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"We’re all mad here. I’m mad. You’re mad."
"How do you know I’m mad?" said Alice.
"You must be," said the Cat, "or you wouldn’t have come here.”

Lewis Carroll, Alice in Wonderland
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Abstract
Correlations and Coding in Visual Cortex

Understanding the neural code, that is deciphering how joint neural responses represent
external stimuli, is one of the cardinal problems in Neuroscience. Since neurons are inherently
noisy, the neural code is probabilistic. One key question regarding the probability distributions
of neural responses is whether neural activity is correlated. Researchers observed so called
noise correlations, shared variability among ensembles of neurons for repeated presentation
of the same stimulus, in the visual cortex and other sensory areas. To this day the cause of
these correlations remains unclear. Many hypotheses have been formulated about the origin
of shared variability. In this thesis we investigate a particular hypothesis in depth. We study
analytically and numerically the role of recurrent connectivity as a cause of noise correlations.

First, we introduce a novel Python library designed to support and manage numerical sim-
ulations such as spiking neuron networks. This library, called pypet, facilitates reproducible
research by allowing the scientist to disentangle her core simulation from administrative tasks
like scheduling or serialization of data. Besides being well tested and documented, the library
provides a rich set of features including native multiprocessing and easy parameter exploration.

Next, we investigate analytically the relation between recurrent connectivity and correla-
tions. We focus on a particular network topology called Mexican hat with shorter excitatory than
inhibitory connections. Using a recent mean-field approach, we show that Mexican hat connec-
tivity can amplify certain spatial frequencies. Moreover, we augment the model by introducing
adaptation and demonstrate that the previous findings are still valid. However, because no
analytical expression of the network state can be given, we reduce the model and compare it
to an older approach with sinusoidal coupling. The resulting network state is a heterogeneous
bump activity profile with an arbitrary phase. If noise or adaptation are incorporated, the bump
starts moving along the spatial dimension of the mean-field model. Accordingly, the movement
and phase changes across trials yield co-activation and co-inactivation of neighboring neurons
which we hypothesize to cause noise correlations in spiking networks.

Thereafter, we test this hypothesis in a numerical experiment by simulating large networks
of spiking neurons. For homogeneous input and Mexican hat connectivity, we observe the
emergence of multiple moving bumps which, in turn, yield noise correlations. With an increas-
ing distance between pairs of cells, the noise correlations are modulated sinusoidally and the
amplitude decays exponentially. This holds for wide ranges of parameter settings as well as
one- and two-dimensional network models. Moreover, noise correlations persist for heteroge-
neous stimuli, but the spatial modulation changes. Lastly, we test how the shared variability
affects stimulus encoding. In general, the measured correlations decrease the stimulus encod-
ing quality in terms of reduced Fisher information. However, if only a subset of neurons is
taken into account to decode the stimulus from the spiking responses, Mexican hat networks
achieve better performance than other topologies that do not produce noise correlations.
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Zusammenfassung
Correlations and Coding in Visual Cortex

Ein fundamentale Problemstellung der Neurowissenschaft stellt das Entschlüsseln neu-
ronaler Aktivität, also das Verständnis wie Neuronen gemeinsam externe Stimuli repräsen-
tieren, dar. Neuronale Aktivität ist inhärent verrauscht, deshalb sind die Repräsentationen
zwangsläufig probabilistisch. Ein wichtige Frage bezüglich der Wahrscheinlichkeitsverteilun-
gen neuronaler Aktivität ist, ob und inwieweit diese Aktivität korreliert ist. Wissenschaftler
konnten so genannte Noise-Korrelationen, korrelierte Aktivität bei wiederholter Präsentation
des selben Stimulus, im visuellen Kortex und anderen sensorisches Arealen nachweisen. Bis
heute ist der Ursprung dieser Korrelationen unklar. In dieser Arbeit untersuchen wir eine
bestimmte Hypothese zu den Gründen der Noise-Korrelationen. Wir werden uns sowohl ana-
lytisch als auch numerisch mit der Rekurrenz als Ursache der Korrelationen auseinandersetzen.

Zunächst stellen wir eine neue Software Bibliothek vor. Das Python Programm, genannt
pypet, unterstützt und verwaltet numerische Simulationen wie beispielsweise Netzwerke aus
Spiking Neuronen. Die Software erleichtert reproduzierbare Ergebnisse indem sie Wissen-
schaftlern die Möglichkeit gibt den Kernteil ihrer Simulationen von administrativen Aufgaben
zu trennen. pypet ist vollständig dokumentiert und umfassend getestet. Darüber hinaus bi-
etet das Programm viele Funktionen wie beispielsweise automatische Parallelisierung und be-
queme Parameter Explorationen.

Als nächstes befassen wir uns mit der Beziehung zwischen rekurrenten Netzwerken und
Noise-Korrelationen. Wir konzentrieren uns auf eine bestimmte Topologie, genannt Mexican
Hat, die aus länger reichweitigen inhibitorischen und kürzeren exzitatorischen Verbindungen
besteht. Wir zeigen mit Hilfe eines Mean-Field Modells, dass Mexican Hat Verbindungen
räumliche Frequenzen verstärken können. Außerdem erweitern wir das Model und berück-
sichtigen Adaptation. In diesem Fall gelten die Analysen weiterhin. Allerdings kann das
Mean-Field Modell keine analytische Beschreibung der Netzwerkaktivität geben. Daher re-
duzieren wir das Modell und vergleichen es mit einer älteren Methodik, die auf sinusförmigen
Verbindungen basiert. Der resultierende Netzwerkzustand ist eine inhomogene Antwort in
Form einer Erhebung oder Beule, hiernach Bump genannt, mit einer beliebigen Phase. Unter
Rauschen oder Adaptation bewegt sich der Bump in der räumlichen Ausdehnung des Net-
zwerks. Diese Bewegung und die Änderungen der Phase über verschiedene Trials führt zu
gemeinsamer Aktivierung und Inaktivierung benachbarter Neuronen. Deshalb vermuten wir,
dass die Bump Bewegung und Phasenänderungen in Netzwerken von Spiking Neuronen zu
Noise-Korrelationen führen.

Anschließend testen wir diese Hypothese mit Hilfe von Simulationen großer Netzwerke
mit Spiking Neuronen. Unter homogenen Netzwerkinput in Kombination mit Mexican Hat
Verbindungen bilden sich multiple Bumps hervor, die sich bewegen. Die resultierenden Noise-
Korrelationen weisen eine sinusförmige Modulation mit der Distanz zwischen Zellpaaren auf.
Zusätzlich nimmt die Amplitude mit der Distanz ab. Noise-Korrelationen können auch für
inhomogene Stimuli gemessen werden. Jedoch ändert sich die räumliche Modulation. Schluss-
endlich testen wir welchen Effekt die Korrelationen auf das Enkodieren von Stimuli haben.
Im Allgemeinen wirken sich Korrelationen nachteilig auf die Kodierungsqualität aus und re-
duzieren die Fisher Information. Wird jedoch die Stichprobengröße der Zellen, die zum De-
kodieren des Stimulus herangezogen werden, reduziert, eignen sich Mexican Hat Netzwerke
besser als andere Topologien, die keine Noise-Korrelationen aufweisen.
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1Introduction

UNDERSTANDING the neural code, that is deciphering how the brain encodes
sensory stimuli, is one of the fundamental problems in Neurosciene. This
thesis focuses on stimulus processing in a particular lower sensory area of

the brain, the visual cortex. It is one of the most extensively studied parts of the ner-
vous system. Therefore, for decades it has been subject to many experimental and
computational studies investigating how neural activity represents the external visual
world.

For instance, since the seminal work by Hubel and Wiesel (1959), we have known
that most neurons in the primary visual cortex (V1) display a preference for particular
stimulus features. The firing activity of simple cells is modulated by bar or grating
stimuli of varying orientations. Such a stimulus, projected in a particular part of an
animal’s visual field, generates strong spiking activity of a neuron with a certain pre-
ferred orientation. With increasing disparity between the stimulus and this preferred
orientation, the firing rate decreases.

During the past decades analysis of neural patterns has shifted from single cells
to population codes, i.e. the joint responses of cell ensembles. New developments in
extracellular recordings in vivo have facilitated this paradigm shift. For instance, mul-
tiple units in near vicinity can be recorded using a so called tetrode consisting of four
close by micro electrodes (Harris et al., 2000). Moreover, multi-electrode arrays (MEA)
can measure joint neural activity from neurons spanning areas over several square mil-
limeters (Fejtl et al., 2006). As a matter of fact, the amount of simultaneously recorded
cells doubled roughly every seven years within the last five decades (Stevenson and
Kording, 2011).

It has been known for long that population codes are a reliable way to encode, trans-
mit, and process sensory stimuli. Visual discrimination in the primary visual cortex is
much more accurate than what would be predicted from single neuron responses (Par-
adiso, 1988). Similarly, Montijn et al. (2014) demonstrated that one can improve the
performance of a variety of decoders estimating the stimulus from the joint neural re-
sponses by increasing the sample size of neurons.



2 Introduction

This thesis is concerned with information encoded and transmitted between neu-
rons via electrical pulses called action potentials or spikes. Hence, a response of an en-
semble of neurons is fully characterized by the joint spiking activity of the cells. More-
over, we further simplify the notion of a response by ignoring exact timing of spikes.
We assume that a single cell’s response is specified by the number of action potentials
observed within a fixed time window. Even though there is evidence that some infor-
mation is encoded by precise spike timing (Rullen and Thorpe, 2001), our assumption
allows estimation of statistics like correlation coefficients with considerably less data.
Indeed, this coarse notion of neural responses is prominent among experimentalists
(Bair et al., 2001; Rocha et al., 2007). As a consequence, comparisons of biological data
to our simulation results are straightforward.

An important aspect regarding population coding is whether neural responses are
correlated, especially when driven by the same stimulus. In this case one speaks of
so called noise correlations or shared variability (Cohen and Kohn, 2011; Hansen et al.,
2012). The variation around an expected mean response, the noise, is shared among
cells. Such noise correlations have been widely observed in the visual cortex (Kohn
and Smith, 2005; Martin and Schröder, 2013). Moreover, researchers reported that the
magnitude of pairwise noise correlations decays with the distance between cell pairs
(Smith and Kohn, 2008; Solomon et al., 2014). The magnitude and spatial structure
of noise correlations are particularly interesting because these can have a considerable
influence on stimulus processing. The correlations can potentially enhance or worsen
the quality of a population code (Averbeck et al., 2006). Accordingly, shared variability
can help, but also harm the brain’s ability to discriminate between different or, rather,
very similar but not equal stimuli.

Yet, it is still unclear what phenomena are causing the correlations. Hansen et al.
(2012) hypothesized recurrent connectivity as one of the potential sources. They ar-
gue that axonal connections between cells residing in the same layer of the primary
visual cortex lead to joint neural dynamics with noise correlations. This is a reasonable
assumption considering that the vast majority of connections does not come from the
sensory periphery or higher cortical areas, but originates within the visual cortex and
projects locally (Markov et al., 2011).

We further explore this hypothesis on two counts. Firstly, we investigate mean-field
descriptions and, secondly, we explore the dynamics of recurrent network models of
spiking neurons. Indeed, much analytical as well as numerical work was done in the
past (Brunel, 2000; Vogels et al., 2005; Augustin et al., 2013). In these studies researchers
focused on activity patterns that can emerge in randomly connected networks without
a real notion of spatial extent. Moreover, special attention was drawn to the emer-
gence of asynchronous irregular (AI) activity in such networks (Brunel, 2000; Kumar
et al., 2008). AI states are characterized by individual neurons firing in an irregular
manner which leads to stationary, asynchronous global behavior. If patterns of neural
activity are uncorrelated due to asynchronous firing, population coding properties are
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relatively well known. For example, we have an understanding about which factors
control the amount of information retained in uncorrelated population activity (Seung
and Sompolinsky, 1993; Pouget et al., 2000), or how downstream networks can be con-
structed to optimally read out information from the population response (Deneve et al.,
1999).

However, the assumption of random connectivity in spiking neuron networks lim-
its the application of model results to cortical phenomena. For instance, the connection
probability of cortex neurons decreases with the distance between pairs of excitatory
pyramidal cells as well as inhibitory interneurons (Hellwig, 2000; Mariño et al., 2005;
Wang, 2010). Therefore, in this thesis we are going to investigate the dynamics that
arise in recurrent networks based on biologically more plausible connectivity profiles
with local connections. Accordingly, we aim to provide a mechanistic explanation of
how shared variability can arise in the visual cortex. In addition, the correlations’ im-
pact on stimulus processing is of interest. In particular, we are going to address the
following questions:

• How can local recurrent connectivity cause noise correlations? What role do pa-
rameters like the coupling strengths and the spread of the local connections play
in the emergence and spatial modulation of noise correlations?

• Do noise correlations in recurrent networks affect the encoding quality of stimuli
in joint neural responses?

1.1 Outline

In order to answer the questions above we performed extensive parameter explorations
with our network models. These explorations and the corresponding hundreds of gi-
gabytes of numerical results imposed a challenge to our data management capacities.
Accordingly, we developed a novel data management toolkit called pypet to adequately
govern our network simulations. This novel framework will be introduced in chapter 2
besides brief presentations of different use cases.

Next, in chapter 3 we are going to review the literature on noise correlations. We
will discuss the spatial and temporal scales that have been observed in animal exper-
iments. Furthermore, hypotheses about potential causes of shared variability will be
debated and we will relate noise correlations to the stimulus encoding quality of a pop-
ulation response.

Chapter 4 theoretically examines the consequences of local recurrent connectivity.
Using mean-field models by Rosenbaum and Doiron (2014) and Hansel and Sompolin-
sky (1998) we will convey that a particular network topology with shorter excitatory
than inhibitory connections, called Mexican hat, constitutes a potential source for noise
correlations.



4 Introduction

In chapter 5 we are going to present the results of our spiking neuron network
simulations. We will verify the analytical predictions from the previous chapter and
demonstrate how Mexican hat networks can cause noise correlations. Moreover, we
will investigate the influence of shared variability on the stimulus information in joint
neural responses.

Finally, chapter 6 summarizes the findings and we will put these into perspective
for potential future lines of research.

Additionally, appendix A provides the details of our spiking neuron network mod-
els and appendix B presents some preliminary results.



2pypet: A Python Toolkit for
Parameter Exploration

THIS chapter introduces pypet, an open source software toolkit to manage numer-
ical experiments in Python. At the beginning it started as a minor project to
handle parameters and results of network simulations which we prepared and

executed. Over the course of this dissertation pypet has grown into a mature software
application with a rich set of features. The program is now used among scientists and
engineers of different research groups and in the industry to guide and support their
simulations and numerical experiments.

This chapter is mostly based on the freely available online documentation (http:
//pypet.readthedocs.org) also written by the thesis author. After an introduction
and the motivation behind pypet, we are going to give an overview on other existing
software packages and how these relate to pypet. Next, we will provide a brief ex-
planation about pypet’s development, architecture, and program layout. Finally, some
use case examples will be presented. However, a full description of all available fea-
tures and all full demonstration of all of pypet’s capabilities is beyond the scope of this
manuscript and the user is directed to the comprehensive online documentation.

2.1 Introduction and Motivation

Computational Neuroscience is a rapidly evolving scientific field. Researchers create a
lot of highly complex computational models with great levels of biological details, for
instance work by Reimann et al. (2013) or Potjans and Diesmann (2014). The increasing
availability and decreasing costs of high-performance computing (HPC) have further
facilitated this development. However, the Computational Neuroscience community
lacks a standard in software tools and languages that are used to create models. Al-
though many approaches and packages have been developed to tackle this problem,
as discussed in the next section, many researchers rely on custom made software and
their own data formats. Scripts and results of simulations are at most shared among
researchers within the same group if ever shared with anyone. This makes numerical

http://pypet.readthedocs.org
http://pypet.readthedocs.org
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experiments hard to reproduce. There is an ongoing debate about mandatory publi-
cation of source code in scientific research. Some researchers pledge to make this a
necessity rather than optional (Ince et al., 2012).

Still, even the open availability of software does not guarantee reproducibility of
results. For instance, if software is not well-documented and maintained, it is unlikely
that other researchers are able to apply it. Even granted that they are willing to in-
spect the source code, just to get a basic understanding of existing but ill-documented
code, researchers may have to invest an unacceptable amount of time to reimplement
someone else’s published computational model (Topalidou et al., 2015). Furthermore,
simulations of neural phenomena are usually highly parametrized and encompass tens
or even several hundreds of parameters. For example, the simulations in chapter 5 are
relying on more than forty parameters. As a consequence, reproducing simulation
results becomes difficult if the used parameter values are not tightly linked to the ob-
tained results. Along these lines, Victoria Stodden (2011) even speaks about a "credibil-
ity crisis" of computational results. This is not only a problem for published numerical
experiments, but difficulties can arise in the day-to-day work of scientists in the pro-
cess of evolving simulations and research projects. If researchers try to replicate results
of their own that were obtained just a few months ago, they already may fail to do
so because they have no knowledge anymore about the full set of parameters of their
previous simulations. Of course, the development of a scientific project, especially the
early stages, is usually hidden from the public and only comes to light with a success-
ful publication. Accordingly, there is no data available quantifying and measuring the
struggle of researchers when it comes to data management of computational studies.
Yet, the thesis author knows about a lot of such cases from personal communication
with other scientists.

pypet is designed to fill this gap. The two main goals of the software package are,
firstly, to allow easy but flexible exploration of large parameter spaces and, secondly,
tightly link used parameters and obtained simulation results.

Accordingly, pypet stands for Python Parameter Exploration Toolkit. It is targeted
to researchers and engineers executing numerical experiments of any kind, not only re-
lated to Neuroscience. It can support simulations written in the platform-independent
and widely used programming language Python. Python is gaining more and more
attention in Computational Neuroscience and it is likely to overtake MATLAB as the
language of choice in the natural sciences (Koepke, 2010; Muenchen, 2012; Coelho,
2013).

With pypet the user can explore arbitrary parameter spaces simply by specifying
Python lists of parameter points. In turn, these points define individual simulation
runs and lead to particular numerical results. Tight linkage of parameters and results is
achieved by storing all data together in the convenient HDF5 format (The HDF Group,
1996).
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2.1.1 Main Features

Among the two main objectives of easy parameter exploration and tight linkage of
parameters and results, pypet encompasses a variety of other features some of these are
listed below:

• Novel tree container Trajectory, for handling and managing of parameters and results
of numerical simulations

• Grouping of parameters and results into meaningful categories

• Accessing data via natural naming, e.g. traj.parameters.neuron.gL

• Support for many different data formats

– Python native data types: bool, int, long, float, str, complex

– Python containers: list, tuple, dict

– NumPy arrays and matrices (Walt et al., 2011)

– SciPy sparse matrices (Jones et al., 2001)

– Pandas Series, DataFrame, and Panel (McKinney, 2011)

– BRIAN and BRIAN2 quantities and monitors (Goodman and Brette, 2008; Stimberg
et al., 2014)

• Easily extendable to other data formats

• Merging of trajectories residing in the same space

• Support for multiprocessing, pypet can run simulations in parallel

• Analyzing data on-the-fly during multiprocessing

• Adaptively exploring the parameter space combining pypet with optimization tools like
the evolutionary algorithms framework DEAP (Fortin et al., 2012)

• Dynamic loading of parts of data one currently needs

• Resuming a crashed or halted simulation

• Annotation of parameters, results, and groups

• Git integration, pypet can make automatic commits of one’s codebase

• Sumatra integration, pypet can automatically add one’s simulations to the electronic lab
notebook tool Sumatra (Davison, 2012)

• pypet can be used on computing clusters or multiple servers at once if it is combined with
the SCOOP framework (Hold-Geoffroy et al., 2014)

Of note, pypet’s BRIAN2 sub-package is joint work with Henri Bunting as part of the
Neural Networks Project course at the TU Berlin. In addition, some components of the
SCOOP integration were programmed by Mehmet Nevvaf Timur.
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2.2 Related Software

In recent years a couple of software projects dealing with data management in Compu-
tational Neuroscience have been developed. In this section we are going to discuss the
most prominent approaches and emphasize their similarities and differences to pypet.
Some of these programs can even be combined with pypet for advanced usage and en-
hanced management capabilities like grid or cluster computing.

NeuroManager (Stockton and Santamaria, 2015) facilitates automated scheduling
of simulations with heterogeneous computational resources. Such computational re-
sources can range from simply using the host computer — from which scheduling was
started — to a network of other computers or even clusters and computer grids. Neu-
roManager, written in object-oriented MATLAB, allows the user to specify simulations
in terms of pure MATLAB code or MATLAB code wrapping existing simulators like
NEURON (Carnevale and Hines, 2006). The parameter space defined by the simulators
can be explored using NeuroManager’s scheduling routine by utilizing heterogenous
computing resources; granted these resources support the needed software require-
ments like MATLAB licenses. Unfortunately, NeuroManager requires a license of the
MATLAB Compiler Toolbox which is not necessarily part of a MATLAB standard en-
vironment. For instance, the Compiler Toolbox is not found in the student version of
MATLAB. Hence, despite buying the regular MATLAB license, further costs may be as-
sociated with the NeuroManger requirements. In contrast, all of pypet’s requirements
are open source and freely available.

Mozaik (Antolík and Davison, 2013) is a Python data management toolkit espe-
cially designed for network simulations of two-dimensional neural sheets. It relies
on the simulator environment PyNN (Davison, 2008). Its design goals are similar to
pypet’s. Mozaik aims on integrating parameters and model descriptions with the simu-
lator execution as well as the storage of results. However, the focus on two-dimensional
networks makes it less flexible in comparison to pypet.

Lancet (Stevens et al., 2013) constitutes a more general approach to workflow man-
agement and integrates with IPython notebooks (Perez and Granger, 2007). Like pypet,
Lancet is simulator agnostic. It even allows to interact with other programs not written
in Python as long as these can be launched as a process and return output in form of
files. Lancet is a well-designed alternative to pypet, especially for smaller projects that
fit into the scope of a single IPython notebook. Nonetheless, Lancet’s documentation
is not as comprehensive as pypet’s and lacks detailed usage descriptions. The authors
assume that users are willing to grasp and understand many ideas and use cases by
directly inspecting Lancet’s source code (Stevens et al., 2016).

Moreover, VisTrails (Bavoil et al., 2005) is a workflow and provenance management
system written in Python that focuses on automation and standardization of visual-
izations. It is mainly operated through a graphical user interface (GUI) and targets on
an audience less akin to programming. In comparison, pypet offers no GUI, but it is a
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Python library that users can import and use in their own source code to write scripts
and programs.

The primary goal of Sumatra (Davison, 2012) is to enhance reproducible research.
Sumatra serves as an electronic lab notebook. The command line program does not
only link all simulation parameters to obtained results, but also keeps track of the en-
tire computing platform. It stores information like the used operating system and par-
ticular versions of software dependencies. Sumatra can be nicely integrated with pypet
to automatically trigger a Sumatra record with every simulation start.

SAGA-Python (Merzky et al., 2015) is a software package that provides an appli-
cation programming interface (API) for distributed computing. Users can submit and
monitor jobs on computing cluster environments from a remote machine. They may
even schedule automatic retrieval of output files. The pypet online documentation gives
examples and explains in detail how to combine pypet with SAGA-Python.1

Lastly, SCOOP (Hold-Geoffroy et al., 2014) provides a Python library to seamlessly
schedule parallel computing jobs on heterogeneous resources like computer grids or
multiple servers. pypet is designed to integrate well with SCOOP to allow massive
parameter explorations on cluster environments. We will briefly sketch the usage of
pypet and SCOOP at the end of this chapter.

2.3 Software Architecture and Development

In this section we will discuss general design principles of pypet and briefly layout
the architecture and structure of the Python package. First, we are going to start with
pypet’s packaging and adhesion to the concept of test driven development. Next, we
will present our conceptualization of parameter explorations. Furthermore, we are
going to introduce the general layout followed by more detailed description of the
individual components. Lastly, we will finish this chapter with some general use case
examples.

2.3.1 Software Packaging and Testing

pypet is a pure Python package2 and supports Python versions 2.6, 2.7, 3.3, 3.4, and 3.5. It
is platform independent and runs under Linux, Windows, and OS X with 32-bit as well
as 64-bit architectures. To allow further extensions of pypet effortlessly, the package
is very modularized and pypet is designed following the concept of object oriented
programming3 (OOP).

1http://pypet.readthedocs.org/en/latest/examplesdoc/example_22.html
2In the Python universe the term package denotes a bundle of modules. Modules are specialized Python

libraries that may contain related functions, objects, and general Python statements.
3In OOP user interactions involve so-called objects. These objects are special data structures that pro-

vide data in terms of object attributes. In addition, the object’s methods grant functionality to modify the
object and data therein.

http://pypet.readthedocs.org/en/latest/examplesdoc/example_22.html
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Furthermore, the source code is openly available and hosted on the prominent
github4 code sharing platform. In addition, pypet is bundled on the Python Package
index5 (PyPI) to allow fast and easy installation using the package managing system
pip.

Besides comprehensive documentation, it is very important for software packages
— scientific ones in particular — that all functionality is well tested (Gewaltig and Can-
non, 2014). Therefore, pypet is designed using test driven development. Accordingly,
small features and single functions are already accompanied with corresponding test
cases. In addition, we apply continuous integration testing. Every addition of new
code triggers a full battery of package wide tests which are automatically started and
deployed on independent build servers. pypet is tested using the services Travis-CI6

with a Linux environment and AppVeyor7 providing Windows servers. Every time a
new code addition is pushed to the code repository on github, the unit and integration
tests are automatically deployed by Travis-CI and AppVeyor. This guarantees that new
features do not break existing functionality. In addition to continuous integration test-
ing, we use the coveralls8 web service to quantify how comprehensive the test suite is
and how many relevant code lines are covered by the test battery. As of February 2016,
pypet’s core modules encompass almost 10,000 lines of pure Python code of which more
than 90% are hit by the test battery exceeding 900 tests. As a side remark, including the
test suite, all documentation, and all example scripts the number of code lines increases
more than five-fold.

2.3.2 Parameter Exploration and Conceptualization

pypet’s goals are to allow for easy parameter exploration and storage of results as well
as parameters side by side. Our definition of a parameter exploration is as follows: It
is the process of sampling an n-dimensional parameter space of a simulation or model
implementation with a pre-defined set of points within the space. Running the simula-
tion or model independently with each point in the parameter space produces further
data that is considered to be results. The dimensions of the parameter space can be het-
erogeneous, i.e. these may encompass integers, real values, or even less mathematical
concepts like Python tuples, for instance. Therefore, we also refer to a dimension of the
parameter space simply as a "parameter".

Moreover, we assume that from the n-dimensional space usually only a much
smaller sub-space is sampled of size n′ with n′ ≪ n. Accordingly, most parameters
are fixed and only a minority are varied and explored. For instance, the network mod-
els in chapter 5 are based on several tens of parameters, but we only varied very few of
these comprehensively (c.f. table A.1 in the appendix).

4 https://github.com/SmokinCaterpillar/pypet
5https://pypi.python.org/pypi/pypet
6https://travis-ci.org/SmokinCaterpillar/pypet
7https://ci.appveyor.com/project/SmokinCaterpillar/pypet
8https://coveralls.io/github/SmokinCaterpillar/pypet

https://github.com/SmokinCaterpillar/pypet
https://pypi.python.org/pypi/pypet
https://travis-ci.org/SmokinCaterpillar/pypet
https://ci.appveyor.com/project/SmokinCaterpillar/pypet
https://coveralls.io/github/SmokinCaterpillar/pypet
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Figure 2.1: Conceptualization of a simulation or numerical experiment.

Furthermore, the set of points is sequentially ordered. The order may be arbitrary,
but it is fixed such that the ith point in the parameter space corresponds to the ith run of
a simulation or model. Due to the order, one may not just think of sampling the param-
eter space, but rather following a discrete trajectory through the space. Accordingly, the
top-level container managing all parameters and results is called Trajectory.

Next, we will briefly discuss a particular layout of simulations that fits best with
pypet. This conceptualization is also sketched in figure 2.1. We assume that numerical
experiments or simulations usually comprise between two to four different stages:

1. Pre-processing: Parameter definition, preparation of the experiment

2. Run phase: Fan-out structure, usually parallel running of different parameter
settings, gathering of individual results for each single run

3. Post-processing (optional): Cleaning up of the experiment, sorting results, etc.

4. Analysis of results (optional): Plotting, calculating statistics, etc.

The first pre-processing stage can be further divided into two sub-stages. In the
beginning the definition of parameters is given and, secondly, one’s experiment is ini-
tialized and configured. The definition of parameters also involves the decision how
the parameter space is explored. Configuration and initialization might encompass cre-
ating particular Python objects or pre-computing some expensive functions that other-
wise would be computed redundantly in every run in the next phase.
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The second stage, the run phase, is the actual execution of one’s numerical simu-
lation. All different points in the parameter space that have been specified before for
exploration are tested on the model. As a consequence, one obtains corresponding
results for all parameter combinations. Since this stage is most likely the computation-
ally expensive one, one probably wants to parallelize the simulations. We refer to an
individual simulation execution with one particular parameter combination as a single
run. Because such single runs are different individual simulation executions with dif-
ferent parameter settings, they are completely independent of each other. The results
and outcomes of one single run should not influence another. This does not mean that
non-independent runs cannot be handled by pypet, they can. However, keeping single
runs independent greatly facilitates the parallelization of their execution.

Thirdly, after all individual single runs are completed one might perform post-
processing. This could involve merging or collection of results of individual single
runs or deleting some sensitive Python objects. In case one desires an adaptive or itera-
tive exploration of the parameter space, one could restart the second phase. In this case
the Trajectory can be extended. The user can iteratively add some more points of the
parameter space and alternate the run phase and post-processing before terminating
the experiment.

Finally, one may desire to do further analysis of the raw results obtained in the
previous phases. This constitutes the final stage of an experiment and may include the
generation of plots or calculation of statistics. For a strict separation of experimental
raw data from its statistical analysis, one is advised to separate this final phase from
the previous three. Thus, this could mean starting a completely different Python script
than for the phases before.

2.3.3 General Package Structure

pypet encompasses five key modules. The trajectory.py module contains the
Trajectory class that constitutes the main data container the user interacts with.
User requests to a Trajectory are passed onto and processed by a service called
NaturalNamingInterface residing in the naturalnaming.py module. Moreover, the
Trajectory allows the arbitrary exploration of the parameter space and manages
all data including parameters, results, as well as configuration specifications. All of
these are further encapsulated by their own abstract containers which can be found
in the parameter.py module. In case data is stored to disk, this is handled by the
HDF5StorageService located in the storageserivce.py module. Currently, the data
is saved in the HDF5 format (The HDF Group, 1996). Storage and loading of trajecto-
ries follow well-defined APIs. Hence, the implementation of other backends, like SQL
for example, is possible without the need to change any other pypet core code. Finally,
the environment.py module provides the so called Environment object for handling
the running of simulations. This general structure of the pypet package is sketched in
figure 2.2. Next, we will discuss the above introduced components in more detail.
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Figure 2.2: Main components of pypet. Elements in light grey mark ob-
jects that operate in the background with no direct user interaction.
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2.3.4 Parameters and Results

The parameter.py module provides the so called Parameter class that follows a base
API called BaseParameter. The Parameter contains data that is explicitly required as
parameters for one’s simulations. For the rest of the thesis we follow the convention
that the stylized Parameter denotes the abstract container. The not stylized expres-
sion "parameter" refers to the user data that is managed by the Parameter container.
In fact, Parameter is the name of the Python class constructor. Accordingly, instan-
tiated Parameter objects are referred to by variable names in lower case letters, like
myparameter, for example. This notation holds analogously for user results and vari-
ables like myresult referring to an instantiated container of the Result class which
implements the base API BaseResult.

Parameters follow two main principles. Firstly, a key concept in numerical exper-
iments is the exploration of the parameter space. Therefore, the Parameter containers
do not only manage a single value or data item, but they may also take a range of
data items. Elements of such a range typically reside in the same dimension, i.e. only
integers, only strings, only NumPy arrays, etc. The exploration is initiated via the
Trajectory. This functionality will be introduced shortly. Secondly, a Parameter can
be locked; meaning as soon as the Parameter container is assigned to hold a specific
value or data item and the value or data item has already been used somewhere, it
cannot be changed any longer (except after being explicitly unlocked). This prevents
the cumbersome error of having a particular parameter value at the beginning of a
simulation but changing it during runtime by accident. Such an error can be very dif-
ficult to track down. By definition parameters are fixed values that are defined before
any simulation run. An exception to this rule is solely the exploration of the param-
eter space, but this requires to run a number of distinct simulations anyway. Hence,
explored Parameters are fixed and locked within each individual run.

Parameter containers accept a variety of different data items, these are

• Python natives (int, str, bool, float, complex),

• NumPy natives, arrays and matrices of type np.int8 to np.int64, np.uint8 to
np.uint64, np.float32, np.float64, np.complex, and np.str

• Python homogeneous non-nested tuples and lists

For more complex data, there are specialized version of the Parameter container.
For instance, the SparseParameter is a container for SciPy sparse matrices and the
BrianParameter can manage quantities of the BRIAN simulator package (Goodman
and Brette, 2008).
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Figure 2.3: Depiction of the data tree.

Moreover, Result containers are less restrictive than Parameters in terms of data
they accept. They can also handle Python dictionaries and Pandas data frames (McK-
inney, 2011). In addition, they allow to add more than a single data item (or an explo-
ration range). Individual data items can be assigned names and recalled. For instance,
the following command

>>> myresult = Result(’test’, a=42, b=’forty-two’)

creates a Result named ’test’ that is referred to by myresult. It contains the integer
and string data 42 and ’forty-two’, respectively. Accordingly, these data items can be
accessed via myresult[’a’] and myresult[’b’] or via myresult.a and myresult.b.

Similar to the Parameter, there exist specialized versions of a Result, like a
SparseResult. In case the user relies on some custom data that is not supported by
the Result, Parameter, or their specialized descendants containers, the user can im-
plement a custom solution. Customized containers are straightforward and only need
to follow the API specifications given by BaseResult and BaseParameter.

2.3.5 Trajectory and Natural Naming

The Trajectory is the container for all results and parameters of one’s numerical ex-
periments. The Trajectory instantiates a tree with groups and leaf nodes. The instan-
tiated Trajectory object itself is the root node of the tree. The leaf nodes encapsulate
the user data and are the Parameter and Result containers. Group nodes cannot con-
tain user data directly, but may contain other groups and leaf nodes. This is sketched
in figure 2.3. By using only groups and leaves there cannot be any cycles within the
trajectory tree. However, one can introduce links that refer to other existing group or
leaf nodes.
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Furthermore, we implemented a general naming convention that applies to the
Trajectory, all groups, and all containers that can encapsulate user data, i.e. the
Result and Parameter introduced before. To avoid confusion with the natural nam-
ing scheme and the functionality provided by the Trajectory, we followed the idea by
another software package pypet is based on, called PyTables (Alted et al., 2002), to use
prefixes. That is f_ for methods and functions and v_ for Python variables, attributes,
and properties.

For instance, given a particular instantiated Result denoted by the vari-
able myresult, myresult.v_comment refers to the object’s comment attribute and
myresult.f_set(mydata=42) is the function for adding data to the Result container.
Whereas myresult.mydata can be a data item named mydata provided by the user.

Results can be added to the Trajectory tree at any time. Parameters can only be
introduced before the individual simulation runs are started. Assuming an instantiated
Trajectory object denoted by the variable traj, a parameter can be added via

>>> traj.f_add_parameter(’subgroup1.subgroup2.myparam’, 42,

comment=’I am an example’)

where ’subgroup1.subgroup2.myparam’ is the full name of the parameter. This will
automatically add the groups subgroup1 and subgroup2 on the fly if they do not exist,
yet. Here 42 is the user’s standard or default value of the Parameter. Additionally,
one can always provide a descriptive comment to inform potential other users or re-
searchers about the parameter’s scope and meaning. Results are added analogously.
Still, because a Result can handle heterogeneous data, one may provide additional
keyword arguments that denominate each data item:

>>> traj.f_add_result(’anothergroup1.anothergroup2.myresult’,

a=42, b=’forty_two’, c=44.4,

comment=’I am an example result’)

There exist some more ways to add data to the tree. For a detailed explanation the
reader is directed to the online documentation.

Data can be accessed using natural naming, i.e. the user can rely on "." notation to
retrieve data. For instance, given the result from above, one may recall the data via

>>> traj.anothergroup1.anothergroup2.myresult.c

which will return 44.4. Internally these request are not handled by the Trajectory

class, but are forwarded to the NaturalNamingInterface.
Furthermore, links allow alternative paths through the tree. For instance, given the

following link addition

>>> traj.anothergroup1.f_add_link(’resultlink’,

traj.anothergroup1.anothergroup2.myresult)

this allows access to the result data also with

>>> traj.anothergroup1.resultlink.c

44.4
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The user is encouraged to group and structure results as fine-grained as possible.
To spare the user an excessive amount of typing, the Trajectory supports so called
shortcuts. If the user leaves out intermediate groups in the natural naming request,
a breadth first search is applied by the NaturalNamingInterface to find the corre-
sponding group or leaf:

>>> traj.myresult.b

’forty_two’

Search is established by a very fast look up and usually needs much less time than the
complexity of O(N), where N is the total number nodes in the tree. Due to internal
look up tables the corresponding node is most often found in O(1) or sometimes in
O(d), with d the depth of the tree. Given that shortcuts are not unique, that is one
could potentially find several solutions for a natural naming search in the tree, pypet
will return the first item it finds via breadth first search. If there are several items with
the same name but in different depths, the one with the lowest depth is returned. For
performance reasons, pypet actually stops the search if an item was found and there are
no other items within the tree with the same name and same depth. If there are two or
more items with the same name within the same depth, the user request is considered
ambiguous and pypet will raise a NotUniqueNodeError.

Exploration can be prepared with the Trjectory’s f_explore() method. This
function takes a dictionary with parameter names as keys and lists specifying the pa-
rameter ranges as values. Note that all lists need to be of the same length. For example:

>>> traj.f_add_parameter(’x’, 0)

>>> traj.f_add_parameter(’y’, 0)

>>> traj.f_explore({’x’:[42, 44, 45, 46], ’y’ :[1, 4, 6, 6]})

These statements produce a Trajectory of length 4 and explore the four param-
eter space points (42, 1), (44, 4), (45, 6), and (46, 6). Additionally, the Cartesian
product of two ranges can be automatically created using a helper function called
cartesian_product():

>>> traj.f_explore(cartesian_product(

{’x’:[42, 44, 45, 46],

’y’ :[1, 4, 6, 7,8, 9, 10]}))

In this case the list lengths may differ because the cartesian_product() function will
return lists with appropriately matching lengths.

