particular those that are able to adapt to the number
of clusters (cf. Duda et al. (2001)). After training of the GMM using Expectation Maximization
(Dempster et al., 1977), the Gaussian components cover the individual clusters. Figure 3.23
shows a 2d projection of the 4d spike amplitudes (after optimal filtering) of the whole 100s
recordings. The ellipses illustrate the components of the GMM as a projection of their
unit standard deviation hyper-surfaces. Even in this projection there is noticeable margin
between the clusters. The formation of well defined clusters can be taken as a performance
indicator. Clearly, clusters with large overlap would not yield reliable separation. To
quantify the margin between the clusters, the overlap of every Gaussian with all others
was computed. This value is 1 minus the probability that for a data point belonging to one
component, this component is the one with the largest posterior,

1 � Pr
�
arg max� c � �

� P � c � � x � � � c � where x � N � µc;Σc
� . (3.76)

Coarse clusters with large overlaps indicate poor performance. For every cluster c the
overlap values were computed numerically by drawing 105 random samples from the

3.5. APPLICATION: SPIKE-SORTING 79

raw recording, channel 3

21.22s 21.225s 21.23s 21.235s 21.24s 21.245s 21.25s 21.255s 21.26s
−10

0

10

21.22s 21.225s 21.23s 21.235s 21.24s 21.245s 21.25s 21.255s 21.26s
−10

0

10

21.22s 21.225s 21.23s 21.235s 21.24s 21.245s 21.25s 21.255s 21.26s
−10

0

10

21.22s 21.225s 21.23s 21.235s 21.24s 21.245s 21.25s 21.255s 21.26s
−10

0

10filtered recording, channel 3

21.22s 21.225s 21.23s 21.235s 21.24s 21.245s 21.25s 21.255s 21.26s
−10

0

10

21.22s 21.225s 21.23s 21.235s 21.24s 21.245s 21.25s 21.255s 21.26s
−10

0

10

21.22s 21.225s 21.23s 21.235s 21.24s 21.245s 21.25s 21.255s 21.26s
−10

0

10

21.22s 21.225s 21.23s 21.235s 21.24s 21.245s 21.25s 21.255s 21.26s
−10

0

10
filter: wave form: filter response:

1ms 2ms

−1

−0.5

0

0.5

1

1ms 2ms
−1

−0.5

0

0.5

1

−2ms −1ms 0ms 1ms 2ms

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.21: Performance of the filter for wave forms which have no single prominent peak.
In the raw recordings (top row), peaks can hardly be detected. After filtering there are nice
peaks (center row). Compare the peak amplitudes with those of figure 3.20, center.

N � µc;Σc
� normal distribution and replacing the probability Pr with the empirical probability

P̂r. The overlap values are shown in the table next to figure 3.23. Apart from clusters 5 and
7 all others have an overlap of less than 4% in terms of the probability of misclassification.
Note that for cluster 1 the overlap value is exactly zero because of the finite set of samples
used to compute the empirical probability. The true overlap value would always be above
zero.

Figure 3.24 shows the wave form templates of the detected and separated spikes for all
8 clusters (columns). It is not surprising that the spikes assigned to cluster 1 exhibit wave
forms with the largest amplitudes and smallest fluctuations. Cluster 7 also yields large
amplitude wave forms, however the overlap of cluster 7 was the largest. Note the large
variance in the amplitude of the wave form (channel 1) and that the templates of clusters
7 and 3 are quite similar (beside the amplitude). This gives rise to the assumption that
both clusters actually could be one, the spikes of which mostly occur in bursts with strong
amplitude fluctuations. The same may apply to clusters 4 and 5.

In figure 3.25 the same templates but taken from the filtered recordings are shown.
One can see that the wave forms now correspond to the filter response (cf. figure 3.20,
bottom,right) indicating that the neuron individual wave forms have not been too different.

3.5.4 Experiments with realistic artificial data

In order to quantitatively evaluate the accuracy of the spike detection and classification, the
true times of occurrence and the emitting units must be known for all foreground spikes in
the recordings. Therefore realistic, artificial data sets were constructed, the basis of which
is a four channel background signal. From segments of the real tetrode recordings shown
in figure 3.19 which before had been identified to contain no foreground spikes the cross
power spectral density (CPSD) matrix CPSD � ω � was estimated using standard methods.
Then, a four-channel white, Gaussian noise signal was filtered with a four-channel filter

matrix the frequency response of which was given by F � ω � � C
1
2
PSD � ω � . Thus, the artificial

80 CHAPTER 3. OPTIMAL LINEAR FILTERS

21.22s 21.225s 21.23s 21.235s 21.24s 21.245s 21.25s 21.255s 21.26s
0

50

100

150

21.22s 21.225s 21.23s 21.235s 21.24s 21.245s 21.25s 21.255s 21.26s
0

50

100

150

Figure 3.22: Top panel: The peak detection value (3.74) for the same clip as in figure 3.20,
center, but derived from all four recording channels. Bottom panel: a threshold value of
20 (dashed line) is applied to those values, that are a local maximum in a 15 samples
neighborhood (solid bars).

background has the same CPSD as the real background.
To construct the foreground signal, at first M � 5 intrinsic binary spike trains were

generated. Although the derivation of the optimal filter required the intrinsic spike trains
to be temporarily white and, hence, the inter-spike interval times exponentially distributed,
the more realistic approach that the inter-spike interval times are subject to the � λ; c � Gamma
distribution was used here, where λ is a dimensionless shape parameter and c is a scale
parameter carrying the dimension s. If for λ and c holds λ � � ηic � � 1, then in the limit of
large intervals, the resulting spike train has a spike rate of ηi spikes per sample interval
(rsp. 31.250 � ηi spikes per second). Holding this constraint the parameters λ and c were
jointly adjusted such that the probability of two spikes being closer than a given minimal
inter-spike interval time assumes a small value (Pr � tISI � 0.64ms � � 10 � 4 in this case).
Eventually, the spike times were discretized by rounding them to the closest sampling time.

Two basic types of foreground signals were used: one having unique wave forms
and one having wave forms extracted from real recordings. Additionally a dataset with
foreground wave forms that are a smooth interpolation between the real and the unique
wave forms was used .

For the unique wave form data the binary spike trains were convolved with the wave
form shown in figure 3.20. After mixing with a 4 � 5 mixing matrix, the elements of which
were drawn from a � 0; 7 � uniform distribution, the resulting foreground spike trains were
added to the background signal. A 100ms example of the unique wave form toy data is
shown in figure 3.26. One can see that the foreground signals have a rather low amplitude
compared to the background. The mixing coefficients were intentionally chosen no larger to
achieve a hard and challenging problem. For the experiments signals of 160s rsp. 5,000,000
samples length were used.

For the real wave form foreground signals the wave forms were used that had been
extracted from the real tetrode recordings in the previous experiment (cf. figure 3.24). For
every spike in the binary spike trains one of the detected spikes of the corresponding cluster
in the real data experiment was randomly selected. Then, the 1.6ms neighborhood of that
spike from the real tetrode recordings we added to the artificial background signals. The
used spikes were those in the clusters 1, 6, 4, 2 and 7 respectively. Figure 3.27 shows a
100ms example of this type of toy data. The signal traces look very similar to the real
recordings. This data is particularly challenging because beside the normal variability of
the wave forms, also the background of the real recordings next to the spike appears in the
toy spike train. With other words, it happens occasionly that a heavily distorted wave form
is assigned to a spike in the toy data.

By means of these two types of artificial data it should be examined (i) whether the
proposed filtering is advantageous in terms of the accuracy of the spike detection, (ii) how

3.5. APPLICATION: SPIKE-SORTING 81

−5 0 5 10
−12

−10

−8

−6

−4

−2

0

2

4

1 2

3

4
5

6

7

8

Cluster 1 � P̂r
�
arg maxc � P � c �

x � � � c �
1 0.0000
2 0.0315
3 0.0230
4 0.0216
5 0.1047
6 0.0037
7 0.1840
8 0.0122

Figure 3.23: Left: Scatter plot of a 2d projection of the originally 4d spike amplitudes.
Clusters where fitted by a 4d GMM with 8 components. The ellipses are the projections
of the unit standard deviation hyper-surfaces of every Gaussian component. Right: The
table shows how well every cluster is separated from the remaining ones (computed in the
original 4d space). Values close to zero indicate best separation, values close to one indicate
poor separation. For explanation see text.

the clustering of amplitude patterns performs in comparison to the widely used technique
of clustering of principal component features of the recorded wave forms, and (iii) the
influence of deviations from the assumptions of unique wave forms on the performance of
the method.

In order to quantify the results two values were defined: the true positives rate, q � , and
the false positives rate, q � . q � is the ratio of the number of correctly detected spikes to the
total number of spikes. q � is ratio of the number of mistakenly detected spikes to the
number of detected spikes. One can easily see that 0 � q � , q � � 1, where in the case of no
spike detected, q � � 1 was set. Clearly, for good performance q � should be close to 1, and
q � should be close to zero. Since there were no preferences how to trade q � against q � , an
overall performance measure,

q � q � � 1 � q � � , (3.77)

was defined. It still remains to define when a spike is correctly detected. Even on a discrete
time scale, it may happen that in the course of processing the detected spike is assigned to
a sampling interval shortly before or after the sampling interval where the original spike
occurred. Thus, a detected spike was defined to be correctly detected if it has a binary
source spike in a neighborhood of τ � �

4 samples. This is the neighborhood considered
for the computation of local maxima in the peak detection value (cf. section 3.5.2, step 7).

To evaluate the performance of the clustering procedure, also the values qi
� q �i � 1 � q �

i
�

were calculated for every cluster i, where the true and the false positive rates, q �i and q �
i ,

were determined using the spikes of the cluster i only. Hence, a spike from source i that is
correctly detected, but classified to unit j, increases q �

j and decreases q �i , a spike from source
i which remains undetected decreases q �i , and a spike that is mistakenly detected increases
q �

i for the cluster i this spike is assigned to. The clustering performance is summarized by
an average ‘clustering accuracy value’

q̄ � M�
i � 1

qi . (3.78)

All performance measures clearly depend on the value of the threshold in the spike
detection, where lower thresholds will increase the false positives rate and higher thresholds
will decrease the true positives rate. In order to choose the threshold value, the values q and

82 CHAPTER 3. OPTIMAL LINEAR FILTERS

cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7 cluster 8

Figure 3.24: Composite plot of the 4-channel wave form templates according to the clusters
shown in figure 3.23. For every detected spike a 1.6ms clip of all recording channels was
plotted into the column of the corresponding cluster. The amplitude scale was identical for
all plots.

cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7 cluster 8

Figure 3.25: The same plot as in figure 3.24, but with the clips taken from the filtered
recordings. The the wave form of the templates now is the filter response (figure 3.20,
bottom,right) in different scalings.

q̄ were computed for several thresholds in the range of 1 to 50, and the one with the best
performance was taken. The clustering was done by means of Gaussian mixture models
with full covariance matrices. They had 9 clusters (instead of 5, which is the number of
sources) in order to have some ‘spare’ clusters available, that can collect false positive spikes,
in particular in situations where the threshold is small. Clearly, the value q̄ depends on the
assignment of the 9 clusters to the 5 sources, so the assignment that maximized the value
of q̄ was always considered. It was found by solving a small combinatorial optimization
problem by simulated annealing. Clearly, for a real application the assignment must be
computed by other means, e.g. the cluster distances, minimal inter-spike times interval Fee
et al. (1996), or stimulus related properties.

In the following experiments the influence of certain parameters of the spike generating
process and the spike sorting algorithm was examined. In all experiments the following
performance measures were computed:
q � x � , q � y � Spike detection performance for the unfiltered, q � x � , and the filtered, q � y � ,

recordings. Steps 5 to 7 of section 3.5.2 were performed with the unfiltered
and the filtered recordings. Since the wave form has negative polarity in the
unfiltered recordings, in q � x � the peak detection value (3.74) was computed for
� x � t � .

3.5. APPLICATION: SPIKE-SORTING 83

 0ms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms

1

1

1

1

2 2

2 2

2 2

2 2

3 3 3 3

3 3 3 3

3 3
3 3

3 3 3 3

4 4 4 4 4 4 4

4 4 4 4 4 4 4

4 4 4 4 4 4 4

4 4 4 4 4 4 4

5

5

5

5

Figure 3.26: A 100ms example of the artificial data with unique wave forms for all neurons.
Arrows indicate the individual foreground spikes and the number of the corresponding
source.

 0ms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms

1 1

1

1 1 1

1 1

1

1 1 1

2 2

2 2

2 2

2 2

3 3
3 3

3 3 3 3

3 3
3

3

3
3

3 3

4
4 4 4

4 4
4 4

4 4 4 4

4 4 4 4

5 5
5

5

5 5 5
5

5
5 5 5

5
5

5 5

Figure 3.27: A 100ms example of the artificial data with realistic wave forms. Arrows
indicate the individual foreground spikes and the number of the corresponding source.

84 CHAPTER 3. OPTIMAL LINEAR FILTERS

q̄ � x � , q̄ � y � Average clustering accuracy, (3.78), for the unfiltered rsp. the filtered record-
ings. For q̄ � x � the amplitudes of the raw recordings x � t � were clustered for
the spikes detected from the raw recordings. For q̄ � y � the amplitudes of the
filtered recordings y � t � were clustered for the spikes detected from the filtered
recordings.

q̄ � x,PCA � ,
q̄ � y,PCA �

Average clustering accuracy, when principal components are clustered rather
than amplitudes. For every detected spike a small window ranging from 10
samples before to 9 samples after the spike time is taken from all channels. All
these 4 � 20 windows are projected onto their 7 largest principal components,
and the resulting projection vectors are clustered with a Gaussian mixture
model. This value was computed, because clustering principal components
is a widely used technique the presented method should be compared with.
Spikes were detected and windows were taken from the unfiltered recordings
for q̄ � x,PCA � and from the filtered recordings for q̄ � y,PCA � . The window was
4 � 20 samples, and 7 principal components were used because these were the
settings which showed best performance.

In a first experiment the influence of the spike rate ηi on the performance was investi-
gated for both types of foreground signals, the unique wave form data and the real wave
form data. The left panel of figure 3.28 shows the results for the toy data with unique
wave forms averaged over 5 independent trials with different mixing matrices. The right
panel shows the results with real wave forms, where there was only one setup. For all
spike rates and both types of data, the detection accuracy and the clustering performance
are apparently better when the optimal filter is applied. For the filtered data clustering
of the the spike amplitudes, q̄ � y � , performs better than clustering of principal components,
q̄ � y,PCA � , in particular for high spike rates. Interestingly, for low spike rates it happens that
q̄ � x,PCA � � q � x � . This result is only possible, because there were more clusters than sources,
and in the assignment procedure some clusters were allowed to be not assigned to any
source. This way these clusters could pickup false positives and, hence, decrease the q �
rates. Note, however, that also in these situations q̄ � x,PCA � was apparently worse than both
types of clustering procedures with the filtered data.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tr
ue

 p
os

. ×
 (

1−
fa

ls
e

po
s.

)

spike rate

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tr
ue

 p
os

. ×
 (

1−
fa

ls
e

po
s.

)

spike rate

q {y }
q̄ {y }
q̄ {y ,P C A}
q {x }
q̄ {x }
q̄ {x ,P C A}

0.005

156.2/s

0.002

62.5/s

0.001

31.2/s

0.0005

15.6/s

0.0002

6.2/s

0.0001

3.1/s

0.005

156.2/s

0.002

62.5/s

0.001

31.2/s

0.0005

15.6/s

0.0002

6.2/s

0.0001

3.1/s

Figure 3.28: Influence of the spike rate η (labeled in spikes per sample at the bottom and
spikes per second at the top axis) for toy data with unique wave forms (left) and real wave
forms (right). The spike rates were modified for all sources simultaneously. For the unique
wave form data, 5 independent trials were averaged. For the real wave form data there was
only one trial. In all cases the detection performance is better with the filtered data, where
the clustering of amplitudes performs better than the clustering of principal components.

In the next experiment was explored how the performance of the new method depends
on the variability of the individual spike wave forms. Therefore a third data set was

3.5. APPLICATION: SPIKE-SORTING 85

constructed, in which the foreground signal could be continuously morphed from the
unique wave form to the real wave form setting, controlled by a parameter β � 	 0, 1 � .
For the limit β � 0 the wave forms were composed with the unique ξ such that they best
represent the average of all real wave forms of the corresponding cluster in terms of squared
differences. For β � 0 a linear superposition of unique and real wave forms weighted by
1 � β rsp. β was used. Figure 3.29, left, shows the performance measures q as functions of
the wave form variability. The rate of the source spike trains was η � 0.001 (31.25 spikes/s).
In general one can state that the performance of all methods is negatively influenced by
increasing wave form variability, but one can also see that clustering the filtered amplitudes,
q̄ � y � , is over the whole range of β superior to the other methods. Also in this experiment, for
small β and in particular for the unfiltered recordings, the clustering accuracy was larger
than the detection accuracy. For the filtered data this effect is less apparent because here
the detection accuracy was already considerably improved.

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

tr
ue

 p
os

. ×
 (

1−
fa

ls
e

po
s.

)

q {y }
q̄ {y }
q̄ {y ,P C A}
q {x }
q̄ {x }
q̄ {x ,P C A}

varying unique
0 10 20 30 40 50

0.5

0.6

0.7

0.8

0.9

1

filter length

Figure 3.29: Left: Spike sorting performance as functions of the value of the wave form
variability parameter β. For explanations see text. Right: Spike sorting performance as
functions of the filter length for the real wave form dataset. For filters longer than 5
samples, the detection and classification performance improves compared to the unfiltered
recordings. For all other experiments the filter length 40 samples was used.

Figure 3.29, right, shows the influence of the filter length on the performance for the real
wave form data set. The values q � x � , q̄ � x � , and q̄ � x,PCA � were computed from the unfiltered
data and q � y � , q̄ � y � , and q̄ � y,PCA � for filters in the range of 2 to 50 samples length. Starting with
filters longer than 5 samples, the analysis of the filtered data yield better detection and clas-
sification results than the analysis of the unfiltered data. Above a length of approximately
20 samples, increasing filter length do not further improve the spike sorting performance.
Again, clustering of amplitudes outperforms clustering of principal components.