2.3.6 Data Storage and Loading

Storage and loading of the Trajectory container and all its content are not carried
out by the Trajectory itself but by a service in the background. Currently, all data is
stored into a single HDF5 file (The HDF Group, 1996) via the HDF5StorageService.
To interface HDF5, the storage services uses the excellent PyTables library (Alted et al.,
2002).
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Figure 2.4: Inspection of a strored Trajectory in an HDF5 file using
the HDFView tool (The HDF Group, 1996).

The acronym HDF5 stands for the fifth version of the Hierarchical Data Format. It
is a very convenient format because it allows compressed reading and writing of data
to the hard disk with high performance. More important, as its name suggests, data is
ordered in hierarchies that are very similar to the file and folder structure of most oper-
ating systems. The data hierarchies and the numerical data therein can directly be in-
spected with tools like HDFView. Not surprisingly, the tree structure of the Trajectory
is mapped one to one to the hierarchical structure in the HDF5 file. For example, fig-
ure 2.4 depicts the inspection of a stored pypet Trajectory.

Usually, the storage of a Trajectory is automatically triggered by pypet in regular
intervals. Additionally, the user can manually initiate storing using the Trajectroy’s
f_store() method. Loading is analogous via f_load(). One can specify to load parts
of the tree or only specific data items. Detailed advice is provided in the online doc-
umentation. In addition, pypet supports automatic loading of data as soon as the user
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needs it. No explicit loading is necessary and data is recovered from the HDF5 file on-
the-fly. Automatic loading will be demonstrated in one of the usage examples at the
end of this chapter.

2.3.7 Environment

The Environment defines a scheduler for the numerical experiments. It constitutes
a general framework in which the user can embed her simulations. In principle, the
Environemnt allows the user to disentangle the core simulation from administrative
tasks like distribution and repeated execution of runs and data serialization. The
Environment takes care about setting up new Trajectorys, keeps log files, or can
be used for parallelization of one’s simulations onto several CPUs.

Usually, the user starts simulations by creating an Environment object:

>>> env = Environment(trajectory=’mytrajectory’,

comment=’A useful comment’,

multiproc=True, ncores=4,

git_repository=’~/myproject’)

There are plenty of customizations possible that can be passed as keyword arguments
to the Environment. For instance, pypet natively supports parallelization using the
Python multiprocessing library. As shown above, to run all simulation runs on 4 cores
at the same time, one can use the multiproc and ncores keywords. Moreover, pypet in-
tegrates nicely with code bases under git version control. If the path to the main folder
of the user’s git repository is passed to the Environment via the git_repository key-
word, pypet automatically triggers a git commit if it finds changes in the code base.9

The toolkit remembers the commit’s SHA identifier. Consequently, the user can always
recall the exact version of a simulation with which particular results were obtained.

Furthermore, the Environment provides a Trajectory container for the user:

>>> traj = env.traj

Next, the user can fill the traj container with parameters and specify the exploration
of the parameter space. Afterwards, she can start the individual simulation runs via

>>> env.run(mysimulation)

where mysimulation is the top-level simulation function that takes a Trajectory con-
tainer as the first argument. Accordingly, the function definition requires the following
form:

def mysimulation(traj, ...):

# Do some sophisticated simulation

where traj is the Trajectory container. The function is allowed to take other posi-
tional as well as keyword arguments. The user is advised that the top-level simulation

9Note that this feature requires the GitPython package (Trier et al., 2016).
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function mysimulation should not return any results, but put them directly into the
Trajectory container using the traj.f_add_result() method.

Upon calling env.run(mysimulation), the Environment invokes mysimulation
for every point in the parameter space independently. In case of long running simu-
lations or many runs, the Environment notifies the user about the progress and gives
an estimate of the remaining time in regular intervals. Furthermore, the Environment
will automatically trigger the storage of obtained results after every individual simula-
tion run. In addition, it monitors the simulation execution in terms of keeping log-files.
By default, general log-files are accompanied by specialized error logs. The latter dis-
play only error messages to allow easier identification and debugging in case there are
errors in the user’s simulation.

2.4 Usage

So far we have introduced pypet’s main components and sketched their functional-
ity. In this section we will give three brief usage examples. But first, we are going to
demonstrate how easily pypet can be installed. Secondly, we will provide a very ba-
sic example to allow the reader getting used to the general structure of a simulation
managed by pypet. Thirdly, a more comprehensive use case will be examined. We are
going to simulate the theoretical model by Hansel and Sompolinsky (1998). Note that
this model will be discussed in great detail in the chapter 4. It will be shown how pypet
can be wrapped around an existing simulation code. Additionally, we are going to
demonstrate how stored simulation data can be loaded for further analyses and plot-
ting. Finally, it will be explained how simulations can be scheduled and executed on a
computing cluster environment using pypet in combination with SCOOP.

2.4.1 Installation

Because pypet is a pure Python package, its installation is straightforward and does not
require more involved steps like compilation of source code. If the Python package
manager pip is available,10 one can simply install pypet from the command line:

$ pip install pypet

Alternatively, one can download pypet from the PyPI11 web page, unpack it, and
run

$ python setup.py install

in a terminal.
Note that pypet’s four core prerequisites are NumPy, SciPy, PyTables, and Pandas.

These are standard libraries in scientific Python and have most likely been installed

10From Python version 3.4 on, pip is part of the Python distribution and is no longer needed to be
installed manually.

11https://pypi.python.org/pypi/pypet

https://pypi.python.org/pypi/pypet
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already on most computer systems. For a fresh Python environment, however, one
needs to install these before setting up pypet.

2.4.2 Basic Example

Here we are going to describe a very basic usage example. We will simulate the multi-
plication of two values, i.e. z = x · y.

Before discussing the details of the simulation, we provide the full script below for an
overview:

from pypet import Environment, cartesian_product

def multiply(traj):

"""Simulation that involves multiplying two values."""

5 z = traj.x * traj.y

traj.f_add_result(’z’, z)

# Create an environment that handles running our simulation

env = Environment()

10 # Get the trajectory from the environment

traj = env.traj

# Add both parameters

traj.f_add_parameter(’x’, 1.0, comment=’First dimension’)

traj.f_add_parameter(’y’, 1.0, comment=’Second dimension’)

15 # Explore the parameters with a Cartesian product

traj.f_explore(cartesian_product({’x’: [1.0,2.0,3.0,4.0],

’y’: [6.0,7.0,8.0]}))

# Run the simulation with all parameter combinations

env.run(multiply)

The top-level simulation function multiply is defined as

def multiply(traj):

"""Simulation that involves multiplying two values."""

z = traj.x * traj.y

traj.f_add_result(’z’, z)

The function makes use of a Trajectory container traj which manages our param-
eters. Because multiply is invoked with all points in the parameter space, here traj

holds a particular choice of x and y. We can access the parameters simply by natural
naming, as seen above via traj.x and traj.y. Next, the value of z is added as a result
to the traj container.

After the definition of the job that we want to simulate, we create an Environment

denoted by env that runs the simulation. Moreover, the Environment will take care
that the function multiply is called with each choice of parameters once. We do not
pass any arguments and simply use pypet’s default settings for an Environment:

env = Environment()
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The Environment will automatically generate a Trajectory for us which we can
access via the env.traj property. Next, we can populate the container with the pa-
rameters. We add them using default values x = y = 1.0:

# Add both parameters

traj.f_add_parameter(’x’, 1.0, comment=’First dimension’)

traj.f_add_parameter(’y’, 1.0, comment=’Second dimension’)

Afterwards, we decide upon how to explore the parameter space. More
precisely, we are interested in the Cartesian product set {1.0, 2.0, 3.0, 4.0} ×
{6.0, 7.0, 8.0}. Therefore, we use f_explore() in combination with the builder func-
tion cartesian_product():

# Explore the parameters with a Cartesian product

traj.f_explore(cartesian_product({’x’: [1.0,2.0,3.0,4.0],

’y’: [6.0,7.0,8.0]}))

Finally, we need to tell the Environment to run our job multiplywith all parameter
combinations:

env.run(multiply)

This will invoke our simulation twelve times with the parameter points
(1.0, 6.0), (2.0, 6.0), ..., (4.0, 8.0). The Trajectory and all results are automatically
stored into an HDF5 file; similar to what is shown in figure 2.4.

2.4.3 Rate Model Simulation

We are going to demonstrate how to use pypet in the context of a more sophisticated
simulation. We will numerically integrate the following differential equation modeling
an ensemble of coupled neurons (Hansel and Sompolinsky, 1998):

dνi(t)

dt
= −νi(t) +

√
N


N
k=1

νk(t) (j0 + j1 cos(2π (k − i)/N)) + jA


+

, (2.1)

where νi is the activity of the ith neuron, N the number of neurons, jA denotes afferent
input and j0 as well as j1 are the recurrent coupling strengths. Moreover, [·]+ means
rectification, i.e. [x]+ = x if x > 0 else 0. The model will be discussed extensively in
chapter 4. Here the model simply serves as an example of a numerical simulation and
its details are not important. We will use Euler integration to simulate the development
of νi over time.
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The corresponding Python implementation is given below:

def rate_model(j0, j1, jA, N, dt, steps):

"""Rate model by Hansel and Sompolinsky, 1998"""

# Random initial conditions

v = np.zeros((N, steps))

5 v[:, 0] = np.random.rand(N)

# Coupling Kernel

x = np.linspace(0, 1, N, endpoint=False)

kernel = j0 + j1 * np.cos( 2 * np.pi * x)

# Iterative update of DiffEq

10 for irun in range(1, steps):

# Current network state

v_curr = v[:, irun-1]

# Mean current using circular convolution

mu = jA + np.convolve(np.hstack((v_curr, v_curr[:-1])),

15 kernel, mode=’valid’)

# Rectification

mu[mu < 0] = 0

# Euler Update

dv = -v_curr + np.sqrt(N) * mu

20 v_new = v_curr + dv*dt

v[:, irun] = v_new

return v[:,-1]

Besides the parameters of the differential equation, the model relies on dt, the Euler
stepsize with a fixed amount of steps. The details of the implementation do not matter.
The important part here is that the function rate_model() returns the full state vector
ν of the last time step.

Given such existing simulator functionality that takes parameters and returns a re-
sult, pypet can be added to operate on top of the code base. One simply needs a wrapper
function that passes parameters from and results back to pypet:

def pypet_model_wrapper(traj):

v = rate_model(traj.j0, traj.j1, traj.jA,

traj.N, traj.dt, traj.steps)

traj.f_add_result(’v’, v)
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Still, some boiler-plate code is missing to add parameters, decide what to explore, and
start the simulation:

import numpy as np

from pypet import Environment

# Create the environment

env = Environment(trajectory=’rate_model’,

5 filename=’./HDF5/rate_model.hdf5’)

traj = env.traj

# Add parameters

traj.f_add_parameter(’j0’, -0.02, comment=’Global weight’)

traj.f_add_parameter(’j1’, -0.01, comment=’Cosine weight’)

10 traj.f_add_parameter(’jA’, 10, comment=’Afferent input’)

traj.f_add_parameter(’N’, 500, comment=’Number of neurons’)

traj.f_add_parameter(’dt’, 0.01, comment=’Euler stepsize’)

traj.f_add_parameter(’steps’, 5000, comment=’Euler steps’)

# Explore the cosine strength

15 traj.f_explore({’j1’: [-0.01, 0.005, 0.01, 0.02]})

# Run all (4) simulations

env.run(pypet_model_wrapper)

In contrast to the previous example, we passed trajectory=’rate_model’ and
filename=’./HDF5/rate_model.hdf5’ to the Environment constructor to explicitly
specify the Trajectory’s name and the resulting HDF5 file.

Next, we want to plot the obtained results. According to the conceptualization
discussed previously, we assume that this is done in a different script and it is indepen-
dently executed from the previous simulation. The full script reads:

import matplotlib.pyplot as plt

from pypet import load_trajectory

# Load trajecrory wihtout data

traj = load_trajectory(filename=’./HDF5/rate_model.hdf5’,

5 name=’rate_model’,

load_all=0)

traj.v_auto_load = True

# Plot all runs

for run_name in traj.f_iter_runs():

10 # Load data on-the-fly

j1 = traj.parameters.j1

v = traj.results.runs.crun.v

plt.plot(v)

We use the load_trajectroy() function to recover the container from the HDF5 file.
Note the keyword load_all=0 which enforces pypet to only load the root node of the
tree and skip the rest of the data. This is particularly useful if our data is large, po-
tentially hundreds of gigabytes. Thus, we do not load all data on start-up, but only
when we need it; hence the statement traj.v_auto_load = True in line 7. This al-
lows loading of data on-the-fly without explicit user request.



Usage 25

Figure 2.5: Activity νi for different coupling strength j1. For j1 = −0.01
one observes a flat profile. Setting j1 = 0.005 or 0.01 yields a bump
profile. Positions of the bumps are arbitrary and depend on the initial
conditions. Too strong coupling j1 = 0.02 yields runaway excitation and
for some neurons firing diverges. Accordingly, the activity of the cyan
bump grows unboundedly over time.

Moreover, the method traj.f_iter_runs() (line 9) iterates all runs (here 4) se-
quentially and modifies all explored parameters accordingly (here only j1). The ex-
plored parameter j1 is iteratively set to its explored value of the corresponding run.
This is helpful for natural naming requests which will return the value of the current
run iteration. Consequently, traj.parameters.j1 (line 11) will return -0.01 in the first
loop iteration, followed by 0.005, 0.01, and 0.02.

This applies analogously to the statement traj.results.runs.crun.v (line 12) to
return the state vector ν of each run. Due to traj.v_auto_load = True (line 7), there
is no explicit loading with f_load() necessary, but pypet loads the network states ν in
the background as soon as the natural naming request traj.results.runs.crun.v is
processed. In addition, one may notice the identifier crun, short for current run. All
results added via f_add_result() are automatically sorted into the Trajectory tree
in the branch results.runs.run_X , where X is the index of the corresponding run. In
combination with f_iter_runs(), crun maps always to the run currently processed
within the for-loop. For instance, in the first iteration this is the 0th run, run_0 (pypet
starts counting at 0), followed by run_1 and so on.

As a side remark, instead of using f_iter_runs(), one can manually set a
Trajectory to a particular run via traj.v_idx = 2, for example. As a consequence,
all explored parameters are set to the values of the second run and crun maps to run_2.
For undoing this and to recover the default settings, one writes traj.v_idx = -1.

Finally, if we add labels and polish the resulting plot (code not shown), our rate
model simulation yields the interesting curves in figure 2.5.
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2.4.4 pypet and SCOOP

In combination with SCOOP package, pypet can be used on computing clusters as well
as multiple servers sharing a home directory.

One simply needs to create an environment as follows:

env = Environment(multiproc=True,

use_scoop=True

wrap_mode=’LOCAL’)

and start the main Python script with the -m scoop option:

$ python -m scoop mysimulation.py

No other changes of one’s simulation code are required to use a simulation with
SCOOP. Moreover, the wrap_mode defines how data storage is synchronized among
the computational resources. This is necessary because PyTables does not allow concur-
rent access of HDF5 files. Available modes are ’LOCAL’, ’NETLOCK’, and ’NETQUEUE’.
In the former case all data is collected from the SCOOP workers and stored by the
main Python process running the mysimulation.py script. ’NETLOCK’ means locks
are shared across the computer network to allow only one process at a time to write
data to disk. Lastly, in the ’NETQUEUE’ mode an additional server process is started
that accepts data via the TCP protocol. This process internally manages a storage queue
from which data is popped and subsequently stored to disk. This mode is a contribu-
tion by our former research group intern Mehmet Nevvaf Timur.

One can easily use pypet in a multi-server or cluster framework. If one has access
to multiple servers sharing the same home directory, one can distribute the simulation
runs by starting the Python simulation script using SCOOP’s --hostfile flag. For
instance,

$ python -m scoop --hostfile hosts.txt -vv -n 16 mysimulation.py

starts 16 workers on particular resources as listed in hosts.txt. This is a simple text
file specifying the available servers. It has the following format:

some_host 10

130.148.250.11

another_host 4

The file contains names of hosts or, alternatively, IP addresses followed by an optional
number of SCOOP workers one wants to launch on the corresponding server.
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To use pypet and SCOOP on a computing cluster, one additionally needs a bash start-
up script. For instance, for a sun grid engine (SGE), the bash script might look like the
following:

#!/bin/bash

#$ -l h_rt=3600

#$ -N mysimulation

#$ -pe mp 4

5 #$ -cwd

# Launch the simulation with SCOOP

python -m scoop -vv mysimulation.py

Most important is the -pe parallel environment flag to let the computer grid and
SCOOP know how many workers to spawn (here 4). Other options may encompass pa-
rameters like -l h_rt defining the maximum runtime, -N assigning a name, or -cwd
using the current directory as the working directory. The particular options depend
on the cluster environment and requirements of the grid provider. This job script, for
example named mybash.sh, can be submitted via

$ qsub mybash.sh

Accordingly, the simulation mysimulation.py gets queued and eventually executed
in parallel on the computer grid as soon as resources are available.

For many more usage examples and detailed explanations the reader is directed to
the pypet and SCOOP online documentations.

2.5 Summary

This chapter described pypet, a flexible Python tool to manage numerical experiments
and simulations. pypet has a rich set of features and its main objectives are easy explo-
ration of high dimensional parameter spaces and fostering ties between the parameters
and simulation results. pypet provides a novel container called Trajectroy that gov-
erns all parameters and results. The data handled by a Trajectory is automatically
stored to disk in the convenient HDF5 format. The tree structure of the Trajectroy

maps one-to-one to the data hierarchy in a HDF5 file. In addition, pypet’s Environment
forms a general framework for simulations. It schedules individual runs of the user’s
experiments and can be used to parallelize simulations using multiple CPUs. In com-
bination with SCOOP pypet can also distribute simulation runs among multiple servers
or a computer grid engine. In conclusion, by supporting data management via various
features and by tightly linking numerical results and the underlying parameters, pypet
enhances reproducible research in Computational Neuroscience and other disciplines
exercising computer simulations in Python.





3Correlations and Coding in
Visual Cortex

IN this chapter different concepts of correlations in the context of Neuroscience will
be reviewed. It will be discussed how these correlations can be quantified and
what scales and patterns of correlations are reported in experiments. Further-

more, it will be shown how correlations affect information processing. More precisely,
we are going to discuss how stimulus information among spiking activity of neuron
populations is modulated by correlations.

Deciphering the neural code, i.e. understanding how the brain encodes sensory
stimuli, is one of the fundamental problems in Neuroscience. No doubt, decoding of
neural activity poses a difficult challenge, especially because neuron responses are in-
herently noisy. Repeating the same experiment twice, one would most certainly never
encounter the same activity pattern. As a consequence, the neural code is probabilistic.

Thus, understanding the neural code requires an understanding of the joint prob-
ability distributions of neural activity p(r), where r = (r1, r2, ..., rN )T is the neural
response vector. Unfortunately, the exact definition of a neural response ri is unclear
because we do not have a complete understanding about all mechanisms that govern
information transmission in the brain. Are action potentials a sufficient source of in-
formation? Does exact spike timing matter? Can we coarsen our measure without
losing information, like binning spikes, i.e. sorting spike events into discrete time in-
tervals? How small do the bins need to be? Hence, the definition of a neural response
ri already includes a lot of assumptions about the underlying neural code (Latham
and Roudi, 2011). The two most widely used ones are binning spikes on millisecond
scales or assuming that spike counts within a fixed time window matter. The particu-
lar choice depends heavily on the research question at hand and time scales of interest.
As we will see in the next sections, many experimenters use the latter, especially when
they are interested in effects happening on longer time scales such as within a full trial
of stimulus presentation. Additionally, coarser measures most often also require less
data for estimation of their statistical properties. Consequently, usually ri denotes the
spike count within a fixed time window of a particular neuron indexed by i. As already
mentioned in the introduction, this definition will also be used throughout this thesis.
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Figure 3.1: Tuning curve plus noise model. Top graph shows average
responses of two neurons as a function of a one-dimensional stimulus.
Envelopes depict the individual neuron’s variability around the mean
response. Bottom graphs show potential positive and negative noise cor-
relations for a fixed stimulus s1. Black dots represent spike responses of
both neurons in different trials. Orange ellipses depict 95% confidence
intervals. Image based on Averbeck et al. (2006).

Certainly, one key question regarding the neural code is whether neural responses
are correlated. One can distinguish between two types of correlations, signal and noise
correlations (Nirenberg and Latham, 2003).

Neural responses r = (r1, r2, ..., rN )T of N different neurons are signal correlated if
and only if

p(r) ̸=
N
i=1

p(ri), (3.1)

i.e. the joint distribution of responses p(r) does not simply factorize into the marginal
response distributions. Moreover, neurons are said to be noise correlated given a fixed
stimulus s if and only if

p(r|s) ̸=
N
i=1

p(ri|s), (3.2)

that is the joint distribution conditioned on s does not factorize into the marginal dis-
tributions.

The former distribution p(r) implicitly incorporates all potential stimuli that could
be used to drive the neuron ensemble. Thus, as soon as neurons show enhanced or
reduced responses following a particular stimulus or stimulus feature, they are signal
correlated. For instance, since the seminal work by Hubel and Wiesel (1959) it has been
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known that neurons in the visual cortex are tuned to features like the orientation of a
grating stimulus.

Noise correlations can be basically understood as lying on top of the signal corre-
lations. A prominent depiction is the so called tuning curve plus noise model (Averbeck
et al., 2006). Average neuron firing activity can be described by tuning curve functions;
for example, the orientation tuned neurons in primary visual cortex as mentioned be-
fore. Due to variability, observed responses across different trials will vary around this
average, i.e. on top of the average response there exists noise. If the neurons are noise
correlated, they share a certain amount of variation around the mean. Thus, noise cor-
relations are also often termed shared or correlated variability (Hansen et al., 2012). Fig-
ure 3.1 sketches a pair of linearly noise correlated neurons and their tuning functions.
Note that we use the terms correlations, noise correlations, and shared or correlated
variability interchangeably. In case we refer to signal correlations, we explicitly say so.

Noise correlations can affect the stimulus encoding quality of a population code.
The effects of correlation on stimulus processing will be discussed at the end of this
chapter. But first, we will focus on how noise correlations can be measured and what
is usually reported in biology.

3.1 Measuring Noise Correlations

In this section we are going to introduce and discuss several statistical measures of
correlations in the context of Neuroscience.

As previously mentioned, neurons are said to be noise correlated in case the joint
response distribution p(r|s) cannot be factorized into the marginal response distribu-
tions p(ri|s). However, estimating full joint response distributions p(r|s) is notoriously
hard endeavor. Doing this for already a few neurons requires a lot of data, i.e. many
repeated trials of the same experiment. With growing numbers of neurons one faces a
combinatorial explosion of potential response patterns which makes accurate estimates
of p(r|s) intractable. To overcome this problem researchers may parametrize the dis-
tribution for the sake of estimating fewer parameters. Alternatively, they may look at
simpler forms of correlation, like only up to second order (linear). Linear correlation
can be measured without full knowledge about p(r|s).

Nonetheless, there is evidence that higher order correlations beyond linear pair-
wise ones play a role in cortical activity (Ohiorhenuan et al., 2010; Yu et al., 2011). One
approach to quantify and model such higher order neural interactions is using cop-
ulas (Berkes et al., 2008; Onken et al., 2012). Copulas are multivariate distributions
based on a parametrized linkage of the marginal distributions. Hence, p(r|s) may be
expressed in terms of p(ri|s) and a few copula parameters. As a consequence, less
amount of data is required because only the copula parameters and the individual
marginals p(ri|s) need to be estimated; or these may even be parametrized, too. The
number of parameters depends on the particular copula family.
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Figure 3.2: Correlation coefficients for different distributions of the data.
Top row shows well suited data and the corresponding correlation coef-
ficient. Bottom row shows complex relationships which cannot be cap-
tured by the measure. Image taken from Wikipedia ( en.wikipedia.org/
wiki/File:Correlation_examples2.svg, accessed 26.10.2015)

Another prominent approach is based on maximum entropy models (Schneidman
et al., 2006; Shlens et al., 2006; Tang et al., 2008; Ganmor et al., 2011). Researchers can
fix the maximum order of interactions K they want to use in their model and estimate
all interaction parameters up to this limit based on the data. One can fit an exponen-
tial distribution by maximizing entropy subject to the observed data. The maximum
entropy distribution is of the following form:

pK(x1, x2, ..., xN ) =
1

Z
exp


i

hi xi +
1

2


i ̸=j

hij xi xj + ...

 , (3.3)

where Z is a normalization factor and the kth order moments hij...z are estimated from
the data. Note that here xi are binned spike responses in very short time windows,
usually on the order of a millisecond. xi is either 1 if the neuron spiked at that particular
time or -1 otherwise. Usually, the moments hij...z are cut off after the second or third
order due to the combinatorial growth of parameters. This approach also offers the
advantage that one can directly assess if second or third order terms are relevant.

Yet, most of the experimental publications report linear correlations, for example
see Gawne et al. (1996), Bair et al. (2001), and Gutnisky and Dragoi (2008). By look-
ing only at linear correlations one can easily quantify the degree of shared variability
among pairs of neurons. A popular measure is the spike count correlation coefficient
rSC for a fixed stimulus s:

rSC =

n
k=1(r

k
i − ⟨ri⟩)(rkj − ⟨rj⟩)n

k=1(r
k
i − ⟨ri⟩)2

n
k=1(r

k
j − ⟨rj⟩)2

(3.4)

=
Cov(ri, rj)

Std(ri) Std(rj)
,

with rki the number of spikes of neuron i in trial k over a fixed time window while
presenting s, and ⟨ri⟩ denotes the average spike count of neuron i across trials. The
correlation coefficient is expressed as the ratio between the covariance (Cov(ri, rj)) and

en.wikipedia.org/wiki/File:Correlation_examples2.svg
en.wikipedia.org/wiki/File:Correlation_examples2.svg
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the product of the spike count standard deviations (Std(ri) Std(rj)). Typically, rSC is
measured for a full trial length of one stimulus presentation to capture correlations on
long time scales. Since rSC is a stochastic variable, either distributions are reported
or values are averaged across many cell pairs. Moreover, rSC ranges from -1, perfect
negative correlation, to 1, perfect positive correlation. Of course, this measure can only
capture linear dependencies and may fail to uncover more complex relationships as
sketched in figure 3.2.

rSC is not necessarily required to be computed over trials. If data is stationary —
which we can assure for simulations — the number of spikes rki may be computed
using a sliding window over a single or a few long trials (Renart et al., 2010) via

rki = ΛT ∗ xi(k) =

k′

ΛT (k
′ − k)xi(k), (3.5)

where ∗ denotes discrete temporal convolution, ΛT is a normalized square kernel of
window size T , and xi(k) is the binned spike train of neuron i at position k. xi(k) is
either 1 or 0 if the neurons spiked within the time bin or not, respectively. Nonetheless,
if simulation time is too short this may yield a biased estimate of rSC . If the trajectory
of an attractor state is potentially large, it might have been observed only partially and
not randomly sampled as compared to measuring rSC over trials.

Furthermore, noise correlations are often estimated from the cross-correlograms
(CCG) of experimental recordings (Kohn and Smith, 2005; Smith and Kohn, 2008). This
measure is denoted by rCCG and was originally introduced by Bair et al. (2001). It al-
lows the investigation of different time scales of linear correlations. Cross-correlograms
are computed as

CCG(τ) =
1
M

M
i=1

H
t=1 x

i
1(t)x

i
2(t+ τ)

Θ(τ)
√
ν1ν2

, (3.6)

with M the number of trials with H bins each, xij is the binned spike train of neuron j
in trial i, τ is the time lag, and νj is the mean firing rate of neuron j. Θ(τ) is a triangular
function that corrects for overlap:

Θ(τ) = T − |τ |, (3.7)

with T the trial length. The CCGs are usually corrected for signal correlations induced
by the stimulus by subtracting a shift predictor. The shift predictor is computed as the
CCG in equation 3.6, but correlating xi1 with xi+1

2 from the following trial. Moreover,
auto-correlograms (ACG) are also computed as in equation 3.6, but correlating xi1 with
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xi1 from the same trial and same neuron. The shared variability measure rCCG for a
fixed stimulus s is then defined as

rCCG(t) =

t
τ=−tCCGcorrected(τ)t

τ=−tACG1(τ)
 t

τ=−tACG2(τ)
 , (3.8)

where t is the size of the integration time window. If one considers the whole trial
length T , it holds rCCG(T ) = rSC (Bair et al., 2001). Thus, for stationary data rCCG(t) is
equal to the rSC computed with a sliding window of size t ≤ T .

3.2 Spatial and Temporal Scales of Noise Correlations

In the previous section several correlation measures were introduced. Here we will
review what values have been observed in experimental data. Typically, measures are
based on in vivo animal recordings. An awake or anesthetized animal is shown re-
peated trials of the same stimulus while researchers record with devices like tetrodes or
multi-electrode arrays from ensembles of cells in the animal’s cortex (Smith and Kohn,
2008; Hansen et al., 2012). The raw recordings are processed and spike responses of
individual units are identified via a process called spike sorting (Lewicki, 1998). Note
the term unit is used instead of cell or neuron to indicate that mistakes in sorting are
possible. Problems that may arise due to suboptimal spike sorting will be discussed in
the following section. Finally, the sorted unit activities are used to compute statistical
measures like rSC and rCCG (Kohn and Smith, 2005).

In terms of rSC and rCCG throughout the literature weak positive noise correlations
on the order between 0.1 and 0.4 are reported for nearby cells with similar response
properties (Zohary et al., 1994; Lee et al., 1998; Huang and Lisberger, 2009). This holds
across species, for instance in cat (Martin and Schröder, 2013), mouse (Montijn et al.,
2014), or monkey (Constantinidis and Goldman-Rakic, 2002); as well as across differ-
ent lower and higher visual areas, like in V1 (Gutnisky and Dragoi, 2008), V2 (Smith
et al., 2013), or middle temporal (MT) visual area (Bair et al., 2001). Although many
studies reported noise correlations in the visual cortex, their existence is still under
debate. In particular, Ecker et al. (2010) found almost no noise correlations in the vi-
sual cortex of awake monkeys. They measured average rSC values of only 0.02 for
nearby cell pairs. Accordingly, the authors argued that the commonly observed posi-
tive correlations may be attributed to the experimental setup and artifacts rather than
to neural phenomena. Potential pitfalls of measuring correlations and prominent hy-
pothesis about neural causes of noise correlations will be discussed in the subsequent
section.

A decay of correlations with distance between cell pairs is often reported in the
literature. One finds different magnitudes of decay. For example, Kohn and Smith
(2005) and Smith and Kohn (2008) measured a decay lasting over several millimeters
in primary visual cortex of monkeys, see figure 3.3A. Whereas Solomon et al. (2014)
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Figure 3.3: Top left (A): Spatial scales of rSC measured in primary vi-
sual cortex (V1) of an anesthetized macaque monkey. One can observe
a slow decay of noise correlations with distance. Different lines mark
correlation as a function of distance according to the signal correlation
value of cell pairs. Top right (B): Distance decay of correlations in middle
temporal visual area (MT) of anesthetized marmoset monkey. In com-
parison to (A) the decay happens on shorter spatial scales. Strength of
correlations depends on the stimulus type with strongest values for a
blank grey screen. Bottom left (C): Significant sinusoidal modulation of
average rSC with distance in spontaneous activity in rat visual cortex.
Bottom right (D): rCCG as a function of integration window size. Images
A and D taken with permission from Smith and Kohn (2008), image B
taken with permission from Solomon et al. (2014), and image C taken
with permission from Ch’ng and Reid (2010)
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Contrast level in % Average rSC
1.25 (worst contrast) 0.38
12.5 0.44
50 0.39
100 (best contrast) 0.25

Table 3.1: rSC modulated by stimulus contrast as reported by Kohn
and Smith (2005). Average noise correlations were computed using a
grating stimulus that evoked the best response in a cell population with
57 units. Differences between the highest and the other contrast levels
are significant (ANOVA, p<0.001).

observed a decay on shorter spatial scales. According to their data, the correlation
coefficient almost fully decreased within the first millimeter in the area MT, as shown
in figure 3.3B.

Furthermore, Ohiorhenuan et al. (2010) used maximum entropy models to asses
correlations on different scales in visual cortex of anesthetized macaque monkey. They
found that second order correlations are predominant on short spatial scales up to
1 mm. Even more so for higher order correlations, these almost exclusively play a role
in cell pairs with at most 300 µm distance between them.

Moreover, cells with similar response properties, i.e. signal correlations close to 1,
also show higher correlated variability (Kohn and Smith, 2005, Smith and Kohn, 2008,
and c.f. figure 3.3A). For instance, cells in V1 with similar preferred orientations exhibit
stronger shared variability than pairs that differ in their preferred orientations (Hansen
et al., 2012).

With respect to temporal scales, noise correlations increase with larger integration
time windows (Bair et al., 2001). For example, Smith and Kohn (2008) demonstrated
that their measured rCCG saturated for sizes between 500 milliseconds to 1 second. This
is shown in figure 3.3. Others reported that saturation happens on slightly longer time
scales. For instance, Reich (2001) showed that the average rSC saturated for integration
windows beyond 1 second.

The type of stimulus matters as well. Blank screen stimuli yield larger correlations
than orientation gratings (Solomon et al., 2014). Moreover, in figure 3.3B one can see
that in contrast to random dots or gratings, the decrease with distance for a grey blank
screen stimulus is non-monotonic and the magnitude of noise correlations slightly fluc-
tuates with distance. Nonetheless, these fluctuations are not statistically significant.
Still, Ch’ng and Reid (2010) reported significant sinusoidal like fluctuations of noise
correlations with distance in spontaneous activity in primary visual cortex of rats, see
figure 3.3C.

Finally, noise correlations are modulated by the contrast of stimuli, with a tendency
to higher correlation values observed for lower and intermediate contrasts. For exam-
ple, table 3.1 lists values reported by Kohn and Smith (2005). Similar effects were also
observed by Oliveira et al. (1997).
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3.3 Potential Causes and Confounds of Noise Correlations

Previously we discussed the magnitude and spatial as well as temporal scales of ex-
perimentally measured noise correlations. It is still not fully understood which mecha-
nisms govern the emergence of correlated variability. In the following we are going to
review a few explanations and hypotheses regarding the causes of noise correlations.

Mathematically, the correlations between discrete variables like spike counts are not
dependent on the absolute magnitude of the variables. However, strong relations be-
tween the value of rSC and the firing rates of pairs of neurons were observed (Rocha et
al., 2007; Schulz et al., 2015). This dependency is not a mathematical one, but grounded
in biology. If the mean firing rates of pairs of cells are weak, noise correlations are hid-
den by the spiking threshold (Cohen and Kohn, 2011). Co-fluctuations in the synaptic
input in neuron pairs yield co-fluctuations in the membrane potential. If the firing rate
of the cells is large, these co-fluctuations can be measured as noise correlations. In con-
trast, if firing rates are weak, co-fluctuations are happening on a sub-threshold scale
and cannot be observed by only measuring spike responses (Dorn and Ringach, 2003;
Kazama and Wilson, 2009). Similarly, this explains why the magnitude of correlations
increases and saturates with increasing integration windows. For short windows only
a few spikes can be observed per cell and correlations are hidden by the threshold. For
sufficiently large windows enough spikes are counted and the full spectrum of corre-
lations is uncovered. Further lengthening of the integration time window is without
avail and one observes a saturation of correlated variability (Cohen and Kohn, 2011).

Many experimental factors can influence and cause correlated variability. Erro-
neous spike sorting can yield biased and false estimates of noise correlations. Elec-
trodes implanted in the animal’s brain record a compound signal of ongoing activity
from all cells in their vicinity. In order to infer single unit activity, a multitude of meth-
ods exist based on individual spike waveforms filtered from the recorded data, for ex-
ample one may ave a look at the work of Franke et al. (2015). In fact, since the ground
truth of such a sorting cannot be known and spike sorting is a statistical process, the iso-
lated sources of spikes are termed units and not neurons. Schulz et al. (2015) reported
that among units which could be well isolated correlated variability was reduced. The
quality of an isolation was assessed as the distance of the unit’s activity cluster to the
"multiunit" cluster, containing many unsorted, low-amplitude spikes. Poorly isolated
units showed stronger noise correlations. The authors proposed that correlations are
increased because these units contain many falsely attributed spikes based on over-
lapping activity from other synchronously firing neurons. Similarly, Cohen and Kohn
(2011) showed that rSC exhibits a steady increase if more and more units are lumped
together and regarded as a single unit. Moreover, an abrupt or slow movement of the
recording electrode may disturb spike sorting and thereby modulate the rSC measure
as well (Ecker et al., 2010).
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Other important factors influencing noise correlations are internal states of the an-
imal. For example, shifts in the animal’s attention strongly affect correlated variability
(Cohen and Maunsell, 2009). Furthermore, the role of anesthesia regarding correlated
variability is debated. Ecker et al. (2014) found a significant difference between noise
correlation in primary visual cortex of anesthetized and awake macaque monkeys. For
the former, averaged rSC values up to 0.2 were measured. Whereas for awake mon-
keys the authors reported basically an absence of noise correlations. They argued that
already subtle variations in the level of anesthesia can cause common changes in the
firing rate of many cells over widespread distances.

A prominent hypothesis is that shared incoming connections may cause correla-
tions. As mentioned above, co-fluctuations in the input currents yield co-fluctuations
in the membrane potential which, in turn, cause correlated variability in the spike re-
sponses (Aertsen et al., 1989; Shadlen and Newsome, 1998; Kazama and Wilson, 2009).
In fact, anatomical studies found that about 10% of inputs to excitatory neurons in the
visual cortex are shared among cells in close vicinity (Braitenberg and Schüz, 1991;
Hellwig et al., 1994).

However, in a seminal study Renart et al. (2010) theoretically proved that even
if substantial amount of input is shared among cells, recurrent connectivity still can
decorrelate spiking activity for a wide range of parameter settings. In this case recur-
rent inhibitory currents cancel excitatory ones such that the net amount is always close
to zero. Basically, these balanced conditions in form of tight tracking of excitatory activ-
ity by recurrent inhibitory activity can generate negative correlations that compensate
for the shared input. According to the authors the current correlation c among cell
pairs can be decomposed into three parts cEE , cII , and cEI . cEE denotes correlation of
excitatory currents among cell pairs, cII refers to inhibitory currents, and cEI (which is
equal to cIE) to correlations between excitatory and inhibitory currents. Both cII and
cEE are large and positive correlations due to common inputs and very weak recurrent
correlations. Yet, cEI is large and negative because of correlations among excitatory
and inhibitory cells due to tracking; thus, giving the following cancellation:

c = cEE + cII + 2cEI ∼ O(1/
√
N), (3.9)

where N refers to the size of the network. For larger networks tracking gets better and
c decreases. So if the input currents to cell pairs are not correlated (c = 0), neither are
the spike responses (rSC = 0).

Notwithstanding the decorrelating effects mentioned above, Hansen et al. (2012)
hypothesized that noise correlations may be caused by recurrent connectivity in the
first place. Indeed, this connectivity is a good candidate as a source of correlated activ-
ity because the majority of connections are recurrent. As much as 80% of a cell’s inputs
originate from within the same cortex area (Markov et al., 2011). The interesting study
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Figure 3.4: Spiking neural network layout as used by Hansen et al.
(2012). Excitatory neurons are depicted in blue and inhibitory neurons
in green, preferred orientations are sketched by black bars. Presynaptic
connections are drawn randomly from Gaussian distributions defined
over the preferred orientations with widths σE and σI .

by Hansen et al. (2012) and the hypothesis formulated therein laid the basis for the fur-
ther analysis in this thesis. Accordingly, we are going to take a more detailed look in
the following section.

3.3.1 Noise Correlations due to Recurrent Connectivity

Hansen et al. (2012) recorded multi-neuron activity in primary visual cortex of two
awake primates (Macaca mulatta) with multi-contact laminar electrodes. Moreover,
the monkeys were trained to fixate the center of a screen. A single orientation stimulus
was flashed for 300 ms while the monkeys were looking. Eight different orientations in
steps of 22.5◦ were shown randomly across trials with 50 trials per orientation. Noise
correlation coefficients rSC were calculated averaging over different orientations for all
recorded cell pairs.

The authors reported different correlation coefficients for different layers in V1. In
the fourth layer, also referred to as the granular layer, correlations were almost non-
existent with an average rSC of 0.04 (±0.03 SEM). They further distinguished between
layers above and below the fourth layer, that is the supra (SG) and infragranular (IG)
layers, respectively. There correlations were significantly larger with average rSC equal
to 0.24 (±0.01 SEM) in the SG layer and 0.23 (±0.01 SEM) in the IG layer. A similar
dependency of rSC on laminar depth with low correlation in the fourth layer of V1 has
been reported by Smith et al. (2013) as well.
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Figure 3.5: Depiction of Mexican hat connectivity scheme on a 2D plane.
If both connectivity kernels with widths σE and σI are subtracted from
each other, the resulting difference remotely resembles a sombrero. If the
kernels are first multiplied by the connection strength before subtract-
ing, one may interpret the result as the expected connectivity strength
as a function of distance in each dimension between cell pairs. Small
sombrero image taken from Wikipedia (https://upload.wikimedia.org/
wikipedia/commons/a/ac/Harry_S_Truman_sombrero.jpg, accessed 26.10.2015)

Hansen et al. (2012) hypothesized that these differences in noise correlations arise
due to disparity in the spatial spread and specificity in horizontal recurrent connec-
tions. More precisely, recurrent excitatory inputs to neurons in the infra- and supra-
granular layers are more sharply tuned to orientation than the inhibitory recurrent
input. The tuned input might be realized via long range connections across cortical
hypercolumns with similar orientation preference.

To fortify this hypothesis Hansen et al. (2012) implemented a ring network model of
conductance based integrate and fire neurons positioned according to their preferred
orientations. Recurrent connections were randomly drawn from Gaussian distribu-
tions over differences in preferred orientations between the pre- and the post-synaptic
neurons. The width of these Gaussians for the inhibitory σI and excitatory neurons σE
were varied and their influence on noise correlations were investigated. Simulations
were performed by showing repeated trials of the same orientation to the network to
estimate rSC . Results were averaged across several orientation stimuli. A sketch of the
network is provided in figure 3.4.

Given a configuration with narrow excitatory spread compared to a large inhibitory
connection width (σE < σI ), networks featured correlated variability among pairs of
neurons with similar orientation tuning. The networks exhibited average correlation
coefficients of more than 0.3 for neurons with similar orientation preference. Addition-
ally, Hansen et al. (2012) observed a smooth decline of correlations with an increase in
orientation preference difference between pairs of cells.

From throughout the thesis to simplify naming, network topologies with the prop-
erty of σE < σI are termed Mexican hat networks. One can image that subtracting two
Gaussian connectivity kernels (negative sign for inhibition) from each other yields a
curve whose shape remotely resembles the silhouette of a sombrero. The resemblance
to a sombrero becomes even more apparent if the Gaussian kernels are defined over a

https://upload.wikimedia.org/wikipedia/commons/a/ac/Harry_S_Truman_sombrero.jpg
https://upload.wikimedia.org/wikipedia/commons/a/ac/Harry_S_Truman_sombrero.jpg


Influence of Noise Correlations on Population Coding 41

two-dimensional space, as depicted in figure 3.5. Likewise, topologies with σE > σI are
termed inverse Mexican hat. Lastly, the setting σE = σI is called a balanced hat. This
naming scheme for topologies featuring two Gaussian kernels can be found throughout
the literature, for example in work by Kang et al. (2003), Blumenfeld et al. (2006), and
Bressloff (2012). Note because σE and σI denote the widths of Gaussian functions, but
in biological terms refer to the axonal spread and the resulting spread of connectivity,
we use the expressions width and spread interchangeably.

3.4 Influence of Noise Correlations on Population Coding

Why do correlations matter in the first place? Correlations can affect — improve or
worsen — the brain’s ability to make inferences about the state of the outside world
(Averbeck et al., 2006).

Visual stimuli are translated into spike trains by the retina and transmitted via the
lateral geniculate nucleus (LGN) to the brain (Kandel et al., 2000). As mentioned be-
fore, this process is probabilistic and very different spike trains can be caused by the
very same stimulus; hence the distribution p(r|s) (c.f. equation 3.2). The quantity the
brain is interested in is arguably not r, but the stimulus s that caused the neural re-
sponse. Basically, the brain has to invert the relation between stimulus and response
and wants to know p(s|r) (Latham and Roudi, 2011). As a consequence, it can deter-
mine an appropriate reaction to s. For instance, a goal keeper observes the trajectory of
a soccer ball and initiates an appropriate movement to catch it and prevent a goal.

The relation between p(r|s) and p(s|r) is given via Bayes rule:

p(s|r) = p(r|s) p(s)
p(r)

, (3.10)

with p(s) the prior distribution over all stimuli and p(r) the distribution over all re-
sponses. This notion of a Bayesian brain is prominent among scholars (Knill and Pouget,
2004; Doya et al., 2007). Still, we do not know for sure if the brain really bothers with
this Bayesian inference problem at all. Alternatively, the brain could just associate each
stimulus with an appropriate response (Latham and Roudi, 2011). But it is highly un-
likely that the goal keeper remembers a response for all potential ball trajectories. She
rather evaluates the ball’s trajectory for every observation anew. To prevent the scoring
of a goal it is necessary to estimate when the soccer ball will be close and have a notion
about the certainty and the potential errors regarding the ball’s position. As a matter
of fact, there exist many studies suggesting that the brain takes such uncertainties into
account when making decisions (Körding and Wolpert, 2004; Chater et al., 2006; Ma
et al., 2011).
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Already by the definition of noise correlations in equation 3.2,

p(r|s) ̸=
N
i=1

p(ri|s), (3.2 revisited)

we identify that correlations have a direct effect on the inference problem. The shared
variability can influence the shape of the p(r|s) which is part of the numerator in equa-
tion 3.10. Nonetheless, how the inference is carried out in particular by the brain is a
non-trivial problem. This poses already some difficult questions. What is the distri-
bution of all stimuli p(s) and how should the brain know about it? No doubt, these
problems are beyond the scope of this thesis. Still, at least if we are willing to assume
that "if there is information in spike trains, the brain uses it" (Latham and Roudi, 2011),
we may just look at how much information about the stimulus is encoded by a popula-
tion response. Thus, we can ask if correlations increase or decrease information about
the stimulus. Of course, in the former case correlations would benefit the inference
problem, and in the latter harm it. Admittedly, as we will later see, in order to esti-
mate this information we will use a decoder to infer s from r. Indeed, the form of the
decoder itself is a strong assumption, but our claim is not that the brain works this way.

Next, we are going to introduce two widely used information measures. Thereafter,
it will be discussed how these can be applied to investigate the effect of correlations on
stimulus encoding.

3.4.1 Measuring Information

Two commonly applied information measures in Neuroscience are mutual information,
often also termed Shannon information, and Fisher information (Seriès et al., 2004; Aver-
beck et al., 2006; Yarrow et al., 2012).

Mutual information measures the dependence of two random variables. For in-
stance, in a Neuroscience experiment these are the sets of applied stimuli and observed
neural responses. Mutual information is based on Shannon entropy. In 1948 the mathe-
matician Claude E. Shannon introduced this concept in his seminal paper on informa-
tion theory (Shannon, 1948). Entropy H is a measure of the uncertainty or randomness of
a random variable X with possible outcomes x1 to xn and probability mass function p:

H(X)−
n

i=1

p(xi) logb p(xi). (3.11)

If the logarithm basis is b = 2, entropy is calculated in bits. Moreover, if the distribution
of X is uniform, X is most unpredictable. Hence, the entropy is maximal (c.f. Rieke
et al., 1997).
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Furthermore, given two random variables X and Y with potentials values x1 to xn
and y1 to ym the joint entropy is defined as follows:

H(X,Y ) = −
n

i=1

m
j=1

p(xi, xj), logb p(xi, yj), (3.12)

where p(xi, xj) is the joint distribution of X and Y . If X and Y are independent, it
holds H(X,Y ) = H(X) +H(Y ). Yet, if they are dependent variables, one may look at
the conditional entropy H(X|Y ). It is the difference between the joint and individual
entropy:

H(X|Y ) = H(X,Y )−H(Y ). (3.13)

Mutual information Imutual(X,Y ) describes the overlap between the entropy of two
random variables:

Imutual(X,Y ) = H(X) +H(Y )−H(X,Y ) (3.14)

= H(X)−H(X|Y )

= H(Y )−H(Y |X).

Using a bit of algebra Imutual(X,Y ) can also be directly expressed in terms of the distri-
butions (Dayan and Abbott, 2005), as given below:

Imutual(X,Y ) =
n

i=1

m
j=1

p(xi, yj) logb
p(xi, yj)

p(xi) p(xj)
. (3.15)

Mutual information is large if there exist considerable amount of entropy overlap be-
tween both random variables. Hence, the outcome of one random variable is very
informative about the outcome of the other. Given high mutual information between
stimuli and responses, observing a neural response r can tell a lot about the stimulus
s that caused the response and vice versa. Thus, an increase in mutual information
benefits decoding s from r.

Mutual information measures information of an entire response set about an entire
stimulus set. However, mutual information does not make any statements with which
precision specific stimuli are encoded (Yarrow et al., 2012). Additionally, mutual infor-
mation is only defined over discrete events. For continuous domains, like orientation
of a bar stimulus, it is not applicable.

For such problem settings Fisher information is the better choice. It is defined as
(Dayan and Abbott, 2005)

IFisher(s) =


∂

∂s
ln p(r|s)

2
 s

, (3.16)
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where ⟨·|s⟩ is the expectation operation over responses for a fixed stimulus s. Units
are in reciprocal of the variance of the quantity at hand. So for orientation stimuli
this is deg−2. Fisher information has a direct link to decoding. The inverse of Fisher
information is the lower bound on the variance of an unbiased estimator ŝ of stimulus
s, also termed the Cramèr-Rao bound (Gabbiani and Cox, 2010):

Var(ŝ) ≥ 1

IFisher(s)
(3.17)

Hence, large Fisher information means a low variance of an optimal decoder of s and,
consequently, a good decoding precision. Fisher information is a local measure of cod-
ing quality. For instance, it tells how well small changes in orientation of a grating
stimulus can be detected by a neural ensemble.

Given Gaussian variability, neurons’ tuning curve functions f(s), and covariance
matrix Q(s), Fisher information can be directly computed (Abbott and Dayan, 1999):

IFisher(s) = f ′(s)TQ(s)−1f ′ +
1

2
Tr[Q′(s)Q(s)−1Q′(s)Q(s)−1], (3.18)

with Tr[·] giving the trace of a matrix, and f ′(s) and Q′(s) being the derivatives of
the tuning curve f and covariance matrix Q with respect to s. However, calculating
Fisher information with equation 3.18 may be intractable. Reliable estimates of Q(s)

and Q′(s) require a very large amount of data.
Fortunately, there is an approximation to Fisher information based on a linear esti-

mator called ILOLE that requires much less data (Latham et al., 2003; Seriès et al., 2004).
LOLE stands for a locally optimal linear estimator. The estimated value of a stimulus, that
is ŝ, is computed as follows:

ŝ = wr + w0, (3.19)

where w is a columnar weight vector, r the spike response of the neural ensemble
over a fixed time window, and w0 a bias weight. w and w0 are optimized to reduce
decoding error based on given training data. The data are several trials of two rather
similar stimuli, for example orientation gratings with rotations of 0◦ and 1◦. Next,
Fisher information can be approximated via

ILOLE =


⟨ŝ2⟩−⟨ŝ1⟩
s2−s1

2
1
2(Var(ŝ2) + Var(ŝ1))

, (3.20)

where ⟨·⟩ denotes expectation and Var(ŝi) is the variance of the estimates for one partic-
ular stimulus across trials. ILOLE gives a lower bound of the real Fisher information. In
case the LOLE performance is close to the theoretically optimal Bayesian decoder, i.e.
there’s no information that can only be recovered by non-linear methods, this bound
is tight. As a consequence, ILOLE provides a good approximation to the real amount of
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Neuron Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Total
Neuron I 1 2 3 4 5 15
Neuron II 1 1 0 3 3 8
Neuron III 1 2 0 5 4 12

Neuron Shuff 1 Shuff 2 Shuff 3 Shuff 4 Shuff 5 Total
Neuron I 3 4 1 5 2 15
Neuron II 3 0 1 1 3 8
Neuron III 4 1 5 2 0 12

Table 3.2: These tables give an example of shuffled trial data that can
be used to compute Ishuff. The top table lists the original spike counts
observed for 3 hypothetical neurons over 5 trials. The bottom table de-
picts the shuffling of trials. The observed spike counts are shuffled for
each neuron. Note that counts are shuffled across trials but not across
neurons. Hence, the totally observed number of spikes for each neu-
ron (last column) remains equal between the non-shuffled and shuffled
condition.

Fisher information. In fact, linear decoders can be well suited for decoding of experi-
mental recordings. For instance, Marre et al. (2015) demonstrated that a linear decoder
can read out stimuli from retinal activity with high precision.

3.4.2 Effect of Correlations on Information

Given the information measures from the previous section we can investigate if correla-
tions modulate information about stimuli in neural population responses. First, we are
going to deal with the question whether correlations increase or decrease information.
Secondly, do correlations themselves carry information or may downstream neurons
safely ignore them?

If we want know how correlations affect population coding we can look at the quan-
tity

∆Ishuff = I − Ishuff. (3.21)

It is the difference between the amount of information I about stimuli in the original
population responses and the amount of information Ishuff given correlations were re-
moved artificially (Seriès et al., 2004; Averbeck and Lee, 2006). The generic term I can
be replaced by the corresponding type of information one is interested in, like Fisher
or mutual information discussed in the previous section. Moreover, the index shuff(led)
comes from the fact that correlations in the data are removed by shuffling trials. An
example of shuffling trial data is provided in table 3.2.

In case ∆Ishuff < 0, correlations are detrimental to the population code and decrease
the available information. Considering a population of two neurons and two stimuli,
this relationship can be nicely sketched, see figure 3.6A. In this case the response dis-
tributions of the cell pair for the two different stimuli may overlap considerably. The
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95% confidence intervals of the distributions of both stimuli are depicted by the orange
and red ellipses. Accordingly, for a response that falls within the overlapping region
it is hard to tell if the response was caused by one or the other stimulus. Even given
the optimally placed decision boundary (black dotted line), a decoder trying to infer
s from r would inevitably produce a couple of wrong inference results. In contrast, if
trials are shuffled, the ellipses become circles and, as a result, less overlap means better
decoding of the stimulus.

In the opposite case ∆Ishuff > 0 (figure 3.6B), correlations benefit the population
code. The parallel ellipses of the original distributions exhibit less overlap than the
distribution of the shuffled trials. As one can see from the black decision boundary,
this increases inference performance.

Consequently, one has to be careful when calculating information based only on
single cell recordings. If information is solely estimated by combining trials from sev-
eral individually recorded neurons, one can only compute Ishuff. Hence, one may under
or overestimate the available information. This emphasizes the importance of modern
approaches of multi-cell recordings.

Finally, there can be the case that even though correlations exists, they have no effect
on information: ∆Ishuff = 0 (figure 3.6C). Response distributions are aligned such that
the overlap remains the same regardless of shuffling or no shuffling.

In summary, there is no straightforward answer how correlations modulate the
quality of a population code. Indeed, this depends on the structure of the correlations
and the particular combination of signal and noise correlations.

As mentioned before, another question one can ask is more from the perspective
of decoding: Does a decoder actually have to care about correlations? Or from the
brain’s point of view: Would downstream neurons lose information if they ignored the
correlations from their inputs? To answer these questions one can look at the measure
of

∆Idiag = I − Idiag. (3.22)

This is the difference between the information in the original data I and the information
Idiag that can be retrieved from an optimal decoder that is trained on the shuffled but
applied to the original data. The subscript diag(onal) refers to the decoder’s assumption
of neural responses having a diagonal covariance matrix; as is the case for shuffled
data. The value of Idiag can only be equal to zero, correlations can be ignored, or larger
than zero, correlations carry information relevant for the decoder (Seriès et al., 2004;
Averbeck and Lee, 2006).

In fact, there can be situations in which ∆Ishuff ̸= 0 but ∆Idiag = 0 as well as the
opposite where ∆Ishuff is equal to 0, but a decoder cannot safely ignore correlations
without losing information (Nirenberg and Latham, 2003; Averbeck and Lee, 2006).
These two cases are sketched in figure 3.7. The decision boundaries (black and brown
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Figure 3.6: Effects of correlations on information. Top row (A): ∆Ishuff is
negative. Correlations are reducing information. The two ellipses repre-
sent the 95% confidence intervals of joint response distributions for two
different stimuli. There exists considerable amount of overlap between
the correlated responses. Hence, an optimal decoder, depicted by the
black dotted decision boundary, would produce some erroneous stim-
ulus classifications. Whereas for the shuffled data, represented by the
circles on the right, overlap is reduced. Middle row (B): ∆Ishuff is posi-
tive. Correlations are increasing information. Response distribution are
aligned in such a way that overlap is reduced in comparison to the shuf-
fled responses. Bottom row (C): ∆Ishuff is zero. Although responses on
the left are correlated, the amount of overlap remains the same if trials
are shuffled. Image based on Averbeck et al. (2006).
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Figure 3.7: Effects of correlations on decoding. Top row (A): ∆Idiag is
zero. Correlations can be safely ignored. The two ellipses represent the
95% confidence intervals of joint response distributions for two differ-
ent stimuli. It makes no difference if the decoder, depicted by the black
dotted line, is trained on the original or shuffled data. As the right hand
side shows, the optimal decision boundary, depicted as the brown dot-
ted line, is equal to the decoder trained on the shuffled data. Bottom row
(B): ∆Idiag is positive. Correlations carry additional information relevant
to a decoder. The decoding decision boundary trained on the shuffled
data on the left is different from the optimal boundary of the correlated
data on the right. Image based on Averbeck et al. (2006).

dotted lines on top of each other) are equal in figure 3.7A despite considerable amount
of correlation between the neuron responses. Whereas in figure 3.7B ignoring correla-
tions would yield a suboptimal decision boundary (black dotted line vs. brown dotted
one).

Correlations increasing (∆Ishuff > 0) as well as harming information (∆Ishuff < 0)
were reported for stimulus encoding experiments in the visual cortex (Golledge et al.,
2003; Hansen et al., 2012). In addition, there is evidence that correlations matter for
decoding of visual information (∆Idiag > 0) (Golledge et al., 2003). Yet, often only small
influence of correlations on coding were measured (Averbeck and Lee, 2004). Still, this
does not mean that correlations can be neglected. Even if the effects of correlations are
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small regarding only a couple of neurons, their influence might still matter a lot for
larger populations on the order of biologically relevant magnitudes, like columns in
the visual cortex (Zohary et al., 1994; Shamir and Sompolinsky, 2004). For example,
according to simulations by Averbeck et al. (2006), noise correlations on the order of
rSC = 0.1 in combination with positive signal correlations, i.e. neurons having similar
tuning curves, yielded a negligible information difference between I and Ishuff of less
than 1% if the authors only looked at cell pairs. However, for thousands of neurons
the available information I in the original data was about 25 times smaller than the
shuffled information Ishuff.

Along these lines are the following theoretical considerations from Sompolinsky
et al. (2001). Given infinitively precise input, positive signal correlations, and positive
noise correlations, the amount of information of a population code is bounded and
saturates for infinite network sizes. This means even for infinitely many neurons and
the input of infinite information, only a finite amount of information can be recovered
from the network. In contrast, the shuffled information of the network is not bounded
and grows infinitely with the network size. Even more so for negative noise correla-
tions, in this case information increases even faster with network size than the shuffled
information.

Furthermore, theoretical studies by Abbott and Dayan (1999) and Wilke and Eurich
(2002) showed that the often reported positive noise correlations that decrease with
distance, as discussed in the previous sections, are in general harmful to the population
code. They yield saturation effects with increasing network size. Nonetheless, whether
information is bounded is arguably of lesser importance to the brain. On one hand, the
brain is made of an admittedly large, but still finite number of neurons. On the other
hand, the amount of information about a stimulus that can be extracted by sensors
like the retina is finite as well. Of course, following processing steps cannot add new
information. Hence, "the question is not whether information saturates in the nervous
system — it does — it’s how quickly it saturates as the number of neurons increases"
(Averbeck et al., 2006).

3.5 Summary

In this chapter we reviewed the importance of noise correlations in spiking activity of
ensembles of neurons and the effects these can have on stimulus encoding.

A prominent measure to quantify correlations among pairs of neurons is the spike
count correlation coefficient rSC . It is widely used among experimentalists. Often it is
reported that correlations are positive for nearby neurons with similar response proper-
ties in the visual cortex of different species. These correlations are profound on longer
time scales and one often observes a decay with distance between cell pairs. Addition-
ally, for blank stimuli the distance dependency may exhibit a sinusoidal modulation.
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We presented common confounds and hypothesized causes on the origin of noise
correlations. A very interesting explanation was offered by Hansen et al. (2012) who
argued that a particular recurrent network topology with narrower excitatory than in-
hibitory connection spread — termed Mexican hat — yields correlated variability.

Furthermore, we discussed two particular measures of information, namely mutual
and Fisher information. The former is suitable for discrete sets of stimuli, the latter
is applied in continuous domains and can be approximated using a linear decoder.
We further reviewed that correlations can increase, decrease, or have no effect on the
information about a stimulus encoded by spike responses. In addition, correlations can
either carry valuable information or decoders may safely ignore correlations without
losing information about the stimulus.



4Theoretical Motivation:
Mexican Hat Connectivity

IN the previous chapter we discussed possible hypotheses about the origin of corre-
lated variability in visual cortex. The proposal by Hansen et al. (2012) emphasized
recurrent connectivity as a source of correlations. Yet, seminal work by Renart et

al. (2010) showed that balanced recurrent connectivity can lead to the opposite effect
and one may observe a decorrelation of activity with an increase in network size. This
holds even if correlated afferent input is present and in case of dense recurrent con-
nectivity. To shed light on this discrepancy, we are going to review recent theoretical
findings by Rosenbaum and Doiron (2014) in this chapter. Their findings encompass
conditions under which the balance between excitation and inhibition can no longer be
maintained. Accordingly, such cases are potential candidates for noise correlations.

In the following sections we are going to provide a detailed review of the study by
Rosenbaum and Doiron (2014). In addition, we will augment their work by introduc-
ing spike frequency adaptation (SFA). We are going to demonstrate that the findings by
Rosenbaum and Doiron (2014) still hold in this extended setting. Furthermore, we will
make an extensive analysis under which conditions balanced recurrent activity cannot
be maintained any longer. However, in this case no explicit solution of the resulting
network state can be given due to the combination of the model’s non-linearity and
coupling topology. Therefore, we are going to compare the model by Rosenbaum and
Doiron (2014) to older work by Hansel and Sompolinsky (1998). This simpler but an-
alytically tractable model gives an explicit solution if the balance between recurrent
excitatory and inhibitory activity does not hold any longer. Under certain conditions
one observes spatially inhomogeneous activity that moves within the spatial extent of
the network. We will illustrate the resemblance between the two models and discuss
which conclusions can be drawn for the more complex model and the numerical simu-
lations presented in the following chapter. Namely, the movement and phase changes
of spatial inhomogeneous activity cause joint modulations of firing rates. In turn, these
modulations yield noise correlations among spike counts.
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4.1 Vanilla Rosenbaum and Doiron Model

A detailed explanation of the model by Rosenbaum and Doiron (2014) will be given in
this section. Rosenbaum and Doiron (2014) discuss a general mean-field approach to
spiking neuron networks. They investigate under which recurrent coupling schemes
the balance between excitation and inhibition destabilizes.

Accordingly, they use the following definition of balanced conditions: A network is
said to be balanced if and only if in the continuum limit it exhibits finite or unsaturated,
and non-zero firing rates which for constant input are constant in time. Hence, inhibi-
tion must counterbalance afferent and recurrent excitatory inputs to prevent diverging
activity.

To anticipate the main finding, the mean-field system becomes unstable in case of
Mexican hat coupling schemes where inhibitory recurrent connections are wider than
excitatory ones. Rosenbaum and Doiron (2014) obtain this result by taking the spatial
Fourier transform of the network dynamics. From this transformed state one can infer
whether some spatial frequencies are amplified. If so, the balance between excitation
and inhibition cannot be maintained. Homogeneous asynchronous activity is no longer
stable and spatially heterogeneous activity can arise. Movement and phase changes of
the spatially inhomogeneous activity, in turn, make such networks potential candidates
for the emergence of noise correlations.

Of note, in the following analysis an attempt is made to derive the work in the
original paper in a clear and concise manner. Accordingly, we are going to provide
some derivations that were spared by Rosenbaum and Doiron (2014).

4.1.1 Model Description

We will start with a detailed description of the unitless system used by Rosenbaum and
Doiron (2014). They assume a network ofN spiking neurons, withNE = q N excitatory
neurons and NI = (1 − q)N inhibitory neurons. Therefore, q denotes the fraction of
excitatory neurons. The neurons are evenly spaced on a ring Γ = (0, 1] with periodic
boundary conditions. Accordingly, the kth excitatory neuron is placed at x = k/NE .
Analogously, for inhibitory neurons x = k/NI marks the location of kth inhibitory cell.
The input current composed of the recurrent as well as afferent inputs to each neuron
is defined as:

IX(x, t) =

NE
i=1

JκΓ

XE(x− i/NE)SE,i(t)−
NI
i=1

JκΓ

XI(x− i/NI)SI,i(t) + JXA(x), (4.1)

where SX,i =


j δ(t − tjX,i) is the spike train of the ith pre-synaptic neuron in pop-
ulation X ∈ {E, I} modeled as a sum of Dirac delta functions. JXA(x) denotes the
static afferent input at position x. Moreover, recurrent connectivity is probabilistic.
The synaptic weight JκΓ

XY with X,Y ∈ {E, I} is either equal to 0 or a positive constant
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Figure 4.1: Depiction of the model by Rosenbaum and Doiron (2014).
Neurons are arranged on the ring Γ = (0, 1] with periodic boundary
conditions. For better visibility excitatory and inhibitory neurons are
depicted side by side. An excitatory neuron at positions x receives in-
puts of strength JEE from another one at position y with probability
κΓEE(x − y), other connections κΓEI , κΓIE , and κΓII are analogously ap-
plied. In addition, neurons are driven by static afferent inputs JEA(x)
and JIA(x).

value JXY with probability κΓXY (x−y). Accordingly, inhibition is not captured by neg-
ative coupling strengths but by subtraction, as in equation 4.1, for example. Moreover,
to account for periodic boundary conditions, κΓXY (x− y) is the periodic summation of
probabilities:

κΓXY (x− y) =
∞

l=−∞
κXY (x− y + l), (4.2)

where κXY is a probability distribution defined over discrete points on the real axis,
for example a discrete Gaussian kernel. The periodic summation of κXY wraps the
distribution infinitely often around the ring Γ such that the kernel domain changes
from discrete points on the real axis to discrete points on the interval (0, 1]. Moreover,
x = k/NX and y = i/NY are the positions of the post- and pre-synaptic neurons on the
ring. Due to the periodic boundary conditions of κΓXY , the difference x−y corresponds
to the shortest distance between the post- and pre-synaptic neuron on Γ. Hence, κΓXY

is the spatial connectivity profile originating in neural population Y projecting onto
population X . The model’s layout is sketched in figure 4.1.
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To study neural dynamics, the current as defined in equation 4.1 can be used in a
particular neuron model, like the a leaky integrate and fire (LIF) one given below (c.f.
Izhikevich, 2007):

∂VX(x, t)

∂t
= − 1

τV
VX(x, t) + IX(x, t), (4.3)

where VX is the membrane potential of a neuron from population X ∈ {E, I} at posi-
tion x ∈ Γ at time t. In addition, τV denotes cell’s membrane time constant. A spike is
emitted whenever the potential reaches a threshold VX(x, t) = 1 and it is subsequently
reset to 0, the resting state. However, we will not investigate the dynamics of this
model directly. Instead, we are going to use a simple firing rate approximation that
will be introduced in the following sections.

Moreover, increasing network size N leaves one with the question of how to scale
the synaptic coupling strengths JXY for a growing number of neurons. Many stud-
ies assume a scaling of order O(1/

√
N) (Vreeswijk and Sompolinsky, 1996; Renart et

al., 2010) and so do Rosenbaum and Doiron (2014). Under these assumptions and
given a neuron model with a spiking mechanism like the LIF above, a neuron receives
O(N) connections, but requires only excitatory spiking input of order O(

√
N) to emit

a spike itself. Hence, in order to maintain finite or unsaturated firing rates in the limit
of infinite network size, one requires a stable balance between excitation and inhibition
(Vreeswijk and Sompolinsky, 1998; Renart et al., 2010).

As a side remark, in our simulations in the following chapter a biologically plau-
sible range of connection strengths was used. Under the given scaling of O(1/

√
N)

increasing network size would render the strengths too small. Thus, in our simulations
the weights were fixed. In fact, as we will discuss later, even if weights scale with O(1),
the findings of Rosenbaum and Doiron (2014) are still valid.

For simplicity and if not stated otherwise, in this chapter we will use the scal-
ing of the original paper. Namely, Rosenbaum and Doiron (2014) assume a distance
between spike threshold and resting potential for each neuron of O(1) and use the
following scaling properties with an increase in network size N : JXY ∼ O(1/

√
N),

JXA ∼ O(
√
N), κXY ∼ O(1), and q ∼ O(1) for N → ∞. In order to make the connec-

tion weights independent of the network size, they introduce rescaled weights denoted
by lower case jXY =

√
N JXY and jXA = JXA/

√
N .

4.1.2 Balanced State in the Continuum Limit

We are now going to turn from the spike based model to a mean-field approximation
with firing rates. The instantaneous mean firing rate νX of the kth neuron of population
X at position x = k/N at time t can be defined as

νX(x, t) := ⟨E[SX,k(t)]⟩, (4.4)
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where E[·] is the expectation operation in the mean-field limit over M → ∞ different
network realizations, i.e. sampling over κXY . In addition, ⟨·⟩ denotes expectation over
a vanishing time interval ∆t (c.f. Augustin et al., 2013):

⟨E[SX,k(t)]⟩ = lim
M→∞,
∆t→0

1

∆tM

 t+∆t

t

M
m=1


j

δ(s− tjX,k) ds. (4.5)

Similarly, we can compute the expected coupling strength between the ith pre-synaptic
neuron and the post-synaptic neuron at position x for the different neuron populations:

⟨E[JκΓ

XY (x− i/NY )]⟩ =E[JκΓ

XY (x− i/NY )] (4.6)

= lim
M→∞

1

M

M
m=1

JκΓ

XY (x− i/NY )

=JXY κ
Γ
Y (x− i/NY ).

The expectation over the vanishing time interval can be ignored for the expected cou-
pling because it is static over time.

Furthermore, Rosenbaum and Doiron (2014) assume a sparse connectivity, that is
κXY (x) ≪ 1. Consequently, correlations among the fluctuating part of the synaptic
inputs of different neurons can be neglected. Nevertheless, this does not mean that
spike trains are always uncorrelated. Of course, these can be correlated due to cor-
relations among instantaneous rates, but for given rates the spikes are assumed to be
independent (c.f. Brunel, 2000). Accordingly, the expectations over the coupling JκΓ

XY

and spike trains SX,i(t) can be taken independently, i.e. ⟨E[JκΓ

XY (x − i/NY )SX,i(t)]⟩ =
⟨E[JκΓ

XY (x− i/NY )]⟩ ⟨E[SX,i(t)]⟩. Under these assumptions the mean current for a neu-
ron at position x in population X is

⟨E[IX(x, t)]⟩ =


E


NE
i=1

JκΓ

XE(x− i/NE)SE,i(t)−
NI
i=1

JκΓ

XI(x− i/NI)SI,i(t) + JXA(x)



=

NE
i=1

JXE κ
Γ
E(x− i/NE) νE(i/NE , t) (4.7)

−
NI
i=1

JXI κ
Γ
I (x− i/NI) νI(i/NI , t) + JXA(x).

Using NE = q N , NI = (1− q)N , JXY = jXY /
√
N , and JXA =

√
N jXA we obtain

⟨E[IX(x, t)]⟩ =
√
N

NE
i=1

jXE q κ
Γ
E(x− i/NE) νE(i/NE , t)

1

NE
(4.8)

−
√
N

NI
i=1

jXI (1− q)κΓI (x− i/NI) νI(i/NI , t)
1

NI
+
√
N jXA(x).
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In the continuum limit, that is turning from a network with a discrete number of
neurons to a continuous neural field on Γ, the summation turns into an integration, i.e.NX

i=1 f(i/NX)/NX becomes
 1
0 f(y) dy. Of note, one does not take the limit N → ∞

yet, but Rosenbaum and Doiron (2014) simply assume a large enough N such that a
continuous instead of discrete network is a feasible simplification. This simplification
has the advantage that we get rid of involved and inelegant operations in a discrete
network space, but can apply continuous functions instead. For example, we are able
to apply a continuous Fourier transform and we can use continuous kernels κ, like
Gaussian functions. Additionally, not taking the limit at this point is important because
we want to investigate the effects of finite in comparison to infinite network sizes in
detail in subsequent sections. Under these assumptions, we obtain

⟨E[IX(x, t)]⟩ =
√
N

 1

0
jXE q κ

Γ
I (x− y) νE(y, t) dy (4.9)

−
√
N

 1

0
jXI (1− q)κΓE(x− y) νI(y, t) dy +

√
N jXA(x)

=
√
N [(jXE q κ

Γ
E) ∗ νE(x, t)

− (jXI (1− q)κΓI ) ∗ νI(x, t) + jXA(x)],

where ∗ denotes circular convolution on the ring Γ = (0, 1]. Thus, the mean input
current to population X , from now on denoted by µX , can be defined as

µX(x, t) := ⟨E[IX(x, t)]⟩ (4.10)

=
√
N [ωXE ∗ νE(x, t)− ωXI ∗ νI(x, t) + jXA(x)],

with ωXY (x) being the effective coupling from population Y to X , i.e. the product of
the coupling strength, population fraction, and connection probability:

ωXE(x) = jXE q κ
Γ
XE(x), (4.11)

ωXI(x) = jXI (1− q)κΓXI(x). (4.12)

For a balanced solution with positive firing rates (∀x,∀t : νX(x, t) > 0) to be stable
for N → ∞, it is required that νX and µX converge to finite values. Therefore, the
following must hold:

ωXE ∗ νE(x, t)− ωXI ∗ νI(x, t) + jXA(x) = O(1/
√
N). (4.13)

For N → ∞ we obtain a Fredholm equation of the first kind:

ωXE ∗ νE(x, t)− ωXI ∗ νI(x, t) + jXA(x) = 0. (4.14)

Next, one can take the spatial Fourier transform f̃(n) =
 1
0 exp(−2π inx) fΓ(x) dx.

This translates the system defined over the finite interval Γ = (0, 1] with periodic
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boundary conditions to the Fourier domain with discrete Fourier modes n ∈ Z. Ac-
cordingly, the inverse transform is fΓ(x) =

∞
n=−∞ f̃(n) exp(2π inx).

Moreover, taking the Fourier transform has the advantage that the spatial convolu-
tion ∗ turns into multiplication in the Fourier domain:

ω̃EE(n) ν̃E(n, t)− ω̃EI(n) ν̃I(n, t) + j̃EA(n) = 0, (4.15)

ω̃IE(n) ν̃E(n, t)− ω̃II(n) ν̃I(n, t) + j̃IA(n) = 0. (4.16)

This set of linear equations can be solved and gives a steady-state firing rate fixpoint:

ν0E(n) =
j̃EA ω̃II − j̃IA ω̃EI

ω̃EI ω̃IE − ω̃EE ω̃II
, (4.17)

ν0I (n) =
j̃EA ω̃IE − j̃IA ω̃EE

ω̃EI ω̃IE − ω̃EE ω̃II
. (4.18)

Note that we omitted the variable dependency — here the Fourier mode n — on the
right hand sides of the equations. If readability benefits and to avoid too long equa-
tions, we are going to apply this shortening in some of the following equations in
this chapter too. The two equations 4.17 and 4.18 must hold at every Fourier mode
n ∈ Z for which the denominator is non-zero, i.e. ω̃EI(n) ω̃IE(n) − ω̃EE(n) ω̃II(n) ̸= 0.

If ω̃EI(n) ω̃IE(n) − ω̃EE(n) ω̃II(n) = 0 at some Fourier mode n, then for a solution to
exist, it must also hold

j̃EA(n) ω̃II(n)− j̃IA(n) ω̃EI(n) = j̃EA(n) ω̃IE(n)− j̃IA(n) ω̃EE(n) = 0. (4.19)

Finally, the solutions of equations 4.15 and 4.16 are only valid if ν̃X has a well-defined
inverse Fourier transform; therefore, one requires at least that

lim
n→±∞

j̃EA(n) ω̃IY (n)− j̃IA(n) ω̃EY (n)

ω̃EI(n) ω̃IE(n)− ω̃EE(n) ω̃II(n)
= 0, (4.20)

for Y ∈ {E, I}. In other words, if external input is spatially tuned and not homo-
geneous, its tuning must be broader than the recurrent coupling. To be precise, the
Fourier coefficients j̃EA and j̃IA in the numerator need to decay quicker than the ones
of the recurrent connectivity profile in the denominator.