3.5.5 Outlook

A optimal filtering method for spike sorting of extra-cellular neural activities based on
the ‘stereo effect’ that can be achieved with multi-site electrodes was demonstrated. It
could be shown that the amplitude pattern of the action potentials is a powerful feature to
discriminate the individual neurons. Further performance gain can be expected by the use
of heptodes, 7-cores multi-fiber electrodes Thomas RECORDING Gmbh (2002). The space
of recorded amplitudes, i.e. the space in which the clustering is eventually done, would
be larger by three dimensions. In general the performance will behave approximately like
the ratio of recording channels (i.e. dimensions) to the number of foreground spiking units.
Thus, for closely spaced electrode tips, the higher dimensionality provides more space
between the individual clusters allowing to separate them robustly. Deviations from the
model assumption, which generally lead to less pronounced clusters, can then be better
tolerated.

86 CHAPTER 3. OPTIMAL LINEAR FILTERS

For the future one could think of an online implementation of the algorithm, with the
objective to analyse tetrode recordings until the clustering in real time. This is certainly
a demanding, but still realistic aim. For long experiments, it is not feasible to save the
raw recordings continuously. Thus, it would be highly desirable to have filtering and peak
detection at hands in real time. It would then be possible to save only data of the event
times together with the amplitude vector. Clustering could then be performed off-line
to reconstruct the binary separated spike trains. Also it would be nice to have a scatter
plot projection like in figure 3.23 online, because the instant feedback about the ‘cluster
situation’ in the space of event amplitudes would help to place the tetrode or correct the
electrode position when it starts sliding through the tissue during recording. Spike sorting
would be most reliable when this plot exhibits pronounced clusters already. Once the
optimal filter had been found, a linear filtering operation, a squared form of order 4 (the
Mahalanobis distance), and a maximum search over a small window (peak detection) had
to be performed for every sample. These operations are cheap and could be implemented
with the help of digital signal processors. The quantities that are needed to support these
operations, c, H, and f , could be computed in parallel. As these quantities are more or less
stationary, it would not be necessary to perform an update step for every sample. At worst
these quantities would need some time to settle, still allowing to adapt to slow changes,
e.g. in the location of the tetrode.

Chapter 4

Non-linear filtering

In many signal processing applications, filters according to equations (1.30) or (1.35) arise.
In this chapter we will investigate what the computational overhead of the calculation of
the filter function is. To keep the considerations as simple as possible we will, without
loss of generality, consider only one-dimensional, scalar valued signals and simple filter
functions at first.

Clearly the computational load of a filter function can be evaluated meaningfully only
for a finite piece of the stochastic signal, which we assume to be the interval 	 0,Tx � 1 � � Z.
Thus one observation of the stochastic process is given by a family of Tx realizations of the
random variable xt,

� xt
�
t �

�
0,Tx � 1 � � R .

Without loss of generality we consider only filters for which the receptive field J is a closed
interval, just like equation (1.32). Other receptive field shapes J � can be expressed by the
smallest interval J that contains all elements of J � , together with the corresponding filter
function that is invariant to changes of xt for t � J � J � . For convenience of notation we start
the interval at 0. Thus, for the one-dimensional case we have

J � 	 0,T f � 1 � . (4.1)

Because in this setup one can obtain values yt in the interval t � 	 0,Tx � T f � , one usu-
ally assumes the receptive field to be much smaller than the length of the given signal
observation,

T f
� Tx . (4.2)

4.1 Linear filters and the convolution theorem

For the linear filter the response

yt
�

T f�
τ � 0

wτxt � τ (4.3)

has to be computed for Tx � T f � 1 indices t. This results in a computational load of
approximately O � TxT f

� .
Equation (4.3) is the cross correlation between x and w, and one can make use of the

convolution theorem to compute this as a direct product in the frequency domain,

Yk
� Xk conj � Wk

� , (4.4)

where

yt
� F � 1 	 Yk � � 1

Tx

Tx � 1�
k � 0

Yk exp
�
� 2πjkt

Tx

�

87

88 CHAPTER 4. NON-LINEAR FILTERING

A B

5 10 20 50 100 200 500
10

−3

10
−2

10
−1

10
0

10
1

T
f

t[s
]

1 2 5 10 20 30 100
10

−3

10
−2

10
−1

10
0

10
1

T
x
/104

t[s
]

Figure 4.1: Average computation time for the computation of cross correlation functions in
the time domain (solid lines) and in the frequency domain (dashed lines). A: Computation
time as a function of T f . The arrow indicates decreasing values of Tx form 106 to 104. B:
Computation time as a function of Tx. The arrow indicates decreasing values of T f form
500 to 5.

is the inverse Discrete Fourier Transform (DFT) of Yk, and

Xk
� F 	 xt � � Tx � 1�

t � 0

xt exp
�

2πjkt
Tx

�

Wk
� F 	 wt � �

T f � 1�
t � 0

wt exp
�

2πjkt
Tx

�

are the DFTs of xt and wt, respectively. Note that with equation (4.4) a cyclic cross correlation
is actually performed so that for t � Tx � T f the values of yt are subject to errors. However,
these values do not at all occur in the direct computation and, hence, can be discarded. For
t � Tx � T f the results of equations (4.3) and (4.4) are identical. However the computational
load for the computation in the frequency domain is approximately O � Tx log Tx

� , thus this
approach can become advantageous when the filter length T f is large.

One must note that the break-even point, at which both methods perform equally
efficient, is not necessarily given by T f

� log Tx because in the overhead estimations any
constants and factors are omitted (and we did not even specify the base of the logarithm). For
a particular performance comparison consider figure 4.1. There, the average computation
times for the computation of cross correlation functions in the time domain and in the
frequency domain are shown for values of � Tx,T f

� � �
104, 2 � 104, 5 � 104, 105, 2 � 105, 5 �

105, 106 � � �
5, 10, 20, 50, 100, 200, 500 � . All computations where programmed in C using

FFTW1 for the computation of the DFT. One can see that the computation cost for the time
domain method grows linearly with Tx and T f , while in the frequency domain approach
it is constant in T f and virtually grows linearly with Tx. In this example the break even
between point is at T f � 150 . . .200.

4.2 Non-linear filters
The convolution theorem and the computation of linear filters in the frequency domain can
lead to a strong performance gain, in particular for filters with large receptive fields. So

1available as free software at http://www.fftw.org/

4.2. NON-LINEAR FILTERS 89

the question comes close whether a similar approach exists for non-linear filter functions.
Unfortunately, there is no equivalent to the convolution theorem for other than linear
operations. However, in many situations it is possible to reduce a non-linear filter to an
instantaneous, non-linear function of a finite number of linear filters,

� yt
�
t � I

� � f � y �1,t, . . . , y �N,t; w � � �
t � I , y �n,t � �

τ � J

wn,τxt � τ , (4.5)

or at least approximate it as such. The instantaneous non-linear functions then can be
computed with O � Tx

� , which may lead to the desired significant performance gain.

4.2.1 Taylor expansion
If the computation of the filter function itself is expensive, then it may be sometimes
advantageous to consider it’s Taylor expansion (or truncated Taylor expansion) and see if
terms vanish or can be simplified. An analytic filter function f can be represented by the
series

f � � xt � τ �
τ � J

� � f � � bτ �
τ � J

� �
�
d � 1

1
d!

�
�
τ1,...,τd

� � Jd

gτ1,...,τd

d�
i � 1

� xt � τi � bτi
� , (4.6)

where
gτ1,...,τd

� �
� xτ1

. . .
�

� xτd

f � � xτ �
τ � J

�
����
x � b
. (4.7)

The d-th term of the series involves the multilinear multiplication of the vector � xt � τ � bτ �
τ � J

with the tensor g in d dimensions. A straight forward computation of this term would
contain 1 � T f � . . . � Td

f multiplications and � T f � 1 � � 1 � T f � . . . � Td � 1
f

� additions. Thus,
the computation of a non-linear filter by means of a taylor approximation up to the degree
d has a computational complexity of O � TxTd

f
� and a storage demand of O � Td

f
� . This may

become intractable already for small d.
However, in some special cases the taylor series can have a particularly simple structure

so that the computational complexity can be greatly reduced. If, for example, the d-th tensor
g is diagonal,

gτ1,...,τd
� gτ1,...,τdδτ1,...,τd , (4.8)

then the multilinear multiplication reduces to�
�
τ1,...,τd

� � Jd

gτ1,...,τd

d�
i � 1

� xt � τi � bτi
� � �

τ � J

gτ,...,τ � xt � τ � bτ � d

� d�
i � 0

�
d
i

� �
τ � J

xi
t � τ ��� bτ � d � igτ,...,τ . (4.9)

The right hand side of this equation represents d � 1 cross correlation functions (of in-
stantaneous powers of x and b), which can be computed according to equation (4.4) with
O � d Tx log Tx

� complexity. If the origin of the expansion, b, equals zero, just one cross
correlation function of xd with the diagonal vector of g remains.

More often, however, it will be the case that g is not diagonal. But by construction it is
always symmetric with respect to permutations π of it’s indices,

gτ1,...,τd
� gπ � τ1,...,τd

� . (4.10)

Thus, there exists a T f � N matrix with elements � vτ,n �
τ � J, n � 1...N and a vector λ � RN so that

g can be decomposed as

gτ1,...,τd
� N�

n � 1

λn

d�
i � 1

vτi,n . (4.11)

90 CHAPTER 4. NON-LINEAR FILTERING

This is the special case for super-symmetric tensors of the CANDECOMP–PARAFAC de-
composition (CANonical DECOMPosition or PARAllel FACtors model), which was inde-
pendently proposed in Carroll and Chang (1970) and Harshman (1970) (cf. also Lathauwer
et al. (2004)). The decomposition allows to compute the tensor multiplikation as�

�
τ1,...,τd

� � Jd

gτ1,...,τd

d�
i � 1

� xt � τi � bτi
� � N�

n � 1

λn
�

�
τ1,...,τd

� � Jd

d�
i � 1

vτi,n � xt � τi � bτi
�

� N�
n � 1

λn � �
τ � J

vτ,n � xt � τ � bτ � � d

. (4.12)

Equation (4.12) requires the computation of N cross correlation functions of x with all
column vectors of v and subsequently taking it to the instantaneous power of d. Again, the
cross correlation function can be computed in the frequency domain so that equation (4.12)
leads to a complexity of O � NTx log Tx

� .
Unfortunately, the smallest possible number of linear forms, N, required to decompose

general tensors is only known for some small values of T f and d (cf. Comon and Mourrain
(1996) and references therein). It has been shown, anyhow, that

N �
�

T f � d � 2
d � 1

�
(4.13)

for arbitrary values of T f and d, which, however, does not mean that a decomposition with
N holding that bound can always be found.

For d � 2 equation (4.11) constitutes the eigenvalue decomposition of the matrix g, and
N is at most T f provided g has full rank. Further, there are efficient algorithms to compute
the eigenvalue decomposition and the memory requirements to store T f � T f matrices is
more or less moderate compared to higher order tensors. Thus, quadratic functions are
of outstanding importance for non-linear filtering, as it will be shown in the following
sections.

4.2.2 Linear and radial basis function networks
We have seen that the Taylor expansion of an arbitrary filter function may not always yield
satisfactory results in terms of computational costs. However, one can always construct
non-linear filter functions that can be efficiently computed if they have the general form of
a basis function network,

yt
� f

�
f1 � � xt � τ �

τ � J; w1
� , . . . , fN � � xt � τ �

τ � J; wN
� �
, (4.14)

and if the basis functions fi can be efficiently computetd. The output function f , wheter it is
linear or non-linear, is instantaneous and has a complexity of only O � Tx

� . Thus, the overall
complexity is dominated by the basis functions. According to the results of section 4.2.1
usually only linear,

fi � � xt � τ �
τ � J; wi

� � φi � �
τ � J

xt � τwi,τ � wi,0 � , (4.15)

or quadratic,

fi � � xt � τ �
τ � J; wi, gi

� � φi

�� �
�
τ1,τ2

� � J2

gi;τ1,τ2 � xt � τ1 � wi,τ1
� � xt � τ2 � wi,τ2

�
��
, (4.16)

functions can be considered as basis functions.
Fortunately, these two classes of basis function networks cover most types non-recurrent

function approximators used in mashine learning (Haykin, 1999):

4.3. APPLICATION: ELECTRON MICROSCOPY DATA 91

• Multi Layer Perceptrons (MLP): Equation (4.15) constitutes the first layer of an MLP
with N neurons in the first hidden layer. The squashing function φ � φi is usually one
and the same for all hidden neurons. Often the tangens hyperbolicus, the sigmoid
function, or the signum functions are used. wi,τ and wi,0 are the learned weigths rsp.
biases of the first layer. Subsequent hidden layers and the output layer are expressed
by means of the function f in equation (4.14).

• Radial Basis Function (RBF) Networks: The first layer of this type of function ap-
proximators has the form of equation (4.16). Usually φi is the exponential function,
and often gi is multiple of the unit matrix, gi

� � 1
2σi

I, leading to a spherical basis
function and computation according to equation (4.9). In RBF networks usually there
are no subsequent hidden layers. Thus f is a linear function.

• Support Vector Mashines (SVM): A trained SVM for regression has the form of
equation (4.14) if N equals the number of support vectors with non-zero coefficients,
and the kernel has the form (4.15) or (4.16). With the commonly used RBF kernels a
SVM is equivalent to a RBF network. The also commly used polynomial kernels have
the form (4.15) where φi is the power of the kernel. Usually SVM make use of one and
the same kernel function φ � φi for all support vectors wi , and the ouput function f
is always linear.

4.3 Application: electron microscopy data

This section describes an application of non-linear filtering in the frequency domain coming
from the field of biomedical image analysis. In electron micrograph images of photoreceptor
terminals of the fruit fly, Drosophila, synaptic vesicles containing neurotransmitter shall be
detected and labeled automatically. Hand written labels provided by human experts are
used to learn an RBF filter using Support Vector Regression with Gaussian kernels. The
calculation of the RBF filter output is usually very expensive. However, the Gaussian basis
functions can be decomposed into a set of linear filters that can be computed efficiently in
the frequency domain yielding dramatic improvement in speed.

The results show that the resulting nonlinear filter solves the task to a degree of accuracy,
which is close to what can be achieved by human experts. This allows the very time
consuming task of data evaluation to be done automatically or computer assisted.

4.3.1 Introduction

Using filters for image processing can be understood as a supervised learning method for
classification and segmentation of certain image elements. A given training image would
contain a target that should be approximated by some filter at every location. In principle,
any kind of machine-learning techniques could be employed to learn the mapping from
the input receptive field of the filter to the target value. The most simple filter is linear
mapping. It has the advantage that it can be very efficiently computed in the frequency
domain. However linear filters may not be complex enough for difficult problems. The
complexity of nonlinear filters is in principle unlimited (if one leaves generalization issues
aside), but the computation of the filter output can be very time consuming. However, for
nonlinear filters, that are linear superpositions of Gaussian radial basis functions, there
exists a decomposition into linear filters allowing the filter output to be computed in
reasonable time. This sort of nonlinear filtering is for example obtained, when Support
Vector Machines (SVM) with a Gaussian kernel are used for learning. SVM have proved
to yield good performance on many applications. This and the ability to compute the
filter output in an affordable time make SVM interesting for nonlinear filtering in image
processing tasks. In the following such filters are applied to the evaluation of electron
micrograph images taken from the visual system of the fruit fly, Drosophila, as a means to
screen new genetic mutants.

92 CHAPTER 4. NON-LINEAR FILTERING

Genetically manipulable organisms such as Drosophila provide means to address many
current questions in neuroscience. The action, even of lethal genes, can be uncovered in
photoreceptors by creating homozygous whole-eye mosaics in heterozygous flies Stowers
and Schwarz (1999). Mutant synaptic phenotypes are then interpretable from detailed ultra-
structural knowledge of the photoreceptor terminals R1-R6 in the lamina Fabian-Fine et al.
(2003). Electron microscopy (EM) alone offers the resolution required to analyze sub-cellular
structure, even though this technique is tedious to undertake. As representative datasets
showing the feasibility of the proposed method, there were two datasets from wild type
Drosophila, ter01 for training and ter04 for performance evaluation (cf. figures 4.3 and
4.4, top, respectively), and one from a visual system mutant, ter08, also for performance
evaluation (cf. figure 4.4, bottom). In Drosophila genetics hundreds of mutants of the visual
system have been isolated, many even from a single genetic screen. The task of analyzing
each of these mutants manually is simply not feasible, hence reliable automatic (computer
assisted) methods are needed. The focus here is just to count the number of synaptic
vesicles, but in general the proposed method could be extended to the analysis of other
structures as well.

4.3.2 Learning the RBF Filter
Given an image � xt

�
t � I, where I � 	 0,Tx1 � 1 � � 	 0,Tx2 � 1 � � Z2 and xt � R, we want to find

a simple filter function f the output of which is closest to a target image � yt
�
t � I

� , in terms of
some suitable distance measure.

The filter is constrained to some receptive field J � Z2 so that it’s output would be
formulated in the most general form as

zt
� f � � xt � τ �

τ � J
� ,

and zt is defined for all t � I � � �
t : t � τ � I for all τ � J � . The filter f shall be realized

as an RBF network with M � �
J
�

input dimensions. It can be implemented as a feed
forward net with a single hidden layer of RBF units and a linear output layer (Haykin, 1999;
Bishop, 1995). However we would rather use the technique of Support Vector Regression
(SVR) Vapnik (1995) as it has a number of advantages over RBF feed forward networks. It
offers adjustable model complexity depending on the training data, thus providing good
generalization performance. The training of SVR is a quadratic, constrained optimization
problem, which can be solved efficiently without being trapped into local minima.

In the linear case the formulation of the ν � SVR, as it was introduced in Schölkopf et al.
(2000), translated in our notation is:

minimize

L � � wτ �
τ � J, ξ

� ���
, ε � : � 1

2

�
τ � J

w2
τ � c � � νε � 1

l

l�
i � 1

� ξi � ξ �i � � (4.17)

subject to� w0 � �
τ � J

wτxt � τ � � yt � ε � ξt (4.18)

yt � � w0 � �
τ � J

wτxt � τ � � ε � ξ �t (4.19)

ξ
� ���
t

� 0, ε � 0 (4.20)

The constraints implement the ε-insensitive loss,
�
yt � f � � xt � τ �

τ � J
� �
ε

� max
�
0,

�
yt � f � � xt � τ �

τ � J
� � � ε � , (4.21)

as a distance measure, which is a basic feature of SVR and has been shown to yield robust
estimation (cf. figure 4.2). The objective itself provides a solution of low complexity (small

� τ � J w2
τ) and, at the same time, low errors balanced by c.

4.3. APPLICATION: ELECTRON MICROSCOPY DATA 93

✖

✖

✖

✖

✖

✖
✖

✖

✖

✖

✖

✖

0

ξ

ξ∗

−ε

+ε

Figure 4.2: ε-sensitive loss in support vector regression. Points inside the ε-tube do not
contribute. For outliers the slack variables ξ

� ���
are increased by the distance to the tube.