Trivially, for the case of spatially homogeneous input, i.e. the input is constant re-
gardless of the post-synaptic neuron’s position, jXA(x) = jXA, we see that there exists
only a homogeneous solution for νE and νI . There, all neurons exhibit the same firing
rate because the Fourier transform j̃XA(n) of a constant input jXA is the constant value
jXA itself for the 0th Fourier mode and 0 for n ̸= 0; hence, ν̃X(n) = 0 for n ̸= 0. Because
we are interested in stability due to recurrent coupling and heterogeneous activity de-
spite homogeneous input, for the rest of the analysis we will assume input that is not
only constant in time but also in space if not explicitly stated otherwise. Hence, we will
use constant jXA and neglect the space dependency.
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4.1.3 Stability of the Homogeneous Fixpoint

So far we discussed the existence of a fixpoint of homogeneous activity in the limit of
infinite size of a continuous neural field. Next, we are going to consider the stability
of the fixpoint for a particular rate model and the influence of finite size effects. Given
large mean input and a simple spiking neuron model like the leaky integrate and fire
neuron (c.f. equation 4.3), the firing rate of a spiking neuron can be approximated as a
threshold linear function (Rosenbaum and Doiron, 2014). Accordingly, one can define
the rate dynamics of the excitatory and inhibitory populations by the following set of
differential equations (c.f. Wilson and Cowan, 1972):

τ
∂νX(x, t)

∂t
= −νX(x, t) + γ [µX(x, t)]+, (4.21)

where X ∈ {E, I}, τ is the characteristic time scale of the network, and γ denotes the
gain of the neurons. Moreover, [·]+ means rectification that accounts for the fact that
firing rates can only be zero or positive. It is defined as

[x]+ =

x for x > 0

0 else.
(4.22)

Because Rosenbaum and Doiron (2014) always use γ = 1 and different values of γ
could also simply be factored into the afferent input and recurrent coupling strengths,
the gain γ is dropped in our analysis. Further replacing µX by its definition from equa-
tion 4.10, we obtain the following system of coupled equations:

τ
∂νE(x, t)

∂t
= −νE(x, t) +

√
N [ωEE ∗ νE(x, t)− ωEI ∗ νI(x, t) + jEA]+, (4.23)

τ
∂νI(x, t)

∂t
= −νI(x, t) +

√
N [ωIE ∗ νE(x, t)− ωII ∗ νI(x, t) + jIA]+. (4.24)

Assuming a solution with strictly positive firing rates, that is ∀t,∀x : νX(x, t) >

0, it must also hold ∀t,∀x : µX(x, t) > 0, and one can safely ignore the non-linear
rectification in equations 4.21, 4.23, and 4.24, i.e. [µX ]+ = µX . As a consequence, one
can straightforwardly translate these equations into the spatial Fourier domain:

τ
∂ν̃E(n, t)

∂t
= −ν̃E(n, t) +

√
N [ω̃EE(n) ν̃E(n, t)− ω̃EI(n) ν̃I(n, t) + j̃EA(n)], (4.25)

τ
∂ν̃I(n, t)

∂t
= −ν̃I(n, t) +

√
N [ω̃IE(n) ν̃E(n, t)− ω̃II(n) ν̃I(n, t) + j̃IA(n)]. (4.26)
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As a result, one can compute the corresponding fixpoint, given in the Fourier domain
by

ν̃0E(n) =
ϵ j̃EA + j̃EA ω̃II − j̃IA ω̃EE

ϵ2 − ϵ ω̃EE + ϵ ω̃ii + ω̃EI ω̃IE − ω̃EE ω̃II
, (4.27)

ν̃0I (n) =
ϵ j̃IA + j̃EA ω̃IE − j̃IA ω̃EE

ϵ2 − ϵ ω̃EE + ϵ ω̃ii + ω̃EI ω̃IE − ω̃EE ω̃II
, (4.28)

with ϵ = 1/
√
N . ϵ can be interpreted as a factor that accounts for finite size effects

and vanishes with N → ∞. Clearly, the finite size coefficient ϵ = 1/
√
N stems from

the factor
√
N in equations 4.25 and 4.26 which, in turn, is a direct consequence of the

1/
√
N scaling of the recurrent weights. If we take the limit of an infinite network size,

i.e. N → ∞ yielding ϵ→ 0, the fixpoint is the same as in equations 4.15 and 4.16.
We can analyze the stability of the system by linearizing around the fixpoint:

∂ν̃E(n,t)
∂t

∂ν̃I(n,t)
∂t


= A(n)


ν̃E(n, t)− ν̃0E(n)

ν̃I(n, t)− ν̃0I (n)


, (4.29)

with

A(n) =


1
τ (−1 +

√
N ω̃EE(n)) − 1

τ

√
N ω̃EI(n)

1
τ

√
N ω̃IE(n)

1
τ (−1−

√
N ω̃II(n))


. (4.30)

The stability of the fixpoint can be determined by looking at the eigenvalues of the
Jacobian A at every Fourier mode n ∈ Z. If there exists at least one eigenvalue with
positive real part for any Fourier mode n, the homogeneous fixpoint ν0X is unstable. Es-
pecially situations in which ν0X(0) is stable, but at least one ν0X(n) for n ̸= 0 is unstable
are interesting. The 0th Fourier mode corresponds to the system’s mean activity and all
other modes n ̸= 0 to spatial frequencies with |n| revolutions per network extent Γ. On
the one hand, the average activity in the network may remain stable. One does not nec-
essarily encounter a runaway of excitation to theoretically infinite rates as one certainly
would for A(0) having eigenvalues with positive real parts. On the other hand, since
at least some non-zero spatial frequencies are amplified, spatially inhomogeneous pat-
terns of activity can be observed even for homogeneous input. The potential structure
and dynamics of such heterogeneous activity will be discussed in subsequent sections
of this chapter.

Of note, the stability of the fixpoint is independent of the network input jXA and is
only determined by the recurrent weights and the network size. The time scale τ is not
important because it is a common positive coefficient and cannot change the sign of
any eigenvalue of A. Because only the relative magnitudes — especially the signs — of
A‘s eigenvalues are of interest and the absolute magnitudes are not important for the
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stability analysis, Rosenbaum and Doiron (2014) rescale the Jacobian with τ ϵ; where ϵ
is the finite size factor ϵ = 1/

√
N . For this rescaling we obtain

Aϵ(n) =


−ϵ+ ω̃EE(n) −ω̃EI(n)

ω̃IE(n) −ϵ− ω̃II(n)


. (4.31)

As before, the fixpoint is stable if for all Fourier modes n the matrix’s eigenvalues have
only negative real parts. Given all ω̃XY are real valued and Aϵ is a real matrix, this is
equivalent to the conditions

ω̃EI(n) ω̃IE(n)− ω̃EE(n) ω̃II(n)− ϵ (ω̃EE(n)− ω̃II(n)) + ϵ2 > 0 (4.32)

and

ω̃EE(n)− ω̃II(n)− 2ϵ < 0 (4.33)

for all n.
In the limit of infinite network sizes N → ∞ and ϵ → 0, one recognizes that the

stability of the fixpoint is only determined by the topology and strength of the recur-
rent coupling, that is all ωXY . For networks of a finite size with ϵ > 0, the rate leak
terms of equations 4.23 and 4.24 (−νE and −νI ) have an influence on the stability of
the homogeneous fixpoint. As we will see later on, this rate leakage can stabilize the
homogeneous activity.

4.1.4 Weight Scaling

Do the previous findings hold for other weight scalings, too? In the following we are
going to discuss the effect of arbitrary weight scaling. This analysis is a contribution of
the thesis author and not a review of the original paper.

Let η(N) be an arbitrary scaling function for the recurrent weights JXY , i.e. JXY ∼
η(N). The afferent inputs scale with N η(N) to guarantee that they are always of the
same order as the recurrent inputs regardless of network size. For this scaling η(N) we
define rescaled weights jXY = JXY /η(N) and jXY = JXA/(N η(N)). Accordingly, the
mean current (c.f. equation 4.7) becomes

⟨E[IX(x, t)]⟩ =N η(N)

NE
i=1

jXE q κ
Γ
E(x− i/NE) νE(i/NE)

1

NE
(4.34)

−N η(N)

NI
i=1

jXI (1− q)κΓI (x− i/NI) νI(i/NI)
1

NI
+N η(N) jXA(x).

This yields in the continuum limit:

⟨E[IX(x, t)]⟩ = N η(N) [ωXE ∗ νE(x, t)− ωXI ∗ νI(x, t) + jXA], (4.35)
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with ωXE and ωXI defined as in equations 4.11 and 4.12. Note the factor N η(N) in
equation 4.35. For instance, for the original scaling with η(N) = 1/

√
N , we obtain

√
N

as in equation 4.10.
Moreover, the finite size coefficient ϵ is simply the inverse of the factor:

ϵ =
1

N η(N)
. (4.36)

Thus, if recurrent weights are not scaled with network size, viz. η(N) = 1, we obtain
ϵ = 1/N . Hence, it still holds that ϵ → 0 for N → ∞. In fact, for any recurrent weight
scaling > O(1/N), we have ϵ → 0 in the limit of infinite networks. Consequently, for
scalings > O(1/N), the findings from the previous and subsequent sections are still
valid. Of course, this is based on the assumption that the mean-field model is valid
approximation to a spiking neuron network. One always requires that the system is
well-defined by the average rates of neurons and fluctuations can be ignored.

Furthermore, for a scaling of η(N) = 1/N , the finite size factor basically becomes ir-
relevant with ϵ = 1 for any network sizeN . In this case the system may still destabilize,
but the homogeneous fixpoint can be stable for wider parameter ranges. The influence
of nonzero ϵ values on stability will be discussed in the following section.

For simplicity, in the rest of the analysis in this chapter we will return to the original
scaling by Rosenbaum and Doiron (2014) of O(1/

√
N) for recurrent weights.

4.1.5 Gaussian Connectivity Profile

We discussed under which conditions the fixpoint of homogeneous activity with
strictly positive firing rates becomes unstable according to Rosenbaum and Doiron
(2014). So far the setting was very general, comprising a simple threshold linear rate
model for arbitrary effective couplings ωXY . Next, to be more specific we are going to
look at a particular realization, that is Gaussian shaped connectivity kernels.

Let κΓXY (x) = g(x;σY ) with

g(x;σY ) =
1√

2πσY

∞
l=−∞

exp


−(x+ l)2

2σ2Y


(4.37)

is a wrapped Gaussian defined over the space Γ = (0, 1]. Due to the wrapping of
the Gaussian, the network exhibits periodic boundary conditions. The corresponding
Fourier transform is (Rosenbaum and Doiron, 2014)

g̃(n;σY ) = exp(−2π2 n2 σ2Y ). (4.38)
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We recall from equation 4.32 that in the limit of large network sizes (ϵ → 0) in order to
have stable homogeneous activity one requires

ω̃EE(n)

ω̃II(n)
< 1 (4.39)

for all Fourier modes n. However, if we assume a Mexican hat profile, i.e. σE < σI ,
this condition is always violated regardless of the connection strengths jEE > 0 and
jII > 0 for some n ̸= 0, see below. Substituting equations 4.11, 4.12, and 4.38 into
expression 4.39 yields

ωEE(n)

ωII(n)
=

jEE q exp(−2π2 n2 σ2E)

jII (1− q) exp(−2π2 n2 σ2I )
(4.40)

=
jEE q

jII (1− q)
exp(−2π2 n2 (σ2E − σ2I )).

Due to the assumption of σE < σI , it holds that exp(−2π2 n2 (σ2E − σ2I )) grows without
bounds for n→ ±∞. Additionally, for any choice of jEE > 0 and jII > 0 and q ∈ [0, 1),
the factor (jEE q)/(jII (1− q)) is positive and constant for all n. Hence, a large enough
n can always be found such that

jEE q

jII (1− q)
exp(−2π2 n2 (σ2E − σ2I )) =

ω̃EE(n)

ω̃II(n)
> 1 (4.41)

Nevertheless, if the network size is finite,1 the fixpoint may still be stable. Then ϵ is
large enough such that

ω̃EE(n)

2ϵ+ ω̃II(n)
< 1 (4.42)

holds for all Fourier modes n even in case σE < σI .
Moreover, we can immediately see that for inverse Mexican hat and balanced pro-

files, i.e. σE ≥ σI , even in an infinite system (ϵ = 0), the fixpoint is stable for all Fourier
modes n as soon as Aϵ(0) is stable. This is trivial because 0 < exp(−2π2 n2 (σ2E −σ2I )) ≤
1 with σE ≥ σI for all modes n, and ω̃EE(0)/ω̃II(0) < 1, so we have

ω̃EE(n)

ω̃II(n)
=
ω̃EE(0)

ω̃II(0)
exp(−2π2 n2 (σ2E − σ2I )) ≤

ω̃EE(0)

ω̃II(0)
< 1. (4.43)

1Analogously, one can also think of infinite networks with weights that scale with O(1/N) and use
ϵ = 1.
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Figure 4.2: The Fourier mode n ≥ 0 with the largest real part of all
eigenvalues is color coded. Excitatory to excitatory jEE and excitatory
to inhibitory values jIE are explored. Inhibitory connection strengths
are fixed with jII = jEI = 4.0 and we set q = 0.8. For the balanced
case it holds σE = σI = 0.0125, whereas for the Mexican hat we use
σE = 0.0125 < σI = 0.025. Homogeneous activity where no eigenvalue
has a positive real part are depicted in black. Critical runaway excitation
where already Fourier mode n = 0 is unstable is depicted in white. Inho-
mogeneous non-runaway activity can only be observed for the Mexican
hat network, see color gradient on the right (B).

Additionally, we have exp(−2π2 n2 (σ2E +σ2I )) > 0 for all modes n. Since Aϵ(0) is stable
and with respect to equation 4.32, we get ω̃EI(0) ω̃IE(0)− ω̃EE(0) ω̃II(0) > 0. Hence,

ω̃EI(n) ω̃IE(n)− ω̃EE(n) ω̃II(n) =[ω̃EI(0) ω̃IE(0)− ω̃EE(0) ω̃II(0)]

exp(−2π2 n2 (σ2E + σ2I )) (4.44)

>0.

So for σE ≥ σI and Aϵ(0) having only negative real eigenvalues both conditions for
stability are fulfilled for all Fourier modes n.

The previous findings are illustrated in figure 4.2. The Fourier modes n ≥ 0 for
which Aϵ(n) exhibits eigenvalues with the largest positive real part are depicted for a
range of coupling strengths and two connection schemes with ϵ = 0.2 As one can see
for a balanced network (σE = σI , figure 4.2A) we observe either homogeneous activity
(black), or runaway excitation (white). In the former case the homogeneous fixpoint is
stable and in the latter ν̃0X(0) is already unstable. The mean activity is amplified and
firing rates grow without bounds. For Mexican hat networks (B) we have runaway
excitation (white), too, but the homogeneous fixpoint is only stable for jEE = 0. For
the rest of the values there exists a third regime where Aϵ(0) has only eigenvalues with
negative real parts, but for some n ̸= 0 there exists an Aϵ(n) with eigenvalues having
positive real parts. The corresponding modes n that are strongest amplified are coded

2It is sufficient to look at n ≥ 0 because the Fourier transforms for n and −n are only complex conju-
gates of each other, i.e. f̃(n) = f̃∗(−n); hence Re(f̃(n)) = Re(f̃(−n)).
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Figure 4.3: Maximum real part of all eigenvalues for all Fourier modes
n ≥ 0 up to mode 50 in a Mexican hat network. Parameters as for the
Mexican hat network in figure 4.2 with jIE = 1.4. The global maximum
of each curve is indicated by the black dot.

by the color gradient in figure 4.2B. Similarly, figure 4.3 depicts the largest real parts of
the eigenvalues for the first 50 Fourier modes for various connection strengths. One can
see that for some coupling strengths, the 0th Fourier mode is not amplified, but some
modes n with n > 0 are. There the homogeneous fixpoint is unstable and spatially
inhomogeneous patterns may emerge.

Furthermore, we visualized the influence of finite size effects in figure 4.4. For ϵ > 0

one can observe homogeneous activity even for Mexican hat networks with jEE >

0. As expected, increasing ϵ also widens the parameter ranges where homogeneous
activity is preserved.

Moreover, figure 4.5 shows the maximally amplified Fourier mode n for fixed con-
nection strengths but varied widths σE and σI . Only for Mexican hat topologies
σE < σI the homogeneous fixpoint is unstable. Moreover, introducing finite size ef-
fects ϵ > 0 (figure 4.5B), we can also observe homogeneous activity for some Mexican
hat topologies.

Next, before going into detail what network activity is expected in case the homoge-
neous fixpoint is unstable, but rates could remain finite, we will discuss the effects of an
extension of the model to a two-dimensional space as well as introducing adaptation.

4.1.6 Two-Dimensional Circular Gaussian

In the previous sections we discussed a one-dimensional mean-field approach. Here
we are going to use the model by Rosenbaum and Doiron (2014) in a setting with a
second spatial dimension.
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Figure 4.4: The Fourier mode n ≥ 0 with the largest real part of all eigen-
values is color coded as a function of excitatory connection strengths in
a Mexican hat network. Parameters as for the Mexican hat network in
figure 4.2 except that ϵ = 0.01 on the left (A) and ϵ = 0.1 on the right
(B). Homogeneous activity where no eigenvalue has a positive real part
is depicted in black. Critical runaway excitation where already Fourier
mode n = 0 is unstable is depicted in white. Increasing ϵ increases the
parameter range where homogeneous activity is observed.

Figure 4.5: The Fourier mode n ≥ 0 with the largest real part of all eigen-
values is color coded as a function of connectivity spread. Parameters as
for networks in figure 4.2 except that jEE = 0.4, jIE = 0.8, and σE and
σI are varied. Additionally, on the right (B) ϵ = 0.1. White dotted line
marks equality σE = σI . Inhomogenous activity can only be observed
for Mexican hat topolgies. Given finite size networks ϵ > 0 (B), for some
Mexican hat topologies homogenous activity is stable.



66 Theoretical Motivation: Mexican Hat Connectivity

The expansion of the one-dimensional to a two-dimensional model with Γ2 =

(0, 1] × (0, 1] and circular Gaussian connectivity profiles is straightforward. The cir-
cular Gaussian profile with width σY wrapped around Γ2 is defined as

g2(x, y;σY ) =
1

2πσ2Y

∞
k=−∞

∞
l=−∞

exp


−(x+ k)2 + (y + l)2

2σ2Y


(4.45)

=
1

2πσ2Y

∞
k=−∞

exp


−(x+ k)2

2σ2Y

 ∞
l=−∞

exp


−(y + l)2

2σ2Y


.

The corresponding two-dimensional Fourier transform over the space Γ2 with
g̃2(m,n) =

 1
0

 1
0 exp(−2π imx) exp(−2π in y)g2(x, y) dx dy is then

g̃2(n,m;σY ) = exp(−2π2m2 σ2Y ) exp(−2π2 n2 σ2Y ) (4.46)

= exp(−2π2 (n2 +m2)σ2Y ).

Therefore, all previous findings can be applied to the two-dimensional model analo-
gously. The only difference is that the homogeneous fixpoint is stable if Aϵ(m,n) has
only eigenvalues with negative real parts for the Cartesian product of all Fourier modes
m and n.

4.2 Spike Frequency Adaption

In this section we are going to extend the model by Rosenbaum and Doiron (2014) by
introducing adaptation. We will further show that the previous findings are still valid.
This is a new contribution and not a review of the original paper.

Many neurons show a reduction in spike firing frequency for constant stimulation.
This phenomenon is called spike frequency adaptation (SFA). Experiments showed that
SFA is abundant among many cell types in visual cortex (Sanchez-Vives et al., 2000),
and that this effect is usually stronger in excitatory than in inhibitory neurons (Nowak
et al., 2003).

SFA can be easily included in the mean-field model by adding another linear differ-
ential equation for both populations (Augustin et al., 2013). We can do so by extending
equations 4.23 and 4.24:

τ
∂νX(x, t)

∂t
= −νX + [

√
N (ωXE ∗ νE − ωXI ∗ νI + jXA)− wX ]+, (4.47)

τw
∂wX(x, t)

∂t
= −wX + τw bX νX , (4.48)

with wX the adaptation value of a neuron in population X ∈ {E, I} at position x, τw
the time constant of adaptation, and bX denoting the adaptation strength. Usually, the
dynamics of adaption are much slower than the characteristic time scale of the network,
i.e. τw ≫ τ (Womble and Moises, 1992). Moreover, we assume that adaptation is an
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intrinsic phenomenon of each neuron. It is independent of the network topology and,
therefore, bX scales with O(1) for increasing network size.

Assuming a solution with strictly positive firing rates, we can drop the rectification
and solve for the homogeneous fixpoint. The fixpoint in the Fourier domain is given
by the following equations:3

ν̃0E(n) =
τwbI j̃EAϵ+ j̃EAϵ+ j̃EAω̃II − j̃IAω̃EI

Ω(n)
, (4.49)

ν̃0I (n) =
τwbE j̃IAϵ+ j̃IAϵ− j̃IAω̃EE + j̃EAω̃IE

Ω(n)
, (4.50)

w̃0
E(n) =

τwbE(τwbI j̃EAϵ+ j̃EAϵ+ j̃EAω̃II − j̃IAω̃EI)

Ω(n)
, (4.51)

w̃0
I (n) =

τwbI(τwbE j̃IAϵ+ j̃IAϵ− j̃IAω̃EE + j̃EAω̃IE)

Ω(n)
, (4.52)

Ω(n) =− τwbI ω̃EEϵ+ τwbEω̃IIϵ+ τwbEϵ
2 + τwbEτwbIϵ

2 + τwbIϵ
2 (4.53)

− ω̃EEϵ+ ω̃IIϵ+ ϵ2 + ω̃EI ω̃IE − ω̃EEω̃II ,

with finite size factor ϵ = 1/
√
N . Interestingly, in the limit of infinite network sizes

(ϵ → 0), the fixpoint of the rates ν0E and ν0I is independent of adaptation and equal
to the one encountered before (c.f. equations 4.15 and 4.16). Still, adaptation remains
finite and can be non-zero, but has no influence on the rates anymore:

ν̃0E(n) =
j̃EA ω̃II − j̃IA ω̃EI

ω̃EI ω̃IE − ω̃EE ω̃II
, (4.54)

ν̃0I (n) =
j̃EA ω̃IE − j̃IA ω̃EE

ω̃EI ω̃IE − ω̃EE ω̃II
, (4.55)

w̃0
E(n) =

τw bE (j̃EA ω̃II − j̃IA ω̃EI)

ω̃EI ω̃IE − ω̃EE ω̃II
, (4.56)

w̃0
I (n) =

τw bI(j̃EA ω̃IE − j̃IA ω̃EE)

ω̃EI ω̃IE − ω̃EE ω̃II
. (4.57)

Furthermore, we can linearize around the fixpoint to obtain the Jacobian

A(n) =


1
τ (−1 +

√
N ω̃EE(n)) − 1

τ

√
N ω̃EI(n) − 1

τ 0
1
τ

√
N ω̃IE(n)

1
τ (−1−

√
N ω̃II(n)) 0 − 1

τ

bE 0 − 1
τw

0

0 bI 0 − 1
τw

 . (4.58)

3The results were verified using Wolfram Alpha: https://www.wolframalpha.com/ (accessed
23.12.2015)

https://www.wolframalpha.com/
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Next, we use a rescaling τϵ with ϵ = 1/
√
N . This time we cannot get rid of the char-

acteristic time constant τ because the ratio between τ and τw matters for the relative
magnitudes of the real parts of the eigenvalues. Thus, we obtain

Aϵ(n) =


−ϵ+ ω̃EE(n)) −ω̃EI(n) −ϵ 0

ω̃IE(n) −ϵ− ω̃II(n)) 0 −ϵ
ϵ τ bE 0 −ϵ τ

τw
0

0 ϵ τbI 0 −ϵ τ
τw

 . (4.59)

For N → ∞ (ϵ→ 0) we have

A0(n) =


ω̃EE(n) −ω̃EI(n) 0 0

ω̃IE(n) −ω̃II(n) 0 0

0 0 0 0

0 0 0 0

 . (4.60)

For all Fourier modes n this matrix has two vanishing eigenvalues and typically two
non-zero eigenvalues. These two non-zero eigenvalues are equal to the ones of the
infinite system without adaptation from before (c.f. equation 4.31 with ϵ = 0). This is
easy to see if we solve for the eigenvalues λ via det(A0(n) − λE) = 0, where E is the
identity matrix, and use Laplace’s formula:

det(A0(n)− λE) = det


ω̃EE(n)− λ −ω̃EI(n) 0 0

ω̃IE(n) −ω̃II(n)− λ 0 0

0 0 −λ 0

0 0 0 −λ

 (4.61)

= −λ det

ω̃EE(n)− λ −ω̃EI(n) 0

ω̃IE(n) −ω̃II(n)− λ 0

0 0 −λ


= λ2 det


ω̃EE(n)− λ −ω̃EI(n)

ω̃IE(n) −ω̃II(n)− λ


.

The remaining determinant is the same as for the eigenvalue problem of the matrix
given in equation 4.31 with ϵ = 0. Hence, in the limit of an infinite number of neurons,
the previously discussed findings are still valid for the extended system with adapta-
tion.

4.2.1 Finite Networks

Also for finite networks the influence of adaptation on stability is at most docile. This
holds even in case adaptation is unequal among populations. For example, small to
considerably large strengths of bE and bI = 0.1bE yield only minor modulations of
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Figure 4.6: The Fourier mode n ≥ 0 with the largest real part of all
eigenvalues is color coded. Excitatory to excitatory jEE and excitatory
to inhibitory values jIE are explored. Other parameters chosen as for
the Mexican hat network in figure 4.2 except ϵ = 0.01. Additional pa-
rameters are τ = 0.01 and τw = 0.25. bE is varied across plots. Because
spike frequency adaptation (SFA) is weaker in inhibitory cells (Nowak
et al., 2003), we use bI = 0.1bE .

the system (figure 4.6). Yet, for huge, biologically implausible adaption strengths, net-
works are less likely to be stable and Aϵ(0) exhibits at least one eigenvalue with positive
real part for more parameter settings as shown in figure 4.6D. Of note, this pronounced
area of runway activity is an effect of bE ̸= bI and vanishes for bE = bI (data not
shown). Furthermore, the influence on the eigenvalues for each Fourier mode n can be
neglected for a wide range of adaption strengths too. Only huge values of bE change
the shape of the curves in figure 4.7. Similar observations can be made for parameter
τw where only very short time scales beyond biologically plausible values show con-
siderable effects on stability (data not shown).

This leaves us with the question: Why bother with introducing spike frequency
adaptation if its influence on the homogeneous fixpoint and the fixpoint’s stability are
negligible? As we will see next, adaptation plays an important role in case the homo-
geneous fixpoint is unstable and the network settles into a spatially inhomogeneous
activity state.

4.3 Inhomogeneous Activity

So far we discussed the mean-field model by Rosenbaum and Doiron (2014) in great
detail. The model gives an intuition for which spiking neuron network configurations
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Figure 4.7: Maximum real part of all eigenvalues for all Fourier modes
n ≥ 0 up to mode 50 in a Mexican hat network with SFA. Parameters as
in figure 4.6, but we fix jIE = 0.8, jIE = 0.6. bE is varied across curves
and we use bI = 0.1bE . Up until bE = 1000 all graphs are laying tightly
on top of each other. Only for huge strengths of bE one can observe a
qualitative change in the curve in comparison to bE = 0 (black dotted
line). Due to SFA two eigenvalues are always very close to 0, therefore
curves are not dropping considerably below zero as they do in figure 4.3.

the balance between recurrent excitation and inhibition can no longer be maintained.
More precisely, for Mexican hat networks with wider inhibitory than excitatory connec-
tion spread, the fixpoint of asynchronous homogeneous activity is unstable, but firing
rates may remain finite. Particular spatial Fourier modes are amplified and inhomoge-
neous activity may emerge. Nonetheless, the theory does not go far enough to describe
the resulting inhomogeneous network activity. Therefore, in the next sections we will
further reduce the model by Rosenbaum and Doiron (2014) to a single population net-
work. Thereafter, we are going to argue that this reduced model resembles an even
simpler one by Hansel and Sompolinsky (1998). The latter can be treated analytically
and gives explicit descriptions of inhomogeneous activity.

4.3.1 The Single Population Model

We discussed that if assuming a homogeneous solution with strictly positive firing
rates, the mean-field equations τ ∂νX(x, t)/∂t = −νX + [µX ]+ for X ∈ {E, I} (also
refer to equations 4.23 and 4.24) can be solved analytically because the non-linear rec-
tification [·]+ can be ignored. However, in case of inhomogeneous activity, some of
the neurons are certainly not firing. For these silent neurons we have µX < 0. This
means the rectification plays an important role and takes care that no neuron can ex-
hibit negative firing rates. For Gaussian coupling schemes this non-linearity makes it
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difficult to solve for the inhomogeneous fixpoint to provide an analytical description
of the network state.

Many studies have approached this or similar problems with various techniques,
assumptions, simplifications, and various degrees of lucidity, for an overview the
reader is directed to Coombes (2005). For instance, Pinto and Ermentrout (2001) assume
no inhibitory to inhibitory connectivity or Guo and Chow (2005) use a special Mexican
hat like coupling scheme with κ(x) = A exp(−a|x|) − exp(−|x|) and A > 1, a > 1 that
is termed Wizard hat due to its sharp cusp around the origin. Similarly, we are turning
our focus to an older model by Hansel and Sompolinsky (1998) that assumes a simple
sinusoidal connectivity scheme. This connectivity profile allows analytical results for
spatially inhomogeneous activity. Fortunately, the model by Hansel and Sompolinsky
(1998) is fathomable and one can nicely point out analogies to the one by Rosenbaum
and Doiron (2014).

Besides the simpler coupling scheme, the network by Hansel and Sompolinsky
(1998) violates Dale’s principle (Dale, 1935) and makes no distinction between excita-
tory and inhibitory neurons. For better comparison with the model by Rosenbaum and
Doiron (2014), we are going to reduce their mean-field network to a single population
version too. This reduction is not part of the original paper, but a new contribution by
the thesis author.

By removing one population and assuming that the remaining population forms
excitatory as well as inhibitory connections with itself, we obtain a single differential
equation:

τ
∂ν(x, t)

∂t
= −ν(x, t) +

√
N [(ωE − ωI) ∗ ν(x, t) + jA]+, (4.62)

where ∗ denotes circular convolution on Γ = (0, 1]. In addition, ν is the dynamic firing
rate at position x. We neglect the subscript νX because we are only dealing with a
single population. Moreover, jA is the afferent input, τ is the network time constant,
and N the network size. ωE as well as ωI denote the recurrent coupling defined similar
to equations 4.11 and 4.12, but because of having only one population we do not need
the population fraction factors q and 1− q:

ωE(x) = jE κ
Γ
E(x), (4.63)

ωI(x) = jI κ
Γ
I (x). (4.64)

Again, we can solve for the homogeneous fixpoint with strictly positive firing rates
in the spatial Fourier domain:

ν̃0(n) =
j̃A(n)

ω̃I(n)− ω̃E(n) + ϵ
, (4.65)

with ϵ = 1/
√
N the finite size factor.
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Figure 4.8: Various Mexican hat connectivity profiles ωE −ωI with σE <
σI are shown on the left (A) for different excitatory connections strenghts
jE . The Fourier transform is shown on the right (B) for n ≥ 0. If positive
values are present, the maxima of the Fourier transforms are marked by
the black dots.

Moreover, we can basically read off the condition for stability directly from the
differential equation 4.62. The homogeneous fixpoint is stable if

Re(ω̃E(n)− ω̃I(n))− ϵ < 0 (4.66)

for all Fourier modes n.
The beauty of this simplification is that for Gaussian connectivity profiles κΓY (x) =

g(x;σY ) (c.f. equation 4.37) we can summarize the coupling term ω(x) = ωE(x)−ωI(x)

into a single expression jE g(x;σE)− jI g(x;σI) with a Fourier transform given by

ω̃(n) = ω̃E(n)− ω̃I(n) = jE exp(−2π2 n2 σ2E)− jI exp(−2π2 n2 σ2I ). (4.67)

We can plot this Fourier transform for various connection strengths and connectivity
profiles as depicted in figures 4.8 and 4.9. There one can immediately see which spatial
frequencies are amplified (positive parts) and which are damped (negative parts). In-
creasing jE as wells σI shifts the maxima (black dots) of the curves slightly to the left
leading to the amplification of lower spatial frequencies. Again, the 0th Fourier mode
determines if there is runaway excitation (ω̃E(0)− ω̃I(0)− ϵ > 0) or if firing rates have
a chance to remain finite.

Nonetheless, the question remains which network activity is observed in case there
is no runaway excitation, but the homogeneous fixpoint is unstable. Unfortunately, we
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Figure 4.9: Various connectivity profiles ωE − ωI from inverse hat to
Mexican hat are shown on the left (A) for different inhibitory connec-
tions spreads σI . The Fourier transform is shown on the right (B) for
n ≥ 0. If positive values are present, the maxima of the Fourier trans-
forms are marked by the black dots.

cannot tell due to the non-linear rectification. The least we can do is provide a self-
consistent equation for any fixpoint ∂ν(x, t)/∂t = 0 in the original domain Γ using a
Fourier expansion f(x) = f̃(0) + 2

∞
n=1 |f̃(n)| cos(2π n (x+ arg(f̃(n)))):

ν(x, t) =
√
N


ω̃(0) ν0(t) + 2

∞
n=1

|ω̃(n)| νn(t) cos(2π n (x+ ϕn(t))) + jA


+

, (4.68)

ϕn(t) =ψn(t) + arg(ω̃(n)), (4.69)

where |z| is the absolute and arg(z) = atan2(Im(z),Re(z))/(2π) the argument func-
tion. ψn(t) = arg(ν̃(n, t)) and ν0(t) = ν̃(0, t) as well as νn(t) = 2|ν̃(n, t)| are the phase
and amplitude coefficients of the activity, respectively. Hence, if we knew the spatial
Fourier coefficients ν0(t), νn(t), and phases ψn(t), we would have a complete descrip-
tion of all fixpoints. Yet, due to the non-linearity [·]+, we cannot solve for these coeffi-
cients. However, by looking at the Fourier expansion in equation 4.69 we can recognize
the system’s resemblance to another model by Hansel and Sompolinsky (1998).

The mean-field model by Hansel and Sompolinsky (1998) reads

τ
∂ν(x, t)

∂t
= −ν(x, t) +

√
N [(j0 + j1 cos(2π x)) ∗ ν(x, t) + jA]+, (4.70)

where j0 and j1 are the recurrent coupling strength parameters. In contrast to the previ-
ous model, these can take positive as well as negative values, i.e. j0, j1 ∈ R. The rest of
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Figure 4.10: Local Gaussian connectivity profile from Rosenbaum and
Doiron (2014) in red and global sinusoidal connectivity profile from
Hansel and Sompolinsky (1998) in blue on the left (A). The Fourier trans-
form is shown on the right (B) for n ≥ 0.

the parameters are analogous to the previous model. Looking at the fixpoint equation
in form of the Fourier expansion reveals the similarity to the single population model
discussed before:

ν(x, t) =
√
N [j0 ν0(t) + j1 ν1(t) cos(2π(x+ ψ(t))) + jA]+ . (4.71)

Basically, it is the same expression as in equation 4.69, but instead of an infinite sum of
spatial Fourier coefficients, the series is truncated after the 1st Fourier component in-
cluding only n = 0 and n = 1. The advantage is that despite the non-linear rectification
[·]+, one can solve this analytically. Before going into detail, we want to briefly look
into the differences between the two models.

A Gaussian connectivity profile instantiates a local coupling scheme where neurons
are more likely to be connected with their nearest neighbors. The connection probabil-
ity usually vanishes quickly with increasing distance among cell pairs. However, the
scheme used by Hansel and Sompolinsky (1998) is a global sinusoidal coupling where
even neurons far apart are connected. This difference can be nicely visualized. Indeed,
as illustrated in figure 4.10A, the sinusoidal coupling can exhibit a topology similar to a
Gaussian Mexican hat on a global scale with longer ranging inhibitory than excitatory
coupling. However, the discrepancy between the two coupling schemes becomes very
clear when looking at their Fourier transforms given in figure 4.10B. The transform of
the Gaussian profile shows that a whole range of spatial frequencies is amplified. In
contrast, the sinusoidal coupling can only exhibit sharp peaks at n = 0 and n = ±1.
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We admit that this constitutes a substantial difference between the two systems.
As a consequence, the analytical solutions for the model by Hansel and Sompolinsky
(1998) cannot be directly applied to the complex Gaussian coupling. Nevertheless, the
solutions can give an intuition about what kind of heterogeneous activity may emerge
in the model by Rosenbaum and Doiron (2014) and how the simulation results of the
next chapter can be interpreted.

4.3.2 The Sinusoidal Coupling Model

We will briefly discuss the analytical solutions for spatially inhomogeneous activity in
the model by Hansel and Sompolinsky (1998) in this section. The following results are
excerpts from this paper; however, some equations were taken from Roxin et al. (2006)
whose expressions are sometimes more compact and to the point. We will deviate from
the notation used in the original paper in order to be in line with the notation used by
Rosenbaum and Doiron (2014). Moreover, Hansel and Sompolinsky (1998) assume that
recurrent weights scale with O(1/N) in contrast to the scalings of O(1/

√
N) and O(1)

that were previously discussed. For better comparison we will change results from
Hansel and Sompolinsky (1998) to fit the scaling methods used within this chapter.

To compute the fixpoint, one can rewrite the model from equation 4.71 in terms of
the Fourier coefficients ν0(t), ν1(t), and the phase ψ(t) (Roxin et al., 2006):

τ
dν0(t)

dt
= −ν0(t) +

 1

0
[µ(x, t)]+ dx, (4.72)

τ
dν1(t)

dt
= −ν1(t) + 2

 1

0
cos(2π(x+ ψ(t))) [µ(x, t)]+ dx, (4.73)

with the mean-field current µ(x, t) defined as

µ(x, t) =
√
N (j0 ν0(t) + j1 ν1(t) cos(2π(x+ ψ(t))) + jA) . (4.74)

This set of equations can be combined to solve for fixpoints even in case of negative
currents, i.e. µ(x, t) < 0 for some x.