In contrast to ε � SVR, as it was introduced at first in Vapnik (1995), parameterization
with the hyper parameter ν also allows optimization for the width ε of the insensitive
region. Interacting with c, ν controls the complexity of the model. It provides an upper
bound on the fraction of outliers (samples that do not fall into the epsilon tube) and a lower
bound on the fraction of support vectors (SV). See Schölkopf et al. (2000) and Schölkopf
and Smola (2002) for further details. As usual for SVM, the system is transformed into
a nonlinear regressor by replacing the scalar product with a kernel, that fulfills Mercers
condition (Mercer, 1909). With a Gaussian kernel (RBF kernel) the regression function is

zt
� N�

i � 1

α
� ���
i zi,t � b , (4.22)

where

zi,t
� k � � wi,τ

�
τ � J, � xt � τ �

τ � J � � exp � � 1
γ

�
τ � J

� wi,τ � xt � τ � 2 � (4.23)

is the Gaussian- or RBF-kernel. The resulting SVs wi are a subset of the training examples,
for which the constraints (4.18) and (4.19) hold with equality. They are assigned Lagrange
multipliers α

� ���
i

� � αi � α �i � � 0 to. In the analogy to an RBF network, the SVs are the
centers of the basis functions while α

� ���
i are the weights of the output layer.

4.3.3 RBF Filtering
To evaluate an RBF network filter at location t � I � , all the basis functions have to be evaluated
for the neighborhood � xt � τ �

τ � J. This calculation is computationally very expensive when
computed in the straightforward way given by (4.23). According to equation (4.9), however,
we can write the kernel as

zi,t
� exp � � 1

γ
� �
τ � J

w2
i,τ � 2z �i,t � z �i,t � � , (4.24)

where
z �i,t � �

τ � J

wi,τxt � τ and z �i,t
� �
τ � J

x2
t � τ . (4.25)

Now we are left with linear filtering operations only: the two cross correlations z � and z � ,
which can be efficiently computed in the frequency domain. There, the cross correlation of a

94 CHAPTER 4. NON-LINEAR FILTERING

Table 4.1: Computation time examples for different filtering methods.

filtered according
to equation (4.23)

6d 10h

FFT filtered,
whole image

55m

FFT filtered,
tiles of 256 � 256

24m

• image size 1686 � 1681 pixel

• 200 SV of 50 � 50 pixels size

• implementation in MATLAB

• SUN F6800 / 750MHz

signal with some filter becomes a multiplication of the signal’s spectrum with the conjugate
complex spectrum of the filter. This operation is so much faster that it offsets the additional
computation costs of the Fourier transform. Note that in fact z � is the cross correlation of x2

with the filter ot
� δ � t � J � , which is 1 for t � J and 0 everywhere else. We need to compute

the following Fourier transforms:

Xk
� F 	 xt � , X

�
2 �

k
� F 	 x2

t � ,
Wi,k

� F 	 wi,t � , Ok
� F 	 ot � . (4.26)

Now zi is easily computed as

zi,t
� F � 1

�
X
�
2 �

k conj � Ok
� � 2Xkconj � Wi,k

��� � �
τ � J

w2
i,τ . (4.27)

Wi,k and Ok must be computed with the size of x. Therefore, wi and o are zero filled to the
required size and for all τ � I. It is necessary to take care of the placement of the origin
τ � 0 which depends on the implementation of the Fourier transform.

Also depending on the implementation of the DFT, the speed improvement is much
higher when the size of x is even in terms of powers of 2 (or the next few small prime
numbers, cf. Press et al. (1992) and the FFTW documentation, Frigo and Johnson (2003)).
Thus, one should consider enlarging the image size by adding the appropriate number of
zeros at the border. However, this can lead to large overhead regions, when the image size
is not close to the next power of 2. For this reason a tiling scheme was used, which processes
the image in smaller parts of even size, which can cover the entire image more closely. It
is important to be aware of the distorted margins of the image or it’s tiles, i.e. the pixels
at t � I � I � , when filtering is done in the frequency domain. Because the cross correlation in
the frequency domain is cyclic, points at the margin, for which the neighborhood J exceeds
the image boundaries, have incorrect values in the filter’s output. This is particularly
important for the tiling scheme, which has to provide sufficient overlap for the tiles. For
the same reason the tiles should not be too small, to avoid overhead from the overlapping
margins. Table 4.1 summarizes the speed-up gain for the described filtering method. Most
performance gain is obtained through the filtering in the frequency domain. However,
splitting the image into tiles of appropriate size can improve speed even further.

4.3.4 Experiments
To test the performance of the method two images, one of wild type and one of mutant
photoreceptor terminals, were used. The profiles of the terminals contain typically about 100
synaptic vesicles, the number of which can be altered by mutating the genes for membrane
trafficking in the terminal. Detecting such numerical differences is a simple but tedious
task best suited to a computational approach. The wild type images came from electron
micrographs of the same animal under the same physiological conditions. For all images
visual identification and hand written labelings of the vesicles were made. Image ter01
(figure 4.3) was used for training. The validation error on ter04 (figure 4.4, top) was
considered for model selection. Then, the best model was tested on the mutant image
ter08 (figure 4.4, bottom).

4.3. APPLICATION: ELECTRON MICROSCOPY DATA 95

Figure 4.3: EM image of photoreceptor terminals of the wild type fruit fly, Drosophila
melanogaster. The arrow points to an individual synaptic vesicle. This image (ter01) was
used for training.

96 CHAPTER 4. NON-LINEAR FILTERING

Figure 4.4: EM images of photoreceptor terminals of, top (ter04), the wild type and, bottom
(ter08), genetic mutant fruit fly, Drosophila melanogaster. These images were used for model
selection and validation.

4.3. APPLICATION: ELECTRON MICROSCOPY DATA 97

Figure 4.5: Output of the SVM filter applied to the images ter04 and ter08 (cf. figure 4.4).
Red indicates large values. For parameters of the SVM see text.

98 CHAPTER 4. NON-LINEAR FILTERING

4.3.5 Description of the procedure
ter01 contains 286 hand-labeled vesicles at discrete positions. To generate a smooth target
image y, circular Gauss blobs with σ2 � 40 and a peak value of 1 were placed on every label.
Now, training examples � xt � τ �

τ � J where generated from ter01 by taking square patches,
centered around t. The patch size was set to J � 	 1 � T f

2 ,
T f

2 � � 	 1 � T f

2 ,
T f

2 � with T f
� 50

pixels to cover an entire vesicle plus a little surrounding. The corresponding values yt of
the target image where used as targets for regression.

The most complete training set would clearly contain patches from all locations, which
however would be computationally unfeasible. Instead patches from all hand-label posi-
tions and additionally 2000 patches from random positions were used. No patches exceeded
the image boundaries. With these data the SVM was trained, using the libsvm implemen-
tation (Chang and Lin, 2003) which also contains, beside others, the ν-SVR.

Mainly three parameters had to be adjusted for training the ν-SVR: the width of the RBF
kernelγ and the parameters ν and c. Because the training dataset is small compared with the
input dimensionality, the validation error on ter04 is subject to large variance. Therefore
a model with not too much complexity can be expected to give the best generalization.
It turned out that for the given conditions a kernel size of γ � 20, 000 together with a
small value ν � 0.1 and c � 0.01 yield good validation results on ter04. The optimization
returned 245 SVs, 185 of which where outliers w.r.t. the ε-sensitive loss. The kernel width
was large compared to the average distance of the training examples in input space, which
was � 2, 000.

Because the computation time of the filter grows linearly with the number of SVs, one
is strongly interested in a solution with only few of them. This requires small values of ν
since it is a lower bound on the fraction of SVs. At the same time small ν values provide
large ε and hence restrict the model complexity. The filter output on ter04 and ter08 for
these parameters is illustrated in figure 4.5. Comparing with the figure 4.4, one can see the
sharpest peaks for those vesicles that have the most distinct shape.

After filtering the decision what point in � zt
�
t � I

� corresponds to a vesicle and what not
has to be made. Although the regions of high amplitude form sharp peaks, they still have
some spatial extension. Therefore the discrimination for the peak locations is done first,
followed by an amplitude threshold. Peak locations are those locations t for which zt is a
local maximum in some neighborhood, which is determined roughly by the size of a vesicle,
i.e. the peak locations constitute the set

Qd
�
�

t : zt
� max� τ � I

�
: � t � τ � � d �

zτ
�
. (4.28)

A threshold is applied to the candidates in Qd to yield the set of locations which are
considered as detected vesicles,

Qθ � �
t � Qd : zt � θ � . (4.29)

The distance parameter was kept constant, d � 15, in all experiments. Only the threshold
θwas varied.

4.3.6 Performance Evaluation

To evaluate the performance of the method, the set of detected vesicles Qθmust be compared
with set QExp, which contains the locations detected by a human expert. Clearly, this is only
meaningful when done on data which was not used to train the SVM. Note that the location
of the same vesicle may vary slightly in Qθ and QExp due to fluctuations in the manual
labeling, for example. So we need to find the set Qmatch, containing pairs � t1, t2

� with
t1 � Qθ, t2 � QExp so that t1 and t2 are close to each other and describe the location of the
same vesicle. This can be computed with a simple, greedy, but fast algorithm:

• compute the matrix Di j
� �

ti � t j
�

for all ti � Qθ, t j � QExp

4.3. APPLICATION: ELECTRON MICROSCOPY DATA 99

• while Di j
� min D � dm

– put � ti, t j
� into Qmatch

– fill i-th row and j-th column of D with ���
The resulting pairs of matching locations are closer than dm, which should be set approxi-
mately to the radius of a vesicle. This algorithm does not generally find the global optimal
solution, which would be a NP-complete problem, but for low point densities the error
made by this algorithm is usually low. Now we can evaluate the fraction of correctly
detected and the fraction of false positives,

fc �
�
Qmatch

�
�
QExp

� , f f p
� 1 �

�
Qmatch

�
�
Qθ

� , (4.30)

where
�
Q

�
denotes the cardinality of the set Q. Depending on the threshold θ,

�
Qθ

�
may

change and so does
�
Qmatch

�
. So we get different values for fc and f f p. These two rates

are summarized in a diagram, which we may call, following Harvey, Jr. (1992), Receiver
Operating Characteristic (ROC). In comparison to Harvey, Jr. (1992), fc represents the hit rate
and f f p represents the false alarm rate, cf. figure 4.6.

However, our ROC differs in some aspects. Since with changing threshold the cardinality
of Qθ changes, f f p does not need to be a monotonic increasing function of θ, and hence our
ROC does not need to be monotonic. Furthermore, fc does not need to reach 1 for arbitrary
low thresholds, as it is restricted by the set Qd, which does not need to contain a match to
all elements of QExp.

If no a priori costs are assigned to fc and f f p , then a natural measure for quality is the
area below the ROC, which would be close to 1 at best and 0 if no match would be contained
in Qd.

4.3.7 Results

A B

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

A
1
 = 0.863

A
2
 = 0.848

A
3
 = 0.838

A
4
 = 0.889

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
1
=0.826

A
2
=0.765

Figure 4.6: A: ROC of the validation with ter04, and B: with ter08. For various thresholds
θ, fc is plotted on the x-axis versus 1 � f f p on the y-axis. The single crosses show the fraction
of matching labels for every pair of hand labels of ter04. For detailed explanation, see text.

The ROC of the validation with ter04 and ter08 is shown in figure 4.6 . The rates fc and
f f p were computed for 50 different threshold values covering the interval 	 mint � Qd zt,maxt � Qd zt � .
For ter04 there exist four and for ter08 two human expert labelings. Therefore either four
or two curves, respectively, can be plotted. To get an impression about the variance of the
performance measure, one may consider the areas below the curves. Furthermore the mul-
tiple hand labelings allow to plot them against each other in the same figure (single crosses).

100 CHAPTER 4. NON-LINEAR FILTERING

Figure 4.7: Mean vesicles obtained by averaging the hand labeled 50 � 50 patches. From
left to right ter01, ter04, ter08

They indicate what performance is achievable at best. A curve passing these points can be
considered to do the task as well on average as a human does. One can see that for the wild
type image the curve gets close to that region. For the mutant the performance is slightly
worse in terms of the area. This is certainly due to slight differences in the preparation of
the electron micrographs and the fact that the image comes from a different animal, which
was moreover a genetic mutant. For example, in figure 4.7 one can see that in ter08 the
vesicles look slightly different on average. They are a bit smaller, and the bright spot in the
center is less prominent. Further, the background of ter08 is slightly different in texture
and contrast compared to the wild type images. Thus, a slightly worse performance on the
mutant image could be expected. In cases where the training data do not cover all types of
variation, it is difficult to generalize upon such variations. Thus, for practical applications
one would clearly put as many different images as possible in the training set and, at the
same time, try to keep the preparation and imaging conditions as constant as possible.

4.4 Sparseness regularization for second order
kernel methods

The application presented in section 4.3 made use of Support Vector Regression in conjunc-
tion with RBF-kernels to supervisedly learn a nonlinear filter function as a basis function
network (4.14) with quadratic basis functions (4.16). There, the number of the support
vectors or, in other words, the number of basis functions linearly determines the costs of the
filtering operations. Due to the nature of the SVM solution, which involves a quadratic loss
function and box constraints, sparse solutions usually are favored. The parametrization as
a ν-SVM particularly accounts for the sparseness of the solution.

However, for the large class of second order kernel methods, sparseness of the solu-
tions is usually not provided by itself. Therfore, in this section we will introduce a new
optimization procedure that allows to solve these problems and, at the same time, enforce
sparseness of the solution.

4.4.1 Second order kernel methods
Kernel methods offer the possibility to turn linear supervised and unsupervised learning
methods into nonlinear ones, retaining the particular computational simplicity of the linear
method to some degree. This is achieved by the execution of the linear methods in some
high dimensional feature space F , which the data x � RM have been nonlinearly mapped
into beforehand. This mapping determines the degree of nonlinearity rsp. the complexity of
the nonlinear method. Although in principle this mapping can be defined and carried out
explicitly as some function Φ � x � : RM � F , this direct mapping can become problematic
if the dimension of F is large (or even infinite), which however is necessary for high
complexity of the linear method in feature space.

Fortunately, many linear methods only make use of scalar products in RM, which in
feature space allows to define only the scalar product

ΦT � xi
� Φ � x j

� : � k � xi, x j
� (4.31)

and not the mapping itself. The function k is called kernel and implicitly defines the mapping
Φ and F . The space F is populated in a subspace of dimension smaller or equal T, the

4.4. SPARSENESS REGULARIZATION FOR SECOND ORDER KERNEL METHODS 101

number of data points x. Since only scalar products are involved, it is sufficient to consider
only quantities from that subspace, all of which can be represented as linear combinations
of the mapped data points. This procedure is often called the ‘kernel trick’, and the resulting
nonlinear methods are called kernel methods.

Second order kernel methods are those, the underlying linear versions of which in-
volve second order statistics of the data x. This leads to learning methods that contain
at most second order objective functions and constraints, which together can be solved in
closed form as generalized eigenvalue problems (Schölkopf et al., 1998) or singular value
decompositions (Bach and Jordan, 2002). The most prominent examples may be PCA and
Kernel-PCA (Schölkopf et al., 1998). In a very similar way other linear second order learning
methods have found their nonlinear counterparts. Methods of decorrelation based Second
Order Blind Source Separation (Ziehe and Müller, 1998) have been transformed to non-linear
BSS Harmeling et al. (2003). Similarly, kernelized versions of Canonical Correlation Analysis
approach nonlinear Independent Component Analysis (Fyfe and Lai, 2000; Bach and Jor-
dan, 2002). Slow Feature Analysis, which was originally proposed with an explicit nonlinear
mapping (Wiskott and Sejnowski, 2002), can be transformed to Kernel-SFA in exactly the
same way (Bray and Martinez, 2002). There may be further second order (kernel-) methods.

Due to the nature of the quadratic constraint, second order kernel methods usually
don’t yield sparse solutions meaning that any projections found in feature space are in
principle linear combinations of all mapped data points rather than only a few support
vectors. However, sparse solutions are highly desirable to keep the computational costs
low, when new data shall be projected onto the resulting kernel principal components,
kernel slow components etc. .

In this section we will give up the quadratic objective function in order to allow for non-
quadratic regularization terms which enforce sparse solutions. This has the consequence
that the optimization problem cannot be solved in closed form by means of eigen- or singular
value decomposition anymore. Therefore a gradient descent optimization procedure is
introduced, which is restricted to the admissible hyper-ellipsoidal surface that is given by
the quadratic constraint.

The reminder of this section is written in the context of kernel-PCA. However, in the
derivations we will not make any assumptions that are specific to Kernel-PCA. Thus, the
proposed algorithm is equally well suited to all of the above mentioned second order
kernel methods. Generally the proposed Hyper-Elliptical Conjugate Gradient Descent method
can be applied to optimize arbitrary nonlinear functions under positive definite quadratic
constraints.

4.4.2 Sparseness regularization for kernel PCA
Kernel-PCA amounts to finding orthogonal projections in feature space that exhibit the
largest variances of the projected data. The variance of the projection wi is given by

di : � 〈

� wT
i Φ � x � � 2

〉

�
〈

wT
i Φ � x � 〉2

� wT
i � 〈Φ � x � ΦT � x � 〉 �

〈

Φ � x � 〉 〈ΦT � x � 〉 � wi ,

where
〈

�
〉

denotes the expectation over x.
Finding a maximum clearly is only meaningful if the norm of the projection is constraint

to a fixed value, say wT
i wi

� 1. Different projections shall be orthogonal, thus wT
i w j

� 0
for i � j. In a sequential approach finding the component wi, where other components w j
already have been found, amounts to the following constraint optimization problem:

maximize di s.t. wT
i w j

� δi j . (4.32)

If the mapping x � Φ � x � is given as such, the problem can be solved using ordinary PCA,
i.e. by eigen-decomposition of the covariance matrix ofΦ � x � .

However, a direct mapping into the feature space gives rise to difficulties if the dimension
ofΦ � x � is too high for the necessary computations to be tractable. For problems that can be

102 CHAPTER 4. NON-LINEAR FILTERING

expressed exclusively in terms of scalar products in feature space, these difficulties can be
overcome with the so called ‘kernel trick’. It constitutes the definition of the scalar product
as a kernel function (4.31). At the same time the projection wi is approximated by a linear
combination of a finite number of data vectors x̂l mapped into the feature space,

wi
� N�

l � 1

αilΦ � x̂l
� .

The set
�
x̂l, l � 1 . . .N � is called the initial2 set of support vectors of wi. In terms of kernels

a projection of a data point x onto wi in feature space is given by

wT
i x � N�

l � 1

αilk � x̂l, x � . (4.33)

Hence, the variance of the projection is given by

di
� N�

l � 1

N�
h � 1

αilαih � 〈k � x̂l, x � k � x̂h, x � 〉 �
〈

k � x̂l, x � 〉 〈k � x̂h, x � 〉 � , (4.34)

where the constraints are given by

N�
l � 1

N�
h � 1

αilα jhk � x̂l, x̂h
� � αT

i K̂α j
� δi j . (4.35)

Maximizing (4.34) w.r.t. αi : � � αi1, . . . , αiN
� T subject to the constraint (4.35) is a general-

ized eigenvalue problem, the dimensionality of which is determined by N rather than the
dimensionality of F .

Thus N should be at least small enough so that the eigen-decomposition can be actually
computed. In practice, however, one is usually interested in much smaller N in order to
achieve cheap computations of the projection (4.33). But then, N should be still large enough
so that the span of the initial support vector set in F is a good approximation of the span
of all data points in F , and projections wi can be composed with sufficient accuracy. This
trade-off does not just regard their number, but, even more important, the choice of the
initial support vectors.

Consider a particular problem where the expectations in (4.34) are estimates over T
given training data vectors xt, t � 1 . . .T. Then, there are � T

N � possibilities to choose the
support vectors from the training data3. So it may be impossible to find the optimal support
vector set of given (small) size N.

This gives rise to the idea to start with a large set, that is tractable for computation, and is
likely to contain a smaller subset that yields almost equally good projections. In the course
of the adjustment of the αil, we must assure that the majority of them eventually becomes
zero leaving only those that correspond to a small and almost optimal set of support vectors.
That means we must modify the constrained optimization problem (4.32) such that sparse
solutions a favored.

Here it be proposed to achieve sparseness by adding a regularization term to the objective
function that penalizes non-sparse solutions:

max. di � β
� �
αi

�
1�

αi
�
2

� 2

s.t. αT
i K̂α j

� δi j . (4.36)

The regularization term is the ratio of the L1- and the L2-norm of the vector αi. It is always
larger or equal to one with equality if, and only if, not more then one element of αi is

2It is called initial because in the result of a sparse optimization we can expect that many of the coefficients αil
become zero, and the remaining ones constitute the final set of support vectors.

3Note that, in contrast to Support Vector Machines, here the set of support vectors does not necessarily have to
be a subset of the training data set.

4.4. SPARSENESS REGULARIZATION FOR SECOND ORDER KERNEL METHODS 103

different from zero. We apply the square of that ratio because also di is a quadratic function
of αi. Thus, the choice of a suitable regularization parameter β is independent of scalings
of αi.

In the application for Kernel-PCA one can achieve good results with the above regular-
ization term, but other ones are applicable as well. For example, one could use the sample
kurtosis of the elements of αi for regularization. Generally, in order to make the whole
algorithm insensitive for small changes of β, it is usually a good idea to use a regularization
term that scales with αi equally to di.

4.4.3 Hyper-ellipsoidal conjugate gradient

g

α

α
� ϕ

�

Figure 4.8: Gradient descent on a hyper-ellipsoidal surface. The vector to the current point,
α, and the gradient projected into the tangent space at the current point, g, define the search
direction. Line search is done on the elliptical trajectory defined by these two vectors in
terms of the angle ϕ, where the current point and the gradient vector are π � 2 apart. At the
minimum on the trajectory a new search direction is computed. The procedure is repeated
until convergence.

The sparseness regularization in (4.36) comes at the expense that the structure of a
generalized eigenvalue problem is lost. Thus, a solution in closed form does in general
not exist. Therefore, in the following we derive a new gradient optimization procedure
that takes the specific nature of the quadratic constraint into account: the Hyper-Ellipsoidal
Conjugate Gradient.

We derive the algorithm for a general cost function f � αi
� , that may include any regular-

ization terms and that shall be minimized with respect to the quadratic constraints

αT
i Cα j

� δi j , (4.37)

where C is a positive definite matrix that establishes the constraints. Thus, with respect
to C, αi shall have unit length and shall be orthogonal to any previously found α j. To be
precise, (4.37) constitutes exactly one quadratic constraint for i � j and none or a number
of linear constraints for i � j (w.o.l.o.g. i � j).

To start the gradient descent, we need an admissible starting point that fulfills the
constraints. We start with a random αi and first make it orthogonal w.r.t. C to all previously
found α j � i

αi � αi � MM
�
αi, M � C � � α1, . . . ,αi � 1

� , (4.38)

104 CHAPTER 4. NON-LINEAR FILTERING

where M
�

denotes the pseudo inverse of M. Then, the length of αi is scaled to match
αT

i Cαi
� 1,

αi � � αT
i Cαi

� � 1
2αi . (4.39)

We now have an admissible starting point αi and compute the negative gradient

g � �
� f � αi

�
�
αi

(4.40)

at the starting point. The gradient needs to be projected into the tangent space orthogonal
to αi and to all previously found α j ,

g � g � MM
�
g, M � C � � α1, . . . ,αi

� , (4.41)

and it’s length needs to be normalized,

g � � gTCg � � 1
2 g . (4.42)

Now, we seek a local minimum on the elliptical trajectory that is defined by αi and g (cf.
Figure 4.8). The local minimum is given by

αi � cos � ϕ � � αi � sin � ϕ � � g . (4.43)

Clearly, because αi and g are of unit length, are mutually orthogonal, and are orthogonal
w.r.t. C to all α j � i , also the new αi holds the constraints. The angle ϕ

�
is found with Golden

Section Search (cf. Press et al. (1992, §10.1)) on the interval 	 0, 2π � . If the cost function is
symmetric, f � αi

� � f ��� αi
� , then the search interval can be reduced to 	 0, π � . The new αi is

used to continue the iterations at (4.38)4.
These iterations are continued until a suitable combination of the following stopping

criteria is fulfilled:

(i) After the Golden Section Search ϕ � falls below some preset threshold εϕ .

(ii) The value of the cost function before and after (4.43) decreases by an amount smaller
than ε f .

(iii) The norm of the gradient before scaling, � gTCg � 1
2 , falls below some threshold εg .

(iv) A preset maximum number of iterations has been exceeded.

εg can be seen as a protection against numerical instabilities. It should be set to the small-
est value that still allows to perform step (4.42) with sufficient accuracy. Thus, criterion
(iii) should terminate the iterations in any case. For (i) and (ii), depending on the par-
ticular problem, the user may choose whether both criteria or either one terminates the
optimization procedure.

Once the iterations for αi are done, one may proceed to iterate for αi � 1 starting at (4.38).
As many components αi as the rank of C can be found at most. More than that cannot be
pairwise orthogonal, (4.37). Since in the present context C is the result of the embedding
into a high dimensional feature space, it is usually of much higher rank than the number of
desired components.

Conjugate gradient

In many situations the performance of the above described optimization procedure can
be considerably improved by the application of Conjugate Gradient Descent (cf. Press et al.
(1992, §10.6)). There, the line search is along the direction of a modified gradient h, which
takes the former search directions into account. It can be assumed that this works equally

4Actually one could begin the iteration loop with the computation of a new gradient, (4.40). However, in order
to avoid accumulated errors one should perform the orthogonalization operation (4.38) in every iteration.

4.4. SPARSENESS REGULARIZATION FOR SECOND ORDER KERNEL METHODS 105

well in a local neighborhood of a quadratic hyper-surface as in the Euclidean space, as long
as the neighborhood is small enough to be well approximated by it’s tangent space.

It turns out that the Fletcher-Reeves update formula is also applicable in the hyper-
elliptical space. In every iteration step the new search direction is given by

hnew
� gnew � γh

�
old with γ � gT

newC gnew

gT
oldC gold

. (4.44)

hnew and gnew are the search direction and the gradient at the current position, respectively.
The necessary scaling (4.42) prior to the line search procedure (4.43) is performed on the
actual search direction hnew. The gradient gnew is only projected according to (4.41) to hold
the orthogonality conditions, but not length normalized. hold and gold are the corresponding
quantities at the starting point of the last line search. Note that gnew and hold come from
different tangent spaces so that, in contrast to the original Fletcher-Reeves formula, they
cannot be simply added in (4.44). However, a transport of hold from one space to the other
is well defined by

h
�
old

� cos � ϕ � � hold � sin � ϕ � � αi,old

meaning that h
�
old is the direction at αi,new that we came from, when we left αi,old in direction

hold. In this respect (4.44) is equivalent to Fletcher-Reeves conjugate gradient in Euclidean
spaces. Note that such transformation is not possible for the often better performing
Pollack-Ribiere update formula, which involves the computation of the value

γ � � gnew � gold
� TC gnew

gT
oldC gold

because gold and gnew reside in different tangent spaces and there is no well defined trans-
formation from one space to the other.

The Conjugate Gradient update formula (4.44) does not violate the constraints: if hold
was orthogonal to all α j � i and αi,old, then h

�
old and, hence, hnew are orthogonal to all α j � i and

αi,new. Thus, the projection (4.41) only needs to be performed on gnew, not on hnew. However,
hnew must be length normalized before the line search step.

Reduction

If the cost function involves a regularization term that gives priority to sparse solutions,
the optimization will lead to solutions αi with many elements close to zero. Thus, in order
to save computation costs, the idea to discard these elements already during optimization
suggests itself. Computation costs can be saved in the objective function and the regular-
ization term, as well as in the constraint. In the constraint (4.37) and in the computation
of the scalings (4.39) and (4.42), for every discarded element of αi the corresponding rows
and columns of C can be discarded. Similarly for the computation of M in (4.38) and (4.41),
except that here the discarded rows of C are determined by αi , and the discarded columns
are those that correspond to elements that are discarded in all α1 . . .αi � 1 rsp. α1 . . .αi.

A quadratic cost function is reduced in the same way – by discarding rows and columns
of the matrix in the second order term and by discarding the corresponding elements of the
linear term (if there is any). The reduction of the costs for the computation of the L1- and
L2-norms in the regularization term (4.36) is obvious.

It remains to define when and which elements of αi are discarded. A good place to link
reduction into the iteration loop is right before (4.38) because after reduction the constraints
may become slightly violated. For the experiments shown below, the most simple heuristic
was used: discard elements that are closer to zero than some positive value εα. Problems
with this heuristic could arise for elements that are slowly changing their sign and get
caught when they cross zero. However, in various experiments these effects showed not to
be severe, and always good results could be achieved. It appears to be the case that due to
the line minimization a slow zero crossing hardly happens. Interestingly, even without any
regularization term, sparse solutions can become favored by reduction alone, in particular
when εα is comparably large.

106 CHAPTER 4. NON-LINEAR FILTERING

4.4.4 Experiments

This is a little example that is meant to qualitatively demonstrate how sparse optimization
for Kernel PCA works. Two-dimensional input data x where generated by a mixture model
with three Gaussian components,

µ1
�

�
4
3

�
, Σ1

�
�

1 � 0.5
� 0.5 1

�
,

µ2
�

� � 3
2

�
, Σ2

�
�

1 0
0 1

�
,

µ3
�

�
0
3

�
, Σ3

�
�

1 0
0 2

�
.

Each component generated 150 data points shown as small dots in the panels of figures 4.9
and 4.11. Figure 4.9 shows the six first kernel principal components which result from the
solution of the generalized eigenvalue problem

1
T

K̂K̂Tαi
� diK̂αi , (4.45)

where K̂ is the Gram matrix of the data for a spherical Gaussian kernel with unit width,
K̂i j

� exp � � �
x̂i � x̂ j

� 2

2

�
. For simplicity there was searched for projections with large second

moments rather than large variance. Otherwise the columns of K̂ would have had to be
normalized by it’s column mean on the left side of (4.45).

d=59.19

σ

d=55.89 d=46.82

d=29.39 d=25.73 d=23.62

Figure 4.9: The first six principal components achieved through non-sparse Kernel PCA
using a Gaussian kernel with width σ. The two-dimensional input data (small dots) are
distributed over 3 Gaussian clusters, containing 150 data points each. All of them are
support vectors. Gray lines are iso lines of the projection function (4.33). Values d are the
empirical second moments of the projections.

In this small example all data points were used as support vectors, thus N � T � 450.
The projections wi of the largest second moments are linear combinations of nearly all
x̂i. Figure 4.10 shows the absolute values of the coefficients αil , sorted in ascending order
individually for all six principal components. One can see that most of them assume small or
intermediate values. Only few of them get really close to zero. This is not further surprising,
and is shown here just to illustrate that, in contrast to e.g. Support Vector Machines, sparse
solutions usually do not occur by itself in second order kernel methods.

Next, sparse Kernel PCA was performed on the same data. The constrained optimization
problem (4.36) was solved sequentially for the first six components αi , i � 1 . . .6. The

4.4. SPARSENESS REGULARIZATION FOR SECOND ORDER KERNEL METHODS 107

0 50 100 150 200 250 300 350 400 450
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Figure 4.10: Absolute values of the elements of αi sorted in ascending order for the kernel
principal components shown in Figure 4.9. Every line belongs to a different αi , i � 1 . . .6.
Because sparseness was not enforced, the majority of elements assumes intermediate values
in the range

�
αil

�
� 10 � 6 . . . 10 � 2.

regularization term was weighted by β � 1.2 . As well as in the previous experiment,
second moments,

di
� 1

T
αT

i K̂K̂Tαi ,

were maximized starting with all data points as initial support vectors. Figure 4.11 shows
the resulting principal component projections. They are nearly identical to those shown in
Figure 4.9, but are linear combinations of not more than 4–7 support vectors. The achieved
second moments are slightly below the values of the unregularized Kernel PCA solution.

Nsv=4, d=57.47 Nsv=4, d=53.73 Nsv=6, d=44.73

Nsv=7, d=28.50 Nsv=5, d=24.16 Nsv=7, d=21.63

Figure 4.11: The same setup as of Figure 4.9, results for Kernel PCA with sparseness
regularization (4.36). With just 4–7 support vectors (large black dots), projections very
similar to those of unregularized Kernel PCA are achieved. The empirical second moments
of the projections are only little smaller.

In order to quantitatively investigate how the enforced sparseness trades against accu-
racy experiments on the MNIST dataset of hand written digits (LeCun and Cortes) were
done. This dataset represents a nice ‘real data problem’, that had been subject to kernel
based learning methods in numerous publications. However, the focus of attention was
not the performance of any particular clustering or classification task. To stay in the context
of this section, the objective for the experiments was the somewhat ‘abstract’ performance
measure ‘achievable output variance’ and how this behaves with the sparseness of the
solution.

The MNIST dataset consists of a training dataset of T � 60, 000 examples of hand written

108 CHAPTER 4. NON-LINEAR FILTERING

digits ‘0’. . .‘9’, each of which is 28 � 28 pixels in size assuming values from 0 (background)
to 255 (foreground). Further, there is a test set with 10,000 examples of the same size coming
from different writers. The data were used without any preprocessing or normalization.

The new method was compared with the naive approach of initially selecting sufficiently
small subsets and the approach proposed by Tipping (2001). Methods that deviate from the
quadratic constraint (see e.g. Smola et al. (1999)) were disregarded because comparisons in
terms of variance or second moments are not really meaningful with different constraints.

The approach of selecting really small initial support vector sets randomly from the
data would yield good performance if just the number of support vectors would matter.
If, however, the proper choice of the support vector set plays a more important role, one
would expect this method to show large variations in performance reflecting the luck in
choosing the initial support vector set.

The Sparse Kernel PCA approach of Tipping is based on an approximation of the co-
variance matrix of the data projected into feature space,

C � σ2I �
T�

t � 1

wtΦ � xt
� ΦT � xt

� . (4.46)

It is assumed that the vectors in feature space are subject to a N � 0; C � normal distribution.
A sparse solution with coefficients wt is found by maximizing the likelihood of this model
w.r.t. wt and fixed positive σ2. An expectation-maximization learning rule for wt can be
derived, which can be expressed exclusively in terms of scalar products in feature space,
hence, in terms of kernels. Here, just the update rule in one of the two forms presented in
Tipping (2001) be shown (for a detailed derivation see there):

wt � � T
t � 1 µ

2
ti

T � 1 � Σtt � wt
� , (4.47)

where
Σ � � W � 1 � σ � 2K̂ � � 1

and

µti
� σ � 2

T�
j � 1

Σt jk � xt, x j
� .

With the coefficient wt summarized in the diagonal T � T matrix W, the sparse kernel
principal components αi are found by the solution of

W
1
2 K̂W

1
2α �i � λ �iα �i (4.48)

and
αi

� 1�
λ �i W

1
2α �i .

The results of the experiments with the MNIST dataset are shown in Figure 4.12 . All per-
formance measures where computed on the test set, while the kernel principal components
where estimated on the training set.

Starting point was a subset
�
x̂l, l � 1 . . .N � of N � 500 elements of the training set,

which was used as the initial support vector set. The 500 elements were randomly chosen
and remained the same in all trials. The objective was to maximize the output second
moments of 10 nonlinear projections (4.33) under the constraint that these projections have
unit length in feature space and are pairwise orthogonal, (4.35).

The kernel was a spherical Gaussian with σ � 700. The quantity to compare is the
summed second moments of the outputs computed on the test set with T � 10, 000 exam-
ples,

Etest
� 1

T

10�
i � 1

αiKKTαT
i , (4.49)

4.4. SPARSENESS REGULARIZATION FOR SECOND ORDER KERNEL METHODS 109

where K is the kernel matrix between all support vectors and all data points,

Klt : � k � x̂l, xt
� , l � 1 . . .N, t � 1 . . .T .

Figure 4.10.A shows this value in dependence of the number of support vectors for
the three considered approaches to Sparse Kernel PCA. Black dots mark the results of
sparseness regularization (4.36) solved with Hyper-Elliptical Conjugate Gradient descent.
The unregularized cost function was

di
� 1

T
αiKKTαT

i (4.50)

with K computed on the training set. In every trial the regularization term was weighted
with random β which was uniformly distributed (on the log-scale) in the range from 10 � 10

to 10 � 3. The different regularization strength lead to different numbers of support vectors,
which are the x-axes of the plot. Because, in this approach each of the 10 components can
have different (and differently many) support vectors, their average number provides the
x-coordinate. The y-axes show the corresponding value of Etest, (4.49).

Plus signs indicate the results for random subsets of 20 to 500 elements of the initial N
support vectors, which were used to compute Kernel-PCA without enforcing sparseness
any further. The average performance is considerably worse compared to the other two
methods in particular for small subsets. At the same time it is subject to large variations.
Thus, the proper choice of the support vectors appears to be crucial.