First of all, the homogeneous fixpoint is

ν0 =
jA

ϵ− j0
, (4.75)

where ϵ is again the finite size factor with ϵ = 1/
√
N . The homogeneous fixpoint is

stable for j0 − ϵ < 0 and j1/2 − ϵ < 0. So if j0 > ϵ, one observes runaway activity and
for j1 > 2ϵ one encounters a Turing bifurcation (Roxin et al., 2006). In contrast to the
previous model, an analytical expression for the system’s behavior in case j0−ϵ < 0 but
j1/2−ϵ > 0 can be provided. The profile is completely determined once the coefficients
ν0(t) and ν1(t) are known. These can be computed by combining equations 4.72, 4.73,
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Figure 4.11: Bump solutions νbump (black lines) for two different in-
puts (red dotted lines, JA = jA

√
N ). Solved via Euler integration.

Parameters are N = 1000, j0 = −0.07, and j1 = 0.15. On the left
(A) spatially constant input jA = 0.3 and on the right (B) tuned input
jA(x) = [0.3 cos(1.3π (x − 0.4))]+ are used. For the constant input (A)
the phase is arbitrary (here 0.5). Instead of modifying the bump shape,
the tuned input (B) rather selects among the potential bump solutions.
The bump peak’s position corresponds to the peak location of the input
(here 0.4).

as well as 4.74, and some elaborate algebra (Roxin et al., 2006). In this case one observes
a single stable bump solution with

νbump(x) =
√
N [(j0 ν0 + j1 ν1 cos(2π (x+ ψbump)) + jA]+, (4.76)

where the phase ψbump is arbitrary due to the translational symmetry along the ring
Γ. This state is also called marginal phase (Hansel and Sompolinsky, 1998) to indicate
that the system does not reach a single fixpoint but a line of potential fixpoints. The
half-width xbump of the active region where νbump(x) > 0 can also be calculated using

j1


xbump − 1

4π
sin(4π xbump)


= ϵ, (4.77)

with finite size factor ϵ = 1/
√
N .

Moreover, the bump solution is not necessarily stable and rates may still diverge.
For the bump being a stable fixpoint, one additionally requires

j0 <
π ϵ

2π xbump − tan(2π xbump)
. (4.78)

Otherwise, the system undergoes an amplitude instability and the rates within the ac-
tive region of the bump diverge. An example of a stable bump solution for homoge-
neous input is given in figure 4.11A.
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Of note, the bump solution requires a finite network ϵ > 0. In case ϵ = 0, the
only solution satisfying equation 4.77 is xbump = 0. This would yield an impossible
bump with no extent. Likewise, for decreasing ϵ or increasing the weight j1, the half-
width xbump of the bump shrinks. This is true since xbump − 1/(4π) sin(4π xbump) is
monotonically increasing in xbump because

d

dxbump


xbump − 1

4π
sin(4π xbump)


= 1− cos(4π xbump) ≥ 0. (4.79)

4.3.3 Tuned Input and Tuning Sharpening

For tuned input where jA(x) is not a constant homogeneous input, but follows a bump
profile with half-width wider than the half-width of the network response for homo-
geneous input, one can observe that the network activity νbump(x) largely follows the
original bump structure. The bump profile is only slightly modulated by the input
jA(x), for details see Hansel and Sompolinsky (1998). Thus, the networks response
is sharper tuned than the input. Moreover, instead of modulating the width of the
network response, inhomogeneous input jA(x) rather selects a particular phase ψbump

among the line attractor. An example of a response to tuned input is provided in fig-
ure 4.11B, where the input’s peak determines the peak location of the bump.

4.3.4 Moving Bump Activity

For any translational asymmetry like noisy input or randomly sampled connectivity,
the bump solution becomes unstable in the sense that it starts wandering around. Such
perturbations along the ring are marginal, their magnitude does not decay with time
(Hansel and Sompolinsky, 1998).

Moreover, we can add adaptation to the model similar to what was already dis-
cussed in previous sections. In this case we obtain the following set of equations:

τ
∂ν(x, t)

∂t
= −ν(x, t) + [

√
N ((j0 + j1 cos(2π x)) ∗ ν(x, t) + jA)− w(x, t)]+, (4.80)

τw
∂w(x, t)

∂t
= −w(x, t) + τw b ν(x, t). (4.81)

According to Hansel and Sompolinsky (1998) the bump solution of the marginal phase
starts moving along the ring in case

j1 > 2ϵ


1− τ

τw


(4.82)

and

b >
τ

τ2w
. (4.83)
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Figure 4.12: Bump solutions νbump for two different inputs in combina-
tion with adaptation. The space Γ is depicted on y-axis, time on x-axis,
and activity in grey-scale. Solved via Euler integration with a stepisze
dt = 0.001 and random initial conditions. Parameters are N = 1000,
j0 = −0.07, j1 = 0.15, b = 0.3, τ = 0.01, and τw = 0.25. On the left
(A) spatially constant input jA = 0.3 and on the right (B) tuned input
jA(x) = 0.3 cos(0.35π (x − 0.5)) are used. For the constant input (A)
the bump moves across the entire network extent with a constant veloc-
ity v ≈ 0.6 (matching equation 4.84). The tuned input (B) confines the
bump movement. The bump zig-zags around the peak location (here
0.5).

Clearly, this is not an unlikely condition because of the long time scales of adaptation,
i.e. τw ≫ τ (Womble and Moises, 1992).

Moreover, Hansel and Sompolinsky (1998) showed that perturbations of the phases
of firing rates as well as adaptation are both marginal and do not decay with time.
Surprisingly, this means that the bump movement is determined only by τ , τw, and b.
Thus, given a moving bump, its velocity v is independent of the recurrent interactions
and the number of neurons:

v =
1

2π τw


b
τ2w
τ

− 1. (4.84)

A moving bump profile with a constant velocity is depicted in figure 4.12A.
Finally, if we combine tuned input and adaptation, we observe that the movement

of the bump is confined by the stimulus. We determine a zig-zagging or jitter around
the peak location of the heterogeneous input. Such a limited bump wandering is shown
in figure 4.12B.

4.4 Mexican Hat and Noise Correlations

We discussed that in the single population model with a simple sinusoidal coupling
term j0 + j1 cos(2π x) and finite size, one can obtain spatially inhomogeneous activity
in form of a single bump with finite firing rates. For homogeneous input the center of
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Figure 4.13: Bumps solutions of a single population Mexican hat net-
work using Euler integration with parameters jA = 0.3, jE = 0.5,
jI = 1.0, σE = 0.025, σE = 0.0125, τ = 0.01 N = 1000, Euler step-
size dt = 0.001, and random initial conditions. Left (A): The emergence
of multiple stable bumps can be observed. Middle (B): Adding adapta-
tion with b = 0.3 and τw = 0.25 yields moving bumps. In (B) the space
Γ is depicted on y-axis, time on x-axis, and activity in grey-scale. Right
(C): Model with adaptation (as in B) and Gaussian noise with intensitiy
D = 0.3 yields zig-zagging of bumps.

the bump is located at an arbitrary position ψbump. Moreover, if noise or not too weak
adaptation is added to the model, the bump starts moving across the ring.

For models with Gaussian Mexican hat connectivity we expect something similar.
Nevertheless, as was shown for instance in figure 4.10, in Gaussian Mexican hat net-
works a range of spatial Fourier modes can be amplified instead of just the 0th or 1st
mode. Accordingly, we expect not only a single but several bumps to appear. More
precisely, we predict a sinusoidal modulation of active and inactive regions.

We numerically integrated the single population model with Gaussian connectivity
kernel (c.f. equation 4.62) with a simple Euler method. Indeed, we observed a steady
state with multiple bumps as depicted in figure 4.13A.

Moreover, we further augmented the model by introducing adaptation as well as
Gaussian white noise simulating external noisy input:

τ
∂ν(x, t)

∂t
= −ν + [

√
N ((ωE − ωI) ∗ ν + jA)− w +

√
2D ξ(x, t)]+, (4.85)

τw
∂w(x, t)

∂t
= −w + τw b ν, (4.86)

where ξ(x, t) is a Gaussian noise process with 0 mean and variance of 1 and D denotes
the noise intensity parameter. All other parameters are analogous to the previous mod-
els. With adaptation the bumps started moving across the space Γ, see figure 4.13B. In
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addition, figure 4.13C illustrates that noisy input yielded a zig-zagging of bumps. Their
movement directions were not necessarily aligned and could occasionally change.

For our spiking neuron network simulations in the following chapter we expect
similar heterogeneous activity patterns as for the single population rate model above.
Moreover, we predict that the spatially inhomogeneous activity leads to noise correla-
tions. More precisely, bump movement can cause correlated variability in firing rates
among neuron pairs. In turn, these lead to correlated spike counts, as measured by
the coefficient rSC (c.f. equation 3.4). If a pair of neurons is currently part of a mov-
ing active region, they are very likely to fire together. Likewise, if they are part of an
inactive region, their firing is jointly reduced. Accordingly, this pair exhibits positive
noise correlations. Negative noise correlations are observed among pairs of which one
neuron is part of an active and the other is part of an inactive region. Moreover, the
spike count correlation coefficient is measured over trials. For homogeneous network
input the phases of the bumps are arbitrary and, therefore, can change across trials.
Accordingly, this facilitates noise correlations besides bump movement.

Due to multiple bumps for homogeneous input, we expect distance dependent
noise correlations with a sinusoidal modulation. Moreover, because of noisy input
and randomly drawn connections, we further predict that there is a general decline
of the amplitude of correlations with distance. In other words, active regions further
apart show a reduced influence on each other’s movement similar to what is depicted
in figure 4.13C. In the following chapter we are going to perform rigorous parameter
explorations to study the relation between connectivity strengths, Mexican hat shape,
and the resulting spatial structure of noise correlations.

4.5 Summary

In this chapter we reviewed the mean-field model by Rosenbaum and Doiron (2014).
We recapitulated that Mexican hat connectivity with wider inhibitory than excitatory
spread can render a homogeneous fixpoint with balanced excitatory and inhibitory
activity unstable. Additionally, instead of runaway activity, which corresponds to an
unstable 0th Fourier mode, Mexican hat topologies may yield spatially inhomogeneous
activity profiles with finite firing rates.

Moreover, augmenting the model with adaptation has a negligible effect on the
stability of the homogeneous fixpoint. In particular in the limit of infinite network sizes,
all results from Rosenbaum and Doiron (2014) are still valid in the extended model.

The theory by Rosenbaum and Doiron (2014) cannot give an analytical expression
of the network state in case of inhomogeneous activity. Therefore, we further reduced
and compared the model to work by Hansel and Sompolinsky (1998) that makes use
of sinusoidal coupling. For this simplified model, one can provide an analytical de-
scription of inhomogeneous activity. Activity in form of a single bump solution can
emerge. Since spatially tuned input has a negligible influence on the bump shape,
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bump networks sharpen inputs with broader tuning than the bump width. Further-
more, the bump may wander along the ring in case of noise or sufficiently strong adap-
tation. Combining adaptation and tuned input, the bump movement is limited and
jitters around the peak of the stimulus.

Numerically integrating a single population rate model with Gaussian Mexican hat
coupling revealed the emergence of multiple bumps. These bumps moved across the
network extent when adaptation was introduced. Additional Gaussian white noise
input yielded zig-zag movements of bumps.

A similar behavior is expected for spiking neuron networks with Poisson input and
Mexican hat topologies realized by sampling from Gaussian kernels. We further predict
that the movement and phase changes of bumps can cause noise correlations among
spiking neurons. Moreover, we expect that the correlations sinusoidally depend on the
distance between cell pairs.





5Correlations and Coding in
Spiking Neuron Networks

IN this chapter we are going to present and discuss our simulation results for spik-
ing neuron networks with Gaussian connection topologies. We will investigate
if recurrent connectivity can cause noise correlations, that is Mexican hat connec-

tivity in particular. In addition, we are going to shed light on the question how such
correlations affect stimulus encoding.

In the beginning we will formulate our hypotheses based on the literature and the
previous theoretical considerations. Next, we will give a short overview about the
network model. More detailed explanations of the model are provided in appendix A.
Thirdly, we are going to look at simulation results obtained in one-dimensional ring
networks. Thereby we will consider results for homogeneous as well as heterogeneous
inputs. Fourthly, we are going to turn to a biologically more plausible setting of two-
dimensional networks. Similarly, we will discuss results obtained for homogeneous
as well as for orientation tuned inputs. Lastly, we are going to investigate how the
observed correlations affect the quality of a stimulus encoding.

5.1 Hypotheses

Based on ideas reviewed in the previous two chapters, especially the simulations by
Hansen et al. (2012), as well as theoretical work by Hansel and Sompolinsky (1998),
and Rosenbaum and Doiron (2014), we formulate the following hypotheses:

1. A Mexican hat connectivity (σE < σI ) can amplify certain spatial frequencies.
Given homogeneous input, this causes the emergence of multiple bumps or active
regions with arbitrary positions.

2. Because of adaptation and noise, the bumps move across the network extent. The
changes of the bumps’ positions across trials as well as their movement yield dis-
tance dependent noise correlations following a sinusoidal modulation. Besides
the sinusoidal modulation, due to noise there is a general decline in amplitude
with distance.
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3. Heterogeneous, tuned input determines the location of the bumps. Noise corre-
lations are still present due to the bumps’ confined movement around the input’s
peaks.

4. Noise correlations emerging in Mexican hat topologies are detrimental to encod-
ing quality.

5. Mexican hat topologies yielding detrimental correlations can still enhance encod-
ing quality in comparison to other profiles by tuning sharpening.

5.2 Model Description

The model is based on a primary visual cortex network developed within our research
group by Stimberg et al. (2009). Their network model leans more towards biological re-
alism rather than providing the most simplified description. In like manner, we wanted
to show that the hypotheses based on rather simplistic rate model descriptions can be
supported in a biologically realistic setting. In the following section we will give a brief
overview about the model. Detailed specifications including the neuronal differential
equations are provided in appendix A.

The model consisted of N = NE +NI excitatory and inhibitory adaptive exponen-
tial integrate and fire (AEIF) neurons (Brette and Gerstner, 2005). We assumed a ratio
between inhibitory to excitatory neurons of 1 to 4 (Beaulieu et al., 1992). The AEIF
model is common in the literature and can exhibit a very rich set of dynamics includ-
ing spike frequency adaptation (SFA) (Naud et al., 2008; Touboul and Brette, 2008). We
chose moderate sub-threshold and spike frequency adaptation for excitatory neurons
(aE = 2.0 nS, bE = 50pA). To account for the fact that adaptation is much weaker in in-
hibitory neurons (Nowak et al., 2003), for inhibitory cells adaptation parameters were
set to one tenth of the excitatory values (aI = 0.2 nS, bI = 5pA).

5.2.1 Topology and Coupling

We used a realistic synaptic coupling scheme with one type of inhibitory and two types
of excitatory synapses. Inhibitory synapses were modeled as decaying exponentials
following fast kinetics similar to γ-aminobutyric acidA (GABAA) receptors. Excita-
tory synapses were composed of an exponential decay following fast kinetics simi-
lar to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and
a bi-exponential function following slow kinetics similar to N-methyl-D-aspartic acid
(NMDA) receptors. We assumed a fixed ratio between AMPA and NMDA receptors
with a fraction of 70% AMPA receptors (Myme et al., 2003).
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Figure 5.1: 2D Network architecture. The sketch shows the general
architecture of the 2D networks with heterogeneous input. A layer of
excitatory neurons (blue dots) and inhibitory neurons (green triangles)
receives afferent as well as recurrent lateral input. Excitatory neurons
are placed on a regular grid and inhibitory neurons are assigned ran-
dom grid positions. Examples of lateral connections are depicted by the
black lines. These connections are sampled from Gaussian probability
kernels depending on cell distance, as depicted at the top. The preferred
orientation of a cell is assigned according to its position in the artificial
orientation map with 4 pinwheels (bottom colored sheet). Afferent in-
put is realized as independent Poisson spike trains. A circular Gaussian
tuning curve with a width of 27.5◦ determines the afferent rate for each
neuron as a function of the presented input stimulus orientation. Two
example input tuning curves for two different cells are shown at the bot-
tom.
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Each neuron receivedKE excitatory andKI inhibitory recurrent connections. These
synaptic connections were drawn from Gaussian probability distributions defined over
the Euclidean distances dij between two neurons i and j:

p(i, j) =

0 for i = j (no self-connections)

1/
√

2πσY
D

exp

−d2ij/2σ2Y


otherwise

, (5.1)

where Y ∈ {E, I} denotes the population type of pre-synaptic neuron j, D ∈ {1, 2} is
the dimensionality of the model space, and σY is the width or spread of the connection.

We investigated one-dimensional line networks as well as two-dimensional models
where neurons were placed on a grid. Excitatory neurons were regularly and evenly
spaced on the line or grid. Whereas the positions of the inhibitory neurons were chosen
randomly from a uniform distribution defined over the neural space. Distances in our
network are given in pixels (px) or kilo-pixels (kpx), the distance between 2 or 1001
excitatory cells, respectively. Furthermore, the two-dimensional grid map was scaled
to distances matching cat primary visual cortex (Stimberg et al., 2009). We assumed a
scaling of 1 px corresponding to 15 µm. Thus, a 100 px × 100 px network with 4 orien-
tation pinwheels corresponds to a 1.5 mm × 1.5 mm piece of cat primary visual cortex.
Such a two-dimensional network topology is depicted in figure 5.1.

We use the terms configuration or profile to refer to the connection topology of a
network. Important parameters that we investigated are σE and σI , the connectivity
spread of excitatory and inhibitory connections, respectively. For the two-dimensional
networks we thoroughly varied both parameters between 5 and 25 pixels, correspond-
ing to 75 and 375 µm in cat cortex scale. These values span a biologically plausible
range. For instance, Hellwig (2000) measured a Gaussian decay of connection proba-
bility with spreads between 150 and 350 µm for pyramidal neurons in the rat primary
visual cortex. Similarly, Mariño et al. (2005) reported a Gaussian connection spread of
about 125 µm for local connections in cat V1.

In case we relate to the connection strengths, we use the term regime. Two important
parameters in this regard are ḡEE and ḡIE , the connection strength between excitatory
to excitatory and excitatory to inhibitory cells. More precisely, these are the maximum
conductances of the recurrent currents in case a single spike is emitted by an excitatory
pre-synaptic cell. The maximum conductance was shared among AMPA and NMDA
kinetics with respect to the fixed ratio between the two types.1 The maximum con-
ductance values were varied in rather small amplitude ranges between 0 and 1.2 nS
such that the excitatory post-synaptic potential (EPSP) at resting membrane voltage
(−65 mV) showed small deflections with maximum values between 0 and 1.5 mV for a
single pre-synaptic spike. These values are within a biologically plausible range. For
instance, Mason et al. (1991) observed single spike EPSPs ranging from 0.05 up to 2 mV
with a mean size of 0.55 mV in rat primary visual cortex.

1ḡAMPA,EE = 0.7ḡEE and ḡNMDA,EE = 0.3ḡEE , c.f. Stimberg et al. (2009)
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Figure 5.2: Maximum absolute deflection of membrane voltage at rest-
ing potential (-65 mV) for single pre-synaptic spikes as function of con-
nection strength. Excitatory post-synaptic potential (EPSP) size on the
left and inhibitory post-synaptic potential (IPSP) on the right; in blue for
excitatory neurons and inhibitory neurons in dotted green.

Inhibitory connection strengths were not varied and kept fixed, we used ḡII =

ḡEI = 5.0 nS. At first sight, these values seem large in comparison to the excitatory
strengths. However, inhibitory synapses followed only fast GABAA kinetics in contrast
to the combination of fast AMPA and slow NMDA kinetics of the excitatory ones. As
a consequence, an inhibitory pre-synaptic spike causes a comparably small deflection
of about 1 mV of the membrane voltage of the post-synaptic cell at rest. The deflection
of the membrane potential at rest as a function of connection strength is depicted in
figure 5.2.

Synaptic delays depended linearly on the distance between cells. We assumed a sig-
nal velocity of 0.2 m/s (13.3 kpx/s) in the two-dimensional model. Usually values be-
tween 0.1 and 0.5 m/s are measured in experiments (Bringuier, 1999; González-Burgos
et al., 2000). For further details and values of the one-dimensional networks see the
appendix A.

Lastly, if not otherwise stated, boundary conditions were periodic. Hence, one-
dimensional networks exhibit a ring shape, whereas two-dimensional networks instan-
tiate a torus.

5.2.2 Network Input

Each neuron received afferent inputs modeled asKA independent Poisson spike trains.
Hence, inputs to each neuron were decorrelated and all observed correlations could
only arise due to recurrent connectivity.

We distinguished between two driving modes, homogeneous, also termed a blank
stimulus, and heterogeneous, also named tuned input.
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Figure 5.3: Heterogenous input to 1D network. Afferent inputs of the
first 5000 neurons are depicted. Three different maximum input frequen-
cies in combination with three different spatial frequencies are given.

In case of a blank stimulus, input was not tuned but every neuron received afferent
input realized as independent Poisson spike trains with the same frequency. This mode
resembles animal experiments where a blank screen stimulus is shown or spontaneous
activity is measured.

In case of heterogeneous stimuli in a one-dimensional network, the frequencies of
the afferent input were spatially tuned according to a sine wave. The input frequency
at the kth pixel is computed as follows:

νAff,k = (1 + sin(2π ωs k)) ν̄Aff + νAff, base, (5.2)

ν̄Aff =
νAff, max − νAff, base

2
, (5.3)

where ωs is the spatial frequency of the sine wave per pixel, νAff, max is the maximum
firing rate and νAff, base denotes the baseline or minimum firing rate. The input was
only spatially modulated and constant in time. Example sine wave inputs are shown
in figure 5.3.

If an orientation stimulus was shown to a 2D network, the afferent input was tuned
according to the preferred orientation of the post-synaptic neuron. The orientation
preference of each neuron is determined by its position in the pinwheel map as de-
picted in figure 5.1. We assumed moderate orientation tuning. Input firing was com-
puted using a circular Gaussian tuning function with a width of σAff = 27.5◦. The input
firing rate to each cell i was computed as follows:

νAff,i(s) = (νAff, max − νAff, base) exp


−(s− sPOi)

2

2σ2Aff


+ νAff, base, (5.4)
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where νAff, max is the maximum or peak firing rate, νAff, base is the baseline firing, s is
the orientation of the stimulus (s ∈ [−90◦, 90◦)), and sPOi denotes the ith neuron’s
preferred orientation according to the orientation map. Again, inputs only varied in
spatial dimensions and were constant in time.

Before any measures were applied every network was given at least 1 second of
afferent stimulation to settle into a stationary state.

5.2.3 Implementation

The network was implemented in Python 2.7 and was partly compiled into C-code for
efficiency using the Numba library (The Numba Development Team, 2015). The source
code is available on github.2 Moreover, some correlation experiments were also veri-
fied with smaller networks of Hodgkin-Huxley type neurons (c.f. Stimberg et al., 2009)
using the BRIAN simulator package (Goodman and Brette, 2008) (data not shown).
All data and parameter explorations were managed using the previously introduced
simulation toolkit pypet.

5.2.4 Criticality

As discussed in the previous chapter, for certain coupling configurations with strong
connection weights, the average amount of excitation is amplified. In the previous
chapter’s simple model with a rectified linear transfer function, this yields runaway
excitation with divergent firing activity.

Such runaway conditions were tested in the simulations by applying network stim-
ulation for 1 second, removing the stimulation for 1 second,3 and checking if activity
persisted. In such a case the network was classified as critical or self-sustained, viz. the
network was able to sustain spiking without any external drive. The transition bound-
ary between normal and critical activity is termed criticality.

This condition corresponds roughly to the runaway excitation from the previous
chapter. Recurrent connectivity is strong enough to amplify activity. In the theoretic
model this may translate into Aϵ(0) (c.f. equation 4.31) having eigenvalues with posi-
tive real parts. Therefore, firing rates diverge to infinite values. Moreover, we saw in
the model by Hansel and Sompolinsky (1998) that firing rates may even diverge in case
the 0th Fourier mode of the fixpoint is stable. Given a bump solution, inhibition may
be too weak so that the activity within the active region of the bump grows infinitely
(c.f. equation 4.78).

Still, in our simulations firing rates are always bounded due to finite time steps and
refractory periods. But one can observe divergence in terms of spiking activity close to
the maximum firing rates. In our simulations maximum rates were 333 Hz and 500 Hz
for excitatory and inhibitory neurons, respectively.

2https://github.com/SmokinCaterpillar/visualcortex
3To verify this method, periods of 9 seconds were tested as well and did yield the same outcome.

https://github.com/SmokinCaterpillar/visualcortex
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In a few cases despite the absence of input, simulation activity was persistent, but
firing rates remained low and did not reach values close to maximum activity. In con-
trast to the linear model4 of the previous chapter, the neurons herein are highly non-
linear which may explain this observation. Although self-sustained activity with low
firing rates is an intriguing phenomenon, a thorough numerical and theoretical inves-
tigation is beyond the scope of this work. Therefore, our analyses will be restricted to
network regimes without self-sustained activity. Still, some minor analyses of activity
patterns beyond criticality are provided in appendix B.

5.3 Noise Correlations in One-Dimensional Networks

Before investigating the more biologically realistic two-dimensional setting, we will
turn to simulations of ring networks similar to the model by Hansen et al. (2012) de-
picted in figure 3.4 in chapter 3. Our networks consisted of NE = 10,000 excitatory
and NI = 2500 inhibitory neurons placed on a ring with a length scale of 10 kpx. Due
to periodic boundary conditions the maximum distance between two cells is therefore
5 kpx. Each neuron received KE = 200 excitatory and KI = 100 inhibitory recurrent
inputs. At first, we will only consider homogeneous input of 15 Hz with KA = 100

afferent connections per cell. Each of these inputs was realized as an independent Pois-
son process with the same rate. Thereafter, we will look at sinusoidally tuned input
stimuli with spatially heterogeneous rates. We tested different spatial frequencies as
well as maximum firing rates.

5.3.1 Correlated Variability and Spatial Patterns

Figure 5.4 shows spike raster plots of three different connection strengths for the same
Mexican hat topology (σE = 125 px < σE = 250 px). From top to bottom excitatory
recurrent connection strengths were chosen such that the networks operated afar (A),
close to (B), and beyond criticality (C). At the bottom (C) activity was divergent and
excitatory neurons exhibited a high firing rate. The top graph (A) shows asynchronous
activity. In the previous chapter we discussed that for finite size networks, there exists a
regime where no spatial patterns emerge despite the Mexican hat topology. The middle
image (B) shows the emergence of a spatial pattern. One can observe moving bumps
that may even fuse into each other or split into two.

In figure 5.4A the average noise correlation coefficient regardless of distance be-
tween cell pairs is close to 0. However, for the network yielding spatial patterns in
the middle (figure 5.4B), we measured distance dependent noise correlations (data not
shown).

In figure 5.5A the spike count correlation coefficient as a function of distance be-
tween cell pairs is shown for another Mexican hat network close to criticality. Each

4Linear in the homogeneous case where rectification can be ignored.
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A Afar from criticality

B Close to criticality

C Beyond criticality

Figure 5.4: Spiking activity of a Mexican hat network (σE =
125 px < σE = 250 px) for three different excitatory recurrent connection
strengths. A small black dot represents a spike of a particular neuron at a
particular point in time. Neurons are ordered according to their position
on the ring. Small plots show the activity histograms over time (hori-
zontal) as well as over space (vertical). Top (A): Excitatory to excitatory
connectivity is weak (ḡEE = 0.15 nS and ḡIE = 0.6 nS) and the network
operates far from criticality. Middle (B): Mediocre connectivity strength
close to criticality (ḡEE = 0.25 nS and ḡIE = 0.5 nS). One can observe the
emergence of spatial patterns, i.e. moving bumps. Bottom (C): Strong
excitatory recurrent connectivity beyond criticality (ḡEE = 0.15 nS and
ḡIE = 0.1 nS), neurons are firing with a high rate.
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blue dot corresponds to the rSC value for an individual cell pair calculated over 50
trials. For comparison the noise correlations of an inverse Mexican hat are shown in
the small inset. No distance dependency of correlations was observed in this case. The
average value for bins of 20 px is plotted in green. For the Mexican hat network this
average correlation coefficient can be neatly fitted with a damped sine wave; shown on
top of the green curve in red. More precisely, the corresponding function with respect
to distance d is

⟨rSC⟩(d) = CrSC exp(−|d|/λrSC ) cos(ωrSCd), (5.5)

where ⟨rSC⟩(d) is expectation across neuron pairs with the same distance, CrSC is the
correlation fit for d = 0, λrSC is the mean decay lifetime, and ωrSC denotes the spa-
tial frequency. The fits were calculated using curve fitting from SciPy’s optimization
library (Jones et al., 2001). This optimization was repeated 10 times with random initial
values and the parameters of the best fit were chosen. In figure 5.5A for close by cells
correlation is relatively large and we fitted an initial value CrSC ≈ 0.64. Furthermore,
the exponential decay was quite slow with λrSC ≈ 3.4 kpx. Lastly, the spatial frequency
was fast with ωrSC ≈ 1.4 per thousand pixels.

We investigated whether the spatial scales of the noise correlations correspond to
the spatial scales of the moving bumps. In order to determine the spatial scale of the
moving patterns we sampled 100 windows of 10 ms activity for each trial. This yielded
activity vectors of length 10,000, with one entry for each neuron ordered along the
spatial axis. For each vector we computed the power spectrum using the fast Fourier
transform of the SciPy package (Jones et al., 2001). The average spectrum alongside
the average spatial autocorrelation across all windows is shown in figures 5.5C and
D, respectively. Indeed, the highest power was measured for 1.4 cycles per thousand
pixels, which nicely fits the spatial scale of the noise correlations. Moreover, the spatial
power spectrum does not show a spiky peak at only 1.4 cycles, but a slight broadening
around this value. This matches the observations one makes looking directly at the
network activity. Usually we counted 14 bumps within the entire network of 10,000
neurons, but occasionally due to splits and merges of bumps one more or less could be
found.

Moreover, with respect to the slow correlation amplitude decay λrSC ≈ 3.4 kpx, one
may also interpret the inhomogeneous activity as a wave solution. Accordingly, the
active bump regions correspond to the wave peaks. In contrast, the wave troughs are
hidden by the spiking threshold. One can only observe inactive regions without firing
because neurons cannot exhibit negative firing rates.

How does the spatially inhomogeneous activity relate to the amplification of spa-
tial frequencies due to the connectivity kernel? This question is a bit more difficult to
answer. As we discussed in the previous chapter, principally, for the linear rate model
we can determine the spatial amplification by translating the network into the spatial
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Figure 5.5: Top left (A): Noise correlations as a function of distance
in a Mexican hat network (σE = 125 px, σI = 250 px, ḡEE = 0.35 nS,
ḡIE = 0.6 nS). Blue dots represent rSC of individual neuron pairs com-
puted over a time window of 1 second and 50 trials. One can observe
a damped oscillation which can be nicely fit by equation 5.5. The fit-
ted function is shown in red and tightly overlays the empirical average
computed from the data in green. The inset shows the correlations for
an inverse Mexican hat (σE = 250 px, σI = 125 px) with the same re-
current strengths. Top right (B): Spike raster plot of 5000 excitatory neu-
rons. Bottom left (C): Spatial power spectrum computed from activity
snapshots of 10 ms averaged over 5000 samples. The frequency with the
highest power (1.4 cycles per kpx) nicely fits the oscillations of the noise
correlations with distance (A). The power spectrum for higher spatial
frequencies is shown in the inset and is basically flat. Bottom right (D):
Average autocorrelation of the activity snapshots.
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Fourier domain. Therefore, we need to know the connectivity kernel and the weights.
We can plug these values into equation 4.31 and infer which Jacobian has eigenvalues
with positive real parts. However, the simple rate model from the previous chapter
relies on instantaneous rate based coupling. The biologically more plausible complex
model used here is coupled via conductance based synapses. Hence, post-synaptic po-
tentials evolve over time and, additionally, depend on the membrane potential. There-
fore, we do not know the effective weights between the neural populations, especially
not at the unstable fixpoint with homogeneous activity. Still, we can use an approxima-
tion to the effective weights simply by looking at the average excitatory and inhibitory
recurrent currents for each population at the stable inhomogeneous fixpoint. This may
give us an approximation of the strength of the synaptic coupling at the unstable fix-
point. We can use the average currents as effective weights ωXY in equation 4.31 and
assume ϵ = 0:

A0(n) =


ω̃EE(n) −ω̃EI(n)

ω̃IE(n) −ω̃II(n)


. (5.6)

Using a non-zero value for ϵ is a difficult choice because currents are measured in
Siemens. It is unclear how this unit compares to the unitless value of the network size.
Given our assumptions, the resulting spatial frequency with the highest real eigenvalue
was 1.2 cycles per thousand pixels. This is close but a bit less than the spatial frequency
of the noise correlations with 1.4 cycles. However, the Mexican hat profile amplifies
not just a single spatial frequency but a certain range. This may explain why there
were a few more bumps than expected by just looking at the frequency with the largest
positive real part of the eigenvalues. Furthermore, we are not sure if the average cur-
rents in the bump attractor state are good estimates of the weights in the homogeneous
state. Hence, the theoretical considerations from the previous chapter are suitable for a
qualitative but not a quantitative comparison to our network models.

Furthermore, we observed an increase of correlated variability with increase in the
size of the integration window. As seen in figure 5.6A, longer integration time windows
yielded larger amplitudes of the damped sine wave. Moreover, increasing the integra-
tion window beyond 1 second yielded a saturation of average correlation as depicted
in figure 5.6B. We recall from chapter 3 that the noise correlation coefficient is defined
as the ratio between the covariance and the product of individual neurons’ standard
deviations of spike counts, rSC = Cov(ri, rj)/(Std(ri) Std(rj)). In this line of thought,
we took a look at the relation between the mean covariance of nearby neurons and the
geometric mean spike count variance of individual neurons. The results are depicted
in figure 5.6D. We observed that for smaller window sizes the covariance was much
smaller in comparison to the variance. Hence, much of the cells’ covariation was hid-
den by the spiking threshold. One can also recognize this by looking at pairwise spike
count distributions for different integration windows sizes as depicted in figure 5.7.
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Figure 5.6: Temporal Scales of Noise correlations. Network parameters
as in figure 5.5. Top left (A): Average noise correlation as a function
of cell distance computed over 50 repeated trials. Different integration
time window sizes are shown with increasing thickness of the lines. The
smallest window we use is 20 ms because for smaller windows only a
tiny minority of cells exhibits at least a single spike within 50 trials,
which strongly biases our calculation of the spike count correlation coef-
ficient. Increasing window size increases the amplitude of the damped
wave. Top right (B): Average noise correlation for cells at most 100 px
apart as a function of integration window size. This corresponds to less
than the first fourth of a cycle of the damped sine waves one the top left.
The envelope shows the standard deviation among all cell pairs. Increas-
ing the window size beyond 1 second yields a saturation effect. Bottom
left (C): Average temporal power spectrum. Movement of bumps hap-
pens on slow time scales as the peak and pronounced power on very
low frequencies suggest. Additionally, there is another shallow peak in
the gamma frequency band, as shown in the inset. Bottom right (D):
Contribution of spike count variance and covariance to the average rSC

shown above. For smaller window sizes the covariance is much smaller
than the neuron pairs’ gemoetric mean variance of spike counts. For in-
creasing window size the difference is reduced and both lines become
parallel. The expected number of spikes per neuron is shown as a black
dotted line.
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Figure 5.7: Distributions of spike counts for two different cell pairs for
long 10 s (A, B) and short 0.1 s (C, D) integration sizes. Network param-
eters as in figure 5.5. For better visibility we added a small random jitter
to each dot in the bottom two plots. For shorter time scales for both cells
one observes rarely any spikes in a single trial. As a consequence, covari-
ation of spikes is greatly reduced yielding a reduction in the spike count
correlation coefficient rSC as listed in the figure captions (including the
p-value). The orange line depicts the corresponding linear fit.

Moreover, as shown in the temporal power spectrum (figure 5.6C), the movement
of the bumps was rather slow. This is indicated by the pronounced power in the low
frequency band. The peak of the temporal power spectrum was found for 0.2 Hz. Fur-
thermore, another maximum was observed in the gamma spectrum around 80 Hz (in-
set). But in comparison to the lower frequencies the power was rather weak.

We also asked whether the cell type has an influence on the correlations. Figure 5.8
depicts the average spike count correlation between excitatory, inhibitory and mixed
pairs. There, no qualitative difference between the three groups can be determined just
a quantitative one. Pairs involving at least one inhibitory neuron exhibited a larger
amplitude of distance depended noise correlations. However, the overall shape of the
curves remained the same. In the rest of this thesis we will limit our analysis to ex-
citatory neurons only. GABAergic inhibitory interneurons are not known to project
information from early visual areas downstream to other cortical areas (Seriès et al.,
2004; Schmolesky, 2007). Thus, in terms of stimulus processing, correlated variability
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Figure 5.8: Left (A): Distance dependence of correlations for three differ-
ent types of cell pairings. Network parameters as in figure 5.5. Average
rSC for a window of 1 second among pairs of only excitatory neurons
(red), only inhibitory neurons (blue), and mixed pairs (black). Right (B):
Average correlations among cell pairs at most 100 pixel apart as a func-
tion of integration window size for the different pairings.

among pairs of excitatory neurons is of stronger importance than correlations among
inhibitory or mixed pairs.

5.3.2 Parameter Explorations

We explored the dependence of the fitted parameters from equation 5.5 as a function
of different connection strengths ḡEE as well as different Mexican hat sizes σI . The
fitted parameters as well as some other basic statistics such as the average firing rate,
the coefficient of variation (CV), and the average noise correlation coefficient (rSC) for
cells at most 100 px apart are shown in figure 5.9.

As one can see in figure 5.9A, the average firing rate increased slowly with increas-
ing excitatory to excitatory strength until criticality is reached as depicted by the orange
border. Beyond the border the average firing rate quickly diverged. However, slightly
beyond criticality (ḡEE = 0.575 nS) the average firing was still below 10 Hz; as were
also the individual average firing rates of every cell in the networks. So no neuron
showed divergent firing activity. Nonetheless, we observed persistent activity in the
absence of afferent input (as criticality is defined in this thesis).

Therefore, we investigated the effect of stronger input firing rates before and be-
yond criticality. For higher input firing rates and a regime beyond criticality, we ob-
served the divergence of firing rates for at least some of the networks’ cells. Figure 5.10
shows the spiking activity measured in two Mexican hat configurations if input fir-
ing rate was increased to 60 Hz instead of the default 15 Hz. In contrast to a network
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Figure 5.9: Top two rows (A-D) show parameter explorations of differ-
ent excitatory to excitatory connection strengths. ḡEE is explored using
a Mexican hat topology with σE = 125 px, σI = 250 px, and ḡIE = 0.6 nS.
The orange line marks the bifurcation to criticality. All values are com-
puted from 50 trials and averaged across 10 network realizations. Values
are computed from excitatory neurons only. Error bars mark the stan-
dard deviation across network realizations. The top row shows from left
to right: (A) the average firing rate as a function of connection strength,
followed by (B) the average coefficient of variation (CV), and (C) the av-
erage noise correlation coefficient (rSC) for cells with at most 100 px dis-
tance between them. The rSC is computed over an integration window
of 1 second and based on 50 trials. Middle row shows the curve parame-
ters from fitting distance dependend noise correlation with equation 5.5.
From left to right: (D) Average revolutions per thousand pixels (ωrSC

),
(E) decay constant (λrSC

), and (F) maximum average noise correlation
(CrSC

). Values were computed only for ḡEE ≥ 0.2 nS because for smaller
values no distance dependent noise correlations were observed. Bottom
row (G-I) same as in the middle but for exploring inhibitory connection
spread σI using ḡEE = 0.4 nS and σE = 125 px.
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Figure 5.10: Number of spikes emitted by every neuron within a 1
second time window for two Mexican hat networks (σE = 125 px,
σI = 250 px, ḡIE = 0.6 nS). Both networks are stimulated with strong ho-
mogenous input using a frequency of 60 Hz instead of the default 15 Hz.
In blue a network close to criticality and in green beyond criticality. Neu-
rons are ordered along their location on the ring topology (only first 5000
neurons are shown). For the network regime beyond criticality in green,
some of the neurons are firing almost with the maximum firing rate.

Figure 5.11: 95th percentile of excitatory neurons’ firing frequencies at
criticality as a function of input frequency. Mexican hat network pa-
rameters as in figure 5.10. Values are computed from single trials of 5
seconds duration after an initial period of 1 second. Firing rates were
determined from consecutive windows of 250 ms. Error bars mark the
standard deviation across 10 network realizations. This gives an impres-
sion of the top firing rates of all neurons in each network. For networks
before criticality (dark and light blue) the relation between input and top
output frequency is roughly linear. Whereas for networks beyond criti-
cality there is a non-linear increase and neuron firing rates rise to 250 Hz
or more for stronger input.
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Figure 5.12: Voltage and current traces for a neuron from a Mexican hat
network (A, C) and one from an inverse Mexican hat network (B, D).
Strengths in both networks are ḡEE = 0.35 nS and ḡIE = 0.6 nS, spreads
are σE = 125 px, σI = 250 px and σE = 250 px, σI = 125 px. Thick
lines are moving averages with a window size of 300 ms. Top left (A):
Voltage trace of a neuron in a Mexican hat network. The movement of
bumps yields bursting activity on the individual cell level. Top right (B):
Voltage trace of an inhibitory neuron which spikes irregularly. Bottom
row (C, D): Current traces where the excitatory afferent current is given
in cyan, recurrent excitatory in green, recurrent inhibitory in red, and
total current in black. For the afferent and total currents only the moving
averages are displayed.

regime that is just close to the bifurcation to criticality (ḡEE = 0.425 nS, blue line), one
can see that for ḡEE = 0.575 nS some of the neurons were firing almost with the max-
imum firing rate. These neurons participated in comparably broad bump structures.
Likewise, figure 5.11 shows that for networks beyond criticality, there is a non-linear
relation between input frequency and output frequency. At some point firing rates in-
creased non-linearly and the most active 5% of cells showed increased firing of 250 Hz
or more. Again, when we switched off input activity, the critical networks settled into
states of persistent activity (data not shown).

Moreover, figure 5.9B shows an increase of the coefficient of variation (CV) aver-
aged across all excitatory cells with an increase of ḡEE . The CV is based on the inter-
spike interval (ISI) distribution, i.e. the distribution over time intervals between two
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consecutive spikes of the same cell. The coefficient of variation of an individual neuron
is defined as the standard deviation of the cell’s ISI distribution over its mean:

CVi =
Std(ISIi)

⟨ISIi⟩
. (5.7)

As figure 5.9B illustrates with increasing strength the average CV exhibited a rather
sudden jump beyond 1 after which a seemingly exponential growth happened. Of
note, the value of 1 is a standard reference point because it is also the CV for any ho-
mogeneous Poisson process. Hence, the spiking activity of the cells was more random
and irregular than Poisson spiking. CVs larger than 1 are usually indicative of burst-
ing activity (Christodoulou and Clarkson, 1995). Bursting neurons show periods of no
activity followed by periods with strong repetitive firing. In other words, they emit
a couple of action potentials in so called bursts alternating with intervals of inactiv-
ity. Bursting can be identified by looking at voltage traces of individual neurons. Fig-
ure 5.12 depicts the voltage and current traces of a Mexican hat network neuron and a
cell from a network with an inverse topology. For the former we observed that action
potentials happened in bursts. Accordingly, the absolute value of the excitatory current
increased for a period of time which was not counterbalanced by inhibition leading to
increased spiking activity. Likewise, by looking at the raster plots of neural activity, as
in figure 5.4, we can see that such bursting behavior was indeed present for each indi-
vidual cell. Yet, if one takes the joint neural activity into account, one can understand
that the bursts are due to the moving activity bumps. Thus, cells may be participating
in a bump, i.e. bursting, or are silent if they are part of an inactive region.

Figure 5.9C shows the noise correlation coefficient rSC over 50 trials using a time
window of 1 second and averaged over cell pairs being at most 100 px apart. For lower
connection strength ḡEE , the average noise correlation was essentially zero. For values
ḡEE ≥ 0.2 nS there was a rapid increase followed by a plateau around 0.4 and a further
increase beyond criticality. When inspecting the raster plots for small values of ḡEE <

0.2 nS, we observed no bump activity. From the theoretical discussion in the previous
chapter we know that the homogeneous fixpoint with asynchronous activity can still
be stable even in case of Mexican hat coupling due to a finite network size. Indeed, this
was the case here. We tested different network sizes and scaled the number of afferent
and recurrent connections and the connection spread proportionally. By contrast, we
kept connection strength fixed because the post-synaptic potentials were already in
a biologically plausible range and we did not want to render these too small. More
simply, we changed the density of the network assuming that a multiple of excitatory
neurons, i.e. k · 10,000, occupies the same space as the original network with 10,000

neurons. Using low values of ḡEE = 0.15 nS and 0.2 nS, we observed an increase in
noise correlations between neurons that are at most k · 100 px apart for larger network
sizes, as depicted in figure 5.13. Similarly, figure 5.14 shows that the bumps became
more pronounced with an increase in network size. In contrast to what is predicted by
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Figure 5.13: Average noise correlation as a function of network size. Cor-
relations are computed and averaged from 50 trials between neurons
that are at most k100 px apart with k the size factor, k = NE/10,000.
The connection strength is kept fixed ḡEE = 0.15 nS or 0.2 nS and
ḡIE = 0.6 nS. Spreads are σE = 125 px and σI = 250 px. The number
of inhibitory neurons (NI ) as well as the number of connections (KA,
KE , and KI ) and the spread of connections (σE and σI ) scale linearly
with the number of excitatory neurons (NE).

Figure 5.14: Raster plots of excitatory network activity in Mexican hat
networks for different network sizes (20,000, 30,000, and 40,000 excita-
tory neurons; 5000, 7500, and 10,000 inhibitory neurons). Parameters as
in figure 5.13.
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Hansel and Sompolinsky (1998) (c.f. equation 4.77), we did not observe that the size of
the active regions shrinked; not even for huge networks with 50,000 neurons (40,000
excitatory and 10,000 inhibitory).

The middle row (D-F) of figure 5.9 shows the fitted parameters for equation 5.5 for
different connection strengths. As a reminder, the function nicely fitting the average
noise correlations is the following damped oscillation:

⟨rSC⟩(d) = CrSC exp(−|d|/λrSC ) cos(ωrSCd). (5.5 revisited)

The parameters were only fitted for ḡEE ≥ 0.2 nS.
With increase in connection strength, the frequency of the noise correlations ωrSC

decreased slightly in figure 5.9D. Likewise, by looking at raster plots of the correspond-
ing runs, we could observe a decrease in bump frequency too (data not shown). This
is in line with the theoretical considerations from the previous chapter. We saw for
the simple case of a single population model that increasing the excitatory connectivity
strength affects the spatial Fourier transform of the expected connectivity kernel. As
was shown in figure 4.8, the maximum of the spatial Fourier transform increased, but
also shifted to the left which yielded an amplification of lower spatial frequencies.

Furthermore, the relation between ḡEE and λrSC was non-monotonic. First, in fig-
ure 5.9E we identified an increase in λrSC which means a slower decay of average cor-
relations, followed by a decrease towards instability. Overall the exponential decay of
correlations with distance was rather slow, similar to what was observed in figure 5.5A.
Hence, there were even considerable positive and negative correlations between neu-
rons with wide distances of 4000 or 5000 pixels apart.

As expected, the shape of the curve for the fitted initial correlations CrSC in fig-
ure 5.9F strongly resembles the one above (figure 5.9C) showing the empirical average
noise correlation coefficient rSC . Since the empirical one is based on cell pairs at most
100 px apart, its magnitude is a bit lower than compared to CrSC . As a reminder, CrSC

fits the hypothetical average noise correlation value for cell pairs with no distance in
between them.

The bottom row (G-I) of figure 5.9 displays the parameter fits as a function of in-
hibitory spread σI for a fixed connection strength of ḡEE = 0.4 nS. Similar to increasing
connection strength, widening the inhibitory connection spread yielded a decrease in
the spatial frequency of noise correlations (G). As before, this was expected from theory
discussed in the previous chapter. Increasing the width of inhibitory coupling in the
single population model shifted the maximum of the Fourier transform to the left. This
in turn amplified slower spatial frequencies (c.f. figure 4.9). Surprisingly, there was
no effect of inhibitory connection spread on the decay λrSC (H) and only a minor one
on the amplitude parameter CrSC (I). We observed a weak decrease in CrSC for wider
spreads.
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5.3.3 Boundary Conditions

Clearly, a network’s boundary conditions are important with respect to the theoretical
considerations of the previous chapter. In order to translate the rate model’s activity
into the spatial Fourier domain, circular boundary conditions are necessary. Still, we
wanted to know if the theoretical findings also apply to less strict assumptions. Do
Mexican hat networks yield spatial activity patterns for other boundary conditions as
well?

We ran simulations with absorbing as well as reflecting boundary conditions. In
the former case, neurons close to one of the boundaries received less inputs from their
neighbors because outgoing connections beyond the boundary were simply cut off.
In the latter case connectivity at the boundaries was denser than in the center of the
network. Connections that were supposed to reach over the boundary were mirrored
and projected back into the network.

Figure 5.15 shows network activity for these two different boundary conditions.
As for circular boundary conditions, we observed the emergence of spatial patterns in
Mexican hat networks close to criticality. In turn, these spatial patterns yielded noise
correlations (data not shown). Likewise, no patterns and correlations were observed
for balanced and inverse spreads (data not shown).

However, using reflecting or absorbing boundary conditions introduces inhomo-
geneities into the spatial topology. As a consequence, analyses about distance depen-
dencies of variables become difficult. Besides the cell distance, the location of each cell
relative to the network boundaries is important. Therefore, throughout the rest of the
thesis we will restrict all simulations and analyses to circular boundary conditions.

5.3.4 Sinusoidal Stimuli

So far we investigated the correlated variability for homogeneous inputs where each
cell in the network was driven by Poisson input with the same frequency. We could
discern the emergence of moving bumps, i.e. we observed a bifurcation to a spatial
pattern similar to the marginal phase predicted by Hansel and Sompolinsky (1998).
We further measured correlated variability that followed the same spatial scales as the
bumps.

What happens if the input is tuned according to some particular function? In
the following we will investigate sinusoidally tuned input as previously defined in
equation 5.2 with different spatial frequencies ωs as well as different maximum input
strengths νAff, max. As a reminder, the tuning function of choice is

νAff,k(t) = (1 + sin(2π ωs k)) ν̄Aff + νAff, base, (5.2 revisited)

ν̄Aff =
νAff, max − νAff, base

2
. (5.3 revisited)
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A Reflecting boundary

B Absorbing boundary

Figure 5.15: Spiking activity of a Mexican hat network (σE = 125 px <
σE = 250 px, ḡEE = 0.3 nS, ḡIE = 0.6 nS) for reflecting (top) as well as
absorbing (bottom) boundary conditions. A small black dot represents
a spike of a particular neuron at a particular point in time. Neurons are
ordered according to their position on the ring. Small plots show the ac-
tivity histograms over time (horizontal) as well as over space (vertical).
As for circular boundary conditions spatial patterns are observed.
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Figure 5.16: Raster plots for different spatially heterogeneous inputs to
a Mexican hat network (σE = 125 px, σI = 250 px) close to criticality
(ḡEE = 0.4 nS, ḡIE = 0.6 nS). From left to right there is an increase in
spatial frequency of the input ωs, whereas top to bottom the maximum
frequency νAff, max is increased. The red sinusoid sketches the spatially
modulated input.
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Figure 5.17: Spatial Power Spectrum of Mexican hat networks for dif-
ferent spatial driving frequencies ωs and maximum input νAff, max. The
spatial driving frequencies ωs are given in the captions, maximum input
frequencies νAff, max are depicted by the differently colored lines. Net-
work parameters as in figure 5.16.
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Figure 5.18: Average noise correlations among pairs at most 100 px apart
within Mexican hat networks as a function of spatial driving frequency
ωs are shown. Different maximum frequencies νAff, max are depicted by
the differently colored lines. On the left (A) correlations are computed
for 1 second of simulation across 50 trials. On the right (B) correlations
are computed from a sliding window of 1 second size across a single
long trial of 30 seconds. Error bars mark standard deviations across 5
network realizations. Network parameters as in figure 5.16.

We expected an interaction between the spatially inhomogeneous attractor for ho-
mogeneous input and the shape of the tuned input. This is indeed what we observed.
For lower spatial frequencies ωs (0.2 kpx−1, 0.6 kpx−1) we recognized freely moving
bumps, whereas for intermediate frequencies that matched or were close to the spa-
tial frequency of the bumps for homogeneous input (1.4 kpx−1, 1.8 kpx−1), the bumps
were tightly locked to the input frequency and showed almost no movement. For faster
spatial frequencies (2.6 kpx−1, 3.0 kpx−1) jitter among the locked bumps was slightly in-
creased. Moreover, the location of the bumps varied across trials and we observed two
different widths of the active regions. Thick bumps alternating with rather thin activ-
ity that is still phase locked to the input frequency could be recognized (figure 5.16).
In addition, for intermediate input frequencies ωs that match the bump frequency of
the network, increasing the amplitude or maximum frequency νAff, max of the input
strengthened the bump locking to the spatial maxima of the input. Hence, for weaker
maximum frequencies like νAff, max = 4.5Hz or νAff, max = 6Hz bumps showed a slight
movement around the peaks of the input, whereas this jitter vanished for larger fre-
quencies νAff, max.

Furthermore, the locking to the driving frequency was also reflected in the observed
spatial power spectra of network activity as depicted in figure 5.17. For the lowest spa-
tial input frequency ωs = 0.2 kpx−1, the spatial power spectrum resembles the one for
the homogeneous input as in figure 5.5C. Increasing the frequency ωs to intermediate
values, however, yielded sharp peaks at the driving input frequencies and the higher



Noise Correlations in One-Dimensional Networks 109

Figure 5.19: Distance dependency of noise correlations in a Mexican hat
network for spatially heterogeneous input. Subplots show distance de-
pendency for different spatial input frequencies ωs, colored lines indi-
cate the maximum driving frequency νAff, max. The average empirical
noise correlation in bins of 20 px of distance between pairs of cells is
given. Network parameters as in figure 5.16.
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harmonics. These sharp peaks also followed the driving frequency for higher spatial
frequencies of 2.2 kpx−1 and more. Yet, for such high spatial frequencies, an additional
broader peak was observed at the frequency band of spatial patterns for the homoge-
neous drive at 1.4 kpx−1.

Similar effects could be found for the measured noise correlations. Figure 5.18
shows the average noise correlations over an integration window of 1 second for pairs
at most 100 px apart. Correlations were weakest for stimuli which spatial frequency
ωs resemble the inherent frequency of the bump activity. In this setting, increasing the
maximum frequency νAff, max decreased correlations further. Moreover, there is a dis-
crepancy for higher spatial input frequencies ωs between noise correlations measured
over trials, as depicted in figure 5.18A, and measured as a sliding window over a single
long trial in figure part B. As mentioned before, for such higher spatial input frequen-
cies, the location of the bumps changed over trials, but was rather stable within a trial.
Consequently, measuring noise correlations over a single trial yielded weaker values.

Next, we will take a closer look at the distance dependency of noise correlations
for inhomogeneous input (figure 5.19). As before for the homogeneous input, we mea-
sured on average a damped sine wave of noise correlations for a wide range of frequen-
cies and input strengths. Yet, if spatial input frequency ωs was similar to the inherent
frequencies of the bumps around 1.4 kpx−1, we identified a strong weakening of the
amplitude of noise correlations. Likewise, increasing the maximum input frequency
νAff, max further decreased the amplitude of noise correlations. The wave characterizing
the distance dependency of correlations almost vanished completely for a maximum
frequency of νAff, max = 30Hz.

5.4 Noise Correlations in Two-Dimensional Networks

In the previous sections we looked at simulations of one-dimensional ring networks.
We observed that Mexican hat networks close to criticality undergo a bifurcation to
a spatially inhomogeneous state similar to the marginal phase discussed by Hansel
and Sompolinsky (1998). Heterogeneous activity emerged showing a pattern of bumps
which moved across the network. These bumps, in turn, yielded distance dependent
noise correlations and the dependency followed the spatial spectrum of the bumps.
Moreover, using spatially tuned afferent input, we observed an interaction between
the frequency of the tuning and the inherent frequency of the bump activity.

In the following sections we will discuss repetitions of some of the experiments in a
biologically more plausible setting with two-dimensional networks. These correspond
to sheets of neurons from one layer of visual cortex. Our model is based on a previous
study by Stimberg et al. (2009) where the distances within the network were scaled to
match primary visual cortex of a cat. Consequently, one pixel corresponds to 15 µm in
cortical dimensions. We tested models of different size using either 100 × 100 excitatory
neurons or a 200 px × 200 px grid with 2500 and 10,000 inhibitory neurons, respectively.
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Moreover, every neuron received KA = 100 excitatory afferent inputs with 10 Hz input
firing rate as well as KE = 400 recurrent excitatory and KI = 200 recurrent inhibitory
connections. For the smaller 100 px × 100 px networks we also simulated responses
to heterogeneous, orientation tuned input using an orientation map consisting of 4
pinwheels as depicted in figure 5.1. The tuned input will be discussed later after an
analysis of homogeneous stimuli in the following sections. As before, we used periodic
boundary conditions which means the two-dimensional spatial topology is a torus.

5.4.1 Correlated Variability and Spatial Patterns

Similar to a one-dimensional network, we observed a distance dependency of noise
correlations for a large 2D Mexican hat network (NE = 200× 200, σE = 10px < σI =

15px) close to criticality (ḡEE = 0.4 nS, ḡIE = 0.6 nS) that followed a damped wave, as
depicted in figure 5.20A. We did not make such an observation for balanced (data not
shown) or inverse networks (inset). In terms of biological scales, the decay of average
correlation (green line) happened rather quickly and there was already a considerable
decrease in the amplitude within the first 100 pixels, which corresponds to 1.5 mil-
limeters scaled to cat cortex. Hence, it is more suitable to interpret the activity as the
emergence of individual bumps with minor influence on each other’s movement in-
stead of a wave solution. Moreover, the oscillation of the average rSC was fast too. It
was about 2.2 cycles per 100 pixels.

Furthermore, two example distribution of spike counts for a pair close by and a
pair of cells far apart are given at the bottom in figure 5.20. Moreover, the joint spik-
ing activity underlying the distance dependent correlations revealed bump or stripe
like patterns, as shown in figure 5.21. Thus, the set of observed heterogeneous activ-
ity became richer in comparison to the simple moving bumps in 1D networks. Round
bumps may not only move and fuse together, but also eventually appear, disappear,
or turn into flickering stripes. These stripes can be stable over a few seconds and may
turn back into moving circular bumps. These spatial inhomogeneities were also re-
flected by the spatial autocorrelation shown in figure 5.22. The figure shows an almost
radial-symmetric damped oscillation similar to our observations of the decay of noise
correlations with distance in figure 5.20A.

Moreover, similar to the observations made for a one-dimensional network, we
found a saturation of the distance dependent correlations when increasing the inte-
gration time window. Figure 5.20B shows the average correlation among cell pairs at
most 13.3 px (0.2 mm in cat scale) apart. Of note, the thin black line depicts the average
rSC estimated from a sliding window using only the first trial of 30 seconds. Thereby,
we could correctly estimate noise correlation with much less data at least for integra-
tion windows smaller than 3 seconds. For larger windows, the sliding window method
underestimated the trial based spike count correlation considerably. A single trial of 30
seconds did not provide a sufficient amount of data for correct estimation. Increas-
ing the length of the trial to 120 seconds did in fact improve the estimate for longer



112 Correlations and Coding in Spiking Neuron Networks

Figure 5.20: Top left (A): Noise correlations for pairs of cells accord-
ing to distance computed across 50 trials using a 1 second integration
window. Results are shown for a large 200 px × 200 px Mexican hat
(σE = 10px < σI = 15px, ḡEE = 0.4 nS, ḡIE = 0.6 nS) network. The
average correlation is shown in green. As for the 1D network, a decay-
ing oscillation of average correlations can be observed. The small inset
shows correlations for an inverse Mexican hat (σE = 15px > σI = 10px)
with the same recurrent strengths where no distance dependency is ob-
served. Top right (B): Temporal scales of correlations averaged across
all cells at most 13.3 px (which corresponds to 0.2 mm in the scaling to
cat cortex) apart. Increasing the window size beyond 1 yields a satura-
tion of the curve. The envelope shows the standard deviation of noise
correlation among all cell pairs. The thin black line shows the average
noise correlation if estimated from sliding windows over a single exper-
imental run of 30 s length. Estimating from a single run yields similar re-
sults than over trials for most window sizes, but deviates for larger time
scales of 3 seconds and more. Using a longer trial of 120 s (dotted black
line) gives correct estimates even for larger window sizes. Bottom row
(C, D): Distribution of spike counts given a 10 second integration time
window for two pairs of cells. Left: Two neighboring neurons. Right:
Neurons far apart (133 px). The corresponding correlation coefficients
are listed above together with the corresponding p-value. The linear fits
are shown as orange lines.
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A Mexican hat

B Mexican hat

C Inverse hat

Figure 5.21: Consecutive snapshots of 100 ms length of network activ-
ity for 100 px × 100 px networks. A blue dot corresponds to an excita-
tory spike within the time interval. At the top the activity pattern of
a Mexican hat network (σE = 10px < σI = 15px) close to criticality
(ḡEE = 0.4 nS and ḡIE = 0.6 nS) is shown. An operating point even
a little closer to criticality (ḡEE = 0.32 nS and ḡIE = 0.4 nS) is given in
the middle. One can observe activity bumps that may appear, disappear,
wander around, or flickering stripes that eventually turn into wandering
bumps and vice versa. Activity of an inverse Mexican hat network close
to criticality (σE = 15px > σI = 10px, ḡEE = 0.4 nS, and ḡIE = 0.6 nS)
is shown at the bottom. There one only observes homogeneous asyn-
chronous activity.

integration time windows (dotted black line). Since using a single and short trial of
30 seconds is sufficient to estimate the correlation for small integration windows, we
used this method and a smaller network consisting of 100 × 100 excitatory neurons
for extensive parameter explorations. These explorations will be discussed in the next
section.

5.4.2 Parameter Explorations

To investigate if the emergence of noise correlations holds for wide parameter ranges,
we varied the excitatory connections strength parameters ḡEE and ḡIE for networks
with 100 × 100 excitatory neurons.

Figure 5.23 compares such an extensive parameter exploration of a Mexican hat and
an inverse network topology. We can see that beyond criticality (thick dotted red line)
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Figure 5.22: Spatial Autocorrelation in a Mexican hat network close to
criticality. Network parameters as in figure 5.20. Autocorrelation is aver-
aged across 5000 snapshots of 10 ms length. Inset shows autocorrelation
along the horizontal axis at 0.

firing rates quickly diverged for both networks (A, B). Close to criticality we observed
noise correlations for the Mexican hat network (E) but not for the inverse one (F). Cor-
relations were averaged across all cell pairs at most 13.3 pixels (200 µm) apart. Con-
figurations yielding noise correlations also exhibited average coefficients of variation
(CV) larger than 1 (C). Hence, similar to the observations made in the one-dimensional
networks, the emergence of bump and stripe patterns lead to bursting activity at the
single neuron level.

The region where noise correlations emerged is rather thin and the Mexican hat
network needs to operate in a recurrent regime with synaptic coupling strengths close
to criticality. This is indicative of a strong finite size effect. Increasing the width of the
Mexican hat, i.e. scaling σI , we measured strong correlations for much wider ranges,
as depicted in figure 5.24.

Moreover, we performed an extensive parameter exploration of σE and σI while
keeping the synaptic strengths fixed at values close to criticality (ḡEE = 0.4 nS and
ḡIE = 0.6 nS). As expected for Mexican hat but no other configurations we measured
noise correlations, as shown in figure 5.25.

5.4.3 Orientation Stimuli

As for the one-dimensional networks, we tested spatially tuned afferent input in the
two-dimensional models too. However, instead of simple sinusoidal input, we used
a more realistic input scheme with a two-dimensional orientation map consisting of 4
pinwheels, as depicted in figure 5.1. Input frequencies were determined from Gaussian
tuning functions. The Gaussian tuning was defined over the difference between the
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Figure 5.23: Parameter exploration of ḡEE and ḡIE for a Mexican hat
network on the left (σE = 10px < σI = 15px) and an inverse network
on the right side (σE = 15px > σI = 10px). Top row (A, B) shows
the average firing rate (color coded) of all neurons in the network. The
thick dotted red line marks the bifurcation to criticality. Middle row (C,
D) displays the average coefficient of variation (CV). Third row (E, F)
gives the average rSC among close by cell pairs (at most 13.3 px apart)
estimated from a single trail of 30 seconds and a sliding window of 1
second. For better visibility values beyond criticality are filtered and not
shown. The unfiltered images are provided in appendix B.
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Figure 5.24: Average noise correlations (color coded, scale as in fig-
ures 5.23E and F) of cell pairs at most 13.3 px apart estimated using a
sliding window of 1 second over one trail of 30 seconds for various net-
work topologies exploring excitatory synaptic coupling strengths ḡEE

and ḡIE . The thick dotted red line marks the bifurcation to criticality.
Excitatory spread σE is fixed to 10 px. Hence, the top row shows corre-
lations for an inverse and balanced spread, whereas below correlations
for Mexican hat networks are shown. The wider σI becomes, the wider
the range where noise correlations are observed gets.
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Figure 5.25: Extensive parameter exploration of connection spreads σE
and σI for fixed recurrent regime close to criticality (ḡEE = 0.4 nS, ḡIE =
0.6 nS). Average noise correlation of close by cells maximally 13.3 px
apart for an integration time window of 1 second over one trial of 30
seconds are color coded. White dotted line marks equality σE = σI .
Thick red dottet line indicates bifurcation to criticality. Only for Mexican
hat profiles the emergence of correlated variability can be observed.

stimulus orientation and the cell’s preferred orientation according to the orientation
map. As a reminder the tuning function is

νAff,i(s) = (νAff, max − νAff, base) exp


−(s− sPOi)

2

2σ2Aff


+ νAff, base. (5.4 revisited)

We observed an interaction between the tuned afferent drive and the network’s
bump structure in case of homogeneous input. Figure 5.26 shows the distance depen-
dency of correlations using tuned afferent drive of different maximum strength in a
Mexican hat network close to criticality. Correlations were averaged across 6 evenly
spaced orientation stimuli and computed from 30 trials per stimulus. The strong si-
nusoidal fluctuations of noise correlations almost vanished completely. We observed
only a minor dip below zero of the average noise correlation as a function of distance.
Instead, the distance dependency looks like a linear decay within the first 25 pixels, cor-
responding to about 0.4 mm scaled to cat cortex. Additionally, as expected, no distance
dependent correlations were observed for an inverse Mexican hat network with the
same recurrent coupling strengths (inset of figure 5.26). Moreover, increasing the maxi-
mum input frequency νAff, max from 15 Hz (figure 5.26A) to 30 Hz (B) slightly decreased
the magnitude of the correlations.
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Figure 5.26: Distance dependent noise correlation in a Mexican hat net-
work (σE = 10px < σI = 15px) close to criticality (ḡEE = 0.4 nS, ḡIE =
0.6 nS) driven by tuned input. Inset shows results for an inverse Mex-
ican hat (σE = 15px > σI = 10px) with the same recurrent coupling
strengths. Correlation coefficients were averaged across 6 stimulus ori-
entations (−89◦,−59◦,−29◦, 1◦, 31◦, 61◦) with 30 trials per orientation
and 1 second of simulation. On the left (A) noise correlations for a max-
imum input frequency νAff, max of 15 Hz is shown and 30 Hz on the right
(B).

Figure 5.27: On the left (A): Distance (x-axis) and orientation (y-axis)
dependent noise correlation in a Mexican hat network close to critical-
ity driven by tuned input with a maximum frequency of 15 Hz. Other
network parameters as in figure 5.26. Correlation coefficients were aver-
aged across 6 stimulus orientations. Average noise correlations are color
coded. In black two-dimensional bins that were excluded because of
containing less than 50 pairs. Inset shows averages along each axis, in
green noise correlations as a function of distance (c.f. figure 5.26A) and
in cyan as a function of preferred orientation difference. On the right (B):
Histogram of number of cell pairs in each bin according to cell distance
and preferred orientation difference.
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Figure 5.28: Noise correlations of cells at most 13.3 px apart in Mexican
hat networks operating close to criticality (σE = 10px < σI = 15px,
ḡEE = 0.4 nS, ḡIE = 0.6 nS) are shown as a function of maximum in-
put frequency νAff, max. Correlation coefficients were averaged across 6
stimulus orientations (−89◦,−59◦,−29◦, 1◦, 31◦, 61◦) with 30 trials per
orientation and 1 second per trail. Errorbars mark standard devations
over 5 network realizations. Increasing the maximum input frequency
reduces correlations.

We further studied the dependency on difference in preferred orientations. Fig-
ure 5.27A depicts the average rSC value as a two-dimensional function of distance as
well as difference in orientations. The corresponding number of pairs, the spike count
correlation coefficient was averaged across, is given in figure 5.27B. Clearly, strongest
correlations were measured for close by neurons with similar preferred orientations.
A gradient was observed in both directions. The rSC as a function of difference in
orientation only (cyan curve in inset) exhibits a similar shape as the spike count corre-
lation coefficient as a function of distance (green curve in inset and c.f. figure 5.26A),
but the overall magnitude is reduced. This is not surprising, because due to the map
layout (figure 5.1) there is already a strong correlation between short distances and ori-
entation difference. Still, because the map contains 4 pinwheels and activity between
pinwheels was pretty much decorrelated, noise correlations — solely as a function of
orientation difference — are averaged across pinwheels and thereby the magnitude is
reduced.

In addition, we systematically investigated the influence of the maximum fre-
quency νAff, max of the tuned input on correlated variability. Again similar to the ob-
servations in the one-dimensional case, an increase in maximum frequency lead to a
decrease in noise correlations (c.f. figure 5.28). As a reminder, for the one-dimensional
networks we observed a reduction in correlation most strongly for spatial input fre-
quencies that matched the spatial frequency of the bumps. Here the situation for the
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Figure 5.29: Average noise correlations as a function of input strength
using a homogeneous stimulus presented in 50 trials and 1 second per
trail. Plots depict average noise correlation of close by cells (not more
than 13.3 px apart) within Mexican hat networks (σE = 10px < σI =
15px) for various excitatory to excitatory coupling strengths ḡEE . Exci-
tatory to inhibitory strenght is kept fixed with ḡIE = 0.6 nS. Error bars
mark standard deviations calculated across 5 network realizations. We
can observe a saturation of average correlations for an increase in input
strength. For regimes closer to criticality the correlations are stronger
and saturation happens faster.

two-dimensional networks is similar. We measured a spatial frequency of noise corre-
lations of about 2.2 cycles per 100 pixels for homogeneous input. This is close to the
spatial frequency of the orientation map with 4 pinwheels in the 100 × 100 grid.

Moreover, the spatial tuning of the input is indeed very important for a reduction of
correlations (figure 5.28). Increasing the firing rate of a blank stimulus had the opposite
effect. As one can see in figure 5.29, scaling the homogeneous input firing rate yielded
an increase followed by saturation of correlated variability. Of note, the black line
corresponds to the recurrent excitatory strength also used in figure 5.28.

Furthermore, in the one-dimensional case we saw that an increase in maximum fir-
ing rate locked bump activity to the stimulus drive. Stronger maximum input meant
less jitter in the activity bumps. Indeed, this is the case for the two-dimensional net-
work too. In figure 5.30 network activity constantly clusters around 4 spots. These
spots correspond to the orientation of the driving stimulus in the orientation map with
4 pinwheels. Nonetheless, just by looking at these snapshots of activity by eye, it is
impossible to make out the relation between jitter and different maximum frequencies
νAff, max. To make this effect visible we looked at the movement of the centers of these
activity clusters over time. In figure 5.31 the trajectory of the activity centers (black
lines) at one of the network’s pinwheels is depicted. For weak maximum frequencies
like 6 Hz we identified considerable amount of movement in the plane. Increasing the
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A 6 Hz Maximum Frequency

B 12 Hz Maximum Frequency

C 54 Hz Maximum Frequency

D 60 Hz Maximum Frequency

Figure 5.30: Consecutive snapshots of firing activity for a Mexican
hat network close to criticality (σE = 10px < σI = 15px, ḡEE =
0.4 nS, ḡIE = 0.6 nS) driven by a stimulus of 1◦. Each blue dot corre-
sponds to a spike observed in a time interval of 100 ms. From top to bot-
tom maximum input frequency νAff, max is increased from 6 up to 60 Hz.
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Figure 5.31: Trajectories of the center of activity at one pinwheel for four
different maxium driving frequencies. Black line for a Mecican hat net-
work (parameters as in figure 5.30) and a stimulus of 1◦ and in red for
an inverse Mexican hat network (σE = 15px > σI = 10px) with the
same connections strengths and a stimulus of 0.5◦. Trajectories are com-
puted from the activity within a sliding window of 250 ms length. Every
neuron’s position was interpreted as a vector in the 2D plane and the
trajectory is the average vector weighted by the neurons activity within
the sliding window. The preferred orientations of the neurons are color
coded.

maximum frequency focused the trajectory on small spots. In comparison, the red line
shows the same trajectories for an inverse Mexican hat driven by a slightly different
stimulus. There, the center of activity was stable even for weaker maximum frequen-
cies.

5.5 Discussion I

We demonstrated that recurrent connectivity can yield correlated variability. As we
hypothesized, in networks of adaptive exponential integrate and fire neurons, Mexi-
can hat coupling with wider inhibitory than excitatory connectivity spread could lead
to spatially inhomogeneous activity in terms of patterns of moving bumps. The in-
homogeneous activity was reminiscent of the marginal phase attractor for the simple
sinusoidal coupling as discovered by Hansel and Sompolinsky (1998). Because the
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Mexican hat coupling amplifies a range of spatial frequencies, we did not observe a
single but a multitude of bumps. We further showed that this holds for a wide range
of parameter settings in one-dimensional as well as two-dimensional networks.

Due to the moving patterns, we measured distance dependent noise correlations.
These correlations were sinusoidally modulated and the amplitude degraded expo-
nentially with the distance between pairs of cells. In one-dimensional networks this
dependency of correlated variability can be described by a damped sine wave of the
form

⟨rSC⟩(d) = CrSC exp(−|d|/λrSC ) cos(ωrSCd). (5.5 revisited)

We demonstrated that increasing excitatory to excitatory connection strength ḡEE as
well as the width of the Mexican hat σI reduced the spatial frequency ωrSC . This is
in line with the predictions made in the previous chapter that increasing analogous
parameters in the mean-field model amplified lower spatial frequencies (c.f. figures 4.8
and 4.9).

For a wide range of parameters the decay λrSC was quite slow with values around
1000 to 4000 pixels (c.f. figure 5.9). Hence, even bump structures quite far apart were
influencing each other’s movements. Thus, it is also appropriate to characterize the
activity as a wave solution that holds across the entire network. Similar observations
were made for two-dimensional networks but with a stronger amplitude decay. Thus,
bump structures far enough apart appeared, disappeared, and moved independently
of each other. Consequently, in a 2D network it is more suitable to speak of individual
bumps rather than a wave solution.

Moreover, we showed that noise correlations of similar magnitude could also be ob-
served among inhibitory as well as mixed pairs (c.f. figure 5.8). Hence, inhibition still
tried to track excitation as suggested by Renart et al. (2010). Clearly, positive correla-
tions among mixed pairs lead to negative correlations among inhibitory and excitatory
currents due to the opposite signs. Yet, inhibition was not strong enough to eradicate
the moving bumps and spatial inhomogeneities (c.f. figure 5.12). Accordingly, increas-
ing network size did not decorrelate neural responses. This contrasts with results ob-
tained for densely but uniformly coupled networks by Renart et al. (2010). With grow-
ing size of Mexican hat networks, noise correlations increased by reducing the finite
size effect and destabilizing homogeneous activity (c.f. figures 4.4 and 5.13).

In contrast to what was predicted by Hansel and Sompolinsky (1998) (c.f. equa-
tion 4.77), we did not observe that the width of the bumps shrank with an increase in
size of the spiking neuron networks. Either the shrinkage is an artifact of the sinusoidal
coupling scheme in the mean-field model with global inhibition, or the change in bump
width for a Gaussian topology happens rather slowly. It may only be observed for mas-
sive network sizes beyond our simulation capabilities and beyond neuron densities of
biologically plausible scales.
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We further demonstrated that noise correlations persisted for heterogeneous inputs.
The activity patterns and spatial dependency were modulated in comparison to homo-
geneous inputs. In 2D networks we observed an almost linear decay with distance. In
contrast to the homogeneous input, the average rSC did not reach values considerably
below 0. Furthermore, the magnitude was usually reduced for stronger stimuli as well
as stimuli that matched the inherent frequency of the spatial pattern for homogeneous
input. Moreover, spike count correlations as a function of difference in preferred ori-
entations exhibited a similar pattern as the rSC as a function of cell distance. Hence,
overall correlations were strongest among close by cells with similar orientation pref-
erence. Furthermore, inhomogeneous input basically locked bump activity at certain
locations corresponding to the peaks of the afferent input. Noise correlations are a
product of small movements or jitter around the peak locations.