Gray dots indicate the results of Sparse Kernel PCA according to Tipping (2001). Here,
the value of σ2 in (4.46) controls the sparseness of the solution. Random σ in the range
0.03 . . .0.06 were used. One can see that already with all 500 support vectors there is a
degradation of performance. This is due to the fact that this algorithm actually has to start
with all T data points as initial support vectors because the eigen-system is defined only by
the initial support vectors, (matrix K̂ in (4.48)). One can see this also from (4.46) when C is
approximated by all initial support vectors, but should be by all data points. However, the
maximum number of data points is limited to small values because of the matrix inversion
of order up to T in the update rule (4.47). In contrast, in the other two approaches with the
objective defined as (4.50), the matrix product 1

T KKT contains the summation over all data
points defining the eigensystem regardless of the number of initial support vectors (rows
of K).

Figures 4.12.B and 4.12.C show the dependence between β rsp. σ2 (y-axis) and the
resulting number of support vectors (x-axis). The plotted dots correspond to those of
panel A. They show a quite deterministic relation, even though in the conjugate gradient
approach allαi were initialized randomly in every trial. Interestingly, for values σ2 � 2 � 10 � 3

no reduction of the support vector set happens, where for values above a ‘phase transition’
occurs. This may make it difficult to adjust σ2 to values that yield moderate sparseness.

110 CHAPTER 4. NON-LINEAR FILTERING

A

0 50 100 150 200 250 300 350 400 450 500
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

E
te

st

0 50 100 150 200 250 300 350 400 450 500
10

−10

10
−8

10
−6

10
−4

β

0 50 100 150 200 250 300 350 400 450 500

10
−3

σ2

N
SV

B0 50 100 150 200 250 300 350 400 450 500
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

E
te

st

0 50 100 150 200 250 300 350 400 450 500
10

−10

10
−8

10
−6

10
−4

β

0 50 100 150 200 250 300 350 400 450 500

10
−3

σ2

N
SV

C

0 50 100 150 200 250 300 350 400 450 500
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

E
te

st

0 50 100 150 200 250 300 350 400 450 500
10

−10

10
−8

10
−6

10
−4

β

0 50 100 150 200 250 300 350 400 450 500

10
−3

σ2

N
SV

Figure 4.12: A: Comparison of the performance measure (4.49) in dependence of the reduced
number of support vectors, black dots: for sparseness regularization (4.36), gray dots: for the
maximum likelihood approach (4.46), and plus signs: for the selection of random subsets. B
and C: relation between the parameters β rsp. σ2 and the resulting sparseness of the kernel
principal components. For explanation see text.

Chapter 5

Slow Feature Analysis

5.1 Projection pursuit with SFA
There is evidence that spatial and temporal sparseness is one of the working principles of
the early stages in the visual system of higher vertebrates. Measurements have shown that
cells in area V1 of the visual cortex of primates do a linear processing of a local receptive field
of the visual input (Kandel et al., 1991). In simulations with natural image data it was found
that these linear filters maximize the sparseness of its outputs (Olshausen and Field, 1996).
Very similar results were achieved with ICA (Bell and Sejnowski, 1997; Hyvarinen et al.,
2001). The sparseness principle was also the basis for the experiments with multi-channel
blind deconvolution on video data (see section 3.4.5).

However, when the sparseness principle shall be adopted to higher levels of visual pro-
cessing, in technical applications problems arise. Usually maximum likelihood estimators,
in particular those involving higher order statistics are not robust to outlying data. How-
ever, with increasing complexity of the architectures, in particular for highly non-linear
mappings of the inputs, the achievable sparseness must logically increase more and more.
Hence, any empirical estimates eventually become fully dominated by outliers. This, can
be helped – at least to some degree – with robust estimates (Moors, 1988; Baloch et al.,
2005), and of course, with much more training data, which, however, may give rise to other
problems.

In parallel to the sparseness principle, temporal coherence was proposed as working
principle in the early visual system (Stone, 1996; Wiskott and Sejnowski, 2002). It constitutes
that, when processing temporal inputs, the output representations vary as little as possible
over time. It could be shown that this leads to the emergence of the same simple and complex
cell structures from natural image inputs, as with the sparse coding approach (Hurri and
Hyvärinen, 2003). However, because it is based only on second order statistics, the temporal
coherence principle allows for much more robust estimators. It can be formalized as follows
(Wiskott and Sejnowski, 2002):

Given an N-dimensional input signal � xt
�
t � I find an instantaneous function g gener-

ating the M-dimensional output signal � yt
�
t � I with y j,t

� g j � xt
� such that for each

j � �
1, . . . ,M �

∆ j : � 〈 �

y2
j,t

〉

is minimal (5.1)

under the constraints
〈

y j,t
〉 � 0 (zero mean) , (5.2)

〈

y2
j,t

〉 � 1 (unit variance) , (5.3)

� j � � j :
〈

y j
�
,t y j,t
〉 � 0 (decorrelation) . (5.4)

This unsupervised learning problem is known as Slow Feature Analysis (SFA). It comprises
the search for projections g j so that the outputs are temporally as smooth as possible with

111

112 CHAPTER 5. SLOW FEATURE ANALYSIS

respect to the average squared local slope
�

y j,t, which has to be defined reasonably. In the
case of time discrete signals with a one-dimensional index set I �

Z one usually uses the
discrete derivative

�

y j,t : � y j,t � 1 � y j,t .

The constraints provide non-trivial solutions. With the unit variance constraint constant
outputs are avoided, and the decorrelation constraint assures that in fact different output
signals emerge.

5.1.1 Linear SFA
The SFA learning problem can be formalized in matrix notation as follows:

Minimize tr
〈

�

yt
�

yT
t

〉

subject to
〈

ytyT
t �
〈

yt
〉 〈

yT
t

〉 〉 � I . (5.5)

To see how it can be solved, consider at first the linear case, where g is an affine transfor-
mation

yt
� g � xt

� � Wxt � b , (5.6)

where W is a M � N matrix. The offset vector b is consumed by the zero mean con-
straint, and, hence, can always be neglected. The linear projection leads to a generalized
eigenvalue problem as the solution of � 5.5 � . It is convenient to introduce the non-singular
N-dimensional coordinate transformation

P : � � 〈xtxT
t �
〈

xt
〉 〈

xT
t

〉 〉 � 1
2
, W � : � WP .

With respect to W � the optimization problem then becomes

Minimize tr � W � P � 1
〈 �

xt
�

xT
t

〉

P � TW � T � subject to W �W � � I . (5.7)

Its solution is the matrix W � , the row vectors of which are the eigenvectors of P � 1
〈

�

xt
�

xT
t

〉

P � T

that correspond to the M smallest eigenvalues. Back transformation yields the optimal W

W � W � P � 1 .

5.1.2 Non-linear SFA by expansion
A nice property of the linear SFA is the particular simplicity of its solution. The whole
learning problem is in terms of second order statistics of the inputs. However, for non-
linear projections g, this structure is in general lost.

This problem can be solved with the execution of the linear SFA in some feature space,
the data have been non-linearly projected into, beforehand,

xt � Φ � xt
� .

Then the expanded vector is the input for linear SFA, and all second order statistics and
discrete derivatives are with respect toΦ � xt

� . Usually the feature space is of much higher
dimension than the input space. Wiskott and Sejnowski (2002) suggest to do the expansion
explicitly, using all monomials of the elements of xt up to a certain order d. For example,
d � 2 results in quadratic SFA and the expanded input vectorΦ � xt

� contains all elements
of xt together with all products of any two elements of xt,

Φ � xt
� � � x1,t, . . . , xN,t, x2

1,t, . . . , x1,txN,t, x2
2,t, . . . , x2

N,t
� T .

This expansion soon becomes rather large – an order d expansion of a N-dimensional
vector has the length � d

k � 1 � N � k � 1
k � . Thus, small expansions of order d � 2 are often

used. To achieve nevertheless a high degree of non-linearity, multiple quadratic SFA can be
performed, i.e. the outputs yt are expanded andΦ � yt

� is input for the adjacent SFA.

5.2. EMPIRICAL SLOWNESS 113

5.1.3 Kernel-SFA
The fact that the linear SFA is fully based on second order statistics allows to introduce non-
linear projection functions g also by an implicit mapping into a high dimensional feature
space. This is completely equivalent to the extension of Principal Component Analysis to
kernel-PCA (Schölkopf et al., 1998), and to other second order kernel methods. Thus, only
a brief derivation of the kernel SFA learning problem shall be given here. For more details
see Bray and Martinez (2002), (cf. also section 4.4).

As with all kernel methods, the mapping to feature space is not explicitly defined, but
only by means of scalar products of feature vectors,

Φ � x � TΦ � z � : � k � x, z � ,
where k : RN � RN � R is a suitable kernel function. Given a finite dataset � xt

�
t � I of length

T � �
I
�

and a set of T � � �
I � � support vectors � zt

�
t � I

� , all possible scalar products can be
summarized in the kernel matrix K,

Ki j
� k � xti , zt j

� , ti � I, t j � I � .
However, the second order quantities in the linear SFA problem formulation would contain
outer products of the feature vectors, rather than scalar products. Therefore, the row
vectors wT

i of W, which are quantities in the feature space in the kernel-SFA approach, are
represented by linear combinations of the support vectors mapped to feature space,

wT
i

� T
��

j � 1

Vi jΦ � zt j
� T , t j � I � .

This eventually allows a problem formulation in feature space which is exclusively in terms
of scalar products:

Minimize tr � V �

KT
�

KVT
�

s.t. V
�

1
T � 1

KTK � 1
T2 � KT1̄ � � 1̄TK � �

VT � I , (5.8)

where
�

Ki j : � k � xti � 1, zt j
� � k � xti , zt j

� , V is the M � T � matrix with the elements Vi j, and 1̄ is a
vector containing T times the element 1. This linear constrained optimization problem in
feature space is of dimensionality T � , the number of support vectors.

Depending on T and T � , care must be taken that the both matrices of the resulting
generalized eigenvalue problem are not singular, otherwise numerical instabilities could
arise. Usually the support vector set is much smaller than the dataset, T � � T, and not
necessarily a subset of the dataset. With

k � xt
� T : � � k � xt, zt1

� , . . . , k � xt, ztT
�

� � (5.9)

being a row vector of the kernel matrix K, (5.8) can also be written as

Min. tr � V 〈 �

k � xt
� �

k � xt
� T
〉

VT
�

s.t. V � 〈k � xt
� k � xt

� T
〉

�
〈

k � xt
� 〉 〈k � xt

� T
〉 �

VT � I ,

where the expectation is over all t � I. In this respect kernel-SFA is the same as SFA with
explicit expansion, were the expansion Φ � xt

� � k � xt
� is a non-linear function RN � RT

�

parameterized with � zt
�
t � I

� . Note that these two different ways of interpretation are common
to all second order kernel methods. Often one may find it easier to give an interpretation
of the feature space mapping, when the expansion is defined in terms of kernel functions,
with a support vector set, that is a subset of the data set.

5.2 Empirical slowness
For a signal � yt

�
t � I, that is the result of a slow feature analysis, the overall slowness of y is

the value
S � y � : � �

i

〈

� yi,t � yi,t � δt � 2
〉 � tr

〈

�

yt
�

yT
t

〉 � 〈 �

yT
t

�

yt
〉

(5.10)

114 CHAPTER 5. SLOW FEATURE ANALYSIS

given that
〈

yt
〉 � 0 and

〈

ytyT
t

〉 � I . (5.11)

Equation (5.10) is generally unsuited for the computation of empirical slowness values,
just by calculating empirical expectation values, because the conditions (5.11) may be not
fulfilled and results may be distorted. Thus, the estimates for (5.11) must be included in the
slowness value.

S � y � � tr
�
〈

ytyT
t �
〈

yt
〉 〈

yT
t

〉 〉 � 1
2
〈

�

yt
�

yT
t

〉 〈

ytyT
t �
〈

yt
〉 〈

yT
t

〉 〉 � 1
2

�
� tr � 〈ytyT

t �
〈

yt
〉 〈

yT
t

〉 〉 � 1 〈 �

yt
�

yT
t

〉 �
(5.12)

Apparently, this slowness value is invariant to non-singular affine transformations, hence

S � yt
� � S � Ayt � b � . (5.13)

When the empirical slowness of a finitely long signal � yt
�
t � I shall be computed, expectations

are replaced by empirical expectations (we assume that for every t � I also a value yt � δt is
available)

Ŝ � yt
� � T � 1

T
tr

�� � �
t � I

ytyT
t � 1

T

�
t � I

yt
�
t � I

yT
t � � 1 �

t � I

�

yt
�

yT
t

��
, (5.14)

where T � �
I
�
.

The question arises, whether this estimator is biased and how its variance behaves with
respect to the number samples

�
I
�
. Therefore, in figure 5.1 empirical slowness values are

displayed as functions of the number of samples in I.

A B

1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

16

18

20

log
10

(samples)

10 linear SF of scanline
5 lin. SF of 20px patch
10 lin. SF of 20px patch
10 non−lin SF (x_38_15_10_10)

1 1.5 2 2.5 3 3.5 4 4.5 5

10
−2

10
−1

10
0

10
1

log
10

(samples)

10 linear SF of scanline
5 lin. SF of 20px patch
10 lin. SF of 20px patch
10 non−lin SF (x_38_15_10_10)

Figure 5.1: Empirical slowness values of 4 different slow signals as functions of the number
of samples. A: linear y-axis, B: logarithmic y-axis. Error bars indicate the standard deviation
intervals. For explanation see text.

The experiments were done as follows: A slow signal was split into non-overlapping
blocks of equal size. For every block the empirical slowness was computed according
to equation (5.14). The average slowness values, together with their standard deviation
intervals, are plotted as functions of the number of samples per block. The experiment was
done with 4 slow signals, and up to 1,000-fold splits. The first signal (blue curve) contained
the 10 slowest linear projections of a horizontal scan line taken form a natural video. The
second (green curve) and third (red curve) contained the 5, rsp. 10 slowest linear features,
that were derived from 20 pixels long, randomly positioned patches of that video scan line.
See section 5.4 for a detailed description of the video scan line experiments. The fourth
slow signal (magenta curve) contained the 10 slowest non-linear features, that were learned

5.3. SFA ON VIDEO DATA 115

from principal components projections of natural video data. See section 5.3 for a detailed
description of this experiment.

The curves show that the slowness value is biased to larger values, when the number of
samples is very small. However, one can also see that the bias becomes small for reasonable
sample sizes, in the scan line experiments for about 103 and more samples. This value is an
important to know in order to design experiments that involve cross validation for model
selection. There, the test sets should be large enough to achieve unbiased test values.

5.3 SFA on video data
Video data were recorded with a BumbleBee two-lens stereo vision camera system from
Point Grey Research Inc.1. The camera was mounted on top of a cart, which was pushed in
the corridor of an office building. The video was recorded at 16 Hz frame rate with 15,000
frames in total. Figure 5.5 shows some example frames of the stereo video.

From this video 38 principal components were extracted using generalized Hebbian
learning (Sanger, 1989). Figure 5.2 shows these principal components and the mean of
all frames in the video. One can see that, because of the scenery in the video, vertical
structures dominate the principal components. Larger principal components contain lower
frequencies. Interestingly, there is not much stereo information contained – the left and
right halfs are almost equal in all principal components.

Figure 5.2: The first 38 largest principal components of the video frames ordered by de-
creasing eigenvalues from left/top to right/bottom. The rightmost image in the bottom row
is the mean of all frames in the video.

Then, every video frame was projected onto the principal components, leading to a
time series of a 38 dimensional vector, which was used as input for non-linear slow feature
analysis in three steps. The setup was

38 PC’s � 15 SC’s � 15 SC’s � 10 SC’s , (5.15)

meaning that from the 38 dimensional input the 15 slowest components were computed.
These were used to compute the 15 slowest components out of them, and so on, leading
to ten output components. Clearly, such an architecture is only meaningful, when every
SFA step involves non-linearities. In the present experiment non-linearity was achieved by
explicit quadratic expansion of the inputs of every SFA processing step.

This procedure results in 10 signals of unit variance, which are pairwise uncorrelated
and slowly changing. However, besides that these signals exhibit another interesting
property, which can be seen in figure 5.3: The slow signals are also sparse. However, the
sparse directions are not aligned to the coordinate axes, and, hence, the slow signals are

1http://www.ptgrey.com/products/bumblebee/index.asp

116 CHAPTER 5. SLOW FEATURE ANALYSIS

−5 0 5

−5

0

5

SC 2

S
C

 3
−5 0 5

−5

0

5

SC 2

S
C

 4

−5 0 5

−5

0

5

SC 2

S
C

 5

−5 0 5

−5

0

5

SC 3
S

C
 4

−5 0 5

−5

0

5

SC 3

S
C

 5

−5 0 5

−5

0

5

SC 4
S

C
 5

Figure 5.3: Scatter plot of the slow signals 2-5 resulting from the setup (5.15). For every pair
the trajectory of one signal is plotted against the other. The slow signals have directions of
strong sparseness.

not independent. This gives rise to the idea to apply some linear ICA algorithm to the
slow signals as post processing. This is well justified, because the overall slowness value
does not change under non-singular affine transformations, (5.13). Figure 5.4 shows the
time course of the signals that are achieved through the application of FastICA to the slow
signals. The overall slowness of these signals did not change, but they are much sparser
now. Interestingly, they exhibit strong unipolarity, which could be interpreted as the degree
of “presence of features” detected by the non-linear SFA. Not only in this experiment it
could be observed that these features tend to follow each other. For example, note the
peaks near 3,000 and 12,000 of signals 5 and 7, which come very close, but do not overlap.

In figure 5.5 there are displayed some frames taken from the video at positions where
some of the slow signals assume particularly large values. One can see that they all detect
a certain scene, but allow for variations of the viewing perspective to some degree. Thus,
the non-linear SFA was able to unsupervisedly learn invariances of features contained in
the presented data.

So far, this experiment was performed without taking care about the generalization
performance of the non-linear SFA architecture (5.15). On the training set, which was the
whole 15,000 frames of the video, an empirical slowness value of 0.0079 was achieved for
all 10 output signals together. However, the architecture with best empirical slowness on
15 fold cross-validation test sets was

30 PC’s � 6 SC’s � 10 SC’s , (5.16)

which had a average slowness value on the test sets of Stest
� 0.0282. The training slowness

value was with Strain
� 0.0161 considerably below that. However, the intention was to

illustrate at least qualitatively, what the detected features are when the slowness value is
the best achievable test value. Therefore, an architecture was searched, that yields a training
slowness value of about 0.0282. This architecture was found with

12 PC’s � 10 SC’s � 10 SC’s , (5.17)

5.3. SFA ON VIDEO DATA 117

A

2000 4000 6000 8000 10000 12000 14000

−5

0

5

2000 4000 6000 8000 10000 12000 14000

−5

0

5

2000 4000 6000 8000 10000 12000 14000

−5

0

5

2000 4000 6000 8000 10000 12000 14000

−5

0

5

2000 4000 6000 8000 10000 12000 14000

−5

0

5

2000 4000 6000 8000 10000 12000 14000

−5

0

5

2000 4000 6000 8000 10000 12000 14000

−5

0

5

2000 4000 6000 8000 10000 12000 14000

−5

0

5

2000 4000 6000 8000 10000 12000 14000

−5

0

5

2000 4000 6000 8000 10000 12000 14000

−5

0

5

2000 4000 6000 8000 10000 12000 14000

−5

0

5

2000 4000 6000 8000 10000 12000 14000

−5

0

5

2000 4000 6000 8000 10000 12000 14000

−5

0

5

2000 4000 6000 8000 10000 12000 14000

−5

0

5

2000 4000 6000 8000 10000 12000 14000

−5

0

5

2000 4000 6000 8000 10000 12000 14000

−5

0

5

2000 4000 6000 8000 10000 12000 14000

−5

0

5

2000 4000 6000 8000 10000 12000 14000

−5

0

5

2000 4000 6000 8000 10000 12000 14000

−5

0

5

2000 4000 6000 8000 10000 12000 14000

−5

0

5

B

3000 3200 3400 3600 3800

−5

0

5

6800 7000 7200 7400 7600

−5

0

5

1.15 1.2 1.25 1.3 1.35

x 10
4

−5

0

5

3000 3200 3400 3600 3800

−5

0

5

6800 7000 7200 7400 7600

−5

0

5

1.15 1.2 1.25 1.3 1.35

x 10
4

−5

0

5

3000 3200 3400 3600 3800

−5

0

5

6800 7000 7200 7400 7600

−5

0

5

1.15 1.2 1.25 1.3 1.35

x 10
4

−5

0

5

Figure 5.4: A: Slow signals of the setup (5.15) after the application of FastICA. The signals
are at the same time sparse and slow. B: Closeup of signals 2, 5, and 7. A clip of the video
with these 3 signals coded in color can be found on the accompanying CD (video1.avi).

118 CHAPTER 5. SLOW FEATURE ANALYSIS

frame 07400 frame 13300

frame 03150 frame 07050

frame 12000 frame 14460

frame 03400 frame 12200

Figure 5.5: Few frames of the stereo video for the illustration of the non-linear SFA results.

and a training value of Strain
� 0.0288. These slow signals – although they actually con-

stituted the training set – can be considered to be as slow as the slowest possible ones on
a test set of architecture (5.16). Figure 5.6 shows the 5th slow signal of the architecture
(5.15) together with the most similar one obtained with the less complex architecture (5.17).
Besides stronger overall variations, its most apparent that the peak near 14460 strongly
increased. Thus, the better generalizing architecture would summarize different, although
similar, scenes in one feature (cf. figure 5.5). For the other slow signals the situation is
similar.

2000 4000 6000 8000 10000 12000 14000

−5

0

5

2000 4000 6000 8000 10000 12000 14000

−5

0

5

Figure 5.6: Comparison of the 5th slow signal of architecture (5.15) (top) and the most
similar one of the architecture (5.17) (bottom).

Thus, one can conclude that non-linear SFA is able to learn specific features, together
with their naturally occurring variations, unsupervisedly from video data.

5.4. HIERARCHICAL SFA 119

5.4 Hierarchical SFA

5.4.1 Hierarchical architecture
Consider a vector valued stochastic signal

� xt
�
t � I ,

which is defined over an index set I � Zd � 2 that is at least two dimensional. Thus, the index
t can be split into a temporal index t, that is used to define the slowness of a signal, and a
spatial index r that summarizes the remaining dimensions of t. Without loss of generality
be

t � � t, r � T and I � It � Ir .

Note that the terms “temporal” and “spatial” here are arbitrarily defined, and, hence, are
detached from the interpretation of a particular dataset (cf. section 1.4.1). Thus, both, t and
r, can be in principle scalar or vector valued.

In the following superscripts do not denote powers but the level, or layer, in the hierarchy
of the hierarchical SFA. Starting with the signal � xt

�
t � I we define

y0
tr : � xtr

� xt .

Now, in every layer i of the hierarchy a non-linear multi-channel filter function f i, which is
applied only to the spatial dimensions, is learned,

yi
tr

� f i
� � yi � 1

t
�
r

� � r �
�

r
�

� Ji
; wi

�
. (5.18)

The function is parameterized with the parameter vector wi. From the perspective of the
temporal dimension this is an instantaneous, stationary function. The set Ji is the receptive
field of f i. If the index set in the previous layer is open with respect to the convolution with
Ji, it may decrease from layer to layer,

Ii
r

� �
r

�
r � r � � Ii � 1 for all r � � Ji � ,

where I0
r

� Ir. Thus, the hierarchy must end before Ii
r becomes empty. A further property

of the hierarchical architecture is that every layer has its own error functions, but no errors
are propagated back to the previous layers. For the SFA, in every layer the parameters wi

must be adjusted so that the slowness value of the signals in the same layer is minimized,

Si � wi � � � 〈yi
tr � yi

tr
� T
〉

�
〈

yi
tr

〉 〈

yi
tr

〉T � � 1 〈
�

yi
tr � �

yi
tr

� T
〉

, (5.19)

where
�

yi
tr : � yi�

t � δt � r � yi
tr .

Depending on the form of i it may be computationally more convenient separate the normal-
ization term from the cost function, and rather solve a constrained optimization problem:

Minimize
〈

�

yi
tr � �

yi
tr

� T
〉

s.t.
〈

yi
tr � yi

tr
� T
〉

�
〈

yi
tr

〉 〈

yi
tr

〉T � I . (5.20)

With every layer the overall receptive field, i.e. the receptive field of yi
tr with respect to

the input signal increases. For a K-layer architecture it is

Jr
� JK

r
� JK � 1

r
� . . . � J1

r ,

where
A � B : � �

a � b
�
a � A, b � B � .

This large receptive field size can allow for pretty complex projections performed by the
whole network. At the same time, the receptive field in every layer can be comparably
small, which is necessary for good generalization performance. If the whole network is
taken as one large non-linear filter function of � xtr

�
r � Ir , then the hierarchical approach is

equivalent to massive weight sharing in every level of the hierarchy. One can expect this to
work best if � xtr

�
r � Ir is truly stationary over Ir.

120 CHAPTER 5. SLOW FEATURE ANALYSIS

5.4.2 Experiment: video slice
In the following experiment, hierarchical SFA was applied to natural video data. This
experiment should be seen as a first step towards a complete artificial visual system, that
is able to extract and recognize relevant features and landmarks from visual scenes. These
would serve as the optimal inputs to subsequent processing units, which, for example,
could perform steering tasks of a mobile robot. The intension of this experiment was
to investigate in how far the hierarchical SFA approach constitutes a promising principle
for the unsupervised learning of visual processing units. Therefore, the setup was rather
simplified in certain aspects and in comparison to a possible real world application.

The data for this experiment were the video used for the experiment in section 5.3, and
another video recorded with the same camera and parameters, but on a different floor of
the same building. The later one was used for training, while the former one was used
for testing purposes. Both videos can be found on the accompanying CD (training video:
floor +2.avi, test video: floor -1.avi). The before mentioned simplifications are mainly
that the stereo information, i.e. the right half image, was discarded in every frame, and that
only one horizontal scan line of every frame was used for the input data. The scan line was
the 120th, which is in the center of the frame. Figure 5.7 shows the first 1,000 scan lines of
both videos, as images. Such arrays will be called video slice in the following. The whole
training and test video slices had a length of 15,000 frames/scan lines.

A

100 200 300 400 500 600 700 800 900 1000

50

100

150

200

250

300

B

100 200 300 400 500 600 700 800 900 1000

50

100

150

200

250

300

Figure 5.7: Video slice composed from the 120th scan line of the first 1,000 frames of the
training video (A) and the test video (B). Every column is one scan line, the x-axis is the
time t � 	 1, 103 � .

Kernel-SFA with RBF kernels was performed in the first layer, to generate 10 slow
signals. Parameter exploration was done for input receptive field sizes of

�
J1

r
� � 10, 20, 30,

and 40 samples. That means the input data were clips or patches of the length
�
J1

r
�
randomly

taken from all scan lines of the video slice. Figure 5.8 shows the results of the exploration
of the first layer parameters. These are the number of support vectors (A: N1

SV
� 200, B:

N1
SV

� 300, C: N1
SV

� 500) and the kernel width σ1 (x-axis in the figures). For all trials
that had the same values N1

SV and σ1, one and the same support vector set was used. The
support vector sets were drawn randomly iid. from the whole video slice. The graphs
show the training (dashed lines) and the test slowness values (solid lines) with 10-fold cross
validation. Therefore the whole slice was partitioned into 10 blocks of equal length, one of
which was used for test, the other 9 for training. From the corresponding partitions a total
number of 20, 000 patches for training, and 5, 000 patches for test were drawn randomly,
iid. The error bars in the figure mark the single standard deviation interval of the training
and test slowness values over the 10 cross validation iterations. One can see that

(i) For every input dimension there is an optimal value of the kernel parameter σ.

(ii) The test slowness is always above the training values.

5.4. HIERARCHICAL SFA 121

A

 20 31.5 50 80 125 200 315 500 800 1250 2000 3150
0

0.5

1

1.5

2

2.5

3

3.5

4
exp_layer1_rbf_NSV200

10 samples
20 samples
30 samples
40 samples

B

 20 31.5 50 80 125 200 315 500 800 1250 2000 3150
0

0.5

1

1.5

2

2.5

3

3.5

4
exp_layer1_rbf_NSV300

10 samples
20 samples
30 samples
40 samples

C

 20 31.5 50 80 125 200 315 500 800 1250 2000 3150
0

0.5

1

1.5

2

2.5

3

3.5

4
exp_layer1_rbf_NSV500

10 samples
20 samples
30 samples
40 samples

Figure 5.8: Training (dashed lines) and test (solid lines) slowness values of the first layer
outputs, for receptive field sizes

�
J1
r
� � 10, 20, 30 and 40, plotted as functions of the first

layer kernel parameter σ1. A: N1
SV

� 200, B: N1
SV

� 300, and C: N1
SV

� 500 support vectors.

(iii) The influence of the number of support is small in the considered range from 200 to
500.

For the second layer various architectures based on RBF kernels with 10 output slow
features were tested. The cross validation procedure was the same as in the first layer,
except that the inputs now were the outputs of the first layer. Thus, while in the first layer
patches were taken from a video scan line, in the second layer patches were taken from a 10
dimensional “vector valued scan line”. The inputs and the support vectors for the second
layer came from the best performing first layer architectures with N1

SV
� 300, which were

σ1 � 80 for
�
J1
r
� � 10, σ1 � 125 for

�
J1
r
� � 20, and σ1 � 200 for

�
J1
r
� � 30 (cf. figure 5.8).

That means that after the best first layer architectures were detected using cross validation,
these architectures were trained once more with 20,000 patches from the unpartioned slice,
the whole slice was filtered with this re-trained architecture, and any input samples and
support vectors for the next layer were taken from these outputs. All trials, that had the
same layer 1 architecture, and that had the same layer 2 receptive field size, used the same
set of support vectors, which were randomly iid. taken from the layer 1 outputs. Because
the inputs to layer 2 are already 10 dimensional, smaller receptive field sizes of

�
J2

r
� � 5, 10,

20 and 30 samples were tested here. The second layer results are displayed in figure 5.9.

A

 2 3.15 5 8 12.5 20 31.5 50 80
0

0.5

1

1.5

2

2.5

3
exp_layer1_rbf(80_10)_layer2_rbf.mat

5 samples
10 samples
20 samples
30 samples

B

 2 3.15 5 8 12.5 20 31.5 50 80
0

0.5

1

1.5

2

2.5

3
exp_layer1_rbf(125_20)_layer2_rbf.mat

5 samples
10 samples
20 samples
30 samples

C

 2 3.15 5 8 12.5 20 31.5 50
0

0.5

1

1.5

2

2.5

3
exp_layer1_rbf(200_30)_layer2_rbf.mat

5 samples
10 samples
20 samples
30 samples

Figure 5.9: Training and test slowness values for the second layer. Inputs were the outputs
of the first layer architectures A:

�
J1

r
� � 10, σ1 � 80, B:

�
J1
r
� � 20, σ1 � 125, and C:�

J1
r
� � 30, σ1 � 200. Dashed lines mark the training and solid lines the test slowness

values for receptive field sizes
�
J2
r
� � 5, 10, 20 and 30 as functions of the second layer kernel

parameter σ2.

If one sorts the results shown in figures 5.8 and 5.9 by the overall receptive field size
one can evaluate the different architectures. It is in general not meaningful to compare
architectures with different overall receptive field sizes. Table 5.1 lists the corresponding
optimal test slowness values. One can see that for the same (or one element less) overall
receptive field sizes, the two layer approach always leads to better performance in the scan
line SFA experiment.

122 CHAPTER 5. SLOW FEATURE ANALYSIS

Table 5.1: Performance comparison of the optimal one- and two-
layer architectures for different overall receptive field sizes

�
Jr

�
.

At the same (or slightly smaller) receptive field sizes, the two-
layer approach always shows better performance, in terms of
the average test slowness values.

�
Jr

� �
J1
r
� �

J2
r
�

S

19 10 10 0.95
20 20 – 1.14
29 10 20 0.60
29 20 10 0.70
30 30 – 0.84
39 10 30 0.47
39 20 20 0.52
39 30 10 0.54
40 40 – 0.65
49 20 30 0.42
49 30 20 0.44

The experiment was carried on with the two-layer architecture
�
J1
r
� � 20, σ1 � 125, N1

SV
� 300 �

�
J2
r
� � 30, σ2 � 200, N2

SV
� 300 . (5.21)

Both layers were re-trained on the whole slice, using the same support vector sets, that
were also used in the cross-validation experiment. An affine transformation determined by
FastICA was applied as post processing, so that the sparseness of the individual outputs
was maximized. Figure 5.10 shows parts of the resulting 10 slow signals as individual
slices. The scan lines are now by

�
Jr

� � 1 � 48 samples shorter. One can observe the same
properties, that had been found in the experiment of section 5.3: the slow features are
sparse, unipolar and smooth in the temporal direction (x-axis). Also the slow features seem
to adjoin each other, like it was observed in the other experiment.

The remainder of this experiment is about to show that the learned slow features are
really useful for visual processing tasks. Because the present video material is not labeled
in any way, also the next step had to be learned unsupervisedly. For a steering architecture,
that is based on visual inputs only, it is very important to be able to detect certain fixed
points in the presented visual scene and to focus on them. Interestingly, this task can be
solved to some degree already with the presented simplistic approach of slow features
learned from single scan lines.

A simple linear combination, a � R10 of the second layer slow features, y2
tr, was searched,

so that a spatial minimum of aTy2
tr would correspond to the location of some landmark in

the visual scene. Parameterized with a the minimum is

qt � a � : � arg min
r

� aTy2
tr � .

In the following figures the range of definition of � aTy2
tr � r � I2

r
, is mapped to the interval

I2
r : � 	
� 1, 1 � for convenience. Because the video data were not labeled, the optimal a had

to be learned unsupervisedly. The objective was again motivated by SFA: the optimal a
should be the one for which the signal � qt � a � �

t � It was as slow as possible,

a � arg min
a

�
〈

� qt � qt � 1
� 2
〉

.

However, no differentiable (w.r.t. a) objective function could be derived therefrom. There-
fore, a was determined by simulated annealing. The optimization problem turned out to
be a fairly “good-natured” one, which certainly is also due to the comparable low dimen-
sionality of a. Thus, a close to optimal a could be robustly determined as

a � ��� 3.91, � 4.75, � 3.91, 0.91, � 1.01, 1.43, 1.77, � 4.35, � 2.02, � 0.93 � T ,

with an objective function value
�
〈

� qt � qt � 1
� 2
〉 � 0.1187. Figure 5.11.A shows a piece

of the input video, � xtr
�
t �

�
8400,9400 � , r � I0

r
, and figure 5.11.B shows � aTy2

tr � t �
�
8400,9400 � , r �

� � 1,1 � , both

5.4. HIERARCHICAL SFA 123

8500 8600 8700 8800 8900 9000 9100 9200 9300 9400

−1

−0.5

0

0.5

1

8500 8600 8700 8800 8900 9000 9100 9200 9300 9400

−1

−0.5

0

0.5

1

8500 8600 8700 8800 8900 9000 9100 9200 9300 9400

−1

−0.5

0

0.5

1

8500 8600 8700 8800 8900 9000 9100 9200 9300 9400

−1

−0.5

0

0.5

1

8500 8600 8700 8800 8900 9000 9100 9200 9300 9400

−1

−0.5

0

0.5

1

8500 8600 8700 8800 8900 9000 9100 9200 9300 9400

−1

−0.5

0

0.5

1

8500 8600 8700 8800 8900 9000 9100 9200 9300 9400

−1

−0.5

0

0.5

1

8500 8600 8700 8800 8900 9000 9100 9200 9300 9400

−1

−0.5

0

0.5

1

8500 8600 8700 8800 8900 9000 9100 9200 9300 9400

−1

−0.5

0

0.5

1

8500 8600 8700 8800 8900 9000 9100 9200 9300 9400

−1

−0.5

0

0.5

1

Figure 5.10: A piece of 1,000 scan lines of the training video slice, filtered with the two-layer
SFA architecture (5.21). Every one of the 10 outputs is displayed as a separate slice. Color
ranges from -6 (dark blue) over 0 (green) to +6 (deep red).

124 CHAPTER 5. SLOW FEATURE ANALYSIS

with � qt
�
t �

�
8400,9400 � plotted on top of it (blue dots). One can see that the course of qt is

piecewise smooth and aligned to the course of the input scan lines. In particular, there
where the course is smooth, qt seems to fixate upon an imaginary point in the real world
environment. This is illustrated in figure 5.11.C. The three frames show the same visual
scene from different viewing angles. The horizontal line is the scan line used for the analysis
– the remainder of the frame is only for illustration purposes. The curve on the upper half
is the course of � aTy2

tr
�
r �

� � 1,1 � , stretched so that its minimum attaches the middle, and its
maximum the top of the frame. The vertical line goes through the minimum of the curve,
and, hence, marks qt. One can see that it sticks to some imaginary point, that is fixed with
respect to the real world environment. This behavior can be observed throughout the whole
video (cf. the video res floor +2.avion the accompanying CD): qt fixates upon some point
until this point leaves the visual scene, or another point becomes more attracting. Often

� aTy2
tr

�
r �

� � 1,1 � has two or more almost equally good minima, in which cases one could extract
the other local minima as well.