5.5.1 Comparison to other Modeling Studies

Similar results to ours were obtained by Keane and Gong (2015) with a spiking neural
network model where not the connection probability depended on distance between
cells but the coupling strength. In this study the coupling strength among excitatory
neurons exhibited a Gaussian profile similar to our connectivity kernel. Keane and
Gong (2015) observed activity of moving bumps as well as traveling wave fronts and
noise correlations following a damped sine wave as a function of cell pair distance.
Trivially, the theory by Rosenbaum and Doiron (2014), as discussed in chapter 4, can be
applied to their model without any modifications. For the mean-field model only the
expected connectivity strength JXY κXY is of importance. Hence, it makes no differ-
ence if the connection probability κXY follows a Gaussian profile and the strength JXY

is fixed or vice versa.
Furthermore, Litwin-Kumar and Doiron (2012) developed a spiking neuron net-

work model with clustered connectivity among excitatory neurons and global inhibi-
tion. Increasing the clustering, in terms of rewiring random connections to target more
neurons of a local cluster, lead to a similar loss of balance as observed in our models.
Instead of moving bumps, clusters showed switching between high and low activity
states. When Litwin-Kumar and Doiron (2012) replaced the distinct clusters by a ring
topology, they observed bumps wandering across the ring, too.

Yger et al. (2011) made an investigation on the influence of Gaussian topology in
terms of inhibitory σI and excitatory connection width σE on correlated variability.
Surprisingly, they only observed the emergence of bump patterns for very narrow ex-
citatory spreads (σE ≪ σI ). Yet, they kept recurrent weights fixed and used a rather
low coupling strength. Therefore, it is likely that their network size was too small for
the given recurrent weights and the finite size effect kept network activity stable.

Furthermore, a ring network with parametrization beyond a bifurcation to multi-
stability can be a suitable model for phenomena observed in the MT area in experi-
ments with awake monkeys. Ponce-Alvarez et al. (2013) measured noise correlations



Discussion I 125

in direction sensitive MT neurons via repeated presentations of moving gratings. They
reported a modulation of correlations with movement direction and difference to the
preferred directions of the recorded neurons. Moreover, the authors studied a ring
network model consisting of non-linear rate units. The rate units were connected via
sinusoidal coupling defined over the units’ preferred movement directions. For partic-
ular parameter regimes Ponce-Alvarez et al. (2013) observed bump patterns similar to
the marginal phase discussed in the previous chapter. In fact, they demonstrated that a
network in such a state can explain the experimentally observed directional tuning of
noise correlations in MT neurons well.

Moreover, bump attractor networks are prominent models of working memory
(Laing et al., 2003; Wimmer et al., 2014). For instance, Kilpatrick (2013) studied neural
fields with sustained bump activity. Instead of viewing bumps as a source of corre-
lated variability, they investigated their behavior under uncorrelated and correlated
noisy inputs. The authors demonstrated that connecting several areas with bump at-
tractors can stabilize the bumps’ locations and hinder their wandering. If variability
across areas was correlated, however, the activity profiles lost stability and the authors
observed a diffusion of bumps.

Other network structures that are capable of pattern formation are reaction diffu-
sion systems (Vanag and Epstein, 2007). Accordingly, local reactors are combined with
spatial signal or compound diffusion. One prominent local reactor is the FitzHugh-
Nagumo model (FitzHugh, 1961; Nagumo et al., 1962). It consists of two coupled
differential equations and exhibits dynamics akin to spiking. Reaction diffusion sys-
tems based on FitzHugh-Nagumo models can produce complex bump and wave pat-
terns similar to what we observed (Hagberg and Meron, 1994; Postnov et al., 2012;
Dahlem and Isele, 2013). However, Laing and Longtin (2001) demonstrated that diffu-
sive coupling lacks one characteristic property found in our simulations. The theory
by Hansel and Sompolinsky (1998) predicts that given a deterministic rate model with
adaptation, a bump pattern moves with a constant velocity into a particular direction
determined by the initial conditions. Yet, because our systems were driven by noise
in terms of Poisson input, we observed bump structures with consistent, stable shapes
whose course of movement could change. The bumps could move into opposite or
similar directions eventually fusing into each other (c.f. figure 5.5). According to Laing
and Longtin (2001) this is characteristic for Mexican hat coupling. They observed that
movement modulation is even more pronounced for growing noise intensities. On
the contrary, using diffusively coupled FitzHugh-Nagumo models, Laing and Longtin
(2001) reported that the noise intensity did not affect the bump velocity and direction
up to a certain critical value. If the intensity reached this critical value, the noise had
a catastrophic influence and bump propagation broke down entirely. In this case the
authors observed scattered, appearing, and disappearing bumps of different sizes. Yet,
Postnov et al. (2009) demonstrated that with a more complex diffusive coupling —
involving an additional, third dynamical variable — moving bump patterns appear
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under certain conditions. For strong coupling in combination with high noise levels,
deformed clusters of activity of variable sizes moved within the two spatial dimensions
of their reaction diffusion system.

Of course, FitzHugh-Nagumo models are not necessarily diffusively coupled, but
they can be connected using a Mexican hat topology too. For example, Bachmair and
Schöll (2014) demonstrated that a FitzHugh-Nagumo model in combination with Mex-
ican hat connectivity can undergo a Turing bifurcation and their system produced wan-
dering bump solutions.

Mexican hat profiles defined over some cortical or neural space are not the only
recurrent coupling schemes that can yield correlated variability. Along these lines, the
recurrent model by Hansen et al. (2012) has no notion of cortical spatial scales and the
authors used a Mexican hat topology over orientation space. Therefore, they argued
that their system models horizontal long range connections spanning several columns
in visual cortex. Due to the Mexican hat topology over orientations, excitatory long
range connections were more orientation specific, i.e. it is more likely that excitatory
cells with similar preferred orientations are connected. Likewise, inhibitory long range
connections were rather unspecific. However, in comparison to excitatory axons, long
range connections originating from inhibitory neurons are rarely observed in visual
cortex. Stepanyants et al. (2009) showed in an experimental tracer study that only about
25% of excitatory axons terminated within a distance of 500 µm from the pre-synaptic
cell, but almost 90% of inhibitory connections did.

However, excitatory long range connection alone can be sufficient for pattern for-
mation and noise correlations. For instance, using excitatory patchy long range con-
nections but only local inhibitory connections, Voges and Perrinet (2012) demonstrated
the emergence of spatially inhomogeneous activity patterns for a wide range of param-
eter settings. Similarly, we obtained preliminary results which show that orientation
specific excitatory long range connections can amplify spatial frequencies. Moreover,
spatial patterns emerged in simulations of spiking neuron networks with such long
range profiles. As a consequence, we observed correlated variability comparable to a
local Mexican hat topology. This preliminary data is briefly discussed in appendix B.
Hence, Mexican hat networks are of course not the only coupling scheme that can cause
noise correlations. Any topology where the 0th spatial Fourier mode is stable, but some
higher frequencies are amplified, is a potential candidate that may lead to pattern for-
mation and, in turn, to noise correlations.

5.5.2 Biological Plausibility of the Model

Our model simulations aim at biological realism rather than at developing the simplest
spiking neuron model validating the theoretical findings of the mean-field approach
discussed in chapter 4. Yet, our networks still constitute a considerable simplification
of biology. First of all, using point neuron models is without doubt a substantial loss
of biological realism. Real neurons can exhibit highly non-linear input transformations
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due to the arborisation of their dendritic tree. These nonlinearities are much better cap-
tured by compartmental models (Poirazi, 2009). However, the model complexity and
costs associated with their simulation make networks of compartmental models in-
feasible. To perform large parameter explorations with multiple network realizations,
point-neuron models are a good alternative. Moreover, the choice of the adaptive ex-
ponential integrate and fire neuron (AEIF) is a compromise between computational
efficiency and a more biologically motivated description of intracellular currents as in
Hodgkin-Huxley (HH) neurons (Hodgkin and Huxley, 1952). In fact, Brette and Gerst-
ner (2005) demonstrated that AEIF neurons predict spike timing of HH neurons well.
Likewise, Jolivet et al. (2008) showed that AEIF neurons are a suitable model of real
pyramidal neurons under noisy current injections.

The input statistics of our model are a major drawback. Our assumption that every
neuron received afferent input in terms of independent Poisson spike trains is far from
biologically realistic LGN input. For instance, Lin et al. (2012) demonstrated that more
realistic LGN models can change response characteristics such as tuning sharpening of
post-synaptic V1 neurons. Moreover, common or shared input noise can yield oscilla-
tions in neural networks (Doiron et al., 2004; Lindner et al., 2005). However, we chose
the simple input statistics for a reason. We wanted to exclude any source of correlated
variability except recurrent connectivity. Even so, it is unlikely that more complex in-
puts change our results considerably apart from adding another potential source of
correlated variability. For instance, Hansen et al. (2012) used a thorough LGN model
where V1 neurons even shared common afferent input and, like us, observed noise
correlations for Mexican hat topologies. Still, afferent input may yield correlations for
balanced or inverse Mexican hat profiles, too. We discussed that in order for the bal-
anced fixpoint of the model by Rosenbaum and Doiron (2014) to exist, afferent input
must be more broadly tuned than the recurrent coupling (c.f. equation 4.20). Thus, too
sharply tuned input or highly convergent afferent connections may render the fixpoint
invalid and, thereby, may yield spatial inhomogeneities and noise correlations.

Furthermore, we assumed homogeneous populations of neurons. For example, all
cells received the same number of inputs. However, theoretical studies have shown
that heterogeneity in the number of connections can have a substantial effect on a net-
work’s stability and success of pattern formation and propagation (Sonnenschein et al.,
2013; Kouvaris et al., 2014). Moreover, in our model all cells exhibited equal parame-
ter values like time constants or spiking thresholds. The only distinction was made
between excitatory and inhibitory neurons that differed in leak conductance and re-
fractory periods. Even input peak conductances were equal among all connections
originating from and terminating in equal populations. In contrast, in biology one can
observe a huge variation among parameters like membrane and adaptation time con-
stants (Sanchez-Vives et al., 2000) or amplitudes of spike triggered post-synaptic po-
tentials (Mason et al., 1991). A modeling study by Mejias and Longtin (2012) suggests
that such heterogeneities can even enhance information processing in neural networks.
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Nonetheless, we expect that increased heterogeneity among neurons will not change
our results by much. One of the key assumptions by Rosenbaum and Doiron (2014) for
their mean-field approach is that neurons are operating in a regime with strong mean
input. In this regime fluctuations in input currents can be ignored. In fact, in our sim-
ulations noise correlations were largest in conditions with strong mean input, i.e. for
strong excitatory recurrent weights and strong untuned afferent inputs (c.f. figure 5.29).
Analogously, we assume that if heterogeneities are small, their impact may be weak for
large networks and in the light of strong inputs the effects average out. For instance,
Chelaru and Dragoi (2008) introduced heterogeneity into a relatively small network
model with less than 2000 neurons by drawing recurrent connection strengths from
Gaussian distributions. They showed that correlations were reduced, but after all were
still present for considerable heterogeneity. Even if they used a wide distribution with
a variance of 35% of the mean connection strength, they observed correlated variability.

Furthermore, in our 2D networks with 100 × 100 and 200 × 200 excitatory neurons
corresponding to 1.5 mm × 1.5 mm or 3 mm × 3 mm of cortex area, respectively, we ob-
tain a density of about 5555 neurons per square millimeter (including inhibitory neu-
rons). This is an undersampling of neurons in a particular layer in cat primary visual
cortex with densities of up to 15,000 neurons (Beaulieu and Colonnier, 1983). Yet, the
theory by Rosenbaum and Doiron (2014) states that increasing the network size even
fosters inhomogeneous activity and stable Mexican hat networks may lose balance due
to a vanishing finite size effect. Of course, this requires particular scaling assumptions
larger than O(1/N) for the recurrent weights. However, we already chose biologically
plausible conductances. So we can assume O(1) for increasing N . Accordingly, we
could demonstrate that larger neuron densities yielded correlated variability for even
more parameter settings (c.f. figure 5.13).

Many modeling studies assume recurrent coupling in form of Mexican hats in or-
der to achieve tuning sharpening or pattern formation (Ernst et al., 2001; Kang et al.,
2003; Bressloff, 2012). Moreover, theoretical work by Carreira-Perpiñán and Goodhill
(2004) showed that the structure and distribution of orientation preference and ocu-
lar dominance maps in primary visual cortex support the hypothesis of Mexican hat
coupling. Yet, it is unclear if this coupling scheme is really implemented in the brain.
Experiments by Levy and Reyes (2012) revealed that the auditory cortex of mice relies
on inverse Mexican hat coupling. Mariño et al. (2005) used retrograde tracers to visu-
alize connections among neurons in cat visual cortex and found a balanced spread of
excitatory and inhibitory connections. Data by Stepanyants et al. (2008) suggest that at
least in the fourth layer of cat visual cortex, inhibitory connections are less broad than
excitatory ones. However, Buzas et al. (2001) found inhibitory cells in layer 3 projecting
further than in layer 4. This is in line with work by Hansen et al. (2012) as well as Smith
et al. (2013) who measured noise correlations only in layers above and below the fourth
layer.
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Finally, besides a peak in low frequencies due to the bump movement, the tem-
poral power spectrum of the network activity revealed a second peak in the gamma
frequency band (c.f. inset of figure 5.6). This is in agreement with many studies that
report gamma rhythms in sensory areas of various species (Liu and Newsome, 2006;
Jia and Kohn, 2011; Xing et al., 2012).

5.5.3 Biological Relevance of Results

We demonstrated that noise correlation can be caused by moving patterns in forms of
bumps. On a single cell level this yielded alternating phases of spiking activity and
silence. In the former case neurons are participating in an active region of a bump and,
in the latter, they are part of an inactive region. Similarly, Mochol et al. (2015) showed
experimentally that noise correlations are dominated by phases of coinactivation in the
auditory cortex of anesthetized rats. During spontaneous activity, the authors observed
periods where all neurons in a local network jointly stopped firing. Reduction of these
silent periods by external stimulation with click sounds decreased the magnitude of
the correlations.

Likewise, our simulation showed that increasing the strength of an orientation
tuned stimulus lead to a decrease in correlated variability in a 2D network. Similar re-
sults were obtained in the one-dimensional model using a sinusoidally tuned stimulus
with a frequency close to the inherent bump frequency. We can relate these paradigms
to experimental settings with different stimulus contrasts or different levels of atten-
tion. Kohn and Smith (2005) reported weaker correlations for strong contrasts of drift-
ing orientation gratings in experiments with Macaque monkeys. Studies by Cohen
and Maunsell (2009) and Mitchell et al. (2009) showed that visual attention can reduce
correlated variability among neuron pairs in visual cortex.

Furthermore, in our simulations noise correlations depended on the size of the in-
tegration time window. We observed an amplitude saturation for windows larger than
1 s. Similar values were reported by Reich (2001) in experiments with monkeys. Others
reported slightly faster saturation like Bair et al. (2001) or Smith and Kohn (2008) (c.f.
figure 3.3D). In these studies maximum correlations were already observed for window
sizes slightly below 1 second.

Additionally, using heterogeneous stimuli we further demonstrated that besides
a modulation with distance, correlations weakened with an increase in difference in
preferred orientation among cell pairs (c.f. figure 5.27). Similar results were reported
by Hansen et al. (2012) experimentally for the primary visual cortex of anesthetized
macaque monkeys. However, they did not measure a dependency on distance. Yet,
they used a laminar electrode. Such electrodes penetrate the layers in the visual cortex
rather orthogonally. This leads to measuring distances across but not within layers. In
contrast, our two-dimensional networks correspond to a single layer and distances are
defined within the neural sheet.
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Smith and Kohn (2008) measured correlations in visual cortex of monkeys along-
side the neural tissue using a micro-electrode array (MEA). They reported a distance
dependency of noise correlations. However, the spatial scale is very different from
what is observed in our model (c.f. figure 3.3A). Given orientation gratings, the au-
thors reported a linear decay with distance spanning over several millimeters. In our
model we did measure a seemingly linear decay for tuned input as well, but correla-
tions vanished after a few ten pixels which corresponds to ca. 400 µm in our scaling to
cat visual cortex. Still, Solomon et al. (2014) reported a fast decay of correlations with
distance between cell pairs in the marmoset monkey’s middle temporal visual array
(MT) comparable to our simulation results (c.f. figure 3.3B). Moreover, using a blank
grey screen stimulus, they observed a sinusoidal modulation of correlations. Admit-
tedly, this modulation is not significant. An explanation might be the rather coarse
spatial resolution of MEAs. They used a 10 × 10 an electrode array with a spacing of
0.4 mm in between electrodes. Fortunately, a much finer resolution can be achieved
with two-photon imaging. For example, Ch’ng and Reid (2010) observed a signifi-
cant sinusoidal modulation of spontaneous activity correlations with distance in the
visual cortex of rats. They did not report such a modulation for data obtained from cat,
though. In cat Ch’ng and Reid (2010) only identified a seemingly exponential decay.
However, their technique is limited in spatial scale. They could measure noise corre-
lations for a maximum pair distance of only 400 µm. Our model simulations imply
that only beyond this distance one should expect an increase in correlations due to a
sinusoidal modulation (c.f. figure 5.20A). Therefore, Ch’ng and Reid (2010) might have
measured only the first quarter of a cycle of the sinusoid. Thus, our model suggests
that future experimental work may aim at measuring noise correlations over a large
scale of more than 1 mm with a high spatial resolution.

In fact, the emergence of spatially inhomogeneous patterns in spontaneous activity
on several hundred micrometer scales has been long known (Arieli et al., 1995). For
instance, Kenet et al. (2003) reported bump shaped spontaneous activity in the visual
cortex of anesthetized cat using voltage sensitive dyes. More important, the spatial
scales of the patterns matched the preferred orientation map. This is also the case in
our simulations. In our 2D network model we measured ωrSC ≈ 2.2 cycles per 100
neurons, which agrees with the frequency of 4 pinwheels per 100 × 100 cells. Similar
observations with spontaneous patterns resembling evoked activity have been made
in experiments with rats (Han et al., 2008) and monkeys (Muller et al., 2014).

Alternative hypotheses for correlated variability were already discussed in chap-
ter 3. For instance, Ecker et al. (2010) argued that confounds from the experimen-
tal setup like anesthesia or badly implanted electrodes can cause large values of rSC .
Schulz et al. (2015) pointed out the substantial influence of spike sorting on measured
noise correlations. Therefore, we do not propose that Mexican hat topology is the pri-
mary cause of correlated variability in cortex. We argue that it can be one among many
others. This may explain why on average the spike count correlation is positive over
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a span of several millimeters in biological experiments (c.f figure 3.3B and Solomon et
al., 2014), but we report a clear sinusoidal modulation with a total average close to zero
across all distances. The bump activity correlations could additively lie on top of other
shared variability. For instance, Ecker et al. (2014) reported average strong positive
noise correlations in primary visual cortex of anesthetized macaque monkey even for
cells more than 3 millimeters apart. During wakefulness, however, correlations were
by an order of magnitude weaker and some non-significant sinusoidal modulation was
observed.

Moreover, the spike count correlation coefficient rSC is conceptually easy to grasp,
but also a very coarse statistic of neural activity. It can help to identify potentially in-
teresting phenomena in cortex, but it is difficult to discern underlying principles just
by measuring correlation coefficients. As pointed out before, future experimental work
may focus on high-resolution recordings of joint-activity to shed more light on the ori-
gins of correlated variability.

Next, we are going to take a closer look at the consequences of correlated variabil-
ity for information processing. To be precise, we will investigate the effect of noise
correlations on encoding quality in terms of Fisher information.

5.6 Information Processing

So far we discussed recurrent connectivity as a potential source of noise correlations.
We analyzed how distance dependent correlations can emerge for homogeneous as
well as heterogeneous inputs. In this section we are going to investigate how corre-
lations influence stimulus processing. We will discuss the effects of correlations on
encoding quality in terms of the three information measures introduced earlier. These
are Fisher, shuffled, and diagonal information.

Fisher information ILOLE was estimated using the approach by Seriès et al. (2004) as
introduced in chapter 3. As a reminder, the locally optimal linear estimator (LOLE) is
based on the following linear regression (c.f. equation 3.19):

ŝ = wr + w0. (3.19 revisited)

Fisher information is calculated using two rather similar stimuli s1 and s2 via

ILOLE =


⟨ŝ2⟩−⟨ŝ1⟩
s2−s1

2
1
2(Var(ŝ2) + Var(ŝ1))

. (3.20 revisited)

60% of the simulation data were used to train the LOLE to predict the stimulus orien-
tation ŝ from the spiking activity. Moreover, 20% of the data were taken as a validation
and another 20% as a test set. The parameters w and w0 were optimized via stochastic
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gradient descent using the scikit-learn Python library (Pedregosa et al., 2011). To pre-
vent overfitting training was stopped if validation performance deteriorated for 500
consecutive iterations. The LOLE parameters with the best validation performance
were chosen for testing. Performance was evaluated in terms of the mean squared
error of the estimated and real stimuli:

⟨(ŝi − si)
2⟩, (5.8)

with i ∈ {1, 2}. Ishuff was computed analogously by shuffling trial data and Idiag by
training on the shuffled but testing on the original data.

Estimating these quantities for a full network requires a lot of data and a lot of re-
peated trials. To reduce simulation time considerably we based our calculations on
random subsamples of neurons. Cells were sampled evenly among preferred orienta-
tions. All values were averaged over 10 sampling realizations. The information exper-
iments were based on repeated trials of orientation stimuli presentation of s1 = −1◦

and s2 = 1◦. After an initial phase of 1 second, 3 seconds of stimulus presentation were
taken into account to calculate Fisher information. If not stated otherwise, the num-
ber of trials was 500 per orientation stimulus. Hence, we estimated the information
measures from 500 neurons. For all analyses we only considered excitatory neurons
because GABAergic inhibitory interneurons are not known to project out of primary
visual cortex (Seriès et al., 2004; Schmolesky, 2007).

5.6.1 Fisher Information and Tuning

We compared Fisher information between realizations of a two-dimensional Mexican
hat topology, a balanced configuration, and an inverse Mexican hat profile. The Mex-
ican hat profile exhibited strong sinusoidally modulated distance dependent correla-
tions in the homogeneous input case. In addition, we measured positive, roughly lin-
early decaying noise correlations if stimulated with an orientation tuned input. The
balanced profile, where excitatory and inhibitory spread ranges equally wide, and the
inverse Mexican hat profile showed average correlations close to 0 regardless of the
stimulus type and distance between cell pairs.

Figure 5.32 displays the information measures for all three network configurations
for stimuli with a maximum frequency of νAff, max = 15Hz. As expected from the liter-
ature, average weak positive correlations — as measured for the Mexican hat network
for nearby cells — decreased the stimulus encoding quality in comparison to the shuf-
fled data (left blue and cyan bars in figure 5.32). Furthermore, the diagonal information
Idiag (left magenta bar) is significantly smaller than ILOLE (left cyan bar). Thus, the cor-
relations themselves carried information. A decoder cannot safely ignore correlated
variability without facing a penalty in performance. Interestingly, the total information
that could be recovered from the Mexican hat configuration was significantly larger
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Figure 5.32: Fisher information measures Ishuff, ILOLE, and Idiag of three
network configurations with operating points close to criticality based
on a sample of 500 neurons per network. Values are averaged over 10
network realizations, error bars show standard deviations. A maximum
firing rate of νAff, max = 15Hz is used. Parameters are for Mexican hat
σE = 10px < σI = 15px, balanced σE = 10px = σI = 10px and
inverse Mexican hat σE = 15px > σI = 10px. Strengths are chosen
equally for all networks with ḡIE = 0.6 nS and ḡEE = 0.4 nS. Informa-
tion is estimated using an approach by Seriès et al. (2004). To estimate
information 500 trials each of a -1 and 1 degree orientation stimulus are
used. Blue bars show information of shuffled data Ishuff, the information
extracted from the real data ILOLE is given in cyan, and light red dis-
plays the diagonal Fisher information Idiag. As expected for the Mexican
hat configuration with positive average noise correlations, information
is significantly overestimated if correlations are removed (left blue bar
vs. left cyan bar). The correlations themselves carry a small but signif-
icant amount of information (left cyan bar vs. light red bar). Surpris-
ingly, the amount of information ILOLE (cyan) that can be read out from
a Mexican hat network is significantly larger than for the other two net-
work configurations (comparison of all cyan bars). Significance values
are based on a non-parametric Wilcoxon rank-sum test for comparisons
of ILOLE between different topologies (p < 0.001, 10 networks samples)
and Wilcoxon signed-rank test (p < 0.001, 10 network samples) for com-
parisons within the Mexican hat topology.
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Figure 5.33: Tuning curves of a Mexican hat, balanced, and inverse net-
work close to criticality. A range of stimuli with 10 trials and 3 seconds
per stimulus were presented to the networks and responses are aver-
aged across trials and all neurons with similar preferred orientations in
the range of [13◦, 16◦]. Error bars mark standard deviations across 10
network realizations. Network parameters as in figure 5.32. One can ob-
serve that the tuning of the Mexican hat networks is sharper than among
the other two topologies.

than in the other two networks (ILOLE, cyan bars) despite the presence of noise correla-
tions.

Tuning sharpening is a potential explanation for this phenomenon. In theory, as
shown by Dayan and Abbott (2005), sharper tuning can enhance stimulus encoding.
Thus, despite the presence of correlations, a Mexican hat profile may better encode
the stimulus by sharpening of responses. Individual neurons fire more selective to
orientation stimuli and thereby make discrimination between stimuli easier. This is
indeed what we observed when we looked at the networks’ tuning curves. In order
to determine the tuning curves we analyzed the response of neurons with equal or
very similar preferred orientations to a range of stimuli. As seen in figure 5.33, the
Mexican hat networks exhibited a sharper tuning than the other two networks. The
average response of neurons with similar preferred orientation showed a narrower and
larger peak around the preferred orientation. Whether the balanced architecture gives
a sharper response than the inverse or vice versa is hard to discern from the figure.
On the one hand, the balanced networks’ curve appears more narrow than the tuning
function of the inverse hat. On the other hand, the ratio between peak and baseline
response is larger for the inverse topology.

In order to quantify the sharpening of the tuning we applied a measure called Ori-
entation Selectivity Index (OSI) (Swindale, 1998):

OSI =


si

⟨r(si)⟩ cos(2si)

2

+


si

⟨r(sK)⟩ sin(2si)

2

/

si

⟨r(si)⟩, (5.9)
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Figure 5.34: Top left (A): Average network firing rate averaged over all
excitatory neurons. Black bars show the standard deviation across 10
network realizations per profile. From Mexican hat (left) to the inverse
case (right) firing rate increases. Top right (B): In dark grey the aver-
age mean squared error (MSE) of the linear decoder is shown whereas
in light grey one sees the average MSE of the best Support Vector Re-
gression (SVR). Bottom left (C): Average noise correlation among pairs
of neurons at most 13.3 px apart for a 3 second time window. In the
Mexican hat networks one observes the strongest correlations. Bottom
right (D): Average Orientation Selectivity Index (OSI) among all neurons
in the networks. The sharpest tuning is observed for Mexican hat net-
works. Standard deviations are so low that the black bars are not visible.
Network parameters as in figure 5.32.

where ⟨r(si)⟩ is the average spike response of a neuron for a particular stimulus si. We
chose twelve evenly spaced orientations, si ∈ {−90◦−75◦,−60◦, .., 75◦}. ⟨r(si)⟩ was
averaged over 10 trials per orientation. The OSI is a measure of tuning sharpness that
ranges from 0, not selective, to 1.0, perfectly selective to orientations. We computed the
average OSI across the whole excitatory neuron population in each network.

Figure 5.34D shows the average OSI of the different networks. The Mexican hat net-
works exhibited the sharpest tuning. The value of about 0.734 (±0.003) is larger com-
pared to the others. In addition, the inverse configuration showed the second sharpest
tuning with 0.520 (±0.003) followed by the balanced network with 0.471 (±0.003). All
these differences are significant (Wilcoxon rank-sum test, all p < 0.01, 10 sample net-
works). Notably, the coding was not simply improved due to the availability of more
spikes. In figure 5.34A one sees that the average network firing rate was even less for
the Mexican hat networks. Sharper tuning means less neurons in total are responding
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Figure 5.35: Fisher information ILOLE of three network configurations
(σE = 10 or 15 px, σI = 10 or 15 px) with operating points close to
(ḡEE = 0.4 nS) and afar (ḡEE = 0.2 nS) from criticality based on a sample
of 500 neurons per network. Values are averaged over 5 network real-
izations, error bars show standard deviations. A maximum firing rate of
νAff, max = 30Hz is used. Other parameters as in figure 5.32. Mexican hat
networks show significantly better encoding quality than the other two;
Wilcoxon rank-sum test, p < 0.01, 5 network samples. For all networks
encoding performance is significantly better close to criticality than afar;
Wilcoxon signed-rank test, p < 0.05, 5 network samples.

to an input stimulus. This in turn decreases the average network firing rate. In sum-
mary, despite stronger noise correlations for Mexican hat networks (figure 5.34C), the
coding quality improved alongside a sparser spiking code.

We further tested if performance could be improved over LOLE by using a non-
linear support vector regression (SVR) with radial basis function (RBF) kernels. We
rescaled the training data to zero mean and variance of one. Furthermore, we opti-
mized two SVR hyper-parameters with a grid search. We explored the SVR’s error
penalty function parameter (CSV R ∈ {0.01, 0.1, 1, 10}) as well as the RBF kernel width
coefficient (γSV R ∈ {0.0001, 0.001, 0.01, 0.1}) using 5-fold cross-validation on the train-
ing data before benchmarking with the test data. However, we could not obtain an
improvement in performance. On average the SVR’s mean squared error (MSE) was
slightly worse than the error of the linear decoder, as shown in figure 5.34B. This sug-
gests that the linear decoder is close to optimality and it is unlikely that there is in-
formation that could only be obtained by using non-linear methods. Hence, the lower
bound on Fisher information given by ILOLE is much likely very tight and gives a good
estimate of the real information in the system.
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Moreover, we also tested if the phenomenon of better encoding performance by
Mexican hat networks still holds for a stronger maximum input frequency νAff, max =

30Hz. Indeed, just increasing input strength did not change the effect, as seen in fig-
ure 5.35 (darker cyan bars). Not surprisingly, for stronger inputs where correlations
were reduced (c.f. figure 5.28A), Mexican hat networks still showed the best stimulus
encoding performance.

An interesting observation was made regarding the operating regime of all three
networks. Decreasing the recurrent excitatory to excitatory coupling strength (light
cyan bars in figure 5.35), i.e. moving the operating regime away from criticality, was
highly detrimental to information processing in all networks. Networks operating afar
from criticality are dominated by recurrent inhibition which reduces the average spike
rate considerably (c.f. figure 5.23A and B). Accordingly, much less information could
be recovered from the weaker firing activity.

5.6.2 Fisher Information and Network Topology

What is the relation between different Mexican hat topologies and the increased in-
formation? To answer this question, we explored different widths of the inhibitory
connections (σI ) and increased the spread of the Mexican hat.

Although increasing connection spread also increased noise correlations (red dotted
line in figure 5.36B), stimuli could be better reconstructed up to a certain width, see all
information measures in figure 5.36A. Increasing the inhibitory spread also sharpened
the network tuning (dotted orange line). Average tuning of excitatory neurons grew be-
yond 0.9 and reached a plateau for wide inhibitory spreads. As before, information was
not increased due to an increase in spike rate. Instead the number of spikes dropped
constantly with the increase of inhibitory connection spread. It decreased from about
60,000 spikes per stimulus trial (i.e. average firing rate of 2 Hz) for the tight inhibitory
spread to about half of the number of spikes for the widest inhibitory spreads. Hence,
for intermediate values of σI not only a gain in the total information was obtained, but
also the information per spike grew.

Yet, increasing inhibitory spread has its limitations. Information drastically de-
creased for too wide spreads although tuning is still very sharp. This happened for
scales of σI ≈ 22.5 px. Accordingly, for such wide connection spreads inhibitory con-
nections from one pinwheel leap into the others. Moreover, noise correlations in-
creased rigorously. Additionally, the decoder performance dropped quickly and the
mean squared error of the estimated stimulus rose considerably (black dotted line in
figure 5.36).

Furthermore, we tested whether the performance gain is really a product of the
Mexican hat topology or rather an effect of the width of the inhibitory connection
spread only. Therefore, we explored different widths of both connection spreads (σI ,
σE) and kept recurrent strengths fixed. To reduce simulation time we ran 125 trials
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A Information

B OSI, Correlations, and Performance

Figure 5.36: Top: Fisher information measures Ishuff, ILOLE, and Idiag
extracted from 500 sampled neurons and a maximum input frequency
of 30 Hz. Bottom: Orientation selectivity index (OSI) and average noise
correlations rSC (d ≤ 13.3 px, T = 3 s), and mean squared error (MSE)
as a function of inhibitory spread close to criticality (for each spread a
single network realization, σE = 10px, ḡIE = 0.6 nS, ḡEE = 0.4 nS). In
general, average rSC increases with span of the Mexican hat. Similarly,
the OSI shows a trend to increase with inhibitory spread and reaches
a plateau for large spreads. There is a sweet-spot for the information
that can be extracted from 500 neurons at about σI = 17 to 20 px after
which information decreases drastically. Likewise as information de-
creases, the MSE of the LOLE decoder rises.
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Figure 5.37: Fisher information ILOLE as a function of both connection
widths σI and σE . All network topologies are close to criticality (ḡEE =
0.4 nS, ḡIE = 0.6 nS). Some Mexican hat networks with very narrow σE
led to self-sustained activity (white area, red dotted border) and were
excluded from the analysis. Values are computed from 125 excitatory
neurons and 125 trials per stimulus (s ∈ {−1◦, 1◦}). Maximum input
firing rate is 30 Hz. Best encoding performance is measured for Mexican
hat networks.

per input stimulus (60% training, 20% validation, and 20% test data) to estimate Fisher
information. Consequently, we sampled activity from only 125 excitatory neurons.

Clearly, as depicted in figure 5.37, the phenomenon is related to the Mexican hat
topology. Best stimulus encoding performances were achieved by network topologies
with shorter excitatory than inhibitory connection spread (σE < σI ).

5.6.3 Fisher Information and Sample Size

We further wanted to know how this difference in information between the network
types depends on sampling. As Averbeck et al. (2006) argued, it is important how in-
formation content in neural population saturates with network size. Thus, it might be
worth investigating if there are a differences in the information saturation of the Mex-
ican hat and the inverse profile. We repeated the previous experiments but with 7000
trials per stimulus (80% training, 10% validation, and 10% test trials) and estimated
ILOLE again for different number of sampled excitatory neurons.
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Figure 5.38: Amount of Fisher information as a function of samplesize
for two network realizations, Mexican hat (σE = 10px, σI = 15px) in
blue and inverse Mexican hat (σE = 15px, σI = 10px) in green, both
operating close to criticality (ḡIE = 0.6 and ḡEE = 0.4). Solid lines for
a strong maximum input frequency of νAff, max = 30Hz and dashed for
weaker input of 15 Hz. The inset shows the corresponding mean squared
error (MSE) of the LOLE decoder. As long as the samplesize is small (i.e.
up to one third of the whole network) more information can be extracted
from the Mexican hat network.

Figure 5.38 shows ILOLE as a function of the number of sampled neurons for two
input strengths with 15 and 30 Hz. As long as roughly fewer than one third of the whole
networks’ neurons are considered for estimating the stimulus, a better performance
was observed for the Mexican hat network. However, if more neurons were read out to
reconstruct the stimulus, the inverse Mexican hat provided more information. Hence,
for larger samples of neurons, already weak correlations lead to a considerable amount
of redundant information. Accordingly, the detrimental nature of the noise correlations
was more pronounced and eradicated the advantage of sharper tuning in Mexican hat
networks.

5.7 Discussion II

As we hypothesized, noise correlations observed for Mexican hat topologies are indeed
detrimental to stimulus processing. Information due to correlated responses was re-
duced relative to information estimated in shuffled trial data. However, we also found
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support for our tuning sharpening hypothesis. In comparison to other topologies like
balanced or inverse Mexican hat, more information about the stimulus could be ex-
tracted even if correlations were present (c.f. figures 5.32 and 5.37). Still, this effect
is limited to samples of neurons. Increasing the number of neurons from which in-
formation was extracted to more than one third of the network size, better decoding
performance was achieved by an inverse Mexican hat topology (c.f. figure 5.38).

5.7.1 Limitations of Tuning Sharpening

The sharpening of the network tuning due to the Mexican hat topology may explain
this relative gain in information in comparison to other topologies. Yet, as sample size
increased, the deteriorating effect of correlation worsened and eliminated the advan-
tage of tuning sharpening. Moreover, our stimulus space is one-dimensional, only en-
compassing an orientation dimension. It is unclear if the effect of information gain for
sub-sampling still holds for higher dimensional stimuli. For instance, one may think of
a multi-dimensional stimulus like an orientation grating with a particular movement
direction and velocity. For an ensemble of independent Poisson neurons with Gaus-
sian tuning curves of width σs arranged evenly along the stimulus dimensions, Fisher
information can be computed directly via (Dayan and Abbott, 2005)

IFisher = T
(2π)D/2 ρ σDs νmax

Dσ2s
, (5.10)

where νmax is the maximum firing rate or peak of the response tuning curve and ρ con-
stitutes the density of neurons on a stimulus unit length. Additionally, T is the trial
length in seconds and D denotes the dimensionality of the stimulus. As long as D = 1,
decreasing σs, i.e. sharpening of the tuning, increases IFisher. For D = 2 the tuning
width σs is irrelevant and, in particular, forD > 2 decreasing the tuning width actually
reduces Fisher information. Although the cells in our simulation showed variability
beyond Poisson spiking and responses were correlated, analogously to equation 5.10
tuning sharpening might be futile for higher dimensional stimuli. Yet, tuning sharp-
ening could still provide the advantage of a sparser code and improve the information
transmitted per spike.