In order to evaluate the generalization performance of the slow feature filters, as well
as the projecting vector a, they were applied to the test video, which was recorded with
the same setup but in a different environment. No learning or parameter adjustments were
done with respect to this video. Figure 5.12 shows the equivalent to figure 5.11 on the test

video. As expected the value of
�
〈

� qt � qt � 1
� 2
〉 � 0.1943 was worse than for the training

video. This is clear, because the environment and lightning conditions in the test video
had been quite different, and had not been part of the training. However, also this yields
reasonable results which one can see from the example frames in figure 5.12.C and the
whole video (file res floor -1.avi on the CD).

5.4.3 Discussion of the hierarchical SFA experiment

At the beginning of the section it was mentioned that the presented experiment should
be considered as a first step towards the unsupervised learning of a complete hierarchical
SFA based visual system. Because this is still work in progress, some consideration about
possible real world applications are appropriate here.

The detection of landmarks, i.e. points that are fixed with respect to the true environment,
is of particular interest for steering tasks, that are based on visual inputs. If one could reliably
identify one and the same landmark point in two (or more) frames, and if at the same time
the motion of the camera from one frame to the other was known, then the real world
position of the landmark point relative to the camera could be inferred. Vice versa, if the
real world distance of the landmark to the camera was known, then the egomotion of the
camera could be inferred from the position changes of the landmark from one frame to the
other. It can be assumed that the detection of several landmarks at once can help to increase
the accuracy of such methods.

The learned slow features, however, may not only be useful for the detection of land-
marks. In case that labeled video data were available, one could think of supervised learning
of interesting outputs qt or qtr, may be with more complex post processing models than the
linear projection a. For a steering application one would use target data � ztr

�
r � Ir in every

frame, that define how expensive it is to go towards a direction r. It is important, however,
that the target data is a slow signal, otherwise one would not expect the hierarchical SFA to
be the appropriate method for the first processing steps.

Of course, there is actually no good reason to discard most of every frame and use only
the information of a single scan line. It was done here in this way just in order to keep the
setup of this first experiment as simple as possible. Going towards real applications one
would use two-dimensional patches of the whole frame, rather than patches from a scan
line. However, the choice to use a horizontal scan line in the presented experiment, and not
a vertical one, was not arbitrary. Because the camera motion during recording the video
was of three degrees of freedom in the horizontal plane (forward- and sidewards motion,
rotation around the vertical axis), horizontal lines are much more informative than vertical
ones. By the same reasons one can expect that horizontally elongated patches are superior

5.4. HIERARCHICAL SFA 125

A

8500 8600 8700 8800 8900 9000 9100 9200 9300 9400

−1

−0.5

0

0.5

1

8500 8600 8700 8800 8900 9000 9100 9200 9300 9400

−1

−0.5

0

0.5

1

B

8500 8600 8700 8800 8900 9000 9100 9200 9300 9400

−1

−0.5

0

0.5

1

8500 8600 8700 8800 8900 9000 9100 9200 9300 9400

−1

−0.5

0

0.5

1

C

frame 9340

−1 −0.5 0 0.5 1

frame 9360

−1 −0.5 0 0.5 1

frame 9385

−1 −0.5 0 0.5 1

Figure 5.11: A: A clip of 1000 scan lines of the training video slice. B: The results of the
analysis for the same clip, � aTy2

tr
�
t �

�
8400,9400 � ,r �

� � 1,1 � . The blue dots in A and B mark the value
of qt. C: The processed scan line (horizontal line), the value qt (position of the vertical line),
and the course of � aTy2

tr
�
r �

� � 1,1 � plotted for three example frames of the training video. The
fixation of qt upon an imaginary point in the real environment is invariant to the viewing
perspective.

to squared or vertically elongated ones, when two-dimensional receptive fields are used.
Clearly, with two-dimensional patches the computational costs for the filtering oper-

ations increase accordingly. This has the strongest impact on the parameter exploration
phase, but also is important when a learned architecture is applied to new input videos.
If the non-linearities in the individual SFA layers are achieved through kernel SFA, then
most of the computational costs can be saved with a sparse solution of only few support
vectors. Because kernel SFA is a second order optimization procedure, the Hyper-Elliptical
Conjugate Gradient Descent algorithm (cf. section 4.4) can be used to find sparse solutions.

Improvements of the accuracy of algorithms that base on hierarchical SFA can be ex-
pected with more training data. This does not just mean to purely increase the size of
the datasets, but also to include as much of the variability as possible, that can occur in
new data. In the presented example the training video was taken for an instance of finite
length of a stochastic process � xtr

� �
t,r � T � I. During learning any expectations were replaced

by empirical expectations over t and r. In doing so one assumes stationarity and ergodicity
(cf. section 1.2) of the stochastic process. Applying any learned filters to a new video is of
course only meaningful, if it can be considered as another instance of the same stochastic
process. Then, however, one may find that test errors are much larger than training errors,
which is an indicator for the ergodicity no to be provided as assumed. The only chance to
improve matters in such situations is to compute empirical expectations not only over the
spatial and temporal dimensions, but also over as many instances of the stochastic process,
i.e. different videos, as possible. Besides the non-ergodicity effects, more training data

126 CHAPTER 5. SLOW FEATURE ANALYSIS

A

5700 5800 5900 6000 6100 6200 6300 6400 6500 6600

−1

−0.5

0

0.5

1

5700 5800 5900 6000 6100 6200 6300 6400 6500 6600

−1

−0.5

0

0.5

1

B

5700 5800 5900 6000 6100 6200 6300 6400 6500 6600

−1

−0.5

0

0.5

1

5700 5800 5900 6000 6100 6200 6300 6400 6500 6600

−1

−0.5

0

0.5

1

C

frame 6330

−1 −0.5 0 0.5 1

frame 6360

−1 −0.5 0 0.5 1

frame 6390

−1 −0.5 0 0.5 1

Figure 5.12: The same illustrations as in figure 5.12, but the slow feature filters and the
projection vector a are applied here to an unseen test video. The results are comparable,
which proves the good generalization abilities of the method.

allow for increasingly complex architectures. This, mainly involves increasing the number
of layers, increasing the receptive field sizes and using more complex architectures in the
individual layers (e.g. smaller kernels).

Thus, while in the present work the hierarchical SFA approach was shown to be promis-
ing, for unsupervised learning of relevant features to build an artificial visual system, for
the future work it remains to further explore the relations between the amount of training
data and the model complexity, under consideration of the required computational costs.

Appendix A

Independence of mixture densities

Consider a family of random vectors � xn
�
n � 1...N the elements of which are independent

random variables. It holds for all n � 	 1,N �

p � xn
� � M�

i � 1

p � xn,i
� . (A.1)

We call these independent random vectors because their elements are independent random
variables. The question is under what conditions a mixture of these independent random
vectors is independent as well. For the mixture random vector x holds

p � x � � N�
n � 1

αnp � xn
� . (A.2)

The elements of x are not necessarily independent. An example to show this is provided in
figure A.1.

A B

−10 −5 0 5 10
−10

−5

0

5

10

−10 −5 0 5 10
−10

−5

0

5

10

Figure A.1: Two examples for mixture densities, which are composed of five individually
independent random vectors. A: The mixture components differ in their means and intro-
duce second order dependencies. B: The mixture components differ in their variances and
introduce higher order dependencies.

Independence of the components xi of the random mixture vector x is equivalent to the
relation

p � x � � �
i

p � xi
� � M�

i � 1

N�
n � 1

αnp � xn,i
� . (A.3)

127

128 APPENDIX A. INDEPENDENCE OF MIXTURE DENSITIES

However, the distribution of the mixture is given by

p � x � � N�
n � 1

αnp � xn
� � N�

n � 1

αn

M�
i � 1

p � xn,i
� . (A.4)

Apparently, these two equations are equivalent if for all mixture components n1, n2 � 	 1,N �
holds

p � xn1
� � p � xn2

� . (A.5)

Thus, a sufficient (but somewhat trivial) condition for the independence of the mixture is
that all its components are independent and identically distributed.

However, this condition can be considerably relaxed for independence up to limited
order. Independence of a random vector is equivalent to vanishing cross-cumulants of
this vector’s elements. So if one can provide conditions under which the cumulants of the
mixture are proportional to the sum of the components cumulants, these conditions are
sufficient for the independence of x.

Cumulants are the coefficients of the Taylor expansion of the cumulant generating function
(cf. McCullagh (1987) for a foundation on multi-variate cumulants and moments),

Kx � ξ � � log Mx � ξTx � � log
〈

exp � ξTx � 〉 , (A.6)

where
〈

�
〉

denotes the expectation, and Mx is called the moment generating function. Because
the expectation occurs inside the logarithm cumulants of mixtures are not additive, but
moments are:

Mx � ξTx � � N�
n � 1

αnMxn � ξTxn
� . (A.7)

Thus, for the moments, the coefficients of the Taylor expansion of (A.7), holds

µi � 〈

xi
〉 � N�

n � 1

αn
〈

xn,i
〉 � N�

n � 1

αnµ
i
n ,

µi j � 〈

xix j
〉 � N�

n � 1

αn
〈

xn,ixn, j
〉 � N�

n � 1

αnµ
i j
n ,

µi jk � 〈

xix jxk
〉 � N�

n � 1

αn
〈

xn,ixn, jxn,k
〉 � N�

n � 1

αnµ
i jk
n ,

� � �

Cumulants can be expressed in terms of moments. Be Υ � �
υ1, . . . , υν � a partition of p

indices into ν non-empty blocks. Υp is the partition into p blocks and κ � Υp
� � κi1,...,ip is the

cumulant of order p. In this notation the relation between cumulants and moments is

κ � Υp
� � �

Υ

��� 1 � ν � 1 � ν � 1 � !µ � υ1
� . . . µ � υν � , (A.8)

where the summation goes over all possible partitions Υ of p indices. In index notation the
first four cumulants in terms of moments are

κi � µi

κi, j � µi j � µiµ j

κi, j,k � µi jk � µiµ jk 	 3 � � 2µiµ jµk

κi, j,k,l � µi jkl � µiµ jkl 	 4 � � µi jµkl 	 3 � � 2µiµ jµkl 	 6 � � 6µiµ jµkµl .

The numbers in brackets are a common short notation for terms of equal structure, e.g.
µiµ jk 	 3 � � µiµ jk � µ jµik � µkµi j.

129

The cumulants in terms of the mixture components are given by

κ � Υp
� � �

Υ

��� 1 � ν � 1 � ν � 1 � ! � N�
n � 1

αnµn � υ1
� � . . . � N�

n � 1

αnµn � υν � � . (A.9)

Obviously, if we can provide that in every partition Υ for all but at most one block
(which be the first one, without loss of generality) the moments of the mixture components
are equal,

µn � υi
� � µ � υi

� for all n � 	 1,N � , i � 	 2, ν � , (A.10)

then the summation over the mixture components can be taken outside the summation over
all partitions and it holds,

κ � Υp
� � �

Υ

��� 1 � ν � 1 � ν � 1 � !
N�

n � 1

αnµn � υ1
� . . . µ � υν � � N�

n � 1

αnκn � Υp
� . (A.11)

Equation (A.10) constitutes a sufficient condition for independence of x up to cumulants
of order p. It is obviously fulfilled if all moments µn up to order

�
p � 2 � are identical in all

mixture components, because at most one block of size larger or equal p � 2 can be contained
in any partition of p indices.

Independence up to a certain order p is sufficient for many applications. For example,
a number of ICA algorithms make use of the fourth order cumulants alone (Cardoso and
Souloumiac, 1996; Hyvärinen and Oja, 1997). Thus, for fourth order independence of a
mixture it is sufficient that the mixture components are independent (at least up to fourth
order) and equal in mean and variance.

Appendix B

Reconstruction error

The reconstruction error re is a measure for the success of a source separation. It compares
the estimated demixing matrix W with the inverse of the original mixing matrix A with
respect to the indeterminacies: scalings and permutations. It is always nonnegative and
equals zero if, and only if Q � WA is a nonsingular permutation matrix. This is the case
when for every row of Q exactly one element is different from zero and the rows of Q are
orthogonal, i.e. QQT is a diagonal matrix. The reconstruction error is the sum of measures
for both aspects

re : � 2
N�

i � 1

log
N�

j � 1

Q2
i j �

N�
i � 1

log
N�

j � 1

Q4
i j �

N�
i � 1

log
N�

j � 1

Q2
i j � log det QQT

� 3
N�

i � 1

log
N�

j � 1

Q2
i j �

N�
i � 1

log
N�

j � 1

Q4
i j � log det QQT . (B.1)

130

Appendix C

Theorems

Theorem C.1 For any N � 1 vector v and any symmetric, positive definite N � N matrices A and
B the quantity

q � A � � vTAB � 1Av
� vTAv � 2 (C.1)

has a global (but not unique) minimum in the space of A at A � B.

Proof: q is invariant under multiplications of non-zero scalars c with A,

q � A � � q � cA � ,

and so is the minimum. Without loss of generality be A � � cA such that

vTA � v � vTBv . (C.2)

Because A and B are positive definite, there always exist a non-negative scalar

c � vTAv
vTBv

,

for which the constraint is fulfilled. Under the constraint (C.2) the denominator of equation
(C.1) is constant, and it is sufficient to minimize the numerator, using Lagrange multipliers.

L � vTA � B � 1A � v � λ � vTA � v � vTBv � (C.3)

At the stationary point the gradient of L w.r.t. A � and λ vanishes.

� L
� A

� 2vvTA � B � 1 � λvvT, and
� L

�
λ

� vTA � v � vTBv (C.4)

This is clearly the case for A � � B and λ � � 2. Because the unconstrained optimization
problem is convex for positive definite A � ,B, and the constraint is linear, A � c � 1B is a
global minimum, as well as A � B.

Box

Theorem C.2 For any vector x � 0 the function

f � p � � � �
n

�
xn

� p � 1
p

(C.5)

is monotonically decreasing for all p � 0. If x contains more than one element different from zero, it
is strictly monotonically decreasing. Otherwise it is constant.

131

132 APPENDIX C. THEOREMS

Proof: Consider the derivative of f w.r.t. p

d
dp
� �

n

�
xn

� p � 1
p � � �

n

�
xn

� p � 1
p � � 1

p2 log � �
n

�
xn

� p � � 1
p � n

�
xn

� p log
�
xn

�

� � n
�
xn

� p � � , (C.6)

where the sum is over all
�
n : xn

� 0 � . It is less or equal zero if, and only if

1
p

log � �
n

�
xn

� p � � � n
�
xn

� p log
�
xn

�
� � n

�
xn

� p �

� �
�

n

�
xn

� p log � �
m

�
xm

� p � � �
n

�
xn

� p log � � xn
� p � , (C.7)

which holds, because � m
�
xm

� p � �
xn

� p for all n. The equivalence in equation (C.7) is also
valid for the equality alone. It is achieved if, and only if, the set

�
n : xn

� 0 � contains not
more than one element. Otherwise equation (C.7) holds strictly.

�

Appendix D

Solution of the Lagrange equation
(3.6)

The derivative of the Lagrangian, equation (3.6),

L � Tl�
τ � � Tl

l2τ � α
T f�

t � � T f

f 2
t � λ � l0 � 1 � ,

w.r.t. f and λ yields the gradient of L.
� lτ

� ft
� ξt � τ

� L
� ft

� 2
Tl�

τ � � Tl

lτξt � τ � 2α ft � λξt (D.1)

� L
�
λ

� l0 � 1 . (D.2)

For the Hessian we need the second derivatives
� 2L

� ft1

� ft2

� 2 � Tl
τ � � Tl

ξt1 � τξt2 � τ � δt1 � t2 2α (D.3)

� 2 � ξ � ξ �
t1 � t2 � δt1 � t2 2α (D.4)

� 2L
� ft

�
λ

� ξt , (D.5)

To summarize the derivatives in matrix or vector notation we introduce a time vector
t � � T f , . . . , � T f

� T with . Now we can write the Hessian as

H � �
�

H h
hT 0

�
, (D.6)

where

Hi j
� � 2L

� fti
� ft j

and hi
� � 2L

� fti
�
λ

and ti
� T f � i � 1 .

For the solution of the optimization problem, we need to find a stationary point � f̄ , λ � of
the gradient. The Lagrangian contains no term of higher order than two. Thus, the Taylor
expansion of the gradient has only linear terms:

0 � � �
L

�
f̄�
L�
λ

�
f̄ � ,λ �

� � �
L

�
f̄�
L�
λ

�
f̄ � 0,λ � 0

� H � � �
f̄
�

λ
�

�
. (D.7)

133

134 APPENDIX D. SOLUTION OF THE LAGRANGE EQUATION (3.6)

The stationary point can be easily found with

�
f̄
�

λ
�

� � � H � � 1

�
�
�
�

� 0
...
0
� 1

�
�
�
�

�
. (D.8)

Because of the partitioned structure of H � , its inverse can be written as (Lüthkepol, 1996,
3.5.3.(1))

H � � 1 �
�

H � 1 � H � 1h � hTH � 1h � � 1hTH � 1 H � 1h � hTH � 1h � � 1

� hTH � 1h � � 1hTH � 1 � � hTH � 1h � � 1

�
. (D.9)

The optimal filter f̄
�

and the Lagrange multiplier λ
�

at the stationary point are contained
in the last column of H � � 1. With h � ξ̄,

f̄
� � H � 1ξ̄

ξ̄
TH � 1ξ̄

and λ
� � � 1

ξ̄
TH � 1ξ̄

(D.10)

holds.

Appendix E

Files on the CD

floor +2.avi

This file is a video recorded with the BumbleBee two lens camera in the floor of an office
building. The camera was mounted on a cart while it was pushed over the floor. The video
consists of 15,000 frames at 16 fps and has a resolution of 640 � 240 pixels, gray scale.

floor -1.avi

This video was recorded with the same setup as floor +2.avi, but in the basement floor of
the same building.

The videos floor +2.avi and floor -1.avi were used as training and test videos in the
experiments presented in this thesis.

filt 8 11 12.avi

This file is the left half of the video floor+2.avi with the responses of the multi-channel
filters of figure 3.15.A, f 8 (red), f 11 (green), and f 12 (blue), that exceed a threshold value of

�
10 (the responses had unit variance).

filt 3 4 5 7 14.avi

This file is the left half of the video floor+2.avi with the responses of the multi-channel
filters of figure 3.15.A, f 3 (red), f 4 (green), f 5 (blue), f 7 (cyan), and f 14 (magenta), that
exceed a threshold value of

�
10 (the responses had unit variance).

video1.avi

This file contains three clips of the video used for the experiment in section 5.3. You see
those parts, that are shown in the closeup, figure 5.4.B . The signals are color coded, the first
one red, the second one green, and the third one blue. If no signal is active, the video is
black-and-white. If a signal gets active the white value changes to the corresponding color.

res floor+2.avi, res floor-1.avi
These videos are the complete videos the example frames of figure 5.11.C and 5.12.C were
taken from.

135

Bibliography

FastICA Matlab toolbox, v2.5. http://www.cis.hut.fi/projects/ica/fastica/. online.

S. Amari. Neural learning in structured parameter spaces - ”Nature”ural Riemannian
gradient. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural
Information Processing Systems, volume 9, 1996.

S. Amari. Natural gradient works efficiently in learnig. Neural Computation, 10:251–276,
1998.

S. Amari, A. Cichocki, and H. H. Yang. A new learning algorithm for blind signal separa-
tion. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural
Information Processing Systems, volume 8, 1995.

C. Andrieu, E. Barat, and A. Doucet. Baysian deconvolution of noisy filtered point processes.
IEEE Transactions on Signal Processing, 49(1), January 2001.

H. Attias and C. E. Schreiner. Blind source separation and deconvolution: The dynamic
component analysis algorithm. Neural Comput., 10:1373–1424, 1998.

F. R. Bach and M. I. Jordan. Kernel indepedendent component analysis. Journal of Machine
Learning Research, 3:1–48, 2002.

S. H. Baloch, H. Krim, and M. G. Genton. Robust independent com-
ponent analysis. In IEEE Workshop Statistical SIgnal Processing, 2005.
http://www4.ncsu.edu/s̃hbaloch/publications/RICA SSP05.pdf.

A. J. Bell and T. J. Sejnowski. An information-maximization approach to blind separation
and blind deconvolution. Neural Computation, 7(6):1129–1159, 1995.

A. J. Bell and T. J. Sejnowski. The ’independent components’ of natural scenes are edge
filters. Vision Res., 37:3327–3338, 1997.

A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines. A blind source separation
technique using second-order statistics. IEEE Transactions on Signal Processing, 45(2):
434–444, 1997.

C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995.

G. G. Blasdel and G. Salama. Voltage-sensitive dyes reveal a modular organization in
monkey striate cortex. Nature, 321:579–585, 1986.

H. Brauer. Wahrscheinlichkeitstheorie, 2002.

A. Bray and D. Martinez. Kernel-based extraction of slow features: Complex cells learn
disparity and translation invariance from natural images. In Advances in Neural Information
Processing Systems, volume 15, pages 253–260, 2002.

J.-F. Cardoso. Blind signal separation: statistical principles. In R.-W. Liu and L. Tong,
editors, Proceedings of the IEEE, special issue on blind identification and estimation. 1998.

136

BIBLIOGRAPHY 137

J.-F. Cardoso, S. Bose, and B. Friedlander. On optimal source separation based on second
and fourth order cumulants. In Proc. IEEE Workshop on SSAP, Corfou, Greece, 1996.

J.-F. Cardoso and A. Souloumiac. Blind beam forming for non gaussian signals. IEE
Proceedings-F, 140(6):362–370, dec. 1993.

J.-F. Cardoso and A. Souloumiac. Jacobi angles for simultaneous diagonalization. SIAM
Journal on Matrix Analysis and Applications, 17(1):161–164, 1996.

J. Carroll and J. Chang. Analysis of individual differences in multidimensional scaling
via an n-way generalization of “eckart-young”decomposition. Psychometrika, 35:283–319,
1970.

C.-C. Chang and C.-J. Lin. LIBSVM – A Library for Support Vector Machines.
http://www.csie.ntu.edu.tw/˜cjlin/libsvm/, April 2003.

S. Choi and A. Cichocki. Blind separation of nonstationary and temporally correlated
sources from noisy mixtures. In Proceedings of the IEEE International Workshop on Neural
Networks for Signal Processing, pages 405–414, 2000.

P. Comon and B. Mourrain. Decomposition of quantics in sums of powers of linear forms.
Signal Processing, 53(2):96–107, Sept 1996.

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the
em algorithm. Journal of the Royal Statistical Society, 1977.

R. O. Duda, E. Hart, and G. D. Stork. Pattern Classification. Wiley, 2nd edition, 2001.

R. Fabian-Fine, P. Verstreken, P. Hiesinger, J. Horne, R. Kostyleva, H. Bellen, and I. Mein-
ertzhagen. Endophilin acts after synaptic vesicle fission in drosophila photoreceptor
terminals. J. Neurosci., 2003. (in press).

M. S. Fee, P. P. Mitra, and D. Kleinfeld. Automatic sorting of multiple unit neural signals in
the presence of anisotropic non-gaussian variability. Journal of Neuroscience Method, (69):
175–188, 1996.

M. Frigo and S. Johnson. FFTW User Manual. http://www.fftw.org/fftw3.pdf, 2003.
online.

J. Fröhlich, S. Novikov, and D. Ruelle, editors. Dynamical Systems, Ergodic Theory and
Applications, chapter I.1. Springer-Verlag, Berlin Heidelber New York, 1999.

C. Fyfe and P. Lai. ICA using kernel canonical correlation analysis. In In Proc. Int. Workshop
on Independent Component Analysis and Blind Signal Separation (ICA2000), 2000.

C. Gray, P. Maldonado, M. Wilson, and B. McNaughton. Tetrodes markedly improve the
reliability and yield of multiple single-unit isolation from multi-unit recordings in cat
striate cortex. Journal of Neuroscience Methods, 63(1–2):43–54, December 1995.

S. Harmeling, A. Ziehe, M. Kawanabe, and K.-R. Müller. Kernel-based nonlinear blind
source separation. Neural Computation, 15(5):1089–1124, 2003.

R. Harshman. Foundations of the parafac procedure: Model and conditions for an “ex-
planatory” multi-mode factor analysis. UCLA Working Papers in Phonetics, 16:1–84, 1970.

L. O. Harvey, Jr. The critical operating characteristic and the evaluation of expert judgment.
Organizational Behavior and Human Decision Processes, 53(2):229–251, 1992.

S. Haykin. Neural Networks. Prentice Hall, Inc., 1999.

J. Hurri and A. Hyvärinen. Simple-cell-like receptive fields maximize temporal coherence
in natural video. Neural Computation, 15(3):663–691, 2003.

138 BIBLIOGRAPHY

A. Hyvarinen, J. Karhunen, and E. Oja. Independent Component Analysis. John Wiley & Sons,
2001.

A. Hyvärinen and E. Oja. A fast fixed point algorithm for independent component analysis.
Neural Comput., 9(7):1483–1492, 1997.

M. Joho and K. Rahbar. Joint diagonalization of correlation matrices by using newton
methods with application to blind signal separation. In Sensor Array and Multichannel
Signal Processing Workshop Proceedings, pages 403–407, Aug. 2002.

I. T. Jolliffe. Principal Component Analysis. SpringerVerlag, New York, 1986.

E. Kandel, J. Schwarz, and T. Jessel, editors. Principles of Neural Science. Appleton & Lange,
third edition edition, 1991.

J. Kingman and S. Taylor. Introduction to measure and probability. Cambridge University
Press, Cambridge, England, 1966.

L. D. Lathauwer, B. D. Moor, and J. Vandewalle. Computation of the canonical decompo-
sition by means of a simultaneous generalized schur decomposition. SIAM Journal on
Matrix Analysis and Applications, 26(2):295–327, 2004.

Y. LeCun and C. Cortes. The MNIST database of handwritten digits.
http://yann.lecun.com/mnist/.

T.-W. Lee, M. Lewicki, M. Girolami, and T. Sejnowski. Blind source separation of more
sources than mixtures using overcomplete representations. IEEE Signal Processing Letters,
6(4):87–90, April 1999.

M. Lewicki. A review of methods for spike sorting: the detection and classification of neural
action potentials. Network: Computation in Neural Systems, 9(4):53–78, Nov 1998.

M. S. Lewicki and T. J. Sejnowski. Learning overcomplete representations. Neural Compu-
tation, 12(2):337–365, 2000.

H. Lüthkepol. Handook of Matrices. John Wiley & Sons Ltd., 1996.

D. Malonek and A. Grinvald. Interactions between electrical activity and cortical microcir-
culation revealed by imaging spectroscopy: implications for functional brain mapping.
Science, 272:551–554, 1996.

K. Matsuoka, M. Ohya, and M. Kawamoto. A neural net for blind separation of nonstation-
ary signals. Neural Networks, 8(3):411–419, 1995.

P. McCullagh. Tensor Methods in Statistics, chapter 1,2,4. Chapman and Hall, 1987.

B. L. McNaughton, J. O’Keefe, and C. A. Barnes. The stereotrode: a new technique for
simultaneous isolation of several single units in the central nervous system from multiple
unit records. Journal of Neuroscience Methods, 8:391–397, 1983.

J. Mercer. Functions of positive and negative type and their connection with the theory of
integral equations. Philosophical Transactions of the Royal Society of London A, 209:415–446,
1909.

L. Molgedey and H. G. Schuster. Separation of a mixture of independent signals using time
delayed correlations. Phys. Rev. Lett., 72:3634–3637, 1994.

J. Moors. A quantile alternative for kurtosis. The Statistician, 37(1):25–32, 1988.

D. Nguyen, L. Frank, and E. Brown. An application of reversible-jump markov chain monte
carlo to spike classification of multi-unit extracellular recordings. Network: Computation
in Neural Systems, (14):61–82, 2003.

BIBLIOGRAPHY 139

B. Olshausen and D. Field. Sparse coding with an overcomplete basis set: A strategy
employed by V1? Vision Research, 37:3311–3325, 1997.

B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381:607–609, 1996.

J. S. Pezaris, M. Sahani, and R. A. Andersen. Tetrodes for monkeys. In CNS*95, July 12-16
1995.

D. T. Pham. Joint approximate diagonalization of positive definite hermitian matrices.
SIAM Journal on Matrix Analysis and Applications, 22(4):1136–1152, 2001.

D. T. Pham and P. Garat. Blind separation of mixtures of independent sources through
a quasi maximum likelihood approach. IEEE Trans. Signal Processing, 45(7):1712–1725,
1997.

G. Pipa, E. Rodriguez, E. Staedtler, S. Gruen, and M. Munk. Neuronal dynamics in monkey
prefrontal cortex during visual short-term memory: temporal patterns of spike syn-
chronization. In Society for Neuroscience Abstracts, Washington, DC, 2003. Society for
Neuroscience. Online.

C. Pouzat, M. Delescluse, P. Viot, and J. Diebolt. Improved spike-sorting by modelling firing
statistics and burst-dependent spike amplitude attenuation: A markov chain monte carlo
approach. Journal of Neurophysiology, (91):2910–2928, 2004.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C.
Cambridge University Press, 2nd. edition, 1992.

S. P. Rebrik, B. D. Wright, A. A. Edmondi, and K. D. Miller. Cross channel correlations
in tetrode recordings: implications for spike-sorting. In Proceedings of Computation and
Neural Systems Meeting, Big Sky Montana, 1999.

M. L. Reece and J. O’Keefe. The tetrode: A new technique for multi-unit extracellular
recording. Society of Neuroscience Abstracts, 15:1250, 1989.

W. M. Roberts and D. K. Hartline. Separation of multi-unit nerve impulse trains by a
multi-channel linear filter algorithm. Brain Research, 94:141–149, 1975.

M. Sahani. Latent Variable Models for Neural Data Analysis. PhD thesis, California Institute
of Technology, Pasadena, California, 1999.

S.Amari and H.Nagaoka. Methods of Information Geometry. Translations of Mathematical
Monographs. American Mathmatical Society, January 2001.

T. Sanger. Optimal unsupervised learning in a singlelayer linear feedforward neural net-
work. Neural Networks, 2(6):459–473, 1989.

B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation, 10:1299–1319, 1998.

B. Schölkopf, A. Smola, R. Williamson, and P. Bartlett. New support vector algorithms. Neu-
ral Computation, 12(5):1207–1245, May 2000. URL citeseer.nj.nec.com/276248.html.

B. Schölkopf and A. J. Smola. Learning with Kernels. The MIT Press, 2002.

M. Scholz, R. Vollgraf, T. Bartels, A. Maye, I. Meinertzhagen, and K. Obermayer. Computer-
based segmentation and structural analysis of electron micrographs from drosophila
photoreceptor mutants. In Soc. Neurosci. Abstr., number 29, Washington DC, 2003. online.

H. Schöner, M. Stetter, I. Schießl, J. Mayhew, J. Lund, N. McLoughlin, , and K. Obermayer.
Application of blind separation of sources to optical recording of brain activity. In T. L.
S.A. Solla and K.-R. Mller, editors, Advances in Neural Information Processing Systems NIPS
12, pages 949–955. MIT Press, 2000.

140 BIBLIOGRAPHY

H. Schöner, M. Stetter, I. Schießl, J. Mayhew, J. Lund, N. McLoughlin, and K. Obermayer.
Application of blind separation of sources to optical recording of brain activity. In S. Solla,
T. Leen, and K.-R. Müller, editors, Advances in Neural Information Processing Systems NIPS
12, pages 949–955. MIT Press, 2000. In press.

S. Shoham, M. Fellows, and R. A. Normann. Robust, automatic spike sorting using mixtures
of multivariate t-distributions. Journal of Neuroscience Methods, (127):111–122, 2003.

A. Smola, O. Mangasarian, and B. Schölkopf. Sparse kernel feature analysis. Technical
report 99-03, University of Wisconsin, Data Mining Institute, Madison, 1999.

J. Stone. Learning visual parameters using spatiotemporal smoothness constraints. Neural
Computation, 8(7):1463–1492, 1996.

R. Stowers and T. Schwarz. A genetic method for generating drosophila eyes composed
exclusively of mitotic clones of a single genotype. Genetics, (152):1631–1639, 1999.

S. Takahashi, Y. Anzai, and Y. Sakurai. Automatic sorting for multi-neural activity recorded
with tetrodes in the presense of overlapping spikes. Journal of Neurophysiology, (89):
2245–2258, 2003.

Thomas RECORDING Gmbh. Heptode (7-cores Multifiber Electrode) – Datasheet. Giessen,
GERMANY, 2002. http://www.thomasrecording.com/pdf/HeptodeDataSheet.pdf.

M. Tipping. Sparse kernel principal component analysis. In Advances in Neural Information
Processing Systems, number 13. MIT Press, 2001.

A. van der Veen. Joint diagonalization via subspace fitting techniques. In Proc. IEEE ICASSP,
Salt Lake City (UT), May 2001.

V. Vapnik. The Nature of Statistical Learning Theory. 1995.

R. Vollgraf, M. Munk, and K. Obermayer. Spike sorting of multi-electrode recordings
based on amplitude ratios. In K. Krieglstein and H. Zimmermann, editors, 30th Göttinger
Neurobiology Report, 2005a. CD-ROM.

R. Vollgraf, M. Munk, and K. Obermayer. Spike sorting of multi-site electrode recordings.
Network – Computation in Neural Systems, 16:85–113, 2005b.

R. Vollgraf and K. Obermayer. Multi dimensional ICA to separate correlated sources.
In Advances in Neural Information Processing Systems 14, pages 993–1000, Cambrdige,
Massachusetts, 2002. MIT Press.

R. Vollgraf and K. Obermayer. Improved optimal linear filters for the discrimination of
multi-channel waveform templates for spike-sorting applications. IEEE Signal Processing
Letters, 13:121–124, 2006a.

R. Vollgraf and K. Obermayer. Quadratic optimization for simultaneous matrix diagonal-
ization. IEEE Transactions on Signal Processing, 2006b. in press.

R. Vollgraf and K. Obermayer. Sparse optimization for second order kernel methods. In
IJCNN 2006 Conference Proceedings, 2006c. in press.

R. Vollgraf, I. Schießl, and K. Obermayer. Blind source separation of single components
from linear mixtures. In Proc. Int. Conf. on Artificial Neural Networks - ICANN 01, pages
509–514, 2001.

R. Vollgraf, M. Scholz, I. Meinertzhagen, and K. Obermayer. Nonlinear filtering of electron
micrographs by means of support vector regression. In Advances in Neural Information
Processing Systems, volume 16, pages 717–724, Cambridge, Massachusetts, 2004. MIT
Press.

BIBLIOGRAPHY 141

R. Vollgraf, M. Stetter, and K. Obermayer. Convolutive decorrelation procedures for blind
source separation. In P. Pajunen and J. Karhunen, editors, Proceedings of the 2. International
Workshop on ICA, Helsinki, pages 515–520, 2000.

P. Walters. An Introduction to Ergodic Theory. Springer Verlag New York Inc., 1982.

M. Wax and J. Sheinvald. A least-squares approach to joint diagonalization. IEEE Signal
Processing Letters, 4(2), feb. 1997.

L. Wiskott and T. Sejnowski. Slow feature analysis: Unsupervised learning of invariances.
Neural Computation, 14(4):715–770, 2002.

A. Yeredor. Non-orthogonal joint diagonalization in the least-squares sense with application
in blind source separation. IEEE Transactions on Signal Processing, 50(7):1545–1553, July
2002.

M. Zibulevski and B. A. Pearlmutter. Blind source separation by sparse decomposition in a
signal dictionary. Neural Computation, 12(3):863–882, April 2001.

A. Ziehe, P. Laskov, K.-R. Mueller, and G. Nolte. A linear least-squares algorithm for joint
diagonalization. pages 469–474, Nara, Japan, Apr. 2003.

A. Ziehe, P. Laskov, G. Nolte, and K.-R. Müller. A fast algorithm for joint diagonaliza-
tion with non-orthogonal transformations and its application to blind source separation.
Journal of Machine Learning Research, 5:777–800, 2004.

A. Ziehe and K.-R. Müller. TDSEP – an efficient algorithm for blind source separation
using time structure. In Proceedings of the 8th International Conference on Artificial Neural
Networks, pages 675–680, Berlin, 1998. Springer-Verlag.

A. Ziehe, G. Nolte, G. Curio, and K.-R. Müller. Ofi: Optimal filtering algorithms for source
separation. In P. Pajunen and J. Karhunen, editors, Proceedings of the 2. International
Workshop on ICA, Helsinki, pages 127–132, 2000.