Furthermore, all of our networks were essentially leaking most of the available af-
ferent stimulus information. Every neuron received 100 afferent inputs in form of inde-
pendent Poisson spike trains with firing rates of a similar order as the network output.
Hence, these 100 independent spike trains were condensed into a single output spike
train per network neuron. Thereby the networks reduced the available information by
a factor on the order of 100. Arguably, one may interpret our networks as performing
compression rather than being information relay nodes. A more realistic setting en-
compasses afferent inputs of an amount similar to the network size. Accordingly, in
order to retain the number of afferent connections per neuron, many afferent inputs
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may be shared by individual network neurons. However, this would inevitably yield
correlations in the afferent input which we wanted to avoid in our study.

5.7.2 Comparison to other Modeling Studies

It is unclear whether it is beneficial for the cortex to perform tuning sharpening by re-
current rather than by afferent connections. Similar to our study, Seriès et al. (2004)
investigated the influence of noise correlations and tuning sharpening on stimulus in-
formation. They used two different models. In the first model tuning was sharpened
by strong recurrent Mexican hat connectivity much like in our model. In the second
one the tuning of the afferent input was already sharp and no excitatory recurrent con-
nections were present. The afferent inputs were chosen such that the output tuning
curves of the two network models matched. In this setting, the Mexican hat network
performed much worse than the model with afferent tuning. Besides a strong reduc-
tion in information due to noise correlations, Mexican hat networks showed already a
much lower value of shuffled information. However, Seriès et al. (2004) used a Mexican
hat defined over orientation space with a very large inhibitory spread of σI = 60◦ com-
pared to a very narrow excitatory width of σE = 7.5◦. In our simulations we discovered
that too wide inhibitory spread can have devastating effects on encoding quality. In-
formation was enhanced only if σI was at most twice as wide as σE (c.f. figure 5.36A).
Thus, the very wide inhibitory spread used by Seriès et al. (2004) might explain why
already shuffled information was low in their Mexican hat network.

Likewise, Hansen et al. (2012) developed a model with a Mexican hat defined over
orientation space. However, their ratio between excitatory and inhibitory widths was
less vast with σE = 15◦ and σI = 40◦. Accordingly, in comparison to the work by Seriès
et al. (2004), less information was lost in Mexican hat networks relative to topologies
with wider excitatory spread.

Moreover, Toyoizumi et al. (2006) investigated a spike based Fisher information
measure that takes precise spike timings into account. They proved that for decoding
of spatio-temporal inputs and identifying stimulus onset, the optimal coupling scheme
resembles a Mexican hat topology. This optimal topology exhibits global inhibition and
local excitatory connections.

Furthermore, Eyherabide and Samengo (2013) argued that one needs to be careful
when assessing the impact of noise correlations on information with decoders. Re-
searchers may under- or overestimate the role of correlations by using non-optimal
decoding methods. For example, a linear decoder like ours (c.f. equation 3.19) obvi-
ously fails to decode the simple XOR-problem.5 Similarly, one may consider a neuron
that represents one stimulus with both low and high activity whereas a second stimu-
lus elicits medium activity. A linear decoder fails to tell apart the first from the second

5The name XOR stems from the expression either or.
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stimulus because it cannot combine the low and high activity representation into a sin-
gle class with the second stimulus class in between. Accordingly, linear decoders are
not suitable to estimate the amount of information in activity of neural populations
representing stimuli in non-linear fashion; neither in the shuffled nor in the original
data. As a consequence, the estimated impact of correlations based on these informa-
tion measures is wrong. However, we showed that using non-linear support vector
regression did not yield an improvement in decoding performance in comparison to
the LOLE decoder. Thus, we are confident that our linear method yielded a good esti-
mation of the real information and impact of noise correlations in our networks.

Moreno-Bote et al. (2014) demonstrated analytically and numerically with leaky-
integrate and fire neurons that a particular type of correlations is detrimental to stim-
ulus encoding. They termed this shared variability differential correlations. The authors
showed that the noise covariance matrix Q of neural responses to a stimulus s can be
decomposed as

Q(s) = Q0(s) + εf ′(s)f ′T (s), (5.11)

where Q0 represents noise that is not harmful to encoding, whereas correlations that
are detrimental can take up the form εf ′(s)f ′T (s). ε is a potentially small coefficient,
f ′ is the derivative of the neural tuning curve vector with respect to stimulus s, and ·T

denotes the transpose operation. Hence, correlations are limiting encoding quality if
they shift joint neural responses tangentially along the stimulus manifold in the neural
response space. More simply, assuming a one-dimensional stimulus, like orientation,
and a network response in form of a Gaussian curve or a bump profile defined over the
stimulus space, the following holds: If noise moves the response curve back and forth
across the stimulus space, this yields differential correlations and one cannot discrim-
inate the noise from the actual stimulus. Indeed, we made similar observations in our
network model with heterogeneous stimuli. The heterogeneous input locked bump ac-
tivity to a particular location, but we still observed small jitter around the maximum
input (c.f. figures 5.16 and 5.31). Consequently, in our 2D networks featuring an orien-
tation map, small movements of the bump responses defined over the two-dimensional
neural space simultaneously imply jitter of network responses in the stimulus space.
Similarly, the spatial profile of the differential correlations found by Moreno-Bote et al.
(2014) are reminiscent of a sinusoidal modulation whose amplitude decays with dis-
tance in stimulus space akin to our results (c.f. figures 5.5A and 5.20A). Moreno-Bote et
al. (2014) argued that differential correlations are usually very small (ε≪ 1) and hidden
underneath other correlations (Q0). This makes them notoriously difficult to identify
by simply measuring correlation coefficients. In order to detect differential correlations
the authors suggested to use the decoder approach by Seriès et al. (2004) to estimate
Fisher information. This is what we did in our study and indeed observed that noise
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correlations from recurrent connectivity reduced Fisher information in comparison to
shuffled trials (c.f. figure 5.32).

Kanitscheider et al. (2015) developed a generative model of differential correlations
based on convergent feed-forward projections in a primary visual cortex model. In this
model noise correlations emerged due to shared noise from receptor and LGN input to
V1. In comparison, one can interpret our findings as a model of differential correlations
originating from recurrent connections instead of afferent input.

5.7.3 Computing at the Edge of Chaos

We pointed out that recurrent connection strength operating closer at the bifurcation
to criticality was beneficial for stimulus encoding regardless of the network topology
(c.f. figure 5.35). Similarly, Stimberg et al. (2009) identified this operating regime as
the one most likely reproducing tuning phenomena from an experimental study by
Mariño et al. (2005). This is in line with the prominent notion of computation at the
edge of chaos (Langton, 1990). Other theoretical studies have shown that networks can
accomplish more challenging tasks near the transition from ordered to chaotic dynam-
ics (Bertschinger and Natschläger, 2004), or that pattern recognition can be performed
best close to a chaotic state (Rossello et al., 2014). Analysis of multi-array electrode
recordings in cat, monkey, and human cortex revealed statistics and signal propaga-
tion patterns indicative of criticality (Dehghani et al., 2012). In like manner, criticality
might be abundant among many stages in sensory processing. For instance, Mora et al.
(2015) demonstrated that activity in the rat retina is balanced near a critical point.

5.7.4 Biological Relevance of Results

A modulation of information due to noise correlations has been reported frequently in
visual cortex experiments (Gu et al., 2011; Chelaru and Dragoi, 2014). Similar to our
observations that noise correlations are less disadvantageous if neurons within a net-
work were sub-sampled (c.f. figure 5.38), Montijn et al. (2014) measured a saturation
of decoding performance with sample size using a variety of decoders in mouse visual
cortex. Similar observations were made by Freiwald et al. (2002) reconstructing stimuli
with a Bayesian decoder from data recorded in rat primary visual cortex. Comparable
to our Mexican hat networks (c.f. figure 5.32), Graf et al. (2011) discovered that corre-
lations among neurons in macaque primary visual cortex carry a significant amount
of information. They reported that decoding accuracy could drop by more than five
percent if a decoder ignored correlations.

Hansen et al. (2012) as well as Smith et al. (2013) found that the magnitude of cor-
relations in monkey visual cortex are laminar dependent. For the input layer, often
referred to a the granular (Hansen et al., 2012) or middle layer (Smith et al., 2013), the
measured average rSC was almost 0. Whereas in the deep or infra-granular (IG) as
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well as the superficial or supra-granular (SG) layers the experimenters measured sig-
nificant correlations on the order of 0.1 to 0.2 for cells up to 300 µm apart. This can give
rise to the interpretation that correlations are predominant in layers that are project-
ing downstream to higher cortical areas. In contrast, the middle layer, receiving input
from the LGN, provides a very accurate and unmodified representation of a stimu-
lus. Accordingly, precise discrimination between similar stimuli can be achieved at
the cost of requiring spiking activity from many neurons. Since projections originating
from the middle layer terminate predominantly within the primary visual cortex, this
is not an unreasonable assumption. However, the output layers (IG and SG) provide a
compact stimulus representation that yields correlated variability as a side effect. This
representation allows downstream areas, presumably relying on costly long range con-
nections, to read out much information about a stimulus from sampling only a few
neurons. There, a Mexican hat coupling would be beneficial because the detrimental
effect of correlations is negligible for small sample sizes, but the stimulus representa-
tion is sparser and Fisher information is increased in comparison to other topologies.





6Conclusion

WE developed a novel framework for managing of numerical experiments
called pypet. The Python library supports massive parameter exploration
of simulations not only in Computational Neuroscience but in all disci-

plines relying on numerical experiments. The novel tool facilitates reproducible re-
search by tightly linking parameters and results and disentangling core simulation
code from administrative tasks like scheduling and data serialization. The program is
well-tested, documented, and freely available. Moreover, pypet helped performing all
experiments of this thesis and guided the extensive parameter explorations presented
in the previous chapter.

Furthermore, we discussed the phenomenon of noise correlations in the brain, espe-
cially in visual cortex. For repeated presentation of the same stimulus, cells can exhibit
correlated variability around an expected mean response. Experimentalist often mea-
sured a modulation of noise correlations with increasing distance between cell pairs
(Smith and Kohn, 2008; Solomon et al., 2014). In general, shared variability is positive
on the order of 0.1 to 0.4 for nearby cells with similar tuning properties (Zohary et al.,
1994; Huang and Lisberger, 2009). The magnitude and spatial structure of correlations
are particularly important because they have an impact on how well a stimulus is rep-
resented by a neural response. Surprisingly, correlations in cortex are often detrimental
to stimulus information (Gutnisky and Dragoi, 2008; Hansen et al., 2012). Why should
the brain hinder its own stimulus discrimination? Why are noise correlations present,
especially if they are detrimental to correlations?

Hitherto, there are no clear answers to these questions. We discussed many com-
peting hypotheses about what is causing the correlated variability in cortex. Ecker
et al. (2010) argued that correlations are merely a byproduct or artifact of experimen-
tal setups like anesthesia or erroneous spike sorting. In contrast, Hansen et al. (2012)
fostered the hypothesis that recurrent connectivity is a source of correlated variability.
They suggested that a so called Mexican hat profile can yield noise correlations.

We further investigated this hypothesis analytically by looking at recent work of
Rosenbaum and Doiron (2014). They conveyed that Mexican hat connectivity with
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wider excitatory than inhibitory spread can amplify spatial frequencies in neural ac-
tivity. We further demonstrated that this finding still holds if one augments the model
with adaptation. However, one cannot give an analytical expression of the network
state in case the homogeneous fixpoint is unstable. Therefore, we simplified the model
and compared it to work by Hansel and Sompolinsky (1998). Their model is based on
a simpler sinusoidal coupling scheme that can only amplify a single spatial frequency.
Accordingly, the analytical expression comprises a bump solution, also called marginal
phase. Instead of a single fixpoint, a line of potential fixpoints emerges. Hence, for
homogeneous input the position of the bump is arbitrary. Moreover, the activity bump
may wander along the spatial dimension of the network in case of noise or adaptation.
As a consequence, the wandering bump leads to coactivation of neighboring neurons.
For spiking neuron networks with the Gaussian Mexican hat coupling we predicted a
similar behavior but with the occurrence of multiple bumps. We further predicted that
bump phase changes across trials and the joint movement due to noise and adaptation
lead to sinusoidally modulated noise correlations.

Indeed, we could support this hypothesis with simulations of spiking neuron net-
works. We demonstrated that the findings are robust and can be obtained for wide
parameter ranges in one-dimensional as well as tow-dimensional networks. Moreover,
we showed that using heterogeneous tuned input, an interaction between the inherent
bump structure and the input stimulation was observed. For 2D networks, noise cor-
relations were modulated fairly linearly instead of a strong sinusoidal distance depen-
dency. Similar observations were made regarding preferred orientation dependency.
Hence, strongest correlations were measured among nearby neurons with similar re-
sponse properties. This matches reports from the experimental literature (Lee et al.,
1998; Huang and Lisberger, 2009; Schulz et al., 2015).

Furthermore, we demonstrated that the noise correlations caused by Mexican hat
topology were indeed detrimental to stimulus encoding. Yet, results were twofold.
Besides the detrimental correlations, the encoding quality based on small samples of
neurons in Mexican hat networks was higher than compared to other topologies. Ac-
cordingly, Mexican hat networks sharpened tuned inputs. This lead to a compact repre-
sentation of the stimulus. Nonetheless, with increasing sample size, noise correlations
eradicated this advantage. Such a saturation of information and decoding performance
with sample size was also observed in experimental studies (Freiwald et al., 2002; Mon-
tijn et al., 2014). This led us to the speculation that shared variability is a price that
cortex is willing to pay in output layers of sensory areas. Consequently, downstream
neurons relying on long range inter-areal connections need to contact fewer neurons in
order to obtain a good estimate of the stimulus. This is in line with recent findings that
researchers located noise correlations only in output layers of primary visual cortex
(Hansen et al., 2012; Smith et al., 2013).

Still, there remain many open questions. Does the brain really rely on Mexican
hat coupling? Up to know the biological data is inconclusive and points in opposing
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directions (Buzas et al., 2001; Mariño et al., 2005; Levy and Reyes, 2012). Moreover,
what are other sources of noise correlations? We argued that recurrent connectivity is
not the primary source of shared variability, but may be one among many others. Thus,
noise correlations measured in animal studies might be a compound of experimental
factors as anesthesia, feed-back modulations like attention, and recurrent and shared
inputs. The spike count correlation coefficient can identify correlated variability in
cortex, but it is a rather poor statistic to discern potential factors contributing to the
correlations. Accordingly, we suggested that future experimental research should aim
at multi-cell recordings with a high spatial resolution. Researchers need to analyze the
recorded network dynamics and spiking activity in its entirety and not just condense it
to summarizing statistics such as rSC .

Of course, there is also more work for theoreticians. Finally, we are going to sketch
two potential future lines of research for network modeling in the following section.

6.1 Future Work

Besides experimental factors entailing noise correlations, there might be other intrinsic
network properties. For example, in our study we completely ignored the contribu-
tion of afferent inputs. All afferent stimulation used independent Poisson spike trains.
Accordingly, we neither included correlations in the input signal nor the sharing of
afferent connections by several post-synaptic cells. Renart et al. (2010) demonstrated
how recurrent connectivity may even decorrelate network activity despite afferent cor-
relations. Yet, we do not know the outcome of combining correlated afferent inputs
and a recurrent topology like Mexican hat. As this connectivity scheme yields noise
correlations by itself, we could investigate how these two sources of shared variability
collate. Do correlations simply add linearly? Or do we observe non-linear interactions
between afferent and recurrent noise correlations?

What other recurrent profiles can cause noise correlations? Indeed, there can be
coupling schemes — besides Gaussian Mexican hat and the simple sinusoidal one
by Hansel and Sompolinsky (1998) — that amplify certain spatial frequencies, but at
the same time damp the 0th Fourier mode. For instance, our preliminary data provided
in the appendix B suggests that patchy excitatory long range connections between neu-
rons with similar orientation preference are a suitable candidate. Future work may
elaborate on this phenomenon and investigate the influence of long range connections
on noise correlation thoroughly. Indeed, the existence of long ranging horizontal con-
nections in the visual cortex has been known for quite some time (Gilbert and Wiesel,
1989; Das and Gilbert, 1995). Patchy projections were also taken up by the model-
ing community (Voges and Perrinet, 2010; Voges et al., 2010). For instance, Voges and
Perrinet (2012) reported the emergence of complex spatial patterns in such networks.
Hence, it might be fruitful to investigate the link between these spatial patterns, shared
variability, and their role in stimulus processing.





AAppendix: Spiking Neuron Network
Details

In the following section we are going to explain the spiking neuron network model in
detail. We will list all differential equations and give all parameter settings in a compact
table at the end of the appendix.

A.1 Model Details

We used adaptive exponential integrate and fire neurons (AEIF) (Brette and Gerstner,
2005). Each neuron of population X ∈ {E, I} indexed by i comprised two differential
equations describing the development of the membrane potential VX,i and an adapta-
tion current wX,i over time:

C
dVX,i(t)

dt
= −gL,X(VX,i − EL) + gL,X∆T exp


VX,i − VT

∆T


− wX,i − IX,i(t), (A.1)

IX,i(t) = IXA,i(t) + IXE,i(t) + IXI,i(t), (A.2)

τw
dwX,i(t)

dt
= aX(Vi − EL)− wX,i, (A.3)

with −gL,X(VX,i − EL) defining the leak term and gL,X∆T exp

VX,i−VT

∆T


being an ap-

proximation to exponential rise of the sodium (Na+) current of an action potential,
assuming that the activation of Na+-channels is instantaneous and inactivation can be
neglected (Fourcaud-Trocme et al., 2003). Moreover, C denotes the capacitance, gL,X
is the leak conductance of population X , EL the leak reversal potential, VT the thresh-
old parameter, ∆T the slope factor, aX the sub-threshold adaptation of population X ,
τw the adaptation time constant, and IXY,i denotes the afferent and recurrent currents.
Moreover, each neuron exhibited a threshold condition:

if VX,i ≥ Vcut : VX,i → EL (with clamping for τrefr,X ), (A.4)

wX,i → wX,i + bX ,

i.e. each neuron was reset to the leakage potential in case the membrane potential rose
beyond the cut off point Vcut. In addition, this crossing was considered to be the par-
ticular point in time a neuron spiked. Then wX,i was increased by a constant term bX ,
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modeling spike-triggered adaptation. Moreover, the dynamic of VX,i was clamped for
a period of τrefr,X to EL after the crossing to simulate an absolute refractory period.

Note that we used different refractory periods τrefr,X for excitatory and inhibitory
neurons. We assumed a shorter period for fast spiking inhibitory neurons of 2 ms in
comparison to the excitatory cells with 3 ms. Similarly, we used different leak conduc-
tances gL,X among the two populations to account for the experimental observation
that the conductance is about twice as large in inhibitory cells (Karayannis et al., 2007).

Furthermore, the currents IXY,i with Y ∈ {A,E, I} were modeled as conductance
based:

IXY,i(t) = gXY,i(t) (VX,i(t)− EY ). (A.5)

Afferent currents were mediated by fast exponentially decaying AMPA-like synapses.
Recurrent input consisted of excitatory as well as an inhibitory part. The excitatory
current depended on a mixture of fast AMPA and slow bi-exponential NMDA-like
synapses, whereas the inhibitory current was based on fast GABAA-like synapses:

τAMPA
dgXA,i(t)

dt
= −gXA,i(t) + ḡXA


tkj

δ(tkj − t), (A.6)

gXE,i(t) =gXEAMPA,i(t) + gXENMDA,i(t), (A.7)

τAMPA
dgXEAMPA,i(t)

dt
=− gXEAMPA,i(t) + α ḡXE


tkj

δ(tkj − t+∆ij), (A.8)

τdecay
dgXENMDA,i(t)

dt
=− gXENMDA,i(t) + β hXENMDA,i(t), (A.9)

τrise
dhXENMDA,i(t)

dt
=− hXENMDA,i(t) + (1− α)ḡXE


tkj

δ(tkj − t+∆ij), (A.10)

β =


τrise

τdecay

τdecay/(τrise−τdecay)

, (A.11)

τGABAA

dgXI,i(t)

dt
=− gXI,i(t) + ḡXI


tkj

δ(tkj − t+∆ij), (A.12)

where α ∈ [0, 1] determines the ratio between AMPA and NMDA receptors and tkj is
the time point of the kth spike of pre-synaptic neuron j. In addition, ḡXY denotes the
maximum conductance, i.e. the synaptic coupling strength, τ... are time constants, EY

is the synaptic reversal potential, and ∆ij is the synaptic delay between neuron j and i
as given below.
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Figure A.1: Pinwheel Map

A.1.1 Synaptic Delays

Synaptic delays ∆ij were distance dependent and computed as

∆ij = ∆ij +
dij
v
, (A.13)

with a basic time delay ∆ij that was sampled uniformly from the interval [0.2, 1.2] ms.
Moreover, v denotes the signal velocity and dij is the distance between cells i and j.
We assumed a signal velocity of v = 200 kpx/s for the one-dimensional networks and
v = 13.3 kpx/s in the two-dimensional setting which corresponds to 0.2 m/s in our cat
cortex scaling.

A.1.2 Numerical Simulation

We integrated all equations using a simple Euler scheme with a particular step size dt.
The runtime was optimized by pre-compiling Python code into faster C code using the
Numba package (The Numba Development Team, 2015).

To allow fast computation of the exponential upstroke as in gL,X∆T exp

Vi(t)−VT

∆T


,

we precomputed the function. We used 106 sampling points and linearly sampled
membrane voltages in a range between 92.5 mV and Vcut. We did not interpolate in
between points. For membrane voltages falling in between two sampling points, we
used the result of the closest point. For values smaller than the lower bound, we simply
took a voltage of 92.5 mV.

Randomly sampled membrane potentials VX,i from a uniform distribution over the
interval [EL, VT ] were used as initial conditions. All other dynamic parameters were
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set to 0. Moreover, before any measures or statistics were computed a simulation was
run for at least 1 second to allow the network to settle into a stationary state.

The source code is publicly available and hosted on github (https://github.
com/SmokinCaterpillar/visualcortex).

A.2 Parameter Settings

In here we provide all parameter settings, see table A.1. The pinwheel map of the
heterogeneous input for the 2D networks is also depicted in figure A.1, showing the
preferred orientations sPOi of 100 × 100 neurons.

Parameter Description Default Value varied

Simulation
dt Euler step size 0.1 ms

Network Topology
NE Number of excitatory neurons 10,000 yes
NI Number of inhibitory neurons 2500 yes
KE Number of excitatory connections 200 (1D) or 400 (2D) yes
KI Number of inhibitory connections 100 (1D) or 200 (2D) yes
KA Number of afferent connections 100 yes
D Map dimensionality 1 or 2
σE Excitatory connection spread 125 (1D) or 10 px (2D) yes
σI Inhibitory connection spread 250 (1D) or 15 px (2D) yes
∆ij Basic synaptic delay [0.2, 1.2] ms
v Signal velocity 200 (1D) or 13.3 kpx/s (2D)

Neuron Properties
C Capacitance 200 pF
gL,E Excitatory leak conductance 10 nS
gL,I Inhibitory leak conductance 20 nS
EL Leak reversal potential −65 mV
VT Threshold parameter −50 mV
∆T Slope factor 2 mV
Vcut Spike cut-off −30 mV
τrefr,E Excitatory refractory period 3 ms
τrefr,I Inhibitory refractory period 2 ms
τw Adaptation time constant 250 ms
aE Exc. sub-threshold adaptation 2 nS
aI Inh. sub-threshold adaptation 0.2 nS
bE Excitatory SFA strength 50 pA in appendix
bI Inhibitory SFA strength 5 pA in appendix

https://github.com/SmokinCaterpillar/visualcortex
https://github.com/SmokinCaterpillar/visualcortex
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Parameter Description Default Value varied

Synaptic Coupling
ḡEE Exc. to exc. coupling strength 0.4 nS yes
ḡIE Exc. to inh. coupling strength 0.6 nS yes
ḡEI Inh. to exc. coupling strength 5.0 nS
ḡII Inh. to inh. coupling strength 5.0 nS
ḡEA Aff. to exc. coupling strength 1.5 nS
ḡIA Aff. to inh. coupling strength 0.5 nS
EE Excitatory reversal potential 0 mV
EI Inhibitory reversal potential −80 mV
EA Afferent reversal potential 0 mV
α Fraction of AMPA receptors 0.7
τAMPA AMPA decay time constant 3 ms
τrise NMDA rise time constant 5 ms
τdecay NMDA decay time constant 80 ms
τGABAA GABAA decay time constant 5 ms

Homogeneous Input
νAff,i Afferent firing rate 15 Hz (1D) or 10 Hz (2D) yes

Heterogeneous Input 1D
νAff, max Maximum afferent firing rate 30 Hz yes
νAff, base Baseline afferent firing rate 3 Hz
ωs Spatial frequency 1.4 kpx−1 yes

Heterogeneous Input 2D
νAff, max Maximum afferent firing rate 30 Hz yes
νAff, base Baseline afferent firing rate 3 Hz
σAff Input tuning width 27.5◦

s Orientation stimulus 1◦ yes
sPOi Preferred orientation See figure A.1

Table A.1: Model Parameters. All parameters that were systematically
varied at some point during the thesis are marked as such in the last
column.





BAppendix: Preliminary Results

In the following sections we are going to present some preliminary results. First, we
will briefly discuss correlated variability and pattern formation in regimes beyond crit-
icality. Afterwards, we will shortly look at the influence of adaptation on correlations.
Finally, we are going to investigate the influence of excitatory patchy long range con-
nections on shared variability.

B.1 Pattern Formation Beyond Criticality

Figure B.1 shows the average firing rate, CV, and noise correlations for a Mexican hat
as well as inverse Mexican hat configuration. These are the same networks as in fig-
ure 5.23, but the CV and rSC beyond criticality are depicted as well.

We identified that even for the inverse Mexican hat there existed a very small region
beyond criticality (red dotted line) where the CV is larger than 1, rates remained small,
and average noise correlations were on the order of 0.1 to 0.3. Looking at the joint
spiking activity, one can make out the emergence of spatial patterns. These were less
well formed than the bumps of Mexican hat networks, see figure B.2.

This behavior was not expected from the theoretical considerations in chapter 4.
However, the theory assumes rectified, linear rate models with instantaneous coupling.
Further thorough investigations including an extension of the model by using a non-
linear transfer function may explain this phenomenon. Alternatively, it might be help-
ful to incorporate the conductance based coupling of the spiking neurons. For instance,
Rudolph-Lilith et al. (2012) demonstrated that rate models with conductance based dy-
namics can exhibit complex activity patterns and are well suited reductions of spiking
neurons.

B.2 Noise Correlations and Adaptation

Clearly, adaptation plays an important role in the emergence of noise correlations.
Adaptation yields movement of the bump solutions. Accordingly, removing adapta-
tion from the spiking neurons reduced the magnitude of noise correlations for nearby
neurons considerably (figure B.3).
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Figure B.1: Parameter exploration of ḡEE and ḡEI for a Mexican hat
network on the left (σE = 10px < σI = 15px) and an inverse network
on the right side (σE = 15px < σI = 10px). Top row (A, B) shows the
average firing rate (color coded) of all neurons in the network. The thick
dotted red line marks the bifurcation to criticality. Middle row (C, D)
displays the average coefficient of variation (CV). The third row (E, F)
gives the average rSC among close by cell pairs (at most 13.3 px apart)
estimated from a single trail of 30 seconds and a sliding window of 1
second.
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Figure B.2: Consecutive snapshots of 100 ms length of network activity.
A blue dot corresponds to an excitatory spike within the time interval.
The activity pattern of an inverse Mexican hat network (σE = 15px >
σI = 10px) beyond criticality (ḡEE = 0.7 nS and ḡIE = 0.8 nS) is shown.

Figure B.3: Average noise correlation within a Mexican hat network
close to criticality (σE = 125 px < σE = 250 px, ḡEE = 0.4 nS, ḡIE =
0.6 nS). Values are averaged across pairs at most 100 px apart over 50 tri-
als of 1 second each with homogeneous input. Error bars mark standard
deviations across 10 network realizations. On the left without adapta-
tion aX = bX = 0 and on the right with adaptation aE = 10aI = 2nS
and bE = 10bI = 50pA. Removing adaptation significantly reduces cor-
relations (Wilcoxon rank-sum test, p < 0.001, 10 network samples).

Furthermore, we extensively varied the spike frequency adaptation (SFA) strength
bE while keeping the ratio bE = 10bI . Accordingly, figure B.4 depicts the average rSC
as a function of bE for varying integration window lengths. For stronger magnitudes
of spike frequency adaption bE > 50 pA, we observed a reduction in the rSC for longer
time windows. More precisely, the average rSC as a function of adaptation strength
exhibited a slight sinusoidal modulation for longer integration window lengths.

Stronger adaptation in the simple sinusoidal rate model by Hansel and Sompolin-
sky (1998), as discussed in chapter 4, increases the bump velocity. We observed a sim-
ilar behavior for the Gaussian Mexican hat coupling in the spiking neural networks.
For the weak default SFA with bE = 50pA, we identified slow bump movements that
eventually change directions. Whereas stronger adaptations like 100 or 200 pA yielded
coordinated unidirectional bump movement as depicted in figure B.5. Unidirectional
movement leads to regular oscillations on the single neuron level. Stronger values of
bE increased the bump velocity and thereby increased the oscillation frequency. The
phases of the oscillations may fit multiple times into a large integration time window.
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Figure B.4: Average noise correlation within Mexican hat network close
to criticality (σE = 125 px < σE = 250 px, ḡEE = 0.4 nS, ḡIE = 0.6 nS) for
various integration window sizes. Values are averaged across pairs at
most 100 px apart over 50 trials of 1 second each with homogeneous in-
put. Error bars mark standard deviations across 5 network realizations.
We vary bE and bI = 0.1bE and keep all other parameters fixed.

This in turn may explain the sinusoidal modulation of the average rSC as function of
bE for larger integration time windows in figure B.4.

B.3 Long Range Connections

Herein we are going to discuss long-range connections as a potential source of corre-
lated variability. At first, we will show that in line with the findings from chapter 4,
long range connection can amplify some spatial Fourier mode n ̸= 0 while the fixpoint
is still stable for n = 0. Next, we are going to present a simulation with long range
connections in a network of spiking neurons.

B.3.1 Theoretical Motivation

In contrast to previous coupling schemes, we assume that besides a local coupling, ex-
citatory connections can exhibit patchy long range connections. Moreover, for simplic-
ity we will use a one-dimensional model. Let κΓXE(x) = gLLR(x; p, σE ,KLR, dLR, σLR),
where gLLR is a compound of local (L) and long range (LR) connectivity:

gLLR(x; p, σE ,KLR, dLR, σLR) = p g(x;σE) + (1− p) gLR(x;KLR, dLR, σLR), (B.1)
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A bE = 50 pA

B bE = 100 pA

C bE = 200 pA

Figure B.5: Spiking activity of a Mexican hat network (σE = 125 px <
σE = 250 px, ḡEE = 0.4 nS, ḡIE = 0.6 nS) for three different SFA
strengths bE . A small black dot represents a spike of a particular neu-
ron at a particular point in time. Neurons are ordered according to their
position on the ring. Small plots show the activity histograms over time
(horizontal) as well as over space (vertical).
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Figure B.6: Left (A): Spatial profile of excitatory patchy long rang con-
nections (blue) and local inhibitory connections (red). For better visibil-
ity inhibition is depicted with a negative sign. Parameters are σE = σI =
0.0125, σLR = 0.005, KLR = 3 , dLR = 0.1, p = 1/3, q = 0.8, jE = 0.7, and
jI = 4. Right (B): Real part of Fourier transform as black curve assuming
a simple single population rate model and a coupling as in equation B.4.
Some spatial frequencies are amplified. In cyan the spatial Fourier trans-
form of the local coupling only is shown, there all modes are stable.

with p being the fraction of short range connections, g(x;σE) is the standard Gaussian
local coupling from equation 4.37, and gLR(x;KLR, dLR, σLR) models patchy long range
connection as a sum of wrapped Gaussians:

gLR(x;KLR, dLR, σLR) =
1√

8πσLR KLR

KLR
k ̸=0,

k=−KLR

∞
l=−∞

exp


−(x+ l − k dLR)

2

2σ2LR


, (B.2)

whereKLR denotes the number of patchy centers on each side of the post-synaptic neu-
ron, dLR is the distance between the patchy centers, and σLR is the width of the patchy
Gaussian distributions. The Fourier transform of the patchy coupling can be computed
by summing the Fourier transform of the individual Gaussians. For a wrapped Gaus-
sian with non-zero mean µ, the circular Fourier transform is (Rosenbaum and Doiron,
2014)

g̃(n;µ, σ) = exp(−2π2 n2 σ2 − 2π inµ). (B.3)

We assume locally balanced profile and that patchy long range projections are sharp
and specifically targeted connections; hence, σLR < σE = σI . This setup is depicted in
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Figure B.7: The Fourier mode n ≥ 0 with the largest real part of all
eigenvalues is color coded for two different local coupling schemes com-
bined with patchy projections. Excitatory to excitatory jEE and ex-
citatory to inhibitory values jIE are explored. Inhibitory connection
strengths are fixed with jII = jEI = 4.0 and we set q = 0.8, p = 1/3,
KLR = 3, dLR = 0.1, and ϵ = 0.01. For the balanced case it holds
σLR = 0.005 < σE = σI = 0.0125, whereas for the inverse Mexican
hat we use σLR = 0.005 < σI = 0.0125 < σE = 0.025. Critical runaway
excitation where already Fourier mode n = 0 is unstable is depicted in
white. Inhomogeneous non-runaway activity can be observed for both
networks with patchy long range projections.

figure B.6A. If we use a single population mean-field model (as in equation 4.62) and a
patchy coupling of the form

ωE(x)− ωI(x) = jE gLLR(x; p, σE ,KLR, dLR, σLR)− jI g(x;σI), (B.4)

with σLR < σE = σI , we can see a very spiky Fourier transform in figure B.6B.
The patchy connectivity amplifies certain spatial frequencies (parts of the black line
above 0). Still, for n = 0 the system is stable. If the patchy long range connections
gLR(x;KLR, dLR, σLR) are removed, all Fourier modes are stable again (cyan curve in
figure B.6B).

If we use a rate model with two populations including excitatory neurons and in-
hibitory cells (c.f. equations 4.23 and 4.24), we can make a similar observation. Fig-
ure B.7 depicts the strongest amplified spatial frequency for different recurrent connec-
tion strengths. In other words, the Fourier modes with the eigenvalue with the largest
real part of the Jacobian matrices Aϵ(n) from equation 4.31 are color coded. Runaway
excitation is shown in white. Even if local coupling has the form of an inverse Mexican
hat (figure B.7B), patchy projections amplify some spatial frequencies. Next, we are go-
ing to present simulation results from a two-dimensional spiking neural network with
patchy projections.
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Figure B.8: Orientation map created with an approach by Macke et al.
(2009). The pre-synaptic inputs of one target neuron (black star) are de-
picted as grey dots (excitatory) and orange triangles (inhibitory).

B.3.2 Network Simulations

We simulated a network of 200 × 200 excitatory adaptive exponential integrate and fire
neurons arranged on a regular grid and 10,000 randomly placed inhibitory neurons.
Each neuron received KA = 100 afferent inputs, KI = 75 local inhibitory inputs, KE =

100 local excitatory inputs, and KLR = 200 patchy excitatory long range connections.
Each neuron is characterized by a particular preferred orientation according to the

orientation map that is depicted in figure B.8. We created the artificial orientation
map based on an approach by Macke et al. (2009). We convolved a two-dimensional
200 × 200 image of Gaussian white noise with a filter f(x, y) consisting of the difference
of two Gaussians:

f(x, y) =
α1

2π σ21
exp


−x

2 + y2

2σ21


− α2

2π σ22
exp


−x

2 + y2

2σ22


, (B.5)

with α1 = α2 = 1, σ1 = 5, and σ2 = 10.
Moreover, local connections were sampled as for the simulations in chapter 5 using

equation 5.1 with a balanced profile σE = σI = 6px. Patchy long range connections
were sampled independent of distance except that we did not allow projections further
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Figure B.9: Noise correlations as a function of distance in a network with
patchy excitatory long range connections. Blue dots represent rSC of in-
dividual neuron pairs computed over a time window of 1 second. Green
depicts the empirical average for bins of 1 px. (A) Noise correlations for
homogeneous input calculated over 50 trials and (B) shared variability
for orientation tuned input averaged across 6 evenly spaced orientations
{−89◦,−59◦,−29◦, 1◦, 31◦, 61◦} with 30 trials each.

Figure B.10: Left (A): Average noise correlations as a function of dis-
tance and orientation difference between cell pairs in a network with
patchy excitatory long range connections. In black excluded bins with
less than 50 pairs. Noise correlations are computed from 50 trials of
1 second with homogeneous stimulation. Inset shows averages along
each axis, in green noise correlations as a function of distance (c.f. fig-
ure B.9A) and in cyan as a function of preferred orientation difference.
Right (B): Corresponding number of cell pairs in each bin.
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than 80 pixels. Connection probability was defined only over the difference in preferred
orientation between the pre- and post-synaptic cell j and i:

pLR(i, j) =
1√

2πσPO
exp


−
∆sPOi,j

2

2σ2PO


, (B.6)

where σPO is the width of the Gaussian over the preferred orientation space and ∆sPOi,j

is the difference between the preferred orientations of the pre-synaptic neuron j and
post-synaptic neuron i. We assumed very targeted, orientation specific connections
with σPO = 1.5◦. A realization of patchy long range connections for one post-synaptic
cell is depicted in figure B.8. All other parameters were chosen as in table A.1 except
ḡEE = 0.25 nS and ḡIE = 0.8 nS.

We computed the spike count correlation coefficient as a function of distance be-
tween cell pairs for 50 trials lasting 1 second, as depicted in figure B.9A. We observed a
decline of average shared variability (green) with distance (A). In contrast to Mexican
hat coupling, we did not obtain a sinusoidal modulation but a seemingly exponential
decay. Furthermore, if we used tuned input instead of homogeneous stimulation (B),
the magnitude was decreased, but the shape of the curve remained the same.

We further discriminated cell pairs not only by distance but also by difference in
their preferred orientation. Figure B.10A shows the average rSC as a function of cell
distance as well as orientation difference. Strongest noise correlations were observed
for nearby cells with similar orientation preference. In contrast to the distance depen-
dency, one can discern a sinusoidal modulation of noise correlations with difference in
orientation for rather similar preferred orientations (cyan curve in inset). In addition,
we identified that shared variability is positive among distant cells of very similar and
very opposite preferred orientations. Similar observations were made by Smith and
Kohn (2008) in the visual cortex of monkeys. They reported that noise correlations were
positive and stronger among distant cells with negative (close to -1) or positive (close
to 1) signal correlations than among distant neurons with signal correlations around 0.
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